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Introduction

The study of the billiard motion in a n-gon is an old subject of dynamical systems.
In this work we study questions related to the asymptotic growth rate of the prime
geodesic spectrum in a polygonal billiard. In the case of a marked Torus (arising as
phase surface of the billiard in a rectangle) we give explicit results. We begin by sketch-
ing the objects which are necessary to state the results. The phase space of a polygonal
billiard is the product space of the n-gon with S' (modulo some identifications on the
boundaries). This phase space splits in isometric invariant surfaces and the restriction
of the flow to these is linear. The flow on the invariant surfaces can be viewed as the
geodesic (directional) flow of the flat metric induced from the n-gon. There are two
points one has to observe: the first is that the closed geodesics arise in families of
geodesics of equal length. Geometrically these are cylinders and their boundary con-
sists of trajectories each of which contains at least one singular point. Singular points
can be viewed as copies of the vertices of the n-gon, in a geometric description singular
points are conical singularities of the flat metric, i.e. points around which the total
angle is 2mn, where n > 1. Trajectories connecting these singular points are called
saddle connections. Their importance is seen in the fact that each maximal cylinder
of periodic trajectories is bounded by two or more saddle connections, which have at
most the length of the periodic trajectories in the cylinder. The second point causes
really difficult problems.

The applicability of useful methods to study the dynamical behavior of a polygonal
billiard divides them into two classes: either the flow invariant surfaces are all compact
or they are all non compact. Compactness or non compactness of these surfaces is seen
to be equivalent to the rationality of all the (inner) angles of the n-gon (modulo 7) or
the non rationality of one of them. One of the (few) general results which holds for
all n-gons is contained in the work ”The growth rate for the number of singular and
periodic orbits for a polygonal billiard” of Katok [Kat]. He proves that the the number
of saddle connections shorter than a given length 7" growth sub-exponentially in 7. By
the above remark the growth rate for closed geodesics is less or equal to the growth rate
of saddle connections, but in general it is not even clear that a single closed geodesic
exists at all.

For rational n-gons the flow on the invariant surfaces could be understood as flow of the
horizontal foliation on a compact oriented surface S together with some special complex
atlas A: all the coordinate changes are of the form z — z + ¢ with ¢ € C. These
are just translations, therefore they are named translation structures (or surfaces).
By means of this atlas we have have a complex structure and we can pull back dz
and dz ® dZ to get a holomorphic differential and a flat Riemann metric with conic
singularities on S. The metric induces a volume which can be also seen as pullback of
%dz A dz with respect to the Atlas A. The horizontal flow is defined to be the flow of
the vectorfield X}, given in A coordinates by X (z) = (1,0) it is the geodesic flow with
respect to the induced metric in the positive real direction on (S,.4). Also there is a
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SLy(R) action on that structures given by the post composition of the chart maps by
an element A € SLy(R) viewed as linear map on R?.

Most of the statements which can be proved for translation structures are true for
structures defined by maximal atlases A where coordinate changes of the form z —
+2z + ¢ are allowed. These are called F structures. The differences to translation
structures are that the vectorfield X}, is defined only locally (the integral leaves might
not be orientable) and the SLy(R) action has to be replaced by a PSLy(R) action.
Clearly a translation structure defines an F structure, thus we use this terminology
from now on. Under weak assumptions F structures of genus g have well studied finite
dimensional moduli spaces which are certain subspaces of the cotangent space to the
moduli space M, of genus g surfaces. The unit cotangent bundle QD(g) := U*M,
can be compactified in a way that the boundary consists of F structures of lower genus.
The surfaces in the boundary are not necessarily connected. They can have nodes and
punctures which arise from pinching closed curves. By using the SL,(R) action one is
able to move a given F structure to a boundary point without destroying the existence
of closed geodesics. It can be shown that one can always find limit points with respect
to this SLy(R) action which contain some special F structures: the torus, the sphere
with four punctures or some “degenerated” F structure. It is well known that the first
two have a lot of periodic trajectories. If one approximates a “degenerated” F structure
one already has a nonsingular closed geodesic, on the approximating surfaces. Precisely
on the line of this idea H. Masur [Msr86] was able to prove

Theorem 0.1 (H.Masur) For every F structure u there is a dense subset of directions
in 0 € S, such that the horizontal flow on exp(if)u contains one or more cylinders of
periodic trajectories.

and furthermore in [BGKT] it is proved

Theorem 0.2 ( M. Boshernitzan, G. Galperin, T. Kriiger, S. Troubetzkoy)
The periodic orbits of the billiard in a rational n-gon are dense in the phase space.

The arguments of their proof can be carried over verbatim to the general case of
F structures. Thus in the tangent space to every F surface there is a dense set of
points, such that a geodesic hitting that point is closed.

We can associate a pair of vectors +v¢ = I(C) exp(if) € C =2 R? to every closed cylinder
C (saddle connections as well) of the horizontal flow in exp(if)u which has the length
[(C) with respect to the natural distance on u. In this way for every F structure u there
are sets of vectors (with multiplicities) Vpo,sc(u) associated to closed orbits or saddle
connections. For u € @D(g) let

Npo(u,T) :=|{v € Vpo(u) : |v| < T}

be the growth function of Vpo(u) and Ngc(u,T) the analogously defined function for
saddle connections on u. Again Masur [Msr88, Msr90] proved the following Tchebychev
type theorem:



Theorem 0.3 (H. Masur) For every u € QD(g) exist positive constants cg”g}PO(u),
cs6ipo(u) such that for T > T,

c5epo(W)T? < Npoyso(u, T) < 587 po(u)T™.

In particular the billiard in a rational n-gon has a dense set of directions with periodic
trajectories, moreover their number grows quadratically with the length. The natural
question if or when this Tchebychev theorem can be replaced by an exact quadratic
counting theorem is in general open and one of the central motivations of this work.
Under strong assumptions on the geometry of an F structure u Veech [Vch89, Vch92]
was able to prove that limy_, %’;ﬂ(um exists. Namely this is the case if there exists
“a lot” of affine maps of u. An affine map ¢ on u is a map which is locally in the charts
of the natural atlas A, affine. The set of affine maps of u is a group under composition
of maps. We denote that group by Aff(u). The maps ¢ € Aff(u) are differentiable
with constant derivative defined modulo +1. It can be proved that “taking derivatives”
defines a homomorphism Aff (u) -4, PS Ly(R) and the image of d is called the Veech
group V(u) of u. We say u has “a lot” of affine maps if the Veech group V(u) is a
lattice in PSLy(R). F structures with this property are also called Veech surfaces.

Veech has shown [Vch89]:

Theorem 0.4 (W. Veech) Let u be an F structure and V (u) a lattice, then

T NPO/SC(ua T)
m ————

T-ro0 T2 = croysc(u).

The constant cpp(u) is computable by knowledge of the length and width of the maxi-
mal cylinders of closed geodesics in finitely many directions. The number of directions
equals the number of cusps in V(u). Veech was able to prove that the F structures
associated to the billiard in a regular n-gon G7,, have a lattice Veech group V(G7,,).
He computes the asymptotic constants cpo(Gr,,) in [Vch92]. After this breakthrough
other papers about the subject occur, some new examples of Veech surfaces are found
by Vorobetz [Vrb96b]. That it is not easy to find Veech billiards might be seen in the

result Kenyon and Smillie [KeSm98], they have proven recently

Theorem 0.5 (R. Kenyon, J. Smillie) Let T be an acute non isoscele rational tri-
angle with angles o, B and v are of the form wp1/q, 7p2/q and wps/q with g < 10000.
Then T is a lattice polygon if and only if (c, B,7y) is one of the cases:

T T om T T 2 7w Am

19 10 or FEEETS or a9’ a |-

473712 53715 9°3° 9
Because there are approximately 100.000.000.000 triangles which fulfill ¢ < 10000 they
conjecture that the restriction on ¢ is not necessary.

Coverings of Veech surfaces are again Veech surfaces [GutJdg97, Vrb96b], which has
the consequence that every moduli space of F structures contains a dense set of Veech
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surfaces with Veech groups commensurable to PSLy(Z). On the other hand by results
of Veech [Vch86] and Masur [Msr86] about the ergodicity of the geodesic flow in the
moduli spaces the generic point cannot have a big Veech group. Thus to find bigger
sets where the Tchebychev theorem can be improved to a limit theorem one has to use
another idea. Veech [Vch98] suggests one way by using a general measure theoretical
Ansatz, which we describe roughly now. (In the following we restrict our statement
to periodic orbits and omit the index of V(u), but the statements are true for saddle
connections as well). Veech observed [Vch98| that counting quadratic growth rates of
periodic orbits on u is the same as to evaluate the integral (limits)

2
lim / S Flarexp(i6)u)do (1)
t—)oo() veV(u)

with

a; = (e_t O) € SLy(R), [fe€CP(R:) and R’ :=RxR,.
0

et

The crucial point is that it is not clear that the limit exists pointwise, but as a function
of u it might be regular enough to be evaluated as an expectational value with respect
to a measure on some spaces of F structures. To make this precise, the integrand above
defines a transformation

flu):= Y f@)
)

veV(u

of functions on R? to functions on the space M of F structures. Under the hypothesis
that

(A) thereis a SLy(R) action on M which is equivariant with respect to V: i.e. gV (u) =
V(gu), Vg € SLy(R) and

(B) there exists an SLs(R) invariant ergodic probability measure p on M.
(Cu) [ e L (M, p).

Veech proves (in more generality) the following

Theorem 0.6 (Siegel Veech formula) Suppose (M, p) is a space of F structures
with the above properties. Then there exists a constant cy, such that

/f(u)d,u(u) = cV,N/f(x,y)dxdy for any f € C’S’O(Ri). (2)
M R?



In fact, to prove this one only needs f € L*(M, p). To built a bridge from the theorem
to the above limit, one uses property (B), to apply an ergodic theorem in the spirit of

2T

tliglo/f(at exp(16)u)df = /f(u)d,u(u) W oa.e. .
0 M

Setting f := xg to be the characteristic function of some rectangle R C R? and

demanding further:

(D) For every u € M there is a constant ¢}}**(u) < oo such that Ny (v, T) < ¢§** (u)T?

for all v in an open neighborhood U(u) of w.

Eskin and Masur ([EskMsr98] Proposition 3.2) were able to prove

Theorem 0.7 Suppose (M, 1), V(-) have the properties (A), (B), (C,) and (D), then

lim NV (U’a T)

=Ty a.e. on M
T—00 T2 o H

where ¢y, 15 as in the Theorem 0.6.

The theorem applies to spaces Q'(g, P) C QD'(g,n) of F structures with fixed sin-
gularity pattern P. These possess an ergodic (with respect to a;) SL(R) invariant
probability measure g (cf. [Vch86, Vch90])( topologically the Q' (g, P) give a strati-
fication of QD' (g, n) if (m, P) varies). It is naturally to ask the questions:

1. Can one compute the constants cy ;7

2. Do there exist other SLy(R) invariant, ergodic probability measures on Q!(g, P)?
3. Is lim sup, ,, %D < ey, for all u € Q'(g, P)?

T2 —
If the third statement is true and the computations of the ¢y, could be done, then

this would imply some control of the growth rates of saddle connections on non ra-
tional polygonal billiards. How good the control is depends on the behavior of the
constants cy, as functions on the genus g of u. Question two and three are an-
swered in the fourth chapter in a positive way for the translation tori with n marked
points. The second question also has a well known positive answer, the SLs(R) orbits
(SLy(R).u =2 SLy(R)/V (u), u) of Veech surfaces u together with image of the Haar
measure /4 in their moduli spaces give examples. In these cases the constants cy , re-
flecting the growth rates pointwise, which in turn forces the next question:

4. Are there moduli or parameter spaces of F structures where the limits (1) exist
pointwise?

A. Eskin [Esk98] has observed that SLs(R) invariant parameter spaces of branched
coverings of translation tori are examples for homogeneous spaces of F structures. He
uses Ratners classification theorem for ergodic measures on homogeneous spaces to
obtain pointwise limits of the growth rates in this spaces. The examples in chapter
four, the n marked two tori are taken out of the set of homogeneous spaces which
are spaces of torus coverings. But in chapter four the calculations are done without



using Ratners theorem, just by using more or less elementary formalisms. Nevertheless
explicit results on the growth constants as function of the parameter space are obtained.
If we take the two marked torus T2 := R?/Z? with marked points 0 and x, then the
parameter space (without taking care on the SLy(R) action) is simply the torus T?
itself: x can be any point on the torus, except the point 0. The later does not affect
the results, so = 0 is viewed as an allowed constellation and then T? is the parameter
space. In the case of saddle connections (SC) on two marked tori, for the function
x +—> cge(x) it turns out that:

-1
P1 pz] 6 1

—, = — —11 1—-—
[n n ™ + H p2>

p|n prime
o] — Zbr for (o) ¢ @ @

(where we assume gcd(p1,pe,n) = 1). This function is continuous at non rational
points, thus the above formula approaches %+7r as (%, %) converges to a non rational
number. This continuity can be proven by a direct estimate, it is not restricted to 2
markings. It also holds for general n markings with other limiting constants and sets
of course. For any n the limiting constants as functions of the marking are maximal
exactely at the points of continuity. In the case of rational two markings the Veech
groups are calculated, too. A simple argument shows that every Veech surface coming
from a rational marking is isomorphic to one of the family F' = {T[Z%m 1 ne N}.
Therefore all the Veech groups of rationally marked tori are isomorphic to one of the
Veech groups V, 1) associated to the family of surfaces F'. The asymptotic formula of
Veech and an asymptotic counting of lattice points in the plane is used to compute
the index V[%,o] : SLZ(Z)] Alternatively we compute the same index by using the
isotropy subgroup Aff,(u) C Aff(u) of a given point in x € u. With the help of the
description of the Veech groups for rational 2 markings one is able to rediscover the

index of some classical congruence subgroups of SL,(R).

In the case of general n markings one of the main objects was to understand if there
is something in between purely rational markings and non rational markings which
has not a maximal growth rate. This question also could be answered with “yes”
(see Theorem 4.16 and the preparatory Lemma 4.2). Unfortunately the elementary
methods discovered can not (simply) taken over to prove something on families of
branched coverings of tori. But the use of Ratners theorem allows one to compute
the Siegel Veech constants for branched coverings of tori (see the forthcoming paper
[EMS]).



Description of the chapters

Chapter 1

We introduce F structures, translation surfaces and their basic properties. In the
second part we describe the moduli and Teichmiiller spaces of F structures, as well
as certain strata QD(g, P) of them given by fixing the order of the singular points.
We present an outline of the construction of a manifold structure for each connected
component Q(g, P) of QD(g, P) following Veechs paper [Vch90]. Our presentation is
precise up to some calculations which can be found in Veechs paper, the aim is making
the construction more transparent. We use the manifold structure to establish the local
stability of saddle connections and cylinders of closed geodesics in Q(g, P).

Chapter 2

We define affine maps, the affine group Aff (u) and the Veech group V(u) with respect
to a F structure u. We prove all (known) general properties of Aff(u) and V(u), as
well as show geometrical consequences, if V(u) contains a parabolic element. In the
second part we study the relation of V' (u) and V(v) given a covering map u — v.
We generalize a result of Gutkin and Judge stating that if a translation structure
u has a Veech group commensurable to SLs(Z) then there exists a translation map

u -25 T2 to the torus eventually branched over one point. We show: if u is a half
translation structure and V (u) is commensurable to PSLy(Z), then there exists a flat
map © — P? to the pillow P?. Metrically the pillow is the surface of genus zero
obtained by gluing together two copies of a rectangle along their boundaries. It has
four metric singularities around which the total angle is 7. From the existence of a
Umin 1t follows, that the Veech group of a covering of v,,;, is commensurable to V (v )-
Finally we explain the counting formula of Veech for F structures u with a lattice Veech

group V (u).

Chapter 3

We explain the method of Eskin and Masur [EskMsr98| founded on a new idea of
Veech [Vch98] to prove that almost every half translation surface in the moduli spaces
Q(g,n, P) has asymptotic quadratic growth rates for non singular closed geodesics,
saddle connections and other objects which fulfill some necessary properties. “Almost
everywhere” has to be understood with respect to some measure p which is ergodic with
respect to the SLy(R) operation on Q(g, P), in particular it is true for the “Liouville
measure” p introduced and studied by Masur [Msr82] and Veech [Vch90]. We present
the idea of Eskin how to use these methods for homogeneous spaces of F structures, to
obtain not only almost everywhere but pointwise results.



Chapter 4

The behavior of the quadratic growth rates of saddle connections and closed geodesics
on (homogeneous) spaces parametrizing F structures of n marked tori is described.
These spaces are themselves tori (eventually of higher dimension) and they parame-
terize simply different constellations of the marked points. By the method of counting
lattice points in the plane limit quadratic growth rates for every marking are estab-
lished. We compute the Veech groups of the rationally two marked tori and use the
results from counting lattice points to calculate their indices in SLy(Z). As a byprod-
uct the index of the classical congruence groups I'1(n) in SLy(Z) can be computed. We
give formulas for the asymptotic growth constants on two marked tori. Furthermore
the sets where the growth constants are maximal are described and it is proved that
these have measure one (with respect to the Lebesgue measure).



Abstract

This work is centered around the problem to find growth constants for the growth rates
of certain kinds of geodesics, on translation surfaces or more generally F structures.
This kind of problem is motivated by the study of polygonal billiards. We develop
the necessary formal language by using quadratic differentials and explain in which
way a polygonal billiard gives rise to an F structure. Since in all known attempts
to attack the counting problems Teichmiiller- and Modulispaces of F structures will
occur we explain their natural manifold structure. Every F structure has a symmetry
group, called the affine group and associated to it the Veech group. The properties of
the affine and the Veech group are collected. The importance of the affine group is
seen in the fact that one is able to parameterize all geodesics on an F structure and
finally compute their quadratic asymptotic if the affine group of an F structure is big.
Eskin and Masur, inspired by an idea of W. Veech, recently found a way to prove the
existence of asymptotic growth constants for bigger classes of F structures. We present
an outline of this theory together with a description how to use Ratners theorem if one
has a homogeneous space parameterizing F structures. Finally we compute quadratic
growth constants of saddle connections and closed geodesics on two marked tori as
functions of the relative marking. It turns out that the index of the associated Veech
groups in SL(2,Z) is the most important ingredient to evaluate the growth constants,
it is computed in two different ways. Some properties of these functions are shown in
the more general context of spaces of n-marked tori.
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Zusammenfassung

Die Absicht der vorliegenden Arbeit ist es darzustellen, wie quadratische Wachstums-
konstanten fiir (gewisse Arten von) Geodéten auf F Strukturen berechnet werden
konnen. F Strukturen sind grob gesprochen Flachen zusammen mit einem quadra-
tischen Differential. Sie stellen einen allgemeinen formalen Rahmen zum Studium der
polygonalen Billiards dar, der genaue Zusammenhang wird in der Arbeit beschrieben.
Die Eigenschaften von F Strukturen im Hinblick auf das Studium ihrer Geodéten,
ebenso wie die Mannigfaltigkeiten-Struktur ihrer Modulrdume, werden besprochen.
Der SLy(R)-Orbit jeder F Struktur besitzt eine Symmetriegruppe, die sogenannte
affine Gruppe. Aus der affinen Gruppe ldsst sich eine weitere Gruppe, die Veech-
Gruppe, ableiten. W. Veech konnte fiir F Strukturen, deren Veech-Gruppe ein Gitter
ist die quadratischen, asymptotischen Konstanten fiir Wachstumsraten von Geodaten,
berechnen. Diese Theorie wird naher beleuchtet und die bekannten Resultate zur Struk-
tur der affinen- sowie der Veech Gruppe werden bewiesen. und fiir Anwendungen auf
F Strukturen werden einige Verfeinerungen angegeben. Es folgt eine Darstellung der
von Eskin, Masur und Veech entwickelten Idee, die fast sichere Existenz von quadrati-
schen Wachstumskonstanten in Modulraumen von F Strukturen unter Benutzung von
Siegel-Veech Maflen zu zeigen. Sind die Parameterrdiume der F Strukturen SLo(R)-
invariante homogene Raume, dann liefert Ratners Klassifikation von ergodischen Maflen
sogar punktweise Resultate. Diese Ergebnisse konnen auf gewisse polygonale Billiards
angewendet werden. Der abschlieBende Teil der Arbeit besteht darin, die quadratis-
chen Wachstumsraten fiir markierte Tori zu berechnen, beziehungsweise deren Exis-
tenz und Verhalten in Abhangigkeit von der Markierung zu verstehen. Enthalten in
diesem Abschnitt sind auch Beschreibungen der affinen- und der Veech-Gruppe von
zweifach rational markierten Tori. Der Index dieser Veech-Gruppen in SLy(Z) spielt
eine wesentliche Rolle bei der Berchnung der asymptotischen Konstanten, er wird auf
zwei verschiedene Weisen berechnet. Auflerdem werden die Wachstumskonstanten von
Sattel-Verbindungen und periodischen Bahnen als Funktionen der relativen Markierung
auf dem Parameterraum zweifach markierter Tori angegeben.
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Chapter 1

F structures on surfaces

1.1 Definition and basic properties of F structures

We start to develop the basic geometric objects in the study of rational polygonal
billiards. For this we always assume S, is a compact oriented surface of genus g and
O, C Sy is a set of n points. Sy, is S, where the set O,, is removed. If we do not say
it explicitly S, is assumed to have no boundary. We define

Definition 1.1 (F structure) A F structure u is a surface Sy, together with a max-
imal complex atlas A that has only coordinate changes of the form z — +2z + ¢ with
c € C. If A can be reduced to contain only coordinate changes z — z + ¢ then the
structure is called a translation structure, if not we will say it is a half translation
structure. u is called positive, if it induces the given orientation on Sy ,,.

Remark: The name F structure was introduced by W. Veech. Maybe the ”F” in the
name referres to "flat” since, as we will see in a moment, an F structure induces a
natural flat metric. We denote the set of positive F structures on Sy, by Q" (Sy.) -

an F structure induces some canonical geometric objects on S, ,: by means of charts
from A we can pull back all tensors on C which are invariant under the complex linear
map —id . These are

a Riemannian flat metric g, as the pullback of dz ® dz which in turn induces

a volume form dwvol,. This can also be viewed as the pullback of %dz A dz.

A complex structure 7, on S .

One can also pull back the quadratic differential dz? to obtain a globally non
vanishing and holomorphic (w.r.t. J,) quadratic differential ¢, on Sy ,,. Moreover
in the case of a translation structure dz is pulled back to induce a non vanishing
holomorphic differential o on Sy ,.
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- gy or a, induce for every § € S! foliations Fy(u) defined by the solutions of
the equation Re(exp(if)q)v, = 0 or I'm(exp(if)a)v, = 0 respectively with v, €
T,Sgn. The special cases § = 7 and 6 = 0 induce the horizontal 7}, and vertical
F, foliation. In the case of the one form « the foliation can be oriented since the
above equations are fulfilled by the canonical vector field associated to exp(if)«a
by means of the metric g,.

On QM) (S, ) we have a natural GLy(R) operation. For u = (S,,,.A) € QH(S,,) it
is given by post composition Ao ¢ of chart maps ¢ from 4 by an element A € GLy(R).
Formally we write Au for the resulting F structure. Since

SLy(R) = {4 € GLy(R) : det(A) =1}
SLy(R) operates on €(S,,) and preserves the natural volume of the F structures.
Both operations obviously map translation structures to translation structures. Since
by the definition of F structures Au = —Au for A € GLy(R) the operations descend to
operations of PGLy(R) and PSLy(R) respectively. The operation of GLy(R) on the
canonical quadratic differential for example is given by
Gaw = (Aod)*dz? = ¢* ((a* + &) dz? + i (b* + d?) dy?) =
= (a® + ) ¢*da® + i (b* + d?) ¢*dy?
where

A:(‘C‘ Z)EGLQ(R)

and ¢ is a chart map of the natural atlas.

An F structure u is reducible to a translation structure iff there is a 6, so that the
foliation Fp(u) is orientable. That is it is the integral foliation of a vectorfield. We saw
above that this is true if u is a translation structure. On the other hand Fy(u) is ori-
entable then also the foliation Fp, = (u) is by the complex structure J,. By integration
this defines a translation atlas for exp(if)u and by the SLy(R) operation for u as well.

Definition 1.2 A Fmap ¢ : u — v between two F structures u = (Syn, A) and
v = (Syn,A') is a continuous map ¢ : Sy —> Sy so that the mazimal atlas on
Sgn generated by {p o ¢ :1p € A’ chart map } is equal to A.

Thus locally in natural coordinates ¢(z) = £z + ¢ with a constant ¢ € C and by
definition all the natural geometric objects on u defined above are pull backs of the
ones on v. For example

d)*QU = qu and QS*jv = TJu-
It follows ¢ is a holomorphic covering map.

For practical reasons it is important to answer the question under what circumstances
an F structure on Sy, can be continued to the whole surface S,.
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Definition 1.3 A (positive) F structure u = (Sy,,, A) € QH(S, ) is called admissible,
if the completion of S, with respect to the natural flat metric g, is Sy.

Proposition 1.1 [Vch86] If u is admissible, then

1 The complex structure T, extends to S,

2 The quadratic differential q, extends to a meromorpic quadratic differential on
S, with at worst simple poles.

A direct consequence of this is that the Riemann metric g, can be continued to a
singular metric on S,. It has conic singularities in the points where the quadratic
differential ¢, is zero or has a simple pole. Around these singular points the total angle
is km where k£ > 1, thus locally in polar coordinates:

2
G = dr’ + <g> r?dy?

If ¢, has a pole, g, has a pole, too (of first order if u is admissible). This in turn causes
the finiteness of the (volume) integral:

llqu|] :== /dvolu < 00

Sn

A quadratic differential ¢ (on S) is called admissible if the integral above is finite. On
the set of admissible quadratic differentials (on Sy) || - || defines a norm.

If an admissible F structure contains a translation structure, then the continuation
of the associated one form o can have only zeroes in O, but no poles. Moreover
around each conic singularity the total angle is 2k7 with £ € N. On the other hand a
meromorphic quadratic differential ¢ with finite norm ||g|| on S, and zeroes and poles
in Z C O, (Z is allowed to be a proper subset) defines an admissible F structure on
Syn by the following construction of an atlas: locally in a neighborhood U,, of zy € Sy,
take charts by choosing a branch of the square root /g of ¢ and define:

@)= [ va

R

where 77 is a path from z to z in U,,. (,,(2) does not depend on the path because
/4 is holomorphic. Of course the neighborhoods U,, must be starshaped, to avoid
difficulties with the poles. It is clear by the definition of the ( coordinates that the
coordinate changes are of the form ¢ — +( + ¢ with a constant ¢ € C. The maximal
atlas A, on S, , associated to this coordinates defines an F structure which is admissible
by definition.
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Let Q%(g,n) be the set of all admissible, positive F structures on S, with singular
points only in O,. The topological group

H7"(g,n) := {¢ € homeo(S,) : ¢ orientation preserving and ¢(0,) = O,.}
operates on Q7 (g,n) by the rule
pu=uog ' ueQf(g,n)

as well as the subgroup H{ (g,n) C H"(g,n) of homeomorphisms homotopic to the
identity. Q" (g,n) can be topologized by the distance (cf Veech [Vch86])

d(ui,us) = sup sup limsuplL ((M) ) (1.1)

ZESg,n (Uj fj)eu; YT f2(y) - fQ(x)
z€UL U2

(L(z) = |in|z| + i arg z| with —7 < argz < 7.) The distance is sensitive to changes of
the volume of the F structure and also recognizes the direction. The following example
might illustrate that. Take a cylinder C := (0,w) x [0, h]/(z,0) ~ (z,h) of width w
and hight A with the natural translation structure u¢ induced by dz. There are natural
linear operations on C, the simplest is stretching C by

. et 0
=0 e

or to say it in another way, take the new F structure v;uc on C. Since the transformation
vy is linear, to calculate the distance d(viuc, uc), it is enough to evaluate the argument
of the logarithm L in one point of C. Thus the result is d(vsuc,uc) = 2t. For the
rotation

—sinf cosf

rp = exp(if) = ( cosf sin 0)

we compute d(rquc, uc) = 20. And finally for

) et 0
“=\o e

the distance d(a;uc,uc) is 2t. Now the considerations don’t use the fact that u is a
cylinder, they are true for any F structure u. Hence d(vyu,u) = 2t, d(reu,u) = 26 and
d(ayu,u) = 2t for all F structures wu.

Veech [Vch86] has proved that the H(}L)) (g,n) invariant pseudometrics D(g)(u1, ug) =
infquH(+0) (g,n) d(uy, ugop™') on Q7 (g, n) induce complete metrics on the “Teichmiillerspace”

QD(g,n) == Q" (g,n)/Hy (g,n) (1.2)
and the modulispace

QD(g,n) = Q" (g,n)/H"(g,n) (1.3)

16



Remark 1.1 Since for any ¢ € H'(g,n) the natural atlas of uo ¢ is just the pullback
of one of the u, all the geometric objects defined above are canonically identified under
the operation of H* (g, n). In this sense we can speak for ezample of a metric g, for
the class [u] € QD(g,n).

Since the PG Ly(R) and PSLy(R) action on Q+(g,n) are from the left and the H* (g, n)
action is from the right they commute and both actions descend to QD(g,n) and
QD(g,n) respectively.

Given an F structure u = (S;,,w) € Q7 (g,n) (w denotes the holomorphic one form on
Sg,n which describes the flat structure) and a surface M together with a differentiable

map M REIN Sy.If f has only finitely many critical points, the pullback f*w defines a
holomorphic one form on M and therefore of course an F structure. By the operation
of the associated groups of positive homeomorphisms on (M, f*w) and (Syn,w) the
map f* on F structures descends to a map of classes. Varying w f* becomes a map of
Teichmiiller- and /or Moduli-spaces

QD(g,n) L oD (M).

The definition of the metric D implies Dy (f*[wi], f*[w2]) < Ds,, ([wi], [w2]), hence
the map f* is a continuous map between Modulispaces. This is of course true if one
assumes M to be a two dimensional submanifold of Sy, and f is the natural inclusion.
The induced map can be viewed as a restriction map of the F structure to the given

submanifold M.

If the object to that one restricts is not a submanifold of Sy ,,, but a subspace depending
on the F structure then the restriction map might not be defined on the whole space
QD(g,n). For an example see the proof of Proposition 1.11.

1.2 Geodesics on F structures

There are two special kinds of geodesics on F surfaces u = (S,,q) with respect to
the canonical flat metric g,. The first one are called saddle connections, these are
geodesics with respect to g, which connect two singular points p;, p» € O,, and contain
no other singular point. The set of saddle connections on u is denoted with SC'(u).
The second are closed geodesics ¢ which do not contain singular points. Because the
metric g, is locally Euclidean there is a neighborhood of ¢ which is isometric to the
cylinder C = ¢ x (0,¢€) (with the Euclidean metric) and therefore the closed geodesics
occur in parallel families. Each cylinder of closed geodesics is contained in a maximal
one, which must have singular points on its boundary, otherwise it could be extended.
Thus the boundaries of each maximal cylinder of closed geodesics consists of saddle
connections. We denote the set of maximal cylinders of closed geodesics on u with
PO(u). If we do not want to precise about what we are speaking: singular geodesics
(= saddle connections) or (cylinders of) closed geodesics, we will say just “geodesic”.
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Since the F structure recognizes the direction (modulo £1) as well as the length of a
s € SC(u) or of a C € PO(u) we can associate a vector £v(s) € R? (£v(C) € R?)
to each. The length of each v(s) v(C) is the g, length of s (of any periodic orbit
in C) and its direction is the direction of s (C). The set of such vectors given an
F structure u is denoted by V.y(u) where - = sc for saddle connections and - = po for
cylinders of closed geodesics. Since geodesics are defined in terms of the metric g, and
Gu = Yexp(ioyu, V 0 € [0,27] we have

Voy(u) = Vey(exp(if)u), V6 € [0,2x].

Furthermore, by the above definition of the GLo(R) operation on F structures, it is
clear that

gV(.) (u) = V(.)(gu) Vge GLQ(R) (1.4)

with respect to the linear operation of GLy(R) on R?. From this it directly follows
that the GLo(R) action on F structures induces a linear action on the geodesics: if s
is a geodesic on u, then As is a geodesic of Au (A € GLy(R)) and +v(As) = +Av(s).
We have:

Proposition 1.2 The length l(s) of a geodesic s, the width w(C) and the volume vol(C)
of a cylinder of closed geodesics C on an F structure u are continuous functions with
respect to the operation of GLs(R) on w.

If we restrict the operation to SLs(R), the volume of cylinders of geodesics is invariant.
Since (see remark 1.1) Vy(u) = V(y(u o ¢). Thus V.y(u) depends only on the class [u]
of uw in the Teichmiiller or moduli space.

There are subsets of PO(u) which are also of interest. The set of regular geodesics
is the set of all maximal cylinders of closed geodesics which are bounded by a single
saddle connection on each boundary component. All the maximal cylinders of closed
geodesics which have more than one saddle connection on a boundary component are
called irregular.

1.3 The translation structure of a polygonal billiard

Let G, C C a n-gon with an oriented boundary and denote the vector of inner angles
by @ = (ay, ..., ;). The phase space of the billiard in G, is the topological quotient
G, x S'/ ~, where the equivalence relation ~ is defined as:

(z,0) ~ (2,6

if =2’ € v with v € 0G,, and #' = r,0 where r, is the reflection at the edge e. Since
this equivalence relation is only well defined when z is not a vertex point, we assume
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that the vertices are removed from G,,. Thus the connected components of this phase
space are all of the form G, x Sg,0 where Sg, is the reflection group generated by
the edges of G,,. If we take the translation structure exp(i6)dz on each copy G, x 6 of
the n-gon G, in the phase space, by the rule of the identification they glue together to
give a global differential on each invariant surface. If 6 is not parallel to the fixpoint
line of some reflection in S, , the invariant surfaces are isometric to G, x Sq,/ ~
where (z,7) ~ (2/,7") if z = 2’ € v with v € 0G,, and r~' o' = r,. In the other case
the number |Sg, 0| is exactly half the order ord(Sg, ) of Sg,. The resulting invariant
surfaces are doubly covered by the former ones because Sg, 0 = Sg, /(rs) (r¢ is the
reflection on the line defined by 6). On the billiard table this is the same as moving
the particle parallel to one of the edges of G,,. On the surface G,, x Sg,,/ ~ this means
that a particle starting on one of the copies of GG,, and parallel to one of its edges will
meet only ”half” of the surface.

Remark 1.2 The global symmetry of order two generated by the two fold covering
G X S,/ ~— G % (Sc,/(rg)) | ~

can, together with a Poincaré recurrence theorem be used to prove that trajectories per-
pendicular to an edge of G, are almost sure periodic. For compact invariant surfaces
(the “rational angle” case ) this is done in [VGSt92]. A more general recurrence the-
orem 1is used by Serge Troubetzkoy to obtain some results in the "non rational angle”
case [Tr96, Tr97].

The billiard dynamics on each invariant surface is given by the integral trajectories of
the horizontal vector field X}, associated to the differential above i.e. in p = (z,0) €
G, x S' we have X, (p) = exp(if). By means of the above identification this is the
constant vectorfield X (p) = exp(if) on the surface G, x Sg,/ ~. Thus we see the
billiard dynamics in a given direction @ is just the geodesic flow with respect to the
induced flat metric in direction exp(if) on the surface G, x Sg,/ ~. Since each
transverse interval to the flow has invariant length we have an invariant Lebesgue
measure for the directional flow and a flow invariant product measure on the phase
space. To see which invariant surfaces can be compactified we prove

Proposition 1.3 The reflection group Sg, generated by reflections in the edges of G,
has finite order exactly if o € Q"mw, where « is the vector of inner angles (defined
above). If - = (2’—1, s 2—:) € Q" with ged(pi, qi) =1 then:

ord(Sg, ) = lem(q, .., gn)
Proof:  Assume there exists a non rational angle between two edges of G,,, then

the reflection group generated by these edges is infinite cyclic, thus in the case of a
non rational 5 ord(Sg,) is infinite. To treat the rational case, we observe that two
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consecutive reflections s; o s; at the edges e; and e; cause a rotation ry of twice the

(inner) angle between e; and e;: § =2Z(e;, e;). If all the angles between the edges are
rational, say Z(e;, e;) = W% (ged(pij, ¢ij) = 1), then the rotation group R generated
by the edges contains the rotation ry with 6, = 1c§172h—j

linear combination of the rotation angles W%%'. Thus the rotation group R contains

since this number is an integer

the group Ry, generated by 6, which in furn contains every generator of R so they
are identical. Since R has by construction index two in the reflection group Sg, the
Proposition is proved.

O
Since the order of S¢, is equal to the number of copies of the n-gon G, in the surface
G, X Sg, / ~ we can compactify this translation structure for rational n-gons. To do
this we have to put in correctly copies of the vertex points of G,, in G,, X Sg, / ~. By
construction a vertex v; € GG, with inner angle 27rf1’—;' results a conic singularity on G,, X
Sa, / ~ with cone angle 27p;. Because there are Sg, copies of G, in G, X Sg, / ~ there

exist exactly ‘ch—l conic singularities associated to the vertex v; on the compactified

translation structure, which we call ug,. Thus if G, is rational, ug, is an admissible
translation surface and we can calculate its genus:

Proposition 1.4 Let G, be a rational n-gon with an inner angle vector given by
a Z(ﬂ p—") € Q" where ged(p;,q;) = 1. Then the Euler characteristic of the

2 @’ an
associated translation surface ug, is:

1—p;
X(ug,) =2(1-g) = |Sa,|> ” : (1.5)
here Sg, 1is the reflection group generated by the edges of G, and g is the genus of ug,, -

Proof: By construction the surface ug, has a combinatorial cell subdivision by copies
of GG,,. We have:

n ] "1
[{faces}| = |Sq.|  edges}| = 5[Sq.| ~ [vertices}| =[Sa,| > m
i=1 **

Thus by Eulers formula

x(ug,) = |{faces}| — |{edges}| + [{vertices}| = |Sa,| (1 ~2ey ql>
i=1 **

and the identity > | B = 1(n —2) for the inner angles in G,, we finally get

n

o = 5 (35 =352 =150, 3152
b= i=1

i1 qi
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Example: Let G,, be the triangle given by (5, 5o, %-2) 27 where n € N, then

4 —n if nis even

x(ua,) = {

3 —n if n is uneven

and for the genus g(ug,) of the translation surface we have

g(ug,) = [n > 1] (1.6)

Back to the general case: the subgroup Rg, C Sg, of all rotations operates (as a
subgroup of Sg, ) on ug, and the quotient under this operation is a singular Euclidean
surface which can be viewed as two copies of G, identified along their edges. This is the
smallest compact and singular Euclidean surface one can associate to every polygonal
billiard, but it has the disadvantage that it is not a translation structure, because the
total angles around the singular points are never integer multiples of 27. Therefore
the SLy(R) operation defined above is not well defined on these surfaces, so that most
of the arguments to prove statements about the geodesic flow do not work. Of course
one can take the simplest translation structure covering the surface in view, (which is
ug, for rational n-gons) but only for the price of non compactness in the case of non
rational n-gons.

1.4 A manifold structure on moduli spaces of F sur-
faces

In this section we describe a manifold structure on moduli spaces of F surfaces. This is
done by Veech [Vch86, Vch90] and also by Masur [Msr82] before. We follow the line of
Veechs paper [Vch90], but omit the proofs which are too technical. From the viewpoint
of algebraic geometry (see Kontsevich and Zorich [KoZo|) the manifold structures can
be described using techniques like deformation theory and the Gauss Manin connection.
But these techniques are not in the baggage of the most people studying polygonal
billiards, thus it is more natural to use Veechs explicit construction. The motivation to
present this material is the use of the moduli spaces in the theory of Eskin and Masur
as well as to use it for the deformation results in the next section.

Let ¥, be a compact Riemann surface of genus g. Again if we remove the set O,
of n points out of ¥, the resulting surface is denoted by ¥,,. For the rest of the
chapter we make the assumption 3g — 3 + n > 0 corresponding Teichmiiller space
T (g,n) is homeomorphic to a ball of complex dimension 3g — 3 + n. It follows more
or less directly from the original construction of O. Teichmiiller that the Teichmiiller
space of all pairs (X, ¢), where ¢ is an integrable, meromorphic quadratic differential
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on Y, with poles and zeroes only in O, is the cotangential space to 7 (g,n). Thus
T*T (g, n) is exactly the space of positive admissible F structures on X, ,. The natural
refinement is to prescribe the number and orders of singular points of the associated
metric, or what is the same: prescribe the number of poles and zeroes of a given order
for the natural quadratic differential on the flat surface. With O, = (p1,...,pn) we
define Q% (g,q1, ..., gm) C Q7 (g,n) to be the set of all u = (X,, A) where g, has cone
singularities of order ¢;m in p;. We make no restrictions and allow ¢; = 2 to be just
a “marked point”. Since by the Gauss Bonett theorem Y . (¢ —2) = 4¢ — 4, for
every partition P of 4g — 4 in n integers bigger or equal than —1, we can define spaces
(Q*(g, P),d(-,-)) with the distance (1.1) in this way (for some decompositions P these
spaces might be empty, see the following discussion). It is well known (cf [MS93])
that the associated Teichmiiller spaces QD(g, P) define a stratification of the spaces
Q7% (g,n) as the decomposition P varies. There are two possible ways to define the
quotient moduli space: one can take classes with respect to the group H*(g,n) or one
can take the subgroup H" (g, P) C H'(g,n) of homeomorphisms which fix the sets
of singularities of the same kind in O,. This is a matter of taste since H*(g, P) is
of finite index in H*(g,n) and so one quotient space is a finite covering of the other.
The spaces QD(g, P) are not necessarily connected (see [KoZol), so finally we define
Q(g, P) to be a connected component of QD(g, P). These spaces are studied by Veech
[Vch90] and Masur [Msr82, MS93]. We restate the main constructions and results,
following the line of Veechs paper. Every half translation structure, given by the data
(24,9) € Q7 (g, P), has a two sheeted covering (see Masur [Msr82]):

pr
Yy — Ygn

which is branched over all zeroes of g, of uneven degree. The pullback pr*q of ¢ is
holomorphic (the poles are removed) and results an orientable foliation, thus pr*q is
the square of a holomorphic one form o on Y. At first using this observation we restrict
our treatment to spaces of translation structures M(g, P) defined as the Teichmiiller
space of pairs (X4, «) where the holomorphic one form « has a zero of order ¢; in each
point p; € O, C 3, and P = (2¢q, ..., 2¢,) is a decomposition of 4g — 4 by even natural
numbers including 0. Because by Hopf’s theorem 2g—2 = """ | ¢; if o is a holomorphic
one form with zeroes of order ¢; + 1 on X,. If we put the question the other way
round: given some singularity datum P and prescribed orientability e = +1 (e = —1
for non orientable foliations), is the space Q@D(g,P) (¢ = 1+ Y ., ¢;) non empty?
Masur and Smillie [MS93] have proven, that the only exceptions are P = ((); —), P =
(1,-1;-),P = (3,1;—) and P = (4;—) cannot be realized by quadratic differentials.
The exception P = ((; —) says that on the torus there is no nonorientable foliation
defined by a quadratic differential. Since the orders of the zeroes are not changed
under the SLy(R) operation on (half)translation structures all the above spaces are
invariant under the SLy(R) operation. To study the spaces M(g, P) let (Sy, ) be
some representative and O,, = {pi,...,pn} € S, be the set of zeroes of o with orders
0a(pi) = ¢; + 1. Then, as is proven in Veech [Vch90], it is possible to find for almost
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Figure 1.1: A weaving on the torus (parallel boundaries have to be identified).

every exp(if) € S* a cell subdivision of S, with the following properties:

1. The faces are rectangles with respect to the Euclidean metric structure together
with the induced orientation.

2. The edges are parts of horizontal or vertical trajectories with respect to ay where
ay := exp(if)a. Each edge is contained in a maximal edge. One boundary point
of each maximal edge is in the set O, the other is on a perpendicular edge, but
not on its boundary.

3. The vertices are the boundary points of the edges and there exist only finitely
many.

4. Every point p; € O, is the boundary of 2(ord(p;) + 1) vertical and 2(ord(p;) + 1)
horizontal edges.

A one skeleton of S, inducing a cell subdivision of the translation structure (S,, ay)
with the above properties is called a weaving for (Sy, o).

To describe M (g, P) locally the main observation is that fixing the length of the edges
in a consistent way, all the opposite sides of the “rectangles” have to be of the same
length. This characterizes (the class of) (Sy, ) in M (g, P). The consistence condition
can be formulated in terms of a coboundary operator on the dual

o* o*

C; — CI —C; (1.7)
of the chain complex of real vectorspaces
o o
C2 — C1 — C() (18)

generated by the the cell subdivision of S; above. A measurement of length on each
edge in the weaving defines a homomorphism on the R vectorspace C; generated by
the edges and therefore an element ¢ € Cj. From now on the vectorspaces C; and C;
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are identified by means of €!(e,,) = d;,, for generators (= i cells) e, € C;. If we define
®nwp € C1 to be ¢ on horizontal (vertical) edges and zero on vertical (horizontal) ones,
the consistency condition becomes:

0" ¢ny = 0.

Horizontal and vertical one cycles are defined as Z,{ o = ker 0* N Ch,, where Cp, is the
linear span of the horizontal (vertical) edges in C;. There is an elementary calculation
of the dimensions by using the above cell subdivision.

Proposition 1.5

dimC, = dimC, = 29 — 2 + n + |{ faces}|
dim Z; =dimZ, =2g—1+n (1.9)

Proof:  See Veech [Vch90] Lemma 4.5 and Lemma 4.10

O
Now the relative cohomolgy groups H'(S,, O,; R) can be defined in terms of (1.7)
ker 8* N Cl
H'(Sy,0nR) = ———
( g ) ) 6*CO(OH)L

Co(Oy,) is the subspace of cocycles generated by O,,. We have natural projection maps
Zé,v ﬂ) Hl (Sg7 On’ R)

and since H'(S,, O,; R) is a topological invariant we can compute its dimension using
the long exact cohomology sequence associated to the sequence of space pairs

On = (S5, 0n) = S,
Here i is the inclusion on the second factor and 7 is the projection on the first factor

of the space pair (S, Oy,).

*

0 — H%(S,,0n;R) = H(S,;R) - H*(On:R) 25
N s N -~ o N ~~ -
dim=0 dim=1 dim=|0n|=n
2 HY(S,,0:R) =5 H'(S,:R) = H'(On;R) =0
—_— ——

dim="? dim=2g¢

= dimg H'(S,,0,;R) =29 — 1 +n. (1.10)

Now a € Z;, and pr(a) = 0 means o = &*s, with s(z) = 0, Vo € O,. A calculation
shows that every cycle of (co)vertices which maps under 9* to a horizontal (vertical)
cocycle is zero on boundaries of vertical (horizontal) edges. The definition of a weaving
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implies s = 0 and therefore & = 0. Thus the homomorphism pr is injective and by the
equal dimensions of the spaces pr is an 1somorphism.

Let us fix (S,, ap) € Q7 (g, n) with a weaving A. Since the horizontal and vertical cycles
2, , are identified with respect to pr there is a canonical isomorphism J : Z; — 2.
This defines a complex multiplication on Z! := Z} @ Z! and because of

Z' >~ HY(S,,0n,;R) @ iH'(S,,On;R) & H'(S,, 0,; C) (1.11)

pr extends to a canonical C linear isomorphism again denoted by pr. The one form oy
defines an element [ay]y + [ap], € H(S,, On; C) by integration along the edges of A
(these lengths are all positive by the definition of A).

Now we define a new translation structure by picking an element [3] € H*(S,, O,; C)
and associate the new length 3(ep,) to horizontal (vertical) edges respectively. This
makes sense only, if we restrict to cohomology classes which assign a positive length to
every edge. The set of all such classes is a (positive) cone in H'(S,, O,; C), it depends
on the weaving A of course and is called C*(A). The so defined map ®, : CT(A) —
% (g,n) has the properties:

1. [®A(B)] = B for all B € C*(A) especially [P ()] = ao.

2. A is a weaving for ®,(8) if 8 € C*(A)

Moreover since H (g,n) operates trivially on H'(S,, O,;R) @, descends to a map
®,: CH(A) — M(g,n) with:

1. ®, is a continuous map with respect to the natural topology on C*(A) and the
topology induced by the Teichmiiller metric 1.1

2. ®, is injective and open.

The main problem is to show that the map ®, is continuous with respect to the
Teichmiiller metric (1.1). Veech solved this by constructing the map ®, : C*(A) —
2 (g,n) in a way that guarantees the continuity and then establishes all the other
properties. Roughly speaking given a weaving A one constructs the map ®, starting
with the Euclidean rectangles defined by the cell subdivision associated to A and the
flat structure u. Given o € CT(A) for each rectangle R « defines new lengths on
the edges and so a new rectangle R,. The difference between R and R, is measured
by constructing a natural piecewise linear map R N R, and define 6(R, R,) :=
max |ln %‘, where % > 0 is the locally constant arclength derivative. ¢ is equivalent
to the Teichmiiller distance d 1.1 on rectangles R. Now the deformed rectangles R,
define a new flat atlas on S, and so a new F structure with the same singularity data
as u. By taking the maximum over all rectangles of A¢ § defines a distance between
u and u, again denoted with §. This ¢ is equivalent to the Teichmiiller distance d on
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Q7% (g,n). From this construction the continuity of the map ®, and the other properties
mentioned above follow. The injectivity of ®, is proved in Lemma 5.11. of [Vch90]
and the openness is Proposition 6.1. in the same paper.

The construction of the local parameterizations modeled on H'(S,, O,; C) yields charts
for almost all translation surfaces, the only exceptions are the translation structures
u = [(Sy,®)] € M(g,n) on which there is no weaving. But since SLy(R) operates on
M(g,n) by u — Au with A € SLy(R) we can rotate u to a structure exp(if)u that
has a weaving. Thus our set of charts covers all points of M(g,n). Since the maps pr
associating a cohomology class to a cycle are linear it follows that changes of charts
resulting from changing the weaving are complex linear maps.

The Lebesgue measure y, on the vectorspace H'(S,, O,;C) = C* *" normed by
assigning covolume one to the lattice H'(S,, O,;Z) defines a positive smooth measure
po on M(g, P).

Noting that the natural volume % [, s, w A w of a translation structure u = (Sg,w) is the
intersection form [Im(w), Re(w)] evaluated on the cycles (Im(w), Re(w)) € ZL @ Z} in
H'(S,, 0,; C) yields the function

M(g,P) % Ry

: 1.12
(Sgyw) +— %fsgw/\(u (1.12)

On the other hand it can be proven (Veech [Vch90] Proposition 4.19) that [Im(w), Re(w)]
is the sum of the volumes of the faces of the cell decomposition defined by the weaving
A with respect to the natural metric on u. Thus A is a real analytic function.

Since the operation of H*(g,n) on H'(S,, Oy,; R) is linear, maps generators to integer
multiples of generators and has H (g,n) as isotropy group, it descends to an operation
of the mapping class group I'(g, n) := H " (g,n)/Hy (g,n) represented by GL(zg—14n)(Z)
acting on R~ =~ HY(S  O,;R). Analogously the mapping class group I'(g,n)
operates on R22971+7) >~ R2 @ H'(S,, O,; R) = H'(S,, Op; C) represented by elements
of GLo2g—14n) (Z). With respect to the manifold coordinates of Veech described above
the operation of SLy(R) is represented by the linear action of SLy(R) on the first factor
of R”Z@H'(S,,0,; R) = H'(S,, Oy; C). By this fact the measure g is SLy(R) invariant
by definition.

Theorem 1.6 (W. Veech) (1) M(g, P) is a complez affine manifold of dimension
2g —1+4n.

(2) The function A : M(g, P) — Ry is real analytic, positive and without critical
points, therefore

(8) the level sets of A are real analytic submanifolds of M(g, P), they are SLy(R)
and I'(g,n) invariant.

(4) 1o is a smooth measure on M(g, P), it is SLs(R) and I'(g,n) invariant.
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The description of the manifold structure of the Teichmiiller spaces M (g, P) results a
manifold structure of the moduli spaces M(g, P) := M(g, P)/T'(g,n). To describe the
spaces of quadratic differentials which are not the square of a holomorphic one form,
let (Xg.n,q) € Q%(g,n) be a half translation structure and

™
Eg’ ? Eg,n

the orientation covering. Then there exists a holomorphic one form « on X, such
that 7*¢ = o® and i*a = —a for the sheet exchange involution 7 on ¥ characterized
by moi = m. The general idea is to study subspaces Scs(i) := {u € QT (g, P) :
i*w, = —w,} for some involution ¢ of S,;. The images of the subspaces Scs(4) in the
Teichmiiller M (g, P) or moduli space M(g, P) are analytic submanifolds of codimesion
one. Applied to the sheet exchange map ¢ of the orientation covering above results the
generalization of the above theorem

Theorem 1.7 (W. Veech) The connected components Q(g, P) of the moduli spaces
QD(g, P) of positive admissible F structures on Sy, with metric singularities of order
g i p; € O, fori =1,....,n are complex affine manifolds with respect to the above
defined atlas. Their dimension is

dim¢ Q(g,P) =29 — 1 +1
if they parameterize spaces of differentials and
dimg Q(g, P) =29 — 2 +1
if not. The function A : Q(g, P) — R, 1is real analytic and the level sets
Q'(g,P)=A"(1)

are real analytic SLy(R) and T'(g,n) invariant submanifolds. The measure p; on
Q' (g, P) defined by

pr X dA = pg

is preserved under the SLo(R) operation.

There are two important theorems about the measure u; and the SLy(R) operation on
Q' (g, P) proved by Veech in [Vch90], [Vch86] and partly by Masur in [Msr82]

Theorem 1.8 (W. Veech; H. Masur) The u; volume of Q'(g, P) is finite.
Theorem 1.9 (W. Veech; H. Masur) The one parameter group

{(e(;t 3:) [t e R} C SLy(R)

acts ergodically on (Q'(g, P), u1).
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Corollary 1.10 The natural tensors Gu, gm, dvol,, for m = [u] € Q'(g, P) are real
analytic in m with respect to the above constructed manifold structure for Q(g, P).

Proof.  This follows for g, from the definitions of the charts. The metric g,, and the

volume dvol,, is expressible in local coefficients of ¢,,.
O

1.5 Deformation invariance of periodic families in

QA(g, P)

First we want precise what are the objects we speak about. Take an F structure u
representing a class [u] € Q(g, P). Then a cylinder of closed geodesics C on u is defined
as a cylinder of closed geodesics with respect to the metric g, on u. We do not assume
that C is defined by the horizontal foliation on u. Since the metric D on Q(g, P) is
sensitive to changes of the direction this would destroy the proposed stability of C. The
same remark holds for saddle connections on wu.

Proposition 1.11 For each mazimal cylinder of periodic orbits C and each saddle
connection S on m = [u] € QW (g, P) there erists open neighborhoods Uc(m) and
Us(m) of u in QW (g, P) to which these objects deform real analytically. The length
1(C), I(S) width w(C) and area(C) are real analytic functions on Uc, Us respectively.

Proof. Take a point [u] € Q(g, P) and fix a maximal cylinder C of closed geodesics on
u. Take a chart from the atlas described in the last section covering a neighborhood
of [u] € Q(g, P). Remember that this is the same as giving a certain cell subdivision
of u, where the faces are rectangles. A neighborhood of [u] in Q(g, P) is defined by
changing the length and the heights of these rectangles in a consistent manner. By
this the length, the width and therefore the volume of C are changing real analytically
with the class [u] in this coordinates. This implies of course the stability of cylinders of
closed geodesics in Q(g, P) and Q) (g, P) as well. This proves the claim for families of
periodic orbits. To treat the case of saddle connections, we fix a saddle connection s on
u and take the following rectangle: on both (singular) endpoints of s we take intervals
perpendicular to s. Connecting points of both intervals by lines parallel to s gives a
rectangle of the same length as s and a certain width, which can be chosen maximal.
No one uses the same argument as above by replacing the cylinder with the rectangle.

O
Remark: The width of a maximal cylinder of closed geodesics C is defined by the
distance of two singular points on its boundary measured perpendicular to the direction
of the closed orbits. This distance becomes zero by a finite movement of the singularities
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induced by changing the F structure in Q(g, P). Thus the existence of a deformation
of C as a cylinder of closed orbits is restricted to a neighborhood of u in Q(g, P). The
same holds for the rectangle of saddle connections, in exact if the width of the rectangle
collapses then the saddle connection is divided in more than one.

Corollary 1.12 Let T > 0 and m € Q'(g, P), then there exist open neighborhoods
Usc(m,T), Upo(m,T) of m such that

Ngc(m, T) < Nsc(w,T) Yw € Ugc(m, T) (113)
Npo(m, T) < Npo(’w,T) Yw € Upo(m, T) (114)

Proof: By theorem 1.11 we have the stability of each single saddle connection s or
cylinder of periodic orbits C in some open sets in Q'(g, P) and their length changes
continuously in these neighborhoods. For each s € SC(m) (C € PO(m)) with l(s) <T
(1(C) < T) respectively, we take neighborhoods U(s) (U(C)) , so that I(s,) <T VYw €
U(s) (I(Cy) < T VYw € U(C)). Since there are only finitely many saddle connections
or families of periodic orbits of length smaller than 7" on m the sets

Usc(m,T) := N Uls)

{seSC(m): I(s)<T}

Upo(m,T) := ﬂ U(C)

{€ePO(m): I(C)<T}

are open in Q!(g, P) and the corollary is proved.
U

Cylinders of periodic orbits will vanish if the two boundary components consisting of
saddle connections are deformed into each other, to give a new set of saddle connections.
The number of saddle connections is not changed by this deformation, but their length
might be smaller. We assume that singular points are not moved into another, otherwise
we would leave the space Q!(g, P). By this process we observe that it is in principle
possible that the number of saddle connections under a given length 7" on a point
m € Q'(g, P) increases drastically in a neighborhood of this point. Saddle connections
can vanish only by means of the following process: a geodesic triangle degenerates to
a geodesic line consisting of two saddle connections.
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Chapter 2

Quadratic growth rates on Veech
surfaces

Ten years ago W. Veech [Vch89] found a way to gave explicit growth constants on
surfaces which possess a lattice of affine maps. To explain his idea we begin with the
definition of the affine group of a translation structure and general properties of it.

2.1 The affine group Aff(u)

Notation: Let L be either the group PGLs(R) if we speak about F structures or the
group GL,(R) if we speak about translation structures. In the same sense G' denotes
the group SLy(R) or PSLy(R).

Definition 2.1 Let u € Q(g, n) and v € Q(¢', n') then an orientation preserving
homeomorphism ¢ : Sq — Sy s called affine, if

L4 ¢_1(On’) C On

e ¢ is affine in natural coordinates of u and v,
that is for any two charts Sy, D U IR and Sy DV Ly R? exist affine
linear maps Ay p) : R? — R? with:

Syn DU —25 ¢(V)NU C Sy

| |7 (2.1)

R? ) R?
A (f,h)

We denote the set of affine maps between u and v with Aff (u,v), if u = v we write
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Remarks: Since ¢ € Aff(u,v) is locally affine linear, ¢ is differentiable. The derivative
is (locally) constant and determined up to the factor +1, thus it is an element of
PGLy(R). Therefore the differential d defines a map

d: Aff (u,v) — PGLy(R)

If we take a representative A € GLo(R) of [d@] then the set theoretical identity id of
S,n induces an affine map id : Au — u with differential A~!. Thus ¢ : Au — v is
an affine map with derivative +¢d and therefore a F map as defined in 1.2:

Proposition 2.1 Every affine map ¢ € Aff (u,v) defines F maps ¢ : Au — v and
¢ :u— Av with A € [d¢].

Proposition 2.2 If

f
S!h — ng

| [ (2.2)

S!]S 9 894

18 a commutative rectangle of maps and assume three of them are affine maps or F maps
with respect to given F structures u; on Sy, (i =1,...,4), then the last one is an affine
map, F map respectively.

Proof:  In the case of affine maps one can use the last proposition to change the
F structures by elements of SLy(R) so that all the affine maps become F maps. Since
F maps are complex analytic maps they are covering maps, eventually branched over
the singular points. Covering maps are one to one away from their branch points, thus
the fourth map has to be a F map, too. The statement for affine maps follows by
changing the F structures to the ones we started with.

O

Each map ¢ € Aff(u,v) induces surjective maps on the sets of saddle connections

SC(u) SaN SC(v) and on the set of closed geodesics PO(u) LN PO(). fu = v it
can be said more because

Proposition 2.3 The set of affine maps on u is a group under composition of maps.

The prove is obvious and the map d becomes a group homomorphism onto
Viwy={A€L:A==do, ¢ € Aff(u)} (2.3)

V(u) is called the Veech group of u. The kernel N(u) := ker(d) is a group, too. Thus
there is an exact sequence:

1 — N(u) — Aff(u) % V(u) — 1
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Aff (u) has a canonical subgroup Aff,(u) defined as :
Aff o(u) == {¢ € Aff (u) : d|o, = id}. (2.4)

All the properties which we will state and prove will hold for both groups, but Aff (u)
makes the connection to the moduli spaces QD(g,n) defined in the first chapter more
canonical. The Veech group operates as a subgroup of L on F structures

v—Av AeL veQ(Syn)
as well as the affine group:
v— pv=vop ' ¢ Af(u) veQS,n)
On wu itself one has by definition
dpu=pu=uod™' ¢ Aff(u) (2.5)

The general properties of Aff(u) and V(u) are:

Proposition 2.4 1. Let u € Q" (g,n) an F structure ¢ € Aff(u), then d¢ € G.
Thus V (u) C G.

2. V(u) is a discrete subgroup of G.

3. V(gu) = gV(u)g~! VueQ(g,n) andV geL

4. The trace tr(A) of each A € V(u) is an algebraic number.

5. If ¢ € Aff (u) and dé # 1 then ¢ is not homotopic to the identity relative O,,.
6. Aff (u) is a discrete subgroup of H* (g, n).

7. If u has singular points, N(u) is a finite group of F maps, holomorphic with
respect to J,,.

Proof:

1. We can assume that the natural volume of v is 1. Then

1= o= [ 6w= [ detldoyo, -

EQ:" ¢_1(2g,n) EQ:“

= det(d¢) / wy = det(do)

Eg,n
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2. The length function [y, (s) of each saddle connection s € SC(gu) is a continuous
function in g € G. If g € V'(u) then g induces a self map of SC(u) But the length
spectrum of SC(u) can not have accumulation points, that would contradict the
finiteness of the number of saddle connections under a given length.

3. This follows from

gag ‘gu = gau=guVa € V(u), u€Qg,n)and g€ L

4. Let [u] € Q(g, P) then Aff(u) is a subgroup of the mapping class group I'(g, n)
operating on Q(g, P). In coordinates modeled on H'(S,, O,;R), (g, P) is up
to conjugation represented by GLag—11n)(Z). As stated in the chapter on the
spaces of quadratic differentials, if A € V(u): A operates linearly on the first
factor of R? ® H'(Sy, Op;R). Thus it has to be in G'Lawg 14n)(R). But since
every element of the Veech group is represented by an element of the mapping
class group (Equation 2.5) it is conjugated to an element of G Lo(2g—145)(Z). Thus
there is an equation ) , p; A" = 0 with p; € Z proving the claim.

5. If ¢ is homotopic to the identity modulo O,, then it is already the identity
restricted to O,. Let A = d¢ € V(u) if we assume A # id then A induces a non
trivial map on the set of saddle connections SC(u). Let s € SC(u) with ¢(s) # s,
these are two geodesics with respect to the Euclidean metric on u connecting the
same points. Thus they cannot be homotopic. This proves the claim.

6. If not there is a sequence of maps ¢; € Aff (u) converging to some ¢ € Hy (g, n).
Thus ¢; o ¢; 1 converges to the identity and must be homotopic to the identity
for ¢ large enough.

7. An element ¢ € N(u) is a map locally represented by z — £z + ¢ where ¢ € C.
Thus the map is holomorphic, even more it is an isometry with respect to the
natural metric g,. We know ¢, if we know what it does with one fixed saddle
connection s. By the assumption on the existence of singular points there exist
saddle connections on u. Since ¢ is an isometry and there are only finitely many
saddle connections of the same length on u (by Masur’s quadratic bound on
the growth rate) there can be only finitely many different maps in N(u). The
assumption on the existence on singular points is important, the translation torus
without singular points has a continuous family of F maps, since it is a Lie group.

O
Remarks: The determinant det(d¢) of an affine map ¢ € Aff(u) is a well defined map,

even if the Veech group is a projective group, because GL(2,R) 9% R is invariant
under multiplication with —id € GL(2,R).
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If

A=+ ( ”) € PSLy(R)
c d

then A is called parabolic if |tr(A)| = |a + d| = 2, hyperbolic if |tr(A)| > 2 and elliptic

if |tr(A)| < 2. Thus rotations and reflections are elliptic.

For the order of the group N(u) one obtains the canonical estimate

IN(u)| < min  {v(s1)ord(s1)}.
{Slsingularity}
The s; are the end points of the chosen saddle connection s ord(s;) is the order of the
singular point s; (with respect to the metric g,) and v(s;) is the number of singular

points of order ord(s;). Consequently, if there is a singularity s; on u with v(s;) =1
and ord(s;) = 2, then |N(u)| < 2.

Proposition 2.5 ([Vch89]) The Veech group V(u) of an F structure u is never co-
compact in G.

Proof: ' We have to show that there is a sequence in G/V (u) without limit points.
To find it we take a direction 6 € [0, 27] on u so that Fp(u) contains a saddle connection
s.

a4 = :I:(e_t Ot) cG (2.6)

operates on rp.u and contracts the saddle connection e~*. If we assume G/V(u) is
compact then there exists a subsequence of

argu € Gau, teR,

which converges modulo V(u)rg.u = rg.u, but this in turn implies that there is a
sequence

biay,ro.u — Us € GLu

Thus the saddle connection s converges to some saddle connection s,, on u, and by
the continuity of the length function I, (-): {4 (s) > 0 a contradiction.
O

Lemma 2.6 Let ug, = G, X Sg, /| ~ denote the F structure of a billiard in a n-gon as
constructed in chapter 1. The reflection group Sg, operates as a group of affine maps
on ug,. The derivatives in V(ug,) are elliptic elements of G.

In particular for the F structure associated to a non rational n-gon the orders of the
affine and the Veech group are infinite.
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Proof. By definition Sg, operates from the left on ug, = G, X Sg, / ~ inducing affine
maps ¢, with derivative g:

ug, ﬁ) ug, =2 9G, X Sg, [ ~

Since the elements in Sg;, are all reflections or rotations, they are elliptic.

Lemma 2.7 (W. Veech [Vch89]) Let u € Q(g,n) , ¢ € Aff(u) and A € {£do¢}.
Is v € R2\{(0,0)} an eigenvector to the eigenvalue 1 of A, then if d¢ # +id, every
trajectory of F,(u) is closed or a saddle connection. In this case Sy, is decomposed
in n < oo maximal cylinders Cy,..., C, of periodic trajectories, bounded by saddle
connections. Furthermore there is a k > 0, such that ¢k|cj s a linear Dehn twist with

¢k‘3Cj = id.

Proof.  Let O, be the set of singular points of u and d¢ # +id. There are only finitely
many trajectories of F,(u) starting or ending in each singular point of O,,, they are
called separatrices. Since the leaves of F,(u) are mapped to leaves under ¢ there has to
exist a k > 0 with ¢*(l,) = [,, for every separatrix l, € F,(u). Since ¢* is continuous,
the boundary point of [, is a fixpoint and we have ¢*|;,, = id. Either [, is dense in
some open set of u, in which case ¢* is & identity on that open set by continuity, or
it is a saddle connection. In the first case d¢¥ = 4id contradicting our assumption.
Thus every separatrix is a saddle connection, moreover every leaf has to be compact:
if not there is one that approaches a saddle connection and therefore again ¢* = +id
contradicting the assumption. The only compact leaves are saddle connections or
periodic orbits. Since there exists only finitely many singular points, there are only
finitely many maximal cylinders of periodic trajectories Cy,..., C,. Because ¢* is the
identity on their boundary components it is a linear Dehn twist restricted to each
cylinder. If we isometrically identify C; with (0,w) x [0,h]/(z,0) ~ (z,h) then ¢* is
represented as

o = <mlg ‘1)) (mod h) (2.7)

m € Z and (mod h) has to be understood with respect to the off diagonal element.
O
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2.2 Affine coverings and the Veech group

At beginning the results on the behavior of the Veech group under covering maps are
presented. The material is contained in the papers of Gutkin and Judge [GutJdg97] as
well as in Vorobetz [Vrb96b]. First a definition

Definition 2.2 Two F covers u — v, u s w are called lower equivalent, if there
18 an F isomorphism v s w with pom=1. Two F coverings u — v, w Py of v

are called upper equivalent, if there is an F isomorphism u 25w with ¢po =m.

Note that this is an equivalence relation. Given a F covering u — v of two F structures
u, v every A € GLy(R) defines a new F covering, given by

Au =5 Av.
As well as every ¢ € Aff (u) then ¢ defines a new F covering by
u -2 dy~tu s dop .

This defines an operation of Aff(u) on coverings (of fixed singularity and topological
type) and since equivalence classes of covers are mapped to equivalence classes under
this operation Aff(u) the operation descends. Now if u — v is lower equivalent to
u 7% diy~'v, then by definition there exists an F isomorphism v N diy~'v. But
this is an affine map ¢ € Aff(v) with derivative d¢ = dip. Thus the isotropy subgroup
Aff -(u) C Aff (u) of the operation of Aff (u) on lower equivalence classes consist exactly
of the elements which descend to Aff(v), especially V(u) NV (v) = dAff,(u) NV (v).
The analogous result holds for the operation of Aff(v) on F coverings. To use these
observations one has to prove the finiteness of the set of isomorphy classes of covers.
We recall the result obtained by Vorobetz [Vrb96a] and Gutkin and Judge [GutJdg97]:

Lemma 2.8 Let u = (Syn,q) be an admissible F structure with singularities (maybe
of order zero) in O, = S5, C S,.

1. Up to isomorphy there exist only finitely many translation coverings of u of fired

degree d branched only over O, their number is smaller then d132e=2+n)

2. The same is true for translation structures of fixed degree that are covered by u.
Proof: Fix a geodesic triangulation of u that is:

e the faces are triangles with respect to the Euclidean metric structure on wu,
e the vertices are the vertices of the triangles and equal the points in O,,,

e the edges are saddle connections.
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For the existence of such a triangulation see [GutJdg97]. Further let us assume that
we have a translation covering 7 : v — u of u with degree d, than the preimage of
the geodesic triangulation of u defines a geodesic triangulation on v. The preimage
of each edge or face consists of d isometric copies of itself. Because by definition the
edges of a triangle in the cover have to be mapped to edges, for each edge there are
d! possibilities how preimages of the triangles border on it can be identified. The kind
of identification can change only at branch points which are contained in the points
O,.. Thus d!'*®** gives an estimate for the number of covers of u of degree d branched
over O,. But because of the construction of the triangulation |{vertices}| = |O,| = n,
2|{edges}| = 3|{ faces}| the number of edges is related to the genus g of S, by Eulers
formula

2(1—g)=n+(§—1)\{edges}| = [{edges}| = 3(2g — 2+ n)

For the second statement assume we have two translation coverings 7 : v — v and
¥ : u — w of degree d covered by u. Then the set of points on w where m o1~ defines
a (bijective) map is open and closed and if it is not empty it contains all non singular
points because w is connected. Thus the only question is how many possibilities there
are for one non singular point of v to be mapped under a covering map of degree d. For
this let € > 0 be so small that the e balls around the singular points on u do not intersect.
Further fix a direction # and take the intervals of length € starting at a singular point
in direction #. These are g + 1 intervals for each metric singularity of order ¢q. By the
argument above, the number of different images of the (nonsingular) endpoints of the
intervals can achieve, limits the number of possible translation structures covered by
u. Since by construction the number of points is the number of singularities counted
with multiplicity: 2g — 2 4+ n, we have 229773 possible covers.

O
From this it follows that

Corollary 2.9 Given a translation covering u — v, or an affine map u s w with
dp = A than

1. V(u) NV (v) has finite index in V(u) and V(v), thus V(u) and V(v) are com-
mensurate.

2. Since V(Au) = AV (u)A~" and there is a F cover

id
Auz—>ui>w

V(w) N AV (u)A™! has finite index in V(w). Thus V(u) and V(v) are commen-
surable.

3. If V(v) contains a unipotent subgroup I', then V (u) NI is of finite index in I’ and

4. if V(u) contains a unipotent subgroup ', then V(v) N T is of finite index in T.
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Remark: A subgroup of SLy(R) is called unipotent, if it contains only elements which
have all eigenvalues equal to one.

Example: Take a rectangle and identify parallel boundarys to become a translation
torus, named T?. The Veech group of T? is SL,(Z). Now represent the element
—id € SLy(Z) as derivative of the following affine map on T?: rotate the rectangle
about 180 degrees and translate the result over the given one. This map has exactly
four fixed points on T? represented on the rectangle by the vertices, the middle points of
the edges and the center. Taking the quotient half translation structure with respect to
this involution we get a surface of genus 0, with four conic singularities each having an

angle 7. This can be viewed as a sphere with four horns and we will call it the pillow P2.
The Veech group of the pillow is by construction V (P?) = SLy(Z)/(%id) = PSLy(Z).

For coverings of the pillow P? and the translation torus T? it can be said more:

Theorem 2.10 ([GutJdg97] Theorem 5.4) Ifu is a translation structure, then the
following are equivalent:

1. The groups V(u) and SL(2,Z) are commensurable.
2. There exists a translation covering u — T2, branched only over one point.

3. There exists an Euclidean parallelogram that tiles u by translations.

Theorem 2.11 Let u be a half translation structure, then the following statements are
equivalent:

1. The groups V(u) and PSL(2,Z) are commensurable.
2. There ezists a translation covering u —s P2.

3. There exists a tiling of u by an FEuclidean parallelogram, where the edges can be
tdentified by translations and rotations about 180 degrees.

Proof: For the prove we assume the equivalences in the case of a translation structure
u are true, the proof is contained in the paper [GutJdg97] of Gutkin and Judge. Let u
be a half translation surface whose structure is not reducible to a translation structure.
Then there exists a connected two fold covering map v A (see Masur [Msr82])
where v is a translation surface (with the induced translation structure) and which
has at least one branch point p. We assume all preimages of singular points in v are
singular in v even if their degree is 0. Further there is a canonical involution 7 on v
with the branch points of ¢ as fixed point set. Since ¢ is an isometry of order two its
derivative is equal to —id. Now assume we have a tiling of v by parallelograms, which
is not a translation tiling but contains identifications by rotations about 180 degrees.
Then the uw cannot be a translation structure, because the foliations parallel to the
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edges of the rectangles are not orientable. Thus the orientation covering as above is
connected and the involution ¢ preserves the parallelograms of the induced tiling, in the
sense that it maps parallelograms to parallelograms. Also the tiling is now a translation
tiling, otherwise the covering v is not the translation covering. By Gutkin and Judge
we have a translation map v %5 T2 to the translation torus T2 which is defined as the
quotient of the parallelogram by identifying parallel edges. Since i preserves rectangles,
1 descends to an affine involution of the torus with derivative —id and one fixed point
given by the branch point of ¢ (represented by the vertex points of the parallelogram).
This is exactly the affine map in the construction of the pillow above. Thus the map ¢
descends to an half translation map u — P2. By corollary 2.9 (1) from the existence
of the map = it follows that V' (u) is commensurable to PSLy(Z) and the tiling of u by
parallelograms is obtained by the preimages of P2. Starting with the assumption u has
a Veech group commensurable to PSLy(Z), we will again use an orientation cover v.
The Veech group of V' (v) is a subgroup commensurable to SLy(Z) since the involution
¢ has derivative —id. Again using the result of Gutkin and Judge, as well as the above
construction proves the theorem.

O
One can refine the first theorem by using an observation of Vorobetz [Vrb96b]

Proposition 2.12 (Ya. B. Vorobetz) Given a translation covering u — v of de-
gree d. If the lower affine equivalence class of degree d coverings defined by m s the
only one, then V(u) C V(v). This is the case if there exists a direction on v with
ezactly one saddle connection. In particular for each translation covering u —s T2 of
the torus branched over one marked point: V(u) C SLy(Z).

Proof: If A € V(u) then there is a affine map ¢ such that u 25 Au - Avisa
F map. 7o ¢ is by hypotheses in the same class as u — v, thus there exists a F map
v -2 Aw, it follows V(u) C V(v). If there exists a direction which contains exactly
one saddle connection on v, then the same is true for all covers u — w of degree d.

By the proof of Lemma 2.8 w is isomorphic to v.
O

Lemma 2.13 Fach u such that [u] € Q(g, P) has projective rational coordinates is a
covering of the torus or the pillow.

Proof.  All the horizontal and vertical cycles have (modulo a common factor) rational
length in this case, thus on u there is a common subdivision by rectangles of the same
length and hight.

O
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2.3 Counting on Veech surfaces

In a remarkable work W. Veech [Vch89] found that F structures u where V(u) is
a lattice have quadratic growth constants, which can be calculated by information
about the closed cylinders of geodesics in finitely many directions and on the isotropy
subgroup of V' (u) fixing these directions. Moreover Veech was able to prove that the
invariant surfaces of the billiard in a regular n-gon always have a lattice Veech group.
He computes the associated asymptotic constants later in [Vch92] using his formula.

The idea is the following: the image of SLy(R)u of an F structure u € (g, n) in the
modulispace QD(g, n) is isomorphic to SLy(R)/V (u), because by the definition of the
Veech group Au is identified with u in @D(g,n) if A € V(u). If V(u) is a lattice, then
by Proposition 2.5 it is not cocompact, but has always finite covolume (with respect to
the Poincaré metric). By the general theory SL,(R)/V (u) has finitely many “cusps”
[Ai], i =1, ..., k. Group theoretically cusps are conjugation classes (in V(u)) of maximal
unipotent (parabolic) subgroups of V(u). As subgroups of SLy(R) the cusps are all

0 1

The two main observations if the Veech group has finite covolume are:

Theorem 2.14 [Vch89] (Veech alternative) Let u be an F structure with a lattice Veech
group V(u). Then for a given 0 € S the leaves of the foliation Fy(u) are either all
compact or the foliation is uniquely ergodic and every leave is dense on u. Moreover
iof the leaves in direction 6 are compact then there exists a mazimal unipotent subgroup
A C V(u) which, represented as linear maps on R?, have eigenvalues in direction 0.

Thus this A fixes the foliation Fy(u). Because up to conjugation in V' (u) there are
only finitely many such isotropy groups A we have finitely many directions 64, ..., 0y
with closed foliations. Let v1,...,v; € R? be a set of vectors representing the above
directions. Then each v; is an eigen direction for the group A; and for every other
closed direction represented by the vector v there exists an A € V(u) with A(v) = v;
iff the isotropy group of v is conjugated to A;. By Lemma 2.7 if 1 # A € V(u) fixes a
direction 6, then the foliation Fy(u) splits in n cylinders Cy, ..., C, of closed geodesics
with the hights h(C;) and widths w(C;). If v is the eigenvector of A and v a vector
orthogonal to v, then

h(C)
w(Ci) "

With respect to this coordinates A operates on C; as:

AviL = viL + m;

1 R(Cq)
A= ( m’w@ﬂ) (mod h(C;))

0 1
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If we assume A is the generator of the parabolic subgroup A; in V(u) with v as an
eigenvalue, then m; is the index of A; in the group of Dehn twists of C; generated by

((x, y) — (a: Y+ h((c’)))). If we define m to be the least common integer multiple of

h(C1) h(Cn)
(w(C1) s ey w(Cn)) then

Ay = ((1) T) (mod lem{Ah(C1),...,(Cn)})

defines a Dehn twist on each cylinder C;, and this is the smallest m possible. Fur-
thermore the linear maps on the cylinders glue together to give a global affine map
¢ € Aff (u) with d¢ = Ay, thus Ay = A. The discussion also results a necessary condi-
tion for a flat surface to have a lattice Veech group: for every periodic direction with
cylinder decomposition Cy, ...,C,

Vorobetz ([Vrb96b] Theorem 4.5) found examples of polygonal billiard surfaces for
which this criterion is not fulfilled. Now we can parametrice all periodic cylinders
in terms of the affine group Aff(u) and following Veech write down the ¢ function
counting the length of cylinders of prime geodesics for each cusp [A;] separately:

Gi(u, s) = Z Z QSC (2.8)
PEASf(u)/d—1A; J=1
Using this and an Ikehara Tauberian theorem Veech was able to prove:
Theorem 2.15 (W. Veech [Vch89]) Let u € Q(g,n) and V(u) a lattice and

Npo([Ai], u, T) the number of cylinders of closed geodesics of length smaller than T
with isotropy group conjugated to A;, then

. Npo([Ai],u,T) 1 SNy
Hm = = ResmGlu, 28) = gy Zj_l arealcy) 29
and
Npo(’U,,T) 1 ko m;i
crolu) = M = — = TV () ;J_Zl area(C) (2.10)

where k is the number of cusps [A;] in V (u) and n; is the number of mazimal cylinders
of pertodic orbits in an eigendirection of a mazimal parabolic subgroup conjugated to

A;.

Remark 2.1 Because gV (u)g~' = V(gu) for all g € SLy(R), the cusps of V(u) and
V(gu) are conjugated. Thus the group indices m;;j(u) = m;j(gu) are invariant under
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the operation of SLy(R). Because of C;j(gu) = gC;j(u) the same holds for the areas of
the mazximal periodic cylinders. This implies that the asymptotic formula above is the
same for every F structure in the Teichmdiller disc SLa(R)/V (u).

If we take the GL5 (R) orbit of u then the same is true up to the fact that the areas of
the closed cylinders have to be multiplied by det(g) for gu g € GL$ (R). Thus

cpo(gu) = det(g) ‘cpo(u)

Since, if u 1s a Veech surface, all the saddle connections of u bound cylinders of closed
geodesics a similar asymptotic formula could be written down for saddle connections.

By now there are ways to compute the asymptotic growth rates Npo(u,T’) without
using the Tauberian Theorem. Gutkin and Judge [GutJdg97] have used the mixing
property of the geodesic flow on negatively curved surfaces.

At the end of this chapter some results on isotropy subgroups of the affine group are
discussed. They will be useful in Chapter 4.

Definition 2.3 Let u = (S,,.A) be an F structure and x € S,. Then
Affo(u) == {g € Aff (u) : gz = «}
and
Ve(u) :=do Aff ,(u) C V(u).
By general group theory these are subgroups of Aff (u), V(u) respectively.

The following is a direct consequence from the definitions and elementary group theory.

Proposition 2.16 Let u be an F structure and u, the F structure u where the point x
is marked, that is z is supposed to be a singular point (of degree 0) of the natural flat
metric. Then

[Aff (u) + Aff z(u)] = ord(Aff (u)/Aff ,(v)) = [Oag) ()| (2.11)
and
[V(u) : Vi(u)] = ord(V(u)/Vy(u)) (2.12)

where Oagw)(z) = {y € Sy : y € Aff (u).x} is the orbit of x under Aff(u) and G/H
denotes the set of right cosets xH of the subgroup H C G.
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Proof:  See for example Chapter I §5 in S. Langs book on algebra [Lang].

O
Now, with the assumptions as above, we can define a new F structure u,. Take a
nonsingular x € S, and view it as a singularity of order 0 in the Euclidean metric on
U.

Lemma 2.17 Let u be an F structure and u, as above. If x is the only singularity of
order O then

Aff (ug) = Aff ,(u) and V(ug) = Vy(u) (2.13)

Proof.  Since z is the only singularity of order 0 it has to be a fixpoint of the affine
maps on u;. The resulting affine maps are the affine maps of u which fix z.
O

Remark 2.2 The restriction to one point of order zero is important. If one drops that
condition the affine group of u, might be bigger than the one of u.

Take for example the torus T? := R? /Z? with singularities of order zero in the points
[0,1/2],[1/2,0] and [0, 0] (the notation [z] indicates the class of x € R? on the torus
T?). We denote that marked torus by ']I‘[21 PIRY defines a covering of degree four of
T?, by T ;4 o [z] — [4] € T?. Gutkin and Judge’s result (Theorem 2.10) implies

V(Tf /) C SLy(Z). On the other hand

A:= (1 1), At = (1 ‘1’) ¢ V(T y) (2.14)

0 1 1

because both corresponding Dehn twists would map [0,1/2] and [1/2,0] to [1/2,1/2].
Thus V(T[QI/Q]) # SLy(R). Since

0 1 1 2m 1 0

Agyy == (1 27"), Af = (1 0) and R := (0 —1) € V(Tf y) VmeZ (215)

V(']I‘[21 /o) is generated by A, and R. If we also mark the point [1/2,1/2] on 'JI‘[Q1 /o and
denote the resulting translation torus by T[21/271/2], then A™, R € V(T[21/2,1/2]) Vm € Z,
Proposition 2.18 If u,v are F structures and ¢ € Aff (u,v), then

Aff (u) 2 Aff(v) and V(u) =2 V(v) (2.16)

In fact the groups are conjugated. Thus if u is a Veech surface: cpojsc(u) = cpossc(v).
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Proof. 1If there exists an affine map ¢ € Aff (u,v) and if ¢ € Aff (u), then porpop! €
Aff (v). For the Veech groups we have for A € V(u), dpo Aodp~t € V(v). That these
maps induce isomorphisms can be computed as in the proof of Proposition 2.4 part 3.
Another possibility to prove the proposition is realizing that u and v are points on the

same Teichmiiller disc, since v = d¢.u.
O
One can apply the proposition to marked F structures

Corollary 2.19 Let u be an F structure x € Sy and u, as above. Then for every
y € Oagw (@)

Aff (ug) = Aff (uy) and  V(ug) = V(uy) (2.17)
the isomorphisms are by conjugations. If u, is a Veech surface:

cro/sc(us) = cpossc(uy) VY € Oag) ()

Proof: By hypothesis there exists an affine map ¢, € Aff (u) with ¢(z) = y. This
defines an affine isomorphism ¢, € Aff (ug,uy).

d
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Chapter 3

Computing asymptotic growth
rates with Siegel measures

This chapter is an introduction to the ideas of Veech [Vch98], Eskin and Masur
[EskMsr98] to compute asymptotic constants with the help of Siegel measures. Since
the results obtained by that viewpoint are essential to motivate the calculations in the
next chapter we give a short outline of some of the main statements, ideas or sketches
of the proofs.

Let M be a space with a SLy(R) action and an SLy(R) invariant Borel probability
measure u. If p is ergodic we call it (following Veech [Vch98] Definition 6.3) a “Siegel
measure”. To obtain the most general results the functions V(u) earlier used for the
vectors associated to saddle connections or cylinders of periodic orbits of a F structure
u are generalized to set valued functions M —s R? — {(0,0)} with the properties

(A) Forall g € SL(2,R) and u € M:  V(gu) = gV(u).

(B) For every u € M there is a constant ¢}**(u) < oo such that Ny (v, T) < 3% (u)T?
for all v in an open neighborhood U(u) of w.

(C,) There exists T'> 0 and € > 0, such that the function M WOD Re {(0,0)} is
in L'+ (M, ).

The following Lemma (Lemma 3.4. in [EskMsr98]) is basic for the calculation of the
growth rates. It is in a way a simplification of a more general argument contained in
Veechs paper [Vch98]. As before denote

. et 0 and 1o e cosf sinf
o e 7\ —sinf cosb
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Lemma 3.1 (A. Eskin, C. McMullen) For f € C{°(R%) and every e > 0 there
exists Ty > 0 such that

27 00
1
2 _ —t 3.1
e /f(atrgv)dﬁ 27r||v|\e—t/f(x’||vue Ydz| < € (3.1)

for every t with e > Ty and every v € R? with ||v|| > T.

The proof of this lemma is not that hard and it has a nice heuristics, which is recalled

now:
Suppose f = xr where R := [—b,b] X [¢,d] with b > 0 and 0 < ¢ < d. Then
r b if et < ||u]| < det
lolletdg = { mele? B CC = TPI= e
/f(x vlfe™)de {0 otherwise
Since a; 'R = [—e 'h,e7b] x [elc,eld] the integral f:” f(asrgv)df is non zero only

if v € a;'R. In this case it is morg times the length of the intersection of the
circle of radius ||v|| with the rectangle a;'R. The intersection of a circle with a; 'R

is empty if its radius ||v|| is outside [e’c, e'd] and essentially the horizontal segment
[—e7b,e7?b] x {||v]|}. Thus

bet e

2T oe]
—t
flagrev)dd ~ = /f(ac,||v|\et)da:.
[ st~ 54 3ol )

Since the estimate becomes arbitrary good as t increases the lemma is immediate for
the characteristic function f = xg.

From this lemma one can derive directly the following:

Proposition 3.2 (A. Eskin, H. Masur) Suppose V satisfies condition (A). Then
there exists an absolute constant ¢ < co such that for any T > 0 and any u € M,

Ny(u,2T) — Ny(u,T) < CTZ/Nv(CLt’f'gu, 4)de
0

where t = log(T).

To obtain more one needs the “Siegel Veech” formula. To state it we have to transform
non negative functions on R% to functions on M.

Definition 3.1 For a non negative function f € C°(R%) let the Veechtransform be
defined as

flu):= " fv).

vEV(u)
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If one assumes V has property (B), then the sum is finite and f is a bounded function
on compact subsets of M. A more general version of the following theorem is proved
in Veech [Vch98]

Theorem 3.3 (Siegel Veech formula) Given a space (M, p) with an SLy(R) ac-
tion as above and V with properties (A), (B) and (C,). Then there exists a constant
¢y, such that for any f € C§°(R2),

/ﬂwwwwwmj?mwmw. (3.2)

The constant cy , is always non negative; it is zero if and only if f = 0 p almost
everywhere.

Proof:  We recall the presentation contained in the paper of Eskin and Masur [EskMsr98|.
As mentioned above, it is itself a reduced version of Veechs proof, but the arguments
are the same. The difference is the more general notion of a Siegel measure. By the
assumptions (B), (C,) and because y is a probability measure: f € L'(M, p).

Define the linear functional & by

mn:/ﬂmwwy

M

Since the measure 4 is invariant with respect to the action of SLy(R) on M, @ is itself
invariant under the SLo(R) action on continuous functions on R?. & is positive as well,
that is f > 0 implies ®(f) > 0. From the general theory of such functionals it follows
that for all f € C$°(R?),

Mﬂ=%ﬂ®+%/ﬂ%www (3.3)

with constants a,,b, > 0 (positivity), not dependent of f. To prove that a, = 0
choose a non negative function ¢ € C§°(R?) so that ¢(0,0) = 1 and ¢ < 1 and
define the sequence of functions f;(z,y) := ¢(jz,jy)f(z,y). Then for all j € N
f;(0,0) = f(0,0) and [z, f; — 0 by the theorem of dominated convergence. For
fixed u € M lim;_,o f;(u) = 0, since f(u) is bounded and (0,0) # V(u). By the
definition of linear functional ® and the fact that f € L'(M, ), again by dominated
convergence we get ®(f;) — 0. Putting fA] into the equation (3.3) and taking the limit
J — oo shows: a, = 0. Finally let ¢y, :=b.

U
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Theorem 3.4 (A. Eskin, H. Masur) Suppose (M, u), V(-) have the properties (A),
(B) and (C,), then

N- T
lim 2~/ (u, T)

Jm o =meyyu e

¢y, as in Theorem 3.3.

Proof:  'We present the proof from [EskMsr98| (Proposition 3.2.). To begin let

As a map J) : CF(RL) — C°(R;) J is surjective. Let x be the characteristic

function of the interval [1, 2], € > 0 be arbitrary and the constant c as in condition (B).
Choose functions hy € C§°(Ry ) sothat ho < x < hyand [ y(hy(y)—h_(y))dy < ¢/c.

We can find fi € C§°(R? ) so that J;, = hy. Finally we choose a non negative function
xS C""’(]R2 with fR = 1 and support so close to zero that Jy.; < x < Jy.p, , where
(¢ f)(v) :== [, d(t) f(a—w)dt. Then for v € R?* and 7 > 0,

Jowr_ ([[olle™) < x([[v][e™) < Jgur, ([[vlle™)

Then with the help of Lemma 3.1, for sufficiently large 7

2w 2w
e2T/ng * f_(a;mov)dl —€e/c < x(||v||e™T) < €2T/d) * fi(a,mev)dl + €/c. (3.4)

Summing over v € V(u) and noting that that by condition (B), the number of nonzero
terms with x(||v||e™") # 0, we get

e2T/¢ * f_(a;rou)dd — ee*™ < Ny(u,2e”) — Ny(u,e”) <

< eQT/qS % [ (a,rou)dl + e (3.5)

Since we did not define p generic let us remark that it is needed to use Nevos The-
orem and that a p generic set contains a set of y measure one. Now if we choose
the F structure u to be u generic, then the Theorem of Nevo (see Theorem 1.5. in
[EskMsr98]) implies

2w

lim [ ¢* fi(aTrgu )df = /fi Ydp(u) = Cvu/fi z,y)dzdy. (3.6)

T—>0Q
o
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The second equality above is simply the Siegel Veech formula. By construction we can
evaluate the right hand side of (3.6)

[ Fetopydsdy = 2x [ 7y, ()dy = 20(3/2+ B, (3.7)

If we assume without loss of generality that the local constant ¢ in (B) is larger than
1, then E < €. Dividing (3.5) by €7, taking the limit for 7 — co and using (3.6) and
(3.7) gives

N 2 T _N T
3oy, — (2nepy + 1) < limint 2208 260) = Ny(u,¢)

T—00 e2r
Ny, 2€7) = Ny(u, )
627'

< limsup

T—00

< 3mey, + (2mey , + 1e. (3.8)

Since € > 0 is arbitrary this implies

1
lim -~ (Ny(u, 2T) — Ny(u, T)) = 3mey,,

T—oo T2

where T := e”. To finish the proof, since by property (B) and the above equation

1 T T 3c
7 (% (n3) - () <

Z% (Nv (u QZ) ~ Ny (u 2:.";1)) = N"gf;’ D _ N”((Z’ 2)"2%) 4771 (3.9)

2n+1

we can take the sum

and the limits in n and 7', we obtain using the dominated convergence theorem:

. Ny, T) . =1 T T B
e s 3 _Oﬁ<Nv (W)‘Nv (“T))_
3 1
= ZT‘-CV’N E E:ﬂ'Cy,u. (310)

O
Now one can use this general framework for spaces of (normed) quadratic differentials

(Q'(g, P), 1)-
Corollary 3.5 Let u € Q'(g, P) and u be a Siegel measure on Q'(g, P), then

N T
lim V(ua )

Am =TmCy, M a.e.

for the sets V of cylinders of closed geodesics, saddle connections or reqular and irreg-
ular cylinders of closed geodesics.
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Property (B) is of the map V is obtained by Masur’s Theorem on the quadratic growth
rate stated in the introduction, slightly refined in the sense that the bounding constant
can be chosen uniformly on compact sets in the moduli spaces. Property (C)) is
checked in the paper [EskMsr98] of Eskin and Masur. If p is the “Liouville measure”
i1 introduced in the section on the manifold structure of spaces of F structures, then
a.e. with respect to p; says that the set of points in Q(g, P), which have growth limits
is “bigger” than a dense set. Thus Eskin and Masurs result contains more points than
just the torus or pillow coverings (see 2.13) which are “only” dense in Q(g, P). Now
let 1 be the image of the Haar measure on PSLs(R) under the quotient

PSLy(R) = PSLy(R)/V (u)

where V' (u) is the Veech group of a Veech surface u € Q(g, P). Taking the PSL,(R)
invariant embedding (the Teichmiillerdisc) PSLsy(R).u of PSLy(R)/V (u) in Q(g, P)
together with the “Siegel measure”

vl PSL’;(R) 7y Suaranty by the corollary limits
“only” almost everywhere, whereas the “old” theory of Veech (see Theorem 2.15 and
the remark after) proves pointwise limits. Thus in this case the new theory seems to be
weaker than the old one. But in fact the more subtle approach of Veech (see [Vch98|
Theorem 15.10 and Theorem 16.1) reproves that the limits exist pointwise in these
cases. Moreover A. Eskin observed that if the spaces M as above are homogeneous
spaces, than Ratners ergodic measure classification (see for example [EskMoSh, Ra91])
on homogeneous spaces can be used to obtain pointwise results. The consequences of
Ratners Theorem for homogeneous spaces of F structures are mostly not written down
yet, partly the forthcoming paper [EMS] will make use of the theory. The main point
is that the right hand side of

™

lim [ f(ayreu)dd = /fd,U/p

1—00
0
is an integral over the ergodic measure p as t; tends to infinity. Then one can apply
the Siegel Veech formula to this integral. In terms of weak convergence of measures
the above equation means lim; ,o aj it = pfoo- If one assumes this sort of convergence
on a homogeneous space M with a SLy(R) action there is the following important
observation:

Proposition 3.6 Assume u is a measure on a homogeneous space P := L/T" with an
SLy(R) action and limy_,o ajpt = peo, where the limit is taken in the sense of weak
convergence. Then there is a one parameter unipotent subgroup U € SLs(R) under

which i 1S tnvariant.

Proof:  Suppose there is a sequence p; := ay,pu converging to [, then there exists a
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sequence {6; };en with lim; o, 6; = 0 such that

R 5 e 0 cosf; sinb;\ (e 0
im a; 'rg.a;, = lim o i =
oo b UiTH inbo \ 0 e7%) \—sinh; cosb; 0 e

cos 0; e?!i gin 0); 1l a
_ i i) = _. 11
im0 (—e‘%’ sinf;  cosb; ) <0 1) ! 40

This is immediate since given {t;} with ¢; — oo we can choose 6; so, that e?! sin§; — a
and 6; — 0. The other entries in the matrix clearly converge to the entries of u. By
definition for all f € CQ(P)

1(f) Z/Wf(TeU)daz/ﬁf(TeﬁeU)d@

thus

* * 0k % o * 0k —L*x\ x o x
To, b = 1 = Ay, To, b = Ay b = lzm,_mo (atireiati ) Oy b = Gy b

= U oo = oo (3.12)

u defines a one parameter unipotent subgroup

U="U(u) = { ((1] t1“> ‘te R} C SLy(R)

and since by assumption SLy(R) is a subgroup of P, U is also a subgroup of P. It is
easy to see that p., is invariant under U as well.
Ol

Now one defines

My (P) := {v probability measure on P : u*v =v VYu € U}.

To proceed one hopes to find a closed subgroup F' of L containing U which behaves
good with respect to the lattice I'. Furthermore it should be small enough to ensure
that U acts ergodically on it, with respect to a natural ergodic measure. This is indeed
possible and Ratners theorem says that all ergodic measures are obtained in this way.
To continue one needs the following definitions (this discussion is essentially contained
in [EskMoSh]):

Definition 3.2 Let H be the set of all subgroups F' of L such that:

o F'NT is a lattice in F and
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e the subgroup gemerated by all unipotent one parameter subgroups of L contained
in F' acts ergodically on n(F) = F/(FNT)
(with respect to the F invariant probability measure).

One knows (see [Ra91] Theorem 1.1)
Proposition 3.7 (M. Ratner) H is a countable set.

Let U be a unipotent one parameter subgroup of L and F' € H. Now one has to kick
out the set of points ¢ in the orbit of F'g containing Ug which are already in an orbit
of a group of smaller dimension. Therefore one defines:

NU,F) == {geL:UCg 'Fg}
SWU,F) == |JANU,F): F' €M, F' CF, dim F' < dim F}

One has

Lemma 3.8 Let g € L and F € H. Then g € N(U,F)\S(U, F) if and only if the
group g~ 1Fgq is the smallest closed subgroup of L which contains U and whose orbit
through 7(g) is closed in P = L/I". Moreover in this case the action of U on w(F)g is
ergodic with respect to a finite g~ Fg invariant measure.

A consequence of this is
7(N(U, F)\S(U, F)) =n(N(U, F))\w(S(U, F)) VF € H.

Finally by Ratners theorem (cf [Ra91]) there is a close connection between ergodic
measures in My (P) and orbits of subgroups F' out of H:

Theorem 3.9 (M. Ratner) For every ergodic p € My(P) there ezists an F' € H
and a g € L such that p is g~' Fg invariant and p(m(F)g) = 1.

In particular, spaces of coverings of marked tori branched over the marked points,
where the marked points are varying, give examples of such homogeneous spaces of
F structures. They contain billiards with a wall as described below. Such billiards are
studied by A. Eskin, H. Masur and the author [EMS] in a forthcoming paper. The
parameter space of n marked tori for example is given by SLy(R) x R*" /S Ly(Z) x Z*".
We remark that the values of the Siegel Veech constants are not known, it is one goal
of the above mentioned paper to compute them for spaces of torus coverings. The next
chapter contains computations of the Siegel Veech constants for spaces of marked tori.
The methods which are used are elementary, just by counting quadratic growth rates
of certain lattice points in R2. We are able to prove some properties of the Siegel Veech
constants in this case (see also the introduction). Most important the maximality of
the constants for the Haar measure on the whole parameter spaces is proved. It seems

92



p/q N

2

Figure 3.1: The phase space P (right) of a billiard with a wall at z = p/q (left) is a
torus covering.

not impossible that the results in the next chapter are true for covering spaces of two
marked tori, or equivalently to the spaces generated by a billiards with a (rational)
wall, as shown in Figure 3.1. The right picture shows the phase space P of the billiard
in the square with a wall on its left hand side. In the phase space the wall becomes
two slits, which have to be identified as the arrows indicate. The phase space is a
torus covering if and only if the wall sits on a rational z coordinate, say = = p/q with
ged(p, ¢) = 1. Tt has degree ¢, if we assume the length of the boundaries of the billiard
square are one. To see this one can take the map

R? /277 > [z,y] — [qz,y] € R? /272

which defines the covering. The images of the endpoints of the slits are the two points
over which the covering is branched. The two conical singularities at the endpoints of
the slits have, by the rule of the identification total cone angle 47. Varying the two
branchpoints causes a two parameter family of torus coverings. Changing the hight of
the wall in the billiard square gives a one parameter subfamily. The above described
theory establishes quadratic growth limits for every point in the parameter spaces in
both cases.

At the end of this section we note a further consequence of Theorem 3.4 (or Corollary
3.5)

Corollary 3.10 (A. Eskin, H. Masur) Let V denote the vectors associated to irreg-
ular closed cylinders of geodesics on u € Q(g, P) and let py the “Liouville measure” on
Q(g, P). Then ¢y, =0, thus the quadratic growth rate of irreqular cylinders of closed
geodesics 1s zero almost everywhere.

This is in general not the case for torus coverings or other Veech surfaces.
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Chapter 4

Marked tori

4.1 Notation and preparation

For z1,...,z, € R let Tf,,, _,p) be the translation torus T = R?/Z* marked

Jz1]yn[zn
at the points [zo], [21], ..., [Tn_1] € T? . Without any restriction of the generality we
can assume [zg] = 0 + Z? and we write T[zm,...,xn—ﬂ instead of T?[Eo]a[m],...,[xn—l])' Our

calculations are restricted to the torus which is isometric to R? /Z? with the induced
Euclidean metric. With respect to this choice the periodic directions (of the geodesic
flow) are exactly the rational ones. This is by no means a restriction to the case of
the general translation torus, if one replaces rational direction by periodic direction.
Whenever we speak about a vector vy associated to a saddle connection s (or a cylinder
of periodic orbits) this is the vector in R? that has the same direction and the same
length as s with respect to the natural covering map R? — T? . By the results of Veech

(¢ or Gutkin and Judge |GutJdg 1s a torus covering exactly 1if for
Vch89 Gutki d Jud GJd97']I'[2 ]' i ly if f

Z1y-sTn—1
all i € {1,...,n — 1} the marked points z; have rational coordinates. So ']I‘[Qzl’_._’mn_ﬂ

is a Veech surface if and only if z; is rational for all i € {1,...,n — 1}. The result
of Vorobetz [Vrb96b] (Proposition 5.6) states in this case V/ (T%zl’___’mn_l]) C SLy(Z),

where V (']I‘2 ) denotes the Veech group of T?

[zl,...,mn_l] [;1:1,...,1'"_1}'

Important convention: if we write a rational vector (2,1), we automatically assume

that ged(p, ¢, n) = 1.

Definition 4.1

1. Two points [z], [y] € T? are said to be relatively rational, if z —y € Q°.

2. SCyy) denotes the set of saddle connections between the points [z] € T* and
[y] € T2.
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y+(0,2)

Figure 4.1: The figure indicates for r = 2: If |py| = r|zy| then r has to be rational.

3. U(s) is the length of a s € SC(yyyand finally if [p] € s € SCiay) then I2(p) (I¥(p))
denotes the distance between [z] ([y]) and [p], measured along s.

Relatively rational is obviously an equivalence relation. Every marking splits up in
classes of relatively rational points.

Proposition 4.1 Let [z],[y] € T? and s1, 52 € SCyy). Then for all p € s1 N sy:
ls.(p) = q—pl(si) where g, € Z with 1 < ¢, <n=|{p:p € s1 N sz}
n

holds. The ratio q,/n does not depend on the choice of the saddle connection sy or ss,
we call it the “d relation” (as a shorthand for division relation) of p [w.r.t. SCgy /.
The distance ds,(p1,p2) between two consecutive intersection points py,pe s

1 : .
iy (p1,p2) = (%, (p2) — () for i =1 ori =2

measured always along s; or ss.

Proof: We take representatives in R?, [z] is supposed to be represented by (0,0). The
saddle connections s; are represented by the lines s;, starting at the origin. Since we
have to identify points modulo Z?2, the statement follows already from the Strahlensatz
(see Figure 1) of elementary geometry.

O

Definition 4.2 A lattice G is a subset of R? of the form
G = (p1+ @Z,p2+ L) p;,q € R*

A point distribution is a finite union of lattices. The set of visible points GV of
of a point distribution G consists of all points p € G such there exists no 0 < |A] < 1
and another point ¢ € G with ¢ = Ap.
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Loosely speaking: There is no other lattice point of G on the line between the origin
and the points +p. For the correct counting of periodic orbits and saddle connections
we need further:

Definition 4.3 If a point distribution G is contained in another point distribution H
then the visible points HYS of H with respect to G are those p € HY for which there is
a X # 0 such that \p € G. In this case G will be called H complete if H'¢ = GV.

G is called closed, if mG C G for any integer m € Z\{0} such there exist two points
z,y € G with r = my.

Let [z],[y] be as in the above Proposition, again we put 0 = x € R?. Then the set
of saddle connections SC(;,) is described by the “lattice of vectors” G, =y + Z2.
Where under a lattice of vectors (instead of points) we understand the set of all lines
from the origin to the points of a given lattice. When we speak about the length of
elements (or “lines”) v in some point distribution, we always use the Euclidean norm

[[o]].
Lemma 4.2 Let [z],[y],[2] € T? be different points

(2] € s € SCgy) is an intersection point of two saddle connections, if and only if
5(z) €2(s) 1<p<q p,q€N

If [2] is the intersection point of two saddle connections in SC(zy) then the following
relation for the for the lattices of vectors holds

q
G N Glay) = (Gay)
p

where p/q is the d relation of z and qG 4 ==y + qZ°.
Proof.  Because of Proposition (1) it is enough to show: if

(2] € s € SC(g,) and lf(z)egl(s) 1<p<q p,geN

then there exists some other saddle connection s € SC(, ), passing through [z]. This
follows in fact from the second statement, which we prove now. By assuming x = 0 we
have z = 2y and therefore the condition that z + (k,[) with (k,!) € Z? lies on a saddle
connection represented by y + (m,n) with (m,n) € Z? is:

z—i—(k,l)=§y+(k,l):)\(y+(m,n)) with 0 < \ < 1.

Solutions of this equation which are in G(,4) = y + Z* are exactly given by A = g
together with pairs of (m,n) which are multiples of ¢, so we have:

q P
Glan) N Gy = U+ PZ? = pG(a,y)-
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The statement follows by multiplying with g.

0
The Lemma is viewed as the generalization of the following observation on the torus
T? = R?/Z? (with the origin as a marked point): a point p is rational if and only if it
is in the intersection of saddle connections. If this is the case the saddle connections
through p gave rise to a lattice (by taking representatives in R?). The moral of the
Lemma is: when we count saddle connections for general markings all markings which
are lying on some saddle connection and dividing the length of it rationally will cause
a lattice of intersection points. This is important as we will see later, this phenomena
decreases the asymptotic constant of that marking. Because of this observation we also
have to take care about the definition of “non rational” markings in T?", at least if
we want to count saddle connections. Since we want the non rational markings to be
the set of markings where the growth rates are maximal. So for saddle connections we
have no other choice than to define :

2" | (21, ..xn) € T*" : z; € s € SC(z4,x) for at most one s, for (41)
nrat(se) | all triples (4,4, k) € {1, ...,n} with pairwise distinct entries. '

We define further for saddle connections the set of “rational n markings” to be

2n _ (m2" c
T (se) — (T nrat(sc))
This is of course the set of all n markings, where there exists at least one marked
point which lies on more than one saddle connection. Though the set of non rational n
markings is a set of full Lebesque measure on T?" ( see Theorem 4.16)(because to end

up with a non rational marking any further marked point on ']I‘% can be taken

wOv---vwnfl)
out of the set of all points which are on at most one saddle connection). For periodic

orbits we define rational and non rational in the usual way:

TQ:at(po) = {[.’13] HEES QQR}

4.2 Quadratic growth rates of lattices and point
distributions in R?

To compute the quadratic growth rates we need some preparatory Lemmas. The first
is quite well known and uses an argument going back to Gauss. If G C R? (in general
a lattice) we define for T > 0

N(GW,T) = |GY) N B(0,T)|.

Now we try to evaluate the right hand side of the last equation for the simplest kind
of lattices:

S7



Lemma 4.3 Let G = {(z,y) € R? : (z,y) = (p1 + ¢1Z, p2 + @2 Z)}. Then

N(G,T) = |G B(T,0)| = £T2 +o(T?).
142

Proof.  'To begin we treat the case p; = po = 0. By drawing horizontal and vertical
lines through the lattice points, we got a decomposition of the plane in rectangles with
sidelengthes (g1, g2). Every lattice point of G can be viewed as the upper right vertex
of one rectangle. So the number of points of G in the concentric circle B(0,7") of radius
T is determined by the number of rectangles in that circle up to a certain correction
term coming from the fact that a rectangle might be only partly inside the ball. But
we have after increasing the radius of the ball by the length of the diagonal of the

rectangles 1/¢? + ¢3 the estimate:

Vol (B (0,7 + V@ +4))

N(G,T) <
4192

And by decreasing the radius with the same amount:

Vol (B (o,T— m))

q192

) < N(G,T)
Putting together these two estimates we see:
m o, o, 2 2
< — <2T g +a@+q +q2)
192

In the general case we have the estimate:

(G- Gum)nB (0T -\ +33) < (G BO.T) <

< (G- nB (074 bt ), (42)

‘N(G, T) - 71?
192

the statement follows easily.

Before we state the next Proposition let us make a general remark on our strategy
of counting. We are interested in counting for example prime closed geodesics, so we
associate a certain point distribution G C Z? to all geodesics in question. The point
distribution G' does not reflect a priory the prime geodesics, but it will be chosen in a
way that its quadratic asymptotic as in the last Lemma can be calculated easily. The
points in G' which are associated to prime geodesics will be the visible points of G with
respect to Z2. The price we have to pay is that we cannot relate the distribution of
visible points and all points of (the completed and closed) G just by the factor 7r—62. We
have to choose our multiplicities with respect to G-
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Proposition 4.4 Let G C Z? be a Z*? complete and closed lattice. Let K C Z\{0} be
the set of numbers | such that IGY C G. Then the following relation holds

N(GY,T) = N(G,T) (Z l%) + o(T?) (4.3)

leK

between the numbers of points of G and the number of visible points GV of G. For the
lattice G = Z? this implies:
3

Vv
N(Z*,T)= N@Z*",T) 5

+o(T?) (4.4)
Proof:  First let us check that there is no x € G that is not an integer multiple of some
y € GY. Assume there is, then there exists a z € GV and a rational number ? with
T = %z. So ¢ divides z, a contradiction to the Z? completeness of G. Since G is closed
and every element in G is some K-multiple of an element in GV we have:

YN ( ) +o(T?) = (Z zl2> NGV, T) +0(T?.  (45)

leK leK

The lattice G = Z? is obviously Z? complete and closed. We have K = Z\{0}, so

N(Z*,T) = i% Nz, T) + o(T?) =

0

- ( ;) N T) +o(T?) = TN(@E, 1) + o(T?).

O
Counting only a certain percentage p of the length of each line in a point distribution
G is equivalent to counting the length of vectors in the point distribution pG := {pv :
v € G}. Thus we have the relation:
T 1 o
N(pG,T)= N | G, » = 2;N(G,T) + o(T?). (4.6)
Remark: As is seen above the relating factor between cylinders of geodesics and prime
geodesics will be W— instead of > because we don’t distinguish between the two direc-
tions a prime geodesic might have Our decision to do that is based on the point of
view : count only (the length of) the geometric object.

Definition 4.4 We define the set of lattices
G(Ql,pl,q2,p2) = (QIZ + p1, @2 + p2) C Z* with P1,q1,D2,G2 € Z
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and ged(p;,q;) = 1. Further for n € N and a divisor m of n define I7 to be the set of
numbers which are relatiely prime to -

n n
bl ={'e 1,2, 2 1Y ged(j, :1}
m =17 €{ — = 1} ged(, )
(if m = 1 we write shortly I™ instead of I,) and the point distributions

GI,’}Z = U G(n,mk,n,O) C 77,

keln
With this conventions

Lemma 4.5 The point distributions G are for all n € N complete with respect to 7>
and closed. We have:

N(GI"7 ) G}/"v

ZZ nl+k

kel™ =1

(4.7)

Especially for all prime numbers p we have

N(Gw,T) = N(GY%, )[%2 (1—i>]. (4.8)

p2

Proof:  First we try to find all integers which map G~ under element wise multiplica-
tion to G~ itself. For [ € Z and p € G» we have lp € Gy, iff

l=r (modn) withre I

Therefore [ has to be in nZ +r with r € I". Obviously multiplication with a number
from this set maps points of G» again to G». So if the point distributions are complete
with respect to Z? they are also closed. To see the last statement we take [ € Z\{0} and
some (py,p) € Z* with I(py,p2) € Gra. This is equivalent to I(p1, p2) = (kn + 7, mn)
with » € I™ and k, m € Z. The equation in the first coordinate says that [ and p; are
relatively prime to n and from this it follows that ps has to be a multiple of n. So
(p1,p2) is already contained in Gr» and the completeness follows. Using equation (4.5)
from Proposition 4.4 gives the first part of the Proposition. For the second part we
simply observe that because p is prime I” = {1,2,....p — 1}:

1 & 1
ZZ pl—l—k ﬁ_z(pm

kelr [=1 =1 =1

Remark: Obviously the lattices I", are for m # 1 never Z? complete.
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Before we compute the relating factor of equation (4.7) in general, an observation is
helpful: Let xo : Z — Z /27 be the principal character modulo n, that is xo(l/) = 1 if
ged(l,n) =1 and is equal to 0 if not, then obviously:

ZZ nl+k B

keln [=1 =1

o0

XO’ 2)

where L(xo,2) is the L series with respect to xo evaluated at 2. The following is well
known (see for example exercise (3.d) page 166 in [Ten95] or Serre [S])

Proposition 4.6 If s is a complex number with real part bigger than 1, then:

11 (1 — pi) : (4.9)

= pln prime

Proof:  'The condition on the real part on s guarantees absolute convergence of the
series so that the following manipulations are justified. We start with the right hand
side:

_ i 1 pm) ) _ i Xo(k) (4.10)

m
k=1 m| ged(k,n) k=1

We have used the well known Mobius function g and the fact that
lifn=1
2 md) = { 0ifn > 1
d|n
to reorder the sum in a useful way.

Evaluating the above L series for s = 2 we find

N(GIn,T):N(G}/n,T)%Q 11 (1—2%) : (4.11)

p|n prime

The left hand side of this equation is easy to compute with the help of Lemma 4.3 and
the definition of G»

N(G,T) = %unw +o(T2). (4.12)
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We use Eulers ¢ function to identify
IKE =n [] (1 - _> (4.13)
p|n prime
and write finally

. N(GY,T)  3¢(n) 1\
AT S I II (1-=%) =

pln prime p

= % 11 (1+%>1. (4.14)

pln prime

For later use we show

Proposition 4.7 G contains the Z* completion of the lattice Gnyrno) ={(nZ +
r,nZ): r eI}

Proof. 1t is enough to show that a multiple of each point (kn + I,mn) € G» is in
G(n,rn,0)- That is we have to solve rz =1 (mod n). But this is always possible since r

and [ are relativ prime with respect to n.
O

4.3 The Veech group of T%, ,,, and its index in SLy(Z)

(QI 7q9 )
We now describe the affine group Aff ( ) for a rational point z € Q7.

Proposition 4.8 Assume (3,3),(0,3),(5,0) #z € Q*. Then

Aﬁ(Ti):{zHAz+v:AeSL2(Z) with {sz—fﬂ (mod Z?) ifvzx}

Az =z (mod Z?) ifv=0

For the three exceptional points we have

Aﬁ('ﬂ‘iz) = {z — Az +v: A€ SLy(Z) with { Az =z (mod Z?) }

V=2

Proof: A € SLy(Z) is a consequence of Proposition 5.6 in Vorobetz [Vrb96b]. The
only thing which is left to prove is the statement on the translation vector v. It is
defined only modulo Z?, so we can assume v € [0,1)?. The subgroup N(T2) of pure
translations is trivial if z # (3, 3), (0, 3), (3, 0):

If the lattice Z2 = z + Z?* generated by z should be translated to Z? by v and by the

same translation Z? to Z2, then v = x = —z (mod Z?) must hold. Thus either v is
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trivial, or z is one of the exceptions. In the general case the same problem comes up
if the map should interchange the lattices Z? and Z2. The only possibility is using
A to map Z2 to Z?, and then to translate this into Z2. Thus we have to fulfill the
conditions:

Az =—-2 (modZ? andv=z or Az =z (modZ?) andv =0

For the three exceptions there is in fact only one condition, because in these cases we
have —z = z (mod Z?), so —id is automatically contained in these affine groups, as

well as the translation v = z.
O

Theorem 4.9 The Veech group V(T2) where x = (&, %)

o for 1 < ged(q1, qo) < min(qy, o) is

V(Ti)z{i@ Z)ESLQ(Z): =0 (mod g1) i

o for qi|qo (or g2|q analogously) is
a+22p=1 (mod q)
b=0 (mod £)
q1

c=0 (mod q)
d=1 (mod go)

V(T2) =4 + (‘CL Z) € SLy(Z):

e for g1 = qo is

- (a2 s (22)(3)=(32) )

In the case q; = 2 that is (&, 22) = (1, 1) we have to add the rotation:
q1’ g2 272

e for py =0 (or equivalently p; =0) is

V(Tg):{i(i Z)ESLQ(Z): (Z Z)

Proof: We evaluate the condition

a b %
c d P2
q2

(1) o

21
+ ( o ) (mod Z?)
q2
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on the coefficients a, b, c,d € Z . If for example p, = 0 then we have

b, 1
a =+ @ (mod Z2).
q—lc 0

It follows directly that « = +1 (mod ¢;), c=0 (mod ¢;) and b € Z is arbitrary. Since
the determinant of the matrix is always 1 we have the condition ad = 1 (mod ¢;).
Therefore d = +1 (mod ¢;), if a = £1 (mod ¢;). The other three cases are equally
simple, so we omit them.

O
We prove now that the all 2 marked tori are affine equivalent to one from a very special
family, if the marking is rational.

Proposition 4.10 If z = (£, 1) (gcd(py, p2,n) = 1), then T- is isomorphic to ']I‘%l )
More precisely: there exists an affine map of T? represented by an element of SLo(Z)
which maps [2,4] to [,0] (and preserves [0]).

n

Proof: Since the linear Dehn twist represented by

11
(0 1)
and the rotation of 90 degrees generates the affine group of T? as well as its Veech
group V(T?) = SLs(Z) it is enough to show that given a point [p;/n, pa/n] € T? with
ged(pr, p2,m) = 1 one can map it to the point [1/n,0] € T? by a linear map from
SLy(Z). Let c := ged(p1,p2) then we have the equation 22p; — Elpy = 0. If one is

viewing the vector (=22, 2!) as the second row of a matrix A € SL, ER) then the vector
(a,b) representing the first row has to fulfill the condition 1 = det(A) = a2 + b2
This equation has solutions a,b € Z because 2 and £2 are relatively prime. Taking
solutions a, b defines an A € SLy(R) with A(p1,p2) = (¢, 0) where c is relatively prime

to n. Thus the congruence k¢ = 1 (mod n) has a solution k£ € Z and one can use the

linear Dehn twists
(19)()=(5) s
(3 7)()=(2) min

to obtain the result up to a rotation of 90 degrees.

and
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Corollary 4.11 The Veech groups V(T.) C SLy(Z) for rational points x = (B, 22)
with ged(py,pe,n) = 1 are all isomorphic. The isomorphism is given by conjugation

with an element of SLy(Z).

Proof: This fact is a direct consequence of Corollary 2.19.

Remark 4.1 Since every rational number x has a unique representation as above, we
can restrict our considerations to the families of markings defined by

1 11
Ty = (5,0> 0T T(nm) = (—, —) where 1#neN

nn

and to the corresponding tori. Here we choose the family Tin.

To compute the index [SLy(Z) : V(']I‘[22 a1)]; the first observation is that the only affine

n

map ¢ € Aﬁ”('JI‘[Q%,%]) (ged(p,q,n) = nl) which interchanges [0] and [2, ] is given by
rotation on 180 degrees and a translation by the vector (2, 1) (for n > 2). Since it maps
(2, I] to 0 it is of no interest for the following discussion. Up to this map ¢, Aff (']I‘[Q%%])
can be viewed as the isotropy subgroup Aﬁ[%’%]('ﬂ‘z) C Aff(T?) defined in 2.3 and
studied in Proposition 2.16. Lemma 4.10 above implies together with Proposition 2.16
for n > 2

[Aff2,9)(T%) - AF(T*)] = |{(a,):0 < a,b<nand ged(a,b,n) = 1}|
= n ]] (1 - 1%) : (4.15)
pln prime

The last equation on the cardinality of the set of pairs (a,b) is well known. d¢ = —id
is normal in Sly(Z) and therefore also in V(Tf, ,,), thus

Viz,)(T%) 2 V(Tfe o) /(—id).

Since —id generates a subgroup of order 2 and the subgroup N (']I‘[2£ 1]) C Aff (']I‘[22 2])
of pure translations is trivial if n # 2 we have n n
0 n? 1

[SLo(Z) : V(Tfe a))] = = II (1-5).

2
p|n prime p

For n = 2 the index in question is 3 because —id is already an element in Vi» a|(T?).

In contrast to this calculation there is a second way to compute the index of the
Veech groups using the asymptotic formula of Veech and the results from the last
section. To begin, the Veech groups are presented as subgroups of SLy(Z) but they
can also be viewed as subgroups of its quotient modulo +id: PSL(2,Z). Since both
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equivalence classes modulo —id are always in each V(']I‘?vn) all the following statements
make sense. We denote by V,(T2 ) the image of V(T2 ) in PSL(2,R). The orbits
Vp(T2 )(fve,) € R?, i = 1,...,k(z,) (k(z,) is the number of different orbits) of the
vectors £uvg, associated to a maximal cylinder C; of closed geodesics which fills the
torus under Vp(']l‘in) give always the same asymptotic constant (for the formula see
Proposition 6.3 in [GutJdg97]):

o NOG(TE, ) (Hee), T)

T—oo T2

-1 [Aﬁ(cz) : Aﬁo(ci)]
area(C;)

= Vol (H/V,(T;,))

Since each cylinder C; fills the torus we have area(C;) = 1 and [Aff (C;) : Affo(Ci)] = 1.
Here Aff,(C;) is the group generated by linear Dehn twists around C;. Moreover since
T, is rational T2 is a covering of a 1 marked torus

Vol (H/V,(T;,)) = [PSLy(Z):Vy(T;,)] Vol (H/PSLy(Z)) =
[SLo(Z) : V(T2 ). (4.16)

Tn

T
3
The other side of Veech’s asymptotic formula is the quadratic growth rate of the lengths
of the maximal cylinders that fill the torus. Their directions are exactly the directions
of lines in R? which begin at the origin and cross some point of the lattice x, + Z2.
To get a set of integer points which represent (eventually multiples of the length of)
the closed cylinders in question we simply multiply with n and get the well known
lattice Gn,1,n,0) = nZ® + (1,0) C Z*. Since we are on the torus R*/Z* to count the
length spectrum of the cylinders correctly we have to look for the visible points of the
completion of G'(,,1,1,0) With respect to 72. This completion, by Proposition 4.7, is the
point distribution G, thus we finally have:
v
lim MG T) 3k(m")[SL2(Z) V(T2 )L (4.17)

T—00 T2 T

What is left to calculate is k(x,,) :

Proposition 4.12

k(zn) = {

Proof: 'We observe that the ratio of the length of the two saddle connections connecting

(1) = 2l prime (1= 3) if n>2 (4.18)
if n=2

= N

[0] and [z,] and bounding the same cylinder of periodic orbits is an invariant under
the operation of the Veech group. Furthermore modulo V(T? ) we can represent every
periodic orbit or saddle connection by a point in @, = {(k,l) € Z?: 0 < k,l < n}.
Thus the directions with only one periodic family are represented by:

{(i,n) € Qy : ged(i,n) = 1}.
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The line from (0, 0) to (7, n) intersects exactly one point of the set x,, +Z? characterized
by

(:ciac) with i =1 (mod n).
n

If i € {1,2,...,n — 1} runs through the numbers relatively prime to n, then x does this
as well. So the above regarded length ratio is in any case one of the numbers

min{z,n — z}

with z € I".
max{z,n — z}

We see, exactly two relatively prime numbers modulo n, namely x and n —z having the
same invariant. If this invariant is complete, which will be shown in the next Lemma,
then the number of not conjugated orbits under the operation of the Veech group is
given by
1 1 n 1
- = — e{1,2,...n—1}: ged(z,n) =1} = = 1—-).
o) = 3o € (1.2 —1)s gedwmy =1 =3 [T (1-3)

2 P

p|n prime

The exceptional case n = 2 is trivial because there exists only one direction of one
cylinder in @)s.

O

Lemma 4.13 Let T? be a rational marked torus. Two directions vy, vy with only one
periodic cylinder are in the same orbit under the operation of the Veech group, if they
have the same ratio

mind] s}, s3]}

T2l i=1,2.
max{[sy’|, [s5'[}

3

I(v;) =

Here s?" j = 1,2 are the two saddle connections which are on the boundary of the
cylinder in direction v;.

Proof: Obviously the condition is necessary all that is left is to show that it is sufficient.
That is we have to find an element of the Veech group that is a map between the two
directions with the same invariant. Forgetting for a moment the marked point x we
can map any periodic direction to any other by elements of SL,(Z). Especially the
saddle connections in question are mapped on one another. Because the invariant is
the same for both possible orientations of the saddle connections and —id € SLy(Z)
we have found a map, which also transports one marked point to the other.

O

Now we can compute the index in question again:

Corollary 4.14 Let z = (%, 22) ' n > 2 then

[SLQ(Z):V(']I‘ﬁ)]zn; 11 (1—l) (4.19)

p|n prime

holds. In the case n = 2 the index s 3.

67



Proof:  From equality (4.17) together with k(z,) = $¢(n) for n > 2 it follows

(SLa(Z) : V(T2)] = = io(n) [lim M]_ .

@/l 2T T—o0 T2 (420)

Then put in the right hand side of equation (4.14) to get the result. If n = 2 then
k(xz2) =1 and we end up with 3.
U

Remark 4.2 The two ways of computing the index of the Veech groups of two marked
tort might be used to obtain the asymptotic formula 4.14 counting lattice points without
using the second section. One can take the first indexr computation and the Veech
formula together with the knowledge about the number k(x,) (see Proposition 4.12) of
cusps to compute imr_,oo N(GYo,T)/T? backwards.

Nevertheless the first given way to compute the index of the Veech groups seems to
be a very simple method to calculate the index of the well known groups (for example
compare S.Lang [Lang])

rl(n)::{(‘c‘ Z)ESLQ(Z): (‘c‘ 2) E((l) ’;) (mod n) }

in SLy(Z). Either the I'y(n) are subgroups of index two in V(T2 ) if n > 2, or in the
case n =2 —id € I'1(2) and V/(TZ,) is isomorphic to I';(2). Thus:
2 1)
[SLy(Z) : Ty (n)] = { 2 Ty prime (1= 32) 1 n>2

4.21
3 if n=2 ( )

4.4 Quadratic growth rates and constants on marked
tori

4.4.1 The 2 marked torus T?

We begin with a general observation concerning the directions of periodic families on
the torus. These directions are exactly all the “rational” directions and this fact will
not change how many points we will ever mark and where we will ever place them
on the torus. The only thing that changes is the number of periodic families in each
rational direction, but they are all of equal length. In the case of the two marked torus
T2 there are always two families in any rational direction if z is non rational. In this
case there are saddle connections connecting [0] and [z] but which bound no periodic
family because they are not in a rational direction. For rational markings x this can
never happen.
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Collecting things for rational x: either we have a rational direction with two periodic
families and the bounding saddle connections connecting the same marked point, or
we have only one family but then the two bounding saddle connections will connect
the marked points [0] and [z]. Thus we see counting the length N,,,(T?

T

, T) of cylinders
of periodic trajectories for non rational markings = on T2 is easy:
Nyo(T2,T) 6 o

Nyo(T2, T
limM:QIimi— Vo ¢ T

Tooo T2 Tooo T2 T (4.22)

rat*

To treat the rational case we have to subtract the directions where only one family is
from the doubled number of periodic orbits of the one marked torus. Let us denote the
number of single cylinders on T2 with length smaller than T by Ny, 5)(T2,T). Thus
we write:

Npo(T2,T) = 2Nyo(T?, T) — Npo, (T2, T) + o(T?).

With the help of the discussion at the end of the last paragraph we compute for a

rational point z = (&, 22):

2
1
fim 2T D) 1 (QN(ZZV,T) - N(G,VR,T)) -

T—00 T2 T—00 T2
6 1 1\
= —|1—-— 14— . 4.23
T 2n H ( +p) ( )

To count saddle connections is less easy, but again using the last paragraph (and the
discussion before equation (4.17) we can write down the associated point distributions:
lim 7NSC(T‘QE 1) =

T—00 T2

lim — (2N(Z2V,T) - 2N(G}2,T)) +

T—y00 T2
. 1 1 1 n? v
toms ) (7 + ) oy =

Here 4.14 and Proposition 4.12 is used. The last term needs some explanation. We
have seen that N(GV.,T) already counts the length of the simple periodic cylinders. It
counts as well the length of of their boundaries that is the sum of the length of the two
bounding saddle connections. By Proposition 4.12 there are 2¢(n) different families of
orbits of saddle connections labeled by their length ratios. Equation (4.17) shows these
orbits under the Veech group all have the same growth rate, namely ﬁ]\f (G}, T).
The relation of the length of a saddle connection bounding a family to the length of the
family is more or less the invariant . Anyway it is one of the numbers % or % where

i € I". With the help of equation (4.6) one finds the above expression. Continuing the
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evaluation:

S () 6 ()

p|n prime p|n prim ieln
1\ N\ ' 1 1
= 2|1 14 1- - S [
i H < " p) H ( p) =i n
p|n prim p|n prim el
1\ * 11
= — 1+ ] <1_P> z(ﬁ_ﬁ> : (4.24)
pln prim i€ln

The last equality follows with the help of equation (4.13). For non rational markings
we have:

N (T2, T) = 2N(Z*,T)+ N(=Z> T) + o(T?) =
_ Sy o(T?). (4.25)
m

Summarizing we have:

Theorem 4.15 The limits

. Npo/sc(Tia T)
i, =

exist for all x and we have the estimates

N ('11‘2 T) NSC(TQ,T) 6
. sc T < . Yy —_
A S e
and
N, (T2, T N, ']I‘2,T
lim M < lim M — §
T—o0 2 T—o0 T2 T

for y non rational. The inequalities are strict if x is rational. Moreover for each
sequence of rational points {x,}5°, converging to a non rational point x:

NSC/pO(TinaT)> — lim NSC/pO(TgaT)

T—o0 T2

lim ( lim

n—oo \ T—o0 T2

This is the continuity of the quadratic constants at non rational points.
Proof:  The existence of the limits is proved in the equations (4.22), (4.23), (4.24) and
(4.25), even more the computations gave explicitly the values of the limits. In the case

of saddle connections it is indeed not easy to read the continuity of the growth rate
function out of the expression (4.24) directly (in fact before the author found the proof

70



below he believes the formula was wrong). By comparing equation (4.25) (the limiting
constant) to the first line of (4.24) we have to show:

- 1 2

By using the equation (4.6), which states

S e T (-5)

i€I™ =0 p|n prime
and the following estimates
1 7?1 > 1 1 721
S (54 %5m) <X e < 2 (5 5)
ieI™ 1€l™ [=0 1el™

we have:

7T2 1 1 H 1 4 1 -1 < Z 1 H 1 1 -1 <
6 n _ P L 42 4 p?
p|ln prime ieln p|n prime

2

T 1 1\ !
~l1-= 14 = . 4.26
<% an H ( +p> (4.26)

p|n prime

Clearly if n — oo the right and left hand side of the inequalities converge to %2. In the
case of periodic orbits the continuity follows immediately from equation (4.23).
O

4.4.2 The general case

We generalize the results of the last section to arbitrary many markings, with the
exception that we do not try to find explicit formulas for rational markings. For the
proof of the main theorem it is helpful to make the following definition:

Definition 4.5 Let SC(, ) and SC(; ) be two sets of saddle connections and suppose
y is located on a lattice of saddle connections out of SCg ). Then let G(Cx(z)z) C Gzy)
be the lattice of vectors which are parallel to vectors from the lattice G, ).
Analogously let Gt
from G g ).

(“ ) G(z,2) be the lattice of vectors which are parallel to vectors

It follows from Corollary 4.2 that these are indeed lattices. The “C” sign (“D” respec-

tively) in the notation refers to the intuitive point of view that a vector v € G(Cw(zaz)

(z,2)

(v € GD(m’y)> lying on w € G5,y (w € G(gy)) is shorter (longer) than w.
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Theorem 4.16 1. [continuity] Let ']I‘[Qx1 be a n marked translation torus. Then

,...,En_l]
the limits
lim NSC/PO(T[le,...,zn,l]’T)
T—o00 T2
exist.
2. [ ¢ipo on non rational markings] The set ']I‘szt(sc /po) has full Lebesgue measure
on (T?)" and the inequalities
2 2
lim NSC(T[wlr"’wn—l]’T) < lim NSC(T[yly'":yn—l]’T) — n(n—"_ 1) 3_n
T—o0 T2 T T T2 2 m
and
2 2
lim NPO( [z1, ,zn—1]’T) < lim NPO(T[yl,...,yn_l]’T) _ 3_77:
T—oo T2 — T—oo T2 T

are true for all (Yo, ...,Yn 1) € T2, In both cases (sc’s and po’s) the

nrat(sc/po)*

inequality is strict, if (g, ..., Tn) € 'JI‘QZ;(ISC/Z,O)

3. [continuity at non rational points]
If {(CC%), 7'1'%)};)20 (‘,L'%)a X .Z'%) € T2Zat(sc/po) is a sequence with
i n

;00 (2, 0 T5) = (Y05 -5 Un—1) € T2 atise/po) then

2 2

lim
T—o0 T2 T—00 T2

Jim (4.27)

Proof:  'We prove the statements by induction over the number n of marked points. To
start for one point there is nothing to show, moreover we have already seen the proof
for n = 2. So we assume the statements are true for all n markings (o, ..., 2,_1) of
the torus. We add another marking x,,. If the resulting marking is non rational i.e.
(2o, ..., ) € T2". . (for saddle connections) we have

nrat(sc)
Noe(To o)y T) = Nae( Ty i T) + Z N(SCai ), T)
i=0
and by the definition of non rational points we have
lim N(SC(wi’w")’T) =7

T—o00 T2

for all 4 € {0,1,...,n — 1}. In the case i = n we have saddle connections that are
starting and ending in z,, but these bound periodic trajectories. So we have to take
care of multiplicities when counting these

lim = —
T—o00 T2 m
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so finally
N,(T? T) N,(T? T)

lim [Z15e- 2]’ — lim [Z15s®r—1]?
T—o0 T2 T—o0 T?

n(n+1) 3n
L R e
2 T

3
+nr+ — =
™

Since a saddle connection starting from z,, bounds a cylinder of periodic trajectories
only if it ends in z,, too, we have to add in each rational direction a new periodic family.
So the growth rate for periodic orbits is

2 2
T 1 P N G A L) IR
T—00 Jj2 T—00 T2 T T '

If the marking (z1,..,2,) is rational it is divided in equivalence classes of relatively
rational points. The set of these classes is denoted by Kpeprat (21, .-, 2, ). For each class
the Veech theory holds (see [Vch89, Vch92, Vch98]) and guarantees that all the limits
exist. For the case of the inequalities between the limits we observe that if the marked
points are rational there exists always a direction in which there is only one cylinder of
closed trajectories. The orbit of this direction under the operation of the Veech group
leads to a positive asymptotic growth constant (Proposition 6.1 in [GutJdg97]). But
since this causes “multiplicities” (we have to count only visible points) the limit growth
rates are in both cases (po’s and sc’s) smaller than the ones for non rational markings.
Thus we have already shown that if one class has more than one point than the growth
rates are smaller than for non rational markings. Finally to compute the growth rates
in the case of periodic orbits, we observe that each class k € K,¢rqr defines a marked
Veech torus T%, so we have:

NpO(T[%cl,...,wn]a T)) = Z Npo(T, T) + o(T?). (4.28)

kE’Crelrat(mla---;In)

Here we use the fact that between points of different classes there are never saddle
connections with rational slope (in rational direction).

Thus it remains to count the saddle connections between points of different classes. To

do this let z; ¢ p,, be a marked point and SC((;”;’,;'J,')’E"‘I) the set of saddle connections

2
[1‘1 ,...,zn_l] :

connecting z; and x; on the n marked torus T
Two different things can happen:

First more than one saddle connection from the set SC, ,,) is parallel to (more pre-
cisely “is on top of”) one of the saddle connections in the set SC((ES;'],')@”’I) (with end

point z;). The set of all indices j of such z; are denoted with I.

For the second case, more than one saddle connection from SC', 4, is parallel to one
out of SC((;”;’,;'J,')’“‘I). As above denote the set of all indices of such z; with K. By

Corollary 4.2 the sets of saddle connections for which this holds are already lattices
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(of vectors) that are described by Gc(w“zg" or GD( iy )J @) respectively. Because these are

3L
lattices they have limit growth rates and moreover we can write:

N(SCE) T) = N(Gayny, T) = > NG T) (4.29)

(mumn) (zuz])
z;el

and for all j € K
N(SCE5m) Ty = N(SCE 3D T) = NG5, ). (4.30)

(;U“a: (zz,w (i,2n) ?
After these changes for all x; ¢ p,, the induction is complete. From the two equalities
it follows immediately: If intersections of the above kind exist (so the marking is ratio-
nal in our sense) than the associated growth rates are smaller than for a non rational
marking. The continuity follows from the fact that by approximating a non rational
marking all the denominators of all the d relations are growing over all bounds. By

Lemma 4.2 the “periods” of the intersection lattices do the same.
O

4.4.3 Branched coverings of marked tori

We are by the simplicity of our methods not able to conclude anything about (families
of) branched coverings of tori, without using the existence of the growth rate limits
by the results [EMS] of Eskin and Masur. Even the sets where the growth rate is the
biggest is not seen as just the preimage of the non rational markings on the torus, but
it has to be contained in this set. This is because the geometry and combinatorics of
the covering might cause new sets where the growth rates are different. Geometrically
the reason for this is that the length spectrum of the cylinders of periodic trajectories
is connected in a way to the saddle connections bounding them, which depends on the
covering and where the singular points are. If one makes the simplifying assumption
that all inverse images of the marked points are itself marked then from Theorem 4.16
one can conclude:

Corollary 4.17 Let V 5 ']I‘[2m zy] O COVETIG eventually branched over (x1,...,T,)

1350009Tn
with the induced translation structure mw*dz . Further denote by Vo the translation
structure where each tnverse image of a marked point is itself marked . Then, after
rescaling the volume of V (with respect to the induced flat metric) to one, we have:
NSC(VC’T) NSC(TQzly 7$n] T)

. _ 2 71
O L

(4.31)

(deg() is the degree of w). Moreover if some of the markings are artificial (i.e. not
singular points of the induced metric) then the growth rates after “unmark” any subset
of these points will be smaller than the above one. So we have

lim supw < deg(m)? (Mﬂ' + 3_n> : (4.32)

T—o0 2 2 ™
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Remark: If one includes the above mentioned result of Eskin and Masur [EMS]| then
the limsup in equation (4.32) can be replaced by lim. Similarly one can give the
corresponding estimate for maximal periodic cylinders.

Proof. The statement is a direct consequence of the fact that each saddle connection
on the torus has exactly deg(m) preimages on Vo and the Theorem 4.16. The second
part is clear, because by removing nonsingular markings, the directions in which there
are saddle connections are not changed. But in each such direction the number of

saddle connections could decrease and their length increase.
O

Remark: With the results of Veech [Vch90] every translation surface can be approx-
imated by torus coverings in spaces of differentials Q(g, P). Since periodic cylinders
and saddle connections are locally stable with respect to deformations in this spaces
we have some sort of control on their numbers by the Corollary. But because of the
increasing number of artificial markings while approximating a general translation sur-
face or equivalently the increasing degree of our covering, the estimate above is to weak
to predict for example quadratic bounds of the growth rates of po’s or sc’s in general.
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