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dedicated function, often within a system of electromechanical devices
[4]. 34

Equation of the Equinoxes

The relation between GMST and GAST is called equation of the
equinoxes.

𝐺𝐴𝑆𝑇 −𝐺𝑀𝑆𝑇 = Δ𝜓 cos 𝜖
It is given by the obliquity of the ecliptic and the length of the vernal
equinox. xii, xiii

GAST

Greenwich Apparent Sidereal Time (GAST) is the angle between the
IERS reference meridian and the true equinox. The relation between
GMST and GAST is given by the equation of the equinoxes [5]. xii, xiii,
xxii
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Greenwich Mean Sidereal Time (GMST) is is the angle between the
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The International Earth Rotation and Reference Systems (IERS) is an
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Modified Julian Date
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[5]. 42

SGP4
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State
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magnetic field which are used for attitude determination and control. 7,
8, 15, 24, 41, 43–45, 47–49, 51–60, 65, 70, 76, 87, 102–105, 114, 115,
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1 Introduction

The first chapter of this thesis discusses the motivation and the objectives for
the research. To give the reader an introduction into the field of work and
also to define the state of the art, the technological evolution of nanosatellites
is reviewed briefly in the beginning. Thereafter, the individual goals are
formulated and their pursuit is outlined.

1.1 The Technological Evolution of Nanosatellites

Starting with a brief discussion of the term nanosatellite, this section retro-
spects the emergence of nanosatellites in the early days of space flight. After
several decades without any nanosatellite missions at all, the technological
revolution of micro electronics made nanosatellites more capable and hence
attractive for space missions again. Finally, the role of nanosatellites for sci-
ence and Earth observation constellations and the growing interest of private
companies in nanosatellite constellations is reviewed.

1.1.1 Small Satellite Categorization

The commonly used terms for small satellite categories are derived from the
unit prefixes used in the metric system, e. g. micro or nano. Most commonly,
the allocation of a satellite to one of these categories is based on its launch
mass, where the actual numerical values for the category boundaries are not
standardized. A widely used assignment is used by Bouwmeester and Guo in
[8], while the TU Berlin follows a slightly different allocation (cf. Table 1.1).
The approach to classify satellites according to their mass, however, has
been criticized as arbitrary [9] and unsuitable [10], and new standards for
categorization have been proposed [10]. Nevertheless, most surveys and
databases on nanosatellites use this mass-based categorization and do not
list satellites with a mass greater than 10 kg, which therefore also reflects



1.1 The Technological Evolution of Nanosatellites 2

in the data available for the evaluation undertaken in the following sections.
In the subsequent investigations, the author follows the classification by TU
Berlin and satellites with a launch mass of 4–20 kg are also considered as
nanosatellites.

Table 1.1: Satellite Classifications Based on Launch Mass [kg]
Category Surveys [8], [11] TU Berlin [12]
Microsatellite 100 – 10 120 – 20
Nanosatellite 10 – 1 20 – 4
CubeSats 4 – 1
Picosatellite 1 – 0.1 1 – 0.1

1.1.2 Nanosatellites Among the Pioneers of Space Flight

The first nanosatellite was in fact the second satellite in space at all. Four
months after Sputnik (83.6 kg), Explorer 1 [13] was successfully launched by
NASA on February 1st, 1958, and had a mass of only 13.9 kg. Others followed
as part of the Explorer and Vanguard projects until 1961, and the first amateur
radio satellites OSCAR 1 (1961) and OSCAR 2 (1962) [14] had a launch mass
of 5 kg and 10 kg, respectively. After 1962, however, no nanosatellites were
launched until several decades later in 1996, as can be seen from the survey of
Bouwmeester and Guo [8], which includes all pico- and nanosatellite launches
until 1998. An overview is given in Figure 1.1, where the large gap between
the early sixties and the late nineties is clearly visible.

Bouwmeester and Guo suggest that the reason for the small satellite launch
mass in the early years of spaceflight was a result of the limited payload
capabilities of the launch vehicles. Their survey states that the first satellites
were very simple and after the launch vehicles became more capable, the
satellites also became larger and more advanced. The need for nanosatellites
with very limited capabilities was no longer given after the first successful
demonstration missions, since the advancing technology soon became too big,
and hence the launch mass of satellites needed to be continuously increased
for their integration.
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Figure 1.1: Nanosatellite Launches 1958–2008 (adapted from [8])

1.1.3 Technology Miniaturization

One of the first nanosatellite missions after a long break was carried out
in 1998 by TU Berlin, whose TUBSAT-N/N1 satellites [15] demonstrated
technology miniaturization by successfully performing the same communication
experiments as the microsatellite TUBSAT-A nine years earlier [16]. By that
time, energy-efficient micro-electronics had become available, which allowed
the realization of more advanced missions also for smaller satellites. In 1996,
Müncheberg, Krischke, and Lemke noticed a “new way of thinking in terms
of satellite design”, which resulted in a “tendency towards smaller, simpler
units” [17]. Microsatellites had been introduced for civil and commercial
satellite systems and a miniaturization beyond the microsatellite scale was
predicted. Due to the reduced launch costs, this was at first especially
interesting for universities, and after the CubeSat standard [18] was first
released in 1999, the number of picosatellites began to increase immensely.
One year after the CubeSat standard, the first missions to demonstrate a
nanosatellite platform including three-axis-stabilization, SNAP-1, was launched
[19]. In this period, the pico- and nanosatellites’ mission objectives included
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predominantly technology demonstration (71 %), operational use (52 %) and
education (52 %), while scientific experiments were – if part of a mission –
only limited [8].

1.1.4 Nanosatellite Constellations for Science and Earth Observation
Missions

With the fast advance in mobile phones and other consumer electronics,
the miniaturization of technology suitable for space applications increased
momentum in the field of pico- and nanosatellites, which reflects in the vast
increase of pico- and nanosatellite launches after 2010, as shown in Figure 1.2.
The extension of the CubeSat standard for multiples of its form-factor entailed
also larger, standardized deployment facilities and paved the way for 3U and
6U CubeSats [20]. By then, miniaturized satellite technology was capable of
supporting complex science or Earth observation missions to a full extent. Due
to their vast increase of performance on the one hand, and the comparatively
low launch costs on the other, constellations and formation flying missions
offered new opportunities for progressive and yet affordable missions.

Based on the nanosatellite technology demonstration with CAN-X1 (2003)
and CAN-X2 (2008), the UTIAS/SFL developed the Generic Nanosatellite Bus
(GNB) as a basis for the BRITE satellites, a nanosatellite constellation that
monitors the brightness and temperature variations of stars [21]. It includes
six spacecrafts which were launched in 2013 and 2014. In the same year, the
CAN-X4 and CAN-X5 satellites [22], also based on the GNB, demonstrated
formation flying with nanosatellites. At the same time, private companies
also started their own nanosatellite programs. After its first technology
demonstration mission called Dove-1 in 2013, the American company Planet
launched Flock 1, a constellation of 28 3U CubeSats [23] in 2014. With more
launches to follow soon after, Planet operates the largest constellation of
satellites in space. The flock constellation provides a complete image of Earth
with an optical resolution of 3–5 m.

The European Commission’s FP7 NANOSAT project [11] researched ongoing
and future nanosatellite projects ranging from 1998 until the 2020s. As can
be seen from its database, the extremely rapid development in the field of
nanosatellites will continue (cf. Figure 1.2). Here, the decrease in 2016 is due
to launch delays, which also explains the great increase in 2017, where the
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Figure 1.2: Nanosatellite Launches 1998–2022 (adapted from [11])

first half already sets the record for the most pico- and nanosatellites launches
ever.

1.1.5 Present and Future Pico- and Nanosatellite Mission
Programmatics

The CYGNSS is one example for a nanosatellite constellation contributing to
NASA’s Earth science program. Launched in December 2016, the 8 satellites
with a mass of 18 kg each are utilized to predict weather, climate, and natural
hazards [24]. The ADCS of CYGNSS facilitates three-axis-stabilization with
a 2.1° knowledge and 2.8° control using horizon sensors, a magnetometer, a
pitch momentum wheel, and magnetic torquers [25]. TROPICS is NASA’s first
Earth science CubeSat constellation mission and “involves twelve 3U-CubeSats
(4 kg each) to determine the relationships between rapidly evolving storm
structures and storm intensity” [24]. Based on the MicroMAS-2 CubeSat,
three-axis stabilization with 0.5° accuracy is achieved [26].
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From the perspective of the private sector, “the combination of cost-effective
satellites, and the increased value of up-to-date imagery that is largely driving
the commercial interest in Earth observation imagery, whether that is for
agriculture, insurance, mapping or surveillance”, as stated by Silva Curiel,
Cawthorne, Sills, et al. [27] from the British company SSTL. As one example
of a platform to support nanosatellite constellations, particularly for commer-
cial applications, the SSTL-12 targets flexibility regarding different mission
scenarios. In terms of attitude control, a performance range of 2° to 0.01° is
specified.

With this growing interest of the private sector in pico and nanosatellites
and the increasingly challenging missions which have become feasible us-
ing miniaturized spacecrafts, their requirements regarding dependability and
performance increase steadily due to the pressure of competition. Hence,
keeping the established technological solutions up to date has become a key
business factor for space-related products or services. In the field of science,
the technological advances accelerate the community’s efforts to carry out
even more ambitious missions in a shorter amount of time. Both trends entail
the need for a reliable and yet adaptable design, which offers both a long-term
compatibility for future mission scenarios and also a rapid update of technol-
ogy to sustain a competitive platform. In this context, this work investigates
a concept for a flexible ADCS for three-axis stabilized nanosatellites. The
detailed thesis objectives are presented in the following section.

1.2 Thesis Objectives

Attitude determination and control systems for three-axis stabilized satellites
incorporate multiple different sensors and actuators as well as data processing
and control strategies which must be selected carefully considering a mission’s
requirements and constraints. Scientific research in this field offers various
topics to focus on and different dissertations have been written at TU Berlin.
While accuracy [28], agility [29] and robustness [30] have been worked on in the
past, this thesis investigates an approach for the flexible design and verification
of an attitude determination and control system (ADCS) for nanosatellites.
Before the concept is elaborated and its application is presented, the following
paragraphs will firstly clarify the motivation for the research.
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In general, flexibility is characterized as “a ready capability to adapt to new,
different, or changing requirements” [31]. As shown in the retrospective of their
technological evolution, the requirements for nanosatellites have continuously
increased with the new areas of application. Especially in the last decade, this
trend was accelerated by advances in miniaturized technology and satellite
constellations and formations emerged to carry out commercial and scientific
missions. These missions generally impose high requirements in terms of an
ADCS’s accuracy, dependability, but also its economic efficiency and time to
market.

Consequently, many nanosatellite designers establish platform concepts which
are then applicable for different projects. The requirements for specific missions
are, however, diverging with the broader range of application areas. One
mission may consist of a large constellation of Earth observation nanosatellites
for commercial purposes and require a high pointing accuracy at moderate unit
costs and development effort, but also an especially short development time
for continuous technology updates. A different mission may carry a scientific
instrument demanding dedicated pointing modes or control maneuvers and
permanent availability. On the other end of the scale, an in-orbit demonstration
(IOD) mission’s payloads may formulate only moderate ADCS requirements
and hence low costs and development effort are the design drivers for the
platform configuration. To be able to support such different missions, a
platform concept must be able to adapt to varying requirements, that is, be
flexible.

This thesis investigates a new concept for the flexible design and verification
of an attitude determination and control system for such a nanosatellite
platform. Chapter 2 discusses the impact of the technological evolution on the
requirements in regard to the performance and design. Based on observations
of the space market and ongoing satellite missions, criteria are derived to clarify
in which parts of the design process or the systems architecture flexibility
is required and why. In this context, TU Berlin’s TUBiX20 nanosatellite
platform is introduced, which is designed with the objective of modularity,
reuse and dependability and therefore provides the basis for flexible subsystem
design. In the role of systems engineer for software for the platform, the
author contributed to shape the system’s architecture accordingly. Chapter 3
presents the concept for the ADCS in detail, while the theoretical background
for the state estimation and control techniques is subsequently provided in
Chapter 4. The investigated ADCS concept is put into practice for the two
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ongoing missions based on the TUBiX20 platform, namely TechnoSat and
TUBIN, which the author describes in Chapter 5. Finally, the objective and
motivation for this thesis are summarized and placed in relation to the outcome
in the last chapter of this work.

The ADCS design is aligned with the TUBiX20 systems architecture to
obtain maximum synergies for the development. However, the approach
is completely applicable for other platform solutions or individual satellites.
Especially the description of the attitude determination and control techniques
in Chapter 4 may be read as a stand-alone collection of algorithms and serve
other researchers as a reference. Throughout the presentation of the concept
and its realization, special emphasis is placed on the consistency and integrity
of information. Therefore, all symbols and formats for the different state
quantities, coordinate systems and diagrams are used uniformly throughout
the whole document including all glossaries to allow their traceability from
abstract concepts to detailed mathematical descriptions.



2 Design Approaches for a Flexible Attitude
Control System

This chapter presents investigations on design approaches for a flexible attitude
control system. The first two sections derive design considerations to further
clarify the objective of this thesis. To provide a theoretical basis for the
research carried out in Chapter 3, Section 2.4 introduces the concept of
component-based software engineering.

2.1 Observations of the Satellite Market and Missions

In the following section, criteria for the design and verification of a flexible
attitude determination and control system are identified. Firstly, observations
from the state of the art in nanosatellite missions in general and attitude
determination and control systems in particular are recorded. As a second
step, design criteria are derived from these observations, which serve as a
reference for the conceptual design which follows in the next chapter.

2.1.1 Commonly Used Sensors and Actuators

As can be seen from the range of nanosatellite missions examined in Section 1.1,
there is a common set of sensors and actuators which is utilized in most
nanosatellite missions. According to the survey of Bouwmeester and Guo
[8], Sun sensors and magnetometers are the most commonly used sensor
type within all pico- and nanosatellites between 1957 and 2009. Nearly 30 %
of all missions in their database were equipped with either one or both of
these sensor types. However, there is a large variety of different designs.
Sun sensors range from simple photocells to digital sensors with integrated
signal processing, which in turn reflects in a wide range of accuracy from
several degrees to arc minutes. Obviously, they only provide measurement data
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when illuminated by sunlight, which also allows self-sufficient power supply.
Magnetometers are light-weight, energy-efficient and relatively easy to use.
Since most pico- and nanosatellites are launched into a low earth orbit (LEO),
measurements of sufficient strength compared to the sensor’s accuracy are
permanently available. With Sun vector and geomagnetic field measurements,
basic attitude estimation is possible (cf. Section 4.4.6). During an eclipse,
however, only the magnetic field measurements are available. Here, angular
rate measurements are often used to predict the attitude. As a low-cost and
power-efficient realization, MEMS gyroscopes are widely utilized [8]. Apart
from attitude prediction, the angular rate measurements are also used for
attitude control directly. A different sensor providing vector measurements –
yet less often used than Sun sensors or magnetometers – is an Earth horizon
sensor. Mostly based on infrared cameras, a wide range of products is available.
For pico- and nanosatellites, predominantly low cost and coarse versions are
selected.

In terms of attitude control, only a minority of all pico- and nanosatellites
before 2009 performs active stabilization (40 % according to [8]). The most
common control principle is magnetic actuation, either via magnetic coils or
torque rods (magnetic torquers). This may be explained by the moderate
pointing requirements, but also by their robustness, low energy consumption,
low costs and simply a lack of alternatives: other actuator types like reaction
wheels or thrusters have only been available recently, which will be examined
in the following section.

2.1.2 Miniaturization of High-Accuracy Sensors and Actuators

As discussed earlier, nanosatellite missions for Earth observation or scientific
payloads did not emerge before the beginning of this decade, when the
technological progress led to miniaturized payloads. By then, the limited
resources regarding power supply or dimensions complied with the reduced
requirements of nevertheless complex instruments. Miniaturized reaction
wheels and star trackers were developed and could be verified in-orbit around
the same time. As a result, nanosatellites capable of high-accuracy attitude
determination and control became available. Especially for formations or
constellations, highly accurate position information is crucial, Therefore, many
nanosatellites are nowadays also equipped with GPS receivers.
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2.1.3 Growing Supply and Demand for Components

Apart from the increasing variety in different sensor types, e. g. the emergence
of nano reaction wheels, star trackers and miniaturized thrusters, the tech-
nological evolution of components and the increasing interest in pico- and
nanosatellites has lead to a growing range of products offered by an increasing
number of manufacturers. Even the integral parts of nearly every nanosatellite
mission today – Sun sensors, Magnetometers and MEMS gyroscopes – are
available in a broad range of different versions from simple and cheap to com-
plex and high-performing. In this very active market, manufacturers release
new products frequently or discontinue existing ones, which often comes with
modifications in data interfaces such as UART, CAN, I2C or SPI, but also
different configuration procedures as well as communication protocols.

2.1.4 Evolution of Mission Objectives

As can be seen from the examples reviewed in Section 1.1, nanosatellite
projects have developed from simple demonstration missions to very complex
constellations with several hundred individual satellites. Apart from the
increasing requirements regarding a single satellite itself, the operations for such
missions have also undergone a radical change. The in-orbit demonstration of
one or more payloads may be achieved via a limited set of dedicated commands
and is therefore of manageable complexity even for a small team working with
predominantly manual operations. A large constellation of satellites, on the
other hand, is only manageable with a high grade of autonomy for the individual
satellite, since there are simply not enough resources for gradual command
sequences. Furthermore, formation flying and inter-satellite communication
require new algorithms and operational modes, extending the traditional,
single-satellite concepts which are often limited to pointing towards nadir or a
target on ground.

To achieve a high degree of autonomy, complexity must be transferred from
operations to the spacecraft. This applies for conducting experiments or ma-
neuvers, but especially for fault detection, isolation and recovery (FDIR). Here,
the individual satellite must be capable of maintaining its availability without
extensive operations from ground for recovery. Therefore, this intelligence
must be implemented into the satellite’s software.
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A different, yet important aspect is the sensor calibration. While for a mission
with one or a few satellites, a significant percentage may be done on ground,
this is not feasible for large constellations. Here, in-orbit calibration must
be implemented. To this end, the software must allow the integration of
in-orbit estimation techniques as well as autonomously performed calibration
maneuvers.

2.1.5 Corporate Environment

Surveys show that today a large part of pico- and nanosatellites come from
private companies (40.4 % of all missions examined in [8], cf. Section 1.1.4).
These companies either offer a service, i. e. bringing a customer’s payload into
space, or sell data recorded by their own instruments as a product. In both
cases, failure comes with financial loss, either as penalty for a not fulfilled
contract or a decreased offer of marketable data. Therefore, a high degree
of reliability and availability is demanded for the satellites. To be able to
compete, a quick entry to the market and hence a short development time
is mandatory. However, private companies usually have sufficient budgets to
acquire the resources demanded to carry out such a development.

2.1.6 University Environment

Although the missions carried out by universities have recently become equally
aspirational with regard to the technological challenges, the environment here
is still quite different. University missions generally conduct research, often
as technology demonstration of novel components, while complex payloads
are sometimes introduced by partners. The development and verification
of the satellite from design to launch and the commissioning as well as
subsequent operations and evaluation of scientific experiments are sometimes
not performed by a single institution. However, the challenge here is the
development of a complex spacecraft with only limited resources. Depending
on funding, university missions generally have a small budget and hence the
most capable hardware or lab equipment is not always available. Moreover,
university projects are often carried out by young researchers or students
who may leave the university after the project, which makes the transfer of
knowledge from one mission to another more difficult.



2.1 Observations of the Satellite Market and Missions 13

2.1.7 Integrated Solutions for Complete ADCS

A trend which is observable on the market of satellite components is the
development of integrated solutions for attitude determination and control
[32], [33]. Those integrated systems incorporate all required sensors and
actuators and furthermore a processing unit which runs the control software
and offers a data interface to the rest of the satellite. Using such an integrated
solution within a nanosatellite mission obviously simplifies the mission’s ADCS
design; only the interfaces to the rest of the system, i. e. telecommand and
telemetry need to be implemented. On the other hand, their manufacturers
need to carefully design their systems architecture to meet the requirements
of the market. This perspective is shown in the following paragraph.

The component market situation described in Section 2.1.2 and Section 2.1.3
is a major influence factor for the design of such systems. To support both
highly demanding as well as cost-efficient missions, a company has to offer a
broad range of products which are preferably all based on the same modular
design to allow a comprehensive and consistent product development. Since
new components are released frequently while others are discontinued, the
system must allow the extension of new components or removal of deprecated
ones, preferably in short life cycles and with minimum development effort.
To maintain their competitiveness, companies are under a high innovation
pressure. The capabilities and accuracies of satellite components increase
continuously, alongside with the requirements of a mission. Therefore, frequent
updates or upgrades are of great importance for integrated solutions.

2.1.8 Software Development Techniques

In recent years, software has become a substantial part of the spacecraft
development process. With the growing requirements, the complexity of
on-board tasks is increasing drastically and therefore a well-structured and
sophisticated software design is needed. With the technological evolution of
micro electronics, high-performing and yet small and power-efficient microcon-
trollers have become available. Especially in pico- and nanosatellite projects,
these commercial off-the-shelf (COTS) components are often preferred to
large, energy-consuming but space-proven on-board computers. Regarding
the software design, different techniques such as code generation [34] and
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object-oriented design [35] have been introduced into space science, however,
a long time after being applied in other sectors like consumer electronics
or the automotive industry. In the past years, Linux [36] and open source
software projects [37] have also become of increased influence. When it comes
to design objectives, modularity is often a key factor, especially for attitude
control systems’ software [38], [39].

2.2 Derivation of Flexibility Criteria

In this section, criteria for flexible design and verification are derived from the
observations of the satellite market and missions discussed in the previous
section. In this context, the term flexibility is referred to as the “capability
to adapt to new, different, or changing requirements” [31], which applies to
the development, verification and in-orbit operation of the ADCS as part of a
reusable nanosatellite platform.

2.2.1 Integrate Updated or Novel Technology

As pointed out in Section 2.1.1, most attitude determination and control
systems incorporate a basic set of the same sensors and actuators. However,
the integration of different components is still important due to the following
reasons. Firstly, the supply of these component types may change. The
market is in motion, and although the same component types may be used
for a new mission, some novel products may have been released, promising
more accuracy or better performance. On the other hand, manufacturers
may discontinue a certain product and hence a replacement must be found
(cf. Section 2.1.3). However, these newly selected components may require
different hardware interfaces for communications (e.g. CAN instead of UART)
and therefore hardware adaption may be inevitable. This in turn affects the
software, since new drivers need to be implemented to adapt to new hardware
interfaces and communication protocols. Furthermore, a new component is
often operated differently in terms of operational modes, (register) settings or
calibration procedures. The subject of rapid technology update is discussed in
more detail in collaboration with the author in [40].
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Furthermore, novel components are introduced such as miniaturized star
trackers or reaction wheels (cf. Section 2.1.2) which provide a valuable
addition to the components already in use, since new application areas for
nanosatellites demand for steadily improving performance. However, the
integration of such new technology should preferably come with minimum
integration effort.

As stated in Section 2.1.7, integrated solutions for complete attitude determi-
nation and control have become a new trend on the market. These systems
offer a cost- and time-efficient way to realize ADCS functionality, but may
however need to be extended with additional sensors or actuators for certain
missions, e. g. due to demanding accuracy requirements or control techniques
needed. Moreover, these integrated solutions still need to be incorporated into
the overall platform and interact with other subsystems such as orbit control,
but also require interfaces to telecommand, telemetry and FDIR mechanisms.

2.2.2 Enable Scalability

To meet different mission requirements with a single solution, a platform should
be scalable regarding development effort, performance and resources. For one
mission, coarse attitude control may be sufficient, yet the mission should be
realized within a short time frame and a limited financial budget. Here, it is
desirable to derive a configuration from the platform which is reduced to the
essentials and only integrates components which are really necessary, since
not only procurement costs, but also integration and qualification effort may
be saved for both hard- and software. On the other end, a different mission
may require high-precision attitude control and high reliability. In this case, a
configuration incorporating additional, highly precise sensors and actuators is
required. However, utilizing insights and existing implementations previously
made with a basic configuration is beneficial: building on the same foundation,
re-use will shorten the development time and increase the reliability, especially
if experiences with in-orbit operations have been made.

Besides adding novel components, the ability to integrate new algorithms for
sensor calibration, state estimation and control as well as actuator control
increases an ADCS’s flexibility. In case a novel sensor such as a star tracker
extends the existing hardware set, the software to process its measurement data
and integrate these into the state determination concept needs to be added
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as well. The same applies for a new actuator, since it may require different
control techniques. For instance, the algorithms for three-axis-stabilization
with reaction wheels are different from those using magnetic torquers. Even if
a satellite already uses three reaction wheels, a fourth one may be added to
provide single failure tolerance, and hence a new algorithm to distribute the
control torque is required (cf. Section 4.5).

Although the utilized hardware stays the same in some cases, one may still
desire to correct or improve implemented algorithms. This applies for both
the reuse of a platform for a new mission as well as the development and
even operational phase within the same mission. Here, new ideas may be
tried to improve performance, autonomy or robustness. The possibility to
experiment with new algorithms is valuable within both private companies
and universities. While the former may achieve better product quality (e. g.
due to better pointing accuracies or reduced jitter) or increase reliability of
their services by implementing improved FDIR mechanisms, the latter have
the drive for innovation as part of their research objectives.

Considering the long-term development of a satellite platform, its capability
to integrate new functionality is important to keep up with the evolution of
mission objectives described in Section 2.1.4. To operate a satellite based
on this platform within a constellation demands new functionality for inter-
satellite communication and orbit control, which in turn result in new ADCS
requirements. Furthermore, sensor calibration may be performed on ground
for a single satellite, but for large constellations this is not feasible and in-orbit
solutions need to be implemented.

When modifying a software system’s functionality, the developer may run
into the danger of increasing its complexity. Here, a well-structured systems
architecture which partitions the functionality into building blocks facilitates
a good overview. It further allows the introduction of new features by the
replacement of individual building blocks or their extension. This way, the
modifications to the existing code are kept low which is particularly important
if the system is flight-proven already (cf. Section 2.2.4). However, the
system’s ability to scale is also relevant in the other direction: the reduction of
complexity. For missions with moderate requirements, but a smaller financial
budget and/or a shorter timeline, the absence of components such as expensive
high-precision sensors reduce the costs for procurement and shorten the
development and qualification time. From the perspective of a platform which
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has been extended throughout several missions and has evolved to a highly
accurate but complex and costly system, such a removal of features is only
feasible if the modifications are small. Adding code to a software project is
usually easy, while reducing code is rather difficult unless it is partitioned into
building blocks whose removal do not imply modifications elsewhere.

2.2.3 Develop and Verify Gradually

Space missions usually follow a process model such as the ECSS space project
life cycle by the European Space Agency (ESA) to ensure a systematic project
management approach. The ECSS process is divided into Phase 0 to Phase F,
guiding the space project from feasibility studies and design via production
and verification until utilization and disposal, as can be seen in Figure 2.1.

Phase 0 Phase A Phase B Phase C Phase D Phase E Phase F

Mission/Function

Requirements

Definition

Verification

Production

Utilization

Disposal

Phases
Activities

Figure 2.1: Typical Space Project Life Cycle According to ECSS [41]

However, this life cycle only provides a rough time framework for the project’s
progress and its individual phases may last a considerable amount of time.
Here, a detailed breakdown of the tasks performed is helpful to identify which
goals can be achieved at which time. A satellite’s development process is very
complicated due to many dependencies between the different subsystems and
there is a potential risk that a delay in one subsystem affects the progress of
the others. For instance, when lab facilities such as test beds or even hardware
for the ADCS are developed within the project, their manufacturing may be
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delayed and hence the available time for implementation and verification of
the ADCS may be shortened. Moreover, the procurement of components
may be delayed as well. It is therefore important to decouple the different
subsystems’ development, e. g. by using simulated hardware. As a result,
the ADCS software may be designed and implemented before the hardware
is available and therefore the feasibility of its concept can already be proven
to some extent at an early stage of the project. By the time all components
are available, the integration time is then shortened significantly. Moreover,
insights during model or software development may create synergy effects for
the hardware development if performed concurrently, as could be observed in
the development of the TUBiX20 platform (cf. Section 2.3).

Due to the dependencies of hardware and software development, the software
is usually under ongoing development until the end of a spacecraft project
and is often in the critical path. With the challenges due to new areas of ap-
plication for nanosatellite missions and supported by the increasing processing
capabilities of modern hardware, the software complexity grows drastically.
However, the approach towards software development often does not re-
flect these increasing requirements and the expense is often underestimated.
Therefore, it is important to transfer the advances in software development
techniques and processes from the information technology sector into the field
of space technology. While design techniques such as object-oriented design
or frameworks result in effective and yet well-structured code, innovative
design processes shorten the development time while increasing the reliability.
Generally applied in other industries for a long time, test-driven development
and automated test frameworks offer a comprehensive verification. Here, new
software features are coded in small, immediately testable parts. To execute
such tests, frameworks such as ECatch [2] may be then used together with
build-servers (e. g. Jenkins [42]) for the automated build, test and deployment
of the software. This way, the integration process is transformed from a very
complex and time-consuming task into a series of smaller steps, ensuring that
the software is already well tested at an early stage and hence reduces time
spent debugging the software on the target. This practice is often referred to
as continuous integration [3]. Apart from the increase of software quality, the
development process becomes more traceable and hence the progress may be
evaluated more accurately.

Considering the evolution of a satellite platform software over several missions,
the continuous integration practice yields further benefits. Since the software
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is partitioned into small parts each verified by unit tests, modifications may be
tested easily, always assuring that the software as a whole is still correct. Once
again, this is important for both the private and the university environment.
For the former, a reduced development time due to the minimized modification
effort and also a direct provability of correctness is essential. As described
in Section 2.1.6, the latter is affected by frequent staff turnover and hence
knowledge transfer is a problem. Here, the unit tests help to understand the
system’s structure and functionality despite its complexity. The test-driven
development process often results in a detailed documentation and the instant
testability increases confidence in the code even after its original developers
have left the institution, so it is more likely that follow-up missions will reuse
the code instead of starting from scratch.

For more detailed information, practical experience gained during the applica-
tion of continuous integration for the software development of the TUBiX20
platform is shared by the author and the software team in [2].

2.2.4 Minimize Modifications to Verified Hard- and Software

Qualification consumes a significant amount of financial resources and de-
velopment time in every space project. Due to the hazardous environmental
conditions, extensive tests have to be performed in order to prove that the
satellite withstands radiation, vacuum and extreme temperature changes in-
orbit as well as vibration and shocks during its launch. Depending on the
model philosophy followed, there are different stages of qualification with
separate models. Detailed information on testing can be found in the ECSS
standards [43].

Generally, tests are executed firstly on component level to examine new, not
yet space-proven hardware, and later on system level to qualify the overall
spacecraft. Obviously, the expenses for such tests increase with the amount
of new technology introduced. By selecting only space-proven components,
the qualification effort on the component level is minimized. For satellite
platforms following a COTS philosophy, it is therefore important to reduce
the modifications to hardware and software verified in-orbit to a minimum.
Hence, the qualification effort is kept low while still benefiting from the agility
of the COTS market.
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2.2.5 Support Concurrent Mission Design

The life cycles of different missions based on the same platform may overlap
and therefore different variants need to be maintained at the same time.
While one mission might be in its in-orbit operations phase and performance
is enhanced or secured with software uploads, another satellite may be al-
ready under development. Derived from the same design, yet independent
implementations with diverging adaptions require maintenance at the same
time. The configuration management has to support these projects in terms of
different hardware versions and compositions as well as software functionality
and parameters. However, the change set between both should be kept at a
minimum to reduce development effort and benefit from operational insights
for both missions at the same time. This is especially important when flight
experience was gained in-orbit, as discussed in the previous section. The
TUBiX20 platform design responds to this requirement with a flexible configu-
ration management which supports building the target-specific software, yet
targeting maximum re-use. This will be presented later in Section 2.3.3.

2.2.6 Use Synergies

For both hardware and software, the overall scope of work goes far beyond
the satellite under development itself. During its planning and development,
but also integration and verification, a broad range of support equipment
needs to be developed. First mission planning, dimensioning and design ideas
are usually generated and elaborated using simulation models. During the
detailed design, manufacturing and verification phases, these models need
to be gradually refined and updated to be of further use. Once established,
they may be used in a following mission from the start and therefore provide
comprehensive information of the system. However, their design must allow
scalability in both directions and they must be updated on a regular basis in
order to avoid becoming obsolete.

The electrical ground support equipment (EGSE) is required for the operation
of the satellite during qualification. Generally, developing hardware or software
which is only used within a certain project phase comes with an overhead
which is to be avoided. It is therefore advisable to aim at the final solution
as directly as possible. A good example for such an approach is the modular
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EGSE developed for TUBiX20, as presented in collaboration with the author
in [44]. Here, a server-based architecture provides access to the platform’s
central data bus. An interface board translates message formats and allows
the connection to the university’s ground support software for telecommand
and telemetry in all stages of the development process. From a purely virtual
simulation of the satellite’s software to operations during functional verification
or qualification tests, the same EGSE is used. Besides the reduced overhead
in software development, this architecture provided helpful insights into the
satellite’s behavior from early stages of development and hands-on experience
in operating the system from the very beginning of the project [44].

2.2.7 Reconfigure In-Orbit

While the preceding criteria have discussed a platform’s evolution and adaption
to different mission requirements from one mission to another, this final
section highlights the benefits of its flexibility regarding reconfiguration in-
orbit. Rearranging functionality might be necessary due to different reasons.

The integration of new algorithms into the system is already discussed in
Section 2.2.2. Once verified by simulations and potentially in hardware in the
loop tests, such new algorithms may be deployed within the current mission
via a software upload. Once again, it is desirable to keep the modifications to
the software to a minimum and therefore the partitioning of functionality is
crucial. Another case for in-orbit reconfiguration is the loss of a component,
which may be compensated by implementing a different control strategy. An
example for such an event is given by the FUSE satellite. Two and a half
years after its launch in 1999, mechanical failures of two out of four reaction
wheels left only two reaction wheels operational. The implementation of a
hybrid control strategy using the existing magnetic actuators and the remaining
reaction wheels restored the ADCS performance back to sub-arcsecond pointing
accuracy and stability [45].

2.3 The TUBiX20 Nanosatellite Platform

Technische Universität Berlin has a history of space science missions of more
than 25 years. Since the university’s first satellite, TUBSAT-A, was launched
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in July 1991, a total number of twelve satellites were brought successfully into
orbit, while another nine are under development. Table A.1 in the appendix
shows a complete list of all TU Berlin missions and further information may
also be found in [46]. The missions are assigned to three different research
programs: the TUBSAT series (1991–2007) included seven satellites which
provided communication services and introduced interactive attitude control
for Earth observation. In 2009, the BEESAT picosatellite series was initiated to
advance research in the field of miniaturization. So far, four BEESAT satellites
have been launched. The university’s latest research program is TUBiX. This
platform series is developed in two different scales to support satellites with
an approximate mass of 10 kg (TUBiX10) and 20 kg (TUBiX20), respectively.
Within the S-Net mission [47], four TUBiX10 satellites will demonstrate inter-
satellite communication for a distributed satellite system. The research of
this thesis was carried out in the context of the development of TUBiX20
[48]. Therefore, this platform will be presented in more detail in the following
section. In the role of systems engineer for software within the development
of TUBiX20, the author contributed to shape its architecture according to the
requirements for a flexible nanosatellite platform. Its design approaches were
then transferred and elaborated by the author as a basis for the investigation
into a flexible attitude determination and control system conducted in this
thesis.

The TUBiX20 nanosatellite platform’s design objective is to meet different LEO
mission requirements. To achieve a high level of flexibility regarding diverging
mission scenarios, a generic, single-failure tolerant systems architecture has
been developed. The key design considerations for this architecture are
modularity, reuse and dependability [49]. While for the majority of satellite
projects the hardware is developed first and the software is then adapted to
its finalized design, the TUBiX20 team obtained a consistent architecture by
combining modularization with the hardware/software co-design approach.
Hence both domains are well-coordinated from the beginning. Insights during
software design could be transferred to the hardware development and vice
versa, and therefore synergy effects could be exploited.

The system is partitioned into self-contained functional modules on the smallest
reasonable level with mutually matched interfaces in hard- and software, which
results in an early abstraction of the system’s functionality from its realization.
Consequently, adaptions in one domain implicate minimum modifications in
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the other. For example, if an electronic component should be replaced, only
its according software driver needs to be adjusted.

Like nearly all satellite systems, the TUBiX20 platform is divided into subsys-
tems to perform its fundamental tasks. Due to the modularized approach,
the structure is further defined by a functional hierarchy which consists of
four levels, as shown in Figure 2.2. The lowest platform level is called a
component and is used for single hardware entities like power switches or
magnetic torquers, which are individually controlled by software drivers. To
form a functional unit, one or more components are aggregated to a device.
For example, three (uniaxial) magnetic torquers and corresponding power
switches and current sensors form a magnetic torquer device. Each component
is in turn either assigned to the user layer or the service layer. The components
of the user layer provide the functionality for a specific task (e. g. the magnetic
torquers), while the components of the service layer form the infrastructure to
operate them (e. g. power supply control and current surveillance). The next
platform level comprises the subsystems of the satellite and may consist of
several computational nodes and devices. Finally, the system level includes all
functionality for high-level operations such as mode control or time-tagged
command distribution.

SubsystemSystem

Node

User 
component

Service  
component

Device
user layer

service layer

Figure 2.2: TUBiX20 Platform Levels (adapted from [50])

The distinction between user and service layer allows the identification of
general solutions for recurring implementation issues: service components
like power switches or surveillance sensors are decoupled from the individual
setting they are used in. For example, the same ICs, circuitry and software
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drivers may be used here, regardless of the user layer component which is
controlled, be it, for example, an angular rate sensor or a magnetic torquer.
This does not only enable extensive reuse, but also allows for a comprehensive
and yet flexible fault detection, isolation and recovery (FDIR) strategy, which
is investigated later in Section 3.3.5. The concept of devices and components,
in turn, is the basis for a distributed attitude determination and control system.
This will be discussed as the first aspect of this thesis’s research in Section 3.1.

To give the reader a general overview, the description of the platform focuses
on the subsystem level in this section. Each subsystem is assigned to a
self-contained, cold redundant computational node, following the objective
of flexibility. To minimize the design effort, all nodes are based on the same
generic architecture, which will be presented in more detail in Section 2.3.1.
All nodes are contained in an electronics box which provides their mechanical
interface, basic radiation shielding and their connection to the redundant power
bus and the redundant data bus. As data bus standard, CAN is chosen for two
reasons. Firstly, CAN provides multi-master communication for distributed
networks and is therefore suitable for the TUBiX20 architecture. Secondly, the
standard targets high reliability and has been used successfully in the BEESAT
satellites. Matching this distributed approach, the software is implemented as a
network of building blocks communicating via a middleware, which aligns with
the modularized hardware and decentralized communication. This software
infrastructure is described later in Section 2.3.2.

There are four main nodes which perform the platform subsystems’ tasks. The
electrical power system (EPS) node controls power generation and distribution
as well as the redundancy of all nodes and the power and data bus. It therefore
runs in a worker/monitor configuration in hot redundancy. The on-board
computer (OBC) node is responsible for all system level activity such as mode
control, time-tagged command distribution and telemetry management, while
the communication system (COM) node facilitates transmissions with the
ground station using two redundant UHF receivers [49]. Finally, the attitude
determination and control system (ADCS) node runs the core algorithms
for state determination and control and furthermore connects a basic set of
sensors and actuators directly to form the basic ADCS configuration of the
platform. Additional sensors and actuators may then be connected to the data
bus to extend the ADCS’s capabilities. Therefore, the ADCS is adjustable
towards diverging mission requirements. The detailed concept of the flexible
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ADCS is presented in Chapter 3. Figure 2.3 depicts a block diagram showing
the four main nodes and their power and data bus connection.

ADCS
node

OBC
node

COM
node

EPS
node

Hot redundant node

Cold redundant node

Power bus system

Data bus system

Figure 2.3: TUBiX20 Main Computational Nodes [49]

2.3.1 Generic Hardware Concept

As mentioned above, modularity is one of the key design criteria for the
TUBiX20 platform. In terms of the hardware nodes, this goal is put into
practice by reusing a set of reference components such as microcontroller,
watchdog, power switches or CAN transceiver for all nodes – including their
correspondent circuitry. The connection of nodes to the network is achieved
via a standardized interface connecting the power and data bus as well as a
pulse per second (PPS) signal for time synchronization. This template-based
approach enables the extension of the platform’s functionality via additional
nodes while keeping the design effort low.

Since components like sensors and actuators from different manufacturers
may use different electrical interfaces, their integration into the platform
may need additional hardware for interface translation. While in monolithic
architectures, the – maybe even flight-proven – hardware needs to be modified,
which comes with a high effort and risk, the TUBiX20 hardware architecture
allows integration via interface nodes. Such an interface node may then
reuse the reference components and circuit templates for its integration into
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the network. Here, there is no interference with the other hardware and
component and its interface node may even be removed effortlessly when
outdated. Self-evidently, this concept is also applicable for the integration of
payloads, as has been presented with contribution of the author in [51].

2.3.2 Network of Software Applications

The generic hardware concept focusing on modularity and reuse provides a basis
for its counterpart in the software domain: a distributed network. Since the
hardware nodes share the TUBiX20 interface and use the same microcontroller
as well as a common set of components, the same processor architecture is
used and the identical hardware-dependent code may be reused on all nodes.
Consequently, all TUBiX20 nodes’ software run on the same operating system,
which is called RODOS [52]. Developed especially for satellites, it provides a
middleware for task communication using the publisher-subscriber protocol.

All functionality may be partitioned into applications (also referred to as
building blocks) which exchange their data only via the topics of the middleware.
Therefore, these building blocks are independent from each other and may be
added or removed without modifications required. Thus, implementing the
functionality dedicated to a hardware component, either connected directly to
the data bus or using an interface node, represents the matching counterpart
of the modularized hardware described in the previous section.

All code required for the reference components reused on every node such as
(hardware) watchdog trigger, time synchronization mechanisms or command
interface is implemented in a library of global applications [53]. Components
which are compliant with the TUBiX20 hardware interface regarding power
and data bus connection, but do not run on the RODOS operating system,
may be integrated into the software network via dedicated building blocks for
protocol translations. As the data bus is centralized, these are independent
from hardware and hence may run on an arbitrary node of the network.

2.3.3 Software Build Configuration Management

This section will present a comprehensive strategy for the software build
process to provide complete backwards and forwards compatibility throughout
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multiple missions based on the platform and hence support concurrent mission
design (cf. Section 2.2.5). After different aspects for variations for hardware
and software are named, it is shown how the build management supports
different configurations for its according adoption.

As described previously, the different TUBiX20 nodes are based on the same
generic hardware and software architecture, and hence all nodes have a
global, common set of hardware components included on their PCBs and run
applications from the global library. However, each node obviously implements
a specific set of functionality due to its subsystem’s task and therefore may
connect additional, node-specific hardware components and run node-specific
software applications. Moreover, the development process of a node results in
different revisions, since for example pin assignments may change from the first
prototype to the flight model version. The RODOS operating system offers
various ports for different controller architectures, including its emulation as
guest process on a Linux installation. This is used for software in the loop
simulations, which will be described later with the verification process in
Section 3.4. Throughout the complete satellite life cycle, different models
such as engineering and qualification model and flight model need to be
supported, which may slightly differ from calibration parameters to completely
exchanged component revisions. Intended as a platform for different missions
for the university, the configuration management should support software
development for multiple satellites at the same time in all phases of their
individual life cycle.

Figure 2.4 shows the TUBiX20 configuration management for the software
build process. In the horizontal direction, the build parameters node, revision
and use case are given, which realize the configuration of the software for
a dedicated target. The node distinguishes the actual TUBiX20 node as
they have been presented earlier, such as EPS, COM or OBC. The second
parameter, revision, selects a specific release from this node’s PCB history,
while the use case distinguishes the model version (e. g. EQM, FM) and the
mission. In the vertical direction, the different layers of software abstraction
are depicted, beginning from the operating system as the lowest level at the
bottom. Depending on the level of software abstraction, the specialization
of the target takes place in different stages. While the interfaces for the
global building block (BB) library, global drivers and the operating systems are
unique throughout the system, there is a different set of driver interfaces for
the node-specific hardware and also a different building block library for each
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node, offering implementations for the tasks assigned to that node. Unlike the
building block implementation, which does not depend on the hardware target,
the implementation for both global and node-specific drivers differs, since
different components may be used. The same applies for the operating system.
Here, the selected target implies its hardware-dependent port, e. g. for a
certain controller or the Linux emulation. Finally, the building blocks actually
compiled into the software image varies for the use case: one mission may
not incorporate a device previously used or a new one is added. If the same
building block is re-used, it may still offer a mission-specific configuration, e. g.
operational modes. Moreover, different missions or models require different
parameters for device calibration, which is therefore also specified by the use
case.

2.3.4 Missions based on TUBiX20

There are currently two missions based on the TUBiX20 nanosatellite platform
in progress: TechnoSat and TUBIN. To give the reader a first impression, CAD
renderings of both satellites are shown in Figure 2.5 and Figure 2.6, respectively.
Despite the fact that both are based on the same nanosatellite platform and
also that their outer appearance is very similar, a closer look into these missions
will show that their requirements regarding attitude determination and control
are very different. Therefore, these two missions serve as examples for the
tailoring of the flexible ADCS concept elaborated in this thesis.

Figure 2.5: TechnoSat [51]
Image credit: Merlin Barschke

Figure 2.6: TUBIN [54]
Image credit: Merlin Barschke
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Following the generic hardware and software design presented earlier, the con-
cept allows for its adaption to the diverging requirements. While the flexible
design approach will be discussed in detail in Chapter 3, the realization of the
platform configurations for TechnoSat and TUBIN are presented in Chapter 5.
The following subsections give a short overview of these two missions. Sub-
sequently, the individual requirements regarding attitude determination and
control are compared.

TechnoSat

TechnoSat is a mission for in-orbit demonstration of novel nanosatellite tech-
nology [55]. Launched on July 14th, 2017, into a 600 km SSO, the 20 kg
satellite carries seven different payloads:

– STELLA, a star tracker for nanosatellites [56]

– the particle detector SOLID [57]

– a CMOS camera

– fourteen laser ranging retro reflectors [58]

– the S-band transmitter HISPICO [59]

– a reaction wheels system with four wheels

– the fluid dynamic actuator FDA [60].

TechnoSat’s second mission objective is the development and verification of
the TUBiX20 nanosatellite platform. The main parameters of the TechnoSat
mission are listed in Table 2.1. Section 5.1 discusses the requirements and
realization of the TechnoSat ADCS in detail.

While the S-band transmitter payload may also be used for payload data down-
link, telecommand and telemetry transmissions are predominantly performed
via UHF. Three of these payloads are verified in-orbit to be used within the
TUBIN mission: the S-band transmitter, the star tracker STELLA and the
reaction wheel system.
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Table 2.1: Main Parameters of the TechnoSat Mission (adapted from [55])
Orbit 600 km SSO
Launch date July 14th, 2017
Launcher Soyuz with Fregat upper stage
Design lifetime 1 year
Spacecraft mass 20 kg
Spacecraft volume 465× 465× 305 mm
TM/TC link Four channel UHF system

Attitude sensors

IC magnetometers
MEMS gyroscopes
Sun sensors
Fiber optic rate sensors

Attitude actuators Torque rods

TUBIN

The TU Berlin Infrared Nanosatellite (TUBIN) is the second mission based on
TUBiX20. Its primary mission objective is the demonstration of a commercial
infrared microbolometer for wildfire remote sensing on a nanosatellite [54].
TUBIN’s mass is comparable to TechnoSat (20 kg) and it is planned for launch
one year after its predecessor into a similar orbit. The payload consists of two
infrared microbolometer cameras and one camera which is sensitive in the
visible range of the light spectrum. Payload data downlink is facilitated via
S-band.

To operate the payloads, TUBIN requests high-precision attitude determination
and control within arc minutes accuracy. Hence, “the TUBIN mission will
demonstrate the platform’s ability to support a challenging Earth observation
mission” [54]. The specific requirements regarding attitude control as well
as implementation details are presented in Section 5.3. For a brief overview,
Table 2.2 lists the main parameters of the TUBIN mission.
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Table 2.2: Main Parameters of the TUBIN Mission (adapted from [54])
Orbit 600 km SSO (TBC)
Launch date H2 2018 (TBC)
Launcher Soyuz with Fregat upper stage
Design lifetime 1 year
Spacecraft mass 20 kg
Spacecraft volume 465× 465× 305 mm
TM/TC link Four channel UHF system

Position sensors GPS receiver
Passive laser retro-reflectors

Attitude sensors

IC magnetometers
MEMS gyroscopes
Sun sensors
Fiber optic rate sensors
Star trackers

Attitude actuators Reaction wheels
Torque rods
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Comparison of Requirements for TechnoSat and TUBIN

The two TUBiX20 missions TechnoSat and TUBIN are a good example for
the evolution of mission objectives described in Section 2.1: while both are
based on the same platform, TechnoSat’s primary objective is technology
demonstration and TUBIN demonstrates Earth observation on a nanosatellite.
The evolution towards the support of complex mission scenarios is explicitly
formulated in the secondary mission objectives. Here, TechnoSat targets the
development and verification of the TUBiX20 nanosatellite platform, which
is continued within the TUBIN mission by enhancing the ADCS to achieve
high-precision. Table 2.3 shows a comparison of the ADCS requirements, their
detailed derivation is given in Appendix C.

Table 2.3: TechnoSat vs. TUBIN ADCS Requirements
TechnoSat TUBIN

Mission objective Technology demonstration Earth observation
Pointing knowledge N/A1 11.5 arcmin
Pointing accuracy 27.9° 200.3 arcmin
Pointing stability N/A1 27.9 arcmin/s
Angular rate knowledge 0.1 °/s N/A1

Max. angular rate 0.3 °/s N/A1

Notes:
1 no specific requirement formulated

Due to the more demanding payloads and mission objectives, the requirements
regarding pointing knowledge and accuracy increase from TechnoSat to TUBIN.
On the other hand, requirements formulated by particular TechnoSat payloads
do not persist for TUBIN. The research for flexible attitude determination and
control carried out in this thesis aims to respond to both. It will be shown
that the concept supports tailoring the platform to individual mission scenarios
by the extension, removal and reconfiguration of functionality.
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Since TechnoSat is the precursor mission for TUBIN and does not only verify
the platform in general, but also carries the S-band transmitter, a star tracker
and the reaction wheels intended to be used for TUBIN, the reconfiguration
may even be performed in-orbit: once the experiments with these three
TechnoSat payloads have been carried out successfully, they may be used
for platform services. Therefore, the ADCS takes the integration of the star
tracker and the reaction wheels into account from an early stage. Nevertheless,
the concept does not rely on these components to meet all requirements for
the TechnoSat mission. By following this approach, the ADCS concept and
performance for TUBIN may already be demonstrated within TechnoSat to a
large extent.

2.4 Component-Based Software Engineering

An attitude determination and control system is a typical example for an
embedded system: software running on a specialized microcontroller to perform
a dedicated function, incorporated in a system of electro-mechanical devices.
Due to the space environment and the high degree of autonomy, the software
needs to fulfill stringent requirements regarding quality and reliability. On
the other hand, an ADCS is usually a complex distributed system, since its
sensors and actuators are usually embedded systems themselves. Moreover,
the system has a heterogeneous character, as the components are often from
different suppliers and may use different hardware- and software interfaces.

The technological evolution of satellite components reviewed in Section 1.1
has increased their performance and hence opened up new possibilities, but
has also led to higher requirements and more complexity to handle. While
earlier the software was limited by the computer’s processing and memory
capabilities, modern microcontrollers have overcome these limitations and
the challenge is now to master the increasing complexity while still keeping
the design maintainable, reusable and reliable. The significance of software
development has progressed from a subordinate task to a domain with equal
importance to any other work package such as mechanical structure design or
electronics development.

To enable reliable and well-structured software, the design process and archi-
tectural design are crucial. Following, an introduction into component-based
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software engineering (CBSE) is given. CBSE is a sub-discipline of software
engineering which is applied as an engineering science and aims at the success-
ful adaption, integration, and maintenance of complex, heterogeneous, and
distributed software systems [61]. The basic idea is to develop the software
as pre-produced parts (components) with the ability to reuse those parts in
another context or application. Since the components are independent from
each other, they allow for easy maintenance and customization to produce
new functions or features.

A component is an encapsulated entity communicating only via dedicated inter-
faces. The interface and the implementation of the functionality are separated.
To describe components graphically, the unified modeling language (UML)
[62] defines special diagrams called component diagrams (cf. Figure 2.7).

C

xu

Figure 2.7: Component Diagram Example (UML)

Here, component C is marked with the component symbol in the upper
right corner. While all implementation details are hidden, the interfaces are
shown: the component has one required interface (input), u, and one provided
interface (output), x. Since there is no direct access to any implementation
details, a component may be treated as a black box. Based on the interfaces,
components may be composed to form larger components or consist of several
inner components, as may be seen in Figure 2.8. In this second example,
component C is composed of components A and B. All required and provided
interfaces of C are simply delegated to or from the interfaces of A and B,
respectively.

The components’ self-contained nature allows the development and testing of
components individually, but also to swap competing implementations of the
same idea and test without modifying the structure of a composition. The
latter facilitates a plug-and-play design approach and the reuse of components
in different contexts as well as easy updates, e. g. a new version of a component.
A collection of interfaces may be extended to an application framework which
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Figure 2.8: Component Composition Example (UML)

serves as an infrastructure to manage the control flow of a composition of
components to form a complete application.



3 Design and Verification of a Flexible Attitude
Control System

This is the main chapter of this work. It investigates a method to develop and
verify a flexible attitude control system for three-axis-stabilized nanosatellites.
The chapter picks up on the design considerations discussed in the previous
chapter and argues how the elaborated concept is flexible in terms of the
criteria identified. The approach follows the TUBiX20 strategy of partitioning
the system into self-contained functional modules and hence facilitates the
abstraction of functionality from realization. While this chapter discusses the
ADCS architecture and development process, the subsequent chapter provides
selected attitude determination and control techniques in detail to give exam-
ples for the implementation of the functional modules. Thereafter, insights
into the practical realization of the concept for the first two nanosatellites
based on TUBiX20 follow.

3.1 Distributed Attitude Control System

As pointed out in Chapter 2, a flexible ADCS architecture must allow for
addition, removal and replacement of components due to different reasons.
Since ever new products are released on the agile market of space components,
rapid technology updates are mandatory to keep the platform up-to-date.
While one satellite mission might require high-precision attitude determination
using one or more star trackers, attitude knowledge within several degrees
might be sufficient for another. The former may have a greater budget but
demands the integration of newly developed components whose interfaces
are not yet supported by the ADCS platform, while the latter has a stringent
financial budget and a reduced project life cycle. For an ADCS architecture
which is compliant with both, a high degree of modularity and abstraction
is necessary. In the following section, an approach for a distributed ADCS
is presented which allows for easy adaptions to a wide range of platform
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configurations based on the TUBiX20 systems architecture [49], which was
introduced in Section 2.3. Since the platform design comprises a network
of computational nodes with standardized interfaces for hard- and software,
it supports a modular and distributed ADCS design where all sensors and
actuators are also considered to be network nodes. [63]. The realization of
both hardware and software domain are presented in the following subsections.

3.1.1 Distributed ADCS Hardware

Figure 3.1 shows the elements of the distributed ADCS from the hardware
perspective. Following the TUBiX20 platform levels introduced in Figure 2.2,
the sensors and actuators are generally represented by the term component.
They are integrated via computational nodes, which in turn interconnect via
the central power (red) and data (green) bus depicted in the middle of the
figure. The nodes decouple the individual components’ interfaces from the
systems architecture and hence provide the necessary abstraction to integrate
arbitrary new components without interference to existing parts. Moreover,
components may also be removed cleanly without touching the remaining
network elements. While the TUBiX20 platform uses CAN redundantly as
central data bus, the interface nodes connect one or more components via e. g.
I2C, SPI or UART to the network. However, if a component already complies
with the central power and data bus, it may also be connected directly. Besides
the interface translation, the nodes’ microcontrollers also offer the capability
of pre-processing sensor measurements or actuator settings and hence provide
a basis for the software abstraction described in the next section.

3.1.2 Distributed ADCS Software

Analog to the distributed hardware, the software of the ADCS is also partitioned
into independent modules. As described in Section 2.3, the operating system
and its middleware provide a framework to run software building blocks
autonomously. Consequently, the hardware-dependent software for each device
is encapsulated in a single building block called device manager, as can be
seen in Figure 3.2.

Apart from translating messages from the middleware communication topic
to a device’s individual data bus and communication protocol, the nodes also
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perform all low-level data processing required to operate the device such as
filtering high-frequent sensor measurements or calibration data management.
In this manner, processor load and software image code size are shifted from
the main processing node, which in turn gains more flexibility to integrate
additional functionality. Resulting from the interface abstraction, devices
may be added or removed without influencing the rest of the network, since
removing a device implies also removing the TUBiX20 interface node and
hence the software building-block related to the device which the node is
hosting, as can be seen in Figure 3.1 and Figure 3.2, respectively.

When compared to a monolithic architecture, the distributed ADCS uses
more microcontrollers than the required minimum. The additional nodes take
up space in the electronics box and increase the power consumption, but
also the manufacturing costs and development effort for the printed circuit
boards. In terms of software, partitioning the code into separate applications
for the different devices comes with a certain overhead, since the interfaces
for TM/TC have to be implemented several times and the scheduling of
the different software threads becomes more complex. However, since the
overall processing load does not increase significantly and is even shared
between the different nodes, the power consumption may be reduced by
putting controllers into sleep mode when idle. The increased manufacturing
costs and development effort in the hardware domain and the implementation
overhead in the software domain are compensated during the course of several
missions. While a monolithic architecture may require extensive modifications
from one platform configuration to another, the distributed approach allows
complete reuse of verified nodes and applications, respectively, however in a
different composition. Nevertheless, the additional space required and the yet
slightly increased power consumption on the one hand, and the increased code
size and memory usage on the other hand make this solution predominantly
useful for nanosatellites.

Since the operating system’s middleware facilitates the communication between
all building blocks, the core application which hosts the attitude determination
and control algorithms is completely hardware-independent. It does not need
to know on which node the device applications are running and vice versa.
All building blocks of the ADCS software network are synchronized via a
hardware pulse per second signal provided by the TUBiX20 hardware interface.
However, the modularity must be supported by the attitude determination
and control algorithms, as the composition of available sensors and actuators
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clearly affects the control software. The modular approach for flexible attitude
determination and control to respond to this necessity is presented in the next
section. It shall be pointed out that this design matches with the TUBiX20
architecture, but also benefits different ADCS hardware setups, since it allows
time-efficient and straightforward updates of the control software individually.

3.2 Modularized State Quantity Determination

To determine and control a spacecraft’s attitude, different quantities need to
be considered. The set of all relevant quantities given at a reference point
in time is in this context called the state of the attitude control system. All
state quantities considered for TUBiX20 are listed in Table 3.1.

Based on these state quantities, the concept investigated defines unified
interfaces to encapsulate the implementation of an algorithm inside a module.
These interface specifications are called state quantity provider interfaces
and further include units and coordinate systems. Hence they contain full
information about the state quantity provided. Figure 3.3 shows an example
for a quantity provider interface. Here, the module called M implements
an algorithm which provides the angular rate, 𝜔⃗. The module requires one
interface as input: the attitude, 𝑞. Both interfaces are specified regarding
their symbol, physical unit and coordinate system according to Table 3.1. The
definition of the modules and interfaces is based on component-based software
engineering, which was introduced in Section 2.4, and all diagrams follow the
unified modeling language (UML).

M

q

Figure 3.3: Quantity Provider Interface Example (UML)

The abstraction from the module’s functionality has the following benefits.
Firstly, the user does not need to know any implementation details, but only
the interface definition and hence the module may be treated as a black box.
Secondly, since units and coordinate systems for modules implementing the
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Table 3.1: Quantities for State Determination
Quantity Unit Symbol Coordinate system
Attitude quanterion N/A 𝑞 TOD ← SAT
Angular rate °/s 𝜔⃗ SAT

Angular acceleration °/s2 ˙⃗𝜔 SAT

Geomagnetic field (body-fixed) nT 𝑏⃗ SAT
Sun vector (body-fixed) N/A 𝑠⃗ SAT

Geomagnetic field (inertial) nT 𝐵⃗ TOD

Sun position (inertial) m 𝑆⃗ TOD
Position m 𝑟⃗ TOD
Velocity m/s 𝑣⃗ TOD
Torque N m 𝜏⃗ SAT
Magnetic dipole A m2 𝑚⃗ SAT
Occultation 1 N/A N/A
Temperature ∘C 𝑇 N/A
Time (modified julian date) d 𝑡 N/A

Notes:
1 Occultation by the Earth in the interval [0 1] (0 = Sunlight, 1 = Eclipse)
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same provider interface are equal, additional conversions are unnecessary and
mistakes are prevented. Thirdly, the modules can be easily combined, extended,
added or removed. These benefits shall be illustrated with the following
examples, which are selected from different layers of the distributed TUBiX20
software, from sensor calibration to data fusion to estimation algorithm
alternatives. Throughout the examples, the concept is related to the flexibility
criteria introduced in Section 2.2.
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Figure 3.4: Staged Magnetic Field Sensor Calibration (UML)

The first example is taken from a device manager (cf. Section 3.1.2), which
runs on a node connected to a magnetic field sensor. It shows the combination
of different calibration techniques, presented in Figure 3.4. Here, three different
modules provide the quantity’s data, each implementing the same interface
named 𝑏⃗ according to the list of state quantities from Table 3.1: the sink
is simply a buffer where the hardware driver puts the measurement data.
Subsequently, the temperature drift of this raw data is corrected in a first
filter module, which requires a separate interface for the temperature, 𝑇 .
The bias and scale calibration is realized as an independent module. Here,
the abstraction from functionality to implementation is clearly visible and
the seamless adaption of the calibration strategy becomes obvious: since
all modules implement the same interface, modules may be removed from
the chain or inserted simply by re-connecting the inputs and outputs of
other modules. Such an adaption might be useful, if the magnetic field
sensor hardware is replaced by another type or model, which requires different
calibration techniques. For example, some magnetometer ICs have an internal
temperature compensation, which allows the removal of this module from the
software to reduce complexity. Moreover, the calibration may be extended by
additional algorithms to consider the time-varying bias of the magnetometer
in-orbit (e. g. due to electronics on-board a spacecraft, as examined in [64],
[65]), or to allow the simultaneous operation of the magnetic torquers to
increase their duty-cycle. As can be seen from the interface, the source of
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the data (sensor type, calibration algorithm, etc.) is independent from the
way it is provided. Consequently, sensor fusion including different devices is
straightforward, which will be demonstrated in the next example.
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Figure 3.5: Abstraction From a Diverse Hardware Setup (UML)

The second example further illustrates the abstraction from a sensor’s individual
output format on the lowest level possible. Here, we assume that two magnetic
field sensors (MFSs) from different manufacturers are used. One could be
a small, cost- and energy-efficient magnetometer IC used for a basic ADCS
configuration. The second may be a more accurate, but also more expensive,
larger and heavier device such as a fluxgate magnetometer, which is added
for a configuration demanding high performance. For redundancy and FDIR
purposes, the first sensor may also be part of this configuration. Following
the architecture of a distributed ADCS which was presented in Section 3.1,
both sensors are connected to the network with generic TUBiX20 interface
nodes. Hence they may be added or removed independently from each other.
Figure 3.5 shows how the measurements are published from the sensors’
device managers via the middleware to the ADCS core application for state
determination on a third node. Here, the network messages are received by
subscribers which then provide the data for the subsequent voter to perform
the sensor data fusion, once again implementing the same interface.

Regarding the flexibility criteria presented in Section 2.2, the design benefits
technology updates and scalability, since only minimum modifications are
necessary here if components are added, removed or replaced. Different voting
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strategies may be implemented according to the sensors’ individual accuracy
and availability. Examples for such strategies are priority voting, weighted
average or arithmetic average. Moreover, cross-checks may be performed
for FDIR (cf. Section 3.3.5). If the sensor setup is changed in a different
mission, the voter is changed accordingly. However, for all subsequent use of
the quantity magnetic field, no modifications are required. It shall be noted
here, that it is irrelevant for the voter module where the different inputs
actually come from, even if they are measured by different sensor types on
different hardware nodes. The same applies to the beginning of the data
flow: the MFS publishers may connect to any of the modules from the first
example. Therefore, the first two examples together show the complete data
flow from the sink receiving the sensor raw data to the final estimate for this
quantity within the core application as a chain of consecutive modules. The
implementation of the unified interface allows the extension or simplification
of the chain via inserting or removing individual modules. While the approach
may at first seem complex and imply a great implementation and processing
overhead, implementing the identical interface in fact reduces the number
of coordinate transformations and unit conversions. The partitioning of the
functionality improves the code quality, since it benefits maintenance and
individual testing.

The third example expands on the relation of different state quantities, in this
case the estimation of the attitude from vector observations. By comparing the
body-fixed measurements for the geomagnetic field, 𝑏⃗, and the direction vector
to the Sun, 𝑠⃗ with their inertial reference values, 𝐵⃗ and 𝑆⃗, the orientation of
the spacecraft is obtained. All inputs for the body-fixed and inertial vector
inputs are provided by separate modules, where for each a specific method
was chosen to give a concrete example. Firstly, the input for the body-fixed
magnetic field is connected to the voter module from the previous example to
demonstrate the continuity of the approach (cf. Figure 3.5). The Sun vector is
provided by a subscriber, which receives the measurements via the middleware.
The models for the inertial geomagnetic field and the inertial Sun position are
the IGRF and the SLPC, which are both described in the glossary. There are
different methods for the attitude estimation, which will be discussed later
in Section 4.4.6. Here, the QUEST [66] method is selected. However, the
implementation is treated as a black box and the focus is on the interfaces of
its in- and outputs. It shall be clarified that all of the aforementioned modules
may be exchanged or extended independently from each other. However, these
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Figure 3.6: Deriving State Quantities (UML)

changes will affect the attitude estimation in terms of accuracy or reliability,
since the module’s inputs change.

Obviously, the method for the attitude estimation may be exchanged itself
by any other method using the same interfaces, e. g. FOAM or ESOQ (cf.
Section 4.4.6). Moreover, a different approach with extra inputs and outputs
may be used. As an example, the Kalman filter presented in Section 4.4.7
additionally estimates the bias of angular rate measurements. If one of the
magnetic field sensor nodes is removed to decrease complexity or cost, the
according subscriber (cf. Figure 3.5) and the voter become obsolete and the
magnetic field input for the attitude estimation is simply connected to the
remaining subscriber. To increase the accuracy and reliability of the vector
measurements, a Kalman filter may be inserted, as described in Section 4.4.3
and Section 4.4.4, respectively. The models for the inertial reference values
are replaceable as well, but also their input sources impact the quality of the
attitude estimation: the time and spacecraft position, 𝑡 and 𝑟⃗, respectively,
may originate from a GPS receiver or a less accurate orbit propagation model
such as SGP4.
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The preceding examples have shown the breakdown of the complex data
processing from sensor measurements to data fusion including several state
quantities into self-contained modules, which may even span different hardware
nodes of the distributed ADCS. While only the state determination has been
addressed so far to introduce the application of modularization in the context
of the ADCS design, the same principle transfers to the state control part,
which will be presented in detail in Section 3.3.4. The examples already
suggest that there are numerous different methods to determine the different
state quantities. Chapter 4 will provide the theoretical background for the
algorithms which have been implemented as modules within TUBiX20. The
next logical step is to gather these modules in a software library. For the
individual realizations of different TUBiX20 missions, a selection of modules
is then chosen and assembled.

When evaluated in terms of the flexibility criteria from Section 2.2, the
partitioning of the ADCS functionality into self-contained modules with unified
interfaces offers several benefits. The first example (Figure 3.4) is situated
within a device manager and shows that technology upgrades are simplified
due to the early abstraction from the devices specific properties such as
communications protocol, operational modes, etc., since already the device
drivers implement the same interface. Moreover, the calibration procedure may
be adapted to the sensor’s characteristics by adding or removing modules. The
second example targets scalability (Figure 3.5): the distributed ADCS from
Section 3.1 is continued to the high-level software, where the addition, removal
or exchange of devices implies only minimum modification on the rest of the
(eventually flight-proven) code: connecting the inputs of the voter. On this
level, it is irrelevant for the state determination which network nodes the sensor
is connected to. In the third example (Figure 3.6), this scalability is transferred
to the recombination of state estimation algorithms. Here, upgrading the
performance by introducing new estimation techniques or increasing the
reliability via multiple functional redundancies is straightforward. Changing
voter strategies or reconnecting the modules’ inputs and outputs at runtime
even allows reconfiguration in-orbit without software upload. The example
highlights, that the availability of the sensors does not affect the control flow
of the software, but only the result of the voting. If – as a counterexample –
an ADCS software is implemented as a monolithic state determination block
which merges all sensor data within a complicated structure full of forks and
cross-references, it is very difficult to exchange single elements and reuse
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is limited. Here, the dynamic availability of the used sensors throughout
operations, depending on failure or loss, results in many case distinctions
within the control flow. Depending on which sensor provides reliable data,
different fusion or selection algorithms are executed, which makes it especially
hard to comprehend during verification on ground or error analysis in-orbit, as
discussed by the author in [63].

3.3 State Determination and Control Core Framework

The two previous sections have presented the distribution of the ADCS software
to different hardware nodes and the modularization of the ADCS functionality
into a library of self-contained modules. The latter shows how these modules
may be used on all layers of the software, from a device manager, i. e. the
part of the software related to a hardware component, to the high-level state
determination and control. In this section, the framework for the ADCS core
application is presented.

3.3.1 Library, Framework and Assembly

The ADCS core application combines the library of functional modules with
a framework to define the control flow. For clarification, the terms library
and framework are set into relation at first. A library is a collection of
implementations following defined interfaces and is intended for code re-use.
The library elements do not have any knowledge in which context they are
used and the library does not define how and when objects or variables are
instantiated or functions are invoked. On the contrary, a framework defines
the control flow of an application independent from the implementation of
its functionality. As opposed to procedural programming, where the user
defines the control flow, the framework instantiates objects and invokes their
functions. This paradigm to shift the control flow is called inversion of control.
For TUBiX20, such a framework is designed to collect all information for
state determination, invoke state control and further communicate with all
devices and other subsystems, including telecommand and telemetry, via the
middleware.
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Both library and framework do not depend on the current mission the ADCS
is adapted to: the library provides different options to perform certain tasks
such as attitude estimation or control torque distribution. The framework
triggers the execution of the modules without knowing the composition of
modules, i. e. how attitude control is actually performed. Therefore, both can
be re-used throughout all TUBiX20 missions. The framework remains the
same and the library is continuously extended by new modules. To adapt the
ADCS to an actual mission, a connection of library and framework needs to
define which modules are included and how they are linked. This part is called
the core assembly and is simply a list of module instantiations and interface
connections.

The composition of the state determination and control framework is shown
in Figure 3.7. At first, the device management applications trigger the sensor
sampling and publish the measurements on the middleware topics. Subscribed
within the core application, the data is then processed to determine the
complete set of state quantities, which in turn forms the input for the state
control. After the settings for the actuators have been calculated by the
controller modules, they are transferred to the device managers of the actuators
via the middleware and the control loop is closed. As shown in Figure 3.7,
state determination, state control and the device managers each have an
assembly of library modules (depicted in red) which is composed according to
an individual mission, while the core framework (depicted in black) remains
fixed.

Since the module assembly is mission-specific, but the framework is fixed, a
centralized connection point is required, where the framework can access the
different state quantities, independently from which modules provide them.
As shown in the center of Figure 3.7, the inputs of the state control modules
are all connected to the same interface, and in turn all modules’ outputs for
state determination are connected to a counterpart on the other side. This
interface is called a state provider. The assembly of state provider modules,
which incorporate the full set of all state quantities, is straightforward, as
only matching interfaces need to be connected. An example for the interface
connection is given in Figure 3.8. This state interface in based on the facade
software design pattern by Gamma, Helm, Johnson, et al. [67] and bundles all
state quantities in one entity. For simplification, some quantities are omitted
in this figure. As a consequence, only the state provider instantiation must be
known to the framework, and request for the state quantities are delegated to
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the connected modules. Apart from the connection to the core framework, the
concept of a centralized state interface brings further benefits: the partitioning
of state determination into estimation and prediction and the benchmark of
several state estimation techniques in parallel. Before these are discussed in
the following two sections, the separation into library, framework and assembly
is evaluated in terms of the flexibility criteria from Section 2.2.
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Figure 3.8: State Estimation Facade (UML)

On this higher abstraction level, the aspects of technology updates and
scalability addressed in Section 3.2 become more obvious: adding, removing
or exchanging devices or modules only affects the core assembly, but not the
library and the framework. Hence the modifications for adaptions are kept at a
minimum. Moreover, the TUBiX20 software build configuration management
described in Section 2.3.3 allows software development and maintenance for
multiple missions at the same time: to configure the ADCS for a mission, only
a specific core assembly needs to be defined accordingly, which may then be
selected as one use case of the build configuration. The further development of
the module library and framework is carried out independently, which creates
synergies between the different missions.
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3.3.2 State Estimation and Prediction

In this section, a detailed overview on the timing reference shall put the terms
state determination, state estimation and state prediction into relation. Since
the attitude control system is a discrete time system with a fixed sample rate,
𝑡𝑠, the sensor measurements refer to the beginning of the control cycle, 𝑡𝑘.
These measurements are processed to estimate all state quantities needed for
attitude control and hence this estimation also refers to 𝑡𝑘. However, the
control settings are applied for the following control cycle, 𝑡𝑘+1, and therefore
the change of the state quantities during the control cycle time, 𝑡𝑠, would not
be considered. To compensate this inaccuracy, the state quantities can be
predicted for the end of the control cycle, as can be seen in Figure 3.9. Here,
𝑆𝑘 denotes the state at time 𝑡𝑘, while 𝑆𝑘+1 is the state at time 𝑡𝑘+1.
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Figure 3.9: Control Cycle Time Sequence (UML)

The combination of state estimation and state prediction is called state
determination. The realization of this separation in the core framework is
shown in Figure 3.10. Based on the centralized state interface introduced
earlier, state estimation and state prediction are realized independently from
each other and may hence also be modified independently. Optionally, the
state prediction may also be skipped by connecting the output of the state
estimation directly to the output of the superordinate state determination
module. This is possible in two ways: either the connection is re-routed
at runtime via a telecommand, or the modules are not compiled into the
software from the start, which benefits scalability of functionality and in-orbit
reconfiguration opportunities. Since estimation and prediction are independent
and the state quantities are passed via a single interface, the estimation is
treated as a black box from the prediction’s point of view: it does not need
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any knowledge about the availability of the sensors or the control flow within
the estimation module.

State determination

state
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Figure 3.10: State Estimation and Prediction (UML)

Looking at the list from Table 3.1, it is obvious that not all state quantities can
be predicted with the same formula or model. While the attitude is predicted
by the kinematics equation, the body-fixed Sun vector and geomagnetic field
vector prediction uses the dynamics equation. The applied torque depends on
the actuators used and hence differs from one ADCS configuration to another.
All quantities observed in an inertial reference frame cannot be predicted from
estimated quantities. They may be determined from the same model as for
the state estimation, e. g. SGP4 for the position and velocity or IGRF for the
geomagnetic field, however for a different timestamp. Despite the different
techniques used within the state prediction, there is only one module to predict
each quantity.

3.3.3 Parallel State Estimation

The three examples from Section 3.2 have addressed different aspects of
flexibility. Firstly, building a chain of modules implementing the same interface
partitions the complex data processing into self-contained modules, which
reduces the complexity and offers scalability. Secondly, the unified interfaces
allow an abstraction from the hardware, and hence removing, adding or
exchanging sensor or actuators implies only minor adaptions in the software.
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Thirdly, state quantities may also be derived from each other and yet the
module assembly is well structured and adaptable. This section will continue
this last aspect and further investigate on the estimation of the complete set
of state quantities from Figure 3.8 when different methods are applied at the
same time to provide functional redundancies which are required due to the
dynamic availability of the sensor measurements.

As implied previously, there are usually multiple ways to determine a state
quantity and a wide range of different algorithms or alternative versions of
the same method may be implemented: it may be measured directly by one
or more sensors, estimated by a model or derived from other state quantities.
Furthermore, different algorithms for filtering and sensor fusion may be used.
Consequently, due to the large number of possible solutions to estimate a single
state quantity, a large variety of their combinations is possible to determine
the state as a whole.

Since the main objective of the state estimation is to determine the state
quantities as accurately as possible, an ADCS typically uses all sensors which
are fully operational. However, hardware failures as well as temporary or
complete loss of a component may reduce the choices of available sensor
data. There are many causes for such an unavailability which will not all be
discussed here, but the following list of examples illustrates their variety:

– a star tracker is blinded by sunlight or straylight from Earth and not
available for several minutes

– a component with high power consumption, e. g. a fiber optic rate
sensor, is switched off to save power

– a Sun sensor’s measurements are temporarily interfered by albedo effects
or simply unavailable during eclipse

– a magnetic field sensor’s measurements are temporarily interfered by
(dynamic) dipole effects due to electric components

– a total loss of a sensor occurs, e. g. due to radiation

– the communication is disturbed and measurement data of one or more
sensors cannot be transmitted.
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While a (temporary) loss of a component is noted immediately, interference
of a sensor by disturbing quantities may not be detected easily. Here, fault
detection, isolation and recovery (FDIR) methods help to identify errors, which
is discussed later in Section 3.3.5.

Considering the dynamic availability of the ADCS’ components due to the
reasons described above and furthermore the large variety of different methods
to determine a state quantity, a conventional state estimation strategy results
in a complicated structure of dependencies and case distinctions which is
difficult to implement and especially to test: depending on the availability of
sensor data, the control flow at runtime changes not only if certain modules
are unavailable because of their invalid inputs, but also since the accuracy for
the estimate of one quantity may influence the method chosen to estimate
another quantity. This shall be clarified by the following example.

An Earth observation mission requires a highly accurate attitude determination
and control and moreover permanent availability. To this end, the ADCS
incorporates two star trackers, a fiber optic rate sensor system, a Sun sensor
system, magnetic field sensors and MEMS gyroscopes. For simplification,
only the state quantities attitude, angular rate, magnetic field vector and
Sun vector are considered. Each quantity has at least one sensor which is
particularly designed to measure it directly. Apart from filtering or averaging
the direct measurements, the setup offers additional methods to derive state
quantities. The following list provides some examples of these methods.

– Predict the relative attitude with high accuracy by the fiber optic rate
sensor, if a start value based on the star tracker(s) is available. This
is however subject to a drift and the accuracy requirements may be
exceeded.

– Predict the relative attitude with low accuracy by the gyroscopes, if a
start value is available. Here, the drift is increased due to the higher
noise.

– Estimate the attitude from the vector observations by magnetic field
sensors and Sun sensor system.

– Derive the angular rate from the temporal change of either Sun vector
or magnetic field vector or both.
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– If highly precise attitude information is available, transform the inertial
Sun position into the body-fixed frame to obtain the Sun vector with
high precision.

Given the dynamic availability of the sensors, multiple methods should be used
for each state quantity to guarantee their continuous knowledge. Moreover,
having information from (functionally) redundant sources enables cross-checks
for FDIR. For traditional ADCS software concepts, the diverging accuracies of
the individual estimates together with their dynamic availability complicates
the selection of which methods to execute when, and the result is a complex
structure of case distinctions where the control flow is hard to trace.

This thesis’s concept for flexible attitude estimation follows a different approach.
Here, the dependencies within a state estimation strategy mentioned above are
resolved: the state estimation is no longer a complex and monolithic entity but
an assembly of library modules which are executed concurrently. This means
that the control flow is always the same and there are no case distinctions.
Each method utilizes a unique set of sensors and algorithms. Hence, there are
multiple candidates for each estimated state quantity, which are compared
and analyzed to select the most accurate solution. In this manner, FDIR
techniques can be applied easily, e. g. as a voter for the different estimation
results. The estimation modules do not entail any case distinctions; if a sensor
failure occurs, all modules which depend on this sensor will be marked as not
healthy. Therefore, the individual modules have greatly reduced complexity
and do not depend on one another. Both simplifies the implementation and
verification.

The approach is clarified by translating the example above into the TUBiX20
architecture, which is shown in Figure 3.11. Here, four different methods
for attitude determination are assembled and prioritized according to their
accuracy. A subsequent voter requests the data from all four modules and
internally selects the source with the highest priority and performs FDIR
cross-checks. The modules differ not only in their accuracy, but also in their
availability. A voting strategy according to priorities would imply taking the
star tracker average (highest priority), as long as at least one unit provides
measurements. If both are unavailable (either temporarily or permanently),
the attitude is taken from a prediction module which has the fiber optic
rate sensor measurements as inputs. If this becomes unavailable or the drift
over time exceeds a certain limit, the module will mark its data as invalid
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Figure 3.11: Concurrent State Quantity Estimation (UML)

and the QUEST method takes over. During an eclipse, the voter will fall
back on the attitude prediction from angular rate measurements. If the fiber
optic rate sensor system is switched off, the last available source is the highly
drift-affected attitude prediction (lowest priority) via gyroscope measurements.
Once again, the voter does not need any knowledge about its inputs apart from
their interface, priorities for the selection and the number of inputs is variable.
All four modules are invoked in each control cycle, so they concurrently provide
up to four different attitude estimates.

Finally, the idea of concurrent state quantity estimation based on self-contained
modules shown in Figure 3.11 is combined with the aggregation of all state
quantities to a combined set, the state, which has been introduced in Figure 3.8.
It was shown that there are various methods to estimate each quantity, but
when realized as modules implementing unified interfaces, arbitrary selections
of these modules may be bundled to compose a state. As a consequence,
there are multiple independent state estimation concepts realized at the same
time. Only one of these states is selected for further use in attitude control.
However, all others provide a benchmark of different state estimation concepts
at the same time, and hence one state estimation strategy may be compared to
another during operations. Due to the straightforward extension of the module
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assembly addressed in Section 3.3.1, new features may be introduced in the
ADCS in-orbit. Since they run concurrently with the flight-proven concept
in use, a new concept may be evaluated even during operations without
interfering the performance. These benefits regarding in-orbit reconfiguration
are discussed in more detail in Section 3.4.2.

3.3.4 State Control

Depending on the purpose of a mode, its inner structure is rather complex
or simple. If active attitude control is not required permanently, the state
control block may be empty for one mode. On the other end of the scale,
a mode intended for payload operations may be rather complex if highly
accurate three-axis-alignment is required. Due to functional abstraction,
however, the structure of all modes may be generalized regarding the following
characteristics to define a mode:

– Is active control requested?

– Which quantity or quantities shall be controlled?

– What is the objective of the control?

– Which control theory or control law shall be used?

– Which actuators shall be used?

The individual answers to these questions result from the ADCS’s requirements
and the basic concept decisions, for example which actuators are incorporated.
The following list gives three examples for such mode definitions:

– “Active control of the spacecraft’s attitude shall be performed to achieve
target pointing using state space control and reaction wheels” for highly
accurate pointing to the ground station for data downlink.

– “Active control of the spacecraft’s attitude shall be performed to achieve
nadir pointing using a cross-product control law and magnetic torquers”
for energy-efficient pre-alignment between operational phases.

– “Active control of the spacecraft’s angular rate shall be performed to
achieve detumbling following a cross-product control law and using
magnetic torquers” to reduce the initial spin rate after separation.
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Setting the different characteristics in relation results in a graph structure, as
shown in Figure 3.12. The five different layers of vertices correspond to the
five characteristics listed above, while each path from the top vertex to one of
the bottom vertices represents a control mode. Here, the paths for the three
examples from above are depicted in red and more modes are added to clarify
the idea. The approach is inspired by the software development concept of
object-oriented design. The vertical direction (following the arrows) shows a
specialization, while the other way is a generalization.
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Figure 3.12: Functional Abstraction of Mode Definitions

The software architecture for a flexible realization of different state control
modes continues the modular approach presented for state estimation and
prediction. Therefore, the functionality shall be partitioned again into self-
contained modules which are then assembled to form the state control modes
and invoked automatically by the core framework as described in Section 3.3.1.
Here, the characteristics defined earlier are the basis for the functional ab-
straction. As can be seen from the graph, some modes (i. e. paths) share
common vertices. This indicates that the same module may be used for both
modes. To clarify the approach, the same examples for control modes are
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represented as component diagram in Figure 3.13. The pointing modes are
partitioned into three different steps, which abstract the functionality from
the implementation:

– control error determination

– control settings determination

– control settings distribution

While the determination of the control error differs for target pointing and
nadir pointing, both may use the identical control algorithms and hardware
set. On the other hand, both coarse and fine accuracy nadir pointing rely on
the same module for error determination, but use different control laws and
actuators. Hence, the connection of the modules in Figure 3.13 reflects the
paths in the graph from Figure 3.12. Depending on the operational mode
commanded to the ADCS, the core framework selects the actuator settings
and passes them to the publisher to be passed on to the device manager
applications.

This partitioning benefits the flexibility when compared to the criteria defined
in Section 2.2. Control algorithms, e. g. the state space control algorithm, may
be updated or exchanged individually which enables flexible and fast evaluation
of new techniques. By adding, removing and recombining modules, the ADCS
is scalable towards diverging mission scenarios, yet the modifications of the
codebase is kept at a minimum. The approach reduces complexity of the
task into manageable parts which may be designed, implemented and tested
independently from each other for gradual development, which is addressed
later in Section 3.4. The realization of the different control error determination
techniques, control laws and the distribution of the control settings to different
actuators is discussed in Chapter 4.

3.3.5 Fault-Detection, Fault-Isolation and Recovery

Fault detection, isolation and recovery (FDIR) is a mechanism for error
correction, where a failure in the system is detected, isolated and corrected
without any interference from outside the system. The implementation of
a robust FDIR concept is crucial for satellites, as they have to secure their
survival autonomously, especially when there is no link to the ground station.
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Figure 3.13: Re-Configurable State Control Modes (UML)
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The system design of TUBiX20 (cf. Section 2.3) ensures the satellite’s
survival when tumbling, as the distribution of solar cells on each side result in
a positive energy budget for an arbitrary attitude if no payload is operated.
Therefore, the satellite does not need active attitude control in the satellite safe
mode. Nevertheless, careful planning and implementation of FDIR techniques
are necessary to enhance the availability and robustness of the system and
furthermore make the attitude control system adaptable for more complex
missions in the future.

The basis of successful error correction is the application of surveillance
and redundancy. To meet the requirement of single-failure-tolerance, all
components of the attitude control system are at least single redundant.
Besides the total loss of a component, however, a large variety of failures
may occur due to different phenomena like degradation, single event upset
(SEU) or even software programming failures within the sensor or actuator
firmware. These errors may corrupt the component’s performance in different
ways and are very hard to identify. Therefore, to design a robust system, it
is crucial to implement also functional redundancy apart from the physical
hardware redundancy. This functional redundancy is capable of detecting
hardware failures or calculation errors via cross-checks of measurements and
estimations.

The general FDIR concept for the TUBiX20 platform was first presented with
the contribution of the author in [50] and will be introduced briefly here to
provide the basis for the investigation of the specific ADCS FDIR mechanisms.
Corresponding to the partitioning into four platform levels from Figure 2.2,
four FDIR levels are defined. These levels define which parts of the system
are affected by a fault, and therefore classify where the recovery of a fault
takes place and not where the fault occurs. For example, a (temporary)
failure of a component may be handled on the component level, e. g. by
reinitialization, whereas the loss of a component must be propagated to the
device level to manage the component’s hardware redundancy. If the loss of
the component also leads to the loss of the complete device, the recovery
must consequently take place on the subsystem level, for example by selecting
a functional redundancy for the device. The following sections describe the
author’s approach to apply this concept to the ADCS.
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Component Level FDIR Mechanisms

The first FDIR level performs plausibility checks on the component layer. The
following checks are performed for each component:

1. Is the component enabled?

2. Is the communication formally correct (e. g. I2C)?,

3. Is the component in a valid state (e. g. are all internal status registers
set like expected)?,

4. Is the measurement within an expected range (e. g. is the measured
geomagnetic field vector physically possible)?

While faults regarding power status, communications or internal states may be
recovered by reconfiguring the component, a fault due to invalid measurements
must be propagated directly to the device level.

Device Level FDIR Mechanisms

The information of all components which form a device is merged on the
device level. Here, the following checks are performed:

1. Are the current and temperature measurements for all components at
an uncritical level?

2. Are comparable measurements of the redundant components (e. g. mag-
netic field sensor) within a reasonable range of deviation?

3. Are all components required for the device available and healthy (e. g.
all uniaxial sensors which form a triaxial sensor system)?

If the overall device measurement may be determined despite a deviation of
one component, this fault is recovered on the device level. Regarding the last
check, a fault of a required component leads to the loss of the device and the
fault must be propagated on the subsystem level.

Figure 3.14 shows an example for the FDIR structure of a device manager for
a triaxial angular rate sensor. For simplicity, however, only one axis is shown.
While the surveillance for temperature and current are assigned to the service
layer, the checks for the angular rate measurements belong to the user layer.
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As described in Section 2.3, the service layer FDIR is unified throughout the
system since the same hardware ICs and software device drivers as well as
filter, calibrator and supervisor modules are used for all computational nodes
and subsystems. The user layer FDIR is structured similarly, but here the data
processing depends on the specific sensor’s characteristics.

The FDIR mechanisms on the component and device layer are implemented in
the device applications of the according device. Since there are no dependencies
on other applications, adding or removing a device has no consequences for
other applications. This makes the implementation flexible and clear. The
fusion of information from different devices takes place in the subsystem level
situated within the ADCS core framework, which is described in the following
section.

Subsystem FDIR Mechanisms

The third layer of the FDIR concepts is implemented in the state estimation
and control modules. TUBiX20 uses different parallel state estimation modules,
which in turn use measurements from different sensors and different algorithms
to estimate the state equations. Having all state quantities estimated in one
module and furthermore the predicted state from the last control cycle, the
plausibility of the state may be determined by cross-checking the different
state quantities. The following list gives some example for these plausibility
checks:

– the estimated attitude is compared to the predicted attitude from the
last cycle

– the estimated geomagnetic field or Sun vector are compared to the
inertial reference vectors transformed to the body frame

– the angular rate is compared to the derivation of the attitude

– the angular rate is compared to the predicted angular rate from the last
cycle

It has to be noted here, that depending on the estimation method for a
quantity, not all cross-checks are available. Having estimated the attitude
from vector observations means using measurements and inertial reference of
the geomagnetic field and Sun vector, therefore a cross-check of the measured
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values with the transformed inertial reference does not bring a meaningful
check, as the inputs remain the same.

To implement the various cross-checks for the different state quantities,
dedicated modules may be introduced into the core assembly described in
Section 3.3.1, as shown in Figure 3.15. By following this concept, the FDIR
checks as well as the attitude determination and control algorithms may
be implemented independently from each other; hence, they may be added,
replaced or removed without interference of the system as a whole. Therefore,
even complex ADCS concepts with a comprehensive FDIR strategy retain a
clear and straightforward structure.

q
Attitude 
Provider

Angular 
Rate 

Provider




Check
Attitude

Figure 3.15: FDIR Module Integration Example (UML)

3.4 Development and Verification Process

Within TUBiX20, the author defined and applied a process model for flexible
low-cost verification of the ADCS, which was first presented in [68]. The
process model aligns with the ECSS product life cycle [41] and covers the
ECSS phases A to D. It offers a unified procedure to subdivide all phases and
consequently enables a well-structured and result-driven workflow.

3.4.1 Process Steps and Milestones

Since it is a long process from the first draft of the system’s architecture until
passing end-to-end tests, preferably with the spacecraft performing complex
attitude control maneuvers on an air-bearing testbed, it is useful to divide



3.4 Development and Verification Process 67

the procedure into a series of minor steps and define milestones in order to
evaluate the progress objectively.

To this end, the process elaborated by the author defines four steps, which
each have to pass a functional verification as a defining milestone. This
functional verification proves the performance of the ADCS in a closed-loop
way via simulations. These simulations, however, are performed at different
stages of abstraction. Beginning purely virtually, the simulated ADCS’s parts
are replaced step-by-step by real software and hardware. As criteria for
the verification, different simulation scenarios are deduced from the system
requirements. Once defined, these scenarios are re-used in the different
verification steps. The four milestones are, comparable with Eickhoff [69]:

1. The system is modeled in a close-loop simulation (0-B)

2. The software is implemented in the target language for all nodes (C/D)

3. The software is integrated in the target hardware for all nodes (C/D)

4. The system is completely integrated and verified (D/E)

Here, the according ECSS project phase is given in brackets. In each step
of the process, different aspects of the system design have to be considered.
However, the general procedure is very similar and always contains the sections

– analysis

– design

– implementation and tests

– verification via simulation

The structure of the process is illustrated in Figure 3.16. It is derived from the
spiral model, which is often used for the development of embedded systems
(cf. [70]).

In the analysis for the first step, the overall attitude determination and control
concept is elaborated based on the requirements and the according hardware
is chosen. During the design section, attitude control modes are defined and
algorithms for data processing and control are evaluated and structured to
form the high-level structure of the ADCS. The algorithms are implemented
into simulation models and tested individually. Together with environment
and dynamics as well as sensor and actuator models, an algorithm in the loop
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Figure 3.16: Development Process

(AiL) simulation model is composed. Its evaluation concludes phase B and
the results for the different scenarios provide a good proof of concept for the
preliminary design review (PDR).

The second step targets the development of the ADCS’s software. Firstly,
the software requirements are derived. They follow from the ADCS concept
as well as the spacecraft’s system design. Events, signals and actors in the
software are identified thereafter. This analysis is followed by designing the
software architecture, which is the base for the definition of requirements for
the hardware computational nodes. Subsequently, the individual modules of
the software are implemented and tested. Here, the continuous integration (CI)
practice ensures that the software is already well tested within the development
cycle, which leads to more robust results, as presented by the author in [2].
Once the software is implemented, it is integrated into the simulation model
from the previous step, replacing all control algorithm models by the actual
control software. In the following software in the loop (SiL) simulation, an early
verification of the software can already take place long before the hardware is
available. Here, the simulation results from the previous step (AiL) can be
used as a reference to analyze the software’s correctness. The software in
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the loop simulation further provides useful data for the critical design review
(CDR) report.

The goal of the following step is the integration of the software on the flight
hardware. To this end, all hardware-specific parts of the software such as device
drivers have to be implemented and tested. Furthermore, the integration is
usually complex and time-consuming, since the software runs as part of an
embedded system in a microcontroller environment. Once again, following the
continuous integration development practice shortens the integration process
[2] and benefits robustness due to remote target unit tests. For the following
controller in the loop (CiL) simulation, the ADCS software runs on the target
controller, while the simulation model from the previous step is modified to
run in real-time and then integrated onto a spare unit of the target hardware
or a development board. Hence, no additional costs for real-time simulations
are required.

Subsequently, the sensors and actuators hardware is incorporated in the ADCS
loop as part of the overall integration process of the satellite. The final
verification is performed as hardware in the loop (HiL) simulation, where the
complete ADCS is performing maneuvers defined by the simulation scenarios
on an air-bearing testbed. Figure 3.17 shows the verification of the TechnoSat
ADCS (cf. Section 5.1) on the testbed at Technische Universität Berlin.

The presented development and verification process was formulated by the
author at the beginning of the TechnoSat mission. During the course of
the project, all four steps were executed successfully and all milestones were
reached. The process has thereby proven to be suitable for the gradual
development of the ADCS from the first simulation model to the fully integrated
system and several synergy effects could be exploited. All insights of the
investigation are presented in the following section.

3.4.2 Synergy Effects

Following the process model from the previous section, synergy effects between
the different steps and tools could be created and hence unnecessary effort when
supplying support equipment or preparing different simulation environments
could be avoided.
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Figure 3.17: TechnoSat Flight Model on the TUBiX20 Air-bearing Testbed
Image credit: Philip von Keiser

Simultaneous Simulation Model Refinement

The first example of exploiting synergy effects is the development of the
simulation models used throughout the whole development cycle of the ADCS.
While preparing the algorithm in the loop simulation, the model architecture
was defined. Figure 3.18 shows the top-level view of the TUBiX20 ADCS
simulation model.

Apart from the evaluation of algorithms during analysis, the models also served
as a useful tool for the development of the individual modules in the target
language, which is C++ in the case of TUBiX20. Since simulation tools
or languages like MATLAB/Simulink and Modelica offer the integration of
C++ source code, simulation models and target software can be developed
simultaneously from the same codebase and hence need to be verified only
once. Consequently, the flight software development time is shortened since
the modules have already been implemented and verified for the simulation,
and, on the other hand, the simulation models are always up to date with
the actual flight software. When implementing state estimation and control
algorithms as simulation models directly from the flight software codebase,
the closed-loop simulation, e. g. a MATLAB model, becomes more similar
to the final system design. Moreover, proving to be very useful, the flight
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Figure 3.18: ADCS Simulation Model in MATLAB/Simulink

software algorithms can be verified with complex scenarios at low effort when
also implemented as a simulation model. This approach differs from the
process proposed by Eickhoff [69], where the “algorithms are mostly not yet
implemented in the target language”.

Early Operations of Virtual Satellite

According to Section 2.3, the TUBiX20 platform consists of a network of
computational nodes connected via a central power and data bus. Each node
runs a dedicated subsystem software composed of independent building blocks.
The communication of the building blocks is facilitated via the middleware of
the operating system, hence it is irrelevant for the communicating building
blocks where their instances are hosted in the network. Moreover, the RODOS
operating system supports the emulation of the embedded software on a Linux
host PC and, as opposed to [69], no additional test bed for simulations is
required. While the middleware uses a redundant CAN bus on the target
hardware, UDP messages are used when emulated. Either way, the physical
layer is transparent for the building block. In this manner, network messages
may be monitored but also induced easily without modifications to the software
for both flight hardware and emulation.

The TUBiX20 electrical ground support equipment (EGSE) makes the satel-
lite’s data buses accessible via USB and WLAN. The EGSE hardware is
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connected to a ground support server and therefore allows passing messages
between server and satellite. Moreover, it provides several TCP/IP ports for
client software, which may use any of the implemented message protocols to
interact with the satellite on various levels. The EGSE server is able to work
with all communication protocols and physical transmission types used in the
satellite. The detailed structure of the TUBiX20 EGSE was presented with
contribution of the author in [44].

Both emulation of the software and the EGSE architecture make the ground
support server as well as the mission control software used for operations
directly accessible without any further development effort and hence allows
its usage from an early stage of the project. This entailed several benefits,
which shall be explained next. First of all, the EGSE and ground software
could be, after its verification, further tested in use which offered the chance
of feature requests or finding errors. From the ADCS software development
point of view, the same EGSE and operations software could already be used
before any hardware was available.

Earlier, it the way in which the individual algorithms for attitude determination
and control in the target language are transferred into simulation models
was already shown. However, in the next step, the complete software was
used as a whole including telecommand and telemetry interface as well as
thread scheduling. Only hardware-dependent parts such as device drivers
needed to be adapted to comply with the simulation. A flexible approach to
combine the environment and dynamics simulation with the software was to
use code-generation and then integrate the model as a building block into
the software network system, as shown in Figure 3.19. While the upper half
shows the derivation of simulation models from the ADCS module codebase
and also the assembly of the algorithm in the loop simulation, the bottom
half depicts the two following verification milestones, namely software in the
loop and controller in the loop (cf. Section 3.4.1). By embedding the model
assembly into a building block, the ADCS software does not need to be
modified at all, since it communicates via the middleware as usual. Being
part of the network, the simulation block is scheduled like all other building
blocks. For the software in the loop simulation, the whole network runs in the
Linux emulation environment, while in the controller in the loop simulation,
the ADCS software runs on the target hardware and the simulation model
block runs on a separate controller. To host the simulation on a spare unit of
the target hardware or on a development kit does not entail any extra costs
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Figure 3.19: Simulation Model Integration

or development effort, since all hardware-dependent parts of the operating
system and the network communication are already implemented and there is
no overhead of test code at all. As a consequence, there is no additional test
or support software needed and hence development resources are saved.

The possibility to operate the ADCS completely virtually and yet using the
complete suite of mission control software from telecommand graphical user
interface to telemetry display and database recording provided several benefits.
Firstly, the verification of the software could be started before the target
hardware was available and hence the development progress of the ADCS was
not endangered by delays in the hardware design or manufacturing. Secondly,
testing the flight software in a PC environment proved to be time efficient
since no time-consuming software uploads are necessary and furthermore all
debug facilities could be used instantly. Hence, the complete data and control
flow could be monitored while at the same time performing simulations of
complex mission scenarios. Even after the satellite was already integrated and
hardware in the loop simulations were in progress, the software in the loop
simulation was still used, either when the EQM of the satellite was in use by
another engineer or to quickly evaluate insight from the hardware tests.
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In-Orbit Verification of new Modules

Updating the software in-orbit is a complicated process which demands a lot
of careful preparation. Since one of the main risks is to endanger the satellite
when new software is uploaded, the modifications or new features should be
tested as well as possible. Here, the process described in this section may
serve as valuable, since it involves incremental verification on different levels
while being flexible and time-efficient.

A newly developed ADCS module will run through the same cycle including all
verification milestones. Since the simulation infrastructure is used throughout
the whole project lifetime, it is still up-to-date after the satellite has been
launched. The implementation of an individual module results in both flight
software code and simulation model – as based on the same code, hence the
different verification steps from purely virtual to on-target execution may be
performed in short time while providing an already well-tested module for a
subsequent hardware in the loop test. For the straightforward integration of
new modules into the ADCS software, however, the systems architecture must
allow for modification without interference of other code parts, which has
already been addressed earlier.

b


Measurement 
sink

Bias/Scale
calibration

b


In-orbit
estimation

Publisher

Figure 3.20: In-Orbit Selection of Calibration Methods (UML)

An example for the in-orbit verification of a new feature is given in Figure 3.20.
Here, a new technique for in-orbit estimation of calibration parameters shall
be evaluated. Based on the staged calibration assembly shown in Figure 3.4,
a module for the new algorithm is inserted. The calibration technique applied
may then be reconfigured at runtime. After the evaluation and if the in-orbit
calibration is successful, both modules may remain as alternatives or one of
them may be discarded and removed.
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3.4.3 Early Verification Coverage

The previous sections have already shown that the design and verification
process defined in this thesis allowed the early verification of the flight software
with the help of simulation models. First presented by the author in [68],
Figure 3.21 shows the verification coverage for the different layers of the
TUBiX20 ADCS. On the lowest level, running the flight software under
soft realtime conditions is already possible within the software in the loop
simulation, while one step later hard real time conditions are met after the
software was integrated on the target hardware. The same applied to the
device driver implementation. Here, the generic driver interfaces defined by the
TUBiX20 software team provide an abstraction from the hardware-dependent
parts and hence allowed to replace them with mock-ups like sensor models for
the virtual satellite. The modules for state determination and control were
already available after the first process step, since simulation models and flight
software have the same code base. The architecture of the core application,
i. e. the interface to TM/TC as well as the state machine for the control
modes, were introduced for the software in the loop simulation. Finally, since
the operations software may be used from an early stage, the same tools and
report templates for data processing could be used for all verification tests
from a purely virtual satellite to orbit experiments.

AiL SiL CiL HiL End-to-end

Postprocessing tools

Mission control interface

Control algorithm modules

Control mode state machine

Sensor fusion modules

Device management

Hardware drivers

OS (soft real time)

OS (hard real time)

Verification steps

Figure 3.21: Verification Coverage at Process Milestones [68]



4 Attitude Determination and Control
Techniques

While the last chapter presented the design and verification of the ADCS on
an abstract level to demonstrate its adaptivity to diverging mission scenarios,
this chapter provides the mathematical background for different attitude
determination and control algorithms which were previously treated as black
boxes. By now presenting different approaches for the concrete realization of
their content, the concept is continued.

The techniques presented are ordered in the same way they may be used
in the design and verification process. After the introduction of different
attitude representations, the equations of motion for the satellite’s dynamics
and kinematics are stated in their general form at first and then linearized
and transferred into the state space representation. At this point, the first
simulation model to investigate the satellite’s motion in space may be built.
The modeling of the physics is completed by the subsequently introduced
disturbance torques. As a second step, different techniques for state estimation,
prediction and control are discussed which then serve as the mathematical
background for the implementation of the module library used for the ADCS
software. The description of all algorithms and equations continues the use of
the symbols which were introduced for the state quantity provider interfaces
in Table 3.1 to maintain the consistency of the overall concept. However, the
algorithms presented in the following may also be used independently from
the design architecture of the previous chapter and may serve the reader as
a reference including all required steps for their implementation. Additional
information regarding the coordinate systems is provided in Appendix B.

4.1 Attitude Representations

Attitude representations are discussed in nearly every thesis, article or con-
ference paper published in the field of attitude control. As in many other
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works, quaternions are used here, since they come with the advantage of
less calculation effort than Euler angles or direction cosine matrices (DCMs)
and do not entail any singularities. Due to the wide availability of detailed
comparisons between the different attitude representations, this is not part
of this thesis. Nevertheless, the notation for quaternions allows a certain
ambiguity, wherefore the quaternion equations may differ from one publication
to another and yet may both be correct. In the following, the quaternion
notation used in this thesis is introduced and the mentioned ambiguity is
pointed out. In some equations, DCMs are used, and for this reason are
briefly introduced thereafter. Finally, the conversion between quaternions
and DCMs is discussed. All definitions for attitude representations have been
collected with contribution of the author in [71] to serve as a standard for the
university’s future projects.

4.1.1 Quaternions

A quaternion is defined by a scalar part, 𝑠, and a vector part, 𝑣⃗, which are
assembled to a 4 × 1 matrix, 𝑞. The order of scalar part and vector part in
the matrix differs from one publication to the other (cf. Wertz [72]). Here,
the scalar part is the first element of 𝑞:

𝑞 =
[︂
𝑠
𝑣⃗

]︂
=

⎡⎢⎢⎣
𝑠
𝑣𝑥

𝑣𝑦

𝑣𝑧

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑞𝑠

𝑞𝑥

𝑞𝑦

𝑞𝑧

⎤⎥⎥⎦ (4.1)

Quaternions may be applied for both, transforming a vector from one coor-
dinate system into another or rotating a vector within the same coordinate
system. In both cases, the scalar part represents the angle and the vector part
represents the axis of transformation or rotation, respectively.

For a transformation from coordinate system 𝐴 to coordinate system 𝐵, the
according quaternion is:

𝑞𝐵←𝐴 =
[︂
𝑠
𝑣⃗

]︂
=

[︂
cos 𝛼

2
𝑒⃗ · sin 𝛼

2

]︂
(4.2)

where 𝑒⃗ is the normalized vector of the rotational axis and 𝛼 is the rotational
angle. The mathematical operation for the transformation is given at the
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end of this section. To invert the direction of the transformation or rotation,
either the angle or the axis may switch sign. It is obvious that if both switch
sign, the result is a quaternion which differs from the original one and yet the
represented orientation is the same.

The norm of a quaternion is given by Equation 4.3:

|𝑞| =
√︁
𝑞2

𝑠 + 𝑞2
𝑥 + 𝑞2

𝑦 + 𝑞2
𝑧 (4.3)

A Quaternion with the norm |𝑞| = 1 is called unit quaternion. All quaternions
for attitude representation are unit quaternions, since a norm unequal to one
would modify not only a vector’s orientation but also its length. To normalize
a quaternion, i.e. transform it into a unit quaternion, it is divided by its norm:

‖𝑞‖ = 𝑞

|𝑞|
(4.4)

The conjugate quaternion has an inverted vector part:

𝑞* =

⎡⎢⎢⎣
𝑞𝑠

−𝑞𝑥

−𝑞𝑦

−𝑞𝑧

⎤⎥⎥⎦ (4.5)

To obtain the inverse of a quaternion, its conjugate is normalized.

𝑞−1 = 𝑞*

|𝑞|
(4.6)

For all unit quaternions, the inverse is equal to the conjugate, as they have
the norm one. The product 𝑞 of two quaternions 𝑞1 and 𝑞2 is defined by:

𝑞1 ⊗ 𝑞2 = 𝑞 =
[︂
𝑠
𝑣⃗

]︂
=

[︂
𝑠1 · 𝑠2 − 𝑣⃗1 ∘ 𝑣⃗2

𝑠1 · 𝑣⃗2 + 𝑠2 · 𝑣⃗1 + 𝑣⃗1 × 𝑣⃗2

]︂
(4.7)

where ∘ is the dot product of vectors 𝑣⃗1 and 𝑣⃗2 and × is their cross product.

The transformation of a vector 𝑣⃗ from frame 𝐴 to frame 𝐵 is defined as:

𝑣⃗𝐵 = 𝑞𝐵←𝐴 ⊗
[︂

0
𝑣⃗𝐴

]︂
⊗ 𝑞−1

𝐵←𝐴 (4.8)

𝑣⃗𝐵 = 𝑞𝐵←𝐴 ⊗
[︂

0
𝑣⃗𝐴

]︂
⊗ 𝑞𝐴←𝐵 (4.9)

𝑣⃗𝐵 = 𝑞𝐵←𝐴 ⊙ 𝑣⃗𝐴 (4.10)
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where ⊗ is the operator of a quaternion multiplication (cf. Equation 4.7). The
operator ⊙, on the other hand, represents the transformation of a vector via a
quaternion, as may be seen when comparing Equation 4.9 and Equation 4.10.
The notation of the quaternion and the vector, i. e. their subscripts which state
the coordinate systems, may be used as a check if the operation is applicable.
In Equation 4.10, the transformation of the vector 𝑣⃗ from the coordinate
system 𝐴 to the coordinate system 𝐵 directly reflects in the subscript of the
quaternion 𝑞𝐵←𝐴 and the correctness of the operation may be checked by
comparing the adjacent subscripts.

4.1.2 Direction Cosine Matrix

A direction cosine matrix is a transformation matrix which is composed of the
direction cosine values between the initial coordinate system and the target
coordinate system.

Let 𝐴 be the initial coordinate system and 𝐵 the target coordinate system of
a transformation. The base vectors of 𝐴 are given by 𝑥⃗𝐴, 𝑦⃗𝐴 and 𝑧⃗𝐴, whereas
𝑥⃗𝐵 , 𝑦⃗𝐵 and 𝑧⃗𝐵 are the base vectors of system 𝐵. The direction cosine matrix
which transforms a vector from system 𝐴 to system 𝐵 shall be called 𝑇𝐵←𝐴

and is defined by

𝑇𝐵←𝐴 =

⎡⎣𝑐𝑜𝑠^(𝑥⃗𝐴, 𝑥⃗𝐵) 𝑐𝑜𝑠^(𝑦⃗𝐴, 𝑥⃗𝐵) 𝑐𝑜𝑠^(𝑧⃗𝐴, 𝑥⃗𝐵)
𝑐𝑜𝑠^(𝑥⃗𝐴, 𝑦⃗𝐵) 𝑐𝑜𝑠^(𝑦⃗𝐴, 𝑦⃗𝐵) 𝑐𝑜𝑠^(𝑧⃗𝐴, 𝑦⃗𝐵)
𝑐𝑜𝑠^(𝑥⃗𝐴, 𝑧⃗𝐵) 𝑐𝑜𝑠^(𝑦⃗𝐴, 𝑧⃗𝐵) 𝑐𝑜𝑠^(𝑧⃗𝐴, 𝑧⃗𝐵)

⎤⎦ (4.11)

=

⎡⎣𝑥⃗𝐴 · 𝑥⃗𝐵 𝑦⃗𝐴 · 𝑥⃗𝐵 𝑧⃗𝐴 · 𝑥⃗𝐵

𝑥⃗𝐴 · 𝑦⃗𝐵 𝑦⃗𝐴 · 𝑦⃗𝐵 𝑧⃗𝐴 · 𝑦⃗𝐵

𝑥⃗𝐴 · 𝑧⃗𝐵 𝑦⃗𝐴 · 𝑧⃗𝐵 𝑧⃗𝐴 · 𝑧⃗𝐵

⎤⎦ (4.12)

𝑇𝐴←𝐵 is an orthonormal matrix because the base vectors of 𝐴 and 𝐵 are in
both cases orthogonal unit vectors. Therefore, the transpose of a DCM is the
same as the DCM representing the inverse transformation.

For all transformation matrices, the transpose is equal to the inverse of the
matrix:

𝑇𝑇
𝐵←𝐴 = 𝑇−1

𝐵←𝐴 = 𝑇𝐴←𝐵 (4.13)
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and
𝑑𝑒𝑡(𝑇𝐴←𝐵) = 𝑑𝑒𝑡(𝑇𝐵←𝐴) (4.14)

The transformation of a coordinate system about each basis vector with
a rotation angle 𝜃 is described by the following elementary transformation
matrices:

𝑅𝑥(𝜃) =

⎡⎣1 0 0
0 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
0 −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

⎤⎦
𝑅𝑦(𝜃) =

⎡⎣𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

⎤⎦
𝑅𝑧(𝜃) =

⎡⎣ 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0
−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1

⎤⎦
(4.15)

The transformation of a vector 𝑣⃗𝐴 from coordinate system 𝐴 to coordinate
system 𝐵 is given by:

𝑣⃗𝐵 = 𝑇𝐵←𝐴 · 𝑣⃗𝐴 (4.16)

4.1.3 Conversion of Attitude Representations

Since coordinate transformations are mostly expressed via DCMs, while the
control theory uses quaternions due to their stated advantages, this section
describes the conversion between the two attitude representations.

Direction Cosine Matrix to Quaternion

Each of the four elements of a quaternion may be calculated from the DCM’s
main diagonal. Thereafter, the remaining three elements follow from the
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secondary diagonals. Hence there are four different ways to start the conversion,
as shown in Equation 4.17.

𝑞𝑠 =
√︂

1
4 · (1 + 𝑇11 + 𝑇22 + 𝑇33)

𝑞𝑥 =
√︂

1
4 · (1 + 𝑇11 − 𝑇22 − 𝑇33)

𝑞𝑦 =
√︂

1
4 · (1− 𝑇11 + 𝑇22 − 𝑇33)

𝑞𝑧 =
√︂

1
4 · (1− 𝑇11 − 𝑇22 + 𝑇33)

(4.17)

Depending on the element which was determined first, the calculation of the
remaining elements follows from Table 4.1.

Table 4.1: Calculating Quaternion Elements from Secondary Diagonals
𝑞𝑠 𝑞𝑥 𝑞𝑦 𝑞𝑧

𝑞𝑠 𝑞𝑠
𝑇32−𝑇23

4·𝑞𝑠

𝑇13−𝑇31
4·𝑞𝑠

𝑇21−𝑇12
4·𝑞𝑠

𝑞𝑥
𝑇32−𝑇23

4·𝑞𝑥
𝑞𝑥

𝑇21+𝑇12
4·𝑞𝑥

𝑇13+𝑇31
4·𝑞𝑥

𝑞𝑦
𝑇13−𝑇31

4·𝑞𝑦

𝑇21+𝑇12
4·𝑞𝑦

𝑞𝑦
𝑇32+𝑇23

4·𝑞𝑦

𝑞𝑧
𝑇21−𝑇12

4·𝑞𝑧

𝑇13+𝑇31
4·𝑞𝑧

𝑇32+𝑇23
4·𝑞𝑧

𝑞𝑧

The reason why all four possibilities for the conversion are presented here is
due to the fact that a value close to zero for the first element determined
may cause high numerical inaccuracies, since it is included in the denominator
in the equations from Table 4.1. It is therefore recommended to determine
all four elements independently from Equation 4.17 first, and then choose
the maximum of these elements to apply Table 4.1 for the remaining three
elements. The second step is important due to the ambiguity that two
quaternions with opposing signs in all four elements still represent the same
orientation.
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Quaternion to Direction Cosine Matrix

To transform a quaternion, 𝑞, to a direction cosine matrix, 𝑇 , Equation 4.18
is used.

𝑇 =

⎡⎣ 𝑞2
𝑠 + 𝑞2

𝑥 − 𝑞2
𝑦 − 𝑞2

𝑧 2 · (𝑞𝑥 · 𝑞𝑦 − 𝑞𝑧 · 𝑞𝑠) 2 · (𝑞𝑥 · 𝑞𝑧 + 𝑞𝑦 · 𝑞𝑠)
2 · (𝑞𝑥 · 𝑞𝑦 + 𝑞𝑧 · 𝑞𝑠) 𝑞2

𝑠 − 𝑞2
𝑥 + 𝑞2

𝑦 − 𝑞2
𝑧 2 · (𝑞𝑦 · 𝑞𝑧 − 𝑞𝑥 · 𝑞𝑠)

2 · (𝑞𝑥 · 𝑞𝑧 − 𝑞𝑦 · 𝑞𝑠) 2 · (𝑞𝑦 · 𝑞𝑧 + 𝑞𝑥 · 𝑞𝑠) 𝑞2
𝑠 − 𝑞2

𝑥 − 𝑞2
𝑦 + 𝑞2

𝑧

⎤⎦
(4.18)

4.2 Dynamics and Kinematics

Before elaborating the control algorithms for a system, its equations of motion
must be analyzed to provide a basis for all further design steps. In this section,
the dynamics and kinematics equation for a spacecraft are reviewed in three
steps. Firstly, the equations of motion are introduced as a starting point for
all further steps. As these equations form a non-linear system of differential
equations, it is necessary to perform a linearization in order to apply the linear
control theory, which is presented secondly then. Thirdly, this linearization
is expressed in the state space form, which will serve as a reference for the
different state determination and control techniques discussed later.

4.2.1 Equations of Motion

The dynamics of the satellite with regard to the Moment of Inertia Coordinate
System (MOI) is described by the well-known equation [73]:∑︁

𝜏⃗𝑀𝑂𝐼 =
∑︁ ˙⃗

𝐻𝑀𝑂𝐼 +
∑︁

(𝜔⃗𝑀𝑂𝐼 × 𝐻⃗𝑀𝑂𝐼) (4.19)

The sum of all torques, i. e. the left-hand-side of Equation 4.19 comprises
internal torques and external torques. Internal torques may be applied by
actuators, but also result from internal disturbances such as moving parts
or sloshing liquids. The external torques, on the other hand, result from
environmental disturbances, which will be discussed later in Section 4.3. With
regard to the inertial TOD coordinate system, the overall angular momentum
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is constant over time. This angular momentum conservation forms the basis
for attitude control via momentum exchange devices such as reaction wheels:

˙⃗
𝐻𝑇 𝑂𝐷 = 0⃗ (4.20)

The dynamics in Equation 4.19 describes the rotation of the satellite. The
resulting change in the spacecraft’s orientation follows from the kinematics
equation. To begin with, Equation 4.21 describes the kinematics differential
equation for a direction cosine matrix, 𝑇 , according to Wertz [72]:

𝑇̇ =

⎡⎣ 0 𝜔𝑧 −𝜔𝑦

−𝜔𝑧 0 𝜔𝑥

𝜔𝑦 −𝜔𝑥 0

⎤⎦ · 𝑇 (4.21)

Expressed in terms of quaternions, Equation 4.21 results in

𝑞𝑇 𝑂𝐷←𝑀𝑂𝐼 = 1
2 · Ω · 𝑞𝑇 𝑂𝐷←𝑀𝑂𝐼 (4.22)

= 1
2 · 𝑞𝑇 𝑂𝐷←𝑀𝑂𝐼 ⊗

[︂
0
𝜔⃗

]︂
(4.23)

where 𝑞𝑇 𝑂𝐷←𝑀𝑂𝐼 is the transformation quaternion from the MOI to the
TOD system and 𝜔⃗ is the angular rate of the satellite in the MOI system. The
matrix Ω follows from 𝜔⃗ in x, y and z-direction [72].

Ω =

⎡⎢⎢⎣
0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0 𝜔𝑧 −𝜔𝑦

𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥 0

⎤⎥⎥⎦ (4.24)

It is important to note that the quaternion notation in [72] differs from
Section 4.1.1.

4.2.2 Dynamics and Kinematics Linearization

Due to the cross-coupling of the coordinate axes, the dynamics equation
from Equation 4.19 is a system of non-linear differential equations. To
formulate control laws following the linear control theory, a linearization will
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be derived here. This is simply achieved by neglecting the cross-coupling
for the differential equation and treat it as a disturbance of the control loop
instead.

Each axis considered individually, the dynamics equation is reduced to

𝐻̇𝑖 = 𝜏𝑖 = 𝐼𝑖 · 𝜔̇𝑖 (4.25)

The subscript 𝑖 stands for the coordinate axes x, y and z. From Equation 4.25,
the three-dimensional linearization follows directly:

˙⃗𝜔 = 𝜏⃗

𝐼
(4.26)

𝜔̇𝑖 = 𝜏𝑖

𝐼𝑖
(4.27)

with 𝐼 as the inertia tensor.

For small angles, the linearization of the kinematics equations can be formu-
lated for a single axis as

𝜃 = −𝜔 (4.28)

The sign of the angle 𝜃 is negative since the angle describes the transformation
from MOI to TOD. The relation from transformation angle may be linearized
for small angles and Equation 4.30 is obtained [72].⎡⎢⎢⎣

̃︀𝑞𝑠̃︀𝑞𝑥̃︀𝑞𝑦̃︀𝑞𝑧

⎤⎥⎥⎦ ∼=
⎡⎢⎢⎣

1
− 1

2 · 𝜃𝑥

− 1
2 · 𝜃𝑦

− 1
2 · 𝜃𝑧

⎤⎥⎥⎦ (4.29)

Once again, the negative sign results from the quaternion notation (cf. Sec-
tion 4.1.1). Subsequently, Equation 4.28 and Equation 4.29 result in the
linearized kinematics equation in quaternion notation:

˙⎡⎣̃︀𝑞𝑥̃︀𝑞𝑦̃︀𝑞𝑧

⎤⎦ =

⎡⎣ 1
2 0 0
0 1

2 0
0 0 1

2

⎤⎦ ·
⎡⎣𝜔𝑥

𝜔𝑦

𝜔𝑧

⎤⎦ (4.30)
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4.2.3 State Space Representation

The linearized equations for dynamics and kinematics, Equation 4.27 and
Equation 4.29, respectively, form the state space representation, which has
the general form

𝑥̇ = 𝐴 · 𝑥+𝐵 · 𝑢 (4.31)
𝑦 = 𝐶 · 𝑥+𝐷 · 𝑢 (4.32)

Selecting the angular rate vector and the vector part of the approximated
quaternion, the state space representation is

˙[︂̃︀𝑞
𝜔

]︂
=

[︂
0 1

2
0 0

]︂
·
[︂̃︀𝑞
𝜔

]︂
+

[︂
0
𝐼−1

]︂
· 𝜏 (4.33)

̃︀𝑞 =
[︀
𝐸 0

]︀
·
[︂̃︀𝑞
𝜔

]︂
(4.34)

Since the linearization is only valid near the control working point, the selected
working point should be chosen accordingly. The quaternion 𝑞𝑇 𝑂𝐷←𝑀𝑂𝐼

is therefore not feasible. An appropriate solution will be discussed later in
Section 4.5.1.

4.3 Environmental Disturbance Torques

The interaction of the spacecraft with the space environment results in different
disturbance torques which affect the attitude control accuracy. Following, the
four predominant environmental disturbance torques are presented in order of
their magnitude for a low earth orbit.

In most cases, the disturbance torques are estimated in terms of their absolute
value for worst case studies. However, due to their different origin and dynamic
characteristics, a more realistic result is achieved when analyzed within a three-
dimensional simulation. For the TUBiX20 platform, the disturbance torques
were simulated as such to design and verify the ADCS using the following
equations.
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4.3.1 Magnetic Field Disturbance

The disturbance torque, 𝜏⃗𝑀 , results from the interaction of the spacecraft’s
residual dipole, 𝑚⃗𝐷, with the Earth’s magnetic field, 𝑏⃗ [74].

𝜏⃗𝑀 = 𝑚⃗𝐷 × 𝑏⃗ (4.35)

4.3.2 Gravity Gradient Disturbance

Since the mass of the satellite is not distributed equally, the gravity gradient
causes the disturbance torque, 𝜏⃗𝐺, according to [72], [75]:

𝜏⃗𝐺 = 3 · 𝜇
|𝑟⃗|3
· [−‖𝑟⃗‖ × (𝐼 · ‖𝑟⃗‖)] (4.36)

Here, 𝑟⃗ is the vector pointing from Earth to the spacecraft, while 𝜇 = 𝐺 ·𝑀
is the product of gravitational constant and the Earth’s total mass. Finally, 𝐼
is the inertia tensor. The vector of gravity, 𝑔⃗, is [5]

𝑔⃗ = − 𝜇

|𝑟⃗|3
· 𝑟⃗ (4.37)

and it follows that
𝜏⃗𝐺 = 3 · |⃗𝑔|

|𝑟⃗|
· [‖𝑔⃗‖ × (𝐼 · ‖𝑔⃗‖)] (4.38)

4.3.3 Solar Radiation Disturbance

The disturbance torque due to solar radiation pressure is calculated from the
effective force, 𝐹 𝑠, and the vector from the center of gravity to the force
application point, 𝑟⃗ [76]. For the three-dimensional case with 𝑛 illuminated
faces, it follows that

𝜏⃗𝑠 =
𝑛∑︁
1
𝑟⃗𝑖 × 𝐹𝑠,𝑖 (4.39)

The effective force is

𝐹𝑠,𝑖 = 𝑠⃗

𝑐
·𝐴𝑖 · (1− 𝛼) · (‖𝑠⃗‖ · ‖𝑛⃗𝑖‖) (4.40)
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Here, 𝑠⃗ is the radiation vector, 𝑐 the speed of light, 𝐴 the area of the
illuminated face, 𝛼 the adsorption factor, and 𝑛⃗ the normal vector of the
illuminated face.

4.3.4 Atmospheric Drag Disturbance

The atmospheric drag causes a disturbance torque similar to the solar radiation
pressure. The aerodynamics force, 𝐹 𝑎, and the vector from the center of
gravity to the force application point, 𝑟⃗, create the disturbance [76]:

𝜏⃗𝐴 =
𝑛∑︁
1
𝑟⃗𝑖 × 𝐹𝑎,𝑖 (4.41)

with
𝐹𝑎,𝑖 = −1

2 · 𝜌 · 𝑐𝐷 ·𝐴𝑖 · |𝑣⃗| · ‖𝑣⃗‖ · (‖𝑣⃗‖ · ‖𝑛⃗𝑖‖) (4.42)

Similar to the previous section, 𝐴 is the area of the face and 𝑛⃗ its normal
vector. Moreover, 𝜌 is the atmospheric density, 𝑐𝐷 the drag coefficient, and 𝑣⃗
is the velocity of the spacecraft.

4.4 State Quantity Determination

This section presents different techniques to determine the state quantities
addressed in Section 3.2. Following, different algorithms for state estimation
and state prediction are discussed. The relation of these terms was addressed
earlier in Section 3.3.2.

4.4.1 Merging Multiple Vector Measurements

Merging multiple sensor measurements not only improves the estimation
accuracy of the vector quantity, e. g. by averaging them, but also allows the
detection of invalid sensor measurements. The following method described
is referred to as the Ding algorithm (cf. Ding, Chen, Xing, et al. [77]) and
was developed to identify faulty sensors in large sensor networks. For its
application for vector quantities, the description from Munir, Gordon-Ross,
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and Ranka [78] was modified. While the computational effort is low, the
algorithm proved to reliably detect faulty measurements when tested with
the TUBiX20 sensor boards. Here, it was used for fault detection of the Sun
vector, magnetic field vector and angular rate measurements.

While the algorithm originally targets large sensor networks, the sensors aboard
a nanosatellite may all be considered as neighboring sensors, hence the first
step of the algorithm, “identify neighboring sensor nodes”, is omitted. The
remaining steps are (derived from [78]):

1. Compute 𝑑𝑖 for each sensor 𝑆𝑖 using Equation 4.43

2. Compute 𝑦𝑖 for each sensor 𝑆𝑖 using Equation 4.46

3. If |𝑦𝑖| ≥ Θ, consider 𝑆𝑖 as faulty, otherwise consider 𝑆𝑖 as healthy

4. To obtain the estimation of the vector quantity, calculate the average
of all healthy sensors

To compute 𝑑𝑖, the original algorithm uses the median of the sensor mea-
surements. However, the median cannot be applied for three-dimensional
quantities, since the median for the individual axes might belong to different
measurements. Therefore, the coefficient for each sensor is not the difference
from the median of the neighboring nodes, but the absolute value of the
(vector) difference from the mean value:

𝑑𝑖 =

⃒⃒⃒⃒
⃒𝑥⃗𝑖 −

1
𝑛

𝑛∑︁
𝑖=1

𝑥⃗𝑖

⃒⃒⃒⃒
⃒ (4.43)

The mean, 𝜇, of all coefficients 𝑑𝑖 is [77]

𝜇 = 1
𝑛

𝑛∑︁
𝑖=1

𝑑𝑖 (4.44)

and the standard deviation, 𝜎, follows as [77]

𝜎 = 1
𝑛− 1

𝑛∑︁
𝑖=1

(𝑑𝑖 − 𝜇)2 (4.45)

Finally, a standardized value, 𝑦𝑖, is computed for each sensor:

𝑦𝑖 = 𝑑𝑖 − 𝜇
𝜎

(4.46)
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As a threshold, Θ, for the third step of the algorithm, a value of 1.1 showed
good results with the TUBiX20 hardware.

4.4.2 Pre-Processing Angular Rate Measurements at High Frequency

To follow the dynamics of a spacecraft, angular rate sensors such as fiber
optic rate sensors or MEMS gyroscopes generally use a high measurement
frequency. For the sensors used within TUBiX20, their frequencies are within
20 Hz and 100 Hz. However, the control cycle of the ADCS is much slower.
For TUBiX20, it is 2 Hz. As a consequence, the sensor measurements must
be pre-processed so that the instantaneous angular rate is available for every
control cycle. A simple averaging of the measurement data would not fulfill
this purpose: if the angular rate changes during the control cycle, the average
value cannot equal the instantaneous value.

However, since the actuator settings hold for the complete duration of the
control cycle, and therefore the applied torque remains constant during that
time when neglecting disturbances, a linear Kalman filter may be composed
to estimate the instantaneous angular rate based on the highly frequent input
data. This Kalman filter will further compensate the noise of the sensor to
some extent.

The state space equation for the general formulation of a linear Kalman filter
is [79]:

𝑥̇(𝑡) = 𝐹𝑥+𝐺𝑢+ 𝑤 (4.47)
𝑧(𝑡) = 𝐻𝑥+ 𝑣 (4.48)

Here, 𝐹 is the system matrix and 𝐺 is the input matrix. The vectors 𝑥
and 𝑢 describe the state quantities and the input quantities, respectively.
Furthermore, 𝐻 is the observation matrix and 𝑧 the vector of the measured
quantities. The vector 𝑤 holds the disturbance within the system description
in form of white noise and 𝑣 is the measurement disturbance and also modeled
by white noise. The matrices 𝑄 and 𝑅 express this system and measurement
noise and are defined as:

𝑄 = 𝐸(𝑤𝑤𝑇 ) (4.49)
𝑅 = 𝐸(𝑣𝑣𝑇 ) (4.50)
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As a first step for the implementation, the fundamental matrix is formed via
the inverse Laplace transformation [79]

Φ(𝑡) = ℒ−1[(𝑠 · 𝐸 − 𝐹 )−1] (4.51)

or approximated by a Taylor series.

Φ(𝑡) = 𝐸 + 𝐹 · 𝑡+ (𝐹 · 𝑡)2

2! + ...+ (𝐹 · 𝑡)𝑛

𝑛! (4.52)

where 𝐸 is the identity matrix.

The Kalman filter consists of two phases: prediction and update. The
prediction estimates the state quantities for a point in time, 𝑘, based on the
updated value from the previous one, 𝑘 − 1, using the fundamental matrix,
which describes the system’s dynamics to predict the values over the sample
rate 𝑡𝑠:

𝑥̂−𝑘 = Φ𝑘𝑥̂
+
𝑘−1 +𝐺𝑘𝑢𝑘−1 (4.53)

𝑃−𝑘 = Φ𝑘 · 𝑃+
𝑘−1 · Φ

𝑇
𝑘 +𝑄𝑘 (4.54)

(4.55)

𝑥̂−𝑘 is the predicted state vector at 𝑘 and 𝑃−𝑘 the covariance matrix of the
prediction. In the next step, the predicted quantities are updated via a
measurement 𝑧𝑘.

𝐾𝑘 = 𝑃−𝑘 ·𝐻
𝑇 · (𝐻 · 𝑃−𝑘 ·𝐻

𝑇 +𝑅𝑘)−1 (4.56)
𝑃+

𝑘 = (𝐸 −𝐾𝑘 ·𝐻) · 𝑃−𝑘 (4.57)
𝑥̂+

𝑘 = 𝑥̂−𝑘 +𝐾𝑘(𝑧𝑘 −𝐻𝑥̂−𝑘 −𝐻𝐺𝑘𝑢𝑘−1) (4.58)
𝑥̂+

𝑘 = 𝑥̂−𝑘 +𝐾𝑘 · 𝑖𝑘 (4.59)

The covariance matrix after the update is 𝑃+
𝑘 , while 𝑥̂+

𝑘 holds the updated
state quantities. The matrix 𝐾𝑘 is called Kalman gain matrix, and 𝑖𝑘 is the
innovation.



4.4 State Quantity Determination 91

The general equations for the linear Kalman filter are now used for the state
space equations to estimate the angular rate, 𝜔⃗, and angular acceleration, ˙⃗𝜔,
as follows:

𝑥 =
[︀
𝜔𝑥 𝜔𝑦 𝜔𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧

]︀𝑇 (4.60)

𝑢 =
[︀
0 0 0

]︀𝑇 (4.61)

𝑓(𝑥) =
∫︁
𝜔̇ (4.62)

ℎ(𝑥) = 𝑥 (4.63)

From Equation 4.60 to Equation 4.62, it follows that

𝐹 =
[︂
0 𝐸
0 0

]︂
(4.64)

and Equation 4.63 provides
𝐻 = 𝐸 (4.65)

For the implementation, Equation 4.64 must be inserted into Equation 4.52.
Subsequently, Equation 4.53 to Equation 4.59 may be used.

To reduce the computational effort, this filter should directly process the
sensor raw data, and the filter outputs may then be used for further on-board
calibration or merging such as the technique discussed in Section 4.4.1.

4.4.3 Filtering Sun Vector Measurements

There is a large variety of sensors from very simple solar cells [80] to more
complex digital CMOS sensors [81]. While the latter provide a high accuracy
with low noise and are less subject to Earth albedo disturbances, a filter may
reduce the relatively large noise of the former. Moreover, disturbances like
albedo or reflections from the satellite structure may be detected internally
when comparing the measurement with a Kalman filter’s internal prediction
value. Finally, the prediction provides an estimate for the Sun vector even
when no measurement data is present during an eclipse.

Since the inertial position of the Sun does not change significantly over time
when compared to one control cycle, the filter for Sun vector measurements
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may be implemented as a linear Kalman filter, and hence the general equations
from the previous section are applied and only the state space equation and
the calculation of the fundamental matrix need to be rewritten.

The state space equations simply include the body-fixed Sun vector, 𝑠⃗:

𝑥 =
[︀
𝑠𝑥 𝑠𝑦 𝑠𝑧

]︀𝑇 (4.66)

𝑢 =
[︀
0 0 0

]︀𝑇 (4.67)
ℎ(𝑥) = 𝑥 (4.68)

To determine the fundamental matrix, Φ, the differential equation for the
temporal change of a vector, 𝑣⃗, measured in body frame subject to the angular
rate of the spacecraft is required:

˙⃗𝑣𝑀𝑂𝐼 = ˙⃗
𝑇 · 𝑣⃗𝑇 𝑂𝐷 + 𝑇 · ˙⃗𝑣𝑇 𝑂𝐷 (4.69)

With regard to the duration of one control cycle, the measured vector varies
only to a very small extent in the inertial frame, so that the right part of the
right hand side of Equation 4.69 may be neglected and it follows that [82]:

˙⃗𝑣𝑀𝑂𝐼 =

⎡⎣ 0 𝜔𝑧 −𝜔𝑦

−𝜔𝑧 0 𝜔𝑥

𝜔𝑦 −𝜔𝑥 0

⎤⎦ · 𝑣⃗𝑇 𝑂𝐷 (4.70)

= −𝜔⃗𝑀𝑂𝐼 × 𝑣𝑀𝑂𝐼 (4.71)

Since the applied control torque is constant within one control cycle, the
angular rate is assumed to be constant when neglecting the disturbance torques.
Therefore, the fundamental matrix may be determined from Equation 4.71.
To determine the fundamental matrix, the inverse Laplace transformation is
applied (cf. Equation 4.51):

(𝑠 · 𝐸 − 𝐹 ) = 1
𝑐
·

⎛⎝𝐸 · 𝑠2 + 𝑆(𝜔⃗) · 𝑠+

⎡⎣ 𝜔2
𝑥 𝜔𝑥𝜔𝑦 𝜔𝑥𝜔𝑧

𝜔𝑥𝜔𝑦 𝜔2
𝑦 𝜔𝑦𝜔𝑧

𝜔𝑥𝜔𝑧 𝜔𝑦𝜔𝑧 𝜔2
𝑧

⎤⎦⎞⎠ (4.72)

with
𝑐 = 𝑠3 + 𝑠𝜔2 (4.73)
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and

𝑆(𝜔⃗) =

⎡⎣ 0 𝜔𝑧 −𝜔𝑦

−𝜔𝑧 0 𝜔𝑥

𝜔𝑦 −𝜔𝑥 0

⎤⎦ (4.74)

as the skew-symmetric matrix of the angular rate 𝜔⃗.

The transformation to time space gives:

Φ(𝑡− 𝑡0) = 𝐸 · 𝑐1 + 𝑆(𝜔⃗) · 𝑠+

⎡⎣ 𝜔2
𝑥 𝜔𝑥𝜔𝑦 𝜔𝑥𝜔𝑧

𝜔𝑥𝜔𝑦 𝜔2
𝑦 𝜔𝑦𝜔𝑧

𝜔𝑥𝜔𝑧 𝜔𝑦𝜔𝑧 𝜔2
𝑧

⎤⎦ · 𝑐2 (4.75)

with

𝑐1 = cos(𝜔𝑡)

𝑐2 = cos(𝜔𝑡)− 1
𝜔2

𝑠 = sin(𝜔𝑡)
𝜔

For small angles, Equation 4.75 may be linearized (sin(𝜔𝑡) = 𝜔𝑡, cos(𝜔𝑡) = 1),
which results in:

Φ(𝑡− 𝑡0) = Φ𝑘 = 𝐸 + 𝑆(𝜔⃗) · (𝑡− 𝑡0) (4.76)

Just like in the previous section, the fundamental matrix Φ and the observation
matrix 𝐻 are then used in Equation 4.53 to Equation 4.59 to implement the
linear Kalman filter.

4.4.4 Filtering Magnetic Field Measurements

Magnetic field sensors are widely used in pico- and nanosatellites [8] for
two different reasons: to determine the spacecraft’s attitude from vector
observations (cf. Section 4.4.6) and also as an input for attitude control
using magnetic torquers (cf. Section 4.5.6). Hence a good knowledge of
the magnetic field vector benefits both attitude knowledge and attitude
control accuracy directly. However, the sensors are subject to noise, but also
disturbances caused by the satellite’s residual dipole.
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Unlike the inertial Sun position, however, the inertial geomagnetic field changes
drastically over one orbit. Therefore, the linear Kalman filter presented in the
last section is not applicable and an extended Kalman filter must be used.

For non-linear state equations, the state space formulation is defined as

𝑥̇(𝑡) = 𝑓(𝑥) + 𝑤 (4.77)
𝑧(𝑡) = 𝐻𝑥+ 𝑣 (4.78)

The system matrix 𝐹 and the observation matrix 𝐻 are determined via partial
differentiation:

𝐹 = ∂𝑓(𝑥)
∂𝑥

⃒⃒⃒⃒
𝑥=𝑥̂

(4.79)

𝐻 = ∂ℎ(𝑥)
∂𝑥

⃒⃒⃒⃒
𝑥=𝑥̂

(4.80)

(4.81)

To determine the fundamental matrix, the Taylor series already described in
Equation 4.52 may be used. The prediction of the state quantities is performed
via the non-linear differential equation:

𝑥̄−𝑘 = 𝑥̄+
𝑘−1 + ˙̄𝑥+

𝑘−1𝑡𝑠 (4.82)

with
˙̄𝑥+

𝑘−1 = 𝑓(𝑥̄+
𝑘−1) (4.83)

The state space equation for the magnetic field sensors is given in the following
equations. It is similar to the one for the Sun vector filtering from the previous
section, and hence the fundamental matrix is the same.

𝑥 =
[︀
𝑏𝑥 𝑏𝑦 𝑏𝑧

]︀𝑇 (4.84)

𝑢 =
[︀
0 0 0

]︀𝑇 (4.85)
ℎ(𝑥) = 𝑥 (4.86)

For this application, the prediction vector from Equation 4.82 is:

𝑥̄−𝑘 = 𝑏̄𝑆𝐴𝑇,𝑘 = 𝑞𝑆𝐴𝑇←𝑇 𝑂𝐷,𝑘 ⊗ 𝐵̄𝑇 𝑂𝐷,𝑘 (4.87)



4.4 State Quantity Determination 95

Here, 𝐵⃗𝑇 𝑂𝐷 is the inertial vector estimated by the IGRF model, while
𝑞𝑆𝐴𝑇←𝑇 𝑂𝐷 is the estimated quaternion stating the attitude of the satel-
lite. It needs to be noted that the accuracy of the reference model affects the
accuracy of the filter output. As both reference models are further subject
to the satellite’s position, the accuracy of the orbit determination must be
considered as well.

4.4.5 Kalman Filter for Angular Rate Estimation

Apart from the Kalman filter for angular rate measurements based on the
assumption of constant acceleration during one control cycle presented earlier
in Section 4.4.2, there is a different way to formulate the filter equations.
This time, the state space equations are taken from the equation of motion
for the satellite’s dynamics (Equation 4.19). When used subsequently after
the other Kalman filter, the effect is rather small, and moreover the quality
of the filtering depends also on the knowledge of the applied torque (cf.
Section 4.5.10). However, the filter equations are also useful to predict the
angular rate, which is presented later in Section 4.4.9.

The Kalman filter equations are:

𝑥 =
[︀
𝜔𝑥 𝜔𝑦 𝜔𝑧

]︀𝑇 (4.88)

𝑢 =
[︀
𝜏𝑥 𝜏𝑦 𝜏𝑧

]︀𝑇 (4.89)
𝑓(𝑥) = −𝜔⃗ × (𝐼 · 𝜔⃗) (4.90)

𝑔(𝑢) = 𝜏

𝐼
(4.91)

ℎ(𝑥) = 𝑥 (4.92)

The partial derivative of Equation 4.90 and Equation 4.92 gives

𝐹 =

⎡⎢⎣ 0 −𝜔𝑧 · 𝐼𝑧−𝐼𝑦

𝐼𝑥
−𝜔𝑦 · 𝐼𝑧−𝐼𝑦

𝐼𝑥

−𝜔𝑧 · 𝐼𝑥−𝐼𝑧

𝐼𝑦
0 −𝜔𝑥 · 𝐼𝑥−𝐼𝑧

𝐼𝑦

−𝜔𝑦 · 𝐼𝑦−𝐼𝑥

𝐼𝑧
−𝜔𝑥 · 𝐼𝑦−𝐼𝑥

𝐼𝑧
0

⎤⎥⎦ (4.93)

and
𝐻 = 𝐸. (4.94)
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Moreover, the input matrix is

𝐺 = 𝐼−1. (4.95)

The state prediction uses Equation 4.90:

𝑥̄−𝑘 = 𝑥̄+
𝑘−1 + 1

𝐼

[︀
𝜏𝑘 − 𝑥̄+

𝑘−1 × (𝐼 · 𝑥̄+
𝑘−1)

]︀
· 𝑡𝑠 (4.96)

4.4.6 Attitude Estimation from Vector Observations

If an ADCS does not include a star tracker, the spacecraft’s attitude may
also be estimated from at least two vector observations. This results in an
over-determined set of equations, which can be solved by a least-squares
approach. In 1965, Wahba [83] first formulated the equation for the loss
function, 𝐿, thereafter called Wahba’s problem:

𝐿(𝐴) = 1
2

𝑛∑︁
𝑖=1

𝑤𝑖

⃒⃒⃒⃗
𝑏𝑖 −𝐴 · 𝑟⃗𝑖

⃒⃒⃒
(4.97)

where 𝑏⃗𝑖 is a vector in the body fixed frame and 𝑟⃗𝑖 the corresponding reference
vector in the inertial system. All vectors are unit vectors and represent a
direction (e. g. geomagnetic field or Sun direction). 𝐴 is the spacecraft’s
orientation as DCM and 𝑤𝑖 is the weight of the measurement 𝑖. All weights
𝑖 = 1..𝑛 for 𝑛 ∈ N sum up to a value of one.

Note that Equation 4.97 uses the original symbols from [83], which are not to
be confused with the usage of 𝑏⃗, 𝑟⃗ and 𝐴 in the rest of this thesis.

Davenport found out that expressing the direction cosine matrix 𝐴 as quater-
nion leads to an eigenvalue problem of the form [72]:

𝐾 · 𝑞𝑜𝑝𝑡 = 𝜆𝑚𝑎𝑥 · 𝑞𝑜𝑝𝑡 (4.98)
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with

𝐾 =
[︂
𝑆 − 𝐸 · 𝑡𝑟(𝐵) 𝑍

𝑍𝑇 𝑠

]︂
(4.99)

𝐵 =
𝑛∑︁

𝑖=1
𝑤𝑖 · 𝑏⃗𝑖 · 𝑟⃗𝑇

𝑖 (4.100)

𝑍 =
𝑛∑︁

𝑖=1
𝑤𝑖 · 𝑏⃗𝑖 × 𝑟⃗𝑖 (4.101)

𝑆 = 𝐵 +𝐵𝑇 (4.102)
𝑠 = 𝑡𝑟(𝐵) (4.103)

and 𝑡𝑟(𝐵) as the trace of the matrix 𝐵. The optimal quaternion estimate, 𝑞𝑜𝑝𝑡,
is the eigenvector to the maximum eigenvalue, 𝜆𝑚𝑎𝑥. There are several robust
algorithms to solve an eigenvalue problem, yet all of them are computationally
demanding.

A practical solution for Davenport’s problem came with the observation of M.
D. Shuster [66], who stated that for small values of the loss function 𝐿, the
maximum eigenvalue is close to the sum of the weights:

𝜆𝑚𝑎𝑥 ≈ 𝜆0 =
𝑛∑︁

𝑖=1
𝑤𝑖 (4.104)

Using 𝜆0 as an initial value, a few Newton-Raphson iterations of a characteristic
equation formulated by Shuster provide a sufficient approximation for 𝑞𝑜𝑝𝑡

[66].

Presented in 1981, QUEST is the most frequently used algorithms for attitude
determination from vector observations. Following alternative algorithms, such
as FOAM [84] or ESOQ [85], all base on Equation 4.104, but use different
characteristic equations for the Newton-Raphson iteration. A detailed review
of the different methods is given by Markley and Mortari in [86].

For the particular case of exactly two measurement sources, there is a vast
reduction of the computational effort for all mentioned methods and all of
them satisfy the same condition for 𝜆𝑚𝑎𝑥 [66], [86]:

𝜆𝑚𝑎𝑥 =
√
𝑎+ 𝑏. (4.105)
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with

𝑎 = 𝑤2
1 + 𝑤2

2 (4.106)
𝑏 = 2 · 𝑤1 · 𝑤2 · [(⃗𝑏1 · 𝑏⃗2) · (𝑟⃗1 · 𝑟⃗2) + |⃗𝑏1 × 𝑏⃗2| · |𝑟⃗1 × 𝑟⃗2|] (4.107)

According to FOAM, the optimal attitude matrix can be determined directly
[86]:

𝐴𝑜𝑝𝑡 = 𝑏⃗3 · 𝑟⃗𝑇
3 + 𝑎1

𝜆𝑚𝑎𝑥
· [⃗𝑏1 · 𝑟⃗𝑇

1 + (⃗𝑏1 × 𝑏⃗3) · (𝑟⃗1 × 𝑟⃗3)𝑇 ]

+ 𝑎2

𝜆𝑚𝑎𝑥
· [⃗𝑏2 · 𝑟⃗𝑇

2 + (⃗𝑏2 × 𝑏⃗3) · (𝑟⃗2 × 𝑟⃗3)𝑇 ]
(4.108)

with

𝑏⃗3 = 𝑏⃗1 × 𝑏⃗2

|⃗𝑏1 × 𝑏⃗2|
(4.109)

𝑟⃗3 = 𝑟⃗1 × 𝑟⃗2

|𝑟⃗1 × 𝑟⃗2|
(4.110)

This method is not applicable if 𝑏⃗1 and 𝑏⃗2 are parallel or antiparallel.

4.4.7 Kalman Filter for Attitude Estimation

Kalman filters are widely used for attitude determination of spacecrafts.
Although all attitude representations (cf. Section 4.1) may be used in the filter
equations in principle, the implementations may vary due to their different
characteristics. The use of a DCM brings a high calculation effort and further
requires the consideration of the redundant matrix elements. Euler angles are
also inefficient due to the trigonometric functions and also bring singularities
(due to gimbal lock) to deal with [87]. Here, quaternions provide a calculation-
efficient alternative, since their use does not involve trigonometric functions
and even linear state equations can be used.

Nevertheless, the definition of the unit quaternion entails the dependency
of the four quaternion elements. This leads to a singular covariance which
might result in the filter’s instability due to rounding errors. This problem
is discussed in detail in [87] and different solutions are proposed. Here, the
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multiplicative extension of the Kalman filter is formulated, as done previously
in [88], [89].

This approach does not consider the deviation of the attitude as arithmetic
difference of the real and estimated quaternion but by their product which
represents the error quaternion. A second state quantity of the filter is the
bias of the angular rate measurement, 𝜔⃗𝐵 , which makes the filter especially
useful when rate sensors with high bias such as MEMS gyroscopes are used.
The state vector is defined as follows:

𝑥 =
[︀
𝛿𝑞 𝜔𝐵

]︀
(4.111)

with
𝛿𝑞 = 𝑞−1 ⊗ 𝑞 (4.112)

The angular rate sensor is modelled by

𝜔𝑚 = 𝜔 − 𝜔𝐵 − 𝜂1 (4.113)
𝜔̇𝐵 = 𝜂2 (4.114)

with the uncorrelated white noise processes 𝜂1 and 𝜂2.

The system matrix is

𝐹 =
[︂
[𝜔𝑚 − 𝜔𝐵 ]𝑇× − 1

2𝐸
0 0

]︂
(4.115)

and the input matrix

𝐺 =
[︂
− 1

2𝐸 0
0 0

]︂
(4.116)

The matrix of the process noise is [90]

𝑄 =
[︂
(𝜂2

1 · 𝑡𝑠 + 1
3 · 𝜂

2
2 · 𝑡3𝑠) · 𝐸 − 1

2𝜂
2
2 · 𝑡2𝑠 · 𝐸

− 1
2𝜂

2
2 · 𝑡2𝑠 · 𝐸 𝜂2

2 · 𝑡𝑠 · 𝐸

]︂
(4.117)

Here, [𝑣]× is the skew-symmetric matrix which is equivalent to the cross
product with a vector 𝑣⃗, and 𝑡𝑠 is the sampling rate. The prediction is
achieved by Equation 4.120:

𝑞−𝑘 = Θ𝑞+
𝑘−1 (4.118)

𝜔𝐵
−
𝑘 = 𝜔𝐵

+
𝑘−1 (4.119)

𝑃−𝑘 = Φ𝑘𝑃
+
𝑘−1Φ𝑇

𝑘 +𝐺𝑄𝐺𝑇 (4.120)
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The closed-loop solution for the prediction of the quaternion via the matrix Θ
is presented in [72] and, amongst others, used in [30]:

𝑞(𝑡𝑛+1) = 𝑒
1
2 Ω𝑛𝑡𝑠𝑞(𝑡𝑛) (4.121)

Ω𝑛 is the well-known angular rate matrix (Equation 4.24) at time 𝑡𝑛. Assuming
a constant angular rate over 𝑡𝑠, the calculation effort may be reduced by using
the average value of the control cycle, Ω̄.

Ω̄ =

⎡⎢⎢⎣
0 −𝜔̄𝑥 −𝜔̄𝑦 −𝜔̄𝑧

𝜔̄𝑥 0 𝜔̄𝑧 −𝜔̄𝑦

𝜔̄𝑦 −𝜔̄𝑧 0 𝜔̄𝑥

𝜔̄𝑧 𝜔̄𝑦 −𝜔̄𝑥 0

⎤⎥⎥⎦ (4.122)

and
𝜔̄ =

√︁
𝜔̄2

𝑥 + 𝜔̄2
𝑦 + 𝜔̄2

𝑧 (4.123)

follow according to [72]:

𝑞(𝑡𝑛+1) =
[︂
cos

(︂
𝜔̄ · 𝑡𝑠

2

)︂
· 𝐸 + 1

𝜔̄
· sin

(︂
𝜔̄ · 𝑡𝑠

2

)︂
· Ω̄𝑛

]︂
· 𝑞(𝑡𝑛) (4.124)

The error of the approximation in Equation 4.121 is in the order of 𝑡3𝑠, and it
vanishes completely if 𝜔⃗𝑛 and ˙⃗𝜔𝑛 are parallel. Therefore, the approximation
corresponds to the closed loop solution even if the angular rate changes over
𝑡𝑠, provided that the axis of rotation is constant [30].

The estimation update is performed differently for the quaternion and the
attitude bias:

𝑞+
𝑘 = 𝑞−𝑘 ⊗

[︂√︀
1− |𝛿𝑞+|2
𝛿𝑞+

]︂
(4.125)

𝜔𝐵
+
𝑘 = 𝜔𝐵

+
𝑘−1 + Δ𝜔+

𝐵 (4.126)
(4.127)

The formulation of the observation matrix, 𝐻𝑘, and the innovation, 𝑖𝑘, depends
on the measured quantities and hence on the used sensors. Moreover, different
approaches to calculate the innovation may be used. Here, the innovation is
formed via the cross-product of a vector quantity measured in the satellite
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frame and its inertial reference. This approach is also used in [91], [92]
and brings the advantage that both direction and the norm of the error are
considered. The innovation is given by [92]:

𝑖𝑘 =
[︃
𝑏× 𝐵⃗
𝑠⃗× 𝑆⃗

]︃
(4.128)

and the observation matrix is

𝐻𝑘 = 2 ·
[︂
𝐻𝑏 0
𝐻𝑠 0

]︂
(4.129)

with

𝐻𝑏 =

⎡⎣ 𝑏2
𝑧 + 𝑏2

𝑦 −𝑏𝑥 · 𝑏𝑦 −𝑏𝑥 · 𝑏𝑧

−𝑏𝑥 · 𝑏𝑦 𝑏2
𝑥 + 𝑏2

𝑧 −𝑏𝑦 · 𝑏𝑧

−𝑏𝑥 · 𝑏𝑧 −𝑏𝑦 · 𝑏𝑧 𝑏2
𝑥 + 𝑏2

𝑦

⎤⎦ (4.130)

𝐻𝑠 =

⎡⎣ 𝑠2
𝑧 + 𝑠2

𝑦 −𝑠𝑥 · 𝑠𝑦 −𝑠𝑥 · 𝑠𝑧

−𝑠𝑥 · 𝑠𝑦 𝑠2
𝑥 + 𝑠2

𝑧 −𝑠𝑦 · 𝑠𝑧

−𝑠𝑥 · 𝑠𝑧 −𝑠𝑦 · 𝑠𝑧 𝑠2
𝑥 + 𝑠2

𝑦

⎤⎦ (4.131)

The vectors 𝑏⃗ and 𝑠⃗ are the body-fixed measurements, while 𝐵⃗ and 𝑆⃗ are
their inertial reference vectors. While there are no measurements available for
the Sun vector during an eclipse, the lower half of 𝐻𝑘 and 𝑖𝑘, respectively,
are set to zero and the attitude is only determinated from geomagnetic field
measurements. The filter may be initialized using the attitude estimation
method described in Section 4.4.6 to shorten the time for the filter to converge.

Star tracker measurements may be used directly in most cases, since modern
star trackers already provide full lost-in-space solutions in every cycle with
high accuracy. Nevertheless, the use of the Kalman filter is still helpful to
determine the angular rate measurement bias. Here, the innovation is analog
to Equation 4.112 and the observation matrix is simply:

𝐻 =
[︀
𝐸 0

]︀
(4.132)

4.4.8 Averaging Quaternions

If the ADCS has more than one star tracker, the measurements of all available
sensors must be averaged. In doing so, one has to consider different sources
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of disturbance. On the one hand, the relative orientation of the star trackers
may vary over time, due to displacements of the structure induced by thermal
influences. These variations may result in an error with a magnitude of several
ten arc seconds, even if the structural design is done carefully [93]. On the
other hand, a star tracker has anisotropic noise distribution. In fact, the
measurements along the boreside axis of the sensor are 3–5 times less accurate
than across this axis [30]. Therefore, averaging the star tracker quaternions
without taking the anisotropy into account may even worsen the attitude
knowledge [93]. Cheng, Markley, Crassidis, et al. [94] presents an algorithm
for the weighted averaging of quaternions via a loss function. This method
further leads, analogously to the Q-method [86], to the numerically intense
solution of an eigenvalue problem, which may be approximated using the
QUEST method presented in Section 4.4.6. However, these methods induce a
singularity of the solution for certain rotations, whose circumvention brings
more calculation load.

As an alternative, an algorithm formulated by Romans [95] is less compu-
tationally intense and is applicable for small deviations of the star tracker
measurements. Therefore, this algorithm was also used by Yoon for the TET-1
attitude control [30] and is adapted for TUBiX20. A detailed description of
the algorithm can be found in [30], [95].

4.4.9 State Quantity Prediction

As described in Section 3.3.2, the state prediction provides the forecast for
the state quantities referring to the end of the control cycle. There are
only a few state quantities which depend on the spacecraft’s dynamics and
kinematics, namely attitude and all body-fixed vector information. Apart from
the spacecraft’s position, all other state quantities may either be considered
constant over the control cycle (such as actuator outputs) or are inertial
quantities such as magnetic field and Sun position. The latter may hence
be calculated as by the same environment models as in the state prediction
phase, while using the control cycle end as input time. The prediction of the
position depends on the source of the estimated value; if an orbit propagation
algorithm is used, the same rule as for the environment models applies and the
same algorithm may be used. If a GPS receiver provides high-accuracy position
information, the use of a coarse orbit propagation algorithm may be much
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more inaccurate than just using the GPS value, hence a high-precision orbit
model must be utilized. In the following, the prediction of the spacecraft’s
attitude and vector information will be presented. Due to its complexity, a
prediction of the position is omitted.

As will be seen in the following sections, the prediction respective step from
the according Kalman filter may be used for state prediction.

Attitude Prediction

The equation to predict the attitude for one control cycle, Equation 4.124,
was already presented in Section 4.4.7:

𝑞(𝑡𝑘+1) =
[︂
cos

(︂
𝜔̄ · 𝑡𝑠

2

)︂
· 𝐸 + 1

𝜔̄
· sin

(︂
𝜔̄ · 𝑡𝑠

2

)︂
· Ω̄𝑛

]︂
· 𝑞(𝑡𝑘) (4.133)

Angular Rate Prediction

Once again, the prediction equation can be obtained from the Kalman filter
algorithm. In this case, Equation 4.96 states:

𝜔⃗(𝑡𝑘+1) = 𝜔⃗(𝑡𝑘) + 1
𝐼

[𝜏⃗𝑘 − 𝜔⃗(𝑡𝑘)× (𝐼 · 𝜔⃗(𝑡𝑘))] · 𝑡𝑠 (4.134)

Body-fixed Vector Prediction

Finally, the prediction of body-fixed vector quantities may be derived from
the prediction step of the linear Kalman filter presented in Section 4.4.3.
The differential equation for the shift of a body-fixed vector is according to
Equation 4.71:

˙⃗𝑣𝑘 = −𝜔⃗𝑘 × 𝑣⃗𝑘 (4.135)

which makes the vector quantity prediction:

𝑣⃗𝑘+1 = 𝑣⃗𝑘 + ˙⃗𝑣𝑘 · 𝑡𝑠 (4.136)
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4.5 Attitude Control

This section presents different techniques for attitude control.

4.5.1 State Control Error

The attitude error is the relative deviation of the actual orientation regarding
the target orientation as expressed by Sidi [73]:

𝑞𝐸 = 𝑞−1
𝑆 ⊗ 𝑞𝑇 , (4.137)

with 𝑞𝐸 , 𝑞𝑇 und 𝑞𝑆 as attitude error, target attitude and actual attitude,
respectively. Since all control laws are formulated with regard to the MOI
coordinate system, Equation 4.137 is rewritten as

𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅 = 𝑞𝑀𝑂𝐼←𝑇 𝑂𝐷 ⊗ 𝑞𝑇 𝑂𝐷←𝑇 𝐴𝑅

= 𝑞−1
𝑇 𝑂𝐷←𝑀𝑂𝐼 ⊗ 𝑞𝑇 𝑂𝐷←𝑇 𝐴𝑅 (4.138)

Together with the angular rate error, 𝜔⃗𝑇 𝐴𝑅
𝑀𝑂𝐼 , the state error is obtained as

𝑆𝐸 =
[︂
𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅

𝜔⃗𝑇 𝐴𝑅
𝑀𝑂𝐼

]︂
(4.139)

and the target state is

𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅 =
[︀
1 0 0 0

]︀𝑇 (4.140)

𝜔⃗𝑇 𝐴𝑅
𝑀𝑂𝐼 =

[︀
0 0 0

]︀𝑇 (4.141)

This is also the working point for the linearization of the dynamics equation
(cf. Equation 4.30), which is an important constraint for the stability of the
control loop. Based on the linearization of the quaternion for the working
point, the error state from Equation 4.139 is further reduced to:

𝑆𝐸
∼=

[︂̃︀𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅

𝜔⃗𝑇 𝐴𝑅
𝑀𝑂𝐼

]︂
(4.142)

However, the spacecraft shall be aligned with the target attitude according to
its geometry, e. g. the boreside axis of a camera or the cone of an antenna,
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and hence the relative orientation of the SAT frame to the MOI frame must
be taken into account for the calculation of the desired orientation. The target
state of the spacecraft depends on the attitude control mode. In case of a
desired nadir orientation, the SAT coordinate frame must be aligned with the
orbit-fixed LVLH coordinate frame. Consequently, the relative orientation of
the TAR frame to the LVLH frame is the same as the orientation of the SAT
frame to the MOI frame:

𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅 = 𝑞𝑆𝐴𝑇←𝐿𝑉 𝐿𝐻 (4.143)

To obtain the attitude error for pointing towards nadir, the orientation of
the SAT frame with regard to the TOD frame provided by the state quantity
determination (cf. Table 3.1) is multiplied with the orientation of the LVLH
frame with regard to the TOD frame:

𝑞𝐿𝑉 𝐿𝐻←𝑆𝐴𝑇 = 𝑞𝐿𝑉 𝐿𝐻←𝑇 𝑂𝐷 ⊗ 𝑞𝑇 𝑂𝐷←𝑆𝐴𝑇 (4.144)

The latter may be derived from Equation B.11 in the appendix, while further
using Equation 4.17 and Table 4.1.

For the second part of the state error, the angular rate, however, the MOI
frame is used. Here, the control error results from the angular rate provided
by the state determination, 𝜔⃗𝑆𝐴𝑇 , and furthermore the relative rotation of
the LVLH frame with regard to the SAT frame:

𝜔⃗𝐿𝑉 𝐿𝐻
𝑀𝑂𝐼 = 𝑞𝑀𝑂𝐼←𝑆𝐴𝑇⊙ (4.145)

with

𝜔0 = 2𝜋
𝑇

(4.146)

𝑞𝑀𝑂𝐼←𝐿𝑉 𝐿𝐻 = 𝑞𝑀𝑂𝐼←𝑆𝐴𝑇 ⊗ 𝑞𝑆𝐴𝑇←𝐿𝑉 𝐿𝐻 (4.147)

and 𝑇 as the orbital period. Once again, the operator ⊗ stands for the multi-
plication of quaternions (Equation 4.7), while ⊙ stands for the transformation
of a vector via a quaternion (Equation 4.10).

4.5.2 Quaternion Feedback Control

A straightforward control law for attitude control is given by Sidi [73] as

𝜏⃗𝑐 = 2 ·𝐾𝑃 · 𝑞𝐸𝑠 · 𝑞𝐸𝑣 +𝐾𝐷 · 𝜔⃗𝐸 (4.148)
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In compliance with Equation 4.137, 𝑞𝐸 is the attitude error and 𝜔⃗𝐸 the angular
rate error. 𝐾𝑃 and 𝐾𝐷 are the proportional gain and the derivative gain,
respectively.

Using the notation of Equation 4.142 and considering the sign of the quaternion
notation (cf. Equation 4.29), the control law can be rephrased as

𝜏⃗𝑐 = 2 ·𝐾𝑃 · ̃︀𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅𝑠
· ̃︀𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅𝑣

−𝐾𝐷 · 𝜔𝑇 𝐴𝑅
𝑀𝑂𝐼 (4.149)

4.5.3 State Space Control

This section will introduce a state space control law for the linearized state
error formulation given in Equation 4.142. The optimal state space controller
considers time response as well as energy consumption by minimizing the
criterion 𝐽 :

𝐽 =
∫︁ ∞

0
(𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢)𝑑𝑡 (4.150)

The control feedback matrix, 𝐾, is determined by solving the Ricatti equation,
𝑆 [96]:

𝑆𝐴+𝐴𝑇𝑆 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 +𝑄 = 0 (4.151)

and then obtaining
𝐾 = 𝑅−1𝐵𝑇𝑆 (4.152)

Given the state error from Equation 4.142, the control torque, 𝜏⃗ 𝑐, may then
be calculated as

𝜏⃗𝑐 = −𝐾 ·
[︂̃︀𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅

𝜔𝑇 𝐴𝑅
𝑀𝑂𝐼

]︂
(4.153)

4.5.4 Detumbling with a B-Dot Algorithm

The most famous algorithm to detumble a spacecraft, e. g. after separation, is
the so-called B-Dot controller. Here, the derivative of the body-fixed magnetic
field is taken as feedback for the controller input:

𝑚⃗𝑀𝑂𝐼 = − 𝐾

‖⃗𝑏‖2
· ˙⃗𝑏𝑀𝑂𝐼 (4.154)
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As a value for the controller gain, 𝐾, the formula

𝐾 = 4 · 𝑛 · (1 + sin(𝑖)) · 𝐼𝑚𝑖𝑛 (4.155)

produced good results in the functional tests on an air bearing testbed for the
TechnoSat satellite (cf. Section 5.1). Here, 𝑖 is the inclination of the orbit,
𝐼𝑚𝑖𝑛 is the minimum value of the principal moments of inertia, and 𝑛 is the
mean motion of the orbit in rad/s.

4.5.5 Detumbling with a Cross-Product Algorithm

A more elaborate approach is given in Equation 4.156 [97]. Since it takes
both the magnetic field and the angular rate of the satellite into account,
the performance is better than the B-Dot controller, but in turn it needs two
different types of input.

𝑚⃗𝑀𝑂𝐼 = − 𝐾

‖⃗𝑏‖2
· 𝑏⃗𝑀𝑂𝐼 × 𝜔⃗𝑀𝑂𝐼 (4.156)

The controller gain, 𝐾, is the same as the one from the B-Dot controller.

4.5.6 Attitude Control Using Magnetic Torquers

The relation between the control torque, 𝜏⃗ 𝑐, magnetic dipole, 𝑚⃗, and the
geomagnetic field, 𝑏⃗, is given in Equation 4.157 [72], [73].

𝜏⃗𝑐 = 𝑚⃗× 𝑏⃗ (4.157)

It is clearly observable, that a torque can only be generated which is per-
pendicular to the body-fixed geomagnetic field, 𝜏⃗⊥, which leaves an error
𝜏⃗𝐸 :

𝜏⃗𝐸 = 𝜏⃗𝑐 − 𝜏⃗⊥ (4.158)

To adapt the quaternion feedback control law from Section 4.5.2 to this
context, it is combined with the cross-product detumbling algorithm from
Section 4.5.5. Similar to Equation 4.149, the control magnetic dipole consists
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of two parts for the state error components from Section 4.5.1: attitude error
and angular rate error.

𝑚⃗𝑀𝑂𝐼 = 1
‖⃗𝑏‖2

[𝐾𝑃 ·𝑚𝑞 −𝐾𝐷 ·𝑚𝜔] (4.159)

The angular rate error part is similar to the detumbling control law from the
previous section, except that the angular rate error is used and not the actual
angular rate.

𝑚⃗𝜔 = 𝑏⃗𝑀𝑂𝐼 × 𝜔⃗𝑇 𝐴𝑅
𝑀𝑂𝐼 (4.160)

The attitude error part combines the cross-product approach with the quater-
nion feedback control from Section 4.5.2, where the feedback is calculated
from the scalar part and the vector part of the attitude error.

𝑚⃗𝑞 = 𝑏⃗𝑀𝑂𝐼 × [̃︀𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅𝑠
· ̃︀𝑞𝑀𝑂𝐼←𝑇 𝐴𝑅𝑣

] (4.161)

Once again, 𝐾 is used for the controller gain. To be able to tune the control
performance, the factor 𝛼 is introduced as

𝐾𝑃 = 𝛼 ·𝐾 (4.162)
𝐾𝐷 = 𝐾 (4.163)

4.5.7 Attitude Control Using Reaction Wheels

Unlike the magnetic torquers, reaction wheels can apply a torque directly
around the desired axis, which is in this case the rotational axis of the motor.
Due to the angular momentum conservation (cf. Equation 4.20), a torque
applied around the axis of one reaction wheel will induce a rotation of the
spacecraft in opposite direction. Hence, for the case of three reaction wheels
whose axes of rotation correspond to the axes of the control torque, the torque
is

𝜏⃗𝑅𝑊 = −𝜏⃗𝑐 (4.164)

To convert this torque into the required angular acceleration, ˙⃗Ω, for each
reaction wheel, the wheel’s inertia is required:

˙⃗Ω𝑅𝑊 = 1
𝐽
𝜏⃗𝑅𝑊 (4.165)

with 𝐽 as the reaction wheel’s inertia and Ω⃗ as their angular rate.
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4.5.8 Reaction Wheel Torque Distribution

To achieve single-failure tolerance, four reaction wheels are used for redundancy.
Usually, the four wheels are arranged in a tetrahedron configuration, so that
if one wheel fails, the remaining three can still create a torque in any arbitrary
direction.

To distribute the control torque from the three-dimensional controller output
to the input torque for the four reaction wheels, Equation 4.166 is used:⎡⎢⎢⎣

𝜏0
𝜏1
𝜏2
𝜏3

⎤⎥⎥⎦ = 𝐴𝑤𝑅 ·

⎡⎣𝜏𝑥

𝜏𝑦

𝜏𝑧

⎤⎦ (4.166)

The inverse transformation, from the wheels’ angular momentum array to the
three-dimensional angular momentum, is given by:

𝐻⃗ = 𝐴𝑤 ·

⎡⎢⎢⎣
𝐻0
𝐻1
𝐻2
𝐻3

⎤⎥⎥⎦ (4.167)

The matrix 𝐴𝑤 may be derived from the reaction wheels’ mounting orientations;
a detailed example is given in [73]. The reverse transformation matrix,
𝐴𝑤𝑅, is slightly more complicated to determine, since Equation 4.166 is an
overdetermined system. Following [72], [73], 𝐴𝑤𝑅 may be calculated from
𝐴𝑤 as

𝐴𝑤𝑅 = 𝐴𝑇
𝑤

(︀
𝐴𝑤 ·𝐴𝑇

𝑤

)︀−1 (4.168)

4.5.9 Reaction Wheel Desaturation

The previous section describes the use of reaction wheels to transfer the
spacecraft’s angular momentum to the reaction wheels and vice-versa by
the use of the angular momentum conservation. However, due to internal
and external disturbances, the overall angular momentum, i. e. the sum
of spacecraft angular momentum and reaction wheels, changes. Since the
environmental disturbance torques (cf. Section 4.3) need to be compensated,
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the angular momentum and hence the rotational rate of the reaction wheels
slowly increases over time. Once the maximal rate is reached, the disturbances
may no longer be compensated and the control loop becomes unstable.

Therefore, the reaction wheels must be desaturated. A common way to achieve
this is to use magnetic torquers or magnetic coils. The formula to determine
the desaturation torque is, similar to Equation 4.157, also based on the cross
product.

𝑚⃗𝐷 = − 𝐾

‖⃗𝑏‖2
· 𝑏⃗𝑀𝑂𝐼 × 𝐻⃗𝑀𝑂𝐼 (4.169)

Once again, 𝐾 is the same as in Equation 4.155. Due to the cross-product
relation between torque, magnetic dipole and magnetic field, the torque error
already described in Equation 4.158 is also existent here. However, in this
case it only affects the performance of the reaction wheels’ desaturation:
if the torque generated by the magnetic torquers is subtracted from the
torque settings for the reaction wheels, reaction wheels and magnetic torquers
practically share the control torque.

𝜏⃗𝑅𝑊 = −(𝜏⃗𝑅𝑊 − 𝑚⃗𝐷 × 𝑏⃗𝑀𝑂𝐼) (4.170)

4.5.10 Applied Torque

Following Section 4.5.6 to Section 4.5.9, the torque which is applied to the
spacecraft results from the torque from the reaction wheel system (RWS) and
the torque from the magnetic torquer system (MTS):

𝜏⃗ = 𝜏⃗𝑅𝑊 𝑆 + 𝜏⃗𝑀𝑇 𝑆 (4.171)

= −𝐴𝑤𝑅 · 𝐽 ·
˙⃗Ω + 𝑚⃗× 𝐵⃗ (4.172)

This information is useful as input in the dynamics equation for the Kalman
filter presented in Section 4.4.5 and hence the angular rate prediction from
Section 4.4.9. Both inputs, Ω⃗ and 𝑚⃗, may be obtained from the telemetry of
the reaction wheels or derived from current measurements for the magnetic
torquers, respectively.



5 Practical Realization of TUBiX20 Attitude
Control System Configurations

This chapter presents the practical realization of the concept for the design and
verification of a flexible attitude control system described in Chapter 3 using
the example of the first two missions based on the TUBiX20 nanosatellite
platform, TechnoSat and TUBIN.

5.1 Basic Attitude Control for the TechnoSat Mission

TechnoSat is the first satellite to be based on the TUBiX20 nanosatellite
platform and was briefly introduced in Section 2.3.4. The mission has the
objectives of [55]

– in-orbit demonstration of novel nanosatellite components

– the development and in-orbit demonstration of the adaptive nanosatellite
platform TUBiX20

The first step of describing the realization of the TechnoSat ADCS will be
to review the requirements defined at the beginning of phase B of the ECSS
life cycle. Since the focus is on requirements which affect the derivation of
a platform configuration according to the concept investigated in this thesis,
irrelevant requirements, e. g. regarding procurement or documentation, are
omitted. The remaining requirements for the TechnoSat ADCS are:

TE-ACS-03 The ADCS design shall be single failure tolerant.

TE-ACS-05 The ADCS must damp an initial angular rate of at least 8 °/s.

TE-ACS-06 During STELLA experiments, the angular rate must not exceed
0.3 °/s.
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TE-ACS-07 During STELLA experiments, STELLA must be pointed into
free space.

TE-ACS-08 During FDA experiments, the ADCS must determine the rela-
tive angular rate with an accuracy of at least 0.1 °/s.

TE-ACS-09 During FDA experiments, the ADCS must not perform active
control.

TE-ACS-10 During reaction wheel system experiments, the ADCS must
not perform active control.

TE-ACS-11 During HISPICO experiments, the ground station must be
within the 3 dB-lobe of the patch antenna for at least 90 s.

TE-ACS-07 and TE-ACS-11 define requirements regarding the attitude of the
satellite during payload experiments. However, the quantification needs to
be derived from these requirements, which is performed in Appendix C. It
is shown that both payloads may be operated when the satellite is pointing
towards nadir. The required pointing accuracy for

– STELLA experiments is 27.9°;

– HISPICO experiments is 34.1°.

5.1.1 Distributed Attitude Control System

Since the required pointing accuracy for all payload experiments are rather
moderate, high-accuracy attitude determination and control is not necessary.
Therefore, the author chose a cost- and energy-efficient concept using vector
observations for attitude estimation and magnetic torquers for attitude control.
Similar to a large majority of pico- and nanosatellites [8], TechnoSat uses
magnetometers, Sun sensors and MEMS gyroscopes as sensors. To meet
the high requirements regarding the knowledge of the angular rate for the
verification of the fluid-dynamic actuator and the reaction wheel system, a
fiber optic rate sensor system composed of three sensors complements the
basic sensor set.
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The Sun sensor design is based on a position sensitive device (PSD) and was
utilized for all satellites of the BEESAT satellite series from 2009 to 2016
(cf. Table A.1 in the appendix). The layout was adapted for TechnoSat to
be put on a common PCB including also the MEMS gyroscopes and the
magnetic field sensor ICs. In the following, these boards are referred to as
integrated sensor board (ISB). Each board contains two sensors of each type.
Consequently, the Sun sensor system is single failure tolerant with two sensors
in every spatial direction, while the magnetic field sensors and gyroscopes
have 12 redundant units. Since their power consumption is not more than
several milli ampere, they may even be operated continuously. This multiple
redundancy offers different benefits:

– even simple techniques such as averaging improve the measurement
accuracy and reduce noise;

– placed on the outer panels, the magnetic field sensors are less subject
to the satellite’s residual dipole;

– with two magnetic field sensors in every spatial direction, the remaining
influence of the residual dipole may be estimated;

– cross-checks of the various measurements allow to identify invalid mea-
surements (cf. Section 4.4.1).

On the other hand, placing the sensors on the outer structure comes with
a disadvantage: the temperature gradient is much higher than inside the
satellite. While the magnetic field sensors’ internal temperature drift correction
is sufficient, the MEMS gyroscopes’ measurements drift up to several degrees
per second. However, a simple two-point calibration leads to a satisfactory
compensation. The only communication bus supported by all sensors is I2C,
which is therefore used on the integrated sensor boards. The bus is also
redundant for single-failure tolerance. Similarly, the redundant drivers for the
magnetic torquers also connect via I2C.

Figure 5.1 shows the TechnoSat ADCS hardware, following the concept of
a distributed system from Section 3.1.1. The integrated sensor boards and
the magnetic torquers are connected directly to the ADCS node. The fiber
optic rate sensors (FORs) are connected to a separate hardware node which
contains all hardware-specific circuitry to trigger the measurements and to
receive the data. Therefore, removing or exchanging this particular sensor
does not interfere with the rest of the ADCS. Moreover, the microcontroller
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Figure 5.1: Distributed ADCS Hardware for TechnoSat

on this interface node may already pre-process the high-frequent sensor data
(cf. Section 4.4.2) and only transmit a filtered solution to the core application
hosted on the ADCS node. Consequently, the network of software application
also separates the different device types, as shown in Figure 5.2. The ISB
manager application operates the magnetic field sensors, gyroscopes and the
Sun sensor system, while the magnetic torquer system (MTS) is controlled
via a separate application. The core application for state determination and
control is the only hardware-independent building block.

ADCS node

FOR node

FOR 
Manager

ISB 
Manager

Core
MTS 

Manager

Figure 5.2: Distributed ADCS Software for TechnoSat
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5.1.2 State Estimation Module Assembly

Based on the sensors incorporated for TechnoSat, adequate techniques for
state estimation were selected. As described in Chapter 3, all algorithms
are implemented and verified in self-contained modules which are used for
simulation models as well as for the flight software. This section describes the
assembly of these modules for the most relevant state quantities. Different
principles introduced in Section 3.2 are picked up and explained in detail.
The concrete algorithms were presented in Chapter 4 and will be referenced
individually. As described in Section 3.3, the state determination and control
core framework invokes the module functions and interacts with the device
manager applications via the communications middleware.

Memory

Voter
Magnetic field
subscriber

(MFS)

b


b


b


Figure 5.3: Magnetic Field Measurements (UML)

The estimation of the magnetic field is straightforward. A subscriber buffers the
incoming magnetic field sensor (MFS) measurements from the ISB manager
application and provides them via the magnetic field vector interface, 𝑏⃗ (cf.
Table 3.1), similar to the example for the abstraction from a diverse hardware
setup given in Figure 3.5. Additionally, the predicted magnetic field values
from the last control cycle serve as a backup in case no data was received. A
priority voter selects the measurements from the subscriber if available and
falls back on the predicted data otherwise.

The second state quantity discussed is the body-fixed direction vector to the
Sun, which is in this work represented by the symbol 𝑠⃗. Here, a similar combi-
nation consisting of a subscriber for Sun sensor system (SSS) measurements,
the previously predicted value and a voter is used. However, a Kalman filter is
added to improve the data quality: the noise is reduced and furthermore the
filter compensates temporary data loss due to its internal predictor. There are
different reasons why it makes sense to use a Kalman filter for the Sun vector
measurements. Since the inertial Sun position changes very slowly compared
to one control cycle, a rather simple linear Kalman filter such as presented
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Figure 5.4: Kalman Filter for Sun Vector Measurements (UML)

in Section 4.4.3 may be used. This is not feasible for the magnetometers,
since the inertial magnetic field changes drastically within one orbit. Here, an
extended Kalman filter, as discussed in Section 4.4.4, is necessary. However,
there is no source to obtain a reference value for the prediction step, since the
attitude is estimated from vector observations – and hence the magnetic field.

Memory

Voter

Angular Rate
Subscriber

(FOR)

Angular Rate
Subscriber

(GYR)










Figure 5.5: Angular Rate Measurements from Multiple Sensors (UML)

There are two sensors which measure the satellite’s angular rate: the fiber optic
rate sensor (FOR) system and the MEMS gyroscopes (GYRs). Therefore, when
compared to the magnetic field estimation and the Sun vector estimation, there
are two different subscribers, as shown in Figure 5.5. Due to the distributed
ADCS architecture, the measurement data is transmitted from two different
hardware nodes. However, this does not have any implications on this level
and is in fact not known to the core application. In case the fiber optic rate
sensor system is switched off during operations, e. g. to save energy, the voter
falls back on the gyroscopes automatically. If the whole node is removed from
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the ADCS within a different mission, only the subscriber needs to be removed
from the assembly. On the other hand, additional modules for angular rate
estimation may be added. For example, such a module may compare the
vector measurements with the values from the previous control cycle and thus
calculate its rotation angle and axis. This is not necessary for TechnoSat,
since even for a loss or malfunction of the fiber optic rate sensor system, 12
redundant gyroscopes still remain. For missions with different sensor sets,
however, this might be a useful extension.

QUEST

Prediction
(FOR)

Memory

Voter

Prediction 
(GYR)







q q

SLPC

IGRF

Magnetic field
Subscriber

(MFS)

Sun vector
Subscriber

(SSS)

q

b


s


B


S


t

t

r
 q

q

Figure 5.6: Absolute and Relative Attitude Estimation (UML)

The last state quantity addressed for TechnoSat is the attitude, primarily
estimated from vector observations. Obviously, there is no Sun vector available
during an eclipse and hence this method is not continuously applicable. A
fallback solution is the prediction of the attitude from the angular rate based
on the satellite kinematics. The mathematical description for this technique
is given in Section 4.4.9. Since the prediction provides a relative estimate,
its accuracy highly depends on the quality of the initial value. Due to the
sensor noise, the integration of the angular rate measurements results in a
drift of the attitude, which is generally referred to as angular random walk
(ARW). Since there are two different sensor types, there are also two prediction
modules. Both are instances of the same module, hence there is no additional
implementation effort. Once again, the two stages for fiber optic rate sensor
system and MEMS gyroscopes are independent from each other. Figure 5.6
shows all attitude estimation modules used for TechnoSat. The QUEST
method is presented in Section 4.4.6.
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Due to the unified interfaces, replacing or re-arranging the individual modules
is straightforward. The benefits of this flexibility will be discussed for the
incremental transformation of the basic configurations into a high-accuracy
transformation. Section 5.2 describes how attitude determination and control
with a star tracker and reaction wheels is already achievable for TechnoSat
once these payloads have been incorporated into the ADCS. The complete
TUBIN configuration is addressed in Section 5.3.

5.1.3 Attitude Control Modes

Based on the requirements and the concept of mode derivation presented in
Section 3.3.4, the attitude control modes are derived from different charac-
teristics. As mentioned before, only two TechnoSat payloads demand active
attitude control. Firstly, the S-band transmitter shall be pointed towards nadir
with at least 34.1°. For the star tracker, either inertial pointing is required or
nadir pointing with an accuracy of at least 27.9°. Moreover, a damping mode
is needed for initial angular rate damping after separation as well as a passive
mode to not interfere with experiments using the fluid-dynamic actuator and
the reaction wheel system.

Consequently, four independent modes are defined. In the following, the
mode description is formulated according to the five abstraction criteria from
Section 3.3.4.

– The Suspend Mode (SPM) fulfills TE-ACS-09 and TE-ACS-10, as no
active control is performed.

– The Detumbling Mode (DTM) performs active control of the spacecraft’s
angular rate to detumble the satellite, using a cross-product control law
and magnetic torquers and hence fulfills TE-ACS-05.

– To fulfill TE-ACS-07 and TE-ACS-11, the Nadir Pointing Mode (NPM)
performs active control of the spacecraft’s attitude to achieve nadir
pointing using a cross-product control law and magnetic torquers.

– As an alternative for TE-ACS-07, the Inertial Pointing Mode (IPM)
performs active control of the spacecraft’s attitude to achieve inertial
pointing using a cross-product control law and magnetic torquers.
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Figure 5.7: ADCS Modes for TechnoSat (UML)

Figure 5.7 shows the TechnoSat control modes as UML state chart.

To conclude the description of the basic attitude control configuration for
the TechnoSat Mission, the core module assembly to perform state control is
described. While the idea has already been discussed in detail in Section 3.3.4
and an example for the (in-orbit) configuration was given, Figure 5.8 shows
the concrete realization. Since the only actuators for TechnoSat are the
magnetic torquers, the magnetic dipole is the only controller setting and
therefore only one middleware topic is necessary. The core assembly publishes
the settings and they are received by the MTS manager application. For the
Suspend Mode, no settings need to be sent. The remaining three modes
are implemented by an assembly of four library modules. The Detumbling
Mode uses a damping algorithm based on a cross-product control law, which
is described in Section 4.5.5. The pointing modes, Nadir Pointing Mode and
Inertial Pointing Mode, both rely on the same control law and only differ
in the target orientation. Therefore, reconnecting the input for the pointing
cross product module facilitates a mode transition.

Similar to the state estimation module assembly, the extension of the attitude
control modes will be shown in the subsequent sections.



5.1 Basic Attitude Control for the TechnoSat Mission 120

State Control
TechnoSat

Nadir 
pointing

Damping 
cross product

Inertial 
pointing

Publisher

Pointing 
cross product

Figure 5.8: State Control Assembly for TechnoSat (UML)
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5.2 Enhanced Attitude Control with TechnoSat Payloads

The second mission objective for TechnoSat is the development and in-orbit
demonstration of the adaptive nanosatellite platform TUBiX20 (cf. Sec-
tion 5.1). This reflects that TechnoSat is designed to be a pathfinder mission
for the subsequent TUBIN mission. Apart from the design and verification of
the modular platform architecture in general, the TechnoSat ADCS design
can go one step further here: two of the components for the TUBIN attitude
determination and control system are qualified within the TechnoSat mission,
a star tracker and a reaction wheel system. Incorporating these components
into the control loop allows the realization of the ADCS for TUBIN to a large
extent. However, since they have the status of a payload at first, the ADCS
configuration presented in the previous section does not rely on them. In
fact, they even define their own requirements regarding the attitude control
performance of the platform (cf. TE-ACS-06, TE-ACS-07 and TE-ACS-10).
After the star tracker and the reaction wheel system have been successfully
qualified, however, they may be used in the ADCS. Therefore, high-accuracy
attitude control is already achievable within the extended operational phase of
TechnoSat. It is therefore desirable to consider both the star tracker and the
reaction wheel system in the design from an early stage, while not complicating
the realization of the basic functionality. This is one example for the scalability
of the concept investigated in this thesis, which allows the seamless transition
from basic to high-accuracy attitude control.

In this section, the individual extensions regarding the distributed system
hardware, the state estimation module assembly and the attitude control
modes are discussed. In all diagrams, the newly introduced elements will be
depicted in red to highlight the modification. In turn, all elements depicted
in black remain unchanged, showing that the changes to the flight-proven
software are kept at a minimum.

5.2.1 Distributed Attitude Control System

The distributed hardware for TechnoSat from Figure 5.1 is extended by the
star tracker and the reaction wheel system, which is shown in the bottom half
of Figure 5.9. All components are compatible with the system’s redundant
CAN bus. Since the star tracker does not fully comply with the redundant
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power bus, a small adapter circuitry based on basic ICs is necessary. However,
no extra microcontroller is needed here.
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Figure 5.9: Distributed ADCS Hardware for TechnoSat incl. Payloads

In the software domain, each of the new devices is represented by an individual
application, following the principle of functional separation. Since star tracker
and reaction wheels both comply with the central data bus, the may be run
on any node of the system. The ADCS node was chosen as host here, since
the FOR node is dedicated to the fiber optic rate sensors and may be switched
off during operation if these are not required.

Due to the aligned modular architecture in both domains, no modifications
of existing hardware or device manager software are required. Evidently, the
ADCS core application needs to be updated, since the presence of a star
tracker offers new possibilities for the estimation of several state quantities.
Moreover, state control modes using the reaction wheels need to be inserted.
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Figure 5.10: Distributed ADCS Software for TechnoSat incl. Payloads

5.2.2 State Estimation Module Assembly

The availability of star tracker measurements does not only benefit the esti-
mation of the attitude directly. Apart from the fact that star trackers usually
also provide drift-free measurements for the angular rate, the high-precision
attitude data may be used to derive or filter other state quantities.
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Figure 5.11: Kalman Filter for Magnetic Field Measurements (UML)

A first example for the application of high-accuracy attitude measurements
to estimate other state quantities is given in Figure 5.11. Transforming the
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inertial magnetic field data estimated by a model such as IGRF into body-fixed
coordinates provides a direct reference for the magnetic field sensors, which
may then be used in the prediction step of an extended Kalman filter. As
has been pointed out in Section 5.1.2, this was not feasible before. The
new Kalman filter module is depicted in red in Figure 5.11. However, due to
local perturbations and the satellite’s residual dipole, the IGRF estimates may
deviate from the actual magnetic field. The new filter module, depicted in
red, is connected as first input of the voter and hence has the highest priority.
Implementing a general filter interface, it may be activated or deactivated at
runtime.
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Figure 5.12: Sun Vector Estimation from Attitude and Sun Model (UML)

Similar to the magnetic field, a high-precision attitude is also beneficial for
the estimation of the direction to the Sun. Here, the advantage is even more
direct: unlike the magnetic field, the direction of the sunlight is not subject
to any perturbations, and therefore transforming the inertial Sun position into
the body-fixed coordinate frame provides an unobstructed, highly accurate
Sun vector. The Sun model used for TUBiX20 is presented in [5] and has
an accuracy of 0.1–1 %. As can be seen from Figure 5.12, this extension is
simply achieved by adding a coordinate transformation (red) and connecting
it as first input of the priority voter.

As has been mentioned before, most star trackers also provide angular rate
measurements. These are integrated into the module assembly similar to all
other angular rate sensors. In fact, the same source code subscriber classes
may be used for all the different sensors here, since their data types are
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identical and all require the same interface, 𝜔⃗. Regarding the priorities, the
star tracker is placed between the highly accurate fiber optic rate sensors
and the MEMS gyroscopes, as shown in Figure 5.13. As a further point of
extension, the drift-free star tracker measurements may be used to calibrate
the bias of the other angular rate sensors. Due to the modular architecture,
an additional calibration module may be inserted easily.

Finally, the primary state quantity to be measured by the star tracker is
addressed: the attitude. Obviously, its measurements are considered to be
the most accurate attitude source in the system and hence have the highest
priority. Once again, a subscriber module buffers the measurement data sent
from the device manager application via the network. It is put in front of
the voter input list according to its priority for the selection. However, the
presence of the star tracker yields another benefit for the attitude estimation:
the attitude prediction via angular rate measurements from the fiber optic
rate sensors is also more accurate when the star tracker measurements are
taken as an initial value, since the error of this prediction module combines
the absolute star tracker error and the relative error of the prediction due to
the angular random walk and bias of the fiber optic rate sensors. Given this
new situation, the FOR prediction module swaps positions with the QUEST
module. While the latter provides an absolute solution, it is however based
on the coarse vector observations from the Sun vector and magnetic field.
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Figure 5.14: Rearranging Priorities of State Quantity Providers (UML)

Figure 5.14 shows the rearranging of the attitude providers resulting from the
incorporation of the star tracker. Rearranging the order of the voter inputs
does not imply any changes in the voter implementation or the control flow
of the core application, but is simply a slight modification within the core
assembly.

5.2.3 Attitude Control Modes

Incorporating the reaction wheels as the second TechnoSat payload into the
platform ADCS operations, the attitude control modes may be upgraded as
well. Once again it is the objective here to pave the way for the TUBIN mission.
Here, the reaction wheel system allows more accuracy and agility than the
purely magnetic actuation of the basic TechnoSat platform, and hence the
pointing modes from the TechnoSat basic ADCS described in Section 5.1.3,
Inertial Pointing Mode and Nadir Pointing Mode, may be complemented
with high-accuracy modes using the reaction wheels. Unlike the magnetic
torquers, the reaction wheel system may apply a torque in any spacial direction
required, and hence the cross product control law is replaced by a more suitable
technique (cf. Section 4.5.3).
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Figure 5.15: ADCS Modes for TechnoSat incl. Payloads (UML)

The updated state chart for TechnoSat and integrated payloads is shown
in Figure 5.15. The descriptions for these new modes are, according to the
general criteria for mode derivation, as follows:

– The Fine Accuracy Nadir Pointing Mode (FNPM) performs active
control of the spacecraft’s attitude to achieve nadir pointing using a
state space control law and reaction wheels.

– The Fine Accuracy Inertial Pointing Mode (FIPM) performs active
control of the spacecraft’s attitude to achieve inertial pointing using a
state space control law and reaction wheels.

– As a means for a gradual and straightforward verification of the reaction
wheels, the Rate Control Mode (RCM) performs active control of the
spacecraft’s angular rate using a state space control law and reaction
wheels.

Following the functional abstraction for the mode definitions from Section 3.3.4,
implementing the new control modes into the core module assembly is realized
by adding only the required modules into the state control assembly, which is
shown in Figure 5.16. The state space control law and the distribution of the
control torque to the reaction wheels are integrated connecting to the interfaces
of the existing modules (depicted in red), and hence the algorithms to calculate
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the target attitude are now used for both the coarse and the fine pointing
modes. Therefore, not only are the same algorithms to determine the control
error used, but also the same instances of their realization. This minimizes the
effort to integrate the new control modes and also saves resources in terms of
the microcontroller’s memory usage and software image size.
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Figure 5.16: State Control Assembly for TechnoSat incl. Payloads (UML)

To achieve single failure tolerance, the reaction wheel system consists of four
reaction wheels in a tetrahedron configuration. Hence the three-dimensional
control torque needs to be distributed to the four actuators. Furthermore, the
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accumulating angular momentum due to disturbance torques must be dumped
via the magnetic torquers. Both techniques are implemented as features of
the module for torque distribution (cf. Figure 5.16). Their mathematical
background is described in detail in Section 4.5.7. To submit the settings
for the reaction wheels to their associated device manager application, a new
topic is added.

5.3 High-Accuracy Attitude Control for the TUBIN
Mission

The TU Berlin Infrared Nanosatellite (TUBIN) will be the first mission to
implement a high-accuracy configuration of the TUBiX20 platform ADCS.
The mission’s objectives are [54]

– the development and in-orbit demonstration of the use of a commercial
infrared mirobolometer for wildfire remote sensing on a nanosatellite;

– the demonstration of the capabilities of the TUBiX20 platform to support
demanding Earth remote sensing missions.

Similar to the description of the ADCS realization for the TechnoSat mission
in Section 5.1, the relevant requirements for the TUBIN are listed below:

TB-ACS-05 For payload calibration, a slew rate of at least 1.0 °/s must be
possible.

TB-ACS-06 During payload experiments, the attitude knowledge must be
at least 11.5 arcmin.

TB-ACS-07 During payload experiments, the pointing stability must be at
least 35.3 arcmin/s.

TB-ACS-08 During payload experiments, the position knowledge must be
at least 2 km.

TB-ACS-09 During data downlink, the pointing accuracy to the ground
station must be at least 20°.
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TB-ACS-10 During payload experiments, the nadir pointing accuracy must
be at least 200.3 arcmin.

TB-ACS-15 The ADCS must damp an initial angular rate of at least 8 °/s.

TB-ACS-16 For payload calibration, the payload must be pointed into free
space.

The numerical values for attitude knowledge, pointing accuracy and jitter were
derived from the requirements formulated by the payload and the mission
characteristics such as the orbit. A detailed exposition is given in Appendix C.
In the following sections, all modifications regarding additional components,
software modules and control modes are discussed in detail.

5.3.1 Distributed Attitude Control System

As stated before, the star tracker and the reaction wheel system for TUBIN
have been space qualified with the TechnoSat mission and their incorporation
into the TUBiX20 ADCS was discussed previously in Section 5.2. This section
describes the integration of three new components which are introduced with
TUBIN: a GPS receiver, a fluxgate magnetometer and a second star tracker.
The second star tracker was added to increase the reliability of the overall
system and furthermore increase the availability of star tracker measurements:
if one unit is blinded by straylight from the Earth or Sun, the other unit is still
available. Furthermore, their mounting orientation with a 90° angle between
their boreside axes is ideal to average the measurement for increased accuracy.
The model selected is, however, provided by a different manufacturer and has
space heritage from several different missions.

Figure 5.17 shows the distributed ADCS hardware for TUBIN. Following the
TUBiX20 architecture, the GPS receiver is connected via an interface node,
since its electrical interface does not comply with the redundant TUBiX20
power and data bus. The fluxgate magnetometer (FLX) is an analog sensor,
and hence an ADC is required, which in turn requires data sampling and
processing. As described in Section 5.2.1, the star tracker already carried with
TechnoSat needs a small adapter circuitry to connect to the redundant power
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bus. The second star tracker, however, does not comply with neither the
power nor the data bus, and hence another TUBiX20 interface node is used
here. Consequently, the circuitry for both star trackers is then realized on the
same node and hence the measurements from both may be preprocessed on
this star tracker node. As pointed out in Section 2.3, the TUBiX20 hardware
architecture is based on reference ICs and circuitry. This keeps the design
and verification effort needed to introduce the three new interface nodes at a
minimum.
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Figure 5.17: Distributed ADCS Hardware for TUBIN

To integrate the additional sensors in the TUBiX20 ADCS software, the
network of building blocks is extended as shown in Figure 5.18. Since the GPS
and FLX are connected via interface nodes, an associated device manager
runs on these nodes’ microcontroller, which facilitates the communication
with the hardware to obtain the measurements. Since the GPS receiver also
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provides highly accurate time information, the GPS node may also serve as a
clock reference for the complete satellite by emitting a pulse per second signal
via the TUBiX20 hardware interface.

As mentioned before, both star trackers are connected to the same node
and their measurements are combined there to increase accuracy. From the
perspective of the attitude determination and control system core application,
the star trackers are then treated as one integrated unit and it is irrelevant
that both components are in fact from different manufacturers. As opposed to
the TechnoSat configuration with the integrated payloads shown in Figure 5.9,
the star tracker application is now run on the dedicated star tracker (STR)
node. Due to the building block approach, moving the application from one
node to another does not interfere with the rest of the software. Figure 5.18
shows the distributed software network for the TUBIN ADCS.
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Figure 5.18: Distributed ADCS Software for TUBIN

The averaging of the two different star tracker solutions is shown in Figure 5.19.
This extension is part of the star tracker device manager and is simply per-
formed by adding a sink for the additional star tracker and a subsequent
module to average the star trackers’ attitude quaternions (cf. Section 4.4.8).
Although both units are from different manufacturers, the driver layer already
abstracts from all hardware dependencies and the same interface is used for
both providers.
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Figure 5.19: Attitude Quaternion Averaging (UML)

5.3.2 State Estimation Module Assembly

With the GPS receiver introduced during the TUBIN mission, highly accurate
position, velocity and time information is available. Once again, this also
affects the quality of other state estimation modules due to the increased
quality of their inputs. Figure 5.20 shows how the GPS position data is added
to the state estimation module assembly.
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Figure 5.20: High-Accuracy Position Estimation (UML)

Similar to all other data sent from a device manager application, a subscriber
buffers the incoming data and implements the quantity provider interface
according to Table 3.1, in this case with the symbol 𝑟⃗ for the position in the
TOD coordinate system. Apart from using the GPS measurements directly,
the data may also be used to update the orbit parameters for the SGP4
orbit propagation model. Since continuously operating the GPS requires a lot
of power, this is an energy-efficient and yet sufficiently precise solution. A
technique to increase the accuracy of the SGP4 propagation using intermittent
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GPS readings is presented in [98]. As there are now several choices for position
information, a newly introduced priority voter provides the most accurate
solution available. Connecting all modules which have the spacecraft position
as input parameter to the voter, they automatically benefit from the increased
accuracy. In Figure 5.20, this is indicated by the IGRF geomagnetic field
model, but also the state control performance is increased, e. g. due to the
more accurate determination of the required attitude for nadir pointing. Since
the position voter now serves as input for the state facade, this does not come
with any required modifications.

The integration of the fluxgate magnetometer has in fact already been de-
scribed earlier, although in a more general form. Figure 3.5 shows the abstrac-
tion from a diverse hardware setup with the example of two magnetic field
sensors which are connected via different hardware nodes, which is exactly the
situation here. Hence, the fluxgate magnetometer measurements are processed
using the same data flow as the magnetometer ICs on the integrated sensor
boards: while the driver abstracts from the hardware-specific functionality, the
modules for calibration and data transmission to the ADCS core application
are re-used.

5.3.3 Attitude Control Modes

Reviewing the TUBIN requirements listed earlier in terms of attitude control, all
required modes are already present in the extended TechnoSat implementation
from Figure 5.15: the Fine Accuracy Nadir Pointing Mode supports the
operation of all remote sensing payloads as well as data downlink via the
S-band transmitter, while the Fine Accuracy Inertial Pointing Mode may be
used to face the infrared mirobolometer for calibration. However, to increase
the contact time for the data downlink and facilitate the payloads to take
multiple images of the same spot from different perspectives during one flyover,
a Target Pointing Mode (TPM) is added.

Figure 5.21 shows the attitude control state chart for the TUBIN mission. For
simplification, the Target Pointing Mode is only accessible when the satellite
is pre-aligned towards nadir. Expressed through the mode derivation criteria,
“the Target Pointing Mode performs active control of the spacecraft’s attitude
to achieve target pointing using a state space control law and reaction wheels”.
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Figure 5.21: ADCS Modes for TUBIN (UML)

When compared to the definition of the Fine Accuracy Nadir Pointing Mode
from Section 5.2.3, only the required orientation differs. Therefore, the
integration of the Target Pointing Mode into the TUBiX20 state control
module assembly is straightforward, as shown in Figure 5.22. Only the module
to determine the control error is added. For the calculation of the control
torque and its distribution to the actuators, the same modules as for the Fine
Accuracy Nadir Pointing Mode and Fine Accuracy Inertial Pointing Mode
are used. The core application framework then re-routes the connections
according to the current attitude control mode at runtime.
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6 Summary and Conclusion

The objective of this thesis is to investigate a new concept for the flexible
design and verification of an attitude determination and control system (ADCS)
for a nanosatellite platform. In this context, the term “flexible” characterizes
the ADCS as “capable of adapting to new, different or changing requirements”
[31].

The research starts with a brief retrospective of the history of nanosatellites,
a term which is in fact not generally defined in the small satellite community,
as the mass boundaries for categorization vary between different organizations.
This thesis follows the categories defined by Brieß [12] and hence regards
satellites with a mass of 4–20 kg as nanosatellites. The retrospective of
the history of nanosatellites shows that some of the first satellites may be
assigned to this category. Launched between 1958 and 1962, these pioneers of
spaceflight were, however, rather demonstration missions and no nanosatellites
were launched thereafter until the mid-nineties [8], when the technology
miniaturization promised the realization of more complex mission scenarios.
Accelerated by the advances in the consumer electronics and automotive sector
after 2010, nanosatellites soon carried out scientific missions [21], and Earth
observation constellations for commercial use were realized for the first time
[23].

To meet the demand for satellites supporting a wide range of possible ap-
plications, their developers intend to reuse one flexible design for several
missions and therefore develop platform concepts, which are then tailored
to a specific scenario. Nevertheless, these missions’ requirements regarding
accuracy, dependability, but also economic efficiency and time to market
are very demanding. Therefore, it is crucial to investigate new solutions for
adaptable and yet high-performing satellites, as carried out in this thesis for
the attitude determination and control system.

As a basis to investigate guidelines for the design of a flexible ADCS, observa-
tions of the satellite market and missions are recorded. The research carried
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out by the author shows that most nanosatellite use a similar set of sensors
and actuators, but due to the active COTS market, new products are released
frequently while others are discontinued. The miniaturization of high-accuracy
sensors and actuators further extends the potential of nanosatellites in general
and attitude determination and control systems in particular, and an evolution
of mission objectives towards constellations for science and Earth observation
missions is clearly visible. With the growing interest of private companies, the
requirements regarding reliability and availability increase, since a failure of
the spacecraft comes with financial loss when either a service can no longer
be provided or a data product cannot be generated. Universities have recently
carried out missions of equally high aspiration, however mostly as technology
demonstrations. The challenge here is to develop a complex spacecraft with
only limited resources and the transfer of knowledge from one mission to
another. Enabled by the advances in COTS microcontrollers, software has
become a substantial part of the spacecraft development process. A flexible
design for reliable and capable software is needed, since the complexity of
on-board tasks is increasing drastically. Design techniques such as code gen-
eration and object-oriented design have been introduced into space science,
however there is still a backlog when compared to other sectors like automotive
or consumer electronics.

Following these observations, the author formulates design criteria to serve as
a reference for the conceptual design of the flexible ADCS. Firstly, the design
must allow the integration of updated or novel technology to respond to the
active market and further allow to extend the platform’s performance. To be
able to support a diverging range of missions scenarios, scalability is required
for optimization in regards to complexity, development effort, performance
and resources by deriving a configuration which is reduced to only components
and software modules which are really necessary. It is also suggested that
the ADCS is developed and verified gradually, which means that putting the
hardware into operation and integrating the software should be performed
in small steps, e. g. by using simulation models to decouple its development
from delays in other subsystems or procurements. Moreover, the feasibility of
the concept may be proven at an early stage of the project and the progress
of the development may be evaluated more precisely. To minimize cost
for qualification and reduce the overall risk, modifications to verified hard
and software should be kept at a minimum. As the life cycles of different
missions realized with the same platform may overlap, it is important that the
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configuration management supports concurrent mission design, i. e. different
realizations need to be developed at the same time. Finally, the ability to
reconfigure the software in-orbit allows the introduction of new or updated
functionality, either to enhance performance or as a response to the loss of a
hardware component.

The research of this thesis was carried out in the context of the development
of TU Berlin’s nanosatellite platform TUBiX20 and its first two missions,
TechnoSat and TUBIN. To support diverging mission scenarios for future
missions of the university, TUBiX20 targets modularity, reuse and depend-
ability as main design goals. As a result, a generic, single-failure tolerant
systems architecture has been elaborated. The development followed the hard-
ware/software co-design approach which lead to a modular architecture with
well-coordinated hardware and software and mutually matched interfaces. In
addition to the classical breakdown of the satellite into subsystems, TUBiX20
is partitioned into four hierarchical levels, which enables extensive reuse and
benefits a comprehensive and yet flexible FDIR strategy. The system is com-
posed of a network of cold redundant computational nodes which perform the
individual tasks of a device or subsystem. The nodes connect via a redundant
CAN bus and communicate through the middleware of the operating system.
To maximize flexibility and reuse, all nodes are based on the same generic
architecture, comprising a set of reference components and circuitry for the
hardware domain as well as a library of global building blocks. The author
acted in the role of TUBiX20’s systems engineer for software, and is therefore
responsible for meeting the design goals (cf. Section 2.3) throughout the
project.

Based on the analysis of design criteria for a flexible attitude determination and
control system, the key design considerations for the TUBiX20 platform were
continued for the investigations carried out in this thesis. The resulting concept
implements the ADCS as a distributed system of devices complemented by a
hardware-independent core application for state determination and control. In
the distributed ADCS, each sensor or actuator type, such as a triaxial angular
rate sensor system or a group of three magnetic torquers, is represented by
a cold redundant computational node communicating via the middleware.
By decoupling the devices from other nodes and using standardized hard-
and software interfaces providing an abstraction from a sensor’s individual
output format on the lowest level possible, devices may be added, updated
and removed without any interference to the rest of the system. This proved
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to benefit the flexibility by fulfilling several of the elaborated criteria. Novel
technology may be integrated at low design effort by introducing a new device
node which then implements the standard interfaces. Moreover, this enables
the scalability of the ADCS regarding diverging mission requirements while not
implying any modifications to qualified hardware. By reducing the complexity
of the system to the required minimum without adaptions except removing
devices, the overall costs as well as development and verification time can be
reduced. The approach comes, however, with the drawback that eventually
more microcontrollers than the required minimum are used and hence the
power consumption and requirements regarding volume are slightly increased.

For the second part of the concept, the author carries the approach of
abstracting functionality from its realization into the state determination and
control algorithms. Based on the technique of component-based software
engineering, the system is partitioned into self-contained modules which
implement unified interfaces. These interfaces specify the state quantity of an
input or output, such as angular rate or control torque, but also its unit and
coordinate system, complemented by a mathematical symbol for unambiguous
documentation. Since only matching interfaces may be connected, errors in
unit or coordinate transformations are prevented automatically, which proved
to decrease the verification effort. Each encapsulating the implementation of
an algorithm, while outwardly acting as a black box, the modules are collected
in a library which is independent from all concrete missions realized.

The ADCS core application is structured into three parts: library, framework
and assembly. While the library provides a collection of implementations, but
not the context these are used in, the framework manages the control flow
(e. g. TM/TC or mode management) of the application independently from
the implementation. Library and framework are connected via the assembly,
which defines which modules from the library are selected for a specific ADCS
realization. Hence only the assembly is mission-specific, but library and
framework are not. This in turn means that large parts of the application
may be reused directly from one mission to another without modifications,
which reduces the time for development and verification drastically. However,
insights from one mission, e. g. required updates for implemented algorithms
in the library or functional extensions in the core framework flow directly
back into the code base for all missions. Expressed in terms of the flexibility
criteria, concurrent mission design is supported while modifications to verified
code are kept at a minimum. Moreover, re-routing the connections of module
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inputs and outputs enables re-configuration in-orbit without a software upload
required.

The concept investigated in this thesis allows the implementation of different
ways of determining a state quantity in parallel without any dependencies
among each other. This leads to a clear code structure and control flow,
which improved the comprehension of the code and reduced the development
and verification time significantly, as recognized during the realization of the
TechnoSat and TUBIN projects. Moreover, the approach offers the comparison
of different solutions for a state quantity during operations. Transferring
techniques such as object-oriented design to the definition of attitude control
modes resulted in a clear abstraction of general properties from specialized
features and facilitated to reuse or even share common functionality, hence
reducing code size but also development and verification time, and yet enabling
flexible and fast evaluation of new techniques.

The design and verification process for the TUBiX20 ADCS has also been
elaborated within this research. The approach targets the gradual development
of the subsystem from a purely virtual satellite within a closed-loop simulation
to the verification of the fully integrated system on an air-bearing testbed.
It is inspired by the software development process of continuous integration
(see glossary), and aligns with typical spacecraft development process models
[69]. However it has been optimized in regards to synergy effects and cost
efficiency, hence being especially suitable for the university environment. While
all TUBiX20 projects generally follow the phases of the ECSS spacecraft life
cycle, these phases were further partitioned into four consecutive steps for
the ADCS: analysis, design, implementation and simulation. Following this
approach for the realization of the TechnoSat and TUBIN ADCS resulted in
a structured workflow and enabled the author to evaluate the development
progress, which was especially challenging due to the missions’ concurrent time
schedule. In this context, the closed-loop simulations provided valuable data
for the PDR and CDR reports. The intermediate integration step of software
in the loop simulation model, which embedded the completely implemented
flight software in a still virtual simulation environment, proved especially
useful, since the ground support software could be used from a very early
stage. Moreover, the development of the ADCS could be decoupled from
the procurement or manufacturing of the hardware to a large extent, which
assured that the ADCS was never a hindrance to the progress of the project.
However, the additional integration steps came with a very low development
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overhead and low extra costs for equipment and software tools due to the
exploitation of synergy effects.

The theoretical background for the state estimation and control techniques is
provided in a separate chapter. The description, however, follows the quantity
definitions from the conceptual part including all mathematical symbols,
coordinate systems and physical units. Therefore, this part provides the
implementation details for all models previously treated as black boxes, and
yet serves the reader as a general reference which is independent from the
software concept investigated.

As the last part of this thesis, the concurrent realization of the investigated
concept within the TechnoSat and TUBIN missions is discussed. Starting
with the individual ADCS requirements, the scalability of the approach is
demonstrated in three stages: from a coarse, but cost- and energy-efficient
configuration to realize a technology demonstration mission with moderate
requirements (TechnoSat) to a high-performance configuration to support
Earth observation missions (TUBIN). For each configuration, the composition
of the subsystem as a selection of hardware nodes and software modules is
presented, highlighting the possibilities for extension, update or removal of
functionality according to the individual needs.

At the time of the completion of this thesis, TechnoSat had just been launched
into orbit and the TUBIN CDR had been prepared, hence one spacecraft had
already passed the complete ADCS development process successfully, while
the second one had already been designed in detail. In conclusion, transferring
process models (continuous integration, test-driven development) and design
techniques (object-oriented design, component-based software engineering,
frameworks) from the IT sector enabled a gradual and concurrent development
of two ADCS configurations with diverging mission objectives and requirements.
Following the flexibility criteria formulated by the author, the concept supports
rapid technology upgrades, which has been shown within the evolution of the
platform from TechnoSat to TUBIN. The modularized design based on unified
interfaces could be applied consistently for hardware and software, and hence
the addition, upgrade or removal of devices as well as state determination
and control strategies imply only minimum modifications to a verified system.
Therefore, insights from the TechnoSat operations in-orbit flow back into the
development of the TUBIN ADCS and hence enable an ongoing advancement
of the platform. Synergy effects were successfully exploited between the two
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missions, but also the different phases of the spacecrafts’ life cycles, and the
continuous integration of the ADCS from purely virtual to fully integrated
lead to a large verification coverage from an early stage.

During the course of the development of the TUBiX20 platform, different
aspects of its architecture, but also the design process have been published
with the contribution of the author. Apart from general descriptions of the
TechnoSat and TUBIN missions ([55] and [54], respectively), the generic
systems architecture was first presented in [49], where its main design con-
siderations including modularity, reuse and dependability, but also concurrent
development of hardware and software were discussed. The capabilities of
the platform to perform rapid technology updates by combining a modular
architecture with agile development processes is addressed in [40], and [2]
expands on the software development process. Special focus on the distributed
software based on building blocks was placed in [53]. The FDIR concept of
TUBiX20 was first presented in [50], while [51] targets the flexible integration
of different payloads. Complementing the modular space segment of the
platform, the ground support software enables “full access to the platform
through all development stages of the project”, which was presented in [44].

The concept for the flexible design and verification of the attitude determination
and control system (ADCS) was presented by the author in two stages. Firstly,
[63] addresses its design as a distributed system and the composition of
the state determination and control library, framework, and core assembly.
Subsequently, the flexible design process from a virtual satellite to a fully
integrated and verified system was addressed by the author in [68].
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Appendices



A TU Berlin’s Satellite Missions

The following Table A.1 gives an overview of all TU Berlin satellite missions to
date (September 14th, 2017). All future launch dates are yet to be confirmed.

Table A.1: TU Berlin’s Satellite Missions (adapted from [46])
Name Mass

[kg]
Launch Objective Operational

[months]
TUBSAT-A 35 1991 Communications 188
TUBSAT-B 45 1994 Earth observation 1

TUBSAT-N/N1 3 1998 Communications 23
8 11

DLR-TUBSAT 45 1999 Earth observation 118
MAROC-TUBSAT 47 2001 Earth observation > 84
LAPAN-TUBSAT 56 2007 Earth observation 128 (to date)
BEESAT-1 1 2009 Tech demo 40
BEESAT-2 1 2013 Tech demo 52 (to date)
BEESAT-3 1 2013 Tech demo/

education
-

BEESAT-4 1 2016 Tech demo 12 (to date)
TechnoSat 20 2017 Tech demo 2 (to date)
S-Net-1/2/3/4 8 2017 Communications -
TUBIN 20 2018 Earth observation -
BEESAT-5/6/7/8 0.33 2018 Communications -



B Coordinate Systems

Every attitude control system uses different coordinate systems for the rep-
resentation of state quantities. Here, it is distinguished between inertial,
Earth-fixed and body-fixed coordinate systems. The coordinate systems used
in this thesis are presented in the following sections. Figure B.1 gives an
overview and shows the relation of the different coordinate systems to each
other.

Rz(Θ)

Rz(Δψ · cos(ε))

P, N

Π 

kinematics

inertia 
matrix

LVLH

MOI

SAT

ICRF
EME2000

TOD
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ITRF
WGS84

position,
velocity

Figure B.1: Coordinate Systems

International Celestial Reference Frame

The International Celestial Reference Frame (ICRF) is a practical realization
of the International Celestial Reference System (ICRS) based on VLBI mea-
surements of extragalactic radio sources. The origin is the barycenter of the
solar system.

The ICRF corresponds to Earth Mean Equator and Equinox of Epoch J2000
(EME2000) to an accuracy of several milli arcseconds. Its z-axis is the mean
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rotational axis of the Earth and its x-axis points towards the mean equinox at
the epoch J2000 [5].

True Of Date

The True Of Date (TOD) coordinate system is an inertial coordinate system
referring to the true equator and equinox at the point of consideration. The
z-axis is the instantaneous rotational axis (CEP) of the Earth, while the x-axis
points towards the true vernal equinox. The origin of the TOD system is the
geometrical center of the Earth [99].

The transformation from ICRF to TOD is performed by Equation B.1:

𝑣⃗𝑇 𝑂𝐷 = 𝑁(𝑡) · 𝑃 (𝑡) · 𝑣⃗𝐼𝐶𝑅𝐹 (B.1)

𝑁 is the nutation matrix and 𝑃 the precession matrix of the Earth’s rotation
[5].

Figure B.2: True Of Date (TOD) System
adapted from: NASA Blue Marble, https://visibleearth.nasa.gov/



B Coordinate Systems 158

True Equator and Mean Equinox of Date

The inertial coordinate system True Equator and Mean Equinox of Date
(TEMED) is oriented towards the true equator and the mean equinox. It is
used for the NORAD Two Line Elements (TLE) and the SGP4 algorithm for
orbit propagation. The z-axis is the instantaneous rotational axis (CEP) of
the Earth and the x-axis points towards the mean equinox. The origin of the
coordinate system is the geometrical center of the Earth.

To transform a vector from TEMED to TOD, Equation B.2 is applied:

𝑣⃗𝑇 𝑂𝐷 = 𝑅𝑧(Δ𝜓 · cos 𝜖) · 𝑣⃗𝑇 𝐸𝑀𝐸𝐷 (B.2)

The term Δ 𝜓 cos 𝜖 is called equation of the equinox and states the difference
between the true and the mean equator [99].

Pseudo Earth Fixed

The Pseudo Earth Fixed (PEF) coordinate system uses the CEP as z-axis
and the x-axis points towards the IERS reference meridian. Its origin is the
Earth’s geometrical center. Since the rotational axis of the Earth changes
continuously, the PEF System is not exactly Earth-fixed, hence the name
Pseudo Earth Fixed.

The relation between the PEF and TOD coordinate systems is given via the
true sidereal time, Θ [99]:

𝑣⃗𝑃 𝐸𝐹 = Θ(𝑡) · 𝑣⃗𝑇 𝑂𝐷 (B.3)

World Geodetic System 1984

The World Geodetic System 1984 (WGS84) system is a widespread version
of an Earth-fixed coordinate system defined by the National Imagery and
Mapping Agency (NIMA). Its origin is the geometrical center of the Earth.
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Figure B.3: Pseudo Earth Fixed (PEF) System
adapted from: NASA Blue Marble, https://visibleearth.nasa.gov/
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The x-axis points towards the IERS reference meridian, while the z-axis points
toward the IERS reference pole [99].

Figure B.4: World Geodetic System 1984 (WGS84) System
adapted from: NASA Blue Marble, https://visibleearth.nasa.gov/

The transformation between PEF and WGS84 is achieved via the pole dis-
placement matrix Π, which expresses the rotation between CEP with respect
to IERS reference pole (IRP) [5]:

𝑣⃗𝑊 𝐺𝑆84 = Π(𝑡) · 𝑣⃗𝑃 𝐸𝐹 (B.4)

Applying Equation B.3, the transformation from TOD to WGS84 follows as:

𝑣⃗𝑊 𝐺𝑆84 = Π(𝑡) ·Θ(𝑡) · 𝑣⃗𝑇 𝑂𝐷 (B.5)

The WGS84 corresponds to the International Terrestrial Reference Frame
(ITRF) with an accuracy of several milli arcseconds [100]. The ITRF is a
practical realization of the International Terrestrial Reference Systems (ITRS)
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Figure B.5: Satellite-fixed geometrical System (SAT) for TechnoSat
Image credit: Marc Lehmann

based on measurements of selected observation stations. It is updated fre-
quently by the IERS.

From Equation B.1 and Equation B.5, the transformation between ICRF and
ITRF follows as [5]:

𝑣⃗𝐼𝑇 𝑅𝐹 = Π(𝑡) ·Θ(𝑡) ·𝑁(𝑡) · 𝑃 (𝑡) · 𝑣⃗𝐼𝐶𝑅𝐹 (B.6)

Satellite-Fixed Geometrical System

The Satellite-fixed Coordinate System (SAT) is defined according to the
geometry of a satellite. For TechnoSat, it is shown in Figure B.5. Its origin is
the geometrical center of the satellite. The z-axis points into the direction of
the camera payload, while the x-axis points towards the star tracker.

Moment Of Inertia System

The Moment of Inertia Coordinate System (MOI) system is aligned to the
principal axes of inertia of the satellite. Its origin is the satellite’s center of
gravity. The x-axis is parallel to the principal axis of inertia which is closest
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to the x-axis of the SAT coordinate system. The y- and z-axis are defined in
a similar way.

Local Vertical Local Horizontal

The Local Vertical Local Horizontal (LVLH) system is aligned at the orbit of
the satellite. The z-axis points towards nadir, while the x-axis points in flight
direction. The origin of the LVLH-Systems is the satellite’s center of gravity.

Figure B.6: Local Vertical Local Horinzontal (LVLH) System
adapted from: NASA Blue Marble, https://visibleearth.nasa.gov/

The coordinate axes of the LVLH system with respect to the TOD system
depend on the satellite’s position and velocity:

̃⃗︀𝑥𝐿𝑉 𝐿𝐻 = ‖𝑣⃗𝑇 𝑂𝐷‖ (B.7)
𝑧⃗𝐿𝑉 𝐿𝐻 = −‖𝑟⃗𝑇 𝑂𝐷‖ (B.8)
𝑦⃗𝐿𝑉 𝐿𝐻 = 𝑧⃗𝐿𝑉 𝐿𝐻 × ̃⃗︀𝑥𝐿𝑉 𝐿𝐻 (B.9)
𝑥⃗𝐿𝑉 𝐿𝐻 = 𝑦⃗𝐿𝑉 𝐿𝐻 × 𝑧⃗𝐿𝑉 𝐿𝐻 (B.10)
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Here, 𝑟⃗𝑇 𝑂𝐷 is the satellite’s position and 𝑣⃗𝑇 𝑂𝐷 its velocity in the TOD system.
Due to the elliptic orbit of the satellite, the x-axis is first calculated based on
the true flight direction and later corrected to receive a rectangular coordinate
system.

The transformation matrix from LVLH to TOD, 𝑇𝑇 𝑂𝐷←𝐿𝑉 𝐿𝐻 , is according
to Equation 4.11:

𝑇𝑇 𝑂𝐷←𝐿𝑉 𝐿𝐻 =
[︀
𝑥⃗𝐿𝑉 𝐿𝐻 𝑦⃗𝐿𝑉 𝐿𝐻 𝑧⃗𝐿𝑉 𝐿𝐻

]︀
(B.11)



C Derivation of ADCS Requirements for
TUBiX20 Missions

This appendix documents the derivation of the requirements for the two
TUBiX20 missions TechnoSat and TUBIN.

TechnoSat

To perform experiments with the star tracker payload, the sensor must not be
blinded by straylight from the Sun or Earth. The easiest way to operate the
star tracker would be a dedicated pointing mode with an inertially fixed target
orientation. To operate the star tracker while pointing towards nadir, e. g.
for simultaneous data downlink or imaging, the required pointing accuracy
depends on three influencing factors:

– the mounting orientation of the sensor within the satellite

– the exclusion angle of the baffle

– the orientation of the satellite in relation to the Sun and Earth.

The mounting orientation is 45° off-nadir, while the sensor baffle has an
exclusion angle of approximately 40°, both shown in Figure C.1.

As can be seen here, the mounting orientation allows a rotation of the satellite’s
z axis to avoid sunlight incidence. Regarding straylight from Earth, however,
this is not possible. The required pointing accuracy, 𝛽, is the angle between
the edge of the atmosphere and the sensor’s boreside axis, subtracted by the
baffle exclusion angle:

𝛽 = 90°− 𝛼+ 45°− 40°
= 27.9°

A complete derivation of this result is given in [101].
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Figure C.1: Star Tracker Experiments while Nadir Pointing [101]
adapted from: NASA Blue Marble, https://visibleearth.nasa.gov/

A second payload which requires active attitude control is the S-band transmit-
ter. To perform the experiments, the downlink capacity does not need to be
maximized, but a contact time of at least 90 s is required. This is achievable
even if the patch antenna is not pointing directly to the ground station. A
detailed calculation has been carried out in [101] and resulted in a maximum
tilt angle, 𝛽, of 34.1° (cf. Figure C.2).

Figure C.2: S-band Transmitter Experiments while Nadir Pointing [101]
adapted from: NASA Blue Marble, https://visibleearth.nasa.gov/
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TUBIN

The following analysis transforms the requirements formulated by the payload
in terms of ground pixel knowledge, pointing accuracy and stability to direct
numerical values for the ADCS.

The pointing knowledge of the spacecraft in-orbit, 𝛼𝑘, results from the
knowledge of a camera pixel on ground, 𝑙𝑘, and the altitude, ℎ.

𝛼𝑘 = arctan
(︂
𝑙𝑘
ℎ

)︂
(C.1)

The TUBIN payload requires the knowledge of a ground pixel of at least
2 km. The altitude of the orbit is 600 km. Therefore, the required pointing
knowledge is

𝛼𝑘 = 3.3 mrad
= 11.5 arcmin

Similar to the pointing knowledge, the pointing accuracy, 𝛼𝑎, refers to the
accuracy of a camera pixel on ground, 𝑙𝑎:

𝛼𝑎 = arctan
(︂
𝑙𝑎
ℎ

)︂
(C.2)

With a required accuracy of 35 km, the required pointing accuracy is

𝛼𝑎 = 58.3 mrad
= 200.3 arcmin

The pointing stability (jitter) of the satellite in-orbit, 𝑗, is derived from the size
of a ground pixel, 𝑝 and the time to take a single image, 𝑡𝑖 (cf. Figure C.3).

𝑗 = 1
𝑡𝑖

arctan( 𝑐
ℎ

) (C.3)
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with

𝑐 =
√

2 · 𝑏 (C.4)
𝑏 = 𝑝− 𝑎 (C.5)

ab

p

cb

Figure C.3: Ground Pixel Stability

The TUBIN payload tolerates a maximum of 10 % of 𝑝, and hence

𝑎 = 𝑝 ·
√

0.9 (C.6)

Finally,

𝑡𝑖 = 1 ms
𝑝 = 85 m

results in

𝑗 = 10.3 mrad/s
= 35.3 arcmin/s

The minimum slew rate, 𝜔𝑠𝑙, is calculated as follows:

𝜔𝑠𝑙 = 𝛽

𝑡𝑠
(C.7)
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Here, 𝛽 is the slew angle and 𝑡𝑠 is the slew duration. For the required slew of
180° in 3 min, the required slew rate is

𝜔𝑠𝑙 = 1 °/s
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