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Frequently used symbols

Unless otherwise stated the following symbols denote:
A a square complex matrix, the eigenvalues of Ax = λA?x are of interest

A? either the transpose AT or the conjugate transpose AH of A
M ,N square complex matrices, the eigenvalues of Mx = λNx are of interest where

M = M? is symmetric/Hermitian, N = −N? skew symmetric/skew Hermitian

λ? =

{
λ̄, if ? = H

λ, if ? = T
1
0 =∞, 1

∞ = 0 conventions to unify treatment
dαe rounding towards next larger integer
bαc rounding towards next smaller integer

Q,U, V complex unitary or real orthogonal matrices

R right triangular (R =@) or right antitriangular (R =¡) matrix
In, I identity matrix of order n, the subscript is omitted, if clear from the context

ek the k-th standard basis vector; the k-th column of the identity matrix
Fn, F = [en, . . . , e2, e1], the flip matrix of order n
Jn(λ) Jordan block of order n corresponding to eigenvalue λ

FF,n(λ) = FJn(λ) flipped Jordan block
rev?P (λ) reversal of the polynomial P (λ);

rev?(A0 + A1λ + . . . Amλm) := A?
m + A?

m−1λ + . . . A?
0λ

m

Exceptional eigenvalues of palindromic and even pencils:

structure\? T R H
palindromic 1,−1 |λ| = 1 |λ| = 1
even 0,∞ Re(λ) = 0,∞ Re(λ) = 0,∞

Triagularity of products, inverses, transposes, flips of triangular matrices:

A ·B, B =

A @ @ ¡ ¡ AT A−1 FA AF

@ @ ¡ @ @ ¡ ¡
@ @ ¡ @ @ ¡ ¡
¡ ¡ @ ¡ ¡ @ @
¡ ¡ @ ¡ ¡ @ @

In matrix diagrams:
x: a potentially non-zero element of a matrix,
0: a zero element of a matrix,

space: same as 0,
+: fill-in, an element that was introduced by the last transformation,
0: an matrix element that has been annihilated in the last transformation,

gray: rows/columns affected by the last transformation.



CONTENTS v

Even Kronecker blocks

JE,p(λ) :=
([

0p JF (λ)?

JF (λ) 0p

]
,

[
0p −F
F 0p

])
∈ C2p×2p × C2p×2p, p ∈ N, λ ∈ C

JE,p(α, β) :=
([

0 JF,p(Λ)T

JF,p(Λ) 0

]
,

[
0 −Fp ⊗ I2

Fp ⊗ I2 0

])
∈ R4p×4p × R4p×4p,

with p ∈ N, α, β ∈ R \ {0}

EE1,p,σ := σ

(
JF (0),

[
0 p

2
−F

F 0 p
2

])
∈ Cp×p × Cp×p, p ∈ N even

EE2,p,σ(β) := σ (JF (β), iF ) ∈ Cp×p × Cp×p, p ∈ N, β ∈ R

EE3,p :=
(

F2p,

[
0p −JF (0)

JF (0) 0p

])
∈ C2p×2p × C2p×2p, p ∈ N

EE4,p,σ := σ

(
Fp,

[
0d p

2
e −ST

R

SR 0b p
2
c

])
∈ Cp×p × Cp×p, p ∈ N odd

EE5,p,σ := σ (F, iJF (0)) ∈ Cp×p × Cp×p, p ∈ N

EE6,p,σ(β) := σ

(
JF,p(

[
β 0
0 β

]
), Fp ⊗

[
0 1
−1 0

])
∈ C2p×2p, p ∈ N, β ∈ R \ {0}

SE,p :=
([

0p+1 ST
R

SR 0p

]
,

[
0p+1 −ST

L

SL 0p

])
∈ C2p+1×2p+1 × C2p+1×2p+1, p ∈ N0

Palindromic Kronecker blocks

JP,p(λ) :=
[

0p JF (λ)
F 0p

]
∈ C2p×2p, p ∈ N

JP,p(α, β) :=
[

02p JF (Λ)
Fp ⊗ I2 02p

]
∈ R4p×4p with α, β ∈ R, p ∈ N

EP1,p,σ(λ) := σ

[ 0 0 JF,b p
2 c

(λ)

0
√

λ eT
1

Fb p
2 c

0 0

]
∈ Cp×p, p ∈ N odd, with

{
λ = 1, if ? = T

|λ| = 1, if ? = H

EP2,p,σ,γ(λ) := σ

[
0 JF, p

2
(λ)

F p
2

γe1e
T
1

]
∈ Cp×p, p ∈ N even, γ 6= 0, with

{
λ = −1, if ? = T

|λ| = 1, if ? = H

EP3,p,σ(α, β) := σ




0p−1 0 JF (Λ)
0 Λ

1
2 eT

1 ⊗ I2

F p−1
2
⊗ I2 0 0p−1


 ∈ R2p×2p, α, β ∈ R, α2 + β2 = 1, p ∈ N odd

EP4,p,σ(α, β) := σ

[
0p JF (Λ)

F p
2
⊗ I2 (e1e

T
1 )⊗ I2

]
∈ R2p×2p, α, β ∈ R, α2 + β2 = 1, p ∈ N even

SP,p :=
[

0p+1 ST
R

SL 0p

]
∈ C2p+1×2p+1, p ∈ N0

where SL,n =
[ 1 0

. .. . ..
1 0

]
, SR,n =

[ 0 1

. .. . ..
0 1

]
∈ Rn,n+1, Λ =

[
α −β
β α

]
, σ ∈ {1,−1}
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Chapter 1

Palindromic and Even Eigenvalue
Problems

In languages palindromes are words or phrases that do not change when read from back to
front, i.e., they are invariant under reversing the order of the letters. Prominent examples of
this sort are ’dad’, ’rotor’, or the German ’Rentner’, and ’Reittier’ meaning pensioner and
mount, respectively. Well-known phrases include

I prefer Pi.
Sex at noon taxes!
Was it a cat I saw?

A man, a plan, a canal, Panama!

and Peter Hilton’s masterpiece

Doc, note, I dissent. A fast never prevents a fatness. I diet on cod.

(all taken from [68].) There is even a (working!) C program consisting exclusively of palin-
dromes1.

In mathematics it makes sense to talk about palindromic polynomials like p(λ) = 5λ4 +
7λ3 + 2λ2 + 7λ + 5, where the coefficients form the palindromic sequence 5, 7, 2, 7, 5.

Passing from scalar to matrix coefficients results in palindromic matrix polynomials,
P (λ) =

∑k
i=0 Aiλ

i where Ai = Ak−i ∈ Cn×n. While these polynomials are interesting in
themselves, a slight variation recently received a lot more attention: the ?-palindromic poly-
nomials P (λ) =

∑k
i=0 Aiλ

i, where Ai = A?
k−i ∈ Cn×n and A? denotes the transpose or

conjugate transpose of A. So, ?-palindromic polynomials are invariant under reversing the
order of the coefficients — and (conjugate-) transposing. In this work only ?-palindromic
problems are considered which we call (slightly inaccurately) palindromic problems (without
the star).

An eigenvalue problem arises when asking for singular points of the polynomial together
with a nontrivial null space vector, i.e., by requesting a scalar λ and a nonzero vector x such
that P (λ)x = 0. Polynomial ?-palindromic eigenvalue problems were introduced and analyzed
in [68].

1see http://www.ioccc.org/1987/westley.c

9



10 CHAPTER 1. PALINDROMIC AND EVEN EIGENVALUE PROBLEMS

In this work the scope is restricted to the linear case (A?
0λ + A0)x = 0. This does not

mean a strong restriction, see further below. Upon substitution of −λ for λ we obtain the
linear palindromic eigenvalue problem

Ax = λA?x. (1.1)

where A is a square complex matrix and A? denotes the transpose or conjugate transpose of
A. We chose to use (1.1) instead of the linear palindromic polynomial because it is closer to
the standard form of generalized eigenvalue problems Ax = λBx.

A further palindrome, Never odd or even [67], nicely relates to the second kind of structure
covered in this work: matrix polynomials whose coefficients alternate between symmetric and
skew symmetric matrices,

P (λ) =
k∑

i=0

Aiλ
i, where A?

i = (−1)iAi ∈ Cn×n, i = 0, . . . , k.

These are called ?-even or simply even, because P (−λ) = P (λ)?. As for palindromic problems,
in the following only the linear even eigenvalue problems of the form

Mx = λNx, with M = M?, N = −N?. (1.2)

will be considered.

Palindromic and even linearizations

Most polynomial palindromic and even eigenvalue problems can be transformed into linear
eigenvalue problems of the same kind. For example, the quadratic palindromic problem
(λ2A?

0 + λA1 + A0)x = 0, A1 = A?
1 can be written as [68]

(
λ

[
A?

0 A1 −A0

A?
0 A?

0

]
+

[
A0 A0

A1 −A?
0 A0

]) [
λx
x

]
= 0.

Note that both rows resemble the original quadratic problem. Their difference establishes
the claimed structure of the vector [λxT , xT ]T provided that A1 − A0 − A?

0 is nonsingular.
Similarly, a cubic palindromic problem (λ3A?

0 +λ2A?
1 +λA1 +A0)x = 0 can be restated as [59]


λ




0 0 −A0

A?
0 A?

1 0
0 A?

0 0


 +




0 A0 0
0 A1 A0

−A?
0 0 0










λ2x
λx
x


 = 0.

Here the second row resembles the original cubic problem. The first and third rows establish
the claimed structure of the vector [λ2xT , λxT , xT ]T provided that A0 is nonsingular.

A structure preserving linearization for cubic palindromic polynomials without restriction
is Ax + λA?x = 0 with

A =




2A0 −A?
0 + A1 I 0

−I 0 I
0 I −2A0 −A?

0 + A1


 . (1.3)

A derivation of this form is given in Section 2.1.
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It is well known, that the quadratic even problem (λ2A2 + λA1 + A0)x = 0, where A0, A2

are symmetric and A1 is skew symmetric, can be rewritten as
[
A2

A0

] [
λx
x

]
= λ

[
0 A2

−A2 −A1

] [
λx
x

]

provided that A2 is nonsingular.
For cubic even polynomials, (λ3A3 +λ2A2 +λA1 +A0)x = 0, we have the linearization [3]

λ




A3

−I
I −A1


 +




A2 I
I

−A0


 . (1.4)

For more structure preserving linearizations of even polynomials see [3, 21, 68, 73]. A
method to construct palindromic linearizations for palindromic polynomials of any degree is
presented in [68]. A palindromic linearization that has nearly block Toeplitz structure can be
found in [59]. Both approaches impose mild restrictions on the coefficient matrices. In [21]
so-called trimmed linearizations were introduced in order to overcome these restrictions.

All this justifies restricting the scope of this work to linear problems of the forms (1.1)
and (1.2) only.

Applications

Palindromic and even eigenvalue problem arise in a number of applications including the
modeling and analysis of the vibrations of rail tracks under the excitation of high speed
trains [43, 44]. Many more applications can be found in [68]. At this point we mention in
particular two applications in the area of control theory.

Example 1.1 A continuous-time descriptor control system [57, 72] has the form

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0,

where E, A ∈ Rm×n, B ∈ Rm×p, x0 ∈ Rn, and u : R+ → Rp sufficiently smooth are given
and x : R+ → Rn is wanted. Under standard assumptions there exists a unique solution
x(t) called state that of course depends on u(t) called control. The problem of determining a
function u(t) that minimizes the objective function

∫ ∞

0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt,

where
[

Q S

ST R

]
is symmetric, positive semidefinite is known as continuous time linear quadratic

optimal control problem. Under further standard assumptions, a sufficient condition for the
solution is given by the boundary value problem




0 E 0
−ET 0 0

0 0 0







µ̇(t)
ẋ(t)
u̇(t)


 =




0 A B
AT Q S
BT ST R







µ(t)
x(t)
u(t)




with the boundary conditions x(0) = x0, limt→∞ET µ(t) = 0, where µ(t) is a Lagrange multi-
plier. The ansatz [µ̇(t)T , ẋ(t)T , u̇(t)T ]T = λ[µ(t)T , x(t)T , u(t)T ]T turns it into an even eigen-
value problem. ¤
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Example 1.2 Analogously, a discrete-time descriptor control system [12, 72] has the form

Exi+1 = Axi + Bui + fi, i = 0, . . . ,∞

where E, A ∈ Rm×n, B ∈ Rm×p, x0 ∈ Rn, and {ui}∞i=0 ∈ Rp are given and {xi}∞i=1 ∈ Rn is
wanted. As before, under standard assumptions there exists a unique solution {xi} called
state that of course depends on {ui} called control. The problem of determining a sequence
{ui} that minimizes the objective function

J =
∞∑

i=0

[
xi

ui

]T [
Q S
ST R

] [
xi

ui

]

where
[

Q S

ST R

]
is symmetric, positive semidefinite is known as linear quadratic optimal control

problem in discrete time. Under further assumptions it leads to the palindromic eigenvalue
problem

λ




0 E 0
AT Q S
BT ST R




︸ ︷︷ ︸
AT

χ =




0 A B
ET Q S
0 ST R




︸ ︷︷ ︸
A

χ, (1.5)

see Appendix A for a derivation. ¤

Properties

Actually, (1.1) represents three different eigenvalue problems, because A? denotes either the
transpose AT or the complex conjugate transpose AH of A. Both cases have similar, though
not identical properties. Unfortunately, as we will see, the real case — when transposing
with/without conjugation coincides — inherits the difficulties of both complex cases. Thus,
we chose to call the real problem a third case (as opposed to consider it a subcase of one of
the other two cases and not mention it anymore). The three cases will be treated in a unified
way wherever possible, addressing the differences whenever necessary.

The structure in the coefficient matrices of (1.1) and (1.2) results in a structure in the
spectrum. Indeed, transposing the palindromic problem (1.1) yields x?A = 1

λ? x?A?. So, if λ
is an eigenvalue and x an associated eigenvector, then 1

λ? is also an eigenvalue with x? as left
eigenvector. Note that for a scalar λ? reduces to either λ̄ (if ? = H) or just λ itself (otherwise).
The pairing also holds for a zero eigenvalue - its counterpart is an infinite eigenvalue. In the
whole thesis, we use the conventions 1

0 =∞ and 1
∞ = 0 in order to unify the treatment of finite

and infinite eigenvalues. Since the eigenvalues of real problems appear in complex conjugate
pairs, the eigenvalues of real palindromic problems occur in quadruples (λ, λ̄, 1/λ, 1/λ̄). Also
the number and sizes of Jordan blocks corresponding to the eigenvalues λ and 1

λ? coincide, as
is shown in Section 2.2.2. For real problems an analogous statement holds.

The eigenvectors corresponding to λ and 1
λ? are guaranteed to be linearly independent,

provided that the pairing is nontrivial, i.e., that λ 6= 1
λ? . This condition is violated for the

so-called ?-exceptional eigenvalues satisfying λ?λ = 1 which is the case for ±1 (if ? = T )
or every value on the unit circle (if ? = H). A major difference between the two complex
palindromic problems is that there are only finitely many T-exceptional eigenvalues while
there is a whole continuum of H-exceptional eigenvalues. The exceptional eigenvalues of real
palindromic problems are also given by the whole unit circle, because it cannot be guaranteed
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that the deflating subspaces for the pairs (λ, λ̄) and (1/λ, 1/λ̄) are linearly independent. This
fact supports our above statement that the real problem combines the problems of the two
complex ones.

Returning to even problems, (conjugate) transposing (1.2) yields x?M = −λx?N . Hence,
the eigenvalues of an even problem come in pairs (λ,−λ?), and the eigenvalues of real even
problems appear in quadruples (λ, λ̄,−λ,−λ̄). Again, also the number and sizes of Jordan
blocks corresponding to λ and −λ? (every eigenvalue of a quadruple, respectively) coincide,
see Section 2.2.1. Exceptional eigenvalues of ?-even problems are such that λ = −λ?, which
are 0 and ∞ in the T-case and the whole imaginary axis including ∞ in the real and the
H-case.

Hamiltonian and symplectic problems

Palindromic and even eigenvalue problems are strongly related to two other classes of struc-
tured eigenvalue problems: the Hamiltonian and symplectic eigenvalue problems which are
well studied, see for example [2, 7, 8, 9, 17, 23, 28, 40, 64, 72, 82, 75, 91, 94]. Let J =

[
0 I
−I 0

]
(where all four blocks are of the same size). A matrix H is called ?-Hamiltonian, if JH =
(JH)?. It is called ?-symplectic, if S?J S = J .

The eigenvalues of a Hamiltonian matrix come in pairs (λ,−λ?), i.e., they show the same
symmetry as even problems. This suggests a relation between the two problems. Indeed,
Hx = λx becomes the even eigenvalue problem JHx = λJ x upon premultiplication by J .
So, the even eigenvalue problem is a generalization of the Hamiltonian problem.

Symplectic matrices have reciprocally paired eigenvalues, just like palindromic problems.
However the relation between these two problems is much less understood. In Section 2.2.2 we
answer the question if every ?-symplectic matrix S can be factored into A−?A. (The answer
is ’yes’ for ? = H and ’no’ for ? = T and real matrices.)

This work

Often, palindromic and even eigenvalue problems model real world processes and the sym-
metries in the spectra reflect physical properties of these processes. This implies that only
methods that compute paired eigenvalues provide physically meaningful results. But, due to
rounding errors, the eigenvalues computed by standard methods for the generalized eigenvalue
problem (like the QZ algorithm) may lose their pairing. The wish to obtain paired eigenvalues
motivated the research that lead to this thesis. It is all about analyzing these symmetries
and designing algorithms that preserve them. A great source of ideas and concepts is given
by the theory and methods developed for Hamiltonian and symplectic matrices. These will
be adapted and generalized to even and palindromic problems.

The thesis is structured as follows: Chapter 2 analyses the posed problems in terms of
canonical forms under both nonsingular and unitary transformations. The former completely
characterizes spectral properties, whereas the latter can serve as target for numerical methods.

One such method is the palindromic QR algorithm. This adapted version of the standard
QR and QZ algorithms is discussed in detail in Chapter 3. This method has several excellent
properties regarding speed, stability and memory consumption, but loses much attraction by
the lack of a reduction to a Hessenberg-like form making the palindromic QR algorithm an
O(n4) process.
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The gap is filled by the Algorithms in Chapter 4 and Chapter 5 addressing the H- and
the T-case separately. Chapter 4 introduces skew symmetric generalized eigenvalue problems
and an efficient algorithm to solve them. It is then examined how the H-even problem can be
tackled by transforming it into a skew symmetric one. Chapter 5 describes a modification of
this approach for T-palindromic and T-even problems using a new matrix factorization: the
antitriangular URV decomposition. It is also discussed how the results of this method can be
postprocessed into a Schur-like form.

Chapter 6 briefly describes several further methods. These include the Laub trick that
solves the structured problem using the unstructured, but fast QZ algorithm, but has problems
with close to exceptional eigenvalues. A palindromic block refinement method is covered
subsequently. This iterative refinement method is attractive if a problem is almost solved or
as post processing step, but is too slow in general. Finally, a hybrid method is discussed that
combines the strength of the individual methods described before.

Notation

The set of positive numbers 1, 2, 3, . . . is denoted by N. The set N0 contains additionally 0.
The identity matrix of order n ∈ N is denoted by In, its k-th column — the k-th standard
basis vector — by ek, and Fn = [en, . . . , e2, e1] denotes the flip matrix of order n, sometimes
also called reverse identity or SIP (for standard involutory permutation),

In =




1
. . .

1


 ∈ Rn×n, Fn =




1

. ..

1


 ∈ Rn×n.

The subscript will be omitted if it is clear from the context. If a matrix is premultiplied by
F , it is flipped upside-down. Postmultiplication effects a flip leftside-right.

If B, CCm×n are matrices of the same size, we do not distinguish between the pencil
B − λC (with an indeterminant λ) and the pair (B, C). In particular, we call also (B, C)
a pencil. Simultaneous equivalence transformations on pencils are written as P (B, C)Q :=
(PBQ, PCQ) where P ∈ Cm×m, Q ∈ Cn×n are nonsingular. A pencil (B, C) ∈ Cm×n×Cm×n

is called regular, if m = n and the characteristic polynomial is not vanishing identically,
det(B − λC) 6≡ 0. An eigenvalue λ is semisimple, if its algebraic and geometric multiplicities
coincide. Otherwise it is defective. A vector x is said to be an eigenvector to the eigenvalue
∞ of (A, B), if x is an eigenvector to the eigenvalue 0 of (B,A). The set of eigenvalues of a
matrix A (of a pencil (B,C)) is denoted by λ(A) (by λ(B, C)).

Equivalence transformations of the form A 7→ Q?AQ are called ?-congruences. If Q is
unitary we speak of unitary ?-congruences. If Q is real then the transformation is called a
real congruence.

A square matrix A is called (lower) antitriangular if aij = 0, whenever i + j ≤ n. Such a

matrix is depicted by A = ¡. The transpose of an antitriangular matrix is again antitrian-
gular, whereas its inverse (if it exists) is upper antitriangular. We depict such statements by

¡−1 =¡. See the following figure for triangularity of products, inverses and transposes of
(anti-) triangular matrices.



15

A ·B, B =

A @ @ ¡ ¡ AT A−1 FA AF

@ @ ¡ @ @ ¡ ¡
@ @ ¡ @ @ ¡ ¡
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¡ ¡ @ ¡ ¡ @ @

The Kronecker product (e.g., [45]) of two matrices A ∈ Cm×n and B ∈ Ck×l is defined as

A⊗B :=




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


 ∈ C

mk×nl.

It has the useful property that

vec(AXB) = (BT ⊗A)vec(X), (1.6)

where vec(·) denotes the vectorization operator that stacks the columns of X upon each other.
Further, we use the symbol ⊕ for the direct sum, i.e., A⊕B =

[
A

B

]
. Rounding a scalar

α towards the next larger (the next smaller) integer is written as dαe (as bαc).
More notation will be introduced when needed.
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Chapter 2

Palindromic and Even Canonical
forms

This chapter discusses the algebraic properties of palindromic and even eigenvalue problems
in terms of canonical forms and reduced forms.

Section 2.1 introduces the Cayley transform that relates palindromic and even problems
to each other. Section 2.2 presents normal forms for even and palindromic pencils that allow
to read of the complete spectral properties. Section 2.3 is concerned with structured Schur
forms, i.e., canonical forms under unitary transformations. These also reveal all eigenvalues
and are eligible as targets of numerical algorithms. Section 2.4 covers staircase algorithms
and forms that can be used to strip off singular parts from a singular pencil.

2.1 Cayley transform

The Cayley transformation reformulates the generalized eigenvalue problem Bx = λCx as

(B + C)x =
λ + 1
λ− 1

(B − C)x. (2.1)

The pencil (B, C) and its Cayley transform have the same eigenvectors and the eigenvalues
are transformed as λ 7→ µ(λ) = λ+1

λ−1 .
It is straightforward to check that regularity and singularity are preserved, i.e., a pencil

is singular if and only if its Cayley transform is singular.
Applying the Cayley transform twice to the problem Bx = λCx yields

((B + C) + (B − C))x =
λ+1
λ−1 + 1
λ+1
λ−1 − 1

((B + C)− (B − C))x

which simplifies to 2Bx = λ2Cx. Thus, when treated as map acting on pencils C : (B, C) 7→
(B + C, B − C), it holds that C ◦ C = 2 Id. This implies that the relation µ = λ+1

λ−1 is self
inverse, i.e., λ = µ+1

µ−1 . Note that an eigenvalue λ = 1 is not problematic. It is mapped to ∞
by the first Cayley transform and back to 1 by the second one.

Using the Cayley transformation, the treatment of palindromic and even problems can
be unified, because the Cayley transform (M + N)x = λ+1

λ−1(M − N)x of an even problem

17
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is palindromic, whereas the Cayley transform (A + A?)x = λ+1
λ−1(A − A?)x of a palindromic

problem is even.
Note that the exceptional eigenvalues of the one are mapped to the exceptional eigenvalues

of the other. Indeed, µ(0) = −1, µ(−1) = 0 and µ(∞) = 1, µ(1) = ∞. Also, for λ = α + iβ
on the unit circle (i.e., α2 + β2 = 1) we have µ(α + iβ) = β

α−1 i on the imaginary axis, and
vice versa.

The Cayley transformation can be generalized to polynomials as follows [68]: the Cayley
transform of a matrix polynomial P (λ) of degree k is defined as PC(µ) := (µ − 1)kP (µ+1

µ−1).
Note that the linear polynomial B−λC is mapped to µ(B−C)− (B +C) which corresponds
to the pencil (2.1). So, the polynomial Cayley transformation is indeed a generalization of
the pencil transformation.

Example 2.1 The palindromic linearization (1.3) can be derived as the Cayley transform
of the structured linearization (1.4) as follows.

Consider the cubic ?-palindromic matrix polynomial P (λ) = λ3A?
0 + λ2A?

1 + λA1 + A0.
Substituting λ = µ+1

µ−1 and multiplication by (µ− 1)3 results in the polynomial

PC(µ) := (µ− 1)3P (
µ + 1
µ− 1

) = µ3(A?
0 + A?

1 + A1 + A0︸ ︷︷ ︸
B3

) + µ2(3A?
0 + A?

1 −A1 − 3A0︸ ︷︷ ︸
B2

)+

µ(3A?
0 −A?

1 −A1 + 3A0︸ ︷︷ ︸
B1

) + (A?
0 −A?

1 + A1 −A0︸ ︷︷ ︸
B0

) (2.2)

The coefficients of PC alternate between symmetric and skew symmetric, more precisely
Bi = (−1)i+1B?

i . Polynomials with this property are called odd, because PC(µ) = −P (−µ)?.
Odd polynomials are a variant of even polynomials and can be treated analogously. For
instance, scaling the middle row of (1.4) by −I results in an odd linearization of an odd cubic
polynomial. Applying it to PC(µ) gives

µ




B3

I
I −B1


 +




B2 I
−I

−B0


 .

Carrying out a second Cayley transformation, i.e., backsubstituting µ = λ+1
λ−1 and multiplying

by λ− 1 we get

λ




B3 + B2 I
−I I

I −B1 −B0


 +




B3 −B2 −I
I I

I −B1 + B0




which is, in fact, palindromic. A congruence transformation with diag( 1√
2
,
√

2, 1√
2
)⊗I results

in (1.3).
Applying this process to the even linearizations in [3] we obtain palindromic linearizations

for any polynomial degree. These linearizations are block tridiagonal and for odd degrees
do not pose any constraints on the palindromic polynomial. For even degrees, on the other
hand, the constant coefficient A0 has to be invertible and indeed its inverse appears in the
linearization. Note that the occurrence of the inverse can be eliminated by scaling a certain
row and column by A0, but the invertibility is still needed. ¤
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2.2 Structured Kronecker forms

In this section we present canonical forms for palindromic and even pencils under structure
preserving transformations that reveal all spectral information. These forms can be thought
of as analogons of the Kronecker canonical form for general matrix pencils B−λC, see below.
However, in contrast to the Kronecker canonical form, these canonical forms are themselves
palindromic or even and are obtained under structure preserving transformations. Thus, the
forms do not only reflect the spectral symmetry of the given pencils, but also additional
invariants, if there are any.

Spectral information for pencils is invariant under equivalence transformations, but these
transformations in general destroy the palindromic and even structures. Thus, we restrict the
class of allowed transformations to ?-congruences that preserve both structures:

P ?(A,A?)P = (Ã, Ã?), Ã = P ?AP ;
P ?(M, N)P = (M̃, Ñ), M̃ = M̃? = P ?MP, Ñ = −Ñ? = P ?NP.

How could canonical forms look like for these structured pairs? Consider the following: if
A = A1⊕A2⊕· · ·⊕Ak or (M, N) = (M1, N1)⊕ (M2, N2)⊕· · ·⊕ (Mk, Nk) are block diagonal
with square blocks then the problems decouple and the spectra are the unions of those of
the small problems, i.e., λ(A,A?) =

⋃k
i=1 λ(Ai, A

?
i ), and λ(M, N) =

⋃k
i=1 λ(Mi, Ni). On the

other hand, assume that A, or M, N are antitriangular. Then the characteristic polynomials
can be written as

det(A− λA?) = ±(an,1 − λa?
1,n)(an−1,2 − λa?

2,n−1) · · · (a1,n − λa?
n,1),

det(M − λN) = ±(Mn,1 − λNn,1)(Mn−1,2 − λNn−1,2) · · · (M1,n − λN1,n) (2.3)

and the roots/eigenvalues can be read off. Thus, we aim at canonical forms of a square matrix
or an even matrix pair under ?-congruence that are block diagonal with antitriangular blocks.

Some more notation is needed at this point. Throughout this thesis, we will write
Jn(λ), JF,n(λ) to denote a Jordan block corresponding to an eigenvalue λ, and the ”flipped”
Jordan block of order n ∈ N, respectively, i.e.,

Jn(λ) =




λ 1
. . . . . .

. . . 1
λ



∈ Cn,n, JF,n(λ) =




λ

. .. 1

. .. . ..

λ 1



∈ Cn,n.

The subscript n is omitted if the size is clear from the context. Note that the matrix Jn(λ)
is not to be confused with J =

[
0 I
−I 0

]
. Analogously, for a 2× 2 real matrix Λ we define the

block versions

Jn(Λ) =




Λ I2

. . . . . .
. . . I2

Λ




, JF,n(Λ) =




Λ

... I2

. .. . ..

Λ I2



∈ R2n,2n.

In the relevant case that Λ has two distinct eigenvalues λ1, λ2 the Jordan canonical form of
Jn(Λ) is given by Jn(λ1)⊕ Jn(λ2).
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Further, for n ∈ N0 we define SL,n and SR,n as

SL,n =




1 0

. .. . ..

1 0


, SR,n =




0 1

. .. . ..

0 1


 ∈ Rn,n+1.

Note that SL,0 and SR,0 are 0×1 matrices. Thus, SL,0⊕ST
R,0 is the 1×1 zero matrix. Again,

if the size is clear from the context then the subscript is omitted.
With these conventions we are able to state the classical Kronecker canonical form for

matrix pairs, see, e.g., [34, Chapter XII].

Theorem 2.1 (Kronecker canonical form) Let B, C ∈ Cm×n. Then there exist invertible
matrices P ∈ Cm×m, Q ∈ Cn×n such that

P (B, C)Q = diag
(
(B1, C1), (B2, C2), . . . , (Bk, Ck)

)
(2.4)

is a block diagonal pencil and every block (Bi, Ci) is of one of the following forms:

1. (Jp(λ), Ip);

2. (Ip, Jp(0));

3. (FpSL,p, FpSR,p);

4. (Fp+1S
T
L,p, Fp+1S

T
R,p),

where F denotes the flip matrix and p, λ depend on the individual blocks.
Furthermore, the kind, size, and quantity of the blocks in (2.4) are uniquely determined.

We call (Jp(λ), Ip) a Jordan block of order p for a finite eigenvalue λ. Analogously, (Ip, Jp(0))
is called a Jordan block of order p for an infinite eigenvalue. Moreover, Fp(SL,p, SR,p) is called
left singular block of minimal index p, whereas Fp+1(ST

L,p, S
T
R,p) is called a right singular block

of minimal index p. A pencil is regular if its Kronecker canonical form contains neither left
nor right singular blocks.

2.2.1 Even Kronecker forms

Below, we state even versions of the Kronecker canonical form. As preparation we discuss
the following collection of even pencils that provides an overview of the spectral properties of
even eigenvalue problems.

• If a ?-even pencil is of the form

JE,p(λ) :=
([

0p JF (λ)?

JF (λ) 0p

]
,

[
0p −F
F 0p

])
∈ C2p×2p × C2p×2p, p ∈ N, λ ∈ C,

(2.5)
then (by flipping the whole pencil upside down) its Kronecker canonical form consists
of a Jordan block for eigenvalue λ and one for eigenvalue −λ?, both of order p. This
behavior is typical for even pencils and suggests that the nonexceptional eigenvalues
not only appear in pairs (λ,−λ?), as observed before, but also coincide in their Jordan
structure. The pencil JE,p(λ) is called even Jordan block for eigenvalues λ,−λ? of order
p.
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• (finite exceptional eigenvalues) The T-even pencil

EE1,p,σ := σ

(
JF (0),

[
0 p

2
−F

F 0 p
2

])
∈ Cp×p × Cp×p, p ∈ N even, σ ∈ {1,−1} (2.6)

is equivalent to a Jordan block for an eigenvalue 0 of order p. So, the T-exceptional
eigenvalue 0 can occur in single Jordan blocks of even order, i.e., it is not paired with
another Jordan block.

Analogously, the H-even pencil

EE2,p,σ(β) := σ (JF (β), iF ) ∈ Cp×p × Cp×p, p ∈ N, β ∈ R, σ ∈ {1,−1} (2.7)

is equivalent to a Jordan block corresponding to an eigenvalue λ = β
i of order p. So,

the H-exceptional eigenvalue β
i can occur in single Jordan blocks.

• (infinite eigenvalues) If a T-even pencil is of the form

EE3,p :=
(

F2p,

[
0p −JF (0)

JF (0) 0p

])
∈ C2p×2p × C2p×2p, p ∈ N (2.8)

then (again, by flipping the whole pencil upside down) its Kronecker canonical form
consists of two Jordan blocks for the eigenvalue ∞, each of order p.

Jordan blocks for infinite eigenvalues can also occur in single Jordan blocks: the T-even
pencil

EE4,p,σ := σ

(
Fp,

[
0d p

2
e −ST

R

SR 0b p
2
c

])
∈ Cp×p × Cp×p, p ∈ N odd, σ ∈ {1,−1} (2.9)

is equivalent to one Jordan block for an eigenvalue ∞ of odd order p.

An analogous example for H-even pencils is

EE5,p,σ := σ (F, iJF (0)) ∈ Cp×p × Cp×p, p ∈ N, σ ∈ {1,−1} (2.10)

which is equivalent to a Jordan block for an eigenvalue ∞ of order p.

• (singular pencils) If a ?-even pencil is of the form

SE,p :=
([

0p+1 ST
R

SR 0p

]
,

[
0p+1 −ST

L

SL 0p

])
∈ C2p+1×2p+1 × C2p+1×2p+1, p ∈ N0 (2.11)

then (by flipping the whole pencil upside down) its Kronecker canonical form consists
of a left singular block and a right singular block, both of minimal index p.

We call SE,p an even singular block of minimal index p.

Remark 2.1 The blocks defined in (2.5)–(2.11) (and others introduced later) are named by
the following convention: every block label is of the form XY n,p,σ(λ) or XY n,p,σ(α, β), where

• X ∈ {J,E, S} depending on whether this is a structured Jordanblock for a nonexcep-
tional eigenvalue, a structured Jordan block for an exceptional eigenvalue, or a block
corresponding to singularities in the pencil;
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• Y ∈ {E, P} depending on whether the block is for even or palindromic pencils;

• n ∈ N (optional) is a consecutive number, if there are several blocks of one type; for
example, the blocks of (2.6)–(2.10) all are even Jordan blocks for exceptional eigenvalues;

• p ∈ N0 denotes the order of the eigenvalues (if X ∈ {J,E}) or the minimal index [34]
of the singular blocks (if X = S); p does in general not denote the size of the block;

• σ ∈ {1,−1} (optional) denotes a sign;

• λ ∈ C (optional) denotes the eigenvalue;

• α, β ∈ R (optional) where α + iβ denotes the eigenvalue.

¤

It turns out that the above collection describes the complete spectral properties of complex
even pencils as is assured by the following results.

Theorem 2.2 (T-even Kronecker form) Let M = MT , N = −NT ∈ Cn×n. Then there
exists a nonsingular P ∈ Cn×n such that

P T (M, N)P = diag
(
(M1, N1), . . . , (Ml, Nl)

)
(2.12)

is a block diagonal pencil, where every diagonal block (Mj , Nj) is of one of the following forms:

1. JE,p(λ) with (Re(λ) < 0) or (Re(λ) = 0 and Im(λ) > 0), and ? = T ;

2. JE,p(λ) with λ = 0 and p odd;

3. EE1,p,1;

4. EE3,p with p even;

5. EE4,p,1;

6. SE,p.

Furthermore, the kind, size, and quantity of the blocks in (2.12) are uniquely determined.

Proof: This form is a slight variation of the canonical form proved in [89, Theorem 1]. The
blocks presented here can be obtained from the blocks proposed in [89] by simple congruence
transformations consisting of flipping or negating some rows/columns. ¤

For the H-case there is an analogous result with slightly different blocks.

Theorem 2.3 (H-even Kronecker form) Let M = MH , N = −NH ∈ Cn×n. Then there
exists a nonsingular P ∈ Cn×n such that

PH(M,N)P = diag
(
(M1, N1), . . . , (Ml, Nl)

)
(2.13)

is a block diagonal pencil, where every diagonal block (Mj , Nj) is of one of the following forms:

1. JE,p(λ) with (Re(λ) < 0) and ? = H;
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2. EE2,p,σ(β);

3. EE5,p,σ;

4. SE,p.

Furthermore, the kind, size, sign, and quantity of the blocks in (2.13) are uniquely determined.

Proof: This form follows directly from a canonical form for Hermitian pencils presented
in [88] applied to (M, iN). ¤
The signs σ are consequences of the Sylvester law of inertia. They are additional invariants
under H-congruence. We call σ the sign characteristic of a signed even Kronecker block.
This is a slight abuse of the notation in [35], where all the signs of the signed blocks in the
canonical form of a given pencil form the sign characteristic of that pencil.

The real case combines the properties of the two complex cases. Thus, there will be special
blocks for eigenvalues 0, ∞ as well as for eigenvalues on the imaginary axis. As usual with
spectrum revealing canonical forms for real matrices, complex conjugate eigenvalues will be
combined to real 2× 2 blocks.

We have the following additional blocks:

• The Kronecker canonical form of

JE,p(α, β) :=
([

0 JF,p(Λ)T

JF,p(Λ) 0

]
,

[
0 −Fp ⊗ I2

Fp ⊗ I2 0

])
∈ R4p×4p × R4p×4p,

with p ∈ N, Λ =
[
α −β
β α

]
, α, β ∈ R \ {0}, (2.14)

consists of one Jordan block of order p for each of the four eigenvalues λ = α +
iβ, λ̄,−λ,−λ̄ as becomes obvious upon premultiplication by F2p ⊗ I2.

• If (M, N) is of the form

EE6,p,σ(β) := σ

(
JF,p(

[
β 0
0 β

]
), Fp ⊗

[
0 1
−1 0

])
∈ C2p×2p, p ∈ N, β ∈ R \ {0},

σ ∈ {1,−1} (2.15)

then the Kronecker canonical form of (M,N) consists of one Jordan block of order p
for each of the eigenvalues λ1,2 = ±βi.

Theorem 2.4 (real even Kronecker form) Let M = MT , N = −NT ∈ Rn×n. Then
there exists a nonsingular P ∈ Rn×n such that

P T (M, N)P = diag
(
(M1, N1), . . . , (Ml, Nl)

)
(2.16)

is a block diagonal pencil, where every diagonal block (Mj , Nj) is of one of the following forms:

1. JE,p(λ) with λ ∈ R, λ < 0, and ? = T ;

2. JE,p(α, β) with α, β < 0;

3. JE,p(0) with p odd;
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4. EE1,p,σ;

5. EE6,p,σ(β) with β > 0;

6. EE3,p with p even;

7. EE4,p,σ;

8. SE,p.

Furthermore, the kind, size, sign, and quantity of the blocks in (2.13) are uniquely determined.

Proof: This form is a slight variation of the canonical form proved in [89, Theorem 2]. The
blocks presented here can be obtained from the blocks proposed in [89] by simple congruence
transformations consisting of flipping or negating some rows/columns. ¤

Example 2.2 The pencil

(M,N) =







8 2 4 1 −4 −7 −12
2 4 10 7 2 −1 −6
4 10 16 13 8 5 0
1 7 13 10 5 2 3
−4 2 8 5 0 3 8
−7 −1 5 2 3 6 11
−12 −6 0 3 8 11 16




,




0 2 0 −1 0 1 0
−2 0 2 1 2 3 2
0 −2 0 −1 0 1 0
1 −1 1 0 1 2 −1
0 −2 0 −1 0 −1 0
−1 −3 −1 −2 1 0 1
0 −2 0 1 0 −1 0







is R-congruent to

P T (M, N)P =







3
3 1

3
3 1


 ,




−1
−1

1
1





⊕







1
1

1


 ,




0
0 −1

0 1 0





 .

Thus, by above considerations, the pencil (M, N) has the double eigenvalues 3 and −3 and a
triple eigenvalue at infinity. The classical unstructured Kronecker canonical form of is given
by (

J2(3)⊕ J2(−3)⊕ I3, I2 ⊕ I2 ⊕ J3(0)
)
.

¤

Example 2.3 The real even pencil

(M, N) =







−6 2 2 5 −4
2 −5 −4 1 3
2 −4 2 3 1
5 1 3 3 4
−4 3 1 4 −2




,




0 1 3 1 −1
−1 0 −1 −2 −1
−3 1 0 1 −2
−1 2 −1 0 0
1 1 2 0 0







(2.17)

is R-congruent to






0 0 2 1
0 0 −1 2
2 −1 0 0
1 2 0 0


 ,




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0





⊕ (−1, 0). (2.18)
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The first block has the four eigenvalues ±2 ± i and the second block represents an infinite
eigenvalue. Note that by Theorem 2.4 the second block cannot be transformed to (1, 0) by
real congruences.

Under complex H-congruence the pencil (M,N) can be further reduced to
([

0 2 + i
2− i 0

]
,

[
0 −1
1 0

])
⊕

([
0 2− i

2 + i 0

]
,

[
0 −1
1 0

])
⊕ (−1, 0). (2.19)

Here, the first block covers the eigenvalues 2 − i,−2 − i and the second block carries the
eigenvalues 2 + i,−2 + i. By Theorem 2.3 the third block cannot be transformed to (1, 0)
even by complex H-congruences.

Under complex T -congruence the pencil (M, N) can be reduced to
([

0 2 + i
2 + i 0

]
,

[
0 −1
1 0

])
⊕

([
0 2− i

2− i 0

]
,

[
0 −1
1 0

])
⊕ (1, 0). (2.20)

This time, the first block covers the eigenvalues 2 + i,−2− i and the second block carries the
eigenvalues 2 − i,−2 + i. Using the complex T -congruence i(−1, 0)i, the third block can be
transformed to the block (1, 0). ¤

A direct consequence of Theorems 2.2, 2.3, and 2.4 and the spectral properties of the
particular blocks is the following characterization of the Kronecker canonical form of even
pencils.

Corollary 2.5 a) A pencil is equivalent to a T-even pencil if and only if its Kronecker canon-
ical form has the following properties:

1. for every λ ∈ C \ {0}, p ∈ N, the number of Jordan blocks for the eigenvalue λ of size p
equals the number of Jordan blocks for the eigenvalue −λ of size p;

2. for every p ∈ N, even, the number of Jordan blocks for the eigenvalue ∞ of size p is
even;

3. for every p ∈ N, odd, the number of Jordan blocks for the eigenvalue 0 of size p is even;

4. for every p ∈ N, the number of left singular blocks of minimal index p equals the number
of right singular blocks of minimal index p.

b) A pencil is equivalent to an H-even pencil if and only if its Kronecker canonical form has
the following properties:

1. for every λ ∈ C, Im(λ) 6= 0, p ∈ N, the number of Jordan blocks for eigenvalue λ of size
p equals the number of Jordan blocks for eigenvalue −λ̄ of size p;

2. for every p ∈ N, the number of left singular blocks of minimal index p equals the number
of right singular blocks of minimal index p.

c) A real pencil is equivalent to an R-even pencil if and only if its Kronecker canonical form
has the following properties:

1. for every λ ∈ C \ (R ∪ iR), p ∈ N, the numbers of Jordan blocks for eigenvalues
λ, λ̄,−λ,−λ̄ of size p are equal;
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2. for every λ ∈ (R∪ iR) \ {0}, p ∈ N, the number of Jordan blocks for eigenvalue λ of size
p equals the number of Jordan blocks for eigenvalue −λ of size p;

3. for every p ∈ N, even, the number of Jordan blocks for eigenvalue ∞ of size p is even;

4. for every p ∈ N, odd, the number of Jordan blocks for eigenvalue 0 of size p is even;

5. for every p ∈ N, the number of left singular blocks of minimal index p equals the number
of right singular blocks of minimal index p.

2.2.2 Palindromic Kronecker forms

In the following we list structured Kronecker forms for palindromic pencils.
As for even pencils we start by studying a collection of certain palindromic pencils to get

an idea of the spectral properties of palindromic eigenvalue problems. Regarding the block
names see Remark 2.1.

• If A is of the form

JP,p(λ) :=
[

0p JF (λ)
F 0p

]
∈ C2p×2p, p ∈ N, (2.21)

then the Kronecker canonical form of the ?-palindromic pencil (A,A?) consists of a
Jordan block for an eigenvalue λ and one for 1/λ?, both of order p. This suggests that
the nonexceptional eigenvalues λ and 1/λ? do not only appear in pairs, but do also agree
in their Jordan structure. This block is called palindromic Jordan block for eigenvalues
λ, 1/λ? of order p.

• (exceptional eigenvalues) Let A be of the form

EP1,p,σ(λ) := σ




0 0 JF,b p
2
c(λ)

0
√

λ eT
1

Fb p
2
c 0 0


 ∈ Cp×p, p ∈ N odd, σ ∈ {1,−1},

with

{
λ = 1, if ? = T,

|λ| = 1, if ? = H.
(2.22)

By inspection of A−?A and noting that λ = 1/λ? =
√

λ/
√

λ
?
, the Kronecker canonical

form of (A,A?) contains a single Jordan block for the eigenvalue λ of odd order p.

Similarly, let A be of the form

EP2,p,σ,γ(λ) := σ

[
0 JF, p

2
(λ)

F p
2

γe1e
T
1

]
∈ Cp×p, p ∈ N even, γ 6= 0, σ ∈ {1,−1}

with

{
λ = −1, if ? = T,

|λ| = 1, if ? = H.
(2.23)

Forming A−?A shows that (A, A?) has only the eigenvalue λ = 1/λ? of algebraic multi-
plicity p. Considering the rank of A − λA? shows that λ is of geometric multiplicity 1
provided that γ − λγ? 6= 0. Thus, if γ − λγ? 6= 0 then the Kronecker canonical form of
the ?-palindromic pencil (A,A?) also contains a single Jordan block for eigenvalue λ of
the even order p.
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• (singular pencils) The Kronecker canonical form of a ?-palindromic pencil (A,A?) with

A = SP,p :=
[

0p+1 ST
R

SL 0p

]
∈ C2p+1×2p+1, p ∈ N0 (2.24)

consists of a left singular block and a right singular block, both of order p.

As the following Theorems shows these considerations cover indeed all palindromic spectral
properties.

Theorem 2.6 (T-palindromic Kronecker form) Let A ∈ Cn×n. Then there exists a
nonsingular P ∈ Cn×n such that

P T AP = diag(A1, . . . , Al) (2.25)

is a block diagonal matrix, where every diagonal block Aj is of one of the following forms:

1. JP,p(λ) with (|λ| < 1) or (|λ| = 1 and Im(λ) > 0);

2. EP1,p,1(1) with
√

λ = 1;

3. JP,p(1) with p even;

4. JP,p(−1) with p odd;

5. EP2,p,1,1(−1) with p even;

6. SP,p.

Furthermore, the kind, size, and quantity of the blocks in (2.25) are uniquely determined.

Proof: See [79, Theorem 1]. The idea of the proof can be found in Section 2.2.3. ¤

Theorem 2.7 (H-palindromic Kronecker form) Let A ∈ Cn×n. Then there exists a
nonsingular P ∈ Cn×n such that

PHAP = diag(A1, . . . , Al) (2.26)

is a block diagonal matrix, where every diagonal block Aj is of one of the following forms:

1. LP,p(λ) with |λ| < 1;

2. EP1,p,σ(λ) with |λ| = 1, arg(
√

λ) ∈ [0, π);

3. EP2,p,σ,γ(λ) with |λ| = 1, γ =

{
i, if λ = 1,

1, otherwise;

4. SP,p.

Furthermore, the kind, size, sign, and quantity of the blocks in (2.26) are uniquely determined.

Proof: See [79, Theorem 5]. The idea of the proof can be found in Section 2.2.3. ¤
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Example 2.4 For a nonreal matrix A the pencils (A, AT ) and (A,AH) can have drastically
different spectral properties. They do not even have to share regularity. For example, let
A =

[
i 1
−1 i

]
and P = 1

2

[−i 1
1 −i

]
. Then P T AP = [ 0 0

1 0 ] = JP,1(0), i.e., (A,AT ) is regular and
has eigenvalues at 0 and ∞. On the other hand, PHAP = [ i 0

0 0 ] = EP1,1,1(−1) ⊕ SP,0, i.e.,
(A,AH) is singular and has an eigenvalue at i/̄i = −1. ¤

The signs σ in the blocks (2.22) and (2.23), again called sign characteristics, are additional
invariants under H-congruence.

Because the real case represents a subcase of the two complex cases, there will be special
blocks for eigenvalues ±1, as well as for eigenvalues of modulus 1. As usual with spectrum
revealing canonical forms for real matrices, complex conjugate eigenvalues will be combined
to real 2× 2 blocks. We have the following additional blocks:

• Assume that A is of the form

JP,p(α, β) :=
[

02p JF (Λ)
Fp ⊗ I2 02p

]
∈ R4p×4p with Λ =

[
α −β
β α

]
, α, β ∈ R, p ∈ N

(2.27)
such that α 6= 0 6= β, α2 + β2 6= 1. Then the Kronecker form of the real palindromic
pencil (A, AT ) consists of Jordan blocks for the four eigenvalues λ = α + iβ, λ̄, 1/λ, and
1/λ̄, each of order p. The matrix JP,p(α, β) is called a palindromic Jordan block for the
eigenvalues ±α± iβ of order p.

• (exceptional eigenvalues) Let A be of the form

EP3,p,σ(α, β) := σ




0p−1 0 JF (Λ)
0 Λ

1
2 eT

1 ⊗ I2

F p−1
2
⊗ I2 0 0p−1


 ∈ R2p×2p, Λ =

[
α −β
β α

]
,

α, β ∈ R, α2 + β2 = 1, p ∈ N odd, σ ∈ {1,−1} (2.28)

or

EP4,p,σ(α, β) := σ

[
0p JF (Λ)

F p
2
⊗ I2 (e1e

T
1 )⊗ I2

]
∈ R2p×2p, Λ =

[
α −β
β α

]
,

α, β ∈ R, α2 + β2 = 1, p ∈ N even, σ ∈ {1,−1}. (2.29)

Note that since α2 + β2 = 1, Λ is a rotation matrix, thus Λ = Λ−T . Here Λ
1
2 is defined

as a rotation matrix with half the rotation angle of Λ. Thus, (Λ
1
2 )−T Λ

1
2 = Λ. Then,

by looking at A−T A, the Kronecker canonical form of (A,AT ) consists of two Jordan
blocks of the order p, one for λ = α + iβ and one for λ̄ = α− iβ = 1/λ.

We can now state the real palindromic Kronecker form.

Theorem 2.8 (R-palindromic Kronecker form) Let A ∈ Rn×n. Then there exists a non-
singular P ∈ Rn×n such that

P T AP = diag(A1, . . . , Al) (2.30)

is a block diagonal matrix, where every diagonal block Aj is of one of the following forms:

1. JP,p(λ) with λ ∈ R, |λ| < 1;
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2. JP,p(α, β) with α 6= 0, β < 0, |α + iβ| < 1;

3. EP1,p,σ(1) with
√

λ = 1;

4. JP,p(1) with p even;

5. JP,p(−1) with p odd;

6. EP2,p,σ,1(−1) with p even;

7. EP3,p,σ(α, β) with β < 0, and the rotation angle φ of Λ
1
2 satisfies φ ∈ (0, π);

8. EP4,p,σ(α, β) with β < 0;

9. SP,p.

Furthermore, the kind, size, sign, and quantity of the blocks in (2.30) are uniquely determined.

Proof: See [79, Theorem 8]. The idea of the proof can be found in Section 2.2.3. ¤

Remark 2.2 If A is symmetric or Hermitian, then also the canonical form (2.25) or (2.26)
must be symmetric/Hermitian. But the only such blocks are SP,0 and EP1,1,σ(1) with

√
λ = 1

and σ =
{

1 ?=T
±1 ?=H , amounting to the 1 × 1 matrices 0, and ±1 respectively. So, every

symmetric matrix A is T-congruent (over C) to
[

I
0

]
, whereas every Hermitian matrix is

H-congruent to In+ ⊕ −In− ⊕ 0n0 . Thus, we recover the well-known canonical forms of
symmetric/Hermitian matrices under congruence [45]. The triple (n+, n−, n0) is called the
inertia index of a Hermitian matrix. ¤

Example 2.5 The matrix

A =




4 2 2 0 −2 −3 −6
0 2 6 4 2 1 −2
2 4 8 6 4 3 0
1 3 7 5 3 2 1
−2 0 4 2 0 1 4
−4 −2 2 0 2 3 6
−6 −4 0 2 4 5 8




is congruent to

P T AP =




1
2

1
2 1

1
1


⊕




1
1 1

1


 .

Thus, by above considerations, the pencil (A,AT ) has the double eigenvalues 1
2 and 2 and a

triple eigenvalue at 1. The Kronecker canonical form of (A,AT ) is given by
(
J2( 1

2 )⊕ J2(2)⊕ J3(1), I7

)
.

Note that A = 1
2(M + N) with M,N as of Example 2.2. ¤
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By using Theorems 2.6, 2.7, and 2.8 together with the spectral properties of the particular
blocks we are able to characterize the Kronecker canonical form of palindromic pencils.

Corollary 2.9
a) Let F ∈ {R,C}. A pair (B,C) ∈ Fn×n × Fn×n is equivalent to a T-palindromic pair
(A,AT ) ∈ Fn×n×Fn×n if and only if the Kronecker canonical form of (B, C) has the following
properties:

1. for every λ ∈ C \ {1,−1}, p ∈ N, the number of Jordan blocks for the eigenvalue λ of
size p equals the number of Jordan blocks for the eigenvalue 1

λ of size p;

2. for every p ∈ N, even, the number of Jordan blocks for the eigenvalue 1 of size p is even;

3. for every p ∈ N, odd, the number of Jordan blocks for the eigenvalue −1 of size p is
even;

4. for every p ∈ N, the number of singular blocks of left minimal index p equals the number
of singular blocks of right minimal index p.

b) A complex pencil is equivalent to a complex H-palindromic pencil if and only if its Kronecker
canonical form has the following properties:

1. for every λ ∈ C, |λ| 6= 1, p ∈ N, the number of Jordan blocks for eigenvalue λ of size p
equals the number of blocks for eigenvalue 1/λ̄ of size p;

2. for every p ∈ N, the number of singular blocks of left minimal index p equals the number
of singular blocks of right minimal index p.

Proof: For both complex cases this result follows from the corresponding palindromic Kro-
necker form, Theorem 2.6 or 2.7, and the spectral properties of the particular blocks given
above. In the real case Theorem 2.8 is used and additionally the fact that if the number of
Jordan blocks for λ and 1/λ coincide then also the number of Jordan blocks for λ, λ̄, 1/λ, and
1/λ̄ coincide. ¤

Corollary 2.9 can be used to answer the question posed in the introduction: ’when does a
symplectic matrix S admit a palindromic factorization, i.e., when does a nonsingular matrix
A exist such that S = A−?A?’

Corollary 2.10

1. A complex T-symplectic matrix S admits a T -palindromic factorization S = A−T A if,
and only if, the number of Jordan blocks for the eigenvalue 1 of order p is even for all
even p ∈ N.

Moreover, if S is real, then also the factor A can be chosen real.

2. Every complex H-symplectic matrix admits an H-palindromic factorization.

Proof: The required condition for T- and real symplectic matrices is condition (2) in Corol-
lary 2.9 for T-palindromic pencils. All the other conditions posed in Corollary 2.9 are fullfilled
automatically by symplectic matrices. This follows from canonical forms for symplectic matri-
ces presented in [66, 70, 71]. Thus, under the posed conditions, the pencil (S, I) is equivalent
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to a ?-palindromic pencil, i.e., P (S, I)Q = (B, B?). Then, with A := Q−?BQ−1 it holds that
A−?A = QB−?BQ−1 = Q(PQ)−1(PSQ)Q−1 = S. ¤

Thus, H-palindromic pencils can be seen as generalizations of H-symplectic matrices just
as even pencils generalize Hamiltonian matrices. On the other hand, T-symplectic matrices
and T-palindromic pencils differ in the Jordan structure at the eigenvalue 1.

Example 2.6 Consider the matrix S = [ 1 1
0 1 ] which is T-, H-, and real symplectic. The

number of Jordan blocks of S for the eigenvalue 1 of the even size 2 is 1, i.e., not even. So, by
Corollary 2.10, there is no matrix A, neither real nor complex, such that S = A−T A. Indeed,
assuming A =

[
a b
c d

]
and considering the equation AT S = A yields a = b = c = 0. So A would

be singular. However, for A =
[

0 −2i
2i i

]
we have A−HA = S.

On the other hand, −S =
[−1 −1

0 −1

]
is also T-, H-, and real symplectic and fulfills the

requirements of Corollary 2.10. Indeed, for B = −iA =
[

0 −2
2 1

]
we have B−?B = −S for every

choice of ?. ¤

2.2.3 About canonical forms under congruence

The palindromic Kronecker forms for pencils (A, A?) in this section can be proved by applying
the even Kronecker forms to the Cayley transform and some postprocessing. More precisely,
let P represent the ?-congruence that transforms the even pencil (M,N) = 1

2(A+AT , A−AT )
to the appropriate even Kronecker form (2.12),(2.13), or (2.16). Then Ã = P ?AP = P ?MP +
P ?NP is block diagonal, every block being the sum of the symmetric and skew symmetric
parts of the canonical blocks of Theorems 2.2, 2.3, and 2.4. It has to be shown that these
matrices are ?-congruent to one of the blocks claimed in Theorems 2.6, 2.7, and 2.8.

Representatively, we show that the sum of the two matrices in the even Jordan block
JE,p(λe) is ?-congruent to the palindromic Jordan block JP,p(λp) as of (2.21) (λp will be
different from λe). We have

[
0p JF (λe)?

JF (λe) 0p

]
+

[
0p −F
F 0p

]
=

[
0p JF (λe − 1)?

JF (λe + 1) 0p

]
.

A ?-congruence with Ip ⊕ JF (λe − 1)−? yields
[

0p I
JF (λe − 1)−1JF (λe + 1) 0p

]
.

The (2, 1) block element JF (λe−1)−1JF (λe+1) = J(λe−1)−1J(λe+1) is an upper triangular
Toeplitz matrix with λp := λe+1

λe−1 on the diagonal and 1
λ−1(1− λ+1

λ−1) 6= 0 on the super diagonal.
Thus, the (2, 1)-block is similar to a Jordan block Jp(λp) [34], with transformation matrix say
X. Hence a ?-congruence with X ⊕X−? gives

[
0p I

J(λp) 0p

]
.

A last congruence with
[

0 I
F 0

]
results in JP,p(λp).

For the other even blocks similar techniques can be used to transform them to their
palindromic counterparts. Uniqueness follows from the uniqueness of the even Kronecker
forms. A complete proof using this approach can be found in [79, 78].
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Also other authors have worked on block diagonal canonical forms of a square matrix
under congruence. For example, in [65] the real case is treated, and it is mentioned that
similar techniques can be used in the other cases. Other, more recent references are [77]
where the forms are derived using results from [60, 61]. [48, 49] contain the real and complex
cases of more general results in [47] which itself is based on [83].

But those forms have been developed to classify bilinear or sesquilinear forms or deciding
on the boundedness of certain difference equations rather than to read off the spectrum of
palindromic pencils. But of course, all these forms can be transformed into one another.

2.3 Structured Schur forms

The structured Kronecker forms of the last section reveal all the spectral information. Thus,
for example, an algorithm that computes the palindromic Kronecker form of a given matrix
A can be rightfully attributed to “solve the palindromic eigenvalue problem”.

However, spectral information can be very sensitive to small perturbations. We emphasize
this statement with the palindromic version of the standard example.

Example 2.7 Let

A(ε) =
[
0p εe1e

T
1 + JF (0)

F 0p

]
.

Then (A(0), A(0)T ) has the p-fold eigenvalue pair (0,∞), whereas the eigenvalues of the
perturbed pencil (A(ε), A(ε)T ) are given by all the p-th roots of ε and their inverses which
can differ substantially form the original pair, even for tiny ε and moderate p. For example,
for p = 2, ε = 10−16 the perturbed eigenvalues are given by ±10±8. ¤

In finite precision arithmetic, perturbations of the order of machine precision are unavoidable.
So, numerical algorithms should use transformations that at least do not amplify existing
perturbations. But algorithms that aim to compute the structured Kronecker forms have to
carry out a congruence transformation with a transformation matrix that can be arbitrarily
ill-conditioned. Thus, the structured Kronecker forms are not suited as targets of numerical
methods.

In this section we discuss reduced forms that can serve as target for practical algorithms.
Here, the transformation class is reduced from ?-congruences to unitary ?-congruences, be-
cause transformations with unitary matrices do not change the spectral and Frobenius norms
of a matrix [97] and thus do not amplify errors. At this point it shall be stressed, that in both
complex cases we use indeed unitary transformations, i.e., for the transformation matrices it
holds QHQ = I as opposed to Q?Q = I.

Under this reduced set of transformations it is in general not possible to produce a block
diagonal or antibidiagonal form. Instead, an antitriangular form with full lower triangle will
be presented. In analogy to the unstructured problem (see below), these reduced forms will
be called palindromic and even Schur forms.

We need the concept of deflating subspaces. A matrix XCn,k with rank(X) = k is said
to span a right deflating subspace of a pair (B,C) if rank([BX,CX]) ≤ k, or equivalently, if
there exist a S, T ∈ Ck×k and Y ∈ Cn,k with rank(Y ) = k such that BX = Y S, CX = Y T .
In this case Y is said to span the left deflating subspace corresponding to X.

Theorem 2.11 (Generalized Schur form[85, 74, 36]) For any B,C ∈ Cn×n there exist
unitary Q,Z ∈ Cn×n such that QHBZ = S = (sij) and QHCZ = T = (tij) are upper
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triangular. If (B, C) is regular, then at least one of sii, tii is nonzero for all i = 1, . . . , n,
and the first k columns of Z span a left deflating subspace of (B,C), where the corresponding
right deflating subspace is spanned by the first k columns of Q corresponding to the eigenvalues
sii/tii with i = 1, . . . , k for all k = 1, . . . , n.

2.3.1 Palindromic Schur forms

A palindromic analogon to the generalized Schur form is given by the so-called palindromic
Schur form.

Definition 2.1 A matrix T ∈ Cn×n is called a ?-palindromic block Schur form of A ∈ Cn×n,
if there exist numbers n1, . . . , nk with ni = nk+1−i and

∑k
i=1 ni = n and a unitary matrix Q

such that

T = Q?AQ =




n1 n2 nk−1 = n2 nk = n1

n1 T1k

n2 T2,k−1 T2k

. ..
...

...
nk−1 = n2 Tk−1,2 · · · Tk−1,k−1 Tk−1,k

nk = n1 Tk1 Tk2 · · · Tk,k−1 Tkk




(2.31)

Moreover, if all blocks are of size one, then T is called ?-palindromic Schur form of A.
Furthermore, if A, Q, and T are real, all blocks are of size at most two, and Ti,k+1−i is
of size two only if the eigenvalues of (Ti,k+1−i, T

?
k+1−i,i) are nonreal, then T is called a real

palindromic Schur form of A.

From this form eigenvalues and deflating subspaces are obtainable.

Theorem 2.12 Let (A,A?) be regular and T a ?-palindromic block Schur form of A. Then,
for every j = 1, . . . , k, the first lj :=

∑j
i=1 ni columns of Q span a right deflating subspace of

(A,A?) with corresponding left deflating subspace spanned by the last lj columns of QH? for
the eigenvalues

⋃j
i=1 λ(Tk+1−i,i, T

?
i,k+1−i).

In particular, the spectrum of (A,A?) is given by

λ(A,A?) =
b k

2
c⋃

i=1

{
λ, 1/λ? : λ ∈ λ(Tk+1−i,i, T

?
i,k+1−i)

} ∪
{
∅, if k even,

λ(Td k
2
e,d k

2
e, T

?
d k

2
e,d k

2
e), if k odd.

(2.32)

Proof: Everything follows from the first lj columns of AQ = QH?T and A?Q = QH?T ?. ¤

In the following we deduce when a (real) palindromic Schur form exists. In that we will
roughly follow the proof of the standard Schur form and more closely the proof of the T-
palindromic Schur form as presented in [67], but generalized to cover the ? = H and the real
cases as well.

By Definition 2.1 and Theorem 2.12 a necessary condition for the existence of a palindromic
block Schur form with first block size n1 6= n is the existence of a matrix X ∈ Cn×n1 whose
columns span a right deflating subspace of (A,A?) with the additional property X?AX = 0.
In the following we show that this condition is also sufficient.
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Indeed, let Q1 ∈ Cn×n1 have orthonormal columns q1, . . . , qn1 such that it spans the
same space as X, then Q?

1AQ1 = 0. Further, let qn1+1, . . . , qn−n1 be orthonormal vectors
in the orthogonal complement of span(Q1, (AQ1)?H , (A?Q1)?H). Such vectors always exist
since rank([AQ1, A

?Q1]) ≤ n1, because Q1 spans a right deflating subspace. Moreover, let
qn−n1+1, . . . , qn be orthonormal vectors that are orthogonal to q1, . . . , qn−n1 . Then Q =
[q1, . . . , qn] is unitary and

Ã = Q?AQ =




n1 n− 2n1 n1

n1 0 Ã12 Ã13

n− 2n1 Ã21 Ã22 Ã23

n1 Ã31 Ã32 Ã33


, (2.33)

because Ã11 = Q?
1AQ1 = 0. Also Ã21 and Ã12 are zero, because q?

j AQ1 = (qH
j (AQ1)H?)H? = 0

and Q?
1Aqj = (qH

j AHQH?
1 )H = (qH

j (A?Q1)H?)H = 0 for j = n1+1, . . . , n−n1 by construction.
Thus, Ã is a palindromic block Schur form.

We now collect cases when the existence of a matrix X spanning a right deflating subspace
of (A, A?) and X?AX = 0 is guaranteed. Note that for n1 = 1 the matrix X is an eigenvector.

Lemma 2.13

1. If the pencil (A,A?) is singular, then there exists a vector x and a value λ with x?Ax = 0
and Ax = λA?x.

2. Assume that the pencil (A,A?) has an eigenvalue λ that is not ?-exceptional (λλ? 6= 1)
with associated eigenvector x. Then x?Ax = 0.

3. Assume that the pencil (A,A?) has a defective eigenvalue λ (i.e., with different algebraic
and geometric multiplicity) with associated eigenvector x and principal vector y, i.e.,
Ax = λA?x,Ay = λA?y + A?x. Then x?Ax = 0.

From here on, the results differ for the T- and H-cases. We start with the T-case.

4. Assume that the pencil (A,AT ) has an eigenvalue −1 with associated eigenvector x.
Then xT Ax = 0.

5. Assume that the pencil (A,AT ) has an eigenvalue 1 with associated linearly independent
eigenvectors x1, x2. Then there exists an eigenvector x ∈ span(x1, x2) such that x?Ax =
0.

For the H-case we have

6. Assume that A ∈ Cn×n is such that its H-palindromic Kronecker form (2.26) contains
at least two blocks of the form (2.22) for some eigenvalue λ with |λ| = 1, one with sign
characteristic σ = 1, the other with sign characteristic σ = −1. Then there exists an
eigenvector x ∈ Cn of (A,AH) to the eigenvalue λ such that xHAx = 0.

In the real case, in order to account for complex conjugate pairs or quadruples of eigenvalues,
we now look for a deflating subspace of dimension n1 = 2.

7. Assume that (A,AT ) ∈ Rn×n×Rn×n, and let X ∈ Rn×2 span a right deflating subspace
for a complex conjugate pair of nonexceptional eigenvalues, i.e., AX = AT XL with
L ∈ R2×2, λ(L) = {λ, λ̄}, |λ| 6= 1. Then XT AX = 0.
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8. Assume that (A,AT ) ∈ Rn×n×Rn×n, and let X ∈ Rn×2 span a left deflating subspace for
a complex conjugate pair of deficient exceptional eigenvalues, i.e., there is a Y ∈ Rn×2

such that AX = AT XL, and AY = AT Y L + AT X with L ∈ R2×2, λ(L) = {λ, λ̄}, |λ| =
1, λ 6∈ R. Then XT AX = 0.

9. Assume that A ∈ Rn×n is such that its real palindromic Kronecker form (2.30) contains
at least two blocks of the form (2.28) for some eigenvalue pair {λ, λ̄}, λ = α + iβ with
|λ| = 1, β 6= 0, one with sign characteristic σ = 1, the other with sign characteristic
σ = −1. Then there exists an X ∈ Rn×2 spanning a left deflating subspace of (A,AT )
for eigenvalues λ, λ̄ such that XT AX = 0.

Proof:

1. If (A,A?) is singular, then also A itself is singular and any vector x in the kernel of A
certainly satisfies x?Ax = 0 and Ax = λA?x with λ = 0.

2. x?(Ax) = x?(λA?x) = λ(Ax)?x = λ(λA?x)?x = λ?λx?Ax.

3. If λ is not ?-exceptional, then the claim follows from case2. above. So, we can assume
that λ?λ = 1. Then y?(Ax) = λ(Ay)?x = λ(λA?y + A?x)x = λλ?︸︷︷︸

=1

y?Ax + λ︸︷︷︸
6=0

x?Ax.

4. xT Ax = (xT Ax)T = xT AT x = −xT Ax.

5. If xT
2 Ax2 = 0 set x = x2. Otherwise, we have for x = x1 + αx2 that xT Ax = xT

1 Ax1 +
α(xT

1 Ax2 + xT
2 Ax1) + α2xT

2 Ax2. Choosing α as a root of this quadratic polynomial
results in xT Ax = 0.

6. If any of the two blocks is larger than 1 × 1 then the eigenvalue is deficient and the
claim follows from case 3. above. We thus assume that both blocks are of size 1 × 1.
Let P be the transformation matrix, that brings (A,AH) to H-palindromic Kronecker
form. Choosing x1, x2 ∈ Cn as the columns of P that correspond to the two blocks gives
[x1, x2]HA[x1, x2] =

√
λ⊕−

√
λ, so (x1 + x2)T A(x1 + x2) =

√
λ + 0 + 0−

√
λ = 0. Note

that x1 and x2, thus also x1 + x2, are eigenvectors of (A,AH) to the eigenvalue λ.

7. XT (AX) = XT (AT XL) = (AX)T XL = (AT XL)T XL = LT XT AXL.
So, by (1.6), (LT ⊗LT − I)vec(XT AX) = 0. The spectrum of L̃ := LT ⊗LT is given by
{λiλj |λi, λj ∈ λ(L)}, see [45]. So every eigenvalue µ of L̃ is of modulus |µ| = |λ|2 6= 1.
Thus, LT ⊗ LT − I is nonsingular, and hence XT AX = 0.

8. Without loss of generality, L =
[
α −β
β α

]
with α2 + β2 = 1 (otherwise transforming

L into its real Jordan form [45] yields this structure). Note that L is orthogonal, i.e.,
L−1 = LT . We have

XT (AX)LT = XT AT X(LLT ) = (XT AT )X = LT XT AX,

thus (L⊗ I − I ⊗ LT )vec(XT AX) = 0. On the other hand, we have

Y T (AX)LT = (Y T AT )X = LT Y T AX + XT AX,

i.e., (L⊗ I − I ⊗LT )vec(Y T AX) = vec(XT AX). Together, vec(XT AX) is in both, the
kernel and the image of the skew symmetric matrix (L⊗ I− I⊗LT ), whose intersection
consists of the zero vector only.
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9. If any of the two blocks is larger than 2 × 2 then the eigenvalue pair is deficient and
the claim follows from case 8 above. We thus assume that both blocks are of size 2× 2.
Let P be the transformation matrix, that brings (A,AT ) to real palindromic Kronecker
form. Choosing X1, X2 ∈ Rn×2 as the two pairs of columns of P that correspond to
the two blocks gives [X1, X2]T A[X1, X2] = Λ

1
2 ⊕ −Λ

1
2 , so (X1 + X2)T A(X1 + X2) =

Λ
1
2 + 0 + 0− Λ

1
2 = 0.

¤
Now the palindromic Schur forms can be proved.

Theorem 2.14 (T-palindromic Schur form) Any complex n×n matrix A has a T-palin-
dromic Schur form, i.e., there exists a unitary Q such that T = QT AQ is antitriangular.

Moreover, if (A,AT ) is regular, then its eigenvalues are given by λi = tn+1−i,i

ti,n+1−i
for i =

1, . . . , n.

Proof: We follow the proof presented in [67].
The proof is by recursion. A(0) := A is transformed to block T-palindromic Schur form

with k = 3, n1 = 1 using construction (2.33). This reduction is then recursively applied to
the middle block T22 which is relabeled to A(1) resulting in a sequence of matrices A(i). More
precisely, for the matrix A(i) a unitary matrix Qi is formed such that

QT
i A(i)Qi =




1 1
1 0 0 T

(i)
13

0 A(i+1) T
(i)
23

1 T
(i)
31 T

(i)
32 T

(i)
33


.

Note that A(i+1) has two rows and columns less then A(i). So, if every step of the recursion
is possible, A(bn/2c) is either scalar or void. Thus, combining the transformation matrices as

Q := Q0(1⊕Q1 ⊕ 1)(I2 ⊕Q2 ⊕ I2) · · · (Ibn/2c−1 ⊕Qbn/2c−1 ⊕ Ibn/2c−1). (2.34)

yields QT AQ in antitriangular form.
In every step of the recursion an eigenvector xi of (A(i), (A(i))T ) with xT

i A(i)xi = 0 is
necessary. The existence of such an eigenvector is guaranteed by Lemma 2.13, cases 1.-5.,
unless (A(i), (A(i))T ) is regular, has neither nonexceptional, nor deficient eigenvalues, nor an
eigenvalue at -1, nor an eigenvalue at 1 of geometric multiplicity at least two. But, since the
only T-exceptional eigenvalues are ±1, such a pencil can only have the simple eigenvalue 1,
i.e., it is of size 1× 1, in which case a further reduction is not necessary.

¤
The corresponding result in the H-case is following.

Theorem 2.15 (H-palindromic block Schur form) Let A ∈ Cn×n. Then there exists a
unitary matrix Q such that

T = QHAQ =




k k

k T13

T22 T23

k T31 T32 T33


 (2.35)

where T31 and T13 are antitriangular and (T22, T
H
22) has the following properties.
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a. It is regular,

b. it has only semisimple H-exceptional eigenvalues,

c. in its H-palindromic Kronecker form are no two blocks EP1,p,σ(λ) corresponding to the
the same eigenvalue of opposite sign characteristic,

d. it does only admit the trivial palindromic block Schur form (i.e., with one block), and

e. it is diagonalizable by a (possibly nonunitary) H-congruence.

Proof: We proceed analogously, as in the T-case. The matrix is recursively transformed to the
form (2.33) until Lemma 2.13 does not provide a further eigenvector xi with xH

i A(i)xi = 0.
Define T22 as the matrix A(i) where no further reduction is possible. Then (T22, T

H
22) is

regular (otherwise case 1. of Lemma 2.13 could be used), has no nonexceptional eigenvalue
(otherwise case 2. could be used), has no defective H-exceptional eigenvalue (by case 3.; so
every eigenvalue is semisimple and H-exceptional), and its H-palindromic Kronecker form
contains no two blocks EP1,p,σ(λ) corresponding to the the same eigenvalue of opposite sign
characteristic (by case 6.). This proves the block antitriangular form (2.35) and claims a. to
c.

Moreover, the H-palindromic Kronecker form (2.26) of a regular H-palindromic pencil
with only semisimple H-exceptional eigenvalues consists only of blocks of the form EP1,1,σ(λ).
Thus, it is diagonal. This proves e.

It remains to show that (T22, T
H
22) does not admit a nontrivial H-palindromic block Schur

form. Let λ be an eigenvalue of (T22, T
H
22) and let X span the complete left deflating subspace

of (T22, T
H
22) corresponding to λ. It follows from claim b. that the H-palindromic Kronecker

form of XHT22X consists of blocks EP1,1,σ(λ) only. By claim c., all have the same σ. So,
1√
λ
XHT22X is Hermitian definite (either positive or negative, depending on σ). Thus, there

is no nonzero eigenvector x such that xHT22x = 0. But this is necessary for the existence of
a block palindromic Schur form (2.31) with n1 = 1.

We continue by showing that T22 does not admit a block palindromic Schur form (2.31)
with n1 > 1 either. Assuming the converse, i.e., there exists a unitary matrix Q̃ such that

Q̃HT22Q̃ =




n1 n1

n1 T̃13

T̃22 T̃23

n1 T̃31 T̃32 T̃33


. (2.36)

Let Q̂H T̃31Ẑ = @, Q̂H T̃H
13 Ẑ = @ be a generalized Schur form of T̃31, T̃

H
13 . Then with

Q̌ = Q̃(Ẑ ⊕ I ⊕ FQ̂) we have that

Q̌HT22Q̌ =




n1 n1

n1 ¡
T̃22

n1 ¡


, (2.37)

which is a block palindromic Schur form with n1 = 1. This contradiction completes the proof.
¤
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Theorem 2.16 (real palindromic block Schur form) Let A ∈ Rn×n. Then there exists
a real orthogonal matrix Q such that

T = QT AQ =




k k

k T13

T22 T23

k T31 T32 T33


 (2.38)

where F (T31, T
T
13) is in real generalized Schur form and (T22, T

H
22) has the following properties.

a. It is regular,

b. it has only semisimple eigenvalues which satisfy |λ| = 1, λ 6= −1,

c. it’s real palindromic Kronecker form contains no two blocks EP1,p,σ(1) or EP3,p,σ(α, β)
corresponding to equal eigenvalues of opposite sign characteristic,

d. it does only admit the trivial real palindromic block Schur form (i.e., with one block),

e. it is block diagonalizable with all blocks of size at most two by a (possibly nonunitary)
real congruence.

Proof: The proof proceeds analogous to the proof of Theorem 2.15. Using construction (2.33),
the matrix is recursively transformed to palindromic block Schur form (2.31) with k = 3 and
n1 ∈ {1, 2} until Lemma 2.13 does not provide a further real matrix X spanning a right
deflating subspace with XT AX = 0. In this case (T22, T

T
22) is regular (otherwise case 1. of

Lemma 2.13 could be used) and has neither real nor complex nonexceptional eigenvalues
(otherwise case 2. or 7. could be used). So all eigenvalues of (T22, T

T
22) are exceptional,

i.e., of modulus 1. Moreover, by cases 3. and 8., (T22, T
T
22) has neither real nor complex

deficient R-exceptional eigenvalues, and also no eigenvalue at −1 (by case 4.). Hence, all
eigenvalues are exceptional and semisimple, but not −1. So the only real eigenvalue could
be 1. By case 6., the real palindromic Kronecker form of (T22, T

H
22) contains no two blocks

EP1,p,σ(1) corresponding to the eigenvalue 1 of opposite sign characteristic. Analogously, by
case 9., the real palindromic Kronecker form of (T22, T

H
22) contains no two blocks EP3,p,σ(α, β)

corresponding to equal eigenvalues of opposite sign characteristic. This proves the block
antitriangular form (2.35) and claims a. to c.

Moreover, the real palindromic Kronecker form (2.30) of a regular real palindromic pencil
with only semisimple R-exceptional eigenvalues consists only of blocks of the form EP1,1,σ(1)
and EP3,1,σ(α, β). Thus, it is block diagonal with all blocks of size one or two. This proves e.

It remains to show that (T22, T
H
22) does not admit a nontrivial H-palindromic block Schur

form. Let λ be any (real or complex) eigenvalue of (T22, T
T
22) and let the real matrix X span

the complete left deflating subspace of (T22, T
H
22) corresponding to λ and λ̄. If λ is real, it

follows as in the proof of Theorem 2.15 that there is no eigenvector with xT T22x = 0. If
λ = α + iβ is nonreal, then it follows from claim b. that the real palindromic Kronecker form
of XT T22X consists only of blocks EP3,1,σ(α, β) = σΛ1/2. By claim c., all blocks have the
same sign characteristic σ. Recall that Λ1/2 is of the form

Λ1/2 =
[
α̃ −β̃

β̃ α̃

]
, (2.39)
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where α̃, β̃ are defined by α̃ + iβ̃ =
√

λ. Since λ is nonreal,
√

λ is neither real nor purely
imaginary. In particular α̃ 6= 0. So, the symmetric part of XT T22X is congruent to α̃I,
a definite matrix. Thus, there is no two dimensional right deflating subspace of (T22, T

T
22)

corresponding to a complex conjugate pair of eigenvalues spanned by a real matrix X2 such
that XT

2 T22X2 = 0.
Assuming that T22 admits a block palindromic Schur form (2.31) with n1 > 1 leads, as

in the H-case (replacing the generalized Schur form by the real generalized Schur form), to
a contradiction. This implies that T22 does not admit a block palindromic Schur form (2.31)
with n1 > 1, thus claim d. is proven. ¤

Example 2.8 Consider the matrices

A =
1
2




13 −9 −6 4
−4 2 −3 3
−2 −2 1 1
1 1 0 0


 , T =




4
1 4

3 4
1 2 3 4


 .

Here, T is a block palindromic Schur form of A, because HT AH = T for H = I − 1/2vvT

with v = [−1, 1, 1, 1]T . Thus, the eigenvalues of (A,A?) are given by 4, 1/4 and 1 (double).
The center block [ 1

3 ] is positive definite and thus cannot be antitriangularized by an H-

or R-congruence. However, using Q = 1
2

[√
3 −i

−i
√

3

]
we have QT [ 1

3 ] Q =
[

0 −√3i
−√3i 2

]
, which

confirms the existence of a T-palindromic Schur form. ¤

2.3.2 Even Schur forms

In this section Schur-like forms for even pencils (M, N) are presented. These forms are anal-
ogous to the palindromic Schur form of the last section. They can be proved by transforming
the Cayley transform (M +N, M−N) to palindromic Schur form. Thus the results are stated
without proof.

Definition 2.2 A pencil (T, S) ∈ Cn×n × Cn×n is called a ?-even block Schur form of
(M, N) ∈ Cn×n × Cn×n, if there exist numbers n1, . . . , nk with ni = nk+1−i and

∑k
i=1 ni = n

and a unitary matrix Q such that

T = Q?MQ =




n1 n2 nk−1 = n2 nk = n1

n1 T1k

n2 T1,k−1 T2k

. ..
...

...
nk−1 = n2 Tk−1,2 · · · Tk−1,k−1 Tk−1,k

nk = n1 Tk1 Tk2 · · · Tk,k−1 Tkk




(2.40)

and S = Q?NQ is of the same antitriangular block structure.
Moreover, if all blocks are of size one, then (T, S) is called ?-even Schur form of (M,N).

Furthermore, if M , N , S, T , and Q are real and all blocks are of size at most two, and ni = 2
only if the eigenvalues of (Ti,k+1−i, Si,k+1−i) are nonreal, then (T, S) is called a real even
Schur form of (M, N).
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From this form eigenvalues and deflating subspaces are obtainable.

Theorem 2.17 Let (M, N) be a regular even pencil and (T, S) a ?-even block Schur form
of (M, N). Then, for every j = 1, . . . , k, the first lj :=

∑j
i=1 ni columns of Q span a right

deflating subspace of (M,N) with corresponding left deflating subspace spanned by the last lj
columns of QH? for the eigenvalues

⋃j
i=1 λ(Tk+1−i,i, Sk+1−i,i).

In particular, the spectrum of (M,N) is given by

λ(A,A?) =
b k

2
c⋃

i=1

{±λ : λ ∈ λ(Tk+1−i,i, Sk+1−i,i)} ∪
{
∅, if k even,

λ(Td k
2
e,d k

2
e, Sd k

2
e,d k

2
e), if k odd.

The following Theorems state the even Schur forms.

Theorem 2.18 (T-even Schur form) Any complex n×n even pencil (M,N) has a T-even
Schur form, i.e., there exists a unitary Q such that (T, S) = QT (M, N)Q is antitriangular.

Moreover, if (M, N) is regular, then its eigenvalues are given by λi = tn+1−i,i

sn+1−i,i
for i =

1, . . . , n.

Theorem 2.19 (H-even block Schur form) Let M = MH , N = −NH ∈ Cn×n. Then
there exists a unitary matrix Q such that

(T, S) = QH(M,N)Q =







k k

k TH
31

T22 TH
32

k T31 T32 T33


,




k k

k −SH
31

S22 −SH
32

k S31 S32 S33







, (2.41)

where T31 and S31 are antitriangular and (T22, S22) has the following properties.

a. It is regular,

b. it has only semisimple H-exceptional eigenvalues,

c. its H-even Kronecker form contains no two blocks EE2,p,σ(β) or EE5,p,σ corresponding
to equal H-exceptional eigenvalues of opposite sign characteristic,

d. it does only admit the trivial even block Schur form (i.e., with one block), and

e. it is simultaneously diagonalizable by a (possibly nonunitary) H-congruence.

In the real case we have:

Theorem 2.20 (real even block Schur form) Let M = MT , N = nNT ∈ Rn×n. Then
there exists a real orthogonal matrix Q such that

(T, S) = QH(M,N)Q =







k k

k TH
31

T22 TH
32

k T31 T32 T33


,




k k

k −SH
31

S22 −SH
32

k S31 S32 S33







, (2.42)

where F (T31, S31) is in real generalized Schur form and (T22, S22) has the following properties.
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a. It is regular,

b. it has only semisimple eigenvalues which satisfy Re(λ) = 0, λ 6= 0 (including ∞),

c. its real even Kronecker form contains no two blocks EE6,p,σ(β) or EE4,p,σ corresponding
to equal H-exceptional eigenvalues of opposite sign characteristic,

d. it does only admit the trivial real even block Schur form (i.e., with one block),

e. it is simultaneously block diagonalizable with all blocks of size at most two by a (possibly
nonunitary) real congruence.

2.3.3 Stability of Cayley transformation methods

The Cayley transformation has been used to establish analogous theoretical results for palin-
dromic and even pencils. In this section it is examined if it can also be used for numerical
methods. To this end we introduce the concept of backward stability. A numerical method is
called backward stable [42], if it computes the exact result for a nearby problem. A numerical
method is called strongly backward stable [13], if it computes the exact result for a nearby
problem of the same structure. For example, a method to compute the eigenvalues of a palin-
dromic pencil (A,A?) is backward stable, if it computes the exact eigenvalues of (B, C) where
‖B − A‖ ≤ ε‖A‖ and ‖C − A?‖ ≤ ε‖A?‖, and ε is small. It is strongly backward stable, if
additionally B = C?.

Assume that we have a strongly backward stable method to compute the even Schur form
of an even pencil and that we use the following method to compute the palindromic Schur
form of a palindromic pencil.

Algorithm 2.1 Palindromic Schur form using an even Algorithm and the Cayley transfor-
mation
Input: A ∈ Cn×n such that (A,A?) has a palindromic Schur form
Output: antitriangular TA and unitary Q such that Q?AQ = TA

1: M = A + A?, N = A−A?

2: compute even Schur form Q?(M, N)Q = (T, S) using a strongly backward stable method
3: TA = 1

2(T + S)

We analyze the stability properties of this algorithm. In the first step, M and N are not
computed exactly, but

M = A + A? + E, with ‖E‖F ≤ ε1(‖A‖F + ‖A?‖F ),
N = A−A? + F, with ‖F‖F ≤ ε2(‖A‖F + ‖A?‖F ).

Here, E and F model the rounding errors and ε1;2 are of the order of machine precision.
Note that the stability of matrix addition is usually treated elementwise. We have the bound
|E| ≤ ε1(|A|+ |A?|), where |A| denotes the matrix of absolute values. But as the second step
involves unitary matrices, we use the weaker version with the Frobenius norm here.

Since in Step 2 a strongly backward stable method is used, the computed matrices Q,T, S
satisfy

Q?(M + M̃)Q = T = T ? =¡, with ‖M̃‖F ≤ ε3‖M‖F ,

Q?(N + Ñ)Q = S = −S? =¡, with ‖Ñ‖F ≤ ε4‖N‖F .
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Finally, there is an error introduced in Step 3 of Algorithm 2.1 that satisfies

TA =
1
2
(T + S + G) =¡, with ‖G‖F ≤ ε5(‖T‖F + ‖S‖F ).

Combining these equations gives

TA = Q?(A +
1
2
(E + F + M̃ + Ñ + Q−?GQ−1))Q =: Q?(A + Ã)Q.

Using ‖T‖F = ‖M‖F +O(ε3) ≤ 2‖A‖F +O(ε3 + ε1) and ‖S‖F = ‖N‖F +O(ε4) ≤ 2‖A‖F +
O(ε4 + ε2) we have

‖Ã‖F ≤ (ε1 + ε2 + ε3 + ε4 + 2ε5)‖A‖F +O(max
i

ε2
i ).

This proves that Algorithm 2.1 is strongly backward stable.
Using the same technique, it can be shown that computing the even Schur form of an

even pencil (M, N) by computing the palindromic Schur form of A = M + N yields the
exact even Schur form of (M + M̃, N + Ñ), where both M̃ and Ñ are bounded in norm by
ε(‖M‖F + ‖N‖F ), which implies that this method is not backward stable, if M and N are of
greatly differing norms. This pitfall can be circumvented by scaling M and N to equal norm
resulting in the following strongly backward stable method

Algorithm 2.2 Even Schur form using a palindromic algorithm and the Cayley transforma-
tion
Input: M = M? 6= 0, N = −N? 6= 0 ∈ Cn×n such that (M, N) has even Schur form
Output: Antitriangular T, S, and unitary Q such that Q?(M,N)Q = (T, S)
1: A = ‖N‖F M + ‖M‖F N
2: compute palindromic Schur form Q?AQ = TA using a strongly backward stable method
3: T = 1

2‖N‖F
(TA + T ?

A), S = 1
2‖M‖F

(TA − T ?
A)

Summarizing, a strongly backward stable method for the palindromic eigenvalue problem
induces a strongly backward stable method for the even eigenvalue problem and vice versa.
Note that an analogous statement for (nonstrongly) backward stable methods can be proved
by considering generalized Schur forms instead of palindromic/even Schur forms.

2.4 Palindromic staircase forms

In later chapters we discuss several numerical methods to solve palindromic and even eigen-
value problems. Some of these methods require the problem at hand to be regular or to be free
of certain eigenvalues. Other methods may still work in the presence of these extraordinary
parts, but worse than in their absence.

For these reasons, we present a method to deflate off singularities and zero and infinite
eigenvalues from a palindromic pencil. The process is a variant of a method proposed in [49]
and can be considered a structured version of the GUPTRI algorithm [26, 90] that deflates
singular parts from general pencils.

This section differs from the previous, in that it provides algorithms, whereas before we
had mainly existence results.

Singularities or zero/infinite eigenvalues occur, if A is singular. To determine the geometric
structure of the eigenspace associated with these eigenvalues, the null space of A has to be
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determined. To do so, let d = n − rank(A) denote the rank deficiency of A and let W be a
unitary matrix whose first d columns span the kernel of A?, i.e., A?W (:, 1 : d) = 0. Then
W ?AW is of the form

W ?AW =
[ d n− d

d 0 0
n− d A21 A22

]
. (2.43)

Next, we further reduce the A21 block by determining unitary matrices U, V such that

U?A21V =
[ s z

n− d− z 0 0
z 0 R

]
(2.44)

with z = rank(A21), s + z = d and R nonsingular and antitriangular. Then, using Q =

W

[
V 0
0 U

]
, A is congruent to

Ã := Q?AQ =
[
V 0
0 U

]?

W ?AW

[
V 0
0 U

]
=




s z ñ z

s 0 0 0 0
z 0 0 0 0
ñ 0 0 Ã33 Ã34

z 0 R Ã43 Ã44


 (2.45)

where ñ = n− d− z.
Assuming for the moment that Ã33 is nonsingular, the blocks Ã34, Ã43, and Ã44 could be

eliminated by block Gaussian elemination (applied as congruence). It follows that the parts
of the palindromic Kronecker form of (A, A?) belonging to the singularities and zero/infinite
eigenvalue pairs can be read off (2.45): there are s 1-by-1 singular blocks SP,0, and z 2-by-2
blocks JP,1(0) for eigenvalue pairs (0,∞).

In general (when Ã33 may be singular) the following Lemma relates the palindromic
Kronecker forms of (A,A?) and (Ã33, Ã

?
33).

Lemma 2.21 Let A ∈ Cn×n and Ã, s, z, d, ñ as in (2.45). Then the palindromic Kronecker
form (2.25), (2.26), or (2.30) contains exactly s singular blocks of minimal index 0, SP,0.
There are z blocks that are either singular blocks of order larger than zero or corresponding
to (0,∞) eigenvalue pairs. Moreover,

for every p ∈ N0, the number of blocks SP,p in the palindromic Kronecker form of Ã33

equals the number of blocks SP,p+1 in the palindromic Kronecker form of A;
for every p ∈ N, the number of blocks JP,p(0) in the palindromic Kronecker form of Ã33

equals the number of blocks JP,p+1(0) in the palindromic Kronecker form of A; and
the numbers of every other block in the palindromic Kronecker forms of Ã33 and A coin-

cide.

Proof: The matrices A and Ã are ?-congruent and thus have the same palindromic Kronecker
form. The only building blocks of the palindromic Kronecker forms that do not have full rank
are the blocks SP,p and JP,p(0), each being rank deficient by one. Thus, d is the number of
all those blocks. Clearly, there are s blocks SP,0. Hence, there exist z = d − s blocks of the
form either SP,p, p > 0 or JP,p(0).

Let B = P ?AP be the palindromic Kronecker form of A, but permuted such that (a) the
s blocks SP,0 appear first along the block diagonal and (b) the first and last rows and columns
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of the z blocks SP,p, p > 0 and JP,p(0) appear in rows/columns s + 1, s + 2, . . . , s + z and
n + 1− z, . . . , n, respectively, i.e., B is of the form

B = P ?AP =




s z ñ z

s 0 0 0 0
z 0 0 0 0
ñ 0 0 B33 B34

z 0 F 0 0


.

Note that B33 is in palindromic Kronecker form. The blocks appearing in B33 can be enu-
merated as the blocks appearing in B subject to the following transformation: 1) a block SP,0

is erased; 2) from a block SP,p with p > 0 the first and last rows and columns are deleted; 3)
a block JP,1(0) is erased; 4) from a block JP,p with p > 1 the first and last rows and columns
are deleted; 5) all other blocks remain unchanged. In other words, the blocks appearing
in the palindromic Kronecker form of B33 are obtained by applying f to the blocks in the
palindromic Kronecker form of A. Thus, it remains to prove that Ã33 and B33 have the same
palindromic Kronecker form, i.e., that they are congruent.

Let P = Q̂R̂ be a QR decomposition of P and let R̂ be partitioned as B, (i.e., with diagonal
blocks R11, R22, R33, R44 of the order ŝ × ŝ, ẑ × ẑ, (ŝ − 2ẑ) × (ŝ − 2ẑ), ẑ × ẑ, respectively).
Then Â := Q̂?AQ̂ = R̂−?BR̂−1 is of the form (2.45), because R̂ is upper triangular. Partition
Q̂ = [Q̂1, Q̂2, Q̂3, Q̂4] and Q = [Q1, Q2, Q3, Q4] according to B. Then Q1 as well as Q̂1 span
kernel(A)∩ kernel(A?), Q2 as well as Q̂2 spans kernel(A)∩ kernel(A?)⊥, and Q4 as well as Q̂4

spans image(A|kernel(A?)). Since Q and Q̂ are unitary, also Q3 and Q̂3 span the same space
(namely the orthogonal complement of Q1, Q2, Q4. Thus there is a nonsingular matrix S such
that Q̂3S = Q3 and it holds

Ã33 = Q?
3AQ3 = S?Q̂?

3AQ̂3S = S?Â33S = S?R̂−?
33 B33R̂

−1
33 S,

i.e., Ã33 and B33 are congruent. This completes the proof. ¤

If Ã33 is singular then it can again be transformed to the form (2.45). This recursive
procedure can be continued until a nonsingular or void matrix Ã33 is encountered. Applying
Lemma 2.21 to every level of the recursion results in the following staircase form that reveals
the full singular and zero/infinity structure.

Theorem 2.22 Let A ∈ Fn×n with F ∈ {C,R}. Then there exists a unitary matrix Q ∈ Fn×n,
a value µ ≥ 1 and sequences ni, si, zi, di, i = 1, . . . , µ with n1 = n, ni+1 = ni − di − zi =
ni − si − 2zi < ni, si + zi = di > 0 and a matrix sequence A(i) ∈ Cni×ni, with A(1) = Q?AQ
such that every A(i) has the form

A(i) =




si zi ni+1 zi

si 0 0 0 0
zi 0 0 0 0
ni+1 0 0 A(i+1) A

(i)
34

zi 0 A
(i)
42 A

(i)
43 A

(i)
44


 (2.46)

where A
(i)
42 is nonsingular and antitriangular, rank(A(i)) = ni − di, rank(A(i+1)) ≥ ni+1 − zi,

and (A(µ), A(µ)?) is a regular pencil with no eigenvalues at (0,∞).
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Moreover, the palindromic Kronecker form of (A,A?) contains si singular blocks of min-
imal index i − 1, SP,i−1, and zi − di+1 Jordan blocks of order i for the eigenvalues 0,∞,
JP,i(0).

Proof: The recursive structure (2.46) is clear from above derivation. The properties of the
palindromic Kronecker form follow from Lemma 2.21 applied in every step of the recursion.
¤
Theorem 2.22 leads to the following algorithm.

Algorithm 2.3 Palindromic staircase form
Input: A ∈ Fn×n with F ∈ {C,R}
Output: µ, ni, di, si, zi, A

(i) as in Theorem 2.22
1: i = 1, A(1) = A,n1 = n
2: while ni > 0 do
3: compute Q such that the first di columns span the kernel of A(i)?

4: form (2.43)
5: if di = 0 then µ = i, return, end if
6: compute factorization (2.44)
7: zi = rank(A21), si = di − zi, ni+1 = ni − di − zi

8: form (2.45)
9: i = i + 1, A(i) = A

(i−1)
33

10: end while
11: µ = i

Steps 3 and 6 of Algorithm 2.3 are mainly rank determinations. This can be accomplished
by, e.g., the singular decomposition [36] or a rank revealing URV decomposition [86]. The
ith loop in Algorithm 2.3 needs O(n3

i ) floating point operations. So, altogether it can take
O(µn3) flops to compute form (2.46), which is very expensive for large values of µ. However,
in applications the singular structure of (A,A?) is often known and can be deflated without
or only little computational efforts.

The presented method deflates all singularities and zero/infinite eigenvalues from a palin-
dromic pencil. All finite nonzero eigenvalues are preserved.

Analogous methods that deflate the singular part and zero/infinite eigenvalues were pre-
sented in [22, 21].
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Chapter 3

The palindromic QR algorithm

The standard algorithm for solving the dense unsymmetric standard eigenvalue problem Ax =
λx is the QR algorithm [11, 32, 36, 53, 56, 95]. This statement shall be supported by the
quote “[. . .We use] the QR algorithm — what else?”, [11, page 955]. In its simplest form the
method consists of iteratively computing a QR factorization A = QR and forming the next
iterate A+ = QHAQ, hence its name. Modern versions do not form QR decompositions, but
rather work by chasing bulges along the diagonal of a Hessenberg matrix, either upwards or
downwards – or even in both directions at the same time. Then bulges are passed through
each other in the middle of the matrix. The algorithm has been adapted to many variations
of eigenvalue problems, like generalized, product, or Hamiltonian eigenvalue problems (called
QZ [74], periodic QR/QZ [10, 92], and Hamiltonian QR algorithms [17]). There are also
versions for real, complex and quarternion matrices [14].

In this Chapter, the QR algorithm is adapted to the palindromic eigenvalue problem. The
explicit formulation of the algorithm using QR factorizations is derived in Section 3.1. The
method is improved by using shifts (Section 3.2) and exploiting Hessenberg-like structures, see
Section 3.3. The implicit version of the palindromic QR algorithm employing bulge chasing is
presented in Section 3.4. Also real and even versions are treated there. Section 3.5 describes
how to reorder a palindromic or even Schur form. Section 3.6 discusses the problem of reducing
a matrix to a Hessenberg-like form.

In the whole chapter, it will be assumed that (A,A?) is a regular pencil with at most one
exceptional eigenvalue. This implies that A admits a ?-palindromic Schur form.

3.1 The basic palindromic QR iteration

The goal of the palindromic QR algorithm is to transform a given matrix A to palindromic
Schur form, i.e., to construct a unitary matrix Q such that Q?AQ is antitriangular. In
that it is similar to the standard QR algorithm that aims at a unitary matrix Q such that
QHAQ is upper triangular. Because of this similarity between the reduction to standard and
palindromic Schur form, it seems natural to replace the QR factorization in the standard
QR algorithm by the antitriangular QR factorization, i.e., a factorization into a unitary and
an antitriangular factor, see Appendix B.1. One iteration of the resulting palindromic QR
algorithm thus takes the form

Algorithm 3.1 Palindromic QR step
Input: A ∈ Cn×n

47
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Figure 3.1: Convergence history of the palindromic QR iteration. We plot the elementwise
common logarithm. The lighter an element is the smaller it is in magnitude. The color bar
to the right is labeled logarithmically.

Output: A1 ∈ Cn×n

1: A→ QR (antitriangular QR factorization, i.e., R =¡)
2: A1 ← RQH?

Note, that A1 is unitarily ?-congruent to A, as A1 = RQH? = QHAQH?.

Example 3.1 To test this idea, the palindromic QR iteration was applied to a (10×10) real
matrix, A, defined as follows: A = XDXT where X is a (10× 10) random matrix (generated
by the MATLAB command rand(10)) with condition number cond(X) ≈ 100. D was set to[ 10

. ..
1

]
. Hence, the eigenvalues of (A,AT ) are i/(11− i) for i = 1, . . . , 10.

In Figure 3.1 the results of every 20th step are plotted. It can be observed that it takes
80 iterations for the first eigenvalue pair to converge. In A80 (lower center plot) the ratio
a1,10

a10,1
equals 0.1 to an accuracy of 15 digits. After 194 iterations the matrix has converged to

palindromic Schur form. ¤

The palindromic QR iteration converged for the preceeding example. In fact, if A is
invertible, it follows from Theorem 3.1 below that every two iterations of Algorithm 3.1 are
equivalent to a standard QR step applied to A−?A, a matrix that has the same eigenvalues
and right eigenvectors as (A,A?).

Note that the invertibility of A is not necessary. On the contrary, if A is singular then two
iterations of Algorithm 3.1 implement one step of the staircase reduction process discussed
in Section 2.4. Indeed, if A has a rank deficiency of order k and if the kernel of A is not
orthogonal to the last k standard basis vectors, then A1 will be of the form (2.43) with d = k
whereas A2 is in the form (2.45) with s = 0, z = k.
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At this point, the basic palindromic QR iteration has been introduced. In the follow-
ing sections the method is accelerated by strategies like deflation, the use of shift or the
exploitation of Hessenberg-like structures.

3.1.1 Deflation

If during the course of the iteration, the matrix A is in palindromic block Schur form

A =




n1 n− 2n1 n1

n1 0 0 A13

n− 2n1 0 A22 A23

n1 A31 A32 A33


, (3.1)

for some integer n1 ≤ bn2 c, then the problem decouples into a generalized eigenvalue problem
for (A31, A

?
13) and a smaller palindromic eigenvalue problem for A22.

In this situation, A13 and A31 can be antitriangularized by the QZ algorithm, see (2.36),
(2.37). Then, the palindromic QR iteration can be continued on A22. The subsequent itera-
tions will be computationally less expensive, because A22 is of smaller size than A.

In practice, the blocks A11, A12, A21 generally do not vanish exactly as in (3.1). Rather
they are set to zero if they are neglectable, for instance, if ‖[A11, A12, A

T
21]‖F < 10−16‖A‖F .

3.2 Using shifts

In general, the palindromic QR iteration converges rather slowly (as in Example 3.1). How-
ever, an eigenvalue pair at (0,∞) is generically discovered within only two steps. If (0,∞) is
not an exact, but an approximate eigenvalue pair, then it can still be expected to be found
within only a few iterations.

The basic idea behind shifting is to apply the palindromic QR step to a transformed
matrix Ã, instead of A. Here, Ã is chosen to be a) nearly singular (so applying Algorithm 3.1
means good progress towards convergence) and b) related to A in a way that convergence for
Ã implies convergence for A itself. The common choice for Ã is

Ã = A− κA?, (3.2)

where the parameter κ is called a shift. Note that (3.2) represents the analogon of the choice
Ã = A− κB used by the QZ algorithm [74]. The eigenpairs of the shifted pencil are related
to those of the original one as follows: if (λ, x) is an eigenpair of (A,A?), then (f(λ), x) is an
eigenpair of (Ã, Ã?) where

f(λ) =
λ− κ

1− κ?λ
. (3.3)

So, if κ is close to an eigenvalue of (A, A?) and κ?λ is not near to 1, then (Ã, Ã?) has an
eigenvalue pair near (0,∞). Note, that κ must not be ?-exceptional. For if a value κ with
κ?κ = 1 is used as shift, Ã satisfies

Ã? = (A− κA?)? = A? − κ?A =
−1
κ

(−κA? + κ?κA) =
−1
κ

Ã.

Thus, every vector would be an eigenvector of (Ã, Ã?) associated with the eigenvalue −κ and
no information could be drawn from this shifted pencil.
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A shifted palindromic QR step proceeds by applying Algorithm 3.1 to Ã resulting in
Ã1 = QHÃQH?, where Q stems from the antitriangular QR factorization of Ã. Afterwards,
Ã1 has to be ’unshifted’. The equation Ã1 = A1 − κA?

1 can be solved for A1 (again, under
the assumption that κ?κ 6= 1) yielding

A1 =
1

1− κ?κ
(Ã1 + κÃ?

1). (3.4)

Another way is to directly apply Q to A, i.e. setting A1 = QHAQH?. The latter is computa-
tionally more expensive, but could be numerically preferable, since then possible cancellation
errors in (3.2) and (3.4) do not carry over to A1.

Summarizing the discussion above, a shifted palindromic QR step has the form:

Algorithm 3.2 Shifted palindromic QR step
Input: A ∈ Cn×n, κ 6= 1/κ?

Output: A1 ∈ Cn×n

1: Ã← A− κA?

2: Ã→ QR with R =¡
3: A1 ← QHAQH?

It remains to find an eigenvalue approximation κ from A. One possible choice is

κ1 =
a1,n

a?
n,1

. (3.5)

This is a good approximation if the first row and column of A are close to a multiple of the
last vector of the identity matrix, i.e., if A is close to palindromic block Schur form (3.1) with
n1 = 1.

Example 3.2 The shifted palindromic QR iteration with shift (3.5) is applied to the matrix
from Example 3.1. As shown in Figure 3.2, the first eigenvalue pair converges within 10
iterations. After deflation it takes 6 further steps for the next pair and all together only 28
steps for the whole matrix to converge. Note, that the lower right plot of the residual norm
indicates superlinear convergence. ¤

3.2.1 Multiple shifts

The aim of this section is the derivation of a multi-shift palindromic QR step that combines
the action of several single-shift steps into one process.

Applying Algorithm 3.2 with the k shifts κ1, . . . , κk to A0 = A amounts to

Ai−1 − κiA
?
i−1 =: QiRi, with Ri =¡,

Ai := QH
i Ai−1Q

H?
i , for i = 1, ..., k.

Defining Q̃i := Q1 · · ·Qi we have Ai = Q̃H
i AQ̃H?

i and Ri = Q̃H
i (A − κiA

?)Q̃H?
i−1. Further,

assuming that none of the shifts is an exact eigenvalue, define

Ã = (A− κkA
?)(−?)k−1 · · · (A− κ4A

?)−?(A− κ3A
?)(A− κ2A

?)−?(A− κ1A
?)
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Figure 3.2: Convergence history of the shifted palindromic QR iteration. The plotted residual
was computed as r(i) = ‖[Ai(1, 1 : 9), Ai(2 : 9, 1)T ]‖.

where A(−?)i
means A−? if i is odd whereas otherwise it reduces to A. Moreover let

R̃ := R
(−?)k−1

k · · ·R−?
4 R3R

−?
2 R1 =




¡· · ·¡ ·¡ ·¡ ·¡=¡ , k odd

¡· · ·¡ ·¡ ·¡ ·¡=@ , k even.

Then, for odd k it holds that

Q̃kR̃ = Q̃kRkR
−?
k−1Rk−2 · · ·R−?

2 R1

= (Q̃kRkQ̃
?
k−1)(Q̃k−1Rk−1Q̃

?
k−2)

−? · · · (Q̃2R2Q̃
?
1)
−?(Q̃1R1)

= (A− κkA
?)(A− κk−1A

?)−?(A− κk−2A
?) · · · (A− κ2A

?)−?(A− κ1A
?)

= Ã.

So, Q̃kR̃ form an antitriangular QR factorization of Ã. Analogously, for even k, a standard
QR factorization of Ã is given by Q̃−?

k R̃.
Since (anti-) QR decompositions of nonsingular matrices are unique (up to a diagonal

unitary factor) this provides a way to compute Ak without carrying out the k single-shift
steps. Instead, it can be computed as Ak = Q̃H

k AQ̃H?
k , where Qk stems from an (anti-) QR

decomposition of Ã. This motivates the following algorithms.

Algorithm 3.3 Multi shift palindromic QR step (odd k)
Input: A ∈ Cn×n, k odd, κ1, . . . , κk not ?-exceptional, not exact eigenvalues
Output: A1 ∈ Cn×n

1: Ã← (A− κkA
?) · · · (A− κ4A

?)−?(A− κ3A
?)(A− κ2A

?)−?(A− κ1A
?)

2: Ã→ QR with R =¡
3: A1 ← QHAQH?
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Figure 3.3: Convergence history of the palindromic QR iteration using 3 shifts

Algorithm 3.4 Multi shift palindromic QR step (even k)
Input: A ∈ Cn×n, k even, κ1, . . . , κk not ?-exceptional, not exact eigenvalues
Output: A1 ∈ Cn×n

1: Ã← (A− κkA
?)−? · · · (A− κ4A

?)−?(A− κ3A
?)(A− κ2A

?)−?(A− κ1A
?)

2: Ã→ QR with R =@
3: A1 ← Q?AQ

The shifts, κ1, . . . , κk, can be chosen similarly as in the single-shift case by partitioning A
into

A =




k n− 2k k

k A11 A12 A13

n− 2k A21 A22 A23

k A31 A32 A33


 (3.6)

and using the eigenvalues of (A13, A
?
31) as shifts. This will give good approximations to

eigenvalues of (A,A?) if A11, A12, and A21 are small in norm.

Example 3.3 Applying Algorithm 3.3 with k = 3 to the matrix from Example 3.1 leads
to the results plotted in Figure 3.3. After 10 iterations a block of 3 eigenvalue pairs has
converged. ¤

It is interesting that although the multi-shift Algorithms 3.3 and 3.4 are both equivalent to a
series of single-shift steps they differ in important aspects, for example, the type of relation
between A and Ã. For odd k the pencils (A,A?) and (Ã, Ã?) have the same eigenvectors.
Indeed, for k = 3, if (λ, x) is an eigenpair of (A,A?) and y = A?x then

Ãx = (A− κ3A
?)(A− κ2A

?)−?(A− κ1A
?)x = (λ− κ3)

1
1− κ?

2λ
(λ− κ1)y,

Ã?x = (A? − κ?
1A)(A? − κ?

2A)−?(A? − κ?
3A)x =

1
1− κ?

3λ
(λ− κ2)

1
1− κ?

1λ
y,

i.e., ( λ−κ1
1−κ?

1λ
λ−κ2
1−κ?

2λ
λ−κ3
1−κ?

3λ , x) is an eigenpair of (Ã, Ã?). In general, for an odd number of shifts
the eigenvalues of (A,A?) are mapped to

f(λ) =
k∏

i=1

λ− κi

1− κ?
i λ

.
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Just like the single shift Algorithm 3.2, the multi-shift Algorithm 3.3 can be interpreted as
unshifted palindromic QR step (Algorithm 3.1) applied to the shifted palindromic problem
(Ã, Ã?).

For even k, on the other hand, the eigenvectors of (A,A?) and (Ã, Ã?) do in general not
coincide. Rather, Ã is related to A in a different way. In fact, Ã can be written as rational
function in A−?A. For example, for k = 2 we have

Ã = (A− κ2A
?)−?(A− κ1A

?)
= (A? − κ?

2A)−1(A?A−?)(A− κ1A
?)

= (A−?(A? − κ?
2A))−1(A−?A− κ1I)

= (I − κ?
2A

−?A)−1(A−?A− κ1I)

= r(A−?A) with r(λ) :=
λ− κ1

1− κ?
2λ

.

In general, for the 2k shifts κ1, µ1, κ2, µ2, . . . , κk, µk we have Ã = r(A−?A) where

r(λ) =
k∏

i=1

λ− κi

1− µ?
i λ

=
p(λ)

rev?q(λ)
, p(λ) =

k∏

i=1

(λ− κi), q(λ) =
k∏

i=1

(λ− µi). (3.7)

Here, rev?p(λ) :=
∑k

i=0 α?
k−iλ

i denotes the ?-reversal of the polynomial p(λ) =
∑k

i=0 αiλ
i,

obtained by reversing the order of the coefficients (and conjugation). Note that r(A−?A) is
defined, even if A is singular.

Remark 3.1 This shows that Ã is invariant under permutation of the shifts with even or
odd indices, as these do not change p or q, respectively. (The same is true for odd k, see [80].)
¤
Analogously, the inverse transpose of Ã shows a similar property:

Ã−? = r̃(AA−?) with r̃(λ) =
q(λ)

rev?p(λ)
. (3.8)

These properties of Ã are the base for the following theorem

Theorem 3.1 Let (A, A?) be a regular pencil, k ∈ N , and κ1, . . . , κk and µ1, . . . , µk be
non-?-exceptional numbers that are not exact eigenvalues of (A,A?). Define r(λ), r̃(λ) as
in (3.7), (3.8).

Then a palindromic QR step (Algorithm 3.4) using the shifts κ1, µ1, κ2, µ2, . . . , κk, µk ef-
fects a standard QR step on A−?A driven by the function r, and simultaneously a standard
QL step on AA−? driven by the function r̃.

Proof: The first statement follows since Algorithm 3.4 performs a QR factorization of Ã =
r(A−?A) = QR and the fact that a congruence transformations on A effects a similarity
transformation on A−?A.

The QR decomposition of Ã = QR induces a QL decomposition of Ã−? as

r̃(AA−?) = Ã−? = (QR)−? = Q−?R−? = Q−?L,

where L = R−? is lower triangular. This proves the assertion about the QL step. ¤

The mixed QR/QL behavior can be explained by the fact that if A is in palindromic
Schur form, i.e., it is antitriangular, then A−?A is upper triangular, whereas AA−? is lower
triangular.
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3.3 Anti-Hessenberg matrices

The dominating operation in a palindromic QR step is the antitriangular QR factorization
which needs O(n3) floating point operations. In the standard QR algorithm this number
is decreased by one order of magnitude by exploiting the structure of Hessenberg matrices.
In this section we introduce Hessenberg–like matrices that play an analogous role for the
palindromic QR algorithm.

Definition 3.1 A square matrix A ∈ Cn,n is called anti-Hessenberg, if aij = 0 whenever

i + j < n. Such a matrix is depicted by A =¡¡ .

An antitriangular QR factorization of an anti-Hessenberg matrix can be achieved by a series
of n − 1 Givens rotations and is thus computable in O(n2) operations. Unfortunately, the
palindromic QR step (Algorithm 3.1) does not preserve the anti-Hessenberg form.

Remark 3.2 Algorithm 3.1 does preserve some properties of anti-Hessenberg matrices,
however. Let A be in anti-Hessenberg form. Then

rank(A(1 : i + 1, 1 : n− i)) = 1, for i = 1, . . . , n− 2. (3.9)

Such a matrix could be called generalized anti-Hessenberg matrix in the spirit of [27].
The result of Algorithm 3.1 arises from an antitriangular matrix by applications of n− 1

Givens rotations in the planes (n − 1, n), (n − 2, n − 1), . . . , (1, 2) from the right. Hence it
fulfills (3.9). ¤

Fortunately, as will be proved in Lemma 3.2, applying Algorithm 3.1 a second time recovers
the anti-Hessenberg structure. Moreover, the computation of two consecutive steps can be
reordered to be carried out in O(n2) flops yielding the following algorithm.

Algorithm 3.5 Unshifted palindromic QR double step for anti-Hessenberg matrices
Input: A ∈ Cn×n in anti-Hessenberg form
Output: A is overwritten by the result of two unshifted palindromic QR steps, A is still

anti-Hessenberg
1: for i = 1, . . . , n− 1 do
2: define rotation Gi such that G?

i A(n− i : n− i + 1, i) = [ 0∗ ]
3: A(n− i : n− i + 1, :)← G?

i A(n− i : n− i + 1, :)
4: end for
5: for i = 1, . . . , n− 1 do
6: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)Gi

7: define rotation G̃i such that G̃?
i A(i : i + 1, n− i) = [ 0∗ ]

8: A(i : i + 1, :)← G̃?
i A(i : i + 1, :)

9: end for
10: for i = 1, . . . , n− 1 do
11: A(:, i : i + 1)← A(:, i : i + 1)G̃i

12: end for

Here we used the MATLAB notation for submatrices, i.e., A(i : j, :) denotes the rows i to j,
whereas A(:, k : l) selects the columns k through l. Moreover, A(i : j, k : l) denotes the rows
i to j of the columns k through l.

Algorithm 3.5 needs 12n2 + O(n) flops to update A and another 12n2 + O(n) flops to
accumulate the rotations onto an existing unitary matrix Q.
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Example 3.4 We illustrate the procedure of Algorithm 3.5 for n = 3. The first for–loop
computes

A =




x x
x x x
x x x


 , G?

1A =




x x
0 x x
x x x


 , G?

2(G
?
1A) =




0 x
x x

x x x


 = R1.

The second for–loop computes

R1G1 =




+ x
x x

x x x


 , G̃?

1(R1G1) =




0 x
x x

x x x


 ,

(G̃?
1R1G1)G2 =




x
+ x x
x x x


 , G̃?

2(G̃
?
1R1G1G2) =




x
0 x x
x x x


 = R2.

Finally, the third for–loop computes

R2G̃1 =




x
+ x x
x x x


 , (R2G̃1)G̃2 =




+ x
x x x
x x x


 .

The latter is the result which is in anti-Hessenberg form. Together the congruence

(G̃?
2((G̃

?
1((G

?
2G

?
1A)G1))G2))G̃1G̃2

was formed. ¤

We now prove our statement that Algorithm 3.5 applies two palindromic QR steps to a matrix.

Lemma 3.2 Let A ∈ Cn,n be a nonsingular anti-Hessenberg matrix. Let A2 be the result of
two steps of Algorithm 3.1 and let A+ be the result of Algorithm 3.5. Then there exists a
unitary diagonal matrix D such that A2 = D?A+D.

Proof: Some intermediate results of Algorithm 3.5 are needed: let R1, R2 be the value
of the matrix A at the end of the first and second for loop, respectively. Note that R1

and R2 are antitriangular. Set Q1 = (In−2 ⊕ G1)(In−3 ⊕ G2 ⊕ 1) · · · (Gn−1 ⊕ In−2) and
Q2 = (G̃1 ⊕ In−2)(1 ⊕ G̃2 ⊕ In−3) · · · (In−2 ⊕ G̃n−1). Note that R1 = Q?

1A, so QH?
1 R1 is an

antitriangular QR factorization of A. Note further that R2 = Q?
2R1Q1, and thus QH?

2 R2 is an
antitriangular QR factorization of R1Q1 =: A1. Finally, we have A+ = R2Q2. The assertion
follows, since antitriangular QR factorizations of nonsingular matrices are unique up to a
unitary diagonal factor. ¤

The invariance of the anti-Hessenberg structure under palindromic QR double steps also
holds when using shifts. Indeed, if every shift is used twice (this implies an even number of
shifts) we have in (3.7) and (3.8) that λi = µi, p(λ) = q(λ), r(λ) = r̃(λ), and thus

r(A−?A) = Ã = (Ã−?)−? = r(AA−?)−?. (3.10)
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It follows that the result of Algorithm 3.4 satisfies

A+ = Q?AQ = R−?r(A−?A)?Ar(A−?A)R−1 = R−?Ar(AA−?)?r(A−?A)R−1 (3.10)
= R−?AR−1.

(3.11)
Thus, if A bears a structure that is invariant under an update A ← T ?AT for any upper
triangular matrix T , then this structure is invariant under double palindromic QR steps. The
Anti-Hessenberg form is such a structure.

Constructing a shifted palindromic QR algorithm for anti-Hessenberg matrices seems
straightforward now.

Algorithm 3.6 Single–shift palindromic QR double step for Hessenberg matrices
Input: A ∈ Cn×n in anti-Hessenberg form, κ
Output: A is overwritten by the result of two single-shift palindromic QR steps, A is still

anti-Hessenberg
1: Ã← A− κA?

2: apply Algorithm 3.5 to Ã yielding Ã1

3: A1 ← 1
1−κ?κ(Ã1 + κÃ?

1)

Note that every line of Algorithm 3.6 preserves anti-Hessenberg structure. However, this
algorithm is not backward stable, as the factor in line 3 may explode if |κ| is close to one.
Applying the unitary transformations directly to A is also not an alternative, because during
the course of the computation the matrix becomes fully populated and although A1 is an
anti-Hessenberg matrix in exact arithmetic, this may numerically not be the case. So forcing
anti-Hessenberg form by setting elements to zero also sacrifices backward stability.

The construction of multi-shift methods poses even more difficulties as it is already not
clear, how to form Ã without losing the anti-Hessenberg form.

At this point the limits of explicit algorithms are reached. The problems will be overcome
by the implicit algorithms presented in Section 3.4, but before these methods are discussed,
a variant of anti-Hessenberg matrices shall be introduced.

3.3.1 Anti-Hessenberg-triangular matrices

It is perhaps surprising that, unlike the standard Hessenberg structure, an anti-Hessenberg
matrix can be transformed into an even further reduced form that remains invariant under
double palindromic QR steps. In the following, we introduce such a form along with an
algorithm that transforms an anti-Hessenberg matrix into this form.

Definition 3.2 An anti-Hessenberg matrix A ∈ Cn,n is called an anti-Hessenberg-triangular
matrix, if ai,n−i = 0 for i = 1, . . . , n1 := bn−1

2 c. It is called unreduced, if ai,n−i 6= 0 for
i = n1 + 1, . . . , n− 1 and ai,n−i+1 6= 0 for i = 1, . . . , n1.

An anti-Hessenberg-triangular matrix can be depicted by (using n2 = n− n1)

A =




n2 n1

n1 0 ¡
n2 ¡¡


.
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Lemma 3.3 The anti-Hessenberg-triangular structure is invariant under palindromic QR
steps.

Proof: This structural invariance also follows from (3.11), as the anti-Hessenberg-triangular
structure is invariant under ?-congruence transformations with an upper triangular matrix. ¤

We now show that any matrix in anti-Hessenberg form can be transformed to anti-
Hessenberg-triangular form. To this end assume that A is anti-Hessenberg and we have
already annihilated ai,n−i for i = 1, . . . ,m− 1 for some 1 ≤ m ≤ n1 − 1. In the following we
show only a submatrix of A.

A(m− 1 : n−m + 2,m− 1 : n−m + 2) =




0 x
x x x

. ..
...

x x x x
x x x x x
x x · · · x x x




We now want to zero out am,n−m by applying a Givens rotation in the rows/columns n −
m,n−m + 1.

A(m− 1 : n−m + 2,m− 1 : n−m + 2) =




x
0 x x

. ..
...

+ x x x x
x x x x x
x x · · · x x x




This introduces fill-in at position (m − 1, n −m), which can be re-annihilated by a rotation
in rows/columns m− 1,m.

A(m− 1 : n−m + 2,m− 1 : n−m + 2) =




+ x
0 x x

. ..
...

0 x x x x
x x x x x
x x · · · x x x




Both rotations together have moved the unwanted nonzero one position upwards-right. So,
by repeated application of this process the nonzero can be moved to the (1, n − 1) position,
where it can be annihilated by a rotation in the last two rows/columns without generating
fill in.

We have the following algorithm.

Algorithm 3.7 Reduction of an anti-Hessenberg matrix to anti-Hessenberg-triangular form

Input: A ∈ Cn,n in anti-Hessenberg form
Output: A is overwritten by Â = Q?AQ in anti-Hessenberg-triangular form
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1: for i = 1 : bn−1
2 c do

2: for j = i : −1 : 2 do
3: define rotation G such that A(j, n− j : n− j + 1)G = [0, ∗]
4: A(j : n, n− j : n− j + 1)← A(j : n, n− j : n− j + 1)G
5: A(n− j : n− j + 1, j − 1 : n)← G?A(n− j : n− j + 1, j − 1 : n)
6: define rotation G such that A(n− j, j − 1 : j)G = [0, ∗]
7: A(n− j : n, j − 1 : j)← A(n− j : n, j − 1 : j)G
8: A(j − 1 : j, n− j : n)← G?A(j − 1 : j, n− j : n)
9: end for

10: define rotation G such that A(1, n− 1 : n)G = [0, ∗]
11: A(:, n− 1 : n)← A(:, n− 1 : n)G
12: A(n− 1 : n, :)← G?A(n− 1 : n, :)
13: end for

The flop count for this algorithm is as follows: manipulating A costs 3
2n3 flops, accumulat-

ing the rotations into an unitary matrix Q takes another 1
2n3 flops, and updating an existing

Q costs 3
2n3 flops.

The above reduction to anti-Hessenberg-triangular form is strongly related to the reduc-
tion of a certain pencil to Hessenberg-triangular form. To see this set H = FA(bn2 c+1 : n, 1 :
dn2 e) and R1 = FA(1 : dn2 e, bn2 c + 1 : n)?, where F denotes the flip matrix of appropriate
dimension. Note that for odd n the submatrices H and R1 overlap. This does not pose a
problem. Since A is anti-Hessenberg, both, H and R1, are upper Hessenberg. The pencil
(H, R1) can be transformed to Hessenberg-triangular form by chasing the subdiagonal entries
in R1, one after the other, to the top and then out. Interpreting these transformations on H
and R1 as transformations on A gives the anti-Hessenberg-triangular reduction.

Example 3.5 We show how to reduce a 5-by-5 anti-Hessenberg matrix.

A




x x
x x x

x x x x
x x x x x
x x x x x


→




0 x
x x x

x x x x
x x x x x
x x x x x



→




x
0 x x

+ x x x x
x x x x x
x x x x x



→




+ x
x x

0 x x x x
x x x x x
x x x x x



→




0 x
x x

x x x x
x x x x x
x x x x x




H




x x x
x x x

x x







x x x
x x x

x x







x x x
x x x
+ x x







x x x
x x x
0 x x







x x x
x x x

x x




R1




x x x
x x x

x x







x x x
0 x x

x x







x x x
x x
0 x







x x x
+ x x

x







x x x
0 x x

x




The first step annihilates the a14 element affecting the last two rows and columns. The next
step zeros out element a23 acting on rows/columns 3,4 but this introduces the element a3,1.
This new element is zeroed out by a rotation acting on the first two rows and columns and
re-introducing element a14. The last step is to re-annihilate this element by a rotation in the
last two rows and columns.

The matrix H is obtained by flipping upside down the submatrix of A marked by the
dash-dotted line. Similarly, R denotes the upside down flipped transpose of the submatrix of
A marked by the dotted line. ¤

We will come back to the connection to the QZ algorithm in the next section.
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3.4 The Implicit palindromic QR step

Algorithm 3.4 involves the formation and QR factorization of r(A−?A), where r is a rational
function. This can lead to instabilities, if a shift is close to an eigenvalue as then a nearly
singular matrix has to be inverted. Moreover, the explicit formation of r(A−?A) takes O(n3)
flops and would thus spoil the aspired O(n2) complexity. Below we present an implicit version
of the palindromic QR step for anti-Hessenberg-triangular matrices that uses bulge chasing
rather than QR factorizations.

Let the k < n
2 shifts κ1, . . . , κk be ?-reciprocal free, i.e., there are no two shifts such that

κi = 1/κ?
j . The process is described for k = 2 shifts. Only the lower left and the upper right

5× 5 corners of the anti-Hessenberg-triangular matrix A are shown:

A :




. .. . ..

x x
x x x

x x x x
x x x x x
x x x x x · · ·







x
x x

x x x
x x x x

x x x x x

. ..
...




Let x = A?p(A−?A)e1 = p(AA−?)A?e1 = αp(AA−?)en with p(λ) =
∏k

i=1(λ − κi) and a
constant α. Since the last bn−1

2 c columns of AA−? are in lower Hessenberg form, only the
last k + 1 elements of x are nonzero. Let Q0 be a unitary matrix such that Q?

0x is a multiple
of en and apply the congruence A0 = Q?

0AQ0. This introduces fill-in in A called bulges.

A0 :




. .. . ..

x x
x x x

+ x x x x
x x x x x
x x x x x · · ·







+ + x
+ x x
x x x

x x x x
x x x x x

. ..
...




. (3.12)

These bulges are then chased towards the center. To this end let Q̃1/2 be a unitary matrix,
such that the first row of Q̃?

1/2A0(1 : 3, n − 2 : n) is a multiple of e?
3. This could be the

unitary factor of the antitriangular QR factorization of A0(1 : 3, n − 1 : n) or an opposite
Householder transformation, which was introduced in [96], and shown to be backward stable
in [53, Section 2.3.3]. Embedding Q̃1/2 into a matrix of size n, Q1/2 = Q̃1/2 ⊕ In−3 and
applying the congruence A1/2 = Q?

1/2A0Q1/2 yields

A1/2 :




. .. . ..

x x
+ + x x x
x x x x x
x x x x x
x x x x x · · ·







0 0 x
x x x
x x x

x x x x
x x x x x

. ..
...




.

Next, the first column of A1/2 will be reduced. To this end, let Q̃1 be a unitary matrix such
that Q̃?

1A1/2(n − 4 : n − 1) is a multiple of e3. Applying this Q̃1 to the rows and columns
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n− 4 to n− 1 results in A1

A1 :




. .. . ..

x x
0 x x x x
0 x x x x
x x x x x
x x x x x · · ·







x
+ x x x
+ x x x
x x x x

x x x x x

. ..
...




.

Comparing A0 with A1 indicates that the two transformations just described effectively moved
the bulges one position upward-right and downwards-left, respectively.

The next bulge chasing step effects:

A1+1/2 :




. .. . ..

+ + x x
x x x x
x x x x

x x x x x
x x x x x · · ·







x
0 0 x x
x x x x
x x x x

x x x x x

. ..
...




A2 :




. .. . ..

0 x x x
0 x x x
x x x x

x x x x x
x x x x x · · ·







x
x x

+ x x x x
+ x x x x
x x x x x

. ..
...




After n1 − k steps the bulges arrive at the center. Note the difference depending on whether
n is even or odd, see (3.13).

n even n odd

An1−k :




. ..

0 x · · ·
x x x x
x x x x

x x x x x
x x x x x x x
x x x x x x x

x x x x x x x x

. .. x x x x x x x x · · ·

. ..
...

...
. . .







. ..

0 x · · ·
x x x x
x x x x

x x x x x x
x x x x x x

x x x x x x x

. .. x x x x x x x · · ·

. ..
...

...
. . .




(3.13)

At this point the chasing cannot be continued as before. Instead, the bulges have to be “passed
through each other”. In order to understand this step, the notion of bulge pencils [93, 95] is
necessary.

In the series of pencils (Ai, A
?
i ) there are two bulges. One is located in the positions

(n − k − i : n − 1 − i, i + 1 : i + k). It was created at the bottom left corner and is moving
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upwards along the antidiagonal. The other bulge is situated at (i+1 : i+k, n−k−i : n−1−i).
It was created at the top right corner, and is going downwards. Defining Bi := Ai(n− k− i :
n−1− i, i+1 : i+k) and Ci := Ai(i+1 : i+k, n−k− i : n−1− i), for i = 0, 1, . . . , n−k, the
upwards moving bulge pencil is given by (Bi, C

?
i ), while the downwards moving bulge pencil

is given by (Ci, B
?
i ). Note that in the terminology of [95], the pencils (Bi, C

?
i ) and (Ci, B

?
i )

are intermediate bulge pencils.
The bulge pencils show an important invariance property.

Lemma 3.4 Let A be an unreduced anti-Hessenberg-triangular matrix. Then the eigenvalues
of (Bi, C

?
i ) are the shifts κ1, . . . , κk for all i = 0, . . . , n1− k. Consequently, the eigenvalues of

(Ci, B
?
i ) are 1/κ?

1, . . . , 1/κ?
k for all i = 0, . . . , n1 − k.

Proof: We are interpreting the palindromic bulge chase as QZ step. Set H = FA(bn2 c+ 1 :
n, 1 : dn2 e) and R1 = FA(1 : dn2 e, bn

2 c+1 : n)?, where F denotes the flip matrix of appropriate
dimension. Note that for odd n the submatrices H and R1 overlap. This does not pose a
problem. In fact, the palindromic bulge chasing process is equivalent to the bulge chasing
in the QZ algorithm applied to H and R1 stopped just before the squeezing out of the
bulges. Also the nonzero part of x can written as x(bn2 c + 1 : n) = FR1p(R−1

1 H)e1 =
const · Fp(HR−1

1 )e1, the flipped choice of the QZ iteration.
The result follows from an analogous result for the QZ algorithm, see [95, Section 7.1]. ¤

Thus, the upward moving bulge carries the shifts as eigenvalues whereas the spectrum of
the downward moving bulge consists of the (conjugated) inverse shifts. In order to allow this
“shift transport mechanism” to continue, the eigenvalues of the bulges have to be exchanged.

Consider the block antitriangular subpencil of (An1−k, A
?
n1−k) that contains both bulges,

as marked in (3.13). The eigenvalues of the top right block have to be swapped with the
eigenvalues of the bottom left block. This task can be accomplished by Algorithm 3.9 in
Section 3.5.1 which requires the shifts to be ?-reciprocal free.

It is possible that the swap fails, e.g., if the shifts are not ?-reciprocal free or the resulting
linear system of equations is too ill-conditioned. In this case all transformations have to be
undone and a new attempt with different shifts has to be started. In our numerical experi-
ments (where the linear systems were solved by vectorization (1.6) and Gaussian elemination
with partial pivoting) this never happened [55].

If the swap is successful, the resulting congruence is applied to the remainder of An1−k.
This defines a matrix An1+k−1 that has the same shape as An1−k. Note the jump in the index
from An1−k to An1+k−1 which is necessary in order to be consistent with above definition of
the bulge pencils (Bi, C

?
i ). Consequently, the eigenvalues of (Bn1+k−1, C

?
n1+k−1), which is the

upper bulge now, are still the shifts.
Once the bulges are exchanged, they have to be chased out again. This process is the

exact opposite of the inward chase presented above and we refrain from discussing it in detail.
During this phase the bulge having 1/κ?

1, . . . , 1/κ?
k as shifts is chased all the way down to the

lower left corner, where it is squeezed out.
We provide an algorithm:

Algorithm 3.8 Implicit Palindromic QR step
Input: A ∈ Cn,n in unreduced anti-Hessenberg-triangular form,

?-reciprocal free shifts κ1, . . . , κk, k < n
2

Output: One palindromic QR step is applied to A



62 CHAPTER 3. THE PALINDROMIC QR ALGORITHM

1: n1 = bn−1
2 c

2: compute x = A?p(A−?A)e1 % create bulges
3: define unitary Q with Q?x(n− k : n) = αek+1

4: A(n− k : n, :)← Q?A(n− k : n, :)
5: A(:, n− k : n)← A(:, n− k : n)Q
6: for i = 0 : n1 − k − 1 do % chase bulges towards center
7: define unitary Q with eT

1 Q?A(i + 1 : i + k + 1, n− k − i : n− i) = αeT
k+1

8: A(i + 1 : i + k + 1, n− k − i : n)← Q?A(i + 1 : i + k + 1, n− k − i : n)
9: A(n− k − i− 1 : n, i + 1 : i + k + 1)← A(n− k − i− 1 : n, i + 1 : i + k + 1)Q

10: define unitary Q with Q?A(n− k − 1− i : n− 1− i, i + 1) = αek+1

11: A(n− k − 1− i : n− 1− i, i + 1 : n)← Q?A(n− k − 1− i : n− 1− i, i + 1 : n)
12: A(i + 2 : n, n− k − 1− i : n− 1− i)← A(i + 2 : n, n− k − 1− i : n− 1− i)Q
13: end for
14: apply Algorithm 3.9 to

A(n1 − k + 1 : n− 1− n1 + k, n1 − k + 1 : n− 1− n1 + k) % exchange bulges
15: A(n1−k+1 : n−1−n1+k, n1−k+1 : n)← Q?A(n1−k+1 : n−1−n1+k, n1−k+1 : n)
16: A(n1−k+1 : n, n1−k+1 : n−1−n1 +k)← A(n1−k+1 : n, n1−k+1 : n−1−n1 +k)Q
17: for i = n1 − k − 1 : −1 : 0 do % chase bulges outwards
18: define unitary Q with A(2 + i : 2 + k + i, n− k − 1− i : n− 1− i)Qe1 = ek+1

19: A(2 + i : n, n− k − 1− i : n− 1− i)← A(2 + i : n, n− k − 1− i : n− 1− i)Q
20: A(n− k − 1− i : n− 1− i, 1 + i : n)← Q?A(n− k − 1− i : n− 1− i, 1 + i : n)
21: define unitary Q with A(n− k − 1− i, 1 + i : k + 1 + i)Q = αeT

k+1

22: A(n− k − 1− i : n, 1 + i : k + 1 + i)← A(n− k − 1− i : n, 1 + i : k + 1 + i)Q
23: A(1 + i : k + 1 + i, n− k − i : n)← Q?A(1 + i : k + 1 + i, n− k − i : n)
24: end for
25: for i = k : −1 : 1 do % squeeze out bulges
26: define unitary Q with A(1 : i + 1, n− i : n)Qe1 = ei+1

27: A(:, n− i : n)← A(:, n− i : n)Q
28: A(n− i : n, :)← Q?A(n− i : n, :)
29: if i > 1 then
30: define unitary Q with A(n− i, 1 : i)Q = αeT

i

31: A(n− i : n, 1 : i)← A(n− i : n, 1 : i)Q
32: A(1 : i, n− i + 1 : n)← Q?A(1 : i, n− i + 1 : n)
33: end if
34: end for

The shifts can be chosen as for the explicit algorithm, see (3.6). We mention one subtlety:
if ∞ is a shift, then this shift does not create a bulge. In this case we propose to use the
explicit unshifted Algorithm 3.5 on A?, followed by Algorithm 3.8 with the finite shifts.

Algorithm 3.8 needs (8k+6)n2 +O(k3n) flops to transform A and the same amount again
to update Q. So, one palindromic QR step has the same operation count as one QZ step.
But in contrast to the QZ algorithm, the palindromic QR algorithm deflates at both corners
of the matrix, instead of just one. So the size of the active submatrix decreases more rapidly
and consequently the palindromic QR algorithm is usually faster than the QZ algorithm as
is supported by numerical experiments [55].
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3.4.1 The real implicit palindromic QR algorithm

Often the problems arising in physical applications are real. In these cases one wants to
keep the computations in real arithmetic, because complex computations need twice as much
memory and are three to four times slower.

If A is a real anti-Hessenberg matrix then the reduction to anti-Hessenberg-triangular
form, Algorithm 3.7, stays in real arithmetic automatically. Moreover, also Algorithm 3.8
yields a real result provided that the vector x = αAT p(A−T A)e1 in line 2 is real. This is
the case if the shifts are closed under complex conjugation. In this case x can be computed
completely avoiding complex operations. Note that for complex conjugate sets, T- and H-
reciprocal freeness are equivalent.

3.4.2 The even implicit QR algorithm

In the following we present an even counterpart of the implicit palindromic QR algorithm.
It can be derived by applying the palindromic QR step to the Cayley transform of an even
pencil, but it works directly on the matrices M , N .

We will assume that the pencil (M,N) is given in anti-Hessenberg form, i.e., both, M
and N , are anti-Hessenberg. The first step is to transform the pencil into anti-Hessenberg-
triangular form, in which M is anti-Hessenberg and N is antitriangular. This form can be
achieved by chasing the super-antidiagonal elements of N , one at a time, out to the (1, n− 1)
and (n− 1, 1) position, where they can be annihilated by a ?-congruence rotation in the last
two rows and columns. Algorithm 3.7 can be adapted to even pencils as follows. In the lines
3 and 10 ‘A’ is replaced by ‘M ’, whereas ‘A’ is replaced by ‘N ’ in line 6. Moreover, the
transformations are applied to both, M and N .

An even implicit QR step with the shifts κ1, . . . , κk has the following form: compute the
vector x = Np(N−1M)e1 where p(λ) =

∏k
i=1(λ−κi). Note that N−1M is upper Hessenberg.

Thus, only the last k+1 elements of x are nonzero. Applying a transformation that reduces the
nonzero part of x to a multiple of ek+1 to the last k+1 rows and columns of M and N creates
two bulges in the pencil. One bulge appears at the lower left corner of (M, N) carrying the
shifts as eigenvalues. Because of symmetry there is another bulge at the upper right corner,
having −κ?

1, . . . ,−κ?
k as eigenvalues. By alternating elimination of a row or column of the

bulge these bulges are chased towards the center. There the bulges are passed through each
other by a technique similar to palindromic bulge exchange, discussed in Section 3.5.2. Then
the bulges are chased out again and squeezed out at the corners.

An algorithm for the even QR step can be obtained from Algorithm 3.8 upon replacing
line 2 by x = Np(N−1M)e1; replacing ‘A’ by ‘M ’ in lines 10, 21, and 30; replacing ‘A’ by
‘N ’ in lines 7, 18, and 26; and applying all transformations to M and N . If only one half of
M and N are stored, it has the same flop counts as Algorithm 3.8.

Note, that this algorithm is equivalent to the bidirectional QZ algorithm [95] applied to
(FM,FN) with top shifts κ1, . . . , κk and bottom shifts −κ?

1, . . . ,−κ?
k.

The algorithm reduces to the Hamiltonian QR algorithm[17] if N is of the form J =[
0 I
−I 0

]
.

3.4.3 Equivalence of explicit and implicit procedures

In this section we show that the implicit palindromic QR step carries its name rightfully, i.e.,
it effects the same transformation as the explicit palindromic QR step. Here, we define an
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explicit palindromic QR step with shifts (κ1, . . . , κk) applied to A as the result of Algorithm 3.4
using the shifts κ1, κ1, κ2, κ2, . . . , κk, κk, because the anti-Hessenberg form is invariant only
under double steps, i.e.,

A+ = Q?AQ, (3.14)

where the unitary matrix Q stems from the QR decomposition

r(A−?A) = QR, R =@, (3.15)

where r(λ) = p(λ)/rev?p(λ) and p(λ) =
∏k

i=1(λ− κi).
As for the standard eigenvalue problem, an implicit Q theorem will play a prominent role

in the equivalence proof.

Theorem 3.5 (palindromic implicit Q Theorem) Let A ∈ Cn,n. Let Q,V be unitary
matrices such that Q?AQ and V ?AV are both in unreduced anti-Hessenberg-triangular form.
Then, if Qe1 = const · V e1 or Qen = const · V en, there exists a unitary diagonal matrix D
such that V = QD.

Proof: For n ≤ 2 there is nothing to show, so let n ≥ 3. Set n1 = bn−1
2 c and n2 = n − n1.

We will show that the knowledge of the first or the last column of Q fixes every column up
to a constant of norm 1.

We have Q?AQ = H, with H in unreduced anti-Hessenberg-triangular form. Inverting
and (conjugate-) transposing gives

Q−1A−?QH? = H−? =: G =




n2 n1

n1 ¡
n2 0


,

so multiplication by (the conjugate of) Q yields

AQ = QH?H, (3.16)
A−?QH? = QG. (3.17)

Evaluating the last column of (3.17) gives A−?qH?
n = q1g1,n. So, if q1 is given, then this

determines qn up to a multiple of norm one, and vice versa. Hence, at this point q1 and qn

are known. Evaluating the first column of (3.16) yields Aq1 = qH?
n hn,1 + qH?

n−1hn−1,1. Since q1

and qn are known and qn−1 is orthogonal to qn, this fixes qn−1 up to a multiple of norm one.
The remainder follows by induction. Suppose the first k − 1 and the last k columns of Q

are known. The (n + 1− k)th column of (3.17) is

A−?qH?
n+1−k =

k∑

i=1

qigi,n+1−k.

This determines qk up to a multiple of norm one. The kth column of (3.16) is given by

Aqk =
k+1∑

i=1

qH?
n+1−ihn+1−i,k.
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This fixes qn−k up to a multiple of norm one.
If n is odd, then all columns of Q are determined in this manner. If n is even, the column

n
2 is still missing. It cannot be determined by (3.17), as the column n2 of G is full. However,
qn

2
has to span the orthogonal complement of the known (n − 1) columns and is thus fixed

up to a constant of modulus one. ¤
So, as is the case with the reduction to standard Hessenberg form (e.g., [36]), the first column
essentially fixes the whole transformation matrix. But in case of the palindromic eigenvalue
problem this is not enough to prove that the explicit and implicit QR steps yield the same
result, because the first column of Q is manipulated not only in the beginning, but also in
the very end of the implicit QR step. More work is necessary to derive the desired result.

Let Â be the result of one implicit QR step applied to A and denote the accumulated
transformation matrix by V , i.e., Â = V ?AV . Consider the enlarged relation

[
1

V

]? [
0 0
x A

] [
1

V

]
=

[
0 0
x̂ Â

]
(3.18)

where x = A?p(A−?A)e1, x̂ = V ?x.
Analyzing what happens to x during an implicit palindromic QR step, we note that the

first transformation reduces x to a multiple of en. Then it stays untouched until the last
phase of the process when the bulges are squeezed out again. Then the last k + 1 elements
are transformed. Since the eigenvalues of the bulge that was squeezed out at the lower left
corner of A were 1/κ?

1, . . . , 1/κ?
k, and because of the following lemma, x̂ satisfies a relation

similar to x. Indeed,

x̂ = Â?rev?p(Â−?Â)e1. (3.19)

Lemma 3.6 Let A be invertible, k < n
2 , and let x ∈ Cn have the property that xi = 0 for

i = 1, . . . , n− k − 1 and xn−k 6= 0. Then there exists a unique monic polynomial p of degree
exactly k such that x = αA?p(A−?A)e1 for some nonzero scalar α.

Proof: The result follows from an analogous result for the QZ algorithm, see [95, Section 7.1].
¤
Combining (3.18) with (3.19) yields

A?p(A−?A)e1 = x = V −?x̂ = V −?Â?rev?p(Â−?Â)e1 = A?V rev?p(Â−?Â)e1

= A?rev?p(A−?A)V e1

So,
V e1 = (rev?p(A−?A))−1p(A−?A)e1 = r(A−?A)e1.

By (3.15) the first column of the transformation matrix used in the explicit palindromic QR
step also satisfies

Qe1 = const · r(A−?A)e1.

Thus, by the palindromic implicit Q Theorem, V and Q are essentially equal. We have thus
proved the following central result.

Theorem 3.7 Let A ∈ Cn×n be nonsingular and unreduced anti-Hessenberg-triangular. Let
κ1, . . . , κk with k < n

2 be a ?-reciprocal free set of shifts, that are not exact eigenvalues of
(A,A?). Let A+ be the result of an explicit palindromic QR step (3.14), applied to A. Let
Â be the result of the implicit palindromic QR step, Algorithm 3.8, applied to A. Then there
exists a unitary diagonal matrix D such that Â = D?A+D.
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3.5 Reordering palindromic and even Schur forms

Assume that a matrix A has been transformed by some algorithm to block palindromic Schur
form T = Q?AQ, with T in form (2.31). It is assumed that the blocks are small, so the eigen-
values are essentially revealed as λ(A,A?) = Λ1 ∪ . . . ∪ Λk, where Λi := λ(Tk−i+1,i, T

?
i,k−i+1),

see (2.32). Note that Λi = Λ−?
k+1−i, where Λ−? consists of the (conjugated) inverses of the

elements of Λ.
However, often not only eigenvalues, but also the deflating subspace corresponding to a

specific set of eigenvalues is requested. Partition Q = [Q1, Q2, . . . , Qk] compatibly with T . By
Theorem 2.12 the first block columns Q1, . . . , Qj span the deflating subspace corresponding
to the eigenvalues Λ1 ∪ . . . ∪ Λj . If the eigenvalues appearing in these blocks are not the
wanted ones, then the palindromic Schur form has to be reordered.

We assume that Λi either belongs to the requested set of eigenvalues or not, but not
partially. Otherwise these blocks have to be split up. Of course, the relation Λi = Λ−?

k+1−i has
to hold also after reordering. For example, it is not possible to reorder the palindromic Schur
form such that the eigenvalues Λ1 ∪ Λk appear first (for k > 2).

Every order of the eigenvalues allowed by above restrictions can be reached by a sequence of
elementary exchanges of two types: a) center swaps, exchanging Λb k

2
c ↔ Λd k

2
e+1 and b) outside

swaps, exchanging Λi ↔ Λi+1 and consequently also Λk−i+1 ↔ Λk−i where 1 ≤ i ≤ bk2c − 1.
Outside swaps are equivalent to swapping in the generalized Schur form [50, 51, 54]

(
F

[
0 Tk−i,i+1

Tk−i+1,i Tk−i+1,i+1

]
, F

[
0 Ti,k−i+1

Ti+1,k−i Ti+1,k−i+1

]?)
,

where F denotes the flip matrix. It is not discussed in detail here. Center swaps are explained
next.

3.5.1 Palindromic eigenvalue swapping

Given a 3× 3 block antitriangular matrix

A =




n1 n2 n1

n1 A13

n2 A22 A23

n1 A31 A32 A33


, (3.20)

where n2 may be zero, we want to find a unitary matrix Q such that

Ã = Q?AQ =




n1 n2 n1

n1 Ã13

n2 Ã22 Ã23

n1 Ã31 Ã32 Ã33


 (3.21)

is still block antitriangular and λ(Ã31, Ã
?
13) = λ(A13, A

?
31) and λ(Ã22, Ã

?
22) = λ(A22, A

?
22).

For the moment, we allow nonunitary transformations. Note that, if Y, Z? ∈ Cn1×n2

satisfy

A31Y + Z?A22 = −A32, (3.22)
A?

13Y + Z?A?
22 = −A?

23, (3.23)
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and X ∈ Cn1×n1 solves

A31X + X?A13 = −(A33 + A32Z + Z?A23 + Z?A22Z), (3.24)

then the following ?-congruence transformation does the job:



X? Z? I
Y ? I
I







A13

A22 A23

A31 A32 A33







X Y I
Z I
I


 =




A31

A22

A13


 .

Note that for the case of n2 = 0, Y, Z are void and (3.24) reduces to A31X + X?A13 = −A33.
The system (3.22), (3.23) is a generalized Sylvester equation and thus has a unique solution

if and only if λ(A31, A
?
13) ∩ λ(A22, A

?
22) = ∅, see [85] or [95, Theorem 6.6.8]. The solvability

condition for (3.24) is provided by the following lemma.

Lemma 3.8 Let B, C ∈ Ck×k. Then the matrix equation

BX + X?C = D (3.25)

has a unique solution X for every right hand side D if and only if the following condition 1)
and one of the conditions 2a), 2b) hold.

1) the pencil (B, C?) is regular, and
2a) if ? = T , λ(B, CT )\{1} is T-reciprocal free and if 1 is an eigenvalue, it is of algebraic

multiplicity 1, or
2b) if ? = H, λ(B,CH) is H-reciprocal free.

Proof: The case ? = T is proved in [19].
For the case ? = H note that the operator S : (Re(X), Im(X)) 7→ (Re(BX+XHC), Im(BX+

XHC)) is linear and thus is injective if and only if its surjective.
We consider the following cases:
Case 1: Assume that (B,CH) is regular and its spectrum is H-reciprocally free. Then

λ(B,CH) ∩ λ(C,BH) = ∅ and the generalized Sylvester equation

BX + Y C = D, CHX + Y BH = DH

has a unique solution (X, Y ). By symmetry, (Y H , XH) is also a solution, so X = Y H . Thus,
X is a solution of (3.25).

Case 2: Assume there is a nonzero vector x and λ on the unit circle such that Bx = λCHx,
i.e., (B, CH) is singular or has an eigenvalue on the unit circle. Then X1 :=

√
−λxxHC 6= 0

gives S(Re(X1), Im(X1))=0.
Case 3: Analogously, if λ and 1/λ̄ are distinct eigenvalues with corresponding eigenvectors

x and y, then choosing X2 = xyHC − yxHBH 6= 0 results in S(Re(X2), Im(X2)) = 0. ¤

Once the matrices X, Y, Z are computed, a unitary matrix Q achieving the requested
transformation (3.21) can be obtained from a QR factorization




X Y I
Z I
I


 = Q




R11 R12 R13

R22 R23

R33


 . (3.26)
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Note that Rii, i = 1, 2, 3 is nonsingular, since the left hand matrix is. Thus

Ã = Q?AQ = R−?




A31

A22

A13


R−1 =




R−?
11 A31R

−1
33

R−?
22 A22R

−1
22 Ã23

R−?
33 A13R

−1
11 Ã32 Ã33


 ,

has the desired property.
The material of this subsection is summarized in the following algorithm.

Algorithm 3.9 Palindromic eigenvalue swap
Input: A in form (3.20) with λ(A13, A

?
31) ?-reciprocal free, (in the T-case except possibly for

an eigenvalue 1 of algebraic multiplicity 1) and λ(A22, A
?
22) ∩ λ(A13, A

?
31) = ∅.

Output: Ã, Q satisfying (3.21) with λ(Ã31, Ã
?
13) = λ(A13, A

?
31)

1: solve (3.22),(3.23) for Y,Z
2: solve (3.24) for X
3: compute QR factorization (3.26)
4: compute Ã = Q?AQ

These linear matrix equations amount to small linear systems of order 2n1n2 and n2
1, respec-

tively, and can be solved routinely.
Note that numerical problems can be expected if the solvability conditions are nearly

violated. Thus, the elements in Ã that are above the block antidiagonal should be checked,
before they are set to zero. If necessary, the swap has to be rejected. In this case it depends
on the application how to react. If the swap is performed in order to compute the deflating
subspace corresponding to a specific set of eigenvalues then the failure indicates that the two
blocks that were to be swapped should not be separated. If, on the other hand, the swap is
part of the implicit palindromic QR step, Algorithm 3.8, then the whole transformation to
be rewinded and a fresh attempt has to be started with different shifts.

3.5.2 Even eigenvalue swapping

The reordering of an block even Schur form (2.40) works analogously as in the palindromic
case: Every allowed order can be reached by swaps either outside or at the center of the
pencil. Outside swaps can be achieved by reordering a generalized Schur form. Center swaps
are discussed in the following.

A 3-by-3 block antitriangular even pencil

(M, N) =







n1 n2 n1

n1 M?
31

n2 M22 M?
32

n1 M31 M32 M33


,




n1 n2 n1

n1 −N?
31

n2 M22 −N?
32

n1 N31 N32 N33







(3.27)

is block antidiagonalized by a ?-congruence transformation (M̂, N̂) = W ?(M,N)W with

W =




X Y I
Z I
I



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if and only if Y, Z? ∈ Cn1×n2 satisfy

M31Y + Z?M22 = −M32, (3.28)
N31Y + Z?N22 = −N32, (3.29)

and X ∈ Cn1×n1 is a solution of

M31X + X?M?
31 = −(M33 + M32Z + Z?M?

32 + Z?M22Z
?) (3.30)

N31X −X?N?
31 = −(N33 + N32Z − Z?N?

32 + Z?N22Z
?). (3.31)

The system (3.28), (3.29) is a generalized Sylvester equation and thus has a unique solution if
and only if λ(M31, N31)∩ λ(M22, N22) = ∅. In order to assess the solvability of (3.30), (3.31),
we note that their sum

(M31 + N31)X + X?(M31 −N31)? = rhs (3.32)

(with rhs the sum of the right hand sides of (3.30), (3.31)) is of the form (3.24) and that (3.30)
and (3.31) can be recovered as the symmetric and skew symmetric parts of (3.32), respectively.
Thus, by applying Lemma 3.8 to (3.32), the system of matrix equations (3.30), (3.31) has a
unique solution, if and only if λ(M31+N31,M31−N31) is ?-reciprocal free (in the T-case except
possible for an eigenvalue 1 of algebraic multiplicity 1). Because (M31 + N31, M31 − N31) is
the Cayley transform of (M31, N31), this is the case if and only if λ(M31, N31) contains no
pairs of the form (λ,−λ?) (in the T-case except possible for an eigenvalue ∞ of algebraic
multiplicity 1).

The actual solution of (3.28), (3.29), and (3.30), (3.31) amounts to small linear systems,
which can be solved routinely. A unitary matrix Q such that (M̃, Ñ) := Q?(M, N)Q has the
same form as (M, N) and λ(M̃(31, Ñ31) = −λ(M(31, N31) can be obtained as the unitary QR
factor of W , as in the palindromic case.

The material of this subsection is summarized in the following algorithm.

Algorithm 3.10 Even bulge exchange
Input: even 3-by-3 block antitriangular pencil (M, N) such that λ(M31, N31) contains no

pairs of the form (λ,−λ?) (in the T-case except possibly for an eigenvalue∞ of algebraic
multiplicity 1) and λ(M31, N31) ∩ λ(M22, N22) = ∅.

Output: Ã, Q satisfying (3.21) with λ(Ã31, Ã
?
13) = λ(A13, A

?
31)

1: solve (3.28),(3.28) for Y,Z via Kronecker product formulation
2: solve (3.30),(3.31) for X via Kronecker product formulation
3: compute QR factorization (3.26)
4: compute (M̃, Ñ) = Q?(M, N)Q

3.6 (No) anti-Hessenberg reduction

In order for the implicit palindromic (even) QR algorithms to be generically applicable, a
method is needed to reduce a general square matrix A (general even pencil (M, N)) to
anti-Hessenberg form. This method should be of cubic complexity and only use unitary
?-congruence transformations.

Unfortunately, this task is related to an unsolved analogous problem for Hamiltonian
matrices. A structure preserving implicit QR algorithm has been developed in [17], but
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the reduction to a Hessenberg-like form is missing [2, 75]. It is not surprising that the
palindromic eigenvalue problem inherits some of the complications arising in the Hamiltonian
case considering the strong relation between these problem classes.

Therefore, we restrict our attention to another condensed form that under certain condi-
tions reduces to anti-Hessenberg form.

3.6.1 The even PVL form

In this section we only consider the T-even case, because the methods require the diagonal of
N to be zero, which is not guaranteed for ? = H. Also, we restrict n to be even. Comments
on the case when n is odd are made at the end of this section.

Relaxing the requirements of the even anti-Hessenberg-triangular form by admitting nonzero
diagonal entries in M leads to the following definition.

Definition 3.3 An even pencil (M, N) ∈ Cn,n ×Cn,n with n even is said to be in even PVL
form if M can be written as the sum of a diagonal and an anti-Hessenberg matrix, and if N
is antitriangular, i.e., if

M =@+¡¡ and N =¡. (3.33)

The name ’PVL form’ stems from an analogous condensed form for Hamiltonian matrices
that was introduced by Paige and van Loan [75].

Every even pencil of even dimension can be transformed into even PVL form. The reduc-
tion process is demonstrated for n = 6. For simplicity, N is assumed to be antitriangular,
otherwise this form can be obtained by a skew QRQT factorization, see Appendix B.2. So,
M and N are of the form




x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x




,




x
x x

x x x
x 0 x x

x x x 0 x
x x x x x 0




(3.34)

M is transformed to ’anti-Hessenberg plus diagonal’ form while N is kept antitriangular. First
annihilate the (2, 1) element of M by a rotation in the (2, 3) plane applied as congruence.
This also zeros out m12 and introduces fill in in N at position (2, n− 2) and (n− 2, 2).




x 0 x x x x
0 x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x




,




x
+ x x
x x x

+ x 0 x x
x x x 0 x

x x x x x 0




(3.35)

These new elements are being zeroed again by a congruence rotation in the (n − 2, n − 1)
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plane which restores the antitriangular form of N , but leaves invariant the zero pattern of M .



x 0 x x x x
0 x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x




,




x
0 x x
x x x

0 x 0 x x
x x x 0 x

x x x x x 0




(3.36)

For general dimension n, this can be repeated for the entries (3, 1), (4, 1), . . . , (n/2− 1, 1).
We next zero out element (3, 1) of M . This is done with a congruence rotation in the

(3, 4) plane. This rotation also zeroes out the element (1, 3) of M , but leaves N antitriangular,
because of skew symmetry.




x 0 0 x x x
0 x x x x x
0 x x x x x
x x x x x x
x x x x x x
x x x x x x




,




x
x x

0 x x x
x 0 x x

x x x 0 x
x x x x x 0




(3.37)

We continue by eliminating the element (4, 1) of M by a congruence rotation in the (4, 5)
plane. This congruence rotation also eleminates m1,4, but introduces nonzero entries in N at
positions (4, 2) and (2, 4).




x 0 0 0 x x
0 x x x x x
0 x x x x x
0 x x x x x
x x x x x x
x x x x x x




,




x
+ x x
x x x

+ x 0 x x
x x x 0 x

x x x x x 0




(3.38)

These can be zeroed out again by a further congruence rotation in the (2, 3) plane leaving
invariant the zero pattern of M .




x 0 0 0 x x
0 x x x x x
0 x x x x x
0 x x x x x
x x x x x x
x x x x x x




,




x
0 x x
x x x

0 x 0 x x
x x x 0 x

x x x x x 0




(3.39)

Again, for general n, this can be repeated for the entries (n/2+2, 1), (n/2+3, 1), . . . , (n−2, 1).
At this point, all necessary zeros in the first row and column of M have been generated.

Note, that the last row and column of M and N were not altered during the reduction of the
first column of M . Thus, the zeros in the first row and column of M are preserved when the
procedure is applied recursively to the submatrices that arise from M and N by deleting the
first and last rows and columns. This yields a palindromic PVL form for (M, N).

Note that none of the transformations changes the first element. So, Q has the form
1⊕ Q̃. This implies that an even PVL form with given first column q1 of Q can be obtained
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by preceeding above reduction by a congruence transformation with any unitary matrix Q0

such that Q0e1 = q1. The process is distilled in the following algorithm.

Algorithm 3.11 even PVL reduction
Input: M = MT , N = −NT ∈ Cn,n, with n even, q1 ∈ Cn

Output: unitary Q with Qe1 = q1; (M, N) is overwritten by (M̃, Ñ) = QT (M, N)Q with M̃
is the sum of an anti-Hessenberg and a diagonal matrix and Ñ is anti-Hessenberg

1: define unitary Q with Qe1 = q1

2: M ← QT MQ, N ← QT NQ
3: N → Q̃RQ̃T % QRQT decomposition of N , Algorithm B.3
4: N ← R, M ← Q̃HM ¯̃Q, Q← Q ¯̃Q
5: for j = 1 : n/2− 1 do % eleminate in j-th row/column of M
6: for i = j + 1 : n/2− 1 do % eleminate M(i, j) with i < n/2
7: define unitary G with GT M(i : i + 1, j) = [ 0∗ ]
8: Q̃ = Ii−1 ⊕G⊕ In−i−1, M ← Q̃T MQ̃, N ← Q̃T NQ̃, Q← QQ̃
9: define unitary G with N(i, n− i : n− i + 1)G = [ 0 ∗ ]

10: Q̃ = In−i−1 ⊕G⊕ Ii−1, M ← Q̃T MQ̃, N ← Q̃T NQ̃, Q← QQ̃
11: end for
12: define unitary G with GT M(n/2 : n/2 + 1, j) = [ 0∗ ] % eleminate M(i, j) with i = n/2
13: Q̃ = In/2−1 ⊕G⊕ In/2−1, M ← Q̃T MQ̃, N ← Q̃T NQ̃, Q← QQ̃
14: for i = n/2 + 1 : n− j − 1 do % eleminate M(i, j) with i > n/2
15: define unitary G with GT M(i : i + 1, j) = [ 0∗ ]
16: Q̃ = Ii−1 ⊕G⊕ In−i−1, M ← Q̃T MQ̃, N ← Q̃T NQ̃, Q← QQ̃
17: define unitary G with N(i, n− i : n− i + 1)G = [ 0 ∗ ]
18: Q̃ = In−i−1 ⊕G⊕ Ii−1, M ← Q̃T MQ̃, N ← Q̃T NQ̃, Q← QQ̃
19: end for
20: end for

If only one half of M , N are stored and updated this algorithm needs 6n3 + O(n2) flops to
reduce (M,N). It takes additional 32

3n3 flops to accumulate Q.
Compared to the even anti-Hessenberg-triangular form, the even PVL form admits only

n
2 − 1 nonzeros more. Unfortunately, it is in general not invariant under even QR steps. The
even PVL form is invariant only if the diagonal elements m11,m22, . . . , mn

2
−1, n

2
−1 are zero,

i.e., if the palindromic PVL form reduces to anti-Hessenberg form.
Thus, the reduction to even PVL form is not suited as a preliminary step for the even QR

algorithm, unless it yields an anti-Hessenberg-triangular pencil. The remainder of this section
analyses when an even PVL form actually is anti-Hessenberg-triangular. We start with the
following uniqueness result which is similar to the implicit Q theorem and states that an even
PVL form is fixed, once the first or last column of Q is known.

Theorem 3.9 Let M = MT , N = −nT ∈ Cn,n with n even and N nonsingular. Let Q1, Q2 ∈
Cn,n be two unitary matrices such that QT

i (M, N)Qi are in even PVL form normalized such
that the antidiagonal entries of QT

i NQi and the super antidiagonal entries of QT
i MQi are

real, positive, and nonzero for i = 1, 2.
Then Q1e1 = Q2e1 or Q1en = Q2en implies Q1 = Q2.

Proof: Let K := QT
1 MQ1, L := (QT

1 NQ1)−1. Further, let Q1 =: [q1, q2, . . . , qn]. We will
prove that given q1 or qn then K, L and the remaining columns of Q are fixed.
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Consider the relation x = αy for a given nonzero vector x, an unknown normalized vector
y and a unknown scalar α. It follows that |α| = ‖αy‖ = ‖x‖ and y = 1

αx. So, α can be
freely chosen on the circle of radius ‖x‖. But if α is restricted to be real and positive, then
the solution is unique. Similar relations will arise involving the antidiagonal entries of L and
the super antidiagonal entries of K. Thus, they must be restricted to be real, positive, and
nonzero in order to have uniqueness.

From the definition of K and L it follows that

MQ1 = Q̄1K, (3.40)
N−1Q̄1 = Q1L. (3.41)

Multiplying (3.41) from the right by en gives (note, that L is upper antitriangular)

N−1q̄n = q1l1,n

If qn is given then this relation yields l1,n = ‖N−1q̄n‖ and q1 = 1
l1,n

N−1q̄n. If, on the other

hand, q1 is given, the relation yields l−1
1,n = ‖Nq1‖ and qn = l1,nNq1. In both cases, at this

point q1, qn, l1,n, and ln,1 = −l1,n are known.
Multiplying (3.40) from the right by e1 yields (as K is “anti-Hessenberg plus diagonal”)

Mq1 = q̄1k1,1 + q̄n−1kn−1,1 + q̄nkn,1.

From this relation we can read off the following elements:

k1,1 = qT
1 Mq1,

kn,1 = qT
n Mq1,

kn−1,1 = ‖Mq1 − q̄1k1,1 − q̄nkn,1‖,
and

qn−1 =
1

kn−1,1
(Mq1 − q̄1k1,1 − q̄nkn,1).

Thus, at this point we know q1, qn−1, qn as well as the first row and column of K and the last
row and column of L.

The remainder follows by induction. Assume that the first i− 1 and the last i columns of
Q1 as well as the first i− 1 rows and columns of K and the last i− 1 rows and columns of L
are known. Multiplying (3.41) from the right by en+1−i gives

N−1q̄n+1−i =
i∑

j=1

qjlj,n+1−i. (3.42)

The vector qi is the only unknown vector in this relation. We get

lj,n+1−i = qH
j N−1q̄n+1−i, j = 1, ..., i− 1,

li,n+1−i = ‖N−1q̄n+1−i −
i−1∑

j=1

qjlj,n+1−i‖,

qi =
1

li,n+1−i


N−1q̄n+1−i −

i−1∑

j=1

qjlj,n+1−i


 .
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At this point, also qi and the (n + 1− i)st row and column of L are known.
Next, we multiply (3.40) from the right by ei, yielding

Mqi = q̄iki,i +
n∑

j=n−i

q̄jkj,i. (3.43)

From this equation we get for qn−i and the ith column of K

kj,i = qT
j Mqi, j = i and j = n− i + 1, n− i + 2, . . . , n,

kn−i,i = ‖Mqi − q̄iki,i −
n∑

j=n+1−i

q̄jkj,i‖,

qn−i =
1

kn−i,i


Mqi − q̄iki,i −

n∑

j=n+1−i

q̄jkj,i


.

Carrying out this procedure for i = 2, ..., n
2 fixes Q1. ¤

So, an even PVL form is determined by the first (or the last) column of Q. This changes
the question “when is an even pencil in even PVL form in even anti-Hessenberg-triangular
form?” to “what conditions should q1 fulfill so that the resulting even PVL form is in even
anti-Hessenberg-triangular form?’. For example, in order for (QT MQ)1,1 to be zero, q1 has
to satisfy (QT MQ)1,1 = qT

1 Mq1 = 0. The answer is given by the following theorem that
generalizes an analogous result for Hamiltonian matrices in [2].

Theorem 3.10 Let M = MT , N = −NT ∈ Cn,n with n even and N nonsingular. Let
Q ∈ Cn,n be a unitary matrix such that (K, L) := QT (M, N)Q is in even PVL form with
unreduced super antidiagonal, i.e., ki,n−i 6= 0, i = 1, . . . , n − 1. Let q1 = Qe1 be the first
column of Q.

Then (K,L) is in even anti-Hessenberg-triangular form if and only if q1 satisfies the
following conditions:

qT
1 M(N−1M)2iq1 = 0, i = 0, . . . ,

n

2
− 2. (3.44)

Proof: Note that (K,L) is in even anti-Hessenberg-triangular form if and only if ki,i = 0 for
i = 1, . . . , n

2 − 1. We will prove the following: if for some r ∈ {0, . . . , n
2 − 2} we have that

k1,1 = k2,2 = . . . = kr,r = 0, then for all s = 0, . . . , r:

kr+1,r+1 = 0 ⇐⇒ qT
r+1−s((N

−1M)s)T M(N−1M)sqr+1−s = 0. (3.45)

The assertion (3.44) follows from (3.45) by induction over r, in each step setting s = r.
So, assume r ∈ {0, . . . , n

2 − 2} and k1,1 = k2,2 = . . . = kr,r = 0. We will need the following
product, Ks := ((L−1K)s)T K(L−1K)s. Note that, because of the structure of L and K, the
matrix Ks has the pattern

Ks =




r − s

r − s + 1 0

, (3.46)
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i.e., the matrix Ks consists of a zero block in the top left corner of size (r−s+1)×(r−s). This
can be seen by considering the action of the matrix L−1K on the unit vectors ei and noting
that Ksei = ±K(L−1K)2sei, where the sign depends on s. This also shows that, actually,
Ks consists of many more zeros, but we will only use those claimed in (3.46). Multiplication
with an upper antitriangular matrix will not destroy the zero entries, but only move them to
the bottom/right. Thus,

L−T Ks =




r − s

r − s + 1 0


, L−T KsL

−1 =




r − s

r − s + 1 0


. (3.47)

Moreover, multiplication with K just slightly reduces the zero block:

L−T KsL
−1K =




r − s

r − s 0


. (3.48)

The statement (3.45) is proved by induction over s. Clearly, it holds for s = 0, as
kr+1,r+1 = qT

r+1Mqr+1.
Now, we prove the step ”s⇒ s + 1”, i.e.,

qT
r+1−sMsqr+1−s = 0 ⇐⇒ qT

r−sMs+1qr−s = 0, for s = 0, . . . , r − 1, (3.49)

where Ms := ((N−1M)s)T M(N−1M)s. By equation (3.42) with i = r + 1 − s, the vector
qr+1−s can be written as

qr+1−s =
1

lr+1−s,n−r+s
(N−1q̄n−r+s −

r−s∑

j=1

lj,n−r+sqj).

Here, lr+1−s,n−r+s 6= 0, since it is on the antidiagonal of L.
Inserting this into the term qT

r+1−sMsqr+1−s yields

qT
r+1−sMsqr+1−s =

1
l2r+1−s,n−r+s

(
qH
n−r+sN

−T MsN
−1q̄n−r+s

−2
r−s∑

j=1

lj,n−r+s(qH
n−r+sN

−T Msqj) (3.50)

+
r−s∑

i,j=1

li,n−r+slj,n−r+s(qT
i Msqj)

)
.

In this sum only the first term is nonzero, because for j = 1, ..., r − s we have

qH
n−r+sN

−T Msqj = eT
n−r+sQ

HN−T MsQej = eT
n−r+sL

−T Ksej
(3.47)
= 0,

and for i, j = 1, . . . , r − s

qT
i Msqj = eT

i QT MsQej = eT
i Ksej

(3.46)
= 0.
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Thus, equation (3.50) reduces to

qT
r+1−sMsqr+1−s =

1
l2r+1−s,n−r+s

qH
n−r+sN

−T MsN
−1q̄n−r+s. (3.51)

The vector q̄n−r+s can, by equation (3.43) with i = r−s, be written as (note, that kr−s,r−s = 0)

q̄n−r+s =
1

kn−r+s,r−s
(Mqr−s −

n∑

j=n−r+1+s

kj,r−sq̄j).

Here, kn−r+s,r−s 6= 0, as it is on the super antidiagonal of K.
Inserting this into the term qH

n−r+sN
−T MsN

−1q̄n−r+s gives

qH
n−r+sN

−T MsN
−1q̄n−r+s =

1
k2

n−r+s,r−s

(
qT
r−sMN−T MsN

−1Mqr−s

−2
n∑

j=n+1−r+s

kj,r−s(qH
j N−T MsN

−1Mqr−s) (3.52)

+
n∑

i,j=n+1−r+s

ki,r−skj,r−s(qH
i N−T MsN

−1q̄j)


 .

Also here, only the first summand is nonzero. Indeed, for j = n + 1− r + s, . . . , n

qH
j N−T MsN

−1Mqr−s = eT
j QHN−T MsN

−1MQer−s = eT
j L−T KsL

−1Ker−s
(3.48)
= 0,

and for i, j = n + 1− r + s, ..., n

qH
i N−T MsN

−1q̄j = eT
i QHN−T MsN

−1Q̄ej = eT
i L−T KsL

−1ej
(3.47)
= 0.

Hence, equation (3.52) reduces to

qH
n−r+sN

−T MsN
−1q̄n−r+s =

1
k2

r−s,n−r+s

qT
r−sMN−T MsN

−1Mqr−s. (3.53)

Equations (3.51) and (3.53) together yield

qT
r+1−sMsqr+1−s = c · qT

r−sMN−T MsN
−1Mqr−s = c · qT

r−sMs+1qr−s,

where c = 1
k2

r−s,n−r+sl2r+1−s,n−r+s
6= 0 which is equivalent to (3.49). Thus (3.45) follows and the

proof is complete. ¤

We have proved that in order for QT (M, N)Q to be in even anti-Hessenberg-triangular
form, the first column of Q has to fulfill the n

2 − 1 conditions (3.44). This is in sharp contrast
to the QZ algorithm. There, a unitary matrix Q with arbitrary first column can be found such
that there exists a unitary matrix Z with QH(M,N)Z in Hessenberg-triangular form. This
suggests, that the even anti-Hessenberg-triangular reduction is not possible without solving
the (nonlinear) constraints (3.44). For the Hamiltonian eigenvalue problem this is known as
”Van Loan’s curse”, see [8, 75].
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Remark 3.3 In the case of odd dimension n, N is singular, as every skew symmetric matrix
of odd dimension is singular. Assuming that N is of rank n − 1, one can find a unitary
Q such that QT MQ can be written as sum of an antitriangular and a diagonal matrix,

QT MQ =¡+@, and QT NQ is of the form 0⊕¡. Here, the first column of Q is fixed as
a vector that forms a basis of the nullspace of N . As before, the remaining columns follow
from the first one. Thus the whole matrix Q is fixed. ¤

Summarizing, the chances to find a matrix Q that transforms an even pencil (M, N)
to even anti-Hessenberg-triangular form or a matrix A to anti-Hessenberg form are limited.
However, there are situations of practical interest, in which this transformation is possible.
These are presented next.

3.6.2 Anti-Hessenberg reduction for special cases

In the following section we discuss how to reduce specially structured matrices to anti-
Hessenberg form. Note, that we discuss palindromic problems again and no longer restrict to
the T–case, but allow H-palindromic pencils again.

Anti-Hessenberg reduction for single-input systems

We consider the palindromic pencil (1.5) arising in the discrete time optimal control problem
for the case m = n and p = 1 as they arise for single-input systems [17, 72]. After a
permutation the matrix is of the form

A =




m 1 m

m 0 b A
1 0 r s?

m E? s Q


.

We will describe how to transform A to anti-Hessenberg form by a unitary congruence
transformation. Let Q, Z ∈ Cm×m be unitary matrices such that QH

1 (A,E)Z = (H,R) is in
Hessenberg-triangular form [36]. These Q1, Z can be chosen such that additionally QH

1 b = αe1

holds where α is a constant.
Then with U := diag(QH?

1 F, 1, Z) we have

Ã := U?AU =




m 1 m

m 0 b̃ Ã
1 0 r s̃?

m Ẽ? s̃ Q̃


, with





Ã = FQH
1 AZ = FH =¡¡ ,

Ẽ? = Z?E?QH?
1 F = R?F =¡,

b̃ = FQH
1 b = αFe1 = αem,

Q̃ = Z?QZ,

s̃ = Z?s.

Hence, Ã is in anti-Hessenberg form, more precisely in transposed anti-Hessenberg-triangular
form.
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Anti-Hessenberg reduction after symmetric rank–one updates

Assume, that A ∈ Cn,n is a symmetric rank one perturbation of an antitriangular matrix, i.e.,

there are an antitriangular matrix B = ¡ and a vector b ∈ Cn such that A = B + bb?. We
will show how to transform A to anti-Hessenberg form.

Set k = bn2 c − 1 and let U = U1,2U2,3 · · ·Uk,k+1 be a product of Givens rotations, where
Ui,i+1 is a Givens rotation in the (i, i+1) plane, such that U?b vanishes in the first k positions.

If n is even, then k = n
2 − 1 and

U?AU = U?BU + U?b(U?b)?

=




n
2

n
2

n
2 0 ¡¡
n
2 ¡¡


 +

[
n
2 − 1 n

2 + 1
n
2 − 1 0 0
n
2 + 1 0

]
=¡¡

is in anti-Hessenberg form.
Similarly, if n is odd, then k = n−3

2 and

U?AU = U?BU + U?b(U?b)?

=




n−1
2 1 n−1

2

n−1
2 0 0 ¡¡

1 0 x x · · ·x
n−1

2 ¡¡
x
...
x


 +

[
n−3

2
n+3

2
n−3

2 0 0
n+3

2 0

]
=




x x

. ..
...

x x x
x x x

. .. . . .
...

x x
x · · · x x · · · x x




.

Finally, solving the 2× 2 problem in the (n−1
2 , n+1

2 ) plane (for ? = H we have to assume that
a solution exists) results in anti-Hessenberg form.

Anti-Hessenberg reduction for projection methods

Here we treat the palindromic eigenvalue problem for the pencil (A,A?), where A is a large and
sparse matrix. In this situation one is usually interested in a few eigenvalues and eigenvectors
only. The methods of choice for this problem are projection methods [4]. These methods
choose a so-called search space and a test space and solve the projected problem WHAV x̃ =
λ̃WHA?V x̃ where V, W ∈ Cn,m,m ¿ n, V HV = Im = WHW are orthonormal bases of the
search and test spaces, respectively. Note that choosing W = V H? implies that the projected
pencil WH(A,A?)V = V ?(A,A?)V =: (M,M?) is palindromic as well.

Projection methods proceed by reducing M to palindromic Schur form by some algorithm,

i.e., Q?MQ = T = ¡. An eigenpair approximation (λ̃, x) is now given by ( rn1
r?
1n

, V Qe1). If
this approximation is not good enough (for example, if the residual r = Ax − µA?x is too
large in norm), then the search space is enlarged in the direction of another basis vector v+.
This vector can be selected, e.g., by the Jacobi-Davidson method [31, 84]. The new search
space is given by V+ = [V v+]. The new projected system matrix is

M+ = V ?
+AV+ =

[
V ?AV V ?Av+

v?
+AV v?

+Av+

]
=

[
M b
c? d

]
.
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The next step is to transform M+ to palindromic Schur form, again. This can be accelerated
by first transform M+ to anti-Hessenberg form. This transformation is achieved by, e.g.,
Q+ = Q⊕ 1, as

Q?
+M+Q+ =

[
Q?MQ Q?b

c?Q d

]
=


¡

x
...
x

x···x x


 =¡¡

is in anti-Hessenberg form. Thus, a full matrix only has to be dealt with in the first step,
when the dimension is usually very small, often even 1. In all the following steps, the matrices
can be transformed to anti-Hessenberg form.

3.7 Conclusion

The implicit QR algorithm can be adapted to preserve the structure of palindromic and even
pencils. Although the implicit palindromic QR algorithm solves a generalized eigenvalue
problem, it has some of the features of the standard QR algorithm: it operates on just one
n-by-n matrix, and one step costs (8k + 6)n2 flops, the same as one step of the bidirectional
QR algorithm. The flop count and memory requirement of the even QR iteration is the same.
Both are strongly backwards stable. Moreover, modern techniques, such as multiple bulge
chases and aggressive early deflation [11] can be adapted to these variants in a straightforward
way [55]. Thus, these are the methods of choice if the problem is given in anti-Hessenberg
form. Unfortunately, the reduction of a general palindromic or even pencil to anti-Hessenberg
form is elusive. But filling this gap is necessary for the palindromic/even QR algorithms to
be generally applicable. For this reason methods have been developed that do not solve the
palindromic/even problem directly, but a related problem.
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Chapter 4

Methods for skew symmetric
pencils

The palindromic QR algorithm discussed in Chapter 3 uses a direct approach to palindromic
and even eigenvalue problems and — without a reduction to anti-Hessenberg form — is not
satisfactory. The methods presented in this and the following chapter circumvent the problem
by not treating the original eigenvalue problem, but a related one. These related problems
are generalized skew symmetric eigenvalue problems,

Sx = λNx, with S = −ST , N = −NT . (4.1)

Note that the coverage of skew symmetric pencils can be restricted to the case ? = T ,
because a generalized skew Hermitian problem Sx = λNx, with S = −SH , N = −NH , can
be transformed into an H-even problem by mere multiplication with i, (iS)x = (iλ)Nx, and
thus, the one is not harder or easier to solve than the other.

This chapter is structured as follows: Section 4.1 presents a strongly backward stable
numerical method to compute all eigenvalues of a real or complex skew symmetric pencil. The
subsequent Section 4.2 discusses how an H-even pencil is transformed into a skew symmetric
one, and how their eigenvalues are related, resulting in a numerical method to compute the
spectrum of an H-even eigenvalue problem. T-even problems are not considered here, but in
the next chapter.

In the whole chapter all pencils are assumed to be regular.

4.1 Skew symmetric pencils

In this section an algorithm is given for the skew symmetric eigenvalue problem (4.1). We
assume that the pencil is of even size n, as only this case is used later on, see also Remark 4.1.
We consider the complex problem with S, N ∈ Cn,n and dwell on what changes in the real
case in Section 4.1.1.

A generalized skew symmetric eigenvalue problem of the form (4.1) is a structured eigen-
value problem. Thus, it does not surprise that its spectrum is structured. Indeed, it follows
from structure preserving canonical forms in [89] that every eigenvalue of (4.1) is of even
(geometric and algebraic) multiplicity.

Our aim is to construct a unitary matrix Q such that both, T := QT SQ, and Z := QT NQ
are antitriangular. The pencil (T,Z) is called a generalized skew symmetric Schur form of

81
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(S, N). The eigenvalues can then be read off from the antidiagonals of Z and T as λi =
ti,n+1−i/zi,n+1−i for i = 1, . . . , n. These eigenvalues are double, i.e., they fullfill the skew
symmetric spectral symmetry, because

λi = ti,n+1−i/zi,n+1−i = (−tn+1−i,i)/(−zn+1−i,i) = λn+1−i for i = 1, . . . , n.

An algorithm to compute the generalized skew symmetric Schur form is given in [76].
Actually, there the generalized skew Hamiltonian problem is treated, which becomes skew
symmetric upon premultiplication by J =

[
0 I
−I 0

]
. The algorithm relies on two key obser-

vations. First, the reduction to even PVL form, Algorithm 3.11, can be applied to skew
symmetric pencils. Using congruence transformations only, this process preserves skew sym-
metry. The result is a skew symmetric pencil in even PVL form (3.33), but since skew
symmetric matrices have vanishing diagonal elements, the PVL form in fact reduces to anti-
Hessenberg-antitriangular form.

QT
1 (S, N)Q1 = (S̃, Ñ) =

(
¡¡ ,¡

)
.

The second key observation, that also follows from a vanishing diagonal element, is that the
anti-Hessenberg-antitriangular form is also in block antitriangular form. Indeed, as s̃n/2,n/2 =
0 the pencil (S̃, Ñ) can be partitioned as

S̃ =
[

0 S12

−ST
12 S22

]
, Ñ =

[
0 N12

−NT
12 N22

]
, with S12 =¡¡ , N12 =¡.

Here, all blocks are of the same size n/2× n/2.
Thus, the skew symmetric eigenvalue problem decouples into two unstructured eigenvalue

problems of half the size. Since these two problems for (S12, N12) and (−ST
12,−NT

12) are
transposes of each other, only one of them needs to be solved. Let F be the flip matrix and
let U and V be unitary matrices that transform the Hessenberg-triangular pencil (FS12, FN12)
to generalized Schur form, i.e.,

U(FS12)V = T̃ =@, U(FN12)V = Z̃ =@. (4.2)

Setting Q2 = FUT F ⊕ V results in generalized skew symmetric Schur form:

T = QT
2 S̃Q2 =

[
0 FUFS12V

−V T ST
12FUT F V T S22V

]
=

[
FT̃

−(FT̃ )T V T S22V

]
=


 0 ¡
¡


 ,

Z = QT
2 ÑQ2 =

[
0 FUFN12V

−V T NT
12FUT F V T N22V

]
=

[
FZ̃

−(FZ̃)T V T N22V

]
=


 0 ¡
¡


 .

Summarising, we have the following algorithm.

Algorithm 4.1 Generalized skew symmetric Schur form
Input: S = −ST , N = −NT ∈ Cn,n with n even
Output: unitary Q, antitriangular T, Z ∈ Cn,n such that T = QT SQ, Z = QT NQ
1: [Q1, S̃, Ñ ]← Algorithm 3.11 applied to (S, N) % PVL form
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2: [T̃ , Z̃, U, V ]← QZ algorithm applied to (FS̃(1 : n/2, n/2+1 : n), F Ñ(1 : n/2, n/2+1 : n))
3: Q← Q1(FUT F ⊕ V )

4: T ←
[

FT̃

−(FT̃ )T V T S22V

]
, Z ←

[
FZ̃

−(FZ̃)T V T N22V

]

Algorithm 4.1 is strongly backward stable. If only half of S and N are stored and updated,
it needs 13n3 + O(n2) flops to compute T and Z. If Q is accumulated, this takes another
62

3n3 +O(n2) flops. Here, flop counts for the QZ algorithm were taken from [36]. Note that
V has to be formed, even if Q is not requested, because it is needed for the (2, 2) blocks of T
and Z.

Remark 4.1 We assumed the size of the problem n to be even, because in case of odd n,
the matrix S−λN is skew symmetric, hence singular, for all λ ∈ C. Thus, the pencil S−λN
is singular. So, odd dimensional pencils are of little importance. Nevertheless, we want to
remark on a numerical method similar to the presented one.

In line 1 of Algorithm 4.1 the even PVL form of (S, N) is computed. For odd dimensional
pencils the PVL-like form of Remark 3.3 can be used resulting in a pencil (sketched for n = 7)

(S̃, Ñ) =
([

0 S12

−ST
12 S22

]
,

[
0 N12

−NT
12 N22

])

=







x
x x

x x x
0 x x x

x x 0 x x
x x x x 0 x

x x x x x x 0




,




0
x

x x
0 x x x

x 0 x x
x x x 0 x

0 x x x x x 0







.

Then the pencil (FS12, FN12) can be treated further by the GUPTRI algorithm [26, 90]. ¤

4.1.1 Real skew symmetric pencils

If the pencil (S,N) is real then almost the whole Algorithm 4.1 carries over to real arithmetic.
The only detail that changes is that the pencil (FS12, FN12) must be transformed to real
generalized Schur form in (4.2), i.e., Z̃ is upper triangular, whereas T̃ is block upper triangular
with 1× 1 and 2× 2 diagonal blocks, the latter corresponding to complex conjugate pairs of
eigenvalues.

Still, the eigenvalues of (S, N) are obtained by taking the eigenvalues of (T̃ , Z̃) twice. The
resulting algorithm is very close to its complex counterpart.

Algorithm 4.2 Real generalized skew symmetric Schur form
Input: S = −ST , N = −NT ∈ Rn,n with n even
Output: orthogonal Q, antitriangular T,Z ∈ Rn,n such that T = QT SQ, Z = QT NQ
1: [Q1, S̃, Ñ ]← Algorithm 3.11 applied to (S, N) % PVL form
2: [T̃ , Z̃, U, V ]← real QZ algorithm applied to

(FS̃(1 : n/2, n/2 + 1 : n), F Ñ(1 : n/2, n/2 + 1 : n))
3: Q← Q1(FUT F ⊕ V )

4: T ←
[

FT̃

−(FT̃ )T V T S22V

]
, Z ←

[
FZ̃

−(FZ̃)T V T N22V

]
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The cost aspects of Algorithm 4.2 equals that of Algorithm 4.1.

4.2 The H-even eigenvalue problem

We derive a method to compute the eigenvalues of an H-even pencil, (M,N) with M =
MH , N = −NH ∈ Cn,n, by transforming it into a real skew symmetric pencil.

We use the so-called real embedding of a complex matrix A defined by

A 7→
[
Re(A) −Im(A)
Im(A) Re(A)

]
,

where Re(A) and Im(A) denote the real and imaginary parts of A, respectively. It has the
useful properties that a unitary matrix is mapped to an orthogonal one and that for complex
matrices A,B,C it holds

AB = C ⇔
[
Re(A) −Im(A)
Im(A) Re(A)

] [
Re(B) −Im(B)
Im(B) Re(B)

]
=

[
Re(C) −Im(C)
Im(C) Re(C)

]
.

Let QH(M, N)Z = (S, T ) be a complex generalized Schur form of (M,N). Applying the
real embedding to QH(iM, N)Z = (iS, T ) yields

[
Re(Q) −Im(Q)
Im(Q) Re(Q)

]T
([−Im(M) −Re(M)

Re(M) −Im(M)

]

︸ ︷︷ ︸
S

,

[
Re(N) −Im(N)
Im(N) Re(N)

]

︸ ︷︷ ︸
N

)[
Re(Z) −Im(Z)
Im(Z) Re(Z)

]

=
([−Im(S) −Re(S)

Re(S) −Im(S)

]
,

[
Re(T ) −Im(T )
Im(T ) Re(T )

])
, (4.3)

where we used Re(iM) = −Im(M) and Im(iM) = Re(M).
Using the perfect shuffle permutation [33, 53] defined by the permutation vector [1, n +

1, 2, n+2, 3, n+3, . . . , n, 2n] the right hand side of (4.3) is permuted to block triangular form
with 2× 2 blocks. Every diagonal block has the form

([−Im(sjj) −Re(sjj)
Re(sjj) −Im(sjj)

]
,

[
Re(tjj) −Im(tjj)
Im(tjj) Re(tjj)

])
.

Its eigenvalues are given by iλ, iλ, where λ = sjj/tjj is an eigenvalue of (M,N). Since (M, N)
is even, (S,N ) has only double eigenvalues. Indeed, for every pair of eigenvalues (λ,−λ̄) of
(M, N), the pencil (S,N ) has the two double eigenvalues iλ, iλ. Analogously, for every H-
exceptional eigenvalue iβ with β ∈ R of (M, N), the pencil (S,N ) has the double eigenvalue
i(iβ) = i(iβ) = −β.

Conversely, the spectrum of the real pencil (S,N ) consists of real and pairs of complex
conjugated eigenvalues, all double. A double pair (µ, µ̄) of (S,N ) corresponds to the pair
(−iµ, iµ) of (M, N), whereas a real double eigenvalue α of (S,N ) corresponds to the H-
exceptional eigenvalue −iα of (M,N).

So, the task of computing the paired eigenvalues of a complex H-even pencil has been
transformed into computing the double eigenvalues of a real pencil. Usually, this is not a
good idea, as double eigenvalues are generally hard to compute in finite precision arithmetic.
The situation here is different, because (S,N ) is a real skew symmetric pencil and thus
Algorithm 4.2 may be used that guarantees a complex conjugated set of double eigenvalues.

The previous considerations are summarized in the following algorithm.
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Algorithm 4.3 Eigenvalues of H-even pencils
Input: M = MH , N = −NH ∈ Cn,n with (M,N) regular
Output: vector e ∈ Cn containing the eigenvalues of (M,N)

1: S ←
[−Im(M) −Re(M)

Re(M) −Im(M)

]

2: N ←
[
Re(N) −Im(N)
Im(N) Re(N)

]

3: [T ,Z]← Algorithm 4.2 applied to (S,N )
4: e← −iλ(T (1 : n, n + 1 : 2n),Z(1 : n, n + 1 : 2n))

The cost of Algorithm 4.3 is dominated by line 3 which takes 104n3 + O(n2) flops. (The
factor 8 over the value of Algorithm 4.2 results from doubling the dimension.) This is a lot
compared to the 30n3 flops of the QZ algorithm, but note that Algorithm 4.3 performs real
flops, whereas the complex QZ algorithm uses complex arithmetic. Thus, the flop counts of
these two algorithms are of comparable order.

Remark 4.2 A generalized Hermitian eigenvalue problem is of the form

Hx = λGx, (4.4)

where H = HH , G = GH ∈ Cn×n.
By conjugate transposing (4.4) one can show the well known fact, that the spectrum of

(4.4) is symmetric w.r.t. the real axis, i.e. with λ also λ̄ is an eigenvalue. Hence there are
real eigenvalues and complex conjugate pairs.

If the matrix G is positive definite, then (4.4) can be transformed to a standard Hermitian
eigenvalue problem by applying a congruence transformation with a Cholesky factor of G. An
extended version of this algorithm can also cover the case that a linear combination of H and
G is positive semidefinite [36]. In these cases only real eigenvalues exists. If, on the contrary,
only complex conjugate pairs exist, then both the matrices H and G can be antitriangularized
by simultaneous unitary congruence, i.e., there is a unitary matrix Q such that QHHQ and
QHGQ are antitriangular. All eigenvalues can be read off this form. The matrix Q can be
computed by, e.g., an adapted version of Jacobi’s algorithm [69]. If (H, G) has both, real and
complex conjugate, eigenvalues, then neither of these algorithms can be used.

Applying Algorithm 4.3 to the H-even problem Hx = (−iλ)(iG)x, which involves the real
skew symmetric pencil

([
Im(H) Re(H)
−Re(H) Im(H)

]
,

[
Im(G) Re(G)
−Re(G) Im(G)

])
, (4.5)

leads to correctly paired eigenvalues. Note that if (H, G) is real, then this method reduces
to applying the real QZ algorithm to (H,G). This looks baffling at first, but in this case the
eigenvalue pairing is guaranteed by the use of real arithmetic. ¤
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Chapter 5

The antitriangular URV algorithm

Here, we present methods for T-palindromic and T-even eigenvalue problems that are of
cubic complexity and that are guaranteed to produce paired eigenvalues. This chapter is
the counterpart of Chapter 4 in the sense that the palindromic and even problems are not
attacked directly, rather they are first transformed to a generalized skew symmetric form.
Here, however, the relation is more intricate and the methods for skew symmetric pencils
from Section 4.1 cannot be used directly. Instead, a new URV-type matrix decomposition is
utilized, that simultaneously transforms three matrices to antitriangular form.

A URV decomposition of a matrix A is a factorization of the form A = URV H where U
and V are unitary and R is triangular. Such a factorization is far from being unique. Thus,
it is not surprising that there are several URV decompositions for different applications, each
imposing special additional restrictions on U , V , and/or R.

The best known variant is perhaps the rank revealing URV decomposition [86], [36, Section
12.5.5], where R is of the form

[
R11 R12
0 R22

]
with R11 ∈ Cr×r and σmin(R11)À σmax(R22), where

σmin(A) and σmax(A) denote the smallest and largest singular value of a matrix A, respectively.
This decomposition can be used to find the (numerical) rank of a matrix. In this it is an
alternative to the singular value decomposition, but unlike the SVD it is computable by a
finite algorithm and it can be efficiently updated after rank-1 modifications.

Sometimes, this factorization is called the URV decomposition. However, it is stressed that
in the context of this thesis it is just one among many and that other URV decompositions
may not reveal the rank of a matrix and need not be computable by a finite algorithm.

A predecessor of the rank revealing URV decomposition is the QR factorization with
column pivoting [16, 36], a URV decomposition where V is a permutation matrix and the
elements of R are required to decrease in magnitude along the diagonal.

Another variant, the symplectic URV decomposition [7, 8, 9] is used in the context of
Hamiltonian eigenvalue problems. Recall, that H ∈ C2n×2n is T-Hamiltonian if (JH)T = JH
where J =

[
0 In
−In 0

]
and S ∈ C2n×2n is T-symplectic, if STJ S = J . The symplectic URV

decomposition restricts U and V to be unitary and symplectic whereas R must be of the form

R =
[
R11 R12

0 RT
22

]
with R11, R22 ∈ Cn×n upper triangular. (5.1)

Our new URV decomposition is a generalization of the symplectic URV decomposition, see
Section 5.1 for details.

87
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This chapter is outlined as follows. The URV decomposition is motivated and defined
in Section 5.1. An algorithm for its numerical computation is proposed in Section 5.2. Sec-
tions 5.3 and 5.4 show how this URV decomposition can be used to solve the T-even and
T-palindromic eigenvalue problems, respectively.

Only regular pencils are considere in this chapter.

5.1 Motivating the antitriangular URV decomposition

In order to motivate the use of a URV decomposition to solve a structured eigenvalue problem
we consider the even eigenvalue problem Mx = λNx, i.e., M = MT , N = −NT ∈ Cn×n. Here,
N is assumed to be nonsingular (this implies that n is even).

Premultiplication by N−1, then squaring the resulting standard eigenvalue problem, and
another premultiplication by N yields the generalized product eigenvalue problem

MN−1M︸ ︷︷ ︸
S

x = λ2Nx. (5.2)

Since the eigenvalues of (S, N) are the squares of the eigenvalues of (M, N) and since the
eigenvalues of (M,N) appear in pairs (λ,−λ), we have

λ(M, N) = {±√µ |µ ∈ λ(S, N)} . (5.3)

Note that (S, N) is a skew symmetric pencil. Thus, we could use Algorithm 4.1 to compute
its skew symmetric Schur form. Since this guarantees double eigenvalues, we could savely
split every double eigenvalue µ of (S, N) into a pair ±√µ of (M, N). However, because S
contains the inverse of N , this leads to instabilities, if N is nearly singular. Instead, we will
compute the skew symmetric Schur form of (S, N) without forming the product matrix S or
the inverse N−1 therein explicitly. To this aim assume we could determine unitary matrices
U, V ∈ Cn×n such that

UT MV =: R =¡, UT NU =: T =¡, V T NV =: P =¡. (5.4)

Carrying out a congruence transformation with such a V on (S, N) results in

(S̃, Ñ) := V T (S, N)V = (V T MUU−1N−1U−T UT MV, V T NV )
=

(
(UT MV )T (UT NU)−1(UT MV ), (V T NV )

)

= (RT T−1R, P )

=
(
¡T ·¡−1 ·¡,¡

)

=
(
¡ ·¡ ·¡,¡

)

=
(
¡,¡

)
.

So, V transforms (S, N) to skew symmetric Schur form and thus reveals its spectrum. The
eigenvalues of (S, N) are the ratios of the antidiagonal entries of S̃, Ñ , which only depend on
the antidiagonal entries of R, T , and P . This means that the eigenvalues of (M, N) can be
read off from the decomposition (5.4). Using (5.3) we have

λ(M,N) =
{
±

√
rijrji

pjitji

∣∣∣ i = 1, . . . ,
n

2
; j = n + 1− i

}
. (5.5)
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Note, that the eigenvalues are paired as desired. In Section 5.3, we show how to handle the
case when N is singular and how to extract eigenvectors form the transformation matrices U
and V .

In summary, we use the URV–like decomposition (5.4) as structured periodic Schur form [10,
41, 52, 92] for the related problem (5.2).

This motivates the following definition: let A,N, S ∈ Cn×n be three given square matrices
with N,S skew symmetric. Then the unitary matrices U, V ∈ Cn×n define an antitriangular
URV decomposition of (A, N, S) if

UT AV =¡, UT NU =¡, V T SV =¡. (5.6)

Equation (5.6) can be interpreted as a URV decomposition of A as A = ŪRV H with antitri-
angular R under the restrictions that UT NU and V T NV are antitriangular.

An algorithm to compute an antitriangular URV decomposition is presented in the next
section. But beforehand the statement made above that the antitriangular URV decomposi-
tion generalizes the symplectic URV decomposition will be specified.

Lemma 5.1 Let A ∈ C2n×2n, J =
[

0 In
−In 0

]
and F be the flip matrix. Moreover, let

U, V, R, T, P define an antitriangular URV decomposition of the triple (J T A,J ,J ), i.e., all
R = UT (J T A)V, T = UTJU, and P = V TJ V are antitriangular.

Then there are unitary diagonal matrices D, D2 ∈ Cn×n, such that Ũ := U(I⊕DHF ), Ṽ :=
V (I⊕DH

2 F ) and R̃ := J (I⊕DHF )T R(I⊕DH
2 F ) make up a symplectic URV decomposition,

A = Ũ R̃Ṽ H of A.

Proof: With U and J also T is unitary. Since T is also skew symmetric and antitriangular,
it must be of the form

T =
[

0 FD
−DT F 0

]
,

where D is unitary and diagonal. Ũ is T-symplectic as ŨTJ Ũ = (I ⊕ DHF )T UTJU(I ⊕
DHF ) = (I ⊕ DHF )T T (I ⊕ DHF ) = J . By an analogous argument, there is a diagonal,
unitary matrix D2, such that Ṽ is T-symplectic. The matrix R̃ is of the right form (5.1), as

R̃ = J
[
I

FDH

]T

 0 ¡
¡




[
I

FDH
2

]
=


@

0 @


 .

Finally,

R̃ = J (I⊕DHF )T R(I⊕DH
2 F ) = J (I⊕DHF )T UTJ T AV (I⊕DH

2 F ) = J ŨTJ T AṼ = ŨHAṼ ,

thus A = Ũ R̃Ṽ H . Here, we used J ŨJ T = U−1, a property of T-symplectic matrices. ¤
In other words, an antitriangular URV decomposition of (J T A,J ,J ) defines a symplectic
URV decomposition of A.

5.2 Computing the antitriangular URV decomposition

In the following we present a method to compute an antitriangular URV decomposition (5.6)
for a given triplet of matrices A,N, S ∈ Cn×n. At first, we only consider even dimensional
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matrices in order to simplify the presentation. Later, the method is modified to arbitrary n
reusing (some of) the methods developed.

Our algorithm for the computation of an antitriangular URV decomposition (5.6) for even
n is divided into four phases. First, S is transformed to antitriangular form. Using the
antitriangular QRQT decomposition described in Section B.2 we compute a unitary matrix
V1 such that S1 = V T

1 SV1 is antitriangular. Set A1 := AV1.
Secondly, A1 is antitriangularized while keeping the structure of S1 unchanged. This can

be accomplished by an antitriangular QR decomposition discussed in Section B.1. The result
is a unitary matrix U2 such that A2 := UT

2 A1 is antitriangular. Subsequently, U2 has to be
applied to N as N2 := UT

2 NU2.
In the third phase, two unitary matrices U3, V3 are determined such that N3 := UT

3 N2U3

is in anti-Hessenberg form, while A3 := UT
3 A2V3 and S3 := V T

3 S1V3 are still antitriangular.
This process is described in Section 5.2.1 below.

Finally, in the fourth phase N3, A3, and S3 are transformed to antitriangular form. In
Section 5.2.2 we describe a method to compute unitary matrices U4, V4 such that N4 :=
UT

4 N3U4, A4 := UT
4 A3V4, and S4 := V T

4 S3V4 are antitriangular.
Choosing U = U2U3U4 and V = V1V3V4 results in an antitriangular URV form (5.6),

as desired. In summary, the forms of N, A, S after accomplishing the individual phases are
depicted in the following table.

Start phase 1 phase 2 phase 3 phase 4

N ¡¡ ¡
A ¡ ¡ ¡
S ¡ ¡ ¡ ¡

Note that phases 1, 3, and 4 make heavy use of the fact that skew symmetric matrices have
zeros on their diagonal. Because of that, there is no analogous algorithm for the case ? = H
when that N and S are skew Hermitian matrices, which may have nonzero (purely imaginary)
entries on their diagonal. On the other hand, if A, N and S are real, an almost identical
algorithm can be derived that stays in real arithmetics, see Section 5.2.6.

In the following sections the phases 3 and 4 are described in more detail.

5.2.1 Phase 3: URV-Hessenberg reduction

We now describe how to transform a skew symmetric matrix N to anti-Hessenberg form,
while preserving the antitriangular forms of A and S = −ST by transformations of the form
A← UT AV , N ← UT NU , S ← V T SV . The process is illustrated for an 8× 8 example. So,
the matrices N,A, S are of the form
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N A S


0 x x x x x x x
x 0 x x x x x x
x x 0 x x x x x
x x x 0 x x x x

x x x x 0 x x x
x x x x x 0 x x
x x x x x x 0 x
x x x x x x x 0




¡




x
x x

x x x
x x x x

x 0 x x x
x x x 0 x x

x x x x x 0 x
x x x x x x x 0




In the following, we denote by Uij a rotation in the (i, j)-plane acting on N as a congruence
and on A from the left, i.e., N ← UT

ijNUij , A ← UT
ijA. Analogously, Vij denotes a rotation

in the (i, j)-plane acting on S as a congruence and on A from the right, i.e., S ← V T
ij SVij ,

A← AVij .
We begin by eliminating the (2,1) and (1,2) elements of N by a rotation U23 in the (2,3)

plane. This rotation, when applied to A from the left, generates fill-in at position (2,6). This
fill-in can be annihilated by a rotation V67 applied from the right. This restoring rotation V67

has to be applied to S as a congruence affecting fill-in at positions (2,6) and (6,2).

N A S

↓ U23 ↘


0 0 y x x x x x
0 0 y y y y y y
y y 0 y y y y y
x y y 0 x x x x

x y y x 0 x x x
x y y x x 0 x x
x y y x x x 0 x
x y y x x x x 0




¡
V67−−→




x
+ y x
y y x

x y y x

x 0 y y x
+ y y y 0 y y
y y y y y 0 y

x x x x x y y 0




In order to annihilate these new elements a congruence rotation V23 is applied to S. This,
in turn, introduces a nonzero element in A at position (6,2). Now, a further rotation U67

can be used to zero out this element again. In general, if a rotation in the (i, i + 1)-plane,
applied from either side, destroys the antitriangular structure of A, a second rotation in the
(n− i, n− i + 1)-plane applied from the other side can be used to restore the antitriangular
form.

Applying U67 to N does not generate fill-in in N .
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N A S

↙ V23 ↓


0 0 x x x y y x
0 0 x x x y y x
x x 0 x x y y x
x x x 0 x y y x

x x x x 0 y y x
y y y y y 0 y y
y y y y y y 0 y
x x x x x y y 0




U67←−− ¡




x
0 y y
y y y

x x x x

x 0 x x x
0 y x x 0 x x
y y x x x 0 x

x y y x x x x 0




This process is repeated to zero out elements (3,1) and (1,3) (in general: elements
3, . . . , n

2 − 1 in the first row/column) of N :

N A S

↓ U34 ↘


0 y x x x x
0 y y x x x x

0 y 0 y y y y y
y y y 0 y y y y

x x y y 0 x x x
x x y y x 0 x x
x x y y x x 0 x
x x y y x x x 0




¡
V56−−→




x
x x

+ y x x
y y x x

+ y 0 y y y
y y y 0 y y

x x x y y 0 x
x x x x y y x 0




↙ V34 ↓


x y y x x
0 x x y y x x
x 0 x y y x x

x x x 0 y y x x

y y y y 0 y y y
y y y y y 0 y y
x x x x y y 0 x
x x x x y y x 0




U56←−− ¡




x
x x

0 y y y
y y y y

0 y 0 x x x
y y x 0 x x

x y y x x 0 x
x x y y x x x 0




Next, we eliminate the elements (4, 1) and (1, 4) of N by a rotation U45. Restoring the
antitriangular shape of A results in a rotation V45 that does not generate fill-in in S, because
the diagonal entries of skew symmetric matrices are necessarily zero. Note that this fact is
still true in finite arithmetic, if the algorithm is working just on the upper or lower triangular
part of S to enforce exact skew symmetry.
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N A S

↓ U45 ↘


0 x x x x
0 x y y x x x
x 0 y y x x x

0 y y 0 y y y y

y y y y 0 y y y
x x x y y 0 x x
x x x y y x 0 x
x x x y y x x 0




¡
V45−−→




x
x x

x x x
0 y y y y

y 0 y y y
x y y 0 x x

x x y y x 0 x
x x x y y x x 0




Now, the second half of the first row/column of N can be reduced leaving just the last
two elements nonzero. This is accomplished in an analogous manner as for the first half.

N A S

↓ U56 ↘


0 y x x
0 x x y y x x
x 0 x y y x x
x x 0 y y x x

0 y y y 0 y y y
y y y y y 0 y y
x x x x y y 0 x
x x x x y y x 0




¡
V34−−→




x
x x

+ y y y
y y y y

+ y 0 x x x
y y x 0 x x

x y y x x 0 x
x x y y x x x 0




↙ V56 ↓


x x x
0 y y x x x x
y 0 y y y y y
y y 0 y y y y

x y y 0 x x x
x x y y x 0 x x
x x y y x x 0 x
x x y y x x x 0




U34←−− ¡




x
x x

0 y x x
y y x x

0 y 0 y y y
y y y 0 y y

x x x y y 0 x
x x x x y y x 0




↓ U67 ↘


0 y x
0 x x x y y x
x 0 x x y y x
x x 0 x y y x

x x x 0 y y x
0 y y y y 0 y y
y y y y y y 0 y
x x x x x y y 0




¡
V23−−→




x
+ y y
y y y

x x x x

x 0 x x x
+ y x x 0 x x
y y x x x 0 x

x y y x x x x 0






94 CHAPTER 5. THE ANTITRIANGULAR URV ALGORITHM

N A S

↙ V67 ↓


x x
0 y y y y y y
y 0 y y y y y
y y 0 x x x x

y y x 0 x x x
y y x x 0 x x

x y y x x x 0 x
x y y x x x x 0




U23←−− ¡




x
0 y x
y y x

x y y x

x 0 y y x
0 y y y 0 y y
y y y y y 0 y

x x x x x y y 0




At this point, the first row/column of N is in anti-Hessenberg form. Note, that the first
and last elements of the first row/column of N were not touched during the process so far.
Thus, applying this procedure recursively to the (2 : n−1, 2 : n−1) submatrices preserves the
just generated zeros. This recursive application yields U, V such that N is in anti-Hessenberg
form, while A and S are antitriangular, as required.

N A S

↓ Ũ ↓ ↓ Ṽ


x x
y x x

y y y y
0 y y y y

y y 0 y y y
y y y y 0 y y

x x y y y y 0 x
x x y y y y x 0




¡




x
x x

y y y
y y y y

y 0 y y y
y y y 0 y y

x y y y y 0 x
x x y y y y x 0




Pseudocode of this process can be found in Appendix B.4 and [81].

5.2.2 Phase 4: URV-triangularization

Here it is described, how N can be antitriangularized while keeping A and S antitriangular.
Note that because N is skew symmetric and n is even, (N,A, S) can be partitioned as

N =
[

0 −(FH)T

FH N22

]
, A =

[
0 (FR1)T

FR3 A22

]
, S =

[
0 −(FR2)T

FR2 S22

]
,

where F is the flip matrix, H ∈ Cn
2
×n

2 is upper Hessenberg, and R1, R2, R3 ∈ Cn
2
×n

2 are
upper triangular. Let Q1, Q2 and Z1, Z2 be unitary matrices that transform H,R1, R2, R3 to
generalized periodic Schur form, i.e.,

QH
1 HZ2 = T4 =@, (5.7)

QH
2 R1Z2 = T1 =@,

QH
2 R2Z1 = T2 =@,

QH
1 R3Z1 = T3 =@.
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These can be computed, e.g., by the periodic QZ algorithm [10, 41, 52, 92] applied to the
matrix product HR−1

1 R2R
−1
3 . Note, that the product and the inverses therein are understood

in a formal sense and are never actually formed. Moreover, the reduction to generalized
periodic Schur form is still possible if R1 and R3 are singular. Note further, that the first step
of the periodic QZ algorithm, the reduction to Hessenberg-triangular form is not necessary,
because H, R1, R2, R3 are already in this form.

Setting U = Z2 ⊕ FQ̄1F and V = Z1 ⊕ FQ̄2F , we have

UT NU =
[

0 −ZT
2 (FH)T FQ̄1F

FQH
1 FFHZ2 Ñ22

]
=

[
0 −(FT4)T

FT4 Ñ22

]
=


 0 ¡
¡


 ,

UT AV =
[

0 ZT
2 (FR1)T FQ̄2F

FQH
1 FFR3Z1 Ã22

]
=

[
0 (FT1)T

FT3 Ã22

]
=


 0 ¡
¡


 ,

V T SV =
[

0 −ZT
1 (FR2)T FQ̄2F

FQH
2 FFR2Z1 S̃22

]
=

[
0 −(FT2)T

FT2 S̃22

]
=


 0 ¡
¡


 .

Here, Ñ22 = FQH
1 FN22FQ̄1F , Ã22 = FQH

1 FA22FQ̄2F , and S̃22 = FQH
2 FS22FQ̄2F .

At this point, phase 4 and the URV decomposition (5.6) is completed.

5.2.3 When n is odd

The process presented so far does not work if the matrices are of odd dimension. In this
section we generalize the process to cover problems of any dimension. This generalization
consists mainly of a modification of phase 1 and the introduction of an additional fifth phase.

During the first phase S is now reduced to the form

S1 := V T
1 SV1 =




m r r

m 0 0 0
r 0 0 ¡
r 0 ¡


, (5.8)

where r,m are such that n = 2r + m. Further, we define A1 := AV1, as before.
There are several methods to achieve this reduction. If n is even, the antitriangular QRQT

factorization yields the form (5.8) with m = 0. If n is odd, the reduced antitriangular QRQT

factorization (described in Appendix B.2) yields the form (5.8) with m = 1. An alternative is
the skew Takagi factorization which is described in Appendix B.3. It results in the form (5.8)
with 2r = rank(S).

In phase 2, A1 is transformed to antitriangular form. This is performed by the antitri-
angular QR factorization as in the even case. This results in a unitary matrix U2 such that
A2 := UT

2 A1 is antitriangular. Define N2 := UT
2 NU2.

Next, N2 and A2 are partitioned according to S1 as follows:

N2 =




r r m

r N11 −NT
21 −NT

31

r N21 N22 −NT
32

m N31 N32 N33


, A2 =




m r r

r 0 0 A13

r 0 A22 A23

m A31 A32 A33


, S1 =




m r r

m 0 0 0
r 0 0 S23

r 0 −ST
23 S33


.
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Now, the usual phases 3–4 (described in the Sections 5.2.1 and 5.2.2) can be applied to the
even dimensional triple

([
N11 −NT

21

N21 N22

]
,

[
0 A13

A22 A23

]
,

[
0 S23

−ST
23 S33

])
.

This yields unitary matrices Ũ3, Ũ4, Ṽ3, Ṽ4. Setting Ui := Ũi ⊕ Im, Vi := Im ⊕ Ṽi, i = 3, 4, we
have

(N4, A4, S4) := (UT
4 UT

3 N2U3U4, UT
4 UT

3 A2V3V4, V T
4 V T

3 S1V3V4)

=







r r m

r 0 ¡
r ¡
m


,




m r r

r 0 0 ¡
r 0 ¡
m ¡


,




m r r

m 0 0 0
r 0 0 ¡
r 0 ¡







.(5.9)

It remains to transform N4 and S4 to antitriangular form while preserving the form of A4.
More precisely, unitary matrices U5, V5 have to be determined such that

(N5, A5, S5) := (UT
5 N4U5, UT

5 A4V5, V T
5 S4V5)

=







r m r

r 0 0 ¡
m 0 ¡
r ¡


,




r m r

r 0 0 ¡
m 0 ¡
r ¡


,




r m r

r 0 0 ¡
m 0 0

r ¡







.(5.10)

Note, that the dimensions of the blocks have changed. The procedure is described in Sec-
tion 5.2.4 below. At this point, the URV decomposition is completed.

5.2.4 Phase 5

In the following we discuss how matrices N,A, S of the form (5.9) are transformed to the
form (5.10).

This process is illustrated for a 7× 7 example with r = 2, m = 3.

N A S


x x x x
x x x x x

x 0 x x x x
x x x 0 x x x

x x x x 0 x x
x x x x x 0 x
x x x x x x 0




¡




0
0
0
x

x x

x 0 x
0 0 0 x x x 0



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We begin by eliminating elements (4, 1) and (1, 4) of N by a rotation in the (4, 5) plane.
Pushing the transformation through A results in a rotation in the (3, 4) plane introducing fill
in in S at the positions (7, 3) and (3, 7).

N A S

↓ U45 ↘


0 y x x
x y y x x

x 0 y y x x
0 y y 0 y y y
y y y y 0 y y
x x x y y 0 x
x x x y y x 0




¡
V34−−→




0
0
+
y

x x

x 0 x
0 0 + y x x 0




Continuing in this manner, we reduce the first row/column of N to a multiple of en.
During this process the last row/column of S becomes fully populated.

N A S

↓ U56 ↘


0 y x
x x y y x

x 0 x y y x
x x 0 y y x

0 y y y 0 y y
y y y y y 0 y
x x x x y y 0




¡
V23−−→




0
+
y
x

x x

x 0 x
0 + y x x x 0




↓ U67 ↘


0 y
x x x y y

x 0 x x y y
x x 0 x y y
x x x 0 y y

0 y y y y 0 y
y y y y y y 0




¡
V12−−→




+
y
x
x

x x

x 0 x
+ y x x x x 0




Now apply the same procedure to the remainder of the first r rows/columns of N .

N A S

↓ U34, U45, U56 ↘


x
0 0 0 y x

0 0 y y y y
0 y 0 y y y
0 y y 0 y y

y y y y 0 y
x x y y y y 0




¡

V56,
V45,
V34−−−→




x
y y

y y
y y
y y

y y y y 0 x
x y y y y x 0



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phase \ target A,N, S U V all
1a, anti QRQT 11

6 n3 – 2
3n3

1b, skew Takagi 13
3 n3 – n3

2, anti QR 10
3 n3 4

3n3 –
3, URV-Hessenberg 30nr2 − 5

6r3 12nr2 12nr2

4, periodic QZ 8nr2 + 751
3r3 4nr2 4nr2

5, triangularization
19
6 n3 − n2r
−10nr2 − 4

3r3
n3 + 2n2r
−8nr2

2n3 − 2n2r
−4nr2

URV(1a) ≈ 24n3 16
3 n3 14

3 n3 ≈ 34n3

URV(1b)
≈ 11n3 − n2r
+28nr2 + 73r3

7
3n3 + 2n2r

+8nr2
3n3 − 2n2r

+12nr2
≈ 49

3 n3 − n2r
+48nr2 + 73r3

URV(1b,r = n
3 ) ≈ 33

2 n3 ≈ 4n3 11
3 n3 ≈ 24n3

QZ 30n3 16n3 20n3 66n3

Table 5.13: Flop counts of the URV algorithm. The numbers are in terms of the problem
size n and the parameter r in the partition (5.8). Only dominant terms are shown, so every
number should be understood as ’plus O(n2 + nr + r2)’.

Finally, the middle block, N(3 : 5, 3 : 5) is antitriangularized by an antitriangular QRQT

factorization. Pulling this transformation through A does not change the structure of S.

N A S


x
x x

y y y
0 y y y

y y 0 y y

x y y y 0 x
x x y y y x 0




¡




x
x x

y y
y y
y y

x y y y 0 x
x x y y y x 0




At this point N,A, S are of the form (5.10) and the URV decomposition is complete. An
algorithm for this algorithm is given in Appendix B.5.

In summary, for any square matrix A and any two skew symmetric matrices N , S of the
same size we showed how to compute unitary matrices U , V such that all three, UT AV ,
UT NU , and V T SV are antitriangular. In the Sections 5.3 and 5.4 we demonstrate how
eigenvalues of even or palindromic problems can be extracted from these transformations.

5.2.5 Algorithmic issues

Here we discuss the computational costs of our algorithms measured in floating point oper-
ations. Note that only dominant terms are presented and that it is assumed that only the
upper or lower triangular parts of the skew symmetric matrices N,S are manipulated.

Table 5.13 shows flop counts for the whole URV algorithm, separated by phases and
whether only A,N, S or additionally U and/or V need to be formed. Flop counts for classic
algorithms (QR-factorization, QZ-algorithm, etc.) are taken from [36]. Note that the flop
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numbers for iterative algorithms (QR, QZ algorithm) are based on empirical observations and
are very approximate. The iterative part of the perodic QZ algorithm is taken to consume 4
times as many flops as the iterative part of the standard QR algorithm.

The row labeled ’URV(1a)’ shows numbers for the whole algorithm using the (reduced)
antitriangular QRQT factorization in the first phase (so, r = bn2 c). If the skew Takagi
factorization is used in the first phase (row ’URV(1b)’), then r = rank(S)

2 . The next row lists
the terms for the URV(1b) algorithm for the special case of rank(S) = 2

3n. For comparison,
we also list the terms for the QZ algorithm applied to an n × n pencil. The four numbers
are the flop counts to compute the generalized Schur form, the transformation matrices Q,
Z, and the sum of all. Notably, the URV algorithm needs less flops than the QZ algorithm,
if the entire factorization is computed even by a factor of almost two (34n3 vs. 66n3). Note
further that in the case of a highly rank deficient matrix S the higher cost of the skew Takagi
factorization in the first phase pays off by lower cost for the third and fourth phases resulting
in an overall lower amount for the whole algorithm (24n3 vs. 34n3 for rank(S) = 2

3n).
We now address the errors introduced during the antitriangular URV algorithm. Let Û ,

V̂ , R̂, T̂ , P̂ be the computed decomposition (5.6) of a matrix triple (A,N, S). Note that
all used manipulations (Householder and Givens updates, computations of a singular value
decomposition or a periodic Schur form) use unitary matrices and are backward stable [36].
Moreover, N and S are transformed by congruences only. Since the concatenation of unitary
(strongly) backward stable operations is again unitary and (strongly) backward stable, it fol-
lows that the whole antitriangular URV decomposition is backward stable for A and strongly
backward stable for N and S. In other words, Û and V̂ are unitary to machine precision and
R̂, T̂ , P̂ are the exact triangular factors of a nearby problem, i.e., there exist Ã, Ñ , S̃ with
‖A− Ã‖2 = O(ε)‖A‖2, ‖N − Ñ‖2 = O(ε)‖N‖2, ‖S − S̃‖2 = O(ε)‖S‖2, ÑT = −Ñ , S̃T = −S̃
and perfectly unitary matrices U, V such that UT ÃV = R̂, UT ÑU = T̂ , V T S̃V = P̂ .

5.2.6 The real case

Until now, complex matrices A,N, S were modified by complex transformation matrices U, V .
However, many physical problems result in real matrices. Of course, we could just treat the
real problem as a complex one, but there are good reasons to stay in real arithmetic, e.g.,
the execution time of complex floating point operations is three to four times that of real
operations. Moreover, real eigenvalue problems have more structure: the eigenvalues appear
in complex conjugate pairs.

Luckily, almost the whole URV algorithm works in real arithmetic just as well as with
complex numbers. Householder reflections, Givens rotations, antitriangular QR-, QRQT - and
skew Takagi factorizations all yield real results for real problems. Only one aspect changes:
the real periodic QZ algorithm in phase 4 returns a real periodic generalized Schur form, i.e.,
the matrix T4 in (5.7) is not upper triangular, but quasi upper triangular with 1×1 and 2×2
blocks on the diagonal, the 2 × 2 blocks corresponding to a pair of conjugate eigenvalues.
Thus, at the end of phase 4, N, A, S have the form

N4 =




r r m

r 0 −NT
21 −NT

31

r N21 N22 −NT
32

m N31 N32 N33


, A4 =




m r r

r 0 0 A13

r 0 A22 A23

m A31 A32 A33


, S4 =




m r r

m 0 0 0
r 0 0 S23

r 0 −ST
23 S33




with A13, A22, A31, S23 skew triangular and N21 quasi-antitriangular.
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At the end of phase 5, N, A, S have the form (the symbols Nij , Aij , Sij are reused for
different matrices)

N5 =




r m r

r 0 0 −NT
31

m 0 N22 −NT
32

r N31 N32 N33


, A5 =




r m r

r 0 0 A13

m 0 A22 A23

r A31 A32 A33


, S5 =




r m r

r 0 0 S13

m 0 0 S23

r −ST
13 −ST

23 S33




with A13, A22, A31, N22, N31 antitriangular and S13 quasi-antitriangular.

5.3 Application to even eigenvalue problems

Let us return to the even eigenvalue problem Mx = λNx with M = MT ∈ Cn×n, N =
−NT ∈ Cn×n.

In Section 5.1 we have shown, how the eigenvalues of (M,N) may be read off an antitri-
angular URV decomposition of (M, N, N) provided that N is nonsingular. Now, we want to
generalize this idea to general regular even pencils (M,N).

Consider the 2n–dimensional even pencil

(M̃, Ñ) =
([

0 M
M 0

]
,

[
N 0
0 N

])
. (5.11)

The following lemma relates the classical Kronecker form (2.4) of (M̃, Ñ) to that of (M, N).

Lemma 5.2 Let M−λN ∈ Cn×n be a regular even pencil. Define (M̃, Ñ) as in (5.11). Then,
if there exist m Jordan blocks of size k associated with the eigenvalue λ in the Kronecker form
of (M, N), then there are 2m Jordan blocks of size k for eigenvalue λ in the Kronecker form
of (M̃, Ñ).

Proof: Consider matrices X, Y ∈ Cn×k of full column rank k, and J1, J2 ∈ Ck×k, one being
a Jordan block and the other one the identity matrix, such that MX = Y J1, NX = Y J2.
This means that span(X) is a deflating subspace of (M,N). Then, with X̃± = [XT ,±XT ]T

and Y± = [Y T ,±Y T ]T we have M̃X̃± = Ỹ±(±J1) and ÑX̃± = Ỹ±J2. So, both, X̃+ and
X̃− span deflating subspaces of (M̃, Ñ). Since (M, N) was assumed to be regular, (M̃, Ñ)
has no further eigenvalues. The result follows as λ and −λ agree in the number and sizes of
associated Jordan blocks in the Kronecker form of (M, N) [89]. ¤

The essential result of Lemma 5.2 is that (M̃, Ñ) has the same eigenvalues as (M, N), but
of double multiplicity.

Remark 5.1 The pencil (M̃, Ñ) in (5.11) is even, but actually it has two structures. Indeed,
scaling the first block row by −1 results in the skew symmetric pencil

([
0 −M
M 0

]
,

[−N 0
0 N

])
. (5.12)

Since the scaling does not change the spectrum, the eigenvalues are structured with respect
to the even and to the skew symmetric spectral symmetry.
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The role of the skew symmetric pencil (5.12) for the solution of the T-even eigenvalue
problem corresponds to the role of the skew symmetric pencil (S,N ) in (4.3) for the solution
of the H-even eigenvalue problem. Note that for a real even pencil (M, N) the double size
pencils (5.12) and (4.3) differ by just a minus sign. ¤

Next, we determine the spectrum of (M̃, Ñ). Let U, V define an antitriangular URV
decomposition of (M, N, N), i.e.,

UT MV = R =¡, UT NU = T =¡, V T NV = P =¡.

Then, with Q = U ⊕ V , it follows that

(M̂, N̂) = QT (M̃, Ñ)Q =
([

0 R
RT 0

]
,

[
T 0
0 P

])
.

Evaluating the determinant of M̂ − λN̂ , the eigenvalues of (M̃, Ñ) are given by

λ(M̃, Ñ) =
{
±

√
rijrji

pjitji

∣∣∣i = 1, . . . , n, j = n + 1− i

}
. (5.13)

Thus, the eigenvalues of (M,N) are given by (5.13), but with i ranging from 1 to dn2 e. Note
that if n is odd, then for i = dn2 e we have i = j and pji = tji = 0, which corresponds to an
infinite eigenvalue. This nicely coincides with (5.5) for the case that N is nonsingular.

Also the eigenvectors of (M,N) can be derived using the antitriangular URV decomposi-
tion. Evaluating the first columns of MV = ŪR, MU = V̄ RT , NU = ŪT , and NV = V̄ P
we have

M [u1, v1] = [ūn, v̄n]
[

0 rn1

r1n 0

]
, (5.14)

N [u1, v1] = [ūn, v̄n]
[
tn1 0
0 pn1

]
. (5.15)

So, span([u1, v1]) is a deflating subspace of (M, N) corresponding to the eigenvalues

λ1;2 = ±
√

r1nrn1

tn1pn1
.

Thus, the eigenvectors are given explicitly by x1;2 =
√

rn1pn1 u1 ±
√

r1ntn1 v1.
Note that it is possible that u1 and v1 are linearly dependent. In this case it follows

from (5.14), (5.15) that also un and vn are linearly dependent. Thus, u1 is an eigenvector
itself.

Eigenvectors corresponding to other eigenvalue pairs can be obtained by reordering the
antidiagonals of R, T, P . This can be accomplished via eigenvalue reordering in the general-
ized periodic Schur form [37, 38, 39] for the product (FT31)(FRT

13)
−1(FP31)(FR31)−1, where

T,R, P are partitioned as in (5.10) with r = bn
2 c and m = n− 2r and F is the flip matrix.
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5.4 Application to palindromic eigenvalue problems

Consider a palindromic eigenvalue problem Ax = λAT x.
As for even problems, we introduce a double size pencil whose spectrum is related to that

of (A,AT ),

(M̃, Ñ) :=
([

0 A
AT 0

]
,

[
A−AT 0

0 A−AT

])
. (5.16)

The next lemma relates the Weierstraß form of (M̃, Ñ) to that of (A,AT ).

Lemma 5.3 Let A − λAT ∈ Cn×n be a regular palindromic pencil. Define (M̃, Ñ) as in
(5.16). Let the Kronecker form of (A,AT ) contain m Jordan blocks of size k for eigenvalue
λ. Let µ(λ) :=

√
λ

λ−1 with the conventions µ(∞) = 0, µ(1) = ∞. Then the Kronecker form of
(M̃, Ñ) contains, depending on λ,

2m Jordan blocks of size k for eigenvalue µ(λ), if λ 6= 0,∞,±1;
m Jordan blocks of size 2k for eigenvalue µ(λ) = 0, if λ = 0,∞;
2m Jordan blocks of size k for eigenvalue µ(λ) =∞, if λ = 1;
m Jordan blocks of each size dk2e, bk2c for both eigenvalues ±µ(λ) = ± i

2 , if λ = −1.

Proof: Let X, V ∈ Cn×k be such that AX = AT XJ and AV J = AT V where J is a Jordan
block of size k for eigenvalue λ 6= ±1, i.e. span(X) is a deflating subspace for λ and span(V )
is a deflating subspace for 1

λ . Since λ 6= 1
λ , [X,V ] is of rank 2k. Then we have

[
0 A

AT 0

] [±X V
−V ±X

]
=

[±AT X −AV
AV ±AT X

] [
0 J
I 0

]
,

[
A−AT 0

0 A−AT

] [±X V
−V ±X

]
=

[±AT X −AV
AV ±AT X

] [
J − I 0

0 J − I

]
.

The Kronecker form of (
[

0 J
I 0

]
,
[

J−I 0
0 J−I

]
) consists of Jordan blocks of size k for the eigen-

values ±
√

λ
λ−1 (if λ 6= 0,±1) or of one Jordan block of size 2k for eigenvalue 0 (if λ = 0). By

Corollary 2.9 a), λ and 1
λ agree in the number and sizes of associated Jordan blocks in the

Kronecker form of (A, AT ). This proves the cases λ 6= ±1.
To treat the cases λ = ±1, let X,Y ∈ Cn×k be such that AX = Y J and AT X = Y , where

J ∈ Ck×k is a Jordan block for eigenvalue ±1. Set C = J−
1
2 . (Here, we mean the square

root of J−1 that can be written as polynomial in J−1. For existence see [46].) So, JC2 = I.
Further, let Λ = (J − I)C. Note, that J,C,Λ are all upper triangular Toeplitz matrices and
thus commute. (This all follows from the fact, that upper triangular Toeplitz matrices can be
represented as polynomials in the nilpotent Jordan block.) The diagonal elements of Λ are
given by λ−1√

λ
. Then we have

[
0 A

AT 0

] [
X
±XC

]
(±Λ) =

[±Y JC
Y

]
(±Λ) =

[
Y (J − I)
±Y (J − I)C

]
=

[
A−AT 0

0 A−AT

] [
X
±XC

]
.

So, span([XT , (±XC)T ]T ) is an invariant subspace of (M̃, Ñ) corresponding to the inverses
of the eigenvalues of ±Λ. It remains to determine the Jordan form of Λ.

In case 3, i.e., λ = 1, Λ is a strict upper triangular matrix. Since it is the product of the
nonsingular matrix C and the matrix (J − I) of rank k− 1 also Λ is of rank k− 1. Thus Λ is
similar to the nilpotent Jordan block, which proves case 3.
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In case 4, i.e. λ = −1, C is of the form

C = ±i




1 1
2

3
8 ∗ · · · ∗

1 1
2

3
8

. . .
...

1 1
2

. . . ∗
1

. . . 3
8

. . . 1
2
1




.

This follows from the Taylor series expansion of f(x) = x−
1
2 at x = −1 yielding f(−1 + ε) =

i(1 + 1
2ε + 3

8ε2 + O(ε3)). Since Λ is the product of C with (J − I) it is a upper triangular
Toeplitz matrix with ±2i on the diagonal. Further, Λ has a vanishing super diagonal and a
nonvanishing second super diagonal. Considering powers of (Λ∓2iI) it is clear that the Jordan
form of Λ consists of a Jordan block of each size dk2e, bk2c for both eigenvalues± i

2 = ±µ(−1). ¤

In other words, when passing from (A,AT ) to (M̃, Ñ) the eigenvalues are transformed
from λ to ±µ(λ). Note, that µ(1/λ) = −µ(λ). So, (M̃, Ñ) has only double eigenvalues.
Inverting the formula µ(λ) =

√
λ/(λ− 1) implies that if µ is eigenvalue of (M̃, Ñ), then

λ1;2 =
1 + 2µ2 ±

√
1 + 4µ2

2µ2
(5.17)

are eigenvalues of (A,AT ). Eigenvalues computed in this way are paired as λ1λ2 = 1. In
order to avoid a source of cancellation one would use (5.17) to compute the value of λ that is
larger in modulus (say, λ1) and then set λ2 = 1

λ1
.

The spectrum of (M̃, Ñ) can be computed analogously to the even case: let U, V define
an antitriangular URV decomposition of (A, A−AT , A−AT ), i.e.,

UT AV = R =¡, UT (A−AT )U = T =¡, V T (A−AT )V = P =¡.

Then, with Q = U ⊕ V we have

(M̂, N̂) = QT (M̃, Ñ)Q =
([

0 R
RT 0

]
,

[
T 0
0 P

])
.

The eigenvalues of (M̃, Ñ) are given by (5.13). So, the eigenvalues of (A,AT ) are given by

λ(A,AT ) =





1 + 2µ2
i ±

√
1 + 4µ2

i

2µ2
i

∣∣∣µ2
i =

rijrji

pjitji
, i = 1, . . . , dn

2
e, j = n + 1− i



 .

The eigenvectors can be extracted from U, V . Evaluation of the first columns of AV = ŪR,
AT U = V̄ RT , (A−AT )U = ŪT , and (A−AT )V = V̄ P gives

A[u1, v1] = [ūn, v̄n]
[
tn1 rn1

r1n 0

]
,

AT [u1, v1] = [ūn, v̄n]
[

0 rn1

r1n −pn1

]
.
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So, span([u1, v1]) is a deflating subspace of (A,AT ) corresponding to the eigenvalues

λ1;2 =
pn1tn1 + 2rn1r1n ±

√
p2

n1t
2
n1 + 4pn1tn1rn1r1n

2r1nrn1
.

Eigenvectors of (A,AT ) are given by

x1;2 = (pn1tn1 ±
√

pn1tn1(pn1tn1 + 4rn1r1n))u1 + 2r1ntn1 v1.

As in the even case, eigenvectors corresponding to other eigenvalue pairs can be obtained
by reordering the antidiagonals of R, T, P .

5.5 Conclusion

Considering the strong backward stability of the antitriangular URV decomposition, it is clear
that using (5.13) to compute eigenvalues of an even pencil

([
A

AT

]
,

[
N

S

])

yields the exact eigenvalues of the nearby even pencil
([

Ã

ÃT

]
,

[
Ñ

S̃

])
.

But it is not clear, if this implies backward stability for even or palindromic eigenvalue
problems, because there is more structure in the corresponding double size pencils (5.11)
(N = S, A symmetric) or (5.16) (N = S = A − AT ). In general, the perturbed pencil does
not share these extra properties. More research is needed in this field. Note, that in the
Hamiltonian case, the symplectic URV algorithm can be shown to produce eigenvalues that
are of the same quality as those computed by a backward stable method, see [9]. However, it
is enough to achieve paired eigenvalues, which is the primary interest here.

In this chapter we have introduced a new URV decomposition affecting a matrix triple. It
was shown how this URV decomposition can be used to solve palindromic or even eigenvalue
problems. The eigenvalues computed in this way are paired in compliance with the spectral
symmetry that palindromic and even eigenproblems show.

A Matlab implementation [1] of this algorithm is available.



Chapter 6

More palindromic methods

Often, when a specialized method for a structured eigenvalue problem has to be developed,
the adaption of the QR algorithm is the canonical direction for research. This worked well for
real, generalized and periodic structures, to name a few. In case of the palindromic (and also
the Hamiltonian) structure, however, a fully satisfying QR variant has not been found (see
Section 3.6), and some think, the chances it ever will are hopeless [23]. That opened the scene
for a variety of different approaches. Some of these will be presented on the following pages.
Others are beyond the scope of this work, e.g., the palindromic Jacobi method [43, 44, 67]
or the structured doubling algorithm [24]. (Note that the latter does not solve linear, but
quadratic palindromic eigenvalue problems by a transformation to generalized symplectic
form.)

6.1 Palindromic Laub trick

So far we aimed at computing the palindromic Schur form of a matrix A in order to obtain
invariant subspaces of (A, A?). In this section we go the other way round and use knowledge
about deflating subspaces to construct a palindromic Schur form. The idea goes back to
Laub [64], who used this approach for Hamiltonian matrices. The method was adapted to
T-palindromic problems in [67] where it was called structural deflation method. Here we stick
to the name Laub trick as it is more concise.

Assume that the orthonormal columns of Z1, Q1 ∈ Cn×k span corresponding deflating
subspaces of (A, A?), i.e., there are matrices S1, T1 ∈ Ck×k such that

AZ1 = Q1S1, A?Z1 = Q1T1, (6.1)

Moreover, let the spectrum of (S1, T1) be ?-reciprocal-free. Multiplying (6.1) by Z?
1 and using

Lemma 3.8 shows that Q?
1Z1 = 0. Thus, Z1 and QH?

1 can be complemented to a unitary
matrix Q̃ = [Z1, V,QH?

1 ], and a congruence with this matrix yields

R = Q̃?AQ̃ =




Z?
1Q1S1 T ?

1 Q?
1V T ?

1 Q?
1Q

H?
1

V ?Q1S1 V ?AV V ?AQH?
1

QH
1 Q1S1 QH

1 AV QH
1 AQH?

1


 =




0 0 T ?
1

0 R22 R23

S1 R32 R33




in palindromic block Schur form.
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Figure 6.1: Palindromic Laub trick: Left: Applied to matrix with 6 eigenvalues near 1, without
orthogonalization, Center: orthogonality residual Q̃HQ̃− I Right: with orthogonalization

The partial decomposition (6.1) can be obtained from a generalized Schur form computed,
e.g., by the QZ algorithm,

QHAZ = S =@, QHA?Z = T =@. (6.2)

In order to be useful the generalized Schur form (6.2) has to be ordered such that the first
eigenvalues are reciprocal free. When deciding on the exact order of the eigenvalues it should
be taken into account that an unstructured method was used to compute the generalized Schur
form. Consequently, near-exceptional eigenvalues will probably be less accurate than far-from-
exceptional eigenvalues. A plausible heuristic is to order the generalized Schur form (6.2) such
that the eigenvalues appear in increasing absolute value along the diagonals of S and T . This
way the first eigenvalues are reciprocal free and the problematic eigenvalues of modulus ≈ 1
are placed in the middle of the generalized Schur form.

The matrix Q̃ is then taken to be Q̃ = [Z(:, 1 : dn
2 e), Q(:, 1 : bn2 c)H?F ], where F denotes

the flip matrix. This corresponds to the choices

Z1 = Z(:, 1 : k), Q1 = Q(:, 1 : k)Fk, S1 = FkS(1 : k, 1 : k), T1 = FkT (1 : k, 1 : k),

for every value k = 1, . . . , bn2 c. Thus, the matrix R = Q̃?AQ̃ is not only in palindromic block
Schur form, but in palindromic Schur form.

Example 6.1 The Laub trick is applied to the matrix from Example 3.1. The Frobenius
norm rR of the elements above the antidiagonal of the resulting near-antitriangular matrix R
is of the order rR ≈ 2 · 10−13. The orthogonality residual rQ = ‖QHQ − I‖F is also in this
order.

A second example pencil, constructed in the spirit of [67], is of the size 20× 20 and has
7 random far-from-exceptional eigenvalue pairs and 6 eigenvalues with a distance from 1 less
then 10−13. These 6 nearly exceptional eigenvalues cause problems for the Laub trick: R is
not antitriangular, see left plot of Figure 6.1. Moreover, Q̃ is not unitary. The center plot
depicts Q̃HQ̃− I. ¤

The problem that Q̃ is not unitary can be solved by orthogonalizing it. However, this should
be done in a way that the “trusted” columns of Q̃ (the first and last ones) do not get cor-
rupted by the “untrusted” columns in the middle. For example, if Q̃ is just replaced with
its unitary QR factor Q̌ then the middle columns of Q̃ influence the last columns of Q̌. This
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problem can be circumvented by permuting Q̃ before the orthogonalization. Let Q̂ be the
unitary QR factor of [z1, q

H?
1 , z2, q

H?
2 , . . . , zbn/2c, qH?

bn/2c]. The used orthogonal matrix is then
[q̂1, q̂3, q̂5, . . . , q̂6, q̂4, q̂2].

Example 6.2 We revisit the second matrix from Example 6.1. With orthogonalization Q̃
is unitary to machine precision and R = Q̃?AQ̃ takes a form as depicted on the right of
Figure 6.1. ¤

Summarizing, we have the following algorithm.

Algorithm 6.1 Palindromic Laub trick
Input: A ∈ Cn,n

Output: unitary Q and R = Q?AQ close to antitriangular form
1: compute generalized Schur form (6.2) of (A,A?)
2: reorder generalized Schur form such that eigenvalues appear in increasing absolute value
3: [z1, q

H?
1 , z2, q

H?
2 , . . . , zbn/2c, qH?

bn/2c]→ Q̂R̂ (QR factorization)

4: Q̃← [q̂1, q̂3, q̂5, . . . , q̂6, q̂4, q̂2]
5: R← Q̃?AQ̃

The Laub trick can be used to deflate the far-from-exceptional eigenvalues from a palindromic
pencil. Hence, it is best suited, if the problem has no or only a few nearly exceptional
eigenvalues. This method has the advantage over previously described methods that highly
optimized and ready to use software implementing the QZ algorithm can be used whereas the
development of palindromic solvers is still at its beginning. Of course, a palindromic method
using this trick will never be faster than the QZ algorithm.

Another viewpoint to the Laub trick is that it uses an unstructured method to solve a
structured problem and afterwards “restructurizes” the result. As such it is an instance of a
more abstract principle described in [18].

6.2 Palindromic block refinement

In this section the palindromic eigenvalue problem to be solved is assumed to be close to
palindromic Schur form. When a problem is already almost solved, refinement methods are
usually more efficient than general purpose methods. They can also be more accurate [25].
Such a refinement method for the palindromic Schur form is described in the following. The
employed process is closely related to the palindromic eigenvalue swap, see Section 3.5.1.

Almost solved palindromic problems arise, e.g., if the result of the Laub trick is to be
refined, see above. Other applications include mixed precision algorithms where a palindromic
Schur form is computed in single precision and afterwards refined to double precision. This
is especially useful on architectures like the Playstation 3, the Cell processor or modern
graphics cards that execute single precision instructions many times faster than their double
counterparts [58, 62, 5].

Assume that A can be partitioned into

A =




m n− 2m m

m A11 A12 A13

n− 2m A21 A22 A23

m A31 A32 A33


 (6.3)
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such that ‖A11‖, ‖A12‖, and ‖A21‖ are small and A13 and A31 are almost antitriangular. This
means, there exists a small constant ε such that

max(‖A11‖, ‖A12‖, ‖A21‖, ‖A13 − Â13‖, ‖A31 − Â31‖) = O(ε) (6.4)

where Â13, Â31 denote the antitriangular parts of A13, A31 respectively and ‖A‖ is of order 1.
Moreover, A22 is assumed to be of small dimension (maybe void), but it need not be of any
particular structure.

In order to improve the quality of the Schur form, a ?-congruence will be performed such
that

Ã =




I Y ? X?

I Z?

I







A11 A12 A13

A21 A22 A23

A31 A32 A33







I
Y I
X Z I


 =




Ã13

Ã22 Ã23

Ã31 Ã32 Ã33


 (6.5)

is block antitriangular. Our block refinement method builds upon two assumptions regarding
the unknown matrices X, Y , and Z: first, ‖X‖, ‖Y ‖, and ‖Z‖ are expected to be of order
O(ε), and second, it is enough to determine X, Y , and Z only approximately.

Evaluating the block position (1, 1) of (6.5) yields

A13X + X?A31 + A11 + A12Y + Y ?A21 + Y ?A22Y + Y ?A23X + X?A32Y + X?A33X = 0.

Using the first assumption, this relation can be written as

A13X + X?A31 = −A11 +O(ε2). (6.6)

The second assumption is put into practice by neglecting the second order terms, resulting in
a linear matrix equation for X of the form (3.25). By Lemma 3.8 the existence of a solution
is guaranteed if λ(A13, A

?
31) is ?-reciprocal free.

Once X is determined, the matrices Y,Z? ∈ Cn−2m×m follow from the following matrix
equations that are obtained by evaluation of the block positions (2, 1), and (1, 2) of (6.5) to
first order.

A22Y + Z?A31 = −(A21 + A23X) +O(ε2) (6.7)
A?

22Y + Z?A?
13 = −(A?

12 + A?
32X) +O(ε2) (6.8)

Again, neglecting the second order terms results in a generalized Sylvester equation that has
a unique solution if λ(A22, A

?
22) ∩ λ(A13, A

?
31) = ∅.

The transformation matrix used in (6.5) is not unitary. Hence, its unitary QR factor is
used instead. 


I
Y I
X Z I


 = QR. (6.9)

The result of the refinement method is then formed as Â := Q?AQ. Note that Â = R−?ÃR−1.
Thus, Â should also be close to block antitriangular form.

This leads to the following algorithm.

Algorithm 6.2 Palindromic block refinement
Input: A ∈ Cn×n in form (6.3) such that (6.4) holds and λ(A13, A

?
31) is ?-reciprocal free,

λ(A22, A
?
22) ∩ λ(A13, A

?
31) = ∅
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Figure 6.2: Blockrefinement: Left: original, Center: one step of block refinement, Right: two
steps of block refinement

Output: one step of block refinement is applied to A
1: solve (6.6) for X
2: solve (6.7),(6.8) for Y, Z
3: compute QR factorization (6.9)
4: form A← Q?AQ

Solving the resulting linear matrix equations (6.6), and (6.7), (6.8) via their Kronecker
product formulation is prohibitive as this would mean O(n6) complexity. Instead, for the
generalized Sylvester equations (6.7), (6.8) the Bartels-Stewart algorithm [6] first computes
generalized Schur forms of (A13, A

?
31) and (A22, A

?
22) and then solves the system via backward

substitution resulting in O(n3) complexity. An analogous method exists for the Sylvester-like
equation (6.6), see [19].

Remark 6.1 The Bartels-Stewart (-like) algorithms can be accelerated by replacing A13, A31

by their antitriangular parts Â13, Â31 in (6.6), and (6.7), (6.8), because (Â13, Â
?
31) is already in

(permuted) generalized Schur form. This just adds another O(ε2) perturbation to the linear
equations. On the other hand A22 is in general full and thus should not be replaced by its
antitriangular part. Instead, (A22, A

?
22) can be transformed to palindromic Schur form or to

generalized Schur form. Both options are not expensive, as A22 was assumed to be small. ¤

Example 6.3 The refinement algorithm is tested on the second matrix of Example 6.1. An
approximate palindromic Schur form is obtained by applying the palindromic Laub trick in
single precision. This results in elements of the blocks A11, A12, and A21 of the size ≈ 10−5,
see left plot in Figure 6.2. After one step of block refinement they are on the order of 10−10.
A second step decreases them to the order of 10−15. The antitriangular parts of A13 and A31

were used to solve the matrix equations (6.6) and (6.7), (6.8). ¤

Once, A is block antitriangular, the problem decouples into the refinement of the generalized
Schur form of A13 and A31 and a small full palindromic eigenvalue problem for A22.

6.3 Hybrid method

All methods for the palindromic eigenvalue problem discussed in the preceeding have advan-
tages, but also flaws. A common idea in such a situation is to combine the several approaches



110 CHAPTER 6. MORE PALINDROMIC METHODS

to a hybrid algorithm that, in the best case, inherits all the strength of the individual meth-
ods, but none of their weaknesses. In this section such an approach for palindromic eigenvalue
problems is discussed.

A palindromic hybrid method, as proposed in [67] consists of 3 phases.

1. First, an efficient method is used to obtain an (approximate) block palindromic Schur
form that (nearly) deflates all the far-from-exceptional eigenvalues. The Laub trick is
a canonical candidate for this phase.

2. If necessary, the palindromic block Schur form is refined by an algorithm, like the
block refinement method discussed above, or the palindromic Jacobi algorithm presented
in [44, 67]. Since the methods used in phase 1 work very well for far-from-exceptional
eigenvalues only a few, if any, iterations of refinement are generally enough.

3. That leaves one with a middle block A22 containing the nearly or exactly exceptional
eigenvalues. Since this middle block is hopefully of small size, efficiency is not crucial
in this phase and (possibly very expensive, but) accurate methods can be applied.
Candidates are the explicit QR algorithm (maybe with exact shifts provided by the
URV algorithm) that tends to be able to deflate even very close-to-exceptional eigenvalue
pairs [67]. If the problem does not allow a palindromic Schur form, computing the URV
form of the middle block provides an alternative that still guarantees paired eigenvalues.
Another possibility is to diagonalize A22 by a nonunitary congruence transformation,
see Theorem 2.15 for necessary conditions.

The canonical order of the phases is, of course, 1,2,3. However, if the palindromic Jacobi
algorithm is used in phase 2 it has been observed in [67] that it is beneficial to already solve
the middle problem once before the refinement is done, i.e., to use a sequence of phases
1,3,2,3. A similar statement is true, if block refinement is used as the method computes the
generalized Schur form of (A22, A

?
22) This could be done by transforming A22 to palindromic

Schur form, see Remark 6.1.



Chapter 7

Conclusions

In this work palindromic and even eigenvalue problems were considered.

7.1 Which method to use

A number of methods for the solution of palindromic and even eigenvalue problems were
discussed in the thesis. Here, their properties are summarized. Moreover we will derive
criteria for the selection of an appropriate method for a given palindromic problem.

An ideal palindromic/even Algorithm would [53]

• be strongly backward stable in the sense of [13], i.e., compute the exact eigenvalues of
a nearby palindromic/even pencil;

• be reliable, i.e., able to solve every palindromic/even problem; and

• be more efficient in terms of necessary operations and memory consumption than general
purpose methods like the QZ algorithm.

We begin by assessing the unstructured QZ algorithm in order to set the mark, the other
algorithms have to beat. The QZ algorithm can be applied to any (regular) pencil. Except
for extremely rare cases, it will compute the generalized Schur form of a nearby pencil, i.e., it
is backward stable. Of course, it is not strongly backward stable when applied to a structured
problem. The QZ algorithm needs O(n3) floating point operations and 2n2 (4n2) words of
memory to compute the generalized Schurform (and the transformation matrices). Applied
to a palindromic or even pencil, the computed eigenvalues are typically approximately paired
only for far-from-exceptional and nontiny eigenvalues. The QZ algorithm does not yield a
palindromic or even Schur form.

The first structured method considered was the explicit palindromic QR algorithm
(i.e., the iterative application of Algorithm 3.2). The method cannot find exceptional eigen-
values, however close-to-exceptional eigenvalues can be handeld. If the method converges,
it yields a palindromic Schur form and thus computes perfectly paired eigenvalues. Since
the result arises from the original matrix by a series of unitary congruence transformations,
the method is strongly backward stable. This method needs 2n2, (3n2) words of memory to
compute the palindromic Schur form (and the transformation matrix) (n2 for each: A, Q and
Ã or its antitriangular QR factorization). A critical drawback of the explicit palindromic QR
algorithm is its quartic complexity, restricting its application to problems of small size.
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The implicit palindromic QR algorithm is a variant of the afore discussed explicit
method, but with dramatically improved properties. It is strongly backward stable. The
complexity is reduced to third order. In fact one iteration of the implicit palindromic QR
algorithm requires the same amount of work as one iteration of the QZ algorithm. But since
the implicit palindromic QR algorithm deflates at both corners of the matrix, it is typically
faster than the QZ algorithm [55]. Moreover, with n2 (2n2) words only half of memory of
the QZ algorithm is required. The method cannot work for exceptional eigenvalues. Close-
to-exceptional eigenvalues converge slower, but typically do converge. Having converged, the
algorithm returns a palindromic Schur from and thus yields paired eigenvalues. Unfortunately,
this method has a severe drawback. It can only be applied to matrices in anti-Hessenberg
form, because a reduction procedure to this form is missing.

This drawback is overcome by the URV algorithm. It can be applied to any (regular)
palindromic or even pencil, yields paired eigenvalues, and is of cubic complexity (with lower
flop count than the QZ algorithm). On the down side, the URV algorithm does not yield
a palindromic or even Schur form. It requires 3n2 (5n2) words of memory to compute the
antitriangular URV decomposition (and the transformation matrices). Moreover, the stability
properties are unknown. However, it is strongly backward stable for a related problem.

A fundamentally different approach is used by the palindromic Laub trick. It is a
postprocessing step of the unstructured generalized Schur form that yields an approximate
palindromic Schur form. The quality of the approximation decreases in the presence of close-
to exceptional eigenvalues. Thus, if eigenvalues are computed as the ratios of the antidiagonal
elements, then these numbers are paired, but they may have a large residual. The process
is strongly backward stable and needs 5n2 words of memory. (The transformation matrix is
always computed.) The execution time is slightly higher than that of the QZ algorithm.

The palindromic block refinement method is intended to improve the quality of
an approximate palindromic Schur form. Every step of this iterative procedure is of cubic
complexity. The method requires 2n2, (3n2) words of memory to compute the palindromic
Schur form (and the transformation matrix). The computed eigenvalues are paired, the
process is strongly backward stable.

The Hybrid method combines several algorithms into one. The palindromic Laub trick,
followed by a refinement method deflate the far-from-exceptional eigenvalues, then a third
method solves the remaining problem corresponding to the close-to-exceptional eigenvalues.
Thus it is applicable to palindromic pencils with only a few close-to-exceptional eigenvalues.
Like the Laub trick the hybrid method needs 5n2 words of memory. Its runtime is dominated
by the QZ algorithm (which is part of the Laub trick). It is strongly backward stable and, if
every step succeeds, yields a palindromic Schur form.

This leads to the following recommendations. If the problem to solve is in anti-Hessenberg
form (or easily transformable to this form) then the palindromic or even implicit QR algorithm
is the method of choice. Otherwise, if only eigenvalues are requested, then the antitriangular
URV algorithm is well suited. If a palindromic Schur form is needed and the problem is not
in anti-Hessenberg form, then we recommend the hybrid method.

7.2 Contributions of the author

The main contributions are the development of the palindromic/even QR-, and antitriangular
URV algorithms. (The implicit QR algorithms are joint work with David Watkins and Daniel
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Kressner.)
Moreover, the author provided the following contributions to the field of palindromic and

even eigenvalue problems.

• In Chapter 2: the derivation of the linearization (1.3) for cubic palindromic polynomials,
see Example 2.1; the construction of a canonical form under congruence especially for
the use as palindromic Kronecker form, see Section 2.2.2, and the extension of the
palindromic Schur form from the T-case to the H-, and the real case, (Section 2.3.1)
and to even pencils (Section 2.3.2).

• In Chapter 6: the palindromic block refinement method (Section 6.2) and the orthogo-
nalization of Q in the palindromic Laub trick (Section 6.1).

• In Appendix A, the derivation of a palindromic pencil in the discrete time optimal
control problem via a state transformation.

7.3 Future Research

Topics of future research include the following.

• FORTRAN implementations of the methods of this thesis are work in progress.

• Methods for large and sparse palindromic or even eigenvalue problems.

• A generalization of the theory to cover other notions of palindromic polynomials, such
as considered in [29, 30].

• Perturbation theory for the antitriangular URV algorithm. The symplectic URV algo-
rithm for Hamiltonian eigenvalue problems has the same forward stability properties,
as a backward stable method [9]. An analogous result for the even or palindromic case
is probable, but open.

• A transformation of the URV form to palindromic Schur form analogous to [23, 94] is
work in progress.

• Finding a method that meets all three criteria stated at the beginning of this chapter.
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Appendix A

From discrete optimal control to
palindromic pencils

Here we consider the linear quadratic optimal control problem in discrete time as stated in
Example 1.2. It consists of minimizing the objective function

J =
1
2

∞∑

i=0

[
xi

ui

]T [
Q S
ST R

] [
xi

ui

]
,

where
[

Q S

ST R

]
is symmetric, positive semidefinite, subject to

Exi+1 = Axi + Bui + fi, i = 0, . . . ,∞
where the matrices E, A ∈ Rm×n, B ∈ Rm×p, Q ∈ Rn×n, S ∈ Rn×p, R ∈ Rp×p, a vector
x0 ∈ Rn, and a vector sequence {fi} ∈ Rm are given, whereas the vector sequences {xi}∞i=1 ∈
Rn, {ui}∞i=0 ∈ Rp are wanted.

Under standard assumptions the standard approach leads in the quadratic case (n = m)
to the difference equation [72]




0 E 0
AT 0 0
BT 0 0







µi+1

xi+1

ui+1


 =




0 A B
ET Q S
0 ST R







µi

xi

ui


 +




fi

0
0


 , i = 0, . . . ,∞, (A.1)

which is not palindromic. We will present several possibilities to arrive at a palindromic
problem.

State transformation

We introduce the new variables zi =
∑i

j=0 xj , vi =
∑i

j=0 uj , and gi = Ex0 +
∑i

j=0 fj .
Summing the original system for i = 0, . . . , i gives

Ezi+1 = Azi + Bvi + gi, i = 0, . . . ,∞.

Using xi =
{

z0, i=0
zi−zi−1, i>0 , ui =

{
v0, i=0

vi−vi−1, i>0 , the objective function becomes

J =
1
4

[
z0

v0

]T [
Q S
ST R

] [
z0

v0

]
+

1
4

∞∑

i=1

[
zi − zi−1

vi − vi−1

]T [
Q S
ST R

] [
zi − zi−1

vi − vi−1

]
.
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The scaling factor 1
2 was changed to 1

4 for convenience; it does not change the minimizing
sequences.

Multiplying out the products and regrouping yields

J =
1
2
(
∞∑

i=0

[
zi

vi

]T [
Q S
ST R

] [
zi

vi

]
−

[
zi

vi

]T [
Q S
ST R

] [
zi+1

vi+1

]
).

Defining the vector y = [zT
0 , vT

0 , zT
1 , vT

1 , zT
2 , vT

2 , . . .]T and the infinite matrix

M =




A B −E
A B −E

A B −E
. . . . . . . . .


 ,

the system can be written as My = g with g = [gT
0 , gT

1 , gT
2 , . . .]T . Similarly, the objective

function can be written as J = 1
2yT Ly with

L =




Q S −Q −S
ST R −ST −R

Q S −Q −S
ST R −ST −R

. . . . . .
. . . . . .




.

Note that although L is not symmetric, it defines a positive semidefinite bilinear form J .
We have to solve the constrained optimization problem 1

2yT Ly
!= min such that My = g.

This optimization problem can be solved by computing stationary points of the Lagrangian
L(y, µ) = 1

2yT Ly + µT (My − g) with the Lagrange multipliers µ = [µT
1 , µT

2 , . . .]T where
µi ∈ Rm. Differentiating provides the following conditions for the optimal solution:

MT µ + Ly = 0,

My = g.

The latter equation resembles just the dynamical system whereas the first equation can be
written as

AT µ1 + Qz0 + Sv0 −Qz1 − Sv1 = 0,

−ET µi + AT µi+1 + Qzi + Svi −Qzi+1 − Svi+1 = 0, i = 1, . . . ,∞,

BT µi+1 + ST zi + Rvi − ST zi+1 −Rvi+1 = 0, i = 0, . . . ,∞.

The first two equations can be unified by introducing the additional variable µ0 = 0. Then
the system can be reorganized to the form




0 E 0
AT Q S
BT ST R




︸ ︷︷ ︸
AT



−µi+1

zi+1

vi+1


 =




0 A B
ET Q S
0 ST R




︸ ︷︷ ︸
A



−µi

zi

vi


 +




gi

0
0


 , i = 0, . . . ,∞. (A.2)
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with boundary conditions z0 = x0, µ0 = 0, and limi→∞ET µi = 0.
The solution of this system can be written as the solution of the homogeneous system

plus a special solution taking care of the inhomogeneity. The homogeneous system leads to a
palindromic eigenvalue problem using the ansatz [−µT

i+1, z
T
i+1, v

T
i+1]

T = λ[−µT
i , zT

i , vT
i ]T .

Algebraic transformation

The nonpalindromic pencil in (A.1) can be transformed directly to a palindromic pencil by a
simple algebraic manipulation:



1
1−λIm

In

Ip










0 A B
ET Q S
0 ST R


− λ




0 E 0
AT 0 0
BT 0 0










Im

(1− λ)In

(1− λ)Ip




=







0 A B
ET Q S
0 ST R


− λ




0 E 0
AT Q S
BT ST R





 .

The transformation matrices have poles for λ ∈ {1,∞}. As a consequence, the multiplicities
of the eigenvalues 1 and ∞ of the transformed pencil may have changed. All multiplicities of
all the other eigenvalues, however, are preserved. For details see [99].

Note that the palindromic pencil arising here equals the one in (A.2). That can be
explained by combining the definition zi+1 = zi + xi+1 with the ansatz zi+1 = λzi which
implies xi+1 = (λ − 1)zi. Analogously, ui+1 = (λ − 1)vi. So, broadly speaking, substituting
zi and vi for xi and ui introduces a factor (λ− 1) that palindromifies the pencil in (A.1).

Logarithmic reduction

We present a third variant. Shifting the last two block rows of (A.1) one power of λ upwards
results in the quadratic palindromic polynomial:




Im

−λIn

−λIp










0 A B
ET Q S
0 ST R


− λ




0 E 0
AT 0 0
BT 0 0







=







0 A B
0 0 0
0 0 0


− λ




0 E 0
ET Q S
0 ST R


 + λ2




0 0 0
AT 0 0
BT 0 0





 .

This transformation is closely related to the logarithmic reduction [63], for details see also [20].
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Appendix B

Matrix factorizations

In this appendix we discuss some of the more uncommon matrix factorizations that are used
in this thesis.

B.1 Antitriangular QR factorization

An antitriangular QR decomposition of a matrix A denotes the factorization of A = QR into
a unitary and an antitriangular factor.

Being a variant of the standard QR factorization, the antitriangular QR factorization
can be implemented as a series of n − 1 Householder reflections: the first reflection, H1,
annihilates all but the last entries in the first column of A yielding A1; the second reflection,
H2, annihilates all but the last two entries in the second column of A1 yielding A2; . . . the ith
reflection, Hi, annihilates all but the last i entries in the ith column of Ai−1 yielding Ai, for
i = 1, . . . , n − 1. Then, with Q = HH

1 · · ·HH
n−1 and R = An−1, A = QR is a antitriangular

QR factorization.
Another way to compute an antitriangular QR factorization is to flip a standard QR

factorization: if A = QR (with R upper triangular), then A = (QF )(FR) is an antitriangular
QR factorization, where F is the flip matrix.

This yields the algorithm:

Algorithm B.1 antitriangular QR factorization
Input: matrix A ∈ Cn,n

Output: unitary Q, antitriangular R such that A = QR
1: A→ QR (QR factorization)
2: Q← QF
3: R← FR

There is also an antitriangular RQ factorization:

Algorithm B.2 antitriangular RQ factorization
Input: matrix A ∈ Cn,n

Output: unitary Q, skew triangular R such that A = RQ
1: A← FA
2: A→ RQ (RQ factorization)
3: R← FR

119
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The cost aspects of the antitriangular QR factorization equal those of the standard QR
factorization: it requires 4

3n3 flops to manipulate A, and further 4
3n3 flops to generate the

unitary factor Q. Applying Q to a skew symmetric matrix as congruence (as is needed in
phase 2 of the antitriangular URV algorithm, see Chapter 5) takes 2n3 flops.

The stability aspects of the antitriangular QR factorization equal those of the standard
QR factorization, i.e., it is backward stable, see [36] for details.

B.2 (Reduced) skew QRQT factorization

Here we describe a method to compute a decomposition of a skew symmetric matrix S of the
form

S = QRQT ,

where Q is unitary, and R is antitriangular and skew symmetric. This can be achieved by a
series of Householder transformations. The process is demonstrated for an 8-by-8 matrix.

S =




0 x x x x x x x
x 0 x x x x x x
x x 0 x x x x x
x x x 0 x x x x

x x x x 0 x x x
x x x x x 0 x x
x x x x x x 0 x
x x x x x x x 0




Let H̃1 be a Householder reflector, such that H̃1S(2 : 8, 1) = α1e7. Set H1 := 1⊕ H̃1. Then

S1 := H1SHT
1 =




0 0 0 0 0 0 0 y
0 0 x x x x x x
0 x 0 x x x x x
0 x x 0 x x x x

0 x x x 0 x x x
0 x x x x 0 x x
0 x x x x x 0 x
x x x x x x x 0




. (B.1)

The remainder of the process consists of the recursive application of the scheme to the subma-
trix S1(2 : 7, 2 : 7): so let H̃2 be a Householder matrix that reflects S1(3 : 7, 2) to a multiple
of e5 and define H2 := I2 ⊕ H̃2 ⊕ 1. Then

S2 := H2H1SHT
1 HT

2 =




x
0 0 0 0 0 x x
0 0 x x x x x
0 x 0 x x x x

0 x x 0 x x x
0 x x x 0 x x
x x x x x 0 x

x x x x x x x 0




.
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Finally, defining a Householder reflector, such that H̃3S2(4 : 6, 3) = α3e3 and H3 := I3⊕H̃3⊕
I2 gives

R := H3H2H1SHT
1 HT

2 HT
3 =




x
x x

0 0 0 x x x
0 0 x x x x

0 x 0 x x x
x x x 0 x x

x x x x x 0 x
x x x x x x x 0




.

Defining Q := HH
1 HH

2 HH
3 , we have S = QRQT with antitriangular R, as desired.

Above reduction, applied to a skew symmetric matrix, yields an antitriangular matrix
regardless of whether n is even or odd. However if n is odd, the form can be further reduced.
This yields the reduced skew QRQT factorization

S = QRQT ,

where Q is unitary and R is of the form 0⊕¡.
This second phase is depicted in the following for an example of size 7. Application of the

above process brings S to antitriangular form.

S =




0 x x x x x x
x 0 x x x x x
x x 0 x x x x
x x x 0 x x x

x x x x 0 x x
x x x x x 0 x
x x x x x x 0




, S1 = Q̃SQ̃T =




x
x x

x x x
0 x x x

x x 0 x x
x x x x 0 x

x x x x x x 0




Now, we eliminate the antidiagonal elements, starting in the center going outwards. A two
sided rotation in the (3,4) plane can be used to eliminate the elements (3,5) and (5,3):

S2 =




x
x x

0 x x
x x x

0 x 0 x x
x x x x 0 x

x x x x x x 0




.

Analogously, rotations in the (i, i+1) plane can be used to eliminate the elements (i, n+1−i)
and (n + 1− i, i), for i = n−1

2 − 1, n−1
2 − 2, . . . , 1.

S3 =




x
0 x
x x

x x x

x 0 x x
0 x x x 0 x

x x x x x x 0




, S4 =




0
x

x x
x x x

x 0 x x
x x x 0 x

0 x x x x x 0



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At this point R := S4 is of the desired form. We have the following algorithm.

Algorithm B.3 (Reduced) skew symmetric QRQT factorization
Input: skew symmetric matrix S ∈ Cn,n; flag want reduced, indicating whether a reduced

factorization is wanted
Output: unitary Q, skew triangular, skew symmetric R such that S = QRQT , S is over-

written by R
1: Q← In

2: for i = 1 : dn2 e − 1 do
3: define reflector H such that HS(i + 1 : n + 1− i, i) = αen+1−2i

4: S ← HS(i + 1 : n + 1− i, :)
5: S ← S(:, i + 1 : n + 1− i)HT

6: Q← HQ(i + 1 : n + 1− i, :)
7: end for
8: if n is odd and want reduced then
9: for i = n−1

2 : −1 : 1 do
10: define rotation G such that GS(i : i + 1, n + 1− i) = [ 0∗ ]
11: S ← GS(i : i + 1, :)
12: S ← S(:, i : i + 1)GT

13: Q← GQ(i : i + 1, :)
14: end for
15: end if

Assuming that only one half of the skew symmetric matrix S is stored and manipulated the
reduction of S to antitriangular form needs 5

6n3 flops. Applying the unitary factor Q to
an n × k matrix costs n2k further operations. Forming Q itself takes 2

3n3 flops. Note that
the numbers for the reduced and the unreduced QRQT factorization are equal, because the
additional operations in the reduced case are only of complexity O(n2).

As the (reduced) antitriangular QRQT algorithm consists only of a sequence of House-
holder or Givens updates of the matrix S standard analysis techniques [36, Section 5.1] can
be used to show that the computed antitriangular factor R̂ is the exact factor of a nearby
skew symmetric matrix, i.e., there is a unitary matrix Q such that ‖S−QR̂QT ‖2 = O(ε)‖S‖2
and ‖Q̂HQ̂− I‖2 ≈ ε. So the algorithm is strongly backward stable.

B.3 (Skew symmetric) Takagi factorization

In this section we show how to transform a skew symmetric matrix S = −ST ∈ Cn×n to the
form

QSQT =




r r

r D
0

r −DT


, with D =¡ antidiagonal, real, positive. (B.2)

This factorization may be thought of as a structured version of the singular value decom-
position, as S = UΣV H where U = QH , Σ = DF ⊕ 0n−2r ⊕ FD, V = QT F (In−r ⊕ −Ir),
and F is the flip matrix. We call it skew Takagi factorization. The name is inspired by
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the Takagi factorization [87, according to [15]], a decomposition of a complex symmetric ma-
trix M = MT ∈ Cn×n into M = UΣUT , where U is unitary and Σ is real, nonnegative,
and diagonal. This factorization can be seen as a symmetric variant of the singular value
decomposition. An algorithm to compute the Takagi factorization was described in [15].

The process for the skew symmetric case is demonstrated for a 7-by-7 example.

S =




0 x x x x x x
x 0 x x x x x
x x 0 x x x x
x x x 0 x x x
x x x x 0 x x
x x x x x 0 x
x x x x x x 0




,

We begin by transforming S to antibidiagonal form. First, the first row and column are
reduced to the last entry. Then the last row/column are reduced to the first two entries.




0 0 0 0 0 x
0 0 x x x x x
0 x 0 x x x x
0 x x 0 x x x
0 x x x 0 x x
0 x x x x 0 x
x x x x x x 0




,




x
0 x x x x x
x 0 x x x 0
x x 0 x x 0
x x x 0 x 0
x x x x 0 0

x x 0 0 0 0




,

Then, this scheme is recursively applied to the S(2 : n− 1, 2 : n− 1) submatrix,




x
0 0 0 x x

0 0 x x x
0 x 0 x x
0 x x 0 x
x x x x 0

x x




,




x
x x

0 x x x
x 0 x 0
x x 0 0

x x 0 0
x x




,

yielding S in the form

S1 =




x
x x

0 x x
0 0 x

x x 0
x x

x x




.

At this point, the matrix decouples. It can be partitioned as

S1 =
[ d

n
2 e bn2 c

dn2 e 0 −(FB)T

bn2 c FB 0

]
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where B is upper bidiagonal. Let B = U
[

Σ 0
0 0

]
V H with Σ ∈ Rr×r be the singular value

decomposition of B. Then with Q = V T ⊕ FUHF we have

QS1Q
T =

[ dn
2 e bn2 c

dn2 e 0 −V T (FB)T FŪF
bn2 c FUHFFBV 0

]
=




r r

r 0 0 0 −(FΣ)T

0 0 0 0
0 0 0 0

r FΣ 0 0 0


.

This matrix is in form (B.2).

Algorithm B.4 Skew symmetric Takagi factorization
Input: skew symmetric matrix S ∈ Cn,n

Output: unitary Q, skew symmetric, skew diagonal, real R such that S = QRQT , S is
overwritten by R

1: Q← In

2: for i = 1 : bn2 c − 1 do
3: define reflector H such that HS(i + 1 : n + 1− i, i) = αen+1−2i

4: S ← HS(i + 1 : n + 1− i, :)
5: S ← S(:, i + 1 : n + 1− i)HT

6: Q← HQ(i + 1 : n + 1− i, :)
7: define reflector H such that HS(i + 1 : n− i, n + 1− i) = αe1

8: S ← HS(i + 1 : n− i, :)
9: S ← S(:, i + 1 : n− i)HT

10: Q← HQ(i + 1 : n− i, :)
11: end for
12: if n is odd then
13: i← n+1

2
14: define rotation G such that GS(i : i + 1, i− 1) = [ 0∗ ]
15: S ← GS(i : i + 1, :)
16: S ← S(:, i : i + 1)GT

17: Q← GQ(i : i + 1, :)
18: end if
19: B ← FS(dn2 e : n, 1 : bn2 c)
20: B → UΣV (singular value decomposition)
21: S(dn2 e+ 1 : n, 1 : bn2 c)← FΣ
22: S(1 : bn2 c, dn2 e+ 1 : n)← −ΣF
23: Q(1 : dn2 e, :)← V T Q(1 : dn2 e, :)
24: Q(bn2 c+ 1 : n, :)← FU∗FQ(bn2 c+ 1 : n, :)

Assuming that only one half of the skew symmetric matrix S is stored and manipulated, the
first step of the skew Takagi factorization, the reduction of S to bidiagonal form costs 4

3n3

flops. The following SVD computation is neglectable, if an O(n2) algorithm is used, see [98]
and the references therein. Generating the unitary factor Q costs another 2n3 flops. Applying
Q to an n×k matrix costs 2n2k flops, if Q has been assembled before, or 3n2k flops otherwise.
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B.4 URV-Hessenberg reduction

Algorithm B.5 URV-Hessenberg reduction
Input: matrices A,N = −NT , S = −ST ∈ Cn,n, n even, A,S antitriangular
Output: unitary U, V such that Ñ = UT NU is anti-Hessenberg, while Ã = UT AV and

S̃ = V T SV are antitriangular, A,N, S are overwritten by Ã, Ñ , S̃
1: U ← In

2: V ← In

3: for j = 1 : n
2 − 1 do

4: for i = j + 1 : n
2 − 1 do

5: define rotation G such that GN(i : i + 1, j) = [ 0∗ ] % annihilate N(i,j) by rotation in
(i,i+1) plane

6: N(i : i + 1, :)← GN(i : i + 1, :)
7: N(:, i : i + 1)← N(:, i : i + 1)GT

8: U(:, i : i + 1)← U(:, i : i + 1)GT

9: A(i : i + 1, :)← GA(i : i + 1, :) % fill-in at A(i, n− i)
10: % annihilate A(i,n-i) by rotation in (n-i,n-i+1) plane
11: define rotation G such that A(i, n− i, n− i + 1)GT = [0, ∗]
12: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

13: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

14: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT

15: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :) % fill-in at S(i, n− i)
16: % zero S(i,n-i) by rotation in (i,i+1) plane
17: define rotation G such that GS(i : i + 1, n− i) = [ 0∗ ]
18: S(i : i + 1, :)← GS(i : i + 1, :)
19: V (:, i : i + 1)← V (:, i : i + 1)GT

20: A(:, i : i + 1)← A(:, i : i + 1)GT % fill-in at A(n− i, i)
21: % annihilate A(n-i,i) by rotation in (n-i,n-i+1) plane
22: define rotation G such that GA(n− i : n− i + 1, i) = [ 0∗ ]
23: A(n− i : n− i + 1, :)← GA(n− i : n− i + 1, :)
24: U(:, n− i : n− i + 1)← U(:, n− i : n− i + 1)GT

25: N(n− i : n− i + 1, :)← GN(n− i : n− i + 1, :)
26: N(:, n− i : n− i + 1)← N(:, n− i : n− i + 1)GT % no fill-in in N
27: end for
28: i← n

2
29: % annihilate N(i,j) by rotation in (i,i+1) plane
30: define rotation G such that GN(i : i + 1, j) = [ 0∗ ]
31: N(i : i + 1, :)← GN(i : i + 1, :)
32: N(:, i : i + 1)← N(:, i : i + 1)GT

33: U(:, i : i + 1)← U(:, i : i + 1)GT

34: A(i : i + 1, :)← GA(i : i + 1, :) % fill-in at A(i, n− i)
35: % annihilate A(i,n-i) by rotation in (n-i,n-i+1) plane
36: define rotation G such that A(i, n− i : n− i + 1)GT = [0, ∗]
37: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

38: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

39: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
40: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT % no fill-in in S
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41: for i = m + 1 : n− j − 1 do
42: % annihilate N(i,j) by rotation in (i,i+1) plane
43: define rotation G such that GN(i : i + 1, j) = [ 0∗ ]
44: N(i : i + 1, :)← GN(i : i + 1, :)
45: N(:, i : i + 1)← N(:, i : i + 1)GT

46: U(:, i : i + 1)← U(:, i : i + 1)GT

47: A(i : i + 1, :)← GA(i : i + 1, :) % fill-in at A(i, n− i)
48: % annihilate A(i,n-i) by rotation in (n-i,n-i+1) plane
49: define rotation G such that A(i, n− i : n− i + 1)GT = [0, ∗]
50: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

51: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT

52: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
53: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT % fill-in at S(n− i, i)
54: % annihilate S(n-i,i) by rotation in (i,i+1) plane
55: define rotation G such that S(n− i, i : i + 1)GT = [0, ∗]
56: S(:, i : i + 1)← S(:, i : i + 1)GT

57: S(i : i + 1, :)← GS(i : i + 1, :)
58: V (:, i : i + 1)← V (:, i : i + 1)GT

59: A(:, i : i + 1)← A(:, i : i + 1)GT % fill-in at A(n− i, i)
60: % annihilate A(n-i,i) by rotation in (n-i,n-i+1) plane
61: define rotation G such that GA(n− i : n− i + 1, i) = [ 0∗ ]
62: A(n− i : n− i + 1, :)← GA(n− i : n− i + 1, :)
63: U(:, n− i : n− i + 1)← U(:, n− i : n− i + 1)GT

64: N(n− i : n− i + 1, :)← GN(n− i : n− i + 1, :)
65: N(:, n− i : n− i + 1)← N(:, n− i : n− i + 1)GT % no fill-in in N
66: end for
67: end for

B.5 Phase 5

Algorithm B.6 Phase 5 of antitriangular URV algorithm
Input: matrices A,N = −NT , S = −ST ∈ Cn,n of the form (5.9)
Output: unitary U, V such that Ñ = UT NU , Ã = UT AV , S̃ = V T SV are of the form

(5.10), A, N, S are overwritten by Ã, Ñ , S̃
1: for j = 1 : r do
2: for i = 2r + 1− j : n− j do
3: % annihilate N(i,j) by Givens rotation in (i,i+1) plane
4: define rotation G such that GN(i : i + 1, j) = [ 0∗ ]
5: N(i : i + 1, :)← GN(i : i + 1, :)
6: N(:, i : i + 1)← N(:, i : i + 1)GT

7: U(:, i : i + 1)← U(:, i : i + 1)GT

8: A(i : i + 1, :)← GA(i : i + 1, :) % fill-in at A(i, n− i)
9: % annihilate A(i,n-i) by Givens rotation in (n-i,n-i+1) plane

10: define rotation G such that A(i, n− i : n− i + 1)GT = [0, ∗]
11: A(:, n− i : n− i + 1)← A(:, n− i : n− i + 1)GT

12: V (:, n− i : n− i + 1)← V (:, n− i : n− i + 1)GT
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13: S(n− i : n− i + 1, :)← GS(n− i : n− i + 1, :)
14: S(:, n− i : n− i + 1)← S(:, n− i : n− i + 1)GT

15: end for
16: end for
17: % triangularize middle block in N
18: [Q,N(r + 1 : n− r, r + 1 : n− r)]← Algorithm B.3(N(r + 1 : n− r, r + 1 : n− r),false)
19: N(r + 1 : n− r, n− r + 1 : n)← Q∗N(r + 1 : n− r, n− r + 1 : n)
20: N(n− r + 1 : n, r + 1 : n− r)← N(n− r + 1 : n, r + 1 : n− r)Q̄
21: U(:, r + 1 : n− r)← U(:, r + 1 : n− r)Q̄
22: A(r + 1 : n− r, :)← Q∗A(r + 1 : n− r, :) % fill in in A
23: % retriangularize middle block of A(i,n-i) by skew RQ factorization
24: A(r + 1 : n− r, r + 1 : n− r)Q← A(r + 1 : n− r, r + 1 : n− r) % antitriangular RQ

decomposition
25: A(n− r + 1 : n, r + 1 : n− r)← A(n− r + 1 : n, r + 1 : n− r)Q∗

26: V (:, r + 1 : n− r)← V (:, r + 1 : n− r)Q∗

27: S(r + 1 : n− r, :)← Q̄S(r + 1 : n− r, :)
28: S(:, r + 1 : n− r)← S(:, r + 1 : n− r)Q∗
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[80] Christian Schröder. A QR-like algorithm for the palindromic eigenvalue problem.
Preprint 388, DFG Research Center Matheon, Mathematics for key technologies in
Berlin, TU Berlin, Germany, 2007.
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[92] Andràs Varga and Paul Van Dooren. Computational methods for periodic systems — an
overview. In Proc. of IFAC Workshop on Periodic Control Systems, Como, Italy, pages
171–176, 2001.

[93] David S. Watkins. The transmission of shifts and shift blurring in the QR algorithm. In
Proceedings of the Fourth Conference of the International Linear Algebra Society (Rot-
terdam, 1994), volume 241/243, pages 877–896, 1996.

[94] David S. Watkins. On the reduction of a Hamiltonian matrix to Hamiltonian Schur form.
Electron. Trans. Numer. Anal., 23:141–157, 2006.

[95] David S. Watkins. The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods.
SIAM, Philadelphia, 2007.

[96] David S. Watkins and Ludwig Elsner. Theory of decomposition and bulge-chasing algo-
rithms for the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl., 15(3):943–
967, 1994.

[97] James H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs on Numerical
Analysis. Oxford Science Publications, Clarendon Press, Oxford, 1988.

[98] Paul R. Willems, Bruno Lang, and Christof Vömel. Computing the bidiagonal SVD
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