
Boundary Relations and Generalized Resolvents
of Symmetric Operators in Krein Spaces

Jussi Behrndt and Hans-Christian Kreusler

Abstract. The classical Krein-Naimark formula establishes a one-to-one cor-
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ator in a Hilbert space and the class of Nevanlinna families in a parameter
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H.S.V. de Snoo that these parameter families can be interpreted as so-called
Weyl families of boundary relations, and a new proof of the Krein-Naimark
formula in the Hilbert space setting was given with the help of a coupling
method. The main objective of this paper is to generalize the notion of bound-
ary relations and their Weyl families to the Krein space case and to proof some
variants of the Krein-Naimark formula in an indefinite setting.
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1. Introduction

Let A be a closed symmetric operator with equal (possibly infinite) deficiency
indices in a Hilbert space K and let {G, Γ0, Γ1} be a boundary triplet for the
adjoint operator A∗. Let A0 be the self-adjoint extension of A in K corresponding
to the boundary mapping Γ0, A0 = A∗ ↾ ker Γ0, and denote the γ-field and Weyl
function corresponding to {G, Γ0, Γ1} by γ and M , respectively. Here the Weyl
function M is an L(G)-valued Nevanlinna function with the additional property
0 ∈ ρ(Im M(λ)), λ ∈ C\R. It is well known that in this case the Krein-Naimark
formula

PK

(
Ã − λ

)−1
↾K= (A0 − λ)−1 − γ(λ)

(
M(λ) + τ (λ)

)−1
γ(λ)∗ (1.1)
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establishes a bijective correspondence between the class of Nevanlinna families τ
in the parameter space G and the compressed resolvents of self-adjoint extensions

Ã of A in K × H, where H is a Hilbert space. This description of the general-
ized resolvents of a symmetric operator was originally given by M.G. Krein and
M.A. Naimark in [25, 26, 28] for the case that A is densely defined and has finite
deficiency indices; see [8, 10, 11, 12, 13, 24, 27] for our more general situation.
Various generalizations of the Krein-Naimark formula in an indefinite setting have
been proved in the last decades. E.g. the case that A is a symmetric operator in a
Pontryagin space K and H is a Hilbert space was investigated by M.G. Krein and
H. Langer in [21]. Later V.A. Derkach considered both K and H to be Pontryagin
or even Krein spaces, cf. [7]. Under additional assumptions other variants of (1.1)
were proved in [3, 4, 5, 6, 7, 22].

Recently a very interesting new proof of the Krein-Naimark formula in the
Hilbert space case was given in [10, 11] by V.A. Derkach, S. Hassi, M.M. Malamud
and H.S.V. de Snoo with the help of a coupling method which allows to interpret
the parameter family τ as a so-called Weyl family associated to a boundary re-
lation of a symmetric relation in the Hilbert space H. The concept of boundary
relations is a generalization of the notion of boundary triplets which has the es-
sential advantage that every Nevanlinna family can be realized as the Weyl family
associated to a boundary relation, see [9].

The basic aim of this paper is to introduce the concept of boundary relations
for symmetric relations in Krein spaces and to prove some variants of (1.1) in
the Krein space case with a similar method as in [8, 10, 11]. Roughly speaking,
if A is a symmetric relation in a Krein space K which possesses a self-adjoint
extension A0 in K with a nonempty resolvent set, then we show in Theorem 3.1
that formula (1.1) gives a correspondence between compressed resolvents of self-

adjoint extensions Ã in K ×H, where H is a Krein space, and the Weyl families
τ corresponding to boundary relations of symmetric relations in H. In contrast to
the Hilbert space case where formula (1.1) makes sense for all λ ∈ C\R it is not
immediately clear in our setting for which λ ∈ ρ(A0) the compressed resolvent of

Ã and the inverse of M + τ are bounded operators on K and G, respectively, cf.
assertion (a) in Theorem 3.1 and Theorem 3.2. In the special situation that A has
finite defect, the fixed canonical extension A0 locally (with the possible exception
of a discrete set) has the same spectral properties as a self-adjoint operator in a

Hilbert space and H is a Hilbert space we study the local spectral properties of Ã
in Theorem 3.4, see also [3] for a similar situation.

The paper is organized as follows. Following the lines of [9] we introduce
the concept of boundary relations and associated Weyl families for symmetric re-
lations in Krein spaces in Section 2. The special case of boundary triplets and
corresponding Weyl functions is briefly reviewed in Section 2.3. Section 3 contains
our main results on Krein-Naimark type formulas in the Krein space setting dis-
cussed above. Finally, in Section 4 we show that certain classes of relation-valued
functions can be realized as Weyl families corresponding to boundary relations of
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symmetric relations in Krein spaces. As a special case we obtain an alternative
proof of the main result in [9], that is, each Nevanlinna family can be realized as
the Weyl family of a boundary relation of a symmetric relation in a Hilbert space.

2. Boundary relations of symmetric relations in Krein spaces

The main objective of this section is to generalize the notion of boundary relations
and associated Weyl families for symmetric relations in Hilbert spaces from [9] to
symmetric relations in Krein spaces.

2.1. Symmetric, self-adjoint, isometric and unitary relations in Krein spaces

In the following let (K, [·, ·]K) and (H, [·, ·]H) be separable Krein spaces and let JK

and JH be corresponding fundamental symmetries. The linear space of bounded
linear operators defined on K with values in H is denoted by L(K,H). If K = H we
simply write L(K). We study linear relations from K to H, that is, linear subspaces

of K×H. The set of all closed linear relations from K to H is denoted by C̃(K,H).

If K = H we write C̃(K). Linear operators from K into H are viewed as linear
relations via their graphs. For the usual definitions of the linear operations with
relations, the inverse etc., we refer to [14]. The domain (kernel, range, multivalued
part) of a linear relation S from K to H will be denoted by dom S (kerS, ran S,
mul S, resp.).

The resolvent set ρ(S) of a closed linear relation S ∈ C̃(K) is the set of all
λ ∈ C such that (S − λ)−1 ∈ L(K), the spectrum σ(S) of S is the complement of
ρ(S) in C. The extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if S ∈ L(K)
and σ̃(S) = σ(S)∪{∞} otherwise. The extended resolvent set ρ̃(S) of S is defined
by ρ̃(S) = C\σ̃(S). A point λ ∈ C is an eigenvalue of S if ker(S − λ) 6= {0}; we
write λ ∈ σp(S). We say that λ ∈ C belongs to the continuous spectrum σc(S)
(the residual spectrum σr(S)) of S if ker(S − λ) = {0}, ran(S − λ) is dense in K
and ran(S − λ) 6= K (resp. if ker(S − λ) = {0} and ran(S − λ) is not dense in K).

We set Nλ,S := ker(S − λ) and N̂λ,S :=
{( gλ

λgλ

)
| gλ ∈ Nλ,S

}
.

If U ⊂ K × H is a linear relation from K to H, then the adjoint relation

U+ ∈ C̃(H,K) is defined by

U+ :=
{
{h̃, k̃} ∈ H ×K | [h̃, h]H = [k̃, k]K for all {k, h} ∈ U

}
.

The linear relation U ⊂ K×H is said to be isometric (unitary) if U−1 ⊂ U+ (resp.
U−1 = U+). If A ⊂ K2 is a linear relation in K, then A is said to be symmetric

(self-adjoint) if A ⊂ A+ (resp. A = A+). A unitary relation U ∈ C̃(K,H) satisfies

kerU = (dom U)[⊥]K and mul U = (ran U)[⊥]H (2.1)

and dom U is closed if and only if ran U is closed, see e.g. [9, Proposition 2.3].

A symmetric relation A ∈ C̃(K) is said to be of defect m ∈ N ∪ {∞}, if both
deficiency indices

n±(JKA) = dimker
(
(JKA)∗ ∓ i

)
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of the symmetric relation JKA in the Hilbert space (K, [JK·, ·]K) are equal to m.
Here ∗ denotes the adjoint with respect to the Hilbert scalar product [JK·, ·]K. We

note that the symmetric relation A ∈ C̃(K) is of defect m if and only if there exists
a self-adjoint extension of A in K and each self-adjoint extension A′ of A in K
satisfies dim(A′/A) = m.

We define an indefinite inner product [[·, ·]]
K2 on K2 (and analogously [[·, ·]]

H2

on H2) by

[[
f̂ , ĝ

]]
K2 = i

(
[f, g′]K − [f ′, g]K

)
, f̂ =

(
f
f ′

)
, ĝ =

(
g
g′

)
∈ K2.

Then (K2, [[·, ·]]
K2) is a Krein space and

(
0 −iJK

iJK 0

)
∈ L(K2) is a corresponding

fundamental symmetry. Observe that also in the special case when (K, [·, ·]) is a
Hilbert space, [[·, ·]]

K2 is an indefinite inner product. In the following we will say
that a linear relation Γ ⊂ K2 ×H2 from K2 to H2 is [[·, ·]]-isometric ([[·, ·]]-unitary)
if Γ is an isometric (resp. unitary) relation from (K2, [[·, ·]]

K2) to (H2, [[·, ·]]
H2). The

adjoint of Γ will be denoted by Γ[[+]].

2.2. Definition and basic properties of boundary relations and associated Weyl
families

The notion of boundary relations and associated Weyl families were introduced in
[9] for symmetric relations in Hilbert spaces. The definitions and some of the basic
properties remain the same in the Krein space case.

Definition 2.1. Let A ∈ C̃(K) be a symmetric relation in the Krein space K. A
linear relation Γ ⊂ K2 × G2 is called a boundary relation for A+ if G is a Hilbert
space, T := dom Γ is dense in A+ and Γ is [[·, ·]]-unitary.

Let A ∈ C̃(K) be a symmetric relation and let Γ ∈ C̃(K2,G2) be a boundary
relation for A+. Then the first relation in (2.1) implies A = ker Γ. The elements in

Γ will be written in the form {f̂ , ĥ} ∈ Γ, where f̂ =
( f

f ′

)
∈ K2 and ĥ =

(
h
h′

)
∈ G2.

Associated with the boundary relation Γ are the relations

Γ0 :=
{
{f̂ , h} | {f̂ , ĥ} ∈ Γ

}
and Γ1 :=

{
{f̂ , h′} | {f̂ , ĥ} ∈ Γ

}
. (2.2)

We note that ker Γ0 and ker Γ1 are symmetric relations in K which in general are
not closed.

Definition 2.2. Let A be a closed symmetric relation in K and let Γ be a boundary
relation for A+, T = dom Γ. The γ-field γ and the Weyl family τ of the boundary
relation Γ are defined by

γ(λ) :=
{
{h, f} | {f̂ , ĥ} ∈ Γ and f̂ ∈ N̂λ,T

}
, λ ∈ C,

and

τ (λ) := Γ
(
N̂λ,T

)
=

{
ĥ | {f̂ , ĥ} ∈ Γ and f̂ ∈ N̂λ,T

}
, λ ∈ C.
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Remark 2.3. In general the values of the Weyl family and the γ-field corresponding

to a boundary relation have nontrivial multivalued parts. For {f̂ , ĥ} with f̂ ∈ N̂λ,T ,
λ ∈ C, the [[·, ·]]-unitarity of Γ yields

(h′, h)G − (h, h′)G = (λ − λ)[f, f ]K.

In the special case where K is a Hilbert space, this leads to ker(Γ0|N̂λ,T ) = {0}
for λ ∈ C\R and hence, if A is a closed symmetric relation in a Hilbert space K
and Γ is a boundary relation for A∗, then the γ-field γ associated with Γ is an
operator-valued function on C\R which maps dom τ (λ) onto Nλ,T , cf. [9, §4.2].

Let again K be a Krein space and let G be a Hilbert space. Then the bijective
transformation

J : K2 × G2 → (K × G)2,

{(
f
f ′

)
,

(
h
h′

)}
7→

{(
f
h

)
,

(
f ′

−h′

)}
(2.3)

establishes via Γ 7→ J (Γ) a one-to-one correspondence between the set of [[·, ·]]-
isometric ([[·, ·]]-unitary) relations Γ ⊂ K2 × G2 and the set of symmetric (resp.
self-adjoint) relations in (K×G)2. The mapping (2.3) is called the main transform
in [9]. Clearly, if A is closed and symmetric in K then a relation Γ ⊂ K2 × G2

with the property A = ker Γ is a boundary relation for A+ if and only if J (Γ) is

self-adjoint. This also implies that for a symmetric relation A ∈ C̃(K) a boundary
relation always exists. The next lemma shows how the Weyl family τ of a boundary
relation Γ is connected with the compressed resolvent of J (Γ) onto G. The proof
is straightforward and essentially contained in [9, §3]. We leave the details to the
reader.

Lemma 2.4. Let A be a closed symmetric relation in K and let Γ ∈ C̃(K2,G2)
be a boundary relation for A+ with corresponding Weyl family τ . Define J as in
(2.3) and denote by PG the orthogonal projection from K×G onto G and by ↾G the
canonical embedding of G in K × G. Then τ satisfies (i)-(iii).

(i) The formula

PG(J (Γ) − λ)−1 ↾G= −(τ (λ) + λ)−1 (2.4)

holds for all λ ∈ C.
(ii) If ρ(J (Γ)) is nonempty, then −(τ (λ) + λ)−1 ∈ L(G) for λ ∈ ρ(J (Γ)).
(iii) The Weyl family is symmetric with respect to the real line, i.e. τ (λ) = τ (λ)∗

for λ ∈ C\R.

Remark 2.5. The class of Weyl families corresponding to boundary relations for
symmetric relations in Hilbert spaces is completely described in [9, Theorem 3.9].
Namely, in the case that K is a Hilbert space it follows from Lemma 2.4 that the
values τ (λ) of the Weyl family τ are maximal dissipative (maximal accumulative)
relations for every λ ∈ C+ (resp. λ ∈ C−), and τ (λ) = τ (λ)∗ and −λ ∈ ρ(τ (λ))

holds for all λ ∈ C\R, i.e. τ is a so-called Nevanlinna family; we write τ ∈ R̃(G).

Conversely, by [9, Theorem 3.9] each Nevanlinna family τ ∈ R̃(G) can be realized
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as the Weyl family of a boundary relation for a symmetric relation in a Hilbert
space (see also Corollary 4.4).

2.3. Boundary triplets for symmetric relations in Krein spaces

The concept of boundary relations is an extension of the notion of boundary triplets
for symmetric relations in Krein and Hilbert spaces, cf. [5, 6, 7] (and e.g. [12, 13, 15]
for the Hilbert space case).

Definition 2.6. Let A be a closed symmetric relation in a Krein space K and let

Γ ∈ C̃(K2,G2) be a boundary relation for A+ with Γ0 and Γ1 as in (2.2). If Γ is
surjective, then {G, Γ0, Γ1} is said to be a boundary triplet for A+.

Definition 2.6 coincides with the usual definition of a boundary triplet for a

symmetric relation since by (2.1) a surjective boundary relation Γ ∈ C̃(K2,G2) is
necessarily an operator defined on A+ and therefore Γ0 and Γ1 are operators such
that the mapping

(
Γ0

Γ1

)
: A+ → G2 is surjective and

(f ′, g)K − (f, g′)K = (Γ1f̂ , Γ0ĝ)G − (Γ0f̂ , Γ1ĝ)G

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A+. We briefly recall some important
properties of boundary triplets which can be found in e.g. [5, 6, 7, 12, 13]. Let in

the following A be a closed symmetric relation in K and let {G, Γ0, Γ1}, Γ =
(
Γ0

Γ1

)
,

be a boundary triplet for A+. The mapping Γ induces, via

AΘ := Γ−1Θ =
{
f̂ ∈ A+

∣∣ Γf̂ ∈ Θ
}
, (2.5)

a bijective correspondence Θ 7→ AΘ between the set of all closed linear relations
Θ in G and the set of closed extensions AΘ ⊂ A+ of A in K. Furthermore (2.5) es-
tablishes a one-to-one correspondence between the closed symmetric (self-adjoint)
relations in G and the closed symmetric (self-adjoint) extensions of A in K. Note,
that in particular A0 := ker Γ0 and A1 := ker Γ1 are self-adjoint extensions of A.

Assume now that ρ(A0) is nonempty. Then for each λ ∈ ρ(A0) the relation

A+ is the direct sum of A0 and N̂λ,A+ and it follows from Definition 2.2, that
for λ ∈ ρ(A0) the γ-field γ and the Weyl function M of the boundary triplet
{G, Γ0, Γ1} are given by

γ(λ) = π1

(
Γ0 | N̂λ,A+

)−1
∈ L(G,K) and M(λ) = Γ1

(
Γ0 | N̂λ,A+

)−1
∈ L(G).

Here π1 denotes the orthogonal projection onto the first component of K×K. The
functions γ and M are holomorphic on ρ(A0) and satisfy the relations

γ(λ) =
(
I + (λ − µ)(A0 − λ)−1

)
γ(µ)

and

M(λ) − M(µ)∗ = (λ − µ)γ(µ)+γ(λ)

for all λ, µ ∈ ρ(A0). Moreover

γ(λ)+h = Γ1

(
(A0 − λ)−1h

(I + λ(A0 − λ)−1h

)
(2.6)
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holds for each h ∈ K and λ ∈ ρ(A0)
With the help of the Weyl function the spectral properties of the closed

extensions AΘ ⊂ A+ of A can be described. Namely, if Θ ∈ C̃(G) and AΘ is the
corresponding extension of A via (2.5), then a point λ ∈ ρ(A0) belongs to ρ(AΘ)
(σi(AΘ), i = p, c, r) if and only if 0 belongs to ρ(Θ− M(λ)) (resp. σi(Θ− M(λ)),
i = p, c, r) and the well-known formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ) (see e.g. [7]).

3. Generalized resolvents of symmetric relations in Krein spaces

If A is a closed symmetric operator or relation with equal (possibly infinite) de-
ficiency indices in a Hilbert space K and {G, Γ0, Γ1}, A0 = kerΓ0, is a boundary

triplet for the adjoint A∗ ∈ C̃(K) with corresponding γ-field γ and Weyl function
M , then the Krein-Naimark formula

PK(Ã − λ)−1 ↾K= (A0 − λ)−1 − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)∗, λ ∈ C\R, (3.1)

establishes a bijective correspondence between the compressed resolvents of min-

imal self-adjoint extensions Ã of A in K × H, where the exit space H is a Hilbert
space, and the Nevanlinna families τ , i.e. the Weyl families of boundary relations
of symmetric relations in Hilbert spaces (see e.g. [8, 10, 11, 12, 13, 24, 27]). In this
section we prove some variants of (3.1) for the case that K and H are Krein spaces.
Other indefinite generalizations of (3.1) can be found in [3, 4, 5, 6, 7, 21, 22].

3.1. The case of a Krein space as exit space

In the next theorem we show, roughly speaking, that a correspondence of the form
(3.1) exists also between the compressed resolvents of the self-adjoint extensions
of a symmetric relation in a Krein space K and the Weyl families of boundary
relations of symmetric relations acting in Krein spaces H. The idea of the proof is
based on the coupling method from [8].

Theorem 3.1. Let K and H be Krein spaces, let A ∈ C̃(K) be a symmetric relation
and let {G, Γ0, Γ1} be a boundary triplet for A+ with corresponding γ-field γ and
Weyl function M . Let A0 = kerΓ0 and assume that ρ(A0) is nonempty.

(i) If Ã ∈ C̃(K × H) is a self-adjoint extension of A and for some λ0 ∈ ρ(A0)

PK(Ã−λ0)
−1 ↾K∈ L(K), then there exists a boundary relation Γ′ ∈ C̃(H2,G2)

such that the corresponding Weyl family τ satisfies (a) and (b).

(a) If λ ∈ ρ(A0), then (M(λ) + τ (λ))−1 ∈ L(G) if and only if

PK(Ã − λ)−1 ↾K∈ L(K).
(b) The formula

PK

(
Ã − λ

)−1
↾K= (A0 − λ)−1 − γ(λ)

(
M(λ) + τ (λ)

)−1
γ(λ)+ (3.2)
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holds for all λ ∈ ρ(A0) such that (M(λ) + τ (λ))−1 ∈ L(G).

(ii) If Γ′ ∈ C̃(H2,G2) is a boundary relation with corresponding Weyl family τ
and (M(λ0) + τ (λ0))

−1 ∈ L(G) for some λ0 ∈ ρ(A0), then there exists a

self-adjoint extension Ã ∈ C̃(K×H) of A such that (a) and (b) are satisfied.

Proof. (i) 1. The proof of assertion (i) is organized in 4 steps. Let H be a Krein

space and let Ã be a self-adjoint extension of A in K ×H. We do not exclude the

case of a canonical self-adjoint extension Ã, that is, H = {0}. It is not difficult to
see that the closed linear relations

S0 : =

{{
f0, f

′
0

}
∈ K2

∣∣
{(

f0

0

)
,

(
f ′
0

0

)}
∈ Ã

}
,

S1 : =

{{
f1, f

′
1

}
∈ H2

∣∣
{(

0
f1

)
,

(
0
f ′
1

)}
∈ Ã

}

are symmetric in K and H, respectively. The same arguments as in the Hilbert
space case (see [9, Proposition 2.12]) imply that the closures of the linear relations

T0 : =

{{
f0, f

′
0

}
∈ K2

∣∣
{(

f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ Ã

}
,

T1 : =

{{
f1, f

′
1

}
∈ H2

∣∣
{(

f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ Ã

}

coincide with S+
0 and S+

1 , i.e. Si ⊂ Ti ⊂ T i = S+
i holds for i = 1, 2. Note also that

S0 is an extension of the symmetric relation A.

2. In this step we show that

Γ′ :=

{{
f̂1,

(
Γ0f̂0

−Γ1f̂0

)}
∈ H2 × G2

∣∣∣
{(

f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ Ã

}
(3.3)

is a boundary relation for S+
1 .

¿From the definition of Γ′ we immediately get that dom Γ′ is dense in S+
1 . In

order to verify that the linear relation Γ′ ⊂ H2 × G2 is [[·, ·]]-unitary let
{(

Γ0f̂0

−Γ1f̂0

)
, f̂1

}
∈ Γ′ −1 and

{
ĝ1,

(
Γ0ĝ0

−Γ1ĝ0

)}
∈ Γ′.

As Ã is self-adjoint in K ×H we have
[(

f0

f1

)
,

(
g′0
g′1

)]

K×H

=

[(
f ′
0

f ′
1

)
,

(
g0

g1

)]

K×H

and hence
[[( Γ0f̂0

−Γ1f̂0

)
,
( Γ0ĝ0

−Γ1ĝ0

)]]

G2
= i

(
[f ′

0, g0]K − [f0, g
′
0]K

)
=

[[
f̂1, ĝ1

]]
H2

implies that Γ′ is [[·, ·]]-isometric, i.e. Γ′ −1 ⊂ Γ′[[+]]. Conversely, let {ĥ, f̂1} ∈ Γ′ [[+]]

and choose f̂0 ∈ A+ such that ĥ =
( Γ0f̂0

−Γ1f̂0

)
. Then

{(
f0

f1

)
,
( f ′

0

f ′

1

)}
belongs to Ã = Ã+



Boundary Relations and Generalized Resolvents 9

since for an arbitrary
{(

g0
g1

)
,
( g′

0

g′

1

)}
∈ Ã we have

{
ĝ1,

( Γ0ĝ0

−Γ1ĝ0

)}
∈ Γ′ and hence

{ĥ, f̂1} ∈ Γ′ [[+]] and the choice of ĥ imply
[(

f0

f1

)
,

(
g′0
g′1

)]

K×H

−

[(
f ′
0

f ′
1

)
,

(
g0

g1

)]

K×H

= −i
([[

f̂0, ĝ0

]]
K2 +

[[
f̂1, ĝ1

]]
H2

)

= −i

([[(Γ0f̂0

Γ1f̂0

)
,
(Γ0ĝ0

Γ1ĝ0

)]]

G2
+

[[
ĥ,

( Γ0ĝ0

−Γ1ĝ0

)]]

G2

)
= 0.

Hence {f̂1, ĥ} belongs to Γ′ and this gives Γ′ [[+]] ⊂ Γ′ −1. We have shown that Γ′

is a boundary relation for S+
1 .

3. Let λ ∈ ρ(A0) such that PK(Ã− λ)−1 ↾K∈ L(K) and denote the Weyl family of
Γ′ by τ . We check that

(
M(λ) + τ (λ)

)−1
=

{(
Γ1f̂λ + h′

Γ0f̂λ

)
∈ G2

∣∣∣ f̂λ ∈ N̂λ,A+ and

(
Γ0f̂λ

h′

)
∈ τ (λ)

}

is a bounded operator defined on G.

If Γ1f̂λ + h′ = 0 then
( Γ0f̂λ

−Γ1f̂λ

)
∈ τ (λ) and hence there exists f̂1 ∈ N̂λ,T1

such

that
{
f̂1,

( Γ0f̂λ

−Γ1f̂λ

)}
∈ Γ′. By (3.3)

{(
fλ

f1

)
,
(

λfλ

λf1

)}
∈ Ã and this implies that {0, fλ}

belongs to

PK

(
Ã − λ

)−1
↾K=

{
{
f ′
0 − λf0, f0

}
∈ K2

∣∣∣
{(

f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ Ã and f̂1 ∈ N̂λ,T1

}
.

Therefore fλ = 0, i.e. Γ0f̂λ = 0 and (M(λ)+τ (λ))−1 is an operator. Next we show

dom
(
M(λ) + τ (λ)

)−1
= G.

Let g ∈ G and choose f̂0 ∈ A+ such that
( Γ0f̂0

−Γ1f̂0

)
=

(
0
g

)
. By our assumption

dom(PK(Ã − λ)−1 ↾K) = K there exists f̂ ∈ A+ and f̂1 ∈ N̂λ,T1
such that{(

f
f1

)
,
(

f ′

λf1

)}
∈ Ã and f ′ − λf = f ′

0 − λf0. Hence f̂λ := f̂ − f̂0 ∈ N̂λ,A+ and
{
f̂1,

( Γ0f̂

−Γ1f̂

)}
∈ Γ′, i.e.

( Γ0f̂

−Γ1f̂

)
∈ τ (λ). Setting h′ := −Γ1f̂ we find

(
Γ0f̂λ

h′

)
∈ τ (λ)

and

Γ1f̂λ + h′ = Γ1(f̂ − f̂0) + h′ = −Γ1f̂0 = g,

that is g ∈ dom (M(λ) + τ (λ))−1. Finally M(λ) ∈ L(G) and the fact that τ (λ) is
closed imply that (M(λ)+τ (λ))−1 is closed and therefore (M(λ)+τ (λ))−1 ∈ L(G).

4. Let now λ ∈ ρ(A0) such that (M(λ) + τ (λ))−1 ∈ L(G) holds. We prove in this

step that PK(Ã − λ)−1 ↾K∈ L(K) has the form (3.2).

Let k ∈ K and fλ := −γ(λ)
(
(M(λ) + τ (λ)

)−1
γ(λ)+k ∈ Nλ,A+ and define

f̂0 ∈ A+ by

f̂0 =

(
f0

f ′
0

)
:=

(
(A0 − λ)−1k

k + λ(A0 − λ)−1k

)
+

(
fλ

λfλ

)
. (3.4)
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We have

f ′
0 − λf0 = k and f0 = (A0 − λ)−1k − γ(λ)

(
(M(λ) + τ (λ)

)−1
γ(λ)+k.

Therefore, by the form of PK(Ã − λ)−1 ↾K it remains to show that there exists

f̂1 ∈ N̂λ,T1
with

{(
f0

f1

)
,
( f ′

0

f ′

1

)}
∈ Ã. First of all

Γ0f̂λ = −(M(λ) + τ (λ))−1γ(λ)+k

implies
(

Γ0f̂λ

−γ(λ)+k

)
∈

(
M(λ) + τ (λ)

)
=

{(
h

M(λ)h + h′

) ∣∣∣ ĥ ∈ τ (λ)

}

and this gives (
Γ0f̂λ

−γ(λ)+k − Γ1f̂λ

)
∈ τ (λ) = Γ′

(
N̂λ,T1

)
.

Hence there exists f̂1 ∈ N̂λ,T1
such that

{
f̂1,

(
Γ0f̂λ

−γ(λ)+k − Γ1f̂λ

)}
∈ Γ′

and from (3.4) and (2.6) we obtain Γ0f̂0 = Γ0f̂λ and Γ1f̂0 = γ(λ)+k + Γ1f̂λ.

Therefore
{
f̂1,

( Γ0f̂0

−Γ1f̂0

)}
belongs to Γ′ and thus by (3.3)

{(
f0

f1

)
,
( f ′

0

f ′

1

)}
∈ Ã. This

completes the proof of assertion (i).

We prove assertion (ii). Let Γ′ ∈ C̃(H2,G2) be a boundary relation with corre-
sponding Weyl family τ . We claim that

Ã :=

{{(
f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ (K ×H)2

∣∣∣
{

f̂1,

(
Γ0f̂0

−Γ1f̂0

)}
∈ Γ′

}
(3.5)

is a self-adjoint extension of A. In fact, for
{(

f0

f1

)
,
( f ′

0

f ′

1

)}
,

{(
g0
g1

)
,
( g′

0

g′

1

)}
∈ Ã we

have
{
f̂1,

( Γ0f̂0

−Γ1f̂0

)}
,
{
ĝ1,

( Γ0ĝ0

−Γ0ĝ1

)}
∈ Γ′ and the [[·, ·]]-isometry of Γ′ implies

[(
f0

f1

)
,

(
g′0
g′1

)]
K×H−

[(
f ′
0

f ′
1

)
,

(
g0

g1

)]

K×H

= −i
([[

f̂0, ĝ0

]]
K2 +

[[
f̂1, ĝ1

]]
H2

)

= −i

([[(Γ0f̂0

Γ1f̂0

)
,
(Γ0ĝ0

Γ1ĝ0

)]]

G2
+

[[( Γ0f̂0

−Γ1f̂0

)
,
( Γ0ĝ0

−Γ1ĝ0

)]]

G2

)
= 0,

that is, Ã is symmetric. Let now
{(

f0

f1

)
,
( f ′

0

f ′

1

)}
∈ Ã+. We show that

{(
f0

f1

)
,
( f ′

0

f ′

1

)}

belongs to Ã. First of all we have

[[
f̂0, ĝ0

]]
K2 = −

[[
f̂1, ĝ1

]]
H2 for all

{(
g0

g1

)
,

(
g′0
g′1

)}
∈ Ã. (3.6)
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If ĝ0 ∈ A = kerΓ0 ∩ ker Γ1 we conclude
{(

g0

0

)
,
(

g′

0

0

)}
∈ Ã from {0, 0} ∈ Γ′ and

(3.6) yields in this case f̂0 ∈ A+. By (3.5) it remains to check
{
f̂1,

( Γ0f̂0

−Γ1f̂0

)}
∈ Γ′.

For this let {ĝ1, k̂} ∈ Γ′ and choose ĝ0 ∈ A+ such that k̂ =
( Γ0ĝ0

−Γ1ĝ0

)
. By (3.5)

{(
g0
g1

)
,
( g′

0

g′

1

)}
belongs to Ã and (3.6) implies

[[
f̂1, ĝ1

]]
H2 = −

[[
f̂0, ĝ0

]]
K2 = −

[[(Γ0f̂0

Γ1f̂0

)
,
(Γ0ĝ0

Γ1ĝ0

)]]

G2
=

[[( Γ0f̂0

−Γ1f̂0

)
, k̂

]]

G2
.

Therefore
{( Γ0f̂0

−Γ1f̂0

)
, f̂1

}
∈ Γ′ [[+]] = Γ′ −1 and this gives

{(
f0

f1

)
,
( f ′

0

f ′

1

)}
∈ Ã. We have

shown that Ã is self-adjoint. Moreover it is not difficult to see that Ã ∈ C̃(K×H)
is an extension of A.

If Ã is defined by (3.5) then the boundary relation Γ′ can be written in the
form

Γ′ =

{{
f̂1,

(
Γ0f̂0

−Γ1f̂0

)}
∈ H2 × G2

∣∣∣
{(

f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ Ã

}
.

It was shown in step 2 of the proof of (i) that Γ′ is a boundary relation for S+
1 (see

step 1) and by step 3 and 4 the assertions (a) and (b) of (i) hold. We have proved
Theorem 3.1. �

3.2. The case of a Hilbert space as exit space

We are now concerned with the situation that the exit space H is a Hilbert space.
Under this additional assumption assertion (a) of the previous theorem can be
improved.

Theorem 3.2. Let K be a Krein space and let H be a Hilbert space, let A ∈ C̃(K)
be a symmetric relation and let {G, Γ0, Γ1} be a boundary triplet for A+ with
corresponding γ-field γ and Weyl function M . Let A0 = ker Γ0 and assume that
ρ(A0) is nonempty.

(i) If Ã ∈ C̃(K×H) is a self-adjoint extension of A and PK(Ã−λ0)
−1 ↾K∈ L(K)

holds for some λ0 ∈ ρ(A0), then there exists a Nevanlinna family τ ∈ R̃(G)
such that (a) and (b) hold.

(a) If λ ∈ ρ(A0), then (M(λ) + τ (λ))−1 ∈ L(G) if and only if λ ∈ ρ(Ã).
(b) The formula

PK

(
Ã − λ

)−1
↾K= (A0 − λ)−1 − γ(λ)

(
M(λ) + τ (λ)

)−1
γ(λ)+

holds for all λ ∈ ρ(A0) ∩ ρ(Ã).

(ii) If τ ∈ R̃(G) is a Nevanlinna family and (M(λ0) + τ (λ0))
−1 ∈ L(G) for some

λ0 ∈ ρ(A0), then there exists a self-adjoint extension Ã ∈ C̃(K×H) of A such
that (a) and (b) are satisfied.
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Proof. Since the class of Nevanlinna families R̃(G) coincides with the class of
Weyl families of boundary relations in Hilbert spaces (see [9, Theorem 3.9], Re-
mark 2.5 and Corollary 4.4) the assertions of Theorem 3.2 follow immediately
from Theorem 3.1 if we show that each point λ ∈ ρ(A0) with the property

(M(λ) + τ (λ))−1 ∈ L(G) belongs to ρ(Ã).

Define Γ′ ∈ C̃(H2,G2) as in (3.3), let τ and γ′ be the corresponding Weyl family
and γ-field and assume that λ ∈ ρ(A0) is chosen such that (M(λ)+τ (λ))−1 ∈ L(G).

In order to show that Ã − λ is injective, let
{(

f0

f1

)
,

(
f ′
0

f ′
1

)}
∈ Ã such that f ′

0 − λf0 = 0 and f ′
1 − λf1 = 0,

i.e. f̂0 ∈ Nλ,A+ and f̂1 ∈ Nλ,T1
. Writing Ã in the form (3.5) and setting h := Γ0f̂0

we conclude (
h

−M(λ)h

)
=

(
Γ0f̂0

−Γ1f̂0

)
∈ Γ′(Nλ,T1

) = τ (λ)

and therefore
(

h
0

)
∈ M(λ) + τ (λ). From (M(λ) + τ (λ))−1 ∈ L(G) we now get

h = 0 and since both γ(λ) and γ′(λ) are operators (cf. Remark 2.3) here we obtain

f0 = γ(λ)h = 0 and f1 = γ′(λ)h = 0, that is, ker(Ã − λ) = {0}.

In order to show the surjectivity of Ã − λ we construct elements f̂0 ∈ A+ and

f̂1 ∈ T1 with {
f̂1,

(
Γ0f̂0

−Γ1 f̂0

)}
∈ Γ′ and

(
f′0 − λf0
f′1 − λf1

)
=

(
g0

g1

)
(3.7)

for an arbitrary
(
g0

g1

)
∈ K×H. First of all choose f̂0 ∈ A0 such that f ′

0 − λf0 = g0

and set x := Γ1f̂0. Since J (Γ′) (cf. Section 2.2) is self-adjoint in the Hilbert space

H×G there exists
{
f̂1, ĥ

}
∈ Γ′ with f ′

1 −λf1 = g1. Let now f̂λ ∈ Nλ,A+ such that

Γ0f̂λ = h (and hence Γ1f̂λ = M(λ)h) holds and since M(λ)+ τ (λ) is surjective by

assumption there exists l̂ ∈ τ (λ) with M(λ)l + l′ = −(h′ + M(λ)h + x). Therefore

there are f̂1λ ∈ Nλ,T1
and f̂0λ ∈ Nλ,A+ such that

{
f̂1λ, l̂

}
∈ Γ′ and l = Γ0f̂0λ (and

hence Γ1f̂0λ = M(λ)l). Setting

f̂0 := f̂0 + f̂λ + f̂0λ ∈ A+ and f̂1 := f̂1 + f̂1λ ∈ T1,

we have {̂f1, ĥ + l̂} ∈ Γ′ and from
(

f′0 − λf0

f′1 − λf1

)
=

(
g0

g1

)
and

(
Γ0f̂0

−Γ1 f̂0

)
= ĥ + l̂

we conclude that (3.7) holds, that is, Ã − λ is surjective. �

In Theorem 3.4 below we will impose additional conditions on the symmetric

relation A ∈ C̃(K) and the fixed canonical self-adjoint extension A0 = kerΓ0 in
order to get more information on the (local) spectral properties of the extensions

Ã. For this we briefly recall the notion of locally definitizable self-adjoint relations.
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For a detailed study of (locally) definitizable self-adjoint operators and relations
we refer to the papers [16, 19, 23] of P. Jonas and H. Langer.

If A0 is a self-adjoint relation in a Krein space K, then λ ∈ C belongs to the
approximate point spectrum of A0, denoted by σap(A0), if there exists a sequence(

xn

yn

)
∈ A0, n = 1, 2, . . . , such that ‖xn‖ = 1 and limn→∞ ‖yn − λxn‖ = 0.

The extended approximate point spectrum σ̃ap(A0) of A0 is defined by σap(A0) if

0 6∈ σap(A
−1
0 ) and by σap(A0) ∪ {∞} otherwise. A point λ ∈ σap(A0) is said to be

of positive type (negative type) with respect to A0, if for every sequence
(

xn

yn

)
∈ A0,

n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖yn − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn]K > 0
(
lim sup

n→∞

[xn, xn]K < 0, resp.
)
.

If ∞ ∈ σ̃ap(A0), ∞ is said to be of positive type (negative type) with respect to

A0 if 0 is of positive type (resp. negative type) with respect to A−1
0 . The set of all

spectral points of positive type (negative type) with respect to A0 will be denoted
by σ++(A0) (resp. σ−−(A0)). An open subset ∆ of R is said to be of positive type
(negative type) with respect to A0 if ∆∩ σ̃(A0) ⊂ σ++(A0) (∆∩ σ̃(A0) ⊂ σ−−(A0),
resp.) holds.

Let in the following Ω be some domain in C symmetric with respect to the
real axis such that Ω∩R 6= ∅ and the intersections of Ω with the upper and lower
open half-planes are simply connected.

Definition 3.3. A self-adjoint relation A0 in a Krein space K is said to be defini-
tizable over Ω if σ(A0) ∩ (Ω\R) consists of isolated points which are poles of the
resolvent of A0, no point of Ω∩R is an accumulation point of the nonreal spectrum
of A0 in Ω and the following holds.

(i) For every finite union ∆, ∆ ⊂ Ω ∩ R, of open connected subsets there exists
m ≥ 1, M > 0 and an open neighborhood U of ∆ in Ω such that

‖(A0 − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m

holds for all λ ∈ U\R.
(ii) Every point µ ∈ Ω∩R has an open connected neighborhood Iµ in R such that

each component of Iµ\{µ} is either of positive or of negative type with respect
to A0.

Let A0 be definitizable over Ω and let e be a discrete (possibly empty) set of
points in Ω∩R. Then the property that (Ω∩R)\e is of positive type with respect
to A0 is equivalent to the fact that σ−−(A0) is discrete in Ω.

Theorem 3.4. Let K be a Krein space and let H be a Hilbert space, let A ∈ C̃(K) be
a symmetric relation of finite defect and let {G, Γ0, Γ1} be a boundary triplet for
A+ with corresponding γ-field γ and Weyl function M . Assume that A0 = kerΓ0

is definitizable over Ω and that σ−−(A0) is discrete in Ω.

(i) If Ã ∈ C̃(K×H) is a self-adjoint extension of A and PK(Ã−λ0)
−1 ↾K∈ L(K)

holds for some λ0 ∈ ρ(A0)∩Ω, then there exists a Nevanlinna family τ ∈ R̃(G)
such that (a)-(c) are satisfied.
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(a) If λ ∈ ρ(A0)∩Ω, then (M(λ)+ τ (λ))−1 ∈ L(G) if and only if λ ∈ ρ(Ã).
(b) The formula

PK

(
Ã − λ

)−1
↾K= (A0 − λ)−1 − γ(λ)

(
M(λ) + τ (λ)

)−1
γ(λ)+

holds for all λ ∈ ρ(A0) ∩ ρ(Ã) ∩ Ω.

(c) If ρ(Ã) ∩ Ω 6= ∅ then Ã is definitizable over Ω and σ−−(Ã) is discrete
in Ω.

(ii) If τ ∈ R̃(G) is a Nevanlinna family and (M(λ0) + τ (λ0))
−1 ∈ L(G) for some

λ0 ∈ ρ(A0)∩Ω, then there exists a self-adjoint extension Ã ∈ C̃(K×H) of A
such that (a)-(c) are satisfied.

Proof. The statement of Theorem 3.4 follows from Theorem 3.2 if we show that

the extension Ã in (i) satisfies assertion (c).
For this, let S0 and S1 be the symmetric relations in the Krein space K and

the Hilbert space H, respectively, defined in step 1 of the proof of Theorem 3.1.
As A is of finite defect the deficiency indices n±(JKA) of the symmetric relation
JKA in the Hilbert space (K, [JK·, ·]) are both equal to n < ∞ and hence the
deficiency indices n±(JKS0) of the symmetric relation JKS0 are both equal to
m ≤ n. Considerations very similar to those in [9, Lemma 2.14] show that the
deficiency indices n±(S1) of S1 coincide and are also equal to m.

Let B0 be a self-adjoint extension of S1 in the Hilbert space H. We claim

that the self-adjoint relation A0 × B0 ∈ C̃(K × H) is definitizable over Ω and
σ−−(A0 × B0) is discrete in Ω. In fact, first of all σ(A0 × B0) ∩ (Ω\R) coincides
with σ(A0) ∩ (Ω\R) and the growth properties of the resolvent of A0 and B0,
‖(B0 − λ)−1‖ ≤ |Im λ|−1, λ 6∈ R, imply that condition (i) in Definition 3.3 holds
for A0 × B0. Moreover R ⊂ σ++(B0) ∪ ρ̃(B0) and the assumptions that A0 is
definitizable over Ω and σ−−(A0) is discrete in Ω imply that with the exception
of a discrete set Ω∩R belongs to σ++(A0 ×B0)∪ ρ̃(A0 ×B0). Therefore A0 ×B0

is definitizable over Ω and σ−−(A0 × B0) is discrete in Ω.

Since Ã and A0 × B0 are self-adjoint extensions of the symmetric relation

S0 × S1 in K ×H and ρ(Ã) ∩ Ω is nonempty we conclude that
(
Ã − λ

)−1
−

(
(A0 × B0) − λ

)−1
, λ ∈ ρ(Ã) ∩ ρ(A0 × B0) ∩ Ω,

is a finite rank operator. Hence we can apply [2, Theorem 2.2] and it follows that

Ã is definitizable over Ω and σ−−(Ã) is discrete in Ω. �

4. Realization of relation-valued functions as Weyl families

We show in Theorem 4.1 that certain classes of C̃(G)-valued functions can be real-

ized as Weyl families corresponding to boundary relations Γ ∈ C̃(K2,G2) of sym-
metric relations in Krein spaces K. Lemma 2.4 (i) and the proof of [9, Theorem 3.9]

suggest that for a given C̃(G)-valued function τ the function λ 7→ −(τ (λ) + λ)−1
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has to be realized as the compressed resolvent of some self-adjoint relation J (Γ)
in K × G.

We briefly recall the notion of (locally) definitizable functions introduced and
studied by P. Jonas in [17, 18, 19, 20]. Let, as in Definition 3.3, Ω be a domain which
is symmetric with respect to the real axis such that Ω∩R 6= ∅ and the intersections
of Ω with the upper and lower open half-planes are simply connected. For an L(G)-
valued function G meromorphic in Ω\R we denote the set of all λ ∈ Ω\{∞} such
that τ can analytically be continued in λ in a unique way by h(G).

An L(G)-valued function G meromorphic in C\R satisfying G(λ) = G(λ)∗

for all λ ∈ C\R is called definitizable if there exists a scalar rational function r
such that rG is the sum of a Nevanlinna function N and an L(G)-valued rational
function n whose poles belong to h(G),

r(λ)G(λ) = N(λ) + n(λ)

for all points λ ∈ C\R of holomorphy of rG, cf. [18, §3]. If Ω is a domain as above,
then an L(G)-valued function G meromorphic in Ω\R satisfying G(λ) = G(λ)∗ for
all λ ∈ Ω\R is said to be locally definitizable in Ω, if for every domain Ω′ with
the same properties as Ω, Ω′ ⊂ Ω, G can be written as the sum Gd + Gh of a
definitizable function Gd and a function Gh locally holomorphic on Ω′ (see [20]).

Theorem 4.1. Let G be a Hilbert space, let τ be a C̃(G)-valued family and assume
that the function

λ 7→ G(λ) := −(τ (λ) + λ)−1

is an L(G)-valued locally definitizable function in Ω. Then for every domain Ω′

with the same properties as Ω, Ω′ ⊂ Ω, there exists a Krein space K, a closed

symmetric relation A ∈ C̃(K) and a boundary relation Γ ∈ C̃(K2,G2) for A+ such
that the corresponding Weyl family coincides with τ in Ω′ ∩ h(G).

Proof. Let us fix some domain Ω′, Ω′ ⊂ Ω, and a point λ0 ∈ Ω′ ∩ h(G). Since G is
a definitizable function in Ω by [1] the same holds for the function

G1(λ) := λ − Re λ0 + (λ − λ0)(λ − λ0)G(λ), λ ∈ Ω ∩ h(G). (4.1)

Hence [20, Theorem 3.8] implies that there exists a Krein space K̃, a self-adjoint

relation B ∈ C̃(K̃) definitizable over Ω, and a mapping γ ∈ L(G, K̃) such that
Ω′ ∩ h(G1) = Ω′ ∩ ρ(B) and

G1(λ) = Re G1(λ0) + γ+
(
λ − Re λ0 + (λ − λ0)(λ − λ0)(B − λ)−1

)
γ (4.2)

holds for all λ ∈ Ω′∩h(G1). By (4.1) we have G1(λ0) = iIm λ0 and Re G1(λ0) = 0
which together with (4.2) yields γ+γ = IG . Since γγ+ is a self-adjoint projection

in the Krein space K̃ we can identify G with the Hilbert subspace ran γ in K̃. Then

the orthogonal companion K := G[⊥] of G in K̃ is a Krein space and K̃ = K[+̇]G

holds. Moreover γ is the embedding of G into K̃ and γ+ the projection PG in K̃
onto G. Hence (4.2) can be rewritten as

G1(λ) = λ − Re λ0 + (λ − λ0)(λ − λ0)PG(B − λ)−1 ↾G
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and taking into account (4.1) we conclude

−(τ (λ) + λ)−1 = G(λ) = PG(B − λ)−1 ↾G , λ ∈ Ω′ ∩ h(G).

Let J be as in (2.3) and define Γ := J−1(B). Then Γ is a boundary relation for
A+, A := ker Γ, and by (2.4) the associated Weyl family is τ . �

Remark 4.2. The self-adjoint relation B = J (Γ) corresponding to the boundary
relation Γ (with Weyl family τ) constructed in the proof of Theorem 4.1 is definiti-
zable over Ω′. A converse statement also holds, that is, if Γ is a boundary relation
such that J (Γ) is definitizable over Ω, then the corresponding Weyl family meets
the assumptions of Theorem 4.1.

By virtue of [1, Theorem 2.5] we immediately obtain the following corollary
on matrix-valued locally definitizable functions.

Corollary 4.3. Let τ be a matrix-valued definitizable function in Ω and assume
that det (τ (λ) + λ) is not identically equal to zero. Then for every domain Ω′ as
Ω, Ω′ ⊂ Ω, there exists a Krein space K, a closed symmetric relation A in K and

boundary relation Γ ∈ C̃(K2,G2) such that the corresponding Weyl family coincides
with τ in Ω′.

A similar construction as in the proof of Theorem 4.1 yields an alternative
proof of the main realization theorem in [9].

Corollary 4.4. Every Nevanlinna family τ ∈ R̃(G) can be realized as the Weyl

family of a boundary relation Γ ∈ C̃(K2,G2), where K is a Hilbert space.

Proof. As the sum and the negative inverse of a Nevanlinna family are Nevanlinna
families

G1(λ) : = λ − (λ2 + 1)(τ (λ) + λ)−1

= −
{
−

(
λ − τ (λ)−1

)−1
−

(
τ (λ) − λ−1

)−1}−1
,

λ ∈ C\R, is an L(G)-valued Nevanlinna function. Hence there exists a Hilbert

space K̃, a self-adjoint relation B ∈ C̃(K̃) and an operator γ ∈ L(G, K̃) such that
a representation of the form (4.2) with λ0 = i holds. Now the same reasoning as
in the proof of Theorem 4.1 shows that Γ = J−1(B) is a boundary relation with
Weyl family τ . �
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