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Abstract 
 
As commonly known, oscillators play a very important role in all communication and test 
equipment. The major differences between oscillator types are the frequency range, the 
tuning range, and the required specifications for the particular applications. Key 
requirements are phase noise, output power, harmonic contents, and others like power 
consumption, size, and cost. A special type of oscillator is the voltage-controlled oscillator 
(VCO), which can be tuned over ranges, starting from a few percent to a range of almost 
1:3. Phase noise and tuning range, to a degree, are opposing requirements. As a general 
rule, the phase noise gets poorer as the tuning range increases.  
 
This dissertation deals with these topics and introduces several new and important issues. 
After discussing the oscillator theory and introducing the concept of the voltage-controlled 
oscillator, the one and two-port oscillators are introduced. Following this, it is shown that a 
system of coupled oscillators provides better phase noise than single oscillators. While the 
concept of synchronized oscillators is known, its phase noise calculation and coupling 
conditions are new. Furthermore, the operating Q is also calculated. It is further shown that 
by increasing the number of coupled oscillators, the overall performance of the oscillator 
system can be improved by the factor 1/N, and this modern circuit minimizes this effect.   
 
In the circuit the components play a major rule and therefore, both active and passive 
devices are looked at for their suitability.  
 
Since the individual oscillator is the major contributor, two new types of oscillators are 
introduced:  

1) The oscillator using more than one resonator for improved phase noise (1000-
2000/2000-4000 MHz and 1500-3000/3000-6000 MHz). 

2)  An oscillator, which exhibits a very wide tuning range (320-1120 MHz). 
 
This dissertation closes with various validation circuits, which prove that the detailed 
theory and the actual measurements do agree fully. Detailed insight in all of the design 
procedures is provided. The dissertation contains 75 literature references and three 
appendices, which provide additional aspects in the design process. 
 
At microwave frequencies, the actual circuit performance is largely driven by the 
component values and parasitic elements and the optimum layout minimizes these effects. 
Intensive studies were conducted to find the optimum layout configuration and a U.S. 
copyright was obtained for this. This in itself is a somewhat unusual procedure but it 
shows the importance of physical layout at microwave frequencies.  
 
This work, which was partially supported and funded by the U.S. Government Agency 
DARPA (Defense Advanced Research Projects Agency) has also resulted in a variety of 
patents and copyrighted layout structures.  



 

 

Zusammenfassung 
 
Wie allgemein bekannt, haben Oszillatoren in Kommunikationssystemen und Messgeräten 
einen extrem großen Einfluss auf deren Eigenschaften. Die wesentlichen Unterschiede 
zwischen den verschiedenen Oszillator-Typen liegen im Frequenzbereich, im Abstimmbereich 
und allgemein in den Spezifikationen, die für eine bestimmte Anwendung benötigt werden. 
Die wichtigsten Eigenschaften sind das Phasenrauschen, die Ausgangsleistung, der 
Oberwellengehalt sowie Stromverbrauch, Baugröße und Kosten. Eine spezielle Variante des 
Oszillators ist der spannungsgesteuerte Oszillator (VCO), im Englischen „voltage-controlled 
oscillator“, welcher über einen Bereich von wenigen Prozent bis zu einem Bereich von 1:3 
abgestimmt werden kann. Das Phasenrauschen und der Abstimmbereich beeinflussen sich 
gegenseitig. Man kann generell sagen, dass das Phasenrauschen schlechter wird, wenn der 
Abstimmbereich größer wird, aber eine neue hier vorgestellte Schaltungsvariante reduziert 
diesen Effekt. 
 
Die vorliegende Dissertation beschäftigt sich mit diesem Sachverhalt und zeigt wesentliche 
neue Erkenntnisse. Nach der Diskussion der Oszillatortheorie und dem VCO werden der Ein- 
und Zweitor-Oszillator vorgestellt. Anschließend wird gezeigt, dass ein System gekoppelter 
Oszillatoren weniger Rauschen verursacht als der Einzel-Oszillator. Das Prinzip gekoppelter 
Oszillatoren ist bekannt, neu ist jedoch die Berechnung ihres Rauschverhaltens und die 
optimale Kopplung.  Auch wird erstmalig die Betriebsgüte berechnet. Es wird gezeigt, dass 
sich mit zunehmender Anzahl von Oszillatoren das Rauschen um den Faktor 1/N verringert.  
 
In allen Schaltungen spielen die verwendeten Bauelemente eine große Rolle und daher werden 
aktive und passive Komponenten auf ihre Tauglichkeit für diese Applikationen untersucht.  
 
Nachdem der Einzel-Oszillator die dominierende Rauschquelle ist, werden zwei neue und 
verbesserte Oszillatoren vorgestellt: 
1) ein Oszillator mit mehreren Resonatoren für die Frequenzbereiche  (1000-2000/  
     2000- 4000 MHz und 1500-3000/3000-6000 MHz) 
2) ein Oszillator mit extrem großen Abstimmbereich (320-1120 MHz) 
 
Die Arbeit endet mit mehreren Schaltungen, die zum Nachweis der Richtigkeit der Theorie 
aufgebaut und vermessen wurden, wobei Einzelheiten genauestens wiedergegeben werden. 
Die Arbeit enthält 75 Literaturstellen und drei Anhänge, die weitere theoretische Aspekte 
aufzeigen.  
 
Im Bereich der Mikrowellenfrequenzen hängen die Eigenschaften der Schaltungen von den 
aktiven und passiven Komponenten und dem optimalen Layout ab. Dieser Punkt wurde 
besonders untersucht und eine Layout-Anordnung gefunden, die beste Ergebnisse zeigte. 
Dafür wurde ein U.S. Copyright beantragt. Dieser Vorgang ist etwas ungewöhnlich und zeigt, 
wie wichtig die Layoutfragen genommen wurden. Weiterhin wurden für einige Teile der 
Schaltungen Patentansprüche eingereicht. 
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Chapter 1 

Introduction 
 
 
1.1 Microwave Oscillators and VCOs 
 
One of the greatest achievements of the twentieth century civilization is the maturing and 
industrialization of wireless communications systems. The popularity of mobile 
telephones has caused renewed interest in and generated more attention to wireless 
architectures and circuit techniques. In addition, this popularity has further spawned a 
revival of interest in the design of low noise and fairly wideband oscillators.  
 
The wireless personal communication market has been growing explosively due to ever 
emerging new applications and dropping prices. The applications of wireless 
communication devices include pagers, cordless phones, cellular phones, global 
positioning systems, and wireless local area networks, transmitting either voice or data 
and starving for low phase noise power efficient wideband voltage-controlled oscillators 
(VCOs).  
 
The growing importance of wireless media for voice and data communications is the 
driving need for higher integration in personal communications transreceivers in order to 
achieve lower cost and lower power dissipation. One approach to this problem is to 
integrate the RF functionality in low-cost IC technology together with the VCOs. A low 
cost, small, long-battery-life solution has been the dream for decades.  Many efforts have 
been devoted to the integration of such circuits in low-cost technology in order to reach 
the goal.  
 
In fact, the demands of wideband sources have increased enormously because of the 
explosive growth of the wireless communications and the broadband tunability.   Ultra 
low phase noise of the VCOs is one of the most fundamental requirements in the VCO’s 
design, impacting both the technology and the topology used.  As the frequency band for 
the wireless communication shifts higher, a generation of the ultra low noise wideband 
and thermal stable compact signal sources with low cost become more and more 
challenging due to the frequency limitations of the active devices and broadband 
tunability of the tuning diode.  
 
The design of ultra low noise octave-band VCOs is challenging and difficult because 
maintaining more or less of the same Q of the resonator/tuning network for octave-band 
is a complex phenomenon. It is a major challenge to find ways to realize low phase noise 
with low Q RF components at a higher operating frequency that supports broadband 
tunability. 
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1.2 New Development 
 
Improvements of oscillator/VCO technology have continued over time, yielding ever-
smaller circuits with enhanced phase noise and tuning linearity. Two-way radios and 
cellphones are the largest group of users and in these applications, cleanliness and its 
freedom of wideband tunability is of utmost importance. 
 
Oscillators/VCOs based on discrete devices have been widely employed for many years 
in commercial and military radio receiver applications, however, the advancement of 
SiGe-HBT/GaAs-HBT technology made a dramatic change that has led to fully 
integrated oscillators/VCOs circuits.  
 
Generally, the overall performance of the present integrated VCO implementation is 
inferior to the discrete VCO modules because of the lower Q of the integrated 
components, specifically, the phase noise and tuning characteristics is poorer than what 
could be routinely achieved in the discrete version of the VCO modules.  This shortfall in 
performance is principally due to the low Q of the integrated inductors and tuning diodes 
in the present IC technologies. Recent developments have shown promising results with 
the use of bond wire inductors, yet low phase noise performance has remained elusive 
and out of reach of monolithic VCOs, IC technology.  
 
1.3 Problem Statement  
 
Despite the continious improvement, VCOs still remain the bottleneck, and thus, the 
main challenge of RF transreceivers. This is due to the most important and demanding 
parameters of the VCOs; low phase noise, low power consumption, low thermal drift, and 
wide frequency tuning range. The frequency tuning range is determined by the usable 
capacitive tuning ratio of the varactor and the parasitics associated with the tuning 
network because the parasitics deteriorate and limit the effective tuning capabilities of the 
varactors at high frequency. Therefore, the wide tuning range varactors, such as 
hyperabrupt types, are required to guarantee specified center frequencies and frequency 
tuning ranges. 
 
The dynamic time average Q factor of the resonator, as well as the tuning diode noise 
contribution, sets the noise performance of the VCOs, and in general, the dynamic loaded 
Q is inversely proportional to the frequency range of the VCOs.  The frequency range 
over which a resonator/coupled resonator circuit can be tuned by the tuning diode 
depends on the useful capacitance ratio of the tuning diode and on the parallel and series 
capacitance present in the circuit. 
 
The research described here explores a topology for wideband oscillators (octave-band 
tunability) and optimization of the performance of the tuning networks. It will be 
investigated as to how the capacitance tuning range of varactors can be improved, and 
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identifying the effects that limit the tuning range, which leads to the development of the 
several proposed tuning networks. As the loss resistance of the device determines the 
quality factor, special attention is paid to the resistive behavior. The frequency tuning 
range, the contribution of the varactors and inductors to the phase noise, and the influence 
of the variations of power supplies and tuning voltages will be studied. 
 
Furthermore, this work examines a unique research regarding systems of coupled 
oscillators using N-push/push-push configuration and this dissertation points out the 
remarkable improvement of the phase noise and opens the door of the high frequency 
ranges and it enables the realization of integrated SiGe-HBT/GaAs-HBT based systems 
at higher frequencies for wideband operation. 
 
As the information age progresses higher frequency signals are required for the 
transmission of larger amounts of information. The coupled resonator and N-push/push-
push topology is one of the many techniques used for improving the phase noise and 
extending the range of the oscillation frequency.  The active devices are often pushed 
near to their physical limits of operation, resulting in degraded noise performance of the 
integrated oscillator/VCOs circuit. The push-push oscillator basically enhances the even 
mode harmonics and suppresses the odd mode output, doubling the frequencies, so higher 
oscillating frequencies can be obtained beyond the limitation caused by the cut-off 
frequency of the available three terminal active devices and the tuning diodes. 
 
The monolithic VCO implementations suffer from poor phase noise performance partly 
due to the low quality factor Q of the passive components. A design study has been 
carried out to optimize the phase noise performance by incorporating the N-push/push-
push approach to compensate for the low Q-factor in the integrated VCO implementation.  
 
The paucity of literature on wideband (more than octave-band) tunability of the VCOs, 
together with a lack of experimental verification of the underlying theories of coupled 
oscillators in N-push/push-Push configuration for an ultra low noise performance, has 
been a strong motivator, stirring a need for doing noise analysis for coupled oscillator 
design. Available publications [1-10] do not contain any analysis that describes the 
performance or design constraints of wideband N-push/push-push VCOs. The effort 
under this research describes the dynamically-tuned, integrated coupled resonator-tuned 
network, negative resistance generating network, phase coupling network, and the second 
harmonic combiner network for the realization of an ultra low noise octave-band voltage-
controlled oscillator. Furthermore, efforts have been taken to increase the loaded quality 
factor over the frequency band by selecting optimum coupled microstripline resonator 
structures. 
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1.4 Definition of the Task 
 
Independent of the improvement of the time average loaded quality factor of the tuning 
network and resonator circuits for better phase noise, several methods are explored based 
on following: 
 

• Coupled-oscillator/N-push approach for improvement in phase noise. 
• Novel coupled resonator structure, which will support the resonance over an 

octave-band. 
• Novel topology, which provides a constant negative resistance over the octave-

band. 
• Novel tuning arrangement for wideband tunability without degrading the time 

average loaded Q of the tuning network over the octave-band. 
• Dynamically tuned phase coupling network. 

 
This dissertation deals with the design, fabrication, and testing of various wideband 
VCOs (320-1120 MHz, 1000-2000/2000-4000 MHz and 1500-3000/3000-6000 MHz 
frequency band). In addition, this thesis presents the theoretical analysis of the phase 
noise improvements by implementation of the coupled oscillator topology.  
Developments in the coupled resonator/oscillator may change the paradigm of the 
oscillator/VCOs design and suggest a need for the new phase noise equation for the 
coupled/N-push oscillators/VCOs, which is derived here. 
 
1.5 Research Motivation 
 
The VCOs theory is complex and mystifying. It is still an open issue despite significant 
gains in practical experience and modern CAD tools for design.  To this end, VCO noise 
theory, how the circuit works, its noise mechanism, optimum drive level and conduction 
angle, the nature of signals generated, the effect of flicker noise, topology, resonator 
structure, and coupling to an active device are often held as trade secrets by many 
manufacturers. This dissertation describes new and interesting opportunities for research 
in ultra low noise octave-band coupled resonator/oscillators. It produces new information 
regarding the octave-band tunable resonator without degrading the Q factor over the band 
and implementation of N-push/push-push topology for improvement in the phase noise. 
 
Wideband oscillators are used in spectrum analyzers, frequency sweepers, and network 
analyzers. Frequency domain test and measurement systems pose interesting challenges 
for wideband VCOs design. The test system must be versatile enough to work over a 
broad range of frequencies, meet or exceed the performance of the device under test 
(DUT), and must not alter the function or performance of the DUT.  
 
Whether the medium is discrete or integrated, the Colpitts class of resonant oscillators 
has seen its share of the spotlight for ultra low noise applications, but narrow tuning 
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range. While the topology can take a number of forms, the defining characteristic of a 
Colpitts oscillator is the capacitive voltage divider that provides positive feedback around 
an active gain module, and these oscillator circuits have been shown to offer excellent 
phase noise performance.  
 
The optimum design of the Colpitts configuration was not well understood until Rohde 
[11] discussed the discontinuous conduction of the active device which is controlled by 
the conduction angle and timed via the feedback network such that a current is only 
supplied to the resonator network during a portion of the period when the oscillator phase 
is relatively less perturbed, thereby, the noise level is controlled and minimized in the 
loop. 
 
Rohde [11] has explained a new and efficient method of designing low noise microwave 
oscillator by incorporating an optimum feedback (capacitance ratio) arrangement, 
optimum drive level, optimum conduction angle, operating point, and unified noise 
calculation techniques, but his research is centered on uncoupled free-running 
oscillators/VCOs and suggest the need for new phase noise equation for coupled/N-push 
oscillators/VCOs.  
 
The oscillators/VCOs considered in this work are based on the use of commercially 
available Si and SiGe bipolar transistors. As most designers do not have elaborate and 
expensive equipment for parameter extraction, the large signal S-parameters are 
generated using a synthesis-based approach and using data from the manufacturer. 
 
1.6 Overview of the Dissertation 
 
This dissertation is organized in 12 chapters. 
 
Chapter 1 - the Introduction, describes the purpose of the dissertation, new development, 
and defines the problem. 
 
Chapter 2 - briefly discusses the oscillators/VCOs theory and defines the common 
oscillator topologies for wideband voltage-controlled oscillators.  
 
Chapter 3 - describes the system of mutually coupled oscillators that is compared with 
the classical coupled pendulum.  In addition, the dynamics of the mutually coupled 
oscillator and system of the N-coupled oscillators are briefly discussed. 
 
Chapter 4 - describes the oscillator noise model. In addition, the noise analysis of the 
coupled oscillator is briefly discussed which gives insight in the improvement of the 
phase noise compared with the single free-running uncoupled oscillator. Finding the 
relative improvement of the phase noise for N-coupled oscillators with respect to single 
free running uncoupled oscillator is the objective of the chapter 4. 
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Chapter 5 - describes the approach and topologies of the practical coupled-mode 
oscillators/VCOs in N-push/push-push configuration. For better insight and 
understanding of the coupled oscillator, detailed noise analysis of the push-push topology 
is discussed. 
 
Chapter 6 - describes the characterization of the device models. The transistor is 
characterized under the large signal condition.  In addition, characterizations of the tuning 
diode, resonator network and passive components are discussed.  
 
Chapter 7 - deals with the wideband VCO approach and low noise VCO design criteria 
for wideband applications.  
 
Chapter 8 - shows three selected circuits of wideband oscillators (320-1120 MHz, 1000-
2000/2000-4000 MHz, and 1500-3000/3000-6000 MHz), which provide state-of-the-art 
wideband VCOs. As a result of this work, copyrights for the layout (US Registration No. 
Vau-603-982 and Vau-603-984) have been awarded and patent disclosures have been 
submitted for an international patent covering the United States, Asia, and Europe 
(Provisional Patent Nos. 60/493075, 60/501371, 60/501790, 60/527957, 60/528670, 
60/563481, 60/564173, 60/589090, 60/601823 and 60/605791). 
 
Chapter 9 - deals with the accomplishments, conclusions, and future possibilities. 
Further directions are also pointed out.   
 
Chapter 10 - explains abbreviations and symbols. 
 
Chapter 11 - shows a list of all relevant references used throughout the dissertation.  
 
Chapter 12 - contains Appendices A, B, and C.  Appendix A discusses the noise analysis 
of the N-coupled oscillator coupled through different coupling topology, Appendix B 
describes the analytical design approach of the wideband oscillators/VCOs for optimum 
power, and Appendix C discusses the derivation of the noise equation. 
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Chapter 2 

Oscillator/VCO Theory 

 

2.1 Theory of Operation 
 
An oscillator is an autonomous circuit consisting of a frequency selective positive 
feedback network.  The noise present in the active device or power supply turn-on 
transient leads to the initial oscillation build-up.  As a basic requirement for producing a 
self-sustained, near-sinusoidal oscillation, an oscillator must have a pair of complex-
conjugate poles on the imaginary axis i.e. in the right half of an s-plane with α>0.  

 
βα jppP ±=),( 21      (2.1) 

 
While this requirement does not guarantee an oscillation with a well-defined steady state 
(squeaking), it is nevertheless a necessary condition for any oscillator.  When subjected 
to an excitation due to the power supply turn-on transient or noise associated with the 
oscillator circuit, the right half plane RHS-poles in the equation above produce a 
sinusoidal signal with an exponentially growing envelope given as 
 

)cos()exp()( 0 ttVtv βα=     (2.2) 
 

00
)( Vtv

t
→

=
      (2.3) 

 
V0 is determined by the initial conditions and the growth of the signal amplitude )(tv is 
eventually limited by the associated nonlinearities of the oscillator circuit.  
 
Oscillators are fundamentally a feedback amplifier with a resonator in the feedback path 
and if enough gain exists for given oscillation conditions, noise will be amplified 
sufficiently enough to eventually stabilize the gain via non-linearity effects and create an 
output signal that consists of narrow band noise. This narrow-band profile of the noise 
characteristics in the oscillator is the prime issue of the oscillator design. The two 
methods used for analyzing and understanding noise issues for oscillators are the 
feedback model approach and the negative resistance model.  Using either the feedback 
model approach or the negative resistance model, one can perform the analysis of the 
oscillator. Depending on the oscillator topology and characteristics, one approach is 
preferred over the other.  The condition of oscillation build-up and steady state oscillation 
will be discussed using both approaches.  The application of either the feedback model or 
the negative-resistance model is sufficient for analyzing the linear behavior of the 
oscillator circuit, and it must be unstable about its bias point or, equivalently, have poles 
in the RHP if an oscillation buildup is to take place.  The feedback model is shown in 
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Figure 2-1, where an oscillator circuit is decomposed into a frequency-dependent forward 
loop gain block H1(jω) and a frequency-dependent feedback network H2(jω), both of 
which are typically multi-port networks.  If the circuit is unstable about its operating 
point (poles in the right half of the s-plane), it can produce an expanding transient when 
subjects to an initial excitation. As the signal become large, the active device in the 
circuit behaves nonlinearly and limits the growth of the signal. When oscillation starts up, 
the signal level at the input of the amplifier (forward loop gain block) is very small, and 
the amplitude dependence of the forward amplifier gain can be initially neglected until it 
reaches saturation. 
 

+
H1(ω)

Forward loop-Gain
Y(ω)
Vo(ω)

+

H2(ω)
Feedback-Network

 X(ω)
kT (Noise):Vin(ω)

 
Figure 2-1:  Block diagram of basic feedback model-oscillator. 

 
The closed loop transfer function (T.F) and output voltage Vo(ω)  are given by 
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+
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For an oscillator, the output voltage Vo is nonzero even if the input signal Vi = 0. This is 
only possible if the forward loop gain is infinite (which is not practical), or if the 
denominator ( ) ( ) 01 21 =+ ωω jHjH  at some frequency ωo; that is the loop gain is equal to 
unity for some values of the complex frequency s=jω. This leads to the well-known 
condition for oscillation (the Nyquist criterion), where at some frequency ωo 

( ) ( ) 121 −=oo jHjH ωω , and can be mathematically expressed as 

 
( ) ( ) 121 =oo jHjH ωω      (2.6) 

 
and   ( ) ( )[ ] ...2,1,021 == nwherenjHjHArg oo πωω           (2.7) 
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When the above criterion is met, the two conjugate poles of the overall transfer function 
are located on the imaginary axis of s-plane, and any departure from that position will 
lead to an increase or a decrease of the oscillation amplitude of the oscillator output 
signal in time domain, which is shown in Figure 2-2. 
 

 
Figure 2-2: Frequency domain root locus and the corresponding time domain response. 

 
In practice, the equilibrium point cannot be reached instantaneously without violating 
some physical laws.  As an example, high Q oscillators take longer than low Q types for 
full amplitude. The oscillator output sine wave cannot start at full amplitude 
instantaneously after the power supply is turned on. The design of the circuit must be 
such that at start-up condition, the poles are located in the right half plane, but not too far 
from the Y-axis. However, the component tolerances and the nonlinearities of the 
amplifier will play a role.  This oscillation is achievable with a small signal loop gain 
greater than unity, and as the output signal builds up, at least one parameter of the loop 
gain must change its value in such a way that the two complex conjugate poles migrate in 
the direction of the Y-axis and that the parameter must then reach that axis for the desired 
steady state amplitude value at a given oscillator frequency.  Figure 2-3 shows the general 
schematic diagram of a one-port negative resistance model.  The oscillator circuit is 
separated into a one-port active circuit, which is a nonlinear time variant (NLTV) and a 
one-port frequency determining circuit, which is a linear time invariant (LTIV). The 
frequency determining circuit, or resonator, sets the oscillation frequency, and it is signal-
amplitude independent. The function of the active-circuit is to produce a small-signal 
negative resistance at the operating point of the oscillator and couple it with the 
frequency-determining circuit while defining the oscillation frequency.  Assuming that 
the steady state current at the active circuit is almost sinusoidal, the input impedance 

),( fAZd  can be expressed in terms of a negative resistance and reactance as 
 

 ),(),(),( fAjXfARfAZ ddd +=     (2.8) 
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where A is the amplitude of the steady state current and f is the resonance frequency. 
),( fARd  and ),( fAX d are the real and imaginary parts of the active circuit and depend 

on the amplitude and frequency. Since the frequency determining circuit is amplitude-
independent, it can be represented as  

 
)()()( fjXfRfZ rrr +=      (2.9) 

 
where )( fZr is the input impedance of the frequency determining circuit, )( fRr and 

)( fX r are the loss resistance and reactance associated with the resonator/frequency 
determining circuit. 
 

     Active-Circuit
3-Terminal Device
      (Biploar/FET)

     Frequency
    Determining
       Network

Zd(A,f) Zr(f)  
Figure 2-3:  Schematic diagram of one-port negative resistance model. 

  
To support the oscillator build-up, ),( fARd <0 is required so the total loss associated with 
the frequency determining circuit can be compensated.  Oscillation will start build-up if 
the product of the input reflection coefficient )( 0frΓ , looking into the frequency 
determining circuit and the input reflection coefficient ),( 00 fAdΓ of the active part of the 
oscillator circuit is unity at 0AA =  and 0ff = .  The steady state oscillation condition can 
be expressed as 
 

1)(),()(),( 000
0

=ΓΓ⇒ΓΓ
=

ffAffA rdffrd     (2.10) 
 
Figure 2-4 shows the input reflection coefficient ),( 00 fAdΓ and )( 0frΓ , which can be 
represented in terms of the input impedance and the characteristic impedance 0Z  as 
 

000

000
00 ),(

),(
),(

ZfAZ
ZfAZ

fA
d

d
d +

−
=Γ     (2.11) 

 

  
00

00
0 )(

)()(
ZfZ
ZfZf

r

r
r +

−=Γ      (2.12) 
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00

00

000

000
000 =








+
−









+
−

⇒=ΓΓ
ZfZ
ZfZ

ZfAZ
ZfAZ

ffA
r

r

d

d
rd   (2.13) 

 
0])(][),([])(][),([ 0000000000 =++−−− ZfZZfAZZfZZfAZ rdrd  (2.14) 

 
0)(),( 000 =+⇒ fZfAZ rd        (2.15) 

 
The characteristic Equation 0)(),( 000 =+ fZfAZ rd can be written as  
 

0)(),( 000 =+ fRfAR rd      (2.16) 
 

and  0)(),( 000 =+ fXfAX rd      (2.17) 
 
  

     Active-Circuit
3-Terminal Device
      (Biploar/FET)

     Frequency
    Determining
       Network

)( 0frΓ),( 00 fAdΓ
 

Figure 2-4:  Schematic diagram of one-port negative resistance model. 
 
 
This means that the one-port circuit is unstable for the frequency range 21 fff << , 
where )(),(0),(

2121
fRfARfAR rfffdfffd >⇒<

<<<< .  
 
At the start-up oscillation, when the signal amplitude is very small, the amplitude 
dependence of the ),( fARd is negligible and the oscillation build-up conditions can be 
given as 
 

[ ] 0)()()()( ≤+⇒+ = xrxdffrd fRfRfRfR
x

   (2.18) 
 

and [ ] 0)()()()( =+⇒+ = xrxdffrd fXfXfXfX
x

   (2.19) 
 
where xf  denotes the resonance frequency at which the total reactive component equals 
zero. The conditions above are necessary, but are not sufficient conditions for oscillation 
build-up, particularly in a case when multiple frequencies exist to support the above- 
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shown conditions. To guarantee the oscillation build-up, the following condition at the 
given frequency needs to be met [25]: 
 

[ ] 0)()( >+
∂
∂

= xffrd fXfX
f

     (2.20) 

0)()( <+ xrxd fRfR       (2.21) 
 

0)()( =+ xrxd fXfX       (2.22) 
 
Alternatively, for a parallel admittance topology [25], 
 

0)()( =+ xrxd fYfY       (2.23) 
 

0)()( <+ xrxd fGfG       (2.24) 
 

0)()( =+ xrxd fBfB       (2.25) 
 

[ ] 0)()( >+
∂
∂

= xffrd fBfB
f

     (2.26) 

 
Figure 2-5 shows the start-up and steady-state oscillation conditions. 
 

 
Figure 2-5: Plot of start and steady state oscillation conditions. 

 
As discussed earlier, if the closed-loop voltage gain has a pair of complex conjugate 
poles in the right half of the s-plane, close to the imaginary axis, then due to an ever-
present noise voltage generated in the circuit or power-on transient, a growing, near-
sinusoidal voltage appears. As the oscillation amplitude grows, the amplitude-limiting 
capabilities, due to the change in the transconductance from a small signal [gm] to the 
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large signal [gm(t)=Gm] of the amplifier, produce a change in the location of the poles. 
The changes are such that the complex-conjugate poles move toward the imaginary axis 
and at some value of the oscillation amplitude; the poles reach to the imaginary axis 
giving steady-state oscillation  

as ( ) ( ) 1=oo jHjG ωω      (2.27) 
 

In the case of the negative resistance model, the oscillation will continue to build as long 
as )(),(0),(

2121
fRfARfAR rfffdfffd >⇒<

<<<< . 
 
The frequency of oscillation is determined by 0)(),( 000 =+ fRfAR rd , and 

0)(),( 000 =+ fXfAX rd  might not be stable because ),( fAZd  is frequency and 
amplitude-dependent.  To guarantee stable oscillation, the following condition is to be 
satisfied as [25] 
 

[ ] [ ] [ ] [ ] 0)()()()(
0000

>
∂
∂∗

∂
∂−

∂
∂∗

∂
∂

==== ffrAAdffrAAd fR
f

AX
A

fX
f

AR
A

 (2.28) 

 

[ ] [ ] [ ] [ ]
0000

)()()()(
ffrAAdffrAAd fR

f
AX

A
fX

f
AR

A ==== ∂
∂∗

∂
∂>

∂
∂∗

∂
∂  (2.29) 

 
In the case of an LC resonant circuit, )( fRr is constant and the equation above can be 
simplified to 

[ ] [ ] 0)()(
00

>
∂
∂∗

∂
∂

== ffrAAd fX
f

AR
A

    (2.30) 

 
Alternatively, for a paralleled tuned circuit, the steady-state oscillation condition is given 
as [25] 

0)()( 00 =+ fGfG rd       (2.31) 
 

0)()( 00 =+ fBfB rd       (2.32) 
 

[ ] [ ] 0)()(
00

>
∂
∂∗

∂
∂

== ffrAAd fB
f

AG
A

    (2.33) 

 
2.2 Wideband Voltage-Controlled Oscillators 
 
In order for a closed loop system, as shown in Figure 2-1, to be tunable for wideband, 
some of the modules/elements must be variable to achieve a positive feedback at different 
frequency of the tuning range over the band. The frequency selective feedback network 
of an oscillator is usually a resonator circuit, which can be modeled as an LCR equivalent 
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network in either a parallel or series configuration. A tunable oscillator will vary one of 
the parameters that set the oscillation condition in order to change the oscillation 
frequency over the tuning band. This is accomplished either by varying the inductor or 
capacitor to change the resonance frequency of the resonator circuit.  
 
The frequency of oscillation of a resonator circuit is defined as ω0=1/√LC, and for the 
octave tuning range the minimum capacitive or inductive tuning range (capacitive or 
inductive ratio) is required in the order of 4:1. There are two primary constraints, which 
limit the oscillator circuit topologies; first is the transistor and its package, and second, is 
the large capacitance change required to tune the oscillator over an octave band. 
 
The common emitter (CE) and common base (CB) are the common topology for the 
wideband oscillator/VCO design. Figure 2-6 shows the CE topology, uses a capacitive 
feedback network with C1 and C2 to create the negative resistance looking into the base 
of the transistor [11]. 
 

CC

C1

C2

Creso

Re

Lreso

RL ⇒ Cbc

gmVbe

gbe Cbe gceC1

C2

Small-signal model of bipolar

Resonator

Rreso

CC

RL

-Rn(t)RLoss

a) 1-Port approach (Negative Resistance) b) 2-Port approach (Feedback model)

Re

Lreso CresoRreso

21
2

)(
)(

CC
tg

tR m
N ω

∝

 
Figure 2-6: a) 1-Port and b) 2-Port approach of the common emitter oscillator. 

 
Figure 2-7 shows the common base (CB) topology, which uses an inductor in the base of 
the transistor to generate the negative resistance looking into the emitter of the transistor.  
The frequency selective network (resonator) will have a loss resistance (positive 
resistance) associated with it, and the oscillation occurs when the negative resistance 
looking into the active device is greater than the absolute value of the loss resistance of 
the frequency selective network. 
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Based on the negative resistance approach, the dynamic load over the tuning range seen 
by the frequency selective network is negative and the resulting dynamic loaded Q would 
be infinite if taken in this context [15], and the loaded Q remains the measured quantity, 
but not predicted, as given by Leeson’s model (Equation 4.13). 
 
 
 

gmVbe

gbe

gce

Small-signal model of bipolar

Resonator

Lb
RL

Lreso ⇒Rreso

Rreso

Creso

Lreso

Cbe

RL

Lb
Creso

-Rn(t)RLoss

a) 1-Port approach (Negative resistance) b) 2-Port approach (Feedback model)









−

∝
)1(

)(
)( 22 ωω bebresoce

m
n CLCC

tg
tR

Cce

 
 

Figure 2-7: a) 1-Port and b) 2-Port approach of the common base oscillator. 
 
 
For an ultra low noise and wideband tunability, there is an apriori need to determine the 
circuit parameters, which influences the dynamic loaded Q over the tuning range, 
therefore, optimization of the Q can be achieved for the low phase noise performance.   
 
Rearranging the negative resistance oscillator (one-port) to a two-port equivalent 
configuration, by using small signal model for the active device, enables the approximate 
analysis of the loaded Q of the frequency selective network (resonator) as shown in 
Figure 2-6(b) and Figure 2-7(b). 
 
Figure 2-6 (b) shows the effective loading of the resonator for the CE configuration that 
is due to the series combination of the load resistance, base and emitter resistance, and 
the parallel capacitance of C1 and C2 (influence of Cbe, Cbc and gce are less in comparison 
to the other parameters, therefore, neglected for simplification purpose).   
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Small values of the feedback capacitance C1 and C2 generate the large negative resistance 
and allow for a wide tuning range at the cost of heavily loading of the resonator and wide 
conduction angle, thereby poor phase noise performance [73].  
 
For optimum phase noise performance, the active device is driven at a large signal drive 
level that corresponds to the narrow conduction angle, and this restricts the lower limit of 
the values of the feedback capacitor.  From [11,73], the drive level is directly 
proportional to the feedback capacitor C2; therefore, this topology is best suited for 
narrow tuning range (10-30%)VCOs because large values of feedback capacitor C1 and 
C2 will raise the loaded Q of the resonator at the expense of lesser tuning ranges and 
lower negative resistance. 
 
Figure 2-7 (b) shows the effective loading of the resonator for the common base (CB) 
oscillator configuration, which are due to the series combination of the load resistance, 
gce and Cce of the transistor (influence of gbe and Cbe are less in comparison to the other 

parameters, therefore, neglected for simplification purpose). For 
beb CL

1<ω , the loaded 

Q of the resonator is not much affected by the negative resistance generated by the 
feedback inductance Lb of the 3-terminal device (Bipolar/FET) and is, therefore, best 
suited for a wideband (octave-band) VCOs application. For best phase noise 
performance, the effective load across the resonator is to be kept to the optimum value 

corresponding to the optimum ratio m (
unloaded

Loaded

Q
Q

m = ), equal to 0.5, and the condition for 

the best phase noise is discussed in Chapter 6 (Equation 6.48). 
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Chapter 3 

System of Coupled Oscillators 
 
 
3.1 Mutually Coupled Oscillators Using Classical Pendulum Analogy 
 
A system of coupled oscillators/VCOs possesses a wealth of interesting and useful 
nonlinear dynamical phenomena, and the design of such systems requires a detailed 
understanding of the behavior of the coupled oscillator systems. The purpose of this 
analysis is to provide basic understanding and insights for a class of coupled oscillator 
systems based on the classical analogy of the coupled pendulum and to apply these 
techniques to practical ultra low phase noise wideband oscillators/VCOs. In this chapter 
we develop a general analysis for finding synchronized frequency of the coupled 
oscillator systems in the mutually locked state conditions. Figure 3-1 shows the classic 
example of pendulum connected with the spring [68]. 
 
 

d d d -d

Spring Spring

m m m m

l l l l

Swinging  in same direction Swinging in opposite direction  
 

Figure 3-1: Pendulum connected with the spring. 
 
In presence of the initial excitation, one pendulum starts swinging with small amplitude 
and the other slowly builds up the amplitude as the spring feeds energy from the first 
pendulum into the second pendulum and then energy flows back into the first and the 
cycle repeats due to transformation of energy back and forth.  
 

Oscillator1 Oscillator2

Coupling
 Network

 
 

Figure 3-2 (a) : Block diagram of the coupled oscillator. 
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There can be two modes of motion i.e. swinging together in the same direction and 
swinging in the opposite directions. If it swings in the same direction, it swings in unison 
at their natural frequency and if they swing in the opposite direction than they will swing 
at higher frequency than they if they are uncoupled. When the pendulums are not 
identical, there are still two normal modes but the motions are more complicated and 
neither mode is at the uncoupled frequency. Similar analogy is given for coupled 
oscillator.  
 
Figures 3-2 (a) and (b) show the simplified block diagram and the schematic of the series 
tuned coupled oscillator circuit for the purpose of the analysis. Oscillator1 and oscillator2 
are the series tuned oscillators; L1, C1 and L2, C2 are the components of the LC resonant 
circuit of the series tuned oscillator1 and oscillator2. R1-Loss and R2-Loss are the loss 
resistances of the resonator and Rn1 and Rn2 are the negative resistance of the active 
device respectively. 
 
 

C2

L1

C1

R1-Loss

-Rn1

CC

Oscillator 1

Coupling Capacitor

L2

R2-Loss

-Rn2

Oscillator 2

i1(t) i2(t)

 
Figure 3-2 (b): Schematic of the coupled oscillator. 

 
The simplest coupling network can be realized by capacitor Cc that couples the two 
oscillator circuits. The coupling strength depends upon the value of Cc. For the value of 
Cc→0, it corresponds to strong coupling and the circuits behave like a single LC 
oscillator circuit with and the equivalent values of L and C are given as  
 

21 LLL +=        (3.1) 

21

21

CC
CCC
+

=       (3.2) 

For the value of Cc→∝, it corresponds to zero coupling, and the two oscillator circuits are 
uncoupled and capacitor Cc behaves like short circuit for RF signals. Considering that 
oscillator1 and oscillator2 are oscillating at their free-running frequencies and the 
negative resistance of the active devices compensates the corresponding loss resistance of 
the resonators, then Figure 3-2 (b) is reduced to Figure 3-3. 
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Figure 3-3 shows the coupled oscillator circuit without the series loss resistance and 
device negative resistance because negative resistance of the active device compensates 
the loss resistance if any, at the frequency of the desired oscillation. In real application, 
intermediate range of the coupling strength ( 0>∝> cC ) is more meaningful for the 
analysis of the mutually coupled oscillator systems.  
 
 

L1

C1
CC

Oscillator 1 Oscillator 2Coupling Capacitor

L2

C2

i2(t)
ic(t)

qC1(t) qC2(t)
qCc(t)

i1(t)

VC1

VL1

VCC

VL2

VC2

i1(t) i2(t)

 
 

Figure 3-3: Coupled oscillator circuit without the series loss resistance 
 
The circuit equation of the Figure 3-3 is given from the Kirchoff’s voltage law (KVL), 
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From Equations (3-4) and (3-5) 
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where 
 

1

)(
)( 1

1 C
tq

tV C
C = , 

t
tiLtVL ∂

∂
−=

)()( 1
11

, 
c

C
Cc C

tq
tV c

)(
)( −= , 

t
tq

ti C

∂
∂

−=
)(

)( 1
1 , 

t
tq

ti C

∂
∂

−=
)(

)( 2
2  

 









+=

cCCL
111

11
1ω  , 








+=

cCCL
111

22
2ω ,

c
c CL1

1
1=ω , 

c
c CL2

2
1=ω  

 
Similarly 

 
0)()()(

22
=++ tVtVtV CcLC      (3.10) 

 

0
)()]([)()()()(

2

2

2
2

2
2

2

222 =−
∂

∂
+⇒−

∂
∂

−
c

CCC

c

CC

C
tq

t
tq

L
C

tq
C

tq
t
tiL

C
tq

cc   (3.11) 

  0)]()([1)]([)(
21

22

2

2

2
2

=++
∂

∂
+ tqtq

Ct
tq

L
C

tq
CC

c

CC    (3.12) 

0)]([1)]([11)]([
12

2

2222
2

2

=+







++

∂
∂

tq
CL

tq
CLCLt

tq
C

c
C

c

C   (3.13) 

0)]([)]([
)]([

12

2 2
2

2
22

2

=++
∂

∂
tqtq

t
tq

CcC
C ωω     (3.14) 

 
Equations (3.8) and (3.14) are the second order homogeneous differential equations of the 
mutually coupled oscillator circuit shown in Figure 3-3. 
 
The natural frequencies 1rω  and 2rω  of the coupled oscillator can be derived by solving 
the second order homogeneous Equations (3.8) and (3.14). The solutions are  
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where K1, K2, K3 and K4   are the coefficients of the )(

1
tqC and )(

2
tqC  

 
After substituting the values of )(

1
tqC and )(

2
tqC  in the Equations (3.8) and (3.14), and 

equating the coefficient of ]exp[ 1tj rω  and ]exp[ 2tj rω , we obtain four linear equations as 
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After solving Equations (3.17), (3.18), (3.19) and (3.20), the expression of the 
coefficients K1, K2, K3 and K4   are  
 

32
2

2
2

2
1

1 KK
c

r







 −
=

ω
ωω       (3.21) 

 

42
2

2
2

2
2

2 KK
c

r







 −
=

ω
ωω       (3.22) 

 

12
1

2
1

2
1

3 KK
c

r







 −
=

ω
ωω       (3.23) 

 

22
1

2
1

2
2

4 KK
c

r







 −=
ω

ωω       (3.24) 

 
From Equations (3.21), (3.22), (3.23) and (3.24), the coefficients K1, K2, K3 and K4 can be 
eliminated and 1rω  and 2rω are 
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where 1rω  and 2rω are natural frequencies of oscillation corresponding to the two normal 
oscillation modes of the coupled oscillator.  
 
From Equations (3.15) and (3.16) )(

1
tqC and )(

2
tqC  can be expressed as 
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defining avω   and diffω   as  
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Equations (3.29) and (3.30) can be further simplified to  
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For the case of the identical oscillators  (L=L1=L2 and C=C1=C2), the coupled oscillator 
parameters are reduced to 
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For (L=L1=L2 and C=C1=C2), Equations (3.31) and (3.32) can be simplified as  

   
( )]exp[]exp[]exp[)( 211

tjKtjKtjtq diffdiffavC ωωω −+=   (3.42) 
 

 ( )]exp[]exp[]exp[)( 212
tjKtjKtjtq diffdiffavC ωωω −−=    (3.43)  

 
 
Coupled Oscillator Frequency and Modulation Frequency 
   
Assuming that oscillator 1 starts oscillating first and oscillator 2 starts oscillation due to 
the injection mechanism from oscillator 1 in the coupled oscillator circuit shown in 
Figure 3-3. This condition forces zero current at t = 0 in the circuit of oscillator 2, and the 
corresponding classical analogy of this mechanism as shown in Figure 3-1 can be given 
by pulling one mass aside of the pendulum and release it from rest.  
 
Under this constraints the initial conditions of the charge distribution on the capacitor C1 
and C2  are given as 
 

0)(
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≠
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0)(
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=
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Assuming K1=K2= K, Equations (3.42) and (3.43) can be rewritten as 
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( ) 0)(]exp[]exp[]exp[)(
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=tCdiffdiffavC tqtjtjtjKtq ωωω   (3.47) 
  

Equations (3.46) and (3.47) can be expressed in the form of cosine and sine function as 
 

 ( ){ })sin()cos()cos(2)(
1

tjttKtq avavdiffC ωωω +=     (3.48)  
( ){ })sin()cos()sin(2)(

2
tjttjKtq avavdiffC ωωω +−=    (3.49) 

 
The real and imaginary part of the Equations (3.48) and (3.49) are 

 



 

 26

)]cos()[cos(2)](Re[
1

ttKtq diffavC ωω=    (3.50) 
 

)]cos()[sin(2)](Im[
1

ttKtq diffavC ωω=    (3.51) 
 

)sin()sin(2)](Re[
2

ttKtq diffavC ωω=     (3.52) 
 

)]sin()[cos(2)](Im[
2

ttKtq diffavC ωω−=    (3.53) 
 
The real part of the Equations (3.48) and (3.49) gives the equation of the oscillation for 

)(
1

tqC  and )(
2

tqC  of the mutually identical coupled oscillator. Equations (3.50) and (3.52) 
show that )(

1
tqC  and )(

2
tqC oscillate at frequency avω , and that they are modulated by the 

lower frequency diffω . From (3.50) and (3.52), we can see that the modulation associated 
with )(

1
tqC  and )(

2
tqC is 900 out of phase, which indicates that the total energy is flowing 

back and forth between the two coupled oscillator circuits oscillator 1 and oscillator 2 
with the analogy of the coupled pendulum shown in Figure 3-1, that oscillates back and 
forth.  
 
Defining coupled oscillator frequency as cω , we obtain 

2
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Defining modulation frequency mω , we obtain  

2
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From (3.54) and (3.55) 
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From (3.38) and (3.41) 
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The modulation frequency, therefore, is  
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From Equation (3.59), oscillator output can be described as  
 

)](cos[)()](cos[)cos()( tttAtttAtV ccmmout ϕωϕωω +=+=    (3.60) 
 
where A(t) and ϕ(t) are amplitude and phase terms of the oscillator signal. 
 
 
3.2 Phase Condition for Mutually Locked Coupled Oscillators 
 
Figure 3-4 (a) shows the equivalent circuit of the mutually coupled oscillators (parallel- 
turned oscillators) coupled through the transmission line as a coupling network. The 
equivalent model of the oscillator circuit can be given either by series tuned or parallel 
tuned configuration, and the condition for mutually locking are valid for both the cases. 
Considering the transmission line acts as a resonant circuit in addition to the coupling 
network, and for the simplification in the analysis, the loss associated with the 
transmission line is assumed as a part of the load admittances GL.  
 

Oscillator 1 Oscillator 2

Coupling Network

GL GL-Gd jBd jBd -Gd

Transmission
        Line

YD1 YD2YC1 YC2

lY β,0

[Y]V1 V2

Oscillator 1 Oscillator 2Coupling Network

⇔

 
 

Figure 3-4 (a): Equivalent circuit of mutually coupled oscillators. 
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In Figure 3-4 (a), 1dY and 2dY  represent the equivalent admittance of the two active devices 
and their loads, while 1CY  and 2CY represent the admittance seen by the devices of the 
mutually-coupled oscillator circuit. Based on the extended resonance technique [12], the 
length of the transmission line is selected such that the two devices resonate with each 
other at the common resonance frequency. This can be realized by choosing the length of 
the transmission line of the coupling network in such a way that each device’s 
susceptance is transformed to a susceptance with the same magnitude, but opposite in 
sign, and thereby, creating a virtual short circuit at the midpoint of the transmission line, 
ensuring that the device are injection locked with respect to out of phase. 
 
For analysis purpose, transmission line is characterized as a two-port network with its 
terminal voltages represented by voltage phasor as 1

11
ϕjeVV =  and 2

22
ϕjeVV = , where 

1V , 2V , 1ϕ  and 2ϕ are the magnitudes and phases of the voltage phasor. The circuit 
equation for Figure 3-4(a) at the transmission line terminals can be expressed as 
 

21
22111111

ϕϕϕ jjj
D eVYeVYeVY +=−    (3.61) 

21
22212121

ϕϕϕ jjj
D eVYeVYeVY +=−    (3.62) 

 
Equations (3.61) and (3.62) can be expressed in matrix form as  

 

















=








−
−

2

1

2221

1211

21

11

V
V

YY
YY

VY
VY

D

D     (3.63) 









−

−
=








=

)cot()(cos
)(cos)cot(

][
00

00

2221

1211

ljYlecjY
lecjYljY

YY
YY

Y lineontransmissi ββ
ββ

  (3.64) 

 
where β, Y0 and l are the phase constant, characteristic admittance and length of the 
transmission line.  
 
For identical coupled oscillators: VVV == 21 , DDD YYY == 21  and CCC YYY == 21  .From 
Equations (3.61) and (3.62) 
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The admittance DY  comprises of the device admittance and load conductance as 
DDLD jBGGY +−= ; 0>DG     (3.64) 

 
The admittance CY  is given from the transmission line equation as 
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Applying the extended resonance technique [12], the length of the transmission line is 
selected such that real and imaginary part of the admittance CY  is given by 

 
DLC GGY −=]Re[      (3.66) 

DC jBY −=]Im[      (3.67) 
 
From Equations (3.64) and (3.65), 
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During startup of the oscillation, the real parts of the admittances CY and DY are negative, 
and as the signal level increases, the device gain drops until the losses are compensated. 
Under the steady-state oscillation conditions, 0=− DL GG and the electrical length θ of 
the transmission line is given from Equation (3.68) as 
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The [Y] parameter of the transmission line can be rewritten from Equation (3.63) as 
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From (3.63) and (3.70), the phase difference is given by 
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Equation (3.71) gives the necessary phase condition for the mutually locked conditions of 
the coupled oscillator system, thus the outputs of the mutually synchronized coupled 
oscillator (Push-Push) are in antiphase (∆ϕ =180 degree).  
 
The following shows an example of mutually synchronized coupled oscillators for a 
frequency of 2000 MHz (2f0) in which two individual oscillators oscillate at 1000 MHz 
(f0). This is provided to give some insight into the phase relationship between the two 
identical mutually coupled oscillator circuit osc #1 and osc #2. Figure 3-4(b) shows the 
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circuit diagram of the mutually coupled oscillator. The circuit is fabricated on 32-mil 
thickness Roger substrate of dielectric constant 3.38 and loss tangent 2.7⋅10-4. Figure 3-
4(c) shows the simulated (Ansoft Designer) plot of the base current Ib1 and Ib2, which is 
phase shifted by 180 degree in mutually synchronized condition. The transmission line 
MSL2, shown in Figure 3-4 (b), provides the phase shift for the mutually synchronized 
coupled oscillators (Equation 3.71). 
  

+ -

Q1 Q2

Osc# 1 (f0) Osc# 2 (f0)

100 nH

100 nH

1000 pF

12 V

Ω22 Ω22Ω2280

Ω4000 Ω4000

Ω2280

Ω10 Ω10

Ω330 Ω330

33 pF 33 pF

100 nH 100 nH

22 pF22 pF

2.2 pF 2.2 pF

2.2 pF2.2 pF
3.3 pF 3.3 pF

6.6 pF 6.6 pF

22 pF
0.5 pF

Ω100

MSL1 MSL1

MSL1: Microstripline (w=15 mil, L=330 mil)

Q1, Q2: NEC 68830

MSL2

MSL2: Microstripline (w=12 mil, L=1895 mil)

Ω50

RFout(2f0)

RLoad

 
Figure 3-4(b): Schematic of a 2000 MHz mutually coupled oscillators. 

 
 

 
Figure 3-4(c): Plot of the RF base current of the mutually coupled oscillators. 
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3.3 Dynamics of Coupled Oscillators 
 
The objective of this analysis is to develop time domain dynamics of the coupled 
oscillator systems based on Van der Pol (VDP) model [13]. The time dependent 
characteristic of the VDP model is the basis for using this model to our particular class of 
problem for the analysis of the system dynamics of the coupled oscillators.  
 
 

Osc 1 Osc 2
11 )( ωϕ =t& 22 )( ωϕ =t&

12β

21β

)(1 tϕ

)(2 tϕ

)]()([ 12 tt ϕϕψ −=

ψ

Osc 1

Osc 2

Figure 3-5: Simple model of the system of two-coupled oscillators 
 
Figure 3-5 shows the simple model of the two identical coupled oscillators where β12 and 
β21 are coupling coefficients. 
 
 

Oscillator 1

RL

-Rn

L

C

-Rn

L

C

RL

Oscillator 2

i1(t) i2(t)

Coupling

Coupling

21β

12β

 
Figure 3-6: Equivalent circuit representation of the Figure 3-5 
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Figure 3-6 shows the equivalent circuit model of the Figure 3-5, where the series tuned 
resonator circuit models the single oscillator for the coupled oscillator system [68]. The 
equivalent model of the oscillator circuit can be given either by series tuned or parallel 
tuned configuration, and the condition for system dynamics is valid for both the cases.   
 
Regardless of the topology, the system of coupled oscillators must synchronize to a 
common frequency and maintain a desired phase relationship in the steady state 
oscillating condition. For the analysis of the dynamics of the coupled oscillator system, a 
very simple equivalent circuit model is shown in Figure 3-6, where oscillator 1 in Figure 
3-5 is replaced by the source Vinj(t) that accounts for the interaction and coupling with the 
adjacent oscillator 2 [27, 68]. 
 

RL

-Rn(t)

L C

Vinj(t)

VL(t)

Device

Vout(t)

VC(t)

VRn(t)

i(t)

 
Figure 3-7: The simplified representation of the Figure 3-6, where Vinj(t) accounts for the interaction and 
coupling. 
 
The negative resistance of the device can be described as a time-averaged value and is 
given by [13] as 
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For a series tuned resonator circuit, we define  
 

LC
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0 =ω , 
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L
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ω

ω
== , ])([ tVRR outnn ≈  

 
Rn is a strong function of )(tVout , ω0 is the resonance frequency and Q  is the quality 
factor of the embedded resonator circuit. The quality factor of the series tuned resonator 
is assumed to be greater than 10 so that the frequency of the output signal )(tVout is close 
to the natural resonance frequency of the oscillator circuit. 
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The circuit equations of Figure 3-7 are given from the Kirchoff voltage law (KVL) as  
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The output signal )(tVout  can be expressed as  
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where )(tθ  is the instantaneous phase, )(tA  and )(tϕ  are amplitude and phase terms of 
the output signal which are having slow variation with respect to time in comparison to 
the output periodic oscillation.   
 

For solving Equation (3-73), ∫ dttVout )(  and 
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The higher order term in the Equation (3.76) can be neglected in comparison to the output 
periodic oscillation and can be rewritten as 
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From (3.73) and (3.74) 
 

)(
))((

1)(1)(
)( tV

R
tVR

dttV
CRt

tV
R
LtV out

L

outn
out

L

out

L
inj 








−+








+

∂
∂









= ∫  (3.79) 

 



 

 34

By multiplying Equation (3.79) with 
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where 
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Following Van der Pol [13], the device saturation and amplitude dependence of the 
negative resistance is modeled by a quadratic function such that 
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From Equations (3.78) and (3.80),  
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From Equations (3.77) and (3.81), 
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Amplitude and Phase Dynamics of the Coupled Oscillator 
 
By equating real and imaginary part of the Equation (3.82), the amplitude and phase 
dynamics of the coupled oscillator system can be given as [30] 
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For )()( tVtV injout >> , the oscillator amplitude remains close to its free-running value and 
the system dynamics of the coupled oscillator is predominantly determined by the phase 
dynamics given by Equation (3.84).  
 
From Equation (3.84),  
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where 

)]([)( ttt injinjinj ψωθ += ; )]([)( 0 ttt ϕωθ +=  and )](exp[)()( tjtAtVout θ=  
 
 
Locking Bandwidth of the Coupled Oscillator 
  
In presence of the injection signal from the neighboring oscillator, oscillator locks onto 

the injected signal as injt
t ωθ →

∂
∂ )(  and at steady state, the equation of the phase dynamics  
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is given from (3.88) as 
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From (3.89), 
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From (3.90) and (3.91) 

 

[ ]
QBandwidthLockinglock
1∝∆ −ω      (3.92) 

 
From Equation (3.92), low Q-factor is required for wide locking range, but it will degrade 
the noise performance of the coupled oscillator system, therefore there is tradeoff 
between the phase noise and locking bandwidth of the VCOs. 
 
From (3.91) 
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lockoinj ωωω ∆±=  ,  For 
2
πθ ±=∆    (3.94) 

lockoinjlockoinj ωωωωωω ∆=−⇒∆±=− ,  For 
2
πθ ±=∆   (3.95) 

 
From (3.94), the injected signal frequency injω is tuned over the locking range of the 

oscillator )( locko ωω ∆±  and the associated phase difference θ∆  varies from 
2
π−  to 

2
π+ .  
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To determine locking mechanism [14], Equation (3.95) can be expressed as  
 

oinjlock ωωω −>∆ ,  for
22
πθπ <∆<−     (3.96) 

 
The oscillator can synchronize to an injected signal as long as oinjlock ωωω −>∆ , where 

lockω∆ represents half the entire locking range whereas, if the frequency of the injected 
signal injω is such that oinjlock ωωω −≤∆ , then the oscillator cannot lock onto the injected 
signal and the nonlinearity of the oscillator will then generate mixing products in the 
coupled oscillator system.  
 
 
3.4 Dynamics of N-Coupled Oscillators 
 
As discussed in the section 3.3, the amplitude and phase dynamics of the mutually 
coupled oscillators are given by the Equations (3.83) and (3.84), which are based on the 
coupled set of differential equations and are derived by first describing the behavior of 
the individual oscillator with injection locking and then allowing the injection signals to 
be provided by the neighboring oscillator. The objective of this analysis is to develop 
general system dynamics of the N-coupled oscillators for bilateral coupling through N 
port arbitrary coupling network. Figure 3-8 shows the chain of the N-coupled oscillator 
system with bilateral coupling between the neighboring oscillators.  
 
For N-coupled oscillator system, the coupling between ith and jth oscillators can be 
described by a coupling coefficient ijβ  as 

 
]exp[ ijijij jϕλβ −=      (3.97) 

 
where ijλ  and ijϕ  is magnitude and phase of the coupling coefficient for the coupling 
between ith and jth oscillators in the N bilateral coupled oscillator systems. For reciprocal 
system, coupling coefficient is defined as jiij ββ =  and it is unitless. 
 
The injected signal )(tVinj  seen by the ith oscillator for N-coupled oscillator system is 
given by 

)()(
1

tVtV j
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≠
=

= β      (3.98) 

 
where )(tV j is the output voltage of the jth oscillator. 
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-Rn L C RL
Active Device ⇔

Oscillator
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b)

c)

••••

Osc#1 Osc#2 Osc#3 Osc# N-1 Osc#NOsc# N-2

N-port Coupling Network

V1 V2 V3 VN-2 VN-1 VN

P1 P2 P3 PN-2 PN-1 PN

 
 
Figure 3-8: a) N-coupled oscillator with bilateral coupling b) N-coupled oscillator coupled through the  
N-port coupling network c) Equivalent parallel model of the free-running oscillator 
 
 
Assuming all the N oscillators are having approximately same Q and µ factors, the 
coupled oscillator system dynamics can be given from (3-81) as  
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After substituting the expression of )(tVinj , Equation (3.99) can be rewritten as 
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where )(tVi is the output voltage, iα  is the free-running amplitude and iω  is the free-
running frequency of the ith oscillator. 
 
The output voltage )(tVi  of the ith oscillator can be expressed as 
 

)](exp[)()]}([exp{)()( tjtAttjtAtV iiiiii θϕω ⇒+=         (3.101) 
 
where )(tAi  is the amplitude, and )(tiϕ is the instantaneous phase of the ith oscillator. 
 
From (3.101) 
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From Equations (3.100) and (3.102), the system dynamics of the N-coupled oscillator can 
be described in terms of amplitude and phase dynamics as 
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Coupling Parameters  
 
For 0→ijλ  (Zero coupling): 
 
System dynamics of the N-coupled oscillators is reduced to dynamics of uncoupled free- 
running oscillators and can be given from Equations (3.103) and (3.104) as 
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Equation (3.105) and (3.106) are the time dynamics of the set of individual oscillators 
with amplitudes )(tAi  and frequencies iω  and can be considered as a generalized version 
of the Adler’s Equation [14], and the basis for the formulation of the system dynamics of 
the N-coupled oscillators. 
 
 
For 01 >>> ijλ (Weak coupling): 
 
The amplitude of the oscillators in the N-coupled oscillator system remains close to its 
free-running values ),( jjii AA αα ==  and the system dynamics of the N-coupled 
oscillators essentially governed and influenced by the phase dynamics as given in 
Equation (3.104).  
 
For 01 >>> ijλ , Equation (3.104) can be rewritten as 
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Synchronized Coupled Oscillator Frequency 
 
In this case )01( >>> ijλ  the oscillators in the N-coupled oscillator system may lock to a 
single frequency ωs.  
 
 
For )01( >>> ijλ , under the synchronization to a common frequency → sω , the value of 
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From Equation (3.107) and (3.108), the steady-state synchronized frequency sω is given 
by 
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Chapter 4 

Noise Analysis of the Oscillators 
 
 
4.1 Oscillator Noise  
 
Noise is associated with all the components of the oscillator circuit, however the major 
contribution of the noise in an oscillator is from the active device, which introduces AM 
(amplitude modulation) noise and PM (phase modulation) noise. The AM component of 
the noise is generally ignored because the gain limiting effects of the active device 
operating under saturation, allowing only little variation in the output amplitude due to 
the noise in comparison to PM noise component, which directly affects the frequency 
stability of the oscillator and creates noise sidebands. To have a better insight of the noise 
effects in the oscillator design, it is necessary to understand how the noise arises in a 
transistor. The designer has very limited control over the noise sources in a transistor, 
only being able to control the device selection and the operating bias point. However, 
using knowledge about how noise affects oscillator waveforms, the designer is able to 
substantially improve phase-noise performance by the optimization of the conduction 
angle and drive-level. 
 
Source of Noise 
 
There are mainly two types of noise sources in oscillator circuit:  broadband noise 
sources due to thermal and shot noise effects and the low-frequency noise source due to 
1/f (flicker noise effects) characteristics. The current flow in a transistor is not a 
continuous process but is made up of the diffusive flow of large number of discrete 
carriers and the motions of theses carriers are random and explains the noise 
phenomenon. The thermal fluctuation in the minority carrier flow and generation-
recombination processes in the semiconductor device generates thermal noise, shot noise, 
partition-noise, burst noise and 1/f noise.  
 
Figure 4-1(a) shows the equivalent schematic of the bipolar transistor in a grounded 
emitter configuration, and the high frequency noise of a silicon bipolar transistor in 
common emitter configuration can be modeled by using the three noise sources as shown 
in equivalent schematic (hybrid-π) in Figure 4-1(b).  
 
The emitter junction in this case is conductive and this generates shot noise on the 
emitter. The emitter current is divided in to a base (Ib) and a collector current (Ic) and 
both these currents generate shot noise. There is the collector reverse current (Icob), which 
also generates shot noise. The emitter, base and collector are made of semiconductor 
material and have finite value of resistance associated with them, which generates 
thermal noise.                 
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b)
Figure 4-1: a) π- configuration of the GE-bipolar transistor and b) π- configuration of CE-bipolar 
transistor with noise sources. 
 
The value of the base resistor is relatively high in comparison to resistance associated 
with emitter and collector, so the noise contribution of these resistors can be neglected. 
For noise analysis three sources are introduced in a noiseless transistor and these noise 
generators are due to fluctuation in DC bias current (ibn), DC collector current (icn) and 
thermal noise of the base resistance (vbn). In Silicon transistor the collector reverse 
current  (Icob) is very small and noise (icon) generated due to this can be neglected.  
 
For the evaluation of the noise performances, the signal-driving source should also be 
taken into consideration because its internal conductance generates noise and its 
susceptance affects the noise figure through noise tuning.  
 
The mean square values of the noise generator in a narrow frequency interval ∆f is given 
by 
 

fqIi bbn ∆= 22        (4.1) 
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fqIi ccn ∆= 22       (4.2) 
 

fqIi cobcon ∆= 22      (4.3) 
 

fkTrv bbn ∆= '2 4       (4.4) 
 

fkTRv ssn ∆= 42      (4.5) 
 
Ib, Ic and Icob are average DC current over ∆f noise bandwidth.  The noise power spectral 
densities due to noise sources is given as  
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'
br   and Rs are base and source resistance and Zs is the complex source impedance. 

 
 
Oscillator Noise Model Comments 
 
The phenomenon of phase noise generation in oscillators/VCOs has been the main focus 
of important research efforts, and it is still an open issue despite significant gains in 
practical experience and modern CAD tools for design. In the design of VCOs, 
minimizing the phase noise is the prime task and these objectives have been 
accomplished using empirical rules or numerical optimizations, and to this end, are often 
held as trade secrets by many manufacturers. The ability to achieve optimum phase noise 
performance is paramount in most RF design and the continued improvement of phase 
noise in oscillators is required for the efficient use of frequency spectrum. The degree to 
which an oscillator generates constant frequency throughout a specified period of time is 
defined as the frequency stability of the oscillator and the cause of the frequency 
instability is due to the presence of noise in the oscillator circuit that effectively 
modulates the signal, causing a change in frequency spectrum commonly known as phase 
noise. Phase noise and timing jitter are both measures of uncertainty in the output of an 
oscillator. Phase noise defines the frequency domain uncertainty of an oscillator, whereas 
timing jitter is a measure of oscillator uncertainty in the time domain.  
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The Equation for ideal sinusoidal oscillator in time domain is given by 

)2cos()( 0 ϕπ += tfAtVout      (4.10) 
 
where  A,  f0  and ϕ  are the amplitude, frequency and fixed phase of the oscillator. 
 
The Equation of the real oscillator in time domain is given by 
 

)](2cos[)()( 0 ttftAtVout ϕπ +=                        (4.11) 
 
where  A(t), f0 and ϕ(t) are the time variable-amplitude, frequency and time variable-
phase of the oscillator. 
 
Figure 4-2 (a) and (b) illustrate the frequency spectrum of ideal and real oscillators, and 
the frequency fluctuation corresponding to jitter in the time domain, which is random 
perturbation of the zero crossing of a periodic signal. 
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Fig 4-2: (a) Frequency spectrum of ideal and real oscillators and (b) Jitter in time domain relates to phase 
noise in the frequency domain. 
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From Equations (4.10) and (4.11), the fluctuation introduced by A(t) and ϕ(t) are 
functions of time and lead to sidebands around the center frequency f0. In the frequency 
domain the spectrum of the oscillator consists of Dirac-impulses at ± f0 
 
At present, three separate, but closely related, models of the oscillator phase noise exist. 
The first is proposed by Leeson [15], which is referred to as Leeson’s model, and the 
noise prediction using Leeson’s model is based on LTIV (Linear-time-invariant) 
properties of the oscillator, such as resonator Q, feedback gain, output power, and noise 
figure; the second is proposed by Lee and Hajimiri [16], based on time-varying properties 
of the oscillator RF current waveform; and the third is proposed by Rohde [11], based on 
the signal drive level and the conduction angle of the time-varying properties of the 
oscillator current waveform. 
 
Leeson’s Noise Model 
 
Leeson’s phase noise equation is given by  
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£(fm) = ratio of sideband power in a 1Hz bandwidth at fm to total power in dB  
fm = frequency offset from the carrier 
f0 = center frequency 
fc = flicker frequency 
QL = loaded Q of the tuned circuit 
Q0 = unloaded Q of the tuned circuit 
F = noise factor 
kT = 4.1 × 10-21 at 300 K (room temperature) 
Po = average power at oscillator output 
R =equivalent noise resistance of tuning diode 
K0 = oscillator voltage gain 
 
It is important to understand that the Leeson model is based on linear time invariant 
characteristics (LTIV) and is the best case since it assumes the tuned circuit filters out of 
all the harmonics.  In all practical cases, it is hard to predict what the operating Q and 
noise figure will be. The predictive power of the Leeson model is limited due to the 
following which is not known prior to measurement: the output power, the noise figure 
under large signal conditions, and the loaded Q. This classic paper [15] is still an 
extraordinarily good design guide.  The advantage of this approach is the fact that it is 
easy to understand and leads to a good approximation of the phase noise.  The drawback 
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of this approach is the fact that the values for the flicker noise contribution, which is a 
necessary input to the equation; the RF output power, the loaded Q, and the noise factor 
of the amplifier under large signal condition, are not known.   
 
Lee and Hajimiri’s Noise Model 
 
Lee and Hajimiri’s noise model [16] is based on the nonlinear time varying [NLTV] 
properties of the oscillator current waveform, and the phase noise analysis is given based 
on the effect of noise impulse on a periodic signal.  Figure 4-3 shows the noise signal in 
response of the injected impulse current at two different times, peak and zero crossing. 
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               c) 
 
Figure 4-3: a) LC oscillator excited by current pulse b) Impulse injected at peak of the oscillation signal 
and c) Impulse injected at zero crossing of the oscillation signal. 
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As illustrated in Figure 4-3, if an impulse is injected into the tuned circuit at the peak of 
the signal, it will cause maximum amplitude modulation and no phase modulation 
whereas; if an impulse is injected at the zero crossing of the signal, there will be no 
amplitude modulation but maximum phase modulation. If noise impulses are injected 
between zero crossing and the peak, there will be components of both phase and 
amplitude modulation. Variations in amplitude are generally ignored because they are 
limited by the gain control mechanism of the oscillator. Therefore, according to this 
theory, to obtain the minimal phase noise, special techniques have to be adopted so that 
any noise impulse should coincide in time with the peaks of the output voltage signal 
rather than at the zero crossing or in between of zero-crossing and peak. 
 
Lee and Hajimiri introduced an impulse sensitivity function (ISF) based on injected 
impulse, which is different for each topology of the oscillator.  It has its largest value 
when the most phase modulation occurs and has the smallest value when only amplitude 
modulation occurs. The calculation of the ISF is tedious and depends upon the topology 
of the oscillator. Based on this theory, phase noise equation is expressed as [16] 
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where  
 

fin ∆/2 = Noise power spectral density 
 f∆  = Noise bandwidth 
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x θ = Impulse Sensitivity function (ISF) 

nC =Fourier series coefficient 
0C = 0th order of the ISF (Fourier series coefficient) 

nθ =Phase of the nth harmonic 
 mf =Offset frequency from the carrier 
 f/1ω =Flicker corner frequency of the device 
 maxq = Maximum charge stored across the capacitor in the resonator. 
 
Equation (4.14) gives good results once all the data is known, but does not lead to exact 
design rules.  
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Rohde’s Noise Model 
 
The implication of Lee and Hajimiri’s theory is that the designer does not have much 
control in terms of the oscillator circuit component parameters over the timing of the 
noise impulse injected into the oscillator circuit. Rohde’s [11] proposed noise model, is 
based on the signal drive level and the conduction angle of the time-varying properties of 
the oscillator current waveform and the phase noise equation, is explicitly expressed in 
terms of the oscillator circuit parameters. Since the signal drive voltage produces an 
output current consisting of a series of current pulses, it’s shape and conduction angle 
depends upon the strength of the signal drive level. Figure 4-4 shows the typical noise 
current noisei  relative to the RF current ci  for a LC-Colpitts oscillator in presence of 
resonator signal voltage resonatorv .  
 

inoise

ic
IDC

vresonator

t

t

t

a)

b)

c)  
Figure 4-4: a) voltage across resonator b) oscillator RF current c) noise current. 

 
The natural operation of the oscillator will cause the current pulses to be centered on the 
negative peaks of the resonator tank voltages and the associated noise components 
depend on the conduction angle (width of the RF current pulse). From Rohde’s noise 

model, the conduction angle ϕ (
2

1
C

∝ϕ ) is inversely proportional to the feedback 

capacitor C2, and directly proportional to the drive-level x ( 2Cx ∝ ). The following 
example given in the Figure 4-5 illustrates the circuit diagram of the 100 MHz LC 
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Colpitts oscillator for giving insight into the relationship between the drive level, the 
current pulse, and the phase noise. As shown in Figure 4-4, the majority of noise current 
exists only during collector current pulses and the oscillator output current will be 
negligible or zero during the time between output current pulses, and therefore, aside 
from thermal noise, the noise sources, which depend on current such as shot, partition, 
and 1/f, exist only during the conducting angle of output current pulses. If the signal drive 
level is increased, the oscillator output current pulse will be narrower, and consequently, 
noise pulse during conduction angle also becomes narrowed, and thereby, has less PM 
noise contribution than the wider pulse. 
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Figure 4-5: Schematic of 100 MHz LC Colpitts oscillator. 
 
 
Table 4-1 shows the drive level for different values of C2 for a 100 MHz oscillator. 
 

 
Table 4-1   Drive level for different values of C2 for a 100MHz Oscillator. 

kT
qVx base=  

C1 C2 L Phase Noise
@10KHz 

offset 

Frequency 
 
 

3 500pF 50pF 80nH -98dBc/Hz 100MHz 
10 500pF 100pF 55nH -113dBc/Hz 100MHz 
15 500pF 150pF 47nH -125dBc/Hz 100MHz 
20 500pF 200pF 42nH -125dBc/Hz 100MHz 

 
The collector current of the circuit shown in the Figure 4-5 is plotted in Figure 4-6, 
becomes narrower as the drive level x increases, and the corresponding base voltage baseV  
swing increases as illustrated in Figure 4-7. The improvement in the phase noise, with 
respect to the drive level, is shown in Figure 4-8, and it is limited by the strong harmonic 
content due to the large signal drive level.  
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Figure 4-6: RF current as a function of the normalized drive level x for the circuit in Figure 4-5. 

 
 

 
Figure 4-7: RF voltage Vbe across the base emitter as a function of the normalized drive level x. 

 
 

 
Figure 4-8: Phase noise as a function of the normalized drive level x for the circuit in Figure 4-5. 
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Based on this theory, phase noise equation is expressed as (Appendix C), 
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p

C
C

Y
Y















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


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2

1
21 ; Values of p and q depends upon the drive level [11] 

+
21Y , +

11Y = large signal [Y] parameter of the active device 
Kf  = flicker noise coefficient 
AF  = flicker noise exponent 
£(ω)  =  ratio of sideband power in a 1Hz BW at ω  to total power in dB  
ω   =  frequency offset from the carrier 
ω0  = center frequency 
QL  =  loaded Q of the tuned circuit 
kT  =  4.1 × 10-21 at 300 K (room temperature) 
R  = equivalent loss resistance of the tuned resonator circuit 
Ic =  RF collector current 
Ib =  RF base current 
Vcc =  RF collector voltage 
C1, C2 = feedback capacitor as shown in Figure 4-5. 

 
Equation (4.15) gives better insight and apriori estimation of the phase noise in terms of 
the operating condition and circuit parameters. However, all three noise models discuss 
and point out about the free-running oscillator and do not explain the phase noise 
improvement characteristics in the mutually coupled oscillator systems; therefore, 
suggesting the need for noise analysis for coupled oscillators/VCOs.  
 
4.2 Noise Analysis of Uncoupled Oscillators 
 
The following noise analysis for the oscillator is based on the approach [24], is an attempt 
to introduce the concept of the reduction in the phase noise in the mutually coupled 
oscillator systems. The purpose of this section is to provide the basic noise equation for 
the uncoupled free-running oscillator/VCO and the same can be extended for the 
mutually coupled oscillator and N-coupled oscillator systems. 
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Figure 4-9 shows the negative resistance series tuned model of the oscillator; Zd is the 
active device impedance plus loss resistance associated with the oscillator circuit; Zr is 
the resonator impedance and en(t) is the noise perturbation. 
 
 

en(t)

Zr(ω)
Zd(A,ω)

i(t)

-Rn

RL

L

C

Vd(t)
Vr(t)

 
 

Figure 4-9:  Negative resistance series tuned model of oscillator. 
 

From the Kirchoff voltage law (KVL), the circuit equation of the Figure 4-9 is given by 
nonhomogeneous differential equation as  
 

)()(][)(1)( tetiRRdtti
Ct

tiL nnL =−++
∂

∂
∫    (4.16) 

 
defining )(te as 

)( 0)()( ϕω ∆+−= tj
n etete       (4.17) 

 
 )]()([)()()()( 00 tVtVeetetetVtV rd

tjtj
nnrd +=⇒=+ −− ωω   (4.18) 

 
Equation (4.18) can be expressed in the frequency domain as 

 
)(),()()()( ωωωωω IAZeVV dr ==+    (4.19) 

 
The circuit impedance of the Figure 4-9 can be given by 
 

)(),(),( ωωω rd ZAZAZ +=      (4.20) 
 
Assuming the device impedance is a function of the amplitude of the RF current, but has 
less variation with frequency and is assumed to be frequency independent to the first 
order, Equation (4.20) can be rewritten as 
 

)()(),( ωω rd ZAZAZ +=      (4.21) 
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defining, 
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where α and β are defined as the phase associated with resonator and device circuit 
parameters. 
 
In presence of the noise perturbation en(t), the oscillator current i(t) in Figure 4-9 can be 
expressed as 
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where 0ω is free-running frequency, )(tA∆  and )(tϕ∆ are the fluctuations in amplitude and 
phase of the oscillator. 
 
The Fourier transform of i(t) is given from time domain Equation (4.22) as 
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The Fourier transform of A(t) is given by 
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Voltage across rZ is given by 
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Expanding Equation (4.26) around ω0 [28], 
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From Equations (4.25) and (4.27), 
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similarly, 
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From Equation (4.23), 
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From Equations (4.16), (4.17), (4.28), (4.29) and (4.30), 
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For the case of free-running noiseless oscillator 0)( →ten , Equation (4.31) can be 
rewritten as 
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At a stable point of operation the amplitude of the oscillator is constant and the phase 

difference does not change with the time i.e. 0)]([ =∆
dt

td ϕ  and 0)( =∆ tA .  

 
From (4.20), the condition for oscillation, the loss resistance is compensated by the 
negative resistance of the active device at resonance frequency 0ωω = , 0),( 00 →AZ ω , 
and Equation (4.32) is reduced to 
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From (4.17) and (4.31),  
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At the oscillator resonance frequency, Equation (4.34) can be expressed as 
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Now let us consider the noise perturbation )(te  being a narrow-band noise signal and can 
be decomposed into quadrature components )(1 ten  and )(2 ten , and for simplification in 
analysis we assumed they are uncorrelated as shown in Figure 4-10. 
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)(2 ten are orthogonal functions, and )(1 te and )(2 te are slowly varying function of time. 
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Figure 4-10: Vector presentation of the oscillator signal and its modulation by the noise signal en1 and en2. 
 
From (4.36), 
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Considering, )()( 2
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From (4.36), the orthogonal components of the noise perturbation can be given by 
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From (4.41) and (4.42) 
 

]cos)(sin)([)sin()]([)]([
210 00

ααβαω tetetAZA
dt

tAdZ nnA −=−∆+∆ &&   (4.43) 

 

]sin)(cos)([)(cos)]([)]([
2100 00

ααβαϕ
ω

tetestAAZ
dt

tdZA nnA +=−∆+∆ &&   (4.44) 

 

In frequency domain, operator ωj
dt
d →  and noise spectral density due to amplitude and 

phase is obtained from Equations  (4.43) and (4.44) as 
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At near carrier frequency (ω →0), Equation (4.46) is reduced to 
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where ω is the spacing from the center frequency. 
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4.3 Noise Analysis of Mutually Coupled Oscillators  
 
Now we want to show a simple oscillator model that can be used to give a good 
explanation for the relative noise reduction in the mutually coupled oscillator systems and 
to compare with the experimental results [Figure 8-12].  
 
Figure 4-11 shows the two identical mutually coupled oscillators where β12 and β21 are 
the coupling coefficients. 
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21β

12β

en1(t) en2(t)

 
 

Figure 4-11: Two identical coupled oscillators coupled through arbitrary coupling network. 
 
 
Although the effect of noise in coupled oscillator system has been discussed previously 
[18-28], it was not in a convenient form for explaining the improvement in the phase 
noise performance of the coupled oscillator system. 
 
 Figure 4-12 shows the equivalent representation of the Figure 4-11, where einj(t) 
accounts for the mutual interaction and coupling with the adjacent oscillator. 
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Figure 4-12: Equivalent representation of the Figure 4-11 

 
 
The circuit equation of the Figure 4-12 is given by 
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The RF current i(t)  is  
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Equation (4.49) is a nonhomogeneous differential equation. After substituting the values 

of 
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tdi )(  and dtti∫ )( , and neglecting the higher order harmonic terms, it can be rewritten 
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Defining  
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Following [24], the equations above are multiplied with )](sin[ 1 tt ϕω + or )](cos[ 1 tt ϕω +  
and integrated over one period of the oscillation cycle (from t-T0 to t), which will give an 
approximate differential equation for phase )(tϕ and amplitude A(t) as  
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From (4.54) 
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where 
A

tRR
I
R nL

∆
−

=
∆
∆=

])([γ  

 
)(tRn  is the average negative resistance over one cycle and is defined as  
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Since magnitude of the higher harmonics is not significant, subscript of )(tϕ and )(tA are 
dropped in the Equations (4.53), (4.54) and (4.55).    
 
In Equation (4.54), 0)(])([ →− tItRR nL  gives the intersection of [ ])(tRn and RL and this 
value is defined as A0 which is the minimum value of the current needed for steady-state 
sustained oscillation condition. Figure 4-13 shows the plot of the nonlinear negative 
resistance as a function of the amplitude of the RF current.  
 
From Figure 4-13, I∆γ can be found from the intersection on vertical axis by drawing the 
tangential line on [ )(tRn ] at I = A0 and  | I∆ | decreases exponentially with time for γ>0. 
Hence, A0 represents the stable operating point and on the other hand, if [ )(tRn ] intersects 
RL from the other side for γ<0 then | I∆ | grows indefinitely with time.  Such an operating 
point does not support stable operation [24]. 
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Figure 4-13:  Plot of negative resistance of [ )(tRn ] versus amplitude of current I(t). 

  
Defining n1(t) and n2(t) for the uncoupled oscillator as 
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The time average of the square of the [n1(t)] and [n2(t)]  are given  from Equations (4.57) 
and (4.58) as 
 

 )(2)( 22
1 tetn n=      (4.59) 

 
)(2)( 22

2 tetn n=       (4.60) 
 
From (4.57) and (4.58), n1(t) and n2(t)  are orthogonal functions and the correlation 
between n1(t) and n2(t)  is defined as→ 0)()( 21 =∗ tntn       
   
Defining, )()( 0 tt ϕϕϕ ∆+=  and )()( 0 tAAtA ∆+= ; where )(tϕ∆ and )(tA∆ are phase and 
amplitude fluctuations of the RF output current. 
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Assuming the phase and current fluctuations, )(tϕ∆ and )(tA∆ are orthogonal functions, 
therefore the correlation is given by 
 

0)()( =∆∗∆ tAtϕ      (4.61) 
 
 
Uncoupled free-running oscillator: 
 
For uncoupled free-running oscillator (ω →ω0), Equations (4.53) and (4.55) can be given 
as 
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At steady-state condition (ω →ω0), the phase dynamics is given from Equations (4.59) 
and (4.62) as 
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The PM noise spectral density can be expressed from (4.62) as 
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At steady-state condition (ω →ω0), the amplitude dynamics is given from (4.63) as, 
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The amplitude of the RF current can be written as of Equation 4.22, where A0 represents 
the stable operating point of the free-running oscillator; Equation (4.66) can be given by 
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 62

)(2 tA∆  is negligible in comparison with A0 , its value can be assumed  to be zero for 
simplification in the analysis and the Equation (4.67) can be rewritten as 
 

)()()]([2 20 tnAtAtA
dt
dL =∆+∆ γ     (4.68) 

 
The AM noise spectral density in the frequency domain can be expressed from (4.68) as 
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Mutually Coupled Oscillator: 

 
In the case of free-running oscillator phase ϕ could take almost any value whereas, under 
mutually coupled condition the oscillator is synchronized with the injected signal from 
the adjacent oscillator and phase ϕ should stay in the vicinity of ϕ0 because of the 
restoring force due to the injected signal einj(t) from the adjacent neighboring oscillator. 
 
Defining  
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For ω →ω0, Equation (4.53) is reduced to 
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where 0)( AtA ≈  
 
For ω →ω0, Equation (4.55) is reduced to 
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From (4.71) and (4.73), phase and amplitude noise spectral density is given by [68] 
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From (4.75), 
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An attempt has been made to calculate the noise of the two identical mutually coupled 
oscillators (without considering the 1/f noise in the oscillator).  
 
Equations (4.65) and (4.74) show the relative improvement of the phase noise when the 
oscillator is mutually coupled. It can be seen from Equations (4.69) and (4.76) that the 
AM noise of the coupled oscillator is considerably increased. 
 
However, in practical applications, the increase of the envelope fluctuation associated 
with the amplitude is controlled with the gain-limiting active device. Thus, the effect of 
the AM noise is small in comparison to the effect of phase noise.  
 
 
4.4 Noise Analysis of N-Coupled Oscillators 
 
Equation (4.74) shows the relative phase noise improvement for the two identical 
mutually coupled oscillators. The purpose of this analysis is to show the relative noise 
improvement in the N-coupled oscillators system coupled through the arbitrary N port-
coupling network. The analytical expression shows that the total phase noise of the 
coupled oscillator system is reduced compared to that of a single free-running oscillator 
in direct proportion to the number of arrays in the oscillators, provided that the coupling 
network is designed and optimized properly. The coupling configuration of the N-
coupled oscillator system is shown in Figure 4-14 as a) nearest neighbor unilateral 
coupling b) nearest neighbor bilateral coupling and c) global coupling [68].  
 
Figure 4-15 shows the parallel negative conductance oscillator model noise equivalent 
admittance 

noiseY  corresponding to the noise associated with the oscillator circuit.  Noisy 
oscillator can be described either through the addition of equivalent noise admittance or 
an equivalent noise-current generator [18]. 
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Osc# N-2

Osc#1 Osc#2 Osc#3 Osc# N-1 Osc#N
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Osc# N-2

(b) Nearest neighbor bilateral coupling

(a) Nearest neighbor unilateral coupling

Osc#1

Osc#2

Osc#3

Osc# N/2

Osc# N-1

Osc#N

(c) Global coupling

 
 

Figure 4-14: a) Nearest neighbor unilateral coupling b) Nearest neighbor bilateral coupling and c) Global 
coupling. 
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L2C -Gd(A) Vout(t)Ynoise GL

 
                                       

Figure 4-15: Oscillator model with noise admittance. 
 
The normalized noise admittance nY with respect to load admittance GL is given by 
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where   GL : Oscillator load admittance in the free-running state 

 nG : In-phase component of noise source 
 nB : Quadrature component of noise source.  

 
For an uncoupled free-running oscillator, nG  corresponds to the oscillator amplitude 
fluctuations and nB  corresponds to the phase fluctuations.  
 
The amplitude and phase dynamics of each oscillator in the N-coupled oscillators system 
are given from Equations (3.103) and (3.104) as 
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where )(tAi , )(tiθ , iω  and iQ  are the amplitude, phase, free-running frequency, and Q 
factor of the ith oscillator, respectively, and ijβ  and ijϕ  are the coupling parameters 
between the ith and  jth oscillators.  
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Defining  
)()( tAAtA iii ∆+= &  and )()( tt iii θθθ ∆+= &      (4.80) 

 
where ],[ θ&&A are the steady-state solutions of the N-coupled oscillators coupling and 

)](),([ ttA ii θ∆∆  are the amplitude and phase fluctuations of the ith oscillator. Assuming 
fluctuations→ )](),([ ttA ii θ∆∆  are small in comparisons to the steady state solutions 
→ ],[ θ&&A , for simplification of the noise analysis, Equations (4.78) and (4.79) are 
linearized around ),( θ&&A  and can be expressed as  
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In the case of N identical oscillators coupled through the N port-coupling network of 

πϕ 2=ij , and transforming time dynamics to the frequency domain analysis by using 
Fourier transformation, Equations (4.81) and (4.82) can be given by 
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where ω is the noise offset frequency from the carrier, µI = µ and Qi = Q for N identical 
coupled oscillator. 
 
From Equation (4.83), the second term of the RHS represents AM noise transformed 
from all the ij ≠ oscillators to the AM noise of the ith oscillator as 
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and the third term is the conversion of PM noise to AM noise as 
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Similarly, from Equation (4.84), the first term of the RHS (right hand side) represents 
AM noise transformed to PM noise as 
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and the second term is conversion of PM to PM noise as 
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Equations (4.83) and (4.84) can be expressed in the following concise matrix format [18]: 
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where )(ωnGA&  and )(ωnB  is the in-phase or AM and quadrature or PM noise source 
vector of the order N×1 respectively. 
 
The influence of the PM-to-PM conversion is greater over the other terms. To simplify 
the analysis, contributions from the conversion of AM to AM, PM to AM and AM to PM 
noise conversion are considered negligible.  
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Assuming that all the steady-state amplitudes are identical )( ji AA && = , PM-to-PM noise 
conversion is considered for deriving the phase noise equation of the N-coupled 
oscillators. Therefore, Equation (4.84) is rewritten as 
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where  
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Equation (4.86) can be expressed in matrix form as  

 
 

])([])(][[

)(
)(

)(
)(

)]([
)]([[

)]([
)]([

][

1

2

1

1

2

1

ωωθ

ω
ω

ω
ω

ωθ
ωθ

ωθ
ωθ

n

nN

N

n

n

N

N

BC

B
B

B
B

C =∆⇒























=























∆
∆

∆
∆

−−

MM   (4.87) 

 
 
where 























=























∆
∆

∆
∆

=∆

−−

)(
)(

)(
)(

])([,

)]([
)]([[

)]([
)]([

])([

1

2

1

1

2

1

ω
ω

ω
ω

ω

ωθ
ωθ

ωθ
ωθ

ωθ

nN

N

n

n

n

N

N

B
B

B
B

B MM  

 
 
The matrix ][C  represents the arbitrary coupling topology of the N-coupled oscillators 
system.  
The phase fluctuations of the individual oscillator can be given from Equation (4.87) as 
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Defining, ∑
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From Equation (4.88), 
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Noise power spectral density of the ith oscillator is calculated by taking ensemble average 
of the phase fluctuation of the ith oscillator as 
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where 222 )()()( ωωω nnjni BBB == , assuming identical noise power spectral density 
from the N identical oscillator noise sources.  
 
From Equation (4.92), the phase noise of the ith oscillator is expressed by the sum of the 
square magnitude of the elements in the ith row of the matrix ][P . 
 
The output of the N identical coupled oscillators system synchronized to a common 
frequency ω0 can be expressed as 
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Assuming the small phase fluctuations, Equation (4.93) can be rewritten as  
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From Equations (4.89) and (4.95),  
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From (4.92) and (4.95), the total phase noise of the N-coupled oscillators is given by 
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where  
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ijp  is the arbitrary coupling parameter and can be determined based on 

 the coupling topology, which is discussed in Appendix A. 
 
 
From Equations (4.92) and (4.96), the total phase noise of the N-coupled oscillators in 
terms of the single individual uncoupled free-running oscillator is given by [68] 
 

22 )(1)( ωθωθ itotal N
∆=∆     (4.97) 

 
Equation (4.97) shows the relative phase noise improvement for N-coupled oscillators 
system, which becomes 1/N of that of the individual single uncoupled free-running 
oscillator.  
 
The relative noise of the N identical coupled oscillators with respect to the free- running 
uncoupled oscillator has been calculated done (without considering the 1/f noise in the 
oscillator). 
 
 For better insight into the noise analysis for the N-coupled oscillator, refer to the  
coupling topology discussed in the Appendix A. 
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Chapter 5 

Couple Mode Oscillator Topology 
 

 
5.1 N-Push Coupled Mode Oscillator 
 
The increasing demand for more bandwidth to support mobile communication 
applications has resulted in the demand for higher operating frequencies in the 
marketplace.  A high frequency signal can be generated either based on an oscillator 
operating at a fundamental frequency or a harmonic oscillator. A typical oscillator 
operating at the fundamental frequency suffers from a low Q-factor, insufficient device 
gain, and higher phase noise at a high frequency of operation. The cascade structure and 
the parallel structure are the two configurations known for the harmonic oscillators. The 
cascade structure supports second-harmonic oscillation based on frequency doubling. On 
the other hand, the parallel structure supports the Nth harmonic frequency oscillation (N-
push oscillator topology: 2-push/push-push, triple-push, quadruple-push…N-push) [31-
36] based on the coupled oscillator approach. The frequency doubler and other means of 
up-conversion may provide a practical and quick solution to generate high frequency 
signals from the oscillators operating at a lower frequency, but it may also introduce 
distortions and have poor phase noise performances. The purpose of this chapter is to 
provide the insight and working principles of the oscillators/VCOs based on the N-push 
coupled mode topology. 
 
The advantage of the N-push coupled mode topology is the extended frequency 
generation capabilities of the transistor and the reduction of the phase noise in 
comparison with the single oscillator by the factor of N, where N is the number of 
oscillator sub-circuits as given in Equation (4.97). A further advantage of N-Push design 
approach is that the load pulling is suppressed effectively due to the separation of internal 
and external frequency. The drawback of N-push/push-push oscillator is complicated 
design that requires large signal analysis to verify the odd-mode operation of the sub-
circuits, and the bias network has to be properly designed with respect to two critical 
frequency associated with the even and odd mode of operations.  
 
5.2  2-Push/Push-Push Oscillator 
 
The push-push configuration is generally used for implementing a second-harmonic 
oscillator in which two identical oscillators are arranged anti-symmetrically.  By 
combining the two out-of-phase oscillation signals, the fundamental frequency 
components are canceled out, and the second-harmonic components are enhanced and 
added constructively. As a push-push oscillator operates only at half the output frequency 
[1], a higher resonator Q level can be reached and low phase noise characteristic can be 
achieved. 
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Furthermore, the noise sources of the two individual oscillators are uncorrelated, while 
the carrier powers add in phase. Therefore, there is a noise reduction of the phase noise in 
a push-push oscillator of 9 dB compared with the fundamental frequency of the 
individual oscillator composing the push-push topologies. Figure 5-1 shows the block 
diagram of the push-push topology. 
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Oscillator2

   Phase
Coupling
Network

  Output
Network

V1(t)

V2(t)

Vout(t)

RLoad

I1(t)

I2(t)
 

Figure 5-1: Block diagram of the push-push topology. 
 
 
The time varying signals of the two individual oscillators are given by 
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From Equation (3.71), the phase condition for a mutually locked coupled oscillator in 
push-push topology is πω =∆t0 . Therefore, Equation (5.4) can be rewritten as 
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Equation (5.5) shows the cancellation of all the odd harmonics, especially the 
fundamental signal, where the even harmonics are added constructively. The higher order 
harmonics (4ω0, 6ω0, 8ω0…) are filtered out.  
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Noise Analysis  
 
The following noise analysis is based on the pushing-factor [64, 68]. It is an attempt to 
introduce the concept of relative improvement in phase noise with respect to circuit 
configuration such as the fundamental oscillator and the push-push topologies. Figure 5-2 
shows the Colpitts configuration of the oscillator circuit for the noise analysis. 
 

 
Figure 5-2: Colpitts oscillator with base-lead inductances (Lp) and package capacitance (Cp). 

 
The expression of input impedance Zin of the circuit shown in the Figure 5-2 is given as 
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where Lp is the base lead-inductance, Cp is the package capacitance, and Y21 is the large 
signal Y-parameter of the device. 
 
Figure 5-2 can be equivalently represented in terms of a negative conductance and 
capacitance, which is a nonlinear function of the oscillator RF signal amplitude V0, and is 
shown in Figure 5-3. 
 

.
Cpr R Lpr

Resonator Device

V0 -Gd
Cd ∆vn

YINYR

 
Figure 5-3: Equivalent model of the oscillator shown in Figure 5-2. 

 
The input admittance of the circuit shown in Figure 5-3 is defined by 
 

ddIN CjGY ω+−=      (5.7) 
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where  
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In this analysis, the effect of the active device LF (low-frequency) noise on the carrier 
frequency is calculated by considering the frequency sensitivity as a small-signal noise 
perturbation near the nonlinear operating point of the oscillator circuit. The pushing 
factor is defined as [64,68] 
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where ∆vn is the input noise voltage perturbation (across the base-emitter junction of the 
bipolar transistor or gate-source junction of the FETs) and ∆fn is the oscillator noise 

frequency (square root of the frequency noise spectral density: 2
nn ff ∆=∆ ). 

From Figure 5-3, the variation of the capacitance Cd due to the LF (low frequency) noise 
perturbation ∆vn gives rise to a frequency and phase deviation of the oscillator frequency. 
 
From Equation (5.10), the pushing factor of the oscillator can be described as 
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From (5.11), the pushing factor at fundamental frequency f0  can be given by 
 

[ ] 







∂
∂













+



==

n

d

dpresor

resop
ffPF v

C
CRQ

R
K

)(22
1 0

0 ω
ωω

π
   (5.12) 



 

 75

Considering the same quality factor of the resonator at half of the operating frequency, 
f0/2, the pushing factor of the oscillator circuit at f0/2 can be given by 
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Assuming that the factor 
n

d

v
C

∂
∂ is independent of the operating frequency of the oscillator, 

the ratio of the pushing factor at f0 and f0/2 is given from Equations (5.12) and (5.13) as 
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Equation (5.14) is valid under the assumption that the resonator has a reasonably high Q 
factor, and the imaginary parts of the active device admittance are negligible with respect 
to the resonator susceptance. Therefore, dp CC >  and dPresoreso CRQ ω> .  
 
The single sideband (SSB) phase noise can be given in terms of the pushing-factor as 
[68] 
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From (5.15),  
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From Equation (5.16), phase noise is worsened by 12dB/octave. This figure could be 
even larger because the value is calculated based on the simplified oscillator model. For 
real applications, the resonator and the LF noise characteristics of the active device 
degrade and become worse when they operate at twice the frequency.  
 
Push-Push Configuration 
 
Figure 5-4 shows the two identical oscillator circuits coupled through the arbitrary 
coupling network in the push-push configuration. The evaluation of pushing factor in the 
push-push configuration is carried out by considering uncorrelated noise voltage 
perturbation, ∆vn1 and ∆vn2, associated with the two identical oscillator circuits, as shown 
in Figure 5-4.  
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From [38-40], due to the symmetry of the push-push oscillator topology, two modes 
(common and differential) exist, and the corresponding pushing factor is calculated in 
terms of the common mode (CM) and differential mode (DM) pushing factors. 
 

Cp .
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Rp Lp

Resonator Device

Gd
Cd

∆vn1

Rp Lp .

Device

Gd
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∆vn2

Resonator
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-
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- +
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[Ye][Ye]

[Y0]

a) Push-Push Configuration

∆vn ∆vn

∆vn ∆vn

b) Common mode (CM) : ∆vn1=∆vn2=∆vn

c) Differential mode (DM) : ∆vn1= -∆vn2= ∆vn  
Figure 5-4: Two identical oscillator circuits coupled through the arbitrary coupling network in the push-
push configuration. (a) Push-Push configuration; (b) common mode (CM); (c) differential mode (DM) 
 
The frequency noise spectral density for the push-push topology can be given by 
 

[ ] ( )22 ][][ DMnCMnpushpushn fff ∆+∆=∆ −     (5.17) 
 

[ ] [ ] [ ] ( )DMnCMnDMPFCMPFDMnDMPFDMnCMPFpushpushn vvKKvKvKf ][][][][2][][ 22222 ∆∗∆+∆+∆=∆ −  (5.18) 
 
where CMPFK ][  and DMPFK ][  are the common and differential mode pushing factors, and 

CMnv ][∆  and DMnv ][∆  are the common and differential mode noise perturbations. 
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The effect of the differential noise perturbation, due to the symmetry for the push-push 
topology, produces insignificant variation in the oscillating frequency, so 0][ →DMPFK . 
 
The common mode (CM) input noise perturbation of the circuit shown in Figure 5-4, can 
be given as          
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Since the input noise voltage perturbations ∆vn1 and ∆vn2 associated with the two identical 
active devices are uncorrelated, 0][ 21 =∆∗∆ nn vv .  
 
Because the active devices (transistors) for the two identical oscillator circuits in push-
push topology operate under the same working conditions, their input noise voltage 
perturbation can be described by the same statistic and is given as ][][ 2
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From Equation (5.19), 
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From Equation (5.18), 
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From Equations (5.10), (5.11) and (5.21), 
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Equation (5.22) shows a 3dB improvement in phase noise with respect to the individual 
oscillator oscillating at half the frequency of the push-push frequency. The analysis 
agrees with the general equation of the N-coupled oscillator described by Equation 
(4.97). 
 
The improvement in the phase noise of the push-push topology, referring to one 
individual oscillator, which oscillates at fundamental frequency f0, can be expressed as 
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From Equations (5.10) and (5.15), 
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Since the noise sources of the two individual oscillators are uncorrelated, while the 
carrier powers add in phase, and therefore, a reduction of the phase noise in a push-push 
oscillator of 9 dB compared with the fundamental frequency of the individual oscillator 
composing push-push topologies. 
 
From Equation (5.24), the push-push topology gives a 9 dB improvement in the phase 
noise compared to the fundamental frequency of the individual oscillator oscillating at f0, 
twice the designed oscillating frequency of f0/2.  
 
 
Example 
 
Figure 5-5 shows the schematic of the push-push oscillator with two identical oscillators. 
It consists of the two individual oscillator circuits, osc #1 and osc #2, which oscillates at 
half (f0/2) of  the push-push frequency (f0). The individual oscillator circuit corresponding 
to the half-resonator oscillates at f0/2 (1000 MHz) and is used as a starting point to verify 
the above noise analysis with respect to the push-push configuration.  
 
The circuit shown in the Figure 5-5, is fabricated on 32 mil thickness Roger substrate of 
dielectric constant 3.38 and loss tangent 2.7⋅10-4. As shown in Figure 5-5, the resonator is 
equivalently represented by the parallel RLC model (measured data at self-resonance 
frequency of 1000 MHz as RP=12000Ω, LP=5.2nH, CP= 4.7pF), which acts as a resonator 
and also provides the required phase shift of 180 degree for the synchronization.  
 
Figures 5-6, 5-7, and 5-8, show the simulated (Ansoft Designer) plot of the RF base 
current, phase noise, and output power for the push-push configuration (which is phase 
shifted by 180 degree in a mutually synchronized condition: f0=2000MHz). 
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Figure 5-5: Two identical oscillator circuits coupled through the resonator in the push-push configuration. 
 
 
 

 
Figure 5-6: Simulated plot of the RF base current for the push-push configuration. 
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Figure 5-7: Simulated phase noise plot for the push-push configuration. 

 
 
 

 
Figure 5-8: Simulated plot of the output power for the push-push configuration. 
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Figure 5-9 shows the schematic of the uncoupled individual oscillator circuit osc #1 for a 
comparative analysis of performance. The circuit is fabricated on 32 mil thickness Roger 
substrate of dielectric constant 3.38 and loss tangent 2.7⋅10-4.  
 
As shown in the Figure 5-9, the resonator is equivalently represented by a parallel RLC 
model (measured data at self-resonance frequency of 2000 MHz as RP =12000 Ω, LP = 
1.24 nH, CP = 4.7 pF).  
 
The oscillator circuit osc #1 as shown in the Figure 5-9, oscillates at f0 (2000 MHz) and is 
used as a reference for the comparative noise analysis with respect to the push-push 
configuration. 
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Figure 5-9: schematic of the uncoupled individual oscillator circuit Osc #1  (f0= 2000MHz) 
 
Figures 5-10 and 5-11 show the simulated (Ansoft Designer) plot of the phase noise and 
the output power for the individual uncoupled oscillator circuit shown in Figure 5-9.  
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Figure 5-10: Simulated phase noise plot for the oscillator circuit shown in Figure 5-9. 
 
 
 

 
Figure 5-11: Simulated plot of the output power for the oscillator circuit shown in Figure 5-9. 

 
From Figures 5-7 and 5-10, the improvement of the phase noise for the push-push 
topology at 10 KHz offset from the carrier is 8.46 dB, which agrees with the analytical 
expression given within 1 dB in Equation 5.24. 
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Figure 5-12 shows the measured phase noise plot for the push-push (f0 = 2000 MHz) 
configuration and the uncoupled individual oscillator circuit (f0 = 2000 MHz), shown in 
the Figures 5-5 and 5-9. The measured phase noise for the push-push configuration and 
the uncoupled individual oscillator at 10 kHz offset from the carrier is –113 dBc/Hz and 
–105 dBc/Hz, respectively.  
 
The relative improvement in the measured phase noise of the push-push configuration, 
with respect to fundamental frequency of the oscillator in the push-push topology, is 8 
dB, and agrees with the simulated (Ansoft Designer) and analytical values within 1 dB.  
 
The discrepancy of 1 dB of the measured phase noise from the analytical value, Equation 
(5.23), can be attributed to the package parasitics, dynamic loaded Q, and tolerances of 
the component values of the two uncoupled individual oscillator circuits. 
 

 
 
Figure 5-12:Measured phase noise plot for the push-push (f0=2000 MHz) configuration and the uncoupled 
individual oscillator (f0 =2000 MHz) circuit, as shown in Figures 5-5 and 5-9. 
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Chapter 6 
Circuit and Device Characterization 

 
 
6.1 Transistor Models 
 
For the design of oscillators/VCOs, we are looking at members of active devices (bipolar 
and field-effect transistor), which are used to generate negative resistance in the 
oscillators/VCOs circuits. In the case of the bipolar transistor, conventional Si transistors 
are manufactured with an fT up to 25 GHz, while SiGe transistors take over from this 
frequency range and are available up to 100 GHz if used as part of an RFIC. Their 
cousins, the heterojunction bipolar transistors (HBTs), based on GaAs technology, can 
achieve similar cut-off frequencies, but this technology is much more expensive for 
medium to large integrated circuits, and having higher flicker corner frequency noise.  
SiGe transistors have much lower flicker corner frequency noise and lower breakdown 
voltages (typically 2-3V).  However, because of the losses of the transmission line in 
practical circuits, there is not much difference between HBT and SiGe oscillator noise as 
fT is the same. 
 
There is a similar competing situation between Bi-CMOS transistors implemented in a 
0.12-micron technology and with GaAs FETs, specifically P-HEMTs.  The GaAs FETs 
have a well-established performance with good models, and the Bi-CMOS transistors are 
currently being investigated as to what models are the best. Also, there is the 1/f noise 
problem, specifically, with GaAs FETs more than with MOS transistors. 
 
There are two types of models:  1) The models which describe DC and RF behavior are 
SPICE-type models, which means they can be incorporated in a frequency/time domain 
simulator and give a reasonable agreement with measured data, both in the DC as well as 
in the RF areas, and 2) linear RF microwave models based on equivalent circuits.  
 
The use of linear models to predict oscillator behavior suffers from many limitations, 
which makes it difficult to accurately predict operating frequency and power. As attempts 
are made to improve oscillator performance by setting operating points further into 
nonlinear regimes, the ability to model these effects become critical since saturation can 
influence frequency of operation, power output, and efficiency. Therefore, designing 
oscillators/VCOs requires a more complete understanding of how the nonlinear aspects of 
the oscillator affect its operation. These models are used to describe the behavior of the 
transistors over a wide frequency, temperature and bias range, and their accuracy depends 
partially on the model.  The most important factors are the input parameters used for the 
model.  They are obtained from a process called parameter extraction. A successful path 
for generating model parameters has been the extraction of DC parameters and RF 
parameters such S-parameter sets under various bias and frequency conditions and curve 
fit them with analytic equations against this measured data [48-51].    



 

 85

Bipolar Transistors 
 
For the purpose of this discussion, it should be assumed that the designers have the ability 
to do their own parameter extraction or receive this data from the transistor manufacturer, 
or in the case of a foundry, as part of the foundry service. Table 6-1 shows the measured 
data of BFP 520 provided from Infineon to further characterize the transistor. 

 

SPICE parameters (Gummel- Poon Model, Berkley-Spice) 

Parameters BFP 520 Parameters BFP 520 Package BFP 520 
IS 15E-18 MJC 0.236 CCB 6.9fF 
BF 235 XCJC 1 CCE 134fF 
NF 1 CJS 0E-15 CBE 136fF 

VAF 25 VJS 0.75 LBI 0.47nH 
IKF 0.4 MJS 0.333 LEI 0.23nH 
NE 2 TF 1.7E-12 LCI 0.56nH 
BR 1.5 XTF 10 LBO 0.53nH 
NR 1 VTF 5 LCO 0.58nH 

VAR 2 ITF 0.7 LEO 0.05nH 
IKR 0.01 PTF 50    
ISC 20E-15 TR 50E-9   
NC 2 EG 1.11   
RE 0.6 XTB -0.25   
RB 11 XTI 0.035   

RBM 7.5 TNOM 298K   
FC 0.5 ISE 25E-15   
RC 7.6 VJE 0.958   
CJE 235E-15 MJE 0.335   
CJC 93E-15 VJC 0.661   

 
Table 6-1: SPICE parameters and package parameters of the Infineon transistor BFP520. 

 
Large Signal Measurements 
 
While the datasheets provided by the manufacturer are given under small signal 
conditions, small signal conditions mean power levels in the vicinity of –40 dBm.  It is 
important to measure the device in the actual environments and bias conditions for the 
validation of the oscillators/VCOs circuits. The network analyzers used to measure these 
S-parameters, have bias tees built-in and have 90 dB dynamic ranges.  Figure 6-1 shows 
the test fixture, which was generated to measure the large signal S-parameters for the 
device under test (DUT).  The test fixture was calibrated to provide 50Ω to the transistor 
leads and a proper de-embedding has been done [50].   
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Figure 6-1   Test fixture to measure large signal S-parameters (A proper de-embedding has been done). 
 
In the case of the oscillator, there is a large RF signal, voltage and current, imposed on 
the DC voltage/current. Assuming an RF output power from 0 dBm to 10 dBm, and 
assuming a 10-15 dB gain in the transistor, the RF power level driving the emitter/source 
or base/gate terminal is somewhere in the vicinity of –15 dBm. An RF drive of –15 dBm 
will change the input and output impedance of the transistor even if the transistor 
operates at fairly large DC currents.  
 
Currents and voltages follow Kirchoff’s law in a linear system.  A linear system implies 
that there is a linear relationship between currents and voltages. All transistors, when 
driven at larger levels, show nonlinear characteristics. The FET shows a square law 
characteristic, while the bipolar transistor has an exponential transfer characteristic. It is 
important to note that the output impedances of FETs are much less RF voltage-
dependent or power dependent than those of the bipolar transistor. The generation of 
large-signal S-parameters is, therefore, much more important for bipolar transistors than 
for FETs. 
 
The definition of S-parameters in a large-signal environment is ambiguous compared to 
that of small-signal S-parameters.  When an active device is driven with an increasingly 
higher level, the output current consists of a DC current and RF current, the fundamental 
frequency, and its harmonics.  When the drive level is increased, the harmonic content 
rapidly increases.  S12, mostly defined by the feedback capacitance, now reflects 
harmonics back to the input.  If these measurements are done in a 50 Ω system, which 
has no reactive components, then we have an ideal system for termination.  In practical 
applications, however, the output is a tuned circuit or matching network, which is 
frequency selective.  Depending on the type of circuit, it typically presents either a short- 
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circuit or an open-circuit for the harmonic.  For example, suppose that the matching 
network has a resonant condition at the fundamental and second harmonic frequencies or 
at the fundamental and third harmonic frequencies  (quarter-wave resonator). Then a high 
voltage occurs at the third harmonic, which affects the input impedance and, therefore, 
S11 (Miller effect). 
 
This indicates that S-parameters measured under large-signal conditions in an ideal 50 Ω 
systems may not correctly predict device behavior when used in a non-50 Ω environment. 
A method called load pulling, which includes fundamental harmonics, has been 
developed to deal with this issue [52-56].  
 
In the case of an oscillator, however, there is only one high Q resonator, which 
suppresses the harmonics of the fundamental frequency (short-circuit).  In this limited 
case, the S-parameters stemming from a 50 Ω system are useful.   
 
The following four plots, Figures 6-2 to 6-5, show S11, S12, S21, and S22 measured from 50 
MHz to 3000 MHz with driving levels from –20 dBm to 5 dBm.  The DC operation 
conditions were 1.9 V and 20 mA, as shown in Figure 6-1.   
 

 
Figure 6-2: Measured large signals S11 of the BFP 520 (DC operating conditions were 1.9 V and 20 mA).   
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Figure 6-3:  Measured large signal S12 of the BFP 520 (DC operating conditions were 1.9 V and 20 mA).   

 

 
Figure 6-4: Measured large signals S21 of the BFP 520 (DC operating conditions were 1.9 V and 20 mA).   
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Figure 6-5: Measured large signal S22 of the BFP 520 (DC operating conditions were 1.9 V and 20 mA).   
 
 
These large signals [S]-parameters are converted to [Z]-parameters as shown in the 
Figure 6-6 for determining the condition of oscillation.  
 

[S]Device

Feedback-Network

Port1 Port2 [Z]Device

Feedback-Network

Z1 Z2

Z3

Port1 Port2

Resonator

 
Figure 6-6: Two-port oscillator topology with large signal parameters. 
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From Figure 6-6, under steady state oscillation condition, 
 

0)1(][)1(][ =+ PortZPortZ feedbackindevicein     (6.1) 
 

0)2(][)2(][ =+ PortZPortZ feedbackoutdeviceout     (6.2) 
 
Figure 6-7 shows the equivalent model of the feedback oscillator for analysis of the 
insertion loss (G21) and needed gain (G21) with respect to the Q factor of the resonator.  
 
The overall loading of the oscillator resonator is important, and the optimization of the 
loaded Q with respect to insertion loss (G21) and needed gain (S21) is dynamically done 
for ultra low noise performance over the tuning range. 
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Figure 6-7:Equivalent model of the feedback oscillator. 
 
The transfer function for Figure 6-7 is given by 

 

[ ]
)()(1

)(
)(
)(

)]([
)]([

)(
21

1

in ωω
ω

ω
ω

ω
ω

ω
jHjH

jH
V
V

jX
jY

jTF o

input

output
loopclosed +

===−   (6.3) 

 
The feedback coefficient between output and input can be expressed as 
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The unloaded and loaded Q of the resonator are defined as 
 

LossR
L
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0
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=       (6.5) 
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where ω0 is the resonance frequency, Q0 and QL are the unloaded and loaded Q of the 
oscillator. 
 
From Equations (6.4) and (6.6), 
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where ∆ω is the offset frequency from the carrier frequency ω0. 
 
From Equations (6.5) and (6.6), 
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From Equation (6.7), the feedback factor is given by  
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Equation (6.10) describes the general equation for the variation of the insertion loss (G21) 
of the resonator in the oscillator circuit in terms of the loaded and the unloaded Q. Figure 
6-8 shows the plot of loaded Q versus insertion loss. 



 

 92

QL

Q0

G21
10

mopt=0.5

 
Figure 6-8:  Loaded Q vs. insertion loss 

 
For low phase noise performance, the insertion loss parameter (G21) must be optimized 
dynamically over the tuning range for the application of the ultra low noise wideband 

VCOs, so that 5.0
0

==
Q
Q

m L
opt , as given in Equation (6.48). 

 
6.2 Tuning Diode Models 
 
Varactors or voltage controlled capacitor are used as tuning elements (as variable 
capacitor) for the wideband voltage controlled oscillator (VCO) circuit and are mostly the 
Q factor limitation of the resonating network. Typically, the inductor is the second 
element that determines the Q. Tuning diodes are either abrupt or hyper abrupt. The 
abrupt junction is made with a linearly doped PN junction and typically has a capacitance 
change of 4:1 or less over the specified range of reverse bias, and are available with 
maximum reverse bias voltages between 5V and 60V. The higher voltages devices are 
advantageous as they lower the integration gain (MHz/V) of the oscillation, but require a 
large supply voltage. The hyper-abrupt junction has a nonlinear-doped PN junction that 
increases the capacitance change versus reverse bias in the order of 10:1 and more. The 
disadvantage of a hyper abrupt is its higher series resistance and its lower value of Q. 
Tuning diodes are manufactured in Si or GaAs technology.  The GaAs process offers 
lower capacitance for the same resistance due to the higher electron mobility than Si. 
Hence, the Q of a GaAs varactor is better than that of silicon diode, but the flicker noise 
of a varactor made of GaAs is high, and therefore, the phase noise deteriorates. 
 
For this work, Si-abrupt tuning diode, 1SV280 from Toshiba, is chosen. This diode has a 
very low series resistance, is low package parasitic and a tuning range of 1V to 15V. 
Table 6-2 shows the spice parameters of the 1SV280 for the purpose of further 
characterizing the tuning diode. Figure 6-9 (a) and (b) show the measured plots of series 
resistance RS and the junction capacitance versus the reverse bias voltage. Figure 6-10 
shows the plot of Q versus reverse voltage for frequencies of 2 GHz, 3.5 GHz, and 
4.5GHz. 
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Spice parameters (Berkley-Spice parameters) 

Parameters 1SV280 Parameters 1SV280 Package 1SV280 
IS 5.381E-16 GC1 -1.669E-3 LS 5E-10 
N 1.037 GC2 1.303E4 LP 1E-9 

BV 15 GC3 -9.742E-6 CP 8E-13 
IBV 1E-6 VJ 3.272   
RS 0.44 M 0.9812   

CJ0 6.89E-12 IMAX 10E-3   
 

Table 6-2: Spice and package parameters of the Toshiba 1SV280 varactor diode. 
 

a) b)

0 5 10 15

0.15

0.45

0.40

0.35

0.20

0.25

0.30

Reverse Bias Voltage (Volts)

Se
ri

es
 R

es
is

ta
nc

e
R S

 (O
hm

s)

0.10
0 5 10 15

   2.0

  8.0

  7.0

    6.0

  3.0

   4.0

  5.0

  1.0

Reverse Bias Voltage (Volts)

Ju
nc

tio
n 

C
ap

ac
ita

nc
e 

(p
F)

Figure 6-9: a) Measured series resistance and b) Measured capacitance vs. reverse bias voltage. 
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Figure 6-10: Measured Q factor vs. reverse voltage for Toshiba 1SV280 at 2 GHz, 3.5 GHz, and 4.5 GHz. 
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From Figures 6-9 and 6-10, it can be seen that the tuning diode shows a lower Q factor at 
low reverse bias voltages. The capacitance and the resistance are then at maximum 
values.  
 
Tuning Characteristics and Loaded Q 
 
For a fairly wide tuning range (more than octave band), hyper-abrupt tuning diodes are 
the best choice, but at the cost of a lower Q. Therefore, the phase noise performance is 
inferior to that provided by abrupt tuning diodes. In varactor-tuned VCOs, the tuning 
range is limited due to the resistive loading effect of the tuning diode. Figure 6-11 shows 
the equivalent circuit model of the varactor-tuned VCO, showing the varactor loading 
effect of the oscillator circuits. 
 

a) b)

-Rn RLLC

Rs

Cvs

Rp

Cvp

ResonatorVaractor Active Device

LC
-Rn RL

Resonator Active DeviceVaractor

 
Figure 6-11: Equivalent circuit of the varactor-tuned negative resistance oscillator with the tuning diode 
represented by a) series RC (b) parallel RC. 
 
The parasitics associated with the tuning diode are considered to be included in the 
equivalent resonator circuit of the oscillators/VCOs. The varactor capacitance Cv is a 
function of the tuning voltage, decreasing monotonically from CV0 at zero bias to CVB at 
breakdown.  
 
The capacitance ratio r is defined as 

10 >=
VB

V

C
C

r       (6.11) 

 
To simplify the analysis, the series resistance Rs given in Figure 6-11 (a) is assumed to be 
constant at all bias levels, and the equivalent parallel resistance RP is given by 
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where Qv of the varactor is defined as 
 

Vs
v CR

Q
ω

1=       (6.13) 

 
The parallel equivalent capacitance of the tuning diode Cvp is given by 
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Without tuning diode, the resonant frequency and unloaded Q of the oscillator is given by 
 

LC
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0 =ω       (6.15) 

 
CRQ 00 ω=       (6.16) 

 
where Ln RRR =−=         

 
After the tuning diode is incorporated, the frequency of the oscillation can be tuned from 
ω1 to ω2 : 
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Practically, the difference between 0vC and VBC  is a small fraction of the total capacitance 

)( 0VCC + . The fractional tuning range with respect to 1ω  can be expressed as a function 
of the capacitance ratio as  
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The loaded Q of the oscillator at zero bias is defined as LQ and can be given as  
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The loaded Q of varactor-tuned VCOs reaches its lowest value at zero tuning voltage 
because varactor at zero bias introduces the greatest perturbation, and its own Q is lowest.  
For octave-band tunability, the ratio of the loaded Q to the unloaded Q is to be optimized 
for low noise performance as given in Equation (6.21). 
 
6.3 Choice of the Resonator  
 
The resonator acts as a frequency selective feedback network in the oscillator loop and 
has direct effect on the tunability and the phase noise performance. The resonator can be 
modeled as a series or parallel LCR equivalent circuit depending upon the topology of the 
oscillators/VCOs. A grounded base oscillator typically uses a parallel LCR resonator 
network, while a grounded emitter oscillator a series LCR representation. Figure 6-12 
shows a resonator network consisting of a parallel L-C circuit having series loss 
resistances Rsl and Rsc. 
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Figure 6-12: Equivalent representation of lumped resonator. 
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The quality factor of a resonator QR is defined as 2 π times the energy stored in the circuit 
divided by the energy lost per cycle of oscillation.  

 

P

p

c

c

R CR

R
V

CV
Q 02

0

2

)
2

)(2(

)
2
1(2

ω

ω
π

π
=





















=     (6.22) 

 
where Vc is the voltage across the capacitor and RP is the parallel loss resistance 
associated with the resonator.  
 
Similarly, RQ can be expressed in terms of the inductor and parallel loss resistance as 
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where LjIVL 0ω==        
 

QR in terms of inductor QL and capacitor QC can be given by 
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where Rsl and Rsc are the series loss resistance associated with the inductor and capacitor.  
 
The admittance of the inductance is given by 
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where 

)1(
)1( 2

2

Lsl
L

L
PL QR

Q
QLR +=

+
=

ω     (6.28) 

 
The equivalent representation of Rsl  in terms of parallel resistance PLR  can be given as 
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Similarly, Rsc in terms of parallel resistance PCR  can be expressed as  
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For LQ and CQ >>1, 2

CscPC QRR =  and 2
LslPL QRR =   

 
The equivalent parallel loss resistance PR  of the resonator tank will be a parallel 
configuration of PCR  and PLR  and can be given as  
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The quality factor of the resonator circuit in terms of QL and QC is given as 
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If the resistance value is fixed in the RLC resonator circuit, for a series resonant circuit, 
lower capacitance or higher inductance implies higher Q.  For a parallel resonant circuit, 
lower capacitance or higher inductance means lower Q. 
 
Coupled Resonators 
 
The Q factor of the resonator can be increased by introducing coupling factor β, which is 
defined as the ratio of the series coupling capacitor to the resonator capacitor. Figure 6-13 
shows two identical resonators with series coupling where Zr and Zc are the resonator and 
coupling network impedance, respectively.  
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Figure 6-13: Series capacitive coupled resonator 
 
The effective impedance of Figure 6-13 is given by 
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where Iin is the large-signal current from active device. 
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For )()( ωω rc ZZ >> , and assuming that the Q factor of )(ωrZ is sufficiently large, the 
denominator of Equation (6.34) may be considered constant over the frequencies within 
the bandwidth of )(ωrZ . The coupling admittance is defined by cc CjY ωω =)( .  
         
The resonator admittance is given by 
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From Equations (6.35) and (6.36) )(ωeffY can be rewritten as 
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From Equation (6.36), the phase shift of the coupled resonator is given as 
 






























 −
−








 −
−

−−

= −

CLR
LCR

R

LR
LCR

CLR
LLCR

p

P

P

P

P

P

P

βω
ω

ω
ω

βω
ωω

ϕ

22

2

2

223

22222

1

)1(22

)1(2])1([

tan   (6.38) 

 
 
At resonance, the real part of )(ωeffY is reduced to zero, and the corresponding resonance 
frequency can be derived as 
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where 
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From Equation (6.38), the quality factor of the coupled resonator is given by [58-60] 
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Weakly coupled resonators (β <<1) will produce high attenuation due to the large value 
of Zc, so a trade-off between doubling the Q factor and the permissible attenuation is 
required for the best phase noise performance. For octave-band tunability, the coupling 
factor β is dynamically tuned and adjusted over the tuning range for low phase noise 
performance over the desired frequency range. 
 
Example:  
 
Figure 6-14 shows the schematic of a 1000 MHz parallel-coupled resonator based 
oscillator. This provides to some insight into the improvement of the phase noise of the 
coupled resonator based oscillator.  
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Figure 6-14: Schematic of the parallel-coupled resonator based oscillator. 
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Figure 6-15 shows the NE68830 transistor with the package parameters for the 
calculation of the oscillator frequency. Tables 6.2 shows SPICE and package parameters 
of NE68830 from data sheets. 
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Figure 6-15: NE68830 with package parasitics (Q is the intrinsic bipolar transistor). 

 
 

SPICE parameters (Gummel- Poon Model, Berkley-Spice) 
 Parameters Q Parameters Q Parameters Package 

IS 3.8E-16 MJC 0.48 CCB 0.24E-12 
BF 135.7 XCJC 0.56 CCE 0.27E-12 
NF 1 CJS 0 LB 0.5E-9 

VAF 28 VJS 0.75 LE 0.86E-9 
IKF 0.6 MJS 0 CCBPKG 0.08E-12 
NE 1.49 TF 11E-12 CCEPKG 0.04E-12 
BR 12.3 XTF 0.36 CBEPKG 0.04E-12 
NR 1.1 VTF 0.65 LBX 0.2E-9 

VAR 3.5 ITF 0.61 LCX 0.1E-9 
IKR 0.06 PTF 50 LEX 0.2E-9 
ISC 3.5E-16 TR 32E-12   
NC 1.62 EG 1.11   
RE 0.4 XTB 0   
RC 4.2 KF 0   
CJE 0.79E-12 AF 1   
CJC 0.549E-12 VJE 0.71   
XTI 3 RB 6.14   

RBM 3.5 RC 4.2   
IRB 0.001 CJE 0.79E-12   
CJC 0.549E-12 MJE 0.38   
VJC 0.65     
Table 6.2   SPICE parameters and package parameters of the NEC transistor NE68830.  
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The circuit shown in the Figure 6-14 is fabricated on 32 mil thickness Roger substrate of 
dielectric constant 3.38 and loss tangent 2.7⋅10-4.  
 
The frequency of the oscillation for the oscillator circuit given in Figure 6-14 is given by 

 

MHz

C
CCC
CCC

C
CCC

CCCC
L

C
CCC
CCC

c
P

P
PR

P

cP
PR

c
P

P

1000

)(
)(

)(
)(

)(
)(

1
21

21

21

121

1
21

21

0 ≈












































+

++
+

+








++
+









+

++
+

=

∗

∗

∗

∗

∗

∗

ω    (6.45) 

with  
 

C1
*= 2.2pF, C1= C1

*+CP 

CP=1.1pF (CBEPKG + Contribution from layout) 

           pFpacakagepFpFC 3.3)(1.12.21 =+= ; C2 = 2.2pF, Cc1 = 0.4pF 

Resonator: RPR =12000Ω, CPR = 4.7pF, LPR =5nH  

 
Figure 6-16 shows the simulated (Ansoft Designer) response of the single resonator (1- 
resonator) oscillator circuit having resonance at 999.8 MHz, or a less than 1% error. The 
little variation in resonant frequency may be due to the frequency dependent packaged 
parameters, but it is good starting value for the analysis of the coupled resonator based 
oscillator. 
 
 

 
Figure 6-16: Simulated response of the real and imaginary current for oscillation. 
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Figures 6-17 (a) and 6-17 (b) show the simulated and measured phase noise plots for the 

single resonator (1-Resonator) and coupled resonator (2-resonator).  

 

 
Figure 6-17 (a): Simulated phase noise plot for single resonator (1-Resonator) and coupled resonator (2-

resonator). 

 

 
Figure 6-17 (b): Measured phase noise plot for single resonator (1-Resonator) and coupled resonator (2-

resonator). 
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Optimum Phase Noise with Respect to the Loaded Q 
 
The amount of the loading on a resonator is critical for optimum phase noise in VCOs. A 
very lightly loaded resonator will have a higher Q factor but will pass less power through 
it, whereas a heavily loaded resonator will have a very low Q factor but will pass more 
power through it. From Figure 6-18, the equivalent loading is Rreso in parallel with the 
series combination of 1/gce and RL, and this represents the effective loading factor in the 
oscillator circuit for the grounded base configuration.  

 
 

 

 
Figure 6-18:  Small signal model of the grounded base oscillator. 

 
From Equation (4.13), phase noise is given as  
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where 
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Q
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QLoadedm L==  

 
From Equation (6.47), the minimum phase noise can be found by differentiating the 

equation and equating to zero as   [ ] 0)(£
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Figure 6-19 shows the plot of relative phase noise versus the ratio of the loaded to the 
unloaded Q factor of the resonator. From Equation (6.48), typical phase noise plot with 
respect to m for the Figure 6-14, at 10 kHz offset from the carrier frequency is shown in 
the Figure 6-19. As illustrated in the Figure 6-19, for different values of the noise factor F 
(F1>F2), the phase noise plot is shifted symmetrically about the mopt.  
 
This implies that for low noise wideband application, the value of m should be 
dynamically controlled over the tuning range, and it should lie in the vicinity of mopt for 
low noise performance over the frequency band [71, 74]. 
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Figure 6-19: Typical phase noise versus the ratio of loaded to unloaded Q of the resonator. 

 
 
Varactor Tuned Coupled Microstripline Resonator (Octave-Band) 
 
The dynamic time average Q factor of the resonator, as well as the tuning diode noise 
contribution, sets the noise performance of the VCO, and in general, the dynamic loaded 
Q is inversely proportional to the frequency range of the VCO. The phase noise can vary 
dramatically over the tuning range of a wideband VCOs; therefore it is a major challenge 
to explore and find ways to realize uniform loaded Q over the tuning range (octave-
band). The research described here explores a topology for the octave-band tunability. 
Figures 6-20 (a) and (b) depict the 2-D and 3-D view of the distributed coupled 
microstripline (L<< λ/4: effectively parallel inductor for the operating frequency band) 
for the purpose of the evaluating the loaded Q of the resonator over the tuning range.  
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 of the coupled microstripline and b) 3-D view of the coupled microstripline (L<< 
r the desired frequency band). 

 Figure 6-20, two-coupled branch of the half-circled distributed 
d lines are easily identifiable. One side of the coupled line is 
und through a via-hole for the purpose of the DC return for the 
.  

ation, the length of the coupled microstripline is selected much 
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quencies. For this work, the Si-abrupt tuning diode, 1SV280 from 
his diode has a very low series resistance, low package parasitic and 
 15V (section 6.2). Figure 6-21 shows the varactor tuned electrical 
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The resonator circuit is fabricated on 32 mil thickness Roger substrate of dielectric 
constant 3.38 and loss tangent of 2.7⋅10-4. The equivalent typical load of 212 Ω (Infineon 
BFP 520 transistor) across the emitter in the grounded base configuration (Vce =0.91V, 
Ic=12mA) for the frequency range (1500-4000 MHz) is connected across the resonator 
network for the purpose of the analysis of the loaded Q over the band. 
 
The analysis of the coupled microstripline is done using 2.5D EM simulator (Ansoft 
Designer). Figure 6-22 (a) and (b) illustrate the plot of the loaded Q versus frequency for 
different values of spacing (s) and length (l/λ). 
 
 
 

 
Figure 6-22: (a) QL vs. frequency for different values of ‘s’  (b) QL vs. frequency for different values of ‘l/λ’. 
 
For wideband applications, the variation in the loaded Q over the tuning range should be 
kept minimum for uniform noise performance over the operating frequency band. The 
curve seen in Figure 6-22 shows the variation of the loaded Q with respect to spacing and 
length over the tuning range. As shown in the Figure 6-20, spacing between parallel 
microstripline is selected as s= 6 mil, which gives minimum variation in the loaded Q 
over the tuning range.  
 
Figures 6-23 (a) and (b) show the simulated (Ansoft Designer) unloaded and loaded input 
impedance of the varactor tuned coupled resonator circuit, as shown in the Figure 6-21. 
From Figures 6-23 (a) and (b), for the simplification of the analysis, Q factor is evaluated 
graphically using 3dB bandwidth (

LH ff
f

BW
fQ

−
== 00 ) of the varactor tuned coupled 

resonator circuit as shown in the Figure 6-21.  
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Figure 6-23 (a): Simulated unloaded input impedance of the varactor-tuned coupled resonator. 

 
 
 

                     
Figure 6-23 (b): Simulated loaded input impedance of the varactor-tuned coupled resonator. 
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Figure 6-24 shows the plot of the calculated loaded and unloaded Q factors, and the 
measured loaded Q factors versus frequency. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-24: Q factor versus frequency. 
 

From Figure 6-24, the unloaded Q of the tuned coupled resonator circuit is varying from 
55 to 205, and the variation is about 1:4 ratio over the band, whereas the loaded Q of the 
tuned coupled resonator circuit is varying from 38 to 47, and the variation is about 1:1.2 
over the band.  
 
The measured loaded Q of the tuned coupled resonator circuit is varying from 37 to 45, 
and the variation is about 1:1.2 over the band, which closely agrees with the predicted 
values. 
 
For optimum phase noise performance over the tuning range, variation of the loaded Q 
should be minimum over the desired tuning range. This type of the resonator plays major 
role in the design of low noise octave-band VCOs [74]. 
 
Figure 6-25 shows the actual circuit layout of a tuned coupled resonator oscillator for the 
purpose of depicting the coupled resonator, as it is built on a multi-layer printed circuit 
board.  
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As shown in the Figure 6-25, coupled resonator is symmetrically structured across the 
emitter of the transistor for wideband VCOs (1500-3000 MHz), and the analysis is given 
in the section 8.3 [74]. 
 
 

 
 Figure 6-25: Layout of the wideband VCO (1500-3000 MHz) with coupled microstripline resonators. 

 
6.4 Passive Device Models 
 
Despite an ongoing trend towards higher integration levels, discrete RF components still 
have a place in contemporary wireless designs. Furthermore, discrete RF devices offer 
advantages such as superior performance, great design flexibility and versatility, faster 
time-to-market, low cost, and reduced risk. For low cost reasons, surface-mounted 
components are used in the VCOs circuits. In reality, these components possess parasitics 
resulting in a self-resonant frequency (SRF) comparable to the operating frequency and 
limit the operating frequency band.  
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An understanding of the parasitic and packaging effects of the passive surface-mounted 
devices (SMDs), including characterization of the pertinent interconnect is required for 
the large signal-analysis of the oscillator design. RF components packaging, pad 
footprint, PCB layout, and substrate interaction cause local parasitic effects such as 
resonant coupling, cross-talk, signal loss, signal distortion, and so on.  
 
Extrinsic modeling of the devices is crucial for the large-signal analysis, which takes the 
above-mentioned parasitic effects into account. An incomplete specification of the 
passive components inevitably leads to inaccurate results and considerable tuning and 
testing after board fabrication. If the design analysis is based on the extrinsic circuit 
model, the increased accuracy attained by incorporating board parasitic can potentially 
reduce the number of design cycles. Furthermore, by using an accurate library base of 
equivalent-circuit models, it is feasible to accomplish most of the design on a circuit 
simulator instead of the trial and error at the bench. 
 
Active devices are shrinking and are occupying less and less chip area, whereas passive 
devices remained large. While it was possible to fabricate small values of capacitance on 
chip, small inductors are virtually impossible due to the large physical area required to 
obtain sufficient inductance at a given frequency. This is compounded by the losses of 
the substrate, which makes it virtually impossible to fabricate high-quality devices. At a 
low frequency, this low loss design is possible as long as package parasitics are 
negligible in comparison with the external electrical characteristics of the device.  
 
For instance, at 100MHz, a typical resonator inductance value is on the order of 100nH, 
whereas at 10GHz this value is around 1nH. To build a 1nH inductor is impossible in 
standard low-cost packaging since the bond wire inductance can exceed 1nH. Typical 
examples of passive devices include linear time-invariant resistors of finite resistance 
R>0, which dissipate energy, and ideal linear time-invariant capacitors and inductors, 
which only store energy.  
 
 
Quality of the Passive Devices 
 
The complex power delivered to a one-port network at frequency ω is given by [57] 
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where Pn represents the average power dissipated by the network, and Wm and We 
represent the time average of the stored magnetic and electrical energy. For Wm > We the 
device acts inductively, and for We > Wm it acts capactively. 
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The input impedance can be defined as 
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The quality factor Q of the passive device is defined as 
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where Estored  and Edissipated  are the energy stored and dissipated per cycle. 
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where R is the series loss resistance in the inductor and capacitor. 
 
 
Inductor Model 
 
Figure 6-26 shows the equivalent circuit model for the inductor. The series resistance R 
accounts for the package losses, resistive effects of the winding, and pad or trace losses.  
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Figure 6-26: Model for SMD-inductor a) Intrinsic Model and b) Extrinsic Model. 
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The series capacitance C represents the self-capacitance of the inductor package and the 
capacitance between the pads. The pad is simply a step-in-width inductive transition and 
augments the series inductance of the intrinsic model. The total inductance is denoted as 
L. The dielectric losses in the substrate introduce a shunt conductance GP=1/RP, and the 
capacitance to ground of each pad introduces a shunt CP, which is influenced by the 
substrate. The direct RF measurement of the model parameters L, R, and C of a SMD 
inductor is difficult because of their strong interaction with the board parasitic. Typically, 
any of theses parameters can be obtained indirectly from measurable parameters such as 
impedance, quality factor, and resonant frequency. Figure 6-27 shows the closed form of 
the inductor model in Figure 6-26. 
 

Z

Y1 Y2Port1 Port2

 
 
Figure 6-27: π-Model for an SMD inductor.  

 
From Figures 6-26 (b) and 6-27, 
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The measured S-parameters on a vector network analyzer are transferred into the 2-port 
[Y] parameters using  
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Z0 is the characteristic impedance of the port. From reciprocity, 2112 SS =  and 2112 YY = .  
From Figure 6-27, 

12

1
Y

Z −=       (6.57) 

12111 YYY +=       (6.58) 
21222 YYY +=       (6.59) 

 
From symmetry,  
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ω
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P
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The circuit variables for the SMD inductor are frequency dependent and can be expressed 
in terms of the resonant frequency, quality factor, and impedance at the resonance. 
 
From Equation (6.54) 
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where L0 and R0 denote inductance and resistance at the resonant frequency. 
 
Equation (6.64) can be expressed as 
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At resonance frequency 
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From Equation (6.54), admittance )(ωY is given as 
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From Equations (6.73) and (6.74), L can be expressed as a function of frequency L (ω) as 
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From Equations (6.75) and (6.77), L and R are functions of the frequency, whereas self-
capacitance C, as given in Equation (6.78), is practically independent of the frequency. 
Thus, apriori estimation of the resonant frequency, quality factor, and impedance at 
resonance frequency helps to determine the inductor-SMD component variables. 
 
Capacitance Model 
 
Figure 6-28 shows the equivalent circuit model for SMD capacitor. The measured S-
parameters are transferred into the 2-Port [Y] parameters using Equation (6.56). The 
series impedance and shunt admittance of the π-equivalent representation of the 
capacitor, as shown in the Figure 6-29, are given from Equations (6.57), (6.58) and 
(6.59). For the capacitor, the equivalent circuit consists of a series connection of R, L, and 
C, as shown in the Figure 6-28, and by duality from the inductor model, the stray 
inductance L is invariant with frequency, just as self-capacitance is invariant with 
frequency in the inductor. 
 

 

R L C RP RPCP CP

Port1 Port2CR L

a)Intrinsic Model b)Extrinsic Model  
 

Figure 6-28: Model for an SMD capacitor a) Intrinsic Model and b) Extrinsic Model 
 

Z

Y1 Y2Port1 Port2

 
Figure 6-29: π-Model for an SMD capacitor  
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From Figures 6-28 and 6-29, impedance is given as 
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At resonance, 

 
)()( 000 ωω realZRR ==     (6.84) 

    









=

0

0
0 ω

R
QL       (6.85) 

 

0
2
0

0
1)(

0 L
CC

ω
ω ωω ==

=
      (6.86) 

 
 
Thus, apriori estimation of the resonant frequency, quality factor, and impedance at 
resonance frequency helps to determine the SMD capacitor component variables. 
 
Resistance Model 
 
The resistor can be implemented in several ways. Figure 6-30 shows the two-port 
extrinsic equivalent circuit model for a resistor. The measured S-parameters are 
transferred into the 2-Port [Y] parameters using Equation (6.56).  
 
The series impedance and shunt admittance of the π-equivalent representation of the 
resistor as shown in the Figure 6-31 are from Equations (6.57), (6.58), and (6.59).  
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Figure 6-30: Two- port extrinsic equivalent circuit model for a resistor 
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Figure 6-31: π-Model for an SMD Resistor  

 
The two-port [Y] parameters of the resistor in Figure 6-30 are given by 
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)()()( ωωω imagreal jZZZ +=     (6.89) 

 
)()( ωω realZR =      (6.90) 

     
At resonance, 

)()( 000 ωω realZRR ==       (6.91)  
 

 
Thus, apriori estimation of the resonant frequency and impedance at resonance frequency 
facilitates unique determination of the SMD resistor variables. 
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Chapter 7 

Low Noise Wideband VCOs  

 
 
7.1 Wideband VCOs Approach 
 
Voltage controlled oscillators (VCOs) with a wide tuning range (more than octave-band) 
and low phase noise are essential building blocks for next-generation wireless 
communication systems. The VCO is one of the most important blocks of the phase-
locked loop (PLL) based frequency synthesizer because its performance is determined 
inside the loop bandwidth by the loop and outside the loop bandwidth by the phase noise 
of VCO. It is, therefore, of major importance to build a low-phase-noise integrated 
wideband oscillator that operates with low power consumption.  
 
Typical oscillator designs for wideband VCOs use a grounded base or grounded emitter 
circuit for generating a negative resistance at one port, which is usually terminated with a 
parallel or series LC-resonant circuit. The main challenge in this design is to generate 
negative resistance over the wide tuning range, which cannot be easily extended to more 
than an octave band.  For octave band tunability, the required negative resistance over the 
band is generated by the feedback base inductance (in the grounded base topology), but 
the polarity of the reactance may change over the frequency band and can lead to the 
disappearance of the negative resistance as the operating frequency exceeds its self-
resonance frequency (SRF). Furthermore, the low Q of commercially available SMD 
inductors and tuning diodes degrade the phase noise performance over the band.  Figure 
7-1 shows the series and parallel configuration of the oscillator circuit.  
 
 

Y1

Y2

Y3
Z1

Series configuration Parallel configuration

Z2

Z3

 
 

Figure 7-1: Series and parallel configuration of the oscillator. 
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The detailed analysis of series and parallel feedback topology for optimum power is 
shown in Appendix B. Figure 7-2 shows the series feedback grounded base topology for 
analysis of the wideband VCOs. The negative resistance is created by an inductor in the 
base of the transistor instead of the capacitive feedback network as used in parallel 
feedback topology. The series feedback grounded base topology is best suited for wide 
tuning range applications because the loaded Q of the resonator is approximately same 
over the band and is not greatly affected by the large-signal nonlinear negative resistance- 
generating device.  
 

Lb
RLIcL C

Resonator Negative resistance

Z1

Z2 Z3

 
 

Figure 7-2: Series feedback grounded base topology. 
 
Figure 7-3 shows the general topology of the series feedback oscillator.  
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Figure 7-3:  Series feedback topology of the oscillator using bipolar transistor. 
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The steady-state oscillation condition for series feedback configuration shown in Figure  
7-3 is given by 

0)(),( =+ ωω LLosc ZIZ      (7.1) 
where IL is the load current amplitude and ω is the resonance frequency. oscZ  is the 
current and frequency-dependent output impedance, and LZ  is the function of frequency.   
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),( ωLosc IR → Negative resistance components generated by the device. 
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where 11Z , 22Z , 12Z and 21Z  are the [Z] parameters of the transistor. 
 
The [Z] parameter of the transistor can be defined in terms of the [Y] parameter as 
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Assuming that ceebcb ggg ,, '' and cbC '  have very little effect, the [Z] parameters of the 
transistor are  
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From Equation (7.4), oscZ  is given by 
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For sustained oscillation, ⇒< 0nR [ ] [ ] 
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where nR  is the negative resistance of the series feedback oscillator 
 
From Equation (7.14), the frequency of the oscillation is given as 
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From Equation (7.13), for 2' CC eb <  
 









−

−=
]1[ 2

'12
2 ωω ebce

m
osc CLCC

gR     (7.16) 

If  12
'1 <ωebCL , then 









−→

2
2 CC
g

R
ce

m
osc ω

     (7.17) 

 
If we now change from the small-signal transconductance gm, to a large-signal time 
average transconductance, then the Equation (7.17) can be expressed as 
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where )(tgm is the large-signal transconductance and is defined as 

 

)exp()( )( tjngtg
n

n

n
mm ω∑

=∝

∝−=

=  (n is number of harmonics)   

 
The total noise voltage power within 1 Hz bandwidth can be given as [11]: 
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The first term in the Equation (7.19) is related to the thermal noise due to the loss 
resistance of the resonator tank. The second term is related to the shot noise and flicker 
noise in the transistor. 
 
Following [11], and adding shot noise, flicker noise and the loss resistor, we obtain  
 

*
)()()(

4)(

4)(£
22

0'21'2
2
0

222
0'21'2

224
0

2





















−++−+











+

+=
ωωωβω

ω
ω

ebebmebebce

AF
bf

cm

CCLCCtgCCLCCC

IK
qItg

kTR  

































−+

+−+








−+








2

2
0'21'2

2
0'21'2

1
2
0

222

2
0

)][(
])[(111

)(4 ω
ω

ωω
ω

ebebce

ceebeb

Lcc CCLCCC
CCCLCC

LQV
 (7.20) 

The flicker noise contribution in the Equation (7.20) is introduced by adding term 
ω

AF
bf IK

 

in RF collector current cI , where Kf is the flicker noise coefficient, AF is the flicker noise 
exponent, and ω is the offset frequency from the carrier. 
 
7.2 Low Noise Wideband VCO 
 
Phase noise is the noise, which results from the modulations of the oscillation frequency 
or carrier frequency of an oscillator. Oscillator intended for fixed-frequency operation are 
relatively easy to optimize if only a parameter of particular concern is involved, but 
serious problems occur when they are tuned to operate over wideband frequencies. In 
contrast to single-frequency oscillators, wideband VCOs need to cover a range of up to 1 
octave or more. For a varactor-tuned oscillator to tune continuously over a wide range, 
the tuning diode must exhibit a large change in capacitance in response to a small change 
in tuning voltage. However, the tuning diode’s own capacitance is modulated by the 
random electronic noise signals generated internally by various oscillator circuit 
elements, including the tuning diode itself. The tuning range of the oscillator directly 
influences the phase noise, and there is a trade-off between the continuous tuning range 
of the VCO and the amount of phase noise generated by the varactor capacitance 
modulation. However, there are demanding requirements for low-noise performance over 
the complete frequency range. A wide tuning range with a small tuning voltage and good 
phase noise performance has always been needed, but it causes the problem of controlling 
the loop parameters and the dynamic loaded Q of the resonator over the wideband 
operation. Thus. There is a need for a method, which improves the phase noise 
performance over the wideband. This can be accomplished by using novel coupled 
oscillator topology integrated with a tuning diode or switched capacitor system. The N-
push/push-push configuration is another attractive option to extend the frequency domain 
of operation of the transistor while keeping phase noise low.  
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7.2.1 Choice of the Active Device 
 
The designer has no control over the noise sources in a transistor, being able to select 
only the device selection and the operating bias point.  For example, the bulk resistance 
of a transistor, upon which thermal noise depends, is an unchangeable, intrinsic property 
of the device. However, knowing how the oscillator waveforms affect the noise, the 
designer can substantially improve phase noise performance by selecting the optimal bias 
point and signal drive level. 
 
The transistor is used as a negative resistance-generating active device. Its choice should 
be based on the operating frequency, output power requirement, low 1/f noise at desired 
frequency, and bias condition. Low 1/f noise of the transistor is a critical parameter 
because it appears as the sideband noise around the carrier frequency and is directly 
related to the current density in the transistor. A bipolar transistor biased at low collector 
current will keep the flicker corner frequency to a minimum, typically around 2 to 10 
kHz. A large transistor with high Icmax used at low currents has the best 1/f performance. 
Most active devices exhibit a broad U-shaped noise figure versus bias current curve. 
Based on this, the optimal operating bias current corresponding to minimum the noise 
factor for the device can be selected.  
 
Noise Factor of the Oscillator: 
 
Figure 7-4 shows the equivalent configuration of the oscillator circuit for the purpose of 
analyzing the noise factor with respect to the oscillator feedback components (C1 and C2) 
for better insight into the noise improvement. The objective of this section is to find the 
oscillator circuit parameters that influence the noise factor, thereby, influencing the phase 
noise of the oscillators/VCOs circuit, as given in Equation (4.13). 
 
From [11,65,66], simplified and approximate noise factor F for the circuit shown in 
Figure 7-4 can be given by 
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The frequency of the oscillation for the oscillator circuit given in Figure 7-4 is given by 
 

 

MHz

C
CCC
CCC

C
CCC

CCCC
L

C
CCC
CCC

c
P

P
PR

P

cP
PR

c
P

P

1000

)(
)(

)(
)(

)(
)(

21

21

21

21

21

21

0 ≈












































+

++
+

+








++
+









+

++
+

=

∗

∗

∗

∗

∗

∗

ω    (7.22) 



 

 127

with  
Transistor: NEC68830 (Table 6.2)  

C1
*= 2.2pF, C1= C1

*+CP, CP=1.1pF (CBEPKG + Contribution from layout) 

           pFpacakagepFpFC 3.3)(1.12.21 =+= ; C2 = 2.2pF, Cc = 0.4pF 

Resonator: RPR =18000, CPR = 4.7pF, LPR =5nH  
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∗
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Q: NEC68830

 
 Figure 7-4: Equivalent configuration of the oscillator circuit with the noise sources. 

 
From Equation (7.21) 
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with, 

3
21 10.2

500
1 −+ ==Y , (large-signal Y-parameter for transistor NE68830) 

Ω= 6br  Ω= 9.0er @ 28 mA, β =100,  f =1000 MHz,  fT=10 GHz 
 
Figures (7-5) and (7-6) illustrate the dependency of the noise factor on the feedback 
capacitor C1 and C2. From Equation (4.13), the phase noise of the oscillator circuit can be 
optimized by optimizing the noise factor terms as given in Equation (7.21) with respect to 
the feedback capacitor C1 and C2. 
 
For output power = 13 dBm, C1 = 3.3 pF, C2 = 2.2 pF, Y21

+ = 2 mS, Q0 = 1000, QL = 380, 
noise figure = 20 dB; the phase noise plot is given from Equation (4.15), and is shown in 
the Figure (7-7). The simulated (Ansoft Designer) phase noise plot is shown in Figure 7-
8, which agrees with the calculated value within 2 dB. 
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Noise factor for different values of  C1  (C2=2.2pF)
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Figure 7-5:  Plot of the Noise figure versus frequency with respect to feedback capacitor C1 

 

Noise factor for different values of C2 (C1=3.3pF)
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Figure 7-6: Plot of the Noise figure versus frequency with respect to feedback capacitor C2 
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Figure 7-7: Calculated phase noise for an oscillator circuit shown in Figure 7-4. 

 
 

 
Figure 7-8: Simulated phase noise plot for an oscillator circuit shown in Figure 7-4 

 
 
For low noise and wideband tunability, the circuit topology and the layout of the 
resonator is selected in such a way that the feedback parameters (C1 and C2) are 
dynamically tuned for minimum noise factor over the tuning range. 
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Chapter 8 
Validation Circuits 

  
 
This dissertation demonstrates the state-of-the-art in designing ultra low noise wideband 
VCOs having a tuning bandwidth of more than octave-band, and amenable for integration 
in integrated chip form. This chapter deals with the design, fabrication, and testing of the 
wideband oscillator/VCOs, which can satisfy the needs for present demand for low-noise, 
low-cost, tuning-range, power-efficient, manufacturing-tolerance, and miniaturization.  
 
The following circuits have been chosen for validation: 
 

• wideband VCO (320-1120 MHz) based on coupled-resonator 
• wideband VCO (1000-2000/2000-4000 MHz) based on push-push approach 
• wideband VCO (1500-3000/3000-6000 MHz) based on dual coupled-resonator 

 
8.1 Wideband VCO (300-1100MHz) 
 
A number of operational parameters may be considered, depending on the oscillator’s 
intended applications, but phase noise is the important figure for measurement and 
instruments applications. In view of the limitations of the wideband tunability, the circuit 
topology and the layout of the resonator are selected in such a way that they support 
uniform negative resistance over more than octave band [67,75]. Figure 8-1 illustrates the 
block diagram of the wideband VCO (320-1120 MHz).  
 
The circuit topology as shown in Figure 8-2(a), is based on varactor-tuned coupled 
microstripline resonators. The VCO can be dynamically tuned to operate over a fairly 
wide range of frequencies while maintaining the low phase noise over the band. 
Replacing a simple distributed microstripline with a coupled microstripline optimizes the 
dynamic loaded Q of the tuned-resonator, and thereby increases the average loaded Q 
(Equation 6.43), which depends upon the coupling factor. In particular, by choosing 
appropriate spacing between the coupled microstripline structures, the coupling factor 
can be optimized, thus improving the phase noise. Further improvement is accomplished 
by incorporating noise filtering at the emitter of the bipolar transistor [71,75].  
 
To support a uniform negative resistance over the tuning range, the varactor-tuned 
coupled microstripline resonator shown in Figure 8-2 (a) is connected across the base and 
collector of the active device. The negative resistance from the negative resistance-
generating network compensates the loss resistance. It is dynamically adjusted as a 
change of oscillator frequency occurs dynamically, tuning the phase shift of the negative 
resistance-generating network to meet the phase shift criteria for the resonance over the 
operating frequency band. Furthermore, by incorporating a tracking filter at the output of 
the VCOs controls the harmonic level.  
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Figure 8-1: Block diagram of the wideband VCO (320-1120MHz). 
 
The variable coupling capacitor Cc is designed for the optimum loading of the resonator 
network across the active device (the base and collector of the transistor), and is 
dynamically tuned for optimum performance. As shown in Figure 8-1, the coupled 
resonator is connected across the base and the collector of the three-terminal device 
through the coupling capacitor, which is electronically tuned by applying the tuning 
voltage to the tuning network integrated with the coupled microstripline resonator. The 
values of the coupling capacitor Cc are derived from the input stability circle. It should be 
within the input stability circle so that the circuit will oscillate at a particular frequency 
for the given lowest possible value of the Cc. The additional feature of this topology is 
that the user-defined frequency band is obtained by adjusting the length and spacing of 
the coupled microstripline resonator.  
 
Figure 8-2(a) and 8-2(b) depict the corresponding circuit and layout diagram, which 
allows for a miniaturization and is amenable to integrated chip form. This structure and 
application is covered by U.S. patent application no. 60/564173. 
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Figure 8-2 (a): Circuit diagram of the wideband VCO (320-1120MHz). 
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Figure 8-2(b): Layout diagram of the wideband VCO (320-1120MHz). 
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The layout shown in the Figure 8-2(b) is fabricated on 32 mil thickness Roger substrate 
of dielectric constant 3.38 and loss tangent 2.7⋅10-4. As depicted in the Figure 8-2 (b), the 
coupled microstripline consisting TL1, TL2, TL3, TL4, TL5, and TL6, are symmetrically 
structured to minimize the stray reactance that would otherwise limit or reduce the circuit 
tuning range. Layout symmetry is important part of the design, which is implemented by 
incorporating grounding at the center of the half-circled coupled distributed resonator. 
For optimum loading over the band, the variable coupling capacitor Cc as shown in the 
Figure 8-1, is realized by using D3, C2 and D2, C3, which are depicted in the Figure 8-2 
(a). Table 8.1 shows the components for the circuit shown in the Figure 8-2 (a). 
 

Components for the circuit shown in the Figure 8-2 (a) and (b) 
Transistor Diode Resistor Inductor Capacitor Microstrip 

Line 
Gain 
Block 

Q1(BC 857) 
Philips 

D1(BB689) 
Infineon 

R1(8 Ω) L1(100 nH) C1(0.5 pF) TL1 
(w=3mm,l=15mm) 

G1(BGA 612) 
Infineon 

Q2(BC 857) 
Philips 

D2(BB555) 
Infineon 

R2(120 Ω) L2(220 nH) C2(22 pF) TL2 
(w=3mm,l=17mm) 

 

Q3(NE68830) 
NEC/ 

Q3(BFR380) 
Infineon 

D3(BB555) 
Infineon 

R3(4.2KΩ) L3(220 nH) C3(27 pF) TL3 
(w=3mm,l=20mm) 

 

 D4(BB659) 
Infineon 

R4(0.5 Ω) L4(220 nH) C4(.2 pF) TL4 
(w=3mm,l=15mm) 

 

 D5(BB659) 
Infineon 

R5(10 KΩ) L5(220 nH) C5(.2 pF) TL5 
(w=3mm,l=17mm) 

 

 D6(BB659) 
Infineon 

R6(3.9KΩ) L6(12 nH) C6(330Pf) TL6 
(w=3mm,l=20mm) 

 

 D7(BB659) 
Infineon 

R7(10KΩ) L7(12 nH) C7(10 Pf) S1=0.25mm  

 D8(BB555) 
Infineon 

R8(220 Ω) L8(220nH) C8(100 pF) S2=0.5mm  

 D9(BB555) 
Infineon 

R9(100 Ω) L9(100nH) C9(100 pF)   

   L10(100nH) C10(0.1 uF)   
 

   L11(100nH) C11(330 pF)   
 

    C12(330 pF)   
 

    C13(270 pF)   
 

    C14(560 pF)   
 

Table 8.1: Components for the circuit shown in the Figure 8-2 (a). 
 
 
The additional feature of this topology is user defined frequency band by adjusting the 
length and spacing of the layout of the distributed coupled microstripline structure. In 
order to achieve broadband tunability, tuning diodes (D4, D5, D6, and D7) are connected 
symmetrically across the coupled resonator to provide uniform time average loaded Q of 
the varactor-tuned resonator over the band. Figures 8-3 (a) and (b) show the simulated 
(Ansoft Designer) and measured phase noise plot for the wideband VCO. 
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Figure 8-3 (a): Simulated phase noise plot for the wideband VCO (320-1120 MHz). 

 
 
 

 
Figure 8-3 (b): Measured phase noise for the wideband VCO (320-1120 MHz). 

 
 
The simulated (Ansoft Designer) plot of the phase noise agrees with the measured phase 
noise plot. The measured phase noise is better than –112 dBc/Hz  @ 10 kHz for the 
tuning range of 300-1120 MHz (Vtune = 0.5V to 25V).  The difference of 2 dB in the 
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phase noise is observed over the band, is due to the change in the component 
characteristics over the tuning range.  
 
Figures 8-4, 8-5 and 8-6 show the measured tuning sensitivity, output power, and 
harmonic suppression plot for the wideband VCOs.  

 
 

Figure 8-4: Measured frequency versus tuning voltage. 
 
 

Figure 8-5: Measured output power versus frequency. 
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Figure 8-6: Measured second order harmonic versus frequency. 

 
 
 
This work offers a cost-effective and power-efficient solution (BFR 380: 5V, 28 mA 
/NE68830: 8V, 25mA), and further efficiency can be improved by replacing the buffer 
amplifier with a matching network. The VCOs will then operate at 5V, 18 mA and is best 
suited for an application where power efficiency and phase noise are criteria for a 
selection of wideband VCOs. 
 
Wideband VCO (320-1120MHz) Features 
Oscillator Frequency:                                             
Tuning Voltage:                                                     
Tuning Sensitivity:                                                   
Bias Voltage:                                                            
Output Power:                                                          
Harmonic Suppression:                                            
VSWR:                                                                     
Phase Noise:                                                            
Phase Noise:                                                            
Frequency Pulling:                                                   
Frequency Pushing:                                                  
Output Impedance:                                                  
Operating Temp:                                                      
Size:                                                                          

320-1120 MHz 
1 to 25 VDC (Nom) 
24 to 48 MHz/Volt 
+5 VDC @ 30mA(Nom) 
+2 dBm (Min) 
25 dBc  (Min) 
1.5:1 
-112 dBc/Hz @10KHz offset (Typ) 
-132 dBc/Hz @100KHz offset (Typ) 
3 MHz (Max) @ 1.75:VSWR 
2 MHz/V (Max) 
50 Ohm 
-40oC to 85oC 
0.9 in ×0.9 in 
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8.2 Wideband VCO (1000-2000/2000-4000 MHz) based on Push-Push Approach 
 
This work demonstrates the state-of-the-art of an ultra low phase noise wideband VCOs 
using Push-Push topology [72]. Figure 8-7 depicts the block diagram of wideband VCOs 
(1000-2000/2000-4000 MHz), in which all the modules are self-explanatory. In push-
push topology, two sub-circuits of a symmetrical topology operate in opposite phase at 
the fundamental frequency, and the output of the two signals are combined through the 
dynamically-tuned combiner network so that the fundamental cancels out, while the first 
harmonics interfere constructively, and available over the tuning range (section 5.2).  
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Figure 8-7: Block diagram of wideband VCO using Push-Push topology. 
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Figure 8-8 shows the schematic of the wideband VCO (1000-2000/2000-4000 MHz) in 
push-push configuration. The various modules as depicted in the Figure 8-7 are 
implemented in a way that allows miniaturization, and is amenable for integrated chip 
design. The structure and application is covered by U.S. patent application nos. 
60/501371 and 60/501790. 
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Figure 8-8: Schematic diagram of wideband VCO using Push-Push topology. 
 
As shown in Figure 8-8, each sub-circuit is runs at one-half of the desired output 
frequency (f0), and thereby the second harmonic (2f0) is constructively combined with the 
help of the dynamically tuned combiner network. Thus, separation of the two harmonics 
is accomplished using symmetry, which avoids space-consuming filter elements. The 
wideband tunability is achieved by incorporating a dynamically tuned phase coupling 
network so that the 180o phase difference, (mutually locked condition: Equation 3.71) is 
maintained over the tuning range for push-push operation.  
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Figure 8-9: Layout of wideband VCO using push-push topology (US Copyright Reg.: Vau-603-982). 
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The push-push topology has several advantages over single-ended versions other than 
improvement in phase noise. The usable frequency range of the transistors can be 
extended, and this can be exploited, for instance, using transistors that are larger than 
usual and have lower 1/f noise due to reduced current density. Figure 8-9 shows the 
layout of the Figure 8-8. The layout shown in the Figure 8-9 is fabricated on 32 mil 
thickness Roger substrate of dielectric constant 3.38 and loss tangent 2.7⋅10-4. As shown 
in the Figure 8-8, dynamically tuned coupled resonator is connected with the emitter of 
the transistor (NE68830) to provide a uniform loaded Q over the tuning range. 
Experimental results have shown that a poor mismatch at the fundamental results in 
discontinuous tuning due to the non-uniform phase shift over the tuning range. This 
mismatch in phase-shift between the two sub-circuits is due to possible component 
tolerances, package parameters, and the phase associated with the path difference over 
the tuning range. Therefore, the system goes out of the locking range. Figure 8-10 shows 
the compact layout of Figure 8-9 so that the phase-shift between the two sub-circuits can 
be minimized. The effective phase shift is reduced in comparison to the layout in Figure 
8-9.  
 
 

 
 

Figure 8-10: Compact layout of a wideband VCO using push-push topology  
(US Copyright Registration No: Vau-603-982). 



 

 142

The layout shown in Figure 8-10 minimizes the phase-shift due to the path difference 
between the two sub-circuits over the tuning range, but still shows discontinuous tuning 
at some point over the band due to the package parasitics and component tolerances 
associated with the discrete components of the circuit. The problem of discontinuous 
tuning can be overcome by incorporating a phase detector (U.S. application patent no: 
60/563481). Then the tuning range can be extended to a multi-octave band.  Figure 8-11 
shows the plot of the RF current of the sub-circuit 1 and sub-circuit 2, which are out of 
phase in a mutually synchronized condition, as given by Equation (3.71).  
 

 
Figure 8-11: Plot of the RF-collector currents of the push-push topology. 

 

 
Figure 8-12(a): Simulated phase noise plot for push-push VCO (2000-4000 MHz) for the frequency of 
2GHz. 
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 Figures 8-12 (a) and (b) show the simulated phase noise plot for a wideband push-push 
VCO at a frequency of 2 GHz and 4 GHz.  
 

Figure 8-12(b): Simulated phase noise plot for push-push VCO (2000-4000MHz) for the frequency 4 GHz. 
 
 
Figures 8-12 (a) and (b), show a simulated phase noise with an 8-9 dB improvement over 
the frequency band (2000-4000 MHz). Figures 8-12 (c), (d), (e) and (f) show the 
measured phase noise plot for the sub-circuit 1 and the push-push VCO at a frequency of 
2000 MHz and 4000 MHz.  
 
 

 
Figure 8-12(c): Measured phase noise plot for push-push VCO (2000-4000MHz) of sub-circuit 1 for the 
oscillation frequency 2000 MHz. 
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The measured phase noise show 5-7 dB improvement with respect to the fundamental 
oscillator sub-circuit and is better than –112 dBc/Hz at 100 kHz offset from the carrier 
for the tuning range of 2000-4000 MHz in the push-push configuration. From Equation 
(4.97), the phase noise relative to the carrier decreases by a factor of N, where N is the 
number of coupled oscillator circuits. For a bilateral coupled oscillator (push-push), the 
improvement of the simulated phase noise is 9 dB with respect to fundamental oscillator, 
as discussed in the Section 5.2. 
 
 

Figure 8-12(d): Measured phase noise plot for the wideband push-push VCO (2000-4000 MHz) of 
combiner output for the oscillation frequency 2000 MHz. 
  
 
 

Figure 8-12(e): Measured phase noise plot for the wideband push-push VCO (2000-4000 MHz) of sub-
circuit1 for the oscillation frequency 4000 MHz. 
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.

Figure 8-12(f): Measured phase noise plot for the wideband push-push VCO (2000-4000 MHz) of 
combiner output for the oscillation frequency 4000 MHz. 
 
 
Measured result show a 5-7 dB improvement of the phase noise over the band. The 
discrepancy of 2-4 dB can be attributed to the package parasitics, dynamic loaded Q, and 
tolerances of the components values of the two sub-circuits over the tuning range. Further 
improvement in the phase noise can be achieved by implementing N-push approach with 
an integrated phase detector for minimizing and correcting the phase shift over the tuning 
range; this is a further extension of this research work for the purpose of covering the 
millimeter frequency range [68].   
 
Wideband Push-Push VCO (1000-2000/2000-4000 MHz) Features 
Oscillator Frequency:                                 
Tuning Voltage:                                         
Tuning Sensitivity:                                     
Bias Voltage:                                              
Output Power:                                             
Harmonic Suppression:                              
VSWR:                                                       
Phase Noise (2000 MHz):                          
Phase Noise (4000 MHz):                         
Frequency Pulling:                                     
Frequency Pushing:                                    
Output Impedance:                                     
Operating Temp:                                         
Size:                                                            

1000-2000/2000-4000 MHz 
0 to 25 VDC (Nom) 
40-100MHz/Volt 
+12 VDC @ 30mA(Nom) 
+0 dBm (Typ) 
20 dBc  (Typ) 
1.5:1 
-98 dBc/Hz @10 kHz offset (Typ) 
-93 dBc/Hz @10 kHz offset (Typ) 
6 MHz (Max) @ 1.75:VSWR 
4 MHz/V (Max) 
50 Ohm 
-40oC to 85oC 
0.9 in ×0.9 in 
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8.3 Wideband VCO (1500-3000/3000-6000 MHz) Based on the Dual-Coupled 
Resonator 

 
Figure 8-13 shows the schematic diagram of the wideband VCO (1500-3000/3000-6000 
MHz) based on a dual-coupled resonator [74]. 
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Figure 8-13: Schematic of the wideband VCO (1500-3000/3000-6000 MHz). 
 
For wideband application such as the octave band, the grounded base topology is 



 

 147

preferred due to the broadband tunability factor. For wideband tunability, the required 
negative resistance over the band is generated by the feedback base-inductance, but the 
polarity of the reactance may change over the frequency band and can lead to the 
disappearance of the negative resistance as the operating frequency exceeds its SRF (self 
resonance frequency). 
 
This problem is overcome by incorporating a coupled line topology instead of the lumped 
inductance used as a feedback element for generating the negative resistance over the 
tuning range, as shown in Figure 8-13. 
 
Designing wideband VCOs at high frequency is challenging due to the change in the 
characteristics of the RF components over the tuning range. Biasing is critical and can 
have a negative effect on the overall performance if implemented poorly because the 
oscillator/VCO circuits are highly sensitive to voltage fluctuations and up-convert any 
noise on the bias points. 
 
Biasing with a resistor provides a resonant free-solution for wideband applications, but it 
may unnecessarily load the output of the oscillator, thereby lowering the gain and 
degrading the phase noise performance. A normal biasing scheme such as a voltage 
divider or a current divider technique, using resistor is good for amplifier design, may 
significantly contribute to noise in the oscillator circuit. Biasing with the potential divider 
with the resistors effectively increase the noise, which may be up-converted into the 
fundamental frequency of oscillation as additional phase noise.  
 
For VCOs circuits, the collector is generally biased using an inductor with an SRF as 
high as possible above the oscillation frequency so that it will not affect the fundamental 
frequency of oscillation. The value of the inductor must be high enough to resemble a 
broadband RF open circuit for a desired tuning range.  
 
This can be achieved by incorporating two parallel inductor series with a transmission 
line to create the broadband open-circuit as shown in Figure 8-13. Similarly, multiple 
capacitors are used in parallel to create a broadband RF short-circuit with respect to the 
SRF for the lower and higher end of the tuning range.  
 
Biasing for tuning network is also critical for overall phase noise performances. The 
tuning diode exhibits a change in capacitor as a function of tuning voltage. A resistor 
provides a resonant-free biasing, but it introduces noise to the oscillator due to the 
voltage gain (integration gain) K0 (MHz/V) of the oscillator. Therefore, a π-network is 
incorporated to reduce the noise in the tuning network, as shown in Figure 8-13, which 
minimizes the noise at tuning port. Figure 8-14 shows the layout diagram of the 
wideband VCO (1500-3000/3000-6000 MHz) frequency band, and is fabricated on 32mil 
thickness Roger substrate of dielectric constant 3.38 and loss tangent 2.7⋅10-4. 
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Figure 8-14: Layout of the wideband VCO (1500-3000 MHz/3000-6000 MHz) 
(Copyright Registration No.: Vau-603-984). 
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As shown in the Figure 8-14, the symmetrical coupled resonator is connected across the 
two emitters of the transistor (Infineon BFP520) to provide a uniform loaded Q over the 
tuning range, thereby providing a uniform phase noise over the frequency band. Figures 
8-15 and 8-16 show the simulated and measured phase noise plot of the wideband VCO 
(1500-3000 MHz), which closely agrees within 2.5 dB. 
 
 

 
 

Figure 8-15: Simulated phase noise plot of the VCO (1500-3000 MHz). 
 
 
 

Figure 8-16: Measured phase noise plot for the VCO (1500-3000 MHz). 
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The circuit shown in the Figure 8-13, is rich of the second harmonic under large signal 
drive level, and the second harmonic (3000-6000 MHz) can be filtered out by as an 
extension of the fundamental frequency band without an external multiplier module.  
 
Figures 8-17 and 8-18 show the simulated and measured phase noise plot of the wideband 
VCO (3000-6000 MHz), which closely agrees within 3 dB. 
 

 

 
Figure 8-17: Phase noise plot of the wideband VCO (3000-6000 MHz). 

 
 

 
Figure 8-18: Measured phase noise plot of the wideband VCO (3000-6000 MHz). 
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Wideband VCO (1500-3000/3000-6000 MHz) Features  
Oscillator Frequency:                                
Tuning Voltage:                                        
Tuning Sensitivity:                                    
Bias Voltage:                                             
Output Power:                                           
Harmonic Suppression:                             
VSWR:                                                      
Phase Noise (1500-3000 MHz):                
Phase Noise: (3000-6000 MHz):              
Frequency Puling:                                    
Frequency Pushing:                                   
Output Impedance:                                    
Operating Temp:                                       
Size:                                                           

1500-3000/3000-6000 MHz 
0 to 20 VDC (Nom) 
75 to 150 MHz/Volt 
+5 VDC @ 30mA(Nom) 
+5 dBm (Typ) 
20 dBc  (Typ) 
1.5:1 
-90 dBc/Hz @10 kHz offset (Typ) 
-88 dBc/Hz @10 kHz offset (Typ) 
2 MHz (Max) @ 1.75:VSWR 
3 MHz/V (Max) 
50 Ohm 
-40oC to 85oC 
0.5 in ×0.5 in 
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Chapter 9 

Discussion and Conclusions 
 
 
9.1  Accomplishments 
 
The objective of this dissertation was to design a wideband (octave-band and more) 
voltage controlled oscillator that can satisfy the present demand for low-cost, low-noise, 
power-efficient, wide-band, compact-size, and are amenable for integration in integrated 
chip form. Furthermore, the freedom of selection of the frequency-band, compact size, 
low cost, low power consumption, and stability over temperature range will make this 
technology attractive for mobile communication applications. As a result of this work, a 
set of design guides and coupled-oscillator noise equations were found.  All the important 
circuits were built, measured, and analyzed in Ansoft Designer.  
 
There are a number of functional parameters that are important depending on the 
oscillator’s intended applications, but phase noise is the most fundamental and important 
figure of merit. Wideband tunability and good phase noise performances are the most 
opposing requirements due to the problem of controlling the oscillator loop parameters 
and optimization of the time average loaded Q of the resonator over the tuning band, 
simultaneously. A low cost, small, long-battery-life solution has been the dream for 
decades. Many efforts have been devoted to the integration of such circuits in low-cost 
technology in order to reach the goal. The proposed topology under this work offers a 
cost-effective and power-efficient solution that maintains the noise performance over the 
tuning range.  This objective is accomplished by dynamically tuning the transistor 
stability factor, phase coupling network, noise filtering network, tracking filter and 
maintaining the time average loaded Q of the coupled resonator over the desire band.  
 
YIG resonator-based VCOs have wideband tunability with the external DC magnetic 
field, but at a high price and they are not amenable for integration in chip form. Thus, the 
work described here explores the different topology for the wideband oscillator (octave-
band tunability) and offers a cost-effective alternative to the YIG resonator-based 
wideband VCO in the frequency range of L, S, and C band. This work demonstrates the 
feasibility of ultra low noise VCOs covering a frequency band from 320 MHz to 6000 
MHz, and all the three circuits (320-1120 MHz, 1000-2000/2000-4000 MHz and 1500-
3000/3000-6000 MHz) are the basis for the N-push approach for extending the frequency 
in the millimeter frequency band.  
 
These VCOs represent the first octave band coupled/push-push designs being attempted, 
which give comparable phase noise performances of the existing narrowband VCOs, and 
thereby this research work may be useful for replacement of number of narrowband 
VCOs by single wideband VCOs and opens the door for many possible future works. 
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Wideband Integrated VCO  
 
The increasing demand for the portable communications equipment has driven 
researchers to produce transreceivers at a lower cost, and this has led to an intense 
interest in integrating as many components as possible. One high-speed component that 
has been particularly hard to integrate is the VCO, due to the poor quality of on-chip 
passive components in silicon integrated circuit technologies, namely the low quality 
factor Q of on-chip inductors and the poor linearity of on-chip varactors. Larger inductors 
require long metal traces, hence they are susceptible to noise pick-up through 
electromagnetic coupling.  Integrating the VCO on a single die is a challenging goal 
because with the VCO being an extremely sensitive, the analog part has to operate in an 
overly noisy environment where numerous digital sub-circuits share the same substrate. 
In order to reach the goal, special concepts have to be applied by trying a different 
topology such as the coupled oscillator/N-push approach with noise cancellation 
techniques. Despite the ongoing trend toward higher integration levels, discrete VCOs 
still have their place in contemporary wireless designs because discrete VCOs offers 
advantages such as superior performance, tremendous design flexibility, faster time-to-
market, low cost, and reduce risk. 
 
9.2  Conclusions and Future Possibilities 
 
The improvement of the FM noise of the coupled oscillator system is discussed. The 
degradation of the phase noise due to the flicker frequency effects is more concern and 
this will be an important research area. Since on-chip resonators elements provide low Q 
factors, transistors with low 1/f-noise and special concepts have to be applied in order to 
meet the present phase noise requirements.  
 
One obvious extension of the present work is to tackle a multi-octave band voltage 
controlled oscillator, and one of the methods used to reach this goal is the N-push 
approach with the integrated phase detector.  This approach is particularly useful if the 
frequency is high enough that a fundamental oscillator is beyond the capabilities of the 
given MMIC process. This work has concentrated on dynamically tuned coupled 
resonators, tuning networks, and phase shift networks. As an extension of this work, an 
effort is currently being undertaken to control the phase shift due to the tolerance of the 
RF components through the phase detector circuit, thereby the topology can be extended 
for ultra low noise integrated multi-octave-band VCOs.  
  
An even smaller and more cost-effective VCO technology will emerge in the future by 
employing an N-push/push-push approach in Monolithic IC and MEMS [69] technology, 
but presently, this technology is not suitable or compatible with commercial applications 
due to the problems with the large current and size requirements.  More attention and 
research work is needed to meet these challenges.  Figure 9-1 shows the layout of the 
integrated VCO for multi-octave-band VCOs, which is based on N-Push coupled 
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topology integrated with the phase detector network; thereby, the non-uniform phase shift 
is dynamically corrected for N-Push operation over the band.  This is a further extension 
of this research work, and can be implemented in MEMS technology for the purpose of 
the covering wide frequency range in the millimeter frequency band [72]. 
 
 

 
 

Figure 9-1:Layout of the integrated VCO for multi-octave-band tunability (2-8 GHz/8-16 GHz). 
 



 

 155

Chapter 10 

Abbreviations and Symbols 
 
Symbol    Description 
 
∆A(t)     Amplitude fluctuation 
∆ϕ(t)     Phase fluctuation 
∆f     Noise bandwidth 
∆θ     Steady state phase difference  
DUT     Device under test 
LTV     Linear time variant 
LTIV     Linear time invariant  
NLTV     Nonlinear time variant 
Ic(t)     Collector current 
Icob     Collector reverse current   
Yn     Normalized noise admittance 
Ye     Even mode admittance 
Y0     Odd mode admittance 
λe     Even mode eigen value 
λ0     Odd mode eigen value 
Gn     In-phase component of noise source 
Bn     Quadrature component of noise source 
RP     Parallel loss resistance 
m     Ratio of loaded and unloaded Q 
mopt     Optimum value of m for minimum phase noise 
QL     Loaded quality factor 
Q0     Unloaded quality factor 
βij     Coupling parameter 
αi     Free-running amplitude of the ith oscillator 
Ai(t)     Instantaneous amplitude of the  ith oscillator 
ϕi(t)     Instantaneous phase of the ith oscillator 
ωi     Free-running frequency of the ith oscillator 
gm     Small signal transconductance 
gm(t)     Large signal transconductance 
f0     Center frequency 
fc     Flicker corner frequency 
fm     Frequency offset 
P0     Average power at oscillator output 
K0     Oscillator voltage gain 
RP     Parallel loss resistance associate with the resonator 
NF     Noise Figure 



 

 156

MEMS    Micro-electro-mechanical-system 
SMD     Surface mounted device 
SRF     Self resonance frequency 
MSL     Microstripline 
£(fm)               Ratio of sideband power in a 1 Hz bandwidth at fm  
en(t)     Noise signal voltage 
einj(t)     Injected signal voltage 
∆ωlock     Locking bandwidth 
ωinj     Injected signal frequency 
λij     Magnitude of the coupling coefficient 
ϕij     Phase of the coupling coefficient 
r     Capacitance ratio of the tuning diode 
CV0     Capacitance of tuning diode at zero bias voltage 
CVB     Capacitance of tuning diode at breakdown bias voltage 
Pn     Average power dissipated by the network 
µ     Empirical nonlinear parameter 
Rn(t)     Time variant negative resistance 
K     Boltzman’s constant (1.38E-23 J/K) 
Γ(x)     Impulse sensitivity function 
Cn     Fourier series coefficient 

][C      Matrix representation of arbitrary coupling topology  
C     Coefficient of correlation  
θn     Phase of the nth harmonic 
We     Average stored electrical energy 
We     Average stored magnetic energy 
ωdiff     Modulation frequency 
VNA     Vector network analyzer 
VDP     Van der Pol 
kT       4.1 × 10−21 at 300K (room temperature) 

fqIi bbn ∆= 22     Mean square value of noise due to base current 

fqIi ccn ∆= 22     Mean square value of noise due to collector current 

fqIi cobcon ∆= 22    Mean square of noise due to reverse collector current 
fkTRv bbn ∆= 42    Mean square of noise voltage due to base resistance 
fkTRv bsn ∆= 42    Mean square of noise voltage due to base resistance 

mcn KTgiS 2)( =    Noise power spectral densities due to collector current 

β
m

bn
KTgiS 2)( =    Noise power spectral densities due to base current 

bbn KTRvS 4)( =    Noise power spectral densities due to base resistance 
ssn KTRvS 4)( =    Noise power spectral densities due to source resistance 
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Chapter 12 
Appendices 

 
 
Appendix A 
 
Noise Analysis of the N-Coupled Oscillator Coupled Through the Different 
Coupling Topology:  
 
The objective of this Appendix to find the analytical expression of the phase noise of the 
N-coupled oscillators relative to a single free running uncoupled oscillator for different 
coupling configurations. Three types of coupling topology (global, bilateral and 
unilateral) are described for the noise analysis of the N-coupled oscillator systems.  
 
For uncoupled oscillator coupling coefficient 0→ijβ  and Equations (4.83) and (4.84) 
can be expressed as 
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The noise spectral density due to the amplitude fluctuation is given by  
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The noise spectral density due to the phase fluctuation for single uncoupled free running 
oscillator is given from Equation (A.2) as 
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For series tuned free running oscillator, Equations (A.4) and (A.5) can be rewritten as 
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Equation (A.6) and (A.7) represents the AM and PM noise for the uncoupled free-
running series tuned oscillator and this has same form as given in Equations (4.65) and 
(4.69). 
 
Globally N-Coupled Oscillator Systems 

 
Figure A-1 shows the globally N-coupled oscillator system.  
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Figure A-1: Globally N-coupled oscillator system 



 

A3 

From Equation (4.86), 
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For globally coupled topology, considering coupling coefficient ββ =ij  for any ith and jth 
oscillators and all the oscillators are in phase, Equation (A.8) can be rewritten as 
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Expanding the series of the Equation (A.9) as 
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Following [18]; from (4.87) and (A.11), ][C  for global coupling can be described as 
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From (4.88) 
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From (4.89) 
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From Equation (4.96), the total output phase noise is given by 
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Comparing Equation (A.15) with the single oscillator phase noise Equation (A.5), we 
find  
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From Equation (A.16) the total PM noise for N globally oscillators is reduced by the 
factor N of that of a single oscillator. 
 
 
Bilateral N-Coupled Oscillator Systems 
 
Figure A-2 shows the nearest neighbor bilateral N-coupled oscillator system. 
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Figure A-2: Nearest neighbor bilateral N-coupled oscillator system 

 
 
The coupling parameter ijβ  for the Figure A-2 is defined as [29] 
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Assuming constant phase progression along the array of the N-coupled oscillator system 
as  
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From  (4.87), ][C  for bilateral coupling can be described as 
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From (4.89) 
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From Equation (4.96), the total output phase noise is given by 
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Comparing Equation (A.22) with the single oscillator phase noise Equation (A.5) we find 
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Unilateral N-Coupled Oscillator Systems 
 
Figure A-3 shows the nearest neighbor unilateral N-coupled oscillator system. 
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Osc# N-2  
Figure A-3: Nearest neighbor unilateral N-coupled oscillator system 

 
 
In this topology, each successive oscillator in the array of N-coupled oscillator system is 
slaved to the previous oscillator and the first oscillator in the array is considered as 
master oscillator. 
 
The coupling parameter ijβ  for the Figure B-3 is defined as [18] 
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From (4.87), ][C  for unilateral coupling can be described as 
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Where 
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The rows and columns of the Equation (A.26) form geometric series; the expression of 
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From Equation (4.96), the total output phase noise is approximately given as 
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From Equation (A.29), there is noise degradation with respect to the single uncoupled 
free running oscillator and the noise of the unilateral coupled oscillator increases 
quadratically away from the carrier, and linearly with increasing number of the oscillator 
of the array of the N-coupled oscillator systems.  
 
In general 1<<z and near the carrier frequency the noise is just that of the first-stage 
oscillator, thereby the total noise could be significantly reduced by making the first-stage 
oscillator as a master oscillator having low noise performance. 
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Appendix B  
 
Analytical Approach For Designing Wideband Oscillators/VCOs (Optimum Power) 
 
Figure B-1 shows the series and parallel feedback topology of the oscillator, and 
depending on application and ease of analysis, one model may be preferred over another. 
However, the designer has the freedom to convert Y-parameter to Z-parameter and vice-
versa for designing oscillators/VCOs, based on the topology above.  
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Figure B-1: a) Series topology b) Parallel topology 
 
 
The general transformation matrix from [Y] to [Z] can be expressed as 
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and from  [Z] to [Y] is given as 
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Series Feedback Oscillators/VCOs 
 
The analysis uses the large signal Y-parameters derived from the large signal S-
parameters (measured or simulated). The steady-state oscillation condition for series 
feedback topology can be expressed as 
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where I is the load current amplitude and ω is the resonance frequency. outZ  is function  
of the amplitude of the current and frequency whereas LZ is function of frequency only.   
 
The expression of output impedance, outZ can be written as 
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where Zij (i,j=1,2) is Z-parameters of hybrid transistor model and can be defined as  
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According to optimum criterion, the negative real part of the output impedance outZ  has 
to be maximized and the possible optimal values of feedback reactance under which the 
negative value outR  is maximized by setting [61,62,63] 
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The optimal values *

1X and *
2X , based on above condition, can be expressed in terms of  
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the impedance parameter of the 2-port network of the active device (BJT/FET) as and can 
be given as 
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By substituting values of *

1X and *
2X  into above equation, the optimal real and imaginary 

parts of the output impedance *
outZ  can be expressed as 
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Thus, in the steady-state operation mode of the oscillator, amplitude and phase balance 
conditions can be defined as 0* =+ Lout RR  and 0** =+ Lout XX .     
 
The output power of the oscillator/VCO can be expressed in terms of load current and 
load impedance as 
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where I  and V is the corresponding load current and voltage across the output. 
 
 
Parallel Feedback Oscillators/VCOs 
 
The analysis uses the large signal Y-parameters derived from the large signal S-
parameters (measured or simulated). The steady state oscillation condition for the parallel 
feedback oscillators given in Figure B-1 (b) is shown as 
 

03 ⇒+ YYout       (B.13) 
 



 

B4 

The steady-state stationary condition can be expressed as 
 

0
3222221

2122111

3222221

2122111 =
++−

−++
=








++−

−++
YYYYY

YYYYY
YYYYY

YYYYY
Det    (B.14) 

 
From (B.14), 
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where Yij (i,j=1,2) are Y-parameters of the hybrid bipolar/FET-transistor model. 
 
As shown in Figure B-1(b), the active 2-port network, together with the feedback 
elements Y1 and Y2, is considered as a one-port negative resistance oscillator circuit. The 
output admittance Yout can be given as 
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According to optimum criterion, the optimum values of feedback susceptance B1 and B2, 
at which the negative value of Re [Yout] is maximum, are determined by solving the 
following differential condition [61,62,63]: 
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and the solution of the above differential condition will give the optimum values of 
output admittance *

outY  and feedback susceptance *
1B and *

2B , which can be expressed in 
terms of the two-port Y-parameters of the active device (BJT/FET) as 
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 The optimum values of the real and imaginary part of the output admittance are  
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where *
outG and *

outB  is given as 
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Thus, in the steady-state stationary oscillation mode, general condition for oscillation is 
given as 
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Where ][ 33 jBGY L += , LL RG /1= , LR  is the load resistance. 

The output power for the given load ][ 33 jBGY L +=  is given as Loutout GVP 2

2
1= , where Vout 

is the voltage across the load.   
 

Example: 
 
A tunable 3000 MHz oscillator is designed based on the above shown analytical series 
feedback approach and is also validated with the simulated results. Figure B-2 shows the 
series feedback oscillator. 
 
Large signal Z-parameters measured data (Infineon BFP 520, Ic=20mA, Vce=2V) @3000 
MHz are given as  
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From (B-6) and (B.7), 
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Figure B-2: Schematic of the Series feedback oscillator 
 

 
Figure B-3 shows the oscillator resonance frequency of the series feedback oscillator. 
 
 

 
 

 
 

 
 
 

Figure B-3: Oscillator resonance frequency of the Series feedback oscillator 
 
Frequency of the oscillator can be varied from 2000 to 4000 MHz by replacing C2 by 
tuning diode, and capacitance is varied from 1.2 pF (2000 MHz) to 0.08 pf (4000 MHz). 
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Appendix C  
 
Derivation of Equation (4.15) 
 
Figure C-1 shows the equivalent representation of negative resistance portion of the 
circuit for the analysis of the noise voltage. 
 
 

 
 

Figure C-1: Equivalent representation of negative resistance portion of the circuit 
 
 
Figures C-2 illustrates the oscillator circuit for the purpose of the calculation of the negative 
resistance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figures C-2: Equivalent oscillator circuit for the purpose of the calculation of the negative resistance. 



 

C2 

From Figure C-1, the total noise voltage power within 1 Hz bandwidth can be given as 
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The first term in Equation (C.1) is the noise voltage power due to the loss resistance R, 
and the second term is associated with the negative resistance of the active device RN.  
 
From the Figure C-2, the circuit equation is given from Kirchoff’s voltage law (KVL) as 
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From (C.14 and (C.15) 
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From (C.1),  
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The values of p and q depend upon the drive level. 
 
The first term in the expression above is related to the thermal noise due to the loss 
resistance of the resonator tank and the second term is related to the shot noise and flicker 
noise in the transistor. 

The flicker noise contribution in Equation (C.17) is introduced by adding term 
ω

AF
bf IK

 in 

cI , where Kf is the flicker noise coefficient; AF is the flicker noise exponent, ω. is the 
offset frequency from the carrier, and  ω0 is the oscillator frequency.  
 
Now, the phase noise of the oscillator can be expressed as [11] 
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Where L is inductance of the resonator network and I0 is RF current. The unknown 
variables are 2)(ωne and )(2

0 ωI , which need to be determined next.  )(2
0 ωI  will be 

transformed into  )(2 ωcI  by multiplying )(2
0 tI  with the effective current gain Y21

+/Y11
+ = β+. 

  
From Figure C-3, the LC-series resonant circuit is in shunt between the base and the 
emitter with the capacitive negative conductance portion of the transistor 
 
The oscillator collector current is given by 
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Figure C-3:  Colpitts oscillator with series resonator and small signal AC equivalent circuit. 

 
 
The voltage Vce is the RF voltage across the collector emitter terminals of the transistor. 
Considering the steady-state oscillation ω→ω0, the total loss resistance is compensated 
by the negative resistance of the active device as )(tRR NL = . The expression of 
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where INC  is the equivalent capacitance of the negative resistor portion of the oscillator 
circuit. 
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From Equation (C.18), 
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