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Abstract

Organisms are routinely faced with the task of making deci-
sions based on partial, unreliable information. Furthermore,
not only is the environment noisy, but the computational units
organisms employ themselves are often faulty and noisy, such
as the neurons of the animal nervous system. There is a cru-
cial difference, though: while the organism can only act in-
directly on its environment, its sensory organs are under its
direct control through adaptation. Here I thus consider how
a population of neurons can organise itself to allow for op-
timal information processing at its output. I will focus on a
model of a rapidly changing environment, which forces the
organism to make short-time decisions.

In that setting I have provided a number of novel results,
extending the framework of population coding to a fully dy-
namic setting, where a changing environment is decoded from
spike trains in an online fashion. To do so, I have drawn from
the theory of stochastic filtering of doubly stochastic point
processes. For a dense population of neurons, this reduces
to a Gaussian process regression problem, for which I have
obtained closed form relations for the error distribution. The
formalism developed also lends itself to a direct extension to
a control-theoretical setting. Thus I have also developed a
criterion for optimal coding in the case of control problems,
and have compared this to the case of estimation previously
developed. Interestingly, I have been able to show that the
different objective functions for control and estimation lead
to different optimal encoders.

The study of optimal coding in populations of neurons is
an active fertile area of research. Here I have extended a
number of previous findings to the case of online decoding of
dynamic stimuli from point processes. Parallel to that, I have
discussed the issue of optimal coding for control, and how it
relates to the study of optimal coding in the estimation case.






Zusammenfassung

Lebende Organismen miissen stindig Entscheidungen tref-
fen, die sich auf partieller, ungewisser Information basieren.
Nicht nur des Organismus Umfeld ist unsicher, sondern auch
die komputationellen Einheiten, die es zur Bildung einer Entschei-
dung anwendet, wie zum Beispiel, Neuronen in Nervensyste-
men. Immerhin besteht zwischen den beiden ein wichtiger
Unterschied: auf die Umwelt kann das Organismus nur indi-
rekt agieren, wiahrend die Neuronen direkt adaptiv eingestellt
werden konnen. Ich befasse mich hier mit der Frage, wie Pop-
ulationen von Neuronen sich organisieren kénnen um die In-
formationsverarbeitung seiner Ausgange zu erleichtern. Darin
fokussiere Ich mich auf dynamischen Stimuli, die schnelle
Entscheidungen erbitten.

In diesem Umfeld habe Ich mehrerer neue Ergebnisse er-
reicht, und das Feld der Populationskodierung zu einem dy-
namischen Kontext ausgearbeitet, in dem eine dynamische
Umwelt online dekodiert wird, also in Echtzeit. Dazu habe Ich
die Theorie der Filterung doppelstochastischer Punktprozesse
angewendet. Fiir dichte Populationen von Neuronen kann
das als ein Gaussprozessregressionsproblem formuliert wer-
den, fiir welchen Ich ein geschlossenen Ausdruck fiir die Verteilung
der Fehler fand. Das erarbeitete Formalismus erlaubt eine
direkte Erweiterung zu einem kontrolltheoretischen Kontext,
und Ich habe die Ergebnisse in der kontrolltheoretischen For-
mulierung mit den Ergebnissen in der stochastischen Filterung
verglichen. Interessanterweise, war es mir moglich zu zeigen,
dass beide Aufgaben zu unterschiedlichen optimalen Kodierungsstrate-
gien fiihren.

Das Feld der optimalen Kodierung in neuronalen Popula-
tionen ist ein aktives Forschungsfeld. Ich habe hier mehrere
Ergebnisse zum Fall von dynamischen Stimuli erweitert. Par-
allel habe Ich diese Ergebnisse mit Kontrol-theoretischen Ergeb-
nissen verglichen und diskutiert welche Implikationen das hat.
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Introduction

A wing would be a most
mystifying structure if one did
not know that birds flew.

Horace Barlow

NEUROSCIENCE AS A WHOLE is concerned with the function
of the nervous system. More precisely, it asks a very simple
question: What is the brain doing?® The simplicity with which
humans and animals perform in their environment makes it
almost unnatural to ask how their brains enable these be-
haviours. Many actions are performed so naturally, that it
is often hard to explain to laymen the complexity involved in
preparing even the simplest actions, such as saccades or walk-
ing. Although one can not realistically expect to answer that
question in a general fashion, I will try to touch upon a num-
ber of points which shed light on some aspects of the nervous
system and provide us with a guiding principle to understand
what the brain is doing, why and possibly how.
Neuroscience was born as a branch of biology, and although
it is now often thought of as an interdisciplinary science in
itself, its objects of study are still to the largest extent biologi-
cal systems. Theodosius Dobzhansky published an influential
essay in 1973, entitled Nothing in biology makes sense except
in the light of evolution,> which defends exactly that point.
Though the theory of evolution through natural selection has
been reviewed and revisited constantly since its proposal, it
remains the central pillar of biological sciences. As such, neu-
roscience must also view its objects of study through the lense
of evolution. More specifically, we can then ask ourselves
What evolutionary advantage would this brain bring to an in-
dividual? instead of Why is the brain this way? That being
said, there are caveats in the case of neuroscience. For one,
the brain is capable of plasticity and adaptation unthinkable
for other organs, and so one can not expect to understand
the functionality of the brain as a function of its environment
as simply as the shape of bird beaks can be understood as

! Or alternatively: What is the nervous sys-
tem doing?

2Dobzhansky, T. (1973). Nothing in Bi-
ology Makes Sense Except in the Light of
Evolution. The American Biology Teacher,
35(3):125-129
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an adaptation to their preferred diet. Furthermore, the brain
controls all of the motor and perceptual apparatus, having a
multitude of uses and purposes, unlike simpler organs.

A growing body of literature supports the idea that the
brain’s organisation is adapted to the environment it operates
in. More precisely, the response properties of many sensory
areas in the animal brain are such that they encode their nat-
ural stimuli in an optimal fashion. Visual receptive fields in
V1 resemble the independent components of visual images,*
the principal components of natural sounds resemble the au-
ditory responses in auditory fibers,* the colour sensitivity of
retinal cells can be traced back to the colour spectrum in pri-
mate’s and fish’s environment,®> and so on. My main goal in
this thesis is to extend this kind of approach to a dynamic
setting, in which the whole spike train is used to encode the
environment, instead of graded responses or spike counts. In
that sense, I will be looking at a simple model of a sensory
neural population which responds to a dynamic stimulus like
a Poisson process with a time-dependent rate. By consider-
ing the task of reconstructing the encoded stimulus from the
spike train of the population, I will study the mean squared
error as a measure of the performance of the encoding popu-
lation. Though this thesis is mostly theoretical, I hope it will
lay the foundation to the study of optimal population coding
using full spike trains in a true time-depedendent fashion. In
the remainder of this chapter I will better contextualise my
goals and the tools I will employ.

1.1 Hierarchical Organisation of the Brain and the Feedfor-
ward Paradigm

One of the most distinguishing properties of the mammalian
brain, and of most neural systems in nature, is its hierarchi-
cal organisation. The human cortex has a very marked or-
ganisation with clear functional units and very distinct con-
nectivity patterns within functional units and between them.®
A rough view of the flow of information in the sensory ar-
eas of the human brain can be seen in figure 1.1. According
to this paradigm, information about the environment enters
the nervous system through the primary sensory areas, which
code for simple aspects of the environment such as edges of
visual shapes or particular sound frequencies. These areas
then transmit that information to higher brain areas, often
called secondary and tertiary areas. The secondary and ter-
tiary areas then process the input further, integrating infor-
mation within and between sensory modalities. The motor
cortex proceeds in a similar fashion but in the opposite di-
rection. The tertiary motor areas receive information from

3Bell, A. J. and Sejnowski, T. J. (1997).
The independent components of natural
scenes are edge filters. Vision research,
37(23):3327-3338; and Olshausen, B. A.
and Field, D. J. (1996). Natural image
statistics and efficient coding. Network,
7(2):333-339

4 Lewicki, M. S. (2002). Efficient coding
of natural sounds. Nature neuroscience,
5(4):356-63

5 Atick, J. J. (1992). Could information
theory provide an ecological theory of sen-
sory processing? Network: Computation in
neural systems, 3(2):213-251

®Kandel, E. R., Schwartz, J. H., Jessell,
T. M., et al. (2000). Principles of neural
science, volume 4. McGraw-Hill New York;
and Bear, M. E, Connors, B. W,, and Par-
adiso, M. A. (2007). Neuroscience, vol-
ume 2. Lippincott Williams & Wilkins



higher sensory areas and code for high-level aspects of motor
control, such as complex movements, goals and integrated
plans. Downstream are the secondary and primary areas,
which code for simpler aspects of motor control, with activity
in the primary motor cortex often having a simple relation to
the movement of joints or limbs.”

More interestingly, these areas are anatomically organised
in a very distinctive way. The sensory areas are found in the
posterior part of the brain, with the primary areas being found
further towards the back and the tertiary areas being found
near the central sulcus of the brain. The motor areas, in con-
trast, are found in the frontal part of the brain, the tertiary
areas towards the front and the primary motor cortex being
located on the frontal side of the central sulcus of the brain.

The finding by Thorsten Wiesel and David H. Hubel that
neurons in the primary visual cortex fire specifically in re-
sponse to certain visual patterns presented in certain areas
of the visual field was instrumental to this understanding of
the brain, as it was the first to clearly identify neurons that
code selectively for simple features of visual stimuli.® This
view of information processing in the mammalian brain can
be summarised in the so-called feedforward paradigm: The
brain is divided in functional units, which receive input from
upstream units, integrate and process that input and then re-
lay the results to downstream units. This has been a very
influential idea in systems neuroscience, and though it has
come under a lot of criticism recently,’ a lot of work still bases
its assumptions on this paradigm. A fresher view of the func-
tional connections in the visual pathways of the human brain
can be seen in figure 1.2, from which it is immediately clear
that the simple feedforward view of the brain is somewhat

15

7'The phrasing downstream and upstream
are used frequently in neuroscience and
are derived from this view of information
flow in the brain. The furthest upstream
areas would be the sensory organs, and the
furthest downstream areas would be the
motor organs. In that sense, the secondary
visual cortex V2 is downstream from the
primary visual cortex V1, but upstream
from the prefrontal cortex or the primary
motor cortex.

Figure 1.1: The feedforward view of the
visual sensory pathway: The two main
visual pathways, the ventral (purple)
and dorsal (green) pathways are shown.
The feedforward paradigm views the
information flowing from the primary
areas towards the right to the higher
areas toward the middle. Figure from
http://commons.wikimedia.org/wiki/
File:Ventral-dorsal_streams.svg.

8 Hubel, D. H. and Wiesel, T. N. (1959). Re-
ceptive fields of single neurones in the cat’s
striate cortex. The Journal of physiology,
148(3):574

9 Gilbert, C. D. and Li, W. (2013). Top-
down influences on visual processing. Na-
ture Reviews Neuroscience, 14(5):350-363
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outdated. Even the earliest sensory areas have been shown
to be modulated by a number of higher order factors, such as
attention and task-related biases.

The impact of the feedforward paradigm can still be seen
in other fields as well. In Machine Learning, for example,
feedforward neural networks modelled after the feedforward
view of the brain’s organisation are still a very active area of
research and rank among the most powerful algorithms in the
field.!°

Dorsal pathway

I have briefly illustrated the feedforward paradigm, which
gives us a handle on the brain’s organisation. It is by no means
a general explanation of the brain’s workings, but it gives one
a structured framework to think about its form and function.
It does not, however, specify the workings of every cortical
area. Let us consider for example the primary visual cortex
(V1). It receives inputs from the retina through the Lateral
Geniculate Nucleus and its neurons respond to visual stim-
uli according to spatiotemporal filters of the presented stimu-
lus. From a purely conceptual point of view, V1 transform the
representation of the visual stimulus from a simple ON- and
OFF-cell representation found in the retina to a more com-
plex representation in terms of spatiotemporal Gabor filters
and similar response functions. The responses of retinal pho-
toreceptors are thus pooled and processed together to give
rise to more complex features. One can then ask how these
computations are performed and what the ideal way of per-
forming this would be.

Neurons are inherently noisy cells, and their responses to
the same stimulus presentation are often very variable.!! One
can then ask how the subsequent stages of information pro-
cessing in the brain deal with the noise present in its input.
From a theoretical viewpoint, one can further ask how a par-
ticular cortical area should be organised to facilitate the in-
formation processing by downstream areas.!? This is hard to

19 Bengio, Y. (2009). Learning deep archi-
tectures for A.I. Foundations and trends in
Machine Learning, 2(1):1-127

Figure 1.2: Feedforward and Feedback
pathways carrying top-down information
in the macaque brain: In blue are shown
feedforward connections between areas of
the visual pathways. In red are shown
feedback connections conveying top-down
information to upstream sensory areas.
Figure from (Gilbert and Li, 2013)

" Faisal, A. A., Selen, L. P, and Wolpert,
D. M. (2008). Noise in the nervous system.
Nature Reviews Neuroscience, 9(4):292—
303

12 The response of a population of neurons
to a particular aspect of the environment
is often called a population code, and I will
use this term throughout the text.



do without a clear view of the exact computational process
being performed by a neural system, but one can resort to a
number of theoretical frameworks to bypass this problem. If
one can agree on a general computational task a population
of neurons is performing (i.e.: estimating the direction of mo-
tion of the visual field or detecting the presence of an auditory
stimulus masked in noise), we can use statistical tools to pro-
vide bounds on the performance of a given population code.
For example, assuming neurons in V1 seek to estimate the di-
rection of movement in a patch of the visual field, one can
ask: What is the best arrangement of the receptive fields for
the neurons projecting into V1 if that population is to detect
the direction of moving gratings? I have repeatedly used the
phrase process information but the meaning of this is far from
obvious. Let me specify what is usually meant by information
in the field of computational neuroscience.

1.2 Quantifying Information

Information is a widely used term, but one usually has a very
vague conception of what it means. Having information about
an event usually means having the means to describe, recon-
struct or distinguish that particular event. There are many
ways of defining information, and I will shortly consider three
different approaches.

Information Theory and Mutual Information

The most common definition of information is probably the
one from Shannon’s information theory.!* Information the-
ory defines the information associated with a random event
as the logarithm of its inverse probability. So, for a random
variable X taking values x € .y with probability Py (x), the
information of a particular outcome x; would be

I(x;) =1log = —log Py (x;).

Py (x;)

This is often called the surprise associated with an event as
well, as very probable outcomes are not very informative. The
limit of zero information is an event one is absolutely certain
about, therefore observing it conveys no information at all.
The opposing case are very rare events, which carry a lot of
information.'*This might seem a rather unusual concept of
information at first glance, but it is a very useful one, hav-
ing a very wide applicability.®> One can then also define the
entropy of a distribution over X as the average information

17

13 Shannon, C. E. (1948). The mathemat-
ical theory of communication. 1963. Bell
System Technical Journal, 27:379-423 and
623-656

4 One is almost absolutely certain that
days will turn into nights and vice-versa.
If at a given morning, I observe the dawn,
this does not hold a lot of information. If
at a given morning the dawn fails to ar-
rive, that would be an informative event,
possibly a harbinger of a storm or eclipse.

!> Most forms of modern communication
systems depend in some way on devel-
opments of information theory. Error-
correcting codes have made digital com-
munication and information storage pos-
sible by robustly dealing with the inher-
ent noise in physical systems. Cryptogra-
phy and compression methods also draw
from the conclusions of information the-
ory, among many others.
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gained from observing the outcome of X. This gives

Z Py (x)log Px (x),

XE.ofy

which is a measure of the disorder or uncertainty of the ran-
dom variable X. This gives one a very interesting connection
to the field of statistical mechanics, where entropy plays a
central role. It does not fit perfectly into the colloquial mean-
ing of information, however, as the concept of information
is mostly referential, in the sense that information is about
something.

If X is a continuous random variable, one needs to formu-
late these ideas a bit more precisely. Say that X takes values
x € .oy, where .y in turn is a subset of R". The probability
must now be defined in terms of a probability density. One
has then, for a continuous random variable X, the probability
of X taking a value in a set %8 C .o/ '°

P(XeRB) :f dxPyx(x).
B

In this thesis, I will mostly consider probability densities as
the objects of interest, but I trust the reader to notice when I
am working with discrete distributions from the context. For
the continuous case we can then define

H[X] = —'L{ dxPx(x)logPx(x).

This is called the continuous or differential entropy and it can
be positive or negative. This makes it difficult to interpret its
value directly as a measure of disorder or uncertainty. Techni-
cally speaking, the differential entropy is not the continuous
limit of the discrete entropy, as the continuous limit would
lead to the Riemann sum

— Z Px(x)dxlog (Px(x)dx),
XEy
which clearly diverges in the limit dx — 0. The Kullback-
Leibler divergence, or relative entropy, between two distinct
distributions of X, however, has a well defined limit in the
continuous case. Given two distributions P(x) and Q(x) for
a discrete random variable X, we have the KL-divergence

KL[PIIQ]= > P(x log[ Eg]

XE.fy

It is easy to see that taking the continuous limit we obtain for
densities the KL-divergence

L[PlIQ] = wax de(x)log[%].

6T am here using the Riemann integral to
formulate the probability, placing some re-
strictions on the nature of the set 9. For
safety, one can assume that 98 is compact.
These can be further loosened by writing
the probability in terms of the Lebesgue
measure as

P(X e ®) = f au(x)Py (x),
B

but this is not necessary to the treatment
developed herein.



The mutual information between two random variables X
and Y quantifies the dependence between them. The Mutual
information between X and Y is defined as

Pyy (X,
I(X,Y)= Z Z PXY@:J’”Q‘!(W),

XEdy YELy

where Pyy is the joint distribution of X and Y. Note that the
mutual information is the KL-divergence between the joint
distribution Pxy (x, y ) and the product of the marginals Py (x)Py (y),
and is therefore always positive. The mutual information be-

tween two random variables will be zero if and only if the

two random variables are statistically independent. In that

sense, the mutual information quantifies how dependent the

two variables are and therefore how much one can know

about one from observing the other. This is further clarified

by rewriting the mutual information as

I(X,Y)= >, Py(¥) D Py(x|Y =y)log

YE Ly XE.fy

Py (x|Y =
(BB =) gy () ey =),
where Py (x|Y = y) is the conditional distribution of X condi-
tioned on the outcome of Y being equal to y and H[X|Y = y]
is the entropy of that distribution. So the mutual information
is equal to the average reduction in the entropy of X caused
by an observation of Y. As mentioned before, the entropy is a
measure of the uncertainty or disorder of a random variable,
so the mutual information quantifies how much the uncer-
tainty in X is reduced by observing Y. This is already much
nearer to our colloquial understanding of information. Take
for example, the event X to be a measurement of the atmo-
spheric pressure, and Y to be the occurrence of a rainstorm.
Clearly, the uncertainty about the occurrence of a rainstorm
is decreased by a measurement of the atmospheric pressure,
and the mutual information will have a non-zero value. If X
were the outcome of a fair coin toss, there would be reason
to believe that the mutual information between and X and Y
should be zero.

In a neuroscientific context, one can think of one of the
random variables (X) as representing the environment or the
input to a neural population and the other variable as rep-
resenting the population’s response (Y). The mutual infor-
mation then quantifies how much the population’s response
reduces the uncertainty about the system’s state. The distri-
bution Py (x) represents the natural distribution of stimuli in
the environment and Py (y|X = x) gives the distribution of
population responses Y given the environment’s state X = x.
The mutual information is symmetric in its arguments and
can also be thought of as the reduction in uncertainty in the
neuron’s responses upon the observation of the environment’s
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state

1x,1) = 3 B) 3 Py (ol = ) tog L)

XE.dfy YESy

The mutual information and entropy of neural responses are
a widely employed measure of a neural code’s quality and has
been often used to establish the optimality of experimentally
measured coding strategies,'” as well as to explain general
features of neural systems.!®

I have only briefly introduced the concepts from informa-
tion theory, but it should be noted that a number of theoretical
results reinforce the interpretation of the mutual information
as a measure of the information content of a code. Shan-
non’s theorems are often defined in terms of the capacity of
a channel, which is specified by a distribution of messages Y
conditioned on the source X. The capacity of a channel given
by a distribution Py (y|X = x) is then

C=maxI(X,Y).
Py (x)

Shannon’s noisy channel coding theorem, for example, states
that it is possible to transmit messages through the given chan-
nel at a rate R < C with a vanishingly small error in the limit
of long messages.'”

In the context of optimal neural coding, one could then ex-
perimentally measure the distribution of certain features in
natural stimuli and seek out the neural response distribution
Py(y|X = x) which maximises the mutual information be-
tween the environment and the response. I will consider a
simple example from the literature.

The large monopolar cells (LMC’s) of the visual system of
the blowfly respond to light contrast on a particular area of
the visual field with a graded potential response. In (Laugh-
lin, 1981), the author explored what the best way of organis-
ing these responses would be according to information the-
ory.?® Since the mutual information gives the information
content of a response Y about a stimulus X, it makes sense
to maximise the mutual information between them. Given
an environmental distribution of contrasts Px(x) one must
choose a distribution Py (y|X = x) that maximises the mutual
information between the stimulus and the response. Further-
more, assuming the response Y is a deterministic function
of the stimulus g(X), the conditional entropy H[Y|X = x|
will be zero and one is left with maximising the entropy of
Y .2! The distribution which maximises the entropy over a fi-
nite domain without any further constraints is the uniform
distribution (see appendix A.1) and one is led to conclude
that Py (y)dy = Bdy gives the optimal response distribution,

= Ex (H[Y]-H[Y[X = x]).

7 Laughlin, S. (1981). A simple coding
procedure enhances a neuron’s informa-
tion capacity. Z. Naturforsch, 36(c):910-
912

18 Tkacik, G., Prentice, J. S., Balasubra-
manian, V, and Schneidman, E. (2010).
Optimal population coding by noisy spik-
ing neurons. Proceedings of the National
Academy of Sciences of the United States of
America, 107(32):14419-24

1 MacKay, D. J. C. (2003). Information
theory, inference and learning algorithms.
Cambridge university press; and Cover,
T. M. and Thomas, J. A. (1991). Elements
of Information Theory, volume 6 of Wiley
Series in Telecommunications. Wiley

20 This analysis appeared first in (Laugh-
lin, 1981), but the treatment shown here
is taken from (Atick, 1992).

2 This is somewhat more delicate in the
continuous case, as the entropy of a Dirac
delta distribution is undefined. Neverthe-
less, the conditional entropy H[Y|X = x|
is independent of the specific choice of
g(X) as long as g is one-to-one, so I will
ignore this issue. The whole analysis can
also be done for discrete response levels,
which bypasses this problem completely.



where f is a normalisation constant. But y = g(x), so

d
Py (y)dy = Py(y) 7 idx = Px(x)dx,
and finally
1 Y
e(y) = J Py (x)dx.
BJ

So the contrast response function of the LMC’s will be pro-
portional to the cumulative distribution function of the envi-
ronment’s contrasts. This is indeed found to be the case as
can be seen in figure 1.2 and showcases the application of
information-theoretical methods in neuroscience.

It is often useful to rephrase this approach in terms of the
redundancy of a code. Namely, defined the capacity of a re-
sponse model Py (y|X = x) as the maximum mutual infor-
mation between X and Y. More specifically,

C =maxI(X;Y).
Px (x)
For discrete random variables, clearly the maximum of the
mutual information is just the entropy of the stimulus H[X],
which is achieved by a deterministic one-to-one mapping from
X toY. One can then define the redundancy of some response
distribution Py (y|X = x) as

I(X;Y)
—

The redundancy of a code measures how far its information
transmission is from the optimum given by the capacity. That
is, if a code has redundancy of 0, it is optimally coding for
the stimulus X in the responses Y. A redundancy of 1, on the
other hand, means no information is being transmitted at all.
Considering multiple neurons, the response can be written as
Y = (Yy,...,Yy)', and one can write the redundancy as

&=1-

1 1
#==|Cc-> HY]|+=| D Hv]-H[Y]
C - C\<
1 1
The first term accounts for the redundancy arising from un-
equally frequent usage of different responses from individual
neurons and the second term accounts for the redundancy
arising from correlations between the activities Y;. In the ex-
ample above we have only had to deal with the left term,
since we had only one activity and therefore no correlations
between them. An extensive body of efficient coding litera-
ture,?? however, has dealt with the second term, and a num-
ber of different approaches have looked towards independent
components of natural stimuli, assuming that whitening or
gain control could account for the maximisation of the first
term.
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Figure 1.3: The response function of the
blowfly LMC closely resembles the cumu-
lative distribution of visual contrasts in its
natural environment. Figure taken from
(Laughlin, 1981)

2 Bell, A. J. and Sejnowski, T. J. (1997).
The independent components of natural
scenes are edge filters. Vision research,
37(23):3327-3338; Lewicki, M. S. (2002).
Efficient coding of natural sounds. Nature
neuroscience, 5(4):356-63; and Hahnloser,
R. H. R. and Bla, E (2011). An Efficient
Coding Hypothesis Links Sparsity and Se-
lectivity of Neural Responses. October,
6(10)
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Fisher Information

Another very popular way to quantify the information con-
tent of a neural code is the Fisher information. The Fisher
information is a concept from frequentist statistics and is for-
mulated in a slightly different framework than the mutual
information. In this case, we will not consider the state of
the environment to be a random variable but to be a fixed
unknown value x. Suppose further we are given a set of ob-
servations Y distributed according to Py (y;x), where x is
now regarded as a parameter of the distribution rather than
a conditioning variable. The Fisher information of Y is then
a function of x given by

#(x:Y) =Ey [(—8 loggi(y;x))z].

To better understand the significance of the Fisher infor-
mation it is useful to formulate a simple estimation problem.
Say I am trying to estimate the true value of x from an obser-
vation of Y, y. The probability of the observations given the
value of x is Py (y;x) but it is often more convenient to look
at the log-likelihood log Py (y;x). The maximum likelihood
estimator of the parameter x is then given by

Ry1p = argmax, log Py (y; x).

One can then investigate how sensitive the estimator of x is,
by looking look at how much the probability of the observed
data would change with a change of x. Taylor expanding
the log-probability around the maximum likelihood estimator,
the first term will be zero, and the second term will be given
by

292108 Py (¥; &umLE)

dx2 )

The Fisher information can be shown to be equal to

d2log Py (y;x)
dx2 ’

()ACMLE - X)

pv) =8y |

which is the average of the coefficient of the Taylor expansion
above.?® So the Fisher information quantifies how sensitive
the maximum likelihood estimator of the parameter x is on
average, when the true value of the parameter is x. That is, if
#(x;Y) is high, the probability decays very quickly around
the estimate, yielding a sharp estimate of x. On the other
hand, if ¢ (x;Y) is low, the minimum will have a shallow cur-
vature around it, meaning the ML estimate will be imprecise.
This is a notion of discriminability, telling us how precisely a
given neural code allows us to specify the value of x.

2 The maximum likelihood estimator is a
maximum, so the second derivative will be
negative, hence the Fisher information is
positive.



The Fisher information is also related to estimation by the
Cramér-Rao bound. Given an unbiased estimator of the pa-
rameter x, X (y), the Cramér-Rao bound states that

1

Ey[(x—2(y))*] € s
J(x;Y)

This is an important result in statistics, and it has gained pop-

ularity in the neuroscience literature due to the simple form

the Fisher information takes in the case of Poisson rate mod-

els. I will discuss these issues further in chapter 3.

Estimation and Mean-Squared-Error

The Fisher information provides a lower bound for the mean
squared error of any unbiased estimator of the environment’s
state x. From a Bayesian perspective, however, the optimal
estimator which minimises the MSE is easily computable, and
is equal to the posterior mean of the random variable X con-
ditioned on the observed neural responses y

X(y)=E[X|Y=y].

In the feedforward paradigm described above, populations of
neurons are concerned with computing some interesting as-
pect of the environment from their noisy inputs. This is very
similar to the estimation problem described here. It makes
sense then, that the population would minimise the mean
squared error of estimating that particular feature from the
neural response, say the presence of a predator call in an au-
ditory stimulus or the direction of motion of an object in the
visual field. In principle one could argue that other loss mea-
sures would make more sense from a physiological point of
view, but that does not change the conclusions of this line of
reasoning drastically.

The MMSE-based approach is not quite as popular as the
two previous frameworks, but it provides a number of advan-
tages. Sadly, there are no simple relations as can be found for
Poisson models and the Fisher information, but the MMSE ap-
proach is much more flexible. For one it is relatively straight-
forward to include the temporal dimension in this framework,
without any fundamental changes to the theory. Further-
more, temporal estimation has had a lot of interest in the
signal processing community, and a number of different tech-
niques have emerged which can be leveraged to obtain quality
measures of a code through the optimal Bayesian estimator
and its MMSE.
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1.3 Neural Decoding and Population Codes

I have so far refrained from discussing the exact method by
which the population of neurons responds to the stimulus
present in the environment. There are many ways to describe
a neuron’s activity, ranging from complex biophysical com-
partmental models focusing on the physiological properties
of the neuron to simplified probabilistic models, which fo-
cus on the computational properties of neurons and popula-
tions thereof. The most notable neuron model is probably the
Hodgkin-Huxley model of the squid giant axon, which first
shed light on the biophysical mechanisms leading to the gen-
eration of action potentials.?* This model, however, describes
the temporal dynamics of the membrane potential of the neu-
ron as a function of the injected currents into the synapses of
the neurons. This is a great description of the biophysical
properties of a neuron, but to place it in a coding framework
would force us to simulate the spiking activity of the popula-
tion of neurons sending inputs to that particular cell. There is
a whole spectrum of neuron models, from the compartmental
Hodgkin-Huxley models, to integrate-and-fire models all the
way to probabilistic models of spiking processes.?® Though
similar decoding approaches have been developed for more
complex neuron models,?® I will here focus on simpler models
of spiking, which allow one to treat the probability of a spike
being fired analytically.

The usual framework to study neural coding experimen-
tally at the level of single cells involves surgically inserting
electrodes into the cortex and recording the activity of neu-
ron’s during some kind of experiment. We are mostly inter-
ested in the coding of sensory information, in which case the
experiment is usually the presentation of some sensory stim-
ulus, often coupled with a subsequent behavioural task for
the experimental subject. For example, in (Benucci et al.,
2009), the experiment consisted of measuring responses from
the primary visual cortex of anaesthetised cats upon the pre-
sentation of moving gratings in a given direction. It is gener-
ally known that cells in V1 respond to this kind of stimulus,
but how can one determine how well the stimulus is encoded
in a neural response? One simple way is to try to decode
the stimulus explicitly from the neural response and see how
well one performs. This is the so-called neural decoding ap-
proach, where one plays the part of a downstream cortical
area and tries to decode the information encoded by a given
cortical area. One can then resort to any of a number of es-
timation methods to decode the stimulus encoded by the up-
stream area. I will consider a couple of examples here, such
as the MMSE-optimal estimator, particle filters and assumed
density filtering, but this list is by now means exhaustive. In

2*Hodgkin, A. L. and Huxley, A. E (1952).
A quantitative description of membrane
current and its application to conduction
and excitation in nerve. The Journal of
physiology, 117(4):500

2 Gerstner, W. and Naud, R. (2009).
How good are neuron models? Science,
326(5951):379-380

26 Gerwinn, S., Macke, J., and Bethge, M.
(2009). Bayesian Population Decoding of
Spiking Neurons. Frontiers in computa-
tional neuroscience, 3(October):14



(Berens et al., 2012), for example, the authors used a simple
logistic regression model to estimate the stimulus from the
neural responses recorded.

Rate Codes and Temporal Codes

How exactly can we model the dependence of the activity of
a neuron on the stimulus? One can treat the neuron’s re-
sponse as a random variable and look for a mapping from
the relevant stimulus directly to the activity of the neuron.
This forces one to think about which aspect of the neuron’s
activity is relevant to the brain’s functioning. Often one char-
acterises the neuron’s response solely by the number of spikes
it emits. This leads to a rate code, where a neuron’s response
is given simply by the rate of responses the stimulus elicits.
One can then think of a rate function which specifies the rate
of a particular neuron as a function of the stimulus presented
to the organism. For example, consider a neuron in V1 which
responds to moving gratings with a given direction 6. The
expected number of spikes fired by that particular neuron is
given by some function

25

RY(0,T) = E [#of spikes fired by the neuron i in response to stimulus 6 in T seconds],

where the expectation is over multiple presentations of the
gratings moving in a direction 6. This is often called the tun-
ing function of the neuron. The tuning function does not fully
characterise the neuron’s activity though, as to perform the
decoding of the stimulus from the neural response, one would
need the full probability distribution®”

P(number of spikes|0).

I will denote the number of spikes fired by neuron i up to
time t by N%(t). When the time of pooling is always the same
throughout the analysis, i.e. when the response of the neuron
is recorded for a specified time T after the stimulus presen-
tation, one can drop the time dependence and just write N'.
Therefore, if I record a set of responses {N'} from a subject’s
neurons and assume the stimulus is drawn from some distri-
bution P(0), the posterior distribution over the presented
stimulus is given by

P({N'}16)P(6)
P({N})

It is then simple to obtain the Bayesian estimator from the
posterior distribution.

As mentioned, I will here concentrate on the Poisson dis-
tribution for the sake of modelling the probability of a spike

P(O{N'}) =

27 One would also need a prior distribution
over 6, in principle, but in the case of mov-
ing gratings one could simply assume the
distribution to be uniform.

I'will denote the full set of responses of all
neurons by {N'}.
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being fired. The Poisson distribution of a spike count condi-
tioned on the presented stimulus is

e—R(Q)R(O)Ni

pPoiss(Ni|9): Ni'

The Poisson distribution describes random events which oc-
cur independently with a certain rate at every instant. If
the duration of our experiment is T, one can write r(6) =
RY(6,T)/T, and the probability of observing a spike of neu-
ron i in a infinitesimal interval d t would be given by ri(6)dt,
leading to

e (O)T (ri(Q)T)Ni

PPoiss(Nile): Ni!

It is easy to show that this distribution can be obtained by
writing the probability of a spike or the absence of a spike
for every time interval dt. For the intervals where a spike oc-
curred, the probability is ' (6)dt and for the intervals where
no spike occurs it is 1 —r'(0)dt. Multiplying the terms leads
to the probability density of observing a set of spikes at a given
ordered set of spike times {tq,..., tyi}

P({ty,...,tyi}|0) = (ri(e)dt)Ni(l—ri(Q)dt)T/dt—Ni.

Integrating over all possible values of the spike times, one
obtains

i

(r'(e)T)™

o (1—ri(0)dt)T/dN",

P(N'0) =
Now taking the limit dt — 0 leads to

e (O)T (ri(e)T)

PPoiss(Nile): Nl

One additional assumption which is often made in the neu-
ral coding literature is the conditional independence of the
neuron’s firing given the presented stimulus. This means that

P(NY1e) =] [P(vile).

With those hypotheses it is easy to formulate a full decoding
framework for a given experiment. One still needs to exper-
imentally estimate the tuning functions R!, and there are a
number of different tools for that. The most obvious choice
would be to present each stimulus repeatedly and take the av-
erage number of spikes as the rate, but there are many ways
to improve on that.?®

2 For a more complete review see (Dayan
and Abbott, 2001). For an example of
more recent techniques for tuning function
and receptive field estimation see (Park
and Pillow, 2011).



Dynamic Population Coding

The rate coding framework is very convenient, as it allows
one to simply estimate the tuning functions and makes de-
coding very simple, but it places a very restrictive assumption
on the nature of the stimulus. More precisely, if one only
measures the response as the rate of the neuron’s spiking,
one needs to pool the responses for a certain time, and any
changes the stimulus undergoes in a timescale smaller than
the pooling time will be completely lost. An alternative to
considering only the spike counts in a given time interval is
to consider the whole time-dependent spike train as the neu-
ral response. For that one must model the full dependence
of the spike times {t]i(} of the k-th spike of every neuron i
on the stimulus X. Furthermore, the finding that high-level
decisions are often made in less than 150 ms shows that infor-
mation processing in the brain is possible at timescales that
would render pooling of many spikes problematic.?’

One can then consider how to model the full spike train
probability as a function of the stimulus. Furthermore, it is
not needed to assume the stimulus to be static throughout the
experiment anymore. I will denote by Né:t the spike count of
neuron i at every time 0 < s < t. This formalises the no-
tion of the spike train of a neuron. An alternative description
would be the spike times {t}(} for each neuron i. Say that
the direction of the moving grating is now dynamic, given by
O(t). Assuming Poisson statistics, the probability density of

observing a given spike train from neuron i given the history
of 0(t)°

t

P({t.}6p.) = exp [—J rt(6(s)) ds] l_[ ri(6(tl)).
0
¢ (1.1)
The process N i(t) is usually called an inhomogeneous Pois-
son process, as the rate depends on the time. Furthermore,
if 0 is itself a random variable, the resulting point process is
called a doubly stochastic Poisson process, since the rate is
also a random variable.
This approach can be further extended by allowing the rate
r to depend on the history of the stimulus and on the history
of the spiking process itself. One way to do so is with Gen-
eralised Linear Models (GLM’s) which model the rate as the
exponential of a linear function of the stimulus history and of
the spiking history. These models have become very popular
in the computational neuroscience literature, as they allow
to model fairly complex neural responses and a wide range
of spiking behaviours.>! GLM’s are too complex to allow for
a general analytic treating, however, so I will not focus on
them. I will, however, consider a model of adaptation that
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2 Thorpe, S., Fize, D., and Marlot, C.
(1996). Speed of processing in the human
visual system. Nature, 381(6):520-522

3% Note the absence of the term 1/k! in this
expression. This is due to the fact that we
are here defining a distribution over spike
times. To recover the Poisson distribution,
one would need to integrate over all possi-
ble values of {t,i(}. Since they are ordered,
integration is cumbersome. That can be
solved by integrating over all spike times
and then dividing by all possible orderings
to compensate for that, yielding the previ-
ous expression for the Poisson distribution.

31 A notable application of GLM’s in neural
coding was (Pillow et al., 2008), where a
complete neuronal population had its ac-
tivity recorded, modelled and decoded by
GLM’s. For a review of the decoding prob-
lem with a focus on GLM’s see (Ahmadian
et al., 2011; Pillow et al., 2011).
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allows one to model a simple kind of history dependence in
the spiking process N (t).

In this setting, one could then constrain the type of tuning
functions r to belong to a family of functions and ask which
of these tuning functions gives the best performance when
reconstructing the stimulus. This would give one the best
encoder in the family of functions with respect to a recon-
struction task. A notable example from the literature is the
work of Zhang and Sejnowski,** where the authors followed
this reasoning, using the Fisher information as a measure of
the encoder’s performance. There they concluded that for a
general family of radial tuning functions of the form

(=P
r (X ) = ¢ k (T R
the Fisher information could be written as

f = naD_sz(¢’ T:D)’

where 1) is a measure of the density of packing of the neurons,
D is the dimension of the stimulus space, T is the duration of
the experiment. and K} is a constant which depends on the
specifics of the function k.

Surprisingly, this tells one that the dependence of the Fisher
information on the width of the tuning functions is indepen-
dent of the specific shape of the tuning functions r, which
only contribute through a normalisation factor Ki (¢, T,D).
Furthermore, it can also be extended to populations of neu-
rons with different maximal firing rates ¢, leading to a sim-
ilar result. Interestingly, this tells one that the Fisher infor-
mation depends on the tuning width in a remarkably simple
way. If one wants to maximise _¢ as a function of a (therefore
minimising the Cramér-Rao bound) one needs only to look at
the dimension of the stimulus space. For D = 1, the optimal
tuning width would be 0, leading to a vanishing error. For
D = 2 the tuning width has no effect on the Fisher informa-
tion, and for D > 2 broader tuning widths are always better.
This behaviour of the optimal tuning width clearly poses some
unsettling conclusions. First of all, the fact that the conclu-
sion depends critically on the dimension of the stimulus space
is somewhat curious. Second, this conflicts with ecological
theories of sensory processing, which state that the response
functions of sensory neurons are adapted to the statistics of
the stimuli they respond to.** The formulation above leaves
no room for an influence of the environment on the shape of
the tuning functions, their optimal shape being dictated solely
by the dimension of the stimulus space.

These and other shortcomings of the Fisher information as
a measure of efficiency of a neural code have been addressed

32 Zhang, K. and Sejnowski, T. T. J. (1999).
Neuronal tuning: To sharpen or broaden?
Neural Computation, 11(1):75-84

33 Atick, J. J. (1992). Could information
theory provide an ecological theory of sen-
sory processing? Network: Computation in
neural systems, 3(2):213-251



before in the literature,** and I will not spend much time dis-
cussing the Fisher information approach. I will focus most of
the discussion in this thesis on the Bayesian estimation ap-
proach, as it allows one to account for the effect of the dy-
namical structure of the system and its effects on the optimal
neural encoder.

1.4 Neural Implementations

One important aspect which I have not touched upon is the
implementation in neural circuits of the computations dis-
cussed here. The posterior mean estimator gives the optimal
reconstruction achievable from a certain type of observations,
but the implementation of this reconstruction in a neural cir-
cuit is a completely different problem. In a setting very sim-
ilar to the one I will consider in this work, (Bobrowski et al.,
2009) have presented a simple spiking neural network which
implemented the estimation of the posterior distribution in a
simple way. The computations that can be implemented in
a population of neurons have been a central topic in com-
putational neuroscience, and one can argue that much of the
field of artificial neural networks is concerned with analogous
questions.

A very popular coding framework is the so-called proba-
bilistic population coding framework (PPC) proposed in (Ma
et al., 2006). In this formulation, the tuning functions are
given by exponential distributions, and each spike contributes
to the posterior log-likelihood with the addition of a new
term, allowing for linear decoding of the posterior. This is
somewhat similar to the case considering here, but the PPC
formalism does not provide a simple way to include temporal
stimuli. A lot of new contributions have been made recently
to the area of neural coding (see (Boerlin and Deneve, 2011)
and (Beck et al., 2011) for example), and it is still an active
area of research. I will not dive deeper into these aspects of
coding, however, as I am mostly concerned with the encoding
step and regardless of the neural implementation of the com-
putation, the expected MSE of the posterior mean estimator
is the minimum achievable with the information observed.

One weakness of the MSE approach which must be noted
is the feedforward assumption. The Bayesian estimator is op-
timal for reconstructing the stimulus from the spikes emit-
ted by some neural population. Neural populations, however,
rarely work in this straight feedforward fashion and feedback
modulation complicates the analysis a lot. One simple exam-
ple would be a decoder which signals how confident it is in
its estimate through feedback connections, allowing the sen-
sory neurons to allocate its firing to areas with lower certainty
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34Bethge, M., Rotermund, D., and
Pawelzik, K. R. (2002). Optimal short-
term population coding: When Fisher
information fails. Neural Computation,
14(10):2317-2351; and Yaeli, S. and
Meir, R. (2010). Error-based analysis
of optimal tuning functions explains
phenomena observed in sensory neurons.
Frontiers in computational neuroscience,
4(October):16
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about the stimulus, or sharpening the tuning functions near
the estimated value of the stimulus. There is no reason these
kind of decoding mechanisms could not outperform a feed-
forward Bayesian estimator. The analysis of such feedback
codes, however, is much more complicated, as the distribu-
tion of observations would now be dependent on the state of
the estimator, and I will refrain from discussing this case in
the present work.

Structure

THE MAIN GOAL OF THIS THESIS is to develop a conceptual
framework for studying optimal population coding in a dy-
namic setting. I believe that the inclusion of time into the
coding framework raises a number of questions, which have
not been addressed in the scientific literature properly. In
chapter 2 I will introduce the general theory of filtering of
stochastic stimuli, giving special attention to the filtering of
stochastic processes observed through doubly stochastic Pois-
son processes. After that, in chapter 3 I will discuss results
regarding the Mean-Squared-Error (MSE) of optimal filters
of point process observations, presenting a number of new
analytic results. In chapter 4, I will generalise the filtering
framework to control problems, showing results for optimal
control theory of point process-observed processes. In chap-
ter 5 I will then provide the connection to neuroscience, by
considering the optimal encoding strategy for a population of
neurons coding for a stochastic stimulus. I will then finalize
by discussing the impact of the work presented and suggest-
ing future research directions.

Contribution

THE MAIN CONTRIBUTION OF THIS THESIS is in providing
a conceptual toolbox to study optimal coding problems in a
dynamic environment. I propose that the study of the aver-
age performance of an optimal Bayesian filter reconstructing
the relevant stimulus provides a good measure of the quality
of a dynamic code. Using this framework, I derive analytic
results for the fast population code for dense populations of
Poisson neurons with Gaussian tuning functions.>> These are
to my best knowledge the first results of this kind obtained
for neural coding of dynamic stimuli.

The results presented in this thesis have been published
and presented throughout the duration of my doctoral stud-
ies. The findings in chapter 3 were first published at the Neu-
ral Information Processing Systems conference, where it was

3 Huys, Q. J. M., Zemel, R. S., Natarajan,
R., and Dayan, P (2007). Fast population
coding. Neural Computation, 19(2):404—
441



presented as a poster in addition to the publication in the
conference proceedings.>® These results were then further
developed and put in the greater context of computational
neuroscience and published in a special edition of the Journal
of Statistical Mechanics: Theory and Experiment title Statisti-
cal Physics and Neuroscience, which focused on the challenges
neuroscience presented to statistical physics.>” The results
presented chapter 4 have been submitted to the NIPS confer-
ence proceedings as well, and are currently under review.*®

Parallel to the topics presented here I have also contributed
to other ongoing research projects during my doctoral stud-
ies. In a research project headed by fellow doctoral student
Chris Hausler and myself, we have proposed a novel way of
training temporal Boltzmann machines, which improves their
performance as generative models of temporal data greatly.
This was presented in a workshop on Deep Learning at the
NIPS conference as well.>* This was then used as a model for
temporal sparsity in visual cortex and results on sequences of
natural images were published in the journal Brain Research
in a special issue on neural coding.** The advantages of the
training procedure for generative models of temporal data as
well as for forecasting were further extended on and are cur-
rently under review for publication in the journal Neurocom-
puting.*!

In addition to these projects, I have also worked on the pub-
lication of a manuscript originating from my Masters thesis,
which was since published in the journal Physica A. There we
investigated the effect of different learning strategies on the
emergence of moral opinions in a model of social learning.*?
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Filtering and Prediction with Point Process Observations

Prediction is very difficult,
especially about the future.

Niels Bohr

In the Introduction I described the general framework in
which I seek to study optimal population coding. To do so in
a dynamic setting, one must first develop the theory of tempo-
ral estimation of dynamic stimuli from point processes. This
is a surrogate for the functioning of a neural population re-
ceiving information from the encoder. There are a number of
cases in which the filtering problem can be solved exactly, and
I will discuss results from the theory of optimal filtering. In
the cases where the optimal filter is intractable or too expen-
sive to evaluate exactly, [ will present methods to approximate
the posterior density.

In the neuroscientific context, the process X (t) being es-
timated or filtered would correspond to some environmen-
tal feature of interest to a sensory system of some organism,
while the signal would be some neural response coming from
a neural population. As was mentioned in section 1.3, one ex-
ample would be to estimate the presence of a moving grating
from the response of retinal ganglion cells. In that sense, the
ganglion cells provide a noisy representation of an environ-
mental variable of interest to some downstream cortical area
(V1 for example). In this chapter I will discuss methods to in-
fer the value of the sensory stimulus from the noisy response
of a population of neurons.

2.1 A Note on Stochastic Processes

Throughout this thesis, I will repeatedly talk about stochastic
processes and the framework of stochastic calculus, so I will
provide a short introduction to stochastic processes and the
theory of stochastic calculus. In the study of ordinary differ-
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ential equations, one works with equations such as

dx
It = f(x),

which are solved by

x(t) :x(O)—|-JA0 f(x(u),u)du.

This can be modified to include a white-noise term in the evo-
lution of x(t), leading to the Langevin equation

dX

dt

where o (X (u),u) is a state- and time-dependent strength and
&(t) is a rapidly fluctuating random term, i.e.*

E[£(6)] = 0 and E[E(6)&(s)] = 5(¢ —s).

This approach is problematic, however, since the process X (t)
thus defined is not differentiable, rendering the Langevin equa-
tion mathematically inconsistent. One can, however, extend
the solution to the deterministic case as 2

X(t)=Xx(0) —i—L f(X(u),u)du—i—JO o(X(u),u)é(u)du.
&(u)du can be shown to be equal to dW (u) = W (u+dt) —

W (u) in the limit dt — 0, which leads to the usual Ito stochas-
tic integral

(X, t) + o (X, t)&(1),

X(t) :X(O)—i—JO f (X (u),u) du+f0 o (X(u),u)dw (u).

The stochastic integral can be shown to exist as long as the
functions f and o are continuous and non-anticipating.®> One
usually writes the evolution of X (s) in terms of a stochas-
tic differential equation, instead of a stochastic integral. The
process X (t) described above would obey the SDE

dX(t) = f (X(¢t),t)dt+ o (X(t),t)dW(t).

This is just a shorthand for the stochastic integral, and has
no precise mathematical interpretation, as the terms are of
different orders. More specifically, the term dW (t) is of the
order of v/dt while the first term is of order dt. In an anal-
ogy to the study of classical mechanics, the first term is often
called the drift of X (t) and the second the diffusion.
Processes X (s) defined in this way are continuous. Often,
however, one wants to model a stochastic process which in-
curs discontinuous jumps as well. I can for that purpose in-
troduce a third term in the definition of X (t). Let j(X(t),t)

! Gardiner, C. W. (2004). Handbook of
Stochastic Methods: for Physics, Chemistry
and the Natural Sciences, volume Vol. 13
of Series in synergetics. Springer

2 Note that because of the new definition,
X (t) is now a random variable, hence the
upper-case notation.

*A function G(t) is said to be non-
anticipating with respect to a stochas-
tic process X if it is statistically inde-
pendent of values of X(s) for s > t.
Simply put, G,(t) = fot dW(s) is non-
anticipating with respect to W(s), but
Ga(t) = [2*dW (s) is not.
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be a function that describes the size of the jump the process
experiences at time ¢ and state X (t). If these jumps occur
at some set of random times {t;}, the process X(t) can be
written as

t

X(t) zx(0)+f0 f (X(u),u)du—i—fo o (X(u),u)dW(u)—i—Zj(X(ti_), ti),

ti<t
where I have defined

X(t7)=limX(s),
sTt
as the limit of X (t) from the left. The jumps in X(t) should
be modulated by the point where they originate, not their
destination, so this definition makes intuitive sense. Let N (t)
be then given by

N(t):Z@(t—ti):JO Zé(u—ti)duEJO dN (u),

where ©(x) is the Heaviside step function. With this defini-
tion, I can then write

.mwzmm+L3@mmww+L

Throughout the text I will also employ an SDE notation for
this integral as follows

dX(t) =f (X(t),t)dt+o (X(t),t)dW(t)+j(X(t7),t)dN(t).
2.1)
This encompasses all the stochastic processes I will con-
sider in this text. What happens to a function of a stochastic
variable that changes over time, though? Say I want to eval-
uate some function of X (t), say g(X(t),t), how does this
function vary in time? Ito’s lemma tells one how to find the
variation in g from the process X (t). If X (t) evolves accord-

t t

o (X(u),u) dW(u)+J j (X (u),u)dN (u).

0

ing to equation (21), we have* 4For a more full derivation, see (Sen-
newald and Wiélde, 2006) or (Privault,
dg = Jim [g(X(c+d0),¢+de) — g (X(0),0)] o
t—0

_ (atg +a.gT FX(6), ) + %Tr[O'GTang]) dt+ 2, fTo(x(e), )dw (¢)

+ (X () +jX(t7,6),t) —g(X(t7),t)) dN(t),
where I am using the notation
(FE28)
ohg=|=—",...,———
3x1 aXN

and
_ 9%
~ 0x;0x;j’

(5}28)1',]'
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This is, again to be understood as a stochastic integral, where
we have

(8tg + 0,8 f (X (u),u) + %Tr[aojang]) du

+ fo Ocf 1o (X (w), u)dW () + fo (g(X (™) +j(X (u™,u),u) =g (X (u™),u)) dN (u).

This is in stark contrast of the usual change of variables for-
mula for differentiable variables y (t), where we would have

dg EdltiTO g(y(c+dt),t+dt)—g(y(t),t)] = (3tg+3ygT dry)dt.

The Evolution of Probabilities

Another important question, is how X (t) is distributed at

some time ¢t if it is 1n1t1ally at some point Xg at time 0.° It 5 Or distributed according to some distri-
is useful for that problem to consider the transition probabil- bution Py (X) at time 0.
ity density

P(X(t+dt)eAX(t)) = J p(x,t+de|X(t),t).

Let me define three sources of change arising from the tran-
sition density p. For any € > 0 I will assume the limits below
exist

dlimop(x, t+dtlz, t)/dt = W(xl|z,t),Vx,2,t, s.t [x—z| > ¢,
t—

(2.2a)
. 1
dltH—I>10 I e dx(x—2)p(x,t+dtlz,t) =A(z,t) + O(¢),
(2.2b)
dlimo i dx(x—z2)(x—2) p(x, t+dtlz,t) = B(z,t)+0(e).
t—

[x—z|<e

(2.2¢)
These terms define the contribution of jumps (W (x|z,t)),
drift (A(z, t) and diffusion (B(z,t)) to the transition density
of the process X (t). It is straightforward to show that, if
X(t+dt)isgiven by X (t)+dX(t) as in equation (2.1), then
A(z,t) = f(z,t) and B(z,t) = o(z,t)o(z,t)". I have not
defined the distribution of dN(t), but assuming N(t) is a
Poisson process with rate A, the jump term will be simply

W(x|z,t) =A8(x—z+j(z,t)).



With these definitions in hand, it can be shown that the proba-

37

bility density p will evolve according to the differential Chapman-

Kolmogorov equation

3p(x,t|x0,0)
T =V (A(x, )p(x, tx,0)) + Zaxl

(x, t)p(x,tIxO,O)]

+J dz [W(x|z,t)p(z, t]xg,0) —W (z|x, t)p(x, t|xg,0)]

(2.3)

The first line corresponds to the terms found in the Fokker-
Planck equation, while the second line corresponds to the
terms found in the Master equation. These equations are usu-
ally used to describe drift-diffusion and pure jump processes
respectively. The differential Chapman-Kolmogorov equation
generalises both equations to processes with drift, diffusion
and jumps.®

Smooth Markovian Processes

The stimuli defined by SDE’s like equation (2.1) will often
yield sample paths which are not differentiable. I am, how-
ever, interested in using the theory of stochastic processes to
describe the natural stimuli a sensory system encounters in
its environment, so it makes sense to consider smooth, dif-
ferentiable processes as well. Huys et al. (2007) looked at
a number of Gaussian processes which yield smooth sample
paths. I will here consider a type of process which I shall call
the Matern process throughout this thesis.” Symbolically, one
can write these processes as

(i +Y)PX(t) = ndW(t)

dt dt ’

where P is the order of the process. Clearly, this notation is
not precise, since the Wiener process W (t) is not differen-
tiable. This can be written as a system of SDE’s as

Xi(t) =X,(t), ..., Xpa(t) =Xp(t),  dXp(t) =

If P = 1, this gives the one-dimensional Ornstein-Uhlenbeck
process. If I take P > 1, however, X;(t) will be a smooth
random process, as can be seen in figure 5.2. X;(t) itself is
no longer a Markov process, as its evolution depends on its
time derivatives as well as of its state. It is, however, possible
to embed the process X;(t) in a P-dimensional space, along
with its P —1 first derivatives, rendering it Markov again. In
(Susemihl et al., 2013) I have used this to study the MMSE

®For a full account of the differential
Chapman-Kolmogorov equation, see (Gar-
diner, 2004).

71 will call these processes Matern
processes because their autocorrelation
k(t,u) = E[X(t)X(u)] are given by the
Matern kernel described in (Rasmussen
and Williams, 2005).

P
—Z yP T d e+ ndW (t).

i=1
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of smooth processes. In this way, all the tools of stochastic
dynamics are still available, but one can consider smooth pro-
cesses, more similar to the ones observed in nature.

When studying a population of neurons responding to such
an embedded smooth process X (t) = (X;(t),. ..,Xp(t))T, I
will mostly consider tuning functions which only depend on
the original smooth process given by X;(t), which leads to
the same filtering process considered in (Huys et al., 2007).

Infinitesimal Generator of a Stochastic Process

The infinitesimal generator of a stochastic process is defined
as the operator

Af(x)= dltiTOE [f(X(t+dt))C|i)i(t) = x]—f(x).

The adjoint of this operator is defined as the operator .o/
satisfying

f (et f (x))g (x)dx = J £ () (g (x))dx.

2.2 Estimation and Filtering

Estimation is the field of statistics that deals with the infer-
ence of some unknown variable from uncertain observations
of that variable. It can be best described by an example.
Given a pair of variables X and Y, and a model for their re-
lationship, say Py (y|X = x), one could infer the value of X
from observations of Y. Using Bayes’ rule one obtains

Py(x|Yy =y)= PX(X)I;;((J}’J;( =X)

which can be used to estimate the value of X. I will be mostly
concerned with temporal processes, say a random process
X (t) which needs to be inferred from observations of a de-
pendent process Y (t). When one is interested in inferring
X(t) from data {Y(s)}, s € [0, T], the problem gets named
according to the value of ¢t. If t € [0, T], it is called a smooth-
ing problem. If t = T, it is called a filtering problem. If t > T,
it is called a prediction or forecasting problem. The temporal
structure of the processes leads to correlations in the variables
being estimated (X (s) for different values of s), and there a
number of ways to take advantage of this. I will look into
the theory of filtering of diffusion processes observed through
a second diffusion process dependent on the first and then
turn to the theory of filtering of diffusion processes observed
through doubly stochastic point processes.

3

Smoothing, filtering and predicting.
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Kalman Filtering

Let me consider a more concrete setting. Suppose one is
dealing with a system that evolves according to a stochastic
discrete-time dynamics given by

X(t+1)=AX(t)+H?N, 8

We take X (t) € R", Ae R™" and H € R™" positive-definite. = ¢/ indicates the Cholesky decompo-
N, is a normal n-dimensional random variable with zero mean  sition of the positive-definite (or semi-

d . d d d .. b definite) matrix H. The exponent 1/2 is
and unit stap ar eviation. Suppose now we observe a pro- used because H1/2 (Hl/z)T —H
cess Y (t) given by

Y(t)=CXx(t)+DY2Mm,,

where C € R™", Y (t) € R™ and D € R™"™ positive-definite.
M, is as before a normal m-dimensional random variable with
zero mean and unit standard deviation. The filtering prob-
lem is to determine an estimate of X (t) given observations
of Y(1),Y(2),...,Y(¢t). This can done by a recursive estima-
tion procedure first proposed by Rudolf E. Kdlmdn. Namely,
for each time step, one first predicts the conditional distribu-
tion of X (t) given our estimate of X (t —1) and then corrects
that according to the observation Y (t). One can easily obtain
recurrence relations for this filtering problem by noting how
the mean and variance of X (t) evolve. One has

E[X(t+1)|u(t), 2(t)] = AE [X (1)],
and
E[X(t+1)X(t+1)|u(t),=(t) ] =AE[X ()X (t)T]AT +H,

which leads clearly to

E[X (e + D)X (e +1)T[u(), 2(6)]—E (X (£ + 1)]u(e), S(O) E X (¢ 4+ 1)|u(e), 5(e)] | =An(e)AT +H.

So, in the absence observations, if knowledge of X (t) was
given by A (u(t),%(t)), the distribution over X (t + 1) be-
fore the observations is’

N (Au(t),AS(t)AT +H).

After observing the value of Y (¢t + 1), one can update the
distribution through Bayes’ rule as

P(Y (e + DIX (£ +1)P(X (e + 1) lu(e), (1))
P(Y(c+ 1)]u(e), (1)) |

Here I have dropped the verbose notation of Py ; ;1) (x|Y (t+ ® 4 (u, =) denotes the normal probability
1) = y; u(t),=(t)), and have written that simply as P (X (t + density function with mean 2 and covari-

. The density function is given b
1|Y(t+1),u(t),Z(t)). The meaning should be clear from e enmj e beensy

CONERE

PX(t+1)Y(t+1),u(t),=(t)) =

H(T) = =3 (emm) T2 (e
where N is the dimension of x, and || is

the determinant of the covariance matrix
2.
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the context. Furthermore, the distribution P(X (t +1)|u(t), %(t))
is given by the Chapman-Kolmogorov equation as

Py (e41) (xlu(t), 2(t)) = J dzPy (¢41) (XIX () = 2) Py (e) (2lu(t), 2 (1)),

leading to the relations derived above. Note that both terms
in the numerator of the Bayesian update are Gaussian distri-
butions and the denominator does not depend on X (t + 1),
so one can simply find the mean and covariance by looking at
the exponents in the numerator. The log probabilities are

log[P(Y(t+1)IX(t+1))] = —%(Y(t—i- 1)—CX(t+1))' DY (Y (t+1)—CX(t+1))
disregarding the normalization factor, and
log [P(X (¢ + 1)la(t), 2(6))] = — (X (¢ + 1) —Au(t))T (AR(0)AT +H) ™ (X (e +1)—Au(¢))

disregarding the normalization factor. Collecting terms one
obtains

1
log[P(X(t+1)|Y (¢ +1),u(t),x(t))] = —E(X(t—i— D—u(t+1)T 2+ )X (e +1)—u(t+1)),
again disregarding the normalization factor, where
_ -1
2(t+1) = ((A(0)AT +H) " +cTp7'c)

u(t4+1) =Au(t) +=(t +1)CTD7 (Y (t) — CAu(t)).

This formulation leads to somewhat cluttered recurrence re-

lations. In the theory of Kalman filtering these are usually

broken down into subsequent prediction and correction steps.

The notation usually employed in filtering theory is to write

te)—1 and Xy, for the mean and covariance of the distri-

bution P(X (t)lu(t—1),2(t—1)),'% and u,|, and |, for the ™ the prediction step
mean and covariance of the updated distribution P(X (¢)|Y (t)).!! =
One can write simply

the correction step

Yyl = Alg|ts
iet1)e = A2t|tAT +H.

Defining the innovation term Z(t + 1), and its covariance by

Zigr= Y(t+1)=Clyye
— T
Sep1= C2t+1|tC +D.
The optimal Kalman gain will be The term optimal Kalman gain is usually
employed in filtering theory, as it is the ma-

trix K that gives the minimum variance un-

— Te—1
Kep1 =2t CS . . .
biased estimator of X (t) given Y (t).

t+1
and the posterior mean and covariance can be written as

Berted1 = Megrpe T Ko Z(6+1)
Zt+1|t+1 = (I_Kt—HC) 2t—|—1|t



It is relatively simple to show that these relations are equiva-
lent to the ones derived above.

The Kalman filter is a fundamental tool in engineering and
signal processing and has been used in anything from radar
signal analysis to computer vision tracking and space expe-
ditions. The list of applications is enormous, and I will only
mention three examples. One application is to use the Kalman
filter to estimate the current position of an object in a naviga-
tion system (see (Brown, 1973)). Another interesting appli-
cation is the monitoring of positional measurements through
a radar. The nature of radar measurements lends itself nicely
to this formalism and the Kalman filter has been used exten-
sively in these kinds of applications (see (Pearson and Stear,
1974)). These are classical examples, but the applicability of
the Kalman filter is very widespread, and one can find exam-
ples of applications in unexpected fields, such as the estima-
tion of future retail sales (see (Conrad and Corrado, 1979)).

It has a number of limitations, though. First, note that it re-
quires the knowledge of the matrices governing the system’s
dynamics. If the system is governed by linear dynamic and
the matrices are known, the Kalman filter provides the exact
posterior probability. If these are unknown, however, one is
forced to estimate them from data, and in the mismatched
case the Kalman filter is an approximate method, and can
lead to poor results. A number of extensions to the Kalman
filter exist, such as the extended Kalman filter, the unscented
Kalman filter and others. More recently sequential Monte
Carlo Markov Chain methods known as particle filters have
been a subject of great interest as they overcome a number of
limitations of Kalman filters, mainly through sampling from
many hypothetical system paths for X and reweighing them
to account for the observations.'?

Continuous Time: The Kalman-Bucy Filter

The Kalman filter deals with discrete time systems and can be
easily extended to continuous time systems. Though it can be
rigorously proved that the derived filter equations are rigor-
ous using stochastic calculus, I will only provide an informal
derivation.Consider a linear stochastic differential equation,
say

dX (t) = AX(t)dt +HY2dw (t), 2.4)
where W (t) is a Wiener process. Note that the correspon-
dence with the discrete time case can be simply made by tak-

ing A’ = I —Adt and H'Y/? = v/dtH'/2. The obvious exten-
sion for the observation process to continuous-time would be

Y(t) =CX(t)+N(t),

41

The mismatched case refers to the situa-
tion where the parameters of the system
are unknown, and we are forced to use a
model with parameters mismatched to the
system’s parameters.

2 Doucet, A., De Freitas, N., and Gordon,
N. (2001). An introduction to sequen-
tial monte carlo methods. In Sequential
Monte Carlo methods in practice, pages 3—
14. Springer
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where N (t) is a Gaussian random variable with unit variance
for each time t. This would, however, render the observation
process discontinuous almost everywhere. It makes sense to
require the observation process to be continuous as well, and
a simple way to achieve is to take a process Y (t) evolving
according to the SDE SDE: Stochastic Differential Equation

dy(t) = CX(t)dt +D'2dv(t), (2.5)

where V(t) is a second Wiener process independent of W (t).
Note that, unlike its discrete time counterpart, here Y (¢t +dt)
does not only depend on X (t) but also on Y(t). That does
not make the analysis much more complicated though, as one
can write the inference in terms of dY (¢t) just as well.

One can proceed as in the case of discrete time with a small
time increment dt and then pass to the limit of dt — 0. This
will lead to

Metdele = (I +Adt)Ut|t>
and
Ligtrdele = Deje + (AZW + 2t|tAT —|—H)dt.

The distribution of Y (t 4+ dt) in turn is given by
P(Y(t+dt)|y(t),X(t)) =N (Y(t)+CX(t)dt,Ddt),

or more simply one can directly write down the distribution
of dY (t),

P(dY (t)|X(t)) = (CX(t)dt,Ddt).
The Bayes’ update will be
P(AY(t+dt)|X(t+dt))P(X(t+dt)|X(t))
P(dY (t+dt)) '

The product of Gaussians will lead to a Gaussian with vari-
ance

P(X(t+dt)|dY(t+dt)) =

—1
_ T
Zf+df|f+df:(zt41-dt|t+c D ICdf) )

which can be Taylor expanded to
T
Ditdele+dt = Detdee —dtDe g0 C D 1C2t+dt|t + O(dtz)-

Inserting the expression for %, 4, and taking the limit for
dt — 0 one obtains the filter equations for u(t) = u,, and
%(t) = %y, The posterior variance obeys the ordinary dif-
ferential equation

dx
dt
The posterior mean, however, is still a stochastic variable, as

it is dependent on the diffusion process Y (t). u(t) obeys the
SDE

du(t) =Au(t) +2(t)CTDH(dY (t) —Cu(t)dt). (2.6b)

AS(t)+2(t)AT +H—%(t)C'D7ICE(t).  (2.6a)



The structure of the equations is very similar to the Kalman
updates for discrete-time, as the dynamics of the mean only
incorporates the observations through an innovation process.

Kushner-Stratonovich Equation

In the cases above I could restrict myself to study the mean
and covariance because of the linear structure of both the sys-
tem dynamics and the observation dynamics. In the general
case, however, one can not restrict herself to these moments.
In the worst-case scenario one can not escape from estimating
the full posterior distribution P(x,t) = Px(.)(x|Yp., X (0) =
Xo) at every time step.

For a Markov system with infinitesimal generator .o/, the
unobserved probability density obeys

% — P(x, 1), 2.7)

where .7 is the adjoint of .¢/. If the observation process Y (t)
evolves according to

dY (t) = c(X(t))dt + D/2dV (t),

then, defining ¢, = fdx c(x)P(x,t), the posterior distribu-
tion obeys the stochastic partial differential equation'?
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Yo = {Y(S),O <s< t}

dP(x,t) = . P(x,t)dt + (c(x)—¢&) DY (t)—¢,dt)P(x,t).

(2.8)
Equation (2.8) is usually called the Kushner equation or the
Kushner-Stratonovich equation in honor of Harold J. Kushner
and Ruslan Stratonovich, the statisticians who first derived it.
It is not hard to demonstrate that, by taking ¢(X (t)) = CX (t)
we can recover equation (2.6) above for the evolution of the
moments according to equation (2.8).!* These equations, as
one can imagine, are very hard to solve exactly, and approx-
imate solutions are usually employed. The techniques col-
lectively called particle filters seek to generate sample paths
Z (t) where the distribution of Z(t) is given by the solution
of the Kushner equation. Through a sequential sampling and
reweighing procedure this can be done without solving equa-
tion (2.8) explicitly.

2.3 Filtering of Poisson Process Observations

The theory of filtering of diffusion processes can be extended
to the case of Poisson processes as well. Donald Snyder has
derived an equation for the filtering of stochastic processes
observed through doubly stochastic Poisson processes which
bears a remarkable resemblance to equation (2.8).'> A Pois-

¥ Here I am using a definition analogous
to the definition of dX (t) for a partial dif-
ference with respect to time. We have

d.P(x,t) = dltigo [P(x,t+dt)—P(x,t)].

4 Bucy, R. S. (1965). Nonlinear filtering
theory. Automatic Control, IEEE Transac-
tions, 10(2):198

15 Snyder, D. L. (1972). Filtering and de-
tection for doubly stochastic Poisson pro-
cesses. IEEE Transactions on Information
Theory, 18(1):91-102
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son process can be defined as a counting process N (t) such
that the transition probabilities for infinitesimal times dt are
given by

P(N(t+dt)—N(t) =0) =1—Adt +o(dt*) (2.9a)
P(N(t+dt)—N(t) =1) = Adt +o(dt?) (2.9b)
P(N(t+dt)—N(t)>1) =o(dt?) (2.9¢)

P(N(t+dt)—N(t)<0)=0 (2.9d)

In the limit of dt — 0, the transition probabilities for N, are
completely determined by A, the rate of the process. Fig-
ure 2.1 shows examples of samples from a Poisson process
N, with different rates.

A doubly stochastic Poisson process, is a process where the
rate A is itself a stochastic random variable, usually a func-
tion of another stochastic process X (t). In the case first con-
sidered by Snyder, the observations were particle counts of
radioactive decay for medical diagnostics. The rate was a
function of the concentration of the radioactive substance ad-
ministered to the patient, and by observing particle counts
through time onewould like to infer the concentration of ra-
dioactive substance in the patient’s organs. The temporal as-
pect was relevant because of the fast decay of the radioactive
particles. In that case one will have

P(N(t+dt)—N(t) =0[X(t)) =1—A(X(t))dt +o(dt?)
(2.10a)

P(N(t+dt)—N(t)=11X(t)) = A(X(t))dt +o(dt?).
(2.10b)
The conditional probability of a path Nj.; given a path X, is
then

P (No.¢|Xo.¢) = exp [—f

0

t t

)L(X(s))derJ

0

maxms»mw@ﬂ,

(2.11)
where I have used the definition of the stochastic integral
with respect to a jump process given in section 2.1. Defin-
ing the jump points t; as the points where lim., N(t) #
limy,, N(t), one can write the usual formula for the Poisson
density of spike times

t

PWM%azaﬂ—Lawmmﬁfhmm»

Armed with a rate model for the DSPP, one can infer the stim-

A=0.50
14 A=1.00
A=2.00

0 2 4 6 8 10

Figure 2.1: Samples of Poisson processes
with rates equal to 0.5,1.0 and 2.0.

DSPP: Doubly Stochastic Poisson Process
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ulus history from the count history. The posterior distribution
for X.; is
t t

P (o INoy) ocP(XO:aexp[—j AGK(s))ds + J log(A(x(5))an(s) |

° (2.12)

P(Xy.;) is a prior distribution over paths of X(t), which in
turn are infinite-dimensional objects. This determines the
temporal structure of the stimulus, and can be tuned to re-
flect the statistical properties of the stimuli being considered.
In practice, it is very hard to compute the full posterior, and
for inference purposes, one generally deals with a discretised
version of the path.

Discretising X,.; one can treat the problem of inferring the
paths as a multidimensional estimation problem. The sim-
plest way to estimate Xj., is maximum likelihood whereby ML = maximum likelihood
one maximises the likelihood given in equation (2.11). The
function given by equation (2.11) is called a likelihood for
Xo.; since it does not define a probability density for it. Fur-
ther, one can incorporate prior beliefs about the structure of
X (s) by using the full posterior given in equation (2.12). Tak-
ing the value of X, that maximises the posterior probability
yields the so-called Maximum a Posteriori estimator. The full MAP = maximum a posteriori
Bayesian approach would be to take the posterior mean as an
estimate for X.;, that is one takes the mean of the distribu-
tion given in equation (2.12) as our estimator. This is usually
very hard to compute and has to be done through sampling
methods.16 16 For an extensive review of this so-called

What if one want to estimate the value of X (t) given Ny., in ~ decoding problem see (Ahmadian et al,

. . . . . . 2011; Pillow et al., 2011).

an online fashion? This corresponds to estimating the marginal
probability of X (t) according to equation (2.12). We can de-
rive the results of Snyder informally as follows. Using the
same notation as in the Kalman case one has

P(X(t+dt)|Ng..)P(N(t+de)|X(t+dt))
P(N(t+dt)) '

When unobserved the distribution of X evolves according to

equation (2.7). So for infinitesimal dt one can write

P(X(t+4dt)|Ng,) = P(x,t) + .o/ P(x, t)dt.

P(x,t+dt) =

Furthermore, one can write the quotient of terms dependent
on N(t+dt) out as a function of dN(t), leading to

P(N(t+dt)|X(t+dt),No.t) 1-A(X(t))dt
P(N(t+dt)) 1—Adt -
where A = fde(x, t)A(x). Expanding and discarding terms
of order dt? and dN (t)dt, yields
P(N(t+dt)|X(t+dt),Ny.)
P(N(t+dt))

= (1—dN(1))

— 1—dN(t)—A(X(t))dt—l—idt—l—dN(t)A—
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which rearranging terms, can be written as

P(N(t+dt)|X(t+dt),Ny.)
P(N(c+dt))

=1+(A(X(t))—A)A7I(dN(t)—Adt).

Inserting this into the relation above gives
P(x,t+dt) =P(x,t)+.oP(x,t)dt +P(x,t) (A(x)—A) A7 (AN (t) — Adt),
or, writing it as a stochastic PDE,

d;P(x,t) = . "P(x,t)dt +P(x,t) (A(x)—A) A7 (AN (t) — Adt).
(2.13)
Note the striking similarity with equation (2.8), namely the
observations only influence the posterior through an innova-
tion process, here given by dN (t) — Adt. Furthermore, the
inverse rate is equivalent to the inverse variance, since the
variance of a Poisson process is precisely its rate A(x). This
equation was first derived by Donald Snyder in 1972.7 7 Snyder, D. L. (1972). Filtering and de-
Clearly the derivation above is not mathematically sound.  fection f;’be‘éo;bly stochastic 1?01550“ pro-
More care is needed when taking limits with dt — 0, namely I ;f:oe,; 18(1):9?2%?0“ on Information
have ignored the terms of order dN(t)dt in equation (2.13).
This can be shown to be rigorous, but is beyond the scope
of this thesis.'® The full derivation by Snyder first finds an 8 See (Privault, 2014) for a full introduc-
expression for the characteristic function of the posterior dis- E‘:SI;;: the stochastic caleulus of jump pro-
tribution and then derives a stochastic PDE for the character- '
istic function. This is then Fourier-transformed to yield equa-
tion (2.13).

Multiple Spike Trains

Equation (2.13) is readily extended to multiple point pro-
cesses, as long as they are independent. Given a population
of point processes N'(t), i € [1,M], one will simply have,
following the same derivation

d,P(x,t) = o/ "P(x,t)dt +P(x,t) > (A;(x) = A;) A7 (AN (t) — A;dt).
i
(2.14)
Again, this can be be compared with a multidimensional ob-
servation process in the Kalman case by noting that one can
rewrite it as

dP(x,t) = .o P(x,t)dt +P(x,t) (A(x)—4) ' Diag(A)™ (dN(t)—Adt).

I have used the notation A(x) = (A1 (x), A5(x),...)T,dN(t) =
(dN'(t),dN?(t),...)" and so forth. Note that, taking the
vector counting process N (t), its covariance will be Diag (1),
and the equation corresponds precisely to equation (2.8).



2.4 Fast Population Coding and Dense Tuning Functions

A similar filtering framework was proposed in the computa-
tional neuroscience community as well.!* The main question
being asked was how one can extend the framework of popu-
lation coding, which usually relied on cumulative rates, to
coding in a short-time regime. Filtering from spike trains
has also been of central importance to the study of Brain-

Computer-Interfaces, where one tries to decode intended move-

ments or actions from the activity of neurons in the brain.?°

One issue that is central in the approach of Huys et al. (2007)
is the assumption that the population firing rate is indepen-
dent of the stimulus. I will first extend equation (2.11) to
multiple independent Poisson processes. This yields
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1 Huys, Q. J. M., Zemel, R. S., Natarajan,
R., and Dayan, B (2007). Fast population
coding. Neural Computation, 19(2):404—
441

20 Ergun, A., Barbieri, R., Eden, U. T., Wil-
son, M. A., and Brown, E. N. (2007).
Construction of point process adaptive fil-
ter algorithms for neural systems using
sequential Monte Carlo methods. IEEE
Transactions on Biomedical Engineering,
54(3):419-428

PN HXos) = exp {Z f log(24(X (5)))dN'(5) — f li(X(S))dS]-

(2.15)
If the tuning functions are distributed such that Y, 1;(X) =
C, irregardless of X, this can be simplified substantially. This
is the same as saying that the process N(t) = >, N'(t) is
a homogeneous Poisson process with rate C. One will then
have

PN Mo o< | Jexp {Z J 1og<ai<x<s>>>dzvl‘<s>]

(2.16)
The integral with respect to dN'(s) will only yield non-zero
terms where N'(t) is discontinuous, therefore the resulting
term will be simply a product of the rates of the neurons at
the times they spiked. Let us denote the set of spikes emitted
by the population by S(¢t) = {(n;, ti)}?’:(?, where n; denotes
the identitiy of the i-th neuron to spike and t; denotes its spike
time. One can then write

P(INg HXo.) o< | | An (X (£)). (2.17)
S(t)

Furthermore, assume that the the tuning functions A; are un-
normalized Gaussians of the form

Ay(x) = ¢exp[—%(x—ei)TE'i‘(x—ei)], 2.18)

where I have used the pseudoinverse E' to allow for the tun-
ing functions to be degenerate Gaussian distributions. This
poses no problem, as the prior over X (t) will be chosen to be
Gaussian, leading to a Gaussian posterior when multiplied by
A;/A;. Furthermore the marginal rate of a spike being fired
A; = Ex [A;(x)] is also defined. One must note that A; does
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not define a distribution over the stimulus space but a rate of
arrival of observations. The Gaussian updates are, however
the same.

I can now treat the problem similarly to the Kalman filter
problem, but one needs to take into account the fact that in-
stead of arriving continuously, observations are coming in at
random times. Consider the same process as before given by
the SDE

dX (t) =AX(t)dt + HY2dw (t).

In the absence of observations the Gaussian distribution will
evolve as q
i}
— =A 2.19a
it u ( )

and

‘;—f — AN+ YA +H. (2.19b)

Therefore, the posterior distribution over X (t) between ob-
servations is given by A (u(t),(t)). If a neuron with tun-
ing centre 6; spikes at time t, the posterior density will be
updated by

P (i) = MDA 50)

Completing squares in the exponents, one obtains for the pos-
terior mean

u(e)= (B(e) 7 +EN) T (Z(e) () +ET6,)
= () =) HE) T (2() T +E ()
+ (BT HE) () u(e) +ETG),

and finally
p(t) = (") + ()7 ET (6 —u(t)). (2.20a)
For the covariance one has
(1) = (=) +E7)
T =1

yielding
S(t) =%(t7)=S()EB(E) T+ E(e7)) . (2.20b)

These equations can be condensed into SDE’s for the poste-
rior mean and covariance very simply. The mean will be given
by

-1

+(=(t)+ET) T,

These updates can be simplified if the tun-
ing matrix E is invertible.

du(t) = Au(t)de+ Y JdN' () [2(e7) (T+ET2(0)) T ET (6~ ()]

(2.21a)



and the covariance by
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d%(t) = (A(1) +2(0)AT + H)dt +dN(¢) [2()ETS(e7) (T+ET=(07)) ]

(2.21b)
These SDE’s define processes that are continuous from the
right and have a limit from the left. They are often called
Cadlag processes in the stochastic literature, from the french
phrase continue a droite, limite a gauche. The evolution of the
posterior variance only depends on the total spike count pro-
cess N (t), which will be fundamental for the future analysis.
As I mentioned before, the covariance of the tuning func-
tions does not need to be invertible. Note that as long as
%(t)~! + E' is invertible, the filtering equations are always
well-defined. This can be ensured by requiring that E be pos-
itive semidefinite. Since X(t) is positive definite, as it is a
covariance matrix, 3(t)~! + ET will also be positive definite.
Most of the analytic work in this thesis is done on the fil-
tering problem given by equation (2.21). The fact that the
total frequency of observations is independent of the system’s
state along with the homogeneous nature of the population
of processes leads to a number of simplifications when eval-
uating the Mean-Squared-Error of the estimator u(t). More
specifically, since u(t) is the posteriori mean estimator, its
MSE is given by the average posterior variance.?! The filter-
ing scheme described in this section and some of the results
of chapter 3 are illustrated in figure 2.2.
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I will now turn to filtering from Point processes when the
dense coding assumption does not hold.

Mean-Squared-Error = MSE

2! This will be shown in the beginning of
chapter 3.

Figure 2.2: The general filtering frame-
work: the unobserved process we are try-
ing to estimate is shown as the solid red
line, while the observed spikes are shown
as red dots, aligned by the preferred stim-
ulus of the firing neurons. The posterior
mean estimate is given by the dotted blue
line, while the light red shading gives the
confidence interval of one standard devi-
ation. Note the discontinuous jumps in
the mean and covariance at the times of
spikes. The lower figure shows the av-
erage posterior variance over all possible
spike trains given a stimulus distribution.
Note that the mean-field approximation
provides a very good account of the evo-
lution of the average. These results will be
further discussed in chapter 3.
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2.5 Methods for General Filtering of Point Processes

If nothing else is known about the process at hand, one is
forced to work directly with equation (2.14). In principle one
could discretise the state space and try to solve the Partial Dif-
ferential Equation recursively as the observations come in. In
practice, however, the right hand side equation (2.14) also
contains averages over P(x,t), leading to additional compli-
cations on every integration step. One way to circumvent
this particular problem is to work with unnormalized prob-
abilities. The Zakai equation® is a modified version of the
Kushner equation which propagates unnormalized probabili-
ties. For a stochastic process X (t) observed through another
process Y (t) as given in section 2.2, one can define p(x,t)
as a solution to

dep(x,t) = p(x,t)dt + p(x,t)x CTDAY(t), (2.22)

with p(x,0) = Py(x). It can then be shown that P(x,t) =
p(x,t)/ f dxp(x,t). Any solution to the Zakai equation will
yield a solution to the corresponding Kushner equation when
normalised. Note that, while the Kushner equation was a
stochastic partial integro-differential equation, since the left
hand side involved averages over P(x, t), the Zakai equation
is a simpler linear stochastic partial differential equation and
given a realisation of the observation process can be solved
by standard PDE methods.

[ will present a similar framework for the Snyder equation
2.13. Again taking the notation P(x, t) = p(x,t)/ f dxp(x,t)
one finds that the unnormalised posterior distribution p (x, t)
of a stochastic process with generator .« observed through a
doubly stochastic Poisson process with rate A(x ) will obey the
stochastic PDE

Partial Differential Equation = PDE

22 Zakai, M. (1969). On the optimal filter-
ing of diffusion processes. Zeitschrift fiir
Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 11(3):230-243

dep (x,£) = " p (x, £)de = A(x)p (x,£) + (A(x) = 1) p (x, ) AN (¢).

(2.23)
Note that any term independent of x can be trivially discarded
as it only constitutes a temporal renormalisation of p. For ex-
ample, if p*(x, t) is a solution to equation (2.23) with initial

condition p (x,0) = g(x), thenr(x,t) = exp (—fot k(s)ds)p*(x, t))

is a solution to the stochastic PDE

der(x,t) = r(x, t)dt—A(x)r (x, t) + (A(x) = 1) r(x, t)AN (t) —k(t)r(x, t)dt,

with the same initial condition. This allows one to set a base-
line to the expected firing rate in the unnormalised equation.
This framework has been used by (Bobrowski et al., 2009)
in the study of finite state systems observed through doubly
stochastic Poisson processes. This work was also extended to
static continuous processes by Yaeli and Meir.>*. I will now
discuss the application of these equations to the development
of a particle filter for the filtering problems discussed above.

2 Yaeli, S. and Meir, R. (2010). Error-
based analysis of optimal tuning functions
explains phenomena observed in sensory
neurons. Frontiers in computational neuro-
science, 4(October):16



Particle Filtering

The central idea of particle filtering is relatively simple. If one
is not given access to the system’s state directly, one can just
simulate a large number of hypotheses of the system’s state
and weight each copy according to its agreement with the ob-
servations. One can then compute averages over the posterior
distribution from the weighted samples. Say I have a system
with state X (0) initially distributed according to Py(x ), some
known transition probability

W (x,x") = Px(y (x|X(t) =x'),

and I am given observations of a second process Y (t), with
probability density

£(y,x) =Py (y]X(t) =x).

If all the probabilities are known I can implement the fil-
tering steps numerically, by taking a sample of M particles
{Zz1(0)},i € [1,...,M] from Py(x), and associating a weight
to each of those particles w'(0) = 1. Then for each particle
Z! I sample the state of that particle at the following instant
through the transition probability

PZi(t)(Z|Zi(t—dt)) = W(Z,Zi(t—dt))
and reweigh it through the likelihood of Y (t), yielding
w'(t) =wi(t—de) L (Y (t),Z'(¢)).

The approximate density Q(x, t) = >, w'(t)5(Z (t)—x)/ X w

1
then gives an approximation of the posterior density P(x,t)

and averages can be computed by simply aggregating over
the particles, giving

Jde(x,t)g(x)%deQ(x,t)g(x):ﬁzwi(t)g(

These methods are often called Sequential Monte Carlo meth-
ods, since they consist of sequentially sampling the state of
the system in a way similar to a Monte Carlo Markov Chain.
The description above barely scratched the surface of what
is achievable and what are the problems of particle filters,
and I will not dive too deeply into the theory of them, but
one point should be made. Though the sampling procedure
described above in principle yields an estimate of the true pos-
terior distribution, a lot can go wrong when implementing it
with a finite number of particles. One issue that plagues many
such filters is the issue of weight depletion. Weight depletion
refers to the situation where all but a few particles have very
low weights, representing state paths which are incompati-
ble with the observations. This can lead the particle filter to

(1),

Z\(t)).

SMC: Sequential Monte Carlo
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waste resources estimating the density of regions which don’t
contribute to the posterior averages, and therefore yielding
very poor estimates of the distribution in the interesting re-
gions. This led researchers to propose resampling steps in the
particle filter. Whenever a certain criterion is met (or after ev-
ery step in the filter) one can resample the particles from the
set of existing particles according to their weights, i.e., sam-
ple M particles from the set {Z'(t)} with probabilities given
by p; = wi(t)/ >, w'(t). After that, all weights are reset to 1
and the procedure continues. This forces the filter to allocate
its particles according to its current estimate of the posterior
distribution, preventing weight depletion to some extent. It
is not a panacea for these issues, however, and even properly
resampled filters can often end up with very poor estimates
of the posterior distribution.

Another important thing to note, is that it is often not pos-
sible to efficiently sample from the transition probabilities of
the system. In those cases one can still combine the par-
ticle filter with an importance sampling approach. In that
sense, at every step one samples from a simpler distribution
Q(Z'(t)|Z!(t —dt)) and reweighs the particles according to

(Y (£)IZ!(t))P(Z (t)|Z" (t—dt))
Q(z(t)|Z (t—dt))

This allows for efficient sampling, but it adds another source
of weight depletion. Again, if the sampling transition proba-
bilities do not match the system’s transition probabilities, the
weights will quickly fall to low values, leading to poor esti-
mates of the posterior distribution.

Let us consider again the general case of doubly stochastic
Point process filtering. Note that in the absence of spikes the
posterior evolves according to

dP(x,t)
ot

For linear diffusion processes, this simplifies to

OP(x,t) 1 3%P(x,t)
T =—V-: (AXP(X,[’)) + 5T1’|:H—

Wi(t):Wi(t—dt)P

= P(x,t) + (At) = A(x,t))P(x,t).

] + (A(t) =A(x,t))P(x, t).
(2.24)

5’xi8xj

I can again define an unnormalised density p(x, t) evolving
according to

dp(x,t)

1 9%P(x,t)
P —V - (AxP(x,t)) +§Tr[H

Taxj]—l(x, t)p(x, t),

for which the normalised density p(x,t)/ f dxp(x,t) sat-
isfies equation (2.24). It can be shown that the equation



above describes the evolution of a drift diffusion process with
a death rate of A(x,t). This means that the system evolves
according to the equation (2.4) but there is a transition to a
death state with a rate A(x, t).>* This allows one to formu-
late a simple particle filter, by propagating the particles with
the transition probability of the linear stochastic system and
then killing it at a rate A(Z'(t),t), resampling the particles
every time a particle dies. Alternatively one can reweigh the
weights according to 1—A(Z%(t), t)dt after every time step,
obtaining the same effect.

The particle filtering scheme presented here is very flexi-
ble, and is in principle applicable to any kind of stochastic
process observed through Poisson spikes. This approach has
also gained traction in the neuroscience community, where
particle filters are often used to decode cortical signals from
electrophysiological recordings.?®> Most BCI application re-
quire very low latency though, and often specialised types of
Kalman filter are more practical to employ in such settings.?

Assumed Density Filtering

Though the presented framework of DSPP’s in dense Gauss-
Poisson populations of neurons turns out to be exactly Gaus-
sian, this does not hold generally. For example, one could
have a stimulus-dependent population firing rate, leading to
non-Gaussian posteriors. One would then have to deal with
the full extent of the Snyder equation (2.14). One way to deal
with this is to project the posterior distribution to a Gaussian
at every time step, that is, at every time t, one looks at the
resulting distribution at the next time step t + dt and approx-
imates it with a Gaussian. To do so one needs to determine
the mean and covariance of the posterior and can then match
a Gaussian distribution to those moments.

This approach is usually called Assumed Density Filtering.
Given some variable of interest x and a set of observations of
random variables {Y;,...,Yy} distributed as Py (y|x), ADF
consists of sequentially incorporating the observations and
finding the best approximation to the posterior within a fam-
ily of distributions. For example, if the true, intractable distri-
bution were P(x|Y7, ..., Yy) one could choose to approximate
it by a Gaussian distribution. One would start out with a prior
distribution Qq(x) and sequentially look for the best Gaus-
sian approximation to the posterior Q;(x)P(Y;,1|x). This is
usually termed filtering even when there is no temporal es-
timation involved because of the sequential updates to the
posterior.”” The best approximation to the posterior is usu-
ally defined as the one minimising the Kullback-Leibler diver-
gence between the full and approximate posterior. In that
sense, given a current approximation Q;(x) and a new obser-
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2@ ksendal, B. (2003). Stochastic Dif-
ferential Equations: An Introduction with
Applications, volume 10 of Universitext.
Springer

2 Brockwell, A., Rojas, A., and Kass, R.
(2004). Recursive bayesian decoding of
motor cortical signals by particle filtering.
Journal of Neurophysiology, 91(4):1899—
1907; and Ergun, A., Barbieri, R., Eden,
U. T, Wilson, M. A., and Brown, E. N.
(2007). Construction of point process
adaptive filter algorithms for neural sys-
tems using sequential Monte Carlo meth-
ods. IEEE Transactions on Biomedical Engi-
neering, 54(3):419-428

2Wu, W, Gao, Y. Bienenstock, E.,
Donoghue, J. P, and Black, M. J. (2006).
Bayesian population decoding of motor
cortical activity using a kalman filter.
Neural computation, 18(1):80-118

ADF: Assumed Density Filtering

27 For examples of applications, see (Op-
per, 1998; Boyen and Koller, 1998; Minka,
2001).
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vation Y;, 1, the update to our approximate posterior would
be

Qi41(x) =argming KL[Q; (x)P(Yi111x)llq]

Qi(X)P(le'-Fllx)‘

q(x)

The KL divergence taken here is the reverse of the KL di-
vergence used in variational inference.?® It can be shown
that if one applies this process using a family of exponen-
tial distributions as approximating distributions, it will lead
to a moment matching procedure where the moments of the
approximating distribution match the ones of the posterior
Qi (x)P(Y;,1]x).? If one took Q(x) to be a Gaussian in every
step, the procedure would involve evaluating the mean and
covariance of the posterior and setting the new distribution
to a Gaussian with that mean and covariance.

A simple example of a factor leading to a non-Gaussian
posterior in the filtering problem described in this chapter is
the presence of adaptation in the firing rates. Poisson pro-
cesses are memoryless, that is, the probability of a spike be-
ing fired is independent of the time since the last spike. It
is well known, however, that biological neurons do not fol-
low that rule. For example, there is a clear refractory pe-
riod in action potential generation, rendering a neuron in-
capable of firing an action potential for a short period after
the firing of an action potential, regardless of the stimula-
tion applied. This refractory period varies from cell type to
cell type and between organisms, but is generally around 5
ms. Another very common phenomenon is spike-frequency-
adaptation,*® where upon continued stimulation a neuron re-
duces its frequency from its initial response frequency to a
lower frequency. A simple Poisson process can not account for
these phenomena, but it is easy to modify the Poisson model
to account for a refractory period or else to include a spike-
frequency adaptation component as well.

Consider a simple history-dependent Poisson process given
by a rate A(x, t) = k(t)A(x), where k itself depends on the
spiking history of the process. Let me take x evolving accord-
ing to the SDE

(¢ —x(1))

T

= argmin, J dxQ;(x)P(Y;y1]|x)log

dk(t) = dt—h(k(t))dN(t), h(x)=min(A,x),
where dN(t) is the spike train of the neuron. This will lead
to a rate modulation which stabilises at ¢ when there are no
spikes, and is shifted downwards by A whenever there is a
spike, without venturing below 0. Although the process is
now history-dependent, the joint process x(t),N(t) is still
Markov, since the dynamics of x itself is Markovian. This al-
lows one to model a neuron with a refractory period by taking

28 In variational inference one usually con-
siders the KL divergence between the

approximating and the true distribution

given by KL[q|lp] = fdxq(x)log%.

When q(x) is tractable or allows for exact
integration, this allows for simplifications
of the KL-divergence.

2 See appendix A.2 for a short clarifica-
tion.

30 Benda, J. and Herz, A. V. (2003). A uni-
versal model for spike-frequency adapta-
tion. Neural computation, 15(11):2523—
2564



a relaxation time 7 &~ 5ms or to model a neuron with spike-
frequency-adaptation by taking longer relaxation times.

The filtering probability for a diffusion process observed
through a population of adaptive neurons with rates given by
Al(x,t) = x'(t)Al(x) is given by

A~

deP(x,t) = . P(x,t)dt —l—P(x,t)Z(?Li(x,t)— () A (6)"H(dN () —

l (2.25)
which is equation (2.13) with time-dependant firing rates.
One now needs to integrate the set of equations for the rate
modulations «'(t) for every neuron as well, to be able to solve
the Snyder equation properly.

The ADF approach for this case would work as follows: one
starts out with an initial Gaussian distribution A4 (u(0), £(0))
at t = 0; then, for every instant ¢t one determines the non-
Gaussian probability P(x,t4+dt) at the next instant t + dt via
equation (2.25); after that, one finds the mean and covari-
ance of P(x,t + dt), and approximates the distribution by a
Gaussian with the same mean and covariance and proceeds
to the next instant. This can be cast into a set of differential
equations and updates governing the mean and covariance of
our approximate posterior.

To obtain the ADF equations for this simple model I need to
evaluate the evolution of the mean and covariance of the fil-
tering distribution. I will derive the necessary equations simi-
larly to the derivation of the differential Chapman-Kolmogorov
equation in (Gardiner, 2004).The average of a function of x
over the posterior distribution evolves as

0B,If] _ 3 [dxf(x)P(r,e) | [dxf(x) (Plx.+de)—P(x,0))

ot ot  dt—0 dt

In the absence of spikes, the limit can be evaluated, as all
terms are of order dt, obtaining

JEp|[f]
at

:fdxf(x)(;z/fp(x,t)+(i(t)—7t(x,t))P(X,f))

= [ axpe,0) (1 () + £ ()30 =25, 0)

This can be readily cast into a form to allow for moment
matching of Gaussian distributions. Taking a stochastic pro-
cess X (t) given by the SDE

dX(t) =AX(t))dt +H (X(¢))2dw (¢),
the infinitesimal generator and its adjoint will be given by

32f(X)]’

0x2

Af —Ax)TVF(x)+ %Tr [H(x)

A

(t)dt),

55
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and
ATf :—V-(A(x)f(x))—FETr o

The evolution of the mean and covariance will thus be given
by

du(t)
at

1 [32H(X)f(X)]'

=E[A(x)] +E[x(A(t)—A(x,t))], (2.26a)

ax(t)
at

=E[A(x)(x—p(6)) "]+ E[ (x—(0))A(x) ]+ H(x)

+E [ (x —p(0) (x—u(0)) " (A(t) = A(x, 1))
(2.26b)

These equations are exact, even if the posterior distribution is
not Gaussian. If the posterior is Gaussian, the averages on the
right hand side of these equations can be written as a func-
tion of u(t) and %(t), therefore providing a closed system
for the evolution of these variables. The crucial step to per-
form ADF is to assume that the distribution at every instant is
characterised by only its mean and covariance, and is there-
fore Gaussian. In that case, the averages in the equations can
often be performed exactly and one can provide an approxi-
mate filter to the problem. Note that the derivation is valid
for the case of multiple spike trains as well, yielding

du(t) 3i i
5 =E[A<x>J+ZE[x(A (6)=A(x,0))], (2272)

%) _p ) ) ]+ B0+ (2

+ D E[(x—m(0)(x—p(0)T (R (0) = Ai(x,0))].
' (2.27b)

In chapter 5 I will apply the ADF approach to the general
linear stochastic systems considered here as well as a nonlin-
ear stochastic system and compare them to the particle fil-
ter approach. Though the ADF has had considerable success
and has spawned a number of new approaches, most notably
the expectation propagation (EP) algorithm,® the theoreti-
cal guarantees of particle filters have led me to prefer it when
estimating the MSE of an approximate filter.

2.6 Filtering for General Gaussian Processes

The linear stochastic processes I have considered in this chap-
ter are special cases of Gaussian Processes. A Gaussian Pro-
cess is a process X (t) such that the marginal distribution of

31Opper, M. and Winther, O. (2000).
Gaussian processes for classification:
Mean-field algorithms. Neural Compu-
tation, 12(11):2655-2684; and Minka,
T. P (2001). Expectation propagation
for approximate bayesian inference. In
Proceedings of the Seventeenth conference
on Uncertainty in artificial intelligence,
pages 362-369. Morgan Kaufmann
Publishers Inc
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the process at a set of times {tq,...,t;;} is always given by
a Gaussian distribution. Furthermore, the density of X (t) at
said points is given by

P(X(t1),X(t2),-... X (tn)) = A ((m(t1),m(t2), ..., m(trr)) " K (3, 5)),

where 1 <i < M, 1 S,] < M. The covariance of a GP is GP = Gaussian Process
given by the kernel function K (s, t ), which specifies the tem-
poral structure of the process at hand. It is straightforward to
show that the unobserved Ornstein-Uhlenbeck process
dX (t) = —yX(t)dt + ¥/ 2dw(t),
describes a Gaussian process with zero mean and kernel
Kou(s, ) = > %
s,t)=—e .
ou 2

Gaussian Processes have become a very popular method in
Machine Learning, as they allow one to specify a distribution
of random functions over a domain.>? % Rasmussen, C. E. and Williams, C. K. I.

Assume one is trying to estimate a function f(t) drawn (2005).  Gaussian Processes for Machine

. . Learning. MIT Press, Cambridge, MA, 1st

from a GP prior with zero mean and kernel k(s,t). If one edition
is given M observations (t;,y;) of the value of f at times t;,
one can write the marginal distribution of f (¢) for any time
t by simple manipulation of Gaussian densities. If the obser-
vations are corrupted with Gaussian noise with variance a?,
the probability density of the observations is given by

P(y1,---sym) = A (0,K(t;,t;)+a*5;;), where 1<i<M, 1<,j<M.

The joint density of f (t) and the observations is given by

P<f<r>,y1,...,yM>:w(o,[’““) K(t,0) D

K(t, t]) K(ti, t]) -+ a25l~,j

LetG; ; =K(t;,t;), ¥ = (y1,....ym) " and k(t,{t;}) = (K(t,t1),...,K(t,tp)) "
The conditional distribution of f(t) given the observations
can then written as

P(f(O)ly1,--ym) = A (F(£),E(t, 1)),

where
F(&) =k(t,{e}) (G + 1)y, (2.28a)
and
2(t,t) =K(t,t)—k(t, {t;}))T(G+a®I) k(t, {t;}).
(2.28b)

As T have shown above, if t > t;Vi, s.t,1 < i < M, these
relations can be cast into the form of stochastic differential
equations for a number of kernels. The OU kernel and its
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corresponding SDE were shown above, but another example
I will refer to is the Matern kernel of order v = 3/2, given by

\/§t—s _ V3t
KMat(t:s):n(l‘f—% e .

The samples of the kernel correspond to a critically damped
stochastic oscillator with a white-noise force being applied to
it. Samples from this process can be seen in figure 5.2. I
have chosen the scaling factor to obtain the same character-
istic length as the RBF kernel below. It can be shown that an
appropriate limit of Matern kernels of increasing order will
converge to the RBF kernel (see (Rasmussen and Williams,
2005)).

The approach developed in the beginning of this chapter
is very practical as it allows us to use the tools of stochastic
dynamics to analyse the expected mean-squared error of the
optimal filter, but in the general case of GP’s this is not pos-
sible. In the case of smoother GP’s such as the ones given by
the RBF kernel

|t —s?
K.py =mexp|— oz |

the future covariance depends on all past observations, and
one can not formulate simple Markov dynamics for the poste-
rior variance. I will develop a theory for the evolution of the
entire posterior kernel

E(t,s) =E[(F(6) = ()(f (5)—F (5))]y]

in the next chapter, which allows one to evaluate the average
performance of the optimal filter on a general GP observed
through Poisson spikes. The learning performance of GP re-
gression methods is still an active area of research, and recent
efforts using methods from statistical physics of disordered
systems have shown promising advances.*

3 See (Malzahn and Opper, 2005; Urry
and Sollich, 2013).



3
Mean-Squared-Error for Point Process Filtering

Well, my theory is that your
theory is wrong.

Fernanda G. P Susemihl

In the previous chapter I have introduced filtering methods
for stochastic processes observed through Poisson processes.
In this chapter I will deal with the issue of how well one can
estimate that process from a set of Poisson processes with a
given set of rate functions.

If one has an estimate X of some stochastic variable X to
be estimated, how can one quantify the error incurred by the
estimator? One needs to specify some loss function that as-
signs a cost to an error |[X —X|. It makes sense to require the
loss function to be increasing and to require the loss of an
exact estimate to be zero, but other than that, any loss func-
tion could do. Here I will consider results on the squared loss
function

L32(X,X) = (X —X)?,
leading to the mean-squared-error (MSE) as a measure of
the performance of the encoder. This is specially convenient
when dealing with Gaussian distributions, as a number of an-
alytical results can be derived. Other possible choice would
be the absolute loss, given by

L'(X,X)=|X—-X|.

In other situations, such as classification tasks, other loss func-
tions are useful, but I will restrict myself to the MSE case here.

When dealing with stochastic processes, it is usually more
convenient to consider the covariance matrix of the process,
rather than the squared error, which is given by the sum of
the variances of every coordinate of the process. Let me then
define the mean-squared error matrix as

MSEX) =E[X—-X)X—x)"],

where the expectation is over all possible realisations of X
and over the observations leading to the estimator X. Alter-
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natively one could take the average to be over multiple re-
alisations of an experiment, or over long time averages of a
temporal estimation problem. To obtain a scalar measure of
the estimation error, one can just take the trace of the MSE
matrix. This scalar error will be written as

MSE =Tr(MSE) =E[(X—X)T (X —X)].

If further one knows that the estimator X depends on some
parameters 6, she could seek out the optimal estimator X* by
taking the parameters 6* that minimise the MSE

0* = argming MSE(X(0)).

Assuming I am estimating X from an observation process Y
dependent on X, I can write

MSE(X(Y)) = J dxdy (X(v)=X)T(X(Y)=X)P(X|Y)P(Y).

3.1)
Since P(Y) > O for every Y, minimising the inner integrand
[dx(X(Y)—X)T(X(Y)—X)P(X|Y) for every Y will lead to
a minimum of the full integral. So, minimising the inner in-
tegrand with respect to the estimator will lead to

A

 [dx(X(Y)—X)"(X(Y)—X)P(X|V)
X (Y)

Equating the derivative to zero leads to the minimum mean
squared-error (MMSE) estimator for X, given by

A

X*(Y) = f dXXP(X|Y) =E[X|Y].

The MMSE estimator is often called the Bayes estimator for X
given the observations Y, since it minimises an expected loss
given by equation (3.1), which treats the quantity being esti-
mated as a random variable with a prior probability distribu-
tion. The MMSE estimator, however, can only be exactly com-
puted if the true data generating distribution P(Y|X) along
with the true signal distribution P(X) is known, allowing one
to estimate the posterior probability P(X|Y). Furthermore,
the Bayes estimator involves averaging over the signal space,
which can be impractical. A number of techniques can be
used to approximate the estimator though, such as Gaussian
processes or neural networks. The optimality of the MMSE
estimator is a central result in information theory, and the
MMSE estimator is usually taken as the standard to estima-
tion.

However, finding the optimal estimator is not the end of
the story. Often the design of sensors and of the experimental

= 2f dX(X(Y)—X)P(X|Y).

! Minimising a different loss function or er-
ror measure would lead to a different op-
timal estimator. Minimising the expected
absolute loss, for example, leads to the
posterior median as the optimal estimator.



process allow one to change the data generating distribution
P(Y|X). For a simple example, consider a radar gun. Assume
it gives a measure of the speed of the considered vehicle cor-
rupted with Gaussian noise with zero mean and standard de-
viation of 5km/h. Indeed, given a number of measurements
of the speed of a vehicle,? the MMSE estimator will be the esti-
mator which minimises the expected MSE. Regardless of that,
however, one can always reduce the MSE by using a radar gun
with a smaller noise rate. A superior radar gun which out-
puts measurements with standard deviation of 1km/h will
certainly reduce the MSE further. In most simple cases, how-
ever, this reduction is obvious, as one simply strives to reduce
the noise as much as possible.

The neural case poses an interesting exception though. Con-
sidering the Poisson model from the previous chapter, the
probability of a spike being fired in a small time interval dt
conditioned on the stimulus X is given by A(X )dt. The proba-
bility of a spike being fired averaged over all stimuli X would
then be given by Adt = [dxP(x)A(x)dt. If one tries to
increase the precision of the likelihood defined by A(X), for
example by reducing the width of the tuning function, this
will automatically reduce the probability of that neuron firing.
Therefore, there is a trade-off between frequency of firing and
precision of firing, which is not present in the case of addi-
tive Gaussian noise. This is illustrated in figure 3.1, where
I show two Poisson neurons with Gaussian tuning functions
and the same preferred stimulus but with different precisions.
The upper neuron has a broader tuning function, leading to a
higher firing rate, but in turn the spikes are less discriminating
of the value of the stimulus. The second neuron has a much
narrower tuning function, leading to more precise observa-
tions of the stimulus, but a much lower spiking frequency. It
is not immediately clear which neuron will allow for a better
reconstruction of the underlying stimulus, as the influence of
the frequency and the precision of the spikes would have to
be pitted against each other.

In this chapter I will derive a number of exact and approx-
imate relations for the MSE of the optimal filters described in
the previous chapter. I will provide a solution for the station-
ary distribution of the posterior variance of the optimal filter
for the OU process, showing that this distribution diverges
when the average interspike interval is longer than the relax-
ation time of the variance. I will present a number of approx-
imate treatments of limiting cases, for low firing rates and for
the diffusion limit of large observation noise. Finally I will
provide a treatment of the average posterior kernel, which
allows us to study the MSE of the optimal filter of general
Gaussian processes. My goal in this chapter is to develop ex-
act and approximate methods to study the average MSE per-

61

2 Assuming the speed of the vehicle re-
mained unchanged across measurement
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Precision and Frequency Trade-off in Poisson Processe
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formance of the optimal filter of a system observed through
a population of doubly stochastic Poisson processes. Armed
with that, I will in chapter 5 look at the optimal strategies
for these processes to encode the state of system, namely the
ones that minimise the MSE.

3.1 The MSE for Dense Gaussian DSPP Observations

In section 2.4 I have discussed case of dense populations of
Gauss-Poisson neurons, first introduced in (Huys et al., 2007).
This framework allows for a number of simplifications. Most
importantly, the posterior variance of the filter obeys a SDE
with drift and jumps where the jumps occur with a state-
independent rate A. As I have discussed above, the MMSE es-
timator gives the optimal estimator for a data-generating dis-
tribution P(Y|X; E,{6;}, ¢ ). However, if the response prop-
erties of the neural population change (through changes in
E, ¢ or the positioning of the tuning functions), the perfor-
mance of the estimator will change as well and one can ask
which is the encoder that provides the lowest MMSE.

As in section 2.4, let the stimulus be a stochastic process
X (t), and the observations be spike trains of a dense popula-
tion of Gauss-Poisson neurons N(t) = (N1(t),...,N(t))T.
Writing N., = {N(v), Vv € [0, t]}, the posterior distribution
is

P(X(t)lNO:t> =N (nu‘(t; NO:t)’ 2<t; NO:t)) )

where u(t; Ny.;) and £(t; N.; ) are solutions to equation (2.21).

The MMSE matrix can be written as

50 0.0 02 04 06 08 1.0
Rate of neuron

Figure 3.1: The tradeoff between preci-
sion and frequency. The upper plot shows
the spike train of a single neuron with a
Gaussian tuning function with unit width
responding to a stochastic stimulus. There
are quite a few spikes but they are fairly
unreliable. The lower plot shown a neu-
ron with a Gaussian tuning function with
a width of 0.2. There are nearly no spikes,
but they spike only when the neuron is in a
narrow range around the neuron’s tuning
centre.

MMSE(t;{60,}, E) = Ex(e)n,, | (X(£) = (63 No)) (X (£) = (£ Now,)) T | =€),



I am interested in the ensemble average over all possible re-
alisations of both the signal as the observation processes.

Throughout this chapter, I assume that the posterior distri-
bution used to evaluate the posterior mean estimator is the
same distribution as the one that is generating the observa-
tions Ng.,. This is called the matched situation. If complete
information about the distribution P(N.,|X (t)) was unavail-
able, one would be forced to work with an approximate pos-
terior. In the matched case, however, I can simplify the ex-
pression for e(t). Writing out the expectation over X and N
gives

63

e(t) = f au (X(0)) f AN o)) (X (6) = (s Nowe)) (X (6) = (£ No )T P(XINos )P (Now ).

The average over P (X|N ., ) will just yield the posterior vari-
ance (N, ), leading to

e(t) =E[Z(No.)] = E [Z(No.)], (3.2)

where in the last step I have used that the posterior variance
is only a function of the population spike count Ny, = >, Ny.,

and not of the full spike train Ny., = (Ng:t,N&t, .. .)T. This
makes it much simpler to treat the averages, but they still re-
main intractable. To get a sense of the problem, for every
possible spike count, one would have to average over all pos-
sible spike times for those spikes, considering the evolution
of ¥ from its initial value according to the dynamics given
in equation (2.21b), and then average over all possible spike
counts. This has been done for the case of static stimuli in
(Yaeli and Meir, 2010). When the stimulus is static, the av-
erages are simplified by the fact that the variance does not

change between spikes. The posterior variance is given by
£(t) = (2(0) " +N(0)E")”

Averaging over the spike trains then amounts to averaging

over all possible spike counts for the given time period. This

leads to

0 B 1 (it)ke—it
€static(t) = I;)(Z(O) 1+ kEr) TR (3.3)

This simplifies further when E = 3(0), that is, when the tun-
ing matrix E is equal to the prior variance of the static process,
leading to

s (Ab)k 1—e M
static =2(0 At ———=3(0)————. (34
static(t) = B(0)e é(kﬂ)! (0)—— G4

When the covariance is not matched to the covariance of the
prior, the infinite sum has to be evaluated numerically. The
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static case has been discussed extensively by Yaeli and Meir
(2010), and a similar treatment of finite state continuous time
systems has been considered in (Bobrowski et al., 2009).

When considering the dynamic case, though, the average
can not be evaluated explicitly. I have been able to circum-
vent a lot of the complexity of these averages by considering
the dynamics of the posterior covariance.® The posterior co-
variance evolves according to

3 See (Susemihl et al., 2011).

d%(t) = (A(t) +2(0)AT + H)dt +dN(¢) [2()ETS(e7) (T +ET=(e7)) ]

I will treat this as a stochastic process with a linear drift
B(Z)=AZ+¥A" +H

and jumps taking % to (7! + ET)™!, which occur with rate
A = 3. Al(x). AsThave shown in section 2.1, the distribu-
tion over X evolves according to the differential Chapman-
Kolmogorov equation.* Taking the drift B(X) and the transi-
tion probability of jumping from % to ¥’

W, 2)=215(2'— (=t +ENT,

the differential Chapman-Kolmogorov equation becomes

4 Gardiner, C. W. (2004). Handbook of
Stochastic Methods: for Physics, Chemistry
and the Natural Sciences, volume Vol. 13
of Series in synergetics. Springer

% =—VIBZ)PE0)] +J ds’ (P(2, )W (%, %) —P(Z,0)W(Z, %)),
leading to
% = —V[B(Z)P(,t)]+AC(Z)P((Z 1 —EN) ™, t)—AP(%, 0).

(3.5)
The term C(X) is resultant of the integration of the Dirac
delta function and is given by

C(Z) — ;
~ldet(J(2)I
where J () is
—1 Ty—1
T(Z) () = o B _ (I+E'S) (1 +2ET)]
(L.1): (k1) = D - ki jn

I am here considering the four-index quantity J(3) as a two-
index matrix, by ordering the entries of the matrix X into a
vector. The exact order in which I do this is unimportant, as a
change in the order would only amount to a change in sign of
the determinant, which in turn only appears in equation (3.5)
through its absolute value.

Through equation (3.5) I can study the MMSE of a neural
encoder, as it is given by an average over P(%,t). The evo-
lution of the average of some function f over P(Z, t) can be
written as’

5 See section 2.1.
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P :fdZ[Vf(Z)B(Z)P(Z,t)—I—if(Z) (c@)p((zt—=E"hLt)—P(z,1))].

Changing the variables in the second integral, using ¥ =
(z1—EN L dy =c(2)dx, &' = (T 1+ ET) 71, leads to

—aEtéft(Z)] = J dxVf(Z)B(Z)P(Z,t) +71J dzP(%,6) (f(Z ' +EDN ) =F(2)).

The evolution of the MMSE is obtained by taking f () = %,
yielding

de(t)
dt

=Ae(t) +e(t)AT +H—AE[ZET (=1 +EN) 7.
(3.6)
This is still intractable, as the far right hand term involves an
average over a nonlinear function of ¥. There are many ways
to deal with that approximately. One possibility is to evaluate
the average numerically by sampling from the paths of %(t)
according to equation (2.21b). Another option is to approxi-
mate the distribution P (%, t) by some parametric distribution
and obtain an approximation for the evolution of €(t). The
simplest such parametric distribution would be a point mass
at the expected value of %(t) with probability 1. This is the
so-called Mean-Field approach, where one simply disregards
all fluctuations in ¥ and approximate all averages E,[f (2)]
by f (E;[%]). This leads to the mean-field evolution of e(t)

de(t)
dt

~Ae(t) +e(t)AT +H—Ae(t)E (e(t) T +E) .

3.7)
The mean-field and sampling approaches are compared in fig-
ure 2.2. As one can see, the mean-field approximation yields
extremely good results, for the stationary and relaxation be-
havior of €(t).

Although one can now in principle evaluate the temporal
evolution of the MMSE, I will focus mostly on the stationary
case, as it allows for some interesting insights. The treatment
of the full time-dependent distribution P (X, t) does not allow
for analytical solutions, and since I am mainly interested in
the dependence of the MMSE on the parameters of the en-
coder and of the statistics of the environment, which should
not change significantly in the time-scales relevant to changes

in €(t), I will now look deeper into the stationary distribution
of B(t).

3.2 Solving for the Stationary Distribution

Although I am interested in finding the optimal encoder, which
in turn is a function of the expected variance, one can gain
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a lot of insight into the nature of the encoder by studying
the full distribution of posterior variances. Here I will there-
fore consider the distribution of variances in its steady state.
Considering equation (3.5), one can write the stationary con-
dition as

V [B(s)P(s)] = AC(s)P((s* —ET)"1)—AP(s), (3.8)

Exact Solution for the One-Dimensional Case

I will provide an exact solution for the one-dimensional OU
case. This was proposed in (Susemihl et al., 2011), and an
approximate extension to the multidimensional case was pre-
sented in (Susemihl et al., 2013). The solution relies on one
simple observation, which can be glanced from figure 2.2:
The posterior variance never exceeds the stationary value of
the unobserved variance. I will give a simple proof for the
one-dimensional OU case. Taking the simple OU process given
by the SDE®

dX(t) = —yX(t)dt +n*/2dwW(t)
and considering one-dimensional tuning functions A,, given

by
(x - Qm)z
2a2 ’

n(x) = e -

equation (3.5) will simplify to

oP(Z,t) 0 (a2 YV [ 2%
3.9

The stochastic dynamics of the posterior variance X(t) in this
case is

3 2
%dz\r(t).

The stationary variance of the unobserved process is given by
»9 = /2y and it is easy to see that if (t) > /2y, the vari-
ation of %(t) will always be d%(t) < 0. Therefore, one can
conclude that in the stationary regime, P(X > n/2y) = 0,
and therefore P(X) = 0, > n/2y for the stationary dis-
tribution. A full derivation of this result has been given in
(Susemihl et al., 2013).

Thus it is established that in the stationary regime the prob-
ability of finding a variance higher than the equilibrium vari-
ance of the process 1 /2y will be zero. I will now look for a
solution for the stationary distribution, which obeys

2 (2yn—n)P(D)] = i( o’ )zp (a‘;z_zz)—xp(z).

o a?2—x
(3.10)

dx(t) = —2r%(t) +n—

® Note that this is still a specific case of
equation (2.4).

t)—)tP(Z:,t).



This is a delay-differential equation, with nonlinear delays.
This is called so because the derivative of the probability at a
given variance depends on the value of P for other variances.
These kinds of equations arise in physics, where the delay is
in the time variable, and arises from some temporal restric-
tion in the interaction of different systems. To fully specify
a DDE, one must give an initial condition in an interval, so
that the delayed terms are defined throughout the equation.
In the case of equation (3.10), the initial condition is given
by P(X) =0,VZ > n/2y.
I will define the function

i®) =

which gives the variance after a spike, and the intervals S,, =
(j"(n/27),j"*(n/2y)] where j°(n/2y) = n/2y. Clearly,
the first term on the right hand side of equation (3.10) will be
zero in Sy, as any jumps ending there would have to originate
from s > 1 /2y, where the stationary probability is zero. The
equation for the distribution in S, will be simply

ay
a2+’

5 [2rn—n)P(z)) = Ap(2)

One can readily see that this will be solved by

1
n 27
P(%) :c(——z) ,VE €S, (3.11)
2y

Given the result for Sy one can subsequently treat the equa-
tion (3.10) in S; as a simple ordinary differential equation
with a non-homogeneity given by the solution in Sj. This is
the general approach to solving delay-differential equations,
usually called the method of steps. One can then recursively
solve for all subsequent intervals. Figure 3.2 shows the nu-
merical solution for the subsequent intervals along with an
histogram of the variances and the van Kampen approxima-
tion to the distribution derived below.

One particularly interesting characteristic of equation (3.11)
is its exponent. The sign of the exponent in equation (3.11)
depends on the specific value of A and 2y. If A > 2y, the ex-
ponent will be larger than 0, leading the distribution to tend
to 0 as s tends to sq. If, however, A< 2y, the exponent will be
negative, leading the distribution to diverge around s,. No-
tice that s is the worst possible performance our encoder can
achieve, as it is the stationary variance of the unobserved pro-
cess. This means that whenever the firing rate of the popu-
lation is below a certain value, the probability distribution of
our MSE will be dominated by its worst possible value. These
results are illustrated in figure 3.2. This is very interesting,
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as it relates two different time scales, one (1/2y) describing
how long information about the observed process stays rel-
evant, the other (1/ ﬁ) describing the average time between
observations. It is intuitive to say that if the interval between
spikes is much larger than the correlation time of the process,
one would expect estimation of the system’s state to be bad.
But here I have provided a simple analytic argument showing
that, for a simple system whenever the average inter spike in-
terval is longer than the correlation time of the observed pro-
cess, the mode of the distribution of errors will be the worst
possible error for the estimator.

Although the obtained distribution is always valid in the
interval S, it can be shown to hold in the limit of low firing
rates as well. This can be extended numerically to higher di-
mensions. Assuming the population firing rate A < 2y, one
will find that the expected interspike interval is much longer
than the characteristic time of the variance’s dynamics. It is
then safe to assume, that whenever a spike is fired, the vari-
ance is very close to the stationary variance of the unobserved
process %y = 1/2y. The evolution of it after the spike time
t; will then be given by

n(t) = e—2r(t=t) s | N (1 _e—2y(t—ts))’

where &’ = j(%,). Solving for the time, one obtains

T(Z)=(t—t,) = —ilog(%).

Clearly, if the spikes are sampled from a Poisson process, then

the interspike intervals have an exponential distribution P(7) o<

Figure 3.2: The two approaches to solving
for the equilibrium distribution described,
shown across a range of parameter values.



e, A change of variables thus leads to the density

d_T —i’r—l—ZyT
dz '

P(x)=P(7) o< e

Inserting the definition for T one recovers equation (3.11).
This is an approximation for P(%) throughout the range of
s for a particular parameter limit, whereas before I had de-
rived an exact result for any parameters, but limited to a small
range of values of 2.

An Extension to the Multidimensional Case

I will derive a similar limit for the multidimensional case.
First assume A is small enough for the covariance X to have
relaxed to the stationary covariance of the unobserved pro-
cess %y. After a spike the covariance is then given by %' =

(Zt+ ET)_I. The evolution of %(t) after a spike at ¢; is

T
(7)) = ™Ay ™A -I—f eAnetA dt.
0

It is not possible to proceed as before, since the mapping from
the matrix space of X to the one-dimensional time space can
not be explicitly written as above. One could try to work out
the densities for individual entries of the matrix 3 but these
would possibly not be one-to-one. One alternative is to eval-
uate the marginals of the matrix entries numerically through
integration of the dynamics of (7). One could thus integrate
%(t) numerically until it has reached the stationary value %,
and evaluate the derivatives 3 numerically. This allows one
to look at the marginal probabilities of each entry of %, lead-
ing for example to

where 7(3%;;) is simply the time associated to that particular
value of X;; in the numerical integration. If A introduces in-
teractions between the entries of the covariance matrix, how-
ever, this result will not prove as powerful. As an example,
consider the Matern processes treated in (Susemihl et al.,
2013), where the unobserved covariance evolves as

= 2249,
dt 12
leZ d221 )
= = Y9 —2Y211— 7219,
dt dt 22 YZ11— Y L2

I 4y Ty — 272 T,
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The numerical approach for this Matern process is shown in
figure 3.3, and again it coincides well with the distribution
in the regime of low firing rates. It is important to note, that
because of the higher-order dynamical nature of the covari-
ance, the divergence of ¥X;; around its stationary value no

longer dominates the distribution, as %lzx = 0, leading to
a second peak in the distribution around ;.

— Simulated Histogram
— Small Lambda
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Van Kampen Approximation

It is interesting to consider a different limiting behaviour to
gain insight into the fluctuations of 3. The Van Kampen ap-
proximation is a system size expansion, often employed in
the field of statistical physics. It consists of expanding the
transition probabilities around the deterministic solution in
powers of the inverse system size and solving the dynamics
of the resulting Focker-Planck equation. It is not evident how
to choose a system size for the problem at hand, but below I
will show that it makes sense to consider the quantity ya?/n
as a system size. It is simple to apply this to the OU prob-
lem by taking the scaled inverse variance z = Y% instead of
the variance. Note that although the change in the variance
when a spike is observed is nonlinear, the change in the in-
verse variance is linear. This leads to the ODE

dz . . - n
— = —yz(2—2) and the jump condition z(t) =z(t”)+ —
dt ya?
for all times t when there is a spike observed. Defining the
jump size as 6 = Y%, the differential Chapman-Kolmogorov

Figure 3.3: The small firing rate limit for
the Matern process.



equation for P(z,t) is given by

3P(Z,t) _ d (YZ (2_Z)P(z’t)) _}_i[P (z—i—5,t)—P(Z,t)]-

ot 0z
(3.12)
The evolution of the average of z is given by
dE A
d,EZ] =—VE[z(2—2)]+ A5,

which gives the mean-field stationary solution of z* = 1+

v/1+4 A8. This mean-field approach can be refined by ex-
panding the nonlinear terms in equation (3.12) around z* up
to first order, which will yield a linear Focker-Planck equa-
tion, which can be readily solved. The stationary solution to
the Focker-Planck equation is a Gaussian distribution

A2
Py(z) = N (1+V1+15),L
4}/\/1+%

With this solution in hand, it is easy to find the distribution
of ¥ by a change of variables. This approach is shown in
figure 3.2 along with the numerical solution of the delayed-
differential equation and the numerical simulations. Note
that, again, equation (3.12) is still exact, and one can look
at it to determine when the approximation is appropriate. I
have Taylor expanded P(z + &) keeping terms up to first or-

der, and this will yield good approximations whenever ;’7 is

small, that is, whenever the tuning width is large compared
to the stationary variance of the unobserved process. Fur-
thermore, the nonlinear term yz(2 —z) was also linearised
around the mean-field stationary value, which will only be a
good approximation when z has a small probability of wan-
dering far from z*.

In this case, % provides a system-size-like quantity for this
system, giving us the order of magnitude of the fluctuations of
the system. This can be understood by noting that the change
in ¥ after a jump is given by AY = %Zaz The jump can be
treated as Gaussian noise if it is very small compared to the
value of %, i.e.

AX »2 » o1

L L(Zta?) 2143

so the size of jumps relative to X are of the order of %/ a?
and can be safely treated as Gaussian noise if a? is much
larger than the typical value of . 3 is at most of the order of
1/ 2y so the limit derived above makes sense. If ya? /1 is very
large, the fluctuations in X should be small, rendering the Van
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Kampen approximation precise. This is seen to be the case in
the lower left panel of figure 3.2, where the distribution of
% is narrow and the system size is large (ya?/n = 10000),
leading to a good agreement of the simulations with the Van
Kampen approximation. In the lower right panel, the Van
Kampen also fairs very well, but there the system size is 1. In
the derivation above, however, I have used n/y as an upper
bound on values of X. As can be glanced from the histogram
in the lower right of figure 3.2, the typical value of ¥ is around
0.05, due to the high firing rate. So the actual system size as
argued above would be of &~ 50, making the Van Kampen ap-
proximation justified.

Prediction Error

What if I wanted to predict the value of the stimulus X at a fu-
ture time, for which I have no spike train information? In the
absence of spikes the optimal MMSE estimator is given by the
evolution of the mean and covariance with dN™(t) = 0, and
one would have the predictive probability P(X (t + 6 )|{N]}),
with & > 0. Here I am assuming the spikes are only observed
up to time t, and I am trying to infer X at some future time
t + 6. The mean squared error or prediction error committed
when estimating future values of X in that way is given by

PE;(t) = Ex (nm) [(X(t +8) —u(t +8;{Ng, 1) (X (¢ +8) —u(t +6; {N(Tt}))T] :

' (3.13)
This gives us the matrix MSE when 6 = 0. For 6 > 0 it
gives the prediction error matrix. Given a value of X (t) and
a realisation of the Wiener process W (s) for t <s < t+ 6,
one has

9]
X(t+6)= J eAHY2dW (s) 4+ e 724X (t).
0

Clearly, conditioning on X (t) the above average is only over
the Wiener process between t and ¢ + §. The estimator u(t +

8;{Nfg ;}) isalso given by u(t + 65 {Nfg . }) = e~ (t; (N })

in the absence of spikes. The prediction error matrix will then
be given by

9]
PE5(t) = Ew gun(on) [( f e~ FAHAW (¢ +5) + e A% (£) — P (e))x
0

0]
(J e_(5_”)AHdW(t+u)-|—e_5AX(t)—e_5A,u(t))T].
0

Since e~ (6—WAL jg non-anticipating and does not depend



on X (t) or N™(t), one has that (see (Gardiner, 2004))

o 9]
e~ CTWAHAW (t +u)
0 0

Ey e~ IAHAW (1 45))T | =

and therefore, changing variables,

19}

. ATl

e AHe™4 ds.
0

PE5(t) = e 94 (t)e 04 + (3.14)

This equation also describes the evolution of the variance of
a linear stochastic processes,” and it shows us that the pre-
diction error is a simple function of the filtering error. This
is also a consequence of the Markov nature of the posterior
probability. Taking a non-Markov prior process would result
in a posterior probability whose parameters could not be de-
scribed by a finite set of ordinary differential equations.

Figure 3.4 shows a comparison between the theoretical re-
sult in equation (3.14) and simulation results for the predic-
tion error. One can see that the prediction error is very well
described by the derived equation.

0.30

— Average prediction error

— Theoretical prediction error

0.25
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‘g/ 015
0.10 |

0.05F
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3.3 A Functional Approach to the MMSE

In section 2.6, I have introduced Gaussian Process regression
as a method of filtering general Gaussian Processes. So far, I
have only considered stochastic processes which are Marko-
vian or can be rendered Markovian by an embedding into a
higher-dimensional stochastic process.® It is easy to adapt
the treatment given in section 2.6 to the case of Poisson pro-
cesses. Say I am given a Gaussian process with zero mean
and covariance function K (s, v) and spike trains from a dense

o
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e—(5—u)AHze—(t+6—u)ATdu

7See (Gardiner, 2004, p.106) for an ex-
ample. This derivation is closely related
to the derivation of the stationary variance
for the OU process therein.

Figure 3.4: The evolution of the average
prediction error 2 (&) is completely deter-
mined by the filtering error 2 (0). The
blue line shows the prediction error ob-
tained from the optimal filter in simula-
tions, whereas the green line shows the
evolution of the prediction error accord-
ing to equation (3.14) with the initial con-
dition given by the average filtering error
obtained in the simulations. The small dis-
crepance between both curves is due to fi-
nite sample size effects.

8 See section 2.1
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population of Gauss-Poisson neurons. Assuming up to time t
there have been M spikes, at times {t;} fired by neurons {n;}
and the tuning centres of the spiking neurons are given by
0= (6., GnM)T, the posterior mean and covariance are

u(t) =k(t,{t;)T(G+a%1)7'0, (3.15)
and

2(t,t) =K(t,t)—k(t, {t;) T (G+a®I)  k(t, {t;}).
(3.16)
Here G; ; = K(t;,t;) and a® is the width of the tuning func-
tions. The covariance of the posterior distribution at two

points is given by

E(s, t) = stttht)

I will call the quantity Z(s, t) the posterior kernel, as it again
defines a GP According to the formalism derived so far the
MMSE for a filtering problem is simply the expected value of
the posterior kernel Z(t) averaged over the distribution of all
possible past observations. Like I have done for the MMSE,
I can look into the dynamics of the posterior kernel Z(s, t).
Defining f; (u,v) = E(t +u,t +v), one has

aft(u,v)_ 2 d
at (8u+8 )ff(” v)-

It is a simple exercise in matrix inversion lemmas to show
that, if a observation is obtained at time t the posterior kernel
will change as

fe-(1,0)f-(0,v)
a? +ft_(0’0) .

Taking the average over all possible observation paths one
obtain the evolution of the average posterior kernel

e s e o

fe(u,v) = f-(u,v) —

Again, I am most interested in the stationary case, so setting
the derivative to zero one obtains

Using the mean-field approximation leads to

) E[f(w,0)|E[f(0,v
(au )E[f( V=4 [a£+13][f([0,(0)] L (3.18)




This is solved by the integral equation

A~

B A
a2+ E|[f(0,0)]

E[f(u,v)] = k(u,v)
(3.19)
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J E[f(s4+u,0)]E[f(0,s+v)]ds,
0

as long as the kernel k(u, v) is stationary, which implies J,k (u,v) =

—0,k(u,v).?

Equation (3.19) allows one to approximate the shape of
the posterior kernel directly from the prior kernel, without
having to resort to the Markovian structure of the process as
we had done before. This is very convenient as it allows one
to treat non-Markovian GP’s such as the one defined by the
squared exponential or Radial Basis Function kernel.!® This
relies on the Mean-field approximation, but it is still a very
pleasing result, as it additionally allows one to estimate the
shape of the entire posterior kernel, not only of the one-time
variance. If one is only interested in the filtering error how-
ever, it suffices to take the function g(u) = E [f (u,0)], where
the filtering error is then given by g(0). For that the equation
simplifies to

N (e}

mfo

One way to solve equation (3.20) is to simply discretise the
real line over some interval [0, D] and iterate equation (3.20)

g(u) =k(u,0)— g(s+u)g(s)ds (3.20)

numerically. I will discuss this approach shortly in appendix A.3.

This is shown in figure 3.5 for the OU kernel ko (s, t) =
exp(—|s—t|/k), for the Matern kernel ko, (s, t) = (1+ /3|t —
s|/k) exp(—+/3|t —s|/k) and the RBF kernel kqps = exp(—|t—
s|2/ 2k2). As one moves towards smoother processes, the
variance of the posterior kernel decreases, and the effect of
the observations becomes more pronounced.

This can be used to study the MMSE of more complex Gaus-
sian processes. The RBF kernel and the associated Gaussian
process have been the subject of great interest, specially in
the Machine Learning community, as the squared exponential
form of it often allows one to simplify a number of expres-
sions in Gaussian averages. Marc Deisenroth, for example,
proposed to use the Gaussian form of the RBF kernel to aver-
age over uncertainty in the input t of the process as well as
in the observation Y.!! However, though it has proven very
useful in ML, the RBF kernel is often criticised for being too
smooth.'? A function f (s) drawn from a GP with an RBF ker-
nel is € °°, leaving little room for randomness in its proper
sense. On the other hand, Huys et al. (2007) have argued
that experimental trajectories of freely moving animals show
an autocorrelation that is compatible with the RBF kernel.
Though it might be a too strong prior to impose on natural

? A stationary kernel is such that k(¢t,v) =
k(llt—vll). If t > v and t > v +d, then
k(t,v+d) = k(t—d,v). Differentiating
with respect to d we obtain the desired re-
sult.

“The SE or RBF kernel is given by
k(t,v) = cexp(—|t—v|?/L?).

" Deisenroth, M. P, Huber, M. E, and
Hanebeck, U. D. (2009). Analytic
moment-based gaussian process filtering.
In Proceedings of the 26th annual inter-
national conference on machine learning,
pages 225-232. ACM

12 Rasmussen, C. E. and Williams, C. K. L.
(2005). Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 1st
edition
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stimuli, the RBF kernel might still be useful to model animal
behaviour, with its longer time dependence.

3.4 Alternative Performance Measures for Estimation

I have chosen to focus on the mean-squared error of an esti-
mation problem as a measure of efficiency of a neural popu-
lation code. This is by no means the only alternative there is.
Many studies in computational neuroscience have focused on
the Fisher information,'® and information-theoretical quanti-
ties such as the entropy or the mutual information of a code.
I will review the motivation and discuss the application of
these tools in the present setting if merited.

Fisher Information

The Fisher information gives an alternative measure to the
amount of information carried by an observation Y about an
unobserved parameter or variable x. The Fisher information
#(x;Y) of Y about x is given by

dlog (P(Y]x))?

dy. 3.21
Ix (3.21)

FZ(x;Y)=| P(Y]x)
Intuitively, the Fisher information tells one how sensitive the
likelihood of an observation is to a change in the unobserved
variable x at that particular value. So, a code that gives a
high Fisher information on average will be very sensitive to
changes in x, allowing for good estimation of x from Y. The
relationship between estimation and the Fisher information

Figure 3.5: The prior and posterior kernels
for the filtering problem for three classes
of GP’s.

13 Ganguli, D. and Simoncelli, E. P (2011).
Implicit encoding of prior probabilities
in optimal neural populations. (Decem-
ber 2010):6-9; Zhang, K. and Sejnowski,
T. T J. (1999). Neuronal tuning: To
sharpen or broaden? Neural Computation,
11(1):75-84; and Brunel, N. and Nadal,
J. (1998). Mutual information, Fisher in-
formation, and population coding. Neural
Computation, 10(7)

14 Schneidman, E., Still, S., Ii, M. J. B.,
and Bialek, W. (2003). Network In-
formation and Connected Correlations.
1(December):3-6; Tkacik, G., Prentice,
J. S., Balasubramanian, V,, and Schneid-
man, E. (2010). Optimal population cod-
ing by noisy spiking neurons. Proceedings
of the National Academy of Sciences of the
United States of America, 107(32):14419-
24; ; and Brunel, N. and Nadal, J.-P
(1997). Optimal tuning curves for neurons
spiking as a poisson process. In ESANN.
Citeseer



can be made rigorous through the Cramér-Rao bound. If one
has an estimator (Y) of x based on observations of Y, the
Cramér-Rao bound states that the variance of that estimator
is bounded by

) ; (1+ ab(xx))z
Eyie[(2(Y)—x)*]> Wam

where b(x) = Ey|,[%(Y)] —x is the bias of the estimator. If
%(Y) is unbiased this simplifies to
1

Eyi [(R(Y)—x)*] 2 oY)

In the multivariate case this becomes a restriction on the positive-
definiteness of the MSE matrix, more precisely, for the unbi-
ased case, one has that for any v it holds that

VIEy [(R(Y) =) R(Y)—x)TJv=vT 2 (x;7) Dy,

(3.22)

which means that the matrix Ey, [ (£(Y) —x)(2(Y)—x) " ]—
#(x;Y)"!is positive semidefinite.

The Cramér-Rao bound can also be extended to a Bayesian
setting, where one is no longer estimating a fixed parame-
ter but a random variable. Considering X a random variable

with distribution P(X ), one obtains the Bayesian Cramér-Rao
Bound (BCRB),

X 1
B[00z E Ty
where
y(x):fdxp(x)(m%im) .

Unlike the Cramér-Rao Bound given in equation (3.22), the
BCRB gives a bound on the performance of a given code in
an environment regardless of the system’s state.

The Fisher information is particularly popular in the neu-
roscience community partly because it has a convenient form
for rate-based models. Suppose one has a Poisson neuron
with some tuning function f (X). The probability of a spike
count r in a time interval of duration T is given by

e TEOT(Tf(X))"
|

r.

P(rix) = , log(P(r|X))=rlog(Tf(X))—Tf(X)—logr!.

This leads to the Fisher information

flx)? _(Tf'(x))?
jPoiss(X;Y) =T = ’
fX) Tf(X)
which is a function of T f (X), the expected number of spikes
for the experiment. In figure 3.6 I have shown the Fisher
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information for a Gaussian tuning function as a function of
X.

One can see why this is of interest for computational neu-
roscientists, as rate-based models are the bread and butter of
spike train analysis. A number of experiments sought to use
the Fisher information as a measure of performance for cod-
ing strategies, such as (Zhang and Sejnowski, 1999; Brunel
and Nadal, 1998) for example. More recently, this line of rea-
soning has been criticised by a number of findings. Matthias
Bethge, for example, argued that the Cramér-Rao bound is
loose in general and only provides a tight bound on the MMSE
of a neural population code in the limit of very long times
and many spikes, rendering it of limited usability.'> For the
dynamic setting I am considering, where the dynamic nature
of the stimulus is central, Fisher information seems to be of
little use. (Yaeli and Meir, 2010) and (Berens et al., 2011)
have compared the MMSE with the Crdmer-Rao bound exten-
sively, coming repeatedly to the conclusion that the Cramer-
Rao bound leads to troubling results, such as the optimal code
not depending on the decoding time available. I will therefore
not spend any further time investigating the Fisher informa-
tion in this thesis.

Mutual Information

The canonical tool to quantify the level of dependence be-
tween two variables in information theory is the mutual infor-
mation. Though the correlation is often preferred, the mutual
information provides the guarantee that it is zero if and only
if the random variables are statistically independent, provid-

Figure 3.6: The Fisher information of a
Gaussian-shaped tuning function. Note
how the information is highest around the
slopes of the tuning function. This ap-
proach puts a higher prize on discrim-
inability, so the highest information is
achieved when the slope of the tuning
function is highest.

1>Bethge, M., Rotermund, D., and
Pawelzik, K. R. (2002). Optimal short-
term population coding: When Fisher
information fails. Neural Computation,
14(10):2317-2351



ing a way of robustly quantifying the level of dependence be-
tween two variables. The mutual information was defined in
chapter 1 as

1(X;Y) = J dXdYP(X,Y)log(%),

which can be readily cast into

P(X|Y)

I(X;Y) = f dXdYP(Y)P(X|Y) 1og(W

which gives the average reduction of entropy in X upon ob-
serving a random value of Y. One advantage of the mutual
information is that it does not make any reference to an es-
timator or a reconstruction procedure, giving us a principled
quantification of the information obtained about one variable
from an observation of the other. The main disadvantage of
the mutual information is that it is much harder to compute
than other quantities, as one is required to estimate the whole
probability distribution of X and Y to do so.

Another important issue one should note, is that the inter-
pretation of the mutual information as an reduction of the
entropy is more problematic in the continuous case. As I had
noted before, the differential entropy can given negative val-
ues, making the last step of the equation above a bit delicate.
Furthermore, the mutual information between two continu-
ous random variables is only defined if their densities are ab-
solutely continuous with respect to each other. In the sense of
probability theory, this means that the mutual information is
only defined if, whenever P(X,Y) > O then P(X)P(Y) > 0.
The probability densities I am considering here are mostly
Gaussian, and therefore positive through their whole domain,
so this will not be an issue in the present case.

More recently, there have also been a number of results
relating the mutual information to the MMSE of estimators.
One of the most surprising results is probably is that for an
additive Gaussian channel, where one is trying to estimate
the value of a random variable X from an observation of Y =
k/2X + N, the following relationship holds

oI(X;Y) 1 .
S = g MMSE(X(Y)).
This holds regardless of the distribution of the random vari-
able X. This is one of the so-called I-MMSE relations, which
have been a very popular area of study in the field of infor-
mation theory recently.'®

For the dense Gauss-Poisson populations under considera-
tion one can evaluate the mutual information readily. Assume
that at time 0, knowledge of the system’s state X is given by

79

) — By [H(X)—H(XIY)],

6 Guo, D., Shamai, S., and Verduy, S.
(2005). Mutual information and minimum
mean-square error in gaussian channels.
Information Theory, IEEE Transactions on,
51(4):1261-1282; and Merhav, N. (2011).
Optimum estimation via gradients of parti-
tion functions and information measures:
a statistical-mechanical perspective. In-
formation Theory, IEEE Transactions on,
57(6):3887-3898
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some normal distribution Py(X ). One can then easily evaluate
the mutual information of the system’s state at time ¢, X (t)
and the spike train up to time t, N,... To that end, one needs
only to note that the marginal P(X (t)) is given by a Gaussian
with moments evolving according to equation (2.19), which
I will denote as u°(t) and %°(t). The posterior distribution
is given simply by the solution of the filtering equations for
the problem. The distributions are given by

P(X(t)) :‘/V(nu'o(t)’zo(t))’ andP(X(t)lNO:t) :‘/V(M(t;NO:t):Z(t;NO:t))J
and therefore
I(X(t); Ny,,) = 10g|Z°(t)| — En,, [log|=(; No.,)] -

Here again, one is faced with an average over P(%, t), this
time of the logarithm of the determinant of %(t). In the
mean-field approximation, this will give simply the logarithm
of the determinant of the matrix e(t). I will show in chapter 5
that the mutual information leads to the same optimal codes
as the MMSE for the OU process.



4

Optimal Control with Point Process Observations

CLEARLY THE NERVOUS SYSTEM IS NOT SOLELY INTERESTED
IN ESTIMATING THE STATE OF THE WORLD. Furthermore, if

that estimate is not useful for making decisions and taking

actions in a dynamic environment, there is little use for it.

In the previous chapter I have discussed findings for spiking

codes in an estimation context. In this chapter I will extend

this approach to the framework of stochastic optimal control,

and discuss how to reframe the findings in this context.

The field of optimal control has been of growing interest
to the neuroscience community, but little attention has been
given to the issue of optimal coding in a control context. Here
I will study a simple case of linear quadratic control observed
through a dense population of Gauss-Poisson neurons, for
which I have been able to derive a closed-form expression for
the optimal cost-to-go. This allows one to study the expected
control cost in an experiment as a function of the encoder,
similarly to what I have done with the MMSE in the previous
chapters. Furthermore, in chapter 5 I will compare these two
approaches, showing that in a couple of simple examples, the
control-optimal and the MMSE-optimal encoders differ signif-
icantly.

4.1 Optimal Control

The field of control theory is concerned with the steering and
controlling of systems, always with the minimization of a cost
(or maximization of a reward) in mind. Speaking mathemat-
ically, given a system with state X (t) € &, with dynamics
given by

X(t) = f(X(t),u(r)), X(0)=xg

one would like to select the control variables U(t) € % in
such a way as to minimize an integrated cost function over
time!

! This is an additive cost function, which is
itself only a specific kind of control prob-
lem. Generally one can also consider more
complex cost functions as well, that de-
pend on the minimum or maximum of the
state or multiplicative cost functions.
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T

C (X0 Up) = f (X(5), U(s),s)ds + h(X ().

Here c(x,u, t) specifies a cost rate accumulated over time and
h(x) describes some final goal the system should achieve at
the end of the control problem.

In a purely deterministic setting, the solution to the con-
trol problem would be a policy U* : & x R — % which for
each system state and time gives a control to be applied to the

system when it is in that state at that time. One would have The minimum of the future cost over the
space of controls is called the value func-
min C (X, Unie, 05 %0) = C (Xo:0, U (X0),0) =V (x0,0), om0
0:T

where V(x,t) is usually called the optimal cost-to-go func-
tion or the value function. V(x,t) quantifies the cost one is
expected to incur if he controls the system optimally through
the remainder of the control problem, given that the system
is at state X (t) = x at time t.

This is a very broad formulation, but one general remark

can be made, though, first put forward by Richard Bellman.? >Bellman, R. (1952). On the theory of
Bellman proposed an optimality principle, which stated that  dynamic programming. Proceedings of the
. . . . . . National Academy of Sciences of the United
if a given policy is an optimal solution to a control problem, States of America, 38(8):716

then the policy resulting after a number of steps of that pol- Bellman’s principle of optimality

icy must still be optimal for the remaining control problem as
well. This can be formulated as a mathematical equation, the
so-called Bellman equation or dynamic programming equa-
tion, which states that the minimal future cost in state X (t)
at time t is given by the minimum over U (t) of the instanta-
neous cost plus the minimal future cost at the resulting future
state X (t + dt). Mathematically, we have

V(X(t),t)= 151(15)1 [c(X(t),U(t),t)dt+V(X(t+dt),t+dt)].

4.1)
Note that in general, X (¢t + dt) will depend on U (t), making
the solution of the Bellman equation difficult.
In continuous time, assuming differentiability of the value
function V in both its, one obtains

V(X(t),t) = min[c(X(t),U(t), Ode + VX (0),6)+ Lde+ a—VdX(t)],

U(t) at ox
which leads to the Hamilton-Jacobi-Bellman equation I will abbreviate the Hamilton-Jacobi-
Bellman equation as HJB equation.
av v
——— =min|c(x,U(t),t)+ =—f (x,U(t)) |.
S = min| (. U(0),0) + 51 (1, U(0)|

This is often more convenient to solve, as it sometimes allows
for explicit minimisation over the control. The HJB equa-
tion must be solved backwards in time, with final condition
V(x,T)=h(x).



Estimation and the Separation Principle

In the previous two chapters, I have considered the problem
of filtering a stochastic process from spike trains. More specif-
ically, given a signal, I was looking for the optimal set of pa-
rameters ¢™* for a population of neurons that minimise the
MMSE of the filtering problem. Here I would like to establish
a similar approach to control problems. That is, in the same
sense of before, I have a noisy system observed through spike
trains of a population of neurons specified by some param-
eters ¢, but now I am concerned with controlling this noisy
system. Given a cost function, I would like to determine the
parameters ¢* that minimise the control costs, instead of the
filtering error. If one is interested in controlling a system,
say a limb performing a movement, one must now deal with
the uncertainties in the system and control it according to
noisy estimates of its state. The certainty equivalence prop-
erty (CEP) holds if a system one only has partial information
about can be controlled ignoring the uncertainty in its state
and acting as if it were fully observed. I will elaborate below.
Consider a deterministic system

X =f(X(t),U(r)),

where I have only partial knowledge about the system’s state
through an initial distribution Py(x) and noisy observations
Y (t) of the system’s state. If the certainty equivalence prop-
erty holds for this system, the optimal control for the partially-
observed system, will be the optimal policy of the fully ob-
served problem applied to the mean estimate of the system’s
state. To be more precise, let me define the cost for the partially-
observed system as

T

C (P, Yo.1,U,0) :J E[c(X(s),U(s),s) | Yo.5, Po] ds +E [M(X(T)) | Yo.1, Po] -

The optimal control U* will now be a function of the obser-
vations Y., up to time t and the initial distribution P,. If
the optimal control for the fully-observed system is given by
U* (x,t), the certainty equivalence property holds if the op-

b
timal control for the partially observable process is given by

U;art(YO:t’PO’ t) = U:bs (E [X(t) | YO:t:PO] > t) .
This means that the uncertainty in the system’s state can be
treated in two independent steps, first estimating the system’s
state through the posterior mean and then applying the con-
trol as if our estimate of the state was certain. Hence the name
certainty equivalence, as one applies the control as if they
were certain about the system’s state. The separation prop-
erty is also frequently discussed in the literature, and it is a
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stronger version of the certainty equivalence property, where
the control U, (x,t) being employed does not need to be
the optimal policy for the fully observed problem, but can be
related to some other control problem with full informations.

One can now ask what is the encoder that minimises the ex-
pected control costs. It is tempting to conclude from the CEP
that the encoder that minimises the MMSE also minimises
the control costs. This is not true, however, as I will show
in chapter 5. I will now consider the case of stochastic opti-
mal control, and then turn to the case of partially-observable
stochastic optimal control. This can be treated for the case of
dense Gauss-Poisson observations, and I will derive a novel
relation for the optimal cost-to-go for that case.

4.2 Stochastic Optimal Control

The world is a noisy place, and if to control real-world sys-
tems, one must be able to account for noise in the systems as
well. One simple way to include noise is to generalise the sys-
tem dynamics to a stochastic differential equation. Consider

dX(t) = f(x(t),U(t))dt +HY2dW(t),

where W (t) is a standard Wiener process. It is not possible to
predict the evolution of X (t) exactly anymore, so one must
redefine the cost function. The natural way to do so is to
define it as the average over future states conditioned on the
current state X (t) and the controls to be applied U(t). This
will lead to

C(X,U)=E UTc(X(t),U(t), t)dt X(O),Uo:T].

One should mention that there are other ways to deal with the
stochastic nature of the problem,® such as the risk-sensitive
control approach, where one considers the cost function

3 Whittle, P (1981). Risk-sensitive lin-
ear/quadratic/gaussian control. Advances
in Applied Probability, pages 764-777

Co(X,U) = %ng |:exp (—9 U c(X (), U(1), t)dt +h(X(T)))ﬂ .
0

In the limit 6 — 0 one recovers the former formalism. This
allows one to consider risk-averse or risk-seeking control poli-
cies. I will not, however, consider this approach here.

The Bellman equation can then be extended to the stochas-
tic case as

V(x,t) =minE [c (X (t),U(t),t)dt +V (X (t +dt),t +dt) | X(t) =x,Upep1]-

U(t)
4.2)
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Using Ito’s lemma for the variation of V, and averaging over
the Brownian motion dW (t) leads to

V(x,t)= Illjl(ig[c(x,U(t), t)dt+V (x,t)+ (aa—‘;dt —i—f(x,U(t))Tg—‘; + %Tr[H%:Ddt].

This leads to the stochastic HJB equation

ov. 1 o%v A%

——— = =Tr|H—— |+ mi — .

Pyl r[ 8x2] ngn[c(x,u,t)—kf(x,u) 8x]
(4.3)

One could also consider a Poisson process as a noise source.
If one takes, for example, a Poisson counting process N(t),
with time- and/or state-dependent rate A(X (t), t), and takes
the system dynamics to be given by a drift-diffusion process
with state-dependent jumps j(X(t),t), occurring with rate
A(X(t),t) then the SDE for the state would be,

dXx(t) = f(X(t),U(t))dt + HY2dW (t) 4+ j(X (t), t)dN(t).

This would lead to the full HJB equation for a drift-jump-
diffusion process controlled by some control process U (t)

ov A o%v
—— =min|c(x,u,t)+ f(x,u) — +=Tr| H—— |+ A(x,t) |V(x+j(x,t),t)=V(x,t)| ],
= min | c(x,u,6) £ (6w)T 5o 2T Ho— [+ 206,6) [V (x + (0,0 =V (x,)]
4.4
now including the terms regarding the jump process.* Note “Theodorou, E. and Todorov, E. (2012).
that the statistics of the posterior distribution of the filter- Stochastic optimal control for nonlinear
. . . . L. markov jump diffusion processes. Amer-
ing problem from the previous chapters fit this description, ican Control Conference (ACC), 2012; and

namely they are a jump-drift processes with no diffusion. I Sennewald, K. and Wilde, K. (2006). "Tto’s
: . . . . : Lemma" and the Bellman equation for
will use this formalism to derive a belief state formulation of . . o
. ‘ A Poisson processes: An applied view. Jour-
a control problem with dense Gauss-Poisson observations. nal of Economics, 89(1):1-36

Linear-Quadratic-Gaussian Control

The Linear-Quadratic-Gaussian® control problem is defined S1QG
by linear dynamics in both the state and the control variable,

a quadratic cost rate function c in both the state and control

and a Gaussian noise source. I will treat this problem here

to illustrate the optimal control formalism. This would mean

that the evolution of the state is given by the SDE

dx(t) = (AX(t) +BU(t))dt + HY2dw(t),  (4.5)
where W (t) is a Wiener process. Taking a cost rate given by
c(X(t),U(t),t) =U(t) "R()U(t) +X (1) TQ(e)X (1),

and a final cost given by h(X(T)) = X (T)TQ¢X(T), one can
solve for the value function explicitly, using the HJB equation.
The HJB equation in this case will be given by

T 2
St = v ROUO +xTex 5 st + ()]
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One can minimize the right hand side explicitly and eliminate
U from the equation. One obtains that the optimal control is
given by

X,t°

i 1 A%
U*(x,t) = —R(0) BT o

Inserting into the HJB equation once more leads to

dx

(4.6)
It can be shown that V can only have a quadratic dependence
in X, since at the final time the cost is given by h(X (N )) which
is quadratic, and the HJB equation will preserve this property.
I will assume it is of the form V (x,t) = x ' S(t)x 4+ a(t) "x +
k(t). Inserting this into equation (4.6) gives the ODE’s for the
parameters of the value function

—$=Q(t) +ATS(t) +S(t)A—S(t)BR(t)'BS(t),
—a=ATa(t)—S(t)BR(t) BT a(t),

—k =Tr(HS(t))—a(t)"BR(t)"'B a(t),

with the terminal conditions S(T) = Qr, a(T) = 0 and
k(T) = 0. The X-independent term k(t) accounts for the
future uncertainty in X, decreasing to O over time as we ap-
proach the final time T. Furthermore, the differential equa-
tion for S(t) is a special case of the Riccati equation. The full
optimal control for the LQG control problem will therefore be
given by
U*(x,t) =—R(t)"'BTS(t)x.

These results can also be extended to the case of control-
and state-dependent diffusion noise, affine dynamics and some
other cases.®

4.3 Partially Observable Processes

In general, one does not have access to the exact state of the
system, and it is useful to consider cases where one is only
given noisy observations of the state, as were considered in
the previous chapters. The most commonly considered case
of partially observable control problem is a LQG problem ob-
served through a second diffusion process. Suppose one has
as above a system X (t) evolving according to equation (4.5),
but instead of observing X (t) directly, one observes the pro-
cess Y (t), which I shall call the observation process, given by

dy (t) = CX(t)dt +DY2dv (t). 4.7)

Given a control trajectory {U(s),s € [0, t]}, the problem of
estimating X (t) given observations Y (s),s € [0, t], is a simple

T A o%v
—_— = i - g 4 1| H=—
x'Q(t)x+ Ax BR(t)™'B + (H 2)

¢ Kappen, H. (2011). Optimal control the-
ory and the linear Bellman equation. In
Barber, D., Cemgil, A. T., and Chiappa, S.,
editors, Bayesian Time Series Models, chap-
ter 1, pages 1-31. Cambridge university
press, Cambridge, 1st edition
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filtering problem, and is solved exactly by the Kalman-Bucy
filter.” It will lead to a Gaussian estimate of X (t) with mean 7 See chapter 2.
u(t) and variance %(t), where u and ¥ evolve according to

du(t) = (Au(t) +BU(t))dt +Z(t)C'D7 (dY (¢t) — Cu(t)dt),
(4.8a)
and

dx

o =A%+ A" +H-2C'D7ICE. (4.8b)
Since in this case we do not have perfect information on the
process to be controlled, we have to settle for the goal of min-
imizing the expected cost given our observation. Therefore,
the cost to be minimized is

C(Uo:r; Mo» To) = E U c(X(¢),U(t),t)dt +h(X(t)) |,

to

where the average is over all future paths of X(t) and all

observation paths Y (t). There is no analogous to the HJB

equation for the incomplete information case, but I will re-

formulate the problem as a control problem over the belief

states, that is, the state of the world as one is led to believe

it is distributed given the previous observations. In the case I The belief state is a description of an sys-
am discussing, the belief state is the distribution over the state ;‘Z‘C‘;levvvv‘;hde‘S“fsggle:ielzfgﬁa;zz Z)tht‘g;
variable, given by the Gaussian distribution A (u(t),=(t)). system, instead defcribmg the distribution
The dynamics of the belief state is then given by equations over states. A general formulation is de-
equation (4.8a) and equation (4.8b). Note that when one seribed in (Bertsekas, 2012).

chooses to describe the system in terms of the mean and vari-

ance of the posterior distribution, the noise process dW (t)

does not enter into the analysis anymore, and the observa-

tion process dY (t) takes the role of the noise process. We

need, however, to redefine the cost function ¢ (X (t),U(t),t)

to fully specify the problem. The average cost is

E[c(X(£),U(t),t)|u(t), ()] = U(t) TR(EOU(t) +(u(t) TQ(E)u(t) + Tr (Q(£)%(¢))),

from which one can define a belief-state cost rate, which makes
no mention of the underlying unobservable process

¢(uT,0,6) = U(t) 'R()U () +p(0) TQ(0)u(t) +Tr (Q(6)Z(t)).

One can now write the HJB equation for the system described
by equation (4.8), leading to

V(u(e), 2(0),t) =
minE [U(6) R(OU(6) + (a(0) QUOw(E) + T (Q(O)B()) +V (1(e +de), e+ di) )

where the expectation is now with respect to the observation
process Y (t). Taking the variation of V with infinitesimal
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time increments via Ito’s lemma one has

oV ov'’ ov 1 il
dV:—dt Z— du+T —dE ~Tr| (zc'D7lCcm);

which leads to the HJB equation

_85_‘,5: minUu)E[ (6)TR(E)U(t) +u(t) TQ(t)u(t) + Tr (Q(t )Z(t))+g—ZdMT:|

+Tr[Z5dn]+ 3T [ (¢TD1Cx),; 5% .

—1BT5_V

Minimization with respect to U(t) leads to U*(t) = —R(t) I

which results in

_ov _
ot

Q)

uTQ(t)u+ 42 BR <>1BT"’V+Tr< Q(6)=(1)) + 8¥d
+ [ Zdz]+ 11| (2cTDlen); 28] 49

This would now have to be solved backwards from V (u, %, T) =
u'Qru -+ Tr[ZQy]. Equation (4.9) provides a clean formula-
tion of the control problem in terms of the belief state, where
the underlying process has been integrated over completely.
This is a very useful approach and I will leverage it for the
case of Point processes observations below. If I write the value
function as V (u, %, t) = u' S(t)u+ f (%, t), [ will obtain the
same Riccati equation for S(t) as in the fully observed case.
Using this form for the value function, one immediately re-
covers the optimal control U*(t) = —R~!(t)BTS(t)u, which
shows the certainty equivalence property for this system.

4.4  Partially Observable Processes with Poisson Observations

Similarly to the case just discussed, we can consider the case
of a stochastic system observed through a population of densely
tuned Poisson processes with Gaussian tuning functions. The
dynamics of the system would be the same as equation (4.5),
but the observation processes would be given by a set of M
Poisson processes N with rates given by

A(X(1)) = Aexp| 3 (On =X (0)TE'(6,-X (0)) ],
(4.10)
where the tuning centres 0,, are positioned in such a way that
the overall firing rate of the population A = > A™(X (t)) is
independent of the system’s state X (t). As we have shown
in chapter 2, the estimation problem is solved by the point-
process analog of the Kalman-Bucy filter, first derived by Don-

ald Snyder.® In the present case, with Gaussian tuning func- ® Snyder, D. L. (1972). Filtering and de-
tection for doubly stochastic Poisson pro-
cesses. IEEE Transactions on Information
Theory, 18(1):91-102; and Bobrowski, O.,
Meir, R., and Eldar, Y. C. (2009). Bayesian
filtering in spiking neural networks: noise,
adaptation, and multisensory integration.
Neural computation, 21(5):1277-320
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tions, the filtering equations are

du(t) = (Au(t) +B <>>dt
+ [ (T +ES() T ET(6,—u(c)) [dNi()
(4.11a)
and
dz(t) = (AZ(t) + =(0)AT + H) de

— [B()E=() (1 +E2(c7)) 7 |dN(G4.11b)
where dN (t) = Y, dN™(t). I will define

ou(t) = (Au(t) +BX(t))dt

as the continuous part of du(t) and
Alp(t) = dN'(6) [S() (T+E'S () BN (0 — (1)) ]
as the jump part of du(t). Likewise, for the variance, define
5%(t) = (AZ(t) + Z(t)AT + H)dt

and
AZ(t) =dN(0) [2()ER(c) (T+ET2(c0) 7 .

These give the evolution of the optimal Bayesian filter, with
the posterior distribution over X (t) conditioned on the obser-
vations {N™(s),m € [1,...,M],s € [ty, t|}, given by the nor-
mal distribution A (X (t);u(t),E(t)). Assuming one is try-
ing to minimize a cost given by the same costrate ¢(X (t), U(t), t)
as before, one canwrite out the infinitesimal Bellman equa-
tion for this case as well. Since the dynamics of the system
and the observations is Markov, I can use the posterior dis-
tribution as a sufficient statistic for the knowledge of the sys-
tem’s state. I will therefore take the belief state to be the mean
and variance of the posterior distribution as before.” Sim- ? See (Bertsekas, 2012) for a more detailed
ilarly to the previous sections, I will consider the processes discussion.
N™(s),s < t as noise to be averaged over in the future. This
leads to

Vu(t),n(t),t) = I‘Jl(ltr)l {Ex(o) [c(X(£),U(t),t)] + Eqym(ey [V(u(t +dt),S(t +dt), t +dt)]}

According to It0’s lemma, one obtains
V(u(t+dt), =(t +dt), t +dt) = V(u(t),5(t), t) + Srdt + Shou(t) + Tr[ $56%(t) ]
+57 anm(e) [V (u(e) + Am(e), B(e) + AX(e), )V (u(e), 5(e), )]



90 ALEX KUNZE SUSEMIHL

The expectation over the noise process N™(t) in the Bellman
equation can then be written as

E(Verae)nm(e) = V() + Grde + Grou(t) + e[ 5565(e) ]
+2 ., Enn(e [AN™(6) [V (u(t) + A™u(t), 5(6) + A%(t), £) =V (u(¢), 5(¢), 1)]

V(e)+ de+ 8L su(r) + e[ o3 ]
+Z Ex (o) [A"(X ()] [V (u(t) +AMu(t), B(t) + A%(t), t) =V (u(t), 2(t), t)],

leading to the HJB equation

- = p QB+ Tr (Q(0)T) + (U(6)) TR(0)U (1) + S5 5,u+Tr[3262] (4.12)
+ 2m Ex (o) ATX ()] [V (u(t) + A™u(t), Z(t) + A%(t), £) =V (u(t), B(¢), t)].

Minimisation with respect to the control, gives us the optimal
control policy

TV

U*(t) =—R(t)"'B :
Ol | u—p(e),2=2(¢)

This yields
—85—‘22 uTQ(u+Tr(Q(1)x) — g—g BR(1)'BTSL + Zay 4.13)
+Tf[g—;52] + 3 Ex (o) AN X ()] [V (1(e) + A™u(t), £(t) + AZ(t), £) =V (u(t), £(t), )] -

It can be shown that the optimal cost-to-go function is of form
V(u,%,t) = u'S(t)u+ f(%,t), since it is of this form at
the final time T because of the final cost h(x) = x 'Qpx. I
can now write down the equations for S(t) and f (%, t). The
equation for S(t) is the same as for the LQG case

—$(t) =Q(t)—S(t)BR(t)'BTS(t) +S(t)A+ATS(t).

(4.14)
The equation for f (%, t) can be shown to be'® 10 See appendix A.4.
o} 5} A —
_a_fz :Tr(Q(t)Zl)—i—a—;(AZ}+ZAT+H)+A[f(Z+AZ,t)—f(ZI,t) +Tr(zs(n)=(s+E)7)].
(4.15)

Equation (4.15) gives the contribution of the uncertainty of
the estimate to the future costs. This allows one to quantify
the effect of our encoder on the control costs. In chapter 5 I
will use f to determine the optimal encoding strategies for a
simple control problem. Equation (4.15) can be shown to be
solved by

f(Z,t):Tr(Z(t)S(t))qu Tr(HS(u))du—i—f Tr(S(u)B"R(u)"'BS(u)E [=(u) | =(¢t) = 2]) du.

t
(4.16)



where the expectation is over all paths of equation (4.11b)
with initial condition ¥(t) = . I provide a derivation of this
result based on the Feynman-Kac formula in appendix A.5.
This equation allows one to separate the different ways in
which the uncertainty affects the expected future cost. The
first term accounts for the uncertainty in the present estimate
of the system’s state. The second term is due to the stochastic
nature of the stimulus X (t), and describes the accumulation
of uncertainty due to the Brownian noise in that process. The
third term accounts for the effect of the uncertainty on the
applied control. If one is uncertain of the system’s state, the
control applied will not be exactly the optimal for the sys-
tem’s state, and additional costs will be incurred because of
that. The third term is also the only one that depends on the
parameters of the encoder, more specifically it depends on
the future dynamics of the posterior covariance X(t), which
in turn depends on the firing rates and the tuning widths. A
similar relation can be derived for the LQG case as well,*! but
the full result for the partially observable control with Point
process observations is novel.

From the derivation above, it follows that the optimal con-
trol is again given by

U*(¢) = —R(1) 'BTS(0)u(t),

showing that the certainty equivalence property holds in this
case as well. I will discuss these issues further in section 5.4.

The finding that the certainty equivalence property holds in
this simple set up, along with the exact expression for the opti-
mal cost-to-go has not been shown in the literature to the best
of my knowledge, and I believe it to provide a good starting
point for the study of optimal codes in a control-theoretical
setting.
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1 See (Astrom, 2006, p. 290) for the full
derivation.






5
Optimal Population Coding Revisited

In chapter 1 I have argued that the use of the MMSE in a fil-
tering problem is an appropriate measure for the quality of a
neural encoder in a dynamic setting. In this chapter I will con-
sider a neural population as an encoder, seeking the tuning
functions for that population that minimise the decoding er-
ror. I will focus especially on the case of dense populations of
Gauss-Poisson neurons. For these populations I will consider
the class of linear stochastic processes described in chapter 2
and chapter 3 and investigate the dependence of the MMSE
for those processes on the encoder’s parameters. In the case
of dense populations of Gauss-Poisson neurons I will argue
that it makes the most sense to consider the width of the tun-
ing functions as the central parameter of the encoder. I have
found that for this type of population of neurons there is a fi-
nite optimal tuning width which minimises the MMSE of the
filtering problem.

Following the investigation, I also present an analysis of
dense populations of Gauss-Poisson neurons coding for more
complex stochastic processes, such as bistable processes. In
this setting, the filtering equations cease to be Gaussian, and
one is forced to use approximate filtering to obtain estimates
of the MMSE. I have used both the ADF approach with a Gaus-
sian density and a simple particle filter and show results for
both cases, which also show that a finite tuning width min-
imises the MMSE.

Finally, I will discuss some results comparing optimal popu-
lation codes for filtering and control. In a set of examples, the
optimal encoders for an estimation and the associated control
problem are different. This is the first result of this kind to the
best of my knowledge.

There has been a lot of interest in the relation between the
coding mechanisms in sensory systems and the statistics of
the natural environment these systems operate in. A number
of studies have shown that one can obtain coding strategies
similar to the ones employed by sensory systems as optimal
codes for a natural ensemble of stimuli. For example, by op-
timising linear filters for reconstruction of naturalistic visual
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stimuli under sparsity constraints, Olshausen and Field have
obtained a set of filters which resemble the receptive fields
of V1 pyramidal neurons.! Though the analysis presented
here is somewhat simplistic, I believe it provides a solid foun-
dation for similar studies of reconstruction-based analysis of
optimal codes. Similar approaches have been used in the lit-
erature, but there the focus was usually on static stimuli.?
A notable exception is the work of (Bobrowski et al., 2009),
where a formalism of full-spike train decoding was presented
for finite-state dynamic systems. In a certain sense, this work
is an extension thereof to the case of continuous stimuli in
continuous time. The present approach also makes the study
of control problems a natural extension. The issue of optimal
coding for control problems has been widely overlooked, and
this approach is novel to the best of my knowledge.

5.1 Filtering through Point Processes and Optimal Codes

Though I have introduced the general picture in chapter 2,
I will shortly contextualise the framework again. I am inter-
ested in modelling a cortical area which is observing spike
trains from a population of upstream neurons N(t), whose
rates depend on a stochastic process X (t) through tuning
functions A!(x). The objective is to estimate the state X (t)
from the observations N (t) = {N'(t)} as precisely as possi-
ble. Furthermore, I am interested in finding the set of tuning
functions A/ (x) driving the observation processes that min-
imise the MMSE of the estimator X (N..). I will denote the
parameters of the encoder by ¢.> The optimal encoder is the
encoder that minimises the MMSE, which is given by the set
of parameters ¢*, such that

! Olshausen, B. A. and Field, D. J. (1996).
Natural image statistics and efficient cod-
ing. Network, 7(2):333-339; and Cadieu,
C. E and Olshausen, B. A. (2008). Learning
Transformational Invariants from Natural
Movies. In Advances in Neural Information
Processing Systems 21, pages 1-8

2Berens, B, Ecker, A. S., Cotton, R. J,,
Ma, W. J., Bethge, M., and Tolias, A. S.
(2012). A fast and simple population code
for orientation in primate v1. The Jour-
nal of Neuroscience, 32(31):10618-10626;
and Yaeli, S. and Meir, R. (2010). Error-
based analysis of optimal tuning functions
explains phenomena observed in sensory
neurons. Frontiers in computational neuro-
science, 4(October):16

3In the case of a population of Gauss-
Poisson neurons, the parameters are given

" =argmin, E[Tr[ (X (£) =X (No)) (X (6) £ (Ng:)) ] X. N, ¢ ]

= argmin,, Tr [e(¢)] .

Note that differently from chapter 3 I am considering the trace
of the MMSE matrix here. This is done to obtain a scalar mea-
sure of the quality of a multidimensional estimation problem.
The trace gives the sum of the eigenvalues of the MMSE ma-
trix, providing a practical measure of how far from the true
value the estimator is on average. In the second line I have
also dropped the time dependence as I will be mostly consid-
ering stationary results for the MMSE.

Optimal Codes for Control

In chapter 4 I have introduced the formalism of stochastic op-
timal control and shown how to extend it to deal with point
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Figure 5.1: Optimal coding for filtering
Problems: The leftmost column shows the
tuning curves of the neurons in the pop-
ulation. Meanwhile, the middle column
shows the general setup of the filtering
scheme for each population for the same
stochastic process. Note the different situ-
ations for narrow and broad tuning curves.
The rightmost plot shows the MMSE as a
function of the tuning width a.
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process observations. In a similar way as one can define an
optimal encoder for a filtering problem, one can define an op-
timal encoder for a control problem. Given a control problem
with a cost function

T

C(No,r)»Upo,r]) = E [J c(X(t),U(No,))dt N |,
0

one can define the optimal encoder to be the one with param-
eters ¢™* given by

o' = argmin¢ C(N[O’T}, Ujo, 115 ®).

This can lead to different results than the filtering framework
as I will show below.*

Dense Gauss-Poisson Populations

In this chapter I will mostly discuss results regarding dense
populations of Gauss-Poisson neurons. So, unless otherwise
noted, I am discussing a population of Poisson neurons with
tuning functions A™(x) given by

A™(x) = ¢pexp [—%(x—@m)TE"L(x—Gm)]. (5.1)

When the stimulus is one-dimensional, I will denote the co-
variance of the tuning function by a instead of E.

The dense coding property holds if the overall firing rate of
the population A = >, A!(x) is independent of the stimulus
x. I will refer to a population of Poisson neurons with Gauss
tuning functions such that the dense coding property holds as
a dense population of Gauss-Poisson neurons.

5.2 Filtering Linear Stochastic Processes through dense Gauss-
Poisson Spike Trains

Consider a linear stochastic process of the type
dX (t) = AX(t) + H2dw (t).

Though this may seem as a somewhat restrictive choice, a
number of processes can be cast into this format. The sim-
ple Ornstein-Uhlenbeck process, which I considered in pre-
vious chapters is one example, but generalisations to higher
dimensions are relatively simple and include, for example,
the stochastic damped oscillator. The matrices

0 1 0 0
A—(_wz —2}/)’andH_(O n),

4Susemihl, A., Meir, R., and Opper, M.
(2014). Optimal Population Codes for
Control and Estimation. ArXiv e-prints



will lead to a stochastic process with a periodic component,
more precisely the stochastic damped oscillator given by the
system of SDE’s
X(t)=V(t), dV(t)=—2yV(t)dt—w?X(t)dt+ndW(t).
I have here written a pre factor of 2 to the damping coeffi-
cient, so that the choice y = w leads to the critically damped
stochastic oscillator. This is an example of embedding a non-
Markov one-dimensional process in a higher-dimensional space
to recover the Markov property, as described in section 2.1.
In figure 5.2 a few examples of linear stochastic systems are
shown, with a couple of random samples of each per plot.
Although the focus here is on stationary stochastic processes,
this is by no means a necessity for the analysis at hand. Even
for non-stationary processes such as the Wiener process, the
posterior density can be stationary, allowing us to evaluate
the stationary MMSE.

Linear Stochastic Processes
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The MMSE €(t) can be obtained from the formalism de-
rived in chapter 3. Throughout this section I will use both
the numerical solution of the evolution equations for €(t) as
well as the mean-field approximation to it.

Let me start with the simplest stationary stochastic process,
the Ornstein-Uhlenbeck process given by

dX (t) = —yX (t)dt +n/2dw(t),
where the exact evolution of the MMSE is given by

de(t)
dt

A 52
= —2ve(t —AE .
rel)+n 8|
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The Wiener process W(t), for example,
has a covariance that increases linearly
with time.

Figure 5.2: Linear stochastic processes:
From the top left, we have the one-
dimensional Ornstein-Uhlenbeck process,
an underdamped stochastic oscillator,
a critically damped stochastic oscillator
(bottom left), and an over damped
stochastic oscillator.
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I will not consider the temporal evolution of the MMSE, in-
stead I will focus on the stationary value of the MMSE, and
therefore on the long-term performance of the encoder in the
filtering problem, rather than focusing on the transient, short-
time behaviour. I am mostly interested in the dependence of
the optimal encoder in the statistical structure of the stimulus,
i.e. the correlation timescales and the noise levels. In a nat-
ural environment, these changes should be generally slower
than the adaptation processes of the sensory apparatus. This
is my main motivation to focus on the stationary regime.

In figure 5.3 the equilibrium MMSE of a dense Gauss-Poisson
population of neurons encoding an OU process is shown. The
dependence on both the maximal firing rate ¢ and the tuning
width a is shown.

MMSE (¢)

MMSE as a function of o

More interestingly, one can now ask how the optimal en-
coder depends on any of the parameters of the problem, such
as the parameter y, for example, which defines the time-scale
of correlations in the OU process.’In figure 5.4 I have plotted
the optimal encoding width a* as a function of y, 1 and ¢. It
is interesting to be able to provide an accurate account of the
dependence of the optimal encoder on the statistical structure
of the environment. The leftmost panel shows the depen-
dence of the optimal tuning width in y. Shorter time-scales
(larger values of y) require a higher frequency of spikes, as
the information conveyed by those spikes becomes irrelevant
more quickly. Thus, holding the maximal firing rate ¢ fixed,
the only way to increase the frequency of spikes is to have
broader tuning functions. Therefore, as y increases, so does
a*. Likewise, a higher noise rate 1) leads to the need for more
spikes to characterise the system’s state, leading to higher val-
ues of a*. Increasing the maximal firing rate ¢ of the neurons,
on the other hand, leads to smaller optimal tuning widths a*.
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Figure 5.3: Comparing Encoders for Fil-
tering: The left hand panel shows a heat
map of the MMSE as a function of the max-
imal firing rate ¢ and the tuning width a.
There is a trade-off between the number
of spikes and the precision of the spikes,
manifesting itself in a finite tuning width
that minimises the the MMSE. For any
a increasing the firing rate ¢ simply de-
creases the MMSE. The right panel shows
the dependence in a for a few values of ¢.

®Remember that the prior kernel of
the OU process is given by k(s,t) =

Lexp(—1).
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Stochastic Harmonic Oscillator

A natural extension to consider is the same setup but with the
stimulus given by the stochastic harmonic oscillator presented
above. Here I will consider a population of neurons whose
firing rate depends only on the position of the oscillator, not
on the velocity. This would be equivalent to taking the tuning

matrix
E— a? o0
L0 0)

leading to the same form of the tuning functions as before.
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Figure 5.4: Ecological Dependence of the
Optimal tuning width for a dense popu-
lation of Gauss-Poisson neurons encoding
the state of an OU process. Increasing the
timescale of the correlations 1/2y leads to
smaller optimal tuning widths, this can be
seen in (a). (b) An increase in the noise
rate of the process leads to larger optimal
tuning widths, as an increase in the vari-
ance of the process requires more obser-
vations to characterise it. (c¢) The maxi-
mal firing rate of each neurons ¢ sets the
tradeoff between frequency and precision
of the observations. A higher firing rate,
tilts the tradeoff towards more precise ob-
servations, leading to smaller optimal tun-
ing widths.
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The results are very similar to the OU case, regardless of
the smoother nature of the process considered. In figure 5.5
the MMSE for a dense Gauss-Poisson population coding for a
stochastic oscillator is shown. Likewise, figure 5.6 presents
the dependence of the optimal tuning width on the parame-

1.0 1.5 2.0

Figure 5.5: Comparing Encoders for Fil-
tering: The left hand panel shows a heat
map of the MMSE as a function of the max-
imal firing rate ¢ and the tuning width a.
There is a trade-off between the number
of spikes and the precision of the spikes,
manifesting itself in a finite tuning width
that minimises the the MMSE. For any
a increasing the firing rate ¢ simply de-
creases the MMSE. The right panel shows
the dependence in a for a few values of ¢.
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ters of the encoder and the environment. There are three pa-
rameters determining the dynamics of the environment, the
frequency w, the damping y and the noise rate 0, and I have
presented the dependence of the optimal tuning width on all
three. Interestingly, in figure 5.6 (c), one can note a quite dif-
ferent behaviour for the stochastic oscillator. The case y = 0.5
represents an underdamped oscillator, y = 1 is the critically
damped oscillator and y = 5.0 an over damped oscillator.
First one can note that the dependence of the optimal tun-
ing width on the firing rate ¢ is much less pronounced than
in the OU process. This is to be expected, as the stochastic
oscillator has a smoother structure, and allows one to pre-
dict it from past observations more reliably. It can also be
noted that the effect of increasing the firing rate on the op-
timal tuning width is strongest in the underdamped regime,
which can also be understood by looking at figure 5.2. When
increasing the damping coefficient y, the stochastic variations
in the velocity become smaller, and the system’s state X (t ) has
smaller, shorter time-scale variations around X (t) = 0, while
the overall variance of the process also becomes smaller.

Smooth Processes

Through the kernel process formulation developed in section 3.3
one can also treat general Gaussian processes, even non-Markov

ones such as the RBF process. By non-Markov processes, I
mean processes which can not be rendered Markovian by the
inclusion of its derivatives in a higher-dimensional embed-
ding. The MMSE is given by the average posterior variance

Figure 5.6: Ecological Dependence of the
Optimal tuning width for a dense popu-
lation of Gauss-Poisson neurons encoding
the position of a stochastic oscillator. The
effect of the damping is similar to the ef-
fect of the parameter y in the OU case, as it
sets the time-scale of fluctuations in the ve-
locity, which in turn drives the position be-
ing estimated. Lower y lead to longer time
correlations in the velocity and also in the
position, leading to easier reconstruction
and a narrower optimal tuning width. The
noise intensity 7 also has the same effect
as in the OU process, as a stronger noise
leads to wider optimal tuning widths. The
maximal firing rate of each neuron ¢ has
a much less pronounced effect on the op-
timal tuning width than in the OU case,
specially for the critical and overdamped
regime. This is due to the smoother nature
of these processes. The frequency of the
process, surprisingly, has the inverse effect
as the damping, with higher frequencies
leading to lower optimal tuning widths.
This is due to the damping effect it has on
the velocity, leading to a shorter integra-
tion time for the noise in the velocity.



of the Gaussian process regression, E .} [E(t, t; {t;})], which
can be approximated by the mean-field posterior kernel g (0).°
In figure 5.7 I have evaluated the kernel mean-field approxi-
mation for the RBF kernel k(s, t) = exp (—(s—t)?/L), with
L = 0.5. Note that the general conclusions drawn in the two
previous cases hold here as well, regardless of the more com-
plex temporal structure of the process.

In the case of linear stochastic processes, I had found that
the temporal mean-field approximation of equation (3.7) was
surprisingly good at describing the average behaviour of the
posterior variance. Therefore it is interesting to study how
the mean-field approach performs in the RBF case, where the
filtering error is derived from an approximation to the poste-
rior kernel. To that intent, I can evaluate the average poste-
rior variance from section 3.3 numerically. This can be done
by generating a large number of Poisson spike trains and eval-
uating the posterior covariance =(t; {t;}) for each and taking
an average. This is also shown in figure 5.7 as the dotted
lines. The averaging in this case is much more costly, as for
every set of M spike times, one needs to invert an M x M
matrix, which takes of the order of M?> operations. As can
be seen from the figure, the mean-field approximation still
agrees very well with the numerical average, leading to undis-
tinguishable optimal tuning widths.
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6 See section 3.3 and appendix A.3.
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5.3 Moving Away From Gaussian Distributions

In chapter 2 I have presented filtering tools for general stochas-
tic processes and observation processes, namely the ADF and
particle filter techniques. So far, in the analysis of optimal
codes I have restricted myself to the dense coding limit, which
significantly simplifies the analysis, rendering the Gaussian

Figure 5.7: MMSE for a dense popula-
tion of Gauss-Poisson neurons encoding
a RBF process. The MMSE follows the
same trends as for the OU process and the
stochastic harmonic oscillator. The dot-
ted lines show the numerically averaged
MMSE, obtained directly from the Gaus-
sian process regression.
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ADF approach exact. What happens when the posterior is not
Gaussian, though? I will consider a couple of interesting cases
shortly. There are two ways one can leave the dense coding
limit. The first one is to have a population which does not
densely cover the stimulus space. The simplest case would be
a single neuron with a Gaussian tuning function,’for example,
which could clearly not cover the stimulus space. The second
possibility refers to the nature of the neurons. If their spiking
is time-dependent or adaptive, the homogeneity of the firing
rate will break and we will have a stimulus-dependent popu-
lation firing rate as well. Of course the posterior can also be
non-Gaussian due to the prior. That would mean the process
being observed is non-Gaussian. I will consider the simple
case of a stochastic process in a double-well potential, as an
example of non-Gaussian processes.

Once again my main interest is in the optimality of said
codes. It is straightforward to estimate the MMSE of the
mentioned cases from simulations directly. Though much less
practical than the dense coding case, where one could refrain
from simulating the stimulus trajectories and spike trains, the
principles remain the same. It is not true, however, that the
average posterior covariance gives the MSE of the estimator
in this case. Remember that I have used that the estimator
is the posterior average to show that, and this does not hold
generally for either the ADF or the particle filter estimator.
For the particle filter, it can be shown that in the limit of many
particles the empirical distribution converges to the posterior
distribution, yielding the posterior mean estimator in the limit
of infinite particles.® The ADF estimator, however, has no sim-
ple relation to the posterior mean estimator, and further has
no guarantee of converging to the true posterior. So in both
cases we are forced to work directly with the average estima-
tion error to obtain a measure of the MSE.

This section is meant to illustrate the application of the
framework of MSE-optimal codes outside of the assumptions
made in the previous section. Though optimising a code for
the MSE is not as straightforward for more complex, higher-
dimensional problems, this shows that it is in principle pos-
sible, and the hurdles are mostly of implementation, rather
than conceptual.

Sparse Populations

The simplest form of breaking the dense coding assumption
is, well, not having dense populations. The most extreme case
would be if there were only one or a few neurons coding for
the stimulus. In that case, the population firing rate could
be very strongly dependent on the state of the system. I will
consider a simple case here to illustrate the applicability of

7 See figure 3.1.

8 Crisan, D. and Doucet, A. (2002). A
survey of convergence results on par-
ticle filtering methods for practitioners.
Signal Processing, IEEE Transactions on,
50(3):736-746



the MSE method. I will consider the case of a population
of two neurons, equidistant from the mode of the stimulus
distribution, and investigate the dependence of the MSE on
the separation between the two and the width of the tuning
functions.

I will use three filtering schemes for this problem and com-
pare them. First, I consider the filtering equations given by
equation (2.21). In the dense coding case, these equations
are exact, but one can use them as an approximate filter-
ing method regardless of the population being dense. This
amounts to ignoring the probability of a spike not being fired,
and looking only at the probability of a spike being fired when
a spike is actually observed. Iwill refer to this filtering scheme
as the Dense ADF approach. A second possibility is to apply
the ADF approach with a Gaussian distribution, now taking
the rate terms in equation (2.27) into account and updating
the mean and covariance through equation (2.20) upon the
observation of a spike. I will refer to this option as the Full
ADF approach. A third possibility is to use a particle filter
with a large number of particle (I have taken M = 1000
here) to estimate the posterior probability given the spikes.
This again, takes into account the probability of a spike not
having been fired in every time instant by every neuron.

Assuming both neurons have Gaussian tuning functions with
the same tuning width, one could ask what is the best tuning
width and spacing between the two neurons to optimise the
MSE. In figure 5.8 I have plotted the MSE as a function of A6
and a, showing a clear optimum. There are some artefacts
due to the interplay of a and A6, but all three approaches
show a clear minimum. Surprisingly, even in this case, the
dense ADF approach yields nearly the same MSE as the parti-
cle filter or the full ADF approach, showing a relative absolute
deviation from the full ADF approach of less than 1% and of
approximately 1.5% from the particle filter approach. This
might be due to the Gaussian nature of the stimulus, but it is
an interesting point for further investigation.

Adaptive Neurons

A different situation which could lead to non-uniform firing
rates is adaptation in the firing rate of the neurons, even in
a dense population of neurons. The spike-frequency adapta-
tion process described in section 2.5 is a simple model where
the essence of neural adaptation is already present. I will con-
sider the impact of adaptation on the MMSE of a simple linear
stochastic process as we have considered above.

A number of interesting questions arise with respect to adap-
tation in neurons. The adaptation implemented by the spike
rate modulation x(t) is similar to the spike-frequency adap-

103



104 ALEX KUNZE SUSEMIHL

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.1

Dense ADF 041
0.36
Uo.3
0.41
0.36
Uo.3
Particle Filter
0.41
0.36
0.0 0.0 Uo.3
-2.0-1.5-1.0-05 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
X A6
MMSE for a Reconstruction Task
— =0.00
— 76=0.01

o = = = =4

Figure 5.8: Two neurons with Gaussian
tuning functions coding for a simple OU
process. The left panel shows two sam-
ple tuning functions, explaining the pa-
rameters Af and a. The left panel shows
the MSE according to the different ap-
proaches. The top shows the ADF ap-
proach assuming a dense population (i.e.
ignoring the firing rates in the absence
of spikes). The middle plot shows the
MSE obtained with a full Gaussian ADF ap-
proach. The bottom plot shows the MSE
of a particle filter. Though the three ap-
proaches give different results, the general
dependence of the encoder on the parame-
ters is clear for all three approaches. There
is an optimal value of A6 and a which
minimises the MSE in all three approaches

Figure 5.9: The MSE of a reconstruction
task from the observation of adaptive spike
trains. The product 76 quantifies the in-
tensity of the adaptation. As in the previ-
ous cases, one can note the existence of a
finite optimal tuning width.



tation often described in neuroscience.® As can be seen in
figure 5.9, at first glance it would seem that adaptation does
not help the population code. This is somewhat misleading,
though, as the stronger the adaptation time-scale 7, the lower
the firing rate of the population. It would make sense, then
to compare adaptive and non-adaptive populations with the
same firing rate, to account for the effect of the adaptation.
This is shown in figure 5.10. Here the mean-squared error
of the filter is plotted as a function of the firing rate of the
population, and it is immediately obvious that the adaptive
populations achieve a better performance with a much lower
firing rate.

10 Rate-Distortion Curve for Adaptive Neurons
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Nonlinear Stochastic Processes

A different source of non-Gaussian distributions can be found
directly in the stochastic process one is modelling as stim-
uli. A simple model that leads to non-Gaussian distribution
is a stochastic process in a double well potentialo, given by
V(x) = v(x +x)%(x —xg)?. This potential will have two
stable points at x = *xg. One can then define a stochastic
system moving in this potential as

_v

dt +n1/2dw(t).
FRLAR (t)

dX(t) =
This leads to
dX (t) = 4vX (t) (xo—X (£)?) dt +n/2dW (¢).

Figure 5.11 shows some sample paths from this process.
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°Benda, J. and Herz, A. V. (2003). A uni-
versal model for spike-frequency adapta-
tion. Neural computation, 15(11):2523—
2564

Figure 5.10: MMSE of adaptive population
as a function of the population firing rate.
Though the adaptation leads to a worse re-
construction error when keeping all other
parameters fixed, here one can see that it
allows for a more precise reconstruction
with the same amount of spikes. There is a
saturation in the improvement however, as
the adaptation puts a limit on the number
of spikes the population can fire.

5 10 15 20 25 30
Time [s]

Figure 5.11: Samples of the Bistable pro-
cess mentioned in the text.
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Following the framework of chapter 2, it is simple to devise
a particle filtering algorithm for this system. Assuming the
observations are still from a dense code, one can simply take
the particles Z!(t) evolving by the same SDE as the system.
So after discretising one will have

AZ'(t) = 4vZH(t) (xo—Z'(t)?) At + /Atn Vi(t),

where each of the Vi (t) is a standard normal random variable
independent of all other V/(t). The weights w'(t) associated
with each particle will then be updated as

wi(t) =wi(t—At)A (21(t)),

in case neuron j spikes and simply left unchanged in the ab-
sence of spikes. Here A/(z) are the usual Gaussian tuning
functions given by equation (5.1).

Alternatively one can develop an ADF algorithm for the
proposed system. Using the relationships derived in chapter 3
it is easy to obtain the equations for u(t) and %(t),

du(t)
dt

= 4w (t) (xo—u(t)*—3%(t)), (5.2a)

and
dX(t)
dt

In figure 5.12 I show both approaches applied to the bistable
problem. We can then leverage the particle filtering approach,
which shows better results for this filtering problem and look
at the optimal tuning width for an estimation task. The MMSE
for the bistable process is shown in figure 5.13. The general
conclusions arrived at previously hold in this setting as well
and the MSE is minimal for a finite tuning width, underlin-
ing the trade-off between precision and frequency discussed
above.

= 8vE(t) —24u(t)?%(t)—24%(t)>+n. (5.2b)

5.4 Optimal Codes for Control

I have extensively argued for the usefulness of accurate esti-
mation of a system’s state when interacting with it. Though
this is by no mean false, real world systems are often very
high-dimensional, or at least represented in a very high-dimensional
code, leading to trade-offs when deciding where to allocate
sensory resources. One simple example is the density of pho-
toreceptors in the retina. If we assume the retina evolved
to allow for optimal estimation of the visual scene facing an
animal, we would expect it to cover the entire visual field
evenly. That is of course not the case, and there are a num-
ber of anomalies in the distribution of receptive fields which
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3 - Posterior Mean 3 -©— Posterior Mean
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Figure 5.12: ADF (left) and particle (right)
filters applied to the dense Gauss-Poisson
coding of a bistable process. Note that
the ADF filter consistently underestimates
the variance of the posterior distribution.
Leading it to lose track of the system’s state
at some points.

Figure 5.13: Dependence of the MSE on
Estimation the tuning width a. The width follows
the same trend as for the previously con-
sidered processes. The tuning width de-
creases with increasing firing rates. How-
ever, here one can see, that the minimum
is less sharp, due to the bistable nature of
the process. If a spike allows one to dis-
cern between the two stable states, it al-
ready contributes a lot to the estimation
of the state X (t).

0.9
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can be attributed to the importance of different visual queues
for decision making and risk assessing. A simple example of
which is the distribution of photoreceptors in the retina, with
the concentration of cones varying up to two orders of mag-
nitude between the periphery and the fovea.!°

What could be the reasons for an optimal code for an es-
timation problem to be sub-optimal for a control problem?
I will present examples that show two possible reasons for
different optimal coding strategies in estimation and control.
First, one should note that control problems are often defined
over a finite time horizon. One set of classical experiments in-
volves reaching for a target under time constraints.!! If one
takes the maximal firing rate of the neurons (¢) to be con-
stant while varying the width of the tuning functions, this
will lead the number of observed spikes to be inversely pro-
portional to the precision of those spikes, forcing a trade-off
between the number of observations and their quality. This
trade-off can be tilted to either side in the case of control de-
pending on the information available at the start of the prob-
lem. If one is given complete information on the system state
at the initial time 0, the encoder needs fewer spikes to re-
liably estimate the system’s state throughout the duration of
the control experiment, and the optimal encoder will be tilted
towards a lower number of spikes with higher precision. Con-
versely, if at the beginning of the experiment one has very lit-
tle information about the system’s state, the encoder will be
forced towards lower precision spikes with higher frequency.

Secondly, one should note that the optimal encoder for es-
timation does not take into account the differential weighting
of different dimensions of the system’s state. When consider-
ing a multidimensional estimation problem, the optimal en-
coder will generally allocate all its resources equally between
the dimensions of the system’s state. In the framework pre-
sented below one can think of the dimensions as the singular
vectors of the tuning matrix E and the resources allocated to
it as the singular values. In this sense, I will consider a set of
coding strategies defined by matrices E of constant determi-
nant. This constrains the overall firing rate of the population
of neurons to be constant, and one can then consider how
the population should best allocate its observations between
these dimensions. Clearly, in an anisotropic control problem,
which places a higher importance in controlling one dimen-
sion, the optimal encoder for the control problem will be ex-
pected to allocate more resources to that dimension. This is
indeed shown to be the case for the Poisson codes considered,
as well as for a simple LQG problem with Gaussian observa-
tions in continuous time when we constrain the noise covari-
ance to have the same structure.

10 Curcio, C. A., Sloan, K. R., Packer, O.,
Hendrickson, A. E., and Kalina, R. E.
(1987). Distribution of cones in hu-
man and monkey retina: individual vari-
ability and radial asymmetry. Science,
236(4801):579-582

! Battaglia, P~ W. and Schrater, P R.
(2007). Humans trade off viewing time
and movement duration to improve visuo-
motor accuracy in a fast reaching task. The
Journal of neuroscience, 27(26):6984-94



The Trade-off Between Precision and Frequency of Observations

In this section I consider populations of neurons with tuning
functions as given by equation (2.18) having tuning centers
0,, distributed along a one-dimensional line. In the case of a
stimulus modelled by the Ornstein-Uhlenbeck process these
will be simply one-dimensional values 6,, whereas in the case
of the stochastic oscillator, I will consider tuning centres of the
form 6,, = (1,,,0)", filling only the first dimension of the
stimulus space. This means that in the case of the stochas-
tic oscillator, the observer does not have direct access to the
velocity of the system, only of its position. Note that in both
cases the (dense) population firing rate = Y. A, (x) will
be given by A = v/2ma¢ /|AB|, where A is the separation
between neighbouring tuning centres 6,,.

The OU process controlled by a process U(t) is given by
the SDE

dx(t) = (bU(t) —yX(t))dt +DY2dW (¢),

and the control problem is defined by a cost function

C(X,U) = JT (x(e)TQx(t) +U(t)"RU(t))dt.
0

Equation (4.16) can then be evaluated by simulating the dy-
namics of %(t). This is exactly the problem solved in chap-
ter 3 and it has extensively been discussed therein.'? Fol-
lowing those results one can also approximate the average
of the posterior variance by a mean-field formalism which
works surprisingly well. The evolution of the average pos-
terior variance is given by the average of equation (2.21b),
which involves nonlinear averages over the covariances. The
mean-field evolution of E [%(t) |ZO] is given by

dE [5(t)]
dt

To assess the quality of this approximation I have also com-
puted the averages of %(t) numerically with a large number
of sample paths to compare to the mean-field approximation.
In (Susemihl et al., 2011) and (Susemihl et al., 2013) I had
reported a very good agreement in the mean-field and nu-
merically calculated values of E [2(t)]. f (%, t) however is an
integral over time of this average, so one can expect that the
deviation between the mean-field approximation and the nu-
merical average will be larger. As can be seen in figure 5.14,
the mean-field approximation is not as precise as in the case
of the simple average, but the dependence of the average on
a, however, remains very well explained by the mean-field
approach.

— AE [2(t)]+E [2(t)] T AT+ D—AE [%(t) EE [2(t)] (I + ETE [2(¢)])

12 See also (Susemihl et al., 2013).
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Alternatively, one can look at a system with more com-
plex dynamics, and I will take as an example the stochastic
damped harmonic oscillator given by the system of equations

X(t)=V(t), dv(t)=(bU(t)—yV(t)—w?X(t))dt+n12dW(t).
(5.3)

Furthermore, I assume that the tuning functions only depend

on the position of the oscillator, therefore not giving any in-

formation about the velocity. The controller in turn seeks to

keep the oscillator close to the origin while steering only the

velocity. This can be achieved by the choice of matrices

a0 v g_(00),_(00
T\ =w? =y )77 Lo b )T Lo n?)
(o000 (q 0 (a* 0
R—(O r),Q—(O O)andE—(o 0).

In chapter 4 I have argued that a good way to quantify the
effect of the encoder on the costs of a control problem is the
function f (%, t) derived there. This quantifies the effect of
the uncertainty resulting from estimating the system’s state
through that encoder on the control costs. In figure 5.14 1
have plotted the uncertainty-dependent costs f for LQG con-
trol, for the Poisson observed control, as well as the MMSE
for the Poisson filtering problem and for a Kalman-Bucy fil-
ter with a same noise covariance equal to the tuning matrix
E. This illustrates nicely the difference between Kalman fil-
tering and the Gauss-Poisson filtering considered here. The
Kalman filter MSE has a simple, monotonically increasing de-
pendence on the noise covariance, and one should simply
strive to design sensors with the highest possible precision
(a = 0) to minimise the MMSE and control costs. The Pois-
son case leads to optimal performance at a non-zero value
of a. Importantly the optimal values of a for estimation and
control differ. Furthermore, in view of section 3.4, I have also
plotted the mutual information between the process X (t) and
the observation process N(t), to illustrate that information-
based arguments would lead to the same optimal encoder as
MMSE-based arguments.

The result that the MMSE-optimal encoder also maximises
the mutual information had not been previously reported,
and is most likely a consequence of the Gaussian nature of
the distributions considered. It can be shown to hold exactly
in the mean-field approximate, as well. The mutual informa-
tion quantifies the information contained in the observations
about the stimulus. The MSE on the other hand quantifies the
second moment of the difference between the estimate and
the true value of the stimulus. If all distributions are Gaus-
sian, these two quantities are related as all the information



the observations can contain are condensed into the two first
moments of the posterior distribution. This does not need
to be the case generally, but provides an interesting point of
entry to further research questions.
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Allocating Observation Resources in Anisotropic Control Problems

A second factor that could lead to different optimal encoders
in estimation and control is the structure of the cost function
C. Specifically, if the cost functions depends more strongly
on a certain coordinate of the system’s state, uncertainty in
that particular coordinate will have a higher impact on ex-
pected future costs than uncertainty in other coordinates. I

111

Figure 5.14: The trade-off between the
precision and the frequency of spikes is il-
lustrated for the OU process (top) and the
stochastic oscillator (bottom). In both fig-
ures, the initial condition has a very un-
certain estimate of the system’s state, bi-
asing the optimal tuning width towards
higher values. This forces the encoder
to amass the maximum number of obser-
vations within the duration of the con-
trol experiment. Parameters for figure (a)
were: T = 2,y = 1.0,7 = 0.6,b =
0.2,¢ =0.1, A8 =0.05,Q = 0.1, Qp =
0.001, R = 0.1. Parameters for figure (b)
were T = 5,y = 04, w = 08,1 =
04,r = 04,9 = 04,Qr = 0,9 =
0.5, A6 =0.1.
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will here consider two simple linear control systems observed
by a population of neurons restricted to a certain firing rate.
This can be thought of as a metabolic constraint, since the
regeneration of membrane potential necessary for action po-
tential generation is one of the most significant metabolic ex-
penditures for neurons.!® This will lead to a trade-off, where
an increase in precision in one coordinate will result in a de-
crease in precision in the other coordinate.

I consider a population of neurons whose tuning functions
cover a two-dimensional space. Taking a two-dimensional
isotropic OU system with state X (t) = (X;,,X5,) where
both dimensions are uncoupled, one can consider a popula-
tion with tuning centres 0,, = (n’ln,n’z”)T densely covering
the stimulus space. To consider a smoother class of stochas-
tic systems I will also consider a two-dimensional stochas-
tic oscillator with state X (t) = (X1 (t), V1 (t),X5(t), Va(t))T,
where again, both dimensions are uncoupled, and the tuning
centres of the form 6,, = (07,0, ng,O)T, covering densely
the position space, but not the velocity space.

Since I am interested in the case of limited resources, I will
restrict myself to populations with a tuning matrix E yielding
a constant population firing rate. One can parametrise these

simply as
B tan({) 0
Eoy(g) = pz( 0 cotan({) )

for the OU case and

tan(¢) O 0

0 0 0 0

_ 2
Eose(€) =p 0 0 cotan({) O
0 0 0 0

for the stochastic oscillator, where ¢ € (0,7/2). This will
yield the firing rate A = 2mp%¢ /(A6)?, independent of the
angle (.

One can then compare the performance of all observers
with the same firing rate in both control and estimation tasks.
As mentioned, I am interested in control problems where the
cost functions are anisotropic, that is, one dimension of the
system’s state vector contributes more heavily to the cost func-
tion. To study this case I will consider cost functions of the

type

c(X(1),U(t)) = QuX1(t)* +QaXa(t)* +R1Us (t)* +RoUs(t).

This again, can be readily cast into the formalism introduced
above, with a suitable choice of matrices Q and R for both the
OU process as for the stochastic oscillator. I will look at the t

13 Attwell, D. and Laughlin, S. B. (2001).
An energy budget for signaling in the grey
matter of the brain. Journal of Cerebral
Blood Flow & Metabolism, 21(10):1133-
1145
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the case where the first dimension of X (t) contributes more
strongly to the state costs (i.e., Q; > Q5).

The filtering error can be obtained from the formalism de-
veloped in chapter 3 in the case of Poisson observations and
directly from the Kalman-Bucy equations in the case of Kalman
filtering. For LQG control, one can simply solve the control
problem for the system mentioned through the Ricatti equa-
tion and obtain an estimate of the uncertainty-related costs
(see e.g. Astrom (2006, p.288)). The Poisson-coded version
of the control problem can be solved using either direct sim-
ulation of the dynamics of %(t) or by a mean-field approach
which has been shown to yield excellent results for the system
at hand. These results are summarised in figure 5.15, with
similar notation to that in figure 5.14. Note the extreme ex-
ample of the stochastic oscillator, where the optimal encoder
is concentrating all the resources in one dimension, essen-
tially ignoring the second dimension.
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Figure 5.15: The differential allocation of
resources in control and estimation for the
OU process (top) and the stochastic os-
cillator (bottom). Even though the esti-
mation MMSE leads to a symmetric opti-
mal encoder both in the Poisson and in the
Kalman filtering problem, the optimal en-
coders for the control problem are asym-
metric, allocating more resources to the
first coordinate of the stimulus.
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Discussion

I will shortly summarise the main findings discussed in each
chapter, and will then discuss the impact and relevance of the
work.

Chapter 2

In chapter 2 I have reviewed the theory of stochastic filtering,
with a focus on doubly stochastic point process observations.
I have provided an informal derivation for the Snyder equa-
tion which is novel to the best of my knowledge. I have also
reformulated the fast population coding approach to the lan-
guage of stochastic calculus, which proved useful to derive
expressions for the posterior covariance.

Chapter 3

For the matched case, the MSE of the posterior mean estima-
tor is given by the average covariance matrix of the estimator.
Using this, I have formulated the time-dependent MSE as an
average over a drift-jump stochastic process and used the lan-
guage of statistical physics to treat it in the stationary regime.
For the Ornstein-Uhlenbeck process, which provides a stereo-
typical stationary stochastic process, I have shown a closed-
form expression for the stationary distribution of covariances.
This distribution shows a particular divergence when the in-
terspike interval of the observation process is shorter than the
correlation time of the observed process. A similar solution
has also been derived for the limit of small firing rates. I have
also provided a Van Kampen approximation of the stationary
distribution, which allowed me to establish a system size vari-
able for the problem at hand.

Though most of my work on the MSE relied on the assump-
tion of a Markovian stimulus, the analysis can also be ex-
tended to general Gaussian processes. This is done by defin-
ing a stochastic process taking values in the space of kernels.
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In that way, by deriving an approximate solution, one can es-
timate the MSE of a filtering problem of any type of Gaussian
process. This has been illustrated for the RBF kernel, leading
to infinitely smooth random processes.

Chapter 4

In chapter 4 I have dealt with control theory. Though the
study of control theory has been gaining traction continuously
in the computational neuroscience community, the issue of
optimal coding for control problems had been barely touched.
I have presented the formalism of stochastic optimal control,
using the Hamilton-Jacobi-Bellman equation, and have then
applied this to a belief state formulation of the filtering prob-
lem I dealt with in the previous chapters. In the limit of a
dense population of Gauss-Poisson neurons, I have been able
to derive an exact solution for the optimal cost-to-go making
the uncertainty-dependent portion of the costs explicit. This
could be solved using a Feynman-Kac approach, and can be
evaluated as an average over paths of the covariance process.
This is to the best of my knowledge a novel result.

Chapter 5

I then turned to applications of my results. With the formal-
ism in hand, I have treated a number of filtering problems.
For the dense Gauss-Poisson populations, I have shown results
for the OU process, the stochastic harmonic oscillator and the
RBF process. I have also shown an approximate treatment of
a bistable stochastic process. The general results seem to be
very robust to the nature of the process being observed. To
illustrate the applicability of the method, I have also treated
a number of other cases approximately.

The comparison between control-optimal and estimation-
optimal codes is a central finding of this work. Though the
situations that lead to it might look trivial at first, there has
been little to no attention devoted to the study of optimal
codes in a control-theoretical setting. I have argued that this
may be due to the fact that when dealing with Gaussian addi-
tive noise, the optimal encoder is trivial. This is not the case
for Poisson processes, where the rate and precision of obser-
vations is coupled.

Discussion

I have extensively discussed methods for deriving optimal codes
in a population of neurons. This seems a worthwhile research



avenue to me, as it has already bore fruits in the understand-
ing of the nervous system, as well as lead to a number of tech-
nical advances in statistical methods. The fields of computer
vision, machine learning and robotics stand to profit a lot of
findings on optimal codes for distributed systems such as the
ones studied here. The tendency in science, as well as in tech-
nology, seems to be towards decentralisation and autonomy.
So, the study of optimal sensing for distributed systems is of
great interest.

I believe the contribution of this thesis to be a small step
toward an understanding of the brain in terms of the infer-
ences performed by it. Though I have restricted myself to
some specific cases, this was mainly to explore the analytic
results obtained, which allowed for deeper insight. As I have
shown in chapter 5, more general setups can easily be cast
into an optimal coding framework where the MSE is taken as
an objective function to be minimised.

Another important issue I have touched upon in this the-
sis is the consideration of control problems when looking at
optimal population codes. Though this is still in an incipi-
ent stage, I think the use of control problems to determine
optimal coding strategies could yield important insights with
regard to adaptation and efficient coding. I have been able to
show a simple result for the case of a dense population of neu-
rons, and I believe the development of approximate methods
for that would be an interesting research direction to investi-
gate.
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A
Appendix

A.1 Maximum Entropy Distributions

Assume one has a random variable X with a a finite set of
outcomes .«/,, = {x;}, and one wishes to find the distribution
over X which maximizes the entropy

H{py) = XZiPX<xi>1og(PX(1xi)).

One can use a Lagrange multiplier to enforce the normalisa-
tion of Py (x) and then take a derivative of the entropy with
respect to Py. This will lead to

£[Px,B] =H[Px]—p (ZPX(xi)_l)-

The derivative of ¢ with respect to Py will then give

0¥
5Py (x;)

Setting that to zero one obtains

Py(x;) =exp(—=1+p).

This is a uniform distribution, as 3 is a normalization constant
and does not depend on x. Likewise, if one has any other in-
formation about the distribution, such as the expected value
of some function of X, this can be included as a Lagrange
multiplier as well. Generally, if one has a number of func-
tions f;(x) whose expected value are known to be e;, one can
obtain a maximum entropy distribution similarly by writing

2 [Py, B] = H[Px] —fo (pr<xi>—1)+2ﬂj (ZfJ-(xi)PX(xi)—ej)-

The derivative will then be given by

0%
5P (a) = —log(Px(x;)) + 1—[50—;ﬂjfj(xi)'

= —log(Px (x;)) +1—p.
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Which will lead to
Py (x;) = exp (—1 +Bo+ Zﬂjfj(xi)) .
Jj

Note that the values of every constant f3; have to be deter-
mined so that the expected values of f;(x) match the known
values. The Boltzmann distribution is given by this deriva-
tion if one requires the expected value of the energy of the
system to be equal to some expected value, and its associated
multiplier will be the inverse temperature 8 = 1/kgT.

A.2 ADF and Moment Matching

Say one wants to approximate some complex probability den-
sity p(x) by a simpler parametric density q(x). One alterna-
tive is to minimise the KL-divergence of the two densities

p(x)

q(x)

If one chooses g(x) to be in the family of exponential distri-
butions, q(x) can be written as

q(x) =h(x)exp[¢ u(x)—g(¢)],

where ¢ is called the vector of natural parameters and u(x) is
the vector of natural statistics. To minimise the KL-divergence,
one needs to set its derivative with respect to the parameters
of g to zero. Therefore

Mz—gi’”d:fdxp(ﬂ(u(x)_j_i)' a1

The derivative of g can be seen to given the expected value
of the natural statistics. Since q is a density, one has

KL[pliq] = f dxp(x)log

J dxq(x) =1, and therefore % dxq(x)=0.

But
%J dxq(x) = f x4 _ dxq(x) (U(X)—d_g)’

and therefore
dg _
d¢
Inserting this into equation (A.1), one gets

dKL[pllq]

T = J dxp(x)u(x)—Eq[u(x)] =0,

dxu(x)q(x) = Eq [u(x)].



and finally the minimum condition for gq

B, lu(x)] = [ dxpouto)

This states that the distribution q(x) that minimises the KL-
divergence is the exponential distribution whose natural statis-
tics match the ones of the distribution p(x). This is often
called a moment matching approach, as all the moments de-
fined by the natural statistics of q(x) will match the ones of

p(x).

This appendix follows lecture notes by Ananth Ranganathan.’

If one took, for example, a Gaussian distribution, one would
have u(x) = (x,x2)T. The moment matching would lead one
to match the mean and covariance of p(x) to the mean and
covariance of our approximating distribution g(x). This is
very practical as it allows one to bypass any optimisation pro-
cedure to determine the parameters of q(x). However, one
still needs to evaluate the moments of the possibly intractable
density p(x), which might not be feasible. One alternative to
this is to estimate the moments by a sampling procedure.

A.3 Solving the Mean-field Kernel Integral Equation

In chapter 3 I have derived an integral equation for the mean-
field approximation of the posterior kernel. The mean-field
posterior kernel g (u) = E ¢ [X (t +u)X (t)] of a process X (t)
with prior distribution given by a GP with kernel k observed
by Poisson spikes with frequency A and tuning width a, obeys
the integral equation

I oo

g(u) :k(u’0>_rg(0)ﬁ, g(s+u)g(s)ds.

To obtain a numerical approximation for g I can simply guess
an initial value of g and insert that in the right-hand side to
obtain an improved guess. This can then be repeated until it
converges, for example by a squared-distance criterion. This
is the fix-point method, though one needs to be careful to
choose the starting condition and iteration rules to be sure to
converge. The simplest approach to iterating equation (3.19)
is to choose a cutoff D, after which the value of the integrand
can be ignored. After that, one needs to choose a numerical
integration method to evaluate the remaining integral. This
leads to the iteration

A

A

£ = K0 - e

f g (s+u)gi(s)ds.
0

Taking g°(u) = k(u,0), the prior kernel, and using the paral-
lelogram integration method, will lead to the results shown in
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figure 3.5. One can then establish a stopping time by a toler-
ance in the mean-squared distance between two consecutive
iterations

D

d(g"t,g") = f (g () —g'(u))?du.

0

For figure 3.5 I have used a tolerance of 107'° and have taken
a cutoff D = 12.

A.4 Deriving the PDE for f (Z,t)

To obtain an equation for f (Z, t) I need to evaluate the aver-
ages Ex () [A™(X(t))]. This is simply the average of a squared
exponential under a Gaussian measure. Here I will assume E
is invertible, leading to

Bag W OK(0)] = e exp | (0= 60) (54 8)7 () |

It is now straightforward to evaluate the sum over all neurons
in the HJB equation. This yields

D Exo X (O)] [(+ A™) TS (8) (u+ A™p) + £ (E+ A%, ) —pS(Hu—F(S(t),1)].

By considering the sum over neurons as a Gaussian integral
over 0, I can rewrite the u-dependent terms approximately
as

1
|AOIN /I +XZE-1|

where A6 is the distance between neighbouring neurons, and
N is the dimension of the stimulus space were u resides in.
Since Ay is a linear function of u — 6, the first term will be
zero. The second term will give

J 4010 (B 400/ (A TS (£ + AUTS (6)Aw).

J 46— CHE -0) 12y _ 0\T (524 E)ImS(0) 2(E 4+ E) - (u— ) =
(2m)N/24/|E + E|Tt[2S(1)2(Z 4+ E) HA.2)
The full expectation of the jump term will therefore give
D Ex() AN ()] [(14A™w)TS(6) (u+ A™u) + £ (T+ A%, 6) = S()u—F (2(t), 1)]

_ (2n)"2%9 VIE]

|AON

[f(Z+ A%, t)—f(Z,t) + Tr[ES(6)=(=+E)1].
(A.3)
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Note that the pre factor of the final term is exactly the popu-
lation firing rate A = >, A™(x). Inserting this back into the
HJB equation and collecting the terms for f one obtains

_of _
ot
+ ALf(E+an ) -f (0 + T (=0 (2+E) )]

T (Q(1)%) + T[S (As+2aT +H)| A4

A.5  Solving for the uncertainty cost f (%, t)

The uncertainty costs of a LQG control system observed through
spike trains from a dense Gauss-Poisson neural population
obeys the PDE

_9f
at

+ i[f(z+Az,t)—f(z,r_) —|—Tr(ZS(t)Z (Z—I—E)_l)],

=Tr(Q(1)%) + Tr[ £ (Az + 24T +H)]

with boundary condition f (%, T) = Tr (XQr). This is a very
cumbersome equation, and most approaches would be inap-
plicable due to the jump terms present. The application of
numerical solutions through a discretisation of time and -
space is also not straightforward, as the nonlinear nature of
the jumps, would force one to estimate the value of the func-
tion f at a large number of points outside of the discretisa-
tion grid. A simple solution can, however, be derived via the
Feynman-Kac formula. The Feynman-Kac formula allows one
to write the solution of a PDE as an expectation over paths of
a stochastic process. Given a parabolic PDE

du 1 92
+u(x, t)ﬁ + Ea(x, t)za—tlzl—V(x, tu(x,t)+f(x,t) =0,
the Feynman-Kac formula says that the solution u(x, t) with
boundary condition u(x, T) = ¢ (x) can be written as a con-

ditional expectation over paths of a stochastic process, given
by

u

at

T
u(x, t) = Ex U VOO (¢ (1), )y + oSl VO (x (7)) 'X(t) - ]

where the expectation is over paths of the process given by
dX(t) = u(X(t),t)dt +o(x,t)dW(t).

This can be extended to general processes with jumps as well,
and I will give a short derivation of this result below.
In the present case, I will take the process

d%(t) = (A%(t) + =(t)AT + H)dt + A%(t)dN(t). (A.5)



132 ALEX KUNZE SUSEMIHL

This is exactly the dynamics of the covariance from the Point
process filter used to estimate the system’s state. Define, then

Y(t) = f(2(t),t) —f [Tr(Q(6)2(u)) + ATr (2(uw)S (W) 2 (u) (B(u) + E) 1) |du,

where f (%, t) is a solution to equation (4.15). I will below
show that Y (t) is a martingale, allowing me to write the value
of f (%, t) as an average over paths of the stochastic process
equation (A.5). The variation of the process Y will be given
by

dy (t) =df +[Tr(Q(t)p(t)) + ATr(Z(6)S(6)=(e) ((e) + E) 1) ] dt.

Via the Ito Lemma, we have

_(of of T 2
df—(at+Tr[aZ(AZ+Z}A +H)]+AAf(t))dt+de(s),

where
Af(t) =f(2(t) + Ax(t), t) = f (2(¢), 1),

is the jump incurred in f when there is a jump in %(t) and
dJ¢(s) is the process

dJg(s) = AN (t)Af,— AAf.dt,
where E[dJf(s)] = 0. This leads to

of of

av(0) = (Lo nf L (w37 1) |+ 285 + (@R () + AT(EOS OB 3(0) +5) )

ot

The term in parentheses is zero, as f is a solution to equa-
tion (4.15). Therefore, integrating dY (t) from t to T, I ob-
tain

Y(T)=Y(t) +f dJs(u).

Taking the average with respect to the paths of process %(t)
then leads to

E[Y7|2(t) =] =E[Y(t)|%(t) = ] +E U dJs (u)

p(t) = z} —E[Y(0)5() = 7,

where in the last step I have used that E[dJ(s)] = 0. This
shows that Y (t) is a Martingale. This leads to the Feynman-
Kac formula for f

f(5t) = E[f (S(T), T)I5(e) = 5
+ E[ff[Tr<Q<t>z<u>>+1Tr(z<u><z<u>+E>-1z<u>s<u>)]du

p(t):Zl].
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The evolution of E [%(t)] is given by

= AE [2(t)] +E [Z(t)]AT + H-AE[2(t)(2(t) +A)'2(1) ],

therefore, one can use this expression to directly estimate the
trace average in the equation for f. This yields

(B [5(0(3(0)+472(0]5(0) =1 E 2 s p o)+ £ [s(0)4 + 1 (0|

This prevents one from having to calculate expensive matrix
inversions and allows one to write

f(Zt) = Tr (BY[2(T)]Qr)
+ [T (@) +S()A+ATS (@)L (2(w)) +Tr (S ()~ Tr (s () )| du,
where I have written
E5(X) = E[x|5(r) = 5],

and used the boundary condition for f. By linearity of the
trace operator and integration by parts one has

Tr(Jt ws&l)du):Tr(Etz(Z(u))S(u)LT)—Tr(L E%(Z(u))S(u)du),

u

S in turn is given by the Riccatti equation, leading to

TrU ws(u)du) _ TH(EL(Z(w))S ()| )

+ ([ BL(2 ) (Q(u) +S(w)A+ATS (u) — S(u)BTR(w) 'BS (u)du).

This leads finally to the expression of the uncertainty related
costs for the control problem at hand:

f(Zl,t):Tr(Zl(t)S(t))—i—J Tr(HS(u))du—i—J Tr(S(u)B R(u) 'BS(w)EL(Z(w))) du.

t " ®e
To solve numerically for f (%, t) one can now simply take a
large number of paths from the X(t) process and average
the integral over many realisations. Alternatively, one could
approximate the dynamics of E, (%(u)), for example with a
mean-field approximation, and use that approximate dynam-
ics to evaluate f.
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