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Artificial neural network modeling
of sliding wear

Ivan I Argatov1 and Young S Chai2

Abstract

A widely used type of artificial neural networks, called multilayer perceptron, is applied for data-driven modeling of the

wear coefficient in sliding wear under constant testing conditions. The integral and differential forms of wear equation are

utilized for designing an artificial neural network-based model for the wear rate. The developed artificial neural network

modeling framework can be utilized in studies of wearing-in period and the so-called true wear coefficient. Examples of

the use of the developed approach are given based on the experimental data published recently.

Keywords

Wear coefficient, sliding wear, artificial neural network, specific wear rate, aluminum alloy matrix composites

Date received: 29 December 2019; accepted: 30 March 2020

Introduction

In recent years, artificial neural networks (ANNs) have
emerged as a powerful mathematical tool for data-
driven modeling in mechanical1,2 and structural3–6

engineering as well as in tribology7,8 and machine
tool treatment.9–11 In particular, a number of stu-
dies12,13 have employed neural networks for analysis
of wear tests.

However, in applications of ANNs to modeling of
sliding wear, there are some issues that are of critical
importance for interpreting the constructed ANN
models and understanding the obtained experimental
results.14 One of the main obstacles associated with
applications of ANNs to physical processes like wear
is the difficulty of explaining functional interrelations
(between the wear rate and the physical variables gov-
erning the process) as they are predicted by ANN
approximations.15,16

To address this so-called ‘‘black box’’ issue of
ANN modeling approach, a number of problem-spe-
cific ANN-based models of hybrid type have been
developed.17–19 In the present paper, we consider the
main problem associated with the application of
multilayer perceptron (MLP) for analyzing experi-
mental data obtained from pin-on-disk sliding wear
tests. Notwithstanding that MLPs, which is a stand-
ard neural network technique, the novelty of our
approach, in particular, lies in the way how the coef-
ficient of wear is determined.

Recall that a straightforward approach for the ana-
lysis of sliding wear is based on Archard’s equation of

wear20 of the form

_w ¼ kpv ð1Þ

where p is the contact pressure, v is the sliding vel-
ocity, k is the wear coefficient, w is the linear wear
(usually measured in microns), and a dot denotes dif-
ferentiation with respect to time, so that _w is the
(linear) wear rate.

The pin-on-disk test is regarded as one of the
standard wear test methods,21 though its selection
should be justified in order to provide a reasonable
simulation of a tested tribosystem.22 From a mathem-
atical modeling point of view, the major advantage of
the test scheme with cylindrical pin is that it facilitates
the evaluation of a material’s wear resistance under
constant contact area, while the discrepancy in distri-
bution of relative sliding velocity across the circular
contact is insignificant for relatively small pins com-
pared to the disc radius. Moreover, the condition
of constant area of contact implies that, when the
effect of wear takes place, the contact pressure tends
to become uniform across the entire contact.23
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Therefore, the wear coefficient k, which is determined
using equation (1), can be regarded as a tribosystem
property that is independent of the contact area.

Observe that the Archard equation (1) states that
the coefficient of wear k is a characteristic of the tested
material, and may also depend on the operational
conditions (e.g. pin temperature, sliding velocity,
and pressure). This circumstance can be illustrated
by the black-box scheme shown in Figure 1.
However, equation (1) tentatively suggests that k
may be a function of time as well, though the black-
box scheme does not reflect this assumption.

Usually, the value of k is determined from experi-
ments conducted under constant normal load, L, and
sliding velocity, v, so that k is taken to be proportional
to the ratio of wear volume loss, V, to the correspond-
ing sliding distance, s. In other words, in steady state,
equation (1) can be written as V¼ kLs, provided that k
is a constant with respect to s. It is to recall here that
the ratio V=ðLsÞ is called the specific wear rate (SWR).
Therefore, assuming now that k may depend on sliding
distance (or time of sliding), the standard approach
yields the average value V=ðLsÞ for the wear coefficient,
and this issue should be taken into account in the ANN
design (see Figure 2). The wear coefficient that deter-
mines the instantaneous wear rate will be called the
true wear coefficient.

On the other hand, having constructed an ANN
model that relates the wear volume V to the sliding
distance s, both of which are extensive variables, one
can then raise the question: how to extract the wear
equation that relates the wear rate _w to the

operational conditions, which are described by the
intensive variables like p and v, thereby getting rid
of the dependence on time or sliding distance?

Thus, having been introduced ‘‘true’’ wear coeffi-
cient, which may vary during sliding under the con-
stant operational conditions, and its average value,
which is provided by the specific wear rate
SWR ¼ V=ðLsÞ, the problem arises how to distinguish
the two quantities in ANN modeling. While the
majority of publications8,24,25 use the SWR for esti-
mating the wear coefficient, the present paper appar-
ently constitutes the first integrated attempt to model
the true wear coefficient in the ANN framework. We
illustrate the use of the developed approach by several
examples, which are based on the experimental data
fully published in recent papers.

Research significance

The main research implication of this study is that it
highlights the modeling aspect of the ANN technique
with application to the analysis of sliding wear tests.
The mathematical modeling approach is based on
the integral and differential forms of Archard’s equa-
tion of wear, which distinguish between the true wear
coefficient (TWC), which is regarded as a function of
sliding distance, and the SWR. It is shown that the
latter tribological characteristic, which is widely
used in analysis of tests performed with a pin-on-
disk tribometer, provides the arithmetic average for
the TWC.

ANN modeling framework

Wear equation in the integral form

In pin-on-disk wear tests, we have w ¼ V=A, where A
is the contact area. Since the contact area if fixed, the
contact pressure p ¼ L=A will be constant if the con-
tact load L is kept constant during the test. Also, it is
convenient to operate with the sliding distance s¼ vt,
where t is the running time.

Now, we assume that the coefficient of wear k,
which enters the differential equation (1), may
depend on factors such as material composition, con-
tact pressure, sliding velocity and sliding distance.
To fix our ideas, we consider k as a function of two
variables c and s, where cmay represent either a single
variable (e.g. concentration of reinforcement) or a
vector of physical variables. So, for what follows,
we simply rewrite equation (1) as dw ¼ kðc, sÞ pvdt.
Now, by taking into account that V¼Aw, L¼ pA,
and vdt ¼ ds, the integration of the above equation
yields

V

L
¼

Z s

0

kðc, �sÞd�s ð2Þ

where �s is the integration variable.
Figure 2. ANN diagram illustrating the wear equation in

integral form.

Figure 1. Black-box scheme illustrating the wear equation in

differential form.
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Evidently, the differentiation of equation (2) with
respect to s yields

kðc, sÞ ¼
1

L

dV

ds
ð3Þ

Thus, the true wear coefficient can be simply defined
as the ratio between the derivative of the wear volume
with respect to the sliding distance and the contact load.

ANN modeling of accumulated wear

Now, the wear equation (2) is employed to construct
an ANN model for the relative accumulated wear
volume in the form of a single-hidden-layer feed-for-
ward neural network

V

L
¼
XNh

j¼1

w
ð2Þ
j hj þ bð2Þ ð4Þ

where hj is the output of the jth hidden neuron, w
ð2Þ
j is

its weight, Nh is the number of hidden neurons, and
b
ð2Þ
j denotes the bias of the output neuron. Making use

of the weighted summation of inputs, we obtain

hj ¼ f w
ð1Þ
j0 sþ

X
i

w
ð1Þ
ji ci þ b

ð1Þ
j

 !
ð5Þ

where f(x) is the activation function, which is taken to
be the same for all hidden neurons, and b

ð1Þ
j denotes

the bias of the jth neuron. In our analysis, we employ
the sigmoid function f ðxÞ ¼ ½1þ expð�xÞ��1.

In this approach (in light of equation (3)), an ANN
approximation for the wear coefficient can be
obtained by differentiating equation (4) as

kðc, sÞ ¼
XNh

j¼1

w
ð1Þ
j0 w

ð2Þ
j hj � h2j

� �
ð6Þ

where hj is given by (5), and we used the derivative of
the sigmoid activation function f 0ðxÞ ¼ f ðxÞð1� f ðxÞÞ.

Specific wear rate

Usually, experimental data regarding sliding wear are
characterized in terms of the SWR, which is defined as
the ratio of volume loss V to the product of load L
and sliding distance s. In other words, we have
SWR ¼ w=ð psÞ, where w ¼ V=A and p ¼ L=A.
Hence, equation (2) implies

SWR ¼
1

s

Z s

0

kðc, �sÞd�s ð7Þ

so that the SWR coincides with the integral arithmetic
average of the true wear coefficient.

On the other hand, from equation (4), it
follows that

SWR ¼
1

s

XNh

j¼1

w
ð2Þ
j hj þ bð2Þ

 !
ð8Þ

If the SWR is sensitive to the value of sliding dis-
tance, then it will provide an average measure for
the variable coefficient of wear. Observe also that
equation (1) determines the intensity of wear _w,
which is assumed to be proportional to k, so that
equation (2) connects k with w, which is a sort of
extensive variable.

Validation of the ANN modeling
approach

Dry wear of friction material against
cermet coatings

First, we consider the pin-on-disk studies of running-
in performed by Federici et al.26 on commercial brake
friction material under dry sliding conditions at a slid-
ing velocity of 1.57m/s with the nominal contact pres-
sure of 1MPa. Figure 3(a) shows their experimental
data for the variation of wear volume loss and a fit
using a simple ANN model [1-3-1] with the following
weights and biases

wð1Þ ¼

0:001

1:823

12:181

, bð1Þ ¼

0:331

�0:049

2:66

, wð2Þ ¼

�12:402

2:313

6:941

,

bð2Þ ¼ �0:394

The corresponding ANN prediction is presented in
Figure 3(b) for the wear volume rate defined as

W ¼
dV

ds
: ð9Þ

We note that in light of equation (3), we have
W¼Lk, where k is the true wear coefficient.

Based on the experimental data for the wear
volume Vn taken at the time moments tn, the wear
volume rate can be approximately evaluated as

WðtnÞ �
Vn � Vn�1

vðtn � tn�1Þ
ð10Þ

where v is the sliding distance. It should be empha-
sized that equation (10) is approximate, and this can
be seen from Figure 3(b), where the finite-difference
derivative has been evaluated for the ANN model (see
triangle symbols).

Further, recall that SWR ¼ V=ðLsÞ, so that
V=s ¼ L � SWR. At the same time, equation (10) can
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be rewritten as W � �V=�s. Figure 3(b) shows that
in the running-in stage, the SWR (see rhombus sym-
bols) does not estimate well the variable wear rate
(shown by empty square symbols).

Moreover, making use of the exponential model,27

Federici et al.26 approximated the wear volume rate as

W ¼ A1 expð�t=�1Þ þW1 ð11Þ

with the coefficients �1 ¼ 3:96 (min), A1 ¼ 2:93� 10�3

and W1 ¼ 2:39� 10�4 (mm3=m).
The integration of equation (11), in view of (9),

gives the approximation

V ¼ vfW1tþ A1�1½1� expð�t=�1Þ�g ð12Þ

The prediction of the exponential model (12) for
the wear volume is shown in Figure 3(a). The drastic
difference with the experimental data for V can be
explained by the overestimated value for A1, which,
in turn, is a consequence of the approximate nature of
equation (10), especially in the initial interval of rapid
volume increase.

One of the benefits of the exponential model (11) is
that it provides the approximate value W1 for the
steady-state wear rate. At the same time, the ANN
approximation (3) for the wear coefficient should

not be used outside the interval of fit. Therefore, pro-
vided that the steady-state regime of wear has been
reached in some time interval t1, t2, the following
approximation for the steady-state wear rate can be
recommended

W1 ’
Vðt2Þ � Vðt1Þ

vðt2 � t1Þ
ð13Þ

Correspondingly, in light of equation (3), we
obtain the steady-state wear coefficient

k1 ’
Vðs2Þ � Vðs1Þ

Lðs2 � s1Þ
ð14Þ

where V(s) is given by the ANN model (4).
In the case under consideration, taking t1 ¼ 23 min

and t1 ¼ 25 min, the ANN models give Wðt1Þ ¼
2:47� 10�4 and Wðt2Þ ¼ 2:25� 10�4 (mm3=m), so
that equation (13) yields the value W1 ¼
2:36� 10�4 (mm3=m), which differs from the expo-
nential model prediction by 1.3%. We also note that
equation (14) gives k1 ¼ 8:35� 10�6 (mm3N�1m�1).

Finally, it should be emphasized that, in contrast to
regression models like the exponential model (11), one
of the benefits of the ANN modeling approach is that
it can be readily generalized to account for the vari-
able operational conditions, provided a sufficient
amount of experimental data has been collected.

Wear of zirconia reinforced AI–SiC hybrid
composites

In their 24 pin-on-disk tests, Arif et al.28 considered
aluminum hybrid composites reinforced with micro-
SiC (5wt%) and nano-zirconia (0, 3, 6, and 9wt%)
under two levels of applied load L (20 and 40N) and
for three values of sliding distance s (300, 600, and
900m). Using the ANN modeling and linear regres-
sion method, the following relation for the wear mass
loss m (mg) was established28

m ¼ �3:50417þ 0:047z%þ 0:010sþ 0:058L

� 0:00043sz%

ð15Þ

Here, z% is the zirconia mass percentage (wt%).
Our ANN model has three inputs (applied load, L,

zirconia mass percentage, z%, and sliding distance, s)
and four hidden neurons, which amounts to 21 degrees
of freedom, and the following weights and biases

wð1Þ ¼

0:001 0:259 0:046

1:841 0:537 0:171

0:582 �1:1265 0:795

0:014 3:397 2:532

,

(a)

(b)

Figure 3. Wear loss volume (a) and wear rate (b) of pins as a

function of the sliding time for mechanically polished discs.

ANN: artificial neural network; SWR: specific wear rate.
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bð1Þ ¼

0:009

0:383

2:492

0:42

, wð2Þ ¼

�0:827

0:161

�2:587

1:779

, bð2Þ ¼ 1:078

The mean absolute percentage error of the con-
structed ANN model is 4.72% against 6.65% for the
regression model (15).

Equation (15), in light of equation (3), can be used
for estimating the wear coefficient by noting that

k ¼
1

L�

dm

ds
ð16Þ

where q is the density of the tested composite material.
In the case under consideration, we readily have

�ðz%Þ ¼ 1� 0:05�
z%

100

� �
1

�Al
þ
0:05

�SiC
þ

z%

100

1

�ZrO2

� ��1
ð17Þ

where �Al ¼ 2:7 gcm�3, �SiC ¼ 3:21 gcm�3, and
�ZrO2

¼ 5:89 gcm�3.

Thus, differentiating equation (15), we obtain

k ¼
1

L�ðz%Þ
ð0:010� 0:00043z%Þ ð18Þ

where �ðz%Þ is given by equation (17).
Figure 4 shows the ANN fit to the experimental

data. It is clear that while the wear mass loss as a
function of the three input parameters is useful for
drawing qualitative conclusions, any quantitative esti-
mate for service conditions will require getting rid of
the dependence on the sliding distance. The ANN pre-
dictions for the wear coefficient are shown in Figure 5
by the solid lines together with the estimates (dashed
lines) extracted from the regression model (15).

Figure 6 shows our predictions for the true wear
coefficient (evaluated at s¼ 600m) as a function of the
zirconia mass percentage obtained from the experi-
mental data.28 It is interesting to observe that the
wear coefficient decreases with increasing contact
load. This fact implies that the Archard–Kragelsky
model, which assumes the power-law dependence of

(a)

(b)

Figure 5. Predictions of the linear regression model (dashed

lines), the ANN model (solid lines), and the SWR-based

approximations (dot symbols) for the wear coefficient as a

function of the sliding distance for the two values of the applied

load L¼ 20 N (a) and L¼ 40 N (b) for different values of the

mass percentage of zirconia reinforcement.

(a)

(b)

Figure 4. Comparison of measured data28 and ANN-pre-

dicted trends for the wear mass loss versus the sliding distance

for the two values of the applied load L¼ 20 N (a) and L¼ 40 N

(b) for different values of the percentage concentration of

reinforcement.
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the wear rate _w on the contact pressure p seems to be
more appropriate than Archard’s equation (1).

Abrasive wear of aluminum alloy matrix composites

To illustrate the developed theoretical framework, we
consider experiments conducted by Canakci et al.25,29

on the abrasive wear of AA2014 aluminum alloy
matrix composites reinforced with B4C particles.
Their sliding wear tests were performed against an
abrasive suspension mixture under constant load,
L¼ 92N, and linear sliding velocity, v ¼ 0:314m=s.
The experimental data from 30 tests were grouped
into 20 training and 10 test data, so that Ntrain ¼ 20
and Ntest ¼ 10. For the samples of varying volume
fraction of particles (c ¼ 0, 2, 3, 6, 9, and V(mm3))
the wear volume loss, V (mm3), was measured and,
then, the specific wear rate was calculated using the
equation SWR ¼ V=ðLvtÞ. Also, note that the surface
roughness of the contact surface was evaluated in
Canakci et al.25 after each of the wear tests using
the surface texture parameter Ra (mm).

A two-hidden-layer MLP with two inputs (sliding
time and volume fraction), three outputs (volume loss,
specific wear rate, and surface roughness) was con-
structed by Canakci et al.25 to study the effect of the
sliding time and volume fraction of reinforcement.
With four neurons in the first hidden layer and three
neurons in the second hidden layer, their ANN archi-
tecture [2-4-3-3] amounts to 13 degrees-of-freedom
per output.

The predictions of our neural network model
[2-3-1] with 13 fitting parameters

wð1Þ ¼

�104:3 2:964

�2:253 1:896

4:647 1:25

, bð1Þ ¼

15:6

�0:312

1:536

,

wð2Þ ¼

2:703

8:828

31:48

, bð2Þ ¼ �31:86

(MAPEtrain ¼ 5:217% and MAPEtest ¼ 5:387%) for
wear volume loss and SWR are presented in Figure
7. It is to emphasize that the SWR curves are drawn
by using equation (8) based on the ANN model for
wear volume loss, whereas in Canakci et al.25 the
latter is included into the number of ANN outputs.

The main advantage of the developed approach lies
in the possibilities to intrinsically analyze the vari-
ation of wear coefficient (see Figure 8). It is important
to highlight that the SWR represents an approxima-
tion for the true wear coefficient, as it can be seen
from the comparison of Figures 8 and 7(b). This, in
particular, means that the SWR can be used for esti-
mating the coefficient of wear, but only with care
taken to provide stabilization of the wear intensity.

Dry sliding wear of Inconel 600 alloy

As yet another example, we consider the experimental
results of Banker et al.30 on 27 pin-on-disk tests whose

(a)

(b)

Figure 7. (a) Comparison of measured data25 and ANN-

predicted trends for the wear volume loss versus the sliding

time; (b) comparison of measured data and ANN-predicted

trends for the specific wear rate loss versus sliding time (for the

same legend as in Figure 7(a)).

SWR: specific wear rate.

Figure 6. Predictions of the linear regression model (dashed

line), the ANN model (solid lines), and the SWR-based

approximations (dot symbols) for the wear coefficient as a

function of the zirconia mass percentage.
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parameters were determined by the Taguchi method
for the following four inputs: load, L (N), rotational
speed, $ (r/min), wear track diameter, D (mm), and
pin heating temperature, T (�C). It should be empha-
sized that all wear tests were conducted for the same
duration (7min). The following linear regression
model was obtained for the linear wear (in mm)30

w ¼ �22:7þ 1:53Lþ 0:0390$ þ 0:806D� 0:0716T

ð19Þ

We recall that the sliding velocity can be evaluated
as v ¼ !D=2, where, in turn, the angular velocity (in
rad/s) is given by ! ¼ ð2�=60Þ$.

Our ANN model has three inputs (L, T, and sliding
distance, s) and four hidden neurons, which amounts
to 21 fitting parameters

wð1Þ ¼

0:006 �1:752 �3:345

2:997 8:769 3:586

32:57 �0:038 �2:318

4:113 �13:33 2:382

, bð1Þ ¼

0:072

�5:772

�33:08

�2:174

,

wð2Þ ¼

93:84

22:4

26:06

18:77

, bð2Þ ¼ �18:83

The weighted absolute percentage error (WAPE) of
the constructed ANN model is 1.45% against 3.84%
for the regression model (19). Figure 9 shows the fit-
ting results for the ANN model for two values of the
applied load.

Observe that equation (3) allows to extract the
wear coefficient from the ANN model, but as a func-
tion of the sliding distance s. In the case under con-
sideration, the latter variable is simply linked to the
sliding velocity v, because the duration of each test is
taken to be the same, while sliding velocity is adjusted
either by the change in the rotational speed $ or in

the track diameter D. By taking advantage of this
circumstance, we obtain the ANN-based hypothesis
for the wear coefficient as a function of sliding velocity
(see Figure 10). Interestingly, the obtained results
illustrate the conclusion drawn in Banker et al.30

that $ and D are the most significant parameters
affecting the wear of Inconel 600.

Discussion

First of all, it is important to underline that the appli-
cation of the differential ANN models (4) and (6) can
be implemented via standard ANN tools (specifically,
the MLP framework and backpropagation learning
algorithm31). It should be emphasized that, while the
present study emphasizes the modeling aspect of the
ANN technique, it is shown that the presented ANN
models achieve results not worse than their standard
counterparts.

Observe that the developed approach can be uti-
lized for analyzing the wearing-in period in the case of
constant contact area subjected to sliding.32 In the
case of variable contact area (e.g. in ball-on-disk
tribological testing33), further study is needed to
account for the variability of the contact pressure
under a constant normal load. It should be also

(a)

(b)

Figure 9. Comparison of measured data30 and ANN-pre-

dicted trends for the linear wear (in microns) versus the sliding

distance for the three values of the applied load L¼ 5 N (a) and

L¼ 10 N (b) for different values of the pin heating temperature.

Figure 8. ANN-based predicted variation of the wear coef-

ficient with sliding time for B4C particle-reinforced composites.
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emphasized that, generally speaking, an ANN should
not be used for predictions outside the range of its
training data. Therefore, an extrapolation of the
wear coefficient for larger sliding distances is war-
ranted once its variation has been stabilized.

Another critical issue which should be acknowl-
edged is that the wear coefficient may not take nega-
tive values, because in sliding wear the wear rate is
assumed to be positive. The negative points for the
SWR-based wear coefficient observed in Figure 10
are explained by the fact that equation (14) was
applied for two sliding distances s1 and s2 obtained
from tests with different track diameters.

The example considered in the previous section
(see, in particular, Figure 10) reveals an interesting
aspect of the application of the Taguchi method in
conjunction with the ANN analysis. It is recom-
mended to treat the input of sliding time/distance dif-
ferently compared to the other inputs and not include
it into a Taguchi orthogonal array. At the same time,
in order to increase the accuracy of determining the
wear coefficient via the derivative of the ANN model
for the wear loss volume, it is recommended to
increase the number of data lines for this input.

Of course, the developed ANN-based modeling
framework can be regarded first as a curve-fitting
algorithm for convenient analysis of wear data,

which depends on the sliding distance. What is
more, ANN models can be effectively used for the
development of wear transition maps.34 An insight
into the functional wear mechanisms that take place
in a tested tribosystem can be gained provided the
wear data includes relevant information, such as char-
acteristics of surface roughness25 or debris features.35

It is to note that in the presented analysis it was
tentatively assumed that only the wear of pin is
accounted for in the total wear volume loss. When
substantial wear is experienced by the disc as well
(which, for instance, can be determined by means of
surface topography analysis36), then the sliding dis-
tance per unit contact area takes on a different mean-
ing for each body. If n denotes the number of
rotations of a cylindrical pin of radius a, sliding
along a circular track of diameter D, then the pin
sliding distance, evidently, is given by n�D, which cor-
responds to the contact area �a2. At the same time,
the disc area which is exposed to wear has the area
equal to 2�aD (for the simplicity’s sake we assume
that the approximation of small pin applies, that is
a ¼ D=2). However, the time of wear per one cycle
will be different across this annular wear track, and
therefore it can be shown (under the assumption of
constant contact pressure, which is the case in the
steady state) that the equivalent disk distance, which
corresponds to the annular track area 2�aD, will
be n�a=2.

So, if in a given pin-on-disk tribosystem, both
materials experience wear and the wear of pin affects
the wear damage of disc, and vice versa, the developed
approach still can be applied, provided the contribu-
tions from the both materials to the total wear volume
loss can be separated (e.g. if the tribo-pair is com-
posed of different materials, which are easy to distin-
guish from one another).

Conclusions

The purpose of this research was to establish a robust
ANN-based modeling framework for analyzing slid-
ing wear tests performed with a pin-on-disk tribom-
eter. The mathematical modeling approach used to
investigate the problem was based on the integral
and differential forms of wear equation, which stem
from Archard’s equation of wear. With regard to the
application of ANNs to wear calculations and a com-
parison with the published data, the primary findings
of the work were as follows:

1. When considering the accumulated volumetric
wear loss as a function of sliding distance,
the wear analysis should distinguish between the
TWC and the SWR, the latter of which provides
the arithmetic average for the TWC, regarded as a
function of the sliding distance.

2. Though the relative sliding velocity can be con-
trolled by either the disc rotational speed or the

(a)

(b)

Figure 10. ANN-based predicted variation of the wear

coefficient with sliding velocity for Inconel 600 alloy.
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track diameter, it is recommended to use the first
method, but not a combination of the two.

3. The developed ANN model can be utilized in stu-
dies of wearing-in period, which now can be
defined as the initial time interval during which
the TWC’s value is stabilized.

To conclude, in the present communication, the
differential ANN-based model is presented for model-
ing of sliding wear under constant testing conditions,
including contact area, contact pressure, and sliding
velocity. Examples of sliding wear tests adopted from
the literature illustrate the efficiency of the developed
constructive approach.
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