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Abstract. The QBlade implementation of the lifting-line free vortex wake (LLFVW) method was tested in
conditions analogous to floating platform motion. Comparisons against two independent test cases using a variety
of simulation methods show good agreement in thrust forces, rotor power, blade forces and rotor plane induction.
Along with the many verifications already undertaken in the literature, it seems that the code performs solidly
even in these challenging cases. Further to this, the key steps are presented from a new formulation of the
instantaneous aerodynamic thrust damping of a wind turbine rotor. A test case with harmonic platform motion
and collective blade pitch is used to demonstrate how combining such tools can lead to a better understanding of
aeroelastic stability. A second case demonstrates a non-harmonic blade pitch manoeuvre showing the versatility
of the instantaneous damping method.

1 Introduction

The proliferation of large wind turbine rotors has been ac-
companied by the need for accurate and computationally in-
expensive aeroelastic simulation tools. For aeroelastic simu-
lations, the aerodynamics of the wind turbine are most typi-
cally calculated using methods based on blade element mo-
mentum (BEM). In the scenario of offshore wind, particu-
larly when designing for floating platforms, the significant
motion of the rotor leads to complicated aerodynamics. Se-
bastian and Lackner (2013) have made a convincing case
that, even with secondary correction factors, floating plat-
form wind turbine aerodynamics exceed the capabilities of
BEM-based simulation methods. The main reason is that a
floating platform wind turbine will dynamically pitch and
yaw. As BEM does not explicitly solve the flow pattern of
the wake, it is simply not possible to accurately represent
such behaviour.

The lifting-line free vortex wake (LLFVW) method uses
non-linear polar data1 to calculate the blade forces coupled

1Including viscous effects such as separation.

with a free vortex wake formulation and serves as a good
method for simulating cases in which large rotor displace-
ments and yaw misalignments occur (see Fig. 2). Recently,
the implementation of an LLFVW code was completed and
included in the QBlade wind turbine simulation code (Marten
et al., 2015). Simultaneously to this study, the LLFVW solver
was extended to include an unsteady aerodynamics model2

and coupled with the structural formulations of the FAST
framework (Wendler et al., 2016; Saverin et al., 2016). In this
paper, a comparison is made between the LLFVW code and
existing literature comparisons in which higher-order aero-
dynamic simulation techniques were used, i.e. URANS CFD
(Tran et al., 2014; Sebastian and Lackner, 2013). The com-
parisons and further test cases are made using the NREL
5MW reference turbine undergoing prescribed harmonic mo-
tion (see Fig. 1; Jonkman, 2013).

2LLFVW formulations inherently account for attached flow un-
steadiness; the unsteady aerodynamic model mentioned here only
includes terms for detached flow and leading edge vorticity. The
details are given by Wendler et al. (2016).

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



672 M. Lennie et al.: Methods for wind turbine platform stability

After the validation of the LLFVW code for simulations
involving a moving rotor plane, the aerodynamic damping
of the rotor is investigated. For this analysis, a new formula-
tion is presented for the instantaneous aerodynamic damping
of the fore–aft motion degree of freedom. The formulation
is a modification of an existing formulation that was first
presented by Bowles et al. (2014) and Corke and Thomas
(2015) and later applied by Lennie et al. (2016) to an air-
foil with microtabs. For the first time, this new formula-
tion makes it possible to look at the aerodynamic damping
throughout the pitch cycle of the wind turbine as opposed to
the traditional approach in which only cycle-averaged values
are inspected. Such a formulation is particularly useful for
analysing aeroelastic instabilities for which limit cycle oscil-
lations are present. Limit cycle oscillations will have cycle-
averaged values that are neutral but could have occurrences
of highly negative damping. Using this method on LLFVW
data makes it possible to understand the aeroelastic thrust
stability of the rotor without the heavy linearization of the
aerodynamics applied in most stability analysis techniques.
It is also a useful way of understanding the full effects of
controller wind turbine interactions. An example will be pre-
sented showing the effect of collective blade pitch cycles dur-
ing fore–aft motion of the rotor.

2 Rotor motion

For the scope of this paper, two varieties of prescribed mo-
tion are considered. The first variety, pitching, is the more
realistic representation in which the rotor plane undergoes
both pitch and linear translation (see Fig. 1). The second va-
riety, fore–aft motion, assumes that the rotor plane pitching
component is insignificant compared to the influence of the
linear translation. Within the scope of this study investigating
the total rotor thrust, the difference between the assumptions
is assumed to be small. There may be applications for which
this assumption is unsuitable. In the comparisons, the same
magnitude and type of motion is used as in the literature so
that no additional assumptions were introduced.

3 Comparison cases

The QBlade LLFVW implementation has been previously
tested for a range of standard HAWT and VAWT cases as
can be found in the existing literature (Marten et al., 2015;
Saverin et al., 2016). When the wind turbine starts moving
relative to the steady inflow, the wake will become distorted.
In the case of a harmonic movement, the wake will display
harmonic contractions and expansions (see Fig. 2) which in-
duce velocity onto the rotor plane. The publications men-
tioned above focused on verifying the performance of the
QBlade LLFVW under stationary conditions and cases with
yaw. This means that the battery of verifications undertaken
should be extended to include cases in which platform mo-

ϕ0 X0(a) (b)

Figure 1. The two different assumed motions for the wind turbine:
(a) wind turbine pitching and (b) wind turbine fore–aft motion.

tion is present, thus ensuring that LLFVW techniques are a
suitable approach for floating platform wind turbine aerody-
namics. A number of comparison papers have been sought
from the literature that test a horizontal axis wind turbine
rotor in prescribed floating platform motion. For the scope
of this paper, only rigid body motion will be considered. The
comparison will be undertaken by replicating the simulations
from the literature which used higher-order methods.

Two different papers were used as a basis for compari-
son, both investigating the NREL 5MW reference turbine
(Jonkman, 2013). Tran et al. (2014) compare a number of
techniques with virtual blade motion using multiple refer-
ence frames (CFD-MRF) and real rigid body blade motion
(CFD-RBM). The highest-order simulation is a 3-D unsteady
Reynolds-averaged Navier–Stokes (URANS) CFD simula-
tion with a k−ω shear-stress transport turbulence model.
The blade rigid body motion was achieved using an over-
set grid, which is described at length including a discussion
of the mesh convergence. The actual CFD simulations were
conducted using the commercial code Fluent™ with Star-
CCM+™ for meshing. It appears from the presented infor-
mation that the simulations should be high quality and within
the limitations of URANS.

Tran et al. (2014) also compared their results against
lower-order simulations using the unsteady blade element
momentum method. The Tran et al. (2014) implementation
of the unsteady blade element moment (UBEM) method was
taken from Hansen (2008) with corrections for tip losses,
wake unsteadiness and unsteady aerodynamics. This partic-
ular implementation took the platform motion into account
by changing the relative inflow velocity. Further compar-
isons were made using modified versions of FAST (Jonkman,
2015) from the National Renewable Energy Laboratory; one
comparison used a momentum balance for the wake solu-
tion (FAST-BEM) and the other used generalized dynamic
wake (FAST-GDW). In both cases, the structural modes were
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Figure 2. Snapshot of LLFVW simulation during pitching platform motion; vorticity isosurface of the wake coloured with velocity magni-
tude.

locked and no controller was used; for more complete details,
see the original paper from Tran et al. (2014).

Tran et al. (2014) simulate the pitching of the wind turbine
as shown in Fig. 1 (see the left-hand side). Two cases were
simulated with platform pitching amplitudes of 1 and 4◦ and
a constant harmonic pitching frequency of 0.1 Hz. The calcu-
lations were performed at a steady inflow speed of 11 m s−1

with a constant rotational speed of 12 rpm and a constant
blade pitch angle of 0◦. From this paper it was possible to
compare thrust, power and integrated blade forces.

The QBlade simulations were run with the same condi-
tions as described above. The unsteady aerodynamic model
from Wendler was enabled without vortex lift as the wind tur-
bine is operating at near rated speed without yaw (Wendler
et al., 2016). The standard NREL 5MW model (Jonkman,
2013) was set up according to the definition3.

The simulation settings can be found in Table 1. The
FVLLW requires a number of input parameters which con-
trol the behaviour of the wake. The QBlade implementation
of FVLLW lumps together wake elements in two stages in or-
der to simulate a full-length wake without prohibitive compu-
tational costs. The wake age, full wake and fine wake param-
eters determine the positions at which the two stages of wake
thinning occur and at which the wake is finally truncated.
The parameters are described in terms of rotor revolutions to
remove the dependency of the parameters on the tip speed
ratio. The wake thin factor describes the extent to which the
wake is thin. The initial vortex core radius is an important
parameter for the de-singularization of the Biot–Savart equa-
tion. The turbulent vortex viscosity introduces diffusion to
the wake. These parameters should be noted in attempts to
reproduce the simulations performed in this paper. The full
explanation of each of these parameters can be found in the
paper from Marten et al. (2015).

The LLFVW (Fig. 2) shows moderately good agreement
for all cases, which can be seen in Figs. 3, 4 and 5. It is in-
teresting to note that steady and even unsteady BEM simu-
lations, when compared to CFD or LLFVW results, under-
predict the magnitude of the load cycle in most cases. The

3The standard 5MW project file is available for download with
the standard QBlade package.

Table 1. QBlade FVLLW wake simulation settings.

Wake age in revolutions 8
Full wake in revolutions 0.5
Fine wake in revolutions 4
Wake thin factor 2
Initial vortex core radius 0.20
Turbulent vortex viscosity 40
Time step 0.1 s

three classes of simulations compared all face limitations.
The LLFVW and BEM cases both rely on 2-D polar data
which are sensitive to measurement or simulation settings
like wind tunnel turbulence or turbulence model. Lennie et al.
(2015) and Eisele et al. (2013) have shown that the quality
of the 2-D polar data is critical for power and load predic-
tion. For the BEM-based methods, it is expected that the em-
pirical corrections will struggle to represent the complicated
fore–aft motion. The CFD solutions are based on unsteady
Reynolds-averaged Navier–Stokes (URANS) equations. Af-
ter conducting thorough verification and validations of multi-
ple URANS solvers with multiple turbulence closure models,
Rumsey showed that URANS-based models have a very lim-
ited ability to model cases with separation (Stangfeld et al.,
2015; Rumsey, 2016). Furthermore, the tendency of URANS
codes to smear vorticity will cause errors in the wake induc-
tion for cases in which the blades are modelled. With each
of the simulation methods facing some sort of limitation, it
is difficult to choose one method as the baseline or “most”
accurate. Nonetheless, integrated blade forces agree well for
the CFD from Tran et al. (2014) and the LLFVW (see Fig. 5).
Discrepancies in thrust and power can be seen in Figs. 3 and
4, but they are of a reasonable magnitude.

In the publication chosen for a second comparison, Vaal
et al. (2014) use a moving actuator disc CFD hybrid method,
which allows for a good comparison of the unsteady wake
induction between CFD and the LLFVW. The moving ac-
tuator disc model essentially places a moveable actuator disc
into a CFD simulation (implemented in Fluent™). In practice
this means that the actuator disc acts as a volume force onto
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Figure 3. Thrust and power over phase angle for pitching platform motion (4◦ pitch amplitude). Comparison case: Tran et al. (2014).
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Figure 4. Thrust and power over phase angle for pitching platform motion (1◦ pitch amplitude). Comparison case: Tran et al. (2014).

the surrounding cells. It is argued by Vaal et al. (2014) that,
because this method explicitly solves the wake rather than
relying on simplified relations, the method should be more
robust than commonly used methods such as the Pitt–Peters
model (Pitt and Peters, 1983) or the Stig Øye model (Hansen,
2008). Vaal et al. (2014) present a number of investigations
into the relative performance of the models; for this paper,
the rotor plane induction is the most interesting to compare.

Vaal et al. (2014) undertook a sensitivity study show-
ing the wake velocity before and after the rotor at different
phases for different operating conditions. From this study,
the authors choose the largest amplitude (16 m) of fore–aft
movement (right-hand side of Fig. 1). The fore–aft motion
was harmonic with a frequency of 0.08 Hz; the inflow speed
was 11.2 m s−1, the blade pitch was 0◦ and the rotor speed
was a constant 0.2 Hz. Vaal et al. (2014) allowed several os-
cillations to pass in order to let the wake effects develop. The
grid extended 10 rotor diameters upstream and downstream.
It appears that the approach and settings used by Vaal et al.
(2014) provide good-quality results for comparison.

The QBlade simulations were conducted again using the
settings stated above, with prescribed linear rotor plane
movement. Like Vaal et al. (2014), a number of oscillations
were simulated before finally extracting the data. The com-
parison was made at the exact rotor plane for which the axial

velocity could be sampled over an area determined by the
rotor radius. There was not enough information provided by
Vaal et al. (2014) to ensure the consistency of the sampling
area for the induced velocity. In the context of a wake with
expansion and contraction occurring, the assumptions have
a distinct effect on the induction results. Therefore, no up-
stream or downstream comparisons were attempted. A ro-
tor plane axial velocity field snapshot was taken at equally
spaced points within the cycle. The results in Fig. 6 show
that the rotor plane induction for the two methods matches
well over the four snapshots. It therefore seems that there
is a good agreement between the two methods for the most
challenging test case presented by Vaal et al. (2014).

From the two verifications performed here it seems that the
QBlade LLFVW simulation model produces results that are
comparable to other higher-order or hybrid methods. These
results and the results already published give a high degree
of confidence in the simulation tool’s ability to model wind
turbines undergoing platform motion.
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Figure 5. Integrated blade forces at blade root for pitching platform motion (4◦ pitch amplitude). Comparison case: Tran et al. (2014).
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Figure 6. Induction plot compared to moving actuator disc CFD hybrid from Vaal et al. (2014).

4 Using the Hilbert transform method to obtain
instantaneous aerodynamic damping of a
translating rotor

The following section briefly outlines a reformulation of
the instantaneous damping calculation method outlined by
Bowles et al. (2014) and Corke and Thomas (2015). The
original reference by Bowles et al. (2014) describes the orig-
inal method in complete detail, and Lennie et al. (2016) pro-
vide an application of the method to an airfoil with microtabs
and gurney flaps. In the reformulation described here, the in-
stantaneous damping calculation is applied to the fore–aft
motion of the whole rotor, a situation particularly interest-
ing for floating platform wind turbines. It is assumed for this
paper that a small pitch angle means that the linear motion
will have a greater effect on the wake than the pitching of the
rotor plane.

4.1 Cycle harmonic damping

Before setting out the derivation of the instantaneous damp-
ing coefficient it is first essential to set out the cycle to-
tal aerodynamic damping. The approach taken follows the

derivation provided by Carta and Niebanck (1969) but for a
rotor undergoing fore–aft motion rather than a pitching air-
foil section. The authors would like to clearly acknowledge
that the following derivation is a modification of existing
concepts rather than a completely new derivation.

4.1.1 Linear harmonic system in a vacuum

To begin the derivation, let us start with the homogeneous
equation of the wind turbine oscillating in linear fore–aft mo-
tion (denoted as x):

mẍ∗+ cẋ∗(t)+ kx∗(t)= 0, (1)

where we make an assumption of harmonic motion thus tak-
ing

x∗(t)= x0e
iωt , (2)

which then gives

ẋ∗(t)= iωx0e
iωt , (3)

ẍ∗(t)=−ω2x0e
iωt . (4)

www.wind-energ-sci.net/2/671/2017/ Wind Energ. Sci., 2, 671–683, 2017
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Substituting these results into the equation of motion then
gives

(−ω2m−

C︷︸︸︷
iωc + k)x∗(t)= 0. (5)

As highlighted by Carta and Niebanck (1969), the damp-
ing terms are contained within the imaginary term of the
equation of motion. For similar linear systems, the damp-
ing should be contained within the imaginary terms of the
differential equation.

4.1.2 Linear harmonic system in air

Now by introducing the aerodynamic terms into the equation
we arrive at the particular equation of

(−ω2m−

C︷︸︸︷
iωc + k)x∗(t)= T ∗U . (6)

Still following the logical steps set down by Carta and
Niebanck (1969), the unsteady thrust force can be written
as

T ∗U = T1ẍ
∗
+ T ∗2 ẋ

∗
+ T ∗3 x

∗, (7)

where

T2,T3 ∈C, (8)

but

T1 ∈R (9)

due to the rationale that T1 represents the apparent mass
terms of the system which are identified in terms of the in-
stantaneous reaction forces of an impermeable disc in still
air. Instantaneous reaction forces are in phase with the ac-
celeration and therefore real. A similar rationale was used
in the SDOF torsional airfoil oscillator formulation by Carta
and Niebanck (1969), Bisplinghoff et al. (2013) and Scanlan
and Rosenbaum (1951), this time by directly comparing to
the Theodorsen theory (Theodorsen, 1935) in which a well-
known distinction is made between the real and imaginary
parts of the Bessel function. By substituting in the Cartesian
forms of the thrust force

T2 = T2R+ iT2I, (10)
T3 = T3R+ iT3I, (11)

we arrive at the following equation:

(m− T1)ẍ∗+ (c− T2R− iT2I)ẋ∗ (12)
+ (k− T3R− iT3I)x∗ = 0.

By assuming harmonic motion and collecting real and imag-
inary terms, the equation is reduced to

[(−ω2(m− T1)+ωT2I+ k− T3R) (13)
+ i(ω(c− T2R)− T3I)]x∗ = 0.

By eliminating the mechanical damping terms, which are the
terms present in a vacuum, the aerodynamic damping can be

shown as

ξ =−ωT2R− T3I. (14)

This result will form a key step in the next decomposition.

4.1.3 Work done by a rotor in fore–aft motion

Let us now take a different decomposition of the thrust force
into its constituent steady and unsteady parts4.

TTOTAL = TMEAN+ TUR cosωt + TUI sinωt (15)

Two options exist for the normalization of the thrust force:
the freestream velocity or with the inflow velocity thus ac-
counting for the rotor movement. The former assumption
simply implies that the unsteady coefficient will contain the
freestream effects for the expected velocity ratios expected
for wind turbine pitching movement and freestream veloc-
ities. This may cause some peculiarities in the appearance
of the data similar to the lift coefficient overshoots seen by
Müller-Vahl (2015) and Strangfeld (2015) in unsteady air-
foil wind tunnel measurements. Nonetheless, the freestream
velocity is taken as convention, meaning that the unsteady
features will be wrapped up into the unsteady thrust coeffi-
cient.

This gives the coefficient form

CTTOTAL = CTMEAN+CTUR cosωt +CTUI sinωt. (16)

The work performed over one cycle of rotor fore and aft mo-
tion can be given as

WT =

∮
TTOTALdx (17)

or in coefficient form

CWT =

∮
CTTOTALdx. (18)

Here the differential operator can be switched

dx = x0 sinωtdωt, (19)

and the integral range can be set from 0< ωt <−2π to cap-
ture a single cycle, finally giving

CWT =−

2π∫
0

[CMEAN+CTUR cosωt (20)

+CTUI sinωt]x0 sinωtdωt.

By assuming that the thrust force will be simple harmonic
(or deviate minimally), evaluating the integral shows that the

4TUnsteady is hereafter abbreviated TU.
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real unsteady term and the mean terms are both eliminated
during the integration, leaving

CWT = πx0CTUI. (21)

This result can also be represented in the form

CWT = πx0CTUI = x0CT0 sinφ. (22)

This result is the second of the building blocks required to
extract the aerodynamic damping from the measurement or
simulation data.

4.1.4 The third decomposition of the thrust force

Let us now inspect the unsteady thrust force terms further. If
we assume the thrust to be a sinusoidal time-dependent func-
tion, the unsteady thrust force can be given in the Cartesian
form

TU = TUR+ iTUI. (23)

For a prescribed motion system, the earlier homogeneous
equation (Eq. 13) can be written as a particular equation, thus
giving

TU = TUR+ iTUI = [(−ω2(m− T1)+ωT2I+K − T3R)
(24)

+ i(ω(C− T2R)− T3I)]x.

By equating real and complex terms we get

TUI = [(ω(c− T2R)− T3I)]x. (25)

This result provides the key to extracting the aerodynamic
damping coefficient from the thrust data. From earlier we
know that

ξ = (−ωT2R− T3I). (26)

These two equations can be related through

ξ =−
dTUI

dx
(27)

or written in the coefficient form

4=−
dCTUI

dx
. (28)

Using the earlier result of

CWT = πx0CTUI = x0CT0 sinφ, (29)

we can finally arrive at the conclusion that

4CYCLE =
dCWT
πx0

dx
=−

1
πx2

0

∮
CTTOTALdx. (30)

This equation will form the basis of checking whether the
instantaneous equation formulation is correct. In practice it
also provides a useful debugging tool for the code implemen-
tation.

4.2 Instantaneous damping derivation

In most formulations, certainly as shown above, only a cycle-
averaged value of aerodynamic damping is found. Bowles
et al. (2014) and Corke and Thomas (2015) provided a break-
through on this front by using the Hilbert transform to get an
estimate of the magnitude and phase of a signal. If we inspect
the following equation from the earlier whole-cycle deriva-
tion, we may already see the general direction that such a
method would follow.

CWT = x0T0 sinφ (31)

The instantaneous damping derivation begins with yet an-
other form of the basic equation of motion for the prescribed
fore–aft motion of a wind turbine rotor. The prescribed mo-
tion leaves only the aerodynamic forces,

mt ẍ+h
∗(t)ẋ(t)+ κ∗x(t)= T (t), (32)

into which we can insert the apparent mass or inertia of air
(Pitt and Peters, 1983),5

mtair =
8
3
ρR3, (33)

and then the complex damping and stiffness terms can be
described in polar form as

h∗ = hr + ihI = he
iγ1 , (34)

κ∗ = κr + iκI = κe
iγ2 . (35)

Thus we arrive at

8
3
ρR3ẍ+heiγ1 ẋ+ κeiγ2x = T . (36)

By introducing the natural frequency parameter ω0 as

ω0 =

√
3κ

8ρR3 , (37)

the equation reduces to

ẍ+ 2h0ω0e
iγ1 ẋ+ω2

0e
iγ2x =

3
8ρR3 T . (38)

Now taking the Hilbert transform of both sides of the equa-
tion results in

Ẍ + 2h0ω0e
iγ1Ẋ +ω2

0e
iγ2X =

3T
8ρR3 , (39)

5The inertia is not used in this derivation and the apparent mass
terms are actually cancelled out later. However, it is important to
note that the apparent mass analogy can be made for a rotor. If that
were not true, then the first term would also be complex and this
derivation would be invalidated.
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where we replace the thrust and movement with their analyt-
ical signal counterparts

X =X+ iX̃ = xampe
iωt , (40)

T = Tu+ iT̃u = At (t)eφ(t), (41)

and equate the imaginary and real components

−ω2
− 2h0ω sinγ1+ω

2
0 cosγ2+ i(2h0ωcosγ1+ω

2
0 sinγ2) (42)

=
3

8ρR3xAmp
(Tu+ iT̃u)e−iωt .

Again, the imaginary components correspond to the damping
of the system.

2h0ωcosγ1+ω
2
0 sinγ2 (43)

=
3

8ρR3xAmp
(T̃u cosωt − Tu sinωt) (44)

=
3AT (t)

8ρR3xAmp
sin

ψ︷ ︸︸ ︷
(φ(t)−ωt) (45)

The left-hand term of this equation correlates with the damp-
ing of the system normalized by the apparent mass of the
air using a combination of the equations set down by Carta
and Niebanck (1969) and the normalization highlighted by
Bowles et al. (2014) and Corke and Thomas (2015).

ξ =
AT (t)
xAmp

sin

ψ︷ ︸︸ ︷
(φ(t)−ωt) (46)

Finally, we can normalize

4(t)=
ξ

PdynA
=−

ACt (t)
xamp

sinψ(t), (47)

where C̃t (t) is given by the Hilbert-transformed thrust coef-
ficient time series Ct (t)

C̃t (t)=H[Ct ] = −
1
π
P

inf∫
−inf

Ct (τ )
τ − t

dt, (48)

thus giving the analytical signal magnitude

ACt =

√
C2
t + C̃

2
t (49)

and phase

φ(t)= arg(Y (t))= arg(Ct + C̃t ), (50)

which gives us the phase difference between the lift and the
fore–aft motion,

ψ(t)= φ(t)−ωt, (51)

from the assumed motion

X(t)=X0e
iωt . (52)

The time-averaged damping then gives us the cycle damp-
ing:

4avg =−
1
T

T∫
0

4(t)dt. (53)

As previously undertaken by Bowles et al. (2014), Corke and
Thomas (2015) and Lennie et al. (2016), the cycle-averaged
damping formulation provided by Carta and Niebanck
(1969) can be used as a comparison. For this derivation, the
comparison will be against the formula derived earlier for the
fore–aft motion of a rotor.

4=
dCWT
πX0

dx
=−

1
πX2

0

∮
CTTOTALdx (54)

Agreement between the two calculations provides a useful
(although not completely “leak-proof”) verification that the
analytical signal is well conditioned and that no implemen-
tation errors are present. Verifications undertaken in Lennie
et al. (2016) for the original formulation showed less than
< 1 % variation between the methods; Bowles et al. (2014)
also remarked on the good agreement.

On the practical side, Hilbert transforms are intended to
analyse narrowband signals. It was previously established in
Lennie et al. (2016) that numerical or experimental noise
does not cause problems for this formulation; therefore no
signal filtering will be applied. Both original and phase-
averaged data were analysed, although only graphs of the
phase-averaged data are presented in the paper. In the origi-
nal time series, stochastic variations due to turbulent inflow
are present in cases with turbulence. Otherwise after a few
cycles the results converge to the phase mean.

5 Demonstration case 1: collective blade pitch

Having presented the analysis methods, it is possible to use
these methods to investigate an example case of floating plat-
form wind turbine aeroelasticity. A case was selected that
should demonstrate more complicated thrust damping be-
haviour. The case chosen is harmonic collective pitch in the
presence of platform translation. Further potential test cases
for future work would include harmonic platform movement
in combination with the following:

– yawed inflow;

– inflow turbulence;

– gusts or sudden changes in direction;
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Figure 7. Collective pitch damping cycles.

– changes in airfoil performance through simulated active
flow control;

– and/or non-synchronous pitch and platform movements.

Harmonic collective pitch in conjunction with platform
movement is a complicated test case, but it is still simple
enough to give a good demonstration of this particular tool
chain. The collective pitch motion was prescribed using the
formula

α = α0 sin(ωt +φpitch). (55)

The test case settings are given in Table 2.
The collective pitch cycle chosen is not a realistic control

regime, but it was chosen to give a clear demonstration of the
method. The LLFVW simulation was run for 60 s with a sin-
gle cycle chosen for analysis after the initial wake effects had
died out. The instantaneous damping was calculated from the
thrust data using the method already discussed. As a verifi-
cation the two cycle-averaged values were compared and had
good agreement; the values are presented in Table 1.

The cycle-averaged aerodynamic damping values do in
fact show that collective pitch has an effect. While thrust

Table 2. Demonstration case 1 simulation settings.

Rotor speed (rpm) 12.1
α0 (◦) 0.5
φpitch (–) 0, 0.5π , π , 1.5π
Inflow velocity (m s−1) 11.4
ωpitch, ωplatform (rad s−1) 0.5

forces tend to be positively damped (with this sign conven-
tion, that means good damping), we can see that the mag-
nitude of the damping is altered. In Fig. 7, it is possible to
follow the chain of logic that leads to these changes. In the
thrust force sequences, it is possible to see that while there
are some magnitude shifts, the more important feature is that
the phase of the thrust force is shifted. This then manifests as
changes to the aerodynamic damping.

A closer inspection reveals an interesting feature: a 0.5π
(green) phase shift of the pitching sequence leads to an al-
most constant thrust force. This may appear to be favourable
to reduce the fatigue loads of the wind turbine. However,
what has effectively happened is that there is no force in
phase with the velocity of the movement and therefore no
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Figure 8. Negative blade pitch manoeuvre.

Table 3. Comparison of cycle damping values.

Averaged Cycle- Error
instantaneous averaged

damping damping

φPitch = 0 0.030 0.031 3.5 %
φPitch = π 0.036 0.038 3.5 %
φPitch = 1.5π 0.060 0.062 3.5 %
φPitch = 0.5π −0.001 −0.001 3.5 %
Baseline 0.036 0.037 3.5 %

complex term, thus resulting in slightly negative aerody-
namic damping. In this case, the system would rely on the
other sources of damping6 to reduce the amplitude of oscil-
lation.

In the opposite case with a pitch phase shift of 1.5π (yel-
low), the thrust force is more in phase with the velocity, and
thus the opposing movement of the rotor is enhanced. The
cycle-averaged damping reflects this with a stronger damping

6i.e. structural or that provided by the floating platform.

value. The instantaneous damping value starts to show some
departure from a pure harmonic signal. This can be traced to
the matching non-linearity in the thrust force, which could
arise from rotor wake interactions; it is these effects that are
difficult to account for in a cycle-averaged value. In the lit-
erature examples in which a pitching airfoil was examined
(Bowles et al., 2014; Corke and Thomas, 2015; Lennie et al.,
2016), the non-linearities were very strong due to dynamic
stall and caused strong spikes in aerodynamic damping. In
simulations in which sudden changes of operating conditions
are present, the instantaneous damping method will highlight
sudden drops in aerodynamic damping when they occur, even
if they do not show up in the cycle-averaged values.

6 Demonstration case 2: collective blade pitch
manoeuvre

The second case attempts to demonstrate one of the most use-
ful aspects of the instantaneous damping approach. Again in
this case, we will look at a collective blade pitch manoeuvre,
but this time the pitching will not be periodic. This highlights
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Figure 9. Positive blade pitch manoeuvre.

one of the advantages of the assumptions made in the deriva-
tion. The prescribed motion of the platform must be periodic,
but the thrust force response has no restriction. This in turn
means that we are free to try out any control manoeuvres as
long as the platform motion remains periodic.

The second demonstration case will consist of a simple
5.2◦ blade pitch manoeuvre at a rate of 4◦ s−1. In total, eight
cases were simulated with the pitching beginning at different
phase angles with respect to the harmonic translation of the
platform. The platform translation had an amplitude of 2 m
with a frequency of 0.5 rad s−1. These simulation values are
summarized in Table 4. The FVLLT simulation was run using
the same inputs as listed earlier.

The results are presented in two sets with the negative
blade pitch manoeuvre in Fig. 8 and the positive pitch ma-
noeuvre in Fig. 9. For the negative blade pitch manoeuvres,
we can see a clear increase in aerodynamic damping when
the blades are pitched as the rotor retreats. Pitching the blades
as the platform is advancing causes a clear drop in the aero-
dynamic damping. For the positive blade pitch manoeuvres,
pitching as the rotor advances creates only a small increase

Table 4. Demonstration for case 2 simulation settings.

Rotor speed (rpm) 12.1
α0 (◦) 0
αManoeuvre (◦) 5.2, −5.2
ωpitch (◦ s−1) 4
φpitch (–) 0, 0.5π , π , 1.5π
Inflow velocity (m s−1) 11.4
ωplatform (rad s−1) 0.5
X0 (m) 4

in the aerodynamic damping compared to the retreating case.
These kinds of results could help design a controller which
restricts negative blade pitch rates as the rotor plane advances
in order to maximize tower-top stability. The same approach
is also useful for cases with other variations like changes in
rotor speed for start up or shut down.
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7 Conclusions

The QBlade implementation of the lifting-line free vor-
tex wake (LLFVW) method proved to be a useful tool
for analysing floating platform wind turbines. Comparisons
against two independent test cases using a variety of meth-
ods showed relatively good agreement in thrust forces, rotor
power, blade forces and rotor plane induction. Along with
the many verifications already undertaken in the literature, it
seems that the code will perform solidly even in these chal-
lenging cases. Further work is required to extend the same
analysis with flexible blades, tower and eventually platform
rather than prescribed motion; research on some of these top-
ics is already under way.

A new formulation of the instantaneous aerodynamic
thrust damping of a wind turbine rotor was described. The
first demonstration case was used to verify that the cycle-
averaged damping values line up with well-established meth-
ods. The case also showed how the system alternated be-
tween being stable and unstable within a single cycle. The
second demonstration case showed a more complicated pitch
manoeuvre; the instantaneous damping method was useful
in understanding the system but provided helpful informa-
tion for designing control strategies. It would be useful in
future work to generalize the method so that any mode shape
could be analysed without having to undertake the extensive
derivation described in this paper.
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