
Online Disjoint Vehicle Routing

with Application to AGV Routing

vorgelegt von
Dipl.-Math. oec. Björn Stenzel

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Fredi Tröltzsch

Berichter: Prof. Dr. Rolf H. Möhring

Prof. Dr. Ekkehard Köhler

Zusätzlicher Berichter: Dr. Andreas Parra

Tag der wissenschaftlichen Aussprache: 8. Juli 2008

Berlin 2008
D 83

Acknowledgements

I wish to thank many people for their support. In particular, I am grateful to
Rolf Möhring for his trust and encouragement, for offering me the possibility
to work in a fertile environment, and for supervising my thesis. In addition,
I am especially indebted to him for arousing my interest for discrete applied
mathematics.

I also want to thank Ekkehard Köhler for his fruitful hints and for taking
the second assessment of the thesis. His motivating character helped me a
lot.

Furthermore, I thank Andreas Parra from the Hamburger Hafen und
Logistik AG (HHLA) for his trust in our ideas and for assessing the thesis
from a practical point of view. I also thank Kai-Uwe Riedemann from HHLA
and Boris Wulff from Container Terminal Altenwerder (CTA) for interesting
discussions on AGV routing.

Moreover, I am greatly indebted to my collaborators on material in this
thesis, Ewgenij Gawrilow, Max Klimm, Ekkehard Köhler, Magnus Kühne,
and Rolf Möhring. It was a pleasure to work with them. Moreover, I enjoyed
the discussions with Ines Spenke on discrete dynamic flows.

Many thanks go to my colleagues from the COGA group for the friendly
and motivating environment. In particular, I am grateful to my roommates
Felix König, Heiko Schilling, and Gregor Wünsch for an inspiring working
atmosphere in our office. I also wish to thank Ewgenij Gawrilow for his
help and valuable hints on programming issues. Moreover, I thank Marco
Lübbecke, Sebastian Stiller, and Gregor for carefully reading parts of the
thesis.

Special thanks go to my family. In particular, I am grateful to my parents
for their unlimited support and their believe in me. Finally, I would like
to thank Mandy Stuckert for patient listening and for encouraging me in
moments of frustration.

My research was funded by the German Federal Ministry of Education
and Research (BMBF) under grants no. 03-MONJB1.

Berlin, May 2008 Björn Stenzel

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Basic Definitions . 5

2.1.1 Grid Graphs . 5
2.1.2 Online Problems and Competitive Analysis 6

2.2 Online Disjoint Vehicle Routing 7
2.2.1 Problem Description 7
2.2.2 Disjointness . 10

2.3 Application . 13

3 Dynamic Routing 17
3.1 Routing Algorithm . 17

3.1.1 Iterative Routing Scheme 17
3.1.2 Route Computation . 19
3.1.3 Readjustment of the Time-windows 24
3.1.4 Practical Requirements 27
3.1.5 Waiting Heuristic . 30

3.2 Rerouting Strategies . 33
3.2.1 Perturbations . 33
3.2.2 Priorities . 35
3.2.3 Rerouting Approach 35

3.3 Computational Results . 41
3.3.1 Test Instances and Objective 41
3.3.2 Variation of the Introduced Parameters 43
3.3.3 Trivial Lower Bound 45
3.3.4 Evaluation of the Rerouting Strategies 46

3.4 Conclusions . 53

4 Performance Analysis of the Dynamic Routing Approach 55
4.1 Competitive Analysis . 55

4.1.1 Dynamic Routing Algorithm 55
4.1.2 Dynamic Routing Algorithm without Waiting 64

4.2 Experimental Performance Analysis 69
4.2.1 Optimal Solutions in a Slightly Modified Model 69

v

vi Contents

4.2.2 Test Instances . 73
4.2.3 Computational Results 74

4.3 Conclusions . 84

5 Static Routing 87
5.1 Introduction . 87

5.1.1 Static Routing . 87
5.1.2 Drawbacks of Static Routing 88
5.1.3 Our Approach . 90

5.2 Online Load Balancing with Bounded Stretch Factor 90
5.2.1 Introduction . 90
5.2.2 Algorithm . 92
5.2.3 Lower Bound . 98

5.3 Reservation Schedules and Deadlock Prevention 99
5.3.1 Introduction . 99
5.3.2 The Model . 100
5.3.3 Deadlock Detection Graph 102
5.3.4 Deadlock Prevention Algorithm 104

5.4 Computational Results . 109
5.4.1 Variation of the Stretch Factor 112
5.4.2 Comparison with the Dynamic Routing Algorithm . . . 113

5.5 Conclusions . 116

Bibliography 119

Chapter 1

Introduction

There are several ‘Vehicle Routing Problems’ that have been intensively stud-
ied in the recent years [5, 39]. The common aim of all these problems is the
assignment of vehicles to transportation requests (items) and the determina-
tion of the order in which these requests should be served. They only vary in
the considered objectives and constraints. Since it is assumed that vehicles
are small in relation to the given (street) network interdependencies between
the vehicles are not taken into account.

In contrast, we investigate a microscopic vehicle routing model. Here,
’microscopic’ means that the vehicles are rather large-sized in relation to the
underlying network. Therefore, we have to take care for conflicts/collisions
between the vehicles that serve the transportation requests. In fact, we focus
on the determination of paths (routes) such that the vehicles that execute
these paths do not conflict with each other. We call such paths disjoint and
provide two disjointness models. Since the time-dependent behavior of the
vehicles have to be taken into account in this context we consider paths over
time, which are also called dynamic paths.

Furthermore, we are interested in an online setting within this model,
i.e., we assume that requests appear one-by-one and no information about
further requests is known, which is often the case in real-world problems.
Therefore, we investigate online disjoint dynamic paths in this thesis. More
precisely, we introduce two optimization problems: the Online Shortest Dy-
namic Disjoint Paths Problem (OSDDPP) and the Online Quickest Disjoint
Paths Problem (OQDPP). Both problems only differ in their objective. Re-
garding the OSDDPP we aim at minimizing the sum of durations over all
requests, while the objective of the OQDPP is the so-called makespan, which
is the time when all requests are served. Note that dispatching of vehicles,
i.e., the assignment of transportation requests to vehicles, is not considered.

In contrast to standard disjoint path problems (without a time compo-
nent) that have been extensively investigated in the offline [33] as well as
in the online setting [3, 6, 8], these online disjoint path problems have not
been studied before. Krishnamatury, Batta and Karwan [28] discussed the
OQDPP in the offline case, where all requests are known right from the be-
ginning. Moreover, Spenke [37] showed that this problem is NP-hard even

1

2 Introduction

in grid graphs and provided an approximation algorithm.
In this work we investigate algorithms for the OSDDPP and the OQDPP.

Thereby, we distinguish between dynamic approaches where time depen-
dences are taken into account during the route computation and static ap-
proaches where this is done at the execution time of the routes via a reser-
vation procedure.

Besides analyzing these algorithms theoretically we pay special attention
to their real-life suitability and performance since the considered problems
are of practical relevance. Actually, conflict-free routing of vehicles is a com-
mon problem in many applications, when vehicles move on tracks or track like
lanes as for instance switching engines at private or public cargo railroads,
aircrafts on large-sized airports, or Automated Guided Vehicles (AGVs) in
logistic systems like container terminals, production facilities or warehouses.
In all these applications the guidance of the vehicles is the key to an efficient
transportation system that aims at maximizing its throughput. In partic-
ular, automation of large scale logistic systems nowadays is an important
method for improving productivity. Vis [40] provides a survey on design and
control of such systems.

Figure 1.1: The HHLA Container Terminal Altenwerder (CTA). c©HHLA

We focus on the routing of AGVs in an automated logistic system for
the evaluation of our algorithms. In fact, we conduct experiments based
on a simulation of Container Terminal Altenwerder (Figure 1.1), a container
terminal at Hamburg Harbor which is operated by the Hamburger Hafen und
Logistik AG (HHLA). There, the AGVs transport containers between the
container bridges that load and unload the ships and the storage areas. The

3

transportation requests usually arrive sequentially (online) and are already
assigned to a particular vehicle. Hence, this application is perfectly in line
with our model.

Outline of the Thesis

In this work we aim at both, analyzing algorithms for the considered prob-
lems, the Online Shortest Dynamic Disjoint Paths Problem (OSDDPP) and
the Online Quickest Disjoint Paths Problem (OQDPP), theoretically and
providing real-life solutions, namely fast algorithms that perform good in
practice. Apart from some preliminaries (Chapter 2), including the intro-
duction of our model in Section 2.2, we present three main chapters.

In Chapter 3 we introduce a dynamic routing algorithm for the OSD-
DPP and the OQDPP, respectively, i.e., an algorithm that takes the time-
dependent behavior of the vehicles into account. For each incoming request
our polynomial-time algorithm DYN-ROUTE determines a quickest path
that respects the reservations of the already computed paths. This approach
is motivated by dynamic flow theory [14, 15, 27] and several papers on the
Shortest Path Problem with Time-Windows [11, 12, 13, 32].

Besides the basic routing algorithm we introduce some additional meth-
ods for dealing with practical requirements. In particular, we provide rerout-
ing strategies to cope with perturbations and the prioritization of requests.
The evaluation with respect to our application, the HHLA Container Ter-
minal Altenwerder (CTA), shows that our approach is suitable for practical
use in general, that is, the requests can be served in real-time—each route
computation in the underlying graph with about 45,000 edges takes less than
a tenth of a second on average—and additional real-life issues can also be
modeled within this approach.

In Chapter 4 we focus on the evaluation of the dynamic routing algorithm
DYN-ROUTE presented in Chapter 3 in comparison with optimal solutions
as well as with other routing approaches. In particular, we provide another
dynamic routing algorithm (DYN-ROUTE-SP) for the purpose of compar-
ison. In addition, we consider the approximation algorithm of Spenke [37]
for the offline variant of the OQDPP in grid graphs in this context. For the
analysis we focus on both, theoretical worst case performance using com-
petitive analysis, on the one hand, and empirical case studies, on the other
hand. We pay special interest to unit grid graphs in both parts since the
underlying graph at CTA is grid-like.

On the theoretical side we show that DYN-ROUTE is Θ(k)-competitive
with respect to both considered problems in directed as well as in undirected
graphs. While the algorithm we introduce in this chapter (DYN-ROUTE-

4 Introduction

SP) does not perform better in arbitrary graphs, we are able to show that
it is 1 + (5k − 1)/Lmax-competitive with respect to the OQDPP and 1 +
(5k + 3)/2Lavg-competitive with respect to the OSDDPP in grid graphs,
where, roughly speaking, Lmax and Lavg denote the maximum and the average
shortest path distance over all requests, respectively. As a byproduct of the
result concerning the OQDPP we improve the approximation ratio for the
corresponding offline problem on grid graphs given by Spenke for instances
with Lmax > (4/3)k + 1. We will see that this condition often holds in
practice.

Concerning the experimental analysis we evaluate several instances in grid
graphs. It turns out that DYN-ROUTE is superior to the other mentioned
approaches. Moreover, regarding optimal (offline) solutions, we observe an
average optimality gap of 1% to 17% for the OSDDPP and of 1% to 25%
for the OQDPP—dependent on the size of the grid. The optimal solutions
are determined using an integer programming approach. To this end, we
formulate both offline problems as multi-commodity flow problems in a time-
expanded graph.

In Chapter 5 we present a different routing approach for the investigated
problems. In fact, we ignore the time-dependent behavior of the vehicles
during the route computation (static routing). Thus, the collision avoidance
has to be considered independently of the routing by a certain reservation
procedure. Similar approaches have been investigated in [10, 21, 26, 42].
We provide a two-stage approach that copes with the main problems of this
approach—congestion and detours caused by the static route computation,
on the one hand, and the risk of deadlocks during the reservation procedure,
on the other hand.

Firstly, we give an asymptotically optimal algorithm with respect to a
particular load balancing problem, the Online Load Balancing Problem with
Bounded Stretch Factor, in order to distribute the vehicles over the network
as well as possible while bounding the length of the determined paths. In
detail, we compute a shortest path with respect to a specific (load-dependent)
cost function for each request.

Secondly, we introduce an algorithm that computes a reservation sched-
ule, which guarantees a deadlock-free execution of the determined routes.
Here, we basically focus on the detection of specific cycles in a so-called
deadlock detection graph that corresponds to the schedule.

Both algorithms together lead to the first known deadlock-free static rout-
ing approach that is suitable for the use in large-scale logistic systems. This
is shown by accordant evaluations in the last part of the chapter. There, we
also provide an experimental comparison to the dynamic routing algorithm
DYN-ROUTE. It turns out that it highly depends on the expected traffic
density, which of these approaches should be preferred in practice.

Chapter 2

Preliminaries

In this chapter we prepare the ground for the main part of the thesis. Firstly,
in Section 2.1, we provide two basic definitions. In fact, we introduce a spe-
cial graph class called grid graphs and a method that is typically used to
analyze online problems, namely the competitive analysis. Both are funda-
mental for the following chapters. Afterwards we describe our online disjoint
vehicle routing model in Section 2.2. Besides a general description of the con-
sidered problems and objectives we introduce two models for the recognition
of conflicts, i.e., we define disjointness in different ways. In Section 2.3 we
introduce our application: the routing of Automated Guided Vehicles at
HHLA Container Terminal Altenwerder (CTA).

2.1 Basic Definitions

2.1.1 Grid Graphs

Due to the application we will introduce in Section 2.3 we pay special atten-
tion to the class of grid graphs. Although it might be intuitively clear how
such a graph looks like we provide a formal definition (Definition 2.1) and
illustrate a 10 × 4 grid graph in Figure 2.1.

Definition 2.1 (Grid graph, Burkard et al. [9]). A graph G = (V,E) is a
grid graph if its nodes are in a one-to-one correspondence with the points
in a Euclidian n × m unit grid and if nodes are adjacent if and only if the
corresponding points are at a distance of one.

We call the set of edges whose incident nodes correspond to points in
the unit grid with the same first component a vertical lane. Accordingly, a
horizontal lane is the union of all edges between nodes with same second
coordinate. Thus, a n × m grid graph has n vertical and m horizontal
lanes. In this work the ratio n/m of the number n of vertical lanes and the
number m of horizontal lanes is of special interest. We call this aspect ratio
the narrowness of a grid graph.

5

6 Preliminaries

(1, 1)

(1, 4) (10, 4)

(10, 1)
Figure 2.1: 10 × 4 grid graph

2.1.2 Online Problems and Competitive Analysis

Optimization problems are called online if the problem input becomes known
only piecewise. Each request in such a sequence has to be served by an online
algorithm. We consider an online model where requests have to be answered
without knowledge of further requests. This model is called list model.

Online algorithms are typically analyzed using competitive analysis, in
which the worst-case performance of the algorithm is compared with an
optimal offline solution, i.e., with the best solution that can be obtained if
the complete input is known from the beginning. This kind of analysis was
introduced by Sleator and Tarjan [36] while Karlin, Manasse, Rudolph, and
Sleator [24] were the first who used the term competitive analysis.

Definition 2.2 (Competitive ratio). An online algorithm ALG for a min-
imization problem is called c-competitive if, for any problem instance I, it
achieves a solution with

ALG(I) ≤ c · OPT(I),

where OPT(I) denotes the value of the optimal offline solution for that in-
stance.

The competitive ratio of ALG is the infimum over all c such that ALG
is c-competitive.

Since all problems considered in this thesis are minimization problems we
omit a similar definition of the competitive ratio for maximization problems.

Note that the competitive analysis does not say anything about the com-
putational complexity of an online algorithm. Moreover, an c-competitive
algorithm does not need to be efficient. However, if this is the case, we can
directly conclude that this algorithm is a c-approximation.

2.2 Online Disjoint Vehicle Routing 7

2.2 Online Disjoint Vehicle Routing

2.2.1 Problem Description

We consider a graph G = (V,E). The edge set E denotes the lanes of the
underlying traffic network. Each edge e ∈ E has a certain transit time τ(e)
which indicates the time needed to traverse this edge. The node set V models
the crossings of the lanes. The graph is either directed (unidirectional lanes)
or undirected. In both cases we assume that there exists no (anti-) parallel
edges. In order to avoid similar definitions for both graph classes we refer
to an undirected edge {u, v} as well as to a directed edge (u, v) as uv in
this section. In the main part of the thesis we clearly indicate whenever we
restrict ourselves to one of these graph classes. Note that grid graphs are
undirected by definition.

Transportation tasks are consecutively arriving over time and are mod-
eled by a sequence σ = r1, . . . , rk of requests. Each request ri = (si, ti, θi)
consists of a source node si, an target node ti, and a release time θi which can
be interpreted as earliest possible starting time. The requests do not neces-
sarily arrive chronologically, i.e., an arising request can contain a release time
smaller than its predecessor. Note that we do not consider the assignment
of vehicles to requests in general. In contrast, we assume that this is done
by a higher-level management system in advance. In Section 3.1.2, however,
we provide an approach for this task (see Remark 3.4) using the dynamic
routing algorithm described in Section 3.1.

Since we use the online list model, cf. Section 2.1.2, each request has to
be answered immediately. This is done by a corresponding path over time.
According to dynamic flow theory [14, 15, 27], where flows over time are often
called dynamic flows, we call such paths dynamic paths. The key property of
such a path is that waiting on edges is permitted for an arbitrary time while
waiting in nodes is forbidden.

Definition 2.3 (Dynamic path). A dynamic path in a graph G = (V,E)
with transit times τ(e) on each edge e ∈ E is a sequence

P = (θ0, (v1, θ1), . . . , (vn, θn))

of nodes v1, . . . , vn with vivi+1 ∈ E for all i ∈ {1, . . . , n−1} and time stamps
θ0, θ1, . . . , θn.

While θ0 and θ1 ≥ θ0 denote the release time and the starting time,
respectively,

θi ≥ θi−1 + τ(vi−1vi) (2 ≤ i ≤ n)

is the time when the corresponding node vi is entered.

8 Preliminaries

The duration ∆P of a dynamic path P is defined as the difference between
the completion time θn and the release time θ0.

Remark 2.4 (Static path). In order to avoid confusion we will use the term
static path to denote standard paths, i.e., paths without a time component
as introduced in [33], whenever the notation would be misleading otherwise.
The shortest path distance of a static s-t-path with respect to a given transit
time function τ is denoted by distτ (s, t). In graphs with unit transit times
we write dist(s, t).

A dynamic path reserves edges and nodes at certain times. Nodes are
reserved at the time they are entered and edges are occupied while the ve-
hicles travels over this edge. These points in time or intervals, respectively,
are called reservations.

Definition 2.5 (Reservation of nodes and edges). Consider a dynamic path
P = (θ0, (v1, θ1), . . . , (vn, θn)) in a graph G = (V,E). For each i ∈ {2, . . . , n}
the time interval (θi−1, θi) is called a reservation of edge vi−1vi on path P
and the point in time θi is called reservation of node vi on path P . The set
of reservations of an edge e (of a node v) on a path P is denoted by RP (e)
(RP (v)).

Note that there are no reservations before the starting time since we
assume that there are no conflicts at the source node of a request.

Assumption 2.6. We assume that sources and targets of the transportation
requests (depots, pick-up and delivery points) are located such that vehicles
that are positioned at these positions do not interfere with other vehicles.
Thus, in our model, a vehicle does not enter the graph until the starting time
of the corresponding path. We omit the explicit introduction of dummy nodes
and edges, but keep in mind that this would be possible.

Concerning the waiting times we assume, w.l.o.g., that waiting occurs at
the end of an edge, i.e., a vehicle traverses the edge first and waits afterwards
at the end of the edge. We define waiting intervals accordingly. Moreover,
we call the time period from the release time to the starting time a waiting
interval, although this interval does not lead to any reservation.

Definition 2.7 (Waiting intervals on a dynamic path). Consider a dynamic
path P = (θ0, (v1, θ1), . . . , (vn, θn)) in a graph G = (V,E). For each i ∈
{2, . . . , n} the time interval (θi−1 + τ(vi−1vi), θi) is called waiting interval of
path P on edge vi−1vi.

2.2 Online Disjoint Vehicle Routing 9

Now we are going to introduce two optimization problems in this context.
In both formulations we aim at determining disjoint dynamic paths. For
the definition of disjointness we refer to Section 2.2.2 where we discuss two
different models.

The problems only differ in the considered objective. The first one is to
minimize the overall duration, i.e., the sum of durations over all requests.
The idea behind that objective is to achieve a minimal average operating
time of the vehicles in order to make them available for the higher-level
management system as quickly as possible. We call the optimization problem
the Online Shortest Dynamic Disjoint Paths Problem (OSDDPP).

Online Shortest Dynamic Disjoint Paths Problem

(OSDDPP)

Instance: Graph G = (V,E), sequence of requests σ = r1, . . . , rk with
ri = (si, ti, θi).

Task: Find a corresponding set of disjoint dynamic paths P1, . . . , Pk

with minimal sum of durations (overall duration), i.e., min-
imize

∑k
i=1 ∆Pi

.

The second objective is the so-called makespan which is the time when all
requests are served. In this case we aim at completing a task that consists of
a set of requests as early as possible. We call the corresponding optimization
problem the Online Quickest Disjoint Paths Problem (OQDPP).

Online Quickest Disjoint Paths Problem

(OQDPP)

Instance: Graph G = (V,E), sequence of requests σ = r1, . . . , rk with
ri = (si, ti, θi).

Task: Find a corresponding set of disjoint dynamic paths P1, . . . , Pk

with minimal makespan, i.e., with minimal maximum com-
pletion time over all paths.

Table 2.1 illustrates an overview of the considered problems and their
offline variants, which are denoted accordingly.

So far only Spenke [37] as well as Krishnamatury, Batta and Karwan [28]
considered one of these problems: the QDPP. While Krishnamatury et al.
solved a mixed integer program using column generation, Spenke focused
on analyzing the complexity of the QDPP. In fact, she concentrated on a
multi-commodity flow problem that contains this problem as a special case
(demand one for each commodity). She showed that the QDPP is NP-hard

10 Preliminaries

Disjoint Vehicle Routing

objective overall duration makespan

online problem OSDDPP OQDPP

offline problem SDDPP QDPP

Table 2.1: Considered disjoint vehicle routing problems.

and provided a 4 + (k − 4)/Lmax-approximation algorithm for grid graphs,
where Lmax := maxri

{θi + dist(si, ti)} denotes a trivial lower bound to the
makespan and k is the number of requests.

2.2.2 Disjointness

In the presented problem formulations we require the determined dynamic
paths to be disjoint. Since this can be defined in different ways we describe
what we mean by disjointness of dynamic paths.

We consider two different models for the definition of disjointness, an
(rather theoretical) idealized model for graphs with unit edge length and a
more precise real-life model, the polygon model, that takes arbitrary transit
times and the dimensions of the vehicles into account. Both models are
formulated independent of the graph class (directed or undirected). In the
last part of the section we provide a transformation from undirected graphs
to directed graphs that maintains the disjointness condition.

Idealized Model

In this model we assume unit transit times and demand that the waiting
times are integral. This is motivated by the idea that the lanes of the network
are divided into edges of the same length (for example the vehicle length)
and that the vehicles travel with uniform speed. Spenke [37] also uses this
model.

Disjointness is defined via the reservations of the dynamic paths. We say
that paths P and P ′ are disjoint if the corresponding reservations on nodes
and edges are disjoint.

Definition 2.8 (Disjointness in the idealized model). Two dynamic paths P
and P ′ are disjoint if the corresponding reservations are disjoint, that is,

RP (e) ∩RP ′(e) = ∅ and RP (v) ∩RP ′(v) = ∅
for all e ∈ E and for all v ∈ V .

2.2 Online Disjoint Vehicle Routing 11

Note that, due to the integral transit and waiting times in this model,
the representation of the reservation intervals can be simplified.

Remark 2.9 (Unit length intervals). In the idealized model the reservation
intervals and therefore the waiting intervals can be subdivided into intervals
of unit length.

Polygon Model

In the idealized model each vehicle is modeled as an infinitesimally small
mass point. By contrast, in a real-life model the physical dimensions of the
vehicles have to be taken into account. The vehicles usually have to claim
several edges of the graph at the same time, i.e., if a vehicle traverses or
stands on an edge e, it possibly affects a much larger portion of the network
than only edge e.

A
C

D

B

Figure 2.2: Illustration of polygons that are claimed by a vehicle that moves on the
indicated edge. Polygon B and C intersect each other while the polygons A and D do not
intersect another polygon.

For dealing with the physical dimensions of the vehicles we use poly-
gons P(e) for each edge e, which describe the blocked area when a vehicle
(the center of a vehicle) is located on edge e (Figure 2.2). Thus, it is pro-
hibited to use two edges at the same time if the corresponding polygons
intersect. We represent this mutual exclusion by sets confl(e) of so-called
conflicting edges for each edge e.

12 Preliminaries

Definition 2.10 (Conflicting edges). We call two edges e and f conflicting
edges if the corresponding polygons P (e) and P (f) intersect, i.e., if

P (e) ∩ P (f) 6= ∅.

For each edge e ∈ E we denote the set of conflicting edges by confl(e).

We define the disjointness of dynamic paths accordingly, i.e., for each
edge e on a certain dynamic path it must hold that no conflicting edge is
used by another path simultaneously. Note that there is no need to take
care for node disjointness since the polygons that are associated with an
edge contain its adjacent nodes anyway.

Definition 2.11 (Disjointness in the polygon model). Two dynamic paths
P and P ′ are disjoint if

RP (e) ∩





⋃

f∈confl(e)

RP ′(f)



 = ∅.

for all e ∈ E. Since confl is symmetric this is obviously the case if and only
if

RP ′(e) ∩





⋃

f∈confl(e)

RP (f)



 = ∅.

for all e ∈ E.

Since one could also think of comparing the edges that are blocked (cov-
ered) by the corresponding polygons instead of using polygon intersections
and conflicting edges, we conclude the discussion of our polygon model with
two remarks concerning this alternative approach.

The first disadvantage would be that polygons often only block a fraction
of an edge. Therefore, two polygons may partially cover the same edge
without intersecting each other (see polygons C and D in Figure 2.2). Thus,
it is not clear how we can define disjointness in this case. Furthermore, we
will see that the use of conflicting edges is also of value from the algorithmic
point of view. This is due to the fact that only the conflicting edges of one
path are considered in Definition 2.11. In particular, we are able to compute
routes without taking the physical dimensions of the vehicles into account.
For details we refer to Section 3.1.1 , Section 5.2.2, and Section 5.3.4.

2.3 Application 13

Transformation of Undirected Graphs to Directed Graphs

Since some of the algorithms presented in this thesis are based on directed
graph formulations we show how an undirected graph is transformed into a
directed graph maintaining the disjointness condition.

If we consider the polygon model such a transformation is trivial. We
simply replace each undirected edge e by two anti-parallel directed edges e1

and e2. The edges e1 and e2, by definition, have the same corresponding
polygon as e and thus the new set of conflicting edges lead to an equivalent
formulation of the problem.

Spenke [37] gave a transformation for the idealized formulation . The dis-
advantage of her construction is that it allows additional movements. Nev-
ertheless, we will use (and describe) a similar transformation in Section 4.2.1
to construct a time-expanded graph.

Apart from this case, we use an approach that transfers parts of the
polygon model to the idealized model. In fact, the idea is to replace an
undirected edge in the same way as described above for the polygon model
and to use the concept of conflicting edges. In the idealized model each edge
has exactly two conflicting edges: the edge itself and the corresponding anti-
parallel edge. Node conflicts are considered in the same way as described for
the undirected case.

2.3 Application

The HHLA Container Terminal Altenwerder (CTA) at Hamburg Harbor,
which is operated by the Hamburger Hafen und Logistik AG (HHLA) is the
most modern container terminal worldwide regarding the level of automation.
In particular, the containers are transported between ship and storage area
using so-called Automated Guided Vehicles (AGVs), see Figure 2.3.

The AGVs navigate through the harbor area using a transponder system
and the routes are sent to them from a central control unit. AGVs are
symmetric, i.e., they can travel in both of the two driving directions equally
well and can also change directions on a route. A key property of the AGVs is
that they do not have an on-board collision-control system; i.e., they cannot
sense any obstacle on their anticipated route. To this end, the transmitted
routes have to be conflict-free.

We apply our disjoint vehicle routing model to that application by intro-
ducing a particular (’narrow’) grid-like graph that represents the AGV street
network. This graph consists of roughly 10,000 edges and 5,000 nodes. Since
the detailed layout of the CTA is confidential we will show the grid graph
illustrated in Figure 2.4 whenever we want to refer to that graph.

For experiments based on the CTA layout we implemented a simula-

14 Preliminaries

Figure 2.3: An Automated Guided Vehicle (AGV) used at HHLA Container Terminal
Altenwerder. c©HHLA

Figure 2.4: Abstract illustration of the underlying grid-like graph at HHLA Container
Terminal Altenwerder (CTA). The exact layout is confidential.

tion environment that models the movement of the vehicles in detail, on the
one hand, and generates requests, on the other. The latter is done by an
integrated management system that assigns vehicles to requests/items by
certain (confidential) rules. Note that this management system is not ex-
actly the one used in practice. Therefore, we do not focus on objectives like
the throughput or the number of containers transported in our experiments
since such an evaluation would also depend on the assignment of the vehi-
cles. In contrast, we evaluate our algorithms with respect to the introduced
optimization problems.

2.3 Application 15

Further Applications. The considered disjoint vehicle routing problems
are also of interest in other applications. For instance, switching engines at
private or public cargo railroads as well as Automated Guided Vehicles in
production facilities, warehouses, or distribution centers have to be routed
conflict-free. A new problem in this context is the guidance of (automated)
aircraft tractors on public airports. Here, one aims at reducing the emissions,
on the one hand, and coping with the increasing traffic, on the other.

Chapter 3

Dynamic Routing

In this chapter we present a dynamic routing approach for the online disjoint
vehicle routing problems introduced in Section 2.2—the OSDDPP and the
OQDPP. In the first part (Section 3.1) we focus on the description of the basic
routing algorithm. Afterwards, in Section 3.2, we provide rerouting strategies
to cope with perturbations and prioritization of requests. In both parts we
consider the more precise disjointness model, namely the polygon model
introduced in Section 2.2.2, and describe differences to the idealized setting
whenever necessary. In Section 3.3 we evaluate the presented approach with
respect to the application given in Section 2.3: the routing of Automated
Guided Vehicles at HHLA Container Terminal Altenwerder. Parts of this
chapter are published in [19, 20].

3.1 Routing Algorithm

In this section we introduce our dynamic routing algorithm for the OSDDPP
and the OQDPP. After describing the structure of the iterative approach we
focus on the essential parts of the algorithm in Section 3.1.2 and Section 3.1.3.
In the final two subsections we focus on practical issues and show how we
cope with arising difficulties in this context.

3.1.1 Iterative Routing Scheme

The dynamic routing algorithm is a kind of greedy approach. For each
incoming request we compute a shortest path with respect to the elapsed time
that respects the reservations of the already served requests, see Figure 3.1.

In fact, in our algorithm, we will not maintain the set of reservations, but
the complementary set of free time-intervals F(e) on each edge e ∈ E, the
so-called time-windows.

Maintaining these sets of intervals may be seen as a compact representa-
tion of the standard time-expanded graph [14, 15], in which there is a copy
of each node/edge for each point in time (with respect to some time dis-
cretization). In contrast, the set of time-windows of an edge e only models
those times, in which there is actually no vehicle on e. Similar compact rep-

17

18 Dynamic Routing

1 11

111

222

333

444

555

000

1 11

111

222

333

444

555

000

1 11

111

222

333

444

555

000

(a) (b) (c)
Figure 3.1: Illustration of the iterative routing scheme on three consecutive edges with
transit time 1. (a) shows the situation before the new request arrives. There is a graph
with some blockings (red) and some time-windows (green) on the time axis (y axis). The
task is to compute a quickest path that respects the time-windows. This is illustrated in
(b). The chosen path is blocked afterwards (see (c)). In this example we assume that
the illustrated edges do not conflict with each other, i.e., the set of conflicting edges only
contains the edge itself.

resentations of a time-expanded graph by time intervals have been studied
before: While Desrochers et al. [11, 12, 13] as well as Sancho [32] investigate
the Shortest Path Problem with Time-Windows, see Section 3.1.2, Kim and
Tanchoco [25] consider the routing of Automated Guided Vehicles based on
a simple model and provide a polynomial-time algorithm. In fact, they only
represent reservations on nodes by time-windows while conflicts on edges
have to be respected by additional checks. Moreover, they do not take the
physical dimensions of the vehicles into account.

Algorithm 1: DYN-ROUTE

Data: Graph G = (V,E), sequence of requests σ = r1, . . . , rk.
Result: Sequence of dynamic paths P1, . . . , Pk.
begin

foreach request rj do
· compute a dynamic path with minimum completion time that
respects the given time-windows
/∗ execute Algorithm 2 ∗/ ;
· readjust the time-windows according to the computed path
and the corresponding conflicting edges
/∗ execute Algorithm 3 ∗/ ;

end

In contrast, as mentioned before, we use the polygon model introduced in

3.1 Routing Algorithm 19

Section 2.2.2. Note that it is sufficient to consider the edges of a new path P
itself (without the corresponding conflicting edges) to check for disjointness
with already computed paths if all reservations (including the ones from con-
flicting edges) from these paths are represented by the given time-windows,
cf. Definition 2.11. Thus, for each incoming request rj we compute a shortest
(w.r.t. the elapsed time) dynamic path that respects the given time-windows
and readjust them afterwards according to the set of conflicting edges, see
Algorithm 1 (DYN-ROUTE). Here, ’respecting’ means that vehicles wait on
an edge or traverse an edge e only during one of its ’free’ time-windows given
by F(e). For the rest of the thesis we refer to this algorithm as the dynamic
routing algorithm.

In the following sections we will describe both parts of the algorithm in
detail—the route computation and the readjustment of the time-windows.

3.1.2 Route Computation

The interesting part of the presented dynamic routing algorithm is the route
computation for each incoming request, i.e., the determination of a shortest
path that respects the given time-windows. We call this problem the Quickest
Path Problem with Time Windows (QPPTW).

Quickest Path Problem with Time Windows

(QPPTW)

Instance: Graph G, source node s, destination node t, starting time θ,
transit times τ(e), set of time-windows F(e) on each edge e.

Task: Compute a dynamic path from s to t with minimum comple-
tion time that respects the given time-windows (w.r.t. τ(e)).

Remark 3.1 (Existence). A dynamic s-t path that respects the given time-
windows exists if and only if there is a static s-t path. This is due to the
unbounded time horizon.

Remark 3.2 (Other applications). The QPPTW is not only of interest in
connection with the dynamic routing approach since one can also assume
that the time-windows (or reservations) are given in advance. Consider for
example the route assignment for private or public cargo railroads. Here, the
task might be to route a single request/train through the network such that a
given time table is respected.

The QPPTW is related to the well-known Shortest Path Problem with

20 Dynamic Routing

Time Windows (SPPTW) [11, 12, 13, 32] but differs in a subtle point: in the
SPPTW there are additional edge costs that can (but do not necessarily)
depend on the transit times while in the QPPTW the duration (traveling
time including waiting times) is minimized. The duration can be viewed as
costs that do not depend on the edge itself but on the routing history.

Shortest Path Problem with Time Windows

(SPPTW)

Instance: Graph G, source node s, destination node t, starting time θ,
transit times τ(e), costs c(e), set of time-windows F(e) on
each edge e.

Task: Compute a shortest dynamic path (w.r.t. edge costs c(e))
that respects the given time-windows (w.r.t. τe).

The SPPTW is NP-hard and therefore there is no polynomial time al-
gorithm that solves the problem optimal, unless P = NP . The hardness
can be shown by reduction from the Constrained Shortest Path Problem
(CSPP [7]). The instance of the SPPTW is constructed by placing time-
windows [0, R] at each edge while R denotes the resource constraint in the
CSPP instance. Then, obviously, a path respects the given time-windows
if and only if it is feasible with respect to the resource constraint. Apply-
ing the same cost function on edges as in the CSPP instance completes the
reduction.

In contrast, the QPPTW can be solved in polynomial time. Our algo-
rithm for this problem is a generalized edge-based label-setting algorithm
resembling Dijkstra’s algorithm (Algorithm 2).

A label L = (eL, IL, predL) represents a path from the source node s to
the tail of eL, where predL is the predecessor of eL on that path and the label
interval IL = (aL, bL) represents an interval of possible arrival times at edge
eL (at the tail of eL). Therefore, the earliest possible arrival time aL (the
elapsed time at the tail of eL) is also the cost value of label L. We define an
ordering for these labels. We say that a label L dominates a label L′ if and
only if

IL′ ⊆ IL,

which implies aL′ < aL.
The labels are stored in a priority queue H (a binary heap for example)

that is sorted with respect to the earliest possible arrival time aL (key). Each
label that is extracted from H (line 8 of Algorithm 2) is propagated through
the time-windows of the corresponding edge eL (line 11 to 18). Figure 3.2
illustrates this propagation step. Afterwards the new labels are compared
with the already existing labels with respect to the dominance rule (line 19

3.1 Routing Algorithm 21

Algorithm 2: DYN-ROUTE-COMP

Data: Directed graph G = (V,E) with transit times τ(e) for
all e ∈ E, source node s, target node t, edge set OUT(e) 6= ∅
∀e ∈ E, transit time function τ , sorted set of time-windows
F(e) ∀e ∈ E, release time θ.

Result: Dynamic path P with minimum completion time (and
starting time θ̂ ≥ θ) that respects the given time windows or
the message that no such path exists.

begin

H = ∅;1

L(e) = ∅ ∀e ∈ E;2

foreach e ∈ δ+(s) do3

L = (e, (θ,∞), nil);4

H.insert(L, θ);5

L(e).insert(L);6

while H 6= ∅ do7

L = H.getMin();8

if t is tail of eL then9

Construct path P based on the found labels and return it afterwards;10

foreach F i
eL

= [ai
eL

, bi
eL

] ∈ F(eL) do11

/∗ label expansion ∗/
if bL < ai

eL
then12

goto 7 /∗ next label from heap ∗/ ;13

if aL > bi
eL

then14

goto 11 /∗ next time-window ∗/ ;15

θin = max{aL, ai
eL
} /∗ ai

eL
> aL ⇒ waiting ∗/;16

θout = θin + τ (eL) ;17

if θout ≤ bi
eL

then18

foreach f ∈ OUT(eL) do19

/∗ dominance check ∗/
L′ = (f, (θout, b

i
eL

), L) ;20

foreach L̂ ∈ L(f) do21

if L′ dominates L̂ then22

H.erase(L̂) ;23

L(f).erase(L̂) ;24

else if L̂ dominates L′ then25

goto 19 /∗ next out-going edge ∗/;26

27

H.insert(L′, aL′) ;28

L(f).insert(L′) ;29

30

31

32

notification: there is no s-t path ;33

end

22 Dynamic Routing

to 26). Note that we take turning rules into account by introducing an edge
set OUT for each edge e. To this end, we need a directed graph representa-
tion and use the transformation given in Section 2.2.2 if the given graph is
undirected.

111

0

1

2

3

4

5

6

7

8

9

10

111

0

1

2

3

4

5

6

7

8

9

10

(a) (b)
Figure 3.2: Label Expansion on three consecutive edges. The label intervals are repre-
sented by blue bars and are placed above the nodes. The blockings are colored red (edges).
The green intervals between these blockings are the time-windows. Figure (b) shows the
successive expansion of the label interval illustrated in (a).

Theorem 3.3 shows that Algorithm 2 solves the QPPTW in polynomial
time (in the number of time-windows). Note that the number of time-
windows is obviously linear in the number of reservations.

Theorem 3.3 ([19, 20]). Algorithm 2 solves the QPPTW in polynomial time.

Proof. The algorithm computes all required paths since the expansion of the
label intervals is maximal and no optimal path (label) is dominated. There-
fore, on termination the algorithm has computed an optimal path respecting
the time-windows. The termination follows from the complexity analysis
given below.

Consider the dominance rule: a label is dominated if the corresponding
label interval is a subset of an existing label interval. Thus, for any two labels
that are expanded w.r.t. the same time-window it holds that one of these
labels dominates the other since the upper boundary of the corresponding
label intervals is equal in this case.

Therefore, the number of possible labels on an edge e is bounded by the
number of time-windows on all in-going edges. We call these time-windows

3.1 Routing Algorithm 23

the in-going time windows F−(e) of edge e. As a consequence, the number
of iterations (the number of labels taken from the priority queue) is bounded
from above by the sum of the number of in-going time-windows over all edges
(
∑

e∈E |F−(e)|). In each iteration a label at an edge e is expanded along
at most |F(e)| time-windows and each of the resulting labels is compared
with at most

∑

f∈OUT (e) |F−(f)| existing labels. If the priority queue is

implemented as a heap, updating can be done in O(log(
∑

e∈E |F−(e)|)). This
leads to a run time of

O





(

∑

e∈E

|F−(e)|
)

·
(

max
e∈E

|F(e)|
)

·



max
e∈E

{
∑

f∈OUT (e)

|F−(f)|}



 · log

(

∑

e∈E

|F−(e)|
)



 ,

which is in O(|F|3 log(|F|), where F denotes the set of given time-windows.

Hence, the algorithm terminates in polynomial time with an optimal path
or the notification that there is no feasible path at all.

Although the algorithm has a polynomial run time, additional accelera-
tion can be achieved by goal-oriented search [22, 34]. The idea is to add an
estimation of the distance to the target to the current cost value of a label
in order to direct the search towards the target. Since we use a lower bound
for the estimation on the shortest distance to the target that satisfies the
consistency assumption [22], the computed path is still an optimal path.

Algorithm 2 can also be used to assign idle vehicles to new requests/items,
i.e., to determine the most suitable vehicle for this task.

Remark 3.4 (Assignment of idle vehicles to requests). Algorithm 2 can also
be executed with multiple start labels. The analysis of the run time does not
change in this case. Therefore, given the source node of a new request, the
algorithm can be used to determine the idle vehicle that would reach that
node at first.

We conclude the description of the route computation with the modifica-
tions that have to be made if one considers the idealized disjointness model
and an observation concerning the structure of the paths computed by the
presented algorithm.

Idealized disjointness model. In the idealized model it is necessary to
consider the reservations on nodes during the route computation. More
precisely, the computation of θin in line 16 of Algorithm 2 must include a
recognition of these reservations. This can be done by introducing additional
time stamps for each time-window that implies the latest possible entry time
for this time-window. In fact, the time-windows have to be entered before

24 Dynamic Routing

that time. In Section 3.1.3 we present the corresponding transformation from
node reservations to those time-windows.

The analysis of the algorithm still holds since the consideration of the
additional time stamp is just a simple look up in line 16 of the algorithm.
Additionally, we will see in Section 3.1.3 that the number of these time-
windows is still polynomial in the number of reservations.

Observation 3.5 (Structure of the computed paths). In a given graph with
time-windows on edges there may be several dynamic paths that use the same
time-windows and lead to the same duration. These paths just differ in the
distribution of the waiting intervals. Algorithm 2 computes a dynamic path
such that waiting occurs at the latest possible edge before the respected reser-
vation. All other possible distributions are either not generated or dominated
during the algorithm.

3.1.3 Readjustment of the Time-windows

After routing a request one has to take the new reservations into account,
i.e., time-windows have to be readjusted according to the edge usage of the
newly found route and their conflicting edges. Note that, as pointed out
in Section 3.1.1, taking the conflicting edges into account implies that one
does not have to take care of the vehicle dimensions during route compu-
tation, since it is already fully represented by readjusting the time-windows
accordingly on all affected edges.

Our algorithm for the readjustment of the time-windows (Algorithm 3)
works as follows. For each edge e of a computed path we consider the corres-
ponding reservation and verify for all conflicting edges in confl(e) whether it
intersects with a time-window. If this is the case, the time-window is read-
justed (shortened, erased, or split) accordingly. This, obviously, can be done
in time proportional to the number of time-windows on conflicting edges of
the found path.

Idealized disjointness model. As pointed out in Section 3.1.2 we add a
time stamp θ(F) to each time-window F if we consider the idealized disjoint-
ness model. This time stamp indicates that the corresponding time-window
has to be entered before that time. The initial value is infinity.

After each route computation the time-windows are at first readjusted
according to the edge reservations. This is done in the same way as described
for the polygon model in Algorithm 3. The node reservations are considered
by transforming the time-windows on all out-going edges of the reserved
node v in the following way.

3.1 Routing Algorithm 25

Algorithm 3: DYN-ROUTE-READJUST

Data: Directed graph G = (V,E) with transit times τ(e) for
all e ∈ E, dynamic path P with reservations (θin

e , θout
e) for all

e ∈ P , sorted time-windows F(e) on the edges e ∈ E, set of
conflicting edges confl(e) for all e ∈ E.

Result: Sorted set of time-windows F(e) including the reservations
of P .

begin
foreach f ∈ P do1

foreach e ∈ confl(f) do2

foreach F i
e = [ai

e, b
i
e] ∈ F(e) do3

if θout
f ≤ ai

e then4

goto 3;5

if θin
f ≤ ai

e + τ(e) then6

if θout
f ≥ bi

e − τ(e) then7

/∗ erase time-window ∗/
F(e).erase(F i

e);8

else9

/∗ shorten time-window ∗/
F i

e = [θout
f , bi

e];10

if θin
f < bi

e then11

if θout
f ≥ bi

e − τ(e) then12

/∗ shorten time-window ∗/
F i

e = [ai
e, θ

in
f];13

else14

/∗ split time-window ∗/
F i

e = [ai
e, θ

in
f] ;15

F(e).insert([θout
f , bi

e]);16

goto 2 /∗ next conflicting edge ∗/;17

else18

goto 2 /∗ next conflicting edge ∗/;19

20

21

22

end

26 Dynamic Routing

11

θθ
θ + 1

Figure 3.3: Transformation of a node reservation: On the left hand side a node reser-
vation at time θ (red dot) and a time-window (green bar) on the out-going edge of that
node is illustrated. We assume that this time-window has no time stamp (infinity). On
the right side the resulting time-windows are shown. Here the red dot denotes the time
stamp.

Let av ∈ Rv be a reservation on node v and let Fe = [ae, be] be a time-
window with time stamp θ(Fe) on an out-going edge e of node v. Then we
distinguish between two cases:

1. ae ≥ av + 1 or be ≤ av: Fe remains unchanged.

2. otherwise (ae ≤ av and be ≥ av + 1): Fe is transformed into an interval
F 1

e = [ae, be] with time stamp θ(F 1
e) = min{av, θ(Fe)} and an interval

F 2
e = [av + 1, be] with time stamp θ(Fe) (see Figure 3.3).

Note that empty time-windows (F 2
e if be = av + 1) as well as time-

windows with θ(F = [a, b]) ≤ a are not generated. The latter is the
case if av = ae (F 1

e) or if θ(Fe) ≤ av + 1 (F 2
e).

The described transformation is done for nodes on the determined path and
all corresponding out-going edges. It leads to a formulation where only time-
windows (with their time stamps) on edges have to be considered. The read-
justment can obviously be done in polynomial time (in the total number of
new reservations). Moreover, the total number of time-windows is bounded
by the number of node reservations times the number of time-windows that
result from edge reservations, which is linear in the reservations on edges.
Thus, the total number of time-windows is still polynomial in the total num-
ber of reservations.

3.1 Routing Algorithm 27

3.1.4 Practical Requirements

To make the algorithm practical, additional ingredients have to be taken into
account. This demands for a variety of special features of the model.

Turning behavior

Although each route of a vehicle can be represented in the given graph,
not every route in this graph might in fact be executed by a vehicle. The
reason for this difficulty can be a complicated turning behavior, which makes
it necessary to start turning the wheel already long before the particular
intersection is reached. As a consequence, a vehicle needs a sufficiently long
straight route segment between two consecutive curves. To cope with such
a rather complicated turning behavior we introduce in a preprocessing step
a set of artifical edges to the network, each representing a possible turn (see
Figure 3.4). In addition, at each node of the graph we introduce turning
rules by modifying the set of out-going edges OUT(e) that can be used from
a particular in-going edge e. As a result we get a much larger network that
captures all possible movements of a vehicle, i.e., each feasible route in this
network can be executed by a vehicle. Note that the number of edges in
the underlying grid-like graph at HHLA Container Terminal Altenwerder,
cf. Section 2.3, increases from about 10,000 to about 45,000.

Figure 3.4: The
figure illustrates
an artificial edge
(dotted arrow) that
models a curve.
This is done for all
permitted curves.

Vehicle orientation

Sometimes it might be necessary to give a vehicle an explicit target orienta-
tion (see Figure 3.5) since the load of the vehicle has to be delivered in an
explicit orientation. Maybe unloading is not possible otherwise.

One way to model this orientation constraint is to add a flag, indicating

28 Dynamic Routing

(a) (b) (c)

Figure 3.5: Figure (a) shows a vehicle (on the left) with a given target orientation (on
the right). To achieve that requirement the vehicle changes its driving direction (b) and
reaches the target position in the correct target orientation (c).

whether the vehicle is in the right driving direction to reach the target with
the correct orientation. It remains to show that the routing algorithm is
capable of keeping track of this direction information during its search. This
can be shown by observing that in the proof of Theorem 3.3 one needs only
to maintain labels at an edge for each of the two possible directions and
define the domination rule accordingly, i.e., such that only labels with the
same information about the direction can dominate each other. Using this
observation we still obtain a polynomial time algorithm since the maximum
number of labels taken from the heap increases only by a factor of 2.

Corollary 3.6. Algorithm 2 solves the QPPTW in polynomial time (in the
number of time-windows) even if the orientation of vehicles is taken into
consideration.

Safety tubes

In spite of the fact that the routes computed by Algorithm 1 (DYN-ROUTE)
are conflict-free additional safety is required in practice because the vehi-
cles possibly deviate from the computed routes in time. Additionally, tech-
nical problems can occur while traveling through the network. We have
implemented two different safety tubes, a distance-dependent and a time-
dependent one, to cope with this difficulty.

The distance-dependent safety tube blocks an area in front of the vehicle.
The length depends on the speed of the vehicle and is at least the distance
needed to come to a complete stop (braking distance). This allows the vehicle
to stop if something unexpected happens, for example an unscheduled stop
of another vehicle, without causing a collision. In Section 3.2 we will discuss
rerouting approaches in this context.

To maintain a distance-dependent safety tube the label expansion in Al-
gorithm 2 is modified in the following way. The beginning of the label in-
terval is no longer the time when an edge is entered, but the time when

3.1 Routing Algorithm 29

Figure 3.6: Distance-dependent safety tube. The bars in dark blue illustrate the times
when the vehicle is on the corresponding edge while the light-blue bars show the intervals
resulting from the distance-dependent safety tube which is represented by the dotted
magenta lines.

the distance-dependent safety tube blocks that edge for the first time (see
Figure 3.6). In the algorithm this time can be determined by regarding the
history of the considered label. Since the number of already passed edges is
linear in the number of time-windows this can be done efficiently.

The time-dependent safety tube allows a little deviation from the com-
puted time, i.e., the expected arrival time at a specific point. This is neces-
sary because there will always be small deviations in time in practice. Note
that we will introduce more sophisticated approaches for dealing with large
deviations in Section 3.2.

1 11

111

222

333

444

555

000

1 11

111

222

333

444

555

000

1 11

111

222

333

444

555

000

(a) (b) (c)
Figure 3.7: Illustration of the iterative routing scheme with time-dependent safety tube
on three consecutive edges with transit time 1. In contrast to Fig. 3.1 the computed path
in (b) and the resulting reservations in (c) are lengthened by a certain amount.

30 Dynamic Routing

In the algorithm this safety tube is considered by lengthening the label
intervals in the wanted direction by a certain amount. This amount can be
made distance-dependent to reflect growing uncertainties along the route.
Figure 3.7 illustrates the structure of the dynamic routing algorithm (Algo-
rithm 1) with time-dependent safety tubes. We will evaluate the influence
of such a tube on the performance of the dynamic routing algorithm in Sec-
tion 3.3.2.

Non constant transit times

Instead of constant transit times as described in Section 3.1.2, we take the
variable speed of the vehicles into account, i.e., we model the acceleration
and deceleration behavior as stepwise linear functions and allow different
maximum speeds on each edge of the graph. The maximum speed can depend
on the kind of movement (curve or straight section), the weather conditions,
and the status of the vehicle.

While the computation of the transit times in the acceleration process is
easy to integrate in the presented approach by determining the actual transit
time in the propagation step, the deceleration process needs a special han-
dling. The necessity of deceleration cannot be recognized until the algorithm
is forced to produce a waiting interval or to reduce speed (lower maximum
speed) before entering an edge. Therefore, the transit times on the edges be-
fore this edge have to be adapted at this time according to the deceleration
function. In case it turns out that deceleration was not possible with respect
to the given time-windows on the preceding edges, the considered label is
deleted.

Thus, we can conclude that non-constant transit time can be applied to
our algorithm, but, obviously, we are not able to guarantee shortest paths
anymore. This is basically due to the observation we made concerning the
distribution of waiting in our algorithm (waiting is scheduled as late as pos-
sible, cf. Observation 3.5). If we consider non-constant transit times it
becomes important where we plan waiting, cf. Figure 3.8. But since we are
not able to provide waiting at all possible positions for any time segment in
polynomial time, we give an heuristic approach to cope with that problem
in Section 3.1.5.

3.1.5 Waiting Heuristic

In order to deal with waiting in a more flexible way we developed a heuristic
approach that allows to reschedule waiting. The idea is to give the algorithm
the possibility to plan waiting earlier than necessary.

3.1 Routing Algorithm 31

time

ts

Figure 3.8: Illustration of two dynamic paths from node s to node t. While the dark
blue path schedules waiting directly before the shown reservation (red), the light-blue
path waits earlier and passes the corresponding edge without waiting. As a consequence,
it reaches the target node t at first.

To this end, we introduce a new label value wL. This value represents the
latest possible entry time (on the corresponding edge) that can be achieved
by just elongating the waiting time at the last waiting position pL.

The domination rule is changed accordingly. In contrast to the domi-
nation rule formulated in Section 3.1.2, we say that a label L dominates a
label L′ if and only if

IL′ ⊆ IL and wL′ ≤ wL.

Algorithm 2 is adapted in the following way. In the propagation step of
the algorithm we distinguish between two cases. On the one hand, the case
when no waiting on the previous edge is necessary, i.e., if aL ≥ aeL

i (line 16
of the algorithm), and the waiting case (aL < aeL

i), on the other hand.
In the non-waiting case we only have to adapt the new label value (which

has been initialized with ∞ at the beginning) according to the current time-
window, i.e., we set

wL′ = min{wL + τ(eL), beL

i }.

In the waiting case we check whether it is possible to avoid waiting on that
edge by pushing the waiting interval to the last waiting position (rescheduling
of waiting). If this is possible (wL ≥ aeL

i) we set

θin = aeL

i ,

32 Dynamic Routing

and readjust w′
L in the same way as in the non-waiting case. Moreover, we

store the length of the rescheduled waiting interval in the label. Otherwise
(wL < aeL

i), the propagation step remains unchanged and wL′ is set to beL

i .
In addition to that new label value, we introduce a fixed parameter C, the

reschedule waiting parameter, which bounds the number of edges we store the
information about the possibility to reschedule an arising waiting interval.
This means that we do not move a waiting interval more than C edges along
the determined path. In the algorithm this is guaranteed by counting the
number of edges since we waited the last time.

Now we show that Algorithm 2 with the described changes and the new
domination rule still has a polynomial run time.

Theorem 3.7. Algorithm 2 with the described waiting heuristic runs in poly-
nomial time (in the number of time-windows).

Proof. Consider two labels L and L′ that produce a waiting interval on the
same edge and are afterwards expanded (without waiting) through the same
(at most C) time-windows. For these labels it obviously holds that

wL = wL′ .

With the argumentation of Theorem 3.3 it follows that one of these two
labels will dominate the other. Thus, from all labels that wait on the same
edge and are expanded through the same time-windows afterwards without
waiting, only one label will be extracted from the heap. Since this holds for
each combination of at most C time-windows, the number of labels at a each
edge is bounded from above by

C
∑

i=1

(max
e∈E

|F−(e)|)i < (max
e∈E

|F−(e)|)C+1, (3.1)

where F−(e), again, denotes the set of time-windows on all in-going edges
of edge e. Note that we assume maxe∈E |F−(e)| ≥ 2 in Equation 3.1. If
this is not the case (all edges have only one in-going edge and at most one
time-window) the left hand side is bounded by a constant (C2) anyway.

Thus, the the total number of labels is bounded by

|E| · (max
e∈E

|F−(e)|)C+1

and the same arguments as in Theorem 3.3 (label expansion along at most
maxe∈E |Fe| time-windows, dominance check with respect to at most the
number of labels stored at the considered edge, size of the heap is bounded

3.2 Rerouting Strategies 33

by the total number of labels) lead to a run time of

O

((

|E| · (max
e∈E

|F−(e)|)C+1

)

·
(

max
e∈E

|Fe|
)

·
(

|E| · (max
e∈E

|F−(e)|)C+1

)

· log

(

(max
e∈E

|F−(e)|)C+1

))

= O

((

|E| · (max
e∈E

|F−(e)|)2C+2

)

·
(

max
e∈E

|Fe|
)

· log

(

|E| · (max
e∈E

|F−(e)|)C+1

))

if the priority queue is implemented as a heap.

Note that the rescheduling of waiting does not change the completion
time of a computed path if we consider constant transit times, see also Ob-
servation 3.5. But in the case of non-constant transit times it might avoid
some deceleration and acceleration processes. We are going to evaluate this
heuristic approach in Section 3.3.2.

3.2 Rerouting Strategies

Until now we assumed that all computed routes are executed almost ex-
act, i.e., only small deviations are considered in the model by introducing
time-dependent safety tubes in Section 3.1.4. In this section we present a
rerouting approach (Section 3.2.3) that is able to deal with various, much
more challenging, perturbations, which are introduced in Section 3.2.1.

As a welcome side effect this rerouting approach can be used in connection
with priorities (Section 3.2.2) that might be associated with the vehicles or
certain requests, respectively.

3.2.1 Perturbations

In this section we describe the six kinds of perturbations we take into con-
sideration: namely blocked areas, broken-down vehicles, route cancellation,
slow driving vehicles, late starting vehicles, and reservation conflicts.

Blocked areas. We call a connected zone of the given street network that
cannot be used for a certain time period a blocked area. In our application,
the HHLA Container Terminal Altenwerder, the declaration of such areas
might be necessary for maintenance work at container cranes or at the sensors
in the ground since in general the area where the AGVs operate is not allowed
to be entered for safety reasons. Another reason might be a defective vehicle
that has to be recovered.

34 Dynamic Routing

We investigate two kinds of blocked areas: so-called hard blocked areas
may not be entered from the time they are known on while soft blocked areas
are only not usable for requests that appear after the area was set.

Broken-down vehicles. If a vehicle brakes down it probably makes some
other, already computed, routes impossible. We assume that a broken-down
vehicle informs the router, or at least the higher-level management system,
about its status. Otherwise a reservation conflict (see below) would be the
consequence and we have to react accordingly. Note that a broken-down
vehicle is a special kind of a hard blocked area.

Route cancellation. Route cancellations occur if the higher-level man-
agement system decides to change the target of a certain request. If the
corresponding path is already computed it has to be canceled and a new dy-
namic path has to be determined. Note that the vehicle is possibly already
executing the original route when such a cancellation appears.

Slow driving vehicles. We call a vehicle that does not travel with the
expected maximum speed a slow driving vehicle. This might be caused by
problems with the engine, with the tires, or with the load.

Late starting vehicles. A vehicle that is late because it has not started
traveling at the scheduled starting time is called a late starting vehicle. A
reason for such a perturbation might be that the engine of the vehicle has
not start immediately.

Remark 3.8 (Early vehicles). Note that in contrast to late vehicles (slow
driving or late starting vehicles), dealing with vehicles that reach an edge of
the corresponding dynamic path too early is easy. One only has to take care
that the vehicle slows down in this case. A possible approach for achieving
this is to assign earliest possible entry times to each edge of the path. There
might be, however, small deviations in time, but this is unproblematic if one
uses a time-dependent safety tube, cf. Section 3.1.4.

Reservation conflicts. A reservation conflict occurs when a vehicle wants
to pass an edge that is already occupied by another vehicle. The only reason
for such a conflict is a perturbation that was not recognized in time since the
dynamic paths computed by Algorithm 1 (DYN-ROUTE) are conflict-free.

3.2 Rerouting Strategies 35

3.2.2 Priorities

We discuss the prioritization of requests in order to take into account that
requests might be of different importance/urgency which is possibly rooted
in a given order of the transported objects at the delivery point. Another
reason might be time limits for certain requests/items.

In our dynamic routing algorithm DYN-ROUTE (Algorithm 1) it is possi-
ble to take priorities of requests into consideration if we permit the rerouting
of vehicles with lower priority. Then, these vehicles can be ignored during
the route computation whenever they would force a prioritized vehicle to
wait.

To this end, we introduce a procedure that checks—by iterating over the
reservations on a certain edge e—whether the reservations in a given time
interval I on edge e can be ignored. If this is the case, i.e., if the reservations
that intersect with the interval I correspond to vehicles/requests of lower
priority that can be stopped in time (before the conflict point is reached),
a set of ignored requests is returned. Otherwise, a negative notification is
provided.

We apply this procedure to Algorithm 2 in three phases during the prop-
agation step. First of all, without considering any time-window, we try
to provide a straight movement, i.e., we apply the procedure to the inter-
val [aL, aL + τ(eL)]. If the answer is positive we create an new label L′ with
label interval [aL + τ(eL), aL + τ(eL)].

Secondly, we use the introduced procedure if in line 16 of Algorithm 2
it holds that aL < ai

eL
. In this case we check interval [aL, ai

eL
], i.e., we try

to avoid waiting. If the affected requests/vehicles can be ignored we set
θin = aL and propagate without waiting. Otherwise, the propagation step
remains unchanged.

The last adaption of the standard algorithm originates in line 18 of the
algorithm, where we evaluate whether the chosen time-window can be left in
time (θout ≤ bi

eL
). If this is not the case we check the interval [bi

eL
, θout] using

the introduced check. If the answer is positive we proceed in the same way
as if the if-statement had returned true.

In each of these cases the ignored vehicles/requests are stored in the label
and after the route computation these vehicles are rerouted immediately (see
Section 3.2.3).

3.2.3 Rerouting Approach

The first step in any rerouting approach is the detection of perturbations
and the determination of the vehicles that have to be rerouted. Therefore,
we describe how we achieve this before we introduce the rerouting strategies.

36 Dynamic Routing

Blocked areas, route cancellations and reservation conflicts are easy to
detect since they are reported by the higher-level management system. For
the other incidents we use so-called position reports of the vehicles.

Such a report consists of the position of the vehicle, the time that cor-
responds to the position, and the status of the vehicle. Since each position
corresponds to a certain edge we can compare the edge-time pair of the po-
sition report with the information of the computed path to check whether
the vehicle is in time or too late. Hence, late starting and slow driving vehi-
cles can be detected this way. Slow driving vehicles additionally report their
current maximum speed (status). Moreover, broken-down vehicles can be
identified by their status.

Based on the kind of perturbation we determine the vehicles that have to
be rerouted. If a reservation conflict or a route cancellation occurs we only
have to reroute the perturbed vehicle. The same is done in the case of late
vehicles (slow driving vehicles and late starting vehicles). If other vehicles
are already affected by such a perturbation a reservation conflict would have
occurred and a rerouting is triggered that way.

In contrast, if permanent blockings, namely broken-down vehicles or hard
blocked areas, appear we have to determine those vehicles that are not able to
fulfill its request on the scheduled path. This is the case, if their path contains
edges that are blocked by the new permanent blocking. We determine these
vehicles by checking all reservations on the edges that are affected by the
permanent blocking. Then, any vehicle that has a reservation with a larger
entry time than the time of the appearance of the perturbation has to be
rerouted. Additionally, for all new requests the permanent blocked edges are
removed from the graph. This is also done in the case of soft blocked areas
where no rerouting is required since the already routed requests can pass the
area.

Now we describe how we proceed with the vehicles that have to be
rerouted. In fact, we provide three different strategies.

Determining New Routes

Request that are affected by perturbations or are interrupted due to a prior-
itization of another request have to be rerouted. To this end, we developed
the following strategies:

• the ‘Adapting Schedule’ strategy,

• the ‘Adapting Route’ strategy, and

• the ‘New Route after Stop’ strategy.

3.2 Rerouting Strategies 37

All these strategies are based on Algorithm 2. We adapt the algorithm
according to the requirements of the particular strategy. Before we introduce
the rerouting strategies in detail we provide some general remarks. Firstly,
note that all strategies have in common that the original path is ignored
during the computation of the new path. Moreover, the original path is
removed after a successful determination of a new one. For the readjustment
of time-windows we use Algorithm 3. Furthermore, since we want to permit
reroutings without an intermediate stop before the new route is entered, we
apply an additional feature to Algorithm 2. We add the starting speed to the
initial label (in line 4 of the algorithm). This feature is used in the ‘Adapting
Schedule’ strategy as well as in the ‘Adapting Route’ strategy.

The ‘Adapting Schedule’ strategy is used for delayed vehicles (slow driving
and late starting vehicles). It is based on the idea that the geographical part
of the computed route is kept unchanged and only the schedule is adapted
according to the new circumstances. Therefore, we restrict the search domain
to the edges of the already computed path, i.e., in line 19 of Algorithm 2 we
do not investigate all out-going edges of edge eL but the edge that succeeds eL

on the original path. To ensure that the execution of the new path is possible
we use a node that will not be reached before the new path is computed as
source node. The speed at this node is approximated. By Theorem 3.3 it
holds that this routing strategy is polynomial in the number of time-windows
on the original path.

The ‘Adapting Route’ strategy is applied to vehicles that are affected by
blocked areas, broken-down vehicles or route cancellations. Here, we first
determine all labels of the original path between the current position and
the position of the conflict or the end of the path in the case of a route
cancellation, respectively. Then, all these labels are added to the set of start
labels. The outcome of the algorithm is a new path, on the one hand, and
the point where the old path is left, on the other. The latter depends on the
start label that has produced the optimal path.

Since both strategies can fail we need the third strategy which first stops
the vehicle and then determines a new path by the standard version of Algo-
rithm 2. Note that we also use this strategy after a reservation conflict. This
‘New Route after Stop’ strategy may cause new affected vehicles due to the
unexpected and unscheduled stop. These vehicles also have to be rerouted.

Moreover, we have to keep in mind that the stopped vehicles may block
other vehicles such that they are no longer able to reach their target. In the
next part we describe how we deal with such situations and with unrealizable
requests in general.

38 Dynamic Routing

Unrealizable Requests and Parking Zones

So-called permanent reservations, namely blocked areas, broken-down vehi-
cles, or stopped vehicles can block other vehicles. In contrast to temporary
reservations generated by a dynamic path, such reservations possibly lead to
a failure of the route computation, i.e., Algorithm 2 is not able to provide a
dynamic path for a certain request. Hence, this request cannot be fulfilled.

For each such unrealizable request there is at least one responsible set of
permanent reservations. Here, ’responsible’ means that there will be a dy-
namic path that fulfills the corresponding request if all permanent blockings
in that set are removed.

Since the knowledge of these responsible sets is useful for anticipating
whether it makes sense to retry the route computation we introduce Al-
gorithm 4 which computes all inclusion-wise minimal responsible sets of
permanent reservations between the desired source and target node. Note
that these permanent reservations are represented by their conflicting edges,
which are determined according to the procedure used for reservations of a
dynamic path, i.e., via polygon intersections with the polygons that corres-
ponds to the edges of the graph..

In that labeling algorithm (Algorithm 4), each label L consists of the cor-
responding edge eL and a set BL of permanent reservations. The dominance
rule is defined as follows. A label L dominates a label L′ if and only if

BL ⊆ BL′ .

Note that Algorithm 4 does not terminate when one path is found but
proceeds until all paths (all sets) are found. Obviously, this cannot be done
efficiently since the output of the algorithm is exponential in the input size.

Theorem 3.9. Algorithm 4 computes all inclusion-wise minimal sets of per-
manent reservations between a source node s and a target node t in a
graph G = (V,E) in

O(4p · |E|),

where p denotes the number of permanent reservations in the graph.

Proof. Since we take those labels from the heap that have the least number
of permanent reservations stored and additionally dominate all labels that
are not inclusion minimal, the number of labels that are expanded along a
certain edge is bounded by the largest number of inclusion minimal sets with
at most p elements. Sperner showed that this number is

(

p
⌊p/2⌋

)

[31, 38].

From Stirling’s formula we get that p! is in Θ(
√

p · (p
e
)p). Thus, for even p

3.2 Rerouting Strategies 39

Algorithm 4: FIND-PERM-RESERVATIONS

Data: Directed graph G = (V,E) with permanent reservations on
edges, source node s, target node t, edge set OUT(e) 6= ∅
∀e ∈ E, empty heap H

Result: Set B of inclusion-wise minimal responsible sets of
permanent reservations between s and t.

begin
H.insert(eL, ∅);1

while H 6= ∅ do2

extract a label L = (eL, BL) with |BL| minimal from the3

heap H;
if t is tail of eL then4

add BL to B;5

else6

if there is a permanent reservation b on eL and b /∈ BL7

then
BL′ = BL ∪ {b};8

else9

BL′ = BL ;10

foreach f ∈ OUT (eL) do11

L′ = (f,BL′);12

foreach label L̂ at f do13

if L′ dominates L̂ then14

remove L̂ from the heap H;15

remove L̂ from edge f ;16

if L̂ dominates L′ then17

goto 11;18

19

add L′ to the heap H;20

store L′ add edge f ;21

return B;22

end

it holds that
(

p
⌊p/2⌋

)

is in

Θ

(

p!

((p/2)!)2

)

= Θ

(√
p · (p

e
)p

(
√

p/2 · (p
2e

)p/2)2

)

= Θ

(

1√
p
· 2p

)

. (3.2)

40 Dynamic Routing

Moreover, for odd p the binomial coefficient can be written as
(

p

(p − 1)/2

)

=
p!

((p + 1)/2)! · ((p − 1)/2)!
=

2p

p + 1

(p − 1)!

(((p − 1)/2)!)2

which is, due to (3.2), also in Θ(1√
p
· 2p). Therefore,

(

p
⌊p/2⌋

)

is in O
(

2p
√

p

)

in

general.
Since this bounds the number of label expansions at a single edge, the

total number of label expansions is in

O

(

2p

√
p
· |E|

)

.

A label is expanded by adding the permanent reservation on the con-
sidered edge if there is a reservation that is not already contained in the
label. This can be done in linear time. After each label expansion we have
to check for other labels that may dominate the new one or vice versa. Since
each check requires at most linear time (2p) and updating the heap takes
O(log 2p

√
p
), each label expansion can be done in

O

(

p +
2p

√
p

(

p + log
2p

√
p

))

= O

(

2p

√
p
· p
)

,

which leads to the claimed overall running time of

O

(

2p

√
p
· |E| · 2p

√
p
· p
)

= O(4p · |E|).

Remark 3.10. It is also possible to start the computation with the labels from
the original route computation that have been deleted because of a permanent
reservation.

Using the presented algorithm, permanent reservations are taken into ac-
count in the following way. Firstly, if a route computation fails the (inclusion-
wise minimal) responsible sets are computed. Then, whenever a permanent
reservation is removed the corresponding sets are adjusted. If a set becomes
empty the unrealizable requests that correspond to this set are routed again.

However, there are situations in which additional actions are necessary.
In fact, this is the case if several unrealizable requests block each other,
i.e., if a group of vehicles is not able to reach its target due to a permanent
reservation caused by another vehicle of the group. In such a kind of deadlock
situation we make use of so-called parking positions. Note that these areas
are also useful to keep the waiting vehicles away from areas with high traffic
density.

3.3 Computational Results 41

Parking zones. We try to route the vehicles that cannot be routed to their
target positions to so-called parking positions that are located such that the
parked vehicles do not interfere with other (traveling) vehicles. This is done
to avoid perturbations caused by vehicles that wait for a new route, on
the one hand, and to dissolve the described cyclic dependencies of stopped
vehicles, on the other hand. If the routing to parking positions also fails
we determine the inclusion-wise minimal sets (Algorithm 4) also for these
requests.

Note that the parking zones are located such that always at least one
vehicle is able to reach such a position. More precisely, the parking positions
are placed on the borders of the underlying graph and, therefore, at least the
vehicle that is next to the border is able to move to such a position.

3.3 Computational Results

In this section we are going to evaluate the presented dynamic routing ap-
proach in certain real-life scenarios using the simulation environment men-
tioned in Section 2.3 (simulation of HHLA Container Terminal Altenwerder).
Firstly, after an introduction of the considered test instances and objectives,
we investigate the dynamic routing algorithm DYN-ROUTE under different
parameter settings. More precisely, we vary the rescheduling waiting pa-
rameter C introduced in Section 3.1.5 and the time-dependent safety tube
described in Section 3.1.4.

Moreover, we aim at investigating the quality of the solutions provided by
DYN-ROUTE. Unfortunately, the results of the currently used routing ap-
proach at CTA are confidential and optimal solutions (or good lower bounds)
cannot be determined due to the problem size. Therefore, we refer to Sec-
tion 4.2, where we provide optimal solutions in smaller test instances, and
to Section 5.4, where we consider a so-called static routing approach in our
simulation environment, for detailed evaluations of DYN-ROUTE with re-
spect to optimal solutions and other routing approaches. In Section 3.3.3,
however, we provide simple lower bounds to get a first impression of the
performance rating.

In Section 3.3.4 we focus on the introduced rerouting strategies. To this
end, we consider test instances that require rerouting, namely scenarios with
perturbations or priorities, respectively.

3.3.1 Test Instances and Objective

We consider two scenarios of practical relevance provided by HHLA. For
the evaluation of our routing approach we use the simulation environment

42 Dynamic Routing

introduced in Section 2.3. Recall that it simulates the AGVs at HHLA
Container Terminal Altenwerder (CTA) and provides the underlying grid-
like graph.

The scenarios differ in the number and position of the pick-up and deliv-
ery points. In the first scenario (SCEN-A), which is illustrated in Figure 3.9,
there are 22 pick-up points on the bottom and 12 delivery points on the top
of the grid-like graph. In contrast, the second scenario (SCEN-B, Fig. 3.10)
has 14 delivery points while pick-up points are arranged in the same way as
in SCEN-A.

Figure 3.9: Scenario SCEN-A

In each six-hour simulation run we evaluate about 6000 requests. Request
are assigned to vehicles by the integrated management system immediately
whenever a vehicle becomes idle. SCEN-A uses 72 vehicles and in SCEN-
B there are 79 vehicles that fulfill the arising requests. The results are
determined by averaging over three test runs for each test case.

Figure 3.10: Scenario SCEN-B

In order to avoid redundancy we only consider one objective as a measure
of the performance, the average duration over all requests. Beyond the equiv-
alence to the objective of the OSDDPP, the overall duration, the makespan

3.3 Computational Results 43

(objective of the OQDPP) is approximated very well in our setting. Due to
the nonexistence of idle times and the large number of requests the makespan
is almost the average number of requests per vehicle (# requests/ # vehicles)
times the average duration. Hence, we are able to measure the performance
of our algorithm concerning both problems with the considered objective
avoiding to provide (almost similar) results for both problems.

In addition to the performance evaluation with respect to the considered
online disjoint vehicle routing problems we also focus on the real-time suit-
ability of our approach. To this end, we determine the average as well as the
maximum computation times. Note that we ran the simulation on an AMD
Athlon 64 Dual Core 2.2 GHz with 4 GB RAM.

Moreover, for the evaluation of the rerouting strategies, we will introduce
additional indicators in Section 3.3.4.

3.3.2 Variation of the Introduced Parameters

We introduced two parameters in connection with the dynamic routing algo-
rithm DYN-ROUTE (Algorithm 1), the rescheduling waiting parameter used
in the waiting heuristic (Section 3.1.5) and the length of the time-dependent
safety tube (see Section 3.1.4). We first evaluate the waiting heuristic and
consider different safety tubes afterwards.

Waiting Heuristic

The waiting heuristic introduced in Section 3.1.5 permits the rescheduling
of waiting, i.e., the movement of waiting intervals to positions that are al-
ready passed in the route computation. Using this heuristic, the so-called
rescheduling waiting parameter C bounds the number of edges the waiting
intervals are moved. In order to determine the best choice for that parameter
we evaluate several settings. Note that the second parameter, the length of
the safety tube, is set to 1.0 seconds for these experiments.

Table 3.1 illustrate the effect of the considered parameter C on the per-
formance and the computation times in scenario SCEN-A and SCEN-B, re-
spectively. The results are almost the same in both scenarios.

The evaluation shows that the worst average duration is generated when
the heuristic is not used (C = 0). The best results are achieved if parame-
ter C is set to 20. An interesting observation is that increasing the reschedul-
ing waiting parameter does not lead to a better performance in general. On
the contrary, the average duration increases for C = 40 in SCEN-A and
C = 30 in SCEN-B, respectively, and does not change significantly for larger
values of C. The stagnation is due to the fact that rescheduling waiting

44 Dynamic Routing

average duration average comp. time maximum comp. time

C (in sec.) (in sec.) (in sec.)

SCEN-A SCEN-B SCEN-A SCEN-B SCEN-A SCEN-B

0 185.23 188.01 0.08 0.10 0.97 1.08

10 184.56 186.87 0.08 0.10 0.81 0.98

20 182.26 183.90 0.08 0.10 0.83 1.02

30 182.59 185.66 0.08 0.10 0.88 1.09

40 184.79 186.02 0.09 0.10 1.07 1.01

50 184.27 186.17 0.08 0.10 0.90 0.99

100 184.89 186.33 0.08 0.10 0.98 1.19

Table 3.1: Performance of DYN-ROUTE with different settings of the reschedule waiting
parameter C in SCEN-A and SCEN-B.

over large distances is often not possible, i.e., larger bounds do not lead to
different paths. The reason for the increase of the duration from C = 20 to
C = 40 or C = 30, respectively, is not clear.

The computation times are almost similar for all parameter settings.
They only increase a bit in SCEN-A for C = 40.

We conclude that C = 20 is the best choice for the rescheduling parameter
in the considered scenarios. To this end, we will use this setting from now
on.

Time-dependent Safety Tube

In Section 3.1.4 we introduced a time-dependent safety tube. Such a safety
tube, of course, has an influence on the performance of the dynamic routing
algorithm DYN-ROUTE. Thus, we investigate this effect in both scenarios
using constant (independent of the covered distance) safety tubes of 1.0, 1.5,
2.0, and 2.5 seconds. In fact, we lengthen the reservations equally in both
directions by half the amount of the tube. Note that smaller values than
1.0 seconds are not suitable for coping with deviations in practice (details
are confidential).

Table 3.2 and Table 3.3 show the evaluation with respect to the average
duration (in sec.). Absolute values as well as the differences between the
certain time steps are illustrated.

The main observation is that the average duration decreases in value
when smaller safety tubes are chosen. This is not surprising. Moreover, the

3.3 Computational Results 45

safety tube 2.5 s 2.0 s 1.5 s 1.0 s

average duration 198.62 192.81 187.25 182.26

difference 5.81 5.56 4.99

Table 3.2: Variation of the time-dependent safety tube in SCEN-A.

safety tube 2.5 s 2.0 s 1.5 s 1.0 s

average duration 199.49 194.37 188.82 183.90

difference 5.12 5.55 4.92

Table 3.3: Variation of the time-dependent safety tube in SCEN-B.

dependence between the length of the safety tube and the benefit of perfor-
mance is approximately linear. The loss of performance is 5 to 6 seconds
(about 3 percent) per time step of 0.5 seconds. Regarding the computation
times we observe that the variation of the time-dependent safety tube does
not lead to significant deviations of the computation times. Therefore, we
omit the corresponding figures.

Standard parameter setting. For all further evaluations we set the
reschedule waiting parameter to 20 and use a time-dependent safety tube
of 1.0 seconds. In this standard setting we obtain an average duration of
182.26 seconds in SCEN-A and 183.90 seconds in SCEN-B, respectively.
The average computation time is 0.08 seconds in SCEN-A and 0.10 sec-
onds in SCEN-B while the maximum computation times are 0.83 (SCEN-A)
and 1.02 (SCEN-B), respectively.

3.3.3 Trivial Lower Bound

In order to obtain a first indication of the performance of the dynamic routing
algorithm DYN-ROUTE we determine trivial lower bounds by computing
an average static shortest path distance (w.r.t. the transit time τ) for each
instance; i.e., we relax the collision constraint. The results of the comparison
are illustrated in Table 3.4.

In both test instances, SCEN-A and SCEN-B, we get a gap of about
50 percent. If we take into account that the considered lower bound is
pretty poor, this provides a strong informative basis for the assumption that
the dynamic routing algorithm performs well. As mentioned before, we will

46 Dynamic Routing

lower bound DYN-ROUTE gap

SCEN-A 119.46 182.26 52.57 %

SCEN-B 119.69 183.90 53.65 %

Table 3.4: Comparison with a trivial lower bound. We compare the average duration
achieved by DYN-ROUTE with the lower bound we get from the average static shortest
path distances.

have a closer look at the performance of the dynamic routing algorithm
DYN-ROUTE in Section 4.2 and Section 5.4.

3.3.4 Evaluation of the Rerouting Strategies

In order to evaluate the performance of our rerouting strategies introduced
in Section 3.2.3 we investigate them under the influence of perturbations and
in instances with priorities. Since the results of the previous sections showed
that the algorithm behaves similarly in both considered scenarios we focus
on scenario SCEN-A in this section.

Besides the average duration we focus on two additional performance
measures. In fact, we evaluate the number of reroutings per request and the
delay of the vehicles in comparison with the expected completion time, i.e.,
the determined completion time for the original request.

Moreover, instead of comparing the plain computation times, we con-
sider response times, i.e., the time period between the release time and the
termination of the route computation. This time only differs from the com-
putation time if several requests arise almost at the same time, which only
plays a role in scenarios with massive reroutings. The plain computation
times are omitted since they do not differ from those in the scenario without
perturbations.

Perturbations

We investigate seven scenarios, based on the standard scenario SCEN-A,
with different kinds of perturbations.

BL-A: We consider two soft blocked areas that cover essential parts of the
grid such that there are only one third of the horizontal lanes left in these
parts (see Figure 3.11).

3.3 Computational Results 47

Figure 3.11: Scenario BL-A

BD-V-10: In every tenth request the corresponding vehicle brakes down.
It recovers after a time-out of 20 seconds. Then, the request is served as
required.

BD-V-50: In every fiftieth request the corresponding vehicle brakes down.
It recovers after a time-out of 20 seconds. Then, the request is served as
required.

CANCEL: Every tenth request is canceled by assigning a new target po-
sition while the request is served. The cancellation occurs 60 seconds after
the release time of the original request.

LATE-10: In every tenth request the corresponding vehicle starts with a
delay of 60 seconds.

LATE-50: In every fiftieth request the corresponding vehicle starts with
a delay of 60 seconds.

SLOW-10: In every tenth request the corresponding vehicle moves at half
speed.

SLOW-50: In every fiftieth request the corresponding vehicle moves at
half speed.

The results of the experiments are illustrated in Table 3.5. The evaluation
shows that the scenarios with late vehicles, in particular LATE-10, lead to the
worst average duration. Here, the loss of performance, in terms of the average
duration of the requests, is up to 23 percent. In contrast, in scenario BD-V-
50 we observe just a little deviation from the setting without perturbations

48 Dynamic Routing

(SCEN-A). Note that the durations of the perturbed requests are also taken
into account.

The average response times do not change significantly. They just in-
crease a bit in scenario LATE-10 and LATE-50, but if we compare the max-
imum values we observe large differences. While we get similar values as in
the unperturbed setting for scenario CANCEL, the scenarios with broken-
down vehicles show maximum response times of 10.80 and 10.70, respectively.
This is a strong indicator for the conjecture that the hardness of the rerout-
ing problem highly depends on the location where a vehicle brakes down.
Since the average response time increases only by one hundredth of a second
such worst cases seem to be very unusual. Moreover, these values are still
suitable for a real-time computation since we consider response times and
not pure computation times. As pointed out, the computation times remain
unchanged. Therefore, we can conclude that large response times indicate
that there are a lot of reroutings ’at the same time’, possibly combined with
above-average computation times.

average average maximum reroutings average maximum

duration resp. time resp. time per delay delay

(in sec.) (in sec.) (in sec.) request (in sec.) (in sec.)

SCEN-A 182.26 0.08 0.83 0.00 0.00 0.0

BL-A 212.31 0.08 1.14 0.00 0.00 0.0

BD-V-10 207.86 0.09 10.80 0.26 8.94 289.4

BD-V-50 186.58 0.09 10.70 0.06 1.30 225.2

CANCEL 194.60 0.08 0.83 0.22 0.12 41.0

LATE-10 223.91 0.11 4.50 0.26 14.51 290.3

LATE-50 206.67 0.10 2.40 0.07 4.23 293.6

SLOW-10 202.39 0.09 3.14 0.20 10.96 545.8

SLOW-50 188.96 0.08 2.20 0.06 2.91 428.4

Table 3.5: Evaluation of the scenarios with perturbations. Besides the average duration
we consider the average and maximum response time, the number of reroutings per request
and the resulting delay.

However, there is no direct correlation between the number of rerout-
ings and the (maximum) response times. While the response times in sce-
nario BD-V-10 and scenario BD-V-50 are almost similar, the number of
reroutings is significantly different. Another argument for this observation
is the maximum response time in scenario LATE-10, which is much smaller
than in scenario BD-V-10, while both scenarios show a similar number of

3.3 Computational Results 49

reroutings per request. Note that there are no reroutings in scenario BL-A
since we consider soft blocked areas.

Therefore, there are no delays in this scenario, too. For all other test cases
we get average delays between 0.12 seconds (CANCEL) and 14.51 seconds
(LATE-10). Note that in the CANCEL scenario we do not take delays into
account that occur due to a changed target, i.e., the delays are measured with
respect to the first route that was computed to the real target. Therefore,
in this scenario delays only arise if a route cancellation produces reroutings
of other requests. This is the reason why the delays are rather small in
this case. In the other test cases, it turns out that the more challenging
instances (’-10’) produce much larger delays than the ’-50’-variants which is
not surprising. Besides this, there is no significant correlation between the
delays and the average duration. Note that the average duration must not be
the sum of the average duration in the non-perturbed case plus the average
delay since the original routes might be already different in the perturbed
case, usually they are longer. The comparison of the maximum delays is only
of low significance if one aims at suggesting the hardness of an instance since
these values are almost random. However, they give an idea what effects the
considered perturbations might have.

Priorities

In order to evaluate the prioritization of requests we consider accordant sce-
narios based on scenario SCEN-A. In each scenario we choose a set of pick-up
points and prioritize the requests that correspond to this pick-up point, i.e.,
the requests that have the pick-up point as source or target.

For the choice of these pick-up points we focus on two properties. The first
is the average duration of the corresponding requests in SCEN-A (without
priorities) and the second is the distance between the chosen pick-up points.
For the latter we consider so-called clusters. We call a set of pick-up points
a cluster if the pick-up points are located ’closely’ to each other, i.e., such
that the corresponding request interfere each other with high probability.
SCEN-A provides three such clusters, each consisting of four pick-up points
(see Figure 3.12). Note that the exact distances between the pick-up points
in SCEN-A are confidential.

For our experiments we consider four scenarios that differ concerning
these properties.

PRIO-1: Choose the three pick-up points from the same cluster that show
the longest average duration of the corresponding requests in SCEN-A and
prioritize those requests.

50 Dynamic Routing

Figure 3.12: Clusters in SCEN-A

PRIO-2: Choose the three pick-up points from the same cluster that show
the least average duration of the corresponding requests in SCEN-A and
prioritize those requests.

PRIO-3: Choose from each cluster the pick-up point with the longest av-
erage duration of the corresponding requests in SCEN-A and prioritize those
requests.

PRIO-4: Choose from each cluster the pick-up point with the least aver-
age duration of the corresponding requests in SCEN-A and prioritize those
requests.

Due to the construction of the scenarios we prioritize about 1500 re-
quests (one fourth of the overall requests). Besides the evaluation of the
performance with and without prioritization we again analyze the response
times, the number of reroutings and the delays at the target location.

In Table 3.6 and Table 3.7 we illustrate the comparison of the average
duration over all requests and the average duration of the prioritized requests
in the unprioritized setting with the prioritized setting. This is done for all
considered scenarios. Here, unprioritized setting (no prio) means that the
values are determined in the standard scenario SCEN-A.

The evaluation shows that the prioritization leads to the best results, in
terms of the benefit for the prioritized requests, if these requests had a long
average duration before and do not perturb each other too much (PRIO-3).
Consequently, the prioritization of clustered requests that have already had a
good performance, i.e., a low average duration, before only has small effects
(PRIO-2). The results of the other instances are in between since there the
requests either have a bad initial performance (PRIO-1) or do not influence

3.3 Computational Results 51

PRIO-1 PRIO-2

no prio prio no prio prio

average duration (all requests) 182.26 185.90 182.26 186.24

difference 2.0 % 2.2 %

average duration prioritized requests 201.25 184.23 162.50 158.98

difference -8.5 % -2.3 %

Table 3.6: Prioritization of requests that correspond to pick-up points in a cluster.
PRIO-1 prioritizes requests with long average duration in the base scenario SCEN-A
while PRIO-2 prioritizes those with short average duration. The table shows the influ-
ence of prioritization on the average duration of all requests and the prioritized requests,
respectively. Both is measured in seconds.

PRIO-3 PRIO-4

no prio prio no prio prio

average duration (all requests) 182.26 189.65 182.26 189.30

difference 4.1 % 3.9 %

average duration prioritized requests 198.62 168.72 171.66 151.02

difference -15.1 % -12.0 %

Table 3.7: Prioritization of requests that correspond to pick-up points from different
clusters. PRIO-3 prioritizes requests with long average duration in the base scenario
SCEN-A while PRIO-4 prioritizes those with short average duration. The table shows
the influence of prioritization on the average duration of all requests and the prioritized
requests, respectively. Both is measured in seconds.

each other too much (PRIO-4). Here, the latter seems to be the stronger
criterion. Figure 3.13 illustrates this observation.

As an additional performance measure we consider the loss of overall per-
formance if we prioritize certain requests. Here, we observe that the overall
average duration increases more in the test cases with non-clustered requests
which is not surprising since these scenarios also lead to larger benefits of
the prioritized requests. Note that the loss of overall performance is always
smaller than the gain of performance that is achieved by the prioritized re-
quests.

Table 3.8 shows that the number of reroutings correlate with the de-
scribed results concerning the average duration, i.e., a large number of rerout-
ings lead to a stronger prioritization. The number of reroutings, in turn,

52 Dynamic Routing

former average duration

above-average

below-averagelow

high

(PRIO-1)(PRIO-2)

(PRIO-3)(PRIO-4)

effect of
prioritization

le
ve

l
of

cl
u
st

er
in

g

Figure 3.13: Illustration of the observed effect of prioritization with respect to the aver-
age duration without prioritization (former average duration) and the level of clustering
of the considered requests.

highly depend on the number of vehicles that can be ignored by a prioritized
vehicle. This number is larger if the prioritized requests are not too much
clustered. This might be the reason for the greater effect of prioritization in
the scenarios PRIO-3 and PRIO-4.

The delays and response times are in line with the determined number of
reroutings. The largest delays and response time occur in scenario PRIO-3,
where we observe 0.91 reroutings per request, while these values are small in
scenario PRIO-2 with only 0.26 reroutings per request.

Note that, in contrast to the test cases with perturbations, the sum of
average delay and average duration without priorities exceeds the overall
average delay with priorities. This is due to the fact that prioritized requests
benefit from the rerouting of the other requests. This reduces the average
duration but not the average delay. In the perturbation case the vehicle that
causes the reroutings does not benefit and is possibly delayed itself.

3.4 Conclusions 53

re-routings average maximum average maximum

per request delay delay resp. time resp. time

(in sec.) (in sec.) (in sec.) (in sec.)

PRIO-1 0.65 12.3 146.3 0.13 3.54

PRIO-2 0.26 5.0 181.7 0.10 1.77

PRIO-3 0.91 17.6 345.9 0.20 5.11

PRIO-4 0.64 13.7 145.8 0.13 4.23

Table 3.8: Evaluation of the number of reroutings, the delays and the response times in
the scenarios with priorities.

3.4 Conclusions

In this chapter we presented an online dynamic routing algorithm for the
considered disjoint vehicle routing problems, namely for the Online Short-
est Dynamic Disjoint Paths Problem (OSDDPP) and the Online Quickest
Disjoint Paths Problem (OQDPP). The algorithm iteratively assigns dy-
namic paths to the incoming (transportation) requests. For each request the
computation consists of the determination of a dynamic path with minimal
duration that respects the reservations of the already routed requests and a
subsequent reservation of the found path. Both can be done in polynomial
time.

Based on this basic approach we also investigated additional, practical
requirements like the physical dimensions of the vehicles, the acceleration
and deceleration behavior, and certain safety aspects.

Since we aim at providing an approach that is suitable for the use in
practice three questions certainly arise:

• Is the algorithm able to ensure a fast real-time computation?

• Is the performance of the algorithm satisfactory?

• Is the algorithm able to deal with perturbations?

To answer these questions we consider the routing of Automated Guided
Vehicles (AGVs) at HHLA Container Terminal Altenwerder (CTA). More
precisely, we evaluate our approach in a simulation environment that models
CTA.

The first question can be answered in the affirmative. The computation
times presented in Section 3.3 showed that the algorithm is able to provide

54 Dynamic Routing

fast answers. On the average the computation requires not more than some
hundredths of a second.

For a concluding answer to the second question we refer to the next chap-
ter where we will analyze the performance of the dynamic routing approach
theoretically via competitive analysis and empirically in comparison to other
routing approaches and optimal solutions. In this chapter we provided a
comparison to a simple lower bound in Section 3.3.3. Although this evalu-
ation is of limited significance, it is already a strong indicator of the good
performance of the algorithm.

In order to discuss the last question we implemented a rerouting en-
vironment based on the dynamic routing approach. Using the strategies
introduced in Section 3.2 we are able to show that our approach can cope
with various kinds of perturbations without losing too much performance.
Moreover, the computation times remain suitable for a real-time use. As
a welcome side effect we are able to prioritize requests using this rerouting
approach. The results are impressive. Prioritization of one fourth of the
requests lead to a gain of performance of up to 15 percent on average for
the prioritized requests. Additionally, the interference of the other requests
is acceptable, i.e., the overall performance decreases only slightly.

Chapter 4

Performance Analysis of the Dynamic

Routing Approach

In this chapter we analyze the performance of the dynamic routing algorithm
DYN-ROUTE (Algorithm 1) introduced in Chapter 3.

In Section 4.1 we use competitive analysis to determine the theoretical
worst case performance of Θ(k), where k denotes the number of requests,
with respect to both considered problems: the Online Shortest Dynamic
Disjoint Paths Problem (OSDDPP) and the Online Quickest Disjoint Paths
Problem (OQDPP). Note that these are the first results concerning the ap-
proximation behavior of these problems. Additionally, we introduce and
analyze another dynamic routing algorithm in Section 4.1.2. Using this ap-
proach we are able to improve the approximation ratio given by Spenke [37]
for the QDPP in grid graphs for instances with a specific property.

Moreover, the quality of both approaches is measured experimentally
in Section 4.2. To this end, we consider optimal solutions as well as the
approximation algorithm of Spenke for the purpose of comparison. Some of
these results can be found in [29].

For both parts of the analysis we use the idealized disjointness model (see
Section 2.2.2) and pay special attention to grid graphs and their narrowness.

4.1 Competitive Analysis

In Section 2.1.2 we introduced competitive analysis as a measure for the
worst case performance of an online algorithm. We focus on an analysis
such as this for the dynamic routing algorithm DYN-ROUTE (Algorithm 1)
and another dynamic routing approach, which we present in Section 4.1.2.
In order to simplify the argumentation we consider unit length reservations
and waiting intervals (see Remark 2.9).

4.1.1 Dynamic Routing Algorithm

In order to analyze the performance of DYN-ROUTE we firstly bound the
competitive ratio from above. In fact, we prove that our dynamic routing

55

56 Performance Analysis of the Dynamic Routing Approach

algorithm is k-competitive with respect to the OQDPP and the OSDDPP,
where k denotes the number of requests. Afterwards we show that this upper
bound is asymptotically tight in undirected graphs as well as in directed
graphs.

Performance Guarantee

To show a performance guarantee of k for both considered problems we only
have to argue that the dynamic routing algorithm performs at least as well
as an approach that routes the requests one after another on shortest static
paths. Although this is easy to see, even for the precise model, we give a
formal proof of this observation.

Theorem 4.1. The dynamic routing algorithm DYN-ROUTE (Algorithm 1)
is k-competitive with respect to the Online Quickest Disjoint Paths Problem
(OQDPP) and the Online Shortest Dynamic Disjoint Paths Problem (OSD-
DPP), where k denotes the number of requests.

Proof. Consider a sequence of requests σ = r1, . . . , rk and let Ti denote the
time when the first i requests are completed. Moreover, recall that we refer
to the shortest static path distance between two nodes si and ti as dist(si, ti).

Since routing each request over a shortest static path after all preceding
requests are served is a feasible solution for both considered problems, it
is easy to see that DYN-ROUTE, which routes the requests over shortest
dynamic paths, determines a path Pi for the i-th request ri = (si, ti, θi) with
completion time not greater than max{θi, Ti−1} + dist(si, ti). Thus, for the
duration ∆Pi

of the i-th request it holds that

∆Pi
≤

i
∑

j=1

dist(sj, tj). (4.1)

This leads to an upper bound of

k
∑

i=1

i
∑

j=1

dist(sj, tj) < k ·
k
∑

j=1

dist(sj, tj)

to the overall duration, which shows the claimed ratio for the Online Shortest
Dynamic Disjoint Paths Problem (OSDDPP) since for any instance I of that
problems it holds that

OPT(I) ≥
k
∑

j=1

dist(sj, tj).

4.1 Competitive Analysis 57

To see that ratio also for the Quickest Disjoint Paths Problem (OQDPP)
we consider the latest request rℓ = (sℓ, tℓ, θℓ) with the property

θℓ > θ1 +
ℓ−1
∑

j=1

dist(sj, tj)

(or r1 (ℓ = 1) if no such request exists). Then, for any instance I of the
OQDPP it holds that

OPT(I) ≥ max
i≥ℓ

{θi + dist(si, ti)}.

Since, due to (4.1), the solution of our dynamic routing algorithm DYN-
ROUTE is bounded from above by

θℓ +
k
∑

i=ℓ

dist(si, ti) ≤ θℓ + k · max
i≥ℓ

{dist(si, ti)},

we get an upper bound of k for the competitive ratio of DYN-ROUTE.

Remark 4.2 (Polygon model). Theorem 4.1 also holds if one considers the
polygon model introduced in Section 2.2.2 since the arguments used in the
proof also hold in this case.

In the following sections we will show, by introducing two instances on
the line, that this bound is tight for arbitrary undirected and directed graphs.
Moreover, we are going to provide lower bounds for grid graphs.

Example Undirected Graphs

Example 4.3 shows that the worst case performance of the dynamic routing
approach DYN-ROUTE on the (undirected) line is in Ω(k).

Example 4.3. We consider k request on the line with 2k edges, cf. Fig-
ure 4.1.1. The requests appear in alternating directions. More precisely,
they are organized as follows:

ri =

{

(vi, vk+i, 0) for i = 1, 3, 5, . . . , k − 1

(vk+i, vi, 0) for i = 2, 4, 6, . . . , k
.

DYN-ROUTE serves the requests in the order they appear. Therefore,
each request has to wait until all preceding requests are finished, i.e., by

58 Performance Analysis of the Dynamic Routing Approach

or
de

r

v0 v2k

Figure 4.1: Illustration of the instance considered in Example 4.3.

construction of the requests, the starting time of a request corresponds to
the completion time of the preceding request. Since each request has a travel
time (without waiting) of k, the completion time as well as the duration of
request ri is i · k. This leads to a makespan of k · k = k2 and an overall
duration of

k
∑

i=1

ik =
(k + 1)k2

2
. (4.2)

An optimal algorithm for the QDPP as well as an optimal algorithm for
the SDDPP routes all requests in one of the two directions first and then it
serves all requests in the opposite direction.

Therefore, all requests of the first group finish at time k. Since, again by
construction of the requests, the second group starts at this time, we get a
makespan of 2k and an overall duration of

k

2
· k +

k

2
· 2k =

3k2

2
.

This leads to a competitive ratio of k/2 with respect to the OQDPP
(makespan) and of (k+1)/3 with respect to the OSDDPP (overall duration),
respectively. Thus, we conclude that the upper bound shown in Theorem 4.1
for the dynamic routing approach DYN-ROUTE is (asymptotically) tight.

Theorem 4.4. DYN-ROUTE (Algorithm 1) is Θ(k)-competitive with respect
to the OQDPP and the OSDDPP in undirected graphs.

Example Directed Graph

In order to show that the claimed lower bound also holds for directed graphs
we consider an example on the directed line.

4.1 Competitive Analysis 59

v0 v1 v2 vℓ−4 vℓ−3 vℓ−2 vℓ−1 vℓ

r1

r2

r3

r4

r5

r6

r7

r8

r2ℓ−5

r2ℓ−4

r2ℓ−2

r2ℓ−3

o
rd

er

Figure 4.2: Illustration of the instance considered in Example 4.5.

Example 4.5. Consider a directed line with ℓ > 2 edges and a sequence
σ = r1, . . . , r2·(ℓ−1) of k = 2(ℓ− 1) requests that appear in the following order
(cf. Figure 4.2):

r2i+1 = (vℓ−(i+2), vℓ−i, 0) for i = 0, . . . , ℓ − 2,

r2i+2 = (vℓ−(i+2), vℓ−i, 0) for i = 0, . . . , ℓ − 2.

The dynamic routing algorithm DYN-ROUTE serves the requests in the
order they appear and computes the dynamic paths such that waiting occurs
as late as possible (Observation 3.5). This leads to the paths illustrated in
Figure 4.3, i.e., for i = 0, . . . , ℓ − 2 we get:

P2i+1 = (0, (vℓ−(i+2), 0), (vℓ−(i+1), i + 1), (vℓ−i, i + 2)),

P2i+2 = (0, (vℓ−(i+2), i + 1), (vℓ−(i+1), i + 2), (vℓ−i, i + 3)).

This leads to a makespan of ℓ + 1 and a overall duration of

∑ℓ−2
i=0(i + 2) +

∑ℓ−2
i=0(i + 3) = 2 ·∑ℓ−2

i=0 i +
∑ℓ−2

i=0 5

= 2((ℓ−2)(ℓ−1)
2

) + 5(ℓ − 1)

= ℓ2 + 2ℓ − 3.

In contrast, an optimal algorithm for the SDDPP and the QDPP, respec-
tively, routes the requests with odd index, i.e., the requests that appear first
on a certain node, simultaneously and serves the second group of requests
afterwards. In doing so one gets the following optimal solution for both

60 Performance Analysis of the Dynamic Routing Approach

v0 v1 v2 vℓ−4 vℓ−3 vℓ−2 vℓ−1 vℓ

P1

P1P2

P2

P3

P3P4

P4

P5

P5P6

P6P7

P8P2ℓ−5

P2ℓ−4

P2ℓ−2

P2ℓ−2 P2ℓ−3

P2ℓ−3

ti
m

e

1

Figure 4.3: Solution of DYN-ROUTE for the instance described in Example 4.5.

problems (i = 0, . . . , ℓ − 2):

P2i+1 = (0, (vℓ−(i+2), 0), (vℓ−(i+1), 1), (vℓ−i, 2)),

P2i+2 = (0, (vℓ−(i+2), 2), (vℓ−(i+1), 3), (vℓ−i, 4)).

Figure 4.4 illustrates the arrangement of the dynamic paths. It is easy to
see that a makespan of 4 is optimal with respect to the QDPP, since this
is exactly the number of paths that have to pass each edge (except the first
and the last). Moreover, we get a overall duration of

(l − 1) · 2 + (l − 1) · 4 = 6(l − 1),

which is optimal with respect to the SDDPP since whenever we start a
request of the second group earlier, at least one request of the first group
will have a longer duration.

Comparing both solutions, the one generated by DYN-ROUTE and the
optimal solution, leads to the claimed competitive ratio of Ω(k) for directed
graphs. More precisely, taking into account that ℓ = (k+2)/2, we get a ratio
of

ℓ + 1

4
=

k + 4

8
>

k

8

for the OQDPP and of

ℓ2 + 2ℓ − 3

6(l − 1)
>

ℓ2 − ℓ

6(l − 1)
=

ℓ

6
>

k

12
.

for the OSDDPP.

4.1 Competitive Analysis 61

v0 v1 v2 vℓ−4 vℓ−3 vℓ−2 vℓ−1 vℓ

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

P7

P8

P2ℓ−5

P2ℓ−4

P2ℓ−2

P2ℓ−2

P2ℓ−3

P2ℓ−3

ti
m

e

1

Figure 4.4: Optimal solution for the instance described in Example 4.5.

Theorem 4.6. DYN-ROUTE (Algorithm 1) is Θ(k)-competitive with respect
to the OQDPP and the OSDDPP in directed graphs.

Remark 4.7 (Grid graphs). The presented results also hold if we consider
the class of grid graphs, because the line is a grid graph by definition. More-
over, the presented example for the directed line is also an example for the
undirected case. Thus, we can adapt this example such that it holds for an
arbitrary number of (undirected) horizontal lanes. This is done by duplicat-
ing the line example. If we then order the requests such that they appear in
the different copies in a round robin fashion, i.e., we consider the sequence

r1,1, r1,2, . . . , r1,m, . . . , ri,1, . . . , ri,j , . . . , ri,m, . . . , rk,m,

where ri,j denotes the i-th request in the j-th copy, DYN-ROUTE as well as
an optimal algorithm would route the requests in the same way as illustrated
in Example 4.5 in each copy. In addition, adding edges between these copies
in order to obtain an undirected grid graph does neither change the optimal
solution nor the solution of DYN-ROUTE. This leads to a lower bound of
Ω(k/m) for grid graphs. Moreover, since we are able to increase the number
of requests per horizontal lane by increasing the number of vertical lanes, we
get a lower bound of Ω(N), where N denotes the narrowness of the grid.

A Closer View on Directed Graphs

Although the given examples suggest that the performance of DYN-ROUTE
is almost the same in directed and undirected graphs, there is a subtle dif-

62 Performance Analysis of the Dynamic Routing Approach

ference: While the waiting times in Example 4.3 (undirected line) are inde-
pendent of the number of requests already served, they are bounded from
above by this number in Example 4.5 (directed line).

Lemma 4.8 shows that this holds on directed lines in general.

Lemma 4.8. Consider a sequence of requests σ = r1, . . . , rk on the directed
line served by the dynamic routing algorithm DYN-ROUTE (Algorithm 1).
Then, for each determined dynamic path Pi that routes the i-th request ri =
(si, ti, θi) it holds that it contains at most i− 1 unit length waiting intervals.
Hence, the duration ∆Pi

is bounded from above by

dist(si, ti) + i − 1.

Proof. Since the static length of the computed path is fixed in this kind
of graph we only have to concentrate on the generated waiting intervals.
Firstly, note that each waiting interval of a dynamic path that is computed
by DYN-ROUTE is caused by a reservation of another dynamic path. If this
reservation is also a waiting interval, we can iterate that observation and
end up with a reservation that belongs to a non-waiting interval. We call
such a reservation the origin of the considered waiting and the corresponding
path the causing path. Obviously, waiting originates in crossings of routes
or in source nodes of requests (if a path enters the graph), which can also be
interpreted as a kind of crossing.

On the directed line waiting always originates in source nodes of requests
since there are no crossings. More precisely, waiting of a path Pi is either
caused by a path Pℓ that enters the line on a node vℓ that succeeds the source
node vi of Pi on the directed line or by a path Pj that crosses the source
node of Pi (vj does not succeed vi on the directed line). Obviously, each path
that is computed before Pi can either cause the first or the second kind of
waiting since the corresponding source node either succeeds the source node
of Pi or not. Therefore, the number of (unit length) waiting intervals on
a dynamic path computed by DYN-ROUTE is bounded by the number of
requests already served, which completes the proof.

Lemma 4.9 describes the connection between such a bound to the dura-
tion and the competitive ratio of the corresponding algorithm. Applying this
result to Lemma 4.8 directly leads to Theorem 4.10. Note that the showed
competitive ratio is (asymptotically) tight (due to Example 4.5).

Lemma 4.9. Consider a sequence σ = r1, . . . , rk of requests ri = (si, ti, θi).
Then, an algorithm ALG that determines dynamic paths P1, . . . , Pk such that

4.1 Competitive Analysis 63

for some h ≥ 1 and for some ℓ ≥ −1 it holds that

∆Pi
≤ dist(si, ti) + hi + ℓ for all i ∈ {1, . . . , k}

is 1+(hk+ℓ)/Lmax-competitive with respect to the OQDPP and 1+(hk+2ℓ+
h)/2Lavg-competitive with respect to the OSDDPP, where Lmax := maxi{θi +
dist(si, ti)} and Lavg :=

∑

i dist(si, ti)/k.

Proof. Firstly, we consider the OQDPP. Due to the given bound to the du-
ration ∆Pi

of a path Pi the makespan is bounded by

maxi{θi + dist(si, ti) + hi + ℓ} = Lmax + hk + ℓ

= (1 + hk+ℓ
Lmax

)Lmax.

Since in any solution the makespan is at least Lmax this leads to the claimed
competitive ratio, i.e.,

ALG(I) ≤
(

1 +
hk + ℓ

Lmax

)

· OPT(I)

for any instance I of the OQDPP.

Regarding the OSDDPP we observe, again due to the given bound, that
the overall duration is not greater than

∑k
i=1 dist(si, ti) + hi + ℓ =

∑k
i=1 dist(si, ti) + h(k+1)k

2
+ kℓ

=
∑k

i=1 dist(si, ti) + (hk+2ℓ+h)k
2

= (1 + hk+2ℓ+h
2Lavg

)
∑k

i=1 dist(si, ti).

Obviously, the optimal value in any instance of the OSDDPP is bounded
from below by

∑k
i=1 dist(si, ti), i.e.,

ALG(I) ≤
(

1 +
hk + 2ℓ + h

2Lavg

)

· OPT(I)

for any instance I, which completes the proof.

Theorem 4.10 (Competitive ratio directed line). Consider a sequence of
requests σ = r1, . . . , rk with ri = (si, ti, θi). Then, DYN-ROUTE (Algo-
rithm 1) is 1 + (k − 1)/Lmax-competitive with respect to the OQDPP and
1 + (k − 1)/2Lavg-competitive with respect to the OSDDPP on the directed
line, where Lmax := maxi{θi + dist(si, ti)} and Lavg :=

∑

i dist(si, ti)/k.

64 Performance Analysis of the Dynamic Routing Approach

4.1.2 Dynamic Routing Algorithm without Waiting

In this section we present a modified dynamic routing algorithm. As in the
presented dynamic routing approach DYN-ROUTE we iteratively compute
routes for each incoming request. But, instead of computing a shortest dy-
namic path, we determine a shortest distance dynamic path, i.e., a dynamic
path that is based on a shortest static path. Moreover, we only permit wait-
ing at the source node. We use the term ’without waiting’ to denote this
property of the computed paths.

Before we describe the algorithm in detail we introduce conflicts of static
paths (with a certain time stamp θ) as illustrated in Figure 4.5.

Definition 4.11 (Conflict of a static path). A static path P̄ = (v1, . . . , vn)
has a conflict with time stamp θ (or a θ-conflict) w.r.t. a dynamic path P if
there is, for some θ ∈ N, either a node vj ∈ P̄ with

θ + dist(v1, vj) ∈ RP (vj) (node conflict in vj)

or an edge vjvj+1 (edge conflict on vjvj+1) with

(θ + dist(v1, vj), θ + dist(v1, vj) + 1) ∈ RP (vjvj+1).

θ

θ + dist(vi, vn)

v1 vi vi+1 vn

1

Figure 4.5: Illustration of a (shortest) static path with a set of potential reservations
(light red) of other dynamic paths. Each of these reservations would lead to a θ-conflict
with respect to a certain θ ∈ N.

Obviously, there is a shortest distance dynamic path without waiting
with starting time θ if and only if the corresponding static shortest path has
no θ-conflict. To this end, our dynamic routing algorithm without waiting

4.1 Competitive Analysis 65

Algorithm 5: DYN-ROUTE-SP

Data: Graph G = (V,E), sequence of requests σ = r1, . . . , rk.
Result: Sequence of dynamic paths P1, . . . , Pk.
begin

foreach request ri = (si, ti, θi) do
compute a shortest static si-ti-path P̄i = (v1, . . . , vn) ;
j = 0 ;

L while there is a (θi + j)-conflict do j = j + 1 ;
return the dynamic path
Pi = (θi, (v1, θi + j), . . . , (vm, θm + j + dist(v1, vm))) ;
readjust the set of reservations accordingly ;

end

DYN-ROUTE-SP (Algorithm 5) determines, based on a shortest static path,
the minimum starting time that does not imply such a conflict with respect to
the given reservations. Recall that the resulting waiting times at the source
node do not lead to any reservations since we, as explained in Assumption 2.6,
assume that the source nodes of the requests (the pick-up and delivery points)
can be used simultaneously.

The run time of the algorithm and the worst case performance depend
on the maximum number of conflicts with distinct time stamps. Since the
argumentation of Theorem 4.1 also holds for DYN-ROUTE-SP we observe
that the algorithm is k-competitive with respect to the OQDPP and the
OSDDPP. Moreover, due to the bound to the makespan, the number of
loops in line L of the algorithm is bounded by k ·∑i dist(si, ti) ≤ k · |E|.
Since the shortest path computation as well as the check for conflicts can be
done in polynomial time DYN-ROUTE-SP is efficient.

Corollary 4.12. The dynamic routing algorithm DYN-ROUTE-SP (Algo-
rithm 5) runs in polynomial time and is k-competitive with respect to the
Online Quickest Disjoint Paths Problem (OQDPP) and the Online Shortest
Dynamic Disjoint Paths Problem (OSDDPP), where k denotes the number
of requests.

Concerning the lower bounds for undirected graphs given in Section 4.1.1
for DYN-ROUTE we observe that DYN-ROUTE-SP routes the requests
given in Example 4.3 in the same way. Thus, in undirected graphs DYN-
ROUTE-SP is also Θ(k)-competitive. In contrast, it is not clear if this also
holds for directed graphs.

On the directed line each conflict of a shortest static path with a dynamic

66 Performance Analysis of the Dynamic Routing Approach

path computed by DYN-ROUTE-SP has the same time stamp per definition,
cf. Figure 4.5. Thus, for the duration of each path Pi determined by DYN-
ROUTE-SP it holds that

∆Pi
≤ dist(si, ti) + i − 1.

Applying Theorem 4.9 this leads to the same competitive ratio as shown
for DYN-ROUTE.

Corollary 4.13. Consider a sequence r1, . . . , rk of requests ri = (si, ti, θi).
Then, DYN-ROUTE-SP (Algorithm 5) is 1 + (k − 1)/Lmax-competitive with
respect to the OQDPP and 1 + (k − 1)/2Lavg-competitive with respect to the
OSDDPP on the directed line, where Lmax := maxi{θi + dist(si, ti)} and
Lavg :=

∑

i dist(si, ti)/k.

So far we obtained similar results for DYN-ROUTE-SP as for DYN-
ROUTE. Now we are going to investigate grid graphs. For this graph class
we were not able to give a better competitive ratio than for arbitrary (undi-
rected) graphs in Section 4.1.1.

In order to show a better worst case performance for DYN-ROUTE-
SP we use a simple transformation: We construct a directed grid graph by
assigning directions to the horizontal and the vertical edges alternatingly
(see Figure 4.6). Note that two edges can be used in both directions (anti-
parallel edges that can not be used at the same time) to provide a strongly
connected graph.

Figure 4.6: Directed grid graph

In such a directed grid graph the length of a shortest static path between
two nodes s and t increases by at most 4 time units. This can also be

4.1 Competitive Analysis 67

guaranteed if we restrict the number of bends of that path to 4. Figure 4.7
illustrates a worst case example.

We refer to DYN-ROUTE-SP in the directed grid graphs with the addi-
tional restriction that the determined shortest path contains at most 4 bends
as DYN-ROUTE-SP for grid graphs.

In order to analyze the performance of DYN-ROUTE-SP for grid graphs
we aim at bounding the number of conflicts of a static path with distinct
time stamps. To this end, we introduce two terms in connection with static
paths in a (directed) grid graph: Firstly, we call the union of edges and nodes
between two bends a straight. Secondly, consider two static paths P and P ′

in a (directed) grid graph. We say that path P crosses path P ′ in node v
if both paths contain this node and the preceding edges on the paths are
different. Each such a situation is called a crossing of the paths P and P ′.

We obtain Lemma 4.14 by bounding the number of crossings and the
number of conflicts with distinct time stamps on a straight.

Lemma 4.14. For each path Pi computed for a certain request ri = (si, ti, θi)
by DYN-ROUTE-SP for grid graphs it holds that the duration ∆Pi

is bounded
from above by

dist(si, ti) + 5i − 1.

Note that dist(si, ti) denotes the shortest static path distance in the underly-
ing undirected grid graph.

Proof. First of all, note that all conflicts of a static path with a dynamic path
(computed by DYN-ROUTE-SP) on consecutive edges of a straight have the
same time stamp by definition. This also holds for the bidirectional edges
since the straight in the opposite direction has length one.

Thus, the number of conflicts of a static path P with a dynamic path P ′

is bounded by the number of crossings of P and the static path P̂ that
corresponds to P ′. Obviously, there are at least 2 bends needed between two
crossings; either one of each considered path or two of one path. Thus, if b
denotes the number of permitted bends, the number of crossings is bounded
by 2b/2 + 1 = b + 1. Hence, since we consider paths with at most 4 bends,
each shortest static path has at most 5 conflicts with distinct time stamps
with the same dynamic path computed by DYN-ROUTE-SP for grid graphs.
This leads to a waiting time at the start node of at most 5(i− 1) time units
for the i-th request ri.

Additionally, we have to take into account that the computed shortest
path is at most 4 time units longer than a shortest path in the underlying
(undirected) grid graph.

68 Performance Analysis of the Dynamic Routing Approach

Both arguments together lead to the claimed bound of

dist(si, ti) + 5(i − 1) + 4 = dist(si, ti) + 5i − 1

for path Pi.

s

t

Figure 4.7: Illustration of a shortest static path between s and t in the directed grid
(blue). The green edges show possible shortcuts if one considers the underlying undirected
grid.

Lemma 4.9 and the upper bound for arbitrary undirected graphs (Corol-
lary 4.12) lead to the competitive ratio given in Theorem 4.15.

Theorem 4.15. Consider a sequence σ = r1, . . . , rk of requests ri = (si, ti, θi).
Then, DYN-ROUTE-SP is min{k, 1+(5k−1)/Lmax}-competitive with respect
to the OQDPP and min{k, 1+(5k+3)/2Lavg}-competitive with respect to the
OSDDPP in (undirected) grid graphs, where Lmax := maxi{θi + dist(si, ti)}
and Lavg :=

∑

i dist(si, ti)/k.

Since our algorithm runs in polynomial time, this also improves the result
of Spenke [37], who provided an (offline) 4 + (k− 4)/Lmax-approximation al-
gorithm for the QDPP, if the maximum distance between source and target
and/or the maximum release time of at least one request is large in compar-

4.2 Experimental Performance Analysis 69

ison to the number of requests (Lmax > 4
3
k + 1):

1 + 5k−1
Lmax

< 4 + k−4
Lmax

⇔ 4k+3
Lmax

< 3

⇔ 4
3
k + 1 < Lmax.

It is not unusual that such a condition holds in real-world instances. On
the one hand, transportation requests appear over time and therefore the
last request in a sequence might have a large release time. On the other
hand, the distances that have to be covered in large scale logistic systems
are enormous.

4.2 Experimental Performance Analysis

In order to measure the performance of our dynamic routing algorithm DYN-
ROUTE with respect to the OSDDPP and the OQDPP empirically we con-
sider optimal solutions as well as other dynamic routing approaches, namely
the dynamic routing algorithm without waiting DYN-ROUTE-SP presented
in Section 4.1.2 and the approximation algorithm of Spenke [37], for the pur-
pose of comparison. The experiments are conducted in instances based on
grid graphs.

For the determination of optimal solutions we introduce a special (ex-
plicit) time expanded formulation of our problem and solve the correspond-
ing offline problems (the SDDPP and the QDPP) via a static integer multi-
commodity flow approach. This requires a slight modification of our model.
In fact, we relax the definition of a dynamic path a little. Note that the
results of Section 4.1 also hold in this model. Moreover, of course, we use
that slight relaxation not only for the determination of optimal solutions,
but also for the routing approaches we are going to evaluate.

The section is organized as follows. After describing the mentioned mod-
ification, the time expansion, and the IP formulation in Section 4.2.1 we
provide the test instances in Section 4.2.2. The computational results are
presented in Section 4.2.3.

4.2.1 Optimal Solutions in a Slightly Modified Model

Modification of the Model

We slightly modify our model concerning the definition of a dynamic path in
undirected graphs. More precisely, we permit that vehicles enter and leave an
edge via the same node, i.e., vehicles can turn back in the middle of an edge.
Formally, we change the definition of a dynamic path (Definition 2.3) such

70 Performance Analysis of the Dynamic Routing Approach

1
(a) undirected edge

1/21/2
(b) edge split

1/2 1/2

(c) directed subgraph

Figure 4.8: Transformation of an undirected edge.

that for two consecutive nodes vi and vi+1 it must hold that there is either an
edge e = vivi+1 (standard requirement) or vi = vi+1. In the latter case the
edge that is used for the newly introduced movement have to be specified.
We call such a path a relaxed dynamic path. Beyond the permission of these
additional movements the model remains unchanged.

Although that modification does not exactly correspond to a split of each
edge, it can be viewed as an increase of the level of discretization. Note that
the relaxation does not change the analysis of Section 4.1. In particular,
neither an optimal algorithm nor the dynamic routing approaches would
benefit in the worst case examples given in Section 4.1.1.

The advantage of that modification of the model is that we are able to
give a time expanded graph formulation. Therefore, optimal solutions can
be computed via a standard static multi-commodity flow approach. Both is
described in the following sections.

Time Expansion

In this part we aim at constructing a time-expanded graph GT = (VT , ET)
with time horizon T from a given undirected graph G = (V,E) such that
each relaxed dynamic path in G is represented by a static path in GT and vice
versa. To this end, we transform each undirected edge into a tiny directed
graph. This transformation is illustrated in Figure 4.8. Firstly, we introduce
artificial nodes on edges. More precisely, each edge e ∈ E is split into two
edges and each of these new edges has transit time 1/2 (see Figure 4.8(b)).
We call the new node an artificial node. Afterwards each undirected edge is
replaced by two anti-parallel directed edges, cf. Figure 4.8(c).

Similar to a related transformation given by Spenke [37], this method
leads to a directed graph that is obviously not equivalent to the original
undirected graph since it provides additional paths, namely the paths that
contain a subsequence v, w, v of nodes, where v is an original node and w is
an artificial node. However, this is exactly what we permit by our relaxation.

Now we construct a time-expanded graph from that directed graph, see
Figure 4.9. In each time step we provide a copy of each node and link these
nodes according to the given transit time. Since waiting is permitted only

4.2 Experimental Performance Analysis 71

0

1/2

1

3/2

2

5/2

3

7/2

4

(a) Time expansion

0

0

0

0

0

0

00

1

11

2

22

33

44

S T

s t

(b) Super source S and super target T for
a request r = (s, t, 2).

Figure 4.9: Illustration of the time expansion and the introduced super node.

on edges we provide waiting edges between the artificial nodes that represent
the original edges and not between original nodes.

Additionally, we add super sources and super targets for each request.
While super sources are introduced to model waiting on the source node,
super targets have to be considered to make all possible completion times
available. Therefore, the costs (transit times) on the ingoing edges of the
super target are set to 0 and the outgoing edges of the super source has
transit times according to the elapsed time (from the release time on).

Obviously, if we consider the idealized model with the described relax-
ation, each dynamic path can be represented by a static path in such a
time-expanded graph and vice versa. Moreover, these static paths are node-
disjoint if and only if the corresponding relaxed dynamic paths are disjoint.
In particular, due to the super sources, waiting at the source node does not
create reservations in the static graph. Thus, the constructed time expanded
graph provides a static characterization of our disjoint vehicle routing prob-
lem with the mentioned relaxation. Therefore, optimal solutions can be
determined using standard integer multi-commodity flow formulations.

Remark 4.16 (Directed graphs). Since we focus on grid graphs in this sec-
tion we introduce the time expansion for undirected graphs. It is easy to see
that this would also be possible if one considers directed graphs. In addition,
one does not have to use a relaxed model in this case.

72 Performance Analysis of the Dynamic Routing Approach

IP Formulation

To obtain optimal offline solutions for the Shortest Dynamic Disjoint Paths
Problem (SDDPP) and the Quickest Disjoint Paths Problem (QDPP) we
use standard edge-based multi-commodity flow formulations with binary
variables xei that indicate whether the i-th request ri = (si, ti, θi) from a
sequence σ = r1, . . . , rk uses edge e or not. Flow conservation constraints
and setting the capacity on each node to one then leads to formulations that
guarantee node disjointness of the determined paths. The objective functions
are chosen according to the considered problems.

For the SDDPP, we get the following integer program:

min
∑

ri∈σ

∑

e∈E

τ(e)xei

s.t.
∑

e∈δ+(v)

xei −
∑

e∈δ−(v)

xei =











−1 : v = Ti

1 : v = Si

0 : otherwise

∀v ∈ VT , ri ∈ σ

∑

ri∈σ

∑

e∈δ−(v)

xei ≤ 1 ∀v ∈ VT

xei ∈ {0, 1} ∀e ∈ ET , ri ∈ σ.

A similar formulation is used for the QDPP:

min Cmax

s.t. Cmax −
∑

e∈E

τ(e)xei ≥ θi ∀ri ∈ σ

∑

e∈δ+(v)

xei −
∑

e∈δ−(v)

xei =











−1 : v = Ti

1 : v = Si

0 : otherwise

∀v ∈ VT , ri ∈ σ

∑

ri∈σ

∑

e∈δ−(v)

xei ≤ 1 ∀v ∈ VT

xei ∈ {0, 1} ∀e ∈ ET , ri ∈ σ.

Both problems can be solved by standard IP solvers. We use CPLEX [23]
for this purpose. Note that we are not interested in computation times and
the evaluation of different CPLEX settings since this is a standard task for IP
solvers. In contrast, our goal is to evaluate the performance of our dynamic
routing approach.

4.2 Experimental Performance Analysis 73

Figure 4.10: A grid graph with pick-up and delivery points on the upper and lower
boundary.

4.2.2 Test Instances

For the experiments we consider grid graphs with pick-up and delivery
points on the upper and lower boundary (Fig. 4.10). The graphs have 2, 4,
or 6 horizontal lanes and 6, 10 or 20 vertical lanes, respectively. Among the
variation of the dimension of the grid we distinguish three different request
patterns, namely the BASE, the CROSSING, and the CROSSING-2 setting.

(a) BASE (b) CROSSING

Figure 4.11: Illustration of the BASE and the CROSSING setting.

BASE: Source and target of the requests are chosen randomly such that
each pick-up and each delivery point is exactly once start or destination
(Figure 4.11(a)). Thus, the number of requests depends on the grid size.
It equals the number of vertical lanes. Moreover, we require that start and
destination of each request lie on opposite sides of the grid, i.e., if the source
node is positioned on the upper bound, the target node must be located on
the lower bound and vice versa. The release time is randomly set to a value
in {0, 1, 2, 3, 4}.

CROSSING: We extend the BASE setting by the restriction that the
source node and the target node of requests have to be in opposite quadrants
of the grid, i.e., we require that each request crosses the ’center’ of the grid.
Figure 4.11(b) illustrates a set of requests that fulfill this condition.

74 Performance Analysis of the Dynamic Routing Approach

CROSSING–2: In this setting we generate a CROSSING instance and
double the requests by repeating each request 4 time units later. We assume
that both requests—the original one and the repeated one—do not interfere
each other in the source and in the target node, respectively.

In each of the resulting test cases we consider 100 randomly chosen in-
stances for the evaluations presented in the next section.

4.2.3 Computational Results

In this section we compare the dynamic routing approach DYN-ROUTE
(Algorithm 1) with optimal offline solutions, on the one hand, and other
routing approaches, namely the dynamic routing approach without waiting
DYN-ROUTE-SP (Algorithm 5) introduced in Section 4.1.2 and the approx-
imation algorithm of Spenke [37], on the other hand. This is done with re-
spect to both objectives, the overall duration (OSDDPP) and the makespan
(OQDPP).

Figure 4.12: A grid graph with pick-up and delivery points on the upper and lower
boundary and directed horizontal lanes.

Additionally, we consider a restricted variant of both introduced dynamic
routing algorithms (DYN-ROUTE and DYN-ROUTE-SP) by applying direc-
tions to the horizontal lanes alternatingly (cf. Figure 4.12). This is due to
the observations of Section 4.1. There we showed that the dynamic routing
algorithm without waiting DYN-ROUTE-SP performs better if we assign di-
rections to the edges of the grid graph (cf. Theorem 4.15). Note that we do
not apply directions to the vertical lanes since we focus on grids with a small
number of edges on a vertical lane. These variants are compared with the
standard variants of the algorithms as well as with optimal solutions which
are, of course, determined in the given undirected grid graph (without any
restriction).

4.2 Experimental Performance Analysis 75

Remark 4.17 (Restricted variant of DYN-ROUTE and DYN-ROUTE-SP).
We consider a restricted variant of DYN-ROUTE (Algorithm 1) and DYN-
ROUTE-SP (Algorithm 5) in grid graphs. The algorithms are adapted such
that horizontal lanes can only be used in one direction. The directions are
applied alternatingly. We refer to these variants as the restricted DYN-
ROUTE and the restricted DYN-ROUTE-SP, respectively.

The section is organized as follows. At first, we compare the standard
(unrestricted) dynamic routing algorithm DYN-ROUTE with optimal solu-
tions. Afterwards we switch to the restricted variant of DYN-ROUTE and
at last we consider the other mentioned routing approaches, the dynamic
routing algorithm without waiting DYN-ROUTE-SP (with and without the
restriction) as well as the approximation algorithm of Spenke and set them
in contrast to DYN-ROUTE.

Comparison with Optimal Solutions

We consider the Online Shortest Dynamic Disjoint Paths Problem (OSD-
DPP) first. Table 4.1 illustrates the performance of the dynamic routing
approach with respect to the overall duration. We evaluate the optimality
gap, which is defined as

DYN-ROUTE(I) − OPT(I)

OPT(I)

for each instance I, as well as the number of requests that are solved optimal
by the dynamic routing algorithm DYN-ROUTE.

The general observation is that the optimality gap depends on three crite-
ria: the structure of the requests, the narrowness of the grid, and the number
of requests.

Concerning the structure of the requests we present two variants: the
BASE instances with completely random requests and the CROSSING in-
stances, where interferences between the requests are forced. The evalua-
tion shows that, if we compare grids with the same dimension, the dynamic
routing approach performs better in the completely random test scenarios
(BASE). This is most significant in the scenarios with two horizontal lanes,
which are the only instances in the BASE and CROSSING scenario, where
our algorithm does not perform almost optimal. However, there is also an ob-
servable difference between the instances with four and six horizontal lanes,
respectively. In general, the main observation concerning the narrowness
is that the optimality gap increases with a decreasing number of horizontal
lanes, if we compare scenarios with an identical number of vertical lanes.

76 Performance Analysis of the Dynamic Routing Approach

optimality gap (in %) gap=0

average maximum standard deviation (in %)

BASE

6 × 2 3.46 23.53 4.74 54

6 × 4 2.07 8.70 2.31 42

6 × 6 0.81 5.36 1.40 70

10 × 2 5.11 17.86 3.93 13

10 × 4 1.84 9.18 1.65 24

10 × 6 0.77 4.26 0.88 46

20 × 2 7.58 22.79 3.82 0

20 × 4 1.75 4.78 1.05 3

CROSSING

6 × 2 5.01 21.62 4.50 26

6 × 4 2.74 10.42 2.36 26

6 × 6 1.06 5.00 1.36 54

10 × 2 10.62 28.57 6.62 3

10 × 4 2.54 9.00 2.03 14

10 × 6 0.90 4.17 0.97 40

20 × 2 15.77 31.67 8.22 0

20 × 4 3.68 6.33 1.33 0

CROSSING–2

6 × 2 12.85 42.11 7.53 2

6 × 4 3.79 10.42 2.32 6

8 × 2 16.97 42.50 8.72 0

8 × 4 5.25 11.72 2.46 0

Table 4.1: Evaluation of the dynamic routing approach DYN-ROUTE in comparison with
optimal solutions with respect to the OSDDPP. We consider the optimality gap (average,
maximum, standard deviation) as well as the number of instances solved optimal.

4.2 Experimental Performance Analysis 77

Note that the percentage of optimal solutions behaves accordingly. More-
over, if we conversely fix the number of horizontal lanes, the optimality gap
increases with the number of vertical lanes. The latter can also be viewed
as an effect of an increasing number of requests. We observe the same in the
CROSSING–2 setting, where the doubling of the number of requests leads
to a noticeable performance loss in comparison to identical instances in the
CROSSING setting. Thus, we conclude that all mentioned criteria have an
influence independently of each other.

Apart from this general result we now turn our attention to some specific
instances. In the smallest instances (6 × 2) in the BASE setting we observe
an exceptionally large standard deviation compared with the average opti-
mality gap, which is in line with the large number of optimal solutions and
a large maximum optimality gap. In our opinion this is due to the small
optimal values in the corresponding instances. Another interesting point is
that the solution values in the instances based on the 6 × 6 and the 10 × 6
grid in the BASE setting as well as in the CROSSING setting are on aver-
age less than one percent away from the values of the corresponding optimal
solutions. Moreover, the fraction of optimal solutions generated by the dy-
namic routing approach in these instances is between 40 and 70 percent,
while in the instances with 20 vertical lanes in the CROSSING setting and
in the instances with 8 vertical lanes in the CROSSING–2 setting no optimal
solutions are determined.

The worst case instances are those based on grids with 2 horizontal lanes
in the CROSSING–2 setting, which is not very surprising. It is interesting,
however, that the solution value of DYN-ROUTE is at most about 42 percent
away from the optimum in these instance. Moreover, the average deviation
is far below that value.

The evaluation of the dynamic routing algorithm with respect to the
makespan (OQDPP), which is showed in Table 4.2, is basically in line with
the analysis presented for the OSDDPP. The variation of the narrowness,
the request structure, and the number of requests lead to results of the same
quality. The only difference is that we observe larger deviations between the
instances of the same scenario. In fact, there are larger standard deviations,
maximum gaps and also many more optimal solutions in relation to the
evaluation with respect to the overall duration. One reason for that are the
smaller values of the computed solutions compared with the overall duration
case. Moreover, if we consider the makespan, we, in a way, only evaluate one
request – the one with the latest completion time – and disregard the others.
This can obviously lead to effects such as these. In particular, there are up
to 92 percent optimal solutions.

78 Performance Analysis of the Dynamic Routing Approach

optimality gap (in %) gap=0

average maximum standard deviation (in %)

BASE

6 × 2 4.96 37.50 7.56 62

6 × 4 1.61 10.00 3.45 82

6 × 6 0.63 8.33 2.16 92

10 × 2 6.94 40.00 9.36 52

10 × 4 1.39 27.27 3.91 85

10 × 6 0.54 11.76 1.93 92

20 × 2 9.08 43.48 9.80 35

20 × 4 1.14 18.75 3.15 84

CROSSING

6 × 2 5.93 35.27 6.30 30

6 × 4 2.22 16.67 4.43 78

6 × 6 1.28 21.34 3.95 88

10 × 2 15.05 66.67 13.48 26

10 × 4 1.76 18.75 3.96 80

10 × 6 0.81 11.76 2.18 87

20 × 2 25.61 50.00 11.35 4

20 × 4 7.38 36.36 8.70 38

CROSSING–2

6 × 2 14.68 46.15 10.11 16

6 × 4 3.15 26.67 5.09 65

8 × 2 24.32 60.00 13.15 4

8 × 4 4.19 33.33 5.52 51

Table 4.2: Evaluation of the dynamic routing approach DYN-ROUTE in comparison with
optimal solutions with respect to the OQDPP. We consider the optimality gap (average,
maximum, standard deviation) as well as the number of instances solved optimal.

4.2 Experimental Performance Analysis 79

Restricted Dynamic Routing Algorithm

Now we consider the dynamic routing algorithm DYN-ROUTE (Algorithm 1)
with the additional restriction that the edges on the horizontal lanes are di-
rected alternatingly, cf. Figure 4.12. The results with respect to both objec-
tives, the overall duration and the makespan, are illustrated in Table 4.3.

The main observation is that the performance of this approach is much
better in instances with only 2 horizontal lanes. Moreover, if we consider the
overall duration, the optimality gap does not increase with the number of
vertical lanes and the values in the CROSSING setting do not differ signifi-
cantly from those in the BASE setting. Only the doubling of requests in the
CROSSING–2 setting leads to larger optimality gaps, but they are still much
smaller than those determined by the standard dynamic routing approach.
In addition, the number of optimally solved instances in these most narrow
setting increases considerably. In the CROSSING-2 instances, this value is
even larger than in instances with 4 horizontal lanes.

In the instances with 4 or 6 horizontal lanes we get almost the same
results as in the case without the restriction to the direction of the lanes (with
the exception of the 20 × 4 grid in the CROSSING setting in the makespan
case). This observation holds for both objectives, while comparing the results
among each other leads to the same observation as given for the standard
case, namely a larger standard deviation if we consider the makespan. Thus,
the dynamic routing approach with the presented restriction to the direction
of the edges does not seem to be superior to the standard dynamic routing
approach in general, but is so in extremely narrow grids.

Motivated by these results we also evaluated this restricted approach in
the simulation environment introduced in Section 3.3.1, i.e., we applied the
restriction to the scenarios SCEN-A and SCEN-B. These simulations lead to
contrary results.

Remark 4.18 (Evaluation of the restricted DYN-ROUTE in SCEN-A and
SCEN-B from Section 3.3.1). While we achieve an average duration of
182.26 sec. in SCEN-A and 183.90 sec. in SCEN-B without the restriction,
the results in the restricted version are 189.31 sec. and 190.69 sec., respec-
tively, which is a loss of performance of almost 4 percent in both cases.

There are three reasons for that apparent discrepancy: Firstly, the un-
derlying grid-like graph in the simulation environment has more than two
horizontal lanes. In this case the test instances in this section do not show
an advantage of the restricted approach either. The second reason is that in
a simulation over several hours there might be sequences with many requests
in the same direction in a particular time period and, at a later date, there

80 Performance Analysis of the Dynamic Routing Approach

overall duration makespan

optimality gap (in %) gap=0 optimality gap (in %) gap=0

avg max dev (in %) avg max dev (in %)

BASE

6 × 2 3.79 16.67 4.85 50 6.05 33.33 8.66 60

6 × 4 1.82 9.76 2.35 50 1.68 22.22 4.87 88

6 × 6 1.23 6.00 1.64 56 0.64 16.67 2.75 94

10 × 2 4.12 17.72 3.81 19 5.16 33.33 7.14 56

10 × 4 1.74 5.71 1.55 27 0.64 14.29 2.29 92

10 × 6 0.87 4.81 1.09 50 0.77 13.33 2.35 89

20 × 2 3.49 9.46 2.17 2 4.54 23.81 6.07 49

20 × 4 1.79 6.12 1.07 3 0.70 12.50 2.00 87

CROSSING

6 × 2 3.53 16.22 4.32 46 4.43 30.00 7.36 68

6 × 4 2.28 8.33 2.00 30 1.47 9.09 3.14 82

6 × 6 0.60 3.33 1.09 74 0.71 7.69 2.12 90

10 × 2 3.78 14.81 3.69 25 7.68 41.67 9.40 41

10 × 4 2.37 7.84 1.73 11 1.25 13.33 2.88 83

10 × 6 1.09 4.17 1.04 30 0.98 11.76 2.59 86

20 × 2 3.65 6.50 2.98 1 9.44 36.36 10.43 34

20 × 4 2.51 4.32 0.90 0 0.71 7.69 1.80 85

CROSSING–2

6 × 2 8.85 38.89 8.50 8 11.86 58.33 11.00 25

6 × 4 4.61 16.67 2.61 1 3.85 20.00 5.33 58

8 × 2 8.68 37.60 7.72 1 16.91 64.29 12.74 8

8 × 4 5.31 12.16 2.40 0 4.02 25.00 5.08 50

Table 4.3: Evaluation of the restricted dynamic routing approach in comparison with
optimal solutions with respect to the OSDDPP (overall duration) and the OQDPP
(makespan). We consider the optimality gap (average, maximum, standard deviation)
as well as the number of instances solved optimal.

4.2 Experimental Performance Analysis 81

might be a sequence in the opposite direction. In such cases the possibility
of a flexible use of the lanes is of value. Moreover, as a further explanation,
the grid-like graph has many more vertical lanes and the requests usually do
not stretch across the hole grid. Therefore, lanes might be used in different
directions in different parts of the grid.

Thus, we conclude that the question which approach should be preferred,
the one with directed horizontal lanes or the unrestricted one, cannot be an-
swered generally. It highly depends on the considered scenario/application.

Comparison with Other Routing Approaches

After analyzing the performance of the dynamic routing algorithm DYN-
ROUTE with respect to optimal solutions, we now aim at comparing it with
other routing approaches. In fact, we consider the dynamic routing algorithm
without waiting DYN-ROUTE-SP (Algorithm 5) presented in Section 4.1.2
and the approximation algorithm of Spenke [37] for the QDPP. Both algo-
rithms determine shortest static paths and, on that basis, construct dynamic
paths such that waiting only occurs at the source node. While DYN-ROUTE-
SP is an online algorithm that, similar to DYN-ROUTE, iteratively computes
routes when the corresponding requests arrive, the algorithm of Spenke is
an offline approximation algorithm that first organizes the request in four
groups and then processes the groups one after another. Therefore, we refer
to this algorithm as FOUR-GROUPS.

Table 4.4 illustrates the average deviation of the solution values of these
approaches from our dynamic routing algorithm DYN-ROUTEwith respect
to the makespan (OQDPP) and the overall duration (OSDDPP). This gap
is defined as

ALG(I) − DYN-ROUTE(I)

DYN-ROUTE(I)

for each instance I, where ALG denotes the investigated routing algorithm.

Concerning DYN-ROUTE-SP we also compare both algorithms with the
introduced restriction to the directions of the lanes (cf. Remark 4.17). Note
that we do not compare the restricted version of one algorithm with the
unrestricted of the other since we already analyzed the influence of the re-
striction on the performance before. Moreover, algorithm FOUR-GROUPS
is only faced with the unrestricted dynamic routing approach, but we will
see that this does not play an important role since the differences between
the restricted and the unrestricted version are small in comparison with the
deviation we observe regarding the results of algorithm FOUR-GROUPS.

The evaluation shows that both approaches, the dynamic routing algo-
rithm DYN-ROUTE and algorithm DYN-ROUTE-SP, lead to very similar

82 Performance Analysis of the Dynamic Routing Approach

overall duration makespan

DYN-ROUTE-SP FOUR-

UNDIR DIR UNDIR DIR GROUPS

BASE

6 × 2 1.19 1.98 1.27 2.47 98.85

6 × 4 0.01 0.68 0.56 0.55 130.98

6 × 6 0.12 0.01 0.33 0.48 138.11

10 × 2 2.08 1.19 2.91 1.43 132.98

10 × 4 0.38 1.03 0.14 0.96 155.31

10 × 6 0.21 0.54 0.16 0.39 173.36

20 × 2 2.01 0.70 2.79 0.57 167.51

20 × 4 0.53 0.49 0.10 0.27 198.80

CROSSING

6 × 2 2.31 1.30 1.71 0.62 107.80

6 × 4 0.16 0.68 0.00 1.18 141.01

6 × 6 0.08 0.56 0.24 0.93 160.93

10 × 2 2.87 1.18 3.75 1.24 136.84

10 × 4 0.61 0.75 0.74 0.88 184.34

10 × 6 0.16 0.56 0.47 0.93 194.03

20 × 2 1.57 1.42 1.26 1.17 145.31

20 × 4 0.27 0.60 0.20 0.83 209.05

CROSSING–2

6 × 2 1.41 2.52 1.19 2.45 48.62

6 × 4 2.23 1.92 2.57 1.91 85.00

8 × 2 2.75 3.16 2.77 2.75 62.11

8 × 4 1.62 1.28 1.38 2.18 111.08

Table 4.4: Analysis of the performance of the dynamic routing algorithm DYN-ROUTE
in comparison with other routing approaches, namely the dynamic routing algorithm
without waiting DYN-ROUTE-SP and the approximation algorithm FOUR-GROUPS of
Spenke. We illustrate the average difference of these approaches to DYN-ROUTE (in %)
with respect to the overall duration and the makespan, respectively. Regarding DYN-
ROUTE and DYN-ROUTE-SP we distinguish between the case with directed horizontal
lanes (’DIR’) and the unrestricted variant (’UNDIR’).

4.2 Experimental Performance Analysis 83

overall duration makespan

UNDIR DIR UNDIR DIR

DYN DYNS DYN DYNS DYN DYNS DYN DYNS

BASE

6 × 2 32 16 32 4 20 8 16 0

6 × 4 32 26 32 16 10 4 18 8

6 × 6 20 16 18 22 12 4 4 0

10 × 2 52 27 39 5 29 15 17 2

10 × 4 43 29 51 12 11 7 13 1

10 × 6 47 19 39 13 9 4 9 2

20 × 2 63 32 64 13 40 15 11 4

20 × 4 60 29 62 25 13 10 9 2

CROSSING

6 × 2 42 10 26 2 18 4 4 0

6 × 4 32 32 38 18 16 14 18 4

6 × 6 32 24 22 12 4 6 4 6

10 × 2 60 36 45 8 45 25 19 6

10 × 4 44 33 44 20 18 13 15 4

10 × 6 44 18 48 18 9 2 13 1

20 × 2 52 48 52 11 48 41 22 4

20 × 4 50 44 59 18 26 12 18 0

CROSSING–2

6 × 2 58 33 54 5 37 24 34 7

6 × 4 71 20 63 25 35 11 33 10

8 × 2 61 33 72 6 51 28 38 4

8 × 4 69 22 69 24 34 19 36 15

Table 4.5: Analysis of the performance of the dynamic routing algorithm DYN-ROUTE
in comparison with DYN-ROUTE-SP: For each setting it has been evaluated how often
(in %) the corresponding approach lead to a better result with respect to the considered
objective. Again, we distinguish between the restricted case (’DIR’: directed horizontal
lanes) and the unrestricted variant (’UNDIR’). Moreover, we abbreviate DYN-ROUTE
by DYN and DYN-ROUTE-SP by DYNS, respectively.

84 Performance Analysis of the Dynamic Routing Approach

results. However, there is a slight difference, in particular in those sce-
narios that turned out to be the most difficult ones, namely the instances
with only 2 horizontal lanes. There, DYN-ROUTE has a noticeable ad-
vantage. CROSSING setting with respect to the makespan (restricted and
unrestricted).

Concerning the evaluation of algorithm FOUR-GROUPS, again regarding
Table 4.4, we observe that this approach is not able to keep up with the
presented online algorithms. This does not mean that the approach of Spenke
is unsuitable in general, but it should be used for other applications, namely
for vehicle routing problems, where a huge number of request, say for a
whole day, is known in advance and their release times are not fixed (or are
set to 0, cf. [37]). While the advantage of the latter is obvious the results in
the CROSSING-2 setting with twice as much requests as in the CROSSING
instances support the first part of that conjecture since we observe smaller
gaps in this case. Furthermore, note that small numbers of horizontal lanes
as well as small numbers of vertical lanes lead to a better performance of the
FOUR-GROUPS approach in comparison to DYN-ROUTE. While the latter
is due to the short distances in the given graph, which reduces the waiting for
the termination of a preceeding group of requests in this approach, the results
in the grid graphs with 2 horizontal lanes show again that these instances
are the most challenging for DYN-ROUTE.

4.3 Conclusions

In Chapter 3 we showed that the dynamic routing algorithm DYN-ROUTE
(Algorithm 1) is suitable for real-time disjoint vehicle routing in practice.
More precisely, we concluded that the algorithm computes the routes fast
enough and is able to deal with several kinds of perturbations. Although we
also gave a comparison to a trivial lower bound, we postponed the perfor-
mance analysis to this chapter.

The analysis was divided into two parts. On the one hand, we investigated
the theoretical performance of DYN-ROUTE and, on the other hand, we
conducted experiments in order to get empirical results.

Regarding the theoretical side we used competitive analysis to deter-
mine the worst case performance of DYN-ROUTE. We showed that DYN-
ROUTE is Θ(k)-competitive with respect to the Online Shortest Dynamic
Disjoint Path Problem (OSDDPP) and the Online Quickest Disjoint Path
Problem (OQDPP), where k is the number of requests. In addition, we
investigated another dynamic routing approach. More precisely, we intro-
duced algorithm DYN-ROUTE-SP which computes a dynamic path based
on a shortest static path such that waiting only occurs at the source node.

4.3 Conclusions 85

Besides providing almost similar results as for DYN-ROUTE we were able to
show that this approach is 1+(5k−1)/Lmax-competitive with respect to the
OQDPP and 1+(5k+3)/2Lavg-competitive with respect to the OSDDPP in
grid graphs, where, roughly speaking, Lmax and Lavg denote the maximum
and average static distance between source and target of the considered re-
quests. As a consequence, since the algorithm runs in polynomial time, this
improves the (offline) approximation ratio for the QDPP in grid graphs of
Spenke [37], who gave the first approximation algorithm for that problem,
for instances with Lmax > (4/3)k + 1.

In the experimental part we compare DYN-ROUTE to optimal solutions,
on the one hand, and to DYN-ROUTE-SP as well as to the approximation
algorithm of Spenke, on the other hand. For the evaluation we use instances
based on grid graphs of different dimensions with pick-up and delivery points
on the upper and lower boundary. It turned out that DYN-ROUTE is su-
perior to DYN-ROUTE-SP and to the approximation algorithm of Spenke.
Moreover, we determined an average optimality gap between 1% and 17%
(dependent on the dimensions of the grid) if we consider the OSDDPP. For
the OQDPP we observed an average gap between 1% and 25%. The respec-
tive optimal solutions are determined using a integer programming approach
based on a time-expanded formulation of the given graph.

One question certainly arises regarding these results: What kind of the-
oretical analysis reflects the ’real’ performance of the dynamic routing ap-
proach DYN-ROUTE? Unfortunately, we were not able to provide an average
case analysis that answers this question. The difficulty was to find enough
instances (classes of instances) in which the algorithm provably performs well
(better than in the order of k). Therefore, this problem remains open.

Chapter 5

Static Routing

In this chapter we present a different kind of routing approach for solving the
introduced disjoint vehicle routing problems. While the routes, again, are
computed iteratively, the main difference to the dynamic routing algorithm
presented in Chapter 3 (Algorithm 1) is that we do not take time depen-
dences into account during the route computation. In contrast, the idea is
to compute a static shortest path with respect to a particular cost function.
Therefore, we refer to this heuristic approach as the static routing approach.
Collisions are avoided by a reservation procedure which can be regarded as
the construction of a dynamic path at the execution time of the route.

We will see that, due to the absence of time-dependence, this routing
approach has to be two-stage. Besides the route computation, which we
consider in Section 5.2, we have to take care for deadlock situations. To this
end, we give a deadlock prevention algorithm in Section 5.3. The resulting
algorithm is then evaluated with respect to its real-life suitability, especially
in contrast to the dynamic routing approach.

Parts of this chapter are published in [18].

5.1 Introduction

5.1.1 Static Routing

In a static approach for online disjoint vehicle routing problems one computes
static paths in the given (street) network, ignoring their time-dependent na-
ture. More precisely, one computes a standard shortest path, e.g., using
Dijkstra’s algorithm, with respect to edge costs c(e) for each edge e consist-
ing of the transit times τ(e) plus a load-dependent penalty cost which is a
function of the number of routes that are already using this edge. So far only
Guan and Moorthy [21] have investigated different kinds of penalty costs for
that problem. In fact, they considered constant additive penalty costs, on
the one hand, and distance-dependent costs, on the other hand. Besides
not giving any theoretical performance guarantee for these approaches, the
experimental evaluation does not show any major effect. We introduce a par-
ticular cost function that guarantees short routes while avoiding too much

87

88 Static Routing

congestion. Moreover, the practical benefit is shown in Section 5.4.1.
In such a routing approach the computed paths are, of course, not conflict-

free. Hence, one needs an additional conflict management that, at execution
time of the routes, guarantees that no collisions occur. This can be done by
iteratively allocating to a vehicle the next part of its route (the claim) and
block it for all other vehicles, see Figure 5.1.

Remark 5.1 (Minimum claim). For safety reasons the claim must block
at least the distance needed to come to a complete stop, cf. Section 3.1.4
(distance-dependent safety tube).

vehicle

claim Figure 5.1: Reservation pro-
cedure. Each vehicle reserves
the next part of the route.
Mutual exclusive reservations
guarantee a collision-free ex-
ecution of computed (static)
paths.

This reservation procedure can be viewed as construction of a dynamic
path at execution time of the computed static path. Note that we do not
concentrate on different kinds of reservation rules in this context. We assume
a ’first come first served’ strategy.

5.1.2 Drawbacks of Static Routing

In comparison to the dynamic routing approach presented in Chapter 3,
the static routing approach a priori shows various drawbacks. The most
alarming one is caused by the collision avoidance at execution time. The
reservation procedure might cause deadlocks, as illustrated in Figure 5.2,
which have a deteriorating effect on the system performance. Deadlocks
appear if a group of vehicles wish to reserve a set of edges which are already
occupied by another vehicle in this group such that none of them is able to
continue its route and thus the system is blocked. Note that the dynamic
routing approach already provides deadlock-free routes at the time of the
route computation.

In addition to deadlocks, detours and high congestion may occur in the

5.1 Introduction 89

Figure 5.2: Simplified dead-
lock situation. Both vehicles
are trying to occupy the same
portion/edges of the network,
thereby blocking each other.

static setting since time-dependent behavior is not modeled. This results
in traveling times that can be far away from the shortest possible traveling
time.

Moreover, a variety of other inbuilt drawbacks are due to the reservation
at the execution time of the routes. For instance, actual arrival times of the
vehicles at their destinations are completely random and cannot be predicted
at the time of route computation (unpredictable completion times). This is
a major drawback for other planning steps in the logistic chain that depend
on the knowledge of these completion times. A special case in this context is
the appearance of so-called livelocks which is the generic term for situations
where a vehicle is blocked repeatedly by other vehicles without having the
possibility of reserving the area which is next on its route. Note that, in the
dynamic routing approach, the completion time is known immediately after
route computation since the time-dependent behavior is fully modeled.

For the same reason the conflict times are unpredictable, i.e., it is not
known at the time of the route computation whether or when two vehicles
try to allocate the same portion of the network. As a consequence, potential
targets can not be used for transit purposes since, if the transiting vehicle
reaches the position later, it has to wait for an incalculable time (or a rerout-
ing is required). We excluded such situations in our model (Assumption 2.6),
but in practice it can be of value to have the flexibility of an unrestricted
route computation.

Furthermore, it is not clear how a (efficient) reservation procedure that
takes priorities into account could look like. Note that reserving the whole
route in advance would lead to massive performance loss of the unprioritized
requests.

The last three disadvantages (unpredictable completion time, no transit
of potential target nodes, not clear how to prioritize requests) are inevitable
consequences of the static approach. Therefore, we focus on the avoidance
of deadlocks, congestion and detours in our implementation of the static
routing approach.

90 Static Routing

5.1.3 Our Approach

In order to cope with the problem of congestion and detours we use a sophis-
ticated routing approach that balances the load on the edges of the graph
while the resulting paths remain short with respect to the transit times.
More precisely, in Section 5.2, we present an online load-balancing algorithm
that guarantees a minimal load under a given length constraint to the chosen
paths.

In a second step we construct so-called reservation schedules to avoid
potential deadlock situations. This is done by a deadlock detection and
prevention algorithm introduced in Section 5.3.

Algorithm 6: STAT-ROUTE

Data: Graph G = (V,E), sequence of requests σ = r1, . . . , rk.
Result: Sequence of static paths P1, . . . , Pk with corresponding

deadlock-free reservation schedules.
begin

foreach request rj do
· compute a shortest path w.r.t. a certain load-dependent cost
function /∗ execute Algorithm 7 (Section 5.2.2) ∗/ ;
· compute a deadlock-free reservation schedule /∗ execute
Algorithm 10 (Section 5.3.4)∗/;

end

We refer to this two-stage approach as the static routing algorithm STAT-
ROUTE (Algorithm 6). As in Chapter 3 we describe all algorithms based on
the precise disjointness model (polygon model) introduced in Section 2.2.2
and give modifications for the idealized model whenever necessary. More-
over, note that the turning behavior and the orientation of the vehicles can
be taken into account in the same way as for the dynamic approach, see
Section 3.1.4.

We will not discuss the deletion of served routes in detail. We just assume
that paths (and therefore the corresponding loads and reservation schedules)
are removed when the corresponding vehicle has reached its target.

5.2 Online Load Balancing with Bounded Stretch Factor

5.2.1 Introduction

In the recent years many people have conducted research into the Online
Load Balancing Problem [2, 8]: Consider a directed graph G = (V,E) and

5.2 Online Load Balancing with Bounded Stretch Factor 91

a sequence of requests σ = (r1 = (s1, t1), . . . , rk = (sk, tk)), where si and ti
denote the source and target node of the request i, respectively. Sometimes
a certain bandwidth bi (resources needed by request ri) is assigned to each
request. We will focus on the case where this bandwidth is equal to one. In
this case, the load on an edge e after the i-th request (loadi(e)) is defined
as the number of requests already routed over e. The task is to minimize
the maximum load over all edges, i.e., min maxe∈E loadk(e), where k again
denotes the number of requests.

Online Load Balancing Problem

Instance: Directed graph G = (V,E), sequence σ = (r1, . . . , rk) of
requests ri = (si, ti).

Task: Choose a static path Pi for each request ri such that the
maximum load over all edges e ∈ E is minimized, i.e.,
min maxe∈E loadk(e)

Aspnes et al. [2] gave an O(log(|E|))-competitive algorithm for that prob-
lem and showed, using the lower bound of Azar, Naor and Rom [4] for online
assignment, that their approach is optimal for online load balancing.

This standard load balancing problem has been extended to the case with
transit times τ(e) on edges and a certain constraint to the length of a chosen
path by Gao and Zhang [17]. In fact, they introduced a so-called stretch
factor B > 1 that bounds the length of a chosen si-ti-path. In fact, each si-
ti-path has to be shorter than B times the length of a shortest path between
si and ti. We call this problem the Online Load Balancing with Bounded
Stretch Factor.

Online Load Balancing Problem with

Bounded Stretch Factor

Instance: Directed graph G = (V,E), transit times τ : E → R, stretch
factor B, sequence of requests σ = (r1, . . . , rk).

Task: Choose a static path Pi with lengthτ (Pi) < B · dist(si, ti)
for each request ri such that the maximum load over all
edges e ∈ E is minimized.

Gao and Zhang modified the routing approach of Aspnes et al. and
obtained similar results concerning the competitive ratio for this problem. In
particular, they also provide a O(log(|E|))-competitive algorithm. Since they
compute resource-constrained shortest paths for each request their algorithm
has an exponential run time .

We also consider the Online Load Balancing Problem with Bounded

92 Static Routing

Stretch Factor, but we focus on a different kind of analysis. Instead of com-
paring the solution of a particular online algorithm with the optimal solution
for that problem (competitive analysis), we consider the optimal solution of
the standard load balancing problem, i.e., without the given stretch factor
constraint. We are interested in this ratio since an optimal load balancing
solution can be seen as the best choice with respect to generated congestion
in our static routing algorithm STAT-ROUTE (Algorithm 6). We call it the
stretch factor restricted (sfr) competitive ratio and transfer the notation from
the standard competitive analysis introduced in Section 2.1.2.

Definition 5.2 (Stretch factor restricted competitive ratio). An online al-
gorithm ALG for the Online Load Balancing Problem with Bounded Stretch
Factor is called c-stretch-factor-restricted-competitive or c-sfr-competitive
if, for any problem instance I, it achieves a solution with

ALG(I) ≤ c · OPT(I),

where OPT(I) denotes the value of the optimal offline solution for the Online
Load Balancing Problem.

The stretch factor restricted (sfr) competitive ratio of ALG is the infi-
mum over all c such that ALG is c-competitive.

In addition, we assume that the number of requests k, or at least a good
upper bound, is given in advance. Seiden, Sgall and Woeginger [35] call
such approaches semi-online. In our application, the disjoint vehicle routing,
a good upper bound might be the number of vehicles since there cannot be
more ‘active’ requests than vehicles. Moreover, since we consider the polygon
model, we take conflicting edges into account whenever we determine the load
on the edges.

In the next section we provide a semi-online algorithm that turns out to
be optimal with respect to the sfr competitive ratio.

5.2.2 Algorithm

We present an

O

(

max

(

k, log k
√

B |E|, log k
√

B

maxe∈E τ(e)

mine∈E τ(e)

))

-sfr-competitive

algorithm (Algorithm 7) for Online Load Balancing with Bounded Stretch
Factor. The algorithm works in phases. In each phase we consider a certain
upper bound UB to the optimal load with respect to the already routed
requests in this phase. This upper bound is adjusted dependent on the

5.2 Online Load Balancing with Bounded Stretch Factor 93

current maximum load produced by the algorithm, i.e., we enter a new phase
(and double the bound) whenever it cannot be guaranteed that UB is still
an upper bound. This is verified in line UB of the algorithm. We show the
correctness of this check later (see Theorem 5.4).

Algorithm 7: BAL-BOUND

Data: Directed graph G = (V,E), transit times τ : E → R,
requests σ = r1, . . . , rk, stretch factor B.

Result: Sequence of static paths P1, . . . , Pk.
begin

load(e) = 0 ∀e ∈ E ;
UB = 1;
b = k

√
B ;

foreach ri = (si, ti) do
SP compute a shortest si-ti path Pi w.r.t. the cost function

c(e) = τ(e) · b load(e)
UB ;

UB if ∃e ∈ confl(Pi) : load(e) + 1 > logb(b
k+1 · |E| · maxe∈E τ(e)

mine∈E τ(e)
) ·UB

then
/∗ new phase ∗/
UB = 2 · UB ;
load(e) = 0 ∀e ∈ E;
goto line SP /∗ repeat shortest path computation ∗/;

else
load(e) = load(e) + 1 ∀e ∈ confl(Pi);
assign path Pi to request ri;

end

For each request the algorithm computes a shortest path with respect

to the cost function c(e) = τ(e) · b
load(e)

UB , where b is the k-th root of the
given stretch factor B and load(e) is the current load on edge e (in the
considered phase). Afterwards either a new phase is entered or the load
on all edges that conflict with an edge of the selected path P , namely the
edges in confl(P) :=

⋃

e∈P confl(e), is increased by one. Note that, due to
Definition 2.11 (to check for disjointness only the conflicting edges of one
path have to be considered), the sets of conflicting edges are not taken into
account during the route computation.

Obviously, each route computation is done at most two times since the
first route computation in a new phase cannot violate the upper bound con-
straint (line UB of the algorithm). Thus, the algorithm runs in polynomial
time.

94 Static Routing

Theorem 5.3. BAL-BOUND (Algorithm 7) runs in polynomial time.

In order to show the claimed stretch factor restricted competitive ratio of
BAL-BOUND (Algorithm 7) we introduce SUB-BAL-BOUND (Algorithm 8)
which can be viewed as subroutine (phase) of BAL-BOUND since there we
assume that an upper bound UB is given in advance.

Algorithm 8: SUB-BAL-BOUND

Data: Directed graph G = (V,E), transit times τ : E → R,
requests σ = r1, . . . , rk, stretch factor B, upper
bound UB ≥ OPT to the optimum.

Result: Sequence of static paths P1, . . . , Pk.
begin

load(e) = 0 ∀e ∈ E ;
b = k

√
B ;

foreach ri = (si, ti) do
compute a shortest si-ti path Pi w.r.t. the cost function

c(e) = τ(e) · b load(e)
UB ;

load(e) = load(e) + 1 ∀e ∈ confl(Pi);
assign path Pi to request ri;

end

In Theorem 5.4 we provide a performance guarantee for Algorithm 8 that
depends on the given upper bound UB.

Theorem 5.4. For a fixed upper bound UB ≥ OPT and for any problem
instance I it holds that

SUB-BAL-BOUND(I) ≤ logb

(

bk+1 · |E| · maxe∈E τ(e)

mine∈E τ(e)

)

· UB.

Proof. Let P ∗
i and Pi be an optimal path and the path selected by algorithm

SUB-BAL-BOUND, respectively. Moreover, recall that loadi(e) denotes the
load generated by SUB-BAL-BOUND on edge e after i requests. Since the
algorithm chooses the shortest path with respect to the considered costs c(e),
it holds that

∑

e∈Pi
c(e) ≤ ∑

e∈P ∗

i
c(e)

⇔ ∑

e∈Pi
τ(e)b

loadi−1(e)

UB ≤ ∑

e∈P ∗

i
τ(e)b

loadi−1(e)

UB

⇒ ∑

e∈Pi
τ(e)b

loadi−1(e)

UB ≤ ∑

e∈P ∗

i
τ(e)bk

5.2 Online Load Balancing with Bounded Stretch Factor 95

for all i since the load on each edge is bounded by k (by definition a static
path contains no cycle). Summing up over all requests leads to the following
inequality:

∑k
i=1

∑

e∈Pi
τ(e)b

loadi−1(e)

UB ≤ ∑k
i=1

∑

e∈P ∗

i
τ(e)bk

⇔ ∑

e∈E

∑

i:e∈Pi
τ(e)b

loadi−1(e)

UB ≤ ∑

e∈E

∑

i:e∈P ∗

i
τ(e)bk

Now we multiply both sides by b
1

UB − 1. For the inner sum of the left
hand side we get

(b
1

UB − 1) ·
∑

i:e∈Pi

τ(e)b
loadi−1(e)

UB =
∑

i:e∈Pi

τ(e) · (b
loadi−1(e)+1

UB − b
loadi−1(e)

UB)

≥
∑

i:e∈Pi

τ(e) · (b
loadi(e)

UB − b
loadi−1(e)

UB) (5.1)

= τ(e) · (b
loadk(e)

UB − 1).

The telescope sum in (5.1) is obtained by the observation that the load on
an edge e increases at most by one in a single step (loadi(e) ≤ loadi−1(e)+1).

On the right hand side we get

(b
1

UB − 1) ·
∑

e∈E

∑

i:e∈P ∗

i

τ(e)bk ≤ (
1

UB
b − 1) ·

∑

e∈E

∑

i:e∈P ∗

i

τ(e)bk (5.2)

≤ (
1

UB
b − 1

UB
) ·
∑

e∈E

∑

i:e∈P ∗

i

τ(e)bk

≤ (b − 1)
1

UB
·
∑

e∈E

∑

i:e∈P ∗

i

τ(e)bk

= bk(b − 1) ·
∑

e∈E

τ(e)
∑

i:e∈P ∗

i

1

UB

≤ bk(b − 1) ·
∑

e∈E

τ(e). (5.3)

Here, Equation (5.3) holds since the number of paths that are routed over
a certain edge in an optimal solution is bounded by UB. Moreover, the
transformation in (5.2) is valid since b > 1 and UB ≥ 1.

Using the results from both sides we get the claimed performance guar-

96 Static Routing

antee by simple arithmetic transformations (similar to those in [2]):

∑

e∈E τ(e)(b
loadk(e)

UB − 1) ≤ bk(b − 1) ·∑e∈E τ(e)

⇔ ∑

e∈E τ(e)b
loadk(e)

UB ≤ (bk(b − 1) + 1) ·∑e∈E τ(e)

⇒ ∑

e∈E τ(e)b
loadk(e)

UB < bk+1 ·∑e∈E τ(e)

⇒ mine∈E τ(e)
∑

e∈E b
loadk(e)

UB ≤ bk+1 · |E| · maxe∈E τ(e)

⇔ ∑

e∈E b
loadk(e)

UB ≤ bk+1 · |E| · maxe∈E τ(e)
mine∈E τ(e)

⇒ maxe∈E b
loadk(e)

UB ≤ bk+1 · |E| · maxe∈E τ(e)
mine∈E τ(e)

⇔ maxe∈E loadk(e) ≤ logb(b
k+1 · |E| · maxe∈E τ(e)

mine∈E τ(e)
) · UB.

Aspnes et al. [2] showed that the approach of adapting the upper bound
accordingly (BAL-BOUND), instead of assuming that such an upper bound
is given (SUB-BAL-BOUND), increases the competitive ratio by at most a
factor of 4. We use their approach to prove Theorem 5.5.

Theorem 5.5. BAL-BOUND is 4·logb(b
k+1 ·|E|· maxe∈E τ(e)

mine∈E τ(e)
)-sfr-competitive.

Thus, the stretch factor restricted competitive ratio is in

O

(

max

(

k, log k
√

B |E|, log k
√

B

maxe∈E τ(e)

mine∈E τ(e)

))

.

Proof. For readability we firstly introduce some notations. We write BAL-
BOUNDUB if we consider Algorithm 7 with given upper bound UB and
abbreviate the guaranteed performance ratio of SUB-BAL-BOUND by c :=
logb(b

k+1 · |E| · maxe∈E τ(e)
mine∈E τ(e)

). Recall that SUB-BAL-BOUND can be viewed as
subroutine of BAL-BOUND.

Let σ(ℓ) denote the subsequence of requests in phase ℓ (upper bound 2ℓ)
of algorithm BAL-BOUND. Then, consider the phase h where the algorithm
terminates. If the algorithm terminates in the first phase (h = 0) it holds
that

BAL-BOUND(σ) = BAL-BOUND(σ(0)) ≤ c.

Therefore, it remains to show that the claimed competitive ratio holds
for any h ≥ 1. Consider the subsequence σ(h−1) and the first request rh

1 in
phase h. This is the request that terminates phase h−1. Thus, it holds that

BAL-BOUND2h−1(σ(h−1), rh
1) > c · 2h−1.

By Theorem 5.4 it follows that

OPT(σ) ≥ OPT(σ(h−1), rh
1) > 2h−1.

5.2 Online Load Balancing with Bounded Stretch Factor 97

Then, summing up over all phases leads to the claimed stretch factor re-
stricted competitive ratio:

BAL-BOUND(σ) =
h
∑

ℓ=1

BAL-BOUND2ℓ(σ(ℓ))

≤
h
∑

ℓ=1

c · 2ℓ = (2h+1 − 1) · c

< 4 · c · 2h−1 < 4 · c · OPT(σ).

Remark 5.6. It is also possible to argue that BAL-BOUND never enters a
new phase to show the claimed asymptotic sfr competitive ratio.

Now it remains to show that the stretch factor constraint is respected by
each path that is computed by BAL-BOUND.

Theorem 5.7. Each path selected by BAL-BOUND is shorter (with respect
to τ) than B times the shortest path length.

Proof. Let Pi be the path selected by the algorithm for the i-th request and
let SPi be a shortest si-ti-path. Then, it holds that

∑

e∈Pi
c(e) ≤ ∑

e∈SPi
c(e)

⇔ ∑

e∈Pi
τ(e) · b

loadi−1(e)

UB ≤ ∑

e∈SPi
τ(e) · b

loadi−1(e)

UB .

Since the static shortest path does not contain a cycle it holds that
loadi−1(e) < i for all i. This leads to the following estimate for each i:

∑

e∈Pi
τ(e) · b0 <

∑

e∈SPi
τ(e) · bi

⇔ lengthτ (Pi) < bi · dist(si, ti).

Using b = k
√

B, we get the claimed bound to the path length, i.e.,

lengthτ (Pi) < B · dist(si, ti) ∀i.

The adjustment of the algorithm for the idealized model is straightfor-
ward.

98 Static Routing

Idealized disjointness model. Besides using a set of conflicting edges
that only contains the considered edge itself and the corresponding anti-
parallel edge, it would be possible to introduce load on nodes (for instance
by representing them via dummy edges) in the presented routing approach.
The analysis of the presented algorithm BAL-BOUND (Algorithm 7) does
not change in this case.

5.2.3 Lower Bound

In order show that no (online) algorithm can achieve a better performance
guarantee with respect to the stretch factor restricted competitive ratio than
BAL-BOUND (Algorithm 7) we provide the following example.

1

B

B

B
s t

Figure 5.3: Graph described in Example 5.8.

Example 5.8. We consider an instance of the Load Balancing Problem with
Bounded Stretch Factor with stretch factor B and k requests from s to t in
the graph illustrated in Figure 5.3. The graph consists of two nodes, s and t,
and k parallel edges. On k−1 of these edges the transit time is set to B while
the remaining edge has transit time 1. For each edge the set of conflicting
edges only contains the edge itself.

In this example, only one edge (transit time 1) can be used since routing
over the other edges would violate the stretch factor constraint. Hence,
no algorithm for the Online Load Balancing with Bounded Stretch Factor
achieves a better load than |E| = k. Thus, since in an optimal solution
without this constraint, one would assign each request to an exclusive edge,
which leads to a maximum load of 1, the sfr competitive ratio is bounded
from below by

|E| = k = log k
√

B(B) = log k
√

B

(

maxe∈E τ(e)

mine∈E τ(e)

)

.

5.3 Reservation Schedules and Deadlock Prevention 99

This shows that the presented algorithm BAL-BOUND (Algorithm 7) is
(asymptotically) optimal with respect to that ratio, cf. Theorem 5.5.

Remark 5.9. Note that even an offline algorithm that respects the stretch
factor constraint would not be able to perform better in the instance consid-
ered in Example 5.8.

5.3 Reservation Schedules and Deadlock Prevention

5.3.1 Introduction

Although the routes computed by Algorithm 7 (BAL-BOUND) are good in
the sense that they balance the load on the edges of the given graph we need
a mechanism to definitely avoid conflicts. In Section 5.3.2 we introduce a
reservation schedule that prevents the vehicles from colliding by requesting
edges before occupying them. Such a schedule can be interpreted as an
instruction for the construction of a dynamic path at execution time of the
static paths. Note that we do not give the time when edges should be reserved
in this schedule. This is done by the reservation procedure, cf. Section 5.1.1.

Since this procedure may cause deadlocks, we additionally have to take
care for such situations. Due to the deteriorating effects of deadlocks on
logistic processes a great deal of attention has been paid to that field of
research in recent years. Besides the investigation of petri net approaches [30,
41] there are also graph-theoretic models [10, 21, 42].

The first observation concerning these approaches is that they use so-
called zone control; i.e., it is assumed that vehicles move between non-
intersecting zones of adequate size. This model is not suitable for our purpose
since such a partition of a traffic network into zones is too imprecise. Kim et
al. [26] introduce a finer zoning of the network, but, just as the zone control
approaches, their algorithm is not able to deal with large-scale vehicle fleets.

Our deadlock prevention algorithm provides both, a fine discretization
(vehicles move on the edges of the graph) and a fast routing in large networks
with many vehicles. The algorithm is based on the detection of specific cycles,
instead of standard cycles as in [10, 26, 42], in a graph that is in a one-to-
one correspondence with the considered reservation schedule: the so-called
deadlock detection graph. Moreover, in contrast to Guan and Moorthy [21]
we already avoid deadlocks at the time of the route computation and not
during the execution of the route.

The section is structured as follows: After the description of our model
we introduce the deadlock detection graph in Section 5.3.3 and present the
deadlock prevention algorithm in Section 5.3.4. Computational results and
conclusions are given afterwards.

100 Static Routing

5.3.2 The Model

Consider a directed graph G = (V,E) and a set P = {P1, . . . , Pk} of
static paths that have to be scheduled deadlock-free. Then, a reserva-
tion schedule S(P) = {RP1, . . . , RPk

} consists of a set of so-called requested
edges RP : E(P) → 2E for each path P ∈ P. These edge sets RP (e) denote
those edges that must be free, i.e., not occupied by another vehicle, before
edge e is left. If this is the case the requested edges are reserved and the cor-
responding vehicle can leave edge e. Note that for each path P = (e1, . . . , en)
the set of requested edges of the last edge, RP (en), is always empty.

Remark 5.10 (Resulting claim length). For the reservation procedure de-
scribed in Section 5.1.1 a reservation of a certain edge f ∈ RP (e) means that
at least the complete region from e to f , i.e., the corresponding polygons,
have to be reserved (claimed). If such a claim does not cover the minimum
distance (Remark 5.1) it is elongated accordingly.

To guarantee a smooth execution of a reservation schedule, especially to
avoid conflicts, it is necessary that each edge on a certain path has to be
requested/reserved before it is entered. Such a reservation schedule is-called
valid.

Definition 5.11 (Valid reservation schedule). A reservation schedule S(P)
is valid if for each path P = (e1, . . . , en) ∈ P it holds that

∀ i ∈ {2, . . . , n} ∃ j ∈ {1, . . . , i − 1} such that ei ∈ RP (ej).

We assume that the first edge of the considered path does not have to be
reserved since it is already occupied by the vehicle before it starts traveling.
Therefore, we can also require that the first edge is not used by another
vehicle.

Assumption 5.12 (Reservation of the first edge). The first edge of each
path P ∈ P contained in a reservation schedule S(P) is not used, and there-
fore not requested, by another path P ′ ∈ P. Note that this is in line with
Assumption 2.6.

A reserved edge is freed when the vehicle leaves that edge. Thus, we are
able to define another edge set, the occupied edges OP : E(P) → 2E. An
edge is called occupied if it has already been reserved and has not been freed.
Thus, for an edge ei on a static path P = (e1, . . . , en) the set of occupied

5.3 Reservation Schedules and Deadlock Prevention 101

edges is defined as

OP (ei) = ei ∪
(

⋃

k<i

{ej ∈ RP (ek)| j > i}
)

.

After that general introduction of the reservation schedule we are now go-
ing to describe how we apply the concept of conflicting edges, cf. Section 2.2.2
(polygon model), before we focus on the identification of deadlocks in such
a schedule.

Conflicting edges. To guarantee disjointness of the executed routes, we
can either reserve all edges in confl(RP (e)) :=

⋃

f∈RP (e) confl(f) after a suc-

cessful request of the edges in RP (e) or we can only reserve the edges in
RP (e) after requesting the edges in confl(RP (e)) (cf. Definition 2.11). We
decide in favor of the latter variant since this leads to a one-to-many path
computation—instead of a many-to-many path computation—in the key pro-
cedure of the deadlock prevention algorithm (Algorithm 11). To this end,
we distinguish between requested edges in RP (e) and those in confl(RP (e))
from now on.

Since we aim at providing a reservation schedule that avoids deadlocks,
we have to identify potential deadlock situation. Here, ’potential’ means
that the identified situation need not appear but cannot be excluded. The
reason for this vagueness is that both are causal for a deadlock situation,
the reservation schedule and the order vehicles want to pass the conflict
points. Note that the latter cannot be influenced by a reservation schedule.
Therefore, we have to take each possible order of the vehicles into account.

Definition 5.13 (Deadlock-free reservation schedule). Let S(P) be a reser-
vation schedule. Then, a set of paths {P1, . . . , Pm} ⊆ P is called deadlock-
ridden if, for each i ∈ {1, . . . ,m}, there exists an edge ePi

such that

confl(RPi
(ePi

)) ∩
⋃

j∈{1,...,m}:j 6=i

OPj
(ePj

) 6= ∅.

Accordingly, S(P) is called deadlock-free if the set of paths P does not
contain any deadlock-ridden subset.

Obviously, deadlocks can only occur if the affected vehicles are stopped
which is only the case if a requested edge is not free. Thus, the distance-
dependent safety-tube (Remark 5.1) does not have to be taken into account
in the deadlock detection process since such a tube is missing if the vehicle is

102 Static Routing

not moving. For the same reason there is no need for an explicit consideration
of node reservations in conjunction with potential deadlocks in the idealized
model since waiting is only permitted on edges.

Idealized disjointness model. Since waiting on nodes is not permitted
in this model, it is sufficient to avoid node conflicts by reserving a node
together with the next edge on the path.

Based on the described model we will now concentrate on the detection
and prevention of deadlocks. To this end, we introduce a so-called deadlock
detection graph that represents a reservation schedule in Section 5.3.3 and
provide a deadlock prevention algorithm that makes use of this correlation
in Section 5.3.4.

5.3.3 Deadlock Detection Graph

The question we will answer in this section is how we can detect a potential
deadlock, i.e., a deadlock-ridden set of paths, in a given reservation schedule.
We will show that this can be interpreted as a cycle with a specific property
in a special kind of graph.

e fgh confl(f)confl(e)confl(g)

edge requested edges

h e, g

g f

e ∅
f ∅

Figure 5.4: Illustration of a deadlock detection graph that corresponds to the reservation
schedule shown on the right of a single path P = (h, g, e, f). While the black edges directly
result from the set of requested edges, the red edges are inserted since edge e is in OP (g)
and edge f is requested from g (is in RP (g)), respectively.

Such a deadlock detection graph GD = (VD, ED) is constructed based on
a reservation schedule S(P). The node set VD consists of all edges of the
underlying layout graph G = (V,E), i.e., VD = E. The edge set ED consists
of edges ((e, f), c), where c ∈ C assigns a particular color to that edge. The
color set C contains a different color for each path of the set P . We denote
the color of path P by cP .

5.3 Reservation Schedules and Deadlock Prevention 103

Definition 5.14 (Deadlock detection graph). Consider a graph G = (V,E)
and a reservation schedule S(P). Then, the corresponding deadlock detec-
tion graph GD = (VD, ED) is constructed as follows:
i) VD = E,
ii) ED = {((e, f), cP)| ∃g ∈ E such that f ∈ confl(RP (g)) and e ∈ OP (g)}.

Figure 5.4 illustrates the construction of a deadlock detection graph from
a reservation schedule S(P) (from a collection of sets of requested edges).
Obviously, since by definition for each edge e ∈ P on a certain path P it
holds that e ∈ OP (e), each requested edge f ∈ confl(RP (e)) in a reservation
schedule leads to an edge ((e, f), cP) in the reservation graph. However, there
are additional edges added to the graph.

Since we are able to construct a deadlock detection graph from an arbi-
trary reservation schedule we are going to use this representation to detect
potential deadlocks. To this end, we introduce so-called colorful paths and
cycles according to [1] where Alon, Yuster, and Zwick considered the corres-
ponding node version in a completely different context. They focus on the
determination of simple paths and cycles of a specified length.

Definition 5.15 (Colorful path, colorful cycle). Consider a graph G with
colored edges. Then, a colorful path is a directed static path P in G with
the property that all edges on P are colored differently. A colorful cycle is a
directed cycle with the same property.

We will now use the fact that a colorful cycle in a deadlock detection
graph characterizes a deadlock-ridden set of paths in the corresponding reser-
vation schedule to show that a reservation schedule is deadlock-free if and
only if the corresponding deadlock detection graph contains no colorful cycle.

Theorem 5.16. A reservation schedule S(P) in a directed graph G = (V,E)
is deadlock-free if and only if the corresponding deadlock detection graph
GD = (VD, ED) contains no colorful cycle.

Proof. By Definition 5.14 a deadlock detection graph contains a colored
edge ((e, f), cP) if and only if there is an edge g ∈ E with

f ∈ confl(RP (g)) and e ∈ OP (g). (5.4)

To prove the theorem we firstly assume that there is a colorful cycle

((e1, e2), cP1), . . . , ((em, em+1 = e1), cPm
)

in the deadlock detection graph. Then, from Eq. (5.4) it follows that there

104 Static Routing

is an edge ePi
∈ E for each path Pi ∈ P (i = 1, . . . ,m) such that

ei ∈ confl(RPi
(ePi

)) and ei+1 ∈ OPi
(ePi

).

Therefore, the set of paths {P1, . . . , Pm} ⊆ P is deadlock-ridden (cf. Defini-
tion 5.13) since

ei+1 ∈ confl(RPi+1
(ePi+1

)) ∩ OPi
(ePi

) ∀i = 1, . . . ,m,

which proves the first part of the statement (sufficiency).
To see necessity, assume that there is a deadlock-ridden set of paths

P1, . . . , Pm ⊂ P . Hence, there is an edge ePi
on each of these paths such that

confl(RPi
(ePi

)) ∩
⋃

j∈{1,...,m}:j 6=i

OPj
(ePj

) 6= ∅ ∀i ∈ {1, . . . ,m}.

Thus, for all i ∈ {1, . . . ,m} there is an edge ei with

ei ∈ confl(RPi
(ePi

)) ∩ OPj(i)
(ePj(i)

)

for some j(i) ∈ {1, . . . ,m}. Using Equation (5.4) we get that there must
be an edge ((ei, ej(i)), cPi

) for all i ∈ {1, . . . ,m} and a corresponding j(i) ∈
{1, . . . ,m} in the deadlock detection graph since

ej(i) ∈ confl(RPj(i)
(ePj(i)

)) and ei ∈ OPj(i)
(ePj(i)

).

Thus, there must be a colorful cycle in that graph. Note that such a cycle
does not have to contain an edge for each path in {P1, . . . , Pm} since we
do not demand in Definition 5.13 that a deadlock-ridden set of paths is
inclusion-wise minimal.

5.3.4 Deadlock Prevention Algorithm

Theorem 5.16 shows that the recognition of colorful cycles is the key ingre-
dient of any deadlock prevention algorithm in the considered model. More
precisely, one has to check whether a new reservation closes a colorful cy-
cle in the deadlock detection graph. To this end, we consider the Colorful
Path Problem. We will see later how solving this problem helps us to avoid
colorful cycles. Note that, as mentioned before, Alon, Yuster, and Zwick [1]
investigated a node variant of that problem.

Colorful Path Problem

Instance: Directed graph G = (V,E) with colored edges, color set C,
target node t ∈ V , set of source nodes S ⊂ V .

Task: Is there a colorful path from some s ∈ S to t that does not
use a specific color c ∈ C?

5.3 Reservation Schedules and Deadlock Prevention 105

The Colorful Path Problem is NP-complete since the edge version of the
Path with Forbidden Pairs Problem, which is known to be NP-complete [16],
can be reduced to this problem.

Path with Forbidden Pairs [16]

Instance: Directed graph G = (V,E), source node and target
node s, t ∈ V , collection D = {(a1, b1), . . . , (an, bn)} of edge
pairs.

Task: Is there a path from s to t in G that contains at most one
edge from each pair in D?

Theorem 5.17. The Colorful Path Problem is NP-complete.

Proof. Consider an instance I of the Path with Forbidden Pairs Problem
with collection D. We construct an instance I ′ of the Colorful Path Problem
by assigning each of the two edges contained in an edge pair of the collec-
tion D the same color and contracting all edges that are not contained in D.
Additionally, we choose a dummy color that is not contained in the graph as
the forbidden color c ∈ C and set S = {s}.

Then, obviously, a colorful s-t-path in I ′ corresponds to a path with
forbidden pairs in I and vice versa.

Algorithm 9 solves the Colorful Path Problem. It is related to the algo-
rithm introduced by Alon, Yuster and Zwick [1] for the corresponding node
version.

The algorithm iteratively computes all colorful paths from length 1 to
length |C| − 1. More precisely, it maintains the information which nodes can
be reached via a colorful path. To this end, each label consists of a node and
a collection of colors C that contains the colors used on the corresponding
path. Note that we do not propagate labels with redundant information, i.e.,
we do not add the same label again. This can be guaranteed by a lookup in a
table that provides, for each possible combination of colors, the information
of whether this combination has already been represented by a label on a
certain node.

Since we, in contrast to Alon, Yuster and Zwick, consider multiple sources
and only a single target, the graph is traversed backwards; i.e., the algorithm
starts from the given target node and considers the ingoing edges for each
label taken from the set Qold, which, in phase i of the algorithm, contains
the collection of possible colorful paths of length i − 1.

The algorithm obviously determines all possible colorful paths that do not
contain the forbidden color and therefore solves the Colorful Path Problem.

106 Static Routing

Algorithm 9: COLORFUL-PATH

Data: Directed graph G = (V,E) with colored edges, node t ∈ V , set
of nodes S ⊂ V , set of colors C, forbidden color ĉ.

Result: Is there a colorful s-t-path for some s ∈ S that does not use
the forbidden color ĉ?

begin
Qold = {(t, ∅)};
Qnew = ∅;
for i = 1; i < |C|; i++ do

foreach (v, C) ∈ Qold do
if v ∈ S then

return true ;

foreach in-going edge ((u, v), c) do
if c /∈ C ∪ {ĉ} and there is no label (u,C∗) in Qnew

with C∗ = C ∪ {c} then
add (u,C ∪ {c}) to Qnew ;

Qold = Qnew;
Qnew = ∅;

return false ;
end

For the analysis of the run time we refer to [1] since it is similar to the
node version. In particular, the additional consideration of a forbidden color
and a set of source nodes (instead of a single node) does not change the
analysis. The key observation in the proof of Alon, Yuster and Zwick is that
the number of labels in each node after i iterations is bounded by

(|C|
i

)

.

Theorem 5.18. Algorithm 9 solves the Colorful Path Problem in
O(|C| · 2|C| · |E|).

Remark 5.19 (Additional heuristic). Due to the exponential run time of
the algorithm we provide a heuristic modification for Algorithm 9. In fact,
we introduce an upper bound to the size of the set Qnew. The algorithm is
modified such that it returns true whenever this bound is reached.

Now we are able to formulate our deadlock prevention algorithm (Al-
gorithm 10). Given a sequence of (static) paths the algorithm computes a
deadlock-free reservation schedule by iteratively inserting these paths, which
is done by Algorithm 11 (INSERT-ROUTE).

The basic concept of INSERT-ROUTE is to maintain a deadlock detec-

5.3 Reservation Schedules and Deadlock Prevention 107

Algorithm 10: DEADLOCK-PREVENTION

Data: Graph G = (V,E), sequence of static paths P = P1, . . . , Pk.
Result: Deadlock-free reservation schedule S(P).
begin

foreach path Pi do
INSERT-ROUTE (Algorithm 11);

end

Algorithm 11: INSERT-ROUTE

Data: Graph G = (V,E), deadlock-free reservation schedule S(P)
and corresponding deadlock detection graph GD = (VD, ED),
static path P = (e1, . . . , en).

Result: Deadlock-free reservation schedule S(P ∪ P) and the
corresponding deadlock detection graph GD = (VD, ED).

begin
j = n;
i = n − 1;
while i ≥ 1 do

CP if there is no colorful eℓ-ei-path without color i for any
eℓ ∈

⋃j
k=i+1 confl(ek) in GD then

RS RP (ei) =
⋃j

k=i+1 ek ;

DG ∀eℓ ∈
⋃j

k=i+1 confl(ek) add ((ei, eℓ), cP) to ED;
j = i;

i = i − 1;

end

tion graph that contains no colorful cycle (see line DG of the algorithm).
This is guaranteed by executing Algorithm 9 in line CP. Simultaneously, a
corresponding reservation schedule is constructed (line RS). Note that we
add reservations to the reservation schedule (edges to the deadlock detection
graph) block-wise.

Remark 5.20 (Block-wise insertion of requested edges). Algorithm 11 in-
serts requested edges block-wise to the reservation schedule, cf. Figure 5.5
and Figure 5.6. More precisely, we only add a request from a certain edge e
if all edges that preceed e on the considered path can also be reserved or are
already reserved, cf. line CP of the algorithm.

By Theorem 5.16 we know that such a reservation schedule is deadlock-

108 Static Routing

(a) new path (b) first loop: one edge inserted

(c) second loop: cycle detected (d) third loop: two edges inserted

Figure 5.5: Insertion of a new route (red) by INSERT-ROUTE. Figure (a) illustrates the
initial situation while the Figures (b), (c) and (d) show the three loops of the algorithm.
Note that we do not take conflicting edges into account in this example.

free if it corresponds to a deadlock detection graph without colorful cycles.
Therefore, we only have to argue that the deadlock detection graph is con-
structed correctly (corresponds to the reservation schedule) and that the
reservation schedule is valid to obtain Theorem 5.21.

Theorem 5.21. The reservation schedule constructed by Algorithm 10 is
valid and deadlock-free.

Proof. Firstly, we observe that the constructed reservation schedule is valid.
Due to Assumption 5.12, the first edge of the considered path does not lie
on a colorful cycle. Therefore, each edge can be requested at least from that
edge. Moreover, by construction of the algorithm (the invariant i < j holds
in each iteration), each edge is requested from a preceding edge.

To obtain that the constructed reservation schedule is deadlock-free it is
sufficient to prove that the deadlock detection graph is constructed correctly,
i.e., to show that it corresponds to the computed reservation schedule, since

5.4 Computational Results 109

we can apply Theorem 5.16 in this case. To see this, we observe that edges
are requested in blocks (see Remark 5.20), that is, whenever we insert edges
of a path P = (e1, . . . , en) to a set RP (ei) it is guaranteed that no edge ek

with k > i is already (or will be) requested from an edge eℓ with ℓ < i during
the algorithm. Therefore, by termination of the algorithm, for each edge ei

of the given path it holds that

RP (ei) = ∅ ∨ OP (ei) = {ei}. (5.5)

Thus, whenever there is an edge g with

f ∈ confl(RP (g)) and e ∈ OP ′(g)

it holds that f ∈ confl(RP (e)). Hence, by Definition 5.14, it is sufficient
to insert those reservations to the deadlock detection graph that represent
a requests of edges in the corresponding reservation schedule (line RS of
Algorithm 11), cf. Figure 5.6. This is done in line DG of the algorithm.

We conclude that the deadlock detection graph constructed during the
algorithm corresponds to the determined reservation schedule. Since the
deadlock detection graph has no colorful cycles by construction (line CP of
the algorithm), this completes the proof.

For the analysis of the run time we observe that Algorithm 9 is called at
most |P | times in Algorithm 11, where |P | denotes the number of edges on
a certain path P .

Corollary 5.22. Algorithm 11 computes a valid and deadlock-free reserva-
tion schedule that contains the new path P in O(|C| · 2|C| · |E| · |P |), where
|P | denotes the number of edges on P .

5.4 Computational Results

For the evaluation of the presented routing approach, namely algorithm
STAT-ROUTE (Algorithm 6), we consider scenario SCEN-A presented in
Section 3.3.1. Recall that 72 vehicles serve request generated by a simula-
tion environment (see Section 2.3) between 22 delivery points and 12 pick-up
points in a grid-like graph in this scenario. Additionally, we again conduct
six-hour simulation runs (about 6000 requests) on an AMD Athlon 64 Dual
Core 2.2 GHz with 4 GB RAM.

Based on scenario SCEN-A we create additional scenarios by excluding
parts of the underlying graph, cf. Figure 5.7. This is done to measure the
performance under different traffic densities. Besides scenario BL-A which

110 Static Routing

e fgh confl(f)confl(e)confl(g)

edge requested edges

h e, g

g ∅
e f

f ∅

Figure 5.6: Reservation schedule (deadlock detection graph) constructed by Algo-
rithm 10 for path P = (h, g, e, f). In contrast to the schedule illustrated in Fig. 5.4
only edges that directly result from the set of requested edges are inserted in the deadlock
detection graph. This is due to the block-wise insertion of the edges (see Remark 5.20
and Theorem 5.21).

(a) SCEN-A (b) BL-A

(c) 2/3L (d) 1/3L

Figure 5.7: Illustration of the scenarios investigated for the evaluation of the static
routing approach. Besides the plain scenario SCEN-A we consider scenario BL-A with
two blocked areas and two scenarios with reduced number of horizontal lanes in the grid-
like graph, namely scenario 2/3L and scenario 1/3L.

has already been introduced in Section 3.3.4 we consider two scenarios that
result from SCEN-A by reducing the number of horizontal lanes. Note that
scaling down the graph is the only possibility for increasing the traffic density
significantly in our simulation environment since the number of vehicles in
the scenarios is bounded (details, again, are confidential).

BL-A: We consider two blocked areas that cover essential parts of the
grid such that there are only one third of the lanes left in these parts (see
Figure 5.7(b)).

2/3L: SCEN-A with two thirds of the horizontal lanes (see Figure 5.7(c)).

5.4 Computational Results 111

1/3L: SCEN-A with one third of the horizontal lanes (see Figure 5.7(d)).

As in Section 3.3 we evaluate the average duration of the determined
paths—recall that we interpret the reservation procedure, cf. Section 5.1.1,
as the construction of a dynamic path at the time of the execution of a given
static path—and the computation times. Additionally, in order to analyze
the load balancing approach presented in Section 5.2, we also investigate the
(static) length of the computed paths and the load on the edges of the graph.
Moreover, we evaluate the number and the length of the cycles detected by
the deadlock prevention algorithm (Algorithm 10).

Due to the results of the first evaluations described in Remark 5.23 we
restrict the route computation. In fact, we apply directions to the horizontal
lanes alternatingly, see Figure 5.8, and compute the static path in that mod-
ified graph. Note that we introduced a similar restriction in Section 4.2.3 in
order to analyze the dynamic routing approach under these conditions.

Figure 5.8: SCEN-A with directed horizontal lanes.

Remark 5.23 (Evaluations in the undirected grid-like graph). It turned
out that the static routing algorithm is not competitive in the considered
(undirected) grid-like graph. In fact, the systems almost stalls and therefore
we omit detailed evaluations.

The reason for the bad performance is the frequent appearance of so-called
head-to-head conflicts if two vehicles want to pass a portion of the graph in
opposite directions. Therefore at least one of these vehicles has to reserve the
whole area at once. This leads to enormous claims. Moreover, the deadlock
detection becomes computationally expensive.

The evaluation is divided into two parts: Firstly, we analyze the perfor-
mance under variation of the stretch factor B, cf. Section 5.2, in SCEN-A.
Afterwards we consider the impact of the traffic intensity on the performance
using the three additional scenarios. In particular, we compare the results
with those of the dynamic routing algorithm DYN-ROUTE (Algorithm 1).

112 Static Routing

5.4.1 Variation of the Stretch Factor

In Section 5.2 we introduced Algorithm 7 (BAL-BOUND) for the route com-
putation in our static routing algorithm STAT-ROUTE (Algorithm 6). The
cost function of the algorithm depends on the given length constraint to the
determined paths, the stretch factor B. Table 5.1 illustrates the evaluation
of the performance under variation of that value.

average average max. cycle length # cycles comp. time

B duration path length load avg. max. per avg. max.

(in sec.) (in m) request (in sec.)

1.0 209.46 298.43 29 3.79 12 1.27 0.11 1.24

1.1 170.77 299.81 26 2.98 9 0.35 0.09 0.82

1.2 169.01 300.46 25 2.85 9 0.33 0.09 0.70

1.3 172.26 300.99 26 2.84 9 0.40 0.09 0.59

1.4 169.89 304.65 26 2.93 9 0.35 0.10 0.72

Table 5.1: Evaluation of the static routing approach with respect to different stretch
factors B.

It turns out that the results of the experiments with stretch factor greater
than 1.0 are very similar. They show only minor differences. In contrast,
simply computing a static shortest path for each request (B = 1.0, no load
balancing) leads to significantly different results. While the static path length
is, of course, shorter than in the other cases, the maximum load on the edges
is higher. This leads to a more complicated deadlock prevention, namely
there are much more detected cycles which generates larger claims. Since
each detected cycle makes an earlier reservation necessary (cf. Remark 5.10)
it is not surprising that the average duration is larger in this case. Moreover,
the detected cycles are longer than those in the more balanced cases which
results in larger computation times. Thus, we conclude that load balancing
in the route computation of our dynamic routing algorithm STAT-ROUTE
makes sense, but, at least in the considered grid-like graph, the stretch factor
does not play an important role.

Since the least average duration is achieved with stretch factor B = 1.2,
we choose this setting for the evaluations in Section 5.4.2.

5.4 Computational Results 113

5.4.2 Comparison with the Dynamic Routing Algorithm

Now, we focus on the question of which routing approach—the static one or
the dynamic one (Algorithm 1) introduced in Chapter 3—performs better
with respect to the investigated objective: the average duration.

As illustrated in Table 5.2 and Figure 5.9, this question cannot be an-
swered generally. It highly depends on the traffic density. While the static
approach shows a slightly lower average duration than the dynamic one in the
scenarios with a comparatively low traffic volume, namely the plain scenario
SCEN-A and scenario 2/3L, it has problems in scenarios with high traffic
volume. Especially in the most narrow scenario 1/3L the static approach
performs very badly while the average duration measured for the dynamic
approach does not increase that much compared with the other scenarios.
Moreover, regarding the static approach, the computation times increase
with the traffic density which is not the case if the dynamic approach is
used.

static approach dynamic approach

average computation time average computation time

duration avg. max. duration avg. max.

(in sec.) (in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

SCEN-A 169.01 0.09 0.70 182.26 0.08 0.83

2/3L 186.91 0.12 3.86 190.70 0.08 0.98

BL-A 255.79 0.17 1.84 212.31 0.08 1.14

1/3L 693.14 0.31 4.48 259.72 0.08 1.24

Table 5.2: Comparison of the static routing approach with the dynamic routing approach
with respect to the average duration and the computation times.

The reason for the bad performance of the static routing approach in
scenarios with high traffic volume becomes clear if we regard the evaluation
of the deadlock detection shown in Table 5.3.

First of all, note that we have to use the heuristic introduced in Re-
mark 5.19 in all instances except the plain scenario SCEN-A to provide
suitable computation times. The upper bound is set to 500. We also tried
to evaluate the instances without using the heuristic (or with larger upper
bounds), but the performance was even worse since the system almost stalls
from time to time due to the enormous computation times (more than 60 sec-
onds). The number of cases in which the upper bound is reached increases

114 Static Routing

100 200 300 400 500 600 700

SCEN-A

BL-A

2/3L

1/3L

average duration dynamic routing approach (in sec.)

average duration static routing approach (in sec.)

Figure 5.9: Illustration of the performance of the static routing approach in comparison
to the dynamic routing approach with respect to the average duration.

with the traffic density and becomes immense in scenario 1/3L. Moreover,
we observe the same for the number of detected cycles. The length of the
claims (see Remark 5.10) increases with the number of found cycles and the
number of canceled searches (heuristic), respectively. It is not surprising that
this leads to a loss of performance, cf. Table 5.2 and Figure 5.9.

cycle length # cycles # heuristic used

average maximum per request per request

SCEN-A 2.85 9 0.33 0.00

2/3L 3.15 10 0.78 0.23

BL-A 4.72 13 1.24 0.33

1/3L 4.25 14 1.35 8.59

Table 5.3: Evaluation of the deadlock detection algorithm with respect to different traffic
densities. We consider the length (average and maximum) and the number of detected
cycles as well as the number of cases in which the upper bound in the heuristic described
in Remark 5.19 is reached (# heuristic used).

But why does the static approach perform better in scenarios with low
traffic density? The cause for this (perhaps surprising) result is the greedy
reservation procedure used in this case (see Section 5.1.1). The next portion
of the route is reserved as soon as possible disregarding that this may interfere
other vehicles, see Figure 5.10. In contrast, the dynamic routing algorithm

5.4 Computational Results 115

does not make use of such gaps since the reservations are made before the
vehicles start traveling and it is forbidden to use time windows that cannot
be left before the next vehicle is scheduled on that edge.

(a) (b)

(c)

Figure 5.10: Illustration of the greedy reservation procedure used by the static routing
approach.

The only way to change the behavior of the dynamic approach in this
respect is to permit rerouting of other vehicles also in such cases, cf. Sec-
tion 3.2. We implemented an approach such as this using ideas similar to
those described in Section 3.2.2 where we take priorities into consideration.
More precisely, instead of verifying the priority of a vehicle/request that
should be ignored we add penalty costs to the label value whenever another
vehicle is ignored. We varied the amount of the penalty, but the evaluation
of that strategy showed that the benefit of the increased flexibility and the
loss that is caused by the required rerouting cancel each other out. In fact,
this approach all in all leads to a slight loss of performance with respect to
the average duration.

To conclude the evaluation, we remark that the static routing approach
is good as long as there are only a few potential deadlocks that have to be
avoided since the greedy reservation procedure is of value in this case; but if
the claims become larger caused by a more complicated deadlock prevention,
it reaches its limits. Therefore, the performance of the static approach is only
competitive in scenarios with comparatively small traffic density. However,
in such instances it has a slight advantage indeed.

116 Static Routing

5.5 Conclusions

In this chapter we introduced a so-called static routing algorithm STAT-
ROUTE (Algorithm 6). In contrast to the dynamic routing algorithm DYN-
ROUTE presented in Chapter 3 (Algorithm 1) time dependences are not
taken into account during the route computation. In fact, a standard (static)
shortest path with respect to a certain cost function is determined. There-
fore, an additional collision avoidance is needed. This is done by reserving
areas (claims) in front of the vehicle during the execution of the computed
route, cf. Section 5.1.1. Note that the dynamic routing algorithm is already
avoiding collisions at the time of the route computation.

Each of these two parts of the vehicle guidance, the route computation
and the reservation procedure, is linked to a particular problem of the static
routing approach. On the one hand, the computation of a static shortest
path may cause congestion or detours that could have been avoided if the
time-dependent behavior of the vehicles has been taken into account. On
the other hand, the reservation procedure involves the risk of deadlocks.

We cope with both problems via a two-stage routing approach: In the
first step we consider a load balancing approach (see Section 5.2). In fact,
we compute a static shortest with respect to a particular cost function that
depends on the transit time and the load on the edges (the number of vehicles
already routed over an edge) for each request. This strategy turns out to
by optimal with respect to a measure of quality that takes the length of the
routes and the distribution of load on the edges into account; the stretch
factor restricted competitive ratio. In a second step we provide a deadlock-
free reservation schedule based on the computed route (see Section 5.3).
The key in this step is the avoidance of specific cycles in a so-called deadlock
detection graph that corresponds to that schedule.

The evaluation of this approach based on the introduced simulation of
the HHLA Container Terminal Altenwerder shows that the presented algo-
rithm is basically suitable for real-time use. Actually, as far as we know,
this is the first static routing approach that prevents deadlocks before the
computed route is executed and is able to cope with large-scale vehicle fleets.
Our approach, however, reaches its limits if we increase the traffic density
by reducing the number of available lanes/edges of the considered grid-like
graph. In contrast, in scenarios with comparatively low traffic volume, our
static routing algorithm is even superior to the dynamic routing algorithm,
cf. Section 5.4.2.

Thus, the decision, which routing approach should be preferred highly
depends on the expected traffic density. Since this might be difficult to
anticipate, one can also think of a hybrid approach, that is, one switches
between both approaches depending on the current traffic situation. A pre-

5.5 Conclusions 117

condition for such a switch, however, is a complete stop of all vehicles on
position where they do not block each other. One possibility for guaran-
teeing this is to finish all pending requests before switching. Besides the
performance loss caused by the switching procedure there remains the prob-
lem of evaluating the situation concerning the traffic density at any time.
This is difficult since, especially if perturbations occur, the traffic density
might change considerably at a moment’s notice.

In addition to the traffic density the structure of the underlying graph
seems to play an important role. In particular, the appearance of head-to-
head conflicts in undirected graphs leads to problems of the static routing
algorithm, cf. Remark 5.23, while the dynamic routing algorithm benefits
from the flexibility in a bidirectional layout (Remark 4.18).

Beyond these observations concerning the conducted experiments, there
are further advantages and disadvantages of the static routing approach that
are caused by the absence of time dependence during the route computation.
On the one hand, one does not have to take care for deviations in time during
the execution of the routes (late or early vehicles), but, on the other hand,
there is a lack of information and flexibility for a higher-level management
system that assigns the requests to the vehicles (cf. Section 5.1.2).

To conclude the comparison of the dynamic and the static routing ap-
proach, we suggest to use the latter in applications where a low traffic density
is guaranteed in general or at least for a long time period. In contrast, the
dynamic approach is better suited for scenarios with comparatively high
traffic density. Moreover, a higher-level management systems benefits from
the exactness in time provided by this approach independent of the traffic
situation.

Bibliography

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM
42, no. 4 (1995), pp. 844–856. 103, 104, 105, 106

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, On-line

routing of virtual circuits with applications to load balancing and machine

scheduling, Journal of the ACM 44, no. 3 (1997), pp. 486–504. 90, 91, 96

[3] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, On-line ad-

mission control and circuit routing for high performance computing and com-

munication, in Proceedings of the 35th Annual IEEE Symposium on Foun-
dations of Computer Science, 1995, pp. 412–423. 1

[4] Y. Azar, J. Noar, and R. Rom, The competitivness of on-line assignment,
in Proceedings of the 3rd ACM-SIAM Symposium on Theory of Computing,
1992, pp. 203–210. 91

[5] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser,
Handbooks in Operations Research and Management Science: Network Rout-

ing, Elsevier, 1995. 1

[6] Y. Bartal, A. Fiat, and S. Leonardi, Lower bounds for on-line graph

problems with application to on-line circuit and optical routing, in Proceedings
of the 28th ACM Symposium on Theory of Computing, 1995. 1

[7] J. E. Beasley and N. Christofides, An algorithm for the resource con-

strained shortest path problem, Networks 19 (1989), pp. 379–394. 20

[8] A. Borodin and R. El-Yaniv, Online Computation and Competitive Anal-

ysis, Cambridge University Press, 1998. 1, 90

[9] R. E. Burkard, K. Feldbacher, B. Klinz, and G. J. Woeginger,
Minimum-cost strong network orientation problems: Classification, complex-

ity, and algorithms, Networks 33 (1999), pp. 57–70. 5

[10] H. B. Cho, T. K. Kumaran, and R. A. Wysk, Graph theoretic deadlock

detection and resolution for flexible manufacturing systems, IEEE Transac-
tions on Robotics and Automation 11, no. 3 (1995), pp. 413–421. 4, 99

[11] M. Desrochers, J. Desrosiers, M. Sauve, and F. Soumis, Methods

for routing with time windows, European Journal of Operational Research 23

(1986), pp. 236–245. 3, 18, 20

119

120 Bibliography

[12] M. Desrochers and F. Soumis, A generalized permanent labelling algo-

rithm for the shortest path problem with time windows, INFOR 26 (1988),
pp. 191–212. 3, 18, 20

[13] M. Desrochers and F. Soumis, A reoptimization algorithm for the shortest

path problem with time windows, European Journal of Operational Research
35 (1988), pp. 242–254. 3, 18, 20

[14] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic flows

from static flows, Operations Research 6 (1958), pp. 419–433. 3, 7, 17

[15] L. R. Ford and D. R. Fulkerson, Flows in networks (1962). 3, 7, 17

[16] H. N. Gabow, S. N. Maheshwari, and L. Osterweil, On two prob-

lems in the generation of program test paths, IEEE Transactions on Software
Engineering SE-2 (1976), pp. 227–231. 105

[17] J. Gao and L. Zhang, Tradeoffs between stretch factor and load balancing

ratio in routing on growth restricted graphs, in Proceedings of the 23th annual
ACM Symposium on Principles of Distributed Computing, 2004, pp. 189–196.
91

[18] E. Gawrilow, M. Klimm, R. H. Möhring, and B. Stenzel, Conflict-

free vehicle routing: Load balancing and deadlock prevention, Matheon
Preprint 497, TU Berlin, 2008. 87

[19] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel, Conflict-

free real-time AGV routing, in Proceedings of the International Conference
on Operations Research 2004, H. Fleuren, D. den Hertog, and P. Kort, eds.,
Springer, 2005, pp. 18–24. 17, 22

[20] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel, Dynamic

routing of automated guided vehicles in real-time, in Mathematics – Key
Technology for the Future, W. Jäger and H.-J. Krebs, eds., Springer, 2008,
pp. 165–178. 17, 22

[21] W. H. Guan and K. M. R. L. Moorthy, Deadlock prediction and avoid-

ance in an AGV system. SMA Thesis, University of Singapore, 2000. 4, 87,
99

[22] P. Hart, N. Nilsson, and B. Raphael, A formal basis for the heuristic

determination of minimum cost paths, IEEE Transactions on Systems, Science
and Cybernetics 4 (1968), pp. 100–107. 23

[23] ILOG SA, France, ILOG CPLEX 10.1 Reference Manual,
http://www.ilog.com/products/cplex, 10.1 ed., 2007. 72

[24] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, Competitive

snoopy paging, Algorithmica 3 (1988), pp. 70–119. 6

http://www.ilog.com/products/cplex

Bibliography 121

[25] C. W. Kim and J. M. A. Tanchoco, Conflict-free shortest-time bidirec-

tional AGV routing, International Journal of Production Research 29, no. 12
(1991), pp. 2377–2391. 18

[26] K. H. Kim, S. M. Jeon, and K. R. Ryu, Deadlock prevention for automated

guided vehicles in automated container terminals, OR Spectrum 28, no. 4
(2006), pp. 659–679. 4, 99

[27] E. Köhler, R. H. Möhring, and M. Skutella, Traffic networks and

flows over time, in Special Volume Dedicated to the DFG Research Center
Mathematics for Key Technologies Berlin, J. Kramer, ed., Berliner Mathe-
matische Gesellschaft, 2002, pp. 49–70. 3, 7

[28] N. Krishnamurthy, R. Batta, and M. Karwan, Developing conflict-free

routes for automated guided vehicles, Operations Research 41, no. 6 (1993),
pp. 1077–1090. 1, 9

[29] M. Kühne, Algorithmen für Dynamische Disjunkte Wege, diploma thesis,
TU Berlin, 2008. In German. 55

[30] C. C. Lee and J. T. Lin, Deadlock prediction and avoidance based on petri

nets for zone control, International Journal of Production Research 33, no. 12
(1995), pp. 3239–3265. 99

[31] D. Lubell, A short proof of sperner’s theorem, Journal of Combinatorial
Theory 1 (1966), p. 299. 38

[32] N. G. F. Sancho, Shortest path problems with time windows on nodes and

arcs, Journal of mathematical analysis and applications 186 (1994), pp. 643–
648. 3, 18, 20

[33] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,
Springer, 2003. 1, 8

[34] R. Sedgewick and J. S. Vitter, Shortest paths in euclidian graphs, Al-
gorithmica 1 (1986), pp. 31–48. 23

[35] S. Seiden, J. Sgall, and G. J. Woeginger, Semi-online scheduling with

decreasing job sizes, Tech. Report KAM-DIMATIA Series 98-410, 1998. 92

[36] D. Sleator and R. Tarjan, Amortized effeciency of list update and paging

rules, Communications of the ACM 28 (1985), pp. 202–208. 6

[37] I. Spenke, Complexity and approximation of static k-splittable flows and

dynamic grid flows. PhD Thesis, TU Berlin, 2006. 1, 3, 9, 10, 13, 55, 68, 69,
70, 74, 81, 84, 85

[38] E. Sperner, A theorem about subsets of a finite set, Mathematische
Zeitschrift 27 (1928), pp. 544–548. In German. 38

122 Bibliography

[39] P. Toth and D. Vigo, The Vehicle Routing Problem, SIAM Monographs
on Discrete Mathematics and Applications, 2002. 1

[40] I. F. A. Vis, Survey of research in the design and control of automated guided

vehicle systems, European Journal of Operational Research 170, no. 3 (2006),
pp. 677–709. 2

[41] N. Q. Wu and M. C. Zhou, Resource-oriented petri nets for deadlock avoid-

ance in automated manufacturing, Proceedings of the 4th IEEE International
Conference on Robotics and Automation (2000), pp. 3377–3382. 99

[42] M. S. Yeh and W. C. Yeh, Deadlock prediction and avoidance for zone-

control AGVs, International Journal of Production Research 36, no. 10
(1998), pp. 2879–2889. 4, 99

	Contents
	Introduction
	Preliminaries
	Basic Definitions
	Grid Graphs
	Online Problems and Competitive Analysis

	Online Disjoint Vehicle Routing
	Problem Description
	Disjointness

	Application

	Dynamic Routing
	Routing Algorithm
	Iterative Routing Scheme
	Route Computation
	Readjustment of the Time-windows
	Practical Requirements
	Waiting Heuristic

	Rerouting Strategies
	Perturbations
	Priorities
	Rerouting Approach

	Computational Results
	Test Instances and Objective
	Variation of the Introduced Parameters
	Trivial Lower Bound
	Evaluation of the Rerouting Strategies

	Conclusions

	Performance Analysis of the Dynamic Routing Approach
	Competitive Analysis
	Dynamic Routing Algorithm
	Dynamic Routing Algorithm without Waiting

	Experimental Performance Analysis
	Optimal Solutions in a Slightly Modified Model
	Test Instances
	Computational Results

	Conclusions

	Static Routing
	Introduction
	Static Routing
	Drawbacks of Static Routing
	Our Approach

	Online Load Balancing with Bounded Stretch Factor
	Introduction
	Algorithm
	Lower Bound

	Reservation Schedules and Deadlock Prevention
	Introduction
	The Model
	Deadlock Detection Graph
	Deadlock Prevention Algorithm

	Computational Results
	Variation of the Stretch Factor
	Comparison with the Dynamic Routing Algorithm

	Conclusions

	Bibliography

