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Abstract

The term energy harvesting refers to various strategies to transform small amounts of ambient en-
ergy into a useful form. When the available energy is of a kinetic type, an energy harvester is often
designed as a mechanical oscillator, made of a bending beam structure and attached piezoelectric
patches to transform motion energy into electrical energy. One specific harvester has attracted a
lot of attention, due to its potentially higher efficiency for energy harvesting purposes. It consists
additionally of two permanent magnets near the free end of the beam, which is itself ferromag-
netic. As a result, the system is nonlinear with two stable states for the deformed beam. When
the piezoelectric part is neglected, the system is reduced to a bistable beam and its dynamics is
most often described by the bistable Duffing oscillator equation with a cubic part in the restoring
terms. This model has been extensively studied in literature. However, the assumptions which are
necessary to reduce the reality of an experimental setup of a bistable beam to this type of model,
have so far not been studied as extensively. Hence, the validity of the theoretical predictions for
an actual experimental setup is often doubtful. Typically, the bistable Duffing oscillator is initially
set to be a sufficient model and just adapted to an experimental setup by a heuristic method. A
consequential drawback is that there is no direct connection between the model and the physical
parameters of the setup. It is, therefore, not clear how the physical setup should be changed once
the model parameters are changed, for example, when optimizing the model parameters in regards
of its efficiency.

The thesis presented here is a step towards a more sophisticated modeling of such an experimen-
tal setup of a bistable beam. It is a cumulative dissertation based on three publications, each dealing
with specific aspects of the model assumptions usually made in literature. Among these assump-
tions, the most important ones are that the influence of the magnetic field can be approximated
by a single force, which is concentrated at the beam tip and is cubically dependent on the beam’s
displacement, and that the beam shape stays constant during vibrations, with only its amplitude
changing over time.

In the first publication, the magnetoelastic force is of main interest. One of the article’s goals is
to present an alternative to the mentioned heuristic modeling by determining the magnetic force nu-
merically. An analysis of the bifurcation behavior of the system’s stable states for different magnet
distances was conducted to compare the model with the experiments. At present, the accuracy of the
achieved results is unsatisfactory, because the magnetic field cannot be sufficiently approximated
through a two-dimensional simulation, as further investigations revealed. The second publication
investigates the shape of the deformed beam during forced vibrations. An analysis of picture se-
quences of the beam taken by a high speed camera during forced vibrations and subsequent digital
image processing shows that the assumption of one constant beam shape is sufficient in most cases.
A second constant function is required only when superharmonic responses occur. The third publi-
cation compares the experimental setup’s stationary response to the predictions of a corresponding
Duffing model. A direct comparison of explicit solutions cannot be performed, since the steady
state solution of the nonlinear system depends on the initial conditions, which cannot be controlled
on the experimental setup. A comparison, conducted between a large amount of experiments and
many time integrations shows that they are of good accordance, but a shift of the occurred type of
solutions to higher frequencies is observed in the numerical case.

In conclusion, the predictions of a bistable Duffing model are, generally, in good agreement
with the experimental results of the setup considered, and deviate only in some aspects, as this
dissertation describes. This thesis thus constitutes a link between the heuristic modeling approach
discussed in literature and a model that will enable an optimization of the underlying energy har-
vesting system in future.



Kurzzusammenfassung

Energy Harvesting ist ein Sammelbegriff fiir simtliche Strategien, wie kleine Mengen bereits vorhan-
dener Energie aus der Umgebung technisch nutzbar gemacht werden konnen. Wenn es sich um
Bewegungsenergie handelt, sind Energy Harvesting Systeme oft aus einer schwingungsfihigen
Balkenstruktur aufgebaut, an der zur Energieumwandlung Piezos angebracht sind. Ein spezieller
Aufbau hat dabei in der Literatur viel Aufmerksamkeit erhalten, da er sich unter bestimmten Um-
standen als besonders effizient herausgestellt hat. Er hat die Besonderheit, dass in der Néhe der
Balkenspitze zusitzlich zwei Permanentmagnete platziert sind, weshalb sich das System durch
ein ausgeprigtes nichtlineares Verhalten kennzeichnet und zwei stabile Gleichgewichtslagen fiir
den Balken aufweist. Fiir den Fall, dass die Piezos aus der Betrachtung ausgeschlossen werden,
verbleibt ein sogenannter bistabiler Balken, dessen Dynamik in der Literatur zumeist durch die
bistabile Duffinggleichung beschrieben wird, die durch eine kubische Nichtlinearitét in der Riick-
stellung gekennzeichnet ist. Jedoch sind die Modellannahmen, die von einem realen Aufbau auf
diese Duffinggleichung fiihren, nicht gleichermallen abgedeckt. Daraus folgt, dass die Modell-
vorhersagen nicht uneingeschrinkt auch fiir einen physischen Aufbau gelten. Dariiber hinaus wird
die Giiltigkeit des bistabilen Duffings haufig einfach vorausgesetzt und dieses Modell heuristisch
fiir den zu untersuchenden Aufbau angepasst. Das bedeutet im Umkehrschluss, dass das Modell
nicht von den spezifischen Eigenschaften des Aufbaus abgeleitet wird und deshalb auch nicht klar
ist, wie der physische Aufbau entsprechend zu dndern ist, wenn die Modellparameter veréndert
werden, beispielsweise im Zuge einer Optimierung.

Die vorliegende Arbeit ist der Versuch, die Modellierung eines solchen bistabilen Balkens zu
verbessern. Es handelt sich um eine kumulative Arbeit, bestehend aus drei Veroffentlichungen, die
sich jeweils verschiedenen Modellierungsaspekten des bistabilen Balkens widmen. Die wichtigsten
davon sind, dass sich das Magnetfeld in seiner Wirkung auf eine Einzelkraft an der Balkenspitze
reduzieren lésst, die kubisch von dessen Auslenkung abhéngt. Aulerdem wird angenommen, dass
die Deformation des Balkens stets durch lediglich eine feste Funktion beschrieben werden kann.

In der ersten Veroffentlichung stehen die aus dem Magnetfeld resultierende Kraft und ihre nu-
merische Bestimmung im Mittelpunkt. Das Ziel in dieser Publikation ist es, ein alternatives Ver-
fahren zu der heuristischen Herangehensweise zu entwickeln. Die Ergebnisse aus Theorie und
Experiment werden anhand des Verzweigungsverhaltens der Ruhelagen fiir verschiede Magnetab-
stande verglichen. Es muss konstatiert werden, dass die Ergebnisse soweit noch keine zufrieden-
stellende Genauigkeit aufweisen, da das Magnetfeld nicht zureichend durch eine zweidimensionale
Simulation approximiert werden kann, wie in weiterfiihrenden Untersuchungen festgestellt wurde.
Die zweite Veroffentlichung behandelt die Frage nach der Schwingform des Balkens bei erzwun-
genen Schwingungen. Dafiir wurden mit einer Highspeed-Kamera Aufzeichnungen gemacht, aus
denen nach einer Bild-fiir-Bild Analyse ermittelt werden konnte, dass die Verformung des Balkens
zum groften Teil durch eine feste Form beschrieben werden kann und eine weitere nur bei su-
perharmonischen Antworten benétigt wird. In der dritten Verdffentlichung werden die Vorher-
sagen eines entsprechenden heuristischen Modells beziiglich der stationédren Systemantworten fiir
eine harmonische Anregung mit denen des experimentellen Aufbaus verglichen. Dazu wurden
zahlreiche Experimente mit den theoretischen Zeitverldaufen aus numerischen Zeitintegrationen ver-
glichen. Die Ergebnisse stimmen grofteils gut iiberein, jedoch besteht auf numerischer Seite eine
Verschiebung der auftretenden Arten von Losungen zu hoheren Frequenzen.

Insgesamt stellt die Duffinggleichung in weiten Bereichen ein geeignetes Minimalmodell dar,
aber kann in wenigen, oben beschriebenen, Details unzuldnglich sein. Diese Arbeit stellt einen
Zwischenschritt zwischen einem heuristischen Modell und einem zukiinftigen Modell dar, das eine
Optimierung des Systems anhand seiner spezifischen Eigenschaften ermoglicht.
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1 Introduction

1 Introduction

Energy harvesting is a term which refers to strategies for capturing ambient energy already available
in the environment, which is simply lost for technical purposes if it remains unused. This technology
is distinct from energy generation on large scales as renewable energy, since its goal is to convert
only small amounts of energy into a useful form, usually electricity. The harvested energy is just
sufficient to run small electric devices, which are currently most often powered by batteries [Shaikh
and Zeadally, 2016; Tang et al., 2018], which are finite sources of energy. Energy harvesting
techniques hold the potential, in many applications, to avoid battery replacements, which entail
high cost and considerable chemical waste production. Typical applications of low power electronic
devices powered by energy harvesting systems are animal tracking [Wu et al., 2014], environmental
or structural health monitoring [Matiko et al., 2013; Park et al., 2008], or medical devices [Paulo
and Gaspar, 2010]. An earlier overview of the versatile applications of energy harvesters was
published more than a decade ago [Gilbert and Balouchi, 2008] and their relevance is still growing
today [Adu-Manu et al., 2018; Safaei et al., 2019].

The principle of energy conversion in any energy harvester primarily depends on the nature of the
ambient energy. Possible sources are temperature gradients, solar energy, electromagnetic waves or
kinetic energy in the form of vibrations [Harb, 2011; Tang et al., 2018]. Strategies in the last case
are comparatively new when contrasted with well-established applications like, for example, solar
powered calculators, which are now known for 40 years [Brand et al., 2015]. One of the earliest
mentions of the idea of vibration-to-electricity conversion appeared in [Williams and Yates, 1996].
Since then, motion-based energy harvesting approaches have been a major interest of international
research, resulting in a well-established fundamental theory covered in many related introductory
textbooks [Erturk and Inman, 2011a; Brand et al., 2015; Rafique et al., 2018].

There are three main transduction mechanisms for vibration-to-electricity energy conversion
given in [Williams and Yates, 1996] as electromagnetic, electrostatic and piezoelectric transduc-
tions. A comparison of the number of publications which have appeared using each of these
three transduction alternatives reveals that piezoelectric transduction has received the most atten-
tion [Toprak and Tigli, 2014]. Piezoceramics are made of special crystalline materials that accumu-
late electric charges in response to applied mechanical stress, which is called the direct piezoelectric
effect. Piezoelectric materials are preferred because of their high energy density and their ease of
application [Calio et al., 2014]. When mechanical strain is applied, usable voltage output can be
obtained directly from the piezoelectric material itself, which eliminates the need for an external
voltage input.

A typical vibration-based piezoelectric energy harvester is a cantilever beam with attached piezo-
ceramic layers [Anton and Sodano, 2007; Kim et al., 2011]. The harvester beam is located on an
exterior vibrating host structure, that excites the system by its motion. Thereby, dynamic strain is
induced in the piezoceramics by a temporally varying deformation of the bending beam, which re-
sults in an alternating voltage output across their electrodes. When a harmonic external excitation
of known and fixed frequency is present, such energy harvesters show their best performance when
they are designed as linear resonators with their base frequency tuned to the excitation frequency.
However, real-world excitations are most commonly not mono-frequent, but show broadband fre-
quencies, are partly stochastic or change over time [Roundy et al., 2003; Reilly et al., 2009; Lentz
et al., 2017]. In these cases, where there is a mismatch between the excitation frequency and the
resonance frequency of the system, their power output decreases drastically [Fakhzan and Muthalif,
2013; Wang and Meng, 2013; Lumentut and Howard, 2013].

To overcome this design bottleneck, many strategies are developed to widen the frequency range
with high power outputs of primarily linear energy harvesting systems. Earlier reviews on strategies
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to enlarge the applicable frequency range are [Ibrahim and Ali, 2012; Tang et al., 2010; Twiefel
and Westermann, 2013], and this remains of high interest today [Yildirim et al., 2017; Wei and
Jing, 2017; Maamer et al., 2019]. Right from the start, parallel to the improvements of energy
harvesters that can be described by linear models, the ambitious approach was made to purposely
introduce nonlinearities to the system to increase its efficiency, which can be done by many different
mechanisms. The number of review papers summarizing the even larger number of individual
publications are a proof of their diversity and the general interest in nonlinear vibrational energy
harvesting systems [Pellegrini et al., 2013; Harne and Wang, 2013; Dagaq et al., 2014; Wei and
Jing, 2017; Tran et al., 2018].

Clearly, nonlinearities exist, at least to some extent, in any real mechanical system, but can most
often be dealt with by a linearization of the underlying equations, which, in many cases, yields
a good approximation of the system. The linearization is done around a given point of interest,
which is, in the case of vibrational energy harvesting systems with a beam structure, most often
the undeflected beam position. This is an equilibrium, a state where all forces (and moments)
cancel each other out, and the total force is zero. Hence, in this state, the beam is able to rest
when no excitation is present. However, the nonlinear mechanisms in nonlinear energy harvesting
systems are designed to be so distinct that more than one equilibrium position exist. In many cases a
linearization cannot be performed to describe the overall behavior of the system in all regions. This
so called multistability can differ in its degree, where two, three, or more stable equilibria may exist.
Note that when more than one stable equilibrium exists, also unstable ones exist. In the past, most
publications have been on bistable systems with two stable equilibria and one unstable equilibrium,
but the interest in systems with more than two stable equilibrium positions is rising [Zhou et al.,
2014; Cao et al., 2015; Zhou et al., 2016; Zhou et al., 2018; Zhou and Zuo, 2018].

Bistability in energy harvesting systems is often achieved through the use of permanent magnets,
which primarily cause magnetic forces on the (necessarily ferromagnetic) beam that depend on the
beam’s deformation. In synergy with the pure mechanical force from the beam bending, the mag-
netic force changes the overall restoring force, which is the force that brings the system towards
the stable equilibrium positions and vanishes in any equilibria, stable or non-stable. Magnets offer
favorable characteristics in terms of a purposed design of the system’s nonlinearity, simply by the
choice (number, dimensions, strength) and positioning of the permanent magnets. Adding mag-
nets to a primarily linear system potentially increases its efficiency, but a direct comparison of a
nonlinear magnetoelastic system to its linear counterpart, where the magnets have simply been re-
moved, lacks significance, since both systems perform best in different excitation scenarios. When
the excitation is not harmonic but distributed in a certain range and is of a sufficient amplitude, a
bistable system holds more potential for energy harvesting purposes. Especially when the beam
tip orbits both stable equilibrium positions, a high power output is expected, due to frequent large
deformations of the beam and the piezos respectively [Erturk and Inman, 2011b].

The aspect of optimization and performance enhancement is omnipresent in literature concerning
energy harvesting systems, since the scope of applications increases with more power generated by
any energy harvester. The design of an energy harvesting system can be considered equivalent to the
problem of an optimization in which the harvested energy is the target for maximization. Although
appropriate sources of energy are modeled to be endless, they are limited in the rate of energy they
provide; more precisely, in their power. Therefore, the harvester’s efficiency, as the ratio of input to
output power, is a key factor. The optimal design of an efficient energy harvesting system requires
configurational options to be adapted specifically, with a specific application in mind depending
on the energy demand of the device and the invariable external excitation process. The crucial
question is how to design the energy harvesting system in order to achieve the largest electric power
output for an existing excitation. For nonlinear systems, this optimization problem cannot be solved



1 Introduction

exactly due to the lack of closed forms to describe the system’s responses, in contrast to linear
systems [Kim et al., 2015]. When optimizing the design of a given nonlinear magnetoelastic energy
harvesting system to achieve a high efficiency, most approaches are to purposefully manipulate the
restoring force of the system, which can simply be accomplished through a targeted positioning
of the magnets. Therefore, various magnet arrangements have been proposed, with attracting or
repelling magnetic forces. The aim is to ensure frequent changes of the system between the stable
equilibria through small force barriers between them [Lan and Qin, 2017]. In this way, attempts
are made to change the nonlinear restoring force to find beneficial configurations as regards the
efficiency, as for example done in [Zhou et al., 2013] by trial and error on an experimental setup.

If not optimized experimentally, most publications follow a standard modeling approach. It is
noteworthy that the modeling approaches to describe the mechanical part of each individual bistable
energy harvesting system in all publications known to the author finally end in the same type of
model, known as the Duffing oscillator. In the field of nonlinear dynamics, it is a popular equation
with a nonlinearity due to a cubic term in the restoring force. The sheer variety of bistable energy
harvesting systems that are modeled by a Duffing type equation with a cubic term as the only source
of nonlinearity underlines the approximative character of these models. Many simplifications may
result due to the topic being spread over numerous different fields of study, and early attempts to
develop minimal models of predictive character [Erturk and Inman, 2011a]. Often, the bistable
Duffing equation is simply stated as a suitable model for the mechanical subsystem of the energy
harvester e.g. [Litak et al., 2010; Martens et al., 2013; Lentz and von Wagner, 2015; Lentz et al.,
2017]. In such cases, an optimization of the model with respect to the model parameters is possible.
In this regard, the Duffing equation offers certain degrees of freedom, in specific the two parameters
for the linear and cubic restoring terms, which can be influenced, at least theoretically, just by the
choice of the magnet positioning. In this way, [Martens et al., 2013] has investigated the Duffing
equation for a good choice of model parameters. However, since the model is found heuristically in
the first place, there is no direct relation to the physical setup anymore once the model parameters
are adjusted. It is not known how to build or to change the existing setup to realize a configuration
that leads to the corresponding optimal model parameters. The only possibility to enable a modeling
where there is a direct relation between the physical setup and a model is to model each element of
the setup with its underlying physical laws. This is the key step towards an optimization process,
where many modifications of one setup are compared to one another by their model.

Since a wide variety of different systems and configurations of energy harvester concepts with
proven potential to harvest energy have already been presented in existing literature, the next step
is to take a closer look at the detailed modeling of a specific harvester. Only in this way a targeted
design and adaption of any harvester to a specific application is possible. The thesis here presented
is intended to be a link between the approximative models in literature and a refined model, which
will enable an optimization of a specific energy harvesting system in future. The harvester which
is the focus of this thesis is one early concepts towards magnetoelastic bistable energy harvesting
and was introduced in the year of 2009 in [Erturk et al., 2009]. Its explicit configuration and cor-
responding state-of-the-art modeling is a key interest and, therefore, the next section is dedicated
to it. The following sections outline reasons for revising the modeling methods described in ex-
isting literature, and, in doing so, will lead to the motivation for this dissertation. The thesis then
moves on to present the preliminary investigations forming a basis for the three papers (two already
published, one submitted) of this cumulative dissertation, which are detailed investigations of the
model for the energy harvester.

This study was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - WA 1427/23-1,2.
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2 The considered energy harvesting system and its
treatment in literature

The main objective of this thesis is the modeling of a particular energy harvesting system that
was introduced in 2009 in [Erturk et al., 2009]. It is schematically shown in figure 1. Broadly
speaking, it comprises three main basic features: first, a slender beam structure that bends when it
is excited by its base; second, two symmetrically-placed permanent magnets near the beam’s free
end; and third, piezoceramics attached at the beam clamping. The piezos are connected to an ohmic
resistor to assemble an energy harvesting system with the simplest electric load possible. In the
aforementioned first appearance of this particular energy harvesting system, the equation of motion
is stated by citing the paper of [Moon and Holmes, 1979] from 1979, in which Moon and Holmes
investigated a bistable beam that can be considered as sub-system of the energy harvester in figure
1, shown in figure 2. At the time when this system — which will be referred to as the considered sub-
system in this thesis — was first investigated, the focus was on chaotic oscillations in a mechanical
system. The authors state that they believe they were the first to observe experimental evidence of
the existence of a so-called strange attractor undergoing chaotic motions in structural mechanics.
The ability to exhibit chaotic motions implies that it is a non-linear system that’s characteristics
cannot satisfyingly be modeled by linearized equations.

Although the present thesis is motivated by investigations into the modeling of the energy har-
vesting system of Erturk, for the sake of simplicity the piezoceramics are neglected here, despite
their mechanical and piezoelectrical influence, which is described in detail e.g. in [Lentz, 2018].
Hence, the investigations are thematically closer to the sub-system in figure 2. However, the fol-
lowing investigations are made without a loss of generality of the results for a system with piezo-
ceramics, because they can be added to the model later, once the more challenging modeling of the
mechanical sub-system is completed.

resistor

piezoceramics

excitation ferromagnetic excitation

beam

ferromagnetic
beam

magnets magnets

Fig. 1 Energy harvesting system by [Erturk et al., Fig. 2 Bistable beam (considered mechanical subsys-
2009]. Figure taken from [Noll, 2018]. tem of the energy harvesting system in fig-
ure 1), first investigated in [Moon and Holmes,
1979]. Modified figure of [Noll, 2018] with re-
moved piezoelectric part.



2 The considered energy harvesting system and its treatment in literature

In the following, the literature regarding the modeling of the system in figure 1 and 2 respectively
is described, now chronologically.

Moon: As previously mentioned, Moon and Holmes investigated the setup in figure 2. Prior to
the work that introduces the setup, different other works of Moon [Moon and Pao, 1968; Moon and
Pao, 1969; Moon, 1970] were published on the dynamics of thin plates in magnetic fields. Subse-
quently, in [Moon and Holmes, 1979] a one-degree-of-freedom model was developed in the form of
an ordinary differential equation to describe the motion of the beam of the setup in figure 2. There-
fore, the continuous beam structure is discretized in space, which corresponds to the assumption
that the beam only deforms in a certain shape with a time-dependent amplitude. This shape function
has to be chosen a priori under certain circumstances, pursuant to the Galerkin procedure used. It
is a key issue in the modeling of the energy harvester system and its choice also holds main interest
in this thesis. In [Moon and Holmes, 1979], the shape is chosen as the first eigenfunction of the
associated linear setup without magnets, following the Euler-Bernoulli beam theory. The magnetic
field is not computed. Although the forces in transverse and normal direction of the beam and an
arising coupling are discussed, they are only mentioned and no calculation is presented. The shape
of the system’s potential energy — including the magnetic field influence — is found heuristically
from observations of the occurring equilibrium positions of the beam tip. The equation of motion
is derived after severe simplifications. It is simply stated that an even polynomial of sixth order is
needed for its potential energy. Consequently, the restoring force is of fifth order with maximal five
real roots corresponding to each of the equilibrium positions, according to the observed case where
three stable and two unstable equilibrium positions exist. Later, it is argued that for cases where
the system only shows bistable behavior with two stable and one unstable equilibrium positions,
the fifth order term can be dropped since it does not alter the qualitative behavior of the system.
The term of the largest order remaining is then cubic, yielding the equation of motion for the modal
coordinate x, which is proportional to the beam tip displacement. In [Moon and Holmes, 1979],
after a normalization is done, the equation is given as

5(0) + 7% — %x(r) + %x%z) = 1), (1)

which is known as a Duffing oscillator. Besides the characteristic restoring terms, it also comprises
a viscose damping with coefficient y and on the right side an excitation f, representing a base exci-
tation in most cases of vibration energy harvesting. This Duffing equation is popular in non-linear
dynamics, and corresponding investigations are now filling entire books [Kovacic and Brennan,
2011].

Erturk: Motivated by the non-linear behavior, its bistability and the tendency to large beam tip
displacements, Erturk has extended the setup in figure 2 to build the energy harvesting system in fig-
ure 1, equipped with piezos and an ohmic resistor. The initial paper [Erturk et al., 2009] introducing
the energy harvesting system refers to the modeling undertaken in [Moon and Holmes, 1979] and
extends the equation by a second differential equation for the voltage v, with an electromechanical
coupling to the mechanical part of the system, given as

N .1 1
(@) +yx - Ex(t) + §x3(t) —yu) = f(1) 2)
U+ Av(t) + kx(¢) = 0. 3)
For details of the coupling parameters see the original publication [Erturk et al., 2009]. Therein it is

then shown that this energy harvesting system has a potentially higher efficiency compared with the
system without magnets, in the case of excitation frequencies other than the resonance frequency



3 The heuristic method to derive the restoring force of a model

of the remaining setup, which is now linear. In conclusion, no separate modeling was conducted,
and hence all model assumptions applied in [Moon and Holmes, 1979] are adopted by implication.

Tam: The modeling of the mechanical sub-system is revisited by Tam in several works [Tam,
2013a; Tam, 2013b; Tam and Holmes, 2014]. On the mechanical side, Tam followed Moon by
assuming linear behavior of the beam as a Euler-Bernoulli beam, to be discretized with its first linear
eigenfunction. In concerns of the magnetic field, the approach is made to determine the magnetic
field by assuming that the cylindrical permanent magnets can be described by an ideal solenoid with
given closed form of the magnetic field [Derby and Olbert, 2010]. The beam itself is not part of the
magnetic field, which means that independent of the current beam deformation only one magnetic
field simulation is to be performed. From the magnetic field without the beam, the magnetization
of the beam is derived. This only works when making assumptions regarding the magnetization of
the beam, which have already been described in [Moon and Holmes, 1979]. In Tam’s works, the
piezos are replaced by strain gauges, which are also used to measure the beam displacement. It is
assumed that they have no influence on the static nor dynamic behavior of the beam. Concerning the
magnetoelastic forces, a distinction between a transverse and longitudinal force and a mechanical
coupling is made. All components of the static restoring force are accumulated to a single restoring
force and reduced to a cubic force model found by a least square fit.

In conclusion: All three publications concur in most parts of the modeling and only differ in
detail, as outlined above. The model parameters in [Moon and Holmes, 1979] and [Erturk et al.,
2009] are only found heuristically. Therefore, the method used — which is referred to as the heuristic
method in this thesis — is described in the following section. In [Tam and Holmes, 2014], it is found
by a cubic fit of an approximative computed magnetoelastic force, which is then compared with the
model found heuristically. The investigations by Tam are the most detailed concerning the modeling
of the mechanical sub-system. They will be reproduced and subsequently taken to the next level of
refinement in this publication.

When considering more recent corresponding literature, in the field of magnetoelastic energy
harvesting there is now a tendency towards a magnet-to-magnet interaction determining the non-
linear restoring force, often achieved by an additional magnet, which is attached to the free end
of the beam [Kim et al., 2015; Kumar et al., 2015; Kumar et al., 2016; Leng et al., 2017; Zhou
et al., 2018; Zhou and Zuo, 2018]. This allows a modeling where certain simplifying assumptions
are made, as the dipole magnet assumption, where all magnetic properties are lumped in a single
point regardless of the magnet’s geometric shape (cylindrical, cubical, etc) or their size. This might
allow a more convenient modeling in many cases and prompts the question whether changing the
system’s setup is legitimate to allow a simpler modeling. In the author’s opinion, this seems like a
strong restriction in design options of energy harvesting systems in general and can be overcome by
an in-depth insight into the underlying physical laws of any energy harvesting system. Nonetheless,
in this thesis the early setup presented in [Erturk et al., 2009] is considered, where there is no tip
magnet present and the whole ferromagnetic beam is magnetized.

3 The heuristic method to derive the restoring force of
a model

In order to develop a model for the energy harvesting system a heuristic method can be used. It
is applicable when, for the bistable beam, a one degree of freedom model is sought, and an ex-
perimental setup is present. Then the stable equilibria of the beam tip @, , and the corresponding
frequency with f, = f,, provided that the setup is symmetric, of oscillations with small amplitude
in the stable states give the information necessary to uniquely adapt a cubic restoring force.
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At this point it is important to make a distinction between the physical parameters of the beam
and the modal coordinates of a model. The equation of motion for the beam dynamics is usually
described by x, which is a modal coordinate and not the physical beam tip displacement, even
though it is directly proportional to it and implied in many existing figures of the energy harvesting
system, as in [Erturk et al., 2009; Litak et al., 2010; Martens et al., 2013]. Unlike in other contexts,
here the beam coordinate is named & instead of x, which is as mentioned already used for the modal
coordinate. Accordingly, and pursuant to the Galerkin scheme for the beam displacement w, the
ansatz

w(E, 1) = (&) x(1) “)

is chosen. Consequently, the connection between the beam tip displacement 10 and the modal
coordinate x is given by

w(t) = (L) x(1) &)

where ¢ is the shape function to discretize the beam in space and L the total length of the beam,
giving the position of the beam tip.

In most publications, the potential energy of the considered energy harvesting system, here
named U, is assumed to be a symmetric, so called double well potential of 4th order, which is
shown in figure 3. There is one unstable equilibrium x,, in the middle and the two stable equilibria
X1 2, one on each side of the undeflected state of the beam. The restoring force R, which is defined
to be directed towards displacements of smaller absolute values when it is positive in sign, results
from U as the spatial derivative R = dU /dx. The model is then of the bistable Duffing type, having
a nonlinear restoring term with negative linear term, a vanishing quadratic term due to the setup’s
symmetry and a positive cubic restoring term. In a general form with no excitation, the equation of
motion, when a and f are both positive, is given by

(1) +yx —ax(®) + px>(@) =0 (6)

Let x, (s for static) be a system state with vanishing restoring force, in which the beam is able to
rest still, thus X, = 0 and x, = 0. Applying these conditions to equation (6) the remaining terms
are given by

—ax, + ﬂxf =0, (N
which is fulfilled for the following three solutions, giving the equilibria x, for i = 0,1 and 2 as

xo=0 and x,=% 2 (®)

B
Further, when applying initial conditions that just slightly differ from one of the stable equilibrium
state, the system undergoes small oscillations around this equilibrium position. Due to the nonlin-
earity the frequency depends on the amplitude, but for very small oscillations it can be linearized
sufficiently. The restoring force is then approximatively given by a Taylor expansion that is stopped
after the second term, which is linear in x. The linear restoring Term R, , in the vicinity of the
equilibrium x;, is given by

lin®

—ax(t) + fx7(1) o, (—a +3px7) x(1) — 2fx]. ©

For the case where x; is the positive equilibrium x,, according to equation (8), the linearized restor-

ing force R}, 1s shown in figure 4.
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Fig. 3 Model of the double potential well of the bi- Fig. 4 Cubic model of the restoring force R with cor-
stable energy harvesting system as assumed in responding linearization Rj;, in the equilib-
literature. rium state x;.

Its slope is proportional to the square of the circular frequency a)? of free oscillations of small
amplitude in the equilibrium x,, which can approximately be described by a linearized equation of
motion. For small displacements X of the equilibrium position x,, defined as x(¢) = x(¢) — x,, it
can be found by a coordinate transformation of the form x(#) = x(#)+ x, inserted into the linearized
equation of motion, which yields

x(1) + yx(t) + 2ax(t) = 0. (10)

Hence, the circular frequency of oscillations of the system that is linearized with respect to the

equilibrium position x, is given by @, = V/2a. If i, and f| are known from measurements, or are
arbitrarily set, and further the setup is assumed to be symmetric, the model parameters a and f are
defined by

o= 27t2f12, (11)
2
/3=27;2<f1 ¢(L)> . (12)

w,
This way, a minimal model is determined, which is in this thesis referred to as heuristic model,
since it is found based on observations on an existing experimental setup of the system. It fulfills
the two conditions of matching equilibrium positions and frequencies of small oscillations around
each stable equilibrium. Once the parameters are distinguished, the equation (6) can be transformed
to the form of equation (1).

Vice versa, for given model parameters @ and f corresponding equilibria and frequencies can be
computed by inverting equation (11) and (12). The crucial key question is, in the case where it is
desired to realize a system with arbitrarily given model parameters a and f, how is the physical
setup to be built, other than by trial and error, in order to realize the theoretical equilibrium po-
sitions with corresponding frequency. This is particularly necessary to enable an optimization of
a corresponding energy harvesting system. Thus the possibility of a targeted manipulation of the
nonlinear restoring force with known resulting equilibria and frequencies of the system is desired
and gives the motivation and the goal of this thesis in the following section. Later it is then shown
how this can be achieved to predict the number of existing equilibria and also their approximate
values.
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4 Motivation and goal

The goal of this thesis and the presented publications is to contribute to a more sophisticated mod-
eling of the energy harvesting system described in section 2. The attempt is made to establish an
alternative method that is preferable to the heuristic method outlined in section 3 to model the sys-
tem. The goal is to perform a direct modeling based on the respective physical properties of an
experimental setup to take a step towards an optimization procedure, where the specific physical
properties of the physical setup are adapted, and a resulting model is known. Hence, it is necessary
to find a model that is sufficient to represent all significant aspects of the setups reality, but is still
comprehensive to be manageable mathematically. Therefore, the basic assumptions made in liter-
ature regarding the systems physics are to be revisited in this work. Even though the results of this
thesis will not be a complete optimization of the considered energy harvesting system, it is a step
towards the possibility of influencing its non-linearity in a targeted manner.

5 Preliminary work

5.1 The considered experimental setup and related student theses

In order to perform a modeling of the energy harvesting system with corresponding explicit com-
putations, a concrete system is to be considered. All relevant details of the investigated setup are
described in each corresponding publication. An existing experimental setup, designed and built
up by the coworkers of the chair Huy The Nguyen and Lukas Lentz, was used and further adapted
for the actual work.

Within the framework of this dissertation, related student theses were elaborated, which con-
tributed to the topic. In [Vanegas Miiller, 2018] experiments of magnet-magnet and magnet-beam
force interaction have been made. Measurements of real-world excitations and their reproduction
at the experimental setup are the focus of [Overbeck, 2018]. In [Pankratov, 2019] the control of
the shaker to generate a harmonic excitation is described. In [Kienz, 2019] dynamic measurements
of the bistable beam for harmonic excitations are performed, which are later in this thesis reinves-
tigated. In [Bard, 2019] the path integral method has been applied to determine the probability
density function of the energy harvesting system for an excitation of a white noise type. If relevant,
the corresponding theses are referred later in this thesis in the respective parts.

5.2 Modeling of the beam

A key aspect of the energy harvesting system is the bending structure, which is a slender cantilever
beam made of steel. Its modeling is usually done according to the Euler-Bernoulli beam theory,
which is only valid under certain circumstances, as detailed in many mechanics textbooks as [Hage-
dorn and DasGupta, 2007; Wauer, 2014]. Its applicability in the considered case is shown in the
following.

In geometric concerns, the Euler-Bernoulli beam theory starts with the assumption that all planar
cross-sections of the undeformed beam remain planar after the beam undergoes a deformation. This
only holds true when the ratio of the height of the beam is much smaller compared with the radius
of curvature of the neutral fiber in the deformed state. In terms of forces, this is fulfilled if the beam
experiences no significant shear or torsional stress relative to the bending stress, which becomes
relatively large when the beam is large in height and short in length. In other words, the theory is
only admissible in the opposite case where the beam is slender (low in height, large in length) and
only small displacements of the beam compared with its total length occur. In the considered case,
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this is fulfilled as the beam 1s 250 times larger in length than in height (250 to 1 mm) and the largest
displacements arising at the beam tip are significantly smaller than a tenth of the total beam length,
which means the beam itself is not a cause for any non-linearities.

An experiment is conducted to show the linearity of the beam. Consider the case where the beam
is bent by a single transverse force located at the beam tip. The static elastic restoring force of the
beam — which is the force that is directed towards the undeflected beam position — is in total value
equal to the external force. A string is attached to the beam tip to apply different forces, which
are determined by a spring scale. The resulting displacement is measured by a laser triangulation
sensor. The setup is shown in figure 5 and the corresponding results in figure 6.

elastic force [N]

— model

10 +

[ experiment

10 _5 5 10

displacement [mm]

laser triangulation
sensor

—10 +

Fig. 5 Experimental setup to measure the elastic re-
storing force of the beam by a spring scale and
the displacement of the beam tip by a laser tri-
angulation sensor.

Fig. 6 Results of the measurement of the pure me-
chanical restoring force of the beam and com-
parison to the linear elastic restoring force ac-
cording to the Euler-Bernoulli beam model.

These experimental results have already been published in [Lentz, 2018] and are recalled here,
since they have been found in cooperation as mentioned there and are equally fundamental for both
theses. It can be seen that the static elastic restoring force of the beam is indeed linear with respect to
displacements in the considered range. The static equilibra of the experimental setup with magnets
is in most realizations around +7 mm. This was also an essential result for the three publications
and there applied accordingly: In the first paper [Noll et al., 2019a] the beam’s mechanical elastic
restoring force, which is besides the forces originating from the magnetic field one component
of the overall restoring force, assumed to be linear. Further, the Euler-Bernoulli beam theory is
applicable in dynamic cases, as long as oscillations of a frequency in the range of low order natural
frequencies of the beam are considered. This holds interest in the second and third publications,
where dynamic measurements of the beam during harmonic excitations are made. All occurring
beam oscillations are of frequencies lower than the second eigenfrequency of the beam, and hence
the use of the theory is suitable in this concern.

Note that — according to the Euler-Bernoulli beam theory — there is a difference between the
static and dynamic case when it comes to the shape of the beam deformation. In static cases, it
can be shown that the general deformation of the beam is of polynomial type. More specifically,
in the case of a cantilever beam with a single load at the free end, the bending line of the beam
is a polynomial of third degree [Gross et al., 2011]. By contrast, when the beam’s dynamics is
considered, linear oscillations are in the shape of the eigenfunctions, which are of trigonometric
type. This is a contradiction in so far that a model of the beam — which is found after a discretization
is performed — is suitable to model either the static or dynamic case, but not both at the same time.
The stiffness of the model — which is related to the beam shape of deformation — differs between

10
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the two cases. Hence, a single-degree-of-freedom model cannot cover static as well as dynamic
cases equally well. For the sake of simplicity, this distinction is not made and only the dynamic
case is modeled (except for the static investigations in figure 5 and 6), because the error is small
and manageable. The consequences are a slight change of the linear elastic restoring force and the
magnetoelastic forces, which indeed changes the position of the equilibria and the corresponding
frequencies of a linearization. This is kept in mind throughout all investigations performed and
is seen as a possible source of deviations between the theory and experiment, but it never shows
strong potential to change the observed qualitative behavior.

5.3 On the modeling of the distribution of the magnetoelastic force

When reconsidering the paper of [Moon and Holmes, 1979], which gives the fundamentals of the
modeling of the considered mechanical sub-system of the energy harvesting system, different me-
chanical and magnetoelastic influences on the beam are mentioned, although the model is ultimately
found by the heuristic method (see section 3). One advantage of this heuristic method is that re-
gardless of the relevance of each effect, all contributions to the overall system’s dynamics are taken
into account by the nature of the approach. When seeking a more detailed model, an explicit com-
putation of the physics is needed. At this point, the question arises concerning which models are to
be used and which effects are significant and need to be respected. The beam model is addressed
in section 5.2. When now taking a look at the magnetoelastic influences, the following questions
emerge: Which force components are to be considered? Are the forces of a distributed type or is
an approximation valid, where the forces are accumulated to a single force? The answers to these
questions depend on the respective realization of the sub-system and can only be answered when
the force components are explicitly modeled. This is undertaken within this thesis in several steps.

The first step towards an improved modeling was taken in the master thesis of the author [Noll,
2016], and its results were presented by the author at a conference with a corresponding confer-
ence proceeding published as [Noll and Lentz, 2016]. To regard the distributional character of the
magnetoelastic transverse force, its distribution is explicitly determined. Therefore, the external
magnetic field caused by the magnets in both works was found by a semi-analytic approach. For
detailed steps of the modeling of the magnetic field and the modeling of the magnetoelastic force,
see these sources. The method outlined in both followed the line of argument regarding the mag-
netization of the beam that was already proposed in [Moon and Holmes, 1979] and later applied
in [Tam and Holmes, 2014]. In contrast to the latter, in [Noll, 2016; Noll and Lentz, 2016], the
force distribution was displayed over the length of the beam prior to an accumulation for each beam
displacement according to the Galerkin modeling procedure applied. Note that this is simply under-
taken to visualize the force distribution, since [Tam and Holmes, 2014] and [Noll and Lentz, 2016]
ultimately result in the same model, only with different model parameters. However, the detailed
distribution of the force indeed holds interest to assess the extent of its influence on the model. As
can be seen in [Noll, 2016; Noll and Lentz, 2016] the force is — at least according to this model
— of a distributed type, and its distribution will have an influence on the final model, compared
with a case where the force is first accumulated to a single load at the beam tip. This particularly
applies in cases where for one beam displacement, a force distribution with positive as well as neg-
ative sign along the beam occurs. In these cases, the force cannot be simplified to a single force
without loss of accuracy, since a mechanical coupling also arises. The results found are plausible,
although their accuracy is not satisfying when comparing the equilibrium positions predicted by
the model with the positions measured on the experimental setup (results not shown in this thesis),
yielding the motivation for further improvements and questioning the model assumptions regarding
the magnetoelastic forces.

11
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Further potential given by the underlying arguments and assumptions made exists to increase the
accuracy of the force modeling. The aforementioned approach performed in [Tam and Holmes,
2014; Noll, 2016; Noll and Lentz, 2016] is convenient, since — by neglecting the influence of the
beam on the magnetic field — only one magnetic field simulation is required. However, this enforces
simplifying assumptions regarding the magnetization of the beam. The most substantial weak point
in the multiple assumptions regarding the beam’s magnetization is that the beams free end is not
modeled, or — put differently — the boundary effects arising at the beam tip are neglected. This is a
contradiction to the fact that the beam’s free end is close to the magnets and the magnetic field is
strong in its vicinity, hence probably generating the major proportion of the forces. Taking a closer
look at the influence of the beam’s free end — especially on the magnetic field and subsequent
magnetoelastic force computation — entailed potential for an improved modeling and led to the
work presented on a conference poster [Noll and Lentz, 2017], which can be found in the appendix
of this work. The main goal was to compute the distributed magnetic forces on the beam regarding
the influence of the beam itself on the external magnetic field. Further, in addition to the transverse
force, a longitudinal force component is considered. Now, in order to regard the beam’s influence
on the magnetic field, it needs to be included in the magnetic field simulation and subsequently a
new force model is needed to retrieve the force from the magnetic field simulation.

Computing the distribution of the force on the beam is an ambitious challenge, since appropriate
methods are rarely discussed in textbooks on electromagnetism. In general, in terms of methods
to compute forces in magnetized matter, there is no common agreement about the correct method
to compute the electromagnetic forces, and several equations, methods and equivalent formulas
are discussed and compared. A distinction is to be made between a total force computation on a
whole body that is completely surrounded by air and the even more challenging attempt to find the
distribution of the forces within the body volume. Overviews of different techniques can be found
in [Carpenter, 1960; Lefevre et al., 1988; Reyne et al., 1987; De Medeiros et al., 1998b; Makarov
and Rukhadze, 2009]. To the author’s best knowledge, to date there is no single, widely-accepted
approach to determine the force within magnetized matter. Their rich diversity can be explained
by the need for constitutive laws that summarize microscopic phenomena in magnetized matter.
Although the force on a single electric charge is well known by the Lorentz force, the number of
charges in matter is unmanageably large. Different models to summarize their behavior yield the
different existing force models. At least most of them agree on the total force on a body that is
completely surrounded by air (see [Reich, 2017]). An overview demonstrating their disagreements
regarding the force distribution inside a body due to their different assumption at the microscopic
level can be found in [De Medeiros et al., 1999].

Given the variety of methods, the most convenient to choose once the magnetic field is known is
the Maxwell stress tensor. It is a tensor expression in terms of the magnetic field only, and hence it
does not depend on state variables of the mechanical compartment and is given by
T,=LBB - L B%, (13)

1 Ho J 2 Ho [
which is an alternative expression to the tensor defined on the conference poster [Noll and Lentz,
2017] (see appendix). For the derivation of the tensor from the Maxwell equations, the reader
is advised to consult a textbook on electromagnetic dynamics; for example [Griffiths and Reeves,
1999]. To find the total force on a body, the Maxwell stress tensor is determined, and its divergence
is integrated over the body volume V', by

F=jé’][divr v, (14)
Vv

12
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or for numerical reasons, it is possible to transform the volume integral to an integral over an
enclosing surface O using the divergence theorem of Gauss, which yields the equation for the force
F given on the poster (see appendix, left column next to poster-figure 3). It is noteworthy that
different Maxwell stress tensors exist, although all of them coincide for linear isotropic materials
and lead to the same values of the total force [Bermudez et al., 2016]. Note also that the Maxwell
stress tensor is not a stress tensor in the sense of a mechanical Cauchy stress tensor and therefore its
applicability is different [Rinaldi and Brenner, 2002]. For further details of the application of the
Maxwell stress tensor to compute the magnetoelastic force, see for example [Lefevre et al., 1988;
De Medeiros et al., 1998a].

The validity of its use concerning total force predictions is undoubted, although its suitability
for local force distributions discussed controversially in literature. In [Bossavit, 2011; Bossavit,
2014] it is differentiated, and the case is described in which the Maxwell stress tensor is indeed
applicable and provides the correct result of local force distributions. It is stated that when the local
magnetic properties such as permeability or magnetization do not depend on the local deformation
of the body, the Maxwell stress tensor is applicable. Taking note of these requirements for this
method — which are no limitations for the considered case of a quasi static magnetic field with
no regard of local mechanical beam deformation within each simulation — the distribution of the
force is computed. The method applied to find the force distribution on the beam mostly follows
the argumentation outlined in [Bermudez et al., 2016], where discontinuities of magnetic field
properties and the Maxwell stress tensor respectively are regarded in the domain of interest. Hence,
only parts of the beam can be considered.

The force distribution is found by dividing the beam in a finite number of beam elements, where
the force is determined for each of the beam elements. Hence, the distribution is only approximately
found, and its resolution depends on the size of the beam elements. The force is determined by the
integral according to the equation given on the poster next to poster-figure 3 (see [Noll and Lentz,
2017] in appendix), along the boundary 6£2, which is completely enclosing the considered beam
element. Since the magnetic field simulation is in two dimensions, 0£2 is a closed contour, as
exemplarily shown in poster-figure 3. The result of a magnetic field simulation can be seen in
poster-figure 3, where the color refers to the absolute value of the magnetic flux density B. It is
noteworthy that the Maxwell stress tensor undergoes discontinuities at material jumps between the
steel beam and the surrounding air. For details concerning the mathematical details regarding how
this is handled, see [Bermudez et al., 2016]. For each beam element, enclosed by a path 62, the
Maxwell stress tensor T is evaluated and the force is determined. This procedure is undertaken
for all beam elements and this is then repeated for many beam displacements. Hence, a spatial
distribution of the force is found. More precisely, the force is determined for each beam element
at the position where it is located when the beam is deformed in the first eigenfunction of a certain
amplitude, which is the reason for the graph of the force distribution having its shape, as presented
in poster-figure 4. There it can be seen that the force is indeed mostly concentrated at the beam tip.
An accumulation seems valid, since the major part of the force acts in the vicinity of the free end
of the beam.

This was an essential result for the first publication, as the forces there are reduced to a single
force at the beam tip, which is sufficient and time-saving. It is noteworthy that this is contrary
to the force distribution found earlier in [Noll, 2016; Noll and Lentz, 2016], where the beam’s
influence on the magnetic field is neglected. In the first publication, the results that are so far found
numerically only, will be compared with experiments.

13
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6 Overview of publications and their connection

All three presented publications address the modeling of the mechanical sub-system of the under-
lying energy harvesting system in general but have different emphases. There are different aspects
of the overall system that can be — at least to a certain extent — analyzed separately but are always
related to each other, which gives the connection between the publications. They can be seen as
the continuation of the research undertaken by others author found in literature described in sec-
tion 2, as well as the works by the author presented in [Noll, 2016; Noll and Lentz, 2016] and the
poster [Noll and Lentz, 2017] shown in section 5.3.

In the first paper [Noll et al., 2019a], the main focus is on computing the magnetoelastic forces
with the goal of enabling a more comprehensive determination of the restoring force compared
with the heuristic method. It can be seen as a subsequent investigation to [Tam and Holmes, 2014]
and [Noll, 2016; Noll and Lentz, 2016] in so far that the beam’s influence on the magnetic field
is now taken into account. The results of section 5.3 are respected as the magnetoelastic force is
accumulated at the beam tip. All of these findings were considered in the first publication. Finally,
the resulting model is compared with experimental results.

In general, whenever the magnetic field is to be computed by a numerical simulation, it can only
be undertaken for fixed parameters, given geometric dimensions and chosen boundary conditions.
This means that when the beam is to be considered, it is to be modeled with its geometric shape,
although, since its deformation is changing over time, it cannot be computed by a single magnetic
field simulation. In fact, a simulation is necessary for every possible beam deformation, however,
since the mechanical beam model is found by a discretization of the beam using its first eigen-
function, it is only consistent to assume a deformation of the beam accordingly. Therefore, only
beam deformations in the shape of the first eigenfunction with different amplitudes are modeled,
and the force is assumed to be linear between two close adjoining simulations. This is not only a
simplification for the resulting forces on the beam — which depend on the beam shape — but also the
beam’s dynamics in general, which is what led to the subsequent second publication [Noll et al.,
2019b]. There, the assumption concerning the beam’s deformation being solely in the shape of the
first beam eigenfunction is addressed. The geometric shape of the beam is experimentally analyzed
during driven oscillations of different harmonic excitations. The beam is filmed using a high-speed
camera. In the videos taken, the positions of distinct applied markers on the beam are tracked over
time to determine the beam’s shape during vibrations. In conclusion, the discretization of the beam
with one eigenfunction is indeed a good approximation and the second eigenfunction only has a
small geometric influence on the beam shape in cases of super harmonic responses. It justifies the
assumption in the first paper in hindsight in so far that the geometric influence of the second eigen-
function is so small — indeed smaller than the spatial discretization of the finite element simulation
of the magnetic field — and hence does not affect the significance of their results.

The third publication can be seen as an extension to the investigations conducted in the first
publication. Although the theoretical model is already compared with experiments in the first pub-
lication, the experiments are restricted to the stable equilibrium positions of the system and corre-
sponding frequencies of small oscillations. Now, in the third publication, a more comprehensive
comparison is presented, where not the static behavior but rather the stationary response to a har-
monic excitation is investigated. Similar to the second publication, driven harmonic oscillations are
realized and the stationary beam response is measured. Its responses are compared with the pre-
dictions of the Duffing model with a cubic restoring force, found by the heuristic method described
in section 3.
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Abstract

Objective The efficiency of vibrational energy harvesting systems that consist of a cantilever beam with attached piezocer-
amic layers can be increased by intentionally introducing nonlinearities. These nonlinearities are often implemented in the
form of permanent magnets near the beam’s free end. The influence of these magnets is typically assumed to be a single
transverse force that depends cubically on the displacement of the beam tip. The coefficients of a corresponding single degree
of freedom model are often found heuristically, without an explicit modeling of the magnetoelastic force.

Methods In this paper, we present and assess the validity of a procedure to determine the magnetoelastic forces acting on
the beam from physical laws of the magnetic field with corresponding parameters. The paper outlines the method itself,
describing initially how the magnetic field is computed by a Finite Element simulation. In the second step, the total transverse
force on the beam is determined from the magnetic field by means of a numerical evaluation of the Maxwell stress tensor.
The required minimum degree of a suitable polynomial force approximation of the numeric values is discussed briefly. The
validity of this model is then considered by investigating its bifurcation behavior with respect to mono-, bi-, and tristability
for different distances between the magnets and comparing the findings to results found by experiments.

Results While the model’s predictions of the number of equilibrium positions for any magnet distance are generally in good
agreement with results of experiments, there are deviations when it comes to the exact positions of the equilibria. With
respect to these findings, the limitations of a two-dimensional magnetic field modeling with only linear material models are
addressed.

Conclusion The paper concludes that the method outlined here is a step toward the deduction of a detailed model based on
physical laws of the magnetic field with corresponding parameters replacing simple heuristic polynomial magnetic force laws.

Keywords Energy harvesting - Bistable oscillator - Magnetoelastic force - Maxwell stress tensor

Introduction

Over the past few years, the interest in power extraction
from ambient energy sources has grown, as they allow the
support, e.g., of autonomous sensor systems for structural
health monitoring or in general autonomous microelec-
tronics due to the steadily decreasing power consumption
of such systems. Vibrational energy harvesting systems
generate electrical energy from ambient mechanical vibra-
tions, which energy would otherwise be lost. A review of
existing research on this topic can be found, e.g., in [1-3].
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An implementation, which has received great attention, is
a cantilever beam with piezoceramic patches attached near
its clamped end. Hereby the beam’s base is attached to an
external structure, whose motion excites the system. Such
vibrational energy harvesting systems were extensively
investigated in the past, e.g., in [4—7]. In cases when they
are designed as a linear resonator, optimal performance with
respect to energy harvesting is achieved by matching their
resonance frequency to the frequency of the excitation. Nev-
ertheless, the power output drops drastically when they are
exposed to frequency varying or broad band excitations, as
they appear in many practical applications. Purposely intro-
duced nonlinearities can be used to successfully widen the
range of excitation frequencies that lead to large amplitude
responses with high power output, as is shown in [8§—12].
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Fig. 1 Bistable magnetoelastic
energy harvesting system (left)
[39] and nonlinear restoring
force (right)

excitation

magnets

To purposely introduce nonlinearities to a linear energy
harvesting system consisting of a cantilever beam with pie-
zoelectric patches, two permanent magnets are placed sym-
metrically near the free end of the ferromagnetic beam. This
extension of the system by the magnets leads to a nonlinear
restoring force. The earliest work known to the authors that
investigates the dynamics of a mechanical system similar to
the setup shown in Fig. 1 is [13], which analyzes the system
without the piezoceramic layers under the aspect of chaotic
vibrations in structural mechanics.

In [8], this setup was extended by piezoceramic patches
connected to an ohmic resistor to design a simple model of
an energy harvesting system. In many publications, the beam
is modeled as an Euler—Bernoulli beam that is discretized in
space by one modal ansatz function, as e.g., in [14]. Beside
the purposely introduced nonlinearities by the magnets, the
setup may contain several other potential sources of nonline-
arities, for example, nonlinear material or damping behavior
or geometrically nonlinear behavior of the beam. Usually all
these effects are neglected and corresponding linear behavior
is assumed as in [13, 15].

In recent investigations [16] of the authors of the pre-
sent paper with the same experimental setup, operation
vibration shapes in both intra- and inter-well solutions,
i.e., vibrations around one or both of the stable equilib-
rium position, respectively, were recorded by a high-speed
camera in the case of harmonic excitation close to the
first eigenfrequency of the linear system. Expanding the
operation shapes with respect to response frequencies
(main- and superharmonics) and eigenshapes of the cor-
responding linear Euler—-Bernoulli beam gives the result,
that the part of the operation shape with the same fre-
quency as the excitation, is very well represented by the
first eigenshape of the Euler—Bernoulli beam and only
small additions of the second Euler—Bernoulli eigenshape
are necessary in the case of superharmonics. Therefore and
as the focus of the present paper is on the modeling of the
magnetic forces, we will restrict the modeling on just one
modal ansatz function and the consideration of sources of
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nonlinearities on the magnetic forces only. Nevertheless,
one conclusion of the work presented in this paper will be
that the ferromagnetic beam material is indeed a source
of nonlinearity.

Depending on positions and parameters of the magnets
(while considering a symmetric setup), this can either result
in a mono-, bi-, or tristable system, respectively (e.g., [13,
15]). For a mono-stable system with magnets close to each
other, the properties of the system will not much differ from
that of a linear one. For distinctly separated magnets, the
straight equilibrium position of the beam becomes unstable
resulting in a bistable characteristic of the restoring force,
as sketched in Fig. 1 on the right. The bistable configuration
has attracted the most attention within the last years (see e.g.,
the review paper [10]). Shifting the magnets further from the
center, the straight position of the beam may become stable
again resulting in a tristable system. There is a current trend
toward considering such multistable systems, like tristable
systems with two unstable and three stable equilibrium posi-
tions (see e.g., [7, 17, 18]), or even quadstable systems with
four stable states [19], when more than three magnets are
used. In general, all these nonlinear systems are more prom-
ising with respect to energy harvesting compared to their
linear counterpart, as there is a broad range of frequencies
possible with parallel existing solutions, where solutions
with a periodical change between the potential wells lead to
a higher energy output of the system [20, 21].

A multistability of an energy harvesting system can not
only be achieved by adding magnets, but also by versatile
mechanisms. Examples are snap through structures under
preload (e.g., [21]), or systems with pronounced geometric
nonlinearities as they arise, e.g., on an upright cantilever
beam with tip mass [22]. Nevertheless, in many recent pub-
lications, magnets are used to purposely induce nonlineari-
ties in the system without introducing additional mass or
friction (e.g., [23-25]), which allows a targeted modification
of the nonlinearity just by the positioning of the magnets.
As a result, the corresponding modeling approaches in the
literature of bistable systems finally result in a Duffing-like

18



Journal of Vibration Engineering & Technologies

Ist publication [Noll et al., 2019a]

oscillator with a double well potential that can be treated by
corresponding standard techniques.

In basic heuristic models in the literature, the resulting
nonlinear restoring force is simply introduced in the discre-
tized equation of motion, without consideration of the actual
form of the magnetic force (for example in [14]). It is not
discussed where the force is exactly applied nor if the force
is of a distributed type or of a concentrated type. Further,
no distinction is made between the transverse component
and the longitudinal component of the force. In the bistable
case, the model’s resulting restoring force, depending on
the displacement of the beam, can simply be assumed to
be of third order with a negative linear term, a vanishing
quadratic term (due to the symmetry of the setup), and a
positive cubic one. These assumptions lead to a minimal
model for the bistable system, which possibly shows deficits
in the accuracy of the force modeling due to its simplicity.
The coefficients of the model are, in general, found in the
following way: the parameters are chosen based on given
stable equilibrium positions and corresponding eigenfre-
quencies of the therein linearized system (as in [26]). They
can either result from the considered experimental setup or
assumptions for the model. This has the advantage that the
model is a good approximation in the vicinity of the stable
equilibrium positions of the beam. However, it is impossible
to find a representation from physical model parameters.
To deduce a model for a specific practical realization of the
energy harvesting system, the setup needs to be built physi-
cally to measure the mentioned quantities as the coefficients
in the model by this way of modeling and parameter iden-
tification are not directly related to physical parameters of
the setup with the magnets. Therefore, although it is possible
to increase the efficiency of a model by an optimization of
its parameters, as it was done in [27], it is not possible to
find a real physical representation of a preferred model by
directly reading out its parameters. The only way—if not
trial and error is performed with a corresponding flexible
experiment—is to directly model the magnetoelastic forces
and get from this a model of the setup.

Therefore, the objective of this paper is to describe
a method to directly compute the magnetic force. Most
publications that deal with an explicit computation of the
restoring force, particularly for systems with nonlineari-
ties introduced by magnets, consider a magnet-to-magnet
interaction. This allows a derivation of a closed form of the
forces, mainly due to the simplifying dipole assumption,
where all magnetic properties of each magnet are lumped
in one single point [23-25]. The most recent publications
known to the authors that deal with the magnetic interaction
between a magnetic field of a set of various magnets and
an elongated ferromagnetic beam structure corresponding
to the considered energy harvesting system in Fig. 1 are
[15, 28]. The similarities and differences of the presented

approaches are described in detail in the next section. In
[29], a soft magnetic stripe has been applied at the tip of the
nonmagnetic beam to realize a concentrated force.

The magnetic force is usually determined in the discre-
tized model of the beam, where, as already described above,
only one ansatz function is used. Based on our results from
[16], this seems to be sufficient for our setup and this allows
to find the force solely based on the displacement of the
tip of the beam. If more than one ansatz function and cor-
responding modal coordinates are used, the uniqueness of
the shape of the deformed beam in the magnetic field for a
defined beam tip displacement is lost.

To determine the magnetoelastic force, the magnetic field
is computed. The focus is on the determination of the mag-
netic field and the magnetoelastic force on the beam. For this
reason, the piezoceramic layers are, despite their mechanical
and electro-mechanical influence, not part of the model in
this first step, but could be added to the model later on, once
the magnetoelastic force is computed. For this, the beam
is to be divided into two sections with different mechani-
cal properties according to the additional mass and bend-
ing stiffness due to the applied piezoceramic patches [30]
and the model is to be extended by an additional equation
describing the properties of the electric circuit coupled with
the piezoceramics [8, 30].

To validate the numerical results, the model is compared
to experimental investigations of the system’s bifurcation
behavior for different distances between the magnets with
respect to the number and positions of the stable equilibria
and the corresponding frequencies.

Some prior steps of the current investigations and cor-
responding results have already been published in [28] or
worked out in the master thesis of the fist author (2016) and
have been presented as a conference poster presentation [31].

Magnetic Field

To determine the nonlinear magnetoelastic force on the
ferromagnetic beam, the inhomogeneous magnetic field is
required [32]. A stationary magnetic field of homogeneous
magnetized permanent magnets of specific shapes can be
found analytically (e.g., cuboidal magnets [33] or cylindrical
magnets [34]). The magnetic field of the permanent magnets,
in the absence of the beam, is here referred to as the ini-
tial magnetic field. When the ferromagnetic beam is placed
in this initial magnetic field, the beam is magnetized and
this magnetization causes a magnetic field superposing the
initial magnetic field. For the general case of an arbitrarily
deformed beam, no analytical solution of the magnetic field
is known to the authors and is therefore computed numeri-
cally by the Finite Element Method (FEM).

@ Springer

19



Ist publication [Noll et al., 2019a]

Journal of Vibration Engineering & Technologies

The magnetic field depends on the beam’s velocity, as the
beam is electroconductive and moves through an inhomoge-
neous magnetic field. According to Faraday’s law of elec-
tromagnetic induction, a voltage is induced inside the beam
causing an electrical current, which generates another pro-
portion of the overall magnetic field. This aspect is neglected
in this paper. The laws of magnetostatics are considered to
be valid here due to the small velocity of the beam com-
pared to the speed of the electromagnetic waves. In fact, the
magnetic field is modeled as quasistatic, where the beam is
considered with its current deformation, but has a vanishing
velocity.

In [15], the magnetic field of the permanent magnets is
determined by solving an integral that gives the magnetic
field of an ideal solenoid, which produces a magnetic field
equivalent to the magnetic field of the cylindrical magnets
(see [35]) used. This approach is restricted to magnet shapes
with a known solution for the magnetic field and is further-
more not suitable to consider the change of the magnetic
field due to the presence of the magnetized beam. In the
works [15, 28], a method is described to determine the mag-
netoelastic force where only the initial magnetic field of the
permanent magnets, without consideration of the beam, is
required; fundamental laws of the magnetic flux density and
the magnetic field strength on the material discontinuities
between the air and the steel beam are used to approximate
the magnetization of the beam. This means that only one
magnetic field computation is necessary. A drawback is
that some accuracy might be lost, in particular due to the
assumptions, which must necessarily be made: the height of
the beam is assumed to be small so there is no change of the
magnetization across it and the influence of the beam tip is
neglected, as if the beam was infinitely long. This contrasts
with the hypothesis inherent in most models that the force
is concentrated at the tip of the beam.

In the work presented here, a different method is used, in
the sense that the influence of the beam on the magnetic field
is covered. A Finite Element approach is applied to com-
pute the magnetic field of rectangular magnets. The beam
is included in this simulation. The magnetoelastic forces
are then found from the magnetic field through a numerical
evaluation of the Maxwell stress tensor, as described in the
next section.

For the two permanent magnets and a fixed deflection
of the beam, the magnetic field is computed numerically
using the open source software FEMM.! It is restricted to
a two-dimensional simulation, and only linear magnetic
material characteristics are taken into account. The defini-
tion of the magnetic materials in FEMM requires the relative

' D. C. Meeker, Finite Element Method Magnetics, Version 4.0.1,
http://www.femm.info.
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Table 1 Magnetic material parameters

Parameter Value

1.067 x 10° A/m
1.023
Relative permeability of steel 300

Coercivity H, of magnets

Relative permeability of magnets

permeability u, of the beam and the magnets, respectively.
To characterize the permanent magnetization of the mag-
nets, their coercivity H, is additionally needed. However,
usually the magnetic flux density produced by the magnets,
called remanence B,, is provided by magnet suppliers. The
relation that connects these magnetic quantities in the linear
case is

Br
H, = ——,
HoHyr

ey

where y, is the permeability of vacuum. The values used in
the simulation, given in the following Table 1, are chosen
within the range of material properties provided either by
the supplier, or by literature.

The computed magnetic field is shown in Fig. 2. For the
purpose of a better visualization, the system shown is an
example and corresponds neither in sizes nor in proportions
to the experimental setup as shown in Fig. 4. The frame,
which supports the beam and the magnets, is completely
made of aluminum, which has a negligible influence on the
magnetic field. Thus, the frame is not a part of the simulation
and only appears transparent in the simulation results. The
magnetic north pole of both magnets is pointing upwards
(cf. Fig. 1).

The consideration of the ferromagnetic beam in the simu-
lation leads to a non-symmetric magnetic field, except for
the case of a vanishing beam deflection. The essential result
of the simulation is the magnetic flux density B, which will
be used to compute the magnetoelastic force.

Beam Model

The modeling of the mechanical system is divided into two
parts: first, the modeling of the beam and second, the mod-
eling of the magnets’ magnetoelastic force. Note that the
beam is assumed to be an Euler—Bernoulli beam based on
the argumentation performed in the introduction section.
Therefore, all nonlinearities in the model originate from the
magnetoelastic forces caused by the magnetic field and the
transverse force is assumed to be consistently perpendicular
to the x-axis of the underlying coordinate system as shown
in Fig. 3 (i.e., no follower force).
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Fig.2 Magnetic field of the \
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Fig.4 Total magnetoelastic transverse force Q for different magnet
distances d

In the presented work, the piezoceramic layers are not
considered at this stage of the mechanical model, as it is
assumed that they have an insignificant influence on the
magnetoelastic force. The piezoceramics mainly damp

the vibration due to the energy harvesting effect and only
slightly increase the stiffness and the mass of the section
of the beam to which they are attached, which is usually
at the clamping. At this position, the largest mechanical
strain is obtained, which leads to a large deformation of the
piezoceramics. Additionally, they couple the beam with the
electric circuit that is connected with the piezoceramics. The
piezoceramics can be added to the model later, once the
magnetoelastic force is known. For a detailed model that
considers the piezoceramics, see e.g., [30].

The Euler—Bernoulli cantilever beam shown in Fig. 3
with the x-axis along the centerline has the length L and
its mechanical characteristics are described by the constant
mass per length u, and the constant bending stiffness EI.
w(x, t) is the beam’s lateral displacement at time ¢. The equa-
tion of motion, without external base excitation can be found
in various textbooks and is given by

win(x, £) + Elw'" (x, 1) = q(x, w(x, 1)), )
where ¢ is the distributed transverse force due to the mag-
netic field, which depends on the beam coordinate x and the
current shape of the beam given by w at the actual time .
Since the force, which is distributed, is mostly concentrated
around the tip of the beam and the shape function, which
is used for the discretization, also has the largest values in
this area, it seems reasonable to use a single force Q instead,
which yields

q(x, w(x, 1)) = Qw(L, 1)6(L), 3)
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with the Dirac distribution 6. The set of boundary condi-
tions for the case of a clamped beam at x = 0 and free end at
x = L, while the transverse force Q is considered in the field
Eq. (3), is given by

w(0,1) =0, (4a)
w'(0,7) = 0, (4b)
w'(L,t) =0, (4c)
w” (L, 1) = 0. (4d)

To discretize the partial differential equation, a single
mode ansatz

w(x, 1) = a(t)p(x) 5)
is introduced with a time-dependent modal coordinate a and
a predefined ansatz function ¢ that depends on the x-coordi-
nate only. The ansatz function is chosen to be the first eigen-
function of the beam without the influence of the magnets as
addressed in the introduction, which satisfies the boundary
conditions. The function ¢ is normalized in that way, that

L
/O e (dx = 1 ©)
and
L
/ EI$"" (x)p(x)dx = w; @)
0

hold where w, is the first natural circular eigenfrequency of
the beam without the magnets. Applying the Galerkin pro-
cedure by inserting Egs. (5) into (2), multiplying both sides
by ¢, integrating over the length L of the beam and apply-
ing relations (6) and (7) yields the following one degree of
freedom model

a(1) + 2Dwga(t) + wya(r) = QPLIan)d(L), ®)
where an additional linear modal damping characterized by
the damping ration D is added. Even though the influence of
the magnetoelastic force appears on the right side, it is not an
excitation, but a nonlinear term that depends on the modal
coordinate a. The autonomous equation can be rewritten so
that the former right side is now expressed as a polynomial
of maximum degree 2N + 1 and taken to the left side, which
leads to

N
a(t) + 2Dwya(t) + wla(t) + Z a,d® (1) = 0, )

i=1

where «; are the polynomial coefficients of the nonlinear
restoring force to be found from the computed magne-
toelastic transverse force. Note that only odd polynomial
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coefficients a; are considered, since the system including the
magnets is symmetric, and therefore the restoring force is an
odd function of the modal coordinate a. The error resulting
from this approximation of the magnetoelastic force depends
on N, which is so far usually set to two, resulting in a cubic
restoring force.

Magnetoelastic Forces

The force, which depends nonlinearly on the displacement of
the beam, is computed from the magnetic field, which itself
depends on the current beam displacement. Consequently,
it is necessary to compute the magnetic field and the result-
ing force for every possible beam deformation, but since the
beam is discretized by a single mode shape ¢, the shape of
the beam in the magnetic field for any beam tip displacement
is given. The magnetoelastic force is computed for a large
number of uniformly distributed beam tip displacements.
Due to the symmetry of the system, only positive displace-
ments need to be considered.

Computing the magnetoelastic force is challenging, due
to the large number of methods and force models with dif-
ferent underlying hypotheses about the macroscopic mate-
rial properties in magnetoelastics. An overview of different
approaches can be found in [36]. In the actual paper, the
Maxwell stress tensor T is used to determine the magne-
toelastic force, which depends in the magnetostatic case (no
electric field) on the magnetic flux density and the perme-
ability of vacuum g, given by

1 1
T, = ”—OB,-B]- - 2_”03251‘]* (10)

The Kronecker delta 6 is defined as 1 fori = and as 0
otherwise. When the magnetic field is known, the Maxwell
stress tensor can be used to determine the force on a body
with the volume V by the integral over the divergence of the
Maxwell stress tensor by (e.g., [37])

F:///div Tdv. (11)

Vv

The resulting force F is obviously a vector and as such
has more components than just transverse to the beam axis.
Hence, the beam is also under the influence of a longitudi-
nal force. This results in a prestress on the Euler—Bernoulli
beam that depends on the beam tip displacement. This aspect
is neglected in the presented work but shall be the subject of
further investigations.

The numerical evaluation of the integral in Eq. (11) in
FEMM can be done with an implemented function called
‘Weighted Maxwell Stress Tensor’. It is based on a method
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proposed in [26, 38], respectively, in which a formula-
tion for the force computation in a FE discretization by an
integration over the volume is stated. This method is only
capable of finding the force acting on an enclosed volume
and requires the body to be totally placed in air. Neither
the actual distribution of the force inside the body, nor the
point of application of the equivalent resulting single force
is known. Since a partial volume of the beam will always
be connected to the remaining part of the beam and is not
completely free, it is not possible to use this approach to
find the distribution of the force with the provided function.
Note that, so far, there is no widespread method to compute
the distribution of magnetoelastic forces in a body, because
although all common models agree on the total force on a
whole body, they differ in the prediction of the distribu-
tion of the forces within the body [13]. For now, it will be
assumed that the force is exclusively acting at the beam tip at
x = L, as considered in Eq. (3). This reduction of the force to
a single force, without consideration of its distribution along
the beam, might cause erroneous predictions of the beam’s
dynamics and is to be investigated by further investigations.

The magnetic field is computed for a large number of
beam displacements in the shape of the eigenfunction ¢.
Next, the total magnetoelastic force on the beam is deter-
mined by the implemented force function in FEMM. Its
component in transverse direction for a variation of the
magnet distance d (cf. Fig. 3) is shown in Fig. 4, where the
results are in agreement with other investigations of such
systems like in [15].

The graph shows the total nonlinear magnetoelastic
force O, where a positive sign indicates a force in the same
positive coordinate direction as the beam tip displacement.
Therefore, a positive force for positive displacements does
not mean a positive restoring force but a negative one! For a
small distance d between the magnets, the force is directed
toward the center of the symmetric system, since in this case
the magnets cause the same effect as one large magnet would
do. In the cases of distinctly separated magnets, the force
increases initially for increasing beam tip displacements, but
will later decrease in its absolute value and eventually switch
sign, implying a change in the force direction. For very large
displacements of the beam, the force will become zero in any
case as the beam tip is too far away to be influenced by the
magnets. Note that only the magnetoelastic force and not the
linear mechanical restoring force is shown.

To filter the numerical results and to find a model in the
form of Eq. (9), the force distribution is expressed in poly-
nomials, which can be found by a least square fit. Since the
force is symmetrical—as aforementioned—only odd coef-
ficients of the polynomial approximation are non-zero. The
minimal necessary degree of the polynomials to approximate
the numerical values depends on the investigated charac-
teristics. As already mentioned in the introduction, magnet

distances exist that cause mono-, bi- or tristability of the
system. The minimal degree to model bistability is a cubic
restoring force. Another way to achieve bistability is to use
a quintic polynomial with or without the cubic term, that
has three real roots and two complex roots [30]. A full quin-
tic polynomial, which includes both, a cubic as well as a
quintic term, is required only when tristability of the system
is to be modeled. Any higher polynomials can be used to
further refine the model. In this work, no results concern-
ing the quality of any polynomial fit are shown, since there
is a strong dependency on the considered maximum beam
displacements. In fact, no polynomial is capable of repre-
senting the vanishing magnetic forces for beam displace-
ments far beyond the position of the magnets. Therefore, the
residuum of any approximation depends on the considered
maximum deflections. The contribution of this work is that,
based on the actual results, higher polynomials can be taken
into account and that their accuracy can be quantified.

The theoretical results from this section are validated by
measurements described in the next section.

Experimental Validation

To compare the numerical results obtained to experimen-
tal measurements, the overall model is divided into two
major aspects: the model of the beam, in particular its lin-
ear restoring force due to its elastic behavior according to
the Euler—Bernoulli beam theory, and the nonlinear mag-
netoelastic force caused by the magnets. At first, the beam
model is compared to experimental measurements of its
eigenfrequencies. Second, the overall model including the
beam model and the magnetoelastic force is investigated.
Both parts of the model determine together the multistabil-
ity behavior of the equilibrium positions, which was also
discussed in [13, 15]. It is suitable to investigate the model’s
results concerning the equilibrium positions and the num-
ber of existing equilibrium positions for different magnet
distances; hence, we take into account the type of stability
(mono-, bi- or tristability). A so far neglected aspect in exist-
ing analyses is the consideration of the beam’s free oscil-
lation, with small amplitude around the stable equilibrium
positions. These can be determined experimentally and com-
pared to the eigenfrequency of a linearization of the model.
The experimental setup shown in Fig. 5, with the geometric
properties given in Table 2, is used.

The mass distribution y of the beam is found by dividing
the total mass of the beam by its total length. The bending
stiffness E7, which is a product of its area moment of inertia,
is given for the rectangular cross section by I = h3b/12, and
the material’s Young’s modulus is, in the literature, stated
to be E = 210 GPa for steel. Considering these quantities
and using Eq. (7) for higher modes with corresponding
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Fig.5 Experimental setup [41]

Table2 Geometric parameters (cf. Fig. 3)

Parameter Dimension (mm)
Beam

Length L 250

Width b 20

Height 1 1
Magnets

Length 5

Width 20

Height 10

Distances from edge to edge
Beam tip to magnets g 6

Magnet to magnet d 5-21.5

eigenfunctions ¢;, the theoretical eigenfrequencies can be
computed. They are experimentally determined by a laser
vibrometer and a Fast-Fourier transformation of the beam’s
oscillation without magnets after applying small distur-
bances as initial conditions. To find an optimal agreement,
the value E, which is the value with the highest uncertainty,
is tuned to the corrected value £ = 208.8 GPa in the model,
which is still about 98% of the nominal value found in the
literature. These mechanical parameters yield the results
given in Table 3.

The results show a good agreement. The beam model can
now be used for further investigations, in particular for the
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Table 3 Comparison of theoretically and experimentally determined
eigenfrequencies of the beam

Mode Experimental (Hz) Theoretical (Hz) Deviation (%)
1 13.13 13.22 0.71
2 82.19 82.84 0.79
3 233.13 231.94 —-0.51
4 456.56 454.56 —-0.44
5 755.31 751.35 —-0.53

overall model of the entire system including the magnets.
This is done with the experimental setup which was already
used earlier by adding the magnet carriers shown in Fig. 6 on
the right, all having different distances between the magnets.

The magnet carriers placed in the experimental setup
can be replaced and their position with respect to the beam
is set by two fixing blocks. The equilibrium positions of
the beam are determined using a laser triangulation sensor
and the frequency of the vibration around each of the stable
equilibrium positions is determined by a Fast-Fourier trans-
formation of the time signal measured by a laser vibrom-
eter with a 2-m stand-off distance and a measuring range of
500 Hz (OptoMET Fixed Point Digital Laser Vibrometer).
The results for positive and negative equilibrium positions
are averaged and shown in Fig. 7 on the left. In [15], similar
experimental investigations of the equilibrium positions can
be found with comparable accordance with theory.

In Fig. 7, (left) the filled blue points show stable equi-
librium positions, while the unfilled points show unstable
equilibrium positions, which cannot be determined experi-
mentally. The bifurcation behavior resulting from a change
in the distance d between the magnets is clearly visible. For
small d, the zero displacement (trivial) solution is the only
stable one (monostable case). For increasing d, this solu-
tion becomes unstable and the system becomes bistable. For
increasing d again—for values larger than 15.5 mm—the
trivial solution becomes stable while additionally two unsta-
ble solutions exist, i.e., the system is now tristable. Finally,
for theoretical values of d larger than 21 mm, the system
becomes monostable again. Figure 7 (right) shows the fre-
quencies that correspond to the linearization with respect to
each stable equilibrium position.

The results show a good agreement and the numerical
model represents the bistable as well as the tristable behav-
ior that was found experimentally. Nevertheless, there are
deviations which we attribute to the two main limitations of
the modeling carried out. First: it seems to be necessary to
determine the magnetic field through a three-dimensional
simulation. Figure 8 shows another two-dimensional simu-
lation of the magnetic field in a perpendicular plane of the
coordinate system and it can be seen that there is a depend-
ency of the magnetic field across the depth of the beam in
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laser
triangulation sensor

magnet carrier
with magnets

Fig. 6 Detail of the experimental setup (left) and interchangeable magnet carriers with varying magnet distances (right)

Fig. 7 Bifurcation behavior of
the system for different magnets
distances d: equilibrium posi-
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distance between magnets [mm]

ferromagnetic
beam

b = 20mm

Fig.8 Two-dimensional simulation of the magnetic field in the xy
-plane instead of the xz-plane. The magnetic field is not constant
across the depth b of the beam (y-direction), and therefore a three-
dimensional simulation of the magnetic field is required

the y-direction. Note that the position of the beam is shown
but is itself not part of the simulation.

Second: another assumption made was a linear mag-
netic material behavior, which means that there is no

distance between magnets [mm]

magnetized
ferromagnetic
beam

Fig.9 Nonlinear material behavior of the magnetized beam in the
absence of permanent magnets

magnetization of the beam when there are no magnets near
the beam. Unfortunately, the contrary to this assumption can
be seen in Fig. 9. There is a remaining magnetization, when
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the magnets are removed. This means that there is a pro-
nounced hysteresis of the magnetization of the beam. There-
fore, its magnetization is also affected by the past, depending
on how the beam was magnetized earlier. Both effects are
not modeled, and corresponding further investigations are
needed to improve the results.

Results and Conclusions

In this paper, the magnetoelastic force in transverse direc-
tion on the beam of the magnetoelastic energy harvesting
system is computed. The approach outlined here provides
the opportunity to deduce a model based on physical param-
eters to establish the possibility of designing a system from
model parameters.

The total transverse force that acts on the beam was found
by an evaluation of the Maxwell stress tensor, where the
influence of the beam’s magnetization on the magnetic field
was considered by carrying out a large number of simula-
tions of the magnetic field for different beam tip displace-
ments. Not included in the modeling process is the longitu-
dinal force component on the beam resulting in a prestress
that depends on the beam’s deformation. Also not covered
is the distributional character of the magnetoelastic force.
Furthermore, not included is any influence that originates
from a magnetoelastic coupling, which additionally occurs
in magnetic fields [13].

The beam is modeled according to the Euler—Bernoulli
beam theory. Its linear elastic restoring force is compared
to experiments by means of an investigation of the beam’s
eigenfrequencies without magnets. Through a slight tuning
of the Young’s modulus of the beam’s material, a very good
agreement to the measurements could be achieved, as given
in Table 3. The overall model was examined experimentally
by an investigation of the bifurcation behavior of the system
on the experimental setup shown in Fig. 5, which allows
a consideration of different magnet distances. The bifurca-
tion behavior shows a generally good agreement, as can be
seen in Fig. 7. Reasons for the remaining deviations are,
as we believe, due to the limitations of a two-dimensional
simulation of the magnetic field and the assumption of linear
material behaviors, in particular concerning the ferromag-
netic beam.

Future work will, therefore, concentrate on further refined
modeling of the magnetoelastic forces and the investigations
of the dynamic behavior of the entire energy harvesting
system.
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Abstract. A typical setup for energy harvesting is that of a cantilever beam with
piezoceramics excited by ambient base vibrations. In order to get higher energy output
for a wide range of excitation frequencies, often a nonlinearity is introduced by
intention in that way, that two magnets are fixed close to the firee tip of the beam.
Depending on strength and position of the magnets, this can either result in a mono-,
bi- or tristable system. In our study, we focus on a bistable system. Such systems have
been investigated thoroughly in literature while in almost all cases the beam has been
discretized by a single shape function, in general the first eigenshape of the linear beam
with undeflected stable equilibrium position.

There can be some doubts about the suitability of a discretization by a single shape
function mainly due to two reasons. First: In case of stochastic broadband excitations a
discretization, taking into consideration just the first vibration shape seems not to be
reasonable. Second: as the undeflected position of the considered system is unstable
and the system significantly nonlinear, the question arises, if using just one eigenshape
of the linear beam is a suitable approximation of the operation shapes during excited
oscillations even in the case of harmonic excitation. Are there other, e.g. amplitude
dependent, possibilities and/or should multiple ansatz functions be considered instead?

In this paper, we focus mainly on the second point. Therefore, a bistable cantilever
beam with harmonic base excitation is considered and experimental investigations of
operation shapes are performed using a high-speed camera. The observed operation
shapes are expanded in a similar way as it is done in a theoretical analysis by a
corresponding mixed Ritz ansatz. The results show the existence of distinct
superharmonics (as one can expect for a nonlinear system) but additionally the
necessity to use more than one shape function in the discretization, covering also the
amplitude dependence of the observed operation shapes.
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1. INTRODUCTION

Harvesting of energy from ambient vibrations has attracted much interest and
corresponding research in the past decades. A common method for transferring the
mechanical energy into electric one is the usage of piezoceramics fixed on corresponding
vibration structures. A survey of such systems gives, for example, the paper [1]. The
classical setup in that case is a cantilever beam with piezoceramics bonded close to the
clamping excited by ambient base vibrations. These systems perform well when they are
designed as a linear resonator with its eigenfrequency tuned to the frequency of the
excitation. A higher energy output, especially for broadband or stochastic excitations, can
be realized in such systems, if nonlinearities are introduced by intention resulting in a
broadband characteristic for large responses of excited vibrations compared to sharp
resonance peaks of the linear system [2]. A common setup is to fix two magnets
symmetrically close to the free end of the beam, as shown in Fig. 1.

resistor

piezoceramics

A\ .
| \‘\ferromagnenc

itati \
excltation \ beam

s w(x,7)

magnets

Fig. 1 Vibrational energy harvesting system [3]

Depending on strength and position of the magnets, this can either result in a mono-, bi-
or tristable (e.g. [4, 5, 6] respectively) system. In this paper we investigate the bistable
configuration and focus on the occurring vibration shapes during non-chaotic operation. In
that case, there are two main types of solutions, namely so-called intrawell solutions around
one of the two stable equilibrium positions and so-called interwell solution with large
displacements covering both stable equilibrium positions. For the modeling of the system,
knowledge is necessary for the discretization of the beam with respect to its longitudinal
coordinate x, introducing a mixed (dependence on both x and time #) Ritz ansatz

w(x, ) = D W ()i (0) (1)
i=1

into the partial differential equation describing the continuum vibrations of the beam.
Herein w(x,?) is the lateral displacement of the beam relatively to the moving frame and n
the chosen ansatz order. In this ansatz shape functions W;(x) shall be given (they must
fulfill all the boundary conditions) while functions p(f) can be calculated from the
thereby discretized model equations e.g. by Harmonic Balance. This let arise the question
of suitable shape functions W;(x) and ansatz orders #.

For the sake of simplicity and in order to concentrate on the question of how to
discretize a bistable beam, the piezoceramics are neglected in the following. Only the
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setup of the cantilever beam with magnets and base excitation is considered. The classical
paper describing a corresponding modeling is that of Moon [7] discretizing the beam with
the first eigenshape of the linear Euler-Bernoulli beam and modeling the magnetic forces
by a third order polynomial. This discretization results in a Duffing-oscillator with negative
linear and positive cubic restoring term. Most publications follow this model when adding
the piezoceramics for the energy harvesting system, e.g. [8] where it was shown, that the
nonlinear system performs better than its linear counterpart for a non-resonant excitation
and [9] where the system was analyzed for the case of a stochastic excitation. Publications
using more than one ansatz function are very rare. In [10] multiple ansatz functions are
applied for a buckled beam system, nevertheless ending finally up again with a one-
degree of freedom model.

There can be some doubts about the suitability of this discretization by a single shape
function mainly due to two reasons. First: In the case of stochastic broadband excitation a
discretization, taking into consideration just the first vibration shape, seems not to be
reasonable. Therefore, the authors have in prior investigations [11, 12] added a second
ansatz function in that way, that not just the first, but also the second eigenfunction of the
linear beam is considered in the Ritz ansatz. Second: as the undeflected position of the
considered system is unstable and the system significantly nonlinear, the question arises
if using just the first eigenshape of the linear beam is a suitable approximation of the
operation shapes during excited oscillations even in the case of harmonic excitation. Are
there other, e.g. amplitude dependent, possibilities and should multiple ansatz functions
be considered instead? In the work [13] and [14] this topic was already addressed, and it
is shown how the usage of linear shape functions leads to erroneous results. Furthermore,
a purely theoretical method to compute nonlinear, i.e. amplitude dependent shape functions,
is presented. Later the concept of nonlinear normal-modes was transferred to the analysis of
discrete nonlinear systems, see e.g. the review [15] and the references therein.

On the other hand in [16] it is shown, that for a bistable system, in that case a buckled
beam, the two first modes coexist during the snapping process. In [17] exact solutions of
postbuckling configurations of beams are calculated, but also the interaction between
vibration modes is shown. Nevertheless, as already mentioned, it is state of the art in
considering energy harvesting systems to use just one mode shape for discretization. An
example for this is [18], where both the buckled beam as in the two papers mentioned
before as well as the bistable cantilever beam, that is considered in the actual paper, is
discretized by a single degree of freedom.

In this paper, the questions, if the mixed Ritz ansatz, Eq. (1), gives a suitable
modeling as well as how many and which ansatz functions should be used, is discussed in
the case of harmonic base excitation by analyzing experimental results. Therefore, operation
shapes have been captured by a high-speed camera. The observed operation shapes are
expanded into their frequency content and then the vibration shape corresponding to each
frequency is analyzed.

2. EXPERIMENTAL SETUP

The chosen setup for the experimental investigations is shown in Fig. 2. The steel
cantilever beam is placed in an aluminum frame excited by a shaker and the bistability is
realized by two magnets placed approximately symmetrical to the undeflected position of
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the beam, therefore becoming unstable. The beam’s static deflection, when there is no
base excitation, as well as the dynamic displacement of the beam tip are measured using a
laser triangulation sensor which is attached to the moving frame, hence directly providing
the relative displacement of the beam tip from its undeflected position without the
superposed movement of the supporting frame. The base excitation of the system is
captured by a (nonmoving) laser vibrometer. Laptop I is used to process the data delivered
by these two measurement devices with the software package vAnalyzer.

laser
signal triangulation
laser generator sensor
beam LLEDs et

vibrometer shaker

marker stripe

laser tri-
angulation
Sensor

magnet carrie

laptop I laptop IT measuring high speed S hiena
(vAnalzer) (PFV) card camera '
amplifier supporting table
and frame

Fig. 2 Experimental setup with bistable cantilever beam excited by a shaker (left) and
beam with magnets in detail (right) [19]

Laptop II is utilized to control the high-speed camera Photron Fastcam Mini AX100
by the software package Phontron FASTCAM Viewer for high speed digital imaging.
The dimensions of the cantilever beam together with its first natural frequency (without
magnets) are given in Table 1.

Table 1 Properties of the cantilever beam

Property Value
Beam length 250 mm
Beam width 20 mm
Beam thickness 1 mm
1st eigenfrequency 13.1 Hz
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The magnets are intended to be placed symmetrically with respect to the undeflected
position of the beam in order to realize an approximately equal distance of the two
equilibrium positions from the undeflected beam position. The magnets are glued to a
magnet carrier, also made of aluminum, which ensures a constant and reproducible
distance between the magnets of approximately 14 mm. The exact placement of the
magnet carrier with respect to the beam is however limited by the manual adjustment of
the carrier with finite accuracy and reproducibility. The resulting distances of two
realized experiments together with the frequencies of small free vibrations around the two
stable equilibrium positions (intrawell solutions) are given in Table 2.

Table 2 Properties of bistable beam configuration (magnet distance approx. 14 mm)

left right
Setup I (static experiment in Fig. 6)
Equilibrium position 691 mm  7.13 mm
Frequency 15.1 Hz 14.5 Hz
Setup II (dynamic experiments)
Equilibrium position -7.01 mm  7.40 mm
Frequency 16.0 Hz 16.0 Hz

A paper stripe with geometry given in Fig. 3 is attached to the front side of the beam.
The beam itself has a thickness of one millimeter, but for a higher detection rate of the
markers their size is chosen to be two millimeters in diameter on an all-black background of
the three millimeters wide paper stripe, which therefore exceeds the thickness of the beam.

wu '
2 mm

3 mm

Fig. 3 Geometry of marker stripe

The camera was positioned manually in front of the beam setup with three goals
regarding its arrangement. First: the camera was orientated orthogonal to the beam’s
plane of motion. Second: the camera was placed as far as possible from the beam to reduce
errors due to perspective influences. Third: the camera was placed as close as needed so that
the beam took up almost the full height of the pictures in order to use the full resolution to
capture each marker.

The camera is taking monochrome black and white videos with a frame rate of 4000
frames per second and each frame has a resolution of 384x944 pixels. Each video has a
duration of at least one second. To further reduce the amount of data and processing time
only every second frame was considered for further evaluation. The authors are aware that
taking a picture is a sampling like process of the time continuous movement of the markers.
That means that not only the sampling rate needs to be at least two times the highest
frequency that is expected to be occurring in the measured signal (Nyquist criteria), but
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also needs to be filtered for even higher frequencies to prevent aliasing effects. Since
there is no possible way to filter these analog signals, we have checked the results from
the digital image analysis to the frequencies determined by the laser triangulation sensor,
for which the signal has been aliasing filtered properly before sampling. Both results are
in good accordance with each other.

The very first frame of each video is replaced by a frame showing the static, undeflected
beam without magnets (Fig. 4 (left)), which was taken before the magnets were applied.
This first frame is taken as the reference to determine the relative displacement of each
marker on each frame from its position when the beam is undeflected. The software GOM
Correlate is used to analyze each frame of the video and to detect the relative distance from
its position on the reference frame. The calibration of the distance measurement from the
frames is done using the known distance of the markers on the maker strip, which results in
a resolution of roughly 3.5 pixel/mm.

Fig. 4 Reference frame of undeflected beam without magnets (left) and marker detection
and evaluation of marker displacement with GOM Correlate (right)

Further it is necessary to eliminate the relative movement of the supporting frame to
the nonmoving camera in order to find the relative displacement of each marker. This is
done by subtracting the current displacement of the marker that is the nearest to the beam
clamping from all other marker displacements of that current frame.

3. RESULTS OF EXPERIMENTAL INVESTIGATIONS AND THEIR ANALYSIS

The aim of the following investigations is to decide if the observed operational vibration
shapes of the harmonically excited bistable beam can be expanded in the eigenshapes of the
Euler-Bernoulli beam as well as how many ansatz functions are required according to the
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mixed Ritz ansatz (Eq. (1)). Fig. 5 shows the first two eigenshapes ¢, ¢ of the beam
together with the static bending line caused by a constant lateral tip force.

1O}

displacement [—]
(]
=

0.00 0.05 0.10 0.15 020 025

beam coordinate [m]

static bending line 1 )]

Fig. 5 Beam eigenshapes and static bending line according to the linear Euler-Bernoulli
beam theory

In Fig. 6 the measured static bending line resulting in the “right” stable equilibrium
(positive displacement according to Table 2) resulting from the magnets from the setup I
is displayed. This measured bending line shows a high agreement with the theoretical
static bending line.

_ 8f ‘ {8
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g
=6t 16
g
= 4 4
[¥)
2
=2t 12
2
0 ‘ - ‘ - 40
0.00 0.05 0.10 0.15 0.20 0.25

beam coordinate [m]

* Wexp static bending line

Fig. 6 Static bending of the beam in “right” equilibrium position (Table 2, setup I)

Now the operation shapes are measured with a high-speed camera. Fig. 7 shows
typical examples of the two main types of solutions, namely the intrawell solution (left)
and the interwell solution (right). The phase diagram of the last marker at the tip of the
beam is shown, where the velocity has been determined by the time derivative of the
displacement after filtering the signal by a Butterworth low pass filter.

Both solution types do not show any period multiplication in these tests, which
restricts in the stationary case the occurring response frequencies to the excitation frequency
and corresponding superharmonics while subharmonics do not occur.
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Fig. 7 Phase diagram of beam tip: intrawell solution (left) and interwell solution (right)
(setup 1I)

For distinct points *; time series for the displacement can be derived. A corresponding
result is shown in Fig. 8 in the case of harmonic excitation with f;=14 Hz.
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Fig. 8 Time series of three points x;, j = 32,42,52 of the beam in case of an intrawell (left) and
interwell solution (right) resulting from harmonic excitation with f;=14 Hz (setup II)

Again in Fig. 8 on the left an intrawell solution is shown while an interwell solution is
displayed on the right. An FFT (Fast Fourier Transformation) analysis for each of the

time series X;(#) is performed. A corresponding result is shown in Fig. 9.
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Fig. 9 FFT analysis of the time series in Fig. 8 (setup II)
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According to the nonlinear character of the system, distinct superharmonics of the
excitation frequency in the response can be expected. Due to the symmetric characteristic of
the interwell solutions, odd superharmonics are expected while even and odd superharmonics
can be expected in the intrawell case due to the asymmetric restoring characteristic around
the stable equilibrium positions originating from the magnets. This is confirmed by the
experimental results. Subharmonics do not occur, as there are no period multiplications.

Having considered these initial results, we will first reconsider the mixed Ritz ansatz
(Eq. (1)) and the corresponding theoretical analysis. Using e.g. Harmonic Balance as
solution method for the discretized system equations and considering an excitation being
proportional to cosQt with Q=2 7f, where Q is the circular excitation frequency, one can
expect, that time function p,(¢) in the mixed Ritz ansatz can be expanded as follows

pi(0)= Y Ay cos(kQt + ;) )
k=0

where £=0,1,2,3, ... in the case of the intrawell solution and £=1,3,5,7, ... in the interwell
case. The intrawell case contains both a constant solution part (k=0) due to the deflected
stable equilibrium position as well as even superharmonics due to the non-symmetric
magnet force characteristic. On the other hand, the interwell solution has in theory a zero
mean value and is symmetric, which limits k& to odd numbers. These considerations are
almost fully confirmed by the results shown in Fig. 8 and 9. Only a small constant part of
the interwell solution is possibly due to the non-perfect symmetry of the magnets (Table
2). Inserting the expansion (2) in the mixed Ritz ansatz results after sorting in

W)=Y W)Y A, costku+g) 3)
i=1 k=0
As already mentioned in the introduction, we are interested in the question which and
how many shape functions W(x) are necessary for a good representation of intra- and
interwell solutions in our setup. Therefore, we will now do the same expansion with the
experimental results. For the j-th distinct point %, (position on the beam) the time series
of its movement is expanded by a Fourier expansion

W&, 1) = )y cos(kQt + ) (4)
k=0

with coefficients @ and a phase shift Pj. While @, in Eq. (2) describe the phase shift
compared to the excitation, ?;x depend on the time sequence of the video to be analyzed,
and are triggered by the starting of the measurement. As we are interested purely in
vibration shapes this is not a restriction.

For each considered multiple k of excitation circular frequency Q, from @ a shape
W, (x) shall be formed, which is then expanded in considered shape functions Wj(x). To do
so, the following circumstances must be taken into consideration. C? i« are taken from the
absolute values of the Fourier expansion (which is performed in a complex notation),
therefore they have positive values only. This means that in the cases where the beam
vibration has vibration nodes it is to be considered that there is a phase shift of 7 between
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@ , even for one fixed mode k. Therefore, applicability of Eq. (4) requires, that for each
k all @ are constant for all j with the exception that a jump with size 7 is possible in the
case of nodes. If this is the case, subscript j can be neglected in the following and the
final phase shift @y is described by

(ﬁk = (511( (5)

while a, are replaced by a, following the scheme

A

jk =

5jk if ‘(%k - 51k‘ =0 (6)
—a if ‘(77,‘/( _511{‘ il

From ¢, the shape 4, (x) is formed, which is expanded as follows
W ()= )" Ay () (7)
i=1

with coefficients ,&ik . In general, displacement w(x,7) from the experiments is therefore given
by

w(x,t) = i W (x) cos(kQt + @, ) )
k=0

Inserting Eq. (7) in (8) results in

n

Wwx, 1) = Z AW, (x) cos(kQx + @, ) )
k=0 i=1
and after sorting in
w(x,t) = D ()Y Ay cos(kQt + ) (10)
i=l1 k=0

which is almost equal to the theoretical result (3). The only differences are that subscript
is missing in @,, i.e. if the expansion is possible as described, the phase shift for the k-th
harmonic does not depend on the number i of the mode W(x), and reference times for the
phase shifts may differ as described above.

In the following, the steps (4)—(7) are performed with the experimental results. Fig. 10
shows a more detailed analysis of the frequency contents of the intrawell solution (left)
and interwell solution (right) of the beam tip with a logarithmic scale. Constant parts
(zero frequency) are not considered in the following as they are due to the static bending
line, which is geometric almost similar to the first eigenshape ¢, (Fig. 4) and therefore
anyway covered by the following expansion in ¢ and ¢. In the case of the intrawell
solution we limit our result in accordance with Fig. 10 (left) to &=1, 2 and 3, while we
will take in the case of the interwell solution k=1, 3, 5 and 7 into consideration.
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Fig. 10 FFT of beam tip displacement of intrawell (left) and interwell (right) oscillation
(setup II)

Fig. 11 shows @, for the intrawell and interwell solution respectively, forming the
corresponding shapes W (x) . In the following these shapes shall be expanded according to Eq.
(7), where coefficients 4, are found from the experimental data using a least square
approach. As shape functions W{x) we take the first two eigenfunctions ¢, ¢, of the beam as
sketched in Fig. 5, i.e. we limit n by 2, which means i =1, 2. The corresponding expansion
shows, that shapes W, (x) are almost identical to 4,,¢,,and 4,, ~0 (red lines in Fig. 11 (top)).

Fig. 11 (bottom) shows the corresponding phases @, , which should be equal, or only
have a jump of 7 at a vibration node, for all j in order to allow the expansion (4). In fact,

it can be seen that there are only small deviations occurring mainly close to the clamping,
1.e. at points with only small displacements.
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Fig. 11 Vibration shape d; of intrawell (top left) and interwell (top right) for frequency
f=fo and corresponding phases P, beneath (setup II)
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For the intrawell solution Fig. 12 shows the 4,» and a forming the shapes v, (x) and
W, (x) corresponding to twice and three times excitation frequency 2f; and 3f.
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Fig. 12 Vibration shape of intrawell oscillation for frequency f= 2f, (left) and f = 3f; (right)
(setup 1I)

While ,(x) gives a somewhat smooth curve there are several small deviations in
W, (x) but the shapes of both functions can be expanded with the chosen ansatz functions

¢, and ¢,.

Fig. 13 shows this step in the case of the interwell solutions for shapes v, (x), W(x)
and 4, (x). All shapes can be expanded in good approximation by ¢, and ¢,.
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Fig. 13 Vibration shape for interwell oscillation for frequency f= 3f, (left), /= 5/, (middle)
and /= 7f, (right) (setup II)

From these results it can be concluded that expansions (3) and (10), respectively, can
give a good approximation of the experimentally observed shapes and that the beam
eigenshapes are suitable functions for the expansion, which is in agreement to most used
models in literature (cf. section 1).

On the other hand, the shapes corresponding to the superharmonics AQ with £>1 can
only be suitably expanded, when using at least two shape functions in the Ritz ansatz (1),
while most publications restrict to a single one!
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Finally, the amplitude dependence shall be discussed. Fig. 14 shows d; forming
shape W;(x) in the case of the intrawell (left) and the interwell solution (right) in the case
of different excitation and, therefore, response amplitudes as well. The shapes are almost
proportional and are represented for all excitation amplitudes in good approximation by
@,. This changes for the higher harmonic shapes. In Fig. 15 and 16 the shapes for twice
the excitation frequency in the case of the intrawell and three times excitation frequency
in the case of the interwell solution are displayed. It can be seen especially in Fig. 15 that
the corresponding shapes change with excitation amplitude, but all shapes can be very
well approximated by ¢, and ¢,.

From this it follows that the ansatz (1), (2) with W, = ¢, can represent all the
observed behavior in good approximation, but at least two ansatz functions are necessary
while there is no need for amplitude dependent (nonlinear) ansatz functions in that case.
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Fig. 14 Vibration shape for frequency f=f, for different amplitudes of the excitation (intrawell
left, interwell right)
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Fig. 15 Vibration shape for frequency /=2f, Fig. 16 Vibration shape for frequency f=3f,
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of the excitation of the excitation
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4. CONCLUSIONS

Energy harvesting performed by a bistable cantilever beam has attracted much attention.
In general, the beam is in corresponding modeling discretized by the first eigenshape of the
linear beam in a corresponding mixed Ritz ansatz. In this paper, this common assumption
has been proofed for suitability. Therefore, the beam has been harmonically excited and
corresponding response vibrations have been captured by a high-speed camera. Distinct
markers have been applied to the beam and their positions were tracked over a series of
frames. In accordance with the Ritz ansatz in theory the experimental results have been
analyzed for both intrawell and interwell solution performing the following steps: first a
Fourier expansion of the responses has been performed. As there was no period multiplication
only the excitation frequency and superharmonics exist in the responses. For these
harmonics, corresponding shapes could be identified which are afterwards expanded in the
two first eigenfunctions of the undeflected cantilever beam.

The results show that the general ansatz to separate the solution of the beam vibration
into a product of functions depending on ¢ and x respectively is possible and sufficient.
On the other hand, a good approximation of the experimentally observed shapes can only
be reached if at least two ansatz functions are applied. Only for considering the excitation
frequency in the response a single ansatz function is sufficient while for superharmonics
a second ansatz function is needed to sufficiently approximate the observed vibration
shapes. Further, the existing amplitude-dependence of the shapes due to the nonlinearities,
can also be covered by the two ansatz functions.

Acknowledgements: This work has been funded by Deutsche Forschungsgemeinschaft (DFG) by
grant WA 1427/23,2.
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Abstract: Nonlinear energy harvesting systems, consisting of a piezo cantilever beam with two additional magnets placed near
the beam’s free end, have received a lot of attention in the past decade. The most common approach to model this system is
to discretize the beam in space with one modal ansatz function and to assume a cubic restoring force caused by the magnetic
field. The magnets are positioned so that two stable equilibrium positions exist in addition to the unstable undeflected beam tip
displacement, i.e. the system is bistable. This modeling procedure results in a Duffing equation with a negative linear and a positive
cubic restoring term, which is capable to represent the bistability. However, its sufficiency is often just assumed without thorough
experimental validation of the mentioned presumptions.

In this paper the authors present the results of broad experimental investigations into the sufficiency of the Duffing equation as the
underlying model of the mechanical subsystem (beam and magnets, but for the sake of simplicity without piezos). Therefore,
a model is developed accordingly, following the approach of most publications, where a heuristic method is used to determine
the cubic restoring force of the system. The theoretical predictions of the Duffing like model concerning the dynamical response
to different harmonic base excitations are compared to experimental measurements done on a physical setup of the investigated
system. The results are generally in good agreement, however particular limitations regarding the model are observed, as there is a
shift of the occurring solutions to higher frequencies in the theoretical model compared to the experiments.

Keywords: nonlinear dynamics, energy harvesting, bistable oscillator, Duffing equation, cubic restoring force

1 Introduction

The term energy harvesting describes specific strategies to derive small amounts of available energy from external sources, which
would be otherwise lost. More specifically, vibrational energy harvesting systems use ambient vibrations to generate electric
energy [Priya (2007), Kim et al. (2011), Erturk and Inman (2011b)]. Commonly, the mechanical energy is transferred into electric
energy by the use of piezoceramics fixed on the corresponding bending structure. The tuning of such vibrating systems, as well as
other strategies to increase their efficiency, have been addressed in many publications, e.g. [Adhikari et al. (2009), Erturk et al.
(2009)]. Particularly due to the nature of real-world excitation processes [Lentz et al. (2017)], which can be partly stochastic or
have broadband frequencies, approaches have been made to use more than the discrete base frequency of any foremost linear
system [Pellegrini et al. (2013), Harne and Wang (2013), Daqgaq et al. (2014), Wei and Jing (2017)]. About a decade ago [Erturk
et al. (2009)] has proposed the setup in figure 1, which has received great attention.

restoring force

resistor
A
b _ :
2_’ plezoceramics
ferromagnetic -
beam 0, 0 o
magnets
Fig. 1: Energy harvesting system. Modified figure of [Noll Fig. 2: Nonlinear restoring force with unstable trivial solution
(2018)] with added coordinate b for the base excitation. and two stable equilibria Wy .
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It consists of a base frame and a ferromagnetic cantilever beam that bends under base excitation b, with attached piezoceramic
patches. The beam is clamped to an external structure, which excites the system by its motion. A characteristic feature of this
particular system is its nonlinear behavior due to the magnets near the free end of the beam. In figure 2 the nonlinear restoring
force is shown with its three equilibrium positions, at which the restoring force vanishes. Only the two non-zero equilibrium
positions W, are stable, which is the reason for the system to be called bistable. It has shown, as many other nonlinear systems, to
be superior in efficiency to its linear counterpart when the excitation is not mono frequent but somehow distributed around the
system’s base frequency and when the beam orbits both stable positions ([Erturk and Inman (2011a), De Paula et al. (2015)]).
In order to model this energy harvesting system, it can be divided into three subsystems which are the bending beam structure,
the restoring force caused by the magnetic field induced by the permanent magnets and the electrical part, which consists of the
piezoceramics and the connected electrical circuit. The basic structure of the bistable cantilever beam with magnets, but without
piezoceramics, was already described in [Moon and Holmes (1979)]. This part will be referred to as the mechanical subsystem in
this paper. Hence, for the sake of simplicity, no piezoceramics are considered in the modeling and in the experiment in order to
have the focus on the nonlinear magnetic restoring forces.
The key component of this mechanical subsystem is the cantilever beam, which is regularly modeled as an Euler-Bernoulli beam.
The beam is discretized by its first linear eigenfunction (without magnets). This modeling has become the standard approach to
describe its dynamics by a single second order ordinary differential equation, which has been applied many times (as in [Litak et al.
(2010), Tam and Holmes (2014), De Paula et al. (2015), Noll et al. (2019a)]). The question if more than one ansatz function is
necessary, is addressed in another paper by the authors [Noll et al. (2019b)]. Its conclusions are that the use of the first linear
eigenfunction of the beam is suitable in most cases and the second linear ansatz function only has a small geometric share in cases
of super harmonic responses. Following the standard modeling procedure, the magnets are replaced by a single transverse force
that is applied at the tip of the beam and is assumed to be of a cubic polynomial type with vanishing quadratic term. This results in
the Duffing equation with negative linear and positive cubic restoring force (see e.g. [Lentz (2018)]), which is a minimal model to
describe bistability. A lot of varied systems with different arrangements of magnets (see e.g. Westermann et al. (2013); Lan and
Qin (2017)]) or even other nonlinear mechanisms finally end in a Duffing equation. Most of the publications about comparable
bistable configurations follow this approach, or simply state a Duffing equation as the underlying model, as in [Litak et al. (2010)]
or [Lentz and von Wagner (2015)]. The model parameters are then found heuristically in a manner described in the following.
The displacement of the nontrivial equilibrium positions and the corresponding frequency of free vibration of small amplitude
are needed. They provide the necessary information to determine the restoring parameters. This can (only) be done when an
experimental setup exists, or corresponding assumptions regarding the system are made.
In [Noll et al. (2019a)] the authors have tried to apply an alternative procedure, where no existing experimental setup would
be needed to determine a model by a direct computation of the restoring force. Therefore, the magnetic field was simulated by
a two-dimensional FEM-approach with subsequent numeric force computation, where linear magnetic material behavior (i.e.
constant permeability) is assumed. However, the resulting model in that case could not satisfyingly meet the conditions of matching
equilibrium positions and corresponding frequencies. In contrast, the agreement of the equilibrium positions and frequencies are
always achieved when using the aforementioned heuristic method. It yields a model that is a good approximation when the beam
tip is in the vicinity of the stable equilibrium positions. However, in other ranges of the beam tip displacement, as for example the
unstable equilibrium with zero displacement, this might not be a good approximation.
In this paper, dynamic experiments are described, investigating the system’s steady state response for different harmonic base
excitations with varying frequency and amplitude. In the following section, the experimental setup is introduced. The results will
be compared to predictions of a model that is found according to the heuristic method, described in the second next section.

2 Experimental setup

The main focus is on the mechanical subsystem (figure 3) of the energy harvesting system, that consists of a cantilever beam
(dimensions: 250 X 20 X 1 mm) and permanent magnets (dimensions: 5 X 20 X 10 mm). No piezoceramics are considered in the
presented investigations, as mentioned in the introduction. The distance between the beam tip in the undeflected state and the top
side of the magnets is about 6 mm and the gap between the magnets is 12.7 mm. The beam made of ferromagnetic steel is modeled
according to section 3 as an Euler-Bernoulli beam and therefore mechanically characterized by its mass per length u and bending
stiffness E1. Further it is magnetically characterized by its relative permeability. There are some indications that the material of the
beam is not linear regarding its magnetic properties, i.e. it shows a distinct hysteresis depending on the strength of the applied
external magnetic field [Noll et al. (2019a)]. The magnets are made of NdFeB (Neodymium) with remanence B; = 1.35 T. The
overall system has the physical properties given in table 1.

Tab. 1: Physical properties of the experimental setup (cf. figure 3).

property value

first circular eigenfrequency of the beam when no magnets are present wy 27 13.4 Hz

displacement of the nonzero equilibrium positions Wy, +6.97 mm

(distance from the undeflected position when permanent magnets are present) —6.97 mm

circular frequency of the oscillation in equilibrium positions with small amplitude w 27 14.9 Hz
27 14.6 Hz

damping ration with magnets in equilibrium positions D 0.0013
0.0019
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Fig. 3: Mechanical subsystem of the investigated energy harvesting system.

Note that in general there are two different circular frequencies w for small vibrations in each stable equilibrium, due to an
undesired but unavoidable asymmetry of the experimental setup. For the heuristic modeling later, the average will be taken. Same
applies to the damping ratios D that are found by determining the logarithmic decrement from time signals of free beam vibrations.
In order to measure the quantities in table 1, the setup shown in figure 4 is used. It consists of several devices to realize a
harmonic base excitation and devices to measure the beam’s response in form of its beam tip displacement. Also, the actual base
excitation occurring at the base frame is measured. To determine the static (and later dynamic) displacement of the beam tip a
laser triangulation sensor (ALLSENSE AMS500-50) is used. It is attached to the moving base frame (cf. figure 3), hence directly
provides the relative displacement of the beam tip with respect to the permanent magnets, which are fixed within the moving
aluminum framework. The harmonic signal of the base excitation is generated by MATLAB R2018a and further processed by a
measurement box (Datatranslation DT9837A) that provides the desired voltage signal for a shaker (LDS V406/8-PA100E) after
amplification (LDS PA 100E Power Amplifier). The shaker is attached to a vibration table, containing four leaf springs as support,
on which the system in figure 3 is placed. The vibration table has a notable dynamic of its own, which has an influence on the base
excitation. The base frequency of the vibration table is about 6 Hz, which is not very far from the considered range of frequencies
in experiments later. The range will be 7 Hz to 18 Hz and is chosen around the first eigenfrequency of the beam of 13.4 Hz. Hence,
the transfer function of the vibration table is not constant within the considered range of frequencies and needs to be regarded. The
measurement box provides a voltage signal that is amplified and provided to the shaker.

laser triangulation base frame laser
shaker sensor beam (cf. Fig. 3) vibrometer

amplifier measurement laptop vibration table
box and frame

Fig. 4: Experimental setup of the energy harvesting system placed on a vibration table excited by a shaker, with measurement
devices and related data acquisition tools.
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The shaker generates a force proportional to this signal, to excite the vibrating table. Since a harmonic base excitation of a certain
amplitude A is desired, that is independent of the circular excitation frequency (2, the signal provided by the measurement box
needs to regard the dynamics of the vibration table. To confirm that the specified signal of the excitation concurs with the actual
base motion it is measured by a laser vibrometer (OptoMET Nova Basis), that determines the velocity b of the base frame. The
base excitation, that is proportional to the acceleration b, is then found from this measurement by a numerical differentiation of the
time signal of the discrete velocity values. The reason it is measured is that the base excitation occurring at the base frame is not
always concurring with the specified signal generated in MATLAB. There is a bias in magnitude and a phase shift of roughly 7rad
originating from the dynamics of the vibration table. Also, the authors have observed that there are cases in which the beam, due to
its inertia, has a retroactive effect on the actual base excitation. Especially when the beam tip exhibits large orbits around both
of its stable equilibrium positions, deviations of the actual base excitation from the desired specified signal are probable. The
measurements later to be shown in detail are chosen due to their fairly harmonic base motion.

All measurements are done in the steady state of the system, which is assumed to be reached after a 60 seconds transient response
of the system. Subsequently the measurements are done for 10 seconds with a sample rate of 10 kHz. The sampling is performed
after a suitable lowpass filter applied by the measurement box.

3 Modeling of the mechanical subsystem

The different aspects of the overall system can be, to a certain extent, modeled separately and in different levels of complexity.
Two existing publications of the authors deal with particular parts of the energy harvesting system which are: first, the magnetic
field, the thereby caused magnetic restoring force and the resulting corresponding stationary behavior of the system (equilibrium
positions and corresponding frequencies of small free vibrations) in [Noll et al. (2019a)] and second, the spatial discretization of
the beam using only the first linear eigenfunction of the beam in [Noll et al. (2019b)]. In both publications the beam has been
modeled as an Euler-Bernoulli beam structure, that bends under excitation. The beam displacement is described by a partial
differential equation for the beam displacement w depending on the beam coordinate ¢ and time ¢ as given in many continuum
dynamics textbooks. Following the classical discretization process as in [Noll et al. (2019a)], the mixed Ritz ansatz

w(g,1) = x(1) $(£), e))

where x is the time dependent modal coordinate. ¢ is the first eigenfunction of the linear beam, ¢ € [0, L] the beam coordinate
and L the total length of the beam. ¢ is chosen to be 1 at & = L, hence x concurs with the beam tip displacement w = w(L, ) (cf.
figure 1). It yields the ordinary differential equation of motion given by

#(1) + 2Dwi(t) — ax(t) + Bx(t) = gb(1). )

Compared to [Noll et al. (2019a)] the term on the right-hand side is added, since in this paper dynamic experiments of the driven
Duffing oscillator are performed considering a base excitation, while in [Noll et al. (2019a)] the static behavior and free vibrations
were investigated. The coefficient g is determined accordingly and given by

L
d
Y RLGLS -

g= .
JEe2(e) de

The excitation is chosen to be a base excitation of a constant amplitude A of the form b(r) = A cos Qr.

In order to get the specific kind of restoring term, that is —ax(r) + Sx3(¢), the assumption has been made that the magnetic force is
a cubic polynomial of the beam tip displacement. Further, a linear modal damping has been inserted with the damping ratio D. In
cases where a and § are both positive, bistability is existent with the two nontrivial equilibrium positions x> on each side of the
undeflected beam position

Xip =2 % (4)

Further, if considering oscillations within these two equilibrium positions with small amplitude the circular frequency for free
vibrations in each of the stable equilibrium position can be determined after linearization by

w =V2a. 5)

When a physical setup is available the model parameters can be determined and are given in table 2 for the setup in figure 3.

Tab. 2: Model parameters of corresponding experimental setup given table 1.

parameter w[1/s] D [-] a [1/57] B1/5%] g [1/m]
value 92.7 0.0016 4275.6 8.8- 107 -1.57
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The parameter w and D are found as the average of their values from an analysis of the time signals of free beam vibrations in each
stable equilibrium when the magnets are applied. Even though the beams’s circular eigenfrequency wy = 2 713.4 1/s has no direct
significance for the setup with magnets, it is taken to define the frequency ratio n as

n=—, (6)
wo

which is used later. @ and g are found according to (4), (5) and g by equation (3). This approach is of a heuristic nature and
therefore an experimental setup needs to be present first to find the according model parameters. This is an essential drawback of
this approach, since these quantities need to be measured every time the setup is changed (e.g. the distance between the magnets).
On the other hand, an advantage is that the model gives a good approximation of the physical setup when the beam tip is near one
of the stable equilibrium positions. The approach ensures, that the equilibrium as well as the corresponding frequency of the model
concur with those of the setup (except for possible asymmetries which cannot be covered by an uneven cubic force model). In the
next section the experimental results are presented, and a comparison is done to the predictions of the Duffing model.

4 Experimental results and comparison to theory

In this section experimental results are shown and compared to the predictions provided by the corresponding Duffing model
equation (2) with parameters in table 2. The setup is excited by different harmonic base excitations, which differ in acceleration
amplitude and frequency. The beam tip displacement is measured, as well as the actual excitation. It is common to look at the
phase diagram of the solution, which is a trajectory in the state space, that shows the velocity of the beam tip over the beam tip
displacement (see figure 5). For that, the beam’s velocity is to be determined from the measurement of the beam tip displacement,
which is achieved by a numerical differentiation done using the central difference quotient. Since the signal of the beam tip
displacement is noisy and a numerical differentiation increases noise, it is necessary to lowpass filter the signals. This is done using
a Butterworth lowpass filter with cut-off frequency of 90 Hz (5 times the largest excitation frequency). This frequency is chosen as
a compromise between a low cut-off frequency to get smooth results and a high cut-off frequency to remain the characteristics of
the phase trajectory. Also, sub and super harmonics are to be expected. The super harmonics, which can be several multiples of the
excitation frequency, could be eliminated by a filter with a too low cut-off frequency.

The solution that occurs depends on the initial conditions since the system is nonlinear, what means that for one excitation different
types of solutions are possible. One approach to distinguish different solutions is to consider the turning points of the beam tip
throughout the measurement time. In figure 5 the turning points are marked. More specifically: when the velocity changes in
sign, the beam is changing the direction it travels. If all those occurring turning points (and therefore all beam tip displacements
also) have the same sign (either all exclusively positive or negative) the solution is called intrawell (in blue). If the sign switches
periodically with a period not being larger than a defined threshold, the solution is labeled as interwell solution (red). If there
is a very large number of turning points (in this work set to be greater than 25) with positive and negative signs the solution is
considered to be chaotic, even though it might be possible it is a periodic solution with a very large period.

1500 § i 1500

£ 1000 £ 1000

= 500 = 500

& £

L 0 ] 0

2 g

2 =500 2 =500

£ -1000 £ -1000

2 2

= —1500 ; ; = —1500 ; ;

-10 -5 0 5 10 -10 -5 0 5 10
beam tip displacement [mm] beam tip displacement [mm]

1500 1500

=500 =500

—1000

-1500 § . -1500 ; :
-10 -5 0 5 10 -10 -5 0 5 10
beam tip displacement [mm] beam tip displacement [mm]

£ -1000

beam tip velocity [mm/s]

beam tip velocity [mm/s]

Fig. 5: Experimental phase diagrams and turning points (marker) of different solutions for a harmonic acceleration of amplitude
A = 3.81 m/s? and different excitation frequencies. Upper left: 7 Hz /  ~ 0.52; upper right: 8.5 Hz / n ~ 0.64; lower
left: 14 Hz / n =~ 1.05; lower right: 17 Hz / n =~ 1.27. Color code refers to the type of solution: intrawell solutions in blue,
interwell solutions in red and chaotic solutions in gray.

9 47



M.-U. Noll, L. Lentz, and U. von Wagner Tech. Mech., Vol.x, Is. x, (yyyy), bbb—eee

3rd publication [Noll et al., 2020]

15
rYJ
10 oo 000 LYY L1 L
®
(XY} ' ' I I! lo ®00%0000000
—————— ogg- oo s a s & ok = EEEP RS
R |. : i it ecsc000000®
g i TEHIHR
2 I
g 0 % M 3-:' [l o!
8 ! RN R
2 ° | H HE I"o
.4 [ ] i ' °
5 -5 ! 0[.' i Jj!! o ! O AL LT TS
_____ *% - - - - - - - - - 8- - - oo T T%ee |
f.......oo ll I ' I e8ceccccccece
-10 ®
o0 o
(X} ooo.o.....
-15
6 8 10 12 14 16 18

excitation frequency [Hz]

Fig. 6: Experimental results: turning points of the beam tip for parallel existing steady state solutions for harmonic acceleration of
constant amplitude A = 3.81 m/s? and different excitation frequencies. Color code corresponding to figure 5.

Another possible way of displaying the occurring types of solutions is the system response diagram in figure 6, which is especially
suitable to show the influence of the excitation frequency and is also used e.g. in [Lentz (2018)]. It shows all turning points of
different solutions that exist in parallel for excitations of different frequency but constant amplitude. As it can be seen, there are
different frequency ranges where more than one solution exists and some ranges, where only one solution has occurred during the
different experimental repetitions. For each frequency ten experiments have been made, sometimes having the same final steady
state and sometimes having different final steady states. The initial conditions of each experiment are not known nor reproducible,
which means they cannot be controlled. Hence, it is not possible to directly reproduce each experiment numerically, making a
comparison of the experiment to the Duffing model difficult. To deal with the lack of controllability of the entirety of the occurring
solutions in the experiments (and also numerics), many trials with different initial conditions are done to increase the chances of
various solutions, to allow a comparison between experimental and numerical results.

In figure 7, the results of numerical simulations of the model in equation (2) can be seen. It is found by a numerical integration
using the NDSolve-function of MATHEMATICA 11 with no changes of the default settings with respect e.g. to the integration
scheme, step size and precision goal. To get a better numerical conditioning, the differential equation for the modal coordinate x
is transformed to be in the magnitude of millimeter & = 1073 x before solving for ¥ and transforming back. The sets of initial
conditions in this case need to be chosen and are set to be 126 different equidistant values for ¥ for + = 0 between —15 and 15
and zero velocity. The integration time is 1000 seconds and the last ten seconds are used to be analyzed for their turning points
analogous to the experimental data. For avoiding large arguments in the periodic cosine function and corresponding errors, the
values are set back in the range between 0 and 27 when exceeding this range.
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Fig. 7: Numerical results: system response diagram in Fig. 6 found by numerical integration of the Duffing model. Color code
corresponding to figure 5.
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When comparing both outcomes in figure 6 and 7 similar characteristics can be seen. In both diagrams, there are three main
frequency ranges distinguishable: one at lower frequencies, where mostly intra- and interwell solutions (blue and red) occur in
parallel, another range, where interwell solutions (only red) exist solely and a third where chaotic solutions are probable and
also intrawell and interwell occur again. A difference between both diagrams is that in theory those three regions are shifted to
higher frequencies. In the experiment lower excitation frequencies (around about 10 Hz /  ~ 0.75) lead to the preferred large
interwell solutions and in theory, this range is slightly shifted to larger frequencies (around about 12 Hz / n = 0.9). The position
of this range is of high interest due to its high potential for energy harvesting purposes since the beam undergoes large periodic
deformations that cause high energy outputs. It is also noteworthy that the biggest region, where chaotic solutions were observed,
in experiment is around the eigenfrequency of the beam (13.4 Hz / n = 1) and in theory again shifted to the right for larger
frequencies (14Hz / n ~ 1.05). Another difference is that in theory large interwell solutions occur for every considered frequency
but do not occur as often in the experiments. It shall be noted that the experimentally realized base excitation may differ from a
harmonic excitation due to different reasons explained in section 2. A measure of the amplitude of each actual base acceleration is
given by the Root Mean Square (RMS) value. The mean value of the acceleration amplitude A for all experiments (ten repetitions
for each of the 45 frequencies) in figure 6 is 3.81 m/s? and the standard deviation of all values is 0.086 m/s?.
The results shown so far were generated for one specific amplitude of the base excitation. In the next step, different amplitudes are
considered. A map of the type of the solution (color code consistent to the figures above) that occurs for a single experiment with
an excitation frequency and amplitude is shown in figure 8. Again, the experimentally realized initial conditions are uncontrollable
and therefore again unknown. As it can be seen, the excitation amplitude is not uniformly distributed, due to influences of the
vibrating table. The actual occurring base excitation amplitude is determined by the RMS value of the measured base excitation.
The same rules to distinguish the type of solution are applied.
In figure 9 equivalent results of numerical simulations are shown. Again, time integration is performed using NDSolve in
Mathematica 11 with default settings. For a 1:1 comparison of the results, the same excitation and initial conditions would need to
be considered. This is impossible as described above as there are very restricted possibilities to control the initial conditions in the
experimental setup. For this reason, again more simulations are done as experiments to cover a broader range of initial conditions.
For simulations this is easier to perform as they are not as time consuming and can be done partly parallel.
For each excitation 25 simulations are performed, where the initial conditions are equidistant displacements x(¢ = 0) in the range of
[-3x1,3x; ] with zero velocity. Only if always the same solution occurred, a filled squared marker of corresponding color is used. If
the same solution occurs between 15 and 24 times out of 25, an diamond marker of the lighter color of the solution that occurred the
most is used. Further, no marker is used, if no solution appeared more than at least 15 out of 25 times. Note that, for these criteria,
chaotic solutions are less likely on the map and never occur 25 out of 25 times for a certain excitation. Consequently no squared
grey marker can be found, but grey diamond markers are to be seen on the map in the same regions chaos appeared experimentally.
Again, when comparing both results, similar characteristics can be found. Overall, the model is in general suitable to predict the
experimental results, but in detail deviations can be found. In good agreement, for example, are the position of chaotic solutions
(grey) and that for small excitation amplitudes (below 2 m/s?), where mostly intrawell solutions exist. Differences are again shifts
of the different regions to higher frequencies in the model results, as can be seen in the large red region. Similar theoretical
investigations with maps of this kind can also be found in [Panyam et al. (2014)], which concur with the results of this paper.
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Fig. 8: Map of experimental results of the system response for different excitation frequencies and different amplitudes of harmonic

acceleration. Only one experiment for each excitation is performed, wherefore only one solution occurred and uniquely
defines the color of the marker. Color code corresponding to figure 5.
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Fig. 9: Map of numerical results of the system responses found by time integration to be compared with figure 8. Color code
corresponding to figure 5.

5 Conclusions

Energy harvesting performed by a bistable cantilever beam has attracted much attention in the past years. In most of the
corresponding publications, the restoring force of the energy harvesting system is assumed to be of third degree, i.e. cubic. This
modeling leads to the bistable Duffing equation. Corresponding model parameters are found heuristically.

In this paper, the assumption, that the restoring force is a cubic polynomial depending solely on the beam tip displacement, is
investigated for suitability. Extensive experiments are performed to experimentally determine the system response for varying
harmonic base excitations. A comparison to numerical results by time integration of the corresponding Duffing model is presented.
The biggest issue is that the initial conditions cannot be controlled on the experimental setup that is used. Hence, the diversity of
the solutions is probably not fully represented. To overcome this limitation several experiments and many simulations with varying
initial conditions are done to increase the probability of occurrence of the respectively existing different solutions. In any case, the
final steady solution of the system is in the focus of interest. Although there is no guarantee that all possible solutions are found,
neither experimentally nor numerically, the occurring solutions are in good agreement and the results are broad enough for a
comparison of the general characteristics. In fact the results show that in general the model covers most of the characteristics
that can be seen in experiments but may have deviations. More specific, there might be a slight shift of the existence of solutions
towards larger frequencies in theory. This might lead to false predictions when optimizing an energy harvesting system by tuning it
to an existing harmonic excitation of a specific frequency. In general, the cubic restoring characteristics seems to be a good model,
if the requirements on the accurateness of the model are not too high. On the other hand, as e.g. described in [Lentz (2018)] or [Noll
et al. (2019a)], there may be specific cases where higher order approximations or in general extended modeling may be necessary.
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7 Further research

7.1 Three-dimensional magnetic force determination using
COMSOL

The first publication [Noll et al., 2019a] is on the numerical computation of the magnetoelastic
forces on the beam, to establish an alternative method to the heuristic method, to find the restoring
force of the system. The results are compared to experimental results. As concluded in this publi-
cation, deviations exist between experiment and numerical results, which possibly result from two
reasons described in the last part of the publication.

First is that in the modeling of the forces it is assumed that magnetic field can be computed
approximately by a two-dimensional simulation. This assumption is only valid when the magnetic
field is constant along this third dimension for the major part of the system’s depth, so that the effects
at the boundaries (facing in and out of the two-dimensional plane) can be neglected. However,
when considering solely the magnetic field, it can be clearly seen the magnets do not produce a
homogeneous magnetic field in the area where the beam is theoretically located, as shown in figure
8 of [Noll et al., 2019a]. This is likely to remain true in the presence of the beam, although the
beam changes the magnetic field. Hence the force is not independent of the magnets as well as the
beams’s depth. This hypothesis is supported by experiments in [Vanegas Miiller, 2018]. Therein,
the force between different single magnets of different depths on the beam of constant depth is
investigated to find out, if the individual depth of each magnet has an influence on the force exerted
on the beam. The experiments show that the force is strongly depending on the magnet’s depth,
hence a three-dimensional magnetic field simulation is necessary, especially when the beam and the
magnets are of the exact same depth. Therefore, in the following a three-dimensional simulation of
the magnetic field is conducted to compare the results to those of the two-dimensional simulation
presented in the first publication [Noll et al., 2019a]. The commercial software COMSOL is used
for the stationary magnetic field simulation, as shown in figure 7. This software is able to perform
a force determination by an implemented function that uses the Maxwell stress tensor. It is limited
to global force computations concerning magnetoelastic forces. The validity of this simplification
has been addressed in section 5.3. Although it may differ in the three-dimensional case, since it
has also been applied in the first publication, it is consistently applied in the three-dimensional
simulation as well. The three-dimensional simulation is meant to reproduce the results from the
two-dimensional simulation in the first publication, with only the third dimension to be considered
additionally. This means the geometry is alike, and only extended by the depth of the beam and
magnets respectively. The materials are modeled analogously, but need to be defined differently in
COMSOL. There, the remanent magnetic flux density B, is to be entered to define the magnetic
properties of the magnets. It is chosen as B, = 1.3725 T, which is within the range given by the
magnet supplier and equivalent to the material definition done in the two-dimensional simulation
in the first publication.

Note that there is a corrigendum to the first publication [Noll et al., 2019c], which corrects the
value of the relative permeability of the steel beam. It has in both simulations been respected by
the value of 1000, and not as 300 as falsely given in the table 1 of [Noll et al., 2019a].
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Fig. 7 Three-dimensional magnetic field simulation with COMSOL. To be seen is the geometry of the setup
consisting of the magnets and the beam for an exemplary displacement of the beam. Additionally a
slice (blue) is shown for the (normalized) magnetic flux density B.

Computing the magnetoelastic force with COMSOL and processing the results analogous to the
results in the first publication yields the following direct comparison of the bifurcation behavior of
the equilibrium positions in figure 8 on the left and the corresponding frequencies in the same figure
on the right. Note, that the results of the experiments and the two-dimensional force computation
(taken from the first publication) are shown again to enable a direct comparison.
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Fig. 8 Comparison of the results of the bifurcation behavior of the equilibrium positions (left) and frequencies
(right) for different magnet distances for the two-dimensional case, the three-dimensional case and

experiments.
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As demonstrated, the deviations of the three-dimensional simulation to the experimental results
are larger compared to those of the two-dimensional simulation. The magnet distances, where
bistability exists, do not coincide with the experimentally determined magnet distances. Further,
no tristability occurred in the three-dimensional force modeling. The equilibrium positions, as
well as the corresponding frequencies are, in their absolute value, significantly smaller than found
by experiments. The absolute values of the resulting forces are significantly smaller in the three-
dimensional case. These surprisingly large deviations were discussed with the software support of
COMSOL, which has confirmed the correct use of the software and the plausibility of the results.

A possible explanation of the fact that the two-dimensional simulation is providing better re-
sults than the three-dimensional simulation — without further investigation — is that the magnetic
field in the two-dimensional case is assumed to be equally strong over the complete depth of the
beam, but in the three-dimensional simulation decreases towards the edges, which results in smaller
magnetic forces. Following this argumentation, it is possible that in both simulations the choice
of the parameters for the magnetic materials is poor and coincidentally lead to better results in
the two-dimensional case. Three different material parameters are to be considered, which are the
remanent magnetic flux density (provided by the magnet supplier) and their relative permeability
(taken from literature) and the relative permeability of the steel beam, which is the parameter of the
highest uncertainty. Therefore, an adaptation of the permeability of the steel beam, by increasing its
value, should result in larger forces and consequently a higher accordance of the three-dimensional
case to the experiments. However, contrary to this perception, it does not yield results with higher
accordance. Increasing the parameter, using double its value (2000), does not increase the forces
significantly and consequently does not improve the accordance. There is a saturation of the force
for large values of the permeability, a hypothesis which is also supported by the results in [Vane-
gas Miiller, 2018]. There, different simulations of the force between magnet and beam are com-
pleted with varying permeability of the steel beam, showing that at some value for the permeability
further increase of its value does not lead to larger forces. The threshold for this saturation is found
to be significantly smaller than the initially used value of 1000, hence altering this value does not
hold potential to improve the accordance to the experiments.

Other possible reasons for the deviations are that there are effects of the setup’s reality, which
are not covered by the linear stationary magnetic field simulation. So far not considered is the
nonlinearity in the permeability of the beam material, which shows a pronounced hysteresis, as to
be seen in figure 9 of [Noll et al., 2019a]. Once the beam is placed near the magnets it is reten-
tive magnetized. Its previous magnetization due to an external magnetic field has an influence on
its current magnetization. Further, deviations may result from the exact beam bending shape, or
the assumption that the magnets are homogeneously magnetized with the constant exact remanent
magnetic flux density and constant relative permeability. Additionally, uncertainties in the geom-
etry of the experimental setup are not considered, especially its asymmetry and the size of the gap
between beam tip and the upwards directed surface of the permanent. The setup does not allow a
reproduction of a specific experiments with high accuracy, since the manual adjustment of magnet
placement is imprecise.
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7.2 Determination of the restoring force from measurements of
forced vibrations

In the third publication, dynamic measurements are presented. The bistable beam, under the influ-
ence of a harmonic excitation, and its steady state, the stationary response, is captured and compared
to predictions of the theoretical Duffing model found by the heuristic method, which is described
in section 3.

The measurements conducted on the experimental setup can be used for more detailed investi-
gations, particularly of the restoring force. The following approach explores an advanced heuristic
method. In the basic heuristic method described in section 3, the position of the equilibria is de-
termined, hence the states where the restoring force vanishes. In other words, the restoring is only
known in these states (to be zero). In between the stable and unstable states, there is no information
about the restoring force, which will be determined by considering dynamic measurements.This
approach, where the restoring force is determined during dynamic experiments, was developed as
well as performed in [Kienz, 2019] and also applied here. The equation of motion is reconsidered.
A new notation is introduced, where the restoring term is not restricted to a cubic polynomial, but
now kept a general nonlinear function R depending on the modal coordinate x, which is proportinal
to the beam tip displacement. The other terms in the equation of motion can be determined using
the measurements: x, x and the excitation 5 are known (see [Noll et al., 2020]). Note that these
quantities are measured as discrete values at distinct times ;. Considering the equation of motion
at certain discrete values of time, the values of the restoring term R, can be found. Equation (2) of
the third publication can be rewritten as

R,(x,) = gb, — %, — 2Dw, x;, (15)

where the terms on the right side are all known from measurements and model assumptions, except
the values of X;, which can be determined numerical by a second derivation of x;. These assump-
tions also regard the damping law, that is assumed to be a linear modal damping. In particular,
there is a nonlinear damping expected, for instance due to the hysteresis of the magnetic material
of the beam and its constant change of magnetization when moving through the external magnetic
field. However, since the damping ration D of the system is small, the damping term is expected
to be comparably small too.

The author has tried to determine X; by using the same approach as in the third publication,
where the velocity x; has been determined from a numerical differentiation of the time signal of the
modal coordinate x;. However, the results were not smooth enough unless when using a lowpass
filter with such a small cut-off frequency that the characteristics of the original signal were changed
drastically. Hence, another approach was used, which is more suitable. The time signal of the beam
tip displacement is expanded in a Fourier series. This works well for periodic solutions, namely
the intra- and (non chaotic) interwell solutions, but not for chaotic solutions. Thus, a restriction to
periodic solutions only is made. When the signal is known as Fourier series, it is in the form of an
analytic expression, which can easily be differentiated by time. This results in smooth signals, that
can be evaluated at times 7,, and can be used as input for the right side of equation (15).

In the following steps, the equation of motion is, for reasons of simplicity, adapted so that the
modal coordinate x; is of the same value as the beam tip displacement 10;, which means w; = x; ¢(L),
where ¢(L) = 1 m. The continuous signal of the measured beam tip displacement is given by the
following Fourier expansion

a B 2 s~ 2
x(t) & ?0 + Z d, cos <kT> + b, sin <kT> , (16)

keK 0 0
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which is a sum over specific k € K that are described later. Tj, is a base period to be chosen
appropriately and the coefficients are given by

21, - 1)) 2
a, = ——— , k=t. 17
> 2(t2 - tl) . 2r
b, = —5— Z X, sin <kF0ti> : (18)

The choice of the frequencies to be considered is crucial to get a good approximation of the ac-
tual signal. Since the system is nonlinear, there are other frequencies probable besides the har-
monic excitation frequency in the systems response. More precise, sub- and superharmonics are
to be expected, which are even or uneven whole numbered fractions and multiples of the excita-
tion frequency, depending on the kind of the solution (intra- or interwell). Therefore, consider the
frequencies f;

f=02 (19)
2r

where all ratios v; form a set V' given as

V:{L'ISISIOandISmS7}={l,
m 7

It includes many possible sub- and superharmonics, but also additional fractions of the excitation
frequencies. This choice of V' may seem arbitrary and very extensive, however it has produced very
good results in the majority of the measurements. The set V' contains 48 distinct fractions. In order
to find K, which is the set of all k£ in equation (16), the greatest common divisor (GCD) is used and
in the considered case given by

| —

b

W | =

9 eeey

N =

, % ..8.9, 10}. (20)

1
GCD(V) = —. 21
) 120 (21)
The set K is then defined as
K = L’1 <i<48 » =< 60,70, 84, 105, ...,3780,4200 ». (22)
GCD(V)

The largest period Tj,, which is defined by the smallest considered frequency, is given by

T, = min 27 ) laz (23)
i v: 2 0

1

In the following figure 9 the measured (time discrete) signal of the beam tip displacement in blue
and the continuous Fourier expansion of the signal in black of an exemplary intrawell solution are
shown, where T' = 1/£. Both curves appear to be identical, due to their high consistency to each
other.
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Fig. 9 Exemplary measured solution of the beam tip displacement during forced vibration (blue) for an har-
monic excitation of amplitude A = 3.81 m/s? and excitation frequency of 8.5 Hz / n ~ 0.64 and
corresponding Fourier expansion of the signal (black).

In the sets of figures 10 to 13, results of measurements are presented that correspond to the measure-
ments shown in the third publication (in publication-figure 5). Left of these figures (in figures of
this section), the phase diagram of each solution is shown again, when using the Fourier expanded
signals, and on the right side of the figures, the corresponding restoring term, found by equation
(15), is shown over the beam tip displacement. In the same figure, the restoring term according to
the Duffing model is shown in black, which has been found by the heuristic method, described in
section 3.

In the left figures, the phase diagrams, which can be compared to the phase diagrams found in the
third publication, are shown. There, the signal of the velocity was found after a low pass filter and
the numerical derivation of the discrete values of the beam tip displacement. As mentioned previ-
ously, in this section, a Fourier expansion of each signal with subsequent analytic differentiation is
used. The phase diagrams look alike to the phase diagrams found in the third publication, which is
an additional validation of the applied method.

Of particular interest are the figures on the right. There, a direct comparison of the restoring
force found by the heuristic method to the restoring force found from the measurements is made.
The results show the accordance of the heuristic restoring to the measured restoring force depends
on the type of the solution that occurs.

When interwell solutions occur (red) the overall shape of the restoring term can be approximated
by the heuristic model, which is a cubic polynomial. Especially towards large and also large neg-
ative displacements, both models have a fairly high accordance with each other. The equilibrium
positions in the dynamic case concur with those static equilibria, thus the equilibria of the heuristic
model. However, near to the trivial equilibrium (undeflected beam) the restoring shows larger de-
viations, and a tendency to change within this area for different solutions. It can be approximated
by a polynomial, despite requiring a higher order than a cubic model.

Results for intrawell solutions (blue) are more complex. Not only that the restoring term shows
some pronounced wavy forms, but it is also observed that it is not only a function of the displace-
ment and others, as for specific displacements at different times, different restoring forces occur.
Consequently, in the dynamic case there can be more than one position with a vanishing restoring
force, which has never been observed in the static case by the author. Hence the restoring term
cannot solely be described by a polynomial depending on the beam tip displacement. It might be,
that the influence of the damping term, is higher in these cases. Possibly the large magnetic field
close to the magnets causes intensive interactions that lead to a larger mismatch between theory and
experiments and is to be investigated in more detail, which is not carried out in this dissertation.
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Fig. 10 Phase diagram (left) and restoring force (right) for harmonic excitation of frequency of 7 Hz /
n =~ 0.52. Color code: intrawell in blue, interwell in red, heuristic cubic restoring force in black.
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Fig. 11 Phase diagram (left) and restoring force (right) for a harmonic excitation of frequency of 8.5 Hz /
n =~ 0.64. Color code: intrawell in blue, interwell in red, heuristic cubic restoring force in black.
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8 Discussion and conclusions

This dissertation contributes to a more ambitious modeling of one popular nonlinear magnetoelastic
energy harvesting system, whose main feature is the presence of two permanent magnets near the
free end of a ferromagnetic beam. For simplicity’s sake, only its mechanical part — without the
piezos and the electrical circuit — is considered. The investigations presented give a deeper insight
into the physical reality of an experimental setup of this subsystem, which is commonly modeled
by the bistable Duffing oscillator. The cumulative dissertation, which encompasses three original
publications, analyzes this specific type of model for suitability, and revisits model assumptions
regarding the beam and the magnetoelastic forces exerted by the magnetic field of the permanent
magnets. The dissertation furthermore endeavors to enable an optimization of the overall system
through the establishment of a model based on the physical characteristics of the experimental
setup, rather than heuristically derived model parameters, which are not directly connected to a
considered setup.

In preparatory investigations prior to the three publications, the beam modeled on the basis of
the linear Euler-Bernoulli beam theory is proven as suitable when it comes to describing its pure
mechanical elastic restoring force. A further step examines the viability of accumulating the mag-
netoelastic force, which is distributed on the ferromagnetic beam in actual fact, at the beam’s free
end. This possibility is found to be applicable with negligible influence on the resulting model
parameters. The publications, which are summarized in the following three paragraphs, treat both
fundamental findings as underlying assumptions.

In the first publication, a procedure is shown to compute the magnetoelastic force numerically,
in order to directly model the nonlinear restoring force of the setup. The intention was to find
a method, other than the heuristic method, which gives a direct connection between the physical
setup and the model originating from it, without necessitating the experimental setup to be built
first. Here it is to be noted that, when comparing the accuracy of results found numerically to the
results a heuristic model would provide, the accuracy of the heuristic model is, as expected, higher.
This is due to the consideration of only the equilibrium positions and frequencies of the stable
states, and the fact that the heuristic restoring force is defined to match these values. However,
the restoring force determined numerically is not restricted to a cubic polynomial with only con-
curring equilibria and frequencies, but provides a more comprehensive model. Also it enables an
optimizing of the energy harvesting system concerning its efficiency. In further research, a three-
dimensional simulation, also linear and stationary, is completed to see if the accuracy of numerical
results with the experimental results can be increased, which was so far not the case. The disserta-
tion attributes the remaining discrepancies between the numerical and the experimental results to
over-simplifications of the setup’s reality, but does not investigate them in detail.

The second publication addresses the spatial discretization of the beam, and the assumption that
the beam’s deformation can be described only by the beam’s first linear eigenfunction, which is
commonly used to establish a single degree of freedom model. Therefore, experiments to determine
the beam’s shape are conducted. The beam during forced vibrations is captured in slow-motion
video sequences, taken with a high-speed camera. Distinct markers are applied on the beam, and
their movement is tracked over time. The resulting time signals of each beam marker are used to
perform a Fast-Fourier analysis, in order to determine the frequencies of the beam’s response. The
vibration shape of the beam is determined for each frequency peak of the response. The results in
the dynamic case, where no subharmonic responses of the harmonic excitation frequency occurred,
show that the beam bends mostly in the shape of the first linear eigenfunction, and only has a small
geometric share of the second eigenfunction in the case of superharmonic responses. For the part of
the response in the same frequency as the excitation, the first eigenfunction is sufficient, at least in
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the considered case, where the excitation frequency is close to the frequency of free vibrations of the
beam in its stable equilibria. The results in general validate the choice of the beam model and justify
the simplification that its bending shape is solely the beam’s first eigenfunction. Furthermore, the
results from the FEM simulations in the two-dimensional as well as the three-dimensional case
remain significant (in both, the beam deformation shape is modeled by the first eigenfunction only).
The geometric share of the second eigenfunction to the overall beam shape is smaller than the
spatial discretization (characteristic length of the finite elements) in both simulations. The other
initial question of interest answered in the second publication is whether nonlinear shape functions,
depending, for instance, on the amplitude of the beam response, are needed and can possibly be
used to reduce the required number of linear shape functions to sufficiently describe the beam
deformation. In this respect, it is found that the dependency of the beam shape on the amplitude
is covered by the first and second linear eigenfunction, and that it is not possible to eliminate the
need of both by the use of a nonlinear shape function.

In the third paper, the predictions of the Duffing type model are compared to the results found on
the experimental setup. Here, the focus is on the dynamic case of forced vibrations and the resulting
steady state responses of the system. Therefore, extensive experiments with harmonic excitations
of different but constant amplitude and frequency are done and compared to the results of numerical
time integration. The theoretical model is the bistable Duffing model found by the heuristic method.
It can be seen that, for excitations in a range around the frequency of free vibrations of the beam,
the Duffing model is sufficient to cover most of the observed characteristics in the experiments, but
there is a shift of the frequencies between numerics and experiment observable. This can cause
errors when the Duffing model is used to predict frequencies of large orbit solutions with high
energy output for the purpose of energy harvesting. In further investigations, the data obtained
from the measurements is used to derive the nonlinear restoring force. This can be seen as an
advanced heuristic method, since experimental data of a specific existing setup is considered to
find the restoring force. The performed approach enables a determination of the restoring force for
beam displacements other than the stable equilibrium positions, in contrast to static investigations
done in the first publication. The results were two-sided: on the one hand, in general, the cubic
restoring represented the overall restoring force in good agreement with the experimental data,
especially towards large beam displacements. On the other hand, it can be seen that, especially for
small beam displacements, the restoring force is not fixed. The shape of restoring force depends on
the solution and is, in some cases, more complex than a simple cubic restoring function is able to
represent. Also, it shows different behavior for different types of solutions. For intrawell solutions,
where the beam is close to the magnets, a more complex restoring behavior can be observed with
partly two beam tip positions with vanishing restoring force (on each side of the undeflected beam
position), which has never been observed in the static case by the author.

Each of the publications contributes to an improvement of the overall model with its different
aspects. The results give a deeper insight into the reality of the considered experimental setup.
In most concerns, the Duffing oscillator, as a minimal model for the bistable beam, is capable of
representing the main characteristics of the experimental data and the general model assumptions
are a sufficient choice. A method to determine a model numerically, other than through a heuristic
approach, is developed and constitutes a big step towards an optimization of the underlying en-
ergy harvesting system, although potential for an improvement of the accuracy of the numerically
determined results remains.
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Energy Harvesting

M. Sc. Max-Uwe Noll, M. Sc. Lukas Lentz
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Prof. Dr.-Ing. Utz von Wagner

Electrical
Load

On the Modeling of the Distributed Force in a Bistable
Magnetoelastic Energy Harvesting System

Piezoelectric
Patches

The performance of linear vibrational Energy Harvesting systems is best when the excitation frequency is Excitation
Beam

close to the systems resonant frequency. To overcome this limitation nonlinearities are introduced. The
system shown in figure 1 is investigated. Its modeling is usually done by representing the influence of
the magnets by a cubic single load. The current work presents an improved model where a distributed Magnets

transverse and a distributed lateral magnetoelastic load are considered. Fig. 1: Energy

Harvester [1]
Modeling Results

I Mechanical Model

» The PDE of a prestressed Euler-Bernoulli beam is given by

» The resultant load is a

nonlinear function of the
i + ETw'™ = g + [Nw'] position on the beam,
its displacement and the
shape of the deflected

beam.

where ¢ is a distributed transverse load and IV a resultant
of a distributed normal load, both depending on the
position on the beam and its displacement.

Magnetoelastic Load

A

Position

» The major influence of <
on the Beam

the distributed
observed at the beam tip.

> A single mode approximation for the beam tip displace- load is

Displacement

Fig. 4: Distributed Load

ment wy in a Galerkin scheme yields

L L L .
iy +wRwy, = ¢(L)/ g dz _wL/ N ¢ du, » The distributed load is —F, 3
0 0 1 -k =
r.educed to an equ.lvalent e )
Fol Fimi Frna single load for different -

where F, is the elastic restoring force and F,; as well as distances  between  the M\
Fo2 the load due to the transverse and the lateral forces. magnets. . .
X Fig. 5: Single Load
» The distance between

II Magpnetic Field

R the magnets changes the stable| & | &
» The magnetic field is computed for . oo
. systems  characteristics unstable| 3 | §
a large number of possible beam ding i libri T T
disol ts b tati D regarding Its equilibrium i
men n - o .
'SP ac.e N s y a stationary positions as well as the g e B L O
FEM simulation. o = - o
corresponding “linearized 3 o &
» The displaced beam is in contrast frequencies’. £ ‘
2 o, i Distance
2 i in each simulati - R B
to | ]con_S|dered in each simulation > The minimal polynomial = . o, o, | between
to regard its feedback effects on the . i} *estes Magnets
- field degree of a nonlinear .
magnetic field. Fig. 2: Magnetic Field N Se3es202aseles
gnetic 8 agnetic e approximation of the load " ..'-'"'
L] ——1 L}
TII Distributed Force capable to represent all 5 1 -~
. . . equilibrium positions is &
» The force is determined using the Maxwell stress tensor T’ E p P 4 di g & Distance
. three or five depending & 0g0e
given by R T NIl e v
on the distance between

1
T,: =B;H; — -, B-H.
Y gy the magnets. Fig. 6: Bifurcation Behavior
» The force on a finite beam element

Future Work

» The next step is an investigation of the influence of the

is as stated in [3] computed by
a limit process from outside the

element towards its boundary by chosen underlying beams bending form on the load.

» Furthermore, an experimental validation of the computed
F = Tn dx. P P

o) Fig. 3: Force on Element

magnetoelastic force will be done.
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