
Technische Universität Berlin
Fakultät für Elektrotechnik und Informatik

Lehrstuhl für Intelligente Netze
und Management Verteilter Systeme

Dynamic Aspects of Network Virtualization
Algorithmic and Economic Opportunities

vorgelegt von
Arne Ludwig (Dipl.-Inf.)

geb. in Berlin

Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Uwe Nestmann, Technische Universität Berlin
Gutachterin: Prof. Anja Feldmann, Ph.D., Technische Universität Berlin
Gutachter: Prof. Dr. Stefan Schmid, Aalborg University
Gutachterin: Prof. Andrea Richa, Ph. D., Arizona State University
Gutachter: Prof. Dr. Wolfgang Kellerer, Technische Universität München

Tag der wissenschaftlichen Aussprache: 4. Februar 2016

Berlin 2016
D 83

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich diese Dissertation selbständig verfasst und nur die angegebenen Quellen
und Hilfsmittel verwendet habe.

Datum Arne Ludwig (Dipl.-Inf.)

3

Abstract

The virtualization trend decouples services from the constraints of the underlying physical infrastructure. This
decoupling facilitates more flexible and efficient resource allocations: the service can be realized at any place
in the substrate network which fulfills the service specification requirements.

This thesis studies such flexibilities in the context of virtual networks (VNets). A VNet describes a set of virtual
nodes which are connected by virtual links; both nodes and links provide certain QoS or resource guarantees.
The network virtualization paradigm envisions an Internet where customers can request arbitrary VNets from
one or multiple substrate providers (e.g., an ISP or even indirectly via a broker). Indeed, network virtualization
not only introduces flexibilities but also economical opportunities or even VNet markets: an aspect which has
hardly been studied so far.

We, in the first part of this thesis, investigate opportunities and challenges of such a possible market. We
identify a fundamental tradeoff between specification details given by the customer and embedding efficiency
on the provider side. In particular, we introduce a formal framework, called the Price of Specificity (PoS),
to reason about and quantify this tradeoff. Subsequently, we study buying and pricing strategies for VNets:
taking into account the multi-resource nature of VNets as well as possible discounts for larger quantities.
We observe that the problem can be seen as multi-dimensional parking permit problem and present online
algorithms as well as a competitive analysis, showing that our algorithms are asymptotically optimal.

Network virtualization not only introduces challenges in terms of embedding and pricing. Especially long-lived
VNets also need to be adapted and reconfigured over time (e.g., due to maintenance, new specifications, or
load balancing). However, we observe that changing VNets adaptively in a consistent manner is non-trivial,
as changes typically need to be communicated to and implemented at different and distributed components
simultaneously. At the same time, ensuring consistency during updates is critical in virtualized environments
where isolation needs to be provided between users and services sharing the same resources.

Hence, in the second part of the thesis we study how to dynamically update VNets in a consistent way.
In particular, we present a formal model and devise efficient algorithms to update SDN (Software Defined
Networking)-based VNets such that security-critical functionality (like firewalls) are always traversed and loops
avoided. We formally prove the correctness and efficiency of these algorithms, but also prove computational
hardness results.

5

Zusammenfassung

Virtualisierung ermöglicht es mehreren Services gemeinsam, auf derselben physikalischen Infrastruktur be-
reitgestellt zu werden und diese somit effizienter zu nutzen. Nachdem die Virtualisierung von Endsystemen,
beispielsweise in der Cloud, schon erfolgreich umgesetzt wird, findet dieser Trend jetzt auch vermehrt im
Netzwerk statt. Virtuelle Netzwerke (VNetze) definieren ein Netzwerk aus virtuellen Knoten und Kanten mit
Ressourcengarantien, welche flexibel von den Nutzern spezifiziert und direkt von Providern oder indirekt via
Broker gemietet werden können.

Gegenstand dieser Arbeit sind die ökonomischen und algorithmischen Herausforderungen eines solchen VNetz-
Marktes. Im ersten Teil untersuchen wir den Einfluss von Anforderungen unterschiedlichen Detailgrads auf das
Einbettungsproblem. Dieses beschreibt das Problem von ressourceneffizienten Abbildungen der virtuellen auf
die physikalischen Netze. Als Metrik, um die Auswirkungen der Flexibilität auf die Effizienz zu bestimmen,
führen wir hierzu den Price of Specificity (PoS) ein. Wir analysieren, basierend auf den flexiblen Anforderungen,
verschiedene Miet- und Preismechanismen unter Berücksichtigung von möglichen Rabatten auf größere Verträge.
Wir zeigen, dass das Ressourcenmietproblem bei unbekannter Nachfrage einer mehrdimensionalen Variante des
Parking-Permit-Problems entspricht, für die wir einen asymptotisch optimalen Algorithmus präsentieren.

VNetze bieten allerdings nicht nur Herausforderungen bezüglich der Einbettung und dem Ressourcenhandel.
Insbesondere VNetze von langer Dauer müssen beispielsweise aufgrund von Anforderungsänderungen seitens
des Kundens oder aufgrund von Lastverteilung seitens des Providers zur Laufzeit geändert werden. Diese
Änderungen sind nicht trivial, da sie viele Netzwerkkomponenten betreffen, die jeweils individuell angepasst
werden müssen. Im zweiten Teil der Arbeit untersuchen wir daher Algorithmen, um diese Netzwerkänderungen
effizient und konsistent durchzuführen. Wir betrachten dabei SDN (Software Defined Networking) basierte
VNetze und gehen von einem logisch zentralisierten Controller aus, der eine globale Übersicht über das
Netzwerk hat. Trotz dieser globalen Sicht ist es nicht trivial, diese Netzwerkänderungen durchzuführen, da es
zu Verzögerungen bei der Umsetzung der Änderungen auf den einzelnen Netzwerkkomponenten kommen kann.
Wir betrachten konsistente Netzwerkänderungen mit einem Fokus auf Zyklen-Freiheit und Wegpunkt-Garantie.
Zu diesem Zweck präsentieren wir eine Komplexitätsanalyse der Probleme, sowie effiziente Algorithmen zu
deren Lösung.

6

Papers

Parts of this thesis are based on the following papers. All my collaborators are among my co-authors.

Pre-Published Papers

International Conferences

A. Ludwig, S. Schmid, and A. Feldmann. The Price of Specificity in the Age of Network Virtualization.
In Proceedings of the 5th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), pages
187–190, 2012

Extended version: A. Ludwig, S. Schmid, and A. Feldmann. Specificity vs. Flexibility: On the Embedding
Cost of a Virtual Network. In Proceedings of the 25th IEEE International Teletraffic Congress (ITC), pages
1–9, 2013

X. Hu, A. Ludwig, A. Richa, and S. Schmid. Competitive Strategies for Online Cloud Resource Allocation
with Discounts. In Proceedings of the 35th IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 93–102, 2015

A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling Loop-Free Network Updates: It’s Good to
Relax! In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 13–22,
2015

Workshops

A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good Network Updates for Bad Packets: Waypoint
Enforcement Beyond Destination-Based Routing Policies. In Proceedings of the 13th ACM Workshop
on Hot Topics in Networks (HotNets), pages 15:1–15:7, 2014

A. Ludwig and S. Schmid. Distributed Cloud Market: Who Benefits from Specification Flexibilities?
In Presented at ACM DCC, published in ACM Performance Evaluation Review (PER) 43.3, 2015

Technical Reports

A. Ludwig, C. Fuerst, A. Henze, and S. Schmid. Opposites Attract: Virtual Cluster Embedding for Profit.
CoRR, arXiv abs/1511.02354 2015

Un-Published Papers

A. Ludwig, S. Dudycz, M. Rost and S. Schmid. Transiently Secure Network Updates. Accepted to ACM
SIGMETRICS / IFIP Performance 2016, (to appear)

S. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid. Transiently Consistent SDN Updates: Being
Greedy is Hard. Under submission

7

Contents

1 Introduction 11
1.1 Problem Statement . 12
1.2 Contributions . 13
1.3 Structure of the Thesis . 14

I Economics of Virtual Networks 15

2 Network Virtualization Overview 17
2.1 Economic Roles . 18
2.2 VNet Embeddings . 18
2.3 VNet Economics . 20

3 Harnessing Specification Flexibilities 23
3.1 Price of Specificity . 23

3.1.1 Model . 24
3.1.2 Specifying VNets . 25
3.1.3 Optimal VNet Allocation . 25
3.1.4 Defining PoS . 26
3.1.5 Evaluation . 27
3.1.6 Excursion: Use of Migration . 34
3.1.7 Economical Aspects of PoS . 35
3.1.8 Related Work . 37
3.1.9 Summary . 37

3.2 Flexibility Beneficiaries in Distributed Cloud Markets . 38
3.2.1 Model: Horizontal & Vertical Market . 38
3.2.2 Benefits in Horizontal Market . 39
3.2.3 Benefits in Vertical Markets . 42
3.2.4 Summary . 44

4 VNet Pricing and Buying Strategies 47
4.1 VNet Pricing . 47

4.1.1 Background & Model . 48
4.1.2 Pricing Scheme . 49
4.1.3 Embedding Algorithm . 50
4.1.4 Simulations . 51
4.1.5 Summary . 52

4.2 VNet Buying . 54
4.2.1 Model . 54
4.2.2 Competitive Online Algorithm . 56
4.2.3 Analysis: Upper Bound . 58
4.2.4 Analysis: Lower Bound . 60
4.2.5 Optimal Offline Algorithm . 61
4.2.6 Higher Dimensions . 63
4.2.7 Simulations . 63

9

Contents

4.2.8 Related Work . 65
4.2.9 Summary . 66

II Consistent Network Updates 67

5 Network Updates Overview 69
5.1 Software Defined Networks . 69
5.2 Network Updates . 70

6 Introducing a Round-Based Network Update Model 73

7 Loop-free Network Updates 77
7.1 Loop-Freedom . 78

7.1.1 Strong Loop-Freedom . 78
7.1.2 Relaxed Loop-Freedom . 79

7.2 It is bad being greedy . 79
7.2.1 Greedy Updates Delay . 79
7.2.2 Greedy Updates are NP-Hard . 81
7.2.3 Polynomial-Time Algorithms . 87

7.3 Fast Updates Are Difficult . 90
7.3.1 2-Round is Easy . 90
7.3.2 3-Round is Hard . 91

7.4 Relaxed Loop-Free Updates Are Tractable . 95
7.5 Related Work . 98
7.6 Summary . 98

8 Waypoint Enforced Network Updates 99
8.1 Ensuring Only Waypoint Enforcement . 100
8.2 Incorporating Loop-freedom . 102

8.2.1 Loop-freedom and Waypoint Enforcement May Conflict 102
8.2.2 Determining if a Scenario is Solvable is NP-Hard . 103

8.3 Exact Algorithm . 108
8.4 Computational Results . 109
8.5 Summary . 110

9 Conclusion and Outlook 113
9.1 Summary . 113
9.2 Future Work . 115

10

1
Introduction

The Internet has become an integral part of people’s life and it is hard to imagine a world without the
omnipresent services offered by, e.g., Amazon, Apple, Google, Microsoft. But, despite the Internet’s rapid
growth, the architecture and protocols underlying the Internet have hardly changed over the last decades.
While given the many new services on the Internet, this can be seen as a huge success, we now slowly
start to realize the limitations of the Internet. Especially the ossification of the Internet hinders necessary
innovations. The Internet was not designed for its current scale and its evolution has led to a situation where its
multiprovider nature of several different Internet Service Providers (ISPs) makes it hard to introduce changes
into the architecture, as all of the ISPs would have to agree. However, the variety of services offered in the
Internet, and hence, their different requirements, e.g., in terms of performance, mobility support, or security
make an architectural change necessary. Emails contain sensitive data and the cloud is used to store private
data, introducing critical security requirements. Moreover, the ever-increasing usage of mobile devices like
smartphones and tablets can benefit from better mobility support.

A way to enable innovation is virtualization. In datacenters, virtualization is already a reality, as computing
services are being used by companies for example as a spillover resource in times of high demands (cloud
bursting). Even some service providers rely for their businesses (e.g., streaming services like Spotify [5]) on
cloud providers which offer storage as well as frontends to deliver applications to the users. The benefits of
using cloud services of, e.g., Amazon AWS and Microsoft Azure, are the low investment costs and that it is not
necessary to get all the expertise to maintain and administrate the infrastructure into the company. This also
makes the cloud attractive for startups. Given all of these use cases, it is not surprising that nowadays cloud
computing is a huge market. A recent Goldman Sachs study [8] assumes a roughly 30% CAGR (compound
annual growth rate) from 2013 until 2018 for the cloud, whereas the same study predicts only a 5% growth
rate for the overall enterprise IT.

Even though datacenters are often under the control of a single entity, there is a need for virtualization on the
network as well. There are several different kinds of jobs running within a datacenter imposing different loads
on the network. This impacts the variance of the runtime even if the compute resources are isolated [100], as
there are no guarantees on network performance. Thus, planning is difficult and the variance can also increase
the cost, which makes network performance guarantees useful. While end-system virtualization has already
been very successful in the context of datacenters and cloud computing, the virtualization trend now spills over
to the network. A recent example is Google’s B4 [63], a Software Defined Networking (SDN) implementation
which allows to flexibly and securely manage wide-area network traffic. The network virtualization paradigm
envisions a world where entire virtual networks (VNets), with QoS and isolation guarantees on nodes as well
as links, can be requested on demand. Network virtualization decouples the applications and services from the

11

Chapter 1 Introduction

constraints of the underlying physical network, and where and when resources are allocated only depends on
the VNet specification itself.

Thus, even the traditionally more conservative ISPs have become interested in the opportunities of network
virtualization. The opportunities they envision, are ways for ISPs to innovate their network as well as to
offer novel services: many ISPs do not only have a large network, but also many geographically distributed
resources such as storage and computation (e.g., in their “micro-datacenters”, the Points-of-Presence, and
the street cabinets). If these resources can be used (and/or leased) for new services, the monetization of the
infrastructure is improved as well as its efficiency. Note that in contrast to other players in the Internet, e.g.,
Content Distribution Network (CDN) providers, ISPs have the advantage of knowing their infrastructure and
the customers demand. This knowledge can be exploited to use the resources where and when they are most
useful.

However, the introduced flexibilities must be exploited with care, as a dynamic and adaptive network operation
may also introduce inconsistencies. The different allocations and increased dynamics cause more updates in
the network, which are sensitive tasks as small mistakes can lead to large outages. Even tech-savvy companies
often struggle with correct network operations. GitHub, for example, reported on a planned addition of switches
into their network in November 2012 [2]. During this operation, they not only discovered a bridge loop, which
caused the disabling of some links but also a broadcast storm caused by an undetected bridge loop. Overall,
this incident led to 18 minutes of downtime of the entire service. A similar incident occurred at Amazon
EC2 (Amazon Elastic Compute Cloud) in April 2011 [1]. A planned capacity upgrade in the US-East region
went wrong, where instead of rerouting the traffic within the main network, it was routed via the low-capacity
network of the storage system (EBS - Elastic Block Store). The traffic overload on this network made it
unusable for the usual read/write accesses isolating many EBS nodes. This event triggered cascading events,
as, e.g., the EBS nodes tried to re-mirror their data on other than the isolated nodes, which led to a several
days outage.

To get a better handle on these issues, the SDN paradigm introduces a principled and formally verifiable way
to specify and change policies, and hence offers ways to control traffic more fine-grained. Thus, SDN can be
seen as an enabler for VNets [24, 37].

1.1 Problem Statement

The goal of the thesis is to provide the tools and insights needed to enable a VNet market. On this market,
customers can specify resources on the end systems as well as on the network. Such a market may not only
be attractive in the context of datacenter scenarios, where customers can then rely on their performance
guarantees and hence, enable optimized planning, but also includes WAN (wide are network) scenarios where
customers are potential service providers who want to have guaranteed performance to their services for a
certain range of users.

To create such a VNet market we need to address two problems:

1. The economical aspects need to be understood.

2. The increased load on the network control caused by the VNets need to be handled efficiently.

The first part of the thesis studies the economic aspects. Previous research focused on designing efficient
virtual network architectures and technologies as well as devising algorithms for exploiting the flexibilities
introduced by virtualization, e.g., to flexibly embed VNets, i.e., finding a resource efficient mapping of the
virtual network on a physical substrate network. Surprisingly, only little is known about the economical
possibilities of VNets. Without understanding the economical implications, a VNet market is impossible, as
the addition of specifiable network resources and the resulting provisioning of performance guarantees will
change the way virtual resources are being sold. There are two major questions in this regard: 1. “What is the
impact of different specifications on the resource cost?”, as the degree of specificity of a VNet clearly impacts
the amount of possible embeddings. And 2. “How can a pricing and buying scheme look like?”, given that
network guarantees cannot be given free of charge, this is a crucial question.

12

1.2 Contributions

The diverse routing and forwarding patterns of different VNets sharing the same substrate, introduce additional
challenges on the control plane. Especially long-lived VNets will likely be reconfigured due to changing
specifications or load balancing. The second part of the thesis studies efficient ways to handle this increased
network control load. SDN is a promising approach to solve this issue, as it can be used to provide a
logically-centralized control of its virtualized network to each customer. This fine-grained control enables the
customer to perform network updates, i.e., changing the forwarding behavior of a set of switches. This is a
critical task as it influences the performance, e.g., due to load balancing as well as the security of the network.
However, even though SDN provides a logically centralized view on the network and hence a better control
to execute the network updates, it does not inherently prevent a network update from violating consistency
properties leading to network outages in the worst case. Hence, we do address the following issue: “How to
update a network in an efficient manner while adhering network consistency?”

1.2 Contributions

The contributions of the thesis can be grouped accordingly.

Economic Implications of a VNet Market

We analyze how flexible specifications of WAN scenarios can be exploited to improve the embedding of virtual
networks. We define a measure for specificity and introduce the notion of the Price of Specificity (PoS) which
captures the resource cost of the embedding under a given specification.

We present a demand-specific pricing model called DSP for virtual clusters (a special form of VNets in
datacenters) which is fair in the sense that customers only need to pay for what they asked. In addition, we
present an algorithm called Tetris that efficiently embeds virtual clusters arriving in an online fashion, by
jointly optimizing the node and link resources.

We study cost-effective cloud resource allocation algorithms under price discounts, using a competitive analysis
approach. We show that for a single resource, the online resource-renting problem can be seen as a two-
dimensional variant of the classic online parking permit problem, and we formally introduce the PPP2 problem
accordingly. We present an online algorithm for PPP2 that achieves a deterministic competitive ratio of k,
where k is the number of resource bundles, which is almost optimal, as we also prove a lower bound of k/3 for
any deterministic online algorithm.

Dynamic Network Updates

We provide a model which vastly simplifies the problem size of finding consistent network update schedules.
We show that for fast dynamic network updates, i.e., sending out updates in rounds, where in each round only
a subset of switches are updated, it is important to minimize the number of rounds: the interactions between
the controller and the switches. We first prove that this problem while ensuring loop-freedom (LF) is difficult
in general: The problem of deciding whether a k-round schedule exists is NP-complete already for k = 3, and
there are problem instances requiring Ω(n) rounds, where n is the network size. Given these negative results,
we introduce an attractive, relaxed notion of loop-freedom. We prove that O(logn)-round relaxed loop-free
schedules always exist, and can also be computed efficiently.

After studying loop-freedom, we introduce a most basic safety property, Waypoint Enforcement (WPE): each
packet is required to traverse a certain checkpoint (for instance, a firewall) and show that WPE can easily
be violated during network updates, even though both the old and the new policy ensure WPE. We show
that WPE may even conflict with LF and evaluate the computational complexity: In particular, we show it is
NP-hard to determine if a scenario is solvable.

13

Chapter 1 Introduction

1.3 Structure of the Thesis

The thesis is structured in two parts. The first part focuses on the economic implications of a VNet market,
while the second part studies fast and consistent network updates as an enabler for the VNets.

Chapter 2 gives an overview of the background regarding VNet embeddings and a potential economic
architecture. Although the embedding problem is a central aspect of the network virtualization paradigm
and has already been studied frequently in related work, we throughout the thesis focus on the economic
implications.

Depending on the needs of a customer, a VNet’s specification can differ drastically from a fully specified
VNet to a VNet which only specifies some key parameters. In Chapter 3, we first consider the most flexible
scenario, i.e., a WAN scenario where customers can choose freely how detailed they specify their VNets. We
study the impact of the degree of their specifications on the embedding costs. This is done by defining a
measure for specificity and the Price of Specificity as the ratio of increased resource cost compared to a fully
flexible specification. To avoid bias introduced by suboptimal embeddings, we use a mixed integer program
to compute optimal embeddings in terms of resource cost. Since datacenters are often under the control of
a single entity, in such settings, VNets are likely to be introduced first. Many jobs within a datacenter are
running under tight timing constraints and have deadlines. We evaluate the impact of their time constraints
and different pricing levels in a competitive distributed datacenter setting.

While pricing schemes nowadays mainly focus on VM-pricing only, Chapter 4 studies ways to include network
resources into the pricing. Given the heterogeneity of jobs within a datacenter we specifically focus on jobs
where network and compute resources might differ in between the requests and indicate that given embedding
algorithms do not efficiently include this heterogeneity. The proposed pricing scheme can result in discounts
depending on the remaining resource capacities inside a datacenter. Hence, we study how to buy resources
under discounts from a resource broker perspective given unpredictable demand. We show that this problem is
similar to the classic online parking permit problem and present an online algorithm which is almost optimal.

In the second part of the thesis, we are interested in how to efficiently enable VNets and, therefore, a VNet
market. The SDN paradigm offers ways to control the traffic in a more fine-grained way and is hence suited
to help VNets becoming a reality. As the introduction of flexible VNets may lead to a lot of dynamics and
routing changes in the network it needs to be updated fast and consistently. We give an overview of the
network update background in Chapter 5, where we explain the basic principle of SDN and its most prominent
representative OpenFlow. Furthermore, we discuss the strengths and weaknesses of different ways of updating
a network and some of the consistency issues. We give a detailed overview of the model for dynamic networks
in Chapter 6, where we introduce different ways of representing the problem as well as possibilities to reduce
the (visual) complexity during the update.

In Chapter 7, we focus on consistent network updates. Here we are specifically interested in loop-free updates
in a dynamic fashion, without having to wait for all switches to be updated before we see first effects on the
network. This also has the benefit that we do not need tags to differentiate between old and new forwarding
rules. We identify two different notions of loop-freedom (LF): We differentiate between (the classical) strong
loop-freedom where no topological loops are allowed and the relaxed loop-freedom where loops are forbidden
on paths, which a newly injected packet might take. We mainly study two different objectives for efficiently
updating networks under both definitions of loop-freedom: 1. Maximizing the updates per round and 2.
Minimizing the total number of rounds. We study their complexities as well as heuristics to solve the update
problem efficiently.

The trend of adding virtualized middleboxes to the network also imposes some additional challenges regarding
consistent network updates which we study in Chapter 8. Here we introduce the consistency property waypoint
enforcement (WPE): that a middlebox, e.g., a firewall, needs to be traversed from every packet. We study
the implications of WPE on a network update and how to perform fast updates solely adhering to WPE.
Performing a dynamic network update without violating either WPE or LF is not always possible. We prove
that it is even NP-hard to determine if a scenario is solvable and evaluate on small- to mid-sized scenarios to
what extent these conflicts occur.

Finally, in Chapter 9 we summarize our work and provide directions for future research and open problems.

14

Part I

Economics of Virtual Networks

2
Network Virtualization Overview

After revamping the server business, the virtualization trend has also started to spill over to networking. The
network virtualization paradigm envisions an Internet where customers can request arbitrary VNets from a
substrate provider (e.g., an ISP). A VNet describes a set of virtual nodes, which are connected by virtual links;
both nodes and links provide certain QoS or resource guarantees. Early ideas on how to ensure bandwidth
guarantees across shared links have been studied in QoS routing, e.g., in [30, 107].

The virtualization trend in today’s Internet decouples services from the constraints of the underlying physical
infrastructure. This decoupling facilitates more flexible and efficient resource allocations: the service can be
realized at any place in the substrate network, which fulfills the service specification requirements. Thus,
computation and storage have become a utility and can be scaled elastically: geographically distributed
resources can flexibly be aggregated and shared by multiple customers.

However, network virtualization is about more than just bandwidth: It also facilitates to virtualize the network
stack, allowing to experiment or use clean slate network protocols, and hence to overcome the ossification of the
Internet [13]. Given the flexibilities, virtual networks also introduce new economic opportunities and challenges.
This chapter gives an overview of the economic roles within a VNet market. We present abstractions and
algorithms for the virtual network embedding problem and discuss some pricing schemes. Khan et al. [67]
provide a broader view on the network virtualization concept. For an overview of different flavors of network
virtualization, see surveys [32, 46]. Next, we briefly define terms commonly used in the context of virtual
networks:

Common Terms.

• VNet (virtual network): Set of virtual nodes connected by virtual links.

• Specification: Resource requirements for a VNet. These can be, e.g., CPU cores for virtual nodes or,
e.g., bandwidth guarantees for virtual links.

• Substrate: Physical infrastructure hosting several VNets in parallel.

• Embedding: A mapping of virtual nodes and links onto the substrate, meeting the VNets requirements.
The quality of an embedding is often evaluated by resource consumption (less is better) or acceptance
ratio (higher is better).

• Provider: Owns and operates the substrate.

17

Chapter 2 Network Virtualization Overview

• Customer: Requests VNets at the provider or at a broker. Can potentially be a service provider wanting
to offer QoS guarantees to its customers.

• Broker: Buys (or leases) resources (or VNets) from providers and resells them towards the customers.

• Datacenter: Geographically centered network, where the infrastructure is under the control of a single
provider. Customers nowadays already rent VMs (virtual machines) in datacenters.

• WAN (wide area network): Geographically distributed network, where the infrastructure is often under
the control of multiple providers. It connects several networks, e.g., datacenters with each other.

• VNet Market: A market where customers can request VNets for any needs. This includes VNets for
datacenters, e.g., a deadline relevant compute job, as well as VNets for WAN scenarios, e.g., requiring
minimal connectivity between several businesses datacenters. The VNets will be hosted by different
providers and either sold by the providers or a broker.

2.1 Economic Roles

Network virtualization has the potential to change Internet networking by allowing multiple, potentially
heterogeneous and service-specific virtual networks (VNets) to cohabit a shared substrate network. This also
impacts the roles participating in a network virtualization market.

We envision a network virtualization environment where services are offered and realized by different economic
roles, as for example proposed in [103]. In a nutshell, the authors assume that the physical network, or more
generally: the substrate network is owned and managed by one or several Physical Infrastructure Providers
(PIP) while virtual network abstractions are offered by so-called Virtual Network Providers (VNP). VNPs can
be regarded as resource brokers, buying and combining resources from different PIPs. The virtual network is
operated by a so-called Virtual Network Operator (VNO). Finally, there is a Service Provider (SP) specifying
and offering a flexible service.

In such an environment, a service is realized in multiple steps, and the application or service specifications are
communicated from the SP down the hierarchy to the PIP. While the SP may specify the service on a high
level (e.g., regarding maximally tolerable latencies experienced by users accessing the service), the specification
is transformed by the VNP to a VNet topology describing which virtual node resources should be realized by
which PIP and how to connect; in other words, the VNet is embedded by the VNP on a graph consisting of
PIPs. The PIP then transforms the specification into a concrete VNet allocation / embedding on its substrate
network.

We simplify this model a bit, by having a provider owning and managing its physical infrastructure, a broker,
which buys and sells resources as well as a customer who is interested in the resources to deploy a service as a
service provider or run, e.g., datacenter jobs. Throughout the thesis, we study both, scenarios where a broker
exists and scenarios where customers interact directly with the provider. For our economical analysis in the
first part of the thesis, we assume that the provider is operating the networks and hence, leave out the roles of
the VNP and VNO.

2.2 VNet Embeddings

At the heart of network virtualization lies the promise of a more efficient utilization of the given infrastructure
and its resources by sharing it among multiple VNets. The problem of finding good VNet embeddings [87]
has been studied intensively over the last few years. Even though the focus of the thesis is not to enhance
VNet embedding algorithms, we give an overview of the most relevant models and results since a VNet market
cannot become reality without efficient embeddings.

A VNet consists of virtual nodes and virtual links, which require certain amount of resource guarantees, e.g.,
CPU, RAM and disk capacity for end systems and a maximal latency or minimal bandwidth guarantees on the
network. Throughout this thesis, it is sufficient to associate virtual nodes with virtual machines.

18

2.2 VNet Embeddings

Figure 2.1: VNet abstractions. Left: VNet specified according to the graph abstraction. Right: (Different)
VNet specified according to the VC abstraction.

The physical infrastructure or substrate network hosts the virtual resources. In the context of virtual nodes one
can typically think of an n ∶ 1 mapping of virtual nodes to physical nodes, as the physical nodes are typically
large machines with several VM slots enhancing the idea of efficient resource usage. The situation is different
for virtual links. A single virtual link has to be mapped to a path of physical links, shared with other virtual
links and hence, renders it an n ∶m mapping.

There are several different abstractions to specify a virtual network from which we discuss three next:

1. Graph abstraction. The most general approach is to define network connectivity on a per node pair
base in a graph abstraction, which is used in most WAN scenarios [57]. In the datacenter context this is
used in, e.g., Secondnet [55]. Each node and each link has to be specified individually, providing the
maximum amount of customization. See Figure 2.1 (left) for an example. We refer to this as the graph
abstraction.

2. Hose abstraction. A simplified version to specify VNets is to only define the bandwidth b per single
node, i.e., a node’s aggregated incoming and outgoing traffic cannot exceed b. This abstraction is
introduced in Gatekeeper [97] and is based on the hose model initially introduced in the context of
VPNs (virtual private networks) [38]. In the hose model, each node requires capacities in the amount of
the sum of the in/out traffic to each other node.

3. VC abstraction. A subversion of the hose abstraction, the VC (virtual cluster) abstraction is presented
in Oktopus [18]. A VC is defined by a set of virtual nodes, which are connected with a guaranteed
bandwidth to a single switch. This model provides a simplification, as the requested resources in
this abstraction are typically identical over all the nodes and their connectivity, which is motivated by
multiplexed jobs of larger scale. An example of a VNet specified according to the VC abstraction can
be seen in Figure 2.1 (right).

Mogul et al. [86] give a good overview of different approaches that can increase datacenter utilization including
proposals such as Secondnet, Gatekeeper and Oktopus. They all have in common that they address the
problem of unpredictable network performance. This unpredictability is caused by other customers within the
datacenter, whose jobs can impact the jobs of others and, therefore, their performance. Since bandwidth is
usually not guaranteed by current cloud providers, Li et al. have shown that intracloud performance can differ
significantly between different cloud providers [74].

In Section 3.1, we focus on the graph abstraction, where we study the impact of such a detailed specification. In
Sections 3.2, and 4.1 we turn towards VNets in datacenters. We study the specificity impacts on a distributed
datacenter market and propose a pricing scheme based on the VC abstraction. See Figure 2.1 for an example
of VNets in both models. In the graph abstraction, different resources can be specified on the VMs as well as
on the links, e.g., bandwidth b1,⋯, b5. In the classical VC abstraction, a number of identical VMs is connected
to a virtual switch via uniform bandwidth b. The same distinction can be made in terms of compute resources,
where all VMs of a single virtual cluster have a uniform demand, whereas in the graph abstraction those can
be independently specified.

19

Chapter 2 Network Virtualization Overview

Finding efficient VNet embeddings is an important aspect of network virtualization. More efficient embeddings
yield a higher resource utilization and hence, a higher acceptance ratio. This can ultimately lead to higher
revenues for providers and, thus, presumably lower prices for customers. Unfortunately, the general VNet
embedding problem and even some simplified subproblems where nodes are already embedded are NP-hard
[46, 57]. The problem is related to network design [108], virtual circuit planning [16], and minimal linear
arrangement [29]. A broad overview of related work for the general VNet embedding problem can be found
in [20].

However, Rost et al. have shown that the classical VC embedding problem, which was assumed to be NP-hard,
e.g., in [18], is not NP-hard and they provide an optimal embedding algorithm for general topologies [98].
Based on this, Fuerst et al. [48] extend the VC embedding problem and include data locality. This is beneficial
for large datacenter applications which are working on a distributed file system. The authors evaluate the
complexity of different scenarios and show that several variations can be solved efficiently.

2.3 VNet Economics

To facilitate VNets, QoS-guarantees on the networks must be provided. Early ideas to QoS-enabled Internet
pricings can be found in [93]. Most WANs nowadays are realized over MPLS (Multiprotocol Label Switching)
which is up to two orders of magnitude more expensive per Mbit than residential Internet access [3]. This
highlights the difficulty of providing such services.

Charging based on network resources is not an easy task, as it is not solely based on the usage of the customer.
The load of the network is an important factor as well as the burstiness of the service. Reichl et al. [94] identify
key pricing parameters, which are access fees, setup fees and usage fees. These parameters lead to several
different pricing schemes for the Internet with the classical flat rate pricing as the most prominent way to
charge private customers. In the following, we present two additional exemplary pricing approaches besides
MPLS that deal with QoS in the Internet:

• Paris Metro Pricing was initially proposed as a pricing scheme for the metro in Paris. It has been
adapted to the Internet and offers indistinguishable service classes (“logically separated channels”) which
are charged differently [89]. The fact that only fewer customers are willing to pay a higher price for the
same service leads to less traffic on the more expensive channels. Thus, it provides better service simply
based on the pricing.

• Smart Market was introduced in [81]. The authors argue for a congestion based pricing system. In
addition to a fixed connection charge, a packet that is sent with little to no load on the network has only
a very small price. However, as load increases, the price does as well. This can be realized in an auction
based market where packets include bids. Customers exceeding the marginal bid are then charged not
according to their bid, but to the marginal bid, essentially a Vickrey auction (or second price auction).

Nowadays, datacenters pricing schemes are simpler, as they are typically solely based on a per VM basis and
do not charge for network resources. This of course also means that there are no resource guarantees on the
network, which leads to unpredictable performance and hence, unpredictable cost [100]. In the following we
discuss some concepts used in most of the dominant cloud provider pricing schemes:

Pay-as-You-Go: Most provider offer VMs on a per VM per hour base, while some also started to reduce
this period to a per minute base, e.g., Microsoft Azure [6]. The customers do not need to opt in long-term
contracts and only pay for the VMs they used (on a per hour granularity), which is called a pay-as-you-go
model.

Discounts: If customers choose to use more resources, they are usually charged a smaller price per unit,
e.g., for storage and data transfer. Some providers offer their customers also the choice to reserve instances
for a longer time period. The customers are charged an upfront fee, which enables them to have a discount on
the per hour usage price and ensures availability to the time they reserved the instances.

20

2.3 VNet Economics

Spot market: On Amazon AWS [4] it is also possible to rent spot instances. These instances are typically
less expensive than standard instances, but on the downside give no usage guarantee. Customers bid on the
spot market with a fixed price that they are willing to pay for VMs. As long as the spot market price for these
instances is below the bid, customers will keep their reservation. Once the bid is exceeded, they lose control of
the VMs immediately without being charged for the begun hour and thus, making this a low priced alternative
for rather uncritical jobs, which do not cause any harm if they fail.

How can these concepts be applied towards VNets? Regarding general VNets (according to the graph
abstraction), Hu et al. compare the pay-as-yo-go pricing with a pay-as-you-come pricing (customers specify
their demand in advance) in the context of service migration and they give optimal algorithms in an offline
setting where the demand patterns are known [61]. Their results indicate that the pay-as-you-go pricing is
beneficial for the customers especially in scenarios with only moderate discounts. In the datacenter context,
Bazaar [64] introduces a principle where customers have a simpler way to express their needs. Instead of
specifically describing their requirements in terms of compute and networking resources, they express their
requirements in high-level goals as, e.g., job completion time, as many jobs have deadlines [109]. In addition,
Ballani et al. [17] presented a first pricing scheme DRP (Dominant Resource Pricing) for VCs which offers
a guaranteed minimal base bandwidth for every VM and charges the customer if the base bandwidth is
exceeded.

Throughout Chapter 3, we study the impact of specifications such as deadlines and in Chapter 4 we discuss
the limitation of DRP and provide a pricing scheme for datacenters as well as buying strategies for brokers
under discounts.

21

3
Harnessing Specification Flexibilities

The network virtualization paradigm enables customers to specify their requirements freely. However, it is
likely that not every customer has the detailed knowledge required to specify his VNet completely or to his
advantage. In fact, while some customers can completely specify their VNets, others might just give some
high level requirements, such as deadlines or some form of QoE (Quality of Experience) description.

As a result, VNets are specified at different levels of details. This creates flexibilities in terms of, e.g., location
in WANs or deadlines in datacenters. This flexibility gives the provider the opportunity to embed VMs in
different places and on different time schedules and, thus, further improve the efficient resource usage. Less
specific means larger degree of freedom and potentially better embedding strategies

This chapter studies the impact of different specifications of VNet on the VNet market. Since our focus is
not on the embedding algorithms themselves in this work, we compute optimal embeddings to evaluate the
solutions to disregard the penalty of suboptimal embeddings.

We look at two different scenarios. In Section 3.1, we study the impact of specificity on the embedding cost in
a WAN scenario where VNets can be freely specified, according to the graph abstraction from Section 2.2.
Then we turn to a more reasonable near term scenario, VNets in datacenters. After all, there is already a
flourishing market of VM leasing. Hence, we study different provider benefits in a distributed cloud market in
Section 3.2 based on customer flexibility regarding deadlines, according to the VC abstraction.

3.1 Price of Specificity

In a fully virtualized resource infrastructure the location where a VNet is realized (or embedded) is only
restricted by the VNet request specification. For example, if a customer insists that his VNet nodes run on
a 64-bit architecture, the choice of resources is restricted and the VNet may be more expensive to realize
compared to a situation where also 32-bit architectures are allowed. Similarly, if a customer requires the VNet
to be realized over storage resources in Switzerland only, the VNet embedding can be more expensive than if
the requirements are less restrictive and allow, e.g., to exploit Europe-wide storage sites.

This section studies the impact of specificity in the context of network virtualization. We assume a two-player
setting consisting of a customer (who requests specific VNets) and a provider. The customer could for example
be a startup company (or even a broker) and requests resources at a provider who operates the substrate
network. We assume that the customer specifies certain requirements of the VNet, and the provider will try to
realize the VNet in a most resource-efficient manner subject to the customer’s specifications. We investigate

23

Chapter 3 Harnessing Specification Flexibilities

the tradeoff between VNet specificity and embedding costs. In order to avoid artifacts from heuristic or
approximate VNet solutions, our methodology is based on optimal embeddings. Accordingly, we present a
simple optimal algorithm to compute VNet embeddings, which also supports migration.

Contribution

We present a formal model to measure the specificity ς of a given VNet request and introduce the notion
of the Price of Specificity (PoS). PoS(ς) captures the increased embedding cost of a given VNet request of
specificity ς. We then identify different types of specifications (such as requirements on resource types and
vendor, geographical embedding constraints, or whether migration is allowed after an initial placement), and
analyze their influence on the VNet allocation cost. It turns out that the PoS depends both on the substrate
size as well as the load of the substrate, while the load has a larger impact than a proportionally similar
change of the VNet size; sometimes, the embedding cost can be larger than two (i.e., PoS(ς)>2), even in
small settings. Our results also confirm the intuition that the relationship between the distribution of the
requested and the supplied resource types is important: While skewed distributions of resources can yield better
allocations, they entail the risks of a high PoS if the demand does not perfectly match the supply. Although
migration is regarded as one of the advantages of network virtualization and we generally observe positive
results in our experiments, we will also present a scenario where migration can also increase the resource costs
(and hence the Price of Specificity). This is shown in a first formal analysis of the PoS.

We believe that our evaluation not only sheds light onto the resource costs of a VNet in different scenarios (and
hence in some sense, the real “value” of a resource) but can also provide insights on how to structure a substrate
network in order to increase the number of embeddable networks (and reduce the Price of Specificity) at
minimal cost. In this sense, this section serves as a first step towards a better understanding of the economical
dimension of the VNet embedding problem, and we provide a short discussion of its limitations and further
directions.

3.1.1 Model

We represent the substrate network as a graph GS = (VS ,ES) where VS represents the substrate nodes and
ES represents the substrate links. Also a VNet request comes in the form of a graph (according to the graph
abstraction in Section 2.2), represented as GV = (VV ,EV) (VV are the virtual nodes, EV are the virtual links).
This VNet needs to be embedded on GS : each virtual node of GV is mapped to a substrate node, and each
virtual link is mapped to a path (or a set of paths). Figure 3.1 illustrates an example.

For simplicity and to focus on the specificity, throughout this chapter, we will study undirected and unweighted
VNets only, i.e., we assume that each node v ∈ VV and each link e ∈ EV has a unit capacity. Our approach
can easily be extended to weighted VNets.

We will consider the following embedding cost model.

Definition 1 (Embedding Costs). Let Π(e) = {π1, π2, . . .} for some e ∈ EV denote the set of substrate paths
over which e is realized (i.e., embedded). Let ω(π) for some π ∈ Π(e) denote the fraction of flow over
path π, and let λ(e) denote the length of e in terms of number of hops. The cost of embedding a VNet
GV = (VV ,EV) on a substrate GS is defined as

Cost = ∑
e∈EV

∑
π∈Π(e)

ω(π) ⋅ λ(e)

In other words, the allocation cost is simply the weighted distance of the different paths used by the virtual
edges.

24

3.1 Price of Specificity

VNet Substrate

vn1

vn2 sn3 sn4

sn2

sn1

sn5

embedding

VNet Substrate

vn1

vn2 sn3 sn4

sn2

sn1

sn5

Figure 3.1: Visualization of a VNet embedding: the 2-node VNet on the left is mapped to the 5-node substrate
network. Each virtual node of the VNet maps to a substrate node, and for the realization of the
virtual link resources are allocated along a path.

3.1.2 Specifying VNets

VNets can be specified in several ways, and the results in this chapter do not depend on any specific language.
However, in order to give a concrete example, we quickly review the approach taken in a possible network
virtualization prototype architecture; the detailed resource description language called FleRD (for “flexible
resource description”) is described in [102].

Basically, FleRD “uses generic description elements and is centered around basic NetworkElement (NE) objects”
(for both nodes and links!) “interconnected via NetworkInterfaces (NI) objects. Keeping these objects generic
has the side effect that descriptions of resource aggregations, or non-standard entities (e.g., clusters or
providers) is trivially supported. They may be modeled as NetworkElements of an appropriate type and included
as topological elements. This may be used, e.g., to describe mappings in the context of a reseller.

NE properties are represented as a set of attribute-value pair objects labeled as Resource and Features. The
meaning of resources here is canonic and they may be shared amongst NEs. Features represent any type of
property that is not a Resource (i.e., cannot be described in an amount of units; e.g., CPU flags, wordsizes,
supported virtualization mechanisms, geographic locations). Associated Feature sets are interpreted as a logic
clause: Features form predicates and sets of Features with corresponding attributes alternatives (disjunctions)
within the clause. Features can also be used to explicitly state mapping choices (white listing) or used together
with a corresponding attribute to state forbidden mappings (black listing).

FleRD explicitly allows for omission of details irrelevant to the describing entity. (...) Omission is possible both
for components and their associated properties.“ [102]. This kind of language allows customers with any given
background to either fully specify their VNets on a very fine grained level or simply focus on some important
key properties, while leaving the remaining properties unspecified.

3.1.3 Optimal VNet Allocation

To compute optimal VNet embeddings and to exploit the specification flexibilities, we developed the FlexMIP
algorithm. FlexMIP is a Mixed Integer Program (MIP), and is described in Figure 3.3. It is a compact variation
of the algorithm used in the network virtualization prototype architecture [103].

25

Chapter 3 Harnessing Specification Flexibilities

Concretely, the structure of FlexMIP is as follows. The inputs describe the substrate and the VNet topologies
including their capacities and demands respectively. The (originally undirected) substrate graph is given as
bi-directed graph (VS,ES), i.e., each undirected edge {u, v} is represented as two directed edges (u, v), (v, u).
Similarly, for each of the originally undirected requests r ∈ R the directed graph (VrV,E

r
V) is given. Substrate

Capacities and VNet Demands introduce the functions cS and drV to denote the substrate node as well
as link capacities and the virtual node and link demands for request r ∈ R respectively. Based on the bi-
directed representation of the substrate cS((u, v)) = cS((v, u)) must hold for all substrate edges (u, v) ∈ ES.
Furthermore, Node Placements defines for each request r ∈ R the function lrV, which restricts the node
placement of virtual nodes v ∈ VrV to the set of substrate nodes lrV(v). Node Mapping and Flow Allocation
introduce node and link embedding variables respectively. A VNet link can be split in multiple flows and
therefore, be mapped on several links while a VNet node can only be mapped to exactly one substrate node.
Each Node Mapped ensures that all virtual nodes are embedded on suitable substrate nodes. Embed Links
guarantees that for each VNet link the needed resources are allocated on all substrate links. Here, we use
δ+(s) to denote the set of outgoing substrate edges {(s, ⋅) ∈ ES} for the substrate node s ∈ VS and denote by
δ−(s) the set of incoming edges {(⋅, s) ∈ ES}: at the substrate node where a VNet link starts, the outgoing
traffic has to match exactly the VEdge Demand ; at the substrate node where the link terminates, the incoming
traffic has to match the negative VEdge Demand. The links in-between are forced to preserve the traffic
and hence, must have the same amount of incoming and outgoing traffic concerning one VNet link. The
constraints Feasibility Nodes and Feasibility Links ensure that the capacity of substrate nodes and links is
not exceeded. Note with respect to the links that based on the bi-directed representation of the substrate
graph the flow allocations along both edge orientations are considered. The arrow notation used here means
the following: if an edge Ð→es = (u, v) is given, then ←Ðes is defined as (v, u). The Feasibility Nodes constraint
guarantees that the available resources on substrate nodes are not exceeded. The objective is to minimize
the costs which are defined by the sum of all substrate edge allocations. We have additionally introduced
the migration cost function mr

S which defines the (migration) costs for mapping virtual nodes onto substrate
nodes. These costs are added later to the objective in the form of the sum ∑r∈R,v∈Vr

V,s∈VS x
r
v,s ⋅mr

S(v, s), when
considering such costs.

3.1.4 Defining PoS

To study the Price of Specificity, we consider the following model. We assume that each substrate node
vS ∈ VS of GS = (VS ,ES) can be described by a set of k properties P = {p1, . . . , pk}, e.g., the geographical
location (e.g., datacenter in Berlin, Germany), the hardware architecture (e.g., 64-bit SPARC), the
operating system (e.g., Mac OS X), the virtualization technology (e.g., Xen), and so on. The specific property
p ∈ P of vS can be realized as a specific base type tvS(p). For example, the set T (p) of base types for an
operating system property p ∈ P may be T (p) = {Mac OS X,RedHat 7.3,Windows XP}. (Note that if not
every substrate node features each property, a dummy type not available can be used.)

Similarly, the VNet GV = (VV ,EV) comes with a certain specification of allowed types. While the substrate
nodes VS naturally are of specific base types, VNet specifications can be more vague. For example, the types
T (p) can often be described hierarchically as seen in Figure 3.2: the location Berlin can more generally be
described by Germany, Europe, or ? (don’t care); or instead of specifying the operating system Mac OS X, a
VNet may simply require a Mac.

Concretely, we assume that each virtual node vV comes with a specification spec(vV) ⊆ T (p1) × . . . × T (pk)
of allowed type combinations for the different properties. The substrate node vS to which vV is embedded
must fulfill at least one such type combination.

Definition 2 (Valid Embedding). Let t(vS) = ×p∈P tvS(p) denote the vector of types of substrate node vS . A
VNet
G = (VV ,EV) embedding is valid if for each virtual node vV ∈ VV , it holds that vV is mapped to a
node vS with t(vS) ∈ spec(vV). In addition, node and link capacity constraints are respected.

Of course, a customer must not specify t(vS) explicitly by enumerating all allowed combinations: this set
only serves for formal presentation. Rather, a customer can specify the types of VNet nodes with an arbitrary

26

3.1 Price of Specificity

nodetype

t0,0

t1,0 t1,1

t2,0 t2,1 t2,2 t2,3

Figure 3.2: Example of a binary hierarchical specification: the VNet node type of a property can be chosen
from different specificities. A type of a certain layer allows an embedding on a substrate node with
a type of a descendant node. The types for each property of the substrate nodes are always chosen
from the leaves.

resource description language, and use white lists (e.g., only Mac) or black lists (not on Sparc), or more
complex logical formulas.

The question studied in this section revolves around the tradeoff of the VNet specificity and the embedding
cost.

Definition 3 (Price of Specificity (PoS) ρ). Given a VNet GV , let Cost0 denote the embedding cost (cf
Definition 1) of GV in the absence of any specification constraints, and let Costς denote the embedding cost
under a given specificity ς(GV). Then, the Price of Specificity ρ(GV) (or just ρ) is defined as ρ = Costς/Cost0.

Note that the Price of Specificity ρ depends on the specific embedding algorithm. In the following, we
do not assume any specific embedding algorithm, but just use the placeholder Alg to denote an arbitrary
state-of-the-art VNet embedding algorithm. (In the related work section, Section 3.1.8, we will review some
candidates from the literature.) However, in the simulations, we will use an optimal algorithm FlexMIP that
minimizes resources.

Although our definition of the Price of Specificity is generic and does not depend on a particular definition of
specificity, for our evaluation, we will use the following metric.

Definition 4 (Specificity ς). The specificity ς(vV) of a virtual node vV captures how many alternative type
configurations are still allowed by a specification compared to a scenario where all configurations are allowed.
Formally, we define ς(vV) as the percentage of lost alternatives: ς(vV) = 1 − (∣t(vS)∣ − 1)/(∣T (p1) × . . . ×
T (pk)∣− 1). The specificity ς(GV) of a VNet GV = (VV ,EV) is defined as the average specificity of its nodes
vV ∈ VV : ς(GV) = ∑vV ∈VV

ς(vV)/∣VV ∣.

Note that ς(GV) ∈ [0,1], where ς(GV) = 0 and ς(GV) = 1 denote the minimal and the maximal specificity,
respectively. We will focus on scenarios where ∣T (p1) × . . . × T (pk)∣ > 1.

3.1.5 Evaluation

This section studies the Price of Specificity (PoS) in different scenarios. In order to avoid artifacts resulting
from approximate or heuristic embeddings, we consider optimal embedding solutions only.

27

Chapter 3 Harnessing Specification Flexibilities

Inputs:

Requests R
Substrate Vertices VS
Substrate Edges ES ⊆ VS ×VS
Substrate Capacities cS ∶ VS ∪ ES → R+

Virtual Vertices VrV ∀r ∈ R
Virtual Edges ErV ⊆ VrV ×VrV ∀r ∈ R
VNet Demands drV ∶ V

r
V ∪ ErV →→ R+ ∀r ∈ R

Possible Placements lrV ∶ V
r
V → P(VS) ∀r ∈ R

Migration Costs mr
S ∶ V

r
V ×VS → R+ ∀r ∈ R

Variables:

Node Mapping xrv,s ∈ {0,1} ∀r ∈ R, v ∈ VrV, s ∈ VS
Flow Allocation yrv,s ≥ 0 ∀r ∈ R, v ∈ ErV, s ∈ ES

Constraints:

Each Node Mapped ∑
s∈lrV(v)

xrv,s = 1 ∀r ∈ R, v ∈ VrV

Embed Links
∑

es∈δ+(s)
yrev,es − ∑

es∈δ−(s)
yrev,es

= drV(ev) ⋅ (xrv1,s − x
r
v2,s)

∀r ∈ R, ev = (v1, v2) ∈ ErV, s ∈ VS

Feasibility Nodes ∑
r∈R,v∈Vr

V

xrv,s ⋅ drV(v) ≤ cS(s) ∀s ∈ VS

Feasibility Links ∑
r∈R,ev∈Er

V

yr
ev,
Ð→es + ∑

r∈R,ev∈Er
V

yr
ev,
←Ðes ≤ cS(

Ð→es) ∀Ð→es ∈ ES

Objective Function:

Embedding Cost min ∑
r∈R,v∈Er

V,s∈ES

yrv,s

Figure 3.3: FlexMIP: Embedding constants, variables, constraints and the objective function. Explanations are
given in Section 3.1.3.

28

3.1 Price of Specificity

Setup

In our evaluation, if not stated otherwise, we will focus on the following default scenario. We consider two
different properties P = {p1, p2} with four different types each (T (p1) = {t11, t12, t13, t14}, T (p2) = {t21, t22, t23, t24}).
By default, we do not allow to migrate already embedded VNets. The substrate node types are chosen
independently at random from the base types such that each type occurs equally often (up to rounding), and
the virtual node types are chosen independently uniformly at random according to the specificity level.

Concretely, we study five different degrees of specificity (in increasing order of specificity): (1) all types are
allowed (no restrictions, i.e., specificity ς = 0); (2) only two types (either {t11, t12} or {t13, t14}) are allowed for
T (p1), but all types of T (p2) (specificity ς ≈ 0.533); (3) only two types (either {t11, t12} or {t13, t14}) are allowed
for T (p1) and only either {t21, t22} or {t23, t24} for T (p2) (specificity ς = 0.8); (4) only one type is allowed for
T (p1) and only two types (either {t21, t22} or {t23, t24}) for T (p2) (specificity ς ≈ 0.933); (5) only one type is
allowed for each property T (p1) and T (p2) (i.e., ς(vV) = {t11, t21} for all nodes vV ∈ VV , specificity ς = 1).
Note that for the upcoming plots we included a linear connection between the data points for better visibility.

Furthermore, we assume that the nodes in the substrate all have a capacity of one unit, and that the links
have an infinite capacity. The virtual nodes and links of the VNet have a demand of one unit (no collocation).
Finally, we allow the embedding algorithm to split a virtual link into multiple paths.

Our substrate network is generated using the Igen topology generator [92]. Our default model uses one
hundred nodes. Nodes are generated randomly and we use the clustering method k-medoids:5 with five
clusters (PoPs) based on distance. The nodes in these PoPs are access nodes which are all connected to
the PoPs two backbone nodes. These backbone nodes are picked geographically as the most central ones
among the access nodes within a cluster. The backbone topology is built by using a Delaunay triangulation
connecting a backbone node with other backbone nodes next to it. Thereby the connectivity is preserved
since the triangulation includes the minimal spanning tree and alternative paths are created to guarantee
redundancy [62].

As for the VNets we will focus on master-slave (i.e., star) topologies. In the following, we will refer to a star
with one center node and x − 1 leaves as an x-star. In most cases we study 4- or 5-stars.

Impact of Substrate Size and Load

We first study the impact of the substrate size and load and consider two different scenarios: (1) an empty
substrate network, and (2) a scenario where the substrate nodes already host some virtual nodes. In both
scenarios the arriving VNet is a 5-star.

Figure 3.4 (left) plots the PoS as a function of substrate sizes for the empty substrate scenario. As expected,
since a larger network offers more embedding options, it is more likely that a low-cost embedding can be found,
and the PoS is lower on larger substrates. At around one hundred nodes, the embedding is almost perfect for
a VNet with specificity ς = 0.8 resulting in a PoS of nearly one whereas the PoS for the 20-nodes substrate is
almost 1.2. At a specificity ς = 1 the PoS is nearly two in the 20 nodes substrate scenario implying that we
need roughly twice as much link resources than actually stated in the VNet requirements. As to be expected,
the larger substrates have a smaller PoS and the absolute difference is increasing with the specificity.

Let us now consider a scenario where there is already some load on the substrate network. We study a
simplified model where x substrate nodes chosen uniformly at random are set to full load, i.e., no virtual nodes
can be embedded. We compare the scenario where x out of 100 nodes are already in use to a scenario where
the substrate consists of 100 − x nodes. The results shown in Figure 3.4 (right) look similar to those of the
substrate size scenario. For the ς = 1 case the more loaded substrates (40-80 nodes in use) have a higher
PoS than their representatives in the substrate size scenario. Given the larger substrate with many nodes
in use simultaneously, the distances between the free nodes increase. This yields longer paths allocated for
embeddings, and therefore a higher PoS. For lower specificities, this is negligible due to the smaller node type
variance.

In order to get a better understanding of the impact of load on the PoS we studied a scenario where there are
15 VNets arriving over time. Each of them is embedded by FlexMIP without using migration, leading to more

29

Chapter 3 Harnessing Specification Flexibilities

0.0 0.2 0.4 0.6 0.8 1.01.
0

1.
2

1.
4

1.
6

1.
8

2.
0

σ

Po
S

20−nodes
40−nodes
60−nodes
80−nodes
100−nodes

0.0 0.2 0.4 0.6 0.8 1.01.
0

1.
4

1.
8

2.
2

σ
Po

S

80−nodes
60−nodes
40−nodes
20−nodes
0−nodes

Figure 3.4: Left: Impact of substrate size on the PoS. Each substrate was created with the Igen topology
generator having five PoPs and two backbone nodes per PoP. Right: Impact of load on the PoS.
Each scenario is based on the 100 nodes Igen substrate with different numbers of fully utilized
nodes. The nodes are chosen uniformly at random.

2 4 6 8 10 12 14

3
4

5
6

7

req. nr.

re
so

ur
ce

 c
os

ts

σ=1
σ ≈ 0.93
σ=0.8

0.0 0.2 0.4 0.6 0.8 1.01.
0

1.
2

1.
4

1.
6

σ

Po
S

NoMig
Mig

Figure 3.5: Left: Amount of link resources needed per embedding as a function of request order. There are 15
incoming 4-star VNets with different ς on a 100-nodes Igen substrate with a substrate link capacity
that allows the embedding of two VNet links. For this experiment, we disabled migration. Right:
Impact of migration on the PoS. There are five 4-star VNets arriving over time on a 40-nodes Igen
substrate with eight different substrate node types.

load over time. Figure 3.5 (left) shows the amount of link resources needed per embedding depending upon
VNet arrival, and the substrate load respectively. While the first incoming VNet can always be embedded

30

3.1 Price of Specificity

perfectly in the ς = 0.8 scenario, a higher specificity leads to 3.5 and 4.7 links on average. The link resource
costs are increasing with the load and we notice the tendency of lower specificity impacts for the ς = 0.8 and
ς ≈ 0.93 scenarios: the curves of the resource costs are converging. Fully specified VNets are still causing more
resource costs for each VNet. The impact of the load is shown in the resource costs for the 13th VNet or
higher which nearly takes twice as much resources as the first VNet. This especially occurs when the substrate
is used close to its capacity. Since a substrate provider will typically try to fully utilize its infrastructure as well
as trying to avoid costly embeddings, the PoS has to be understood in relation to the substrate load.

Impact of Migration

The load scenario from Section 3.1.5 was static in the sense that load was modeled on fixed nodes only.
However, the possibility to migrate already embedded VNets to more suitable locations is one of the key
advantages of the network virtualization paradigm, and hence we now attend to the use of such migrations.
Migration can have very positive effects on the PoS: For instance, when a scarce type may have been blocked
earlier in time by a VNet of low specificity, a migration may reduce the resource costs significantly. A better
location to migrate to may also become available due to the expiration of a VNet.

We study a scenario where five 4-star VNets arrive over time on a 40 node Igen substrate with eight different
substrate types. We only study runs where all five VNets have been embedded, resulting in a load of 50% on
the substrate. This avoids heavily loaded substrate scenarios as well as scenarios of abundant capacity. Both
scenarios naturally lead to no or only small effects of migration due to nearly optimal embeddings. Figure 3.5
(right) shows the aggregated PoS over all five VNets. We show averaged values as the embedding costs for an
already embedded VNet can change over time in the migration scenario. Interestingly, migration is already
effective even without specificity on the VNets (compare PoS Mig:1 - NoMig:1.2). This is due to embeddings
which are initially optimal regarding resource costs but use resources that might be more effective in later
embeddings, i.e., nodes with a higher degree. While the impact of migration is rather low for the following
specificities, it is again recognizable for fully specified VNets.

Generally migration lowers the resource costs and hence the PoS in all our scenarios.

Impact of Type Distribution

The diversity of resources and especially the distribution of requested and supplied types is crucial for the PoS.
We expect that in a scenario where the requested types follow the same distribution as the available substrate
types, the embedding cost and hence the PoS is lower. In the following, we therefore study different probability
distributions for the node types in the substrate as well as the VNets. In addition to the uniform distribution
studied so far, we consider a heavy-tailed distribution: a Zipf distribution with exponent 1.2.1

Figure 3.6 (left) studies five different scenarios: the standard scenario where both (substrate and VNet) types
are uniformly distributed, a scenario where both are heavy-tailed distributed and the mixed cases. Additionally
we study a scenario where the substrate types are Zipf distributed and the VNet types are inversely Zipf
distributed in the sense that the least frequent type is the most frequent one in the other distribution. As to be
expected, we see that the highest PoS is obtained in the scenario with contrary Zipf distributions. While this
scenario is very different from the one with next highest PoS (S-zipf V-uni), the case where both types follow
the same Zipf distribution only marginally differs from the scenario where both types are uniformly distributed.
Another interesting observation is that the PoS which is obtained in the scenario where the substrate node
types are Zipf distributed and the VNet types are uniformly distributed is higher than the PoS of the opposite
combination. This is due to the fact that in a Zipf distributed substrate, there are many node types from
which only three or less nodes exist whereas the types are requested at equal proportions. Therefore, the
possibility that a scarce and hence relatively far away type is requested is high. The opposite distribution has a
lower PoS because even the possibility to have at least two nodes from the most common node type in the
request is below 50% and around 20% for three or more nodes. Since there are approximately six nodes per
node type in the uniformly distributed substrate, the distances are not that large, resulting in a lower PoS for

1E.g., the type distribution in a 100-node substrate with 16 node types is [28,12,12,8,8,5,5,5,3,3,2,2,2,2,2,1].

31

Chapter 3 Harnessing Specification Flexibilities

0.0 0.2 0.4 0.6 0.8 1.01.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

σ

Po
S

Z−Z
Z−U
U−Z
U−U
Z=Z

0.6 0.7 0.8 0.9 1.01.
0

1.
1

1.
2

1.
3

1.
4

1.
5

σ
Po

S

6−star
5−star
4−star

Figure 3.6: Left: Impact of different type distributions on the PoS. We compare all combinations between
uniformly and heavy-tailed distributed types as well as a scenario where two heavy-tailed distributions
have inverse type frequencies (i.e., the most frequent type becomes the least frequent type). As
a heavy-tailed distribution Zipf was chosen with exponent 1.2. (legend: Z=Zipf, U=uniform,
Substrate-VNet)Right: Impact of different VNet sizes on the PoS via 4-, 5- and 6-star VNets
embedded on the 100-node Igen substrate.

this scenario. The same argument holds for the only marginal difference between the scenarios where both
distributions are Zipf and where both distributions are uniform.

One takeaway from these results is that a specialization of the substrate entails the risk of a high PoS if the
demand does not perfectly fit.

Impact of VNet Topology

Section 3.1.5 has shown how the size of the substrate impacts the PoS, and we expect a similar impact of
changing the VNet size. Figure 3.6 (right) shows the PoS for different sizes of the VNets regarding the number
of nodes. For small specificities (ς ≤ 0.8) the PoS is almost constant. This is due to the relatively (regarding
the amount of types and the size of the VNets) large substrate which is robust against these small limitations
on the embeddings. The flexibility can still be maintained and an optimal allocation can be found. For higher
specificities, we see similar PoSs for the different star sizes. There is a tendency that for increasing specificity
the larger stars have a higher PoS than the smaller ones but those differences are rather small. Therefore we
investigate also the effect of changing the topology of a 4-star by adding links.

Figure 3.7 (left) shows a scenario where additional leaves of the 4-star are connected one by one. The figure
reveals the interesting part of the higher specified VNets only. All scenarios with additional links have a
higher or at least equal PoS than the standard star scenario, since the complexity to embed these topologies
is increasing. Nevertheless the difference between the most complex topology (4-star+3) and the 4-star is
relatively low, with an absolute difference always around 0.2.

We find that the modification of the VNet topologies by adding nodes or links does not have a big impact on
the PoS. However, note that this conclusion might be different if the load on the substrate is increased.

32

3.1 Price of Specificity

0.80 0.85 0.90 0.95 1.001.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

σ

Po
S

4−star+3
4−star+2
4−star+1
4−star

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
σ

Po
S

cap−4
cap−3
cap−2
cap−1

Figure 3.7: Left: Impact of additional links on the PoS: we connect the leaf nodes with each other, and
4-star+1 stands for the scenario with a 4-star VNet and two of its leaves connected. Right: Impact
of substrate node capacities on the PoS. The figure shows the result from embedding a 5-star VNet
while changing the node capacity of the underlying substrate from one VNet node per substrate
node up to four nodes per substrate node.

Impact of Capacity

Network virtualization allows the substrate provider to embed VNets according to its needs, e.g., to minimize
link resource costs in the case of our algorithm FlexMIP. The capacities in the infrastructure will not fit exactly
the specifications of the VNets in general. Therefore the embedding of several VNet nodes on one substrate
node promises lower link resource costs while the restriction on link capacities may yield higher costs.

Figure 3.7 (right) shows a scenario where the node capacities are increased up to four units. The curves show
a similar trend and there is a higher PoS noticeable with increasing node capacity. This is a consequence of
using the substrate nodes at full capacity without VNet node specificities whereas a higher specificity prevents
this due to the different VNet node types. A PoS is also observed on specificities where there was no additional
costs before. At a specificity of ς ≈ 0.533, the PoS for the scenario with a node capacity of four is already
higher than the PoS of a fully specified VNet in a scenario with node capacity one.

An Out-Sourcing Scenario

While our previous simulations may also describe geographical types (as a property), in this subsection we
examine a concrete geographic use-case more closely. Generally we now change the experiments in a way that
some VNet nodes assume a fixed position in the substrate. This use-case can for example represent a company
which owns certain servers and runs its own network, but out-sources computation or storage to the cloud.
While the locations of the infrastructure in the corporate network is given, the out-sourced resources may be
specified at different granularity.

Figure 3.8 (left) shows the impact of the amount of fixed corporate nodes on the PoS. The 5-star is the
incoming VNet basis while we vary the amount of fixed nodes from one to four. In all cases the PoS is
calculated regarding the 0-fixed scenario while ς is only referring to the specificity of the remaining free nodes.
Noticeable on the first sight is that even for a specificity of ς = 0 for the remaining nodes, the PoS is in all
cases higher than one. Especially with three or four nodes fixed (meaning only two and one additional nodes

33

Chapter 3 Harnessing Specification Flexibilities

0.0 0.2 0.4 0.6 0.8 1.01.
0

1.
4

1.
8

2.
2

σ

Po
S

4−fixed
3−fixed
2−fixed
1−fixed
0−fixed

ff os−1 os−2 os−3 os−4

4
5

6
7

8
9

10
11

re
so

ur
ce

 c
os

ts

Figure 3.8: Left: Impact of different degree of out-sourcing on the PoS. Embedding of a 5-star VNet while
changing the number of fixed corporate nodes in it, e.g. three fixed nodes lead to only two free
nodes affected by the specificity. Note that the specificity in those scenarios is referred only to the
free nodes while the PoS is calculated regarding the 0-fixed scenario without specificity (causing
higher PoSs than 1 even for ς = 0). Right: Boxplot showing the variation for the fully flexible
scenario (ff - zero nodes fixed) and four different out-sourcing scenarios (os1 - one fixed node, etc.)
for a specificity of ς ≈ 0.53.

to be embedded) the PoS reaches ∼ 1.7 and ∼ 2.05 respectively. With an increasing specificity the PoSs of
the different scenarios are converging. This is due to the declining effect of the positioning of the outsourced
nodes and the increasing effect of the specificity. Keep in mind that this effect might be different in different
use cases, e.g., if the fixed nodes are positioned next to each other and not picked uniformly at random of the
substrate.

The impact of the fixed node locations can also be understood as a function of the link resource costs of
the out-sourcing scenarios. Figure 3.8 (right) shows a boxplot comparing these costs with each other for a
specificity of ς ≈ 0.53. In the fully flexible scenario the VNet is almost always embedded with the smallest
possible amount of link resources while an increasing number of fixed nodes also increases the variance as
well as the used link resources. Nonetheless, an optimal embedding regarding the link resource costs can be
achieved even in the out-sourcing scenarios provided an appropriate random placement of the fixed nodes,
which can be observed in the scenarios with one to three fixed nodes.

3.1.6 Excursion: Use of Migration

An intriguing question regards the impact of migration on the Price of Specificity. At first sight it may seem
that migration can only be beneficial (see also our simulation results in Section 3.1.5). However, we will show
that this is only true for scenarios where links have unbounded capacities. Otherwise, there exist situations
where migration can be harmful. We will refer to this phenomenon as the Migration Paradox.

In order to study the impact of migration on the PoS we extend the Definition 3 towards several embedded
VNets.

Definition 5 (Price of Specificity ρ for multiple VNets). Given a sequence of VNets Gk = (G1
V , ...,G

k
V), the

PoS ρ(Gk) is defined as the average PoS over all VNets ρ(Gk) = ∑ki=1 ρ(GiV)/k.

34

3.1 Price of Specificity

Given the PoS definition for a sequence of VNets, we will make the following assumptions: (1) We focus on
embedding algorithms Alg which greedily accept all incoming VNets if possible, while trying to minimize the
corresponding embedding costs. (2) Migration itself is only causing no/negligible costs regarding the PoS. (3)
The substrate links have unbounded link capacities.

Certainly, all scenarios satisfying these assumptions can only benefit from migration.

Theorem 1. In scenarios satisfying Assumptions (1)-(3), migration can only decrease the overall PoS of the
embedded VNets, meaning ρ1(Gk) ≤ ρ0(Gk) for any sequence of VNets Gk, with ρ1 representing the PoS for
the migration scenario and ρ0 representing the one without.

Proof. Let Gk be a sequence of VNets (with Gk = (G1
V , ...,G

k
V), k ∈ N) requested at the substrate one after

another. Note that due to Assumption 1 and 3, an identical order of incoming VNet requests results in exactly
the same VNets that will be accepted in both scenarios, meaning that there are valid embeddings for the same
requests (cf Definition 2). Since only unavailable node types can cause a VNet to be rejected, it is sufficient
to show that for an arbitrary sequence of embedded VNets the link resource usage is not exceeding those of
the scenario without migration. The notation Gk′ , k′ ≤ k describes such a k′-tuple of embedded VNets from
an incoming sequence Gk.

The proof is by induction over the number of requests. Take an arbitrary sequence Gk′ = (G1
V , ...,G

k′
V) of

embeddable VNets. We will show that ρ1(Gk′) ≤ ρ0(Gk′) for each k ∈ N. For k = 1 the claim holds: The only
incoming VNet G1

V of G1 will always be embedded equally in both scenarios. There are no other VNets that
can be migrated, hence Alg embeds this VNet in both scenarios identically. Therefore ρ1(G1) ≤ ρ0(G1) is
satisfied.

For the induction step (k > 1, k ∈ N), assume that ρ1(Gk) ≤ ρ0(Gk) holds for an arbitrary k ∈ N. We show
that the embedding of an arbitrary additional VNet Gk+1

V still satisfies the claim ρ1(Gk+1) ≤ ρ0(Gk+1). We
know that ρ1(Gk) ≤ ρ0(Gk), and an additional VNet request cannot yield higher costs without migration, as
the embedding configuration can always be migrated to any possible cheaper configuration. The migration will
not increase the PoS due to Assumption 2 and therefore a lower PoS may be achieved. ∎

However, note that if link capacities are limited, Theorem 1 no longer holds. Figure 3.9 shows an example
where migration can lead to larger resource costs. It shows a simple substrate with a line-topology and link
capacities of one. There are only two different types of nodes in the substrate, namely A and B and a small
VNet with two connected nodes of type B embedded. This VNet has to be migrated in order to embed a
VNet with two connected nodes of type A. Therefore the new embedding is using all of the remaining link
capacity and prevents the embedding of additional VNets.

Thus, we have the following result.

Theorem 2. Generally, there are scenarios where migration can increase the PoS.

Therefore it is necessary to have a proper access control even though the provider is able to migrate certain
VNets.

3.1.7 Economical Aspects of PoS

This section has mainly studied the price of specificity from a resource cost perspective. Of course, the real
cost of a VNet (as paid by a customer) may depend on many additional factors. We round off this section by
a short discussion of some other aspects we deem relevant in this context.

35

Chapter 3 Harnessing Specification Flexibilities

B B A B B B B A

(1) Substrate with a “B-B” VNet embedded

B B A B B B B A

(2) Only way to migrate in order to embed the “A-A” VNet

B B A B B B B A

(3) Resulting embeddings after migration

Figure 3.9: Blocked resources due to enabled migration. After migrating the “B-B” VNet and embedding the
“A-A” VNet no link capacities are available for further VNet embeddings.

VNet Templates

In a market for dynamic virtual networks which can be requested at short notice and for limited time periods,
it can make sense to define VNet templates: virtual networks of a certain (e.g., popular) type. For example, a
substrate network provider may offer (and even publicly advertise) fully connected VNets for communication
intensive applications or tree-like multicast networks for content distribution as a standard solution. This has
the benefit that it simplifies or even short-cuts the negotiation phase between customer and provider, which
makes the networks cheaper. Given the corresponding demand, a provider can pre-compute the embeddings of
such standardized networks, and also the management may be simplified.

Thus, such templates can be seen as a means of the provider to influence the demand, and hence also the
Price of Specificity. Moreover, once a certain template becomes popular, the infrastructure provider may even
start to optimize its network topology accordingly, see also our insights in Section 3.1.5.

VNet Pricing

How does the Price of Specificity relate to the actual price of a VNet? Intuitively, the resource costs of a
VNet of a given specificity represent a measure of how much VNets, on average, can be embedded of the
corresponding VNet type. Thus, a natural but simplistic strategy of a physical infrastructure provider could be
to charge the different requests according to the Price of Specificity factors.

Of course, this is an overly simplistic approach. The real price of a VNet depends on the current load on
the substrate network which effects the required amount of resources to embed this VNet. Moreover, even
if the resource cost (including the opportunistic cost of not being able to embed future requests) can be
estimated well, the real price of a virtual network will depend on the market situation: the demand for VNets,
the current supply of resources, and the level of competition between different providers. While the VNet
prices may be close to the provider’s actual costs in fully competitive markets, the prices will be higher in
monopolistic situations. In this sense, due to the focus on resources, we expect the Price of Specificity to be of
greater influence on the VNet price in competitive markets and hence, study such a situation for a distributed
datacenter setting in Section 3.2. In Section 4.1 we will then propose an actual pricing scheme for VCs in
datacenters.

36

3.1 Price of Specificity

3.1.8 Related Work

The important problem of finding good VNet embeddings [87] has been studied intensively, both from
offline [78] and online perspectives [19, 42], by focusing on bandwidth constraints only [43], by pursuing
heuristic approaches without admission control [113], or by employing simulated annealing techniques [96].
The survey by Belbekkouche [20] provides a nice overview of allocation and embedding algorithms. Lischka
and Karl [76] present an embedding heuristic that uses backtracking and aims at embedding nodes and links
concurrently for improved resource utilization. A mixed integer program for the embedding of certain types
of VNets is formulated in [33]; the formulation has been extended to support migration and reconfiguration
in [101]. Bienkowski et. al [23] study migration in a mobile network virtualization setting from a competitive
analysis perspective. Since the general embedding problem is computationally hard, most of the literature is on
heuristical or approximative algorithms. An interesting perspective is taken by Yu et al. [80] who advocate to
rethink the design of the substrate network to simplify the embedding which makes it computationally tractable;
for instance, they allow to split a virtual link over multiple paths and perform periodic path migrations. The
general embedding problem is also related to network design [108], virtual circuit planning [16], or minimal
linear arrangement [29].

Our contribution is orthogonal to this line of research. In fact, the Price of Specificity could be studied for
each embedding algorithm reviewed above. In order to focus on the main properties of the Price of Specificity,
we use a an optimal embedding approach for our evaluation, and ask the question how the VNet specification
effects the cost.

There are many networking domains where economical aspects play a central role, for instance in the Internet
backbone, in the cloud, in wireless spectrum allocation, or in the grid where storage and computational
resources come at a certain price (e.g., [40, 58, 91, 106]). Especially federation (e.g., collaboration of different
ISPs or cloud providers) and fairness issues (over multiple resource types) have gained much attention recently
(e.g. [49, 105]). For a good introduction to some classic tradeoffs, we refer to the V-Mart [112] paper (and the
references therein) which attends to the inter-domain embedding problem and uses an auction-based model,
and in the context of computing resources, to the GridEcon a market place proposed in [12].

In the context of the relatively new concept of network virtualization itself, not much work on economical aspects
exists yet. Courcoubetis et al. [35] identify incentive issues arising in the management of virtual infrastructures
and show that well-designed policies are mandatory to prevent agents from contributing less resources than is
desirable. PolyViNE [34] is a decentralized, policy-based inter-domain embedding protocol ensuring competitive
prices for service providers. In more general context, Antoniadis et al. [14] employ coalitional game theory to
study how participants should share the value of federation in virtualized infrastructures (in the context of ISP
interconnections, peer-to-peer systems, the Grid, or cloud computing).

3.1.9 Summary

While today, we have a fairly good understanding of how to realize the vision of virtual networks (cf, e.g. [37]),
surprisingly little is known about economical implications. We consider this section as a first step to shed light
on the impact of virtual network specification flexibility on the embedding cost. We define the specificity of a
VNet, which characterizes the amount of choices a provider has in embedding this VNet. Subsequently, the
impact of the specificity on the embedding cost is defined by the Price of Specificity (PoS). Based on optimal
embeddings, we find that the PoS increases especially for highly specified VNets. Collocation and scenarios
with scarce resources yield further areas where the specificity has a large impact on the embedding cost.

We hope that our approach provides a means to reason about policies for VNet pricing and embedding,
especially in competitive markets where infrastructure providers operate within small budget margins and study
such a competitive market in the datacenter context more closely in Section 3.2.

37

Chapter 3 Harnessing Specification Flexibilities

3.2 Flexibility Beneficiaries in Distributed Cloud Markets

Our analysis in Section 3.1 provides insights on the impact of specification flexibilities on the resource costs.
These impacts are studied independently of competing providers. Since a VNet market might very well be a
competitive environment, we are now interested in the question: “Who reaps the benefit of the different levels
of flexibilities?”. To answer this question, we turn to a distributed cloud market in datacenters, in which we
study two different market models.

Today’s datacenters concurrently host a wide range of applications of different customers with different
requirements [60]: while some applications are network-hungry [64] or latency sensitive [110] (e.g., a web
service), and may have deadlines [109] and require strict QoS networking guarantees, other applications (e.g.,
batch processing jobs) are delay-tolerant. For example, a customer may expect that being more delay-tolerant
and flexible in terms of resource rates, pays off, i.e., render the service cheaper [10]. Indeed, as the cloud
provider may exploit specification flexibilities to schedule applications more flexibly and hence make a better
use of its resources, it may share the gains with its customers.

Contribution

This sections investigates on the beneficiaries of specification flexibilities in terms of deadline dependent VNets
in a distributed cloud market. We present two simple market models, where customers buy resources either
directly at the provider or indirectly via a broker. We find that increased flexibility on the customer side
especially benefits the cheaper providers, but not necessarily the cheapest provider. While the social welfare of
both customers and providers is increased under heterogeneous flexibilities, inflexible customers might even be
worse off.

We provide two basic resource buying strategies for a broker and evaluate the impact of a broker on the market.
A broker gets discounts for contracts with a larger resource amount and duration. Out results show that the
broker disproportionally benefits from customer flexibilities. Given a higher variance however, the benefits are
shifted towards the provider, as resources cannot be bundled efficiently on the broker side.

3.2.1 Model: Horizontal & Vertical Market

It has been shown that cloud applications suffer from resource interference on the network, in the sense that
application performance can become unpredictable. Longer job execution times also entail higher costs for the
customers who are charged on a per-VM-hour basis. [86]

To overcome these problems, more powerful resource reservation models, e.g., Virtual Clusters (VCs) have
been proposed [18]. Compared to Section 3.1 where the VNets could be completely specified we consider
customers requesting VNets in form of VCs. Each VNet specifies (1) resource rates for virtual nodes and links,
i.e., a fixed amount of CPU per time or bandwidth (using the VC abstraction presented in Section 2.2), (2) a
duration for which the VNet must be embedded (at the specified resource rate), and (3) possibly a deadline
by which the VNet must have been embedded for the entire duration (and rate). We propose the following
two simplified VNet market models (cf Figure 3.10).

In the horizontal market model (Figure 3.10 left), the customers (or “tenants”) directly request virtual networks
(VNets) on demand from different cloud providers. We assume that a customer first issues the VNet request
(annotated with the required resources) to all cloud providers, in order to obtain an offer on (1) when the
VNet request can be scheduled (time t), and (2) at which price p. We assume that the providers have fixed
but different prices per resource unit, and will greedily schedule a VNet at the earliest possible point in time.
Given the time-price tuples (t, p), the customer will choose the best provider offer according a utility function
u(t, p). Depending on the application, the customer may be relatively flexible in the execution time as long as
the best price is obtained; or, conversely, he or she may be relatively flexible in the price as long as the job is
processed as soon as possible.

In the vertical market model (broker market), customer requests are handled by a broker (cf Figure 3.10 right)
that is responsible of embedding the VNets on its virtual resources (similar to the role for the cloud provider in

38

3.2 Flexibility Beneficiaries in Distributed Cloud Markets

the basic model). The broker role benefits from being able to buy larger chunks of resources as it obtains
a discount from the cloud provider. Concretely, we will assume that the broker can buy different resource
contracts from the cloud provider: a resource contract consists of a resource volume (i.e., an overall resource
rate R) and a duration D. The larger the product R ×D of resource volume and duration of the contract
(henceforth also referred to as the contract area), the higher the discount. Resource discounts are common
(e.g., in Amazon’s EC2 reserved instances) and yield a tradeoff for the broker: buying too large contracts may
be wasteful as the actual resources cannot be resold, and buying too small contracts may yield small discounts.
In order to study how the costs of the broker and the income of the cloud provider depend on how flexible the
customers are with respect to the VNet deadline, we consider different broker strategies.

2. Price

& Deadline

Customer

3. Embed

Best Offer
2. Price

& Deadline

1.

1.

Utility: u(t,p)

Provider A

Provider Z

Horizontal

Market

1.

Provider

1.

2.

Broker

3. Contract
Offer

Dead
line +

Dead
line +

4. Buy
Contracts
+ Embed

Customer 1 Customer n

Vertical
Market

Figure 3.10: Left: Horizontal market: A customer requests an offer for a VNet embedding from each provider.
Depending on the price-deadline tuples returned by the providers, the best option is chosen
according to a given utility function. Right: Vertical market: Customer VNet requests (with
deadlines) are directed towards the broker which is buying resource contracts (subject to discounts
for larger contracts) from the cloud providers.

3.2.2 Benefits in Horizontal Market

We first study how VNet flexibilities influence the income distribution of the different cloud providers. We make
the natural assumption that cheaper and faster executions are always preferred over more expensive and longer
alternatives. Concretely, we consider the following exemplary utility functions: (1) customers are relatively
flexible in time as long as the price is low: uf(t, p) = −t − 10 ⋅ p; (2) customers are inflexible regarding time
even if this turns out to be more expensive: ui(t, p) = −10 ⋅ t− p; and (3) customers are not specifically flexible
or inflexible ue(t, p) = −t − p. Finally, (4) we also investigate scenarios where VNets have strict deadlines d;
i.e., the customer will not accept offers violating this deadline. We will assume that providers have fixed
resource prices and schedule a VNet request at the next possible occasion. A VNet request will require a
constant resource rate, and cannot be stretched or shortened in time once it is started. Therefore, we use a
simple greedy algorithm which computes earliest embeddings on the providers, together with the corresponding
prices.

In our experiments, we have three different providers whose prices differ by a certain percentage. VNet requests
arrive over time according to a Poisson distribution with exponentially distributed inter-arrival times (parameter
λ = 1). The request durations follow a heavy tail distribution (Pareto distribution with exponent α = 3,
minimum 1, and scaling factor 100) and are chosen independently. The arrival and duration process yields a
dynamic demand [22, 31]. For simplicity, the resource requirements of all requested VNets are identical and we

39

Chapter 3 Harnessing Specification Flexibilities

will assume that customers request one unit of volume. We assume an underlying fat-tree topology [11] as it is
the most common datacenter topology in the literature. As embedding algorithms are not in the focus of the
thesis, we assume no oversubscription within the network, i.e., each layer provides the aggregated bandwidth
of the layer below them and thus, full bisection bandwidth. Providers have a capacity of 70 units.

Provider Perspective

We first study the impact of different customer flexibilities on the providers. In our model, the revenue of
a provider depends on the number of customer requests it will eventually serve. We compare four different
scenarios; three homogeneous ones where all customers have the same utility function (either flexible uf , equal
ue or inflexible ui), and a heterogeneous scenario where customers with different utilities (one half uses uf
and one half ui) compete for provider resources.

4
0

4
2

4
4

4
6

4
8

5
0

Utility Functions

%
 o

f
O

ve
ra

ll
D

e
m

a
n
d

flexible equal inflexible

P1

P2

4
6

8
1
0

1
2

Utility Functions

%
 o

f
O

ve
ra

ll
D

e
m

a
n
d

flexible equal inflexible

P3

Figure 3.11: Boxplots (left: P1 and P2, right: P3) of the overall workload, in percentages per provider and
under a stable pricing scheme (100,110,120). The data is collected over 100 runs with 20k
requests each (excluding the first 1k to to remove the “bootstrap phase”). All providers have a
capacity of 70 units, the demand is subject to Poisson arrival (λ = 1) and durations are Pareto
(α=3, min=1, scaling factor=100).

Figure 3.11 shows the percentages of the demand assigned to the three providers: P1, P2, P3 in the three
different homogeneous scenarios. In this experiment, the unit price of provider P2 is 10% higher than P1, and
P3 is 20% higher than P1. Provider P3 has a lower workload, as the aggregate demand does not always fill all
provider resources. The share of demand on P1 changes only slightly over the scenarios. Most of the demand
that P3 gains (approx. 2% of the overall demand) while increasing the importance of the time dimension, is
stolen from the P2’s share. That is because customers prefer P3 at demand peak rates, rather than having to
wait for P2. The heterogeneous scenario shows a behavior similar to the equal scenario and is hence omitted
here.

Given a certain degree of flexibility (e.g., customers with time uncritical applications such as bulk data transfers
or batch jobs), the variance in demand can be exploited to shift load in time. While P1’s capacity is completely
used > 99% of the time, the workloads of P2 and P3 vary. An increase of the Poisson arrival rate to λ = 1.2
leads to a more frequent demand excess, and P2 hardly has available capacities over longer time periods. Also
P3 obtains approx. a quarter of the overall demand. If not stated differently, in this section, we will focus on
demands similar to the top scenario where there are sufficient capacities even in high-demand periods.

With increasing demand, having strict deadlines becomes more critical: later, a result may no longer be useful.
Table 3.1 shows the percentage of requests that cannot be embedded within their deadlines. In this experiment,
the deadlines are chosen as a function of the corresponding request duration: we have three different flexibility
levels, one adding 1% to the duration, one 10%, and the most flexible one adds 20%. With a Poisson arrival
parameter λ = 1.5, the percentages are nearly equal, and independent of the deadline flexibility. This is due to

40

3.2 Flexibility Beneficiaries in Distributed Cloud Markets

deadline
λ median 1% 10% 20%
1.2 182 0.20 0.14 0.01
1.3 193 1.54 0.84 0.1
1.4 209 5.34 4.09 1.89
1.5 224 11.29 10.89 9.82

Table 3.1: Percentage of requests that cannot be served within their deadline. The deadline occurs after the
duration plus a percentage (1%,10% or 20%). The arrival process is Poisson with parameter λ. We
show the median demand (total capacity is 210).

the demand excess for nearly all time periods. In general strict deadlines are beneficial for P3, as it increases
the fraction of customers that cannot wait.

Customer Perspective

Next we examine the customer perspective. Clearly, the pricing scheme on the market combined with the
current resource demand and also the flexibilities of the other customers, will influence the obtained customer
utilities.

Time is money. In order to compare different pricing schemes, we examine customers with no specific
preference on time or price (utility function ue). The pricing schemes on the competitive provider market lead
to different decisions on how long a request waits for being embedded and what to pay. We investigate the
customer utilities on three different pricing scenarios with 1%, 10% and 25% difference between two providers.
Figure 3.12 shows also the respective waiting times. Comparing these plots one must be aware that an increase
of the prices also reduces the average utilities. Surprisingly, despite the fact that the cheapest price stays
constant over all scenarios, the best utility (no waiting time on first provider) is only reached in the 1%
scenario. This is because of the small price difference for customers who do not wait and rather pay the small
overhead for embeddings on P2 and P3. With higher differences, the customers are more likely to wait for
free capacities on cheaper providers, which leads to the longer waiting times and queues on those providers,
and eventually prevents an immediate embedding there. This also explains why the utilities in the first plot
can be classified into three groups with nearly identical utilities. The increasing price variance renders the
differences larger and leads to even smaller utilities (up to −50% from the maximum) at peak times, and a
wider overall distribution. Unsurprisingly, the waiting time plots show a change of the slope at the points
where the time matches its utility-wise analog price value (1, 10, 25). The slope is steeper before these points
since there are many customers who prefer to wait for the next cheaper provider.

Dependency on other customers. The utilities obtained by the customers are inter-dependent. To
study these dependencies, we extend our setting to a heterogeneous one where the flexibilities of the customers
are mixed. The comparison of these utilities (cf Figure 3.13) shows that on the one hand mixed utility functions
are beneficial for flexible customers and increase their utility by ∼ 10%. On the other hand, mixed utility
functions are reducing the utilities for inflexible customers. While in a homogeneous scenario the customers
tend to choose a more expensive provider early, which keeps the waiting times low, the flexible customers in
the heterogeneous scenario are willing to wait longer for capacities on the cheapest provider. This leads to
a situation where the flexible customers reserve the capacities on the cheapest provider while the inflexible
customers are stuck with the expensive providers. Since this impacts only approximately 50% of the inflexible
customers whose utilities decrease by ∼ 10%, the overall utility under heterogeneous demands increases.

41

Chapter 3 Harnessing Specification Flexibilities

0
.0

0
.4

0
.8

Utility

C
D

F

−2% −1% max

0
.0

0
.4

0
.8

Utility
C

D
F

−20% −10% max

0
.0

0
.4

0
.8

Utility

C
D

F

−50% −30% −10%

0.0 1.0 2.0

0
.0

0
.4

0
.8

Waiting Time

C
D

F

0 5 10 15 20

0
.0

0
.4

0
.8

Waiting Time

C
D

F

0 10 30 50

0
.0

0
.4

0
.8

Waiting Time

C
D

F

Figure 3.12: CDFs of customer utilities and their respective waiting times given three different pricing scenarios
(1%,10%,25% price differences between the providers). The utilities are given in a relative
percentage to the theoretically highest utility. The customers are not specifically flexible or
inflexible.

3.2.3 Benefits in Vertical Markets

Let us study the effects of flexibility in the vertical model: we assume the customers send their VNet requests to
a broker who resells resources from the cloud provider. The business model of the broker is to buy large resource
contracts from the cloud provider, and uses these resources to satisfy multiple VNet requests. Concretely, we
assume that the cloud provider offers a single kind of resource, and that contracts are given in terms of a
resource rate R and a duration D. The higher the product of resource rate and duration, henceforth called the
area A = R ×D of the contract, the lower the unit price. We define the discount δ as the factor by which a
contract of twice the area is more expensive: δ = 1.5 means that for a twice as large contract, the price is 50%
higher; δ = 2 implies no discount is given and δ = 1 means infinite discount.

We assume that each VNet request vnet, arriving online at time vnet.arrival(), specifies a constant resource
rate vnet.rate(), a duration vnet.dur(), and a deadline vnet.dead() by which it must be completed. We
focus on a simple deadline utility function in the sense that the customer only cares whether the deadline is
met or not, and accordingly pays a fixed price or nothing. Thus, to maximize revenues, the broker should
embed as many VNets as possible which meet the deadline. We define the flexibility F of a vnet request as
F = (vnet.dead()−vnet.arrival())/vnet.dur(), the factor by which the feasible embedding time period exceeds
the duration. (We will assume that F ≥ 1.)

The broker can benefit from delaying VNet requests if the time period until their deadline is relatively large
compared to the VNet duration: Then, a larger resource contract can be bought at a better discount. It
seems that the broker can reap all benefits from more flexible deadlines relative to the the VNet durations.
Moreover, the flexibility gains accruing at the broker translate into a corresponding income loss at the cloud
provider, as contracts become cheaper: a zero-sum game. However, as we will see, the situation is slightly
more complicated and the benefits depend on the variance in demand. Moreover, the distribution of benefits

42

3.2 Flexibility Beneficiaries in Distributed Cloud Markets

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Utility

C
D

F

−20% −15% −10% −5%

hom

het

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Utility

C
D

F

hom

het

−20% −10% max

Figure 3.13: CDFs of customers utilities in scenarios with heterogeneous and homogeneous demands. The
utilities are compared based on the customer flexibilities (left: flexible only, right: inflexible only).
The utilities are given as a percentage of the theoretical maximum utility.

Time

R
at
e

0
1

2
3

4
5

6

Demand
Stairs

A1

A2 A3

A4

0 1 2 3 4 5 6 7
Time

R
at
e

0
1

2
3

4
5

6

Demand
Roof

A

0 1 2 3 4 5 6 7

Figure 3.14: Contracts bought by Stairs and Roof for a given VNet buffer B.

of course also depends on the strategy by which the broker delays requests and buys resources. We compare
three natural broker strategies: A greedy strategy called Instant where the broker immediately buys a new
contract specifically for each incoming VNet request, and two strategies Roof and Stairs where the broker
uses a VNet buffer B to delay requests and buy larger contracts.

Stairs and Roof differ in when and how the buffer B is filled and Figure 3.14 illustrates how Stairs and
Roof partition the VNet buffer B into contract. Whenever a VNet vnet arrives, Stairs includes it in the
buffer B. For each time step ∆t, Stairs checks if the VNets in B can be further delayed. If one of the VNet
requests vnet ∈ B can no longer be delayed and must be embedded the latest at the current time t, Stairs
groups the VNets in the buffer into intervals, all starting at t, and buys contracts for all these networks. In
contrast, Roof first checks if there are spare capacities available from previously bought contracts. If this is
the case, these capacities are used for the embedding of vnet. Otherwise, the broker delays the embedding of
vnet and adds it to the buffer B. If one of the VNets in B cannot be delayed any longer, Roof buys a single
large contract (i.e., it empties the entire buffer).

43

Chapter 3 Harnessing Specification Flexibilities

Figure 3.15 (left) plots the total contract price paid by Roof and Stairs, as a function of the contract
discount and relative to the Instant price which serves as a baseline. We assume the discount model for the
product of contract duration D and resource rate R, i.e., for the area A = R ×D: for a twice as large area,
the price is between one and two times higher (the former implies free resources, the latter no discount). As
expected, Roof performs bad without discounts and benefits from buying large contracts if discounts are
high. Stairs is always at least as good as Instant (equal in the no discount scenario). However, under
high discounts, Stairs pays relatively more again. This can be explained by the overall decreased cost of
Instant.

0
1

2
3

4

Discount Factor δ

F
ra

c
ti
o
n
 o

f
In

s
ta

n
t'
s
 c

o
s
t

1.1 1.3 1.5 1.7 1.9

Roof

Stairs

0
.4

0
.6

0
.8

1
.0

Flexibility F

F
ra

c
ti
o
n
 o

f
In

s
ta

n
t's

 c
o
s
t

1.00001 1.001 1.1 2.0

Roof

Stairs

Figure 3.15: Left: Price paid by Stairs and Roof relative to Instant’s price as a function of the discount
factor for twice as large contracts. The arrival times are generated using a λ = 1.2 Poisson
distribution and the durations are generated according to a Pareto distribution with α = 2. The
flexibility factor is F = 1.01. Right: Price paid by Stairs and Roof relative to Instant’s price
as a function of F . (Arrival times λ = 1.2, durations α = 2, discount factor δ = 1.5)

Broker Perspective. Figure 3.15 (right) shows the costs of Roof and Stairs relative to Instant’s
costs. Note that since Instant does not benefit from flexibilities (it does not delay any requests), Instant’s
costs can be used as a baseline and the fraction of its costs can be regarded as the benefit of flexibility. This
benefit is plotted as a function of the flexibility ratio (overall feasible time period divided by request duration).
We see that for very low flexibilities, the strategies do not differ much: on average, only roughly 5% of the
VNet requests are not immediately embedded. The fraction of delayed VNets increases with higher flexibilities
F , e.g., to 75% (for F = 1.001) resp. to 95% (for F = 1.01). Using the Roof strategy, the broker will benefit
more since the already bought resources can be used to a greater extent.

Provider Perspective. The provider perspective is similar: the flexibility benefits that could be exploited
by the broker automatically translate into an additional revenue for the cloud provider; we have a zero-sum
game. Interestingly, these benefits also depend on the variance of the demand. Table 3.2 shows the price paid
by the broker (and thus the income of the cloud provider), under different variances of the VNet duration,
i.e., different α values in the Pareto distribution (note that larger α also increases the demand, cf Table 3.2
Instant). In general, we observe that a higher variance benefits the cloud provider: resources cannot be
delayed efficiently. Interestingly, a higher variance does not necessarily lead to a higher price for the broker
using the Roof strategy however. This can be explained by the large discount in these cases.

3.2.4 Summary

This section studies the benefits and beneficiaries of specification flexibilities from Section 3.1 and introduces
two most simple market models. In horizontal markets, we find that customers can often benefit from being

44

3.2 Flexibility Beneficiaries in Distributed Cloud Markets

Pareto α 1.5 2 2.5 3
Instant 12109 11503 11183 10951
Stairs 10264 9143 8493 7943
Roof 1105 1291 1248 1190

Table 3.2: Mean provider income given VNets with different durations (a smaller Pareto α means a higher
variance). Inter-arrival times λ = 1.2, discount δ = 1.2, flexibility F = 1.01.

more flexible in some dimension (e.g., execution time) in the sense that the service is improved in the other
dimension. Moreover, more flexibility on the customer side disproportionally benefits the cloud providers
offering cheaper prices. Interestingly however, it is often not the cheapest provider that benefits the most
from customer flexibilities. Finally, we also find that while the social welfare of both customers and providers
is increased under heterogeneous requirements and flexibilities, not all customers can benefit in this setting;
inflexible customers may even be worse off. Overall, more resources are needed in case of inflexible customers,
opening new business opportunities for providers.

In vertical markets, we observe that the benefits from customer flexibilities typically accrue at the broker, which
can bundle requests and exploit potential discounts on the provider side. However, depending on the broker
strategy, a higher variance in the request demands helps the cloud providers to increase their revenues.

45

4
VNet Pricing and Buying Strategies

Now that we better understand the impact of specifications on the resource cost (Section 3.1) and on
competitive cloud markets (Section 3.2), we turn to actual pricing and buying strategies for VNets. The
objective of a provider offering these VNets is to maximize its revenue. As the degree of specification influences
the resource cost it is likely that it also influences the pricing scheme. Thus, we study an actual pricing
scheme for VNets in datacenters in Section 4.1, which includes pricing for bandwidth resources and is based
on the principle that customers pay only for what they requested. We find that such pricing schemes can yield
discounts and evaluate different strategies to exploit these discounts in Section 4.2. We assume the perspective
of a broker, as he benefits the most from discounts on large and long running resource contracts.

4.1 VNet Pricing

Treating networking only as a second class citizen without resource and performance isolation guarantees
and charging customer on a per-VM-hour basis is unfair to certain customers. Afterall, the traffic generated
by cloud applications such as MapReduce and distributed databases is not negligible. Indeed, it has been
shown that cloud applications suffer from resource interference on the network, in the sense that application
performance can become unpredictable. Longer job execution times hence entail higher cost for the customers
who are charged on a per-VM-hour basis [86]. This section presents a pricing scheme which is not only based
on VMs but also takes networking resources into account. We also find indications that current embedding
algorithms are not suited to cope with VNets with heterogeneous specifications and show the benefits of a
simple embedding modification.

We stick to the Virtual Cluster abstraction introduced in Section 2.2, where a virtual cluster V C(n, b) connects
n virtual machines to a virtual switch at bandwidth b; essentially a hose model [86]. Datacenter networks are
usually oversubscribed [52], meaning that there does not exist full bisection bandwidth within the network.
While we neglected this fact in Section 3.2, it is now important to consider them in order to better understand
the pricing strategies. This leads to two fundamental questions for this section: (1) How to embed virtual
clusters on a given (oversubscribed) physical network? In order to make an optimal use of its resources and
hence maximize the profit, a provider may want to multiplex as many virtual clusters as possible over the
physical infrastructure (while fulfilling the requested virtual cluster specification). (2) How to efficiently price
virtual clusters? While today’s cloud pricing models typically focus on VM hours only, the pricing of virtual
clusters becomes a 2-dimensional problem: a customer requesting more bandwidth should be priced accordingly.
This section addresses these two questions.

47

Chapter 4 VNet Pricing and Buying Strategies

Contribution

We present the first pricing scheme for virtual clusters, called DSP (Demand-Specific Pricing), which
explicitly takes into account the different computation and bandwidth requirements. That is, unlike the
dominant-resource pricing scheme DRP presented in the literature before [17], DSP is designed according to a
specification-dependent, pay-only-for-what-you-request policy : While in DRP, the size n and the bandwidth b
of a virtual cluster are strictly coupled, DSP allows customers to request virtual clusters V C(n, b) of arbitrary
and independent size n and bandwidth b, and be priced accordingly and in a fair manner. Moreover, DSP
ensures desirable properties such as location independent pricing.

Together with this pricing scheme we present a new embedding algorithm called Tetris1 which is also
specification-dependent in the sense that Tetris accounts for differences in the node and link requirements
of virtual clusters. Concretely, Tetris is tailored to an online scenario where different virtual clusters
V C1(n1, b1), V C2(n2, b2), . . . are requested over time, and collocates “opposites”: computation-intensive but
communication-extensive virtual clusters are mapped together with computation-extensive but communication-
intensive virtual clusters, to maximize the number of simultaneously hosted virtual clusters over time. Given
the online nature of the problem, this is a non-trivial task. We show that our algorithm outperforms previous
algorithms, in the sense that a provider can host more virtual clusters, and hence increase its profit.

4.1.1 Background & Model

Most cloud providers today still offer virtual machine services only, charging their customers on a per-hour
basis. However, we witness a trend towards more network oriented specifications (see also, e.g., Amazon
Placement Groups, Amazon EBS-Optimized Instances or Microsoft Azure ExpressRoute), and especially the
virtual cluster abstraction is becoming a popular model for datacenter applications. [18]

In [18], a first algorithm (henceforth called Oktopus) was proposed to embed virtual clusters in fat-tree
datacenter topologies, and Ballani et al. [17] proposed a first pricing scheme for virtual clusters which give
minimal bandwidth guarantees. Essentially, their scheme is based on Dominant Resource Pricing, short DRP.
DRP provides different templates for the customers, with predefined sizes n and an associated amount of
minimal guaranteed bandwidth b. While this model is attractive for its simplicity, also in the sense that the
interface between the customer and provider may not have to be changed, the minimal bandwidth b is a
function of n and cannot be chosen by the customer. As such, DRP is still 1-dimensional and does not leverage
the full flexibility of the virtual cluster model, which is described by two independent parameters n and b.

Indeed, virtual cluster specifications are likely to come with different requirements [60] and can be heteroge-
neous [86]: a latency sensitive webservice can be very different in nature than, say, a delay-tolerant batch
processing job or a network-hungry database synchronization application. One implication of the DRP scheme
is that customers who know their virtual cluster demands might suffer from the inherent 1-dimensionality: in
order to meet their application requirements, customers may be forced to upgrade to the next larger template,
increasing both resources.

This section seeks to overcome this problem by allowing customers to specify their computation and communica-
tion requirements separately. Concretely, we allow the customer to specify three parameters independently: the
number of VMs n, the computational type c of the virtual machines (e.g., small, medium, or large instances),
as well as the bandwidth b. That is, we use a virtual cluster abstraction V C(n, c, b), where all virtual machines
are of the same computational type c, and are connected to a virtual switch at bandwidth b.

We use the following conventions in our notation. The computational type c is normalized in the sense that
c describes the fraction of the capacity of a physical server. Similarly, we will normalize b to denote the
requested fraction of the overall link capacity of a physical server. A central concept for our algorithm Tetris
(improving upon Oktopus) and pricing scheme DSP (improving upon DRP) is the resource ratio between
the requested node and link resources, henceforth denoted by ρ = c/b.

1The name of the algorithm is due to its strategy to balance different resources equally, see also Figure 4.2 for an illustration.

48

4.1 VNet Pricing

In general, we will assume that requests arriving in an online fashion have to be immediately embedded or
rejected by the provider. In order to successfully embed a virtual cluster, the provider has to fulfill all its
specifications.

4.1.2 Pricing Scheme

The proposed specification-dependent pricing scheme DSP is based on a unit price for computation, henceforth
denoted by πc, as well as a unit price for communication (i.e., bandwidth), henceforth denoted by πb. Ideally,
for a virtual cluster request with a per-VM computational demand c and a per-VM bandwidth demand b, a
customer should be charged according to the resource proportions, e.g.

Πideal = n ⋅ (c ⋅ πc + b ⋅ πb)

However, compared to a dominant resource pricing scheme, this solution can result in a lower income at the
provider, especially if requests are highly heterogeneous leading to a higher fragmentation. While this income
loss could be compensated by increasing the unit prices πc, πb accordingly, one has to be careful not to punish
customers with an ideal resource ratio ρ = 1, who would prefer providers offering DRP in this case. To solve
this problem, in the following, we propose to add a small charge for customers with a resource ratio ρ ≠ 1.

But let us first revisit the DRP scheme given our notation. In DRP, a customer who requests a virtual cluster
V C(n, c, b), with relatively lower resp. higher computation requirements compared to the communication
requirement, is forced to upgrade the request to the next larger template for both resources. The corresponding
formula for the DRP scheme is

ΠDRP = n ⋅ [max{c, b} ⋅ (πc + πb)]

In order to bridge the difference between Πideal and ΠDRP, we propose the following demand specific pricing
scheme DSP which introduces an extra fee for requests with an unbalanced resource ratio ρ. In this section,
we will assume a linear dependency between the extra cost and ρ, although other dependencies (e.g., quadratic)
could also be expressed in our model. This decision is based on the assumption that more skewed requests are
more likely to generate fragmentation. In summary, DSP computes the virtual cluster price as follows:

ΠDSP = n ⋅ (b ⋅ πb + c ⋅ πc) + { (c − b) ⋅ πb ⋅ λb, if c ≥ b
(b − c) ⋅ πc ⋅ λc, else

where λc, λb ≥ 0 are weighing factors. Note that this scheme can be seen as a generalization of the dominant
resource pricing strategy: λc, λb = 1 implies that ΠDSP = ΠDRP. Lower weights result in savings for the
customers, and λc, λb = 0 implies ΠDSP = Πideal. Given that the customers have a good understanding of their
specific requirements in terms of computation and communication—a reasonable assumption as we argue—this
pricing scheme leads to a higher provider profit, and in a competitive market, the extra income compared to
DRP is shared with the customers.

Let us elaborate on the weighing factors λc and λb. In general, the factors should depend on the amount of
embedded virtual requests as well as the current resource demand and supply. If the provider has a good
estimation of the virtual clusters that will be requested, the values can be computed ahead of time; otherwise,
the factors may be estimated over time, see also Section 4.1.4 for a discussion. Given a difference of ∆ between
the provider profit under DRP for upgraded and non-upgraded requests, the extra income generated by the
lower resource consumption of the non-upgraded requests could be evenly distributed over requests requiring
more of either one of the two resources. (Recall that the price of requests with ρ = 1 will not change.) The
calculation for λb in a scenario with N virtual machines for which c > b and with expected requirements E(c)
and E(b), is given by

N ⋅ (E[c] −E[b]) ⋅ πb ⋅ (1 − λb) = ∆/2
The factor λc can be computed similarly. In both cases, c > b and b > c, a similar difference for E[c] and E[b]
also leads to similar fees. This is fair, as one type of request only generates more profit because of the other
one.

Also note that DSP keeps the desirable location independence of DRP [17]. However, unlike DRP, DSP is
specification-dependent, i.e., a customer only has to pay for what he or she specified.

49

Chapter 4 VNet Pricing and Buying Strategies

4.1.3 Embedding Algorithm

In order to fully exploit differences in the virtual cluster specification and to maximize the resource utilization
(and hence provider profit), a new embedding algorithm has to be devised: the state-of-the-art virtual cluster
embedding algorithm, Oktopus [18] (as well as its variants [111]), are based on an aggressive collocation
strategy, which turns out to be suboptimal in settings where requests can have resource ratios ρ ≠ 1.

In the following, we propose Tetris, a virtual cluster embedding algorithm which leverages the virtual cluster
specification details. The algorithm is tailored toward fat-tree datacenter topologies (cf Figure 4.1), the
standard architecture today. In a nutshell, hosts (or equivalently: servers) which are connected to the same
top of rack (ToR) switch, constitute a rack. Racks connected to the same aggregation switch form a pod.
The fat-tree depicted in Figure 4.1 consists of two pods, containing three racks each; there are two hosts per
rack.

Host

Rack

Aggregation Switch

ToR Switch
Pod

Core Switch

Figure 4.1: Fat-tree datacenter topology.

We will compare our embedding algorithm Tetris to the Oktopus algorithm [18]. Oktopus is designed
to embed arbitrary virtual clusters efficiently and is not limited to any templates. Hence it can also directly
be used as an embedding algorithm for DSP, without any modifications. To find an embedding, Oktopus
traverses the different hierarchical levels of the fat-tree. It tries to embed the virtual cluster on single hosts
first, and if no solution is found, it continues on the rack level. This process is repeated until a solution
is found or Oktopus failed to find a solution over the entire substrate. As a result of this approach, the
resulting embeddings are dense and use low amount of bandwidth. The problem of such dense embeddings
is that requests with a resource ratio ρ ≠ 1 are collocated which wastes physical resources. Figure 4.2 (left)
illustrates this point. For Oktopus, V C1 is embedded on the right three hosts. The residual capacity in
terms of VM slots on each host is 1/2 of its total capacity, however, the bandwidth on the links is used up,
rendering it unlikely that the remaining VM slots can be used in the future. On the other hand, the left three
hosts, which host V C2, only utilize 50% of their bandwidth, but have no remaining VM slots.

The core idea of our algorithm Tetris is to distribute skewed V Cs over multiple hosts, without increasing
the bandwidth costs compared to Oktopus. Similar to Oktopus, Tetris also traverses the hierarchical
levels (short: �) of the fat-tree, but instead of collocating as many VMs on a single host as possible, Tetris
distributes the VMs over physical machines (short: p) depending on the ratio of the residual resources per
host. This is described in Algorithm 1.

In our example in Figure 4.2, using Tetris results in a distributed embedding of both V Cs. While all resources
on the left three hosts are utilized, the right three hosts have spare capacities, both in terms of bandwidth and
VM slots. Hence subsequent requests can more likely be accepted.

Note that the current design of Tetris only considers the bandwidth on the access level. Hence, it can
fail to find a feasible solution if the other layers of the fat-tree are oversubscribed. Therefore our current

50

4.1 VNet Pricing

3

0

3

0

3

0

0

3

0

3

0

3

2

2

2

2

2

2

1

1

1

1

1

1

Oktopus Tetris

Figure 4.2: Embedding behavior of Oktopus and Tetris. Six hosts are connected to a switch. Two V Cs
are requested: V C1(9, 1/6, 2/6) and V C2(9, 2/6, 1/6). The numbers in the circles represent VMs
of V C1 which are mapped to the corresponding hosts, the numbers in the squares represent VMs
of V C2.

Algorithm 1: Tetris
Require: Fat-tree T , virtual cluster V C
1: for � ∈ {host(T), rack(T), pod(T), root(T)} do
2: for v ∈ V C do
3: find p ∈ � with highest ratio of residual resources after embedding of v
4: if ∀ v embedding found then
5: return embedding
6: return �

implementation treats Tetris as an extension to Oktopus and falls back to regular Oktopus behavior if
no solution was found.

4.1.4 Simulations

In order to study the benefits and limitations of DSP and Tetris in different settings, we implemented a
discrete event simulator. As the pricing results also depend on the embedding algorithm, we study three
combinations: we integrated DRP with Oktopus, DSP with Oktopus, and DSP with Tetris. To ensure
a fair comparison, we use the same parameters and methodology as in [18] and [17].

Requests. The virtual cluster requests arrive according to a Poisson process with exponentially distributed
durations, chosen to induce a system load of around 80%. By default, the mean size of a V C is n = 49, c and
b are chosen uniformly from {1/8, 1/4, 1/2}. The templates (c, b) of DRP are (1/8, 1/8), (1/4, 1/4), (1/2, 1/2)
and the customer is bound to select the next larger template for requests with ρ ≠ 1. For each parameter set,
we request 80k virtual clusters. To avoid artifacts related to the initially empty datacenter, we start evaluating
our metrics after 10k requests. The remaining values are omitted from the dataset.

Physical Setup. We model our datacenter as a three-layer fat-tree (Figure 4.1 illustrates a small fat-tree).
40 hosts form a rack, 40 racks form a pod. In total we have 10 pods. Given that each physical element has a
capacity of 8 VM units, this leads to a total capacity of 128k small VMs. By default we assume that the links
between the ToR switches and the aggregation switches are oversubscribed by a factor of 4, while the links
between the aggregation switches and the core are not oversubscribed.

Metrics. Various works have used the acceptance ratio of an embedding algorithm in order to measure
its performance. This metric however, is biased to prefer algorithms which accept a large number of small
requests instead of fewer bigger ones. Therefore, we decided to evaluate the sum of the embedded virtual

51

Chapter 4 VNet Pricing and Buying Strategies

resources in both dimensions: bandwidth and VM slots. A request V C(10, 1/4, 1/8) will have a resource sum
of 10 for bandwidth and 20 for VM slots. Note that even though we will embed a V C(10, 1/4, 1/4) for DRP,
the bandwidth sum remains 10, as the customer does not benefit from the over-provisioning.

0.
5

0.
6

0.
7

0.
8

Oversubscription Ratio

VM
 S

um

Tetris
Oktopus
DRP

1 2 3 4 5 6 7

Figure 4.3: Embedded VM slots for Tetris with DSP (left), Oktopus with DSP (middle) and Oktopus
with DRP (right) as a function of the oversubscription.

Figure 4.3 shows the impact of the oversubscription factor on the embedded number of virtual machines.
For all oversubscription ratios, we can observe that Tetris with DSP outperforms the other combinations,
while DSP is superior to DRP in combination with Oktopus. While the differences are small for an
oversubscription factor of 1, we see an increase of the difference with the oversubscription factor; it diminishes
after an oversubscription factor of 5, where the results become stable.

Naturally, we can only reap the full benefits of DSP and Tetris in highly utilized datacenters, as shown
in Figure 4.4: While first marginal effects can be observed at a load of 0.4, the benefits of DSP are visible
starting at 0.5 and the benefits of Tetris at 0.6. The effects increase until a load of 1. Given that highly
utilized datacenters are a reality today and the key to provider benefits, these results are encouraging.

To analyze the benefit of the pricing model, we consider our default scenario: The mean resource sum for
DSP with Oktopus is 15% higher than for DRP with Oktopus. This means that the amount of concurrent
active guarantees is 15% larger. Using Tetris with DSP yields another 5% improvement, resulting in a total
benefit of 20%. Similar numbers apply for the bandwidth resource sum.

Assuming πb = πc and a uniform distribution of accepted requests (i.e., an equal amount of embedded VMs
of each (c, b) tuple), inserting the 20% as a ∆ in Section 4.1.2 leads to savings of 27% for customers with
skewed requests. The corresponding values of λc and λb are 1/6, i.e., customers have to be charged for about
17% of the resource difference to DRPs templates in order to keep the revenue for the provider constant.

4.1.5 Summary

This section presents the first specification-dependent pricing scheme for virtual clusters, the standard
abstraction of cloud applications today. Together with the pricing scheme, we also develop an extension
Tetris for the virtual cluster embedding algorithm Oktopus, which shows how much standard embedding
algorithms can be enhanced given heterogeneous VNet requests. Our approach can easily be combined with
interfaces, which translate high-level customer goals into virtual cluster requirements and compute resource
combinations, such as [64].

52

4.1 VNet Pricing

0.
0

0.
2

0.
4

0.
6

0.
8

Load

VM
 S

um

Tetris
Oktopus
DRP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.4: Embedded VM slots for Tetris with DSP (left), Oktopus with DSP (middle) and Oktopus
with DRP (right) as a function of datacenter load.

We find that the proposed specification-dependent pricing can increase the social welfare, leading to savings of
up to 25% compared to DRP. In fact DSP enables customer to have guaranteed application performance
while they only need to pay for the resources they use, including a small extra fee. Moreover, we find that
Tetris distributes virtual clusters with skewed resource requirements over several hosts and therefore embeds
5% more virtual resources than Oktopus.

53

Chapter 4 VNet Pricing and Buying Strategies

4.2 VNet Buying

Section 4.1 shows that it is plausible, that a pricing scheme for VNets introduces discounts on resources. These
discounts might even be larger if the customer chooses to buy more resources for a longer time period. This
situation especially occurs if a broker is involved, who rents resources in larger scale.

This section studies the problem of a (cloud) broker who rents resource bundles from a (cloud) provider, to
offer a certain service to its users (or to resell the resources). The broker is faced with the challenge that
its resource demand is not known in advance (e.g., it depends on the popularity of its website). In order to
ensure that its resource demand is satisfied at any time, and to avoid a costly over-provisioning of the service,
additional resources must be bought in an online manner. The online resource allocation problem may further
be complicated by the fact that the provider offers discounts for larger and longer resource contracts.

The goal of the broker is to come up with a smart resource renting strategy to satisfy its dynamic and
unpredictable resource demand, while minimizing the overall costs of the bought resource bundles.

Contribution

This section shows that at the heart of efficient cloud resource allocation lies a fundamental algorithmic
problem, and makes the following contributions. We first observe that the problem of renting a single resource
over time can be seen as a 2-dimensional variant of the well-known online Parking Permit Problem (PPP).
While in the classic parking permit problem, only the contract durations need to be chosen, in the 2-dimensional
variant PPP2 introduced in this section, also the resource rates are subject to optimization.

We present the deterministic online algorithm On2D whose performance is close to the one of a clairvoyant
optimal offline algorithm which knows the entire resource demand in advance: given some simplifying
assumptions (stated in Section 4.2.1), On2D provably achieves a competitive ratio of O(k), where k is the
total number of available resource contracts; this is asymptotically optimal in the sense that there cannot exist
any deterministic online algorithm with competitive ratio o(k).

We also give a constructive proof that the offline variant of the PPP2 problem can be solved in polynomial
time, by presenting a dynamic programming algorithm Off2D accordingly. To the best of our knowledge,
Off2D is also the first offline algorithm to efficiently solve PPP and PPP2 for long enough request sequences.
Off2D is used as a subroutine in On2D.

Finally, we show that our algorithms and results also generalize to multi-resource scenarios, i.e., to higher-
dimensional parking permit problems.

4.2.1 Model

We attend to the following setting (for an illustration, see Figure 4.5). We consider a broker with a dynamically
changing resource demand. We model this resource demand as a sequence σ = (σt)t, where σt refers to the
resource demand at time t. We use σ̂ to denote maxt σt. The broker is faced with the challenge that its
future resource requirements are hard to predict, and may change in a worst-case manner over time: We are in
the realm of online algorithms and competitive analysis.

In order to cover its resource demand, the broker buys resource contracts from a (cloud) provider. For ease of
presentation, we will focus on a single resource scenario for most of this section; however, we will also show
that our results can be extended to multi-resource scenarios. Concretely, we assume that the provider offers
different resource contracts C(r, d) of resource rate r and duration d. We will refer to the set of available
contracts by C = {C1,C2, . . . ,Ck}. Each contract type has a price π(C) = π(r, d), which depends on its rate
r(C) = r and its duration d(C) = d. We will assume that resource contracts have a monotonically increasing
rate-duration product r × d, and will denote by Ci the ith largest contract.

A specific contract instance of type Ci will be denoted by C(j)i , for some index j. Each instance C(j)i of
contract type Ci(r, d) has a specific start time t(j)i , and we will sometimes refer to a contract instance by

54

4.2 VNet Buying

Figure 4.5: Overview of the model: A broker has to cover its resource demand σ by buying contracts
C = {C1, C2, . . . , Ck} from the provider. Larger contracts Ci come with a price discount (price
π(Ci)).

C
(j)
i (t(j)i , ri, di). The identifiers are needed since multiple contracts of the same type can be “stacked” in our

model, but will be omitted if the contract is clear from the context.

We will make three simplifying assumptions:

A1 Monotonic Prices: Prices are monotonically increasing, i.e., larger contracts are more expensive than
shorter contracts: π(Ci−1) < π(Ci) since ri−1 × di−1 < ri × di for any i.

A2 Multiplicity: The duration and resource rate of a contract of type Ci(ri, di) are perfect multiples of the
duration and rate, respectively, of contract Ci−1(ri−1, di−1). That is, we assume that di = x ⋅ di−1 and
ri = y ⋅ ri−1 for fixed bases x, y ≥ 2. Moreover, without loss of generality (w.l.o.g.), we will assume that
the smallest contract has d1 = 1 and r1 = 1.

A3 Intervals: We assume that a contract of duration d can only be bought at time t0 + i ⋅ d, where t0 = 0 is
the start time.

Assumption A1 is natural: contracts which are dominated by larger, cheaper contracts may simply be ignored.
Assumption A2 restricts the variety of available contracts the broker can choose from, and constitutes the
main simplification made in this section. Assumption A3 mainly serves the ease of presentation: as we will
prove in this section (and as it has already been shown for the classic Parking Permit Problem [85]), an offline
or online algorithm limited by the interval model is at most a factor of two off the respective optimal solution
in the general model.

Now, let On be some online algorithm, let Ct(On) denote the set of contracts bought according to On at
time t and let C≤t(On) denote the set of contracts bought according to On through time t. We will use
the notation C∗t (On) ⊆ C≤t(On) to describe the set of active contracts at time t: i.e., contracts Ci(ti, ri, di)
bought by On with ti ≤ t < ti + di. Likewise we denote the set of contracts bought by an optimal offline
algorithm Off to cover the demand prefix σ1, ..., σt until time t by C≤t(Off).

Since a correct algorithm must ensure that there are always sufficient resources to cover the current demand,
the invariant ∑C(r,d)∈C∗t (On) r ≥ σt must hold at any moment of time t. We will use the one-lookahead
model [25] frequently considered in online literature, and allow an online algorithm to buy a contract at time t
before serving the request σt; however, On does not have any information at all about σt′ for t′ > t.

The goal is to minimize the overall price πσ(On) = ∑C∈C≤t(On) π(C). More specifically, we seek to be
competitive against an optimal offline algorithm and want to minimize the competitive ratio ρ of On:
We compare the price πσ(On) of the online algorithm On under the external (online) demand σ, to the
price πσ(Off) paid by an optimal offline algorithm Off, which knows the entire demand σ in advance.

55

Chapter 4 VNet Pricing and Buying Strategies

Figure 4.6: Worst-case example where σt = 1 ∀t. While Off2D, at time d5, buys a single contract C5,
On2D is forced to buy all the depicted contracts, in addition to C5. For instance, On2D buys C1

in every second time step.

Formally, we assume a worst-case perspective and want to minimize the (strict) competitive ratio ρ for any σ:
ρ =maxσ πσ(On)/πσ(Off).

We are interested in long demand sequences σ; in particular, we will assume that the length of σ, ∣σ∣, is at
least as large as the largest single demand σt.

Our problem is a new variant of the classic Parking Permit Problem PPP [85], which we review quickly in the
following. In PPP, a driver has to choose between k parking permits of different durations and costs in order
to satisfy all of his/her parking needs while minimizing the total cost paid. More precisely, the driver has a
sequence of days when he/she needs a parking space at a parking garage and there are k different parking
permits, where each parking permit Pi allows the driver to use one parking space for di consecutive days at a
cost of ci. In the online version of the problem, the sequence of days when the driver will need a parking space
is not known in advance.

4.2.2 Competitive Online Algorithm

This section presents the deterministic online algorithm On2D for the PPP2 problem. As a subroutine, in
order to determine which contracts to buy at time t, On2D uses an optimal offline algorithm Off2D that
computes optimal contracts for a prefix σ≤t of the demand through time t. In this section, we will treat
Off2D as a black box, but we will describe a polynomial-time construction later in Section 4.2.5.

In order to formally describe and analyze our algorithm, we propose a scheme that assigns bought contracts
to the 2-dimensional time-demand plane. Our model requires that each point below the demand curve σ is
covered by a contract, i.e., the mapping of contracts to demand points must be surjective.

We pursue the following strategy to assign contracts to the time-demand plane: at any time t, we order the
set of active contracts by their duration, and stack the active contracts in such a way that longer contracts are
embedded lower in the plane, i.e., the longest running contract Ci(ri, di) covers the demand from 1 to ri,
the next shorter contract Cj(rj , dj) then covers the demand ri + 1 to ri + rj , and so on. This guarantees a
unique mapping of a demand point p(time, demand) at time t to a contract Ci for the offline algorithm.

Our online algorithm On2D (see Algorithm 2) is based on an oracle Off2D computing optimal offline
solutions for the demand so far. On2D uses these solutions to purchase contracts at time t. Concretely,
On2D mimics the offline algorithm in an efficient way, in the sense that it only buys the optimal offline

56

4.2 VNet Buying

Algorithm 2: Online Algorithm On2D
Input: Demand prefix σ≤t = σ1, σ2, ..., σt; set of contracts C≤t−1(On2D) bought by On2D through time t− 1
Output: Contracts to be bought at time t: Ct(On2D)
1: C≤t(Off2D)←Off2D(σ1, σ2, ..., σt)
2: for C ∈ C≤t(Off2D) do
3: if ∃ demand point p covered by C such that p is not covered by C≤t−1(On2D) then
4: Ct(On2D).add(C)
5: return Ct(On2D)

contracts covering time t if the corresponding demand is not already covered by contracts bought previously
by On2D: At each time t, On2D compares the set of previously bought contracts C≤t−1(On2D) with the
set of contracts C≤t(Off2D) that Off2D would buy for an offline demand sequence σ1, ..., σt; On2D then
only buys the contracts C ∈ C≤t(Off2D) for the demand at time t that is not covered by C≤t−1(On2D).

Example

In order to provide some intuition of the behavior of On2D, as a case study, we consider the special scenario
where contracts are perfect squares, i.e., Ci = (2i−1,2i−1), and where the contract prices have a specific
discount structure, namely π(Ci) = 2 ⋅Ci−1, with π(C1) = 1. This price function ensures that Off2D will
buy at most one Cj contract before it is worthwhile to buy the next larger contract Cj+1 for the given time
interval.

Let us now study the maximal cumulative price Π(Ci). It is easy to see that under the price function above,
the demand sequence σ with a constant demand of one unit per time, maximizes Π(Ci) for Ci = (2i−1,2i−1)
and π(Ci) = 2 ⋅Ci−1: higher demands imply missed opportunities to charge On2D for smaller contracts, as
already a demand of two at given time t renders it worthwhile to buy C2, and a demand of four renders it
worthwhile to buy C3, etc.

With the given demand σ, Off2D will end up buying each of the smaller contracts once before it buys the next
larger contract. The cumulative price derived from σ according to this behavior is Π(Ci) = ∑i−1

j=1 Π(Cj)+π(Ci).
We prove this claim by induction over the contract types i. For the base case i = 1, Π(Ci) = π(Ci) holds
trivially. Assuming the induction hypothesis for i we have:

Π(Ci+1) =
i

∑

j=1
Π(Cj) + π(Ci+1)

=

i−1
∑

j=1
Π(Cj) +Π(Ci) + π(Ci+1)

Hyp.
=

i−1
∑

j=1
Π(Cj) +

i−1
∑

j=1
Π(Cj) + π(Ci) + π(Ci+1)

Due to the induction hypothesis, the cost of a quarter of 2i+1 × 2i+1 is maximized for ∑i−1
j=1 Π(Cj) + π(Ci).

In order to maximize the cost in the second quarter (at the bottom of the time-demand plane) Off2D
would need to buy ∑i−1

j=1 Π(Cj) again, and instead of buying a second contract Ci, the pricing scheme
requires the purchase of contract Ci+1. Therefore, buying the same contracts again (despite Ci) must lead to
Π(Ci+1) = ∑ij=1 Π(Cj) + π(Ci+1).

In summary, we have derived a worst-case sequence σ for the considered price function, for which On2D is
k-competitive.

Theorem 3. For the special setting considered in our case study, On2D is k-competitive.

Proof. Consider the discussed worst-case sequence σ, where On2D has to buy every contract (total cost
Π(Ci)) while Off2D can simply buy Ci at price π(Ci). We can show that Π(Ci) ≤ i ⋅ π(Ci) and hence

57

Chapter 4 VNet Pricing and Buying Strategies

Π(Ci) ≤ k ⋅ π(Ci). According to the observed behavior of Off2D, every second contract bought by On2D is
C1 (2i−2 times), every fourth is C2 (2i−3 times), etc., and finally On2D also buys Ci. See Figure 4.6 for an
example. Thus,

Π(Ci) = 2i−2 ⋅ π(C1) + 2i−3 ⋅ π(C2) +⋯ + 1 ⋅ π(Ci)

= 2i−2 ⋅ 20 + 2i−3 ⋅ 21 +⋯ + 2i−i ⋅ 2i−2 + 1 ⋅ 2i−1

≤ 2i−1 + 2i−1 + 2i−1 +⋯ + 2i−1 + 2i−1

= i ⋅ 2i−1 = i ⋅ π(Ci)

∎

4.2.3 Analysis: Upper Bound

With these intuitions in mind, we now present a general analysis of On2D. First, we derive some simple
properties of the contracts bought by the optimal offline algorithm Off2D over time.

Let us fix an arbitrary demand point p, i.e., a point below the σ-curve in the time-demand plane. We make
the following claim: if p is covered by a certain contract C in C≤t(Off2D), p will never be covered by a
smaller contract C ′ in Ct′(Off2D) for any t′ > t. In other words, when considering a longer offline demand
sequence σ1, . . . , σt′ , Off2D will never buy a smaller contract than C to cover the demand point p. This
property of “growing contracts” together with the assumption of disjoint intervals motivates the notion of
contract independence, which we formalize in the lemma below:

Lemma 1 (Contract Independence). Consider a demand point pi covered by contract Ci ∈ C≤t(Off2D) and
a demand point pj covered by a distinct contract Cj ∈ C≤t(Off2D). Then there does not exist a contract
C ∈ Ct′(Off2D) for any t′ < t such that pi, pj are covered by C. We say that the two contracts Ci and Cj
are independent.

Independence between contracts is trivially ensured in our model. This allows us to introduce a simple
characterization of the scenarios maximizing the competitive ratio.

Lemma 2. The competitive ratio is maximized in a scenario where Off2D buys only one contract to satisfy
the entire demand σ.

Proof. By contradiction. Assume Off2D buys more than one contract, say Ci and Cj . Now assume that
over time, On2D buys a set of (possibly smaller) contracts Ci′ ,Ci′′ , . . . to cover the demand points of Ci and
Cj′ ,Cj′′ , . . . to cover the demand points of Cj . Thus, On2D pays π(Ci)+π(Ci′)+. . . and π(Cj)+π(Cj′)+. . .
whereas Off2D pays π(Ci) and π(Cj); the resulting competitive ratio is ρCi = (π(Ci)+π(Ci′)+ . . .)/π(Ci)
for the Ci part and ρCj = (π(Cj) + π(Cj′) + . . .)/π(Cj) respectively. Since all contracts in Off2D are
independent, the competitive ratio ρ of Off2D will be max{ρCi , ρCj}, which would also be the case if the
larger contract was the only one bought by Off2D. ∎

We hence want to show that On2D will never buy too many small contracts to cover a demand for which
Off2D would later only buy one contract. Concretely, let us fix any contract Ci ∈ C≤t(Off2D), and let us
study the set of contracts S bought by On2D during the time interval [0, t) which overlap with Ci in the
time-demand plane. Recall that S will only contain distinct instances of the contracts (since On2D does not
buy “repeated” contracts) and it will be contained in ∪t′<tCt′(Off2D). By the interval and independence
property, we know that contracts in S are all “inside” Ci, i.e., do not exceed its boundary in the plane.
Accordingly, we can compute an upper bound on the maximum cumulative price spent on contracts in S by
On2D while Off2D at time t only bought a single contract Ci at price π. In the following, let us refer to
this cumulative price paid by On2D by Π(Ci) = ∑C∈S π(C).

Lemma 3. The maximum cumulative price paid by On2D to cover a contract Ci, Π(Ci), is less than or
equal to i ⋅ π(Ci), for any i ≥ 0.

58

4.2 VNet Buying

Proof. Consider a contract Ci ∈ C≤t(Off2D) and S as defined above. Let ` be such that On2D has
bought ` contracts Ci−1 to cover the area of Ci during time [0, t), where 0 ≤ ` ≤ π(Ci)

π(Ci−1) . For all other
C ∈ S, we must have C ∈ {C1, . . . ,Ci−2}. Let S′ = {C ∈ S, s.t. C ∈ {C1, . . . ,Ci−2}}. Hence we have
∑C∈S′ π(C) ≤ π(Ci) − ` ⋅ π(Ci−1), since the area covered by all contracts in S is at most equal to the area
covered by Ci, and given Assumption A1. We argue by induction on i.

Base case i = 1: If there is just one type of contract C1, the online algorithm will buy the same contracts as
the offline algorithm, and the claim holds trivially.

Inductive step i > 1: Assuming the induction hypothesis holds for all j < i, we have:

Π(Ci) = ` ⋅Π(Ci−1) + π(Ci) + ∑

C
(p)
j

∈S′
Π(C

(p)
j)

≤ ` ⋅ (i − 1) ⋅ π(Ci−1) + π(Ci) + ∑

C
(p)
j

∈S′
j ⋅ π(Cj)

≤ ` ⋅ (i − 1) ⋅ π(Ci−1) + π(Ci) + (i − 2) ∑

C
(p)
j

∈S′
π(Cj)

≤ ` ⋅ (i − 1) ⋅ π(Ci−1) + π(Ci)+

+ (i − 2) [π(Ci) − ` ⋅ π(Ci−1)]
= ` ⋅ π(Ci−1) + (i − 1) ⋅ π(Ci)

≤
π(Ci)

π(Ci−1)
⋅ π(Ci−1) + (i − 1) ⋅ π(Ci)

= π(Ci) + (i − 1) ⋅ π(Ci) = i ⋅ π(Ci)

∎

With these results, we can derive the competitive ratio. According to Lemma 3, for each contract C(j)i ∈
C≤t(Off2D), the accumulated cost Π(C(j)i) is bounded by i ⋅ π(Ci). Therefore, summing up all the
accumulated costs of each contract in C≤t(Off2D), we get the total cost of On2D at time t. Note that
every contract bought by On2D must be totally covered by contracts in Ct(Off2D), since Ct(Off2D) is an
optimal solution for the entire demand sequence σ≤t and the contract independence property holds. Since we
have k different contracts and for each contract Ci in Ct(Off2D), we have Π(Ci) ≤ i ⋅ π(Ci) ≤ k ⋅ π(Ci),
and:

Theorem 4. On2D is k-competitive, where k is the total number of contracts.

As we will show in Section 4.2.4, this is almost optimal.

Finally, observe that restricting On2D to Assumption A3 does not come at a large cost.

Theorem 5. Let Alg1 be an optimal offline algorithm for PPP2, and let Alg2 be an optimal offline algorithm
for PPP2 where we relax Assumption A3. Then π(Alg2) ≤ π(Alg1) ≤ 2 ⋅ π(Alg2).

Proof. Consider any contract C(m)i (ri, di) bought by an optimal offline algorithm for PPP2 without As-
sumption A3. When time is divided into intervals of length di, C

(m)
i will overlap in time with at most

two contracts C(j)i and C
(l)
i of duration di. Therefore, we can modify the optimal solution output by

Alg2 by purchasing those two contracts instead of C(m)i , eventually transforming the optimal solution
output by Alg2 into a feasible solution for PPP2 (under Assumption A3). Hence, we can guarantee that
π(Alg2) ≤ π(Alg1) ≤ 2 ⋅ π(Alg2). ∎

Hence, since On2D is k-competitive under Assumption A3 (Theorem 4), and since the optimal offline cost is
at most a factor of two lower without the interval model (Theorem 4.2.3), we have:

Corollary 1. On2D is 2k-competitive for the general PPP2 problem without Assumption A3, where k is the
number of contracts.

59

Chapter 4 VNet Pricing and Buying Strategies

Figure 4.7: On buys ni = 4 contracts Ci and ni+1 = 1 contract Ci+1 over seven intervals of length di. In two
of these seven intervals On buys several contracts smaller than Ci to cover the demand.

4.2.4 Analysis: Lower Bound

Theorem 4 is essentially the best we can hope for:

Theorem 6. No deterministic online algorithm can achieve a competitive ratio less than k/3.

The proof is the 2-dimensional analogon of the proof in [85]. We consider a scenario where the next larger
available contract doubles in cost. With k being the number of different contracts, each contract is 2k times
longer and has 2k times more rate, i.e., in our plane representation contracts are squares covering an area
(2k)2i.

π(Ci) = 2i−1

r1 = 1; ri = 2k ⋅ ri−1 = (2k)i−1

d1 = 1;di = 2k ⋅ di−1 = (2k)i−1

In the following, let us focus on a simple demand which only assumes rates σt ∈ {0,1} for all t. We let the
adversary schedule demand only when On has no valid contract. For each interval (2k)i where the adversary
asks for a 1-demand, On can choose between three options (see also Figure 4.7):

1 Eventual purchase of contract Ci. Assume that this happens ni times.

2 Eventual purchase of larger contracts Cj , j > i. Assume that this happens ∑k
j>i nj times.

3 Never purchase contract Ci or any larger contracts. Assume this happens mi times.

Therefore the sum of all contracts bought by On is given by π(On) = ∑k
i=1 ni ⋅ π(Ci). Given an interval of

length �, we estimate the cost of Off by less than buying multiples of only one kind of contract over the full
interval, i.e., �/di contracts for any i: π(Off) ≤ π(Ci)(mi +∑k

j≥i nj). In order to derive the lower bound we
first prove a minimum cost of any algorithm On on intervals that start with a demand rate of 1.

Lemma 4. Any On must pay at least π(Ci) on each interval of length di that starts with a demand rate of 1.

Proof. By induction on the different intervals 2i−1. For i = 1, each algorithm must at least buy a contract of
type C1 in order to cover that demand. Assume that for i − 1, it holds and now let us argue for i. If On does
not buy a contract of type Ci, we can divide the volume into (2k)2 squares with side length di−1 each, where
2k ⋅ di−1 = di. We let each of these 2k intervals (at the bottom row) start with a demand of 1 which then cost
at least π(Ci−1) due to the induction hypothesis. The total cost is at least 2k ⋅ π(Ci−1) = k ⋅ π(Ci) for every
interval where On does not buy a contract i and at least π(Ci) otherwise. ∎

Consider now an interval of length (2k)i−1 where no contract of type i or higher was bought. We know from
the induction that π(On) ≥mi ⋅ k ⋅ π(Ci). We can derive the following lower bound:

60

4.2 VNet Buying

Algorithm 3: Pre-computation of matrix M for dk-length
Input: Demand sequence σt, . . . , σt+dk (over interval [t, t + dk]).
Output: Matrix M .
1: for i = 1 to dk do
2: M[i, i]← σt+i
3: for i = 1 to dk − 1 do
4: for j = i + 1 to dk do
5: M[i, j]←max{M[i, j − 1], σt+j}
6: return M

k ⋅ π(Off) ≤
k

∑
i=0

⎡⎢⎢⎢⎣
π(Ci)(mi +

k

∑
j≥i
nj)

⎤⎥⎥⎥⎦
(4.1)

≤
k

∑
i=0

⎡⎢⎢⎢⎣
ni

i

∑
j=1

π(Ci) +mi ⋅ π(Ci)
⎤⎥⎥⎥⎦

(4.2)

≤
k

∑
i=0

[2ni ⋅ π(Ci) +mi ⋅ π(Ci)] (4.3)

≤ 3 ⋅ π(On) (4.4)

Inequality (4.1) is given by the cost estimation of Off against any On buying only one kind of contracts.
Inequality (4.2) is a reorganization of the sum since π(Ci) is multiplied by every nj , j ≥ i which is also given
after the reordering. Afterwards, we use the geometric sum on the cost of the contracts to derive Inequality (4.3).
This leads to a lower bound of k/3 since π(On) = ∑ki=1 ni ⋅ π(Ci) and π(On) ≥mi ⋅ k ⋅ π(Ci).

4.2.5 Optimal Offline Algorithm

So far, we have treated the optimal offline algorithm on which On2D relies as a black box. In the following, we
show that offline solutions can indeed be computed in polynomial time, and present a corresponding dynamic
programming algorithm Off2D.

The basic idea behind the offline algorithm Off2D is that the optimal cost for any contract over a certain
interval is obtained either by splitting the cost at some time, or by buying a long contract with a certain rate
r. In the following, recall that dk is the duration of the largest contract Ck.

Off2D proceeds as follows: It splits time into intervals of length dk and solves each of these interval separately
using Algorithm 4. Off2D relies on the following data structures: For each dk-length time interval I, we
precompute the maximum demand within any subinterval [i, j] of I, and store this information in position
M[i, j] of a dk × dk matrix M (Algorithm 3). In particular the maximum requested demand σ̂ in interval I
is stored in M[1, dk]. A dk × dk × σ̂ matrix OPT is used to compute the optimal cost. The entry OPT[i, j, λ]
indicates the optimal cost of covering a demand rate of M[i, j] − λ over the interval [i, j] — i.e. λ indicates
the amount of covered demand for [i, j]. Initially, all entries are set to 0.

Algorithm 3 pre-computes the matrix M over the dk-length interval [t, t+dk], where t = b ⋅dk, for integer b ≥ 0.
Lines 1-2 initialize the matrix and store the demand σt+i in entry M[i, i]. Lines 3-5 compute the maximum
demand within any time interval [t + i, t + j], 0 ≤ i ≤ j ≤ dk. The demand can be obtained by comparing the
demand at time t+ j (i.e., σt+j) with the maximum demand between time t+ i and t+ j − 1, which has already
been computed by our algorithm.

After obtaining the matrix M over interval [t, t + dk], we can compute the optimal solution for the PPP2

problem over the same interval using Algorithm 4, as we show in Theorem 7:

Theorem 7. Algorithm 4 computes an optimal offline solution for any given interval of length dk in time
O(d3

k ⋅ σ̂), where σ̂ is the maximum demand over the interval.

61

Chapter 4 VNet Pricing and Buying Strategies

Algorithm 4: Offline Algorithm for dk-length interval
Input: Precomputed matrix M over interval [t, t + dk].
Output: Optimal total costs OPT[i, j, ⋅] for all intervals within [t, t + dk].
1: Initialize all entries in OPT to be 0.
2: Let σ̂ =M[i, j].
3: for i = 1 to dk do
4: for λ =M[i, i] − 1 to 0 do
5: OPT[i, i, λ]←minC(r,d)∈C{OPT[i, i,min{σ̂, λ + r}] + π(r, d)}
6: for ` = 2 to dk do
7: for i = 1 to dk − ` + 1 do
8: j = i + ` − 1
9: for λ =M[i, j] − 1 to 0 do
10: OPT[i, j, λ]←mini≤z<j{OPT[i, z,min{M[i, z], λ}] + OPT[z + 1, j,min{M[z + 1, j], λ}]}
11: C′ ← {C(x)(t(x), r, d) ∈ C ∶ t(x) = b ⋅ d for some positive integer b and t(x) ≤ i < j ≤ t(x) + d}
12: if C′ is not empty then
13: OPT[i, j, λ]←min{OPT[i, j, λ]; minC(r,d)∈C′ OPT[i, j,min{σ̂, λ + r}] + π(r, d)}
14: return OPT[1, dk,0]

Proof. We assume, for the sake of simplicity and without loss of generality, that t = 0 and the dk-length
interval we consider is [0, dk].

Correctness: By induction over the length of the subintervals ` = j − i+1 and the respective uncovered demand
λ. Clearly, the claim is true for intervals [i, i] (` = 1) (Lines 3-5): If λ > 0 we need at least one contract
C(r, d) to finish covering the demand at time i; the remaining demand at time i not covered by C must be
covered optimally by other contracts, as previously computed in OPT[i, i, λ + r].

Now consider a subinterval [i, j] of length ` = j − i + 1 ≥ 2, where 1 ≤ i ≤ j ≤ dk. This interval is either
split into two non-overlapping subintervals of smaller length (Case I), or a long contract of length equal to
or greater than ` that completely covers [i, j] is bought, at a certain demand rate r, where 0 ≤ r ≤M[i, j]
(Case II). Given Assumption A2 and A3, for any instances of contracts C(y)x and C(q)p , either the duration of
one contract is fully contained in the other, or the two contracts never overlap in time: Hence, given that
we consider all intervals [i, j], including the ones that may correspond to actual instances of contracts, it is
enough to consider only these two cases.

In Case I, we split the interval at time z such that the solution OPT[i, z,min{M[i, z], λ}] + OPT[z +
1, j,min{M[z+1, j], λ}] is minimized over all z between i and j (Line 10). Since the lengths of the two subin-
tervals z−i+1 and j−z are both smaller than `, OPT[i, z, λ] and OPT[z+1, j, λ] already store the cost of optimal
solutions for these subproblems, respectively, by the induction hypothesis. Hence OPT[i, z, λ] + OPT[z + 1, j, λ]
will yield the optimal solution for OPT[i, j, λ] if Case I applies.

In Case II, we buy a long contract with rate r. First, we need to check which contracts with longer durations
can cover [i, j] fully, and store the candidate contracts in C′. A candidate contract C(x)(t(x), r, d), where
t(x) = b ⋅d according to Assumption A3, satisfies t(x) ≤ i < j < t(x) +d. The algorithm picks the valid candidate
contract that minimizes π(r, d) plus the optimal cost of covering the largest remaining demandM[i, j]−(λ+r)
over [i, j], which has been previously computed and stored in OPT[i, j, λ + r] (Line 11).

By choosing the smaller value of Cases I and II, we obtain the optimal cost for subproblem [i, j, λ] (Line 13).

Time Complexity: The total time complexity of Off2D for the pre-computation part in Algorithm 3 is O(d2
k).

The first part of Algorithm 4 in (Lines 3-5) takes O(dk ⋅ k ⋅ σ̂) time, where σ̂ is the maximum demand for
the whole time interval. The first two loops of the second part (Lines 6-7) take O(d2

k) time and the for-loop
in Line 9 takes O(σ̂) time. The statement in Line 10 requires O(dk) time and Lines 11 and 13 take time
O(k) each. Therefore, the total time complexity is O(d3

k ⋅ σ̂) for a subinterval with length dk. ∎

62

4.2 VNet Buying

Taking Theorem 7 into account for all intervals of length dk in σ, and for a long enough demand sequence σ
(i.e., such that ∣σ∣ = Ω(σ̂), where σ̂ is the maximum demand over σ), we get the following corollary, which
expresses the total running time of the offline algorithm:

Corollary 2. Algorithm Off2D runs in time O(∣σ∣2d2
k).

Proof. By summing up the computation time of ⌈∣σ∣/dk⌉ subintervals of length dk, we have an overall
complexity of O(∣σ∣ ⋅ d2

k ⋅ σ̂) = O(∣σ∣2d2
k), since ∣σ∣ = Ω(σ̂). ∎

4.2.6 Higher Dimensions

Off2D and On2D are designed for the two-dimensional version of the PPP problem but they can also
be extended towards a D-dimensional version of the problem, where each additional dimension (other than
the time duration dimension) would indicate the rate at which one would buy a certain resource. Regarding
Off2D we need to do the following changes: For each additional dimension we need to extend the dimension
of the optimal cost matrix OPT by one and add two additional loops in Off2D’s Algorithm 4. Furthermore we
only need to add one additional dimension for the M matrix in Algorithm 3 which indicates the current demand
dimension β, M[i, j, β] and run the algorithm β times for the pre-computation. We show the Algorithms 5, 6
and illustrate those changes in 3D.

Algorithm 5: Pre-computation of matrix M of length dk for OffD-D

Input: Demand sequences σdimt , . . . , σdimt+dk (over interval [t, t + dk]) with dim ∈ {1,2, ...,D − 1}.
Output: Matrix M .
1: for i = 1 to dk do
2: for dim = 1 to D − 1 do
3: M[i, i, dim]← σdimt+i
4: for i = 1 to dk − 1 do
5: for j = i + 1 to dk do
6: for dim = 1 to D − 1 do
7: M[i, j, dim]←max{M[i, j − 1, dim], σdimt+j }
8: return M

Assume a scenario where a third dimension is added, e.g. computational and network resources over time. The
contracts C(r, r′, d) then cover r × r′ × d cuboids. In order to adjust Algorithm 4, we add another loop after
Line 4 which goes through the maximum values λ′ of the additional demand (for λ′ =M[i, i,2] − 1 to 0 do)
and change the statement in Line 5 to: OPT[i, i, λ, λ′]←minC(r,r′,d)∈C′ OPT[i, i, λ+r, λ′+r′]+π(r, r′, d). The
same loop must also be added after Line 9 and the updates of the OPT matrix must be changed accordingly in
Lines 10 and 13.

The runtime of the pre-computation in Algorithm 3 would be increased by a factor of D (i.e., by the dimension
of the problem) and still be negligible regarding the overall runtime (assuming D is a constant). For Algorithm 4
the runtime would increase by a factor of Πi≥2σ̂

i, where σi is the maximum demand for resource i, for i ≥ 1,
leading to an overall runtime of O(d3

k ⋅Πi≥1σ̂
i) for each interval dk.

No changes are needed regarding On2D. It still mimics Off2D’s behavior and given the Assumptions A2
and A3, the contract independence still holds for higher dimensions. Hence, the proof for the competitive ratio
of k still applies.

4.2.7 Simulations

We have conducted a small simulation study to complement our formal analysis. In this simulation, we consider
k square contracts where Ci(ri, di) has rate and duration ri = di = 2i−1, for 1 ≤ i ≤ k. The price π of a
contract is a function of the rate-duration product ri ⋅ di, and we study a parameter x to vary the discount.

63

Chapter 4 VNet Pricing and Buying Strategies

Algorithm 6: Offline Algorithm OffD-D
Input: Precomputed matrix M over interval [t, t + dk,D].
Output: Optimal total costs OPT[i, j, ⋅, ⋅, . . . , ⋅] for all intervals within [t, t + dk].
1: Initialize all entries in OPT to be 0 and dim =D − 1.
2: for i = 1 to dk do
3: for λ1 =M[i, i,1] − 1 to 0 do
4: for λ2 =M[i, i,2] − 1 to 0 do
5: ⋮
6: for λdim =M[i, i, dim] − 1 to 0 do
7: OPT[i, i, λ1, λ2, . . . , λdim]←

minC(r1,r2,...,rdim,d)∈C OPT[i, i, λ1 + r1, λ2 + r2, . . . , λdim] + π(r1, r2, . . . , rdim, d)
8: for ` = 2 to dk do
9: for i = 1 to dk − ` + 1 do
10: j = i + ` − 1
11: for λ1 =M[i, j,1] − 1 to 0 do
12: for λ2 =M[i, j,2] − 1 to 0 do
13: ⋮
14: for λdim =M[i, j, dim] − 1 to 0 do
15: OPT[i, j, λ1, λ2, . . . , λdim]←

mini≤z<j{OPT[i, z, λ1, λ2, . . . , λdim] + OPT[z + 1, j, λ1, λ2, . . . , λdim]}
16: C′ ← {C(x)(t(x), r1, r2, . . . , rdim, d) ∈ C ∶ t(x) = b ⋅ d for some positive integer b and

t(x) ≤ i < j ≤ t(x) + d}.
17: if C′ is not empty then
18: OPT[i, j, λ1, λ2, . . . , λdim]←min{OPT[i, j, λ1, λ2, . . . , λdim];

minC(r1,r2,...,rdim,d)∈C′1 OPT[i, j, λ1 + r1, λ2 + r2, . . . , λdim + rdim] + π(r1, r2, . . . , rdim, d)}
19: return OPT[1, dk,0,0, . . . ,0]

Concretely, we consider a scenario where a twice as large time-rate product is by factor (1+x) more expensive,
i.e., π(2 ⋅ d ⋅ r) = (1 + x) ⋅ π(d ⋅ r); we set π(1) = 1.

To generate the demand σ, we use a randomized scheme: non-zero demand requests arrive according to a
Poisson distribution with parameter λ, i.e., the time between non-zero σt is exponentially distributed. For
each non-zero request, we sample a demand value uniformly at random from the interval [1, y].

Each simulation run represents 1000 time steps, and is repeated 10 times.

Impact of the request model. We first study how the competitive ratio depends on the demand arrival
pattern. Figure 4.8 (left) plots the competitive ratio ρ as a function of the Poisson distribution parameter λ.
The price model with x = 0.5 is used, and there are k = 8 contract types. First, we observe that the competitive
ratio ρ is bounded by approx. 5, which is slightly lower than what we expect in the worst-case (cf Theorem 4).
Another observation is that the competitive ratio decreases as λ increases. This can be explained by the fact
that demand rates become sparser for increasing λ, and hence less contracts will be bought. Meanwhile, when
the demand rates are sparse, the offline algorithm will have less chance to buy a larger contract. Put differently,
the online algorithm will pay relatively more compared to the offline algorithm for small λ, as it purchases
more small contracts.

Impact of the price model. Different price models also affect the purchasing behavior of our online
algorithm. Figure 4.8 (middle) shows the competitive ratio ρ for different values x. (For this scenario, we set
y = 128, k = 8 and λ = 2.) We see a tradeoff: for small x, until x = 0.5, the competitive ratio increases and
then begins to decrease again. The general trend can be explained by the fact that for small x, it is worthwhile
to buy larger contracts earlier, and it is hence impossible to charge On2D much; for larger x, also an offline
solution cannot profit from buying a large contract.

64

4.2 VNet Buying

1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

ρ

λ

x=0.5,y=128,k=8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

ρ

x

y=128,k=8,λ=2

3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

ρ

k

x=0.5,y=128,λ=2

Figure 4.8: Simulation results. Left: Effect of request distribution (Poisson λ). Middle: Effect of discount x.
Right: Effect of the number of contracts k.

Impact of the number of contracts. Finally, Figure 4.8(right) shows the competitive ratio as a function
of the number of contracts k. (We fix x = 0.5, y = 128 and λ = 2 in this simulation.) The competitive ratio
first increases as k increases but then stabilizes. This stabilization is due to the fact that when we have eight
or more contracts (k ≥ 8), the largest contract can cover the maximum rate. In the beginning, the ratio
increases since the offline algorithm buys larger and larger contracts, and the online algorithm pays for many
small contracts along the way.

4.2.8 Related Work

Cost reductions (due to economy-of-scale effects) are one of the main motivations behind today’s trend to
out-source infrastructure and software to the cloud. A large body of literature in the field focuses on resource
allocation and scheduling problems. For a good overview, we refer the reader to the surveys [15, 32].

Compared to the algorithmic problems of the resource allocation and scheduling, the economical aspects are
less well-understood. Kniesburges et al. [69] provide an overview of the cloud leasing research area. Different
economical cloud models have been proposed and compared by various authors, e.g., by Armbrust et al. [79],
Pal et al. [91], or Dash et al. [36]. Some of the studied pricing models have their origins in the context of
ISP-customer relationships [105] and are also related to classic economic problems [51]. An interesting tradeoff
between time and price has been studied in [59], from a scheduling complexity perspective. More generally,
there are several interesting proposals for novel adaptive resource and spot market pricing schemes, e.g., [10].
Our model is motivated by architectures such as [26, 103] which allow for sub-renting and recursion.

This section assumed an online algorithm and competitive analysis perspective. Many online models, such
as ski-rental problems [25], facility location problems [54], or buy-at-bulk [99] and rent-or-buy [71] problems,
assume that once an item has been purchased, it remains indefinitely for no extra charge. The Parking Permit
Problem [85] and the Bahncard Problem [47] are the archetype for online problems where purchases have time
durations which expire regardless of whether the purchase is used or not.

The paper closest to ours is the Parking Permit Problem (PPP) paper by Meyerson [85]. Formally, PPP
specifies a set of k different types of parking permits of a certain price πi and duration di. In [85], Meyerson
presents an asymptotically optimal deterministic online algorithm with competitive ratio O(k) (together with
a lower bound of Ω(k)). The paper also discusses randomized algorithms and an application to Steiner forests.
While we can build upon some of the techniques in [85], the rate dimension renders the problem different
in nature, both from an online and an offline algorithm perspective. The Parking Permit Problem was also
studied by Shouwei et al. [75]. The authors extend the classical problem with the introduction of deadlines
and introduce the Online Leasing with Deadlines problem.

65

Chapter 4 VNet Pricing and Buying Strategies

4.2.9 Summary

This section shows that at the heart of efficient cloud resource allocation lies a fundamental algorithmic
problem, and we introduce the PPP2 problem, a 2-dimensional variant of the online Parking Permit Problem
PPP. We present a deterministic online algorithm On2D that provably achieves a competitive ratio of k,
where k is the total number of available contracts; if we relax Assumption A3, the competitive ratio of our
algorithm is 2k. We also show that On2D is almost optimal in the sense that no deterministic online algorithm
for PPP2 can achieve a competitive ratio lower than k/3. Finally, we prove that the offline version of PPP2

can be solved in polynomial time.

We believe that our work opens interesting directions for future research.

1. Optimality: The obvious open question regards the gap between the upper bound k and the lower
bound k/3 derived in this section.

2. Relaxing the assumptions: While the interval model only comes at the cost of a small additional
approximation factor (a constant), it seems hard to remove the assumption entirely but still being able to
compute optimal solutions in polynomial time: we conjecture that the problem is NP-hard. We believe
that relaxing the multiplicity assumption (which is needed for the concept of contract independence in
the upper bound proof of Section 4.2.3) is a more promising direction for future research.

3. Randomized algorithms: It will be interesting to study whether the randomized algorithms known from
the classic parking permit problem can also be generalized to multiple dimensions.

66

Part II

Consistent Network Updates

5
Network Updates Overview

Network management is a complex task, especially at large scale [21]. Misconfiguration of even single routers
can lead to, e.g., routing loops and, hence, in the worst case to the shutdown of the whole network. Indeed, it
has been shown that most routing problems in, e.g., the context of BGP are caused by misconfigurations [44].

VNets will further increase the challenges for the network control plane, as many different forwarding patterns
need to be handled in a fine-grained manner. Thus, in the second part of the thesis, we evaluate efficient
ways of managing this increased diversity and dynamics induced by different VNet routing and forwarding
patterns.

SDN (Software Defined Networking) promises to provide programmability for networks. Its enhanced control
of the network makes it a ‘ ‘natural platform” for VNets [37]. In this chapter, we provide an overview of the
SDN principle and the basics of network updates. While our approach to update networks is motivated by
SDN, it is not limited to SDN.

5.1 Software Defined Networks

Configuration of network devices such as routers and switches is tedious work. Network devices often need to
be configured individually and with vendor specific commands [68]. Even worse, these configurations need
to be adapted to satisfy various high-level goals such as load balancing. Since this is an error-prone task, a
simpler way to configure the network is needed. SDN was proposed to address these issues. It introduces
programmability of networks and by that, a more high-level network management system.

The basic concept of SDN is to separate the control plane from the data plane, see Figure 5.1. Thus, the role
of network devices is reduced to forwarding devices. The control part is shifted towards a typically abstracted
and logically centralized controller. This controller is connected to the forwarding devices via a programming
API as, e.g., OpenFlow [84]. This API enables the controller to communicate routing information towards the
forwarding interfaces.

The controller has a complete view of the low-level details of the network. It provides the state of the
network and topology abstractions towards programming APIs for network applications. Examples of network
applications are basic tasks such as MAC learning or routing algorithms, but also more complex tasks such as
load balancing or firewalls. The SDN concept has the potential to simplify network management. It provides
the operator with a centralized, high-level view of the network. Thus, it should prevent him from potential
errors in individually configuring the distributed low-level devices. In addition, applications can dynamically

69

Chapter 5 Network Updates Overview

Figure 5.1: Overview of the SDN architecture, separating the control and the data plane, with a logically
centralized controller on top.

react to changes within the network and reconfigure reasons. This avoids the manual reconfiguration of
devices.

SDN enabled forwarding devices keep state in flow tables. These flow tables compose the forwarding information.
Within the flow tables, each entry consists of a match and an action. Traditional networks forward packets
based on their MAC (Layer 2) or IP address (Layer 3). Matches within SDN enabled forwarding devices can
conceptually address any bit within the packet header. Thus, packets can be matched according to, e.g., a
source and a destination IP address or even port numbers (Layer 4). To each match belongs an action that is
performed once a packet is matched. An action forwards the packet to the outgoing ports or drops it. There
is the additional option to forward packets to the controller if no match is found. The controller can decide
where to forward these packets and if a new match-action pair needs to be installed. Throughout the thesis,
we will refer to a match-action pair on a single forwarding device as rule.

These rules allow the controller to form policies. A policy is a sequence of rules on a set of forwarding devices.
These entries can, for instance, define the path for every packet sent from a specific source IP address to a
specific destination IP address.

Kreutz et al. [70] provide a comprehensive survey on the SDN architecture and applications. Initially introduced
to facilitate experiments in campus networks, SDN also received a lot of attention from the industry. The
ONF - Open Networking Foundation [7] was funded. Its goal is to promote SDN and to develop standards as,
e.g., the OpenFlow Standard. Google presented their own implementation of an SDN WAN connecting their
datacenters B4 [63].

5.2 Network Updates

The main benefits of SDN are the programmability as well as the high-level network abstraction it offers to the
operator. This concept depends on efficient algorithms installed at the controller to configure the network.
Given the high-level network abstraction, a typical task is to change a policy. We refer to this task as a network
update. An example of a network update is given in Figure 5.2. The old policy is shown on the left and the
new policy is shown on the right.

Even though, the control plane is separated from the data plane and we have a logically centralized view of the
network, performing a network update is not a trivial task. The reason is that a network should stay consistent
during the update despite its distributed nature. Messages might be delayed, lost, and the update time of a
single switch might also vary [65] which can cause problems even if the update is planned and executed well.

70

5.2 Network Updates

Figure 5.2: Network update. The rules for the old policy (left) are exchanged with the rules for the new policy
(right).

To prevent network outages, e.g., caused by Layer 2 loops [1, 2], it is important to ensure network consistency
during an update. Mahajan et al. [82] give an overview of several different network consistency properties,
which we briefly discuss:

• Eventual consistency is always given as long as the old and the new policies are consistent.

• Drop-freedom ensures that no packet is dropped.

• Loop-freedom ensures that no packet loops.

• Memory limit ensures enough memory on the network devices to install the rules.

• Bandwidth limit ensures that no link is exposed to extensive traffic exceeding a limit.

Next, we discuss three different approaches to update networks, which all adhere to the three basic properties,
eventual consistency, drop-freedom, and loop-freedom. Bandwidth limit is a property, which can be studied
independently for these approaches. In terms of memory usage, the approaches differ.

Per Packet Consistency: Reitblatt et al. [95] propose a way to update a network which guarantees a
per packet consistency. This per packet consistency is based on a two-phase commit approach. Within the
two-phase commit, packets are not only forwarded according to the simple match-action rule but also according
to a version number. This version number can be stored in an unused part of the packet header, e.g., the
VLAN tag. It is used to differentiate between the old and the new policy. Thus, every packet is forwarded
according to a single policy. It is tagged at the entry point and hence, forwarded according to its flag at every
single switch. The controller can then send out the updates, which consist of the same match part from the
match-action rule, but a different tag, to every switch involved in the new policy. As soon as every single
switch installed the rule in its flow table, the controller sends an update to the entry point which triggers a
retagging of packets from the old to the new tag. Hence, every packet is forwarded according to the new policy,
which makes it possible to delete the rules from the old policy if they are not needed anymore. This two-phase
commit approach has the benefit that the network stays consistent as long as the policies are consistent.

71

Chapter 5 Network Updates Overview

End-to-End Correctness: Ghorbani et al. [50] argue for an even stricter form of consistency. The authors
propose a per path consistency. A per packet consistency might cause a wrong classification in the presence of
middleboxes, e.g., firewalls. Even if a packet is consistently forwarded according to a single policy, a different
policy for the traffic on the way back might lead to packets traversing different physical firewalls. Thus, the
traffic might be blocked. These issues caused by the one-to-many mapping of a single logical entity (the
firewall) to several different physical entities. Hence, they propose an end-to-end correctness, which extends the
per packet consistency ideas with a partially ordered event set, which helps in the one-to-many mappings.

Overall, both per packet consistency and end-to-end correctness are heavyweight mechanisms. They are both
based on the usage of additional tags in each packet. The usage of these tags is undesirable since there is
limited room for tags in packet headers. The increased deployment of middleboxes furthermore increases the
probability of a misconfiguration if headers are being rewritten. Another issue with the per packet consistency
is that there are only very late first effects on the network. The controller needs to wait for every single switch
to install the rule before packets can be retagged and hence, take a new path. The tagging also leads to
situations where both, the old and the new rule need to be kept in the precious flow table memory during the
update. This is a waste of memory if an update is not a more specific match than the old rule, but the same
match with a different action.

Transient Consistency: A third approach is introduced by Mahajan et al. [82] and is based on a
lightweight, dynamic form of updating a network. Instead of using tags, switches are updated directly. To
avoid inconsistencies, not all of the switches are updated in parallel. The controller chooses a set of switches,
which can be updated simultaneously in any given order without violating any consistency properties. Once
the update is done for these switches, the controller sends out the update to the next set of switches. Thus,
packets are forwarded according to a mix of the old and the new policy. This leads to earlier impacts on the
network compared to the two-phase commit protocol. The set of updated nodes is chosen such that, given any
ordering of switches of the set being updated, the network stays consistent. The consistency is guaranteed,
even if the update on a single switch is delayed infinitely long. Note that in this case the complete policy
update would not be completed until the issue is resolved.

Mahajan et al. focus on maximizing the number of updated switches per update set and propose a set of
basic consistency properties. During this thesis, we further investigate on different update strategies and their
complexity in the round-based model, while we also extend the consistency properties in order to cope with
middleboxes in the network.

Bandwidth limitations have been studied independently of the update algorithms. Jin et al. [65] study
congestion free network updates. The setting is a concurrent update of multiple policies. The challenge is
to find congestion free updates on a per policy level. This differs from the discussed algorithms, which only
update single policies. It is a complex problem, as there exist several possible schedules, some policies depend
on others to be updated. Otherwise, the system might end up in a deadlock where no congestion free update
exists. Thus, the authors construct the system Dionysus, which schedules policies according to a dependency
graph. Depending on the speed of a single policy update, Dionysus schedules the updates of the next policies.
This leads to a faster overall update time compared to a static scheduling.

72

6
Introducing a Round-Based Network Update

Model

The network update problem as introduced in Section 5.2 has several different approaches to update a network.
Most related work is based on the two-phase commit approach, which on the positive side, offers per packet
consistency: Each packet is either forwarded according to the old or to the new policy. This provides a basic
consistency guarantee as long as the policies are consistent. The downside of this approach is that it requires
tags in a header field of the packets, rendering it a heavyweight mechanism. Mahajan et al. [82] proposed a
dynamic update approach on a per switch granularity, providing transient consistency. Updates are scheduled
into rounds such that the updates per round can be executed in any arbitrary order without violating any
consistency properties. These round schedules are necessary, as measurement studies [65, 72] show that the
switch update time vary by up to an order of magnitude.

Throughout the second part of the thesis, we evaluate the complexity and the efficiency of dynamic, round-based
network updates. This chapter provides a detailed model of the dynamic network update problem. We introduce
the formal definition of the problem and a reduction. Moreover, we show two different representations which
simplify the reasoning about the problem. As the problem essentially is a graph algorithmic problem, we refer
to forwarding devices as nodes and to links as edges. We define several classifications on the nodes and the
edges and provide mechanisms to further simplify the representation during an update schedule.

The dynamic update problem is defined as follows: We are given a network and two policies π1 (the old policy)
and π2 (the new policy). Both π1 and π2 are simple directed paths. Initially, packets are forwarded (using the
old rules, henceforth also called old edges) along π1, and eventually they should be forwarded according to the
new rules of π2. Packets should never be delayed or dropped at a node: whenever a packet arrives at a node,
a matching forwarding rule should be present. Note that throughout this work we only consider switches,
routers or middleboxes as relevant parts of the network for the update problem and call them nodes.

Model and Reduction: Without loss of generality, we assume that π1 and π2 lead from a source s to a
destination d. Since nodes appearing only in one or none of the two paths are trivially updatable, we focus on the
networkG induced by the nodes V which are part of both policies π1 and π2, i.e., V = {v ∶ v ∈ π1∧v ∈ π2}. Thus,
we can represent the policies as π1 = (s = v0, v2, . . . , v`−1 = d) and π2 = (s = v1, π(v2), . . . , π(v`−2), v`−1 = d),
for some permutation π ∶ V ∖ {s, d}→ V ∖ {s, d} and some number `. In fact, we can represent policies in an
even more compact way: we are actually only concerned about the nodes U ⊆ V which need to be updated.
Let, for each node v ∈ V , out1(v) (resp. in1(v)) denote the successor (resp. predecessor) according to policy
π1, and out2(v) (resp. in2(v)) denote the successor (resp. predecessor) according to policy π2. We define s to

73

Chapter 6 Introducing a Round-Based Network Update Model

Figure 6.1: Overview of model and reduction. The network on the left is reduced to the line representation
on the right. The solid lines show the old policy π1 and the dashed lines show the new policy π2.
Nodes shown in white are the only ones which are part on both paths, and hence relevant for the
problem.

be the first node (say, on π1) with out1(v) ≠ out2(v), and d to be the last node with in1(v) ≠ in2(v). We are
interested in the set of to-be-updated nodes U = {v ∈ V ∶ out1(v) ≠ out2(v)}, and define n = ∣U ∣. Given this
reduction, in the following, we assume that V only consists of interesting nodes (U = V).

Line representation: Fig. 6.1 illustrates our model: We are given two policies (the old rules of π1 are
solid, the new ones of π2 are dashed), see Fig. 6.1 (left). We focus on the updateable nodes, which are shared
by the two policies. Thus, in our example, the update problem can be reduced to the 5-node chain graph in
Fig. 6.1 (right). Throughout this work, we stick to this representation, and indicate the old policy π1 using
solid lines, and the new policy π2 using dashed lines. Moreover, we depict the initial network configuration
(before the update) such that the old policy goes from left to right.

Node Merging and Tree Representation: During the thesis, we make use of two additional concepts:
node merging and tree representation. When updating a node v, we can merge it with the node out2(v) it
pointed to with its dashed edge. This can safely be done after each round, due to the irrelevance of already
updated nodes (they will simply forward packets to the next node, without influencing the remaining problem
at hand). As we will see, while the initial network configuration consists of two paths, in later rounds, the
already updated solid edges may no longer form a line from left to right, but rather an arbitrary directed tree,
with tree edges directed towards the destination d; due to the node merging, the in-degree (from the solid
edges) may also increase while the out-degree and in-degree from the dashed edges remains one. Moreover,
note that while the destination d will always be the root of the tree, the source s does not necessarily have to
be at the leaf all the time (due to merging).

Node Ordering: Nodes on the same branch (or on the line) can be ordered. We say that u < v, if u and
v are on the same branch and v is closer to the destination d. The distance is defined as the path length
(according to the currently installed rules—the solid lines) from a node to the destination. Two nodes which
are not on the same branch cannot be ordered.

Classifying Edges: In the following we call an edge (u, v) of the new policy π2 forward, if u < v,
resp. backward, if v < u. This classification only works if u, v are on the same branch. Edges in-between two
different branches of the tree are called horizontal edges. Note that this classification may change during
update rounds. A backward edge (u, v), for instance, can change into a forward edge, if the edge (v,w)
is updated, with u < w. The node merging from v and w then changes the direction of the edge. It is
also convenient to name nodes after their outgoing dashed edges (e.g., forward or backward); similarly, it is
sometimes convenient to say that we update an edge when we update the corresponding node. In addition, we
treat the terms edge and rule, as synonyms in this work.

Figure 6.2 shows an example for node merging and tree representation. The left part shows a standard line
representation of the scenario. The right side of the figure depicts the situation after an update of s. Node
merging allows us to merge s and out2(s) = v3 which leads to a tree representation. The edge between s, v3

74

Figure 6.2: Example for node merging and tree representation. After updating s it can be merged with
out2(s) = v3. This would lead to tree representation of the scenario.

and v2 is a horizontal edge. The edge (v1, d) keeps its forward orientation and (v2, v1) keeps its backward
orientation. An update of node v1 instead of node s would have changed the orientation of the edge (v2, v1).
The nodes v1 and d would have been merged, which leads to a changed classification of (v2, v1) from backward
to forward. The edge (v3, v2) would have kept its backward classification.

75

7
Loop-free Network Updates

Exploiting the benefits in a logically centralized network management is non-trivial. A fundamental problem
regards the consistent implementation of policy updates: To update a policy π1 to a policy π2, the controller
needs to communicate the new forwarding rules to all nodes. However, as both the transmission as well as the
installation of rules take time and are subject to variance [65], inconsistencies can be introduced during the
update: For example, the same packet may still be forwarded according to the old rules (of π1) at some nodes
while it is forwarded already according to the new rules (of π2) at others. The resulting actual routes may
transiently violate basic consistency properties such as loop-freedom [82].

This chapter specifically tackles the challenge of loop-free network updates. Loop freedom is an important
property within a network, especially on Layer 2, as there do not exist mechanisms to detect these loops.
Prominent examples where such loops caused complete outages are, e.g., GitHub [2] and Amazon [1]. In both
cases the outages occurred on planned operations within the network and not due to hardware failures, which
shows the importance of consistent network updates.

As discussed in Chapter 6, we want to ensure these loop-free network updates, without tagging. Hence,
communicating updates to nodes dynamically in a staged manner: The controller first updates only a safe subset
of nodes V1 ⊆ V . After these nodes asynchronously installed the new rules, they send an acknowledgement
to the controller, which then schedules the next subset V2 ⊆ V of nodes to update, until the final subset Vk
completes the policy update. This protocol does not require packet tagging, and, as has been argued in [82],
also has the advantage that some of the edges of π2 become available earlier to packets: there is no need to
wait for the full installation of π2.

This chapter studies fast loop-free network updates, i.e., updates which require a minimal number of controller
interactions while providing transient consistency guarantees. We consider a model where network policies can
follow arbitrary paths and are not necessarily destination-based (arguably a key benefit of SDN [45]). We ask:
How many communication rounds k are needed to update a network in a (transiently) loop-free manner?

Contribution

We show that just aiming to “greedily” update a maximum number of nodes in each round (as proposed in
previous work [82], however, for a different model) may result in Ω(n)-round schedules in instances which
actually can be solved in O(1) rounds; even worse, a single greedy round may inherently delay the schedule by
a factor of Ω(n) more rounds. In addition, we give a formal NP-hardness proof for maximizing the number of
updates and, on the positive side, identify a class of network update problems that allow for optimal or almost
optimal polynomial-time algorithms We show that focussing on minimizing the number of rounds is difficult

77

Chapter 7 Loop-free Network Updates

Figure 7.1: Example of a loop-free dynamic network update. Nodes s, v1 will be updated in a first round,
before v2 can be updated in the second round. Old path: solid line; new path: dashed line.

as well. In particular, we show that while deciding whether a k-round schedule exists is trivial for k = 2, it is
already NP-complete for k = 3. Moreover, we show that there exist problem instances which require Ω(n)
rounds, where n is the network size.

Given these negative results, we propose an attractive alternative to the utterly strict loop-free requirement:
relaxed loop-freedom. Relaxed loop-freedom is motivated by the observation that loops are only really
problematic if they occur on the (changing) path between source and destination: topological loops in other
parts of the network will never receive any new packets. We argue that relaxed loop-freedom not only expresses
better the actually desired consistency in practice, but we also show that it comes with interesting benefits:
We prove that O(logn)-round relaxed loop-free schedules always exist, and can also be computed efficiently,
and we present an elegant algorithm accordingly.

7.1 Loop-Freedom

Before we evaluate different update strategies, we formally introduce (strong) loop-freedom. We also provide
a practically motivated alternative definition: relaxed loop-freedom.

7.1.1 Strong Loop-Freedom

We want to find a schedule U1, U2, . . . , Uk with minimum k, i.e., a sequence of subsets Ut ⊆ U where the
subsets form a partition of U (i.e., U = U1 ⊍U2 ⊍ . . . ⊍Uk), with the property that for any round t, given that
the updates Ut′ for t′ < t have been made, all updates Ut can be performed “asynchronously”, that is, in an
arbitrary order without violating loop-freedom. That is, consistent paths will be maintained for any subset of
updated nodes, independently of how long individual updates may take.

More formally, let U<t = ⋃i=1,...,t−1Ui denote the set of nodes which have already been updated before round t,
and let U≤t, U>t etc. be defined analogously. Since updates during round t occur asynchronously, an arbitrary
subset of nodes X ⊆ Ut may already have been updated while the nodes X = Ut ∖X still use the old rules,
resulting in a temporary forwarding graphGt(U,X,Et) over nodes U , where Et = out1(U>t∪X)∪out2(U<t∪X).
We require that the update schedule U1, U2, . . . , Uk fulfills the property that for all t and for any X ⊆ Ut,
Gt(U,X,Et) is loop-free.

Later in this work, we will sometimes refer to this definition of loop-freedom as the Strong Loop-Freedom (SLF),
to distinguish it from Relaxed Loop-Freedom (RLF). By default, throughout this work, the term loop-freedom
without additional qualifier will refer to the strong variant.

Update Example. Fig. 7.1 shows a simple network update. The solid line shows the old policy π1 from
s to d and the dashed path shows the new policy π2. How can we update the policy π1 to π2? A simple
solution is to update all nodes concurrently. However, as the controller needs to send these commands over
the asynchronous network, they may not arrive simultaneously at the switches, which can result in inconsistent
states. For example, if v2 is updated before v1 and s are updated, a temporary forwarding path may emerge

78

7.2 It is bad being greedy

Figure 7.2: RLF vs SLF: An SLF schedule needs to update backward edges one by one from left to right,
requiring Ω(n) rounds; for RLF, an O(1)-round schedule exists.

which violates loop-freedom: packets originating at s will be sent to v2 and from there in a loop between v1

and v2.

This illustrates the challenge of updating the SDN, which is an inherently asynchronous and distributed system.
One solution to overcome this problem would be to perform the update in two (communication) rounds: in
the first round, only s and v1 (U1 = {s, v1}) are updated, and in a second round, once these updates have
been performed and acknowledged, the controller also updates v2 (U2 = {v2}).

7.1.2 Relaxed Loop-Freedom

In this section, we also propose a weaker notion of loop-freedom: Relaxed Loop-Freedom (RLF). Relaxed
loop-freedom is motivated by the practical observation that transient loops are not very harmful if they do
not occur between the source s and the destination d. If relaxed loop-freedom is preserved, only a constant
number of packets can loop: we will never push new packets into a loop “at line rate”. In other words, even if
switches acknowledge new updates late (or never), new packets will not enter loops. Concretely, and similar
to the definition of SLF, we require the update schedule to fulfill the property that for all rounds t and for
any subset X, the temporary forwarding graph Gt(U,X,E′

t) is loop-free. The difference is that we only care
about the subset E′

t of Et consisting of edges reachable from the source s.

RLF Example. To highlight the difference between SLF and RLF, Fig. 7.2 presents an example where a
relaxed 3-round loop-free update schedule exists: in round 1 all forward edges are updated, in round 2 all
backward edges except for the last one (vn−1, vn−2) are updated, and in round 3, the last backward edge
is updated. In contrast, a strong loop-free schedule needs to go through the backward edges one by one,
v2, v3,⋯, vn−1: updating vi before vi−1 results in a loop. Thus, n − 2 (as d does not need to be updated)
rounds are required in this case: a factor Ω(n) more than RLF. This is worst possible.

7.2 It is bad being greedy

The speed of a network update is measured in terms of communication rounds in this work: the number of
times a controller needs to send updates to a subset of network elements. As we show in the following, previous
objectives [82] which greedily maximize the number of updated links in a single round may unnecessarily delay
the policy update. Furthermore we show that computing a maximum set of updatable nodes is NP-hard for
both SLF and RLF.

7.2.1 Greedy Updates Delay

Updating a network according to the objective of maximizing the number of nodes per round can delay the
overall update policy in terms of number of rounds and hence, arguable overall update time. We will give two
worst case scenarios: one for each definition of loop-freedom (SLF and RLF).

79

Chapter 7 Loop-free Network Updates

Figure 7.3: (SLF-)Pattern of a scenario where maximizing the number of updates per round will result in a
Ω(n)-round schedule, although a O(1)-round schedule would be possible. Left: An overview where
π≤vk2 shows the edges of the new policy before vk and π>vk2 those behind vk. Right: A detailed
representation of the blocks Bi.

Figure 7.4: (RLF-)Pattern of a scenario where maximizing the number of updates per round will result in a
Ω(

√
n)-round schedule, although a O(1)-round schedule would be possible. The colored edges

represent the new path and are used for better visibility. The new path traverses the colors in the
following order: purple, red, green, orange.

Delay in SLF. In certain situations a single greedy update step can increase the number of rounds for an
update by a factor of up to Ω(n) . Fig. 7.3 shows a scenario where a greedy update takes Ω(n) rounds even
though an O(1) round solution exists. The left side shows the general structure of the scenario which consists
of several blocks Bi (more details on the right side). These blocks are connected via backward edges one by
one, e.g., see the edge emerging from i3. If a greedy algorithm picks all forward edges to be updated in a
first round, it will include the nodes i1 and i2 as well as their representatives in the other blocks. The update
of the i1-type nodes essentially leads to a situation reminiscent of the one shown in Fig. 7.2, where many
backward rules must be updated one after the other. Delaying the i1-type nodes on the other hand will make
it possible to update most of the backward edges in the next round, since the cycle is broken by the edges
outgoing from the i2-type nodes. This allows for an update in 4 rounds, independent of n. In case of the
greedy algorithm, each additional block will increase the number of rounds by two. Each block consists of 4
nodes within the block and an additional node for connectivity to the right part of the line, resulting in 2n/5
rounds: up to n/10 additional rounds are required.

Delay in RLF. Figure 7.4 shows a pattern where a greedy update strategy delays the update time in terms
of rounds by a factor of Ω(

√
n). The example shown takes five rounds to update in a greedy schedule. In the

first round every forward edge is updated. From there on, there can always be a set of backward edges being
updated. None of the later backward edges can be updated, as there will always be the possibility of a loop,
since these nodes are always part of the path towards d. After each of the forward edges, a series of backward
edges is started which is interleaving with each previous forward edge (see also color pattern in the figure). If
this scenario had to be extended for an additional round, the edge pointing towards d must point to a node
close before d. From here the sequence of backward edges is created to a node close before s from which we

80

7.2 It is bad being greedy

create a new edge to d. Hence, an additional round requires the same amount of nodes as the amount of
rounds which the scenario needed, leading to Ω(

√
n) rounds. There exists a strategy, which can update the

scenario in three rounds. First, update the edge pointing towards d. Now every other node is on a different
branch than the s − d branch and hence can be updated in the second round. In the third round an update of
s concludes the network update.

7.2.2 Greedy Updates are NP-Hard

Not only can a greedy update increase the number of rounds needed for a network by a factor up to Ω(n), but
we also prove that maximizing updates for the loop-free network update problem is NP-hard, by presenting a
polynomial-time reduction from the NP-hard Minimum Hitting Set problem. This proof is similar for both
consistency models: SLF and RLF, and we can present the two variants together.

The inputs to the hitting set problem are:

1. A universe of m elements E = {ε1, ε2, . . . , εm}.

2. A set S = {S1, S2, S3, ..., Sk} of k subsets Si ⊆ E .

The objective is to find a subset E ′ ⊆ E of minimal size, such that each set Si includes at least one element
from E ′: ∀Si ∈ S ∶ Si ∩ E ′ ≠ ∅. In the following, we assume that elements are unique and can be ordered
ε1 < ε2 . . . < εm.

Theorem 8. Maximizing the updates for the loop-free network update problem is NP-hard.

The idea of the reduction is to create, in polynomial time, a legal network update instance where the problem
of choosing a maximum set of nodes, which can be updated concurrently, is equivalent to choosing a minimal
hitting set. While in the initial network configuration, essentially describing two paths from s to d, a maximal
update set can be chosen in polynomial time (simply update all but only forwarding edges), we show in the
following that already in the second round, a computationally hard problem instance can arise.

More concretely, based on a hitting set instance, we aim to construct a network update instance of the following
form, see Figure 7.5. Note that throughout this proof we, instead of using dashed lines for the new policy,
use colored lines to make it easier to follow the proof. For each element ε ∈ E , we create a pair of branches
εin and εout, i.e., 2m branches in total. To model the RLF case, in addition to the E branches, we add a
source-destination branch, from s to d, depicted on the right in the figure.

We introduce the following to-be-updated new edges:

1. Set Edges (SEs): The first type of edges models sets. Let us refer to the (ordered) elements in a given
set Si by ε

(i)
1 < ε(i)2 < ε(i)3 ⋯. For each set Si ∈ S, we now create m + 1 edges from each ε(i)j to ε(i)j+1, in

a modulo fashion. That is, we also introduce m + 1 edges from the last element to the first element of
the set. These edges start at the out branch of the smaller index and end at the in branch of the larger
index. There are no requirements on how the edges of different sets are placed with respect to each
other, as long as they are not mixed. Moreover, only one instance of multiple equivalent SEs arising in
multiple sets must be kept.

2. Anti-selector Edges (AEs): These m edges constitute the decision problem of whether an element
should be included in the minimum hitting set. AEs are created as follows: From the top of each in
branch we create a single edge to the bottom of the corresponding out branch. That is, we ensure that
an update of the edge from εini to εouti is equivalent to εi /∈ E ′, or, equivalently, every εi ∈ E ′ will not be
included in the update set.

3. Weak Edges (WEs): These edges are only needed for the relaxed loop-free case. They connect the
s-d branch to the other branches in such a way that no loops are missed. In other words, the edges aim
to emulate a strong loop-free scenario by introducing artificial sources at the bottom of each branch.
To achieve this, we create a certain number of edges from the s-branch to the bottom of every in
branch. The precise amount is explained at the detailed construction part of creating parallel edges.
See Figure 7.5 bottom-left for an example.

81

Chapter 7 Loop-free Network Updates

Figure 7.5: Example: Construction of network update instance given a hitting set instance with E =
{1,2,3, . . . ,m} and S = {{1,2,3},{1,m}}. Each element ε ∈ E is represented by a pair of
branches, one called outgoing (out) and one incoming (in). Moreover, we add a branch repre-
senting the s − d path on the very right. The black branches represent already installed rules
(either old or updated in the first round), and new rules (colored) are between the branches. There
are three types of to-be-updated, colored edges: one type represents the sets (green and purple),
one type represents element selector edges (between in and out branch, red), and one type is
required to connect the s− d path to the elements (orange). We prove that such a scenario can be
reached after one update round where all (and only) forward edges are updated. Top-left: Each
green edge represents m + 1 edges, and is used to describe the set {1,2,3}: (1,2), (2,3), (3,1).
Top-right: Each purple edge represents m + 1 edges and is used for the set {1,m}: (1,m), (m, 1).
Bottom-left: The red edges are single edges and are the element selector edges, representing the
decision if an element is part of E ′ or not. Bottom-right: Each orange edge visualizes m ⋅ (m + 1)
edges from the s-branch to the incoming branches of every ε ∈ E .

The rational is as follows. If no Anti-selector Edges (AEs) are updated, all Weak Edges (WEs) as well as all
Set Edges (SEs) can be updated simultaneously, without introducing a loop. However, since there are in total
exactly m AEs but each set of SEs are m + 1 edges (hence they will all be updated), we can conclude that
the problem reduces to selecting a maximal number of element AEs which do not introduce a loop. The set
of non-updated AEs constitutes the selected sets, the hitting set: There must be at least one element for
which there is an AE, preventing the loop. By maximizing the number of chosen AEs (maximal update set) we
minimize the hitting set.

Let us consider an example: In Figure 7.5 bottom-right, if for a set Si every AE of εi ∈ Si is updated, a cycle
is created: updating edges εin1 and εinm results in a cycle with the m + 1 edges from εout1 and εoutm .

Note that the resulting network update instance is of polynomial size (and can also be derived in polynomial
time).

In the remainder of the proof, we show that the described network update instance is indeed legal, e.g., we
have a single path from source to destination, and can be obtained after one update round.

82

7.2 It is bad being greedy

Concepts and Gadgets

Before we describe the details of the construction, we first make some fundamental observations regarding
greedy updates.

Creating Forward Edges: Delayer First we describe the delayer concept, which is required to establish
forwarding edges for the second round. Observe that forwarding edges (v1, v2), with v1 < v2, are always
updated by a greedy algorithm in the first round. A delayer is used to construct a forward edge (v1, v2), with
v1 < v2, that is created in the second round.

Figure 7.6: Delayer concept: A forwarding edge (v1, v2v3) can be created in round 2 using a helper node v3.

The delayer for edge (v1, v2) consists of two edges: an edge pointing backwards to v3 from v1 with v3 < v1,
plus an edge pointing from there to v2. The forward edge (v3, v2) will be updated in the first round, which
yields an edge (v1, v2) due to merging (see Figure 7.6).

Creating Branches We next describe how to create the in and out branches as well as the s branch
pointing to the destination d (recall Figure 7.5). This can be achieved as follows: From a node close to the
source s, we create a path of forward edges, which ends at the destination. Each of these forward edges will
be updated in the first round, and hence merged with its respective successor, which will be the destination for
the very last forward edge. The nodes belonging to these forward edges are called branching nodes. Every
node in between two branching nodes will be part of a new branch pointing to the destination. See Figure 7.7
for an example. The rightmost node before the branching node on the line will also be the topmost node on
the branch after the first round update (as long as it has an outgoing backward edge, hence not being updated
in the first round). Therefore, throughout this section we use the terms right and high (rightmost-topmost)
and left-low for the first and second round interchangeably.

Figure 7.7: Creating branches after a greedy update of forward edges.

Introducing Special Segments As we have discussed, we split the line (old path) into disjoint segments
which will become independent branches at the beginning of the second round. In addition, there will be two
special segments, one at the beginning and one at the end. The first will not even become an independent
branch at the beginning of the second round, but is merely used to realize the delayer edges.

Behind the very last segment (εin1) and just before d, there is a second special segment, which we call weak : it
is needed to create the branch with the source s at the bottom and its connections to the other εini branches.

83

Chapter 7 Loop-free Network Updates

Creating Parallel Edges In our construction, SEs come in groups of m + 1 edges. These edges must
eventually be part of a legal network update path, and must be connected in a loop-free manner. In other
words, to create the desired problem instance, we need to find a way to connect two branches b1 and b2 with
m + 1 edges, such that there is a single complete path from s to d. Furthermore, these edges should not form
a loop.

The corresponding edges can be constructed as follows, henceforth called the zigzag-approach (Figure 7.8):
Split the branch b2 into two different parts. The first part b2−b on the left side (respectively bottom of the
branch) is used to complete the path but can only be reached over backward edges. The second part b2−t
receives the incoming edges from the other branch, b1. Start at a node, say vo−1 on b1. Here create an edge to
a node of b2−t, say vi−1 and from there a backward edge to a node of b2−b, say v′i−1. Afterwards use a delayed
edge to connect to vo−1’s right (respective to the line) neighbor, vo−2. From here, create the next edge to
vi−1’s right neighbor, vi−2 and the backward edge to v′i−2 on b2−b again. Repeat this procedure m+ 1 times.

Figure 7.8: Connecting two branches with 3 edges. The backward edges shown in red assure that there will
not be a way back in the second round from the in branch to the out branch.

This zigzag construction indeed ensures loop-freedom. To see this, note that all incoming edges from the b1
branch will always connect to the b2−t part of b2. From here the way back to b1 (or potentially any other
branch that connects with b2−t) can only be completed if any of the backward edges from b2−t to b2−b has
been updated. This cannot be the case at all for the strong loop freedom definition, since no backward edge
can ever be updated and the edge is backward in the first and the second round. For relaxed loop freedom it
also cannot be updated in the first round since it would create a loop on the s − d path, which is a line of
all nodes in the first round. In the second round it will not be included since we make sure that a maximum
update always includes the WEs, which will be incoming at the very left side of b2−t and hence cannot be
updated in the same round as any backward edge on this branch.

In order to ensure that all the WEs will always be included, we create m ⋅ (m + 1) WEs to every in branch.
This is always more than the amount of backward edges on a single branch b2 since they are only created
as a path completion for the SEs. We have at most (m − 1) ⋅ (m + 1) SEs incoming in a case where this
node is connected to every other node (but itself). Choosing the WEs will immediately force that none of the
backward edges from b2−t to b2−b will be included, as they might cause a cycle on a path that might be in
between s and d.

The m ⋅ (m + 1) WEs to a branch b can be created simpler. Here we do not need to take care about other
branches being reached from the weak branch. Hence, we can create the way back to the weak branch without
the detour over the bt part. This is because the WEs will always be the incoming edges on the leftmost part
of bt without the possibility of any other parallel edges making use of them.

Connecting the Pieces

Given these concepts and building blocks, we are able to complete the construction of our problem instance.

84

7.2 It is bad being greedy

Realizing the Delayer The first created segment, temp, serves for edges that are created using the
delayer concept. This is due to our construction: every node that is created in this interval in our construction
is a forward node and therefore updated in the first greedy round. The temp segment is located right after the
source s on the line.

Realizing the Branches We create two segments for each ε ∈ E , one out and one in, and sort them in
descending global order (and depict them from left to right) with respect to ε ∈ E , with the out segment closer
to s than the in segment for each ε, i.e. temp, εoutm , εinm ,⋯, εout2 , εin2 , ε

out
1 , εin1 .

Figure 7.9: Illustration of how to split the old line into segments according to the amount of needed branches
in the second round.

Connecting the Path We now create the new path from the source s to the destination d through all the
different segments. This path requires additional edges. We ensure that these edges can always be updated
and hence do not violate the selector properties. Moreover, we ensure that they do not introduce a loop.

In order to create a branch with s at the bottom (to ensure that the proof also holds for relaxed loop-freedom),
we start our path from the source s to a node wb on the very left part of the weak segment. From here we
need to create the m ⋅ (m+ 1) connections to every other εini branch, more precisely to the very left of the top
part of this branch εini−t: the Weak Edges (WEs). Starting from wb, we create the m ⋅ (m + 1) zigzag edges
we postulated earlier (see Section 7.2.2) to the εin1 segment. Once this is done, we repeat this process for
the remaining εini connecting them in the same order block by block, as they are ordered on the line. See
Figure 7.10.

Figure 7.10: Creating the branch with the source at the bottom and m ⋅ (m + 1) connections to each εini
segment of the line, as shown in Section 7.2.2. The m ⋅ (m + 1) connections are visualized as a
single edge in the first round to enhance visibility.

At the beginning of the second round, we now have a branch with the source s at the bottom and m + 1
edges to each of the εini branches. The next step is to connect the out branches with the in branches (the
Set Edges). For each set Sj ∈ S and each pair εi, εl ∈ Sj with no ε′ ∈ Sj , εi < ε′ < εl, we create m + 1 edges
from εouti to εinl , more precisely to the top part εinl−t somewhere above the WEs. Each pair εi, εl only needs to
connect once with the m+ 1 edges, even if it occurs in several different sets of S. The last element εi of a set
Sj additionally needs to be connected to the first element of the set (the modulo edges).

After the m + 1 connections to εinm , the path returns at the rightmost (or highest in the (s, d)-branch) node
in the weak segment. From here we create a backward edge to the left part of εout1 . Here, we create m + 1
connections to every εini , which is the next larger element in any of the sets. An example is shown in Figure 7.11.

85

Chapter 7 Loop-free Network Updates

Figure 7.11: Connecting the εout1 branch with the branches εin2 , εin3 , εinm . This scenario would be created if
there were the sets: {1, 2, ...},{1, 3, ...}, {1,m}. The orange edges show the outgoing edges from
εout1 . The red edges are the backward edges from the top part of a branch εini to its bottom part
(εini−t to ε

in
i−b). The purple edges are the way back from εini to εout1 and are needed to complete

the path.

To complete the m + 1 connections for every pair, we proceed as follows: we connect the εout1 branch to all
required in-branches, then add the edge from εout1 to the εout2 branch, then add the edges from the εout2 branch
to all required in-branches, etc. Generally, we interleave adding the edges from the εouti branch to all required
in-branches and then add the i-out to (i+ 1)-out edge. Until the path arrives at the end of the last out branch,
εoutm :

• Step A - Create the set specific m + 1 edges: Here we do m + 1 connects to every successor in the
respective sets (at most once per pair). If this element is the largest element in a set, it needs to be
connected to the in part of the smallest element of this set again. Here the delayer concept needs to be
used for the modulo edges.

• Step B - Connecting the out branches: In order to create the next m + 1 connections from the next out
segment εouti+1, we need to connect it from our current out segment εouti . The edge therefore needs to
point to the rightmost part of εouti+1. Since this edge is always a backward edge in the first round (we
start closer to the destination and move backward towards the source), it will turn out to be an edge
which points to the very top of εouti+1 at the beginning of the second round. This assures that there are
no loops created, since the only way is going directly towards the destination. From here we create
an edge pointing to the very left side of εouti+1 (evolving to a backward rule from top to bottom of the
branch in the second round, hence not being part of the update set in the first nor the second round).

Figure 7.12: Connecting the in and out branches of every εi, shown in orange. The edges shown in purple are
needed to keep the path complete and the backward edges in red are needed to ensure that only
the destination can be reached from that point in the second round.

86

7.2 It is bad being greedy

To finish the construction, we need to add the anti-selector edges (AEs), and connect the in and out branches
of every single εi with each other. The goal is to create, for each given i, an edge from the top of each
εini to the bottom of each εouti . This way, if this edge is included in the update, a loop may be formed: as
every incoming edge to εini arrives below the AEs start point and every outgoing edge on εouti is above AEs
destination. The decision to not include one of these edges is equivalent to εi ∈ E ′ in the minimum hitting
set problem. In order to keep the path connected we also need to include edges from εouti to εini+1, compare
Figure 7.12. These edges will point to the top of εini+1 and therefore do not create loops, since the only way is
going directly to the destination. From here, we create another backward edge to its left neighbor such that
there is no possible other way than traversing towards d from this point. Without this backward edge it might
be possible to create loops, since it would create connections between branches, which are not both in a set Si
of the hitting set problem. Therefore, an update of one of the additional connector edges never leads to a loop
and hence, they can all be included in the update set of the second round.

The construction of these edges is straightforward. From the end of the current path which is located on the
εoutm segment, we create a delayed edge (over temp) to the very right part of the εin1 segment. From here, we
construct the path as described with a short backward edge to its left neighbor and then to the very left part
of the εouti segment and again to the very right part of the εini+1 segment afterwards, until we arrive at the very
left part of the εoutm segment.

The only thing left is to create the segments and branches for the second round. From εoutm , we create a
backward edge to the temp part. From here, we use the branching concept and connect all intermediate nodes
in between the single parts that we created on the line (see Figure 7.13).

Figure 7.13: Connecting the segments with forward edges. This creates a single branch from the dst for every
segment due to the merging. The edge shown in purple is connecting this step with the step
before.

Overview We showed how to construct valid network update problems for any instance of the NP-hard
Minimum Hitting Set problem. Within the construction, we ensured that after a greedy first round update,
we end up in a situation where choosing the maximum set of updateable nodes is equivalent to choosing the
minimal hitting set. Hence, we have not only shown that trying to find a maximum set of updateable nodes
can increase the overall update time in terms of numbers of rounds by up to a factor of Ω(n) but that it is
NP-hard to even find these solutions. This result holds true for both SLF and RLF.

7.2.3 Polynomial-Time Algorithms

While the computational hardness is disappointing, we can show that there exist several interesting specialized
and approximative algorithms.

An Optimal Algorithm There are settings where an optimal solution can be computed quickly. For
instance, it is easy to see that in the first round, in a configuration with two paths, updating all forward edges
is optimal: Forward edges never introduce any loop, and at the same time we know that backward edges can
never be updated in the first round, as this edge alone (i.e., taking effect first), immediately introduces a
loop.

We first present an algorithm for SLF, and later extend it to RLF.

Theorem 9. A maximum, SLF update set can be computed in polynomial-time in trees with two leaves.

87

Chapter 7 Loop-free Network Updates

Figure 7.14: Concept of horizontal edges shown in green. Both horizontal edges (v2, v4) and (v5, v1) are
crossing each other. The backward edge (v4, v3) is shown in red and the forward edges in purple.

Proof. Suppose the policy graph G = (V,E) (the union of old and new policy edges) is given as a straight
line drawing Π in the 2-dimensional Euclidean plane, such that the old edges of the 2-branch tree form two
disjoint segments which meet at the root of the tree (the destination), and such that each node is mapped to
a unique location. Given the graph, such a drawing resp. embedding in the plane can be computed efficiently.

Recall that there are three types of new edges in the graph (see also Figure 7.14): forward edges (F), backward
edges (B) and horizontal edges (H), hence E =H ∪B ∪ F . Moreover, recall that forward edges can always
be updated while backward edges can never be updated in SLF. Thus, the problem boils down to selecting
a maximum subset of H, pointing from one branch to the other. If there is a simple loop C ∈ G such that
HC = E(C) ∩H ≠ ∅, then ∣HC ∣ = 2 and we say that the two edges e1, e2 ∈ HC cross each other, written
e1 ×e2. See Figure 7.14 for an example of crossing edges. Note that there could be other edges which intersect
w.r.t. the drawing Π, but those are not important for us.

Now create an auxiliary graph G′ = (V ′,E′) where V ′ = {ve ∣ e ∈ H}, E′ = {(ve1 , ve2) ∣ e1, e2 ∈ H ∶ e1 × e2}.
The graph G′ is bipartite, and therefore finding a minimum vertex cover V C ∈ V (G) is equivalent to finding
maximum matching, which can be done in polynomial time. Let H ′ = {e ∣ e ∈H ∶ ve ∈ V C}, then the set H ′

is a minimum size subset of H which is not updatable. Therefore the set H ∖H ′ is the maximum size subset
of H which we can update in a SLF manner.

We conclude the proof by observing that all these algorithmic steps can be computed in polynomial time. ∎

Given the algorithm for strong loop-freedom, we next show that the result also holds for relaxed loop-freedom.

Theorem 10. A maximum, RLF update set can be computed in polynomial-time in trees with two leaves.

Proof. We prove the theorem by presenting a polynomial-time reduction to the strong loop-free case. Let us
fix the path (i.e., branch) in the tree consisting of the currently active edges which includes both the source
and the destination: P sd = (s = v0, . . . , vn = d). See Figure 7.14 for an illustration. Note that in the branch
which contains s, d there may exist some vertices which have a path to s: those vertices are irrelevant for our
construction and we just consider the path P sd of the old policy starting at s.

Let us refer to the entire path in the other branch by P2 = (u1, . . . , un), omitting the vertex d. Here, node
u1 is the node with the lowest y-coordinate in the drawing Π. In this case, we can update B edges as long
as they are not in any path from s to d. Therefore, the objective is to find the maximum subset S ⊆H ∪B
which is not part of any loop reachable from s.

Without loss of generality, we can assume that there is no B edge which connects two vertices of the path
P ds : we cannot update those edges anyway, and hence we can ignore them. If we simulate B edges with
H edges, then the the problem becomes equivalent to the SLF one which is in P . To see this, suppose
B = {e1, . . . , ek}, create a new graph G′ out of G by adding k vertices {ve1 , . . . , vek} to P sd to obtain
P ks,d = (s = v1, v

e1 , . . . , vek , v1, . . . , vn = d), and a set of edges H ′ = {(u, vei) ∣ ei ∈ B,u = tail(ei)}, where the
tail of an edge e = (u, v) is u. After that, we delete all edges in B. We can now find the maximum set of
the horizontal edges in G′ which can be updated using the same algorithm as we had for SLF. If any edge

88

7.2 It is bad being greedy

He ∈ H ′ has been chosen in the algorithm for SLF in the G′, we choose e ∈ E(G) for the update as well.
These edges together with all forward edges and the chosen edges from the set H in G′ give us the maximum
set of edges H ∈ E(G) which we can safely be updated in the RLF model in G. Let H̄ ∶= E(G) −H.

Notice that there is no loop reachable from s which uses only edges in H ∪ F in Gopt = (V (G),H), by the
construction of G′. Moreover, there is no loop in Gopt which uses edges in B and which is reachable from s.
To see the correctness of the second claim, suppose an edge e = (u, v) ∈ B is chosen such that there is a path
P which goes through an edge e′ ∈H and connects s to u. Then, in G′ there was an edge e′′ = (u, ve

′
). But

at least one of the edges e′ and e′′ has been eliminated for the update in G′ then, by the construction of the
algorithm, either there is no edge like e, or there is no path like P which goes through e′.

We proved that the solution is valid. For the optimality, we just note that there is a one-to-one relationship
between simple loops of G which are reachable from s, and loops of G′. This means that if we make G′

loop-free, we transfer G to the graph which has no loop reachable from s. So any optimal solution for G′ is
an optimal solution for G. ∎

Approximation Algorithms In scenarios for which there is no optimal polynomial time scheduling
algorithm, at least good approximations may exist. It is easy to see that the problem for strong loop-freedom
(for SLF) is 1/2-approximable in general, as the problem boils down to finding a maximum subset of H edges
which are safe to update, and at least half of the H edges are pointing out to the left resp. right, and we can
take the majority. However, for a small number of leaves, even better approximations are possible.

Theorem 11. The optimal SLF schedule is 2/3-approximable in polynomial time in scenarios with exactly
three leaves. For scenarios with four leaves, there exists a polynomial-time 7/12-approximation algorithm.

Proof. We use an approximation preserving reduction to the d-hitting set problem which is Σd
i=11/i − 1/2-

approximable [39], and particularly, we use a 3-hitting set which gives us a 2/3-approximation algorithm.

Let G = (V,E) be the update graph with at most three leaves and let H be the set of the horizontal edges. For
every closed simple loop C ⊆ G = (V,E) we have CH = E(C) ∩H ≠ ∅. Furthermore CH ≤ 3. Having these
observation we construct our hitting set as follows. Let ∣H ∣ =m and let F be a mapping one to one mapping
F ∶ H → [m]. For each simple loop Cj let CHi = {s1, s2, s3}, create a subset Si = {F (s1), F (s2), F (s3)}.
Note that if ∣CHi ∣ = 2 then we have a subset Si of size 2. There are at most ∣H ∣3 simple loops, as choosing
any set of size at most 3 edges from E forces at most one simple loop so we have totally (m

3
) loops with 3

edges in E and (m
2
) loops with two edges in E. Furthermore the hitting set for S1, . . . , St gives a minimum

set of update edges to be removed, on the other hand every subset Si is of cardinality at most 3. So it gives
4/3-approximation on the size of subset H ′ ⊆H which we do not update. On the other hand in the optimal
solution Hopt we have ∣H ′∣ ≤H or in the other word ∣Hopt∣ ≥ ∣H ′∣, so the approximation factor will be at least
(1 − 1/3)∣opt∣ which is 2/3-approximation as claimed. For the 4 leaves similar argument works so we omit the
proof. ∎

We also give a simple 1/3-approximation for RLF in an arbitrary update tree.

Lemma 5. Given an update graph G. There is a 1/3-approximation algorithm which runs in polynomial time
to find a maximum set of update edges for RLF.

Proof. For the sake of simplicity, suppose that there is no B edge in the branch which contains both source
and destination, as we cannot update any of such edges. We can update all F edges, but we need to decide
which B and H edges to update. There are two cases:

1. ∣B∣ ≥ ∣H ∣/2: Then we do not update any H edge, but we update all the B edges, This gives us at least
a ∣B∣/(∣H ∣ + ∣B∣)-approximation, which is at least a 1/3-approximation.

2. ∣B∣ < ∣H ∣/2: We arrange the H edges in an straight line drawing of G and take at least half of the edges,
which all point from right to left (or vice versa). This again this gives us a ∣H ∣/2

∣H ∣+∣B∣ ≥ 1/3 approximation
polynomial time algorithm.

∎

89

Chapter 7 Loop-free Network Updates

Figure 7.15: Left: “Looking backward in time”, an example with reversed update pattern (from dashed to solid
path). We obtain the following classification: v1 is FF; v2, v3 are FB; v4 is BB and v5, v6 are
BF. Right: Intuition why node updates can be moved from round 2 to round 1 or 3. There are
two different valid update schedules for the standard scenario. Schedule S1 is updating everything
as early as possible, e.g., FB node v2 in round 1 and BF node v6 in round 2. Schedule S2 is
updating everything as late as possible, e.g., v2 in round 2 and v6 in round 3. We depict updated
nodes without their outgoing solid edges (no new packets will be sent this way), and dashed
edges turn into solid edges.

7.3 Fast Updates Are Difficult

We have seen that maximizing the updates is not only hard to compute but can also delay the overall update,
therefore we turn to minimizing the number of rounds instead and ask: “How many rounds are needed to
update a network in a (strongly) loop-free manner?” On the one hand, the problem seems difficult: the
problem of breaking cycles even in a single round, is related to the well-known NP-hard Feedback Arc Set
Problem. On the other hand, our graphs have a very special structure, as they essentially only consist of two
simple paths (namely the old and the new policy).

In this section, we show that updating networks quickly is difficult, even for such simple graphs: while problem
instances allowing for 2-round schedules are trivial (Section 7.3.1), deciding whether 3-round schedules exist is
NP-complete (Section 7.3.2). Also recall our example from Fig. 7.2 which shows that there exist problem
instances which cannot be updated in less than Ω(n) rounds.

7.3.1 2-Round is Easy

Before we show how to find 2-round update schedules efficiently, let us introduce the following edge (resp. node)
classification, which will be useful more generally. We already discussed the notion of forward and backward
dashed edges (resp. nodes), indicating whether a dashed edge points in the same direction as the solid edge.
This distinction is useful as, for example, it is always safe to update any number of forward-pointing edges: they
can never introduce any loops. However, we can also classify edges from the other side, from the destination
and “looking backward in time”: as if we were updating edges from the dashed (“new” π2) rules to the solid
(“old” π1) ones, starting with the last round. Given this backward perspective, we can classify the old (solid)
rules as backward or forward relative to the new ones (dashed): we just need to draw the new policy as a
straight path and see, if the old rule points forward or backward.

Based on this classification, we propose two-letter codes to describe the nodes—the first letter will denote,
whether the outgoing dashed edge points forward (F) or backward (B). Similarly, the second letter will describe
the solid edge relative to the dashed path. Now, it is easy to see that in the last round, we can update any
subset of rules which are either BF or FF, just like in the first round where we can update any FB or FF. An
example can be seen in Fig. 7.15 on the left.

90

7.3 Fast Updates Are Difficult

Given this intuition, we can determine whether two rounds are sufficient: if there is any BB edge, it can neither
be updated in the first round, nor in the last, so two rounds are not enough. Otherwise, we update FBs in the
first round, BFs in the second round, and have complete freedom on when to update the FF nodes.

7.3.2 3-Round is Hard

Unfortunately, it is already NP-complete to decide whether a problem instance has a 3-round update schedule.

Theorem 12. Deciding whether a k = 3-round schedule exists is NP-complete.

The k-round problem is certainly in NP: the correctness of a schedule can be verified easily. The hardness
proof proceeds as follows. First we make a couple of observations which allow us to narrow the ground for
choosing 3-round update schedules, reducing the problem to the selection of edge subsets. Second, we will
present a slight modification of 3-Sat and—using gadgets—transform it into an instance of the edge selection
problem. Finally, the graph built using the gadgets will be patched up to a proper instance of the network
update problem (namely, two paths traversing the same set of nodes).

Classifying Nodes

When we aim for three rounds, the FB nodes can be updated in the first or second round. As we will observe
in the following, it is however never necessary to update FB nodes in the second round: everything can just as
well be done in the first round.

Lemma 6. If there exists a 3-round update schedule S which updates any nodes V ′ ⊆ V of type FB, then
there is also a 3-round update schedule which updates all nodes of V ′ in the first round. The same holds true
for nodes of type FF.

Proof. Consider the temporary forwarding graph Gt(X) = (U,X,Et) during the tth round update of S, for
t ∈ {1, 2}. Since S is correct, both G1(X) = (U,X,E1) and G2(X) = (U,X,E2) are loop-free, for any subset
X ⊆ Ut. By moving updates of forwarding nodes FB and FF from round 2 to round 1, we will make G2 only
sparser, and will hence not introduce loops. However, also G1 will remain loop-free, as the forwarding edges F⋅
respect the topological order of π1. ∎

The same argument also holds in the other direction, using our “backward perspective”: We can move BF (and
FF) updates to the last round. Therefore, without loss of generality, we focus our analysis on schedules where
all the BB nodes are updated in the middle (i.e. second) round, all FB nodes in the first round, and all the
BF nodes in the last round. Thus, the problem boils down to finding a distribution of the FF updates to the
first and the third round. As we will show in the following, finding such a distribution is NP-hard.

Fig. 7.15 provides intuition for why FB updates can be moved into the first round and BF updates in the third
round. The right part shows two different 3-round schedules for a given scenario. The FB node v3 needs to
be updated in the first round in any valid 3-round schedule, since the only BB node v4 needs to be updated in
the second round. Schedule S2 updates the FB node v2 in round 2 and schedule S1 shows that it would also
be possible to update it in the first round. The BF node v6 is updated in round 2 in S1 and delayed to round
3 in S3. According to Lemma 6, there also exists a schedule S3 updating every FB node in the first round and
every BF node in the third round (U1 = {v1, v2, v3}, U2 = {v4}, U3 = {v5, v6}).

In order to be able to update every BB node in the second round, one needs to be careful which (of the
FF) nodes to update in the first and which in the third round. Fig. 7.16 shows a snippet of a line where the
BB node v6 needs to be updated in the second round. An update of FF node v4 in the first round would
enable this update for the second round, but updating the FF node v3 as well would render an update of v6

impossible. Node v5 is B⋅ and cannot be updated in the first round, and hence an update of v6 would result in
a loop (v3 → v5 → v6 → v3).

91

Chapter 7 Loop-free Network Updates

Figure 7.16: Choosing the right set of FF nodes is important. An update of only v4 would enable the BB
node v6 to be updated in the second round. An additional update of v3 would then lead to a
loop (note that v5 will definitely not be updated in the first round).

Modifying 3-CNF

For our reduction, we take an instance of the 3-Sat problem, C, which we will eventually transform into an
instance of a network update problem that is updatable in 3 rounds, if and only if the formula is satisfiable.
However, we will first modify C, using a standard construction, and replace each appearance of a variable in C
using a new variable: concretely, a variable appearing λ times in C decays into λ + 4 new variables. By this
trick, we will reduce the number of times any (new) variable appears in the (new) formula, allowing us to
implement the low in- and out-degree requirements of our network update problem.

We create the following clauses:

1. For every variable x, we create variables

x0, x1, . . . , xpx , xl, x0, x1, . . . , xnx , xl,

where px is the number of positive appearances of x, and nx the number of negative appearances. In
every clause we replace the literals with the appropriate new variables (from the collections x1, . . . , xpx

and x1, . . . , xnx). Also, for every original variable x we add an “assignment clause” (x0 ∨ x0).

2. For every original variable we add “ implication clauses” (xi → xi+1) for i = 0 . . . px − 1 and (xi → xi+1)
for i = 0 . . . nx − 1; the last implications, for i = px resp. i = nx must lead to xl and xl respectively
((xpx → xl) and (xnx → xl)).

3. Finally, for every original variable x, we add an “exclusive clause” (¬xl ∨ ¬xl).

For each variable x, with the assignment clause, we ensure that at least one literal is true; with the exclusive
clause we ensure that at most one literal is true; and with the implication clause, we ensure that the value is
consistently preserved through all clones.

It is straightforward to translate any satisfying assignment of variables of one formula to the other, therefore
the satisfiability problem for the new formula is equivalent to the original one. We will refer to the modified
formula by C′.

Creating and Connecting the Gadgets

For the reduction, we will create (network) gadgets representing the different clauses. Concretely, first, for
every variable xi in C′, we create a node xi, which will be of type FF (we will refer to the node using the
variable’s name). The idea is that updating the node in the first round will correspond to the positive valuation
of the variable. In general, we will create for each gadget a path of solid edges pointing upward; eventually, we
will connect these paths from left to right (using solid edges), to establish policy π1.

Every clause K is encoded as a gadget in the graph using a separate solid path (drawn as a vertical line
pointing upwards) with the variable-related (xi) FF nodes on it. Above those nodes on the path, there is a
BB node, vK1 , the starting point of a backward, dashed edge that will end just below the variables with a node
vK2 (Fig. 7.17 left). The backward edge and the solid path form a cycle, which needs to be disconnected in
the first round. The only way to do this, is by updating at least one of the variable–related edges. Obviously,
the dashed, forward edges starting at the FF nodes inside the clause must reach outside the clause-related
backward edge (vK1 , vK2). In fact, they will end just below the nodes representing the variables that are followed

92

7.3 Fast Updates Are Difficult

Figure 7.17: Left: Gadget for clause xi ∨ yj ∨ zk. At least one node needs to be updated to prevent the loop
over vK1 and vK2 . Right: More details about the gadget including also the implication clause
xi → xi+1 representation, and a second clause xi+1∨wj′ ∨uk′ . It is assured that xi+1 is updated if
x1 is updated, otherwise the BB edge from xBB

i+1 would form a cycle. White nodes will eventually
be FF, black nodes BB. The grey nodes will later be assured to be of type B⋅, to guarantee that
they cannot be updated in the first round.

in the implications (see Fig. 7.17 on the right), so the dashed edge starting at the node xi will point to the
node xi+1 in a gadget representing another clause (actually it points to a special node xin

i+1 that serves as a
connecting point: we will present the details in the next paragraph; the last xi will point to xl situated in the
exclusive gadget clause for x, which we describe later). For convenience, we order the clauses from left to
right, and name the variables xi, yi, and zi with increasing i from the left to the right according to this order.
Thus, every dashed edge connecting two different gadgets points rightwards when it is a forward F⋅ edge, and
leftwards when it is a backward B⋅ edge.

For each implication clause K = (xi → xi+1), we already have the nodes representing the two variables xi and
xi+1 (lying on two separate solid paths belonging to their respective gadgets) and a dashed edge from the
antecedent, xi, to a new node xin

i+1 placed below the consequent one. The gadget (Fig. 7.17 right) assures
that if xi is updated in the first round, then xi+1 must be updated as well, or there will be a cycle in the
second round (xi → xin

i+1 → xi+1 → xBB
i+1 → xH

i → xin
i → xi): we draw a new node xBB

i+1 of type BB slightly
above xi+1 (on its solid path) and a dashed edge pointing from it to another new helper node (to meet the
in-degree constraint of the network update problem), xH

i , slightly below xi (in the figure we draw it below xin
i

as well).

Then for every exclusive clause Kx = (¬xl ∨ ¬xl) (shown in Fig. 7.18), we draw four solid paths. On the first,
the FF node xl is drawn and a dashed edge pointing from it to another helper node v1 lying on the third solid
path. Similarly, xl on the second path points, with its forward dashed edge, towards v3, which we place as the
last of the four solid paths. Above v1 and v3 we draw another pair of BB nodes, v2 and v4 respectively. Then
v2 points back to the second solid path with its backward dashed edge, to another new node, xH

l placed just
below xl on the first path. In the same manner, the backward edge starting at v4 ends with xH

l below xl.
This way, updating both xl and xl in the first round will result in a cycle in the second round, since, as we
know, all BBs must be updated in the second round. The cycle which can exist in the second round includes
the following nodes xl, v1, v2, x

H
l , xin

l , xl, v3, v4, x
H
l , xin

l , xl. xl and xl have been updated in the first round,
the nodes v2 and v4 have been updated in the second round and the rest of the nodes in the cycle (the grey
nodes) have not been updated yet. It will be later assured that they are of type B⋅ and therefore cannot be
updated in the first round, hence making a scenario possible where they are delayed until the end of the second
round. Therefore an update of both xl and xl is not possible in the first round.

93

Chapter 7 Loop-free Network Updates

Figure 7.18: Gadget for exclusive clause. An update of either xl or xl prevents the other one from being
updateable: the BB nodes v2 and v4 would form a cycle in the second round.

While the composition of gadgets described so far is not yet a proper instance of a network update problem,
we can already make some observations about the graph.

Theorem 13. If setting VT ⊂ V ar(C′) to true satisfies the formula, then there is no cycle (⇒). Moreover, a
cycle-free update schedule gives us a satisfying variable assignment (⇐).

Proof. We prove the two directions ⇒ and ⇐ in turn.

⇒: Cycles are composed of: dashed edges starting at VT nodes, solid edges starting at any other nodes to get
somewhere, and any edges starting at BB nodes to get back. We will show that by following an arbitrary path
consisting only of the listed edge types, we will never return to the starting point of the path. If the path ever
chooses to take an FF updated dashed edge (starting at xi), it will need to continue with edges starting at
xi+1 up to xl (this is ensured by the implications), and there is no way back from there: it cannot constitute a
cycle. Conversely, a path which does not take any FF dashed edges would not be able to jump from one of
the solid, vertical paths to another one more to the right, so if it returns to the starting point, it must use
nodes lying on one of the solid paths. At the same time, a cycle on one of the solid paths would mean that
one of the clauses is not satisfied, which contradicts the definition of VT .

⇐: Clearly, the construction assures that if the formula C′ is not satisfiable, when we have a selection of FF
nodes which make the situation with all BB edges (which must be updated) acyclic then each clause must be
true: it contains a true variable showing a path out of the cycle. ∎

Connecting the Pieces

The presented gadgets leave us with a number of independent solid paths and many dashed edges starting at
nodes of particular types (FF or BB). In order for the network to represent a valid problem instance, we need
to connect the solid paths as well as the dashed paths. Our goal is to connect the solid path from left to right
(and vertical lines are from bottom to top). The dashed path will be more complicated.

Let us first focus on connecting the dashed edges to a path. From the endpoint of each dashed edge, we
will draw a backward dashed edge to a completely new node (one for each) placed far left from our solid
paths. Hence, all nodes in R — the set of new nodes — will appear earlier in the concluding solid path:
edges pointing to R are backward, edges pointing away from R forward. Then we connect all the resulting
2-length dashed paths (including the previously constructed dashed ones, and the new ones pointing to R),
using forward dashed edges starting at the new nodes, as described in the following.

Some of the nodes in our gadgets were of type BB while the others were FF. Recall, that these type-properties
are fairly local: we only need to look at the next node on the solid path and determine if it is preceding on the
dashed path. To preserve the types of the nodes, we must therefore connect the 2-length paths in a correct
order — first come the FF dashed edges, then the clause-related downward-pointing BB edges and in the end
implication-related horizontal BB edges. In each of these groups the edges starting more to the left should
precede those more to the right. Also – to ensure, that all the type assignment clause-related edges indeed
start with a BB node – above each of those nodes vC1 , in their respective gadgets, we draw a new node vCb . On

94

7.4 Relaxed Loop-Free Updates Are Tractable

Figure 7.19: Overview of how the path is connected. The grey nodes are used to connect everything into one
solid path. They also join the dashed path at the last nodes. This way, all nodes in R (white
cycles) are of type FF.

each of the four solid paths used in the gadgets for the exclusive clauses Kx, we do the same: we create nodes
vKx

b 1
, . . . , vKx

b 4
. Then we connect all the vb’s into a dashed path going from right to left. The path must be

connected to the beginning of the dashed path we composed before, which will ensure the BB property of the
previous nodes: the solid edge now points backwards relative to the dashed path. Each of the new vCb nodes
will be of type BF. The nodes in R are ordered so that the dashed path ends at the leftmost node.

The nodes of R are positioned in a row, followed by our vertical solid paths. We draw a new node above
each of them, connect it with a solid edge and connect the new node with what is next in the row, from the
top of a vertical path to the bottom of the next one (Fig. 7.19). This way, we finally have one solid path.
The new nodes are connected by a chain of forward dashed edges (so they can all be updated). In the end
we add a starting node, which points with the solid edge to the leftmost R node, and with the dashed edge
to the beginning of the dashed path which is the beginning of the path we constructed to ensure the BB
properties (this point is BF).

It is important to note that in the last steps we have not jeopardized the reduction by introducing disconnections
of the gadget-BB edges, nor have we created any loops that cannot be easily broken (by updating all the
empty nodes in Fig. 7.19). Therefore, the possibility of making the second round cycle-free in our instance is
still equivalent to the satisfiability of C′, which makes the 3-round network update problem NP-hard.

7.4 Relaxed Loop-Free Updates Are Tractable

Given the potentially large number of rounds required to update a network in a strongly loop-free manner,
we now propose to relax loop-freedom to only include actually used paths, between source and destination.
We believe that this is an attractive alternative: although some unlucky packets currently on transit on an
edge may end up in a (temporary) loop, we will never route any packets entering the network at the source
into a loop. Moreover, as we will see, relaxing the loop-freedom is also attractive because it enables fast and
computationally tractable updates. (Recall also the example in Fig. 7.2 which permitted a 3-round solution
for RLF while SLF required n − 1 rounds.) In particular, we will present a fast and elegant algorithm which

95

Chapter 7 Loop-free Network Updates

Algorithm 7: Peacock
Input: initial network G0, set of to-be-updated nodes U
Output: (relaxed) loop-free schedule (U1, U2, . . . , Uk)
1: G← G0, t← 0, for all t: Ut ← ∅
2: while (G contains more than one node) do
3: t + +
4: X ← U ∖U<t
5: if (t odd) then
6: sort dashed forward edges in out2(X)
7: for u ∈X, starting with max forward distance do
8: if (∄v ∈ Ut s.t. (v < u < out2(v)) ∨ (v < out2(u) < out2(v))) then
9: add u to Ut

10: else
11: add to Ut all nodes not on the path from s to d
12: return (U1, U2, . . . , Ut)

Figure 7.20: Example execution of Peacock. Updated nodes are shown in white. The initial network is a line
(on the left). An update of the node with the largest distance v3 and the merging of v3 and v8
leads to a tree shown for round 2. Here the nodes v4 − v7 can be updated since they are not on
the s − d path. This results in a line again, shown for round 3. In round 4, v1 will be updated
before the last node, which will be updated in round 5.

never requires more than O(logn) rounds: a potentially large gain given the Ω(n) lower bound for stronger
models.

Before presenting the algorithm in detail, note that during its execution, our algorithm will repeatedly perform
node merging : merge a node v with the node out2(v) after its update. The merging can also be done for
several subsequent nodes in a single round if all of them are being update, or merging single nodes one by one
in already merged nodes.

The proposed algorithm Peacock1 is based on repeated node merging, and hence tree shrinking : starting from
the line, it constructs various trees of decreasing sizes, until only a single node is left. At this point, the update
is complete and the algorithm terminates. As we will see, Peacock manages to decrease the remaining network
size by at least a constant factor, for each pair of consecutive rounds, resulting in the O(logn)-round upper
bound.

Concretely, Peacock toggles between two simple strategies:

1. Shortcut: In odd rounds (i.e., in the 1st, 3rd, etc. round), Peacock tries to reduce the distance between
source s and destination d as much as possible, by updating a disjoint set of “far-reaching” (dashed)

1The name of the algorithm is due to its branch resp. “feather” spreading strategy.

96

7.4 Relaxed Loop-Free Updates Are Tractable

forward edges: we define the distance of a dashed edge as the number of solid edges it skips on the
current path from s to d. The idea is that by updating these far-reaching edges, we obtain a tree with
many branches (of which only one contains the s-d path).

2. Prune (and re-establish line): In the even rounds (i.e., in the 2nd, 4th, etc. round), Peacock updates
all nodes which are not on the current path from s to d. Since in the preceding odd round we shortened
the length of the path from s to d, we can now update a significant number of nodes (namely a constant
fraction of the still to-be-updated ones), and due to the subsequent merging operation, the resulting
network size is significantly reduced. Intriguingly, the even round, after pruning and merging nodes, will
always result in a simple line network again. Based on this line, we can easily determine the next set of
far-reaching updatable edges again, enabling a subsequent “productive” even round.

Algorithm 7 gives the formal listing for Peacock and Fig. 7.20 illustrates an example. In the first round there
is only one node (v3) updated. Peacock is in the Shortcut phase and updates the “far reaching” edges. Once
it adds node v3 there is no other dashed forward edge remaining which is not interfering with the update of v3.
Hence Peacock switches to the Prune phase in round 2 and updates every node which is not on the s − d
path (v4, v5, v6, v7). Peacock then uses the Shortcut strategy again in round 3.

Theorem 14. Peacock solves any problem instance in O(logn) rounds.

Proof. We will make use of two helper lemmas, one targeting odd rounds (the extent to which the distance
from s to d can be shortened) and one targeting even rounds (the number of nodes which can be pruned to
produce a smaller resulting tree). We will see that after each pair of a consecutive odd and even round, only a
constant fraction of nodes is left due to merging.

Lemma 7. In each odd round, Peacock reduces the number of nodes on the solid path from s to d by nt/3,
where nt is the number of nodes on the path.

Proof. Peacock orders the nodes in decreasing order of distance, i.e., the number of solid edges they bridge.
Including a node v (and its dashed edge), may block other nodes (resp. their intervals) from being scheduled
in this round. However, due to the descending distance order, the set of blocked dashed edges span at most
twice the distance from v to out2(v) on the current path: since we choose a maximal distance edge (say of
distance x), edges entering or exiting the corresponding interval may block at most an additional distance of
2x. Assuming that these distances cannot be covered by any other updates, Peacock loses at most twice the
distance which it covered. This leaves, in the worst case, at most 2nt/3 nodes on the path from s to d. ∎

Lemma 8. Peacock can simultaneously update all nodes which are not on the path from s to d. The
subsequent merge operation, re-establishes the line topology. .

Proof. First, we observe that by updating these nodes, we cannot introduce any loop, since we do not touch
any outgoing dashed edges. Dashed edges, at any time, must form a simple path. Each branch which is
currently not on the s-d path will therefore point with at least one new rule to the s-d branch. All nodes of
the branch can hence be merged with the respective nodes of the new rules on the s-d branch: a line topology.
Also note that the source s does not necessarily have to be at the leaf of a tree. But also in this case, it is
possible to update everything on the branch below s. Imagine a node u′ which is not on the (solid s − d)
path. Due to node merging, this node will be merged with out(u′), which itself is now either part of the s − d
path, or will be updated together with another node. Thus, we will successively merge nodes until a node
(necessarily) lies on the s − d path and will not be updated. This leads to a line with s as a leaf. ∎

Lemma 7 shows that Peacock reduces the number of nodes on the s-d path by nr/3 if the underlying network
is a line. All of these nodes are not part of the s-d path in the next round, and on different branches. This
shows that an update of these nodes is possible in even rounds without introducing a (relaxed) loop. Since,
according to Lemma 8, an update of every node but those on the s-d path leads to a line again, we have
shown that the number of remaining nodes is reduced by a third every second round. The number of rounds is
hence logarithmic. ∎

97

Chapter 7 Loop-free Network Updates

7.5 Related Work

Our work is motivated by the SDN paradigm, and especially its traffic engineering flexibilities and its support
for a programmatic, dynamic, yet formally verifiable network management. [53] Indeed, a more flexible traffic
engineering, that is, selection of forwarding policies, is considered one of the main motivations for SDN, and
has been studied intensively over the last years. [45, 56] Our work is orthogonal to this line of research, in the
sense that in our model, the policies are given and can be arbitrary.

The problem of updating [27, 65, 77, 82, 95], synthesizing [83] and checking [66] policies [88] as well as
routes [28] has also been studied intensively. In their seminal work, Reitblatt et al. [95] initiated the study of
network updates providing strong, per-packet consistency guarantees, and the authors also presented a 2-phase
commit protocol. This protocol also forms the basis of the distributed control plane implementation in [27].

Mahajan and Wattenhofer [82] started investigating weaker transient consistency properties—in particular
also (strong) loop-freedom—for destination-based routing policies. Mahajan and Wattenhofer proposed an
algorithm to “greedily” select a maximum number of edges which can be used early during the policy installation
process. Our work builds upon [82], but focuses on an alternative, round-based model to measure policy
installation times, and also shows that a greedy strategy can lead to a large number of communication rounds.
The measurement studies in [65] and [72] provide empirical evidence for the non-negligible time and high
variance of switch updates, further motivating our work.

7.6 Summary

We show that dynamically updating a network is not a simple task. In fact, both objectives, trying to maximize
the updates per round as well as trying to minimize the number of rounds turn out to be NP-hard. Nevertheless
it is important to choose the right objective as we also find that trying to maximize the number of updates
for SLF might unrevokably increase the number of rounds needed by up to a factor of Ω(n). However, we
also describe fast (approximation-) algorithms for maximizing the number of updates per round for specific
problem instances.

We introduce RLF as a more practical version of the SLF constraint and show that maximizing the number of
updates for RLF can increase the number of rounds needed by up to a factor of Ω(

√
n). Finally we introduce

Peacock, which polynomialy solves any problem instance within O(logn) rounds.

We believe that our work opens interesting questions for future research. Most importantly, it would be
interesting to derive ω(1)-round lower bounds, or show that O(1)-round schedules for relaxed loop-free
problems always exist. Our computational experiments (using mixed integer programs) indicate that larger
problem instances require more rounds. So far, the worst problem instance (consisting of 1,000 nodes) we
found requires seven rounds.

98

8
Waypoint Enforced Network Updates

Our results in Chapter 7 show that performing dynamic updates under the loop-freedom constraint is a complex
problem. Unfortunately, loop freedom is not the only constraint, which needs to be taken into account. More
and more network functionality is virtualized and employed anywhere in the network. We hence identify and
study a new fundamental transient property, namely Waypoint Enforcement (WPE). WPE is an important
property in today’s increasingly virtualized networks where functionality is introduced also in the network
core. For example, in security-critical environments (e.g., in a financial institution), it is required that packets
traverse certain checkpoints, for instance, an access control function (implemented by e.g., a middlebox [104],
an SDN match-action switch [73], or an NFV function [41]), before entering a protected network domain. In
other words, to prevent a bad packet from entering a protected domain, not only the old policy π1 as well as
the new policy π2 must ensure WPE, but also any other transient configuration or policy combination that
may arise during the network update. So far, waypoints could only be enforced using the two-phase commit
approach, which by definition implies that new links can never be used earlier [82].

Contribution

This section introduces an important new transient consistency property, namely Waypoint Enforcement (WPE),
and shows that at the heart of the WPE property lie a number of interesting fundamental problems. In
particular, we show that WPE may easily be violated if no care is taken. Motivated by this observation, we
present an algorithm WayUp that provably updates policies in a consistent manner, while minimizing the
number of controller interactions.

We show that WPE cannot always be implemented in a wait-free manner, in the sense that the controller must
rely on an upper bound estimation for the maximal packet latency in the network. Moreover, the transient
Waypoint Enforcement WPE property may conflict with Loop-Freedom LF, in the sense that both properties
may not be implementable simultaneously. Subsequently, we formally prove that that deciding whether a
network update schedule satisfying both consistency properties, LF and WPE, exists, is NP-hard. We hence,
present an optimal policy update algorithm OptRounds, which provably requires the minimum number of
communication rounds while ensuring both WPE and LF, whenever this is possible, to investigate the problem
scale on small- to mid-sized scenarios.

To measure the “speed” of a network update algorithm, we again use the metric round complexity : the number
of sequential controller interactions needed during an update. We believe that optimizing the round complexity
is natural given the time it takes to update an individual OpenFlow switch today (see, e.g. [65]). Especially for
scaling service chains on large NFV-enabled networks, as, e.g., envisioned by the UNIFY project [9], quickly

99

Chapter 8 Waypoint Enforced Network Updates

Figure 8.1: Updating all nodes in one round may violate WPE.

updating policies while guaranteeing correctness will be of importance [90]. Moreover, this section also shows
that the optimization of existing metrics, like the number of currently updated links [82], may fail to install
the policy entirely: a deadlock configuration may occur where the policy installation cannot be completed.

Example

In order to acquaint ourselves with the problem of fast and consistent network updates fulfilling Waypoint
Enforcement (WPE) and Loop-Freedom (LF), in this section, we consider a simple example. If not otherwise
mentioned, the results in this chapter hold true for both definitions of loop-freedom (RLF and SLF), and we
hence, refer simply to LF.

We stick to the model introduced in Chapter 7, hence updating an old policy π1 (solid line) to a new policy
π2 (dashed line). In Figure 8.1 an example including a waypoint is given. The old policy π1 connects four
nodes, from left to right (depicted as a straight, solid line, s→ v1 → v2 → d); the new policy π2 is shown as a
dashed line. The second node, v1 (in black), represents the waypoint which needs to be enforced.

How does the introduction of a waypoint changes the strategy of updating the policy π1 to π2? The simple
solution to update all nodes concurrently has been already ruled out as it does not enforce LF. Indeed it also
may cause problems with a waypoint. For example, if s is updated before v1 and v2 are updated, a temporary
forwarding path may emerge which violates WPE: packets originating at s will be sent to v2 and from there
to the destination d—the waypoint v1 is bypassed.

The solution to perform the update in two (communication) rounds this time also does not hold: in the first
round, only v1 and v2 are updated, and in a second round the controller also updates s. Note that this 2-round
strategy indeed maintains the waypoint at any time during the policy update. However, the resulting solution
may still be problematic, as it violates loop-freedom: if the update for node v2 arrives before the update at
node v1, packets may be forwarded in a loop, from node v1 to v2 and back.

Both Waypoint Enforcement WPE as well as Loop-Freedom LF can be ensured (for this specific example) in a
three-round update: in the first round, only v1 is updated, in the next round v2, and finally s.

We, in this chapter, are interested in dynamic consistent network updates which ensure not only LF but also
WPE.

8.1 Ensuring Only Waypoint Enforcement

It turns out that the transient enforcement of a waypoint is non-trivial. We first show an interesting negative
result: it is not possible to implement WPE in a “wait-free manner”, in the following sense: a controller does
not only need to wait until the switches have acknowledged the policy updates of round i before sending out
the updates of round i + 1, but the controller also needs some estimate of the maximal packet latency: if a
packet can take an arbitrary amount of time to traverse the network, it is never safe to send out a policy
update for certain scenarios. We are not aware of any other transient property for which such a negative result
exists. For ease of presentation, we will use the notation π<wpi to refer to the first part of the route given by

100

8.1 Ensuring Only Waypoint Enforcement

Algorithm 8: WayUp

1 Input: old policy π1, new policy π2, threshold θ
2 update nodes of π2 which are not in π1

3 update nodes of π>wp1 with backw. rules in π<wp2

4 update remaining nodes of π<wp2

5 wait θ
6 update nodes of π>wp2

policy πi, namely the sub-path from the source to the waypoint, and π>wpi to refer to the second part from
the waypoint to the destination.

Theorem 15. In an asynchronous environment, a new policy can never be installed without risking the
violation of WPE, if a node is part of π<wp1 and π>wp2 .

Proof. Consider the example in Figure 8.1 again, but imagine that the waypoint is on node v2 and not on
node v1, and assume the following update strategy: in the first round, s and v2 are updated, and in the second
round, v1. This strategy clearly ensures WPE, if (but only if) the updates of round 2 are sent out after packets
forwarded according to the rules before round 1 have left the system. However, if packets can incur arbitrary
delays, then there might always be packets left which are still traversing the old (solid) path from s to v1.
These packets have not been routed via the waypoint (v2) so far but will be sent out to v3 by v1 in the new
path, violating the WPE property. This problem also exists for any other update strategy. ∎

Fortunately, in practice, packets do not incur arbitrary delays, and Theorem 15 may only be of theoretical
interest: it is often safe to provide an update algorithm with some good upper bound θ on the maximal packet
latency. The upper bound θ can be seen as a parameter to tune the safety margin: the higher θ, the higher
the probability that any packet is actually waypoint enforced.

With these concepts in mind, we now describe our algorithm WayUp which always ensures correct network
updates, i.e., updates which consistently implement WPE if the maximal packet transmission time is bounded
by θ. We define v1 ≺πi v2 to express that a node v1 is visited before v2 on πi and accordingly, an update rule
(v2, v1) with v1 ≺π1 v2 is a backward rule (see also Chapter 6).

The round complexity of WayUp is four : in the first round, all nodes are updated which were not part of the
old policy π1, and therefore do not have an impact on current packets (as shown in Figure 6.1). In the second
round, each node behind the waypoint (i.e., π>wp1) which is part of π<wp2 and which has a backward rule, is
updated. This allows us to update the remaining nodes from π<wp2 in the third round, since each packet which
is sent “behind“ the waypoint will eventually come back, according to the consistency properties of the new
policy. After this round, the algorithm will wait θ time to ensure that no packet is on π<wp1 anymore. In the
fourth round it is possible to update all nodes of π>wp2 in one round, because the update cannot interfere with
π<wp2 anymore, and hence it cannot violate WPE.

Theorem 16. WayUp takes four rounds and guarantees the WPE property at any time.

Proof. The round complexity follows from the algorithm definition. The transient consistency can be proved
line-by-line: Line 2 of Algorithm 8 cannot violate WPE since no packet is crossing any of these nodes. Line 3
does not interfere with π<wp1 and therefore each packet will still be sent via π<wp1 towards the waypoint. As
long as π2 is consistent, any packet that reaches any node of π<wp2 will eventually reach the waypoint during
Line 4, since all backward rules are already updated and no rule will bypass them. In Line 6, WPE is already
guaranteed, since π<wp2 is already in place and θ time has elapsed. ∎

101

Chapter 8 Waypoint Enforced Network Updates

Figure 8.2: WPE and LF may conflict.

8.2 Incorporating Loop-freedom

The update strategy WayUp presented in the previous section provably fulfills WPE at any time. However,
it may violate LF. In this section we determine if WPE and LF can always coexist for dynamic updates and
study the complexity on deciding if a scenario is solvable adhering to both properties.

8.2.1 Loop-freedom and Waypoint Enforcement May Conflict

This section also starts with a negative result: WPE and LF may conflict, i.e., it is sometimes impossible to
simultaneously guarantee both properties.

Theorem 17. WPE and LF may conflict.

Proof. Consider the example depicted in Figure 8.2. Clearly, the source s can only be updated once v3 is
updated, otherwise packets will be sent to d directly, which violates WPE. An update of v3 can only be
scheduled after an update of v2 without risking the violation of LF. However, v2 needs to wait for v1 to be
updated for the same reasons. This leaves an update of v1 as the last possibility, which however violates WPE
again. Hence there is no update schedule which does not violate either WPE or LF. ∎

Fortunately, in practice, such conflicts can be identified, and if they exist, can be resolved with other mechanisms
(e.g., by sacrificing speed and using the PPC algorithm described in [95]). In the following, we will focus
on algorithms which find efficient policy updates for scenarios where WPE and LF do not conflict. A naive
approach to find such a consistent update may be to split the update into two distinct parts: the part before
and the part after the waypoint, i.e., π<wp2 and π>wp2 , and use a LF update algorithm on both parts (e.g.,
Peacock). Unfortunately, this approach can fail: only if π>wp2 has no overlaps with π<wp1 and vice versa, and
if π<wp2 has no overlaps with π>wp1 , it is safe to update both paths in parallel. This result even holds for
a consecutive update of π<wp2 and π>wp2 . The new policy shown in Figure 8.1 cannot be updated without
inducing loops on π>wp1 (i.e., s2 → s3 → s2) if π

<wp
2 is updated first; and a similar example can be constructed

for a schedule where π>wp2 is updated first.

Comparing Objectives

We have already shown in Section 7.2 that a single greedy round in SLF may change the required number
of rounds from O(1) to Ω(n). Even worse with the addition of waypoints, a greedy algorithm may not only
increase the number of rounds, but it may fail to find a valid solution entirely. The only possible updates for
the scenario in Figure 8.3 are the updates s and v1. Updating both of them leads to a situation where no
more nodes can be updated, since they are either violating WPE (v2 and v3) or LF (v4 and v5). The only
possible update schedule delays s and only updates v1.

102

8.2 Incorporating Loop-freedom

Figure 8.3: Scenario in which a single round of greedy updates renders the scenario to be unsolvable.

8.2.2 Determining if a Scenario is Solvable is NP-Hard

Given the knowledge that LF and WPE might conflict and even applying the wrong update strategy might
leed to unsolvable scenarios, we are interested in identifying these scenarios. As shown in the following, this
turns out to be an NP-hard problem. Hence, in this section we present how to construct a network update
instance according to a 3-SAT formula which is updatable if and only if the 3-SAT formula is satisfiable. We
refer to the 3-SAT formula as C and to network update instance as G(C).

Notation

In our reduction we assume that each clause in 3-SAT has exactly 3 literals. We will denote the number of
variables as k and the number of clauses as m. The variables will be denoted as x1, x2, . . . , xk and the clauses
as K1,K2, . . . ,Km. We will denote the total number of clauses with variable xi as mi, number of clauses
with literal xi as pi and number of clauses with literal ¬xi as qi. We will also denote the clauses with literal
xi as P i1, P

i
2, . . . , P

i
pi and the clauses with literal ¬xi as Qi1,Qi2, . . . ,Qipi .

General Structure

In the constructed instance there will be a destination d, waypoint wp and auxiliary nodes u1, u2, u3 and δ.
For each variable and each clause in 3-SAT we create a gadget. In addition, for each clause we add three
nodes di1, d

i
2, d

i
3 and for each variable we add m nodes r1

j , . . . , r
m
j . The source of the path will be the first

node in the first clause gadget. The order of gadgets and nodes is presented in Figure 8.4.

In a gadget for variable xi there will be a set of nodes connected with clauses containing xi. Updating one of
those edges connecting a clause with the gadget will allow to untangle the corresponding clause (we will define
untangling in Section 8.2.2; generally speaking in order to untangle a clause we need to update one of its
edges which corresponds to satisfying it in 3-SAT formula). The variable gadgets will be constructed such
that until all clauses are untangled only the edges corresponding to one literal (xi or ¬xi) can be updated.
Therefore the constructed instance will be solvable only if we can untangle all clauses using one literal for each
variable, which corresponds to satisfying 3-SAT formula.

K1 K2 Km

r1k+1
r1k

r11 rmk+1
rmk rm1

u1 u2 u3 wp x1 x2 xk
δ

d11 d12
dm3

d

Figure 8.4: Order of gadgets and nodes.

Variable Gadgets

For each variable xj we construct a gadget consisting of four nodes vj1, v
j
2, v

j
3, v

j
4. These nodes are connected

with the edges (vj1, v
j
3) and (vj2, v

j
4) and there is an edge from vj4 to first node of next variable gadget, vj+1

1

(and in case of the last variable gadget there is an edge from vk4 to δ). Note that these nodes vj4 and vj+1
1

103

Chapter 8 Waypoint Enforced Network Updates

would be combined in our model, but it makes no difference for the problem if we keep both and the proof is
easier to follow if we treat them seperately. In the gadget there are also nodes yj1, y

j
2, . . . , y

j
pi between vj1 and

vj2 and nodes zj1, z
j
2, . . . , z

j
qi between vj3 and vj4. Clauses P

j
1 , P

j
2 , . . . , P

j
pi will be connected to yj1, y

j
2, . . . , y

j
pi ,

and updating an edge yji will allow clause P ji to become untangled. Similarly clauses Qj1,Q
j
2, . . . ,Q

j
qi will

be connected to zj1, z
j
2, . . . , z

j
qi . In turn nodes yj1, y

j
2, . . . , y

j
pi can be updated only if vj1 is updated, and

zj1, z
j
2, . . . , z

j
qi if vj2 is updated and vj1 is not updated (or all clauses are already untangled). That will allow us

to conclude the value of xj based on whether before all clauses become untangled vj1 is updated or not. A
construction of the gadget is presented in Figure 8.5.

vj−1
4 vj+1

1vj1 vj2 vj3 vj4

yjpiy
j
pi−1

yj1

zjqi
zjqi−1 zj1

xj
xj−1 xj+1

Figure 8.5: Construction of a variable gadget for xj .

Clause Gadgets

For each clause Ki we construct a gadget consisting of nodes ci1, c
i
2, . . . , c

i
6. Also for each clause we add three

nodes (outside of the gadget, close to d, see also Figure 8.4) di1, d
i
2, d

i
3. For each j ∈ {1,2,3} we add edges

(cij , dij) and (dij , cij+3). The purpose of nodes di1, d
i
2 and di3 is to delay the update of nodes ci1, c

i
2 and ci3 until

all the clauses are untangled. The construction of a clause gadget is shown in Figure 8.6.

ci1 ci2 ci3 ci4 ci5 ci6 wp di1 di2 di3

Figure 8.6: Construction of a clause gadget.

Connecting the Gadgets

Let us consider variable xi. Let Kj = P ia be any clause containing literal xi. Then we connect one of the nodes
cj4, c

j
5, c

j
6 to node yia, and this node to respectively cj+1

1 , cj+1
2 or cj+1

3 (if Kj is the last clause than to u1, u2

or u3 instead). Note, that the nodes yi1, . . . , y
i
pi are in reverse order than clauses P i1, . . . , P

i
pi (so the earliest

clause is connected to the last node). We proceed similarly with clauses Qi1, . . . ,Q
i
qi and nodes zi1, . . . , z

i
qi .

104

8.2 Incorporating Loop-freedom

P i1 P i2 P ipi xi

Figure 8.7: Edges to connect clauses.

Connecting the Whole Graph

In addition to the gadgets we need to connect the path to the destination d, the waypoint node wp and the
three nodes u1, u2, u3 which will be in the old policy just before the waypoint. We add edges from u3 to
wp, from wp to v1

1 , from u1 to c12 and from u2 to c13. After every i-th clause gadget we create k + 1 nodes
ri1, r

i
2, . . . , r

i
k+1 in reverse order, i.e. rik+1 is the first node after the gadget and ri1 is the last. For each variable

xi we create a path starting in vi3, then going through nodes rmi , r
m−1
i , . . . , r1

i and ending in vi2. We also
create a similar path starting in δ, then going through nodes rmk+1, r

m−1
k+1 , . . . , r

1
k+1 and ending in vid. All these

edges are shown in Figure 8.8.

Figure 8.8: Connecting all paths.

Proof of Correctness

In this section we prove, that the reduction is correct. We say that a clause (or clause gadget) is untangled if
at least one of the nodes ci4, c

i
5 or ci6 is updated. We say that a clause is tangled if it is not untangled.

Theorem 18. If C is satisfiable then there is a schedule for G(C) which satisfies SLF and WPE.

Proof. Let σ be an assignment that satisfies C. Then based on σ we show how to update all nodes in G(C)
without violating SLF or WPE. The nodes will be updated according to the following round schedule:

105

Chapter 8 Waypoint Enforced Network Updates

1. For each variable xi we update vi2. Also if σ(xi) = 1 we update vi1 (which makes the update of vi2
irrelevant as it bypasses vi2).

2. For each variable xi we update either nodes yi1, . . . , y
i
pi , if σ(xi) = 1, or nodes zi1, . . . , z

i
qi otherwise.

3. Since for each clause Kj there is at least one literal that satisfies it, we update one of nodes cj4, c
j
5, c

j
6

which is connected to that literal. The path after these updates is shown on Figure 8.9.

4. We update nodes rij for all i, j. This can be done, since every clause has at least one outgoing edge
and every rij edge has a clause in between.

5. We update nodes vi3, for all i, and node δ, which connects the path updated in round 4 with the
reachable parts behind the waypoint.

6. We update those nodes vi1 that were not updated earlier, as the path starting at vi3 is now loop-free.

7. We update those nodes yij and z
i
j that were not updated earlier.

8. We update those nodes cj4, c
j
5 and cj6 that were not updated earlier.

9. We update nodes dj1, d
j
2, d

j
3, for all j.

10. We update nodes cj1, c
j
2, c

j
3, for all j.

11. We update nodes u1, u2, u3 and wp.

Note that none of those updates violates WPE or SLF.

∎

Figure 8.9: The path after three rounds of updating according to schedule in proof of Theorem 18.

Theorem 19. If there is a schedule for G(C) which satisfies RLF and WPE then C is satisfiable.

We will start by proving the following lemma:

Lemma 9. In any correct order of updating edges, as long as some clause gadgets remain tangled, the
following conditions hold:

1. A node yij can be updated only if node vi1 is updated. A node zij can be updated only if node vi2 is
updated. Nodes zij and v

i
1 cannot be both updated.

2. A node rij , for any i ∈ {1, . . . ,m} and j ∈ {1, . . . , k + 1}, can be updated only if i-th clause gadget is
untangled.

3. A node cij , for j ∈ {4,5,6} can be updated only if its successor is already updated or if there is
h ∈ {4,5,6} such that h < j and cih is already updated.

4. A node vi3, for any i, can be updated if for all j ∈ {0, 1, . . . ,m} rji is updated or if vi2 is updated, but vi1
is not. The same applies to node δ.

5. Nodes di1 and di2 and di3, for any i, cannot be updated.

106

8.2 Incorporating Loop-freedom

6. Node ci3 cannot be updated. Node ci2 can be updated only if ci−1
6 and its successor are updated, ci−1

5 or
its successor are not updated and ci−1

4 or its successor are not updated. ci1 can be updated only if ci−1
4

or its successor are not updated and either ci−1
6 and its successor or ci−1

5 and its successor are updated.

Before proving the lemma, let us make some observations about what these conditions mean in terms of path
traversed by packets. The Conditions 1 and 4 guarantee, that if a packet is in vi1 or vi2, for some i, then it will
be forwarded to node δ without going through wp. That is because it uses edges from vj1 and vj2 to bypass
any backward edges. Then the Condition 5 guarantees that it goes from δ to d without passing through
waypoint.

The Conditions 2, 3 and 6 guarantee that a packet will traverse from the source through all the clauses until it
reaches the waypoint. That is because for each clause if it is untangled, then the packet will be forwarded
from some cij to y

a
l , and then, as yal must have been updated before cij , it goes back to ci+1

j−3. On the other
hand if the clause is tangled, the packet will go through rik+1, r

i
k, . . . , r

i
0 (none of them is updated, since the

clause is tangled) to ci+1
1 .

The Conditions 2 and 4 guarantee that as long as not all clauses are untangled, δ cannot be updated and vi3
can be updated only if the path from source to destination does not go through that node.

Let us also notice that if Conditions 5 and 6 hold, then a packet can enter a clause gadget only through nodes
ci1, c

i
2 and ci3, and it is afterwards forwarded to node ci4. Therefore if it is enough to show that a packet enters

a clause gadget twice to prove loop freedom violation.

Proof. Let us take any order of updating edges, and consider the first update that violates one of the conditions.
If we update any node other than vi1 at most one condition is violated. So firstly let’s assume that only one
condition is violated and consider the cases for which condition it is.

1. Let us assume that yij is updated, but v
i
1 is not. Then the packet goes through all clauses, and then

through all previous variable gadgets. Upon entering the gadget for xi it goes through an edge from yij
to Ki and therefore violates loop freedom. The case when zij is updated is similar.

2. Let us assume that rij is updated, but i-th clause is tangled. Then the packet goes through all clause
gadgets up to Ki, then it is forwarded to rij . Then there are two possibilities. Firstly it may be forwarded
back to the r1

l , for l ≤ j, and from there to the gadget for xl. But because Conditions 1, 4 and 5 are
satisfied it would go the end without passing through waypoint. The other case is that it is forwarded
back to ral , for some a < i and l ≤ j, and then reenters some clause gadget, which would violate loop
freedom.

3. Let us assume that cij is updated but its successor yla and cih, for all h ∈ {4,5,6} such that h < j, are
not. Then the packet traverses through cij without passing through the waypoint, and then it goes
to yla. Then it may either be forwarded to vl2, which means that it would be forwarded to d without
passing through the waypoint, because Conditions 1, 4 and 5 are satisfied, or it goes from some node
ylg to gadget Kf . But then f ≤ i, because of the order of nodes ylpl , . . . , y

l
1, so it would go to a gadget

that was already visited, and therefore violate loop freedom. The case when successor of cij is z
l
a, for

some l, a is similar.

4. Let us assume that vi3 is updated, but there is some rji which is not updated and either vi1 is updated
or vi2 is not. Then the packet, after going through waypoint, reaches the gadget for xi. Then, because
vi1 is updated or vi2 is not, it is forwarded to vi3. From there it traverses through some backward edges,
before it enters some clause gadget (it cannot take backward edges until it goes to r1

a and then go
forward to some variable gadget, because Condition 2 holds and not all clauses are untangled). Since all
clause gadgets were already visited, it violates loop freedom.

5. If dij is updated, then the packet traverses through all clause gadgets and variable gadgets until it
reaches dij . From there it goes back to cij+3. Then there are two possibilities: if it will be forwarded to
the next clause gadget it will violate loop freedom, because all clauses were already visited. Otherwise, if
cij+3 is updated, the packet is forwarded to some node yla (or zla). From there it can either be forwarded
to some clause gadget or to xl+1. In both cases it violates loop freedom.

107

Chapter 8 Waypoint Enforced Network Updates

6. The condition guarantees that if the packet traverses through cij , for j ∈ {1, 2, 3}, then this node cannot
be updated. Otherwise the packet after going to Ki (without going through the waypoint) would go to
dij and from there to the destination.

Finally let us consider what happens when we update vi1 and it violates Conditions 1 and 4. Then the case is
similar to violating only Condition 4, that is the packet traverses through all the clauses to the waypoint, and
from there to vi1 and next to vi3. From there it goes through some backward edges and reenter some clause,
which violates loop freedom. ∎

Now we are ready to prove Theorem 19.

Proof. Let us assume that there is a schedule for G(C). Then let us look at the update which untangles
the last clause (that is before this update there was an tangled clause, and after this update all clauses are
untangled). Then Condition 1 guarantees, that for each variable there is no node corresponding to positive
literal (node yia) and a node corresponding to negative literal (node zil) that are both updated. That is because
updating node yia requires that vi1 is updated, whereas updating node zil requires that vi1 is not updated.
Therefore in the assignment of variables in C we set xi to 1, if at least one of nodes yia, for any a, is updated,
or to 0 otherwise. Then because all clauses are untangled, and untangling an clause requires that at least one
literal has value 1, this assignment satisfies all formulas in C. ∎

Theorem 20. There is a schedule for G(C) satisfying RLF and WPE iff C is satisfiable and iff there is a
schedule for G(C) satisfying SLF and WPE.

Proof. We have shown that existence of a schedule satisfying RLF and WPE implies that C is satisfiable. We
have also shown that if C is satisfiable then there is a schedule satisfying SLF and WPE. Because a schedule
satisfying SLF and WPE is also a schedule satisfying RLF and WPE, therefore these three statements are
equivalent. ∎

8.3 Exact Algorithm

Despite the NP-hardness proven in Section 8.2.2, we are interested in which order of magnitude these scenarios
occur. Hence, in the following, we present the Mixed-Integer Program (MIP) OptRounds, which generates
an update scheme requiring the minimal number of rounds. OptRounds cannot only generate optimal
schedules but also determine if a scenario is solvable. We implement OptRounds to work with the RLF
model.

According to the line representation presented in Chapter 6, policies π1 and π2 are described as (simple) paths
Eπ1 and Eπ2 on the common set of nodes V . Both Eπ1 and Eπ2 connect the start node s ∈ V to the target
node t ∈ V .

As the task of the MIP 1 is to find the minimal number of rounds, we generally allow for ∣V ∣ − 1 many rounds,
denoted as R = {1, . . . , ∣V ∣ − 1}. We use binary variables xrv ∈ {0, 1} to indicate whether the forwarding policy
of node v ∈ V is updated in round r ∈R or not. Constraint 2 enforces the switching policy of each node to be
changed in exactly one of the rounds. The objective to minimize the number of rounds is realized by minimizing
R ≥ 0 which is lower bounded by all the rounds in which an update is performed (see Constraint 1).

Given the assignment of node updates to rounds, the Constraints 3 and 4 set variables yre ∈ [0,1] accordingly
to indicate whether the edge e ∈ Eπ1 ∪Eπ2 is contained after the successful execution of updates in round
r ∈R. In the following we show how to enforce both the LF and the WPE properties.

108

8.4 Computational Results

Enforcing LF To enforce the LF (more specific: RLF in this case) property, we need to guarantee transient
states between rounds to be loop-free. To this end, we first define variables arv ∈ {0,1} to indicate whether a
node v ∈ V may be reachable or accessible from the start s ∈ V under any order of updates between rounds
r − 1 and r. The variables are set to 1 if, and only if, there exists a (simple) path from s towards v ∈ V
using edges of either the previous round or the current round (see Constraints 5 - 7). Similarly, and based on
this reachability information, the variables yr−1∨r

u,v ∈ {0,1} are set to 1 if the edge (u, v) ∈ E may be used in
transient states, namely if the edge existed in round r − 1 or r and u could be reached (see Constraints 8 and
9). Lastly, to ensure that a flow cannot be forced onto loops, we employ well-known Miller-Tucker-Zemlin
constraints (see 10) with corresponding leveling variables lrv ∈ [0, ∣V ∣ − 1]: if traffic may be sent along edge
(u, v) ∈ E, i.e., if yr−1∨r

u,v = 1 holds, lrv ≥ lru + 1 is enforced, thereby not allowing for cyclic dependencies.

Enforcing WPE For enforcing WPE a similar reachability construction is employed (cf. Constraints 5 -
7). We define variables arv ∈ {0,1} indicating whether node v ∈ V can be reached from the start without
passing the waypoint. To this end, we introduce the set of all edges EWP ⊂ E not incident to the waypoint
and propagate reachability information only along these edges (see Constraints 11-13). Lastly, Constraint 14
ensures that no packet can arrive at t without passing the waypoint.

Mixed-Integer Program 1: Optimal Rounds

min R (Obj)
R ≥ r ⋅ xrv r ∈R, v ∈ V (1)
1 = ∑r∈R xrv v ∈ V (2)

yru,v = 1 −∑r′≤r xru r ∈R, (u, v) ∈ Eπ1 (3)

yru,v = ∑r′≤r xru r ∈R, (u, v) ∈ Eπ2 (4)

ars = 1 r ∈R (5)

arv ≥ aru + yr−1
u,v − 1 r ∈R, (u, v) ∈ E (6)

arv ≥ aru + yru,v − 1 r ∈R, (u, v) ∈ E (7)

yr−1∨r
u,v ≥ aru + yr−1

u,v − 1 r ∈R, (u, v) ∈ E (8)

yr−1∨r
u,v ≥ aru + yru,v − 1 r ∈R, (u, v) ∈ E (9)

yr−1∨r
u,v ≤ l

r
v − lru − 1

∣V ∣ − 1
+ 1 r ∈R, (u, v) ∈ E (10)

ars = 1 r ∈R (11)

arv ≥ aru + yr−1
u,v − 1 r ∈R, (u, v) ∈ EWP (12)

arv ≥ aru + yru,v − 1 r ∈R, (u, v) ∈ EWP (13)

art = 0 r ∈R (14)

8.4 Computational Results

In our computational evaluation, we are interested in the number of scenarios in which no solution for an
update schedule can be found. This is either due to conflicting WPE and LF (see Theorem 17) or due to
the chosen objective (as shown in Section 8.2). Figure 8.10 shows the percentage of solvable scenarios as a
function of the problem size in terms of nodes. Every scenario which could be solved for objective O1 (max
link) could also be solved for objective O2 (min rounds) via OptRounds. OptRounds also finds additional
solutions in up to 13% of all problem instances for problem sizes of up to 25 nodes. The number of additional
solutions is increasing due to a smaller probability for (objective based) deadlocks in smaller instances until 25

109

Chapter 8 Waypoint Enforced Network Updates

Number of switches

Pe
rc

en
ta

ge
 o

f s
ol

va
bl

e
in

st
an

ce
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20 25 30 35

Figure 8.10: Percentage of solvable scenarios per number of nodes (1000 scenarios per size). The bars indicate
from dark to bright: (1) Solvable regarding O1; (2) additionally solvable with O2 within 600
seconds; (3) not classified after 600 seconds; (4) not solvable. (O1 - max updates; O2 - min
rounds).

nodes. The decrease for larger instances is a consequence of the capped runtime and the increased problem
size which leads to a larger fraction of unclassified instances.

A similar trend can be observed for the total amount of solvable instances which is slightly increasing with the
scenario size in the beginning (starting at the 7 nodes scenario). The percentage of solvable instances starts at
roughly 90% (except for the scenario with 5 nodes), and increases towards −95% for scenarios with 14 − 25
nodes, before it decreases againg due to the larger fraction of unclassified instances.

Whenever OptRounds terminated within 600 seconds, its median runtime was less than 1 second for networks
with less than 15 nodes. The median runtime for solvable scenarios increases roughly linearly in the number of
nodes (90 seconds for 35 nodes), and stayed below 1 second for not solvable scenarios.

The simulations show that there is a significant fraction of unsolvable scenarios until roughly 13 nodes, where
the number of unclassified scenarios increases. A possibility to solve these scenarios without violating WPE
and LF is by introducing additional edges,so-called helper rules [82]. However these can only be utilized when
an independent path exists, i.e., a path which does not interleave with the new and the old path from the
source to the waypoint.

8.5 Summary

As networks are becoming more and more virtualized and software-defined, new functionality is introduced also
in the network core. The virtualization flexibilities raise the question of how to ensure that packets are always
correctly forwarded through the corresponding network functions or waypoints.

This chapter shows both the limitations as well as the opportunities of fast policy updates ensuring waypoints.
In particular, we introduce the transient consistency property waypoint enforcement WPE and show that WPE

110

8.5 Summary

may easily be violated if schedules simply focus on loop-free update schedules. We provide a first algorithm
WayUp which ensures WPE and show that WPE cannot always guaranteed in a wait-free manner. Moreover,
we show that WPE can conflict with other consistency properties such as loop-freedom LF and that it is
NP-hard to determine if a scenario is solvable for both properties. We find that the choice of the update
strategy is important as well, as the wrong strategy ends up in deadlocks in certain scenarios even though there
exists a solution. Hence, we present an algorithm which finds all potential conflicts (for small- to mid-sized
problem spaces), and computes provably fast updates whenever this is possible.

111

9
Conclusion and Outlook

The Internet suffers from ossification [13]. While there is innovation on the application layer and on the lower
layers, network innovation on the IP layer is difficult. On this “inter-”network layer all provider and stakeholder
need to agree on changes. An appealing approach to enable innovation in the network core is the network
virtualization paradigm. Network virtualization envisions a world where physical networks can be arbitrarily
sliced into virtual networks running their own protocols (optimized toward their specific purpose) and providing
performance isolation guarantees. This also allows for simpler service deployment and reliability. Multiple
VNets are embedded on a shared physical infrastructure, which promises efficient resource utilization.

However, network virtualization also comes with challenges. Providing network performance guarantees over a
shared substrate is non-trivial and exploiting the algorithmic flexibilities is hard. More fundamentally, it is not
even clear what should be the interface between tenant and provider and how VNets should be specified. The
embedding problem can be seen as a multi-dimensional packing problem (across multiple resources), and the
resource allocation over time can be seen as a multi-dimensional parking permit problem. This also comes
with economical implications, where “larger contracts have discounts”.

Thus, network virtualization challenges not only concern embedding and admission control over time, but also
consistent dynamic management over time. VNets require a smart hypervisor or control plane, which manages
the resources and allows for adjustments: since the substrate is shared, it is non-trivial to ensure a correct
operation while providing transient consistency guarantees such as drop-freedom or loop-freedom.

9.1 Summary

This work addresses two important challenges of network virtualization. The first part studies the economic
implications of virtual networks. The second part studies algorithms to efficiently manage the dynamic
operations on the network control plane.

VNet Market: In this thesis, we argue that a VNet is often more than “just a graph”: especially in wide-area
settings, geographic and temporal aspects matter, and resources are heterogeneous. Thus, VNets can be
specified in different details and these differences are enhanced, as customers technical backgrounds differ.
Hence, the provider has different degrees of flexibility embedding the VNet, which impacts the embedding
cost. In particular, there is an interesting tradeoff between specifying requirements and flexibility and hence
utilization of embedding.

113

Chapter 9 Conclusion and Outlook

To study this tradeoff, we define the specificity of a VNet. It characterizes the amount of choices a provider
has in embedding this VNet. The impact of the specificity on the embedding cost is defined by the Price of
Specificity (PoS). The PoS is the ratio of the embedding cost of a VNet compared to the embedding cost
of an unspecified VNet with the same topology. To avoid artifacts from suboptimal embeddings, we use a
mixed integer program to compute optimal embeddings. We find that the PoS especially increases for highly
specified VNets. This increase is not given in scenarios where the specificity allows the embedding on roughly
50% of the physical resources.

To shed light on the economic implications, we consider datacenters, a big market today. We study specifications
in terms of VNet deadlines in a distributed datacenter market. We find that the social welfare is increased in
scenarios with heterogeneous flexibilities. Nevertheless, customers with strict deadlines might suffer. Based on
our previous observations that different specifications impact the embedding cost, we propose a demand-specific
pricing scheme (DSP). DSP is designed for the virtual cluster (VC) abstraction and allows VCs to be freely
specified in their size and bandwidth requirements. Accordingly, we present an embedding algorithm Tetris,
which takes the heterogeneous VC requests into account. Our evaluation shows that both DSP and Tetris can
lead to higher resource utilization.

Pricing schemes such as DSP potentially introduce discounts. Buying more resources for larger amount of
time yield further discounts and hence, a resource broker benefits in particular. We study resource buying
strategies for a broker in scenarios with unknown demand. This problem is a multi-dimensional variant to the
classical online parking permit problem. We present the deterministic online algorithm On2D and prove the
asymptotical optimality of the algorithm.

Network Updates: Embedding multiple VNets on top of the physical infrastructure increases the load on
the control plane. Especially long lived VNets increase the difficulty of managing and updating networks, as
changes occur due to, e.g., changed specifications or load balancing. Misconfiguration of network devices can,
in the worst case, shutdown the network. Thus, in the second part of the thesis, we study efficient algorithms
to update the network consistently. A network update consists of a policy update, which involves the change
of subsequent match-action rules on several forwarding devices.

We study a dynamic network update approach, which divides the update into rounds where a subset of devices
is updated. This is a comparatively lightweight approach, as it is independent of tags. Packets are forwarded
according to a mix of old and new rules. The challenge of any update algorithm is to find schedules for network
devices, which keep the network consistent, i.e., adhering to properties such as drop-freedom or loop-freedom
at any time during the update. We observe that the problem can be simplified and introduce a practically
motivated variant of (strong) loop-freedom (SLF)—relaxed loop-freedom (RLF). We evaluate dynamic updates
regarding both variants based on two different objectives: 1. maximizing the number of updates per round
and 2. minimizing the number of rounds.

We prove that it is NP-hard to find an update schedule, which maximizes the number of updates per round.
This result holds true for both SLF and RLF. On the positive side, we identify a class of network update
problems that allow for optimal or almost optimal polynomial-time algorithms. However, the maximization
strategy can increase the overall update time in terms of rounds by up to a factor of Ω(n). We find that
minimizing the number of rounds is a complex problem as well. We prove that it is NP-hard to determine if
an instance is solvable within three rounds for SLF. For RLF, we present Peacock, which computes update
schedules providing O(log(n)) round schedules in polynomial time.

Today’s increasingly virtualized networks allow for flexible deployment of virtualized middleboxes such as
firewalls in the network. Hence, we introduce a transient consistency property: waypoint enforcement (WPE).
We provide an algorithm WayUp, which updates any scenario in a WPE-consistent manner. We show that
WPE can conflict with loop-freedom and prove that it is NP-hard to determine if a scenario is solvable adhering
to both properties. We provide a mixed integer program OptRounds to investigate on the scale of this
conflict in small- to middle-sized scenarios.

114

9.2 Future Work

9.2 Future Work

We identify the following directions for future work.

Pricing WAN Scenario: The thesis provides insights on the impact of a VNets specificity on its embedding
cost. Furthermore, it provides a pricing scheme for the datacenter scenario and buying strategies for brokers.
An interesting open question is how to price VNets in a WAN scenario. Given geographical constraints of
customers, the network in a WAN scenario often belongs to different providers. To find a pricing is challenging,
as it requires cooperation between the involved providers.

Embedding heterogeneous VNets: Embedding algorithms for datacenters such as [18, 98] often
minimize the resource costs. Our work on specificities has shown that embedding heterogeneous VNets within
the datacenter might benefit from other objectives as well. Heterogeneous requests might lead to fragmentation
within the datacenter, and, hence wasted resources.

Multiple Policy Updates - Reduce Messages: Our approach for updates in networks handles each
policy individually. In larger networks, several policy update requests can arrive concurrently. To reduce the
control load, it is worthwhile to compute joint concurrent update schedules. Hence, a network device receives
one instead of several update messages. First insights of this problem show that the number of messages
cannot always be reduced to one per device. We found that it is NP-hard to minimize the number of messages.
Thus, there is a need for efficient approximations to reduce the control plane load.

Multiple Policy Updates - Bandwidth Limitations: Dionysus [65] evaluates congestion free network
updates of multiple policies or flows. The authors assume policy updates similar to the two-phase commit
approach, treating a policy as either unchanged or completely updated. They find that certain scenarios are
unsolvable without causing congestion. They propose to instead reduce the rate of the corresponding flows of
the policies, to create a solution. The dynamic update approach used in this work might find other solutions.
It works on a per switch granularity which might allow a policy update without rate limiting any flows.

Experimental Performance Evaluation: The dynamic update approach arguably provides several
benefits compared to the two-phase commit approach. It is independent of tags and has faster first effects
on the network. This work provides several theoretical results in terms of complexity and update speed for
dynamic network updates. Yet, large-scale experiments comparing the two-phase commit approach with the
dynamic approach appear interesting.

115

Acknowledgements

Looking back on the last four years, I can honestly say that it was a great time. Even during some work
intensive deadline times, I was always enjoying the work due to my fabulous colleagues. I will not find the
place to acknowledge every single person but I always felt welcome in every room of our office!

This is, of course, thanks to my advisor Anja, who was able to form this outstanding group. She gave me
the chance to be part of that team and to find my place in the research community. I am grateful for the
amount of freedom she gave me in terms of research while still giving me valuable feedback and guidance.
My co-supervisor Stefan was also an integral part, as he was never shy of discussing the progress. I am still
impressed by his ability to have multiple meetings concurrently in his calendar and sometimes even managing
to attend all of them. He is a large reason that I was able to finish this thesis and it was always fun to work
with him.

In my first days in the group, I was lucky to have Nadi and Oliver as my direct neighbors, who helped me to
understand the research world and made my first steps very convenient, even though I inherited their teaching
organization duties. These duties are now being handed over to Niklas and Damien, whose unbiased view
towards research and fresh enthusiasm are fascinating. Gregor showed me, besides guiding me through my
diploma thesis, the value of secure passwords and Ben taught me about procrastination. I will also miss
Srivatsan wandering through the hallways with a salad in his hands and trying to convince me that his favorite
football player is not just a middle of the pack striker.

Special thanks go to Felix and Matthias with whom I spend a lot of my time. I enjoyed the many discussions
with Felix, starting from topics like football and ending up in the most absurd philosophical topics. He amazed
me with his incredible knowledge and I was always interested in his opinion. Matthias will probably never learn
how to play SET properly, or how not to work more than his own body can handle, but he was one of the
main reasons why I enjoyed my time, especially during the very entertaining deadlines.

An important person missing here is my office mate and old friend Carlo. He brought me into the group for my
diploma thesis and went with me through all the struggles of a researcher’s life. Even though we are always
competing in anything we do, I will (only once in my lifetime) admit that he is a genius (as a sidenote in case
he is reading this: I understood FLP first though!) and I am proud that I can call me one of his friends.

I would like to thank everyone in the group whom I did not name personally and who was part of this great
experience. You all made INET a superb place.

Finally, there is my family who was always there for me and helped me through all the ups and downs. Thank
you Gerd, Brigitte, Lea and Nori. You are the best!

117

List of Figures

2.1 VNet abstractions . 19

3.1 VNet embedding example . 25
3.2 VNet nodetype specification . 27
3.3 FlexMIP . 28
3.4 PoS evaluation: Size and load impact . 30
3.5 PoS evaluation: Resource cost per request and migration impact 30
3.6 PoS evaluation: Type distribution and VNet size impact . 32
3.7 PoS evaluation: Additional links and substrate capacity impact 33
3.8 PoS evaluation: Degree of out-sourcing impact . 34
3.9 Migration paradoxon . 36
3.10 Horizontal and vertical market model . 39
3.11 Evaluation: Provider share dependent on customer flexibility 40
3.12 Evaluation: Customer utilities and waiting times depending on pricing 42
3.13 Evaluation: Customer utilities depending on the overall flexibility 43
3.14 Stairs and Roof buying strategy . 43
3.15 Evaluation: Cost of Stairs and Roof . 44

4.1 Fat-tree datacenter topology . 50
4.2 Embedding behavior of Oktopus and Tetris. 51
4.3 Tetris evaluation: Oversubscription . 52
4.4 Tetris evaluation: Datacenter load . 53
4.5 Broker request model for PPP2 . 55
4.6 Worst-case example for On2D . 56
4.7 Lower bound analysis for PPP2 . 60
4.8 Evaluation of On2D . 65

5.1 SDN architecture overview . 70
5.2 Network update overview . 71

6.1 Network update model and reduction . 74
6.2 Example for node merging and tree representation . 75

7.1 Example of a loop-free dynamic network update . 78
7.2 RLF and SLF differences . 79
7.3 Greedy updates increase the number of rounds for SLF (example) 80
7.4 Greedy updates increase the number of rounds for RLF (example) 80
7.5 Greedy NP-hardness proof: Construction from a hitting set instance 82
7.6 Greedy NP-hardness proof: Delayer concept . 83
7.7 Greedy NP-hardness proof: Branching concept . 83
7.8 Greedy NP-hardness proof: Creating parallel edges . 84
7.9 Greedy NP-hardness proof: Realizing branches . 85
7.10 Greedy NP-hardness proof: Path connection . 85
7.11 Greedy NP-hardness proof: Connecting out with in branches 86
7.12 Greedy NP-hardness proof: Connecting the out branches . 86
7.13 Greedy NP-hardness proof: Connecting the segments . 87

119

List of Figures

7.14 Concept of horizontal edges . 88
7.15 Network update - “looking backward in time” example . 90
7.16 Choosing FF nodes is difficult (example) . 92
7.17 Min. rounds NP-hardness proof: Gadget for general clauses . 93
7.18 Min. rounds NP-hardness proof: Gadget for exclusive clause 94
7.19 Min. rounds NP-hardness proof: Path connection overview . 95
7.20 Example execution of Peacock . 96

8.1 Updating all nodes in one round may violate WPE (example) 100
8.2 WPE and LF may conflict (example) . 102
8.3 A greedy update can render the scenario to be unsolvable (example) 103
8.4 WPE+LF NP-hardness proof: Order of gadgets and nodes . 103
8.5 WPE+LF NP-hardness proof: Construction of variable gadgets 104
8.6 WPE+LF NP-hardness proof: Construction of clause gadgets 104
8.7 WPE+LF NP-hardness proof: Clause connection . 105
8.8 WPE+LF NP-hardness proof: Connecting the complete path 105
8.9 WPE+LF NP-hardness proof: Path example after three rounds. 106
8.10 OptRounds evaluation on solvable scenarios . 110

120

List of Tables

3.1 Evaluation: Unservable requests within the deadline . 41
3.2 Provider income depending on VNet durations . 45

121

Bibliography

[1] Amazon network outage (amazon web site), April 2011. http://aws.amazon.com/message/65648/.

[2] Github network outage (github web site), December 2012. https://github.com/blog/1346-network-
problems-last-friday.

[3] MPLS pricing (networkworld web site), April 2012. http://www.networkworld.com/article/2222196/cisco-
subnet/why-does-mpls-cost-so-much-more-than-internet-connectivity-.htm l.

[4] Amazon AWS cloud pricing principles (amazon web site), October 2015.
http://aws.amazon.com/pricing/.

[5] Aws case study: Spotify (amazon aws web site), October 2015. https://aws.amazon.com/solutions/case-
studies/spotify/.

[6] Microsoft azure pricing (microsoft web site), October 2015. https://azure.microsoft.com/en-us/pricing/.

[7] Open networking foundation (web site), October 2015. https://www.opennetworking.org/.

[8] Roundup of cloud computing forecasts and market estimates, 2015 (forbes web site), January
2015. http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-
and-market-estimates-2015/.

[9] Unify (web site), October 2015. http://www.fp7-unify.eu.

[10] V. Abhishek, I. A. Kash, and P. Key. Fixed and market pricing for cloud services. In Proc. NetEcon
Workshop, 2012.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In
Proc. SIGCOMM, 2008.

[12] J. Altmann, C. Courcoubetis, G. D. Stamoulis, M. Dramitinos, T. Rayna, M. Risch, and C. Bannink.
GridEcon: A market place for computing resources. In Proc. 5th international workshop on Grid
Economics and Business Models (GECON), pages 185–196, 2008.

[13] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the internet impasse through
virtualization. Computer, 38(4), 2005.

[14] P. Antoniadis, S. Fdida, T. Friedman, and V. Misra. Federation of virtualized infrastructures: sharing
the value of diversity. In Proc. 6th CoNEXT, 2010.

[15] M. Armbrust, A. Fox, R. Grifith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley view of cloud computing. In UC
Berkeley Technical Report EECS-2009-28, 2009.

[16] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. In Proc. IEEE FOCS,
1993.

[17] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. The price is right: towards location-independent
costs in datacenters. In HotNets, 2011.

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable datacenter networks. In
Proc. ACM SIGCOMM, pages 242–253, 2011.

123

Bibliography

[19] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer. Minimum congestion mapping in a cloud. In Proc.
ACM PODC, pages 267–276, 2011.

[20] A. Belbekkouche, M. Hasan, and A. Karmouch. Resource discovery and allocation in network virtualization.
IEEE Communications Surveys Tutorials, (99):1–15, 2012.

[21] T. Benson, A. Akella, and D. A. Maltz. Unraveling the complexity of network management. In NSDI,
pages 335–348, 2009.

[22] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the wild. In
Proc. ACM IMC, 2010.

[23] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer, G. Schaffrath, S. Schmid, and J. Widmer.
Competitive analysis for service migration in VNets. In Proc. ACM VISA, pages 17–24, 2010.

[24] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. Survey on network virtualization hypervisors for
software defined networking. 2015.

[25] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press,
1998.

[26] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Elsevier FGCS, 25(6),
2009.

[27] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A distributed and robust sdn control plane for
transactional network updates. In Proc. IEEE INFOCOM, 2015.

[28] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. Ethane: Taking control of
the enterprise. In Proc. ACM SIGCOMM, 2007.

[29] M. Charikar, K. Makarychev, and Y. Makarychev. A divide and conquer algorithm for d-dimensional
arrangement. In Proc. ACM SODA, pages 541–546, 2007.

[30] S. Chen and K. Nahrsted. An overview of quality of service routing for next-generation high-speed
networks: problems and solutions. Network, IEEE, 12(6):64–79, 1998.

[31] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in big data systems: a cross-industry
study of mapreduce workloads. Proc. of the VLDB Endowment, 5(12), 2012.

[32] M. K. Chowdhury and R. Boutaba. A survey of network virtualization. Elsevier Computer Networks,
54(5), 2010.

[33] M. K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network embedding with coordinated node
and link mapping. In Proc. IEEE INFOCOM, 2009.

[34] M. K. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE: Policy-based virtual network embedding
across multiple domains. In Proc. ACM VISA, 2010.

[35] C. Courcoubetis and R. R. Weber. Economic issues in shared infrastructures. In Proc. ACM VISA, pages
89–96, 2009.

[36] D. Dash, V. Kantere, and A. Ailamaki. An economic model for self-tuned cloud caching. In Proc. IEEE
ICDE, pages 1687–1693, 2009.

[37] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization in software-defined networks.
Internet Computing, IEEE, PP(99):1, 2012.

[38] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der Merive. A
flexible model for resource management in virtual private networks. In ACM SIGCOMM CCR, volume 29,
pages 95–108. ACM, 1999.

[39] R.-c. Duh and M. Fürer. Approximation of k-set cover by semi-local optimization. In Proc. ACM STOC,
STOC ’97, pages 256–264, New York, NY, USA, 1997. ACM.

124

Bibliography

[40] N. Economides. The economics of the internet backbone. In Handbook of Telecommunications
Economics, 2006.

[41] ETSI. Network Functions Virtualisation – Introductory White Paper. 2012.

[42] G. Even, M. Medina, G. Schaffrath, and S. Schmid. Competitive and deterministic embeddings of virtual
networks. In Proc. ICDCN, 2012.

[43] J. Fan and M. H. Ammar. Dynamic topology configuration in service overlay networks: A study of
reconfiguration policies. In Proc. IEEE INFOCOM, 2006.

[44] N. Feamster and H. Balakrishnan. Detecting bgp configuration faults with static analysis. In Proc.
NSDI, pages 43–56. USENIX Association, 2005.

[45] N. Feamster, J. Rexford, and E. Zegura. The road to sdn. Queue, 11(12):20:20–20:40, 2013.

[46] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach. Virtual network embedding: A
survey. Communications Surveys & Tutorials, IEEE, 15(4):1888–1906, 2013.

[47] R. Fleischer. On the bahncard problem. Theor. Comput. Sci., 268(1):161–174, 2001.

[48] C. Fuerst, M. Pacut, P. Costa, and S. Schmid. How hard can it be? understanding the complexity of
replica aware virtual cluster embeddings. In Proc. IEEE ICNP, 2015.

[49] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant resource
fairness: fair allocation of multiple resource types. In Proc. 8th USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2011.

[50] S. Ghorbani and B. Godfrey. Towards correct network virtualization. In Proc. ACM HotSDN, pages
109–114, 2014.

[51] S. Goyal and B. Giri. Recent trends in modeling of deteriorating inventory. Elsevier EJOR, 134(1), 2001.

[52] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. Vl2: a scalable and flexible data center network. In ACM SIGCOMM CCR, volume 39,
pages 51–62. ACM, 2009.

[53] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang.
A clean slate 4d approach to network control and management. SIGCOMM Comput. Commun. Rev.,
35(5):41–54, 2005.

[54] S. Guha and K. Munagala. Improved algorithms for the data placement problem. In Proc.ACM SODA,
pages 106–107, 2002.

[55] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. SecondNet: A data
center network virtualization architecture with bandwidth guarantees. In Proc. ACM CoNEXT, 2010.

[56] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster, J. Rexford, S. Shenker,
R. Clark, and E. Katz-Bassett. Sdx: A software defined internet exchange. In Proc. ACM SIGCOMM,
pages 551–562, 2014.

[57] A. Haider, R. Potter, and A. Nakao. Challenges in resource allocation in network virtualization. In Proc.
ITC Specialist Seminar, volume 18, page 20, 2009.

[58] P. Hande, M. Chiang, R. Calderbank, and S. Rangan. Network pricing and rate allocation with
content-provider participation. In Proc. IEEE INFOCOM, 2010.

[59] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey. A marketplace for cloud resources.
In Proc. ACM EMSOFT, 2010.

[60] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: a platform for fine-grained resource sharing in the data center. In Proc. USENIX NSDI, 2011.

[61] X. Hu, S. Schmid, A. Richa, and A. Feldmann. Optimal migration contracts in virtual networks:
Pay-as-you-come vs pay-as-you-go pricing. In Proc. ICDCN, 2013.

125

Bibliography

[62] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot. Feasibility of ip restoration in a tier 1
backbone, 2004.

[63] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou,
M. Zhu, et al. B4: Experience with a globally-deployed software defined wan. In ACM SIGCOMM CCR,
volume 43, pages 3–14. ACM, 2013.

[64] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Bridging the tenant-provider gap in
cloud services. In Proc. ACM SoCC, 2012.

[65] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, J. Rexford, R. Wattenhofer, and M. Zhang. Dionysus:
Dynamic scheduling of network updates. In Proc. ACM SIGCOMM, 2014.

[66] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In Proc. USENIX NSDI, pages 99–112, 2013.

[67] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer. Network virtualization: a hypervisor for the
internet? Communications Magazine, IEEE, 50(1):136–143, 2012.

[68] H. Kim and N. Feamster. Improving network management with software defined networking. Communi-
cations Magazine, IEEE, 51(2):114–119, 2013.

[69] S. Kniesburges, C. Markarian, F. M. auf der Heide, and C. Scheideler. Algorithmic aspects of resource
management in the cloud. In Structural Information and Communication Complexity, pages 1–13.
Springer, 2014.

[70] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey. Proc. of the IEEE, 103(1):14–76, 2015.

[71] A. Kumar, A. Gupta, and T. Roughgarden. A constant-factor approximation algorithm for the multi-
commodity rent-or-buy problem. In Proc. IEEE FOCS, 2002.

[72] M. Kuzniar, P. Peresini, and D. Kostic. What you need to know about sdn flow tables. In Proc. PAM,
2015.

[73] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann. Panopticon: Reaping the benefits of
incremental sdn deployment in enterprise networks. In Proc. USENIX ATC, 2014.

[74] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing public cloud providers. In Proc. ACM
IMC, pages 1–14. ACM, 2010.

[75] S. Li, A. Mäcker, C. Markarian, F. M. auf der Heide, and S. Riechers. Towards flexible demands in
online leasing problems. In Computing and Combinatorics, pages 277–288. Springer, 2015.

[76] J. Lischka and H. Karl. A virtual network mapping algorithm based on subgraph isomorphism detection.
In Proc. ACM VISA, pages 81–88, 2009.

[77] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz. zUpdate: Updating Data
Center Networks with Zero Loss. In ACM SIGCOMM, August 2013.

[78] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared substrate. In Technical Report,
WUCSE-2006-35, Washington University, 2006.

[79] M. Armbrust et al. A view of cloud computing. Commun. ACM, 53(4):50–58, 2010.

[80] J. R. M. Yu, Y. Yi and M. Chiang. Rethinking virtual network embedding: Substrate support for path
splitting and migration. ACM SIGCOMM CCR, 38(2):17–29, Apr 2008.

[81] J. K. MacKie-Mason and H. R. Varian. Pricing congestible network resources. Selected Areas in
Communications, IEEE Journal on, 13(7):1141–1149, 1995.

[82] R. Mahajan and R. Wattenhofer. On Consistent Updates in Software Defined Networks. In Proc. ACM
HotNets, 2013.

[83] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient synthesis of network updates. In Proc. ACM
PLDI, 2015.

126

Bibliography

[84] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, 2008.

[85] A. M. Meyerson. The parking permit problem. In Proc. IEEE FOCS, pages 274–284, 2005.

[86] J. C. Mogul and L. Popa. What we talk about when we talk about cloud network performance. ACM
SIGCOMM CCR, sep 2012.

[87] B. Monien and H. Sudborough. Embedding one interconnection network in another. In Computational
Graph Theory, 1990.

[88] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing Software Defined Networks.
In Proc. NSDI, 2013.

[89] A. Odlyzko. Paris metro pricing for the internet. In Proc. ACM conference on Electronic commerce,
pages 140–147. ACM, 1999.

[90] P. Skoldstrom et al. Towards unified programmability of cloud and carrier infrastructure. In Proc.
EWSDN, 2014.

[91] R. Pal and P. Hui. Economic models for cloud service markets. In Proc. 13th ICDCN, pages 382–396,
2012.

[92] B. Quoitin, V. V. den Schrieck, P. François, and O. Bonaventure. Igen: Generation of router-level
internet topologies through network design heuristics. In Proc. ITC, 2009.

[93] P. Reichl, D. Hausheer, and B. Stiller. The cumulus pricing model as an adaptive framework for feasible,
efficient, and user-friendly tariffing of internet services. Computer Networks, 43(1):3–24, 2003.

[94] P. Reichl, S. Leinen, and B. Stiller. A practical review of pricing and cost recovery for internet services,
1999.

[95] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions for network update. In
Proc. ACM SIGCOMM, pages 323–334, 2012.

[96] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed mapping problem. ACM SIGCOMM
CCR, 33(2):65–81, 2003.

[97] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gatekeeper: Supporting bandwidth
guarantees for multi-tenant datacenter networks. In WIOV, 2011.

[98] M. Rost, C. Fuerst, and S. Schmid. Beyond the stars: Revisiting virtual cluster embeddings. ACM
SIGCOMM CCR, 45(3):12–18, July 2015.

[99] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network design: Approximating
the single-sink edge installation problem. In Proc. ACM SODA, pages 619–628, 1997.

[100] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in the cloud: observing, analyzing,
and reducing variance. Proc. of the VLDB Endowment, 3(1-2):460–471, 2010.

[101] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-lived cloudnets with migrations. In Proc.
IEEE/ACM UCC, 2012.

[102] G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A. Feldmann. A resource description language
with vagueness support for multi-provider cloud networks. In Proc. ICCCN, 2012.

[103] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh, A. Wundsam, M. Kind,
O. Maennel, and L. Mathy. Network virtualization architecture: Proposal and initial prototype. In Proc.
ACM VISA, 2009.

[104] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The middlebox manifesto: Enabling innovation
in middlebox deployment. In Proc. ACM HotNets, 2011.

[105] S. Shakkottai and R. Srikant. Economics of network pricing with multiple isps. IEEE/ACM TON, 14(6),
2006.

127

Bibliography

[106] D. Songhurst and F. Kelly. Charging schemes for multiservice networks. In Proc. 15th International
Teletraffic Congress, 1997.

[107] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia applications. Selected
Areas in Communications, IEEE Journal on, 14(7):1228–1234, 1996.

[108] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A primal-dual approximation algorithm
for generalized Steiner network problems. Combinatorica, 15:708–717, 1995.

[109] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: meeting deadlines in
datacenter networks. In Proc. ACM SIGCOMM, 2011.

[110] Z. Wu, C. Yu, and H. V. Madhyastha. Costlo: Cost-effective redundancy for lower latency variance on
cloud storage services. In Proc. USENIX NSDI, 2015.

[111] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is change: incorporating time-varying
network reservations in data centers. In Proc. ACM SIGCOMM, pages 199–210, 2012.

[112] F. Zaheer, J. Xiao, and R. Boutaba. Multi-provider service negotiation and contracting in network
virtualization. In Proc. 12th IEEE/IFIP Network Operations and Management Symposium (NOMS
2010), 2010.

[113] Y. Zhu and M. H. Ammar. Algorithms for assigning substrate network resources to virtual network
components. In Proc. IEEE INFOCOM, 2006.

128

	Titlepage
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Problem Statement
	Contributions
	Structure of the Thesis

	Economics of Virtual Networks
	Network Virtualization Overview
	Economic Roles
	VNet Embeddings
	VNet Economics

	Harnessing Specification Flexibilities
	Price of Specificity
	Model
	Specifying VNets
	Optimal VNet Allocation
	Defining PoS
	Evaluation
	Excursion: Use of Migration
	Economical Aspects of PoS
	Related Work
	Summary

	Flexibility Beneficiaries in Distributed Cloud Markets
	Model: Horizontal & Vertical Market
	Benefits in Horizontal Market
	Benefits in Vertical Markets
	Summary

	VNet Pricing and Buying Strategies
	VNet Pricing
	Background & Model
	Pricing Scheme
	Embedding Algorithm
	Simulations
	Summary

	VNet Buying
	Model
	Competitive Online Algorithm
	Analysis: Upper Bound
	Analysis: Lower Bound
	Optimal Offline Algorithm
	Higher Dimensions
	Simulations
	Related Work
	Summary

	Consistent Network Updates
	Network Updates Overview
	Software Defined Networks
	Network Updates

	Introducing a Round-Based Network Update Model
	Loop-free Network Updates
	Loop-Freedom
	Strong Loop-Freedom
	Relaxed Loop-Freedom

	It is bad being greedy
	Greedy Updates Delay
	Greedy Updates are NP-Hard
	Polynomial-Time Algorithms

	Fast Updates Are Difficult
	2-Round is Easy
	3-Round is Hard

	Relaxed Loop-Free Updates Are Tractable
	Related Work
	Summary

	Waypoint Enforced Network Updates
	Ensuring Only Waypoint Enforcement
	Incorporating Loop-freedom
	Loop-freedom and Waypoint Enforcement May Conflict
	Determining if a Scenario is Solvable is NP-Hard

	Exact Algorithm
	Computational Results
	Summary

	Conclusion and Outlook
	Summary
	Future Work

