
A Partitioning-Centric Approach for the

Modeling and the Methodical Design of

Automotive Embedded Systems Architectures

Dissertation

A thesis submitted to the

Faculty of Electrical Engineering and Computer Sciences
of the

Technical University of Berlin
in partial fulfillment of the requirements for the academical degree of

Dr.-Ing.

by

Augustin Kebemou

Berlin 2008
D 83

ii

A Partitioning-Centric Approach for the

Modeling and the Methodical Design of

Automotive Embedded Systems Architectures

vorgelegt von
Dipl.-Ing. Augustin Kebemou

Berlin

Von der Fakultät IV - Elektrotechnik und Informatik -
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

- Prof. Dr.Sabine Glesner (Vorsitzender)
- Prof. Dr.-Ing. Ina Schieferdecker (Gutachter)
- Prof. Dr. Jakob Rehof (Gutachter)

Tag der wissenschaftlichen Aussprache: 06.05.2008

Berlin 2008
D 83

ii

Acknowledgments

”Acquiring knowledge is useless unless it makes us better servants of humanity”.
The achievement of this thesis would not have been possible without the intervention and the

support of many people. I am very grateful to all those who supported me during the work that
led to this thesis.

In particular, I would like to thank the supervisor of this work, Prof. Dr.-Ing. Ina Schieferdecker
(holder of the chair for Design and Testing of Telecommunication Systems at the TU Berlin and
concurrently leader of the research group MOTION at the Fraunhofer Institute FOKUS) for her
advices, for her reviews and her suggestions that improved both the technical and the scientific
quality of this thesis. I also thank Ina for the friendly working atmosphere that gave me additional
self-confidence to go ahead.

I am also deeply grateful to Prof. Dr. Jakob Rehof, the director of the Fraunhofer Institute
for Software and Systems Engineering (ISST) and concurrently holder of the chair for Software
Engineering at the university of Dortmund, who accepted spontaneously to support me, invested his
time to examine my work and undertook the co-supervision activities that considerably contributed
to the achievement of this thesis.

Taking this opportunity, I would further like to thank Rainer Mackenthun, the head of the
Department of Dependable Technical Systems at the Fraunhofer Institute for Software and Systems
Engineering (ISST) in Berlin, Prof. Dr. Herbert Weber, Dr. Alexander Borusan and Dr. Volker
Zurwehn, also from the ISST institute in Berlin, for their psychological support. I did appreciate
your fairness and the way you judged my work during my hard days.

I would also like to address my special thanks to Angelika Becker, who played a central role in
the accomplishment of this thesis. Thank you very much, Geli, for the nights and the weekends
you spent to review this thesis and to correct my textual formulations. Thank you for your advices.
Thank you for the time you invested in intensive discussions with me. Thank you once more for
your emotional support.

I finally wish to express my gratefulness to my family and all of my friends for their patience
during the years of this thesis as well as to my colleagues at the Fraunhofer Institute for Software
and Systems Engineering (ISST) who participated in the fruitful discussions that made this thesis
possible.

Thank u all.

Once more, remember: ”Acquiring knowledge is useless unless it makes you a better servant
of humanity”.

A. Kebemou

i

ii

Abstract

Because of the increasing demand for more comfort, security and environmental compatibility,
the development of E/E-systems (Electric/Electronic) has become a central task for automobile
manufacturers. In the actual context that is characterized by the rapid increase of software- and
electronic-based components in modern vehicles and the related hard competition in the automobile
market, it is necessary to design optimal architectures for automobiles’ E/E-systems in a relatively
short time. An optimal architecture of an E/E-system must minimize the usage of the hardware
(i.e. processing units, memory elements, communication cables, etc.) as well as the operating
costs (energy and fuel consumption, maintenance, waste disposal, etc.) and concurrently optimize
the functioning and the quality (i.e. performance, reliability, safety, security, etc.) of the system.
In this thesis we suggest to solve this problem by means of CAD-supported tools. This requires
drastic changes within both the established development methods and the design processes. We
propose a system-oriented design process and an automatic partitioning method with appropriate
modeling techniques to support the model-based definition of the architectures of automobiles’
E/E-systems.

Abstrakt (Deutsch)

Vor dem Hintergrund der steigenden Nachfrage nach mehr Komfort, Sicherheit und Umweltfre-
undlichkeit ist die Entwicklung von E/E-Systemen (elektrik/elektronik) zu einer zentralen Auf-
gabe für die Automobilhersteller geworden. In der gegenwärtigen Situation, die durch die rapide
Zunahme von software- und elektronikbasierten Bestandteilen in modernen Fahrzeugen und den
damit verbundenen harten Konkurrenzkampf auf dem Automobilmarkt gekennzeichnet ist, ist es
notwendig, optimale Architekturen für automobile E/E-Systeme in relativ kurzer Zeit zu entwickeln.
Die optimale Architektur eines E/E-Systems muss die Hardwarenutzung (d. h. Prozessoren, Daten-
speicher, Kommunikationskabel, I/O Module, etc.) und die Betriebskosten (Energie- und Treibstof-
fverbrauch, Wartung, Verschrottung, etc.) verringern und gleichzeitig die Funktionstüchtigkeit und
die Qualität (Leistung, Zuverlässigkeit, Sicherheit, etc.) des Systems verbessern. In dieser Arbeit
schlagen wir vor, dieses Problem durch computergestützte Werkzeuge zu lösen. Dies macht ein-
schneidende Veränderungen sowohl in den Entwicklungsmethoden als auch in den Designprozessen
erforderlich. Wir schlagen einen systemorientierten Entwicklungsprozess vor, der die modellbasierte
Definition der Architekturen von automobilen E/E-Systemen unterstützen kann. Diese Arbeit
definiert die passenden Modellierungstechniken und die Algorithmen, die eine automatische Parti-
tionierung von System-level-E/E-Modellen ermöglichen.

iii

iv

Contents

1 General introduction 1

1.1 Motivation . 1
1.2 Problem definition . 3
1.3 Procedural method to solve the problem . 9
1.4 Contributions . 12
1.5 Publications . 13
1.6 Scheduling of the thesis . 13

2 Automotive Embedded Systems 15

2.1 Automotive electronics . 15
2.1.1 Embedded systems . 15
2.1.2 Automotive and embedded systems . 16
2.1.3 Example: The Active Cruise Control . 17
2.1.4 The ACC functional connectivity . 19

2.2 Automotive connectivity . 19
2.2.1 Automotive communication protocols . 19
2.2.2 All-rounder automotive communication protocols 20
2.2.3 High-speed and real-time protocols . 21
2.2.4 General-purpose protocols . 23
2.2.5 Other in-vehicle and smart network protocols 24

2.3 Conclusion . 25

3 Embedded systems design 27

3.1 Embedded systems design methods . 27
3.1.1 The sequential design process . 27
3.1.2 The concurrent design method . 28

3.2 Design activities . 29
3.2.1 The specification . 29
3.2.2 The partitioning . 29

3.3 The implementation . 30
3.3.1 The software synthesis . 30
3.3.2 The hardware synthesis . 31
3.3.3 The synthesis of the interfaces . 32

3.4 Conclusion . 32

4 Automotive systems design 35

4.1 Design of AES . 35
4.1.1 Top-down and bottom-up . 35
4.1.2 Current OEM design practice . 35
4.1.3 Limitations of the current OEM design practice 36

4.2 Proposed design approach . 37
4.2.1 Factors of the problem resolution . 37

v

vi CONTENTS

4.2.2 The system-oriented design approach . 38
4.2.3 Analysis . 39

4.3 Conclusion . 40

5 Modeling AES: State-of-the-art 41
5.1 Modeling AES . 41

5.1.1 Model-driven system development in the automotive engineering 41
5.1.2 AES are heterogeneous and complex systems 42

5.2 AES modeling needs . 42
5.2.1 AES modeling prerequisites . 42
5.2.2 Features expected from an AES model-based design solution 43

5.3 AES basic modeling concepts . 44
5.3.1 Abstraction levels in the AES design . 44
5.3.2 AES architectural modeling concepts . 45
5.3.3 AES behavioral modeling concepts . 47

5.4 Conclusion . 48

6 The value of AES modeling languages 49
6.1 The evaluation framework . 49

6.1.1 AES modeling requirements for the partitioning 49
6.1.2 Related work . 50
6.1.3 Classification criteria . 51
6.1.4 Criteria for evaluating the level of support 53

6.2 AES modeling languages . 55
6.2.1 General-purpose languages . 55
6.2.2 Automotive domain-specific modeling languages 58

6.3 Evaluation and classification of AES modeling languages 61
6.4 Conclusion . 62

7 Inputs for the partitioning 67
7.1 Required inputs for the partitioning . 67
7.2 Specifying the system’s functionalities . 68

7.2.1 Relevant modeling concepts . 68
7.2.2 The FN: The modeling solution for the functional specification 69

7.3 Specifying the hardware platform . 72
7.3.1 Relevant modeling concepts . 72
7.3.2 The HN: The hardware platform . 75

7.4 The partitioning . 75
7.4.1 Formal definition of the partitioning problem 75
7.4.2 Relevant attributes for the elements of the input models 77

7.5 Conclusion . 79

8 The synthesis Model 81
8.1 Definition of the synthesis model . 81

8.1.1 Requirements for the synthesis model . 81
8.1.2 The synthesis model . 82

8.2 Annotations for the synthesis model . 85
8.2.1 Concurrency, sequencing . 85
8.2.2 Annotations for the nodes . 85
8.2.3 Annotations for the edges . 86
8.2.4 Annotations for the tokens . 86
8.2.5 Formal definition of the synthesis model 87

8.3 Applications . 88

CONTENTS vii

8.3.1 The weight of an edge in a CDFM model 88
8.3.2 Model transformation . 89

8.4 Conclusion . 89

9 The partitioning: State-of-the-art 91

9.1 The partitioning problem . 91
9.1.1 Frames of the problem . 91
9.1.2 Requirements for the partitioning algorithm 92

9.2 Partitioning methods . 93
9.2.1 Exact and heuristic methods . 93
9.2.2 Constructive partitioning techniques . 95
9.2.3 Iterative improvement techniques . 97

9.3 Conclusion . 101

10 The partitioning algorithms 103

10.1 The partitioning strategy . 103
10.1.1 A three-step process . 103
10.1.2 Definitions of terms . 104
10.1.3 The main procedure . 105

10.2 The pre-clustering . 105
10.2.1 Definition . 105
10.2.2 The pre-clustering algorithm . 106

10.3 The clustering . 107
10.3.1 Closeness metrics . 107
10.3.2 The closeness function . 110
10.3.3 The QT clustering algorithm . 111
10.3.4 Conclusion . 113

11 Evaluating and improving a partition 115

11.1 The CAN: A frame-oriented communication protocol 115
11.1.1 Organization of a CAN network . 115
11.1.2 CAN frames . 116
11.1.3 Format of a standard CAN data frame . 116
11.1.4 Frames multiplexing . 117
11.1.5 Relations with the partitioning . 119
11.1.6 Practical considerations for the frames multiplexing 119

11.2 The value of a partition . 121
11.2.1 The cost function . 121
11.2.2 The cost as a bin packing problem . 122

11.3 Bin packing techniques . 123
11.3.1 The Next Fit, the First Fit and the Best Fit strategies 123
11.3.2 Off-line packing strategies . 124

11.4 Investigating the cost of a partition . 125
11.4.1 The FFD strategy for the cost estimation 125
11.4.2 The frames packing algorithm for the cost investigation 126

11.5 Improving the partition . 127
11.5.1 The Kernighan & Lin strategy . 127
11.5.2 The improvement technique . 128
11.5.3 The improvement procedure . 130

11.6 Conclusion . 132

viii CONTENTS

12 Applications 133
12.1 The application case . 133

12.1.1 Presentation of the application case . 133
12.1.2 Objectives and scenario . 134

12.2 The investigation . 135
12.2.1 The models . 135
12.2.2 The attributes of the tokens . 137
12.2.3 The partitioning . 139

12.3 Results . 139
12.4 Conclusion . 140

13 General conclusion 141
13.1 Summary . 141
13.2 Outlook . 145

A Zusammenfassung der Dissertation 1
A.1 Motivation . 1
A.2 Problemlösung . 3
A.3 Wissenschaftliche Beiträge der Dissertation . 5

Glossary of Terms and Abbreviations i

List of Figures v

List of Algorithms vii

List of Tables ix

Bibliography xi

Chapter 1

General introduction

In this chapter we give a general presentation of this thesis. Beginning with the genesis of the problem
that is to be solved, we define the concerns of our work and we provide an overview of our solution
schemata. The problem of finding a CAD-supported partitioning method that is applicable to system-
level specifications of automotive embedded systems (AES) is elucidated and its necessity for today’s
design process of AES is justified. The following problem definition clarifies the purpose and the goal
of our investigations. It also describes the scope of this thesis. We then provide our solution schemata
and an outlook on the possible expansions and the usability of the solutions.

1.1 Motivation

Today’s vehicle manufacturers must produce pretty, reliable, safe-functioning vehicles with powerful
engines, robust mechanics and high comfort, all that in mass-production, where stringent quality
requirements go together with the demand for low costs and low maintenance needs, but high
safety and security levels, high dependability, absolute reliability and short time-to-market. Thereto,
vehicles underlie severe legal constraints such as the required environmental compatibility prescribed
for example in [3–5]. Sophisticated embedded electronic controllers are used to cope with these
constraints and to satisfy the steadily increasing expectations of the consumers. In this context, the
quantity of automotive electronic- and software-based functionalities is likely to grow continuously,
requiring efficient development and production methodologies to continue to build high-quality and
cost sensitive vehicles. The required methodologies must not only assure the best product quality,
but they must also facilitate the maintenance and finally the disposal of the resulting vehicles and
increase the productivity of the vehicle manufacturers.

Automotive systems are actually very complex systems the software-based functionalities of
which are distributed on several embedded components including electronic control units (ECU),
sensors and actuators which do not only cooperate with each other, but also depend on each other.
Figure 1.1 shows the typical architecture of the platform of a modern personal vehicle. In this
car, there are five high-speed CAN (Controller Area Network) networks operating at 500 kbit/s:
The power-train bus, called ”Antrieb-CAN” in the figure, networks the engine, the gearbox, the
transmission, the airbags, the all-wheel controller units and several braking, stability and steering
assistance controllers. Another high-speed CAN bus connects the instrumentations controller
(”Kombi” in the figure) with the rest of the system through the central gateway while the car
exhaust management system (”NOx,...”) uses the engine controller as gateway to the other parts
of the system. This complex system around the high-speed CAN also includes the ESP-Cluster and
the diagnosis bus (i.e. the one enclosed by dotted lines) that feeds the entire system. Concurrently,
a low-speed CAN protocol running at 100 kbit/s is implemented for the infotainment and other
comfort functions (here ”Komfort-CAN”). In addition, the system runs two LIN networks. LIN
stands for Local Interconnect Network [10]. The first LIN network clusters the multi-functional
steering wheel sensing system (“MFL”) and the second one interconnects the wipers, the mirrors,

1

2 CHAPTER 1. GENERAL INTRODUCTION

the rain detecting sensors and so on. Thanks to the global connectivity enabled by the central
gateway, the combination of these different networks can work like a unified system. For example, a
power-train member function can communicate with the infotainment system to order the emission
of audio signals corresponding to a particular alert. This example shows the dimension order of the
complexity of AES. Nevertheless, even though the CAN [1] protocol is the most used for the inter-
ECU communication in the automobile engineering, today’s automotive systems often additionally
include some MOST (Media Oriented System Transport [11]), FlexRay or Byteflight networks for
multimedia, infotainment, safety-relevant and hard real-time applications.

LIN

Kombi-
CAN

Infotainment-CAN

LIN

Komfort-CAN

Komfort-CAN

Antriebs-CAN

Antriebs-CAN (500 kbit/s)
2 private CAN (500 kbit/s)

Telefon/
Interface
(Box 2)

Radio-
navigation

Bordnetz-
Steuergerät

Einpark-
hilfe

Multifunktions-
Steuergerät

Anhänger-
Steuergerät

PTC-
Heizung

SMLS
(Lenksäule)

Kombi
(WFS)

Airbag
SG

Elektrische
Lenkhilfe

Lenkwinkel-
sensor

Dynamische
LWR

Telematik
NAR

Booster
AMP

Stand-
Heizung

Radio

NOx

...

Sounder NGSIRÜ

Wischer
RS/LS MFL

TV-Tuner

Bremsen-
Steuergerät
(ABS, ESP, ...)

ESP-Cluster

Tür-
Steuergerät

Beifahrer

Tür-
Steuergerät

Fahrer

Sitz Fahrer
(Memory)

Klima-
Steuergerät

Wahl-
hebel

Getriebe-
Steuergerät

Motor-
Steuergerät

OBD OBD Allrad
SG

Tür-(FH)
Steuergerät
hinten links

Komfort-
Steuergerät

Tür-(FH)
Steuergerät

hinten rechts

Instrument-CAN (500 kbit/s)
Infotainment-CAN (100 kbit/s)

Komfort-CAN (100 kbit/s)
1 Diagnose-CAN (500 kbit/s)

2 LIN-Netzwerke
K-Wire

Gate-
way

Figure 1.1: A subset of a modern passenger car’s architecture: A network of sub-networks (source:
Elektronik Automotive 01/2005, pp. 82)

It appears in figure 1.1 that each device is conceived for a given circumscribed set of features
that generally participate all-together in the achievement of a defined functionality. On the way
toward electronic all-rounder commercial vehicles, more and more electronic-actuated functionali-
ties will be added to these already complex systems, with consequences to the design constraints,
the product cost, the time-to-market, the design cost, the cost of ownership (e.g. energy and fuel
consumption, maintenance efforts) and the quality goals (performance, safety, etc.). This issue is
currently widely identified among the automotive design actors as a big challenge since it is clear
that the number of automotive electronic devices cannot beneficially grow proportionally to the
number of the required electronic-actuated functionalities. As we cannot stop the ever-growing
consumers’ requests for more vehicular features, the challenge can be roughly formulated as follow-
ing: How to continue to produce reliable and safe-functioning vehicles that provide every
possible feature but are still salable and cost-effective? The most emerging solutions propose
radical changes in the design process, standardization efforts, harmonization of the development
processes and the emergency of new technologies.

A change in the design process is necessary: The current AES design process relies on a
component-driven approach. The electronic components and their software are designed each for
a particular given functionality. New functionalities are introduced through the integration of new
devices, resulting in too many devices and consequently a high inter-device communication, highly
time-consuming system integration, poor performance over cost ratios due to the usage of more
hardware resources than necessary. To implement more software functions on fewer components, it
is necessary to change from the actual components-oriented development style to a system-oriented

1.2. PROBLEM DEFINITION 3

development one. A system or at least a function-oriented design will enable the control of the
growth of the number of the devices and simplify the functional scalability of the system.

Standardization is needed: In this industry, where the collaboration between OEMs and their
suppliers is crucial, where the basic functions are so identical that they can be shared across the
manufacturers, where a product is generally a variant of another, the need of a clear basis for the
communication and a systematic reuse of solutions is obvious. AUTOSAR [22] and FIBEX [47] are
promising solutions dealing with standardization efforts in order to afford reuse and interoperability
within the automotive domain. AUTOSAR proposes standardized software components and inter-
faces while FIBEX proposes standardized configuration methods for the system communication.

The emergence of new technologies will evidently solve a certain number of problems: Promi-
nent examples here include the evolving mechatronic- and by-wire-based innovations and the new
revolutionary communication protocols. In fact, to cover the ever growing communication needs,
automotive designers currently need more powerful communication facilities, i.e. with higher trans-
mission rates, larger bandwidths, etc. This is achieved on the one hand by designing powerful and
specialized communication protocols, e.g. TTCAN, TTP, MOST, FlexRay, Byteflight, LIN proto-
cols, etc., and on the other hand by adding new buses/cables in the system. A very popular way
of bandwidth optimization with respect to the state-of-the art in the design of AES is to organize
their communication networks in hierarchies, i.e. cluster networks made of simple bus networks
are joined on a backbone network through gateways. The hierarchical organization induces the
following four dimensions of the system design, in the ascending order:

1. The devices with their components

2. The simple bus networks, i.e. a bus networking a set of devices

3. The cluster networks, i.e. those that are connected on the gateways

4. The complete system network including the gateways and the cluster networks

The architecture of the vehicle shown in figure 1.1 is a typical example of an hierarchical
network organization: The devices are placed on bus networks according for example to their level
of criticality, their similarities and the dependencies between their functions, their consumption of
power, etc. Then the bus networks are bundled into cluster networks (e.g. see Komfort-CAN,
Antriebs-CAN, Infotainment-CAN, Kombi-CAN, etc., in figure 1.1) according to their functional
domain (power train, chassis, safety, multimedia, telematics, MMI, comfort). The cluster networks
finally communicate through gateways and other central nodes, building the complete system.
Although these solutions appear to solve the problem, they are definitely not sufficient! The real-
time performance of CAN and others is limited, the transmission medium’s capacity is limited, etc.
While it is necessary to reduce the system cost despite the demand for higher AES performance,
adding buses implies to extend the cable harness, that means an increase of the weight, of the
energy consumption, of the sales price of the vehicles and possibly the appearance of a wide range
of technical problems.

1.2 Problem definition

The design of an AES goes through several conceptual levels. Each level is a refinement of the
preceding one. As shown in figure 1.2, the development of AES is concerned with the require-
ments engineering, the design and the implementation of the system functionalities as well as the
validation of the system.

The earliest phase of the creation of an AES begins with the treatment of the requirements.
This includes the capturing and the organization of the requirements, the dissolution of incon-
sistencies and the transcription of the requirements into functional and non-functional objects as
well as the enumeration of the related constraints. Actually, the requirements engineering has

4 CHAPTER 1. GENERAL INTRODUCTION

Requirements

Design

Implementation

V
al

id
at

io
n

V
erification

Figure 1.2: Activities in the AES development

proposed notable solutions to identify, capture, analyze and manage the requirements in the auto-
motive engineering domain [92,108]. Some advanced solutions are successfully integrated in CARE
(Computer Aided Requirements Engineering) tools, e.g. DOORS (www.telelogic.com), Analyst
Pro (www.analysttool.com), CARE (www.sophist.de), ClearSpecs Composer (www.livespecs.com),
RequisitePro (IBM Rational), etc. But, these solution are all discrete solutions, i.e. totally sep-
arated from the following design activities. Unfortunately, independently of its quality, a discrete
requirements engineering solution is not the most viable, since it does not enable a continuous
system engineering. Furthermore, as we pointed out in [82], as long as there is no solution propos-
ing formal specifications of the requirements, the requirements engineering will still be a very hot
research area. However, these problems will not be discussed in this work.

In the design phase of the development of an AES, the system functionalities are specified and
then, implemented on a hardware platform following the design constraints. Here, decisions are
made about the logical architecture of the system, the composition and the topology of the hard-
ware platform on which the system’s application will run as well as the coding and the deployment
of the functional specification on the platform. As the functionalities of an embedded system can
be implemented on different architectures built each of different hardware components, the choice
of the hardware and the quality of the implementation are decisive for both the economy and the
performance of the system. An optimal resource usage can considerably reduce the cost of the
AES platform. We can thus achieve the goal of cost reduction if we reduce both the design cost
and the hardware usage of AES.

We can reduce the hardware usage if we optimize the architectures of the system in a way
that will reduce the quantity of the hardware needed to run the required functionalities, and use
optimally the hardware units installed in the system and the cables provided for the inter-device
communication, i.e. The operation by which the architecture of an AES is designed is called
the partitioning. The partitioning aims at finding the most cost-sensitive hardware platform and
distributing the system working load within the available resources of this platform so that the
functioning of the system is optimized by concurrently avoiding resource underutilization. More
concretely, during the partitioning, the system architect is concerned with questions like:

• Which hardware components are needed to realize the functionalities of the system?

• How many devices (ECUs, sensors, actuators, gateways) are needed to implement the given
functionalities?

• Which hardware units (processing units, memories, etc.) will be installed in each device?

• Where must each device be geographically located in the vehicle?

• Which communication systems are optimal for the chosen configuration of the platform?

• etc.

Thus, globally, the partitioning involves three activities:

1.2. PROBLEM DEFINITION 5

• The allocation, i.e. the choice of the hardware components of the platform,

• the mapping, which is the assignment of the elements of the functional specification of the
system to the components of the platform and

• the deployment, i.e. the distribution of the computing power and the memory space of the
platform among the elements of the functional specification.

A good partitioning must minimize the usage of processing units and memories as well as the
quantity of cables used for the inter-device communication. However, to achieve a good architec-
ture, it is necessary to design all the parts of the system simultaneously in order to ensure that
they will conjointly meet the given performance and economic goals of the design. The concurrent
design of the components of an AES will allow the coordination of the resource allocation across
the boundaries of the devices, facilitate the system integration and enable the system scalability
with positive consequences on the economy and the performance of the system. The concurrent
design is made possible only by a system-oriented design style. Regarding the system orientation,
we roughly distinguish three levels of conception in the development of AES:

• The functional level, where the functionalities of the system are specified in terms of coarse
and abstract functions.

• The implementation level, where the functional architecture of the system is defined in terms
of communicating software components, tasks or processes.

• The platform level, that deals with the configuration of the platform’s physical devices, their
topological positioning, the deployment of the software, the cabling of the devices and the
transport of electric signals for their communication.

Intuitively, the reduction of the costs of AES can be achieved by reducing or at least slowing
the growth of the number of devices in the vehicles. Once more intuitively, this can be done by
acting on each of the above conception levels. For example, one can imagine following solutions:

1. Re-engineering the platform in order to reduce the number of devices. This can be achieved
by grouping the devices that are close in order to build aggregative devices.

2. Building consequent functional modules with the software components defined in the imple-
mentation level or with the functions defined in the functional level of the system’s specifi-
cation.

Two devices are close if they have some common approaching properties, e.g. when they
incorporate functions that are related. Two functions are related when they communicate with each
other or when they underlie approaching constraints, for example when they can share resources,
share data, have common accessors or when they underlie constrained relationships with each other
[81], etc.

– Re-engineering the platform means to revise the system’s organization and then, either merge
very close devices in order to build larger devices or cluster them in order to place them on the
same bus. Only, building larger devices through the merging of several smaller ones is problematic
since the individual processing capability and the memory space in a device are limited. Moreover,
this approach might produce heavily unbalanced computation and communication loads that may
prevent the system to take full advantage of the capability of the platform and compromise the
scalability and the maintenance of the system (e.g. the exchangeability of the system components).
On the other hand, placing too many devices on the same bus involves the risk of non-economic
topological placements. The available bandwidth for the communication is limited and the required
communication rates might be different from one device to the other.

– Following the second solution, we can process either by splitting too large functional com-
ponents or by grouping highly related functions to build more cost-effective modules. However, as

6 CHAPTER 1. GENERAL INTRODUCTION

the functional level specifications are too rough to support the necessary analysis, we can do this
reasonably only at the implementation level. Thus, following this approach, software components
will be assigned to a location on the hardware platform depending on their contents and their
environments. Heavily related software components will be placed on the same bus or better,
on the same device. This solution needs a wide overview on the functional specification and the
properties of the software components including their performance requirements and their costs,
but it is the most realistic solution. However, with this approach, the partitioning process depends
on the substance of the software components, i.e. their granularity and their behavior. Depending
on the granularity of the software components, the partitioning process might include the mapping
or not, i.e. if the software components are all designed as tasks that can run each as a sequence
of uninterrupted instructions on a processor, then we just need a judicious definition of the cor-
responding platform and an intelligent deployment of the software components on the processors
and the memories. Else, we must firstly distribute the software components among the devices
before deploying the contained tasks and processes on the available processors and memories. In
this case, the purpose of the partitioning is as shown in figure 1.3 to find the best sample of devices
and the necessary communication systems, and determine the software components that must be
implemented on the same bus or on the same device so that the cost and the performance of the
system can be optimal with each intelligent deployment.

ECU Gateway ECU

ECU ActuatorSensor

Sensor Actuator

CAN High

LIN

FlexRay

CAN Low

Figure 1.3: The partitioning with coarse-granular software components

In a realistic AES design process, it is absolutely not possible to specify the functionalities of
the system in the form of schedulable chunks of behaviors at the system-level, but rather, in the
form of software components implementing each a function of the application software that is made
of several tasks that can run concurrently or sequentially. This means that we have to consider
the partitioning of coarse-granular software components (see figure 1.3). However, as we map
the entire content of each software component and not a part of it on a device, it is important
that the software components are atomic components. Otherwise, it will be necessary to split
them in order to achieve atomic components. In the automotive engineering, this important issue
is commonly perceived like a creative process. The designer is responsible to define the system’s
functional modules following his feeling an his intuition. Due to the lack of methodical support, the
outcome of this phase of the design is totally dependent on the experience of the people working
for the system development. Excepting the current AUTOSAR initiative to identify the software
components that are common in AES in order to standardize them as atomic entities, we are not
aware of any systematic or methodical approach to define the atomic functional components of
an AES. But, we think that a good deal of the expertise provided by the SOA (Service oriented
Architecture) domain can help here.

However, we consider in this work that the system’s application is made of atomic software
components. Note that this is a pretty realistic assumption, since the partitioning will not begin
as long as the functional components of the system are not considered to be each atomic. Atomic
in this context means that a component can be assigned to a device only entirely or not. The
corresponding partitioning process is shown in figure 1.4. During the mapping, the system archi-
tect assigns each functional component of the system to a given set of devices depending on the

1.2. PROBLEM DEFINITION 7

redundancy requirements of its implementation. This activity results into clusters of functions that
represent the logical devices of the system. Two components that are assigned to different devices
must communicate through an inter-device communication channel. As the automotive devices
usually communicate through bus networks running frames-oriented communication protocols, the
mapping must pack the inter-device communication data into the frames and assign the frames to
the available inter-device communication channels. In contrast with the mapping, the deployment
deals with the scheduling of the tasks and processes within the devices. The deployment can inte-
grate a typical software/hardware co-design in which it is decided which tasks will be implemented
in software to run on processors and which ones will be implemented in hardware, e.g. as ASICs.
However, the mapping and the deployment are interdependent.

Functional components, constraints and
relationships

Functions and
constraints
specification

Logical
architecture
-functional
clusters-

Logical
device 1

Logical
device n

...

Physical
architecture
and topology
-as allocated-

Tasks Data

BSW

CPU Mem I/O Int Bus Int I/O CPU

BSW

DataTasks

Mem

Signals

ECU ECUNW

Frames

deployment mapping deployment

mapping

Logical
device 2

...

Figure 1.4: The allocation, the mapping and the deployment

The order in which the partitioning operations are executed has an important impact on the
result of the partitioning. In a partitioning process, one can decide to execute the allocation, the
mapping and the deployment in this order or not, while another one might prefer to intertwine
them. However, with coarse-grained software components, the mapping will normally precede the
allocation. These operations are based on the runtime resource consumption of the elements of
the system specification, e.g. the space needed to store the code, the heaps, the software data
and the stacks as well as the computation power required by each functional component, its con-
sumption of energy, the magnitude of its collaboration with the other members of the device and a
full range of constraints and other relationships between the components of the functional model,
such as those induced by the strategic concerns of the AES design. If these attributes are given
with sufficient details so that we can design the necessary platform, then we should begin with the
allocation, then the mapping and the deployment. This is the most straightforward execution of
the partitioning. If not, we have two possibilities:

1) We can begin with the mapping, i.e. we firstly cluster the software components in order
to build the logical devices. Then, based on the detail specifications of the logical devices, we
determine the platform for each device and then for the whole system. The deployment can then
be done normally. With this process, we can achieve the best possible economy of the hardware
since we chose the hardware platform depending on the calibration of the functionalities of the
different devices. But, it is quite difficult to define the right dimensions for the logical devices.
Without this information, there is no means to stop the clustering at the right point.

2) The second possibility is to separate the allocation into a gross-allocation and a detail-
allocation. With the gross allocation, we determine the devices and their capacity. With a detail
allocation, we determine the effective components of the devices. The capacity of a device can be
given defined in terms of computing power or memory capacity. Given this information, we have the
sizes of the devices and thus the stopping points of the clustering. The partitioning can therefore

8 CHAPTER 1. GENERAL INTRODUCTION

begin with a gross-allocation, then the mapping, and with the result of these operations, we proceed
a detail-allocation and then the deployment. This process is for example the solution if we have
a stock of devices at our disposal. It might involve many loops of allocation, mapping, detail-
mapping, deployment and evaluation, but it is the most realistic process since the partitioning is
normally given the functional specification of the AES under construction, and the system designers
know approximately the capacity of the available devices.

In this work, we refer to a partitioning process that follows the above second process, i.e. it
firstly executes the allocation, then the mapping and finally the deployment. Since we are concerned
with the design of the architecture of the system, the allocation is reduced to the determination of
the number of devices (i.e. gross-allocation) while the internal equipment of the individual devices
and the corresponding deployment are partially under the responsibility of the components suppliers.
Following this separation of duties, the most actual objective of the system architecture design is
to minimize the inter-device communication. With frame-oriented communication protocols, this
objective is to be achieved by reducing the number of frames used to exchange information through
the buses. To do that, the mapping must assign the most heavily communicating components
of the functional specification to the same device. However, reducing the number of frames is
not the unique optimization goal of the mapping. Within this design process, the mapping is
heavily constrained by the allocation. The mapping must result in executable partitions, i.e. each
devices’ functionality must be schedulable and respect the capacity of the corresponding device.
Furthermore, each device functionality must use the hardware that is installed in the corresponding
device optimally, with respect to the defined room that must be reserved for the possible future
extensions of the device functionality. The allocation depends on the working load of the system.
We can only determine the equipments of the devices for a given working load if we can measure
the execution time, the size of the software code, the magnitude of the communication of the
components of the system’s functional specification, etc. This information can only be provided
if the partitioning is given a consequent description of the behavior and the functioning of the
system, what is not always the case. In fact, depending on the functions that are assigned to
a device and the design constraints, an automotive device might be equipped with all kinds of
processing units (including ASICs, micro-controllers, DSPs, etc.) as well as all kinds of memories
and several intra-device communication systems (e.g. SPI, I2C, etc). Figure 1.5 shows a possible
result of the detailed deployment with an ECU for which the system partitioner only defined the
application software and the communication matrix. For all these reasons, the scope of this work
is limited to the mapping. In the remainder of this work, the partitioning will refer to the mapping
whenever there is no need for precision.

Funktions
Tasks, Processes

HAL, OS, NW driver, Comm
contoller, ...

Application SW

Basic SW

ECU SW

ECU

HW Patform

ECU SW

ECU Communication
ECU

Messages

Micro-Controller, DSP, ASIC, ASIP,
FPGA, ...

ADC, Mux, ... DIO, I2C controller, ...

Processing Units

I/O devices

HW Platform

RAM, Flash, EEPROM, ...
Memories

SPI, I2C, ...
Buses

Figure 1.5: Detailed allocation and deployment

The design cost is also an important factor of the price of a vehicle. We will reduce the cost of
the design if we provide efficient and CAD-supported techniques for the implementation of AES.
In the current practice, the partitioning is done manually by highly experienced OEM designers,
usually called system integrators. The partitioning is currently limited to the addition of the new
software components on the existing system without changing the precedent contents of the de-
vices. When the existing devices are overloaded, the system architect generally decides to add

1.3. PROCEDURAL METHOD TO SOLVE THE PROBLEM 9

new devices to implement the new functionalities. This optimistic approach of the partitioning is
justified by the fact that the existing systems are well-functioning and reliable configurations with
stable communication matrices. A new design of the system architecture is practically equivalent
to a design from scratch, economically unsupportable in this industry where the competition is
extremely hard. In fact, the AES domain is a fast-evolving engineering field where new features
become rapidly customary. The time to market is vital for each OEM. However, the direct con-
sequence of this practice of the partitioning is the difficulty to enhance the system’s functionality.
This shortcoming is illustrated by the excessive number of buses and processors installed in the
new vehicles. Thereto, during the partitioning, a system architect must take hundreds of often
contradictory and competitive constraints into account. Keeping this information for a long time in
mind is not easy for a human intelligence. Furthermore, done per hand the partitioning is guided by
vague estimations and is so poorly documented that it is difficult to add new functionalities into an
already partitioned system, e.g. after delivery, without adding new hardware. A further important
disadvantage of manual partitioning is the fact that it is not possible to examine a large number of
system architectures. The design space is reduced to the solutions that are familiar to the designer
and those that are deemed by his feeling to be potential good solutions. In this context, new,
innovative and revolutionary architectures cannot be realistically expected. A CAD-supported par-
titioning will allow automotive systems architects, so-called systems integrators, to investigate new
architectural options. Automated partitioning will be time-saving and produce well-documented
and good system architectures since much more solution alternatives can be consulted. If provided,
this will be an effective contribution to the goal of optimizing the economy and the performance
of AES.

1.3 Procedural method to solve the problem

For the partitioning, the exploration of the design space allows designers to find optimal imple-
mentations of the system specification by analyzing various alternatives of both the architecture of
the system and the hardware platform. This requires powerful and complete models. The existing
approaches for the partitioning input very low-level, fine-granular specifications (e.g. logical and
arithmetical operations or simple assignments) at the level of abstraction given for example by the
programming languages like C, C++, assembler, Java and similar specification languages. Unfor-
tunately, because of the complexity of the automotive electronics, this dimension of granularity is
difficult to achieve when following a system-oriented design scheme. System-oriented development
requires a global view of the system, resulting in the handling of very complex models. As a special
domain of interest, important works have addressed the specification of AES, producing appre-
ciable results. Near general-purpose embedded systems-qualified modeling tools (UML [39, 60],
SDL [8], SysML [12],...), domain-specialized modeling languages have been proposed for the de-
velopment of AES (e.g. EAST-EEA[40], AADL[16], AUTOSAR[22], etc.). But as these solutions
were mostly focused on the definition of modeling languages, neglecting the substance of modeling
itself, i.e. its potential methodological support for the design process, it is necessary to examine if
AES specifications presented at this level of abstraction are apt to support the partitioning of the
system.

This observation leads to the structuring of this work in two main parts. We first need to define
the input specification for the partitioning. This must be a model that fulfills the requirements of
the partitioning. In this part of this work, we need to investigate the level of support that is provided
to system architects by the existing AES modeling solutions with regard to the partitioning. Here,
we concretely need to answer questions like:

• Which information is needed in a specification to support the partitioning?

• Which modeling features are needed to provide this information?

• Do the actual modeling techniques provide these features?

10 CHAPTER 1. GENERAL INTRODUCTION

• How capable are the modeling languages used?

We would appreciate if there is a modeling solution that fulfills our expectations. Else, we
must define a convenient input specification for the partitioning. In the second part of this work,
we will design the partitioning algorithms that will find the optimal system architecture. The two
parts are described with more details in the following subsections.

Defining the input specification for the partitioning

The development of AES has incontestably experienced a great leap forward during the last decade.
On the way toward its maturity, the AES design has adopted the model-driven development scheme.
The purpose of model-driven system development is to use models to study the artifacts of a system
before building it. Model-driven development offers an effective way to decrease the technical and
financial risk of try and error and improves the savings of design time and system resources,
etc. and improves the quality (reliability, soundness, performance, electromagnetic compatibility,
etc.) of the system. Furthermore, model-driven development has the potentiality to boost the
innovation, afford collegiate work and simplify the product maintenance. All these concerns are
quoted to be vital in the automobile industry. Unfortunately, the state of the art in modeling
embedded systems in the context of the automotive engineering does not yet allow the designer
to take the best possible advantages from model-based development. In fact, even if modeling
is current practice for today’s automotive systems designers, models are still considered as simple
description and communication media, although in the context of hard competition that rules the
automotive industry, modeling can unacceptably continue to be a task that unnecessarily consumes
time instead of being helpful and easy.

Hence, even though models are abstractions of the reality, useful specifications must highlight
the system characteristics, motivate the design options and facilitate the design decisions. In brief,
a model should bear all necessary information needed for the subsequent design operations, for
example the partitioning. AES modeling is concerned with the specification of the architectures,
the communications, the behaviors, the constraints and the non-functional requirements of the
automotive-embedded software and its electronics as well as the process of the system development
and the contained transitions. Architectural models include the description of the structure of the
system and its topology while behavioral models describe the system’s operation. Transition models
are needed to capture the evolution along the design process. Modeling the transitions includes for
example the description of the mappings as well as the rules governing the relations between the
abstraction levels, the instantiations, the configurations and the deployment. However, the value of
a modeling solution that is eligible for the AES design depends not only on the way it handles these
artifacts but also on how it considers the modeling of the automotive-specific domains of interest
such as hardware platforms, product lines, non-software components (e.g. driver’s interaction),
and vehicles environment (e.g. the road). High resolution, clear encapsulation, execution and
synthesis tools are needed in both the high- and the low-level design, while clear modularity is
essential in the higher levels of the design to support the partitioning.

We have evaluated the most common modeling tools that are usual in the automotive design
on their ability to support the partitioning. We examined low-level languages, i.e. program-
ming languages and hardware description languages (HDL), and high-level languages including
general-purpose modeling languages (UML, SDL, SysML) and automotive domain-specific model-
ing languages (EAST-ADL and AUTOSAR). Unsurprisingly, we found that when the design follows
a top-down strategy, none of the above languages can be expressive enough to be used efficiently
for all purposes along the design process, since each of them offers in reality only a limited set of
features. Otherwise, we are not aware of the existence of an all-rounder general-purpose model-
ing language. At each step of the development process, the most adequate language should be
selected depending on the actual conceptual layer, the level of abstraction and the intended use
of the model. Within a system-oriented design scheme following a top-down strategy, the design
of AES begins with high levels of abstraction for which the modeling languages like UML, SDL,

1.3. PROCEDURAL METHOD TO SOLVE THE PROBLEM 11

SysML, EAST ADL or AUTOSAR are adequate. Although all these languages claim sufficient
orientation to the implementation, they still remain very abstract and lack synthesis and execution
tools. However, as domain-dedicated languages, EAST ADL, SysML and AUTOSAR provide the
most convenient features and the best precision needed to model automotive AES at the high
levels of the design, but they remain very insufficient to support the automated partitioning of the
system. Firstly, because they are not synthesizable. Secondly, the semantics of ports, interfaces
and connectors are fuzzy.

As we are dealing with a domain where the partitioning shall be done on high-level models,
a promising solution to the first drawback is to combine these languages with synthesizable lan-
guages such as programming languages, HDLs, etc. Two questions arise here: How should the
languages be combined? and What are the best combinations? These questions are not in the
focus of this work since even the best combination will not be the ultimate solution for supporting
the partitioning of system specifications at high level. However, if EAST ADL and AUTOSAR lan-
guages are enhanced with the missing capabilities, i.e. precise computations and communication
modeling tools, accurate time and data handling, etc. so that the QoS of the model elements
can be extracted and analyzed, then they will represent appreciable solutions to build partitioning-
compliant models of AES. We defined a modeling solution, the FN-for functional network-, that is
fit for a CAD-supported partitioning at high level by adding some rules to the concepts imported
from EAST ADL and AUTOSAR. In addition to the partitioning-friendly features provided by these
languages, i.e. components detachability, standardized interfaces, QoS modeling, the FN provides
clear screening of the communication paths and tracing of the communication data.

Partitioning AES

With the FN, AES functional specifications are modeled in the form of separable building blocks,
where each building block represents a functional component of the system. As the FN allows
to clearly identify the boundaries of each model element, it enables to move each component
of the system and assign it individually to a given device. Furthermore, due to the concepts of
ports and interfaces, the communication data can be properly specified with the FN, at least
statically. In fact, although the FN is sufficient to model the structure of the system, it is lacking
the appropriate concepts to describe the behavior of the system. Instead of fine-granular and high-
resolution modeling solutions that are desirable for the allocation, the FN, like all the standard
solutions that are adequate for the system-level specification of AES, proposes high-level modeling
tools like state machines or communication, interaction, sequence, data flow diagrams, etc. to
specify the behavior of the system. Because of the low resolution of these behavioral modeling
tools, it is not possible to produce a system specification that can be used for a detailed system
allocation, and much less for the deployment. In fact, the allocation and the deployment rely on the
QoS attributes of the model elements. These attributes include the runtime resource requirements
of the functional components, e.g. the code size, the execution time, the communication load,
etc.

In order to specify the system behavior so that these attributes can be extracted, we need
more detail specifications. These can be provided only for a single component that is also not too
complex if we do not want to face an order of explosion of the size of the specification that will
lead to the loss of visibility and reduce the navigation within the specification. Note that this is
the main reason why the mapping precedes the deployment. After the mapping, we can produce
manageable behavioral models for each device and use them for the detail allocation and the
deployment. Although this strategy gives rice to much more loops of allocation-mapping-allocation-
deployment-evaluation-allocation-mapping-... than with a straightforward process, we adopted it
because of the incapacity of the actual state-of-the-art in the modeling of automotive systems to
provide more detailed specifications of the behaviors at the high level of the design. However,
even if the runtime resource requirements of the functional components cannot be predicted with
the FN, we can appropriately use the syntax of communication diagrams, sequence diagrams and

12 CHAPTER 1. GENERAL INTRODUCTION

timing diagrams to specify their communication at the level of abstraction that is inherent to an
AES system-level, with a precision that can be sufficient to determine the quantity of the data
exchanged between two components, the frequency of the data exchange, the timing organization
of the communication and the constraints on the communication. This solution provides sufficient
means to measure the closeness between the system’s functional components, essential to guide
the mapping. We sampled the information extracted from this solution in a Components Data
Flow Machine, the CDFM.

The CDFM is a modeling format that enables the analysis and particularly the synthesis of the
data flow within the system’s specification. We solved the problem of defining the optimal partition
of the input functional specification of an AES using a combination of constructive and iterative
partitioning algorithms. A constructive algorithm was used to generate a partition that was refined
iteratively. As the number of devices to be installed in the system to run the required functionality
was not predefined, we designed a Quality Threshold (QT) partitioning algorithm to construct the
initial partitions. The threshold is given by the capacities of the allocated devices. The refinement
of an initial partition is achieved by the means of a specific adaptation of the Kernighan & Lin
algorithm [86] whereas the quality of the partitions is based on the execution of a bin packing
algorithm that realizes the multiplexing of the communication frames, i.e. a mapping of the inter-
devices communication data on the communication channels of the inter-devices communication
network.

1.4 Contributions

The goal of this thesis is to provide a design process and the partitioning algorithms that will enable
to automatically determine the architectures of AES. In order to implement a CAD-supported
partitioning tool for the system-level architectural design of AES, it is necessary to define adequate
input models, formalize the relationships between the different models and within the models,
formalize the partitioning constraints, design the partitioning algorithms, optimize them, apply
them on the inputs and evaluate the results of the partitioning. To achieve these goals, this thesis
provides a broad overview of the design concerns of AES. It begins with a clear definition of AES
that includes the identification of the relationships between automobiles, electronic and software
systems that outline the importance of the latter in vehicles. Then, a detailed presentation of the
reasons that motivate the need of CAD-based partitioning tools gives rise to the current challenges
identified in the automotive industry. The solutions proposed from both the academia and the
industry to cope with these challenges are evaluated and commented. A partitioning method is
provided.

Thus, although this thesis focuses on the design of the architectures of AES, its most important
technical contributions include:

1. A valuable sample of background information relative to the constitution of AES and their
development. This includes a particularly profound review of the specification, the modeling
and the architectural design issues of automobiles’ E/E systems and the related design
processes as well as the documentation of the state-of-the-practice, the actual requirements,
the actual and the feature challenges of the AES design.

2. The definition of a framework for the evaluation and the classification of the modeling
solutions that are used in the development of AES.

3. The definition of reference modeling solutions that are fit to support the automatic definition
of AES architectures. This contribution includes a revealing evaluation and a categorization
of the main modeling languages that are used in the AES design with regard to their ability
to support the implementation.

4. A study of the interdependencies between E/E design processes, E/E models, abstraction
levels and E/E design operations.

1.5. PUBLICATIONS 13

5. The definition of a novel, original modeling format for the synthesis of AES high-level specifi-
cations. This format can also be used for validation purposes, e.g. for simulation, verification
or test.

6. The definition of a partitioning process that is adapted to AES high-level system specifi-
cations. This contribution includes the formalization of complex closeness factors in the
context of a CAD-supported design of AES architectures and the development of powerful
clustering and partitioning algorithms for the design of AES architectures.

7. The definition of the means for the evaluation of AES architectures and the related metrics.
A correlated but also important contribution is the formalization of a frame multiplexing
approach for the packaging of signals within frames.

1.5 Publications

By now, we have published some results of this thesis in international conferences [81] and [85].
Some others are actually submitted for publication [84], [83] and several papers are in preparation.
However, the contents of each of these papers are presented in details in this document as described
in the following section. We resume our publications in relation with this thesis as follows.

• Partitioning Metrics for improved Performance and Economy of Distributed Embedded Sys-
tems. A. Kebemou in IESS proceedings on IFIP TC10 Working Conference, pp 289-300,
Aug. 15-17 2005.

• AutomotiveArchitect: A Partitioning-Centric Modeling and Architectural Design Environ-
ment for Automotive E/E Systems. A. Kebemou and I. Schieferdecker in INFOS 2008 proc.
of the 6th International Conference on Informatics and Systems, 27-28 March 2008, Cairo,
Egypt.

• Evaluating Modeling Solutions on their Ability to Support the Partitioning of Automotive
Embedded Systems. A. Kebemou and I. Schieferdecker, International Conference on Em-
bedded and Ubiquituous Computing, Taipei, Taiwan, 12.2007.

• A Model-Based Design Approach for the Partitioning of Automotive Embedded Systems. A.
Kebemou and I. Schieferdecker in INFOS 2008 proc. of the 6th International Conference on
Informatics and Systems, 27-28 March 2008, Cairo, Egypt.

• The Components Data Flow Machine: An Intermediate Modeling Format for the Design of
Automotive E/E Systems Architectures. A. Kebemou and I. Schieferdecker in DIPES 2008
proceedings on the IFIP Working Conference on Distributed and Parallel Embedded Systems,
Milano, Italy, Sept. 7-10,2008

1.6 Scheduling of the thesis

As illustrated in figure 1.6, the rest of this thesis is organized as follows: We provide an illustrative
definition of AES in the chapter 2. We begin with an outline of the relationships between AES and
embedded systems. Then, based on an example of functional inter-actions in AES, we introduce
the automotive communication systems and we discuss the purpose of the automotive connectivity.
Chapter 3 gives an overview of the usual design methods of embedded systems and the related
design activities. Also in this chapter, we compare the sequential design method with the concurrent
design method in order to provide a basis on which an efficient design process can be proposed for
AES. This is done in chapter 4. The second part of this thesis is concerned with the purpose of
modeling. To mark the beginning of this part, chapter 5 presents the state-of-the-art in modeling
AES. In chapter 6, we evaluate the modeling solutions used in the AES design on their ability

14 CHAPTER 1. GENERAL INTRODUCTION

to support the partitioning. As these modeling solutions cannot provide the best support for the
partitioning, we define our modeling solutions for the desired inputs in chapter 7. Then, the
CDFM, the modeling format for the corresponding synthesis models is defined in chapter 8. In the
third part of the thesis, we investigate the partitioning of CDFM models. As CDFM models are
formalized as graphs, the first chapter of this part, i.e. chapter 9, gives an overview of the state-of-
the-art in the partitioning, particularly the partitioning of graphs. Then our partitioning algorithms
are described in the chapters 10 and 11 and the results of their applications are summarized in
chapter 12. A general conclusion, given in chapter 13 closes the thesis.

1 st Part: Backgroung Knowledge -
Definition of the Domain

Chap 2-4

2 nd Part: Modeling - Overview,
Evaluation, Definition of the Input
Models

Chap 5-8

3 rd Part: The Partitioning - Definition
of the Partitioning, Partitioning
Algorithms

General Presentation: Introduction,
Motivation, Problem Definition,
Solution Approach, Contributions,
Organization

Chap 1

Chap 9-11

Application and Conclusion:
Application, Results, Summary and
Outlook

Chap 12-13

Figure 1.6: Vertical logic of the thesis

Chapter 2

Automotive Embedded Systems

In this chapter, we present the relationships between automotive systems and embedded systems. As
AES (automotive embedded systems)1 will be the subject of investigation of this work, it is necessary
to define the term AES in a way that canalizes every imaginative representation of the discoursed item.
We begin by defining the term embedded systems. Progressively, we show how AES are concerned with
embedded systems and then following an example, we give a survey of the networking of embedded
systems in today’s vehicles. We discuss the means by which interdependent automotive embedded
functions that are geographically separated communicate with each other.Then we give a brief survey
of the different communication protocols used in the automobile industry. The most famous of them,
the CAN protocol, will be more extensively presented in the part of the workdealing with the problem
resolution.

2.1 Automotive electronics

2.1.1 Embedded systems

Most of today’s life facilitating instruments embody a processing unit which undertakes the com-
putation and control tasks needed to realize their functionalities. Telecommunication systems
(e.g. mobile and fixed sets, routers, switchers, ...), household appliances, multimedia and medi-
cal equipments, manufacturing facilities for the industry, transportation systems (aircrafts, trains,
automobiles, ...), etc., embed such electronic-based components. The term embedded system
is used to designate a computer system that is not perceived as such. It is a computer system
which is integrated in a larger system that hides it from the user. Originally, embedded systems
were specialized on a predefined functionality and were not able to work independently from their
environment. They could only operate when triggered by another system, e.g. a sensor or the user.
This conception of embedded systems refers to a piece of silicon implementing a given functional-
ity. In the last decade, the technological evolution has afforded the emergence of electronic devices
that integrate several functions. Embedded systems are no more restricted to single-function prod-
ucts that are conceived for a fixed and predefined functionality. They are becoming very complex
and they can no more be conceived to react exclusively to the inputs of other systems. Modern
embedded systems are increasingly requested to control complex and heterogeneous systems. For
example, a high-definition TV handset controller must incorporate control and signal processing
functions, audio and video data processing features, wireless and wired communication modules,
etc. Such an embedded system can contain very heterogeneous functional blocks including DSPs,
ASICs, memories, converters, etc. and sometimes it even might integrate a whole system on a
single piece of silicon. The latter is referred to as a SoC (System-On-Chip).

As the emergence of billion-transistor chips is just around the corner, the next generation
of SoCs will implement more complex functions. Actually, Network-On-Chips (NoCs) implement

1In this context, automotive embedded systems (AES) is synonymous with automotive E/E systems

15

16 CHAPTER 2. AUTOMOTIVE EMBEDDED SYSTEMS

switches, routers as well as different communication formats and protocols to connect SoCs on a
single chip. NoCs will enable the integration of an exceedingly large number of computational,
logic, and storage blocks in a single chip. Embedded systems are mostly used in systems that
are typically mission-critical, but also most of the time safety- and business-critical. Therefore,
embedded systems are expected to operate reliably and faultlessly. They generally underly very high
performance and cost requirements. Thereto, to cope with the actual changing world, embedded
systems must be scalable and upgradeable. This is why they are more and more implemented in
software.

2.1.2 Automotive and embedded systems

The automobile is originally a machine construction product. Until 1967, the engine ignition and
the lighting systems of personal vehicles were controlled exclusively by electrical circuits [24]. The
electrical components were connected with their actuators and their consumers by means of dedi-
cated peer-to-peer cables. With the electronic fuel injection controllers, the first microprocessor-
based devices appeared in personal cars in the ’70s when the worldwide oil crisis boosted the need
for control devices to reduce the fuel-consumption. The subsequent introduction of the electronic
cruise control, the central doors locking systems and the gear steering units marked the beginning
of massive integration of electronic units in the automobile. Over the years, the technological
evolution has turned the vehicles into high-tech systems. Although the first image of a car might
still be that of a large piece of hardware, one must be aware that there are hundreds of computing
systems and millions of software code lines implemented in each modern vehicle. Today’s auto-
mobiles are heavily equipped with computers and associated software to control everything from
the engine to the brakes, the cruise and all kinds of new on-board navigation and communication
systems.

Each electronic control unit (ECU) embeds one or more processing elements and memories, each
of which is either a general-purpose, an application-dedicated embedded system or a combination
of both. Figure 2.1 shows a layered architectural representation of an ECU. From the bottom
upwards: The first layer contains the material components used in the ECU, e.g. the processing
units (e.g. DSP, MCU, ASIP, etc.), the IPs (e.g. ASIC, ASSP, FPGA, ...), the memories and the
communication media (buses, cables). The MCAL (Micro Controller Abstraction Layer) contains
hardware-specific software components called drivers. A driver is a software component that enables
to interact with a hardware device. Possible contents of the MCAL include the MCU drivers, the
memory drivers, the I/O drivers, the drivers for the communication controllers, etc. The HAL
(Hardware Abstraction Layer) contains further hardware-closed software components that serve
either as pilots for the I/O devices and the memory devices or as interrupt and communication
managers. The layer with the operating system (OS) builds an abstraction layer between the
application software and the hardware details. It provides the API services that are necessary
to access and manage the resources (i.e. hardware, drivers, pilots, service managers). The OS
provides the scheduling and the interrupt services, the resource/memory and tasks management
services as well as the task intercommunication and synchronization solutions that are needed by
the application that runs on the ECU. In the realm of embedded systems, OS are generally required
to be RTOS, i.e. they must provide deterministic timing behavior.

Automobile electronic devices (ECUs) are rarely stand-alone components. They must commu-
nicate to fulfill their duties. To achieve efficient communication, automobile ECUs are networked
on different architectures (bus, ring, star, tree) running several communication protocols, e.g.
CAN, MOST, LIN, FlexRay, etc. We identify the collectivity of such networks and the connected
electronic devices as automotive embedded systems (AES). Automotive embedded systems thus
consist of sensors, control units, actuators and several communication networks. Sensors are used
to collect the information about the operational and environmental conditions of the vehicle, e.g.
temperature, speed, lightness, etc. Most sensors in automotive systems are ”intelligent”, i.e. they
are able to transform the collected physical or chemical values into electrical values that can be

2.1. AUTOMOTIVE ELECTRONICS 17

Application SW

CPUs (DSP,MCU,ASIP), IP(ASIC,...),Memories,Buses

TextHAL (I/O signal controller, Interrupt,
Communication, etc.)

MCAL (Drivers)

OS services (Resource Mgmt, API,
Interrupt, Communication services)

Figure 2.1: ECU architecture

used by a computer system. Aside from the sensors, multiple keys and buttons are used to transmit
the instructions of the user to the control units. A control unit processes the received data by
running corresponding algorithms. Then, depending on the results of the computations, it triggers
an actuator. An actuator is the electronic part of a vehicle component that realizes what the user
is seeing and feeling. Examples of actuators include motors, fans, air blowers, switches, window
regulators, brakes pushers, sound emitters, door locks, fuel injectors, etc. Figure 2.2 shows a set
of electronic devices and the communication networks that constitute an AES. As the value of a
vehicle is increasingly determined by the number and the quality of the integrated electronic-based
features, the automotive industry is moving from an electromechanical-based industry to an IT-
oriented industry. The embedded systems design will thus continue, more than in the past, to be
a first-class player in the automotive engineering.

Figure 2.2: Automotive embedded systems

2.1.3 Example: The Active Cruise Control

Since the successful introduction of the first electronic devices in automotive systems, the demand
for automotive electronics is steadily growing. Today’s automobiles are heavily equipped with ECUs
that perform the control and management operations. A personal car in the high class contains
already about 80 ECUs. The design of each ECU is a highly challenging task and networking
them turned out to be at least as difficult. The Active Cruise Control (ACC), also commonly
referred to as ”Adaptive Cruise Control” is a typical illustration of the complexity of automotive

18 CHAPTER 2. AUTOMOTIVE EMBEDDED SYSTEMS

electronic systems. The ACC is an enhanced version of the automatic speed limitation control,
also called ”Tempomat” in some countries. In addition to the basic functions performed by the
previous automatic speed limiter, i.e. adjusting the car speed to a selected upper limit, the ACC
provides automatic collision detection and security distance adjustment. More succinctly, the ACC
adjusts the vehicle’s speed to the changing flow of the surrounding traffic. It uses a three-beam
radar sensor (see figure 2.3) to monitor the road in order to detect if an object moves ahead of
the vehicle.

Figure 2.3: The ACC radar sensor

When the radar eye of the ACC detects an object ahead of the vehicle, the sensors pick up
the information concerning the location (e.g. the relative distance), the relative speed and other
attributes describing the movement (e.g. angle) of the moving obstacle. Based on this information,
the ACC’s electronics determine if the object moves, and if so, the ACC will check if the object
moves in the vehicle’s lane, then it immediately decides whether the car’s speed needs to be
adjusted or not. Depending on the situation, the ACC autonomously initiates the slowing down or
the acceleration of the car. This is done through the activation of special engine management and
brakes activation functions. Moreover, when driving downhill, the ACC can automatically adjust
the car’s speed to the pitch gradient. The ACC is also able to recognize when the vehicle enters
a curve. In this case, the ACC is able to adjust the speed of the vehicle to the accuracy of the
coming bend. If a car is moving ahead of the vehicle in the curve, the ACC will additionally take
care to keep a minimum (security) distance between the vehicle and the preceding car.

Further advanced features of the ACC include the driver support and the comfort. For example,
the speed adaption when driving downhill or in curves is not only a security remedial action, but
it is also a passengers comfort feature. In every critical phase of the traffic, the corresponding
information (current status of the traffic, driving instructions, etc.) is displayed to support the
driver. For example, when a moving obstacle is detected in the vehicle’s lane, the ACC will
autonomously display advising information at the same time as it starts the procedure that adjusts
the speed of the vehicle to the actual situation of the traffic. As soon as the obstacle is out of
the lane, the ACC releases and the vehicle’s speed goes back to the control of the driver, with
respect to the chosen maximal speed if any has been set. Thereby, the setting of the ACC is
made comfortable for the driver as the ACC settings (selection of maximal speed, minimal security
distance) can be done through all kinds of switches, steering arms or buttons from the dashboard.
Figure 2.4 shows the electronic control unit running the main of the functionality of the ACC.

Figure 2.4: The ACC device

2.2. AUTOMOTIVE CONNECTIVITY 19

2.1.4 The ACC functional connectivity

The above description of the functioning of the ACC shows that the ACC needs to run functions
that are located on different devices. Moreover, in addition to the data supplied by its sensors,
the so-called ACC device needs information from other parts of the system. For example, the ACC
combines the data supplied by its sensors (e.g. relative distance of the obstacle, relative speed,
etc.) with the car’s current course attributes (e.g. wheel revolutions, vehicle pitch, centrifugal
forces acting on the vehicle, etc.) to calculate the tightness of the approaching curve and to
adjust the car’s speed to maintain the necessary security distance. In fact, the ACC collects data
from the accelerator pedal sensor, from the brake pedal sensor, from the setting buttons of the
instrumentation and the steering block, etc. The ACC also needs to activate some functions that
are located on different ECUs, e.g. braking functions, accelerators, lighting signals senders, etc.
This necessitates the communication with the other devices.

Figure 2.5 illustrates the level of interconnection needs for the functioning of the ACC. The ACC
is linked to the braking system, the stability control, the lighting system, the engine management,
the dashboard, the steering control and the gears control, so that it can access data that is
necessary for its computations and can automatically activate the brakes, adjust the gear, display
information, instruct the fuel injection and the lighting announcements, etc. The functioning of
such a distributed application is highly dependent on the communication, the coordination and
the synchronization of different functions across the whole system and the real-time constraints
that apply to the various functions performing the distributed functionality are determinant for
its successful working, and thus for its acceptance. If the system does not react on time, it
is useless and dangerous. If the system is informed on a critical situation too late or if the
system’s instructions are received too late, the vehicle will probably not react as expected. However,
in addition to the need of predictable behavior, automotive electronic-actuated features underly
stringent costs constraints that depend on both their resources and the design time.

ACC

Gear Control
DashboardLight Modul

Steering Block

Stability Control

Engine Management

Braking System

Figure 2.5: ACC interconnection

2.2 Automotive connectivity

2.2.1 Automotive communication protocols

Several network technologies have been defined to cope with the particular requirements of AES.
The transmission rate, the bandwidth, the real-time performance, the immunity against noise, the
scalability, and the implementation costs are the most decisive attributes of these solutions. As
the different networks are based on different technologies, they also present different interfaces,
i.e. the word length, the header format, the physical medium, the bit rate, etc. according to
the networking solution. Gateways are used to interconnect the networks (see figure 1.1). Fol-
lowing, we survey the most popular communication protocols that are used to interconnect the
automotive devices. The survey includes automotive domain-specific communication protocols,
general-purpose protocols that have been implemented in vehicles or are identified as competitors
for some automotive-specific protocols and the communication protocols that appear as trends for

20 CHAPTER 2. AUTOMOTIVE EMBEDDED SYSTEMS

future generations of vehicles. In order to be brief, we only pick out the principal characteristics
of these network technologies that can help us to understand their applications. For example,
the medium access strategy and the arbitration method are important performance attributes that
address the throughput, the transmission delays and the determinism of the network behavior. The
physical medium has consequences on the weight, the shielding, the robustness, the price, etc. of
the given network technology. The bandwidth and the triggering control of the network are also
important indicators of its performance. The triggering control (event, time) indicates the ability
to react to asynchronous or synchronous events. Further important attributes, that are also useful
for our understanding of the automotive networking include the size of the networks, the art of
addressing, the handling of priorities and the jitter. The target application fields, the quality of the
existing implementations and the future (evolution) of the surveyed technologies will also improve
our understanding of the criteria that guide the choice of the automotive designers.

2.2.2 All-rounder automotive communication protocols

Originally designed for automotive systems, some communication protocols have been adopted
in various domains such as in industrial production installations, home connectivity, etc. This is
the case with the CAN (Control Area Network) and the VAN (Vehicle Area Network). We also
consider the communication protocols such as the SAE J1567 and J1850 protocols, that originally
proprietary, where adopted automobile industry-wide.

The CAN (Control Area Network) [1, 2] is the most popular automotive communication
protocol. CAN is used to network ”intelligent” devices (ECUs, sensors and actuators) within a
system. The CAN protocol was defined at Robert Bosch GmbH to enable automobile in-vehicle
embedded communication. CAN has found wide application in the industrial automation, the
aircraft and aerospace, the building automation (e.g. lift and escalators), etc. In automotive
systems, the CAN is generally implemented on a bus topology. CAN is an asynchronous, serial
transmission, multi-master and broadcasting communication system, using a CSMA/CA (Carrier
Sense Multiple Access with Collision Avoidance) media access method. That means that all CAN
nodes are able to transmit data and several CAN nodes can request the bus simultaneously. In
CAN networks, data integrity[32] is assured by sophisticated error detection mechanisms and re-
transmission of faulty frames. CAN is defined in the ISO standard ISO 11898-1. The protocol
supports single POF (Plastic Optical Fiber) or twisted pair cupric cables at the physical layer. A
single cupric wire is allowed when the transfer rate is lower than 100 kbit/s. The bit rate depends
on the bus length: short bus, high rate. The maximum specified transmission rate is 1 Mbit/s
(in the high-speed version). This value applies to networks up to 40 m. For longer distances, the
data rate is reduced, for example for distances up to 500m a speed of 125 kbit/s is possible, for
transmissions over more than 1km the reasonable data rate is around 50 kbit/s. Theoretically, a
CAN bus can support a non-limited number of nodes. But in the practice, an acceptable QoS is
obtained by an average of 64 nodes.

CAN is an event-triggered bus concept, by which the frames are identified rather than the
nodes. The identifier of a frame determines its content and also the priority that the frame enjoys in
competition for the bus access. Therefore, every frame identifier is unique within the whole system.
The priorities of the frames are laid down off-line during the system design and cannot be changed
dynamically. This concept allows the modular design of CAN networks, that facilitates the network
extendability. CAN networks offer high transmission reliability, but no deterministic frame latency.
In the automobile industry, the high-speed CAN is usually implemented in vehicle’s chassis and
power train applications, on shielded wires in linear bus architectures. The main application domain
of the single-wire CAN-bus is in the comfort electronic. As the CAN does not offer the degree
of real-time deterministic behavior that is necessary for safety-critical applications, it has been
enhanced to build a time-triggered variant, the TTCAN. However, the great success of CAN (i.e.
CAN is implemented in most of the European cars and other high-volume markets like industrial

2.2. AUTOMOTIVE CONNECTIVITY 21

production controls, domestic and medical appliances, etc.) led to a low-cost implementation of
CAN devices and therefore guarantees the presence of the CAN in the future. CAN still has good
days in the automotive engineering.

The SAE J1567 or C2d (Chrysler Collision Detection) protocol was defined by Chrysler as a
sensor network protocol with the goal to minimize the software overhead needed for the integration
of network nodes [79]. The C2d protocol prescribes a bus topology. The transmission medium is
a twisted-pair of cables on which serial SCI-interfaces can be connected. The SAE J1567 protocol
supports a pulse width signal modulation and a multi-master media access (CSMA/CR) with a
bit-by-bit arbitration. The theoretical transmission rate is around 7.812 kbit/s. J1567 has been
implemented by Chrysler for diagnosis and data sharing in the vehicle body, the chassis and the
power train, for example in the ”‘Grand Cherokee”’.

The SAE J1850 was seen in the last decade as the emerging standard for U.S. vehicles. J1850
is designed as a combination of SAE J1567 with other proprietary protocols like the Ford’s HBCC
(Hosted Bus Controller Chip) and the General Motor’s DLCS. It supports two multiplexing methods:
a pulse width signal modulation (PWM) with a rate of 41.6 kbit/s and a variable pulse width
signal modulation (VPWM) with 10.4 kbit/s. The transmission medium is a two-wire bus for
the PWM version and a single-wire bus for the VPWM version. J1850 is a CSMA/CR protocol,
that means that there is no unique master on the bus. DaimlerChrysler, General Motors and Ford
have implemented the J1850 for diagnosis and power train services including engine management,
transmission as well as the functions of the instrumentation and the ABS connections. But today,
the SAE J1850 has been replaced by the CAN protocol.

2.2.3 High-speed and real-time protocols

To interconnect multimedia and safety-critical applications, the automotive engineering has de-
signed high-speed and real-time communication protocols. Although the MOST (Media Oriented
System Transport) protocol is actually the most famous protocol for multimedia applications, D2B
(Domestic Data Bus), GigaStar, MML (Mobile Media Link) and other well-known general-purpose
communication protocols like FireWire/IEEE 1394 and USB are also serious candidates for multi-
media applications. Moreover, a time-triggered version of the CAN, the TTCAN (Time-Triggered
on CAN), is competing with the other real-time protocols including TTP, FlexRay and Byteflight
in the area of safety-critical applications.

A - Multimedia protocols

Most modern vehicles offer entertainment for the passengers (TV, movies, etc.) as well as vocal
and visual assistance for the driver (navigation, representation of the images from video cameras).
These applications need a broadband communication with real-time performance. We present
only the MOST protocol because of its extremly dominant position in the list of the automotive
multimedia-capable protocols.

The MOST (Media Oriented System Transport) protocol specification [11] is a standard
of the MOST Cooperation, that actually comprises BMW, DaimlerChrysler, Harman/Becker and
OASIS Silicon Systems. With a bandwidth of 25Mbit/s, the MOST can connect up to 64 nodes
in every possible topology, using a POF (Plastic Optical Fiber) at the physical layer. This is a
considerable advantage in terms of electromagnetic compatibility, cost and weight. It is therefore
not surprising to find MOST implementations in practically every actual car in which multimedia
data must be transported. MOST is a peer-to-peer network protocol that can be configured
as single or multi-master network. The MOST specification defines a multiplexing method that
clearly distinguishes the time slots for (synchronous) data transfer from those that can be used for

22 CHAPTER 2. AUTOMOTIVE EMBEDDED SYSTEMS

asynchronous frames. With its 25Mbit/s, today’s MOST is apt to supply most multimedia services
at a good quality level. Since the evolution in the multimedia application domain is related with the
magnitude of the data to be handled and eventually to be transported, other high-speed protocols
with larger bandwidths like FireWire (400Mbit/s, 800Mbit/s and probably up to 3.2 Gbit/s) and
USB 2.0 are competing to replace the MOST in the cars of the future.

B - Safety-critical application-compliant protocols

Real-time and deterministic behavior are particularly important for safety-critical applications.
TTP, Byteflight, FlexRay and TTCAN are automotive domain-specific protocols with these prop-
erties.

The TTP (Time-Triggered Protocol) is known in the avionics and the railway (www.ttagroup.org).
TTP is designed for stringent fault tolerant real-time distributed systems. It is said to ensure that
there is no point of failure in the system. TTP is a TDMA protocol where the arbitration is done
once at the initialization time. TTP can be found in two versions: The low-cost version TTP/A
that is classified following the SAE (Society of Automotive Engineers) taxonomy as a class A pro-
tocol, is a master-slave UART-based protocol, used in the automobile industry for sub-networking,
i.e. branching several sensors (cluster) to a single ECU that itself is related to a backbone bus.
TTP/A applications are known in engine control and car body applications, as competitor of the
LIN and the low-speed CAN protocols. The higher performance version, designed for safety-critical
and fault tolerant hard real-time applications is the standardized TTP/C[107]. TTP/C offers a
bandwidth of 25Mbit/s on a bus topology. Because of its hard real-time capacities, the TTP/C is
proposed in the automobile industry as a competitor of the TTCAN, and moreover of the FlexRay,
particularly for x-by-wire applications.

The TTCAN (Time-Triggered communication on CAN) is an extension of the CAN with
the time-triggered paradigm. The TTCAN[19] is defined as a higher layer protocol on top of the
standard CAN protocol’s physical layer. The goal of the TTCAN is to provide the determinism
needed in the design of hard real-time systems. This is achieved by avoiding the latency jitters for
the media access and ensuring deterministic communication patterns. The TTCAN provides the
mechanisms to schedule the frames in a time-triggered way as well as in an event-triggered way.
The TTCAN bus arbitration relies on a special, hybrid TDMA method, where every node accesses
the medium at predefined time slots, depending on the priority of the frame it is sending (see ISO
11898-4). In order to support time-triggering and to handle asynchronous frames conveniently, the
TTCAN protocol allows the definition of tree different sorts of time windows: The preassigned time
slots, called exclusive time windows, support the time-sharing medium access. The arbitrating time
windows support the handling of asynchronous frames. A node must compete for an arbitrating
time window in the same way as in a CAN network to send asynchronous frames. The third
class of time windows, the free-time windows, serves for eventual extensions of the network. A
free-time window can be converted in exclusive windows for new nodes or in arbitrating windows
to extend the bandwidth. TTCAN is implemented in the power train, i.e. for engine management,
transmission, chassis control applications, and in some security- and safety-oriented car body
applications that need deterministic communication behavior. Since TTCAN is well adapted for
x-by-wire applications, its future is considered very hopeful. Indeed, the implementation costs are
much lower than those of its competitor FlexRay.

The FlexRay protocol is defined by the FlexRay Consortium (BMW, Bosch, DaimlerChrysler,
Freescale, General Motors, Philips and Volkswagen) to be a protocol combining the attributes of the
Byteflight and the TTP protocols, including fault tolerance, deterministic behavior, collision-free
transmission, guaranty frame latency, arbitration-free medium access, flexibility in both bandwidth

2.2. AUTOMOTIVE CONNECTIVITY 23

and system extension, functional scalability and on-board diagnosis, support of optical and electri-
cal physical layers. Moreover, the FlexRay Consortium (www.flexray.com) is guided in its initiative
by the need to simplify the design and manufacturing of vehicles, master the cost of the automo-
tive micro controllers and other electronic devices while simplifying the system scalability. FlexRay
intends to be a low-cost communication system, not only because of low component and imple-
mentation costs, but also because of its ability to provide system scalability and its energy-efficient
behavior. For example, FlexRay supports a wake-up/sleep functionality (via bus) that addresses
the power management needs. The FlexRay specification targets on power train, chassis and body
control applications. The FlexRay protocol provides a combination of static and dynamic frame
transmission, incorporating the advantages of familiar synchronous and asynchronous protocols.
FlexRay can be configured as asynchronous (event-triggered), synchronous (time-triggered) or a
mix of both. The communication medium consists of a single POF or two cables that act as two
buses, each offering a bandwidth of 10Mbit/s. A FlexRay network can connect up to 64 nodes.
FlexRay is designed to support bus, star and cluster star topologies in single as well as in dual
channel modes. Some FlexRay implementations have been tested in Mercedes and BMW cars.
The first commercial productions with FlexRay were expected by the end of the year 2006.

Byteflight (www.byteflight.com) is a FTDMA (Flexible Time Division Media Access) in-car
electronic communication protocol defined by a consortium around BMW to provide a means for
fault tolerant communication with deterministic behavior for safety-critical systems. The flexible
bandwidth management of Byteflight enables easy on-board diagnosis. Furthermore, Byteflight
is defined to be collision-free and low-cost. Similar to the CAN, Byteflight uses a frame-oriented
addressing via the awarding of identifiers. Hard real-time signals (alarm, etc.) can be prioritized.
The physical layer is generally implemented on a star topology of POF (Plastic Optical Fiber)
supporting half-duplex communication by up to 10Mbit/s. But bus and cluster topologies are
possible. Since 2001, Byteflight is implemented in BMW’s cars for passive (e.g. air bags triggering
and crash sensing) and active safety functions (e.g. belt tensioner), and for the body applications.

2.2.4 General-purpose protocols

Because of its severe cost constraints, the automobile industry is constantly looking for cost-efficient
communication facilities. Hence, asides from the automotive systems specific communication
protocols, the automobile industry has adopted a full range of general-purpose communication
standards that are common for example in the consumer and building automation. USB, Bluetooth,
SPI and I2C are such cost-efficient general-purpose communication protocols used to connect
automotive devices.

USB: With a bandwidth of 480Mbit/s and its plug-and-play capacity, USB 2.0 (Universal Serial
Bus)[15] is well-adapted for audio and video data transfer between the car and external peripheral
devices. USB 1.1/2.0 [14] is currently used to connect portable devices, e.g. navigation systems,
external memories, flash card readers, video cameras, MP3 players or CD-writers, etc. to the
vehicle. From the 4-wire communication medium of the first versions, the USB has evolved to
offer wireless communication possibilities. Some car makers are actually trying to connect vehicle’s
embedded multimedia devices with each other through USB networks. Profiting in addition from
its broad bandwidth, the USB is supposed to gain more place in the automotive engineering in the
near future.

Bluetooth: Bluetooth (www.bluetooth.com) is an open specification for short-range (10-100 me-
ters) wireless networking at low cost providing instantaneous connections between Bluetooth-
enabled devices. Potential usage of Bluetooth in the automotive domain includes the wireless
connection of mobile phones, portable DVD/CD drives or diagnostic equipments. Most automo-
tive brands worldwide offer optional or standard Bluetooth-enabled communication systems in their

24 CHAPTER 2. AUTOMOTIVE EMBEDDED SYSTEMS

new models. Applications that enable hand-free usage in cars and synchronized operation of mo-
bile phones with the car’s audio system are becoming popular. Unfortunately, although Bluetooth
is a high-secured network (using authorization, authentication, FFH (Fast Frequency Hopping)
mechanisms), we are yet not aware of commercial Bluetooth applications enabling vehicular ex-
ternal connections, such as remote car handling. This is due to some deficiencies of the security
in the implementations of Bluetooth connections. In fact, the Bluetooth special interest group
faces implementation weaknesses that can cause unsecured Bluetooth communications, such as
car whispering2, cabir3, bluesnarfing4, etc.

SPI: The SPI (Serial Peripheral Interface), a 4-wire serial communication interface that is often
used by microprocessors to interface with peripheral smart chips in industrial and building instal-
lations is a simple-to-implement synchronous serial protocol for connecting devices at low-speed
(up to 5 Mbit/s). SPI connections follow a master/slave principle. Connected peripherals can be
processors, converters (A/D and D/A), memories (EEPROM and flash), real-time clocks, sensors
(temperature, pressure) or others (signal mixer, potentiometer, LCD controller, UART, CAN con-
troller, USB controller, amplifier). When connecting two processors or two systems, the SPI can
be configured as a single-master-multi-slaves as well as a multi-masters-multi-slaves network with
two control and two data lines. Since SPI lacks a standard specification, its implementations are
different from one chip to another, from one developer to another. SPI is used in the automobile
industry as a sub-bus (for smart networks). For example, SPI has been used to connect sensor’s
microchips in car’s instrumentations.

I2C: The I2C (Inter-IC bus) is like SPI also a control bus that provides communication links
between integrated circuits. I2C is a 2-wire serial bus standard (www.philips-semiconductors.com),
supporting multi-master configuration, frame-priority and bi-directional communication from 100kbit/s
in standard mode to 3,4 Mbit/s in high-speed mode. Only two lines (clock and data) are required
for full duplexed communication between multiple devices. The I2C protocol specifies a range of
127 addresses. Each IC on the bus has a unique address. The I2C bus protocol allows collision
detection, clock synchronization and hand-shaking features for multi-master systems. This simple
bus concept is widely used for system control and data transfer from e.g. temperature sensors,
voltage level translators, general-purpose I/O, A/D and D/A converters, CODECs, and micropro-
cessors of all kinds. The automotive engineering uses I2C protocol for applications similar to those
of the SPI application areas [7], i.e. for smart on-board networks.

2.2.5 Other in-vehicle and smart network protocols

LIN, ISO9141, K-Line, BSD, RS-232, RS-485, SAE J2058 protocols are implemented in secondary
in-vehicle networks (such as sensor networks subsidiary to a backbone net). The LIN protocol
is (at least in Europe) almost the standard in this class, even if its specification itself is not yet
standardized.

LIN: The LIN (Local Interconnect Network) is defined to be a cost-saving (compared with CAN)
protocol that can connect (intelligent) sensors and actuators through a single-wire medium [9].
LIN communication is based on UART/SCI interfaces, very common and thus easily available at
very low price. LIN is particularly useful where the CAN is too powerful and too expensive, i.e. LIN

2The car whisperer is a software tool developed to enable the connection with the Bluetooth kit of a car in order to
send and receive audio and video data. Potentially, an individual using the tool can be remotely connected to a car and
communicate with it from an unauthorized device, for example to send false audio information to the driver over the speakers
of the car or the illegal visitor can spy the cars occupants by retrieving information from the car on its remote device

3The Cabir is a malicious software that when installed on a phone, uses Bluetooth technology to send itself to other
similarly vulnerable devices. Due to this self-replicating behavior, it is classified as a worm.

4Bluesnarfing allows hackers to gain access to data stored on a Bluetooth-enabled device, e.g. phone, using Bluetooth
wireless technology without alerting the user

2.3. CONCLUSION 25

is considered as a ”junior CAN”. It provides a 20kbit/s bandwidth for low-end applications. LIN’s
main application field is in the car body, i.e. for applications like doors and sunroofs, servo steering,
seats, climate regulation, lighting, mirrors, wipers control and similar applications. LIN networks
are implemented in the vehicles of Smart, Mercedes, BMW, VW and a lot of other constructors.
The size of a LIN network is typically under 12 nodes (actually 1..10). LIN guarantees a maximal
frame latency. The LIN medium access is organized on a single-master arbitration. Each frame has
a unique identifier. The LIN master is charged to pilot the slaves (generally sensors and actuators),
and at the same time it is the communication interface between the LIN (cluster) network and
the backbone network, e.g. CAN. Nodes can be added to the LIN network without requiring
changes in other slave nodes. Only the LIN master must be reconfigured when changes occur in
the network configuration. Recently, the LIN Consortium has published the version 2.0 [10] of the
LIN that includes real-time capabilities, standard driver for all LIN-component hardware and the
certification of all LIN-components. This is an initiative to sustain the proliferation of off-the-shelf
LIN slaves. When attached to a CAN backbone, the LIN network can access advanced system
diagnostics services. As LIN has gained a wide acceptance, the LIN Consortium has good reasons
to project a positive future. The standardization of the functionalities of common LIN-slaves will
accelerate the vehicle design process, reduce the prices of the LIN-components and enable more
viable LIN-networks.

2.3 Conclusion

A premium-class vehicle today contains a considerable number of ECUs and some intelligent actua-
tors and sensors (cf. figure 2.2) that need efficient communication facilities to provide the required
functionalities. Currently, most of the communication protocols used in the automobile industry
are either standardized or in a standardization process. Standardized communication protocols
afford modularity, distributed development, portability, external integration, cost reduction and
achieve easy gateway functionality. CAN is the most used network technology in the automotive
engineering. A vehicle generally contains several CAN networks, each of them tailored for a partic-
ular application domain (see example 1.1. Running at less than 125kbit/s, the low-speed CAN is
usually implemented in the car body to network the devices that are concerned with the realization
of personal comfort, e.g. seats, doors, sunroofs and windows control. The air conditioning, the in-
ternal lighting system, etc. are usually also controlled through a low-speed CAN network. A higher
speed CAN, that can runs theoretically 1Mbit/s, but generally operates at about 500kbit/s is used
for more safety-critical functions like engine and gearbox control, brake and cruise management,
etc.

MOST, USB and Bluetooth are promising solutions in the networking of automotive multimedia
and telematics solutions, whereas FlexRay is observed as the future standard for hard real-time
and broadband applications and LIN for less constrained communications. As automotive-specific
technology, LIN might remain for a long time the standard in the field of sensors and smart networks.
TTP yields very good performance, but provides very limited means to treat asynchroneous and
even-triggered frames. In the same class with TTP and FlexRay, TTCAN is featured to manage
time- and event-triggered frames, but its bandwidth is right limited. A pertinent observation shows
that TTCAN and TTP do either not seem to be well-prepared for the competition against FlexRay.

The panoramic view on the automotive communication technologies shown in table 2.6 refers
to the most implemented protocols in the automobile industry from the OEM point of view. The
information (e.g. topology, implementation) given in this table is based on the implementations
of the protocols with regard to the automotive domain. The medium load represents the maximal
effective throughput, given as a percentage of the theoretical bandwidth. The maximum number
of nodes is the largest size with which the network is able to work with guaranty QoS. The cost
is coded as follows: 1 = very low cost, i.e. 0.5-2¤; 2 = low cost, i.e. 1-3¤; 3 = high cost, i.e.
3-4¤; 4 = very high cost, i.e. > 4¤.

Although these automotive networking technologies are powerful, they are naturally limited.

26 CHAPTER 2. AUTOMOTIVE EMBEDDED SYSTEMS

Properties CAN TTCAN LIN Byteflight MOST FlexRay

Bandwidth
in bit/s

Triggering

Medium
(Length in m)

Latency

Topology

Medium

Load in %

Main

Application

Domain

Max Nbr

of Nodes

33,3k-500k
…1M

20k 10M 25M 10M

Event
Time

+ Event
Event Event/Time Event Time

Twisted-Pair
/Single wire
(40-1000)

Single
Wire
(40)

POF POF POF/
Dual Cable

Variable Deterministic Deterministic Deterministic Variable

Bus Bus Bus Bus, Star Ring, Star Bus (12),
Star(24)

50 ???50 60 15 90

32 (single
wire)

110 Pair

32/110 12 22 64 64

PT, Body PT

X-by-Wire

Smart
Subsystems
Cluster NW

Comfort

Body
Passive

+Active
Security

Multimedia

33,3k-500k
…1M

TTP/C

Cost

(1,2,3,4)
2-3 3

Twisted-Pair
/Single wire
(40-1000)

1 2 4

25M

Time

Deterministic

Bus

80

64

PT
X-by-Wire

3

Twin axe
Cable

PT
X-by-Wire

Deterministic

???

Figure 2.6: Some automotive in-vehicle communication technologies

For illustration, the CAN, specified to run 1Mbit/s can only achieve a maximum of 500kbit/s in
automotive environments, due to the electromagnetic radiation on the twisted pair cables (shielding
is too expensive). The ideal communication technology for the automotive industry does actually
not exist. Progress in the automotive E/E-related technologies i.e. including electronics, embedded
systems design, communication and telematic will enable the integration of more functions into
the vehicles. For instance, the next wave of new features in automobiles will include parking aid,
electronic toll collection, collision warning, personal digital assistance, driver alertness monitoring,
intelligent brakes, etc. and extend existing functions to more complicated functionalities, for
example the new ACC (Adaptive Cruise Control) that is announced by the main European and Asian
brands will enhance the actual version with preemptive collision detection. Thus, the automotive
engineering must look for methods to manage the system complexity. In our mind, we will be able
to solve this problem if we can control the growth of the number of the device and optimize the
usage of the capacities of the buses and the processors. It is thus well-advised to start today to
look for the solutions before the knock-out arises.

Chapter 3

Embedded systems design

The design of embedded systems is concerned with the development of the software and the hardware.
The software is the program code of the system functionality. The hardwareis the material part of the
system. As embedded systems constraints include the performance, the cost and the time-to-market,
only proved and efficient design techniques are adopted. In this chapter, we give a survey of the embed-
ded systems design methods that will help us to identify the similarities with the design of AES. Since
the sequential design process does not allow the trade-offs and the efficiency that are so important in
the embedded systems design, we particularly focus on the concurrent design method.

3.1 Embedded systems design methods

3.1.1 The sequential design process

The most important activities in the embedded systems design include the specification of the
system functionality, the conception of the hardware platform, the analysis and the implementation
of the software and the hardware, and the integration of the software and the hardware. The
traditional embedded systems design process makes use of a sequential design flow as shown in
figure 3.1. Based on the specification of the system-desired functionality, the architecture of the
hardware platform is decided. This activity is called allocation. Then the elements of the functional
specification are assigned to the elements of the hardware platform. This is called binding or
mapping. Afterward the application code is generated and loaded on the target hardware platform.
This operation is the deployment.

Specification

 HW Requirements
Analysis

Conception of the
HW Platform

SW Requirements
Analysis

Development
of the SW

Integration

Information flow

Process flow

Figure 3.1: Sequential embedded systems design method

The sequential development process can be roughly divided into two phases: The design of the
functionality, the design of the hardware platform and the implementation. The implementation
is concerned with the mapping, the development and the targeting of the code. The design of
the hardware platform is guided by the type and the characteristics of the application. Based on
the characteristics of the application, the designer will decide which sorts of processors, memories,
buses, interfaces, etc., must be used in the hardware platform. Depending on the calibration of the
chosen components (e.g. clock frequency, memory architecture, levels of caches, communication

27

28 CHAPTER 3. EMBEDDED SYSTEMS DESIGN

protocols, synchronization techniques, number of I/O pins, etc.), the designer will decide which
number of each type of component is needed.

Typically, the allocation is not an automatic process. It is influenced by several unpredictable
factors like the availability of the components, the quality of the development environment of the
existing components, e.g. the quality of the coding tools (compilers, debuggers, simulators, etc.),
as well as the preferences and the experience of the designer. In the implementation phase, the
designer must try to take the best advantage of the processing power and the communication
bandwidth that is available on the platform, e.g. the tasks and the data of the application software
must be distributed optimally on the different components of the platform. This is achieved by
the means of the partitioning. The functional specification of the system has to be captured in
a platform-compatible language. Depending on the hardware components on which the function
is mapped, the specification languages vary from ”high” level (e.g. Java, Pascal, Fortran, C)
to ”low” level languages (assembler, bytecodes, ...). Note that the notion of ”high” and ”low”
level languages is relative and absolutely contextual. With high level languages, i.e. as defined
above, an OS or a middleware is generally needed to link the application software on the hardware
platform. The integration is concerned on the one hand with the deployment of the code on the
hardware platform and on the other hand with the interconnection of the different components of
the platform.

Following this development method, the platform is defined a priori, hopefully by ”gurus”,
based on expert evaluation of the functionality and the constraints of the system. The imple-
mentation of the system software is constrained by the chosen platform. The system partitioning
is done after the allocation, whereas the designer supposes that the system will be successfully
implemented on the available processors that are generally commercial-available processors. It is
thus difficult to find the optimal tailoring for the hardware. Specific hardware is joined only when
timing or space constraints cannot be met. This is economically sensible, but in the embedded
systems development, minimizing the price of the system is not the unique goal. The size, the
weight and the power consumption of the system are often more important business criteria, for
example in the ubiquitous computing domain. In fact, a higher-sized hardware means more ma-
terial, larger volume, supplementary weight and power consumption than needed, and thus higher
costs. Furthermore, with this method, design errors such as the non-observation of the perfor-
mance constraints are detected after the integration. This is obviously very late and changes in
the design may necessitate to reanalyze the specification. In the extreme case, the specification
must be revised. The sequential design method can be a time-consuming, hazardous and thus
an inefficient process with consequences on the time to market and the product cost. Various
alternative development flows have been proposed. Mostly differing only in the details. One of the
most popular design methods proposes the concurrent design of the hardware and the software.
This method is called HW/SW co-design.

3.1.2 The concurrent design method

The concurrent design of the different parts of a system is called co-design. In a co-design scheme,
the functional specification is partitioned before the implementation begins (figure 3.2). The
co-designer supposes at the beginning that some parts of the system should be implemented in
hardware to guarantee high performance and the rest in the software that will run on general-
purpose processors, thus at low-cost. After the partitioning, the software and the hardware parts
of the system are developed concurrently in observation of the communication interfaces between
them. Then, the hardware and the software are integrated and the whole system is validated with
regard to its performance and its functionality requirements.

Compared with the sequential method, this design method allows to find better trade-offs
between performance and cost. The co-design method allows to early detect incompatibilities
between the hardware and the software. The communication interfaces between the software
and the hardware can be easily optimized when these are designed cooperatively. The design

3.2. DESIGN ACTIVITIES 29

process is not exposed to so many loops as the traditional process flow. Thus, the design time is
shorter. As seen in figure 3.2, the most important activities in the co-design method include the
functional specification, the partitioning and the implementation, i.e. the system synthesis and the
integration.

Specification Partitioning

HW Synthesis

SW Synthesis

Synthesis of the
Communication

Integration

Figure 3.2: Concurrent design method of embedded systems

3.2 Design activities

3.2.1 The specification

The specification is essential in the co-design method. In the specification phase, the system
functionality must be described in a way that its structure and its behavior are clearly and un-
ambiguously identifiable. The entire system must be specified as a whole in order to enable an
efficacious design space exploration. Thereto, the specification must provide the details that are
necessary to make advantageous decisions during the partitioning. The actual trend favors a speci-
fication that is free from any constraint on the implementation, e.g. a platform independent model
(PIM). However, capturing a specification is a difficult matter, because today’s embedded systems
are very complex and heterogeneous, and the specification techniques are not always sufficiently
featured. For illustration, although time information is very important in the embedded systems
specification, it is difficult to be described with precision.

A plethora of languages have been proposed to specify embedded systems in the scope of the
HW/SW co-design method (see figure 3.3), but there is no ideal language to uniformly describe
the software and the hardware parts of a system. The hardware is generally described by means of
HDLs (e.g. VHDL, Verilog, HandelC, SystemC, SystemVerilog) whereas the software is specified
with traditional software languages like C, C++, Java, Assembler, etc. At the system level,
beside of general-purpose languages like SDL or MSC, numerous co-design-specific languages are
established, for example HardwareC, Cx, SpecCharts or StateCharts, that are used in VULCAN[63],
COSYMA[67], SpecSyn[61,117] and CODES [30].

3.2.2 The partitioning

The partitioning is the most original activity in a co-design method. The goal of the partitioning
is to share the computation work among the processing components of the platform and the
data among the storage places. In the embedded systems design, the partitioning is done by
splitting the system specification into different parts according to the given design, performance
and cost constraints and distribute these parts on the resources of the platform so that the system
functioning is optimized and the required performance is met within the overall system requirements
and constraints, by concurrently avoiding resource underutilization. Each distribution is called a
partition. The constraints are generally given on the size, the weight, the power consumption,
the cost, the latency, the material, the speeding up of the system, etc. A partition is achieved by
analyzing the structure and the behavior of the elements of the specification in order to identify
those which should be advantageously implemented together, those that can run on a general-
purpose processor and those that must be implemented on specific or as dedicated hardware.

30 CHAPTER 3. EMBEDDED SYSTEMS DESIGN

Software
Specification

Platform Architecture
+Partitioning

Hardware
Specification

NetlistSoftware
Executable Code

HardwareC,
SpecCharts, UML,
StateCharts, SDL,
Esterel, Signal, ...

C, C++, C#,
Java,

Assembler,
Pascal, Fortran,

...

VHDL, Verilog,
System C,

SystemVerilog, ...

SW/HW Interface
Specification

Validation

Performance
Estimation

Prototyping

ASICProcessor

Interface

Evaluation

VHDL,
Verilog,

System C, ...

Co-Validation

SW Synthesis
SW Compilation

HW Synthesis

System Functional
Specification
+Constraints

Allocation
+Mapping

Figure 3.3: Specification languages in the HW/SW co-design method

The partitioning process itself depends on its objectives. In some approaches, the partitioning
aims at the definition of the parts of the system that will be implemented as hardware, i.e. custom
component, and the parts that can be implemented as software to run on general-purpose pro-
cessors. This is called HW/SW partitioning. The HW/SW partitioning is generally a functional
partitioning, i.e. the functions of the system are grouped into consistent modules that are each
assigned to a platform component that is implemented either in hardware or in software. In an-
other approach of the partitioning, the system specification is partitioned among several custom
components, e.g. among several ASICs. This is a hardware partitioning. The hardware partitioning
produces an all-hardware solution since it does not consider any software component. Generally,
in the hardware partitioning, the system is first implemented with (fine-grained) structural de-
vices (e.g. gates), that are then partitioned among several custom components. This technique
is called structural partitioning. The all-hardware implementation has the potential to provide
high-performance (via hardware speeds and parallel execution of operations) and reduced space
occupation, but is expensive in the fabrication of ASICs. The all-software implementation, even
when running on high-performance (general-purpose or specialized) processors is in principle the
low-cost solution, providing flexibility and upgrading, but it does not guarantee the achievement of
the performance constraints and can incur high costs in developing and maintaining complex soft-
ware. The trade-offs between quality, performance and cost are achieved through mixed HW/SW
architectures, i.e. architectures containing general-purpose processors as well as custom processors.

3.3 The implementation

3.3.1 The software synthesis

The software synthesis is concerned with the implementation of the software part of the system,
i.e. the embedded software, that will run on programmable hardware units and the configuration
of the corresponding OS. This includes the translation of complex software descriptions (e.g.
concurrency, timing behaviors or task scheduling) into a software language that can be compiled
by common compilers, the coding, the targeting of the software and the optimization of the code,
e.g. reduction of the amount of busy-waiting of the processor. This can be done automatically

3.3. THE IMPLEMENTATION 31

or manually. Because of its particular requirements, the embedded software development has
evolved to a special engineering field. In fact, the embedded software development is significantly
constrained, not only because of the tight requirement on the code size, but also because of the
limitations concerning the implementation cost, the performance and the functional requirements
of embedded systems (dependability, maintainability, timeliness, concurrency, reliability, reactivity,
real-time communication with the real world, etc.). For illustration, OS for embedded systems
are generally required to behave in real-time and concurrently, because of the shortage of space,
embedded systems OS are tailored to provide only the minimum obligatory services. The principal
activities of the embedded software development are summarized in figure 3.4.

Specification

Scheduling
Choice of the
processors

SW and OS
Implementation
and Targeting

 Validation

Figure 3.4: Design of the embedded software

Potential targets of the software include GPPs, DSP, MCUs and ASIPs. A GPP is designed
independently from any particular application, so that it can be used for a large set of application
families. Some examples are RISC, CISC, Sparc, Pentium processors. Nevertheless, some GPPs
are optimized and thus specialized on a particular application domain (e.g. video, audio, mobile
telecommunication, etc.) but not on a specific application. Examples of domain-specific proces-
sors include network processors, multimedia processors, Digital Signaling Processors (DSP), etc.
DSPs are processors that are specialized on digital signal processing operations. Their architecture
and their instruction sets are optimized for arithmetic operations such as Multiple-Accumulate
operations (MAC), pipelining, direct memory access, address coding and decoding, . . . that can
advantageously accelerate the operations that are usually implemented in signal processing algo-
rithms, such as Fast Fourier Transform (FFT). DSPs are more powerful and space-saving than
non-specialized GPPs, but DSP development frameworks are generally tighter than those of non-
specialized GPPs. For example, DSPs are generally more efficiently programmed in assembler than
in higher level languages like C. Microcontrollers architectures are optimized for control opera-
tions. Their architectures and instruction sets are based on build-in clock operators and a large
variety of I/O devices, such as ADCs, timers, UARTs or specialized communications interfaces
like I2C, SPI or CAN. Microcontrollers have the advantage that they can be easily programmed
with high-level languages like BASIC. The range of utilization of application specific instruction
set processors (ASIP) is tighter, since they are specialized on the common needs of a specific class
of applications.

3.3.2 The hardware synthesis

The hardware synthesis aims at developing custom hardware, generally in form of Application
Specific Integrated Circuits (ASIC). This activity is concerned with the process that transforms
a description of the hardware part of the system in a description of the corresponding chips in a
form from which integrated circuits can be manufactured. An ASIC is a processing unit that is
tailored for a task and only for this task. ASICs are very efficient in speed and resource usage, since
only the resources that are necessary for the application are effectively used. The ASIC solution
promises the best economy of resources, space, weight and power consumption. But the lack of
flexibility is dramatic with ASICs. Thereto, ASICs are very expensive in the manufacturing.

The hardware synthesis can be divided in two phases: The behavioral synthesis and the register
transfer-level (RTL) synthesis. The behavioral synthesis, also called the algorithmic synthesis inputs

32 CHAPTER 3. EMBEDDED SYSTEMS DESIGN

a rough specification (state machines, high-level HDLs), where timing constraints on the tasks are
not precise, and outputs a collection of registers with the changes that occur on them from a cycle to
another. This is then the input for the RTL synthesis, which mostly deals with the combinational
optimization of register transfers (netlist) to build optimized circuits for the application under
design. The hardware synthesis is a well-established research field. Several commercial tools
(also called silicon compilers) exist, that offer automatic transformation from the RTL to a layout
specification level. Field programmable gate areas (FPGA) are also often considered as specialized
hardware units. Because of its reconfiguration capacities, FPGAs are the first choice candidates
for rapid prototyping. The reconfiguration can occur at compiling time (off-line) or at run time
(on-line). A further advantage of FPGAs is their parallelism-capable architecture. FPGAs are easily
configurable, easier to implement than ASICs and they offer a certain grade of flexibility that ASICs
do not have. But they are less efficient that ASICs, i.e. in resources (area) and performance.

Figure 3.5 shows a comparison between specialized and general-purpose hardware components.

Efficiency
Performance

Flexibility
Power
Consumption

HWSW

GPP
Universal processors

RISC, CISC

Reconfigurable
Processors

FPGA

Custom
Processors

ASIC

Domain
Specific

ProcessorsDSP, NW, mC, ASIP

Figure 3.5: Usual processing components

3.3.3 The synthesis of the interfaces

The synthesis of the communication in the context of HW/SW co-design is the concern of the
realization of the interfaces between the components of the hardware platform, i.e. the interfaces
between the hardware and the software components, the interfaces between the software compo-
nents, those between the hardware components and the interfaces to the memory elements. After
the partitioning, the designer must define the I/O interfaces between the different components
of the system as well as the associated communication and synchronization protocols. This also
includes the determination of the bus size, the specification of the routing algorithms, the rules for
packeting the data for transmission, etc.

3.4 Conclusion

While in the past, hardware architectures dominated the field of high-performance embedded
systems design, most of the applications today are implemented in a mix of software and hardware
where the software mostly receives the biggest part. The dominance of the software is due to some
simple reasons: The flexibility offered by software implementations is welcome in the embedded
systems design, as the increasing importance of time-to-market considerations in the business fields
using embedded systems can be better satisfied through software implementations. The embedded
systems design is actually provided with new (domain-specific) processors that are powerful enough.
However, some specific functions will continue to be implemented in hardware for performance and
reliability reasons. The HW/SW co-design seems to offer the most adequate design method for
developing HW/SW systems, even though it is itself limited. Firstly, the co-design method lacks
objectivity: The partitioning is based on the system architecture that is generally decided on the
basis of empirical estimations. Other limitation factors include the difficult co-simulation and the
difficulty to integrate the hardware and the software parts of the design. A competent co-designer

3.4. CONCLUSION 33

needs expertise in both hardware and software design, as well as in the design of communication
systems.

Notable research have been done to help embedded systems designers and team managers to
cope with today’s design requirements. ”High-level” specification languages have been developed,
the partitioning can be automatized (at least partially), there exists a number of software and
hardware synthesis solutions of performance. Some industrial tools that are available on the
market include: Arexys (SDL, VHDL, C), CoWare (C/C++), LavalLogic (Java to Verilog), Cynlib
(C++ to Verilog), Art, Algorithm to RT (C++ to RTL), SUPERLOG (System-level description
language). Known academical productions include: POLIS (U.C. Berkeley), PTOLEMY (U.C.
Berkeley), VULCAN (Stanford Univ. (Hardware C)), CHINOOK (U. of Washington (VHDL)),
COSYMA (U. of Braunschweig (C*)), MEIJE (INRIA and others (Esterel, Lustre, Signal)). But as
embedded systems are becoming more and more complex, the level of granularity of the commonly
used specification languages in the co-design is too fine to capture large-scale systems. This is
particularly the case in the design of AES, the use of hierarchical specification techniques and a
specify-refine-verify loop design flow are necessary to cope with the actual complexity.

34 CHAPTER 3. EMBEDDED SYSTEMS DESIGN

Chapter 4

Automotive systems design

As a highly constrained domain of production, the automotive engineering needs efficient design meth-
ods. In this chapter, we discuss the design of automotive electronics and we present the related prob-
lems. In opposition to the actual components-oriented design process, we propose a more efficient
design approach, based on the system-oriented perception of the design, that sketches and motivates
the idea of co-designing the system’s devices. We define the problem to besolved and we precise the
solution strategy.

4.1 Design of AES

4.1.1 Top-down and bottom-up

The design of automotive systems can be divided in two views: The OEM’s view and the com-
ponents supplier’s view. Figure 4.1 shows the interfaces between the OEM’s and the suppliers’s
responsibilities in the development chain of activities. The OEM is responsible for the whole ve-
hicle. It is its role to define the functionalities of the system, and of course, it is the one that
orders the implementations of the corresponding functions. The components suppliers compete
to acquire the implementation of the system’s components (i.e. in form of ECUs, software com-
ponents or any other imaginable goods). The successful candidate must deliver the component
implementation as specified by the OEM. After validation, the OEM integrates the component
into the rest of the system and then validates all together, generally per test or simulation. In
many automobile manufacturing companies, the development of the vehicle electronics is planned
following some adapted versions of the waterfall model of development, i.e. an activity begins
when the preceding activity is supposed to be finished. The relations between the phases of such
a development process can be easily represented in form of a V-model like in figure 4.1. This is
a top-down design process (left side), completed with a bottom-up implementation process (right
side).

4.1.2 Current OEM design practice

Traditionally, the automotive industry sees the development of the electronic components (ECUs,
actuators and sensors) like different activities that can be isolated and carried out independently. In
the current practice, automotive electronic components are conceived like add-ons for the existing
system. As shown in figure 4.2, ECUs and their software are each designed for a particular
given functionality. Based on the requirements for the new features, a functional specification
is established, then partitioned to define the number of ECUs that should realize the needed
functionalities. The OEM then orders the corresponding ECUs from the suppliers and plugs them
on the system. After all, a range of tests is done to validate the integration. When the new features
are proposed by a supplier, the OEM generally gets a black-box view of the new components that
are integrated and tested against their consistency with the rest of the system. This design method

35

36 CHAPTER 4. AUTOMOTIVE SYSTEMS DESIGN

System Level
Design

Partial View
Design

Components
Design

Components
Implementation

Partitional Level
Integration&Validation

System Level
Integration&Validation

Specification & Design Implementation & Integration

OEM

Components
Suppliers

Components
Definition

Components Level
Integration&Validation

Global view
System’s functional specifications:
Logical & Technical Architectures

Domain restricted view
Application domain specifications
Logical & Technical Architectures

Component restricted view
Components specifications:
SW + HW Architectures

Partitioning

Development of SW + HW
Components

Interface between OEM
and Components suppliers

O
rdering D

el
iv

er
y

Figure 4.1: OEM and suppliers views in the development process of AES

relies on a component-driven approach. The simplified representation of the development process
shown in figure 4.2 makes abstraction of details that are not relevant for our purpose.

Existing System
New Features

 proposed by a Supplier
"as black box"

Requirements for new features
"proposed by OEM"

Functional spec of the features

ECU’s interfaces & performance spec

Partitioning

 Validation

Ordering ECUs

Integration & test

Interface spec and funtional description Interface spec of existing system

Figure 4.2: The components-based design process

4.1.3 Limitations of the current OEM design practice

In the design scheme described above, each ECU is designed for a fixed given functionality. The
OEM’s integrators are responsible to bring the different parts of the system together. They try
to make this easy by well defining the interfaces between the system’s components beforehand.
This approach recalls the idea of modularity, well-known in the mechanical engineering, where the
automotive engineering, which is originally a machine construction industry, should have accu-
mulated helpful experience. In fact, considering the complexity of automotive E/E systems, the
modular design approach is absolutely right. But if the mechanical engineering can easily define
stand-alone components, it is because these are essentially hardware pieces (metal, plastics, . . .),
which do not bear any internal live. The external behavior of these mechanical components is quasi
always deterministic and thus, easily predictable. This is not the case for software and embedded
electronic components. The clear link between structure and function that is typical to mechanical
objects is not evident for intelligent systems. Furthermore, the interactions between the different
parts of intelligent systems seriously constrain their distribution. Here, modularity cannot encour-
age careless separation of things that belong together. Unfortunately, automotive architects today
still partition the specifications empirically, according to experience or vague estimations of the
inter-components relationships. The consequences are obvious:

4.2. PROPOSED DESIGN APPROACH 37

• Too many ECUs

• High inter-ECU communication and underutilization of hardware resources, incuring poor
cost/performance ratio

• The system integration is difficult and time-consuming

• The quality constraints (e.g. real-time requirements) are difficult to achieve at the same
time with the economy goals

• Difficult system scalability, since new functionalities are only introduced through the inte-
gration of new ECUs

To solve these problems, the automotive industry designs more and more powerful communica-
tion protocols, e.g. TTCAN, FlexRay, Byteflight, TTP, LIN, etc. If necessary, new buses, i.e. wires
are added to increase the communication bandwidth. Unfortunately, these solutions are not suffi-
cient! Like the maximal load of the transmission medium, the performance of the communication
protocols is limited. Adding buses implies to extend the cable harness, thus to increase the weight,
the energy consumption, the product selling price and the technical problems (e.g. robustness).
This development process is limited to manage the expansion of the current architecture and is
therefore not apt to master the growing complexity.

4.2 Proposed design approach

4.2.1 Factors of the problem resolution

Nowadays, the differences between vehicle constructors in terms of manufacturing ability are pretty
slim. The ability to design efficient, reliable and cost-optimal systems on time is essential to survive.
In this context, the design flow can make a difference. Our aim is to master the galloping complexity
of AES in such a way that avoids the explosion of the system cost by concurrently improving the
system performance. AES costs are materialized by the vehicle selling prices and the costs of
ownership. The vehicle selling price is based on the engineering costs (NRE) and the costs of the
material installed in the system. We can control the costs of AES if we provide efficient design
processes and innovative design techniques that can induce positive effects on the engineering
costs and optimize the material usage. AES performance is measured on the real-time behavior of
the computations in the system components and the timeliness of the communication. Each ECU
uses a platform of processors (i.e. microcontrollers, ASICs, DSPs, etc.) and memories on which
the associated application runs. We will optimize the costs of the material used in the system if
we optimize the costs of the hardware in the ECUs and the cost of the communication system.
The latter will be achieved by reducing the cable harness in the system while the former depends
on the resource management techniques and the scheduling strategies applied in the ECUs.

In order to decrease the engineering costs and the costs of ownership of AES, a helpful design
approach must provide time-saving and flexible design processes. CAD-supported design opera-
tions enable short design times and allow easier documentation of the design process. For the
optimization of the material usage, we need an efficient resource management that can:

• Reduce or at least slow down the galloping growth of the number of ECUs in the vehicles,

• Reduce the inter-ECU communication,

• Facilitate the system updating and upgrading and

• Simplify the system scalability so that OEM can sell software functionalities on demand,
which can be flashed into a vehicle after delivery.

38 CHAPTER 4. AUTOMOTIVE SYSTEMS DESIGN

Suitably localized functions communicate cheaper and can easily share the resources. Thus, a
goal-oriented approach of the partitioning, which can be automated is the key to master the costs
and the performance requirements of the design of automotive electronic systems. Several factors
are needed to achieve these goals, for example we must be able to:

• assign functions to ECUs independently of the underlying hardware,

• define the ”occupation grade” (working load) of the hardware platform,

• provide efficient design processes with CAD-supported design operations.

4.2.2 The system-oriented design approach

In order to achieve our goal. we propose a system-oriented design approach, i.e. we perceive the
electronic system of a vehicle from the beginning as a ”whole”, joined mixture of hardware and
software components rather than a simple collection of parts. So, we can be constantly conscious
of the dependencies between the parts of the system. We propose a partitioning approach that
can be automated, and thus, enable CAD. The flow of the design as we conceive is sketched in
figure 4.3.

System Spec

Logical Device 1

System Integration & Validation

……..
Interface

Configuration

& Validation

………

System Requirements

Mapping

System Constraints Spec

ECU Allocation

Functional Spec for ECU 1

Logical Device 2 Logical Devices n

Deployment

SW Implementation HW Synthesis

ECU Integration & Validation

OEM

OEM or

Components

Supplier

Interface

Configuration

& Validation

Ordering Grey Box ECUs

RefinementRefinement

OEM

Assignment

System view

Components view

System view

Constraints

Constraints

Functional Spec for ECU 2 ………

Figure 4.3: System-oriented design approach

The specification: In a system-oriented design scheme, we shall separate the design of the ap-
plication software from the basic software and the hardware platform, so that the design of the
application software is free from the constraints of the hardware and the basic software and vice
versa. This separation of concerns allows us to inventory and estimate distinguished design options.

The partitioning: The partitioning is done according to the performance and the cost objectives
in conformance with the system constraints. The mapping is the assignment of the elements of
the functional specification to the components of the platform, i.e. the functional components are
assigned to the devices and the inter-ECU communication data objects are grouped into the frames.
The mapping must guarantee the consistencies (in terms of configurability and performance) of the

4.2. PROPOSED DESIGN APPROACH 39

interfaces between the function clusters. After the mapping, each ECU can be developed following
a typical co-design method.

The system integration: The OEM is responsible for the system architecture. It orders the devices
from component suppliers and integrates them together. Then, after successful tests, the system
is validated.

4.2.3 Analysis

The system-oriented method provides the ability to design more efficient systems, since each com-
ponent of the system is designed as a part, rather than a stand-alone or a self-completing com-
ponent. This process reveals several similarities with the concurrent design method of embedded
systems as well as with the AUTOSAR design flow:

• The design starts with a system-level specification where the desired system functionality is
specified, analyzed and designed as a composite of building blocks,

• Like in the co-design, the partitioning aims at deciding which functions of the specification
will be implemented together,

• The logical devices are analyzed, specified and refined concurrently,

• The allocation determines the number, the equipment of the ECUs, the topology of the
platform and the communication protocols for the inter-ECU communication, then

• The software/hardware partitioning, the scheduling of the tasks, etc. is done within each
device (the deployment) and

• The components of the system, i.e. the devices and the buses, are designed cooperatively
and implemented concurrently before being integrated and validated.

The AUTOSAR proposed design approach begins with a system-level functional description
(figure 4.4(a)) where the system functions are encapsulated in AUTOSAR software components
that communicate through the VFB. This specification is then partitioned and mapped on the
different devices.

Figure 4.4: The AUTOSAR design approach (source: Autosar web content V23.4)

(a) The idea

ECU I

Virtual Functional Bus

A
U

T
O

S
A

R

S
W

-C

1

A
U

T
O

S
A

R

S
W

-C

2

A
U

T
O

S
A

R

S
W

-C

3

A
U

T
O

S
A

R

S
W

-C

n

...

ECU II

A
U

T
O

S
A

R

S
W

-C

1

A
U

T
O

S
A

R

S
W

-C

2

A
U

T
O

S
A

R

S
W

-C

3

ECU m

A
U

T
O

S
A

R

S
W

-C

n

RTE

Basic Software

RTE

Basic Software

RTE

Basic Software

...

VFB view

Mapping

System Contraint

DescriptionECU

Descriptions

Tool supporting deployment

of SW components

Gateway

SW-C

Description

SW-C

Description

SW-C

Description

SW-C

Description

(b) The activities

System
Configuration

Inputs

System
Configuration

System
Configuration
Description

ECU Specific
Infos Extraction

ECU Specific
Infos

ECU
Configuration

ECU
Configuration
Description

ECU
Synthesis and

Implementation

Appl. SWC, HW and Constraints
Specifications

System configuration constaints

ECU
Executable

Partitioning and Mapping infos
Syst. topology, Bus mapping,

Appl. SW deployment
Syst communication matrix

ECU architecture
ECU SW, ECU HW and ECU

local Constraints Specifications

ECU Configuration
Tasks scheduling, necessary

basis SW modules, configuration
of basic SW, AUTOSAR Services,
assigments of runnable entities to
Tasks, Implementation technology

for each atomic SWC

ECU runnable SW
ECU executables, code for RTE,
basic SW(comm module, OS,...),

appl. SW and HW
Input information flow

Process flow

Output information flow

40 CHAPTER 4. AUTOMOTIVE SYSTEMS DESIGN

The AUTOSAR design flow is roughly sketched in figure 4.4(b). The right-side items represent
the design activities and their relationships. The left-side items are the products that result from the
preceding design activities. The products are given in the form of documents describing the results
of the corresponding activity and the inputs for the following activity. The system configuration
inputs include the software components, the allocated hardware and the system constraints. The
system configuration, i.e. the mapping of the software components on the devices and the mapping
of the frames on the buses outputs the ”System Configuration Description” that contains all
significant system information such as the topology, the bus mapping, the software components
deployment and the associated communication matrix. The system communication matrix is a
complete description of the frames (i.e. contents and timing behaviors of the frames) transported
around the system. After the system configuration, the devices are configured individually, i.e.
for each device, the runnable entities are assigned to the tasks, the tasks are scheduled, the basis
software is defined and configured, etc. The result of these operation is described in an ”ECU
Configuration Description” from which the executables are generated. An ECU executable is
the code for the application software, the RTE and the basic software, plus the synthesis of the
hardware components of the ECU if some do exist.

4.3 Conclusion

The components-oriented design approach of AES is obviously not capable enough to cope with
the problems following the explosion of the number of electronic-actuated features. The most
promising solutions to these problems need a system-oriented approach of the design that enables
the concurrent design of the components of the system. We propose a co-design approach that
makes use of a partitioning of the system-level specification. However, this method will be realizable
only if the input specifications fulfill the requirements for the partitioning. Firstly, a system-
oriented development method requires a global view of the system, resulting in the handling of
very complex models. Thus complexity management and expressiveness are concurrently required
for the input specifications. Secondly, a qualified input specification must provide a certain degree
of freedom that is necessary to investigate various architectural alternatives. This necessitates
platform independent functional specifications and configurable or standardized interfaces of the
functional components.

Chapter 5

Modeling AES: State-of-the-art

In this chapter we overview the state-of-the-art in modeling AES. We first present the problematic of
the modeling of AES, then we enumerate the features expected from an AES modeling solution. In the
following, we outline the techniques used to provide these features and we review the basic concepts
used to model AES in the actual state-of-the-art.

5.1 Modeling AES

5.1.1 Model-driven system development in the automotive engineering

The development of automobile E/E (Electric/Electronics) systems has incontestably experienced
a great leap forward during the last decade. On the way to its maturity, the Automotive Embedded
Systems (AES) design has adopted the model-based development scheme. The purpose of model-
based system development is to use models to study the artifacts of a system before building it.
Model-based development offers an effective way to decrease the technical and financial risk of ”try
and error” and improves the economy (design time, material usage, etc.) and the quality (reliability,
soundness, performance, electromagnetic compatibility, etc.) of the system. Furthermore, model-
based development has the potentiality to boost the innovation, afford collegiate work and simplify
the product maintenance. All these concerns are quoted to be vital in the automobile industry.
Unfortunately, the state-of-the-art in modeling embedded systems in the context of the automotive
engineering does not yet allow the designer to take the best possible advantages from model-based
development. In fact, even if modeling is current practice for today’s automotive systems designers,
models are still considered as simple description and communication media, although in the context
of hard competition that rules the automotive industry, modeling can unacceptably continue to be
a task that unnecessarily consumes time instead of being helpful and easy.

The overall goal of modeling is to build the system. With a model-based design approach,
models are expected to guide the whole design process. That means that all the activities within
the life cycle of a car’s E/E system, from its conception to its destruction, must be supported by
models as far as possible. Thus, here, models are the primary artifacts in the system development
process. In our opinion, AES modeling must be outermost concerned with the support for the
activities of the implementation phase. Therefore, a model should bear all necessary information
needed for the subsequent design operations. Hence, even though models are abstractions of
the reality, useful specifications must highlight the system characteristics, motivate the design
options and facilitate the design decisions. In the context of embedded systems design, one of the
most decisive design operations is the partitioning, i.e. the assignment of the system specification
within the available resources. In the current practice, the partitioning is done inputing very low-
level, fine-granular specifications (e.g. logical and arithmetical operations or simple assignments).
Unfortunately, because of the complexity of AES, this dimension of granularity is difficult to achieve
when following a system-oriented design scheme. Coarse granularity is needed to describe such
complex systems, but coarse granular models are generally abstract. However, the quality of the

41

42 CHAPTER 5. MODELING AES: STATE-OF-THE-ART

partitioning depends on the information that is available in the input models. As a special domain
of interest, important works have addressed the modeling of AES, producing appreciable results.
Near general-purpose embedded systems-qualified tools (UML, MatLab, Simulink, SDL,...), more
domain-specific modeling languages have been proposed for the development of AES (e.g. EAST-
EEA[40], AADL[16], AUTOSAR[22], etc.). But most of these solutions were focused on the
definition of modeling languages, neglecting the substance of modeling itself and its potential
methodological support for the design process. Some of these modeling solutions are nowadays
firmly established in the AES design, but this engineering field is still seeking for a unified, consistent
and robust modeling solution that will efficiently support the system development. This is partially
due to the very particular nature of AES, i.e. AES are complex and highly heterogeneous.

5.1.2 AES are heterogeneous and complex systems

When considering a system-oriented design style, AES are very complex (in both the size and the
functionality) and heterogeneous. In fact, AES are mixed compositions of hardware and software
systems that cooperate and also depend of each other. These aggregates are evidently different in
their natures and behave almost differently. As AES are multi-dimensional heterogeneous, the de-
sign of AES must be able to manage different scales of heterogeneity. For example, even within the
hardware and the software, there is a wide range of heterogeneous components, for example GPP
and specialized processors, reactive and interactive tasks, event-driven and time-driven tasks, con-
tinuous and discrete tasks, control-oriented and data/computation/transformation-oriented tasks,
real-time and non-real-time tasks, etc. These items may necessitate different techniques of de-
scription and design, but must be handled with the same care. In particular, the design of AES
must face the heterogeneity of the components, the heterogeneity of the specification languages,
the heterogeneity of the abstraction levels.
The heterogeneity of the components: The electronics of AES consist of ECUs and several
communication networks that are realized through cabled, optical or radio wave links running dif-
ferent protocols. An ECU consists itself of hardware and software. Hardware components are
of different sorts: GPPs, custom processors (ASICs, ASIPs, FPGAs, ...), memories, I/O devices,
timers, etc.
The heterogeneity of the specification languages: The heterogeneity of the components in
AES indicates that it may be difficult to describe the whole system in a unique language. Each
part of the system may be described using appropriate, e.g. domain-specific languages, resulting
in a multiplicity of specification languages for the same system.
The heterogeneity of the abstraction levels: The design process of AES is an agile cycle of
specifications, validations and refinements that consequently involves different abstraction levels
inducing a vertical heterogeneity. Furthermore, when the elements that have been approved in
precedent designs are reused, the same abstraction level may contain objects that are in different
stages of development, i.e. in different levels of refinement. This fact yields what we call horizontal
heterogeneity.

Hence, handling the complexity and the heterogeneity is a central issue in the AES design.

5.2 AES modeling needs

5.2.1 AES modeling prerequisites

Key prerequisite to manage the complexity and the heterogeneity is a clear separation of concerns.
This is achieved through modularization and abstraction principles. Thereto, formal definitions of
the modeling concepts would simplify the analysis, the validation and enable design automation.
Modularization techniques allow to split the system into smaller parts that are easier to manage.
Through this ”divide-and-rule” principle, AES are specified as networks of modules, each represent-
ing a building block of the system. Usual abstraction techniques include the definition of different

5.2. AES MODELING NEEDS 43

views on the system under construction, the definition of different conceptual and abstraction
levels, the use of hierarchical decompositions, and the use of encapsulations. The definition of
different conceptual levels of abstraction allows to write valid models with different degrees of
precision. So, a specification can begin with non-mature but semantically correct models that will
be progressively refined as the design goes forth.

Encapsulation is a means for information hiding, domain delimitation and system isolation.
Through encapsulations, the internal properties (structure and behavior) of a model element can
be hidden to the others. Encapsulations are necessary to isolate and protect one view from
another one, one abstraction level from another one or one element of the specification (e.g.
component, connection) from the rest of the specification. Encapsulation affords the detachability
and subsequently the reuse of model elements. Anyway, despite the encapsulations, the relations
between the views and between the abstraction levels in the specification of a system must be
modeled to assure traceability. Traceability across the abstraction levels is modeled by means
of the refinement rules. Modularization and abstraction considerably afford the reuse of model
artifacts, the flexibility and the evolvability in the design process.

5.2.2 Features expected from an AES model-based design solution

AES system modeling is concerned with the specification of the architectures, the behaviors, the
constraints and non-functional requirements of the automotive embedded software and its elec-
tronics as well as the transitions within the system development. An architectural model includes
the description of the structure of the system and the interactions between its components. It
must support modularity, hierarchy and abstraction. Behavioral models describe the system’s op-
eration, that is the ”sum” of the behaviors of the system components and their interconnections.
The behavior of a component is made of two dimensions: The internal behavior and the external
behavior. The internal behavior describes the part of the behavior that is concerned with the com-
putations. The computations may be modeled using states transitions and flow graphs, activity
schedules or algorithms. The external behavior describes the interactions of the component with
its environment, i.e. the communication. Communication models involve the transfer of informa-
tion between the communicating partners and the relationships (e.g. synchronization) between
them. Communication models are concerned with the description of the communication paths
between the system modules and the protocols that rule these communications. This may also in-
clude further useful information like the scheduling of the communication, the access frequencies,
the throughputs, the communication media and the information shared in the communication.
Behavioral models must support the modeling of concurrency and time.

Constraints are statements that fix restrictions on the design. They restrain the design space
and thus influence significantly the configuration and the implementation of the system. Usually,
the constraints and non-functional requirements state obligations on the cost, the performance,
the reliability, etc. Transition models are necessary for traceability of the evolution along the design
process. Modeling the transitions includes the description of the mappings as well as the refinement
rules relating the abstraction levels, the rules governing the instantiations, the configurations
and the deployments. This can be done by means of typical deployment and mapping/linkage
description tools and some adaptations of feature trees. These points of interest can be placed
in different views and treated at different abstraction levels. However, the value of a modeling
solution that is eligible for the AES design depends not only on the way it handles these artifacts
but also on how it considers the modeling of AES specific domains of interest such as hardware
platforms, product lines, non-software components and vehicles environments.

A model-based design framework needs to:

• provide modeling concepts to capture these system artifacts,

• provide modeling languages to express the contents of the models,

44 CHAPTER 5. MODELING AES: STATE-OF-THE-ART

• define the design processes, i.e. the steps through which the creation of a system must go,
their schedules and the corresponding activities and

• specify the design operations that are needed to perform the activities related to the process
of system creation.

5.3 AES basic modeling concepts

5.3.1 Abstraction levels in the AES design

The cost requirements of automotive-embedded systems can only be met if portability and reuse
are provided amongst others along the system life cycle. These aims can be achieved through con-
ceptional separation of concerns. Model-Driven Architecture (MDA) proposes a two-layered design
approach consisting of platform-independent models (PIM) and platform-specific models (PSM).
This approach allows long-term flexibility of the implementation and the integration. In the AES
design, the system functionalities are specified as PIMs in so-called ”functional architectures (FA)”
whereas the resources and the implementation details are handled in more ”technical architectures
(TA)”, so that a FA can be deployed on a wide variety of platforms.

As shown in figure 5.1, the functional architectures focus on the design of the functionalities
(functional views) of the system under construction. Typical models found in the FAs include
the structural models of product families and the corresponding behavioral models. The sys-
tem behavior is typically specified with high-level logical information flow models (e.g. sequence,
communication diagrams or state charts) or by means of algorithms. The technical architectures
contain the models describing the platform (hardware and basic software) on which the application
will run (i.e. infrastructural views). Depending on the abstraction level, the hardware platform can
be described in the form of a hardware abstraction (indicating which hardware device is installed in
the system but abstracting their real properties and locations) or at lower levels with its concrete
physical elements (RAM, Flash, ROM, GPP, ASIC, bus, etc.). Typical models found in the TAs
include the architectural models describing the platform components and their inter-connections
as well as the topological models describing the positioning of the system components. The im-
plementation level is concerned with the actual configuration of the system under construction. It
thus focuses on the refinement of the FA with regard to a specific platform. It uses architectural,
behavioral and communication models to describe the system. Its primitives include software com-
ponents and their inter-connections. The implementation models may also include the models to
describe the mapping, i.e. the assignment of its building blocks to the platform elements, and the
models to describe the allocation, i.e. the equipment of the platform. In contrast, the operational
models generally use primitives like processes, tasks and message frames as well as their dynamic
aspects (tasks schedules, bus schedules) to describe the system.

In the ”EAST ADL” [40], the EAST-EEA has defined five conceptional levels: The vehicle level,
the analysis level, the design level, the implementation level and the operational level, containing
all together seven architectural models: The vehicle feature model (VFM), the functional analysis
architecture (FAA), the functional design architecture (FDA), the logical architecture (LA), also
called function instance model, the operational architecture (OA) or allocation model, the technical
architecture (TA) or platform model and the hardware architecture (HA). These layers contain the
models that specify the system under construction in the intermediate steps of the design process,
whereas each layer is a refinement of the preceding one. Following the same objectives, the authors
of ”AutoMoDe” [44] defined four methodological layers containing each one of the following
models: The FAA, the FDA, the LA and then the TA and the OA while the authors of ”AML”
(Automotive Modeling Language) [45] defined four levels with the following models: The signals,
the functions, the LA and the TA, completed with a special implementation level in which issues
like code generation and simulation are handled. The LA and the other conceptually closed models
are concerned with the design of a particular product that is in general an instance of a family of

5.3. AES BASIC MODELING CONCEPTS 45

Requirements

Functional Models
(Functions)

Constraints

Logical Architectures
(SW Components)

Configurations

Mapping

Functions
Cluster 1

Functions
Cluster 2

Functions
Cluster n

Deployment

Hardware
Architectures

Refinements

Refinements

Refinements

Refinements

Functional
Level

Implementation
Level

Allocations

Platform and
Operational
Level

Figure 5.1: AES design conceptual levels

products. As the VFM, the FAA and the FDA are located in the methodological layers that are
conceptually above the LA, they support the design of vehicle product families, i.e. product lines,
variants and product configurations are modeled in these layers. Thus, the models of these layers
describe the system functionalities independently of their integration in a particular product. The
VFM is intended to be a direct interpretation of the system functional requirements. Its components
are the features that are expected from the system, such as anti-slip control, automatic gear control
or automatic lighting control. The FAAs and FDAs deal with the capturing, the structure of the
features of the VFM and their decomposition, while the OA is concerned with the deployment
of these functions on a given platform. These abstraction levels enable a methodological and
conceptual separation of concerns so that the design process can easily begin with rough, abstract
models that are progressively refined along the different levels. However, to design systems that are
complex and highly constrained like AES, more specialized and methodological conceptual layers
might be necessary within the functional views, the implementation views and the infrastructural
views (TA) to support the flexibility in the design process and enable methodical and evolutionary
model refinements.

5.3.2 AES architectural modeling concepts

AES architectures are modeled as sets of communicating components, i.e. related modules. A
system module is either an elementary (atomic) component or a composition (container) of other
modules. System modules interact by means of connections. A connection is an architectural
building block that models the interactions between other building blocks and the rules that gov-
ern these interactions. In some modeling techniques, connections are self-contained modules that
in addition to communication protocols incorporate computational behaviors, able for example to
transform data or implement concurrency and synchrony mechanisms. Others define connections
as simple transportation channels, that just need to have the right caliber to realize the commu-
nication. However, accurate modeling of the communication (exchanged information, protocols,
bandwidth, medium, etc.) is essential for the partitioning. A connection is realized by a set of
connectors. Each connector may represent a channel in which the connected modules may share
some information. A module is defined by its substance and its interfacing. In order to enable
modular development and reuse, modules are encapsulated. In this case, the interfacing capa-
bilities of a module are specified by its encapsulation, i.e. encapsulations define the interfaces

46 CHAPTER 5. MODELING AES: STATE-OF-THE-ART

through which the building blocks communicate. An encapsulation is an architectural building
block that hides the proper characteristics of a module to the rest of the world. As the AES design
is inevitably concerned with product lines, configuration and refinement rules are needed to assure
clear transitions between the different methodological and conceptual layers. For illustration, a
particular system is built through configurations of some modules that have been defined as vari-
ants in more abstract conceptual layers. Structural configurations describe the rules that govern
the construction of valid architectures. For example, they determine if a module is appropriate for
a particular product, which modules can be connected, if their interfaces match, if the connectors
enable proper communication and if a particular combination of modules results in the desired
behavior. The refinement rules describe the rules that guide the transition from an abstraction
level to another one. Generally, the functional behavioral modules of the system are identified as
functions or (software) components and the links between them are simply seen as connectors.
AES functional architectures designers usually do not care about data store modules. Also, in
this pragmatic way to simplify things, encapsulations are all supposed to be interfaces with ports
[40, 44, 45] like those defined in the UML 2.0. Figure 5.2 shows a UML meta model representing
the AES architectures basic modeling concepts as they are generally implemented.

Functional
Behavior

Data Store

1
*

0..1

substance

Connector

Port

Variable
Element

Module Connection
container commmunicates

through
*

Interface

*

*determines

*

11
out
in*

Figure 5.2: AES FAs basic modeling concepts

In contrast to functional architectures that are inherently logical, hardware architectures are
described with more physical objects. However, hardware architecture modeling concepts are quite
similar to functional architecture modeling concepts. Figure 5.3 shows a meta model of AES
hardware platform modeling semantics.

* srcPort
dstPort *

ECU Sensor Actor Computing Elt Memory

container out
Interface HW Port

HW
Connection

 in

Messages

send

NW Bus P2P

*

0..1

constituents

*

1

1..*

*

*
receive

1
1..*has

1

Variable
Element

HW Device

Figure 5.3: AES hardware platforms basic modeling concepts

In hardware architecture models, the basic module is the hardware device. Hardware ports
are the points of interaction of hardware devices. A hardware device communicates with its
environment through its ports. Hardware ports may stand for fine-granular elements like pins or
more confederative entities representing a composition of pins, ports or other hardware devices.
The communication is realized over hardware connections. A hardware connection is a hardware
architectural building block that models the communication between hardware devices. There are
two families of hardware connections: Point-to-point connections and multi-point connections.

5.3. AES BASIC MODELING CONCEPTS 47

P2P connections model exclusive connections between two designated peer ports while multi-point
connections model the communication buses. A bus may have several source and several destination
devices. Thanks to the concepts of encapsulation (i.e. ports and interfaces), modules and hardware
devices are detachable self-contained model elements that might be developed separately. These
concepts can be used at all possible abstraction levels. Concerning the partitioning, the quality
of an architectural model depends essentially on the grade of precision that is used to formulate
these concepts. For example, a hardware device is generally composed of other smaller devices,
for example an ECU contains processors and memories while a memory is built up of registers, etc.
Depending on the level of precision needed, a hardware device can be a transistor or the whole
platform. Figure 5.4 shows some abstraction levels in the modeling of hardware devices.

HW Abstraction levels Primitives

System level

Register transfer level (RTL)

Logic level

Switch level

ICs level

Layout level

CPUs, ALUs, Memories

Registers, Macros (e.g. Adders,
Subtracters, Multipliers, Buses,
Multiplexers)

Gates, Logical operations (e.g.
and, or, xor, not, ...), Counters,

Transistors

Resistors, Condensators

Polygons, Boxes
Synthesis Analysis

ECUs, Sensors, Actuators, Networks,
Processing Elements, Memories

Device level

Figure 5.4: Abstraction levels of the hardware devices

5.3.3 AES behavioral modeling concepts

The specification of the behavior of embedded systems is concerned with data transformation,
i.e. the computations, and the communication of information. The AES communication schemes
typically use a wide range of mechanisms, going from continuous to discrete time communications,
synchronous and asynchronous, periodic, sporadic and aperiodic, and time- and event-triggered
communications. In the context of concurrency and resource competition between tasks that are
omnipresent in embedded systems, synchronization and time paradigms must be supported by AES
behavior modeling solutions. Mode transitions, interactions-oriented models (e.g. sequence dia-
grams), communication diagrams, flow-based models (e.g. data flow graphs, control flow graphs,
control and data flow graphs) as well as all possible combinations of these tools have shown
efficiency in modeling the behavior of embedded systems[41,44,74,118].

Special adaptations of states, activity, mode transitions, data and process flows have been
widely used to capture the behaviors of embedded systems. State-oriented models have been
used in form of: Finite State Machines (FSM) [52], Extended FSMs, i.e. FSM extended with
data paths (FSMD) [51], FSM with Coprocessors Models, i.e FSMD considering architectures
with coprocessors (EFSM, FSMC) [68], Hierarchical Concurrent FSM (HCFSM) [27], Codesign
FSM (CFSM) [93,94]. Examples of Petri nets based-representations of embedded systems include
Timed Petri Nets, Timed Place Transitions, Extended Timed Petri Nets (ETPN), Extended ETPN
(PURE), Petri Nets-based Representation of Embedded Systems (PRES) [35, 36, 112, 119]. But
the most straightforward approaches favor the common programming languages and other effective
tools such as Matlab/Simulink, etc. These techniques differently capture the characteristics of
embedded systems and therefore, they induce different levels of usage effort with different levels
of satisfaction.

48 CHAPTER 5. MODELING AES: STATE-OF-THE-ART

5.4 Conclusion

The AES design has adopted the model-based design scheme. The state-of-the-art in modeling
AES relies on the components-based paradigm using generic concepts that can be easily adapted
to every abstraction and conceptual level. But, as long as these modeling solutions are abstract
representations of the system from which accurate information to support the design cannot be
extracted, model-driven design will remain a dream. This dream will be realized only if we can
achieve useful models at reasonable abstraction levels. In fact, the value of a modeling technique
depends on the level of support that it provides for the intended operation. As we intend to partition
high-level specifications, it is important to evaluate the fitness, i.e. the level of satisfaction, provided
by the available AES modeling techniques for the partitioning. This is the purpose of the following
chapter.

Chapter 6

The value of AES modeling languages

In this chapter we evaluate the capacity of the modeling solutions that address the AES domain re-
garding their ability to support the partitioning. The overall goal of the evaluation is to identify a
modeling language that can provide useful specifications for the partitioning. For instance, we need
to answer questions like: Which information is needed in a specification to support the partitioning?
Which modeling features are needed to provide this information? Do the actualmodeling techniques
provide these features? How capable are the actual modeling languages?We first enumerate the
features that are expected from a model to support the partitioning and we define the framework for
the evaluation of the AES modeling solutions. Following this evaluation framework, the most common
modeling languages used in the automotive domain are evaluated and classified.

6.1 The evaluation framework

6.1.1 AES modeling requirements for the partitioning

In the design of automotive E/E systems, one of the most decisive operations is the partitioning, i.e.
the assignment of the system specification within the available resources. The exploration of the
design space allows designers to find the optimal partitions of the system specification by analyzing
various alternatives of both the partitioning and the hardware platform of the system. In a model-
driven development scheme, design space exploration is enabled by powerful and expressive models.
A pool of competing modeling solutions have been proposed to cope with the problems induced
by the growing complexity of automotive systems. As the principal features of these solutions are
axed around modularization and high level of abstraction, it is necessary to investigate their ability
to support the partitioning. An objective evaluation will be helpful to define how each modeling
solution should be enhanced for a better support of the partitioning, whenever necessary.

As AES are networks of sub-networks of ECUs, sensors and actuators, we identified two levels
for the partitioning in chapter 1 (cf. figure 1.4). The second level of the partitioning, i.e. the
deployment, deals with the scheduling of the tasks and the processes on the processing units as
well as the scheduling, the synchronization of the communication and the data access proceedings
within each device. Making these decisions requires sufficient information about the behavior, the
resource consumption, the interdependences, the communication, the performance requirements
and the quality constraints of the elements of the functional specification. The first level of the
partitioning, i.e. the mapping, aims at distributing the system load among the devices in a manner
that the system functioning is optimized by concurrently avoiding resource underutilization. Thus,
during the mapping, the functional components of the system specification are distributed within
the devices and the inter-device communication data is assignment to inter-device communication
channels. The goal of the mapping is to find the most cost-sensitive feasible partition, i.e. a
partition that optimizes the resource usage within the devices and minimizes the communication
load within the required performance and system constraints (e.g. flexibility, maintainability, power
consumption, cost, safety, speeding up, etc.). A feasible partition is one that respects the intake

49

50 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

capacity of the available devices. That is, it must respect the storage capacity of each allocated
device, allow executable scheduling of the tasks and enable smooth inter-device communications.

In addition to the resource needs of the elements of the functional specification, the mapping
relies on the quality of the information about the inter-components communication, the degree
of freedom that is given to the designer and a wide range of relationships between the elements
of the functional model, such as those induced by the constraints and the strategic concerns of
the design. For instance, the solution space of the mapping depends directly on the degree of
freedom that is allowed both by the constraints and the strategical concerns of the design and
by the proper definition of the elements of the functional model. The mapping requires that the
system components must be each detachable from the rest of the system so that they can be
individually assigned to a device independently of the other components. A total freedom is then
given for the mapping if each system functional component interfaces the others very loosely. The
mapping of the communication data relies principally on the information about the timing behavior
of the communication and the magnitude of the communication between the system functional
components. Timeliness is determined by attributes like the latency, the max activation time,
the transmission time of the components, etc. The magnitude of the communication between
two components is given by the access frequencies and the dimensions of the communicated
data. To support the mapping, AES input specifications must thus enable to clearly identify
the boundaries and the interfaces between the components, identify the communication paths,
extract the substance and the heaviness of the communications (e.g. throughputs, access rates,
data resolutions, timeliness, priorities, security levels, etc.), find out the dependences and causality
relations such as sequentiality, concurrency and the relationships resulting from the constraints and
the strategic concerns of the design.

6.1.2 Related work

The aim of the evaluation or the classification of modeling techniques is to measure and compare
their potential level of support, their adequacy and their usefulness regarding the requirements
of the intended design activity, in our case the partitioning. During the partitioning, the system
architect will decide to assign each component of the system to a given part based on attributes
like its resource consumption, its size, its needs for computation power, its consumption of en-
ergy, the magnitude of the collaboration with the other members of the part and a full range of
other significant dependencies. To enable the incorporation of the necessary information in the
models, a modeling technique must provide a certain level of precision for structuring paradigms,
computation paradigms, control paradigms, communication paradigms and for the specification of
the constraints and the non-functional requirements. In this context, precise information about
the boundaries and the substance of the system components, the competition for a resource, the
timing behavior of the model elements, etc. are very useful.

Several frameworks have been proposed for the evaluation and classification of embedded
systems specification tools. The authors of [52] proposed a classification framework based on
five specification styles: State-oriented (using state machines), activity-oriented (using transfor-
mations), structure-oriented (concentrating on structural architectures), data-oriented (based on
information modeling) and heterogeneous. This classification is mainly based on syntactic criteria.
However, it can be used to select a specification style depending on the nature of the behavior
that needs to be captured. In contrast, the authors of [94] argue for a classification based on the
model of computation (MOC) of embedded systems languages. Using the Tagged-Signal Model
(TSM) [96], a formalism for the description of MOCs aspects, they focus on timing, concurrency
and communication aspects to analyze and classify several MOCs. Generally, as the user is not
aware of the MOC of a language, he will not be a priori aware of its quality also. It is thus difficult
to apprehend the strength of a language based on its MOC. For instance, a good implementation
(i.e. easy and clear syntax, powerful tool support) of a poor MOC is generally far more easier
accepted by the user than a poor implementation of a good MOC. However, since a MOC formal-

6.1. THE EVALUATION FRAMEWORK 51

izes the execution model of a language rather than the style in which specifications are written,
this orientation is more objective than the syntax-based classification and is also better adapted to
estimate the usefulness of a model according to the task that will be performed with it. MOCs are
important characteristics of modeling languages that can not be ignored when evaluating them.
Unfortunately, the related taxonomy does not incorporate the important aspects of the AES design
such as the structuring capability of a language or its ability to support different abstraction levels.
Thus, an exclusive orientation on the MOCs of the languages is not sufficient for our purpose.

Considering the characteristics of specification languages from a very different perspective,
Hartenstein [66] used four high-level criteria to classify hardware description languages (HDL): the
abstraction level, the application area, the dimension of notation and the source medium of the
language. Following this author, the abstraction level characterizes the methodological level for
which the language has been designed. The area of application is the type of behavior for which
the language has been defined and thus is supposed to be optimized for. The dimension of notation
is the general class of information being subject to the description, e.g. behavioral, structural or
morphological information. The source medium is the presentation medium, e.g. graphic or textual
presentation. The main advantage of this classification framework is its simplicity. This framework
is right in our target when trying to classify the languages. But in order to evaluate embedded
systems languages, we need supplementary dimensions of criteria.

The authors of [74] first identified four main classes of computation models defined on the
vectorial cross product of concurrency (control-driven, data-driven) and synchronization (single-
thread, distributed). Then they defined three high-level criteria to compare embedded systems
specification languages: the expressive power, the analytical power and the cost of use. The
expressive power determines the level of efforts invested when describing a given behavior. The
analytical power measures the level of analysis, transformation and verification facilities offered
by the language. The cost of use is composed of aspects like the clarity of the models, the
quality of the related existing tools, etc. Even though these criteria are very realistic for the
evaluation and comparison of embedded system languages, this taxonomy is very abstract and
obviously limited regarding the characteristics of AES. Although it allows to consider important
AES modeling features such as the conception of timing and concurrency as first class criteria for
the evaluation of embedded systems specification languages, the components-based character of
AES is not fungible in this taxonomy.

A look into a far different research community lets us discover some frameworks for the classifi-
cation and comparison of architecture description languages (ADL) [88,100,120] that can efficiently
enhance the above mentioned taxonomies [52, 66, 74] with regard to the AES modeling require-
ments. In fact, in order to classify or compare AES modeling languages, we must also consider
automotive-specific concerns, going from the modeling of the system requirements to the descrip-
tion of hardware platforms and the topologies of the infrastructures, including the mapping aspects,
the support of different abstraction layers, the support of the design of product lines and the sup-
port of non-software (e.g. mechanical) functions and components as well as the environment in
which automobiles are used.

6.1.3 Classification criteria

The modeling solutions that are used in the AES design can be distinguished following their
originating specialization, i.e. the fields of activity for which the solution has been developed,
e.g. general purpose, automotive-specific solution, etc. Independently of its specialization, a
modeling solution is conceived with focus on a particular domain of application or to address
some problems that are specific to a given abstraction or conceptual level. For example some
modeling techniques are optimized for abstract descriptions while others are more effective for
more detailed, fine-grained descriptions. Also, a technique may be optimized to specify only the
interactions between the system’s modules, but not the computation performed in the modules
while another one is designed only to specify the causality and the constraints of the interactions

52 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

without detailing the interactions themselves. We retain 5 domains of application to classify
AES modeling solutions:

1. Requirements modeling,

2. architectures modeling,

3. computations modeling,

4. communications modeling,

5. constraints and non-functional requirements modeling.

The most modeling solutions cover a scope of several domains of application. However,
for each domain, the modeling techniques differ in the modeling style, the expressiveness, the
granularity and the cost of use.

The modeling style indicates the style of writing the models when using a modeling tech-
nique, e.g. architecture-oriented models may use object- or component-based techniques while
behavior descriptions may vary between algorithmic descriptions, differential equations, state- or
activity-based models, etc. A classification based on the modeling style can be used to localize
the most adequate modeling techniques according to the nature of the system under construc-
tion. Components-based techniques seem to provide the best performance for the design and the
partitioning of complex heterogeneous embedded systems (see table 6.1).

The expressiveness of a modeling technique determines its appropriateness and its usefulness
when capturing the characteristics of a specific system. A modeling technique that is not expressive
enough to specify a particular item is evidently unsuitable. On the other side, a modeling technique
in which the item of interest cannot be described succinctly is also problematic. The expressiveness
of a modeling technique is evaluated based on the suitability of the concepts it supports regarding
the nature of the information that is to be captured. The suitability is determined by the ease
to describe the system and the clarity that can be achieved with a technique. The components
of the expressiveness include for example the ability to model the system structures, the support
for the modeling of non-software components, the ability to model the computations and the
communications, the handling of time and data, the ability to describe concurrency, synchronization
and non-functional requirements, etc. Table 6.3 shows a comparison of the expressiveness of the
most popular modeling solutions that are used in the AES domain. The criteria measuring the
expressiveness will be discussed in detail in section 6.1.4 together with other relevant aspects of
the modeling style, the granularity and the cost of use.

The granularity determines the dimension of the objects described. In other words, it is the
(mean) size of manageable information contained in the elements of the models. Note that even
though the dimension as defined here is a relative notion, one should be aware that when we consider
a level where the modules are functions realizing complex services, it is clear that simple instructions
like assignments are of finer granularity. The size of the objects it manipulates has great influence
on the accuracy that a modeling technique can provide. The granularity is measured on the
resolution and the level of precision that are achievable with a modeling technique. A classification
based on the granularity of the notation of modeling techniques can be used to compare their
adequacy according to the level of detail required for the task that needs to be performed with the
model. In table 6.1, it can be observed that coarse granular solutions are efficient for high-level
abstract modeling while fine granular ones are more adequate for detail and low-level modeling.

AES development is a ”team-sport” in which different actors coming from different technical
domains act in synergy across different OEMs and suppliers, with different points of interest. A
modeling technique must be easy to learn and use, intuitive, capable to capture and visualize
domain-specific items, but related to standards and at the best leaning onto formal notations.
These features determine the cost of use of a modeling technique. The cost of use may include
further components like the support of CAD tools, e.g. for edition, syntax check, etc., the exe-
cutability, the synthesizability, the interoperability with other modeling tools and the visualization

6.1. THE EVALUATION FRAMEWORK 53

medium. A classification based on the cost of use enables to compare the economics of competing
modeling techniques. The cost of use of the 5 languages of interest in this work is given by the
”Relation with Standards”, the support of different ”Abstraction levels”, the ”Variance and con-
figuration handling” in table 6.2 and by the possibilities for the ”Execution” and the ”Synthesis”
in table 6.3. One will notice that the success of a modeling solution is tightly related with its cost
of use. This begins with the affinity with standards. UML and SDL[8] are standards. SysML[12],
EAST ADL[40] and AUTOSAR[13] specifications are proposed UML profiles. The efforts invested
actually to enable and to promote the executability and the synthesis of these languages testify
the importance of the cost of use of a language.

However, even the modeling languages that address the same domain of application and that
are deemed adequate for the same conceptual level would differently support the partitioning. The
following section defines a framework to capture such differences. Its usefulness is illustrated by a
comparison (in table 6.2) and an evaluation of the level of support (in table 6.3) of some high-level
modeling languages.

6.1.4 Criteria for evaluating the level of support

The four dimensions of the domains of application mentioned in section 6.1.3, i.e. the modeling
style, the expressiveness, the granularity and the cost of use might be sufficient to classify the AES
candidate modeling solutions, but they are still very abstract to enable an evaluation of the level of
support that may be provided by a modeling solution. The following taxonomy defines the criteria
that indicate the value of a given modeling solution with regard to the partitioning. Depending
on the goal of the evaluation, e.g. finding the most adequate, the most useful solution or the one
with the best support, a particular combination of these criteria will give the orientation to chose
the most appropriate solution.

*Modularity: Independently of the domain of application, the modeling style and the
expressiveness, each AES modeling solution should provide some modularization features. The
modularity support measures the ability to model the structure of the system. The modularity
is independent of the granularity but it is an important characteristic of the expressiveness and
the modeling style of components-based languages. Clear structuring is provided when the sys-
tem components are clearly identifiable as detachable building blocks with clear boundaries and
interfaces. Fuzzy structuring in contrast denotes the difficulty to identify the components and
their boundaries. Clear structuring is a feature characteristic of high-level models. We evaluate
the modularity of AES modeling solutions based on the features provided to specify the system
modules and the connections between the modules. This includes the substance and the interfaces
of the system modules and their connections.
- The substance: A component is normally designed to fulfill a given functionality/service. A
component may be an atomic structure or a composition of several other components. The sub-
stance of a component defines its role and its composition. Both the achievement of a component
and its content must be modeled.
- The interfaces: The interface of a component depends on the way it is encapsulated. Modeling
the interface of a component includes the definition of its points of interaction, what it consumes,
what it produces, the constraints on these items and the commitments that are necessary to ac-
cess them, i.e. the type of information that can be consumed and the protocols allowed to be
used for information exchange. Like in [104], some techniques encapsulate the components using
wrappers and virtual interfaces that adapt the communication semantics of the components to the
needs of its accessors. Other techniques use special connection components like in [103] where
an object-oriented approach is presented with an elegant coordinator concept in which the com-
munication of a complex (composite) function is controlled by a coordinator. With this method,
the coordinator of a component acts like its communication intelligence. Indeed the coordinator
is an intrinsic part of the component. Thus the component’s behavior and its communication
are always intertwined, making it particularly difficult to separate them and thus to reuse the

54 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

component since any instantiation of such a component will require to adapt either the accessing
components in the destination model or the coordinator, that means the component itself. In the
worst case, both must be redesigned. To separate the communication from the behavior, the most
methods propose (in- and output) ports. These methods differ in the power they give to ports and
the precision of ports descriptions. Some ports are able to transform data, thus holding complex
functionalities. Ports can receive directions, types, etc., that simplify the analysis and synthesis.
The modularity of UML2.0, SDL, SysML, EAST ADL and AUTOSAR is compared in table 6.3.
All these languages use different semantics for the modules and the substance of the modules, but
the ideas of elementary modules and composition of modules are recurrent. Except SDL (because
of its OO-orientation), even though the semantics for the interfaces of the modules are different,
these languages provide two sorts of interfaces: The receiver and the provider interfaces. Some use
ports to structure the interfaces (UML, SysML and EAST ADL) while others (e.g. AUTOSAR)
tightly associate the ports with the interfaces.

*Resolution of the components: The resolution of a component refers to the gran-
ularity of the leaves in its hierarchical structure. A leaf component can be as large as the entire
system or as small as a logical operation, an arithmetical operation or a simple assignment.

*Computation modeling: A partitioning process will cluster the functions depending
on their cost (e.g. computation time), their size, and further attributes like those considering
the environment they need to run efficiently (e.g. type of hardware, shareable signals, etc.).
Therefore, detailed internal behaviors of components are first-class information for the partitioning,
that must be precisely specified. The computation description facilities of a modeling solution
are characterized by the type of description used to specify the computations and the provided
level of detail. This encompasses the modeling style, the granularity and the expressiveness of
these models. State- and activity-oriented behavior descriptions, Petri nets, data and control flow
graphs are effective for high-level specifications with coarse granular components but can difficultly
provide the accuracy that is necessary to extract the attributes needed for the partitioning, while
algorithmic descriptions and differential equations are more detailed, thus more compliant with the
requirements for the partitioning. High-level languages solutions for the modeling of computations
are generally based on FSMs, use case, activity and state diagrams as documented in table 6.3.

*Communication and data modeling: In a communication, a particular type of in-
formation is exchanged, e.g. services, messages, operations, data, signals, etc. The type of the
information exchanged and the protocol governing the communication strongly constrain the parti-
tioning. AES communication may be synchronous or asynchronous, realized by direct information
passing or shared memory, in P2P or multi-cast schemes. At different levels of abstraction, the
substance of a communication may be specified in terms of services or operations invocations,
messages or data block passing, signals or bits flows, etc., and the communication primitives may
variate between call/request, send/receive, read/write, set/reset, load/save, etc. The evaluation
of the capability of a modeling technique to model the communication is based on the types of
communication supported (cf. expressiveness and cost of use), the tools used to capture the
communication (cf. modeling style and cost of use) and the resolution (cf. granularity) of the
information exchanged.

*Time modeling: Timing information modeling is crucial for embedded systems. The
ability of a modeling technique to model time is evaluated through its conceptualization of the
notion of time and the resolution of time expression. Time can be expressed through ordering of
the activities in the processing (i.e. the order in which things happen induces a notion of time), or
as absolute values measured by a clock, this at different resolutions. A modeling technique that
can achieve high resolution in modeling timing behaviors is suitable for the partitioning.

*Concurrency and synchronization: Embedded systems behave inherently concur-
rently. Concurrency has two forms: parallelism and interleaving. Parallel processes run at the same
time. They may need to communicate and synchronize, for example to publish their beginnings
and ends. In interleaving, several processes must compete for resources. Also, in this case, it is
necessary to coordinate their interaction. This implies some intelligent synchronization mechanisms

6.2. AES MODELING LANGUAGES 55

such as schedulers, message queues (buffers), rendez-vous (for message passing), semaphores or
read/write blocking in the case of shared memory to assure smooth communication. The evalu-
ation of the ability of a modeling solution to model concurrency and synchronization is based on
the concurrency schemes and the synchronization mechanisms that are supported as well as the
quality of the concepts that are proposed to capture them.

*Relation to standards: The relation to standards measures the distance between
a given modeling solution and the nearest standards. The relation to standards determines the
intuitiveness of a solution, the facility to learn and to communicate it and the possibility to integrate
it with other solutions.

*Executability and synthesizability: The executability of a modeling solution
refers to the existence of a tool that can be used to simulate the behavior of a system described
with this solution. Synthesizable means that there exists a tool that can translate a specified be-
havior into a machine code or a netlist level model from which properties like memory consumption,
hardware size, execution time, etc. can be directly measured. Low-level modeling techniques gen-
erally have efficient compilers or synthesis tools that allow rapid prototyping. Some sophisticated
high-level models may be executable, particularly when based on formal definitions. Executable
and synthesizable modeling solutions have advantageous cost of use.

*Abstraction levels: The support of abstraction levels measures the ability to support
different, AES domain-established methodological and conceptual abstraction levels.

*Support for variance handling: The support for variance handling depends on
the quality of the features provided to support the design of product lines. This includes the
modeling of varying elements and the description of the configuration information.

6.2 AES modeling languages

Besides the modeling techniques, modeling languages are needed to express the contents of the
models. AES modeling solutions generally incorporate each a language. In the reality, the modeling
languages have become such a prominence that the whole modeling solution is generally reduced
to the modeling language. The spectrum of AES-usable modeling languages is very wide, going
from general-purpose programming languages and hardware description languages to architecture
description languages and other more specialized languages such as UML, SDL, SysML, EAST
ADL, AUTOSAR.

6.2.1 General-purpose languages

Programming languages: General-purpose programming languages, e.g. C, Assembler, C++,
Ada, Pascal, Fortran, Java, etc. are widely used to specify embedded systems. They are op-
timized for fine-granular design, provide executable models and possess proved stable compilers.
But as typical low-level specification languages, they are very closed to the implementation and
they provide poor abstraction capabilities that make them inefficient to specify complex, large-scale
systems, i.e. increase in the complexity of the system results in loss of visibility due to the explosive
escalation of the size of the model. Components isolation, extraction and reuse are not particularly
easy since general-purpose programming languages do not support explicit encapsulation mecha-
nisms. Instead, modularization is implicitly achieved by subprograms definitions, procedures calls
and methods invocations. Moreover, since they basically use sequential models of computation,
they also drawback in supporting concurrency as well as time modeling. General-purpose pro-
gramming languages can be suitable for the implementation of embedded systems, but they are
definitely not practicable for high-level specifications of complex systems.

HDLs (Hardware Description Languages): During the last decade, a range of modeling lan-
guages have been proposed for the specification of mixed software/hardware systems. These
languages constitute the family of so-called Hardware Description Languages (HDL), widely used

56 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

in the area of HW/SW co-design1. HDLs were developed to raise the abstraction level in the de-
sign of integrated circuits above the gates level and capture specific embedded systems properties
that are not well-addressed with general-purpose programming languages. By today, HDLs have
gained maturity. They have mnemonics which are similar to that of programming languages and
they are supported by robust simulators and synthesis tools. Some well-known generic HDLs are
VHDL, Verilog, System Verilog, System C and Esterel [6,25]. The electronic design industry is cur-
rently successfully using these solutions to design processors, ASICs, FPGAs, memories and other
electronic devices, but like the programming languages, HDLs lack complexity management capa-
bilities and high-level abstraction mechanisms. Even if they can better capture concurrency and
timing information than programming languages, they still are too closed to the implementation,
too fine-granular and thus inadequate for the high-level design of complex systems.

ADLs (Architecture Description Languages): The development of ADLs was motivated by the
need of modeling notations providing the constructs for the description of system architectures
and their semantics. ADLs consider systems like sets of components related by connectors. They
commonly treat components, connectors and their configurations as first-class citizen architectural
elements, allowing in this way a basis to achieve modularity, scalability, composition and reuse.
Unfortunately, behaviors and time modeling are not in the focus of ADLs. A wide range of
ADLs have been developed both within specific domains[28] and as general-purpose architecture
modeling languages (e.g. Acme[57], Rapide[99], UniCon[110], Aesop, MetaH[121], SADL[101],
Lileanna[113], Modechart[72], etc.) ADLs usually have formally defined graphical notational syntax
that ameliorate their readability. Sophisticated ADLs also provide textual description forms that
enable the creation of executable specifications and thus open the door to automatic analysis and
synthesis. Because of their abstraction capabilities, they are well-suited for complexity management
and provide efficient features to support high-level system design.

UML (Unified Modeling Language): UML is a standard defined by the OMG (www.uml.org).
UML is originally a software modeling language based on the OO technology, widely used in the de-
sign of business software systems. Since the OMG adopted some real-time and embedded systems
optimized concepts like events, actions, resources, schedules and timing, UML is becoming popular
in the field of embedded systems software design. In order to address the architectures modeling
needs, the new version UML 2.0 introduced a component concept with ports and interfaces, where
components communicate through connectors. The separation of components and connectors (i.e.
through interfaces) and the explicit treatment of connectors as first-class model elements make
UML 2.0 be an ADL. Beside the structure modeling tools (i.e components, classes, compositions,
subsystems and deployment diagrams) the UML proposes a wide range of semantics for behavior
and interaction modeling that include use cases, activities, states, transitions, communications,
sequences, timing and interactions overview diagrams. A component diagram models the system
components and their interconnections. Each component owns provided and required interfaces
that specify its communication. Ports can be (optionally) used to organize the components inter-
faces. The UML 2.0 activity diagrams allow the modeling of both the control and the data flows.
They also provide semantics for modeling concurrent processes and synchronization. Although
UML 2.0 may provide a modeling power that is suitable to capture the behaviors of AES software,
it lacks support for AES domain-specific concepts such as requirements specification, product lines,
configurations, transitions and hardware resources. However, the UML can be easily extended to
address these issues, but at the risk to sheer out of the standard. The properties of the compo-
nents and the flows on the links are very superficially modeled, i.e. by note boxes used as post-its.
Many tools exist for editing, executing and analyzing UML models, but code generation as well as
synthesis is still embryonic. The UML is not the ideal modeling language for the low-level design.

1Commonly used in the computer science to designate the concurrent design of the software and the hardware parts of a
system

6.2. AES MODELING LANGUAGES 57

SDL (Specification and Description Language): SDL is a general-purpose system description
language originally defined for the modeling and simulation of distributed telecommunication sys-
tems. SDL is today widely used in the field of embedded systems design. SDL is standardized in
the ITU (International Telecommunication Union) recommendation Z.100 [8]. SDL provides four
main constructs for system structuring: system, block, process and procedure. A system in SDL is
composed of a set of concurrent processes. SDL processes communicate by means of signals. Pro-
cesses are structured in blocks, that are hierarchical model elements. The system is the outermost
block. It builds the higher level in the hierarchy. The inter-block connections are called channels
and the inter-process connections routes. Signal paths are thus composed of routes and channels.
SDL behavior specifications are based on communicating extended FSMs (EFSM). Each process
is implemented by an hierarchical EFSM. Each elementary EFSM is implemented in a procedure.
In addition to its ability to model architectures, behaviors and communications, SDL has been ex-
tended with real-time concepts. For system engineering, SDL is usually used in combination with
MSC, ASN.1 and TTCN (ITU standards Z.105, Z.107). MSC (Message Sequence Charts) is an
ITU standard (Z.120) for the description of the interactions between system components. ASN.1
is a language providing powerful means to formally define data types and their structures. TTCN
(Testing and Test Control Notation) is a language for the specification of test cases, test suites
and test configurations. A UML profile for SDL is in preparation (standard Z.109). Because of its
formal semantic, a wide range of tools of performance exist for editing, analyzing, simulating SDL
models including automatic code generation, synthesis and performance analysis. SDL provides
good message and time modeling features and an appreciable support for synchronization, but
draws back in supporting the scheduling of signals and processes as well as broadcast communi-
cations. These issues can however be implemented by the user as done in [23]. SDL could be a
good solution for modeling AES, but it is OO-based, possesses no compiler and thus provides no
support for direct synthesis (i.e. models must be translated into another language, e.g. C, VHDL)
and like UML it lacks solutions for AES domain-specific concepts.

SysML (Systems Modeling Language): SysML is a general-purpose modeling language for sys-
tems engineering, developed under the commission of the OMG (www.sysml.org) as a customiza-
tion of UML for system engineering needs. It intends to support the design of heterogeneous
systems that may include software and hardware, people, data, etc. in a unified, integrated single
modeling tool[12]. SysML adds a requirements diagram to the structure, allocation and behavior
diagrams existing in UML. The requirements diagram is defined to bridge the requirements manage-
ment phase to the subsequent design steps. It supports the description of the requirements, their
relationships and constraints, and their relation to the other models, i.e. the specification, analysis
and design models. System modules are modeled with SysML blocks. The system structure can
be modeled by means of block definition diagrams, package diagrams and internal block diagrams.
A block definition includes its structure, its properties, the provided and requested services, i.e.
the operations, and the constraints on it. The block definition diagram defines the features of
the blocks and the relationships (e.g. associations, generalizations, dependencies) between them.
The internal block diagram describes the substance of a block in terms of properties, i.e. data
values, parts, references, and internal connectors. The parametric diagrams (other new diagrams
not existing in UML) specify the properties, constraints on system properties, e.g. performance,
reliability, safety, cost, etc. and their relationships. Parametric diagrams can be used to support
the engineering and trade-off analysis, thus the partitioning. Blocks behaviors and interactions can
be modeled through state machine diagrams, use case diagrams, sequence diagrams and activity
diagrams whereas local and global clocks enable the modeling of timing information. SysML blocks
interface through their ports. The services, operations, signals, data, etc. that are provided or
expected via a port are specified on the port by means of provider or user interfaces. The ports
are associated with the connectors that materialize the communication between them. Two types
of ports can be used: Standard ports to specify invocations of services on blocks and flow ports
that enable flow of data between blocks. Standard ports are essentially bi-directional. Flow ports

58 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

can transmit all kinds of items (e.g. data, energy, material) in a given direction (in, out or inout)
between a block and its environment. They can be typed by the type of information that flow
through them. Depending on whether a flow port is bound to a property of the owning block or to
a parameter of its behavior, it is characterized as behavioral or non-behavioral port. Atomic flow
ports (i.e. transmitting only one type of item) can be organized into complex ports transmitting
a set of items of several types. A complex port is typed by the list of the items it can transmit.
Through the definition of standard and flow ports, SysML provides efficient means to model syn-
chronous, asynchronous as well as P2P and broadcast communications at all conceptional levels of
the design. Through the successful extension of UML concepts, SysML is an effective system engi-
neering language that exhibits high capability when used for AES design. The definition of blocks
instead of UML 2.0 components and the reenforcement of ports definitions allow the modeling of
heterogeneous components, hardware devices, data, energy supply and mixed ports. Furthermore,
the separation of block definition diagrams and internal block diagrams introduces implicitly the
definition of different views and the separation of conceptual levels of abstraction. The former
describes the architecture of the system as needed at higher design levels in the AES design while
the latter, as they are conceived to describe the system in terms of processes, properties and
constraints, are more suitable for use in the implementation views.

Although SysML provides strong modeling power that can be sufficient to describe the most
artifacts that are present in the AES high-level design, they may not match the AES architect’s
ideas as faithfully as desired. General-purpose languages do not explicitly support automotive
domain-specific concerns. In this industry field where the collaboration between OEMs and their
suppliers is crucial, where the basic functions are so identical that they can be shared across the
constructors, where a product is generally a variant of another one, the need of a clear basis for
the communication, the reuse of solutions and the improvement of CAD is obvious. A common
modeling approach is thus necessary to facilitate the communication between the stakeholders.
This are the principal motivations for the definition of AES domain-specific languages.

6.2.2 Automotive domain-specific modeling languages

Since it focuses primarily on the AES domain concepts, an AES domain-specific language must
help to represent specialized automotive domain artifacts directly, helpfully and more easily. In
the following, we summarize the main characteristics of the most popular AES domain-specific
languages.

EAST ADL: EAST ADL is the ADL defined in the EAST-EEA (Embedded Architectures and
Software Technologies-Embedded Electronic Architecture) project (www.east-eea.net) of the ITEA
(Information Technology for European Advancement) to describe the embedded electronic func-
tionality of vehicles. EAST ADL intends to provide the means to describe automotive electronic
functional architectures from the high-level requirements down to the implementation views. The
language is based on UML 2.0, but it also provides concepts to gather automotive domain-specific
concerns including the handling of variants, the modeling of hardware resources and the collab-
oration of OEMs with suppliers. A UML profile for EAST ADL is in preparation. EAST ADL
defines seven architectural views that are organized in five conceptual levels[40]. At the vehicle
level, the vehicle is described in terms of the functionalities implementing the vehicle features from
the users perspective. The Vehicle Feature Model provides the means to specify vehicle electronic
architecture product lines. The preliminary decompositions of Vehicle Feature Models are done in
the analysis level. Here, the vehicle is described in a Functional Analysis Architecture (FAA). The
behavior of the system functions as well as the information that may be necessary for engineering
operations (clustering, mapping) can be specified. More concrete specifications can be done within
the design level in the Functional Design Architecture (FDA). In the FDA, the system is structured
into components following efficiency, legacy, reuse, COTS availability, etc. goals. The low-level

6.2. AES MODELING LANGUAGES 59

software architectures are specified within the implementation level by means of Function Instance
Models (FIM) also called Logical Architectures (LA). This level may contain the code correspond-
ing to the FDA. The last conceptual level, the operational level is concerned with the Allocation
Models, the technical architectures, also called Platform Models, the hardware architectures and
the Environment Models. The Platform Model contains the basic software and the middlewares
available on the infrastructure. The hardware architecture describes the physical elements of the
system infrastructure, and the Allocation Model describes the mapping of the FIM software com-
ponents onto the elements of the platform model while the Environment Model describes the
behaviors of the vehicle with respect to its environment and its non-electronic components.

In the FAA, the system functions are described by means of two sorts of modules: The Analysis
Functions and the Functional Devices. The Analysis Functions are used to specify the functional
components of the system while the Functional Devices are used to abstract the hardware func-
tions, e.g. hardware device managers, sensors and actuators. The environment of the vehicle
electronics, e.g. the vehicle dynamics, the road or the driver can be modeled with the Environment
Functions. These are hierarchical structures interacting with each other through the connector
elements relating their ports. EAST ADL modules interaction points are called Function Ports.
Similar to the SysML ports, Function Ports are typed by the interfaces that are associated with
them. An interface specifies the type of information that may flow through the associated port.
Corresponding to the direction of the flow they are specifying, EAST ADL ports can be defined
as required- vs. provided-, or in- vs. out-port as the case may be. All the interfaces associated
with a port must have the same direction, the direction of the port. EAST ADL makes a clear
difference between signal and operation ports. Signal ports are used to specify the points where
signals are sent and received while the operation ports are the interaction points that communi-
cate through operation calls or service invocations. This conception of modularization is similar
with the concepts of blocks, class and components used in SysML, UML 2.0 and other ADLs.
Another type of port, the System Port, is used to model the access of the application software to
the middleware services. This concept allows the abstraction of the application software from the
infrastructure (comparable with the VFB of the AUTOSAR) Within the FDA, modules are called
composite and elementary software functions with the same ports and connection denominations
like in the FAA. The FDA also provides ”Precedence” associations to specify the precedence order
between the functions. This is important to extract the scheduling constraints of the system func-
tions. In the LA, the modules are function instances and logical clusters. The exchanged data are
modeled as signal instances. The hardware modeling elements are hardware architectures, ECUs,
Processors, Memories, Pins, Channels, Sensors and Actuators. The EAST ADL platform software
model elements are OS, Hardware Abstraction Functions, IPC Exchangers, Middleware-Composite
and Middleware-Elementary Software Functions, System Ports, Middleware Local and Middleware
Remote Ports. The Allocation Model specifies the OS Tasks, the Communication Buffers, the
Frames and the related configuration information.

EAST ADL does not provide any specific behavioral model. It currently considers UML 2.0
state charts and interaction diagrams as its ”Native Behavior” models. At this level, every possible
high-level behavioral and interaction language, e.g. MSC, SDL, Esterel, etc. may be used. EAST
ADL itself does not support synthesis. But the EAST-EEA encourages the connection of low-level
behavior models, i.e. detailed descriptions defined in external tools (e.g. Simulink, Statemate),
with EAST ADL structural elements. Unfortunately, the description of the EAST ADL behavioral
semantics (see [40]) is reduced to the three following fuzzy statements: read input, execute and
deliver output. Concretely, that means that to integrate such external modules in an EAST
ADL model (for example for simulation), it is necessary that the external module implements
the particular interface of each corresponding EAST ADL element. This includes the matching
of inputs and outputs ports with the corresponding EAST ADL entities with respect to the data
types and the communication properties. Since the EAST ADL interfaces are not yet standardized,
this may necessitate complicated integration mechanisms and expensive glue codes. However, the
modularization, the ports, the interfaces, the connections and the modeling of their properties

60 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

make EAST ADL very compliant to the partitioning needs when regarding the first level of the
partitioning as described in section 1.3.

AUTOSAR (AUTomotive Open System ARchitecture): AUTOSAR is a partnership of automo-
tive manufacturers and suppliers (www.autosar.org) currently working for an automotive industry-
wide standard vehicle development platform. The declared goals of AUTOSAR include the need
to provide the flexibility that will enable product scalability, optimization of the system costs, im-
provement of the reuse of solutions including reuse across OEMs and suppliers. In order to achieve
these goals, the AUTOSAR has defined a methodological process for the system development and
a meta model that defines the language for describing automotive E/E systems, i.e. their SW and
HW. The AUTOSAR system definition is based on a modular architecture and standardized APIs
between system components and between the abstraction layers. The AUTOSAR system descrip-
tion semantics uses components and class diagrams. Stereotype mechanisms and OCL (Object
Constraint Language) are provided to define specific semantics and constraints. The AUTOSAR
also defines the requirements for the interoperability of authoring tools. A UML profile for AU-
TOSAR is in preparation [13]. The AUTOSAR methodology defines the technical proceedings for
the common steps of the system development process, going form the system-level configuration
to the generation of ECU executables including the partitioning of the system. The AUTOSAR
Virtual Functional Bus (VFB), i.e. the framework for interconnecting the components of the entire
vehicle application, is a powerful mean to enable flexible mapping of the application software on the
infrastructure, thus to support the partitioning. In order to be compliant with the AUTOSAR VFB,
each function must be encapsulated in an AUTOSAR Software-Component (SW-C). AUTOSAR
SW-Cs are system modules with interfaces that are described within the AUTOSAR specifica-
tion. Standardization of the interfaces within AUTOSAR is a key option to support scalability and
transferability of functions across ECUs of different vehicle platforms. In AUTOSAR, the inter-
faces are classified in three groups: AUTOSAR Interfaces, Standardized AUTOSAR Interfaces and
Standardized Interfaces. An AUTOSAR Interface refers to a collection of ports. It defines all the
information that may flow through the component. Its use allows to route the information flow
through a network in contrast to the Standardized Interfaces that can only be used by components
that are located on the same ECU. Standardized Interface is the classifier for those APIs for which
a concrete standard exists while a Standardized AUTOSAR Interface identifies an AUTOSAR In-
terface that is standardized within AUTOSAR. AUTOSAR SW-Cs may contain functions of the
application software as well as actuators and sensors software, logical representations of Complex
Device Drivers, of the ECU abstraction or the AUTOSAR services. The Complex Device Drivers,
the ECU abstraction and the AUTOSAR services are parts of the basic software. Whereas the
latter are interfaced through Standardized AUTOSAR Interfaces, the interfaces of the former are
ECU-specific. In addition to the standardized interfaces, the AUTOSAR specification defines the
concept of ”Private Interfaces” for non AUTOSAR-conform software components. However, in
order to assure seamless integration and exchangeability of system modules, each component must
provide a specific, precise defined functionality through a completely defined AUTOSAR interface.

The communication of AUTOSAR components is modeled by the means of connectors relating
their ports. An AUTOSAR port is associated with an interface (called Port Interface) that defines
the services or the data that are provided on or requested by the port. A port in AUTOSAR
is either a ”PPort” (Provide Port) providing information, e.g. Server Port or Sender Port, or a
”RPort” (Require Port) requiring information, e.g. Client Port, Receiver Port. A Port Interface
can either be a Client-Server Interface (defining the operations or services that can be accessed) or
a Sender-Receiver Interface, which allows the usage of data-oriented communication mechanisms.
AUTOSAR supports the modeling of both synchronous (blocked client-server) communication and
the asynchronous (non-blocked client-server, broadcast sender-receiver) communication. An AU-
TOSAR SW-C is required to be an atomic block, what means that it cannot be split or distributed
on several ECUs. However, when modeling a system within AUTOSAR, its components can be
hierarchically grouped in ”Compositions” (of components) and then, ”Assembly Connectors” are

6.3. EVALUATION AND CLASSIFICATION OF AES MODELING LANGUAGES 61

used to interconnect the components within a composition, i.e. the components of the same hi-
erarchical level, and ”Delegation Connectors” are used to delegate connectors from inner ports to
delegated ports [13], i.e. to connect ports of components from different hierarchical levels.

Unlike to EAST ADL, AUTOSAR does not explicitly define any conceptual level for the system
design. However, the AUTOSAR design process implicitly considers different levels of abstraction
that can be summarized in: The design of the functionalities, the identification of the functional
units, of (composition) SW-Cs, their decomposition into atomic SW-Cs and then into runnable
entities, and in another dimension, the design of tasks and processes. The proposed solution
to model components and communication behaviors in the context of AUTOSAR are the UML
activity, state machines and interaction diagrams. At the lower level the substance of the atomic
SW-Cs is modeled in terms of ”Runnable Entities” and ”RTE Events”. RTE Events (Run Time
Environment Events) are generated by the RTE together with the basic software (e.g. OS) to
trigger SW-Cs. However, the synthesis of AUTOSAR models will need low-level capable behavior
design tools. Apropos, in contrast to EAST ADL, AUTOSAR defines the general use cases and the
requirements for the association of AUTOSAR model elements with low-level behavioral modeling
tools such as Simulink. The semantics for modeling AUTOSAR systems and ECUs include the
typical hardware concepts such as Hardware Elements, Hardware Ports, Signals, and the Hardware
Communication.

6.3 Evaluation and classification of AES modeling languages

The mapping is the principal duty of the system architect, that decides which function will run
on which device. This operation needs clearly framed functional components with their memory
consumptions or their computation times, so that the partitioning can take the intaking capabilities
of the different devices into account. Furthermore, the communication paths as well as the timing
behaviors and the quantity of the communication between these components are needed to measure
their affinities, i.e. the closeness between them, that guide a partitioning. Following table 6.1 we
can separate the studied languages into two classes: Those that are more adequate for the high-
level modeling and those that are more adequate in the low-level modeling. The first class contains
UML, SysML, EAST ADL, AUTOSAR and other ADLs, well-suited for the needs of the high-level
design. These languages provide powerful architectural modeling features enabling components
detachability, but they lack synthesizability. The second class is populated with the programing
languages, the HDLs and all kinds of languages that are similar to those used in Matlab, Simulink,
Statemate, ASCET-MD, etc. These languages with high resolution, execution and synthesis tools
easily fulfill the requirements related with the executability and the synthesizability required for
partitioning-compliant languages, but they are unfortunately too fine-grained and only provide
fuzzy structuring capabilities, thus being less efficient in the high-level design. Nevertheless, these
two groups of languages are complementary in a system-level design scheme.

However, as we are dealing with a domain where the partitioning shall be done on high-level
models, the observed weaknesses of high-level models represent a handicap regarding the input for
the partitioning. A way to fill these drawbacks is to extend ADLs with synthesizable languages. Two
questions arise here: How should the languages be combined? and What are the best combinations?
These questions are not in the focus of this work, but rather, following the discrepancy between
the two families of languages, we are interested in investigating the level of support that can be
provided to the system architect by the high-level languages as they are found to be the most
adequate for the high level of the design. This is done in tables 6.2 and 6.3. In addition to the
concepts related with the components orientation, the behavior and the interaction description
tools borrowed from the UML 2.0, the automotive domain-specific languages (i.e. EAST ADL and
AUTOSAR) and SysML commonly address the domain issues like variants handling, configurations
management, hardware platforms modeling, support for non-software components and definition of
methodological abstraction levels (table 6.2). This allows them to perform better than the general-
purpose languages in modeling AES at the high level. Furthermore, the evaluation of EAST ADL,

62 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

Programming Lan-
guages

HDLs ADLs and affiliates

Domain of ap-
plication

computations computations architectures

Modeling style algorithmic algorithmic components-based and
OO

Modularity and
Encapsulation

fuzzy modularity,
composition by subpro-
grams, procedures or
methods; encapsulation
necessitates add-on
frames implementations

fuzzy modularity,
composition by subpro-
grams, procedures or
methods; encapsulation
necessitates add-on
frames implementations

clear modularity,
composition through
components-based
concepts; clear encapsu-
lation by explicit ports
and interfaces

Granularity fine granularity; high
time and data resolution

fine granularity; high
time and data resolution

coarse granularity; low
time and data resolution

Communication subprograms calls,
methods invocations,
shared variables

subprograms calls,
methods invocations,
shared variables

service invocations,
message, signal passing

Concurrency/
Synchroniza-
tion

from add-ons; weak sup-
port

included but weak sup-
port

not in focus

Execution/ Syn-
thesis

executable; robust com-
pilers

executable; trusted syn-
thesis tools

difficult execution; syn-
thesis not in focus

Table 6.1: Programming languages, HDLs and ADLs are complementary

AUTOSAR and SysML (cf. table 6.3) shows that they are good basis for an efficient AES modeling
solution. Particularly, the standardization of AUTOSAR interfaces allows the designer to switch
a function from a device to another one, enabling high-level partitioning. Indeed, the semantics
of ports and interfaces are not precise enough to allow a CAD-supported partitioning (table 6.3).
However, if enhanced with some features allowing for example clear tracing of the inter-components
communication paths, they can be very useful, at least for the mapping.

6.4 Conclusion

High resolution, clear encapsulation, execution and synthesis tools are needed in both the high-
and the low-level design while clear modularity is essential in the higher levels. When the design
follows a top-down strategy, none of the above languages can be expressive enough to be used
efficiently for all purposes along the design process, since each of them offers in reality only a
limited set of features. Otherwise, we are not aware of the existence of such an all-rounder general-
purpose modeling language. Thus at each step of the development process, the most adequate
language should be selected depending on the actual conceptual layer, the level of abstraction
and the intended use of the model. The design of AES begins with high levels of abstraction for
which the modeling languages like SysML, EAST ADL and AUTOSAR are adequate. Even if the
syntax is different from one language to another one, these languages are based on the idea of
components-based systems, i.e. they conceive a system as a set of components communicating
through interfaces and ports, providing by these means high modularity capability needed for the
mapping.

All these languages claim sufficient orientation to the implementation, but they still remain
very abstract and lack synthesis and execution tools. As domain-dedicated languages, EAST ADL
and AUTOSAR provide the most convenient features and the best precision needed to model
AES, but they remain very insufficient to support the partitioning of the system. Firstly, because

6.4. CONCLUSION 63

they are not synthesizable. Secondly, the semantics of ports, interfaces and connectors are fuzzy.
A promising solution to the first drawback is to combine these languages with low-resolution
languages such as programming languages, HDLs, etc. But this will not be the ultimate solution for
supporting the partitioning of system specifications at the high level. However, if these languages
are enhanced with the missing capabilities, i.e. precise computations and communication modeling
tools, accurate time and data handling, etc. so that the QoS of the model elements can be
extracted and analyzed, then they will represent more appreciable solutions to build partitioning-
compliant models for the AES design. The next chapter presents a modeling solution that enhances
these languages with some semantical features the aim of which is to enable the screening of
the communication paths, the traceability of the inter-components communication data and the
particular relationships between the model elements that constraint the partitioning so that an
automatic tool can easily extract the properties of the interfacing of the model elements that are
necessary for the partitioning.

64
C

H
A

P
T

E
R

6.
T

H
E

VA
LU

E
O

F
A

E
S

M
O

D
E

LIN
G

LA
N

G
U

A
G

E
S

UML2 SDL SysML EAST ADL AUTOSAR
Specialization General-purpose

system modeling
General-purpose
system modeling

General-purpose
system engineering
for mix SW/HW
systems

Automotive domain-
specific for embedded
SW design

Automotive domain-
specific for ECUs
configuration and
integration

Scope of do-
mains of ap-
plication

System architec-
tures, behaviors
and interactions
modeling

Communication Requirements,
architectures,
behaviors, in-
teractions and
implementation

Requirements, archi-
tectures, behaviors,
interactions and imple-
mentation

Architectures, behav-
iors, interactions and
implementation

Modeling
style

Components-
based

OO Components-based Components-based Components-based

Relations
with stan-
dards

OMG standard ITU standard Based on UML2.0;
Proposed UML
profile

Based on UML2.0;
Proposed UML profile

Based on UML2.0;
Proposed UML pro-
file

Abstraction
levels

Not in focus but
easy to conceive

Not in focus but
easy to conceive

Not in focus but
easy to conceive

5 conceptual levels Not in focus

Support
for non-SW
components

Stereotype mech-
anisms; Extension
and adaptation of
the notion of com-
ponent

Not in focus Stereotype mecha-
nisms plus explicit
semantics for hard-
ware device and
hardware ports

Explicit semantics for
hardware device, hard-
ware ports and connec-
tions, cf. environment
function

Explicit semantics for
system model, ECU
model, hardware ele-
ments, etc., cf. sen-
sor/actuator SW-C

Transitions
modeling

Object type defi-
nition and unique
identifiers

OO concepts
of inheritance;
Types and sub-
types definitions

Object, class and
component types
definition; Instanti-
ation mechanisms

Explicit binding charts Unique identification
for SW-Cs

Variance
handling and
configuration

Not in focus Not in focus Not in focus Explicit concepts of
varying/configurable
elements

Explicit concepts;
Central motivation

Table 6.2: Level of support of AES modeling languages with regard to the cost of use

6.4.
C

O
N

C
LU

S
IO

N
65

UML2 SDL SysML EAST ADL AUTOSAR
Structure Components, classes, sub-

components
System, blocks, processes and
procedure

Blocks, parts, packages Components, composites, clus-
ters

AUTOSAR SW-Cs, composi-
tions

Substance Atomic components Elementary processes Internal blocks Elementary functions; Clusters Runnable Entities

Interfaces Provided and required inter-
faces

OO interfaces Provided and user interfaces Provided and required inter-
faces, function port and signal
port interfaces

AUTOSAR interfaces,
standardized AUTOSAR
interfaces, Standardized and
Private interfaces

Ports In- and Output ports; Ports
are optional

Not explicit Standard and Flow ports Functions vs. Systems ports;
Provided vs Required, In vs.
Out; Signal vs. Operation ports

Provided and Receive ports

Connections Explicit connectors between
components as communica-
tion channels

Channels of communication Explicit connectors for service
invocation and Signal transfers
between ports

Explicit functions and signal
connectors between ports

Sender-Receiver and Client-
Server ports

Semantics of
ports

Used to structure the inter-
face; Can be stereotyped to
contain behavior

Methods Used to structure the interface;
Can be stereotyped to contain
behavior

1 port contains n message pass-
ing interfaces

Port is interface; Message
passing interfaces vs Service
invocation interfaces

Data han-
dling

Flexible data type definition Abstract data type (ADT) and
ASN1 data models

Flexible data type definition Flexible data type definition Flexible data type definition

Time concep-
tion

Order and low resolution du-
ration

Order and low resolution du-
ration

Order and low resolution dura-
tion

Order and low resolution dura-
tion

Order and low resolution dura-
tion

Architectures
modeling
tools

Components and objects; In
components, class, compo-
sition, subsystem and de-
ployment diagrams

System, blocks, processes and
procedure hierarchies

Blocks and parts hierarchies;
internal block and package di-
agrams

Components diagrams; Anal-
ysis, environment, functions,
functional devices, elementary
and composite functions, etc.

AUTOSAR SW-Cs networks

Computation
modeling
tools

Use case, activity, state,
transition diagrams

Processes, hierarchical ex-
tended FSMs

Use case, activity, state and
transition diagrams

UML2 state and interaction di-
agrams

Activity, state charts and inter-
action diagrams

Communication
modeling
tools

Sequence, communication,
interaction overview, timing
diagrams

Parameterized signal passing
through routes and channels

Sequence, communication, in-
teraction overview, timing dia-
grams

Interaction diagrams Service invocations, signals
passing over connectors

Execution/
Synthesis

Executable behavior mod-
els, but no synthesis

Executable specifications and
wide extensions for CAD
tool-supported synthesis

Same like UML Executable behavior models;
Possible mappings to synthesiz-
able languages are in focus

Same like UML, but contains
methodologies for mappings to
synthesizable languages

Table 6.3: Level of support of AES modeling languages for the partitioning

66 CHAPTER 6. THE VALUE OF AES MODELING LANGUAGES

Chapter 7

Inputs for the partitioning

The overall goal of the partitioning is to assign the elements of the functional specification of the sys-
tem to the components of the hardware platform, i.e. assign the logical data storage components to
the memory components, the behavioral components to the processorsand the communication chan-
nels to the buses in a manner that the design constraints, such as the functionality, the performance,
the cost and the flexibility are fulfilled. The input of the partitioning thus consistsof the functional
specifications, i.e. the models describing the system’s functionality, the platform configuration, i.e. the
hardware devices, their compositions and the network infrastructure thatis used to interconnect the
devices, and the design constraints. In this chapter, we define the inputs for the partitioning of AES.
Based on the preceding evaluation of the level of support of the AES modeling languages for the par-
titioning, we define a system functional modeling solution that is fit for a CAD-supported partitioning.
Then we give an insight on the possible AES hardware platforms. Using these inputs, we formally
define the partitioning problem.

7.1 Required inputs for the partitioning

The overall goal of the partitioning of an AES is to find an optimal global architecture of the
system, i.e. a judicious definition of the composition of the hardware platform of the system, its
topology and an intelligent mapping of the functionality of the system on the platform. Within
our design process (cf. chapter 1, this objective is to be achieved by reducing the number of
frames used to send the messages on the buses in the case of frames-oriented communication
protocols. To do that, the mapping must assign the most heavily communicating components of
the functional specification to the same device. Thus, the mapping needs a specification of the
functional architecture of the system. This specification must include the definition of the structure,
i.e. the functional components of the system and their relationships, and the information that
allow to measure their communication. The mapping is heavily constrained by the allocation. The
mapping must result in executable partitions, i.e. each device functionality must be schedulable
and respect the intake capacity of the corresponding device. Furthermore, each device functionality
must use the hardware that is installed in the corresponding device optimally, with respect to the
defined room that must be reserved for the possible future extensions of the device functionality.
Consequently, the mapping needs a precise description of the hardware platform. This description
must cover all the devices, the inter-device communication systems, the internal components of
each device and the related constraints. For its part, the allocation depends on the working
load of the system. We can only determine the number and the equipments of the devices for
a given working load if we can measure the execution time, the size of the software code, the
magnitude of the communication of the components of the system’s functional specification, etc.
This information can only be provided if the partitioning is given a consequent description of the
behavior and the functioning of the system. Finally, the mapping needs a specification of:

• the logical architecture of the system functionality

67

68 CHAPTER 7. INPUTS FOR THE PARTITIONING

• the behavior and the functioning of the system

• the target hardware platform and

• the related constraints

However, these specifications must match the feasibility requirements of the mapping. Match-
ing the requirements of a computer-supplied mapping operation includes the capacity to provide
the needed information with the right accuracy and the support of an adequate representation of
the necessary artifacts in a format that allows the extraction of the considered decision patterns by
the computer-based mapping operation. The latter includes the semantics, the abstraction level,
the granularity and the resolution of the input specifications.

7.2 Specifying the system’s functionalities

7.2.1 Relevant modeling concepts

Several modeling solutions are used in the automotive domain, e.g. [12], [8], [16], [40], [13]. The
most of them are based on the components-based paradigms that provide the abstractions and the
complexity management facilities needed in the system-level design of automotive E/E systems
[39]. With a components-based modeling technique, AES functional specifications are modeled in
the form of separable building blocks, where each building block represents a logical component of
the system. A component communicates through its ports and the communication is realized by
sharing data or passing messages over logical connectors. A port is associated with one or several
interfaces that specify the information that may flow through it.

As the above modeling concepts allow to clearly identify the boundaries of each model element,
they enable to move each component of the system and assign it individually to a given device.
Furthermore, due to the concepts of ports and interfaces, the communication data can be properly
specified, at least statically, since all these solutions are lacking the appropriate concepts to describe
the behavior of the system. Instead of fine-granular and high-resolution modeling solutions that
are desirable for the allocation, they propose high-level modeling tools like state machines or
communication, interaction, sequence, data flow diagrams, etc. to specify the behavior of the
system. Consequently, because of the low resolution of the proposed behavioral modeling tools, it
is not possible to produce a system specification that can be used for a detailed system allocation,
and much less for the deployment. In fact, the allocation and the deployment rely on the QoS
attributes of the model elements. These attributes include the runtime resource requirements of
the functional components, their non-functional requirements, e.g. reusability, upgrading, cost of
maintenance, lifetime of operation, and the constraints. The runtime resource requirements of
a functional component include the code size, the execution time, the communication load, etc.
In order to specify the system behavior so that these attributes can be extracted, we need more
detail specifications. These can be provided only for a single component if we do not want to
face an order of explosion of the size of the specification that will lead to the loss of visibility and
reduce the navigation within the specification, if even this component is not too complex. This
is a further reason why the mapping must precede the deployment. After the mapping, we can
produce manageable behavioral models for each device and use them for the detail allocation and
the deployment.

Although this strategy gives rice to much more loops of allocation-mapping-allocation-deployment-
evaluation-allocation-mapping-... than with a straightforward process, we adopt it because of the
incapacity of the actual state-of-the-art in the modeling of automotive systems to provide better
specifications at the high level of the design. But, even if the runtime resource requirements of
the functional components cannot be predicted with the high-level modeling solutions, we can
appropriately use the syntax of communication diagrams, sequence diagrams and timing diagrams
to specify the communication of the logical components of the system at the level of abstraction

7.2. SPECIFYING THE SYSTEM’S FUNCTIONALITIES 69

that is inherent to the system-level design of such a complex system, with a precision that can be
sufficient to determine the quantity of data exchanged between two components, the frequency of
the data exchange, the timing organization of the communication and the constraints on the com-
munication. This solution provides sufficient means to measure the closeness between the system’s
logical components that is essential to decide if two components must be assigned to the same
device or not. Thus, the modeling solutions proposed by the common automotive domain-specific
modeling languages can support the mapping, but with a certain degree of accuracy that depends
on the granularity of the specifications. Only, with a components-based modeling solution, the
granularity of a component is really flexible. A component can be a small piece of behavior, an
elementary operation or the whole system. Fine-granular specifications allow fine mappings. With
coarse-granular specifications, the components must first be refined into atomic components that
can be assigned to a device only entirely or not. This problem has been well-identified within the
AUTOSAR.

In an AUTOSAR model, each component is an atomic software component that must be
mapped unbroken to a target device. Each AUTOSAR software component communicates via
provide and receive ports. A component may also own service ports to interact with AUTOSAR
services. Service ports might be bidirectional. Each port is associated with an interface, the port
interface. A port interface can be either a sender-receiver interface or a client-server interface.
The former is the solution to specify the distribution of data by an asynchronous non-blocking
communication method while the latter is designed to be used for client-server communication. As
the AUTOSAR promises to standardize the services and the port interfaces of automotive software
components, once the corresponding libraries will be available, each unconstrained AUTOSAR
component will be mappable on every not forbidden device. This is very encouraging for each
partitioner, since the partitioning only makes sense if a certain degree of freedom is allowed for
the mapping. In fact, the quality of the partitioning depends on the degree of freedom that the
system architect enjoys concerning the targets of the mapping for each component. Note that,
in the design of automotive E/E systems, it might happen, e.g. for safety and cost reasons, that
some functions become constrained to run on the same device while some others are constrained
to run on different devices. The most evidents of these restrictions have also been observed within
the AUTOSAR. An AUTOSAR software component is either an application software component, a
sensor, an actuator software component, a complex device driver (CDD), an ECU abstraction or an
AUTOSAR service. Sensor and actuator software components are AUTOSAR software components
that are designed to implement the functionality of a sensor or of an actuator. Thus, the range
of their target during the mapping is reduced to the defined sensors or actuators. Furthermore,
the substance of an AUTOSAR software component is made of runnable entities that can be
scheduled and executed independently from the rest of the component. These runnables are in
fact the entities that are deployed.

Figure 7.1: AUTOSAR communication patterns
(a) Sender-Receiver communication

AUTOSAR
SW-C

sender

receive
information

receive
information

send
information

AUTOSAR
SW-C
receiver1

AUTOSAR
SW-C

receiver2

(b) Client-Server communication

AUTOSAR
SW-C

AUTOSAR
SW-C

AUTOSAR
SW-C

client1

client2

server

Service requested

Service requested

Service provided

7.2.2 TheFN: The modeling solution for the functional specification

In the end, the AUTOSAR and the similar standard modeling languages cited above provide the
most features needed for the mapping. But, although these languages are different regarding

70 CHAPTER 7. INPUTS FOR THE PARTITIONING

the semantics that they give to the model elements, they are collectively lacking the semantical
precision that would support a computer-based mapping. For example, extracting the data that
is exchanged on the arms of a branched connector necessitates more screening and analysis effort
than on unbranched connectors. We thus added the following semantical precisions to the proved
components concepts (i.e. atomic components, ports, interfaces and connectors) and the QoS
modeling capabilities provided by the above languages to define a more intuitive modeling solution
that meets the requirements of our CAD-supported partitioning: A component is either a functional
behavior or a data component, i.e. a data repository, a variable or a memory. A data component
is given the semantics of a behavior providing read and write functionalities on the contained
data. Like in AUTOSAR, each component is an atomic component. It owns a set of ports
through which it communicates with its environment. The set of ports of a component is the
components interface. Each port is associated with exactly one port interface. A port interface is
solely a container for the information exchanged via the associated port. Such an interface must
not implement an API for itself, but it rather describes the information exchanged through the
associated port (i.e. data or service). The communication between the components is materialized
by means of connectors. A connector is simply a materialization of a connection between two
components. It aims at specifying a communication path. This modeling solution underlies the
following rules:

• The range of a data object is limited within the connector on which it is transported. If a
piece of data is found on different connectors, that means that it is steadily ignored by all the
intermediate components. This is important to achieve the tracing of the communication
data since with this property the emitter and the receiver of each data object can be directly
identified by a simple observation of the data object.

• Each connector has only one originating and one destination component. The profits of this
property are clearly illustrated in the example shown in figure 7.3 where the communication
paths within the functional specification of the system under design are clearly identifiable.

• Ports are exclusively unidirectional (also see figure 7.3). Unlike the standard languages, we
do not allow bidirectional connectors or ports. The direction of the communication is as
significant for the issue of the partitioning as the amount of data exchanged. Often, the
data exchanged between two ports is different from one direction to the other. This cannot
be usefully modeled on a bunched connector as done in AUTOSAR model for example.
Furthermore, with bidirectional ports, we deal with hyper graphs, making the partitioning
problem harder.

• Only ports of opposite directions can be connected, namely in the direction going from an
output port to an input port.

• All the information contained in a port interface must have the same direction. Only input
(i.e. required) information can be modeled on an input port and only output (i.e. provided)
information can be modeled on an output port or a provider interface.

• A connector relates exactly two ports. Only the ports of different components can be
connected. Consequently, a connector can be identified by its originating and its destination
port. The number of connectors connecting two components is an important closeness metric
since it measures the width of the connection that is an important indicator of the relative
importance of a connection.

• Between a pair of ports, there can exist one connector at maximum.

• The set of information flowing on a connector is the intersection of the interfaces of the
originating port and the destination port. We define this as the interface of the connector.

7.2. SPECIFYING THE SYSTEM’S FUNCTIONALITIES 71

As this model is a network of logical components, we call it FN for ”Functional Network”.
Formally, a FN model is a weighted graph, each node of which is either an atomic functional
component or an atomic data component and the edges are the connectors described above. We
can now define the FN as the following quintuple:

Definition 7.1 (FN:). EachFN model can be formally defined with a quintuple〈F,R,P, I ,C〉 in which:

• F (Functions) is the set of all the behavioral components in the model, i.e.F =
{

F1,F2, ...,Ff
}

where eachFi represents a functional component;i, f ∈ N

• R (Repositories) is the set of all data components in the model, i.e.R= {R1,R2, ...,Rr} where
eachRi represents a data component;i, r ∈ N

• P (Ports) is the set of input and output ports, i.e.P = {P1,P2, ...,Pp} i, p∈ N with P = IPorts⊕
OPorts(i.e. Input ports⊕ Output ports)

• I (Interfaces) is the set of all the port interfaces in the model, i.e.I = {I1, I2, ..., Ip} where each
Ii represents the interface of the porti; i, p∈ N

• C (Connectors) is the set of all connectors in the model, i.e.C = {C1,C2, ...,Cl} where eachCi

represents a connector;i, l ∈ N

• Each componentFi or Ri is defined by its internal behaviorbehand its interfaceInt, i.e. each
component is completely defined by a tuple< beh, Int > with Int ⊆ P andbehis defined by the
runnables

• Each portPi is defined by its behaviorbeh and its interfaceInt, i.e. Pi =< beh, Int > with
Pi .Int ∈ I

• For each connectorCi , ∃src∈ OPort, dst∈ IPort and Int so thatCi =< src,dst, Int > where
Ci .src is the port source of the connectorCi , Ci .dst is the port destination of the connectorCi and
Ci .Int is the set of the data that might flow onCi ; Ci .Int = Ci .src.Int ∩Ci .dst.Int

Figure 7.2 illustrates the relationships between the FN and the standards.

is AES
domain-specific

<<meta-model>>
UML 2.0

<<meta-model>>
SysML

<<meta-model>>
AUTOSAR

Partitioning-Compliant
language FN

<<profile>>
SysML UML Profile

<<profile>>
AUTOSAR UML Profile

<<importFrom>>

<<instanceOf>>

<<instanceOf>>

<<reuse>>

<<reuse>>

<<reuse>>

<<instanceOf>>

is
general-purpose

<<meta-model>>
EAST ADL

<<profile>>
EAST ADL UML Profile

is AES
domain-specific

is
general-purpose

<<importFrom>>
<<importFrom>>

<<customize>>

<<customize>>

AES
domain-specific

standard

<<importFrom>>

<<importFrom>>

<<importFrom>>

Figure 7.2: TheFN inherits the common concepts from the standards

Figure 7.3 shows a graphical representation of a part of the specification of the ACC (active
cruise control) following the FN modeling style. The functional components are atomic entities.

72 CHAPTER 7. INPUTS FOR THE PARTITIONING

The dashed frames represent the data objects that are accessible on the associated output port
or that are demanded by the associated input port. These are the ports’ interfaces. The data
objects contained in each output port interface are all output data (from the point of view of
the associated components) while the data objects contained in the input port interfaces are all
input data, i.e. incoming data from the point of view of the component that is associated with
the port. Such a model meets the humans’ natural feeling. With the FN modeling format, the
capturing of the functionality of the system under design is as intuitive as the understanding of
the resulting specification. The interface of the connector relating two ports is the intersection of
the interfaces of these ports. For example, the interface of the connector between the components
Max speed setting and Speed control overall contains solely the data object speed selection, that
is the only data object that is communicated through this connector. The remaining data objects
are communicated through different connectors, thus with different components. The interfaces
of connectors will be further discussed and illustrated in the following chapter (see section 8.3).

speed_actual
speed_regulation_state

acceleration_min
set_distance_min

potencial_stationary_objects
regulation_obl_objects

objects_sto

display_collision_alert
display_driver_reation

max_acceleration
obstacle_nomination

nominal_distance

speed_actual
speed_lateral_state
acceleration_angle
nominal _distance
acceleration_min
obstacle_detection

objects_sto

Curve treatment
acceleration_limit_ped
acceleration_limit_eng

display_speed
limit_accelerationSpeed control

overall

speed_actual
speed_regulation_state

acceleration_min
speed_odometer
speed_selection

distance_selection

tempomat_setting

display_distance
set_distance_min display_max_speed

speed_selection

Max speed setting

Security distance
setting

Obstacle
screening

object_nomination
speed_angle_wheel

radar_signal
speed_actual

object_found
state_radar_sensor

hor_just_state
ver_just_state

object_found

speed_angle_wheel
radar_signal
speed_actual

Lane
determination

lane_attributes

potencial_stationary_objects
regulation_obl_objects

objects_sto

Obstacle
identification

Speed control
retarder

Figure 7.3: A partial graphical representation of the ACC’s functionality following theFN format

7.3 Specifying the hardware platform

7.3.1 Relevant modeling concepts

Automotive hardware platforms are networks of communicating multiprocessor systems (i.e. ECUs,
sensors and actuators). The choice of a communication protocol follows the topology of the
platform and the design constraints. The latter include for example the demand for cost-efficiency,
the real-time communication requirements and the requirements for fault-tolerance, robustness,
etc. The functional and data components assigned to a device can be implemented on a variety
of hardware architectures. Depending on the design options, the device hardware can be a mono-
or a multi-elements platform of processing units, memories and on-board communication systems.
For example, as micro-controllers generally incorporate a wide variety of hardware modules, e.g.
ADCs, I/O devices, timers, UART, SPI and I2C interfaces, RAMs, CAN transceiver, etc., they
sometimes represent a good choice to implement a mono-component platform.

The AUTOSAR has defined a generic ”AUTOSAR ECU architecture” [22] containing the ap-
plication software, the basic software and the hardware platform (see figure 7.4). The functionality,
that is deployed on an ECU is modeled in the application layer. For each ECU, the corresponding
RTE is tailored from the VFB so that only the interfaces and the services that are needed on this
particular ECU will be effectively implemented. The RTE is the communication system relating the
application layer with the basic software. The basic software implements the infrastructure services
(e.g. hardware drivers, OS, ECU abstractions, etc.) and the communication protocols that are
needed on the ECU. The basic software layer has a components-based architecture, but it can be

7.3. SPECIFYING THE HARDWARE PLATFORM 73

organized in four abstraction layers like in figure 7.5. An example of hardware architecture is given
in the ECU-hardware layer. The platform consists of a microcontroller, an ASIC implementing for
example a CAN controller, and an external non-volatile memory (flash RAM), interfacing through
a SPI or an I2C bus.

Complex

Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware

Abstraction

Memory Hardware

Abstraction

Memory ServicesSystem Services

Onboard Device

Abstraction

Communication

Drivers

Communication

Hardware Abstraction

Communication

Services

Application Layer

Figure 7.4: The AUTOSAR ECU architecture (source: Autosar web content V2.0.1)

The ECU-hardware or Microcontroller layer contains the real hardware platform of the ECU.
Such a platform may contain all types of processors (e.g. microcontroller, ASIC, ASIP, FPGA,
DSP, ADC, etc.), memories (e.g. ROM, RAM, Flash, etc.) and communication buses.

The Microcontroller Abstraction Layer (MCAL) is the software model of the hardware platform.
It contains the drivers for the internal1 hardware devices and the memory-mapped external devices
(e.g. external flash), and other functions with direct access to the hardware like the test functions
for the RAM or the core processor. The MCAL makes the upper layers of the ECU-software
independent from the hardware. It provides standardized interfaces between the hardware and the
other components of the basic software that need access to the hardware.

The ECU abstraction layer is designed to make the higher software layers independent from the
ECU hardware layout. The ECU abstraction layer aims at hiding the location2 of the ECU hardware
devices and their inter-connections. It contains the handlers3 and the drivers for some external
devices, such as external EEPROMs, external watchdogs, etc.

The Services layer builds the larges interface of the basic software to the RTE. It contains the
high-level services of the basic software, including the OS services, the vehicle network communi-
cation and management services, the memory services, the diagnosis services and the ECU state
management services.

The Complex Device Driver (CDD) is a container for the basic software components that are
not defined within the AUTOSAR. This includes for example the drivers for hardware devices
that are not supported or not foreseen by AUTOSAR such as a driver for the controller of a new
communication system, a complex sensor or actuator control module, firmwares and proprietary
drivers, etc.

1External device is used in this context to identify a hardware device that is located on the ECU but outside the micro-
controller. In opposition, a device that is located on the microcontroller is called internal device

2Internal devices are located on the microcontroller chip (on-chip) while external devices are on the ECU board (on-
board)

3A handler is a specific function that controls and synchronizes the access to one or more drivers, i.e. it might perform
buffering, queuing, arbitration or multiplexing

74 CHAPTER 7. INPUTS FOR THE PARTITIONING

SPI, I2C

Service Layer

-Basic services

for the

application and

basic SW

modules e.g. OS,

AUTOSAR

services,

diagnosis

service, NW

management,

etc.

System services

-Provide basic

services for

application and

SW modules,

e.g. RTOS, error

manager, library

functions.

Memory services=

NVRAM manager

-Abstraction of

memory properties

and location

-Provide data

management

services e.g.

saving, loading,

verification, etc.

-Provide uniform

interface for non-

volatile data access

Communication

services

-Provide uniform

interface for

vehicle NW

comm, e.g. for

CAN, LIN and

FlexRay

-Hide protocol

and message

properties from

the application

ECU

Abstraction

Layer

-SW modules

for the

abstraction of

the location of

the ECU-HW

devices and the

HW layout

Location=on

chip or onboard

Onboard device

abstraction

-Abstraction of

the special ECU

onboard self-

contained

devices

-Contains

drivers for

specific, non

usual ECU

onboard devices

e.g. external

watchdog,

system basic

chip, etc.

Memory-HW

abstraction

-Hide the location

of the memories

-Offers memory-

specific interfaces

to access the

memory drivers

e.g. EEPROM

interface, RAM

interface

-Offers common

mechanisms to

access internal and

external memories

Communication-

HW abstraction

-Hide the location

of the ECU-

communication

controllers and

the ECU layout

-Offers bus-

specific interfaces

to access the

comm. drivers

e.g. LIN, CAN,

MOST interface,

SPI, I2C interface

-Provides uniform

bus access

mechanisms

I/O HW

abstraction

-Hide the

location of the

peripheral I/O

devices

-Hide the ECU-

HW layout

-Offers common

I/O signal

interface for

accessing the I/O

devices

MCAL

 - Drivers for the

HW devices and

functions with

direct access to

HW devices e.g.

test functions for

RAM, core

processor, etc.

mC drivers

-For internal

(on-chip)

peripherals e.g.

ADC, clocks,etc.

-For functions

with direct mC

access e.g. RAM

test, core test

Memory drivers

-For internal (on-

chip) memories e.g.

int. Flash, int.

EEPROM

-For ext. (onboard)

memories e.g. ext.

flash, external

EEPROM

Communication

drivers

-Drivers for ECU

onboard comm

e.g. SPI, I2C

-Drivers for

vehicle comm e.g.

CAN, FlexRay,

LIN

I/O drivers

- For analog and

digital I/O e.g.

ADC, PWM,

DIO

ECU HW,

Microcontroller

Layer

-HW Platform

i.e. buses,

microcontrollers,

memories,

ASICs, etc.

ADC CPU RAM

NVRAM e.g.

Flash RAM,

EEPROM
Int CAN

controller

Timer

CAN controller

ASIC

(external)

Flash RAM

Figure 7.5: Overview of the AUTOSAR layered ECU architecture

7.4. THE PARTITIONING 75

7.3.2 TheHN: The hardware platform

Each ECU-hardware is made of processing elements (e.g. processors, DSPs, microcontrollers,
ASIC, etc.), memories (volatile and non-volatile) and on-board connections. Most automotive
ECUs contain a GPP and several ASICs that implement for example CAN or LIN controllers,
PWM modules, etc. DSPs might be used in addition to run computation-intensive functions,
such as signals processing algorithms, ADCs, interpolation routines or data conversion functions.
The ECU-hardware platform will be a platform of microcontrollers, DSPs, ASICs, etc. and external
memories, all related via a bus. Figure 7.6 shows such a platform. The components of this platform
communicate through a bus implementing for example SPI or I2C. With this configuration, we
gather the principal elements needed to implement the ECU-functionality. Each hardware device
contains a certain number of each component shown in this example. However, in reality, some
devices might necessitate, let’s say no ASIC or no DSP while some others might need several pieces
of some of these components or only one piece of some of them. In short, every configuration is
possible.

mC DSPsDSP 2DSPs

ASICASICASICs
MemoriesMemoriesMemories

SPI or I2C bus

Figure 7.6: Hardware infrastructure of a device

Definition 7.2 (HN:). We formally define the hardware platform of an automobile E/E system with a
tuple〈D,B〉 representing the hardware resource networkHN as follows:

• D (Devices) is the set of all the devices in the system, i.e.D = {D1,D2, ...,Dk} with k ∈ N
∗

where eachDi ,1≤ i ≤ k represents either an ECU, a sensor or an actuator

• B (Buses) is the set of all the buses in the hardware platform, i.e.B =
{

B1,B2, ...,Bq
}

with
q∈ N

∗ where eachB j ,1≤ j ≤ q represents a bus such as a CAN bus, a LIN bus, etc.

• Each device is a collection of processors, memories and their interconnection systems, i.e.∀Di ∈
D,Di = 〈Pi ,Mi ,OBi〉 with:

• Pi (Processors) is the set of all the processing elements (custom as well asstandard processors)
in the deviceDi , i.e. Pi = Si ∪Ai , whereSi represents the set of standard processors andAi the
set of custom processors of the deviceDi (1≤ i ≤ k),

• Mi (Memories) is the set of all the memories in the deviceDi (1≤ i ≤ k), and

• OBi (On-board buses) is the set all the on-board buses in the deviceDi (1≤ i ≤ k).

7.4 The partitioning

7.4.1 Formal definition of the partitioning problem

The partitioning aims at assigning the functional components of the system to the hardware
devices and the connector interfaces to the frames with the goal to optimize the inter-device
communication and achieve a profitable resource management with respect to the functioning
and strategic constraints of the design. The resource usage is optimized when the processors and

76 CHAPTER 7. INPUTS FOR THE PARTITIONING

memories in the system are not underutilized. The inter-device communication is optimized when
the number of messages flowing on the inter-device communication buses is minimized. Based on
the formal definitions of the inputs described in sections 7.2.2 and 7.3.2, we can now define the
partitioning problem as follows:

Definition 7.3 (The partitioning). Given aFN functional specificationA = 〈F,R,P, I ,C〉 and a hard-
ware platformH = 〈D,B〉 = 〈{〈Pi ,Mi ,OBi〉 ,1≤ i ≤ k} ,B〉, the goal of the partitioning is to:

• assign the elements ofF to the elements of
⋃

1≤i≤k Pi

• assign the elements ofR to the elements of
⋃

1≤i≤k Mi and

• assign the elements of
⋃

1≤i≤kC.Int to the elements of
⋃

1≤i≤k OBi ∪B

so that the constraints and the objectives of the design are satisfied.

In other words, a partitioning is an operation that assigns the behaviors of A to the proces-
sors, distributes the contents of the connector interfaces to either the intra- or the inter-device
communication buses and launches the data components of A into the memories of the hardware
platform, in a manner that the given constraints are satisfied and

assignment(
⋃

1≤i≤k

Pi ⊕
⋃

1≤i≤k

Mi ⊕
⋃

1≤i≤k

OBi ⊕B) = A.

Each output of the partitioning is called a partition of A on H. The partitioning thus consists
of finding the best partition of A on a given platform H that satisfies the design constraints. As
already mentioned, the assignment process goes through two steps (figure 7.7). The first step, i.e.
the mapping, assigns the elements of A to the elements of D and B. The second step, i.e. the
deployment, deploys the assignment of each device Di to Pi , Mi and OBi ∀1≤ i ≤ k. These are the
processors, the memories and the intra-communication buses of the devices Di :

partitioning== [allocation][mapping] :: deploymentwhere

mapping: A
assign
−→ 〈D,B〉 and

deployment: assignment(Di)
bind
−→ 〈Pi ,Mi ,OBi〉∀1≤ i ≤ k

< F, P, I, C >R

< Pi, OBi, ,B >Mi,{< > }

B >< D,

mapping

deployment

Figure 7.7: Formal definition of the partitioning of automotive E/E systems

7.4. THE PARTITIONING 77

7.4.2 Relevant attributes for the elements of the input models

The partitioning is guided by the resource needs of the functional specification and the capacity
of the platform. The input specifications must be enhanced with partitioning-relevant information
such as the resource requirements of the components of the functional model and their connections,
and the amount of resource that is available on the platform. In our input models, this information
is specified in the form of attributes. The attributes of the elements of the functional specification
(i.e. components, connectors, interfaces, ports) that are relevant for the partitioning are mainly
those concerning the consumption of memory, of execution time and of communication bandwidth.
The resource consumption of a functional component includes the execution time and the amount
of memory needed to store the compiled code (e.g. the object file), the data that is necessary for
the component’s behavior and the data that is exchanged with its environment. Connectors and
interfaces consume the communication bandwidth or (as variables) the memory. The resources
that are available on the infrastructure platform, i.e. hardware devices (ECU, actuator or sensor)
and buses, are the amount of computation power, memory and communication bandwidth that
can be used by the application software on this platform. The hardware resources can be divided
into static and dynamic resources. Static resources, e.g. ROM, are assigned for occupation
once and kept unchanged. Dynamic resources, for example processors or RAMs can be occupied
dynamically by the different consumers that need to share them. In the following, we introduce
some partitioning-relevant attributes of the elements of the input models:

Functional components: The attributes describing a functional component that are relevant for
the partition include:

• The execution time: The duration (in seconds) of the execution of the code of the component
on a given CPU. This is the time required between the starting of the execution of the
component and its finishing. Alternatively, the execution time of a data component is the
duration of a read or write operation on the memory on which the data is stored. Each
data component may thus also have several execution time values depending on the type of
memory on which it is stored.

• The execution rate: The period (in seconds) of execution of a behavior. Alternatively, the
period of execution of read and write operations on a data component.

• The software code size: The amount (in bytes) of memory required to store the code of the
functional component when implemented in software. Alternatively the amount of memory
needed to store the data component.

• The hardware size: The amount of hardware material (in number of gates, transistors or
logic blocks) that would be used to implement the software component in hardware.

• The basic software: The list of compatible (versions) of basic software modules that are
needed by the components.

• The hardware element: The processor type with which the actual implementation is com-
patible. Alternatively the type of memory that is appropriate to store the data component.

Interfaces: An interface is a container for the data flowing through the associated port. Like in
AUTOSAR, the interfaces in FN models describe the static structure of the data. The interface
data itself consists either of data elements or operations. Data elements are described by means
of data types. Operations are described through their signatures, i.e. the arguments that are
communicated between the client and the server. Each argument of a signature has a direction (in,
out or inout) and also a data type. For reasons of syntactical clarity, we subsume the information
that is exchanged between the nodes of FN models under the common aspect of data objects.
The logic of this abstraction is shown in figure 7.8.

78 CHAPTER 7. INPUTS FOR THE PARTITIONING

sender-receiver
interface

client-server
interface

data elements

operations arguments

data object

*

* *

1

1 1

Figure 7.8: Data object is a generalization of operations and data elements

Data objects: The relevant attributes of data objects include:

• The direction: In, out or in-out direction.

• The resolution: The number of bits that is necessary to store the data object. At the
implementation level, the resolution of a data object may variate depending on the medium
transporting it (e.g. CAN or SPI) or the machine on which it is implemented (e.g. big-
endian, little-endian), but at the logical level, the value of the attribute resolution is not
supposed to change. For example, if the size of the structure in which a data element is
stored is 12 bits, the resolution of this data element will be considered as equal to 12 bits
and every possible conversion of the data element will be ignored.

• The access frequency: This attribute indicates the frequency at which the data object is
accessed, i.e. the number of times the data is read during a given period. For example
during an execution time of the source component.

Ports: The attributes describing a port include:

• The resynchronization time: The time allowed for the resynchronization of the data values
after the current data is lost, e.g. after an ECU reset.

• The timeout: The time (in seconds) between the activation of the port and its time out.

Connectors: Relevant attributes of the connectors include:

• The latency: The maximum time allowed for the transfer of a data element from the source
component to the destination.

• The jitter: The maximum allowed jitter as a measure of the variance of transport time.

Processors: Examples of the attributes of a processor include:

• The processing power: The speed of computation (in mips, i.e. machine instructions per
seconds) of the CPU for standard processors.

• The architecture: The composition and the structure of the processor, the computing paths,
the elementary operations, etc.

Memories: Memories can be classified in two categories: Volatile memories and Non-volatile
memories. Volatile memories require power to maintain the stored information, e.g. RAMs. Non-
volatile memories can retain the stored information even when the power supply is off. Examples
of non-volatile memories include ROMs, flash memories and NVRAMs (Non-Volatile RAMs, e.g.
flash RAMs). Examples of attributes of volatile memories include:

• The segment size: The size (in Byte) of one memory segment.

7.5. CONCLUSION 79

• The access type: Read only or also written memory.

• The access time: The mean time for a read, write or erase operation.

• The location: Internal (on chip), external memory (on-board) or stand-alone memory (de-
vice).

In addition to these attributes, non-volatile memories can be characterized by:

• The data retention time: The mean time during which a data is valid within a memory
segment.

• The endurance: The number of guaranteed data changes on the memory.

Buses: Examples of the attributes of hardware connections include:

• The bandwidth: The bit rate, i.e. the amount (e.g. in bps, i.e. bits or bytes per seconds) of
data that can be transmitted throughout the bus in a fixed amount of time.

• The jitter: The time deviation from the ideal timing of data transmission. The jitter on a
bus can follow a random (statistical dispersion) or a deterministic behavior.

7.5 Conclusion

The standard languages provide powerful features to model AES, but because the semantics of
ports, interfaces and connectors are fuzzy, they remain very insufficient to support the partition-
ing. For the functional specification, we have defined a modeling solution that is based on the
most common AES specification languages like AUTOSAR, EAST ADL and SysML, so that we
keep very close with standards. We enhanced the basic concepts provided by these languages in
order to obtain a modeling solution that is fitter regarding the requirements of a CAD-supported
partitioning. In addition to the partitioning-friendly features provided by AUTOSAR, EAST ADL
and SysML, i.e. atomic detachable components, QoS modeling, etc., the FN provides a clear
screening of the communication paths, very useful for the partitioning. We also formally defined
the modeling concepts for the specification of AES hardware platforms that allowed us to define the
partitioning problem more precisely and formally. However, even at this point in the progression of
our work, we have not definitely answered the question relative to the ability of the input models
to support a CAD-based partitioning, i.e. Are these models sufficient for the partitioning? If not,
how to make them more partitioning-friendly? These questions will be answered in the following
chapter.

80 CHAPTER 7. INPUTS FOR THE PARTITIONING

Chapter 8

The synthesis Model

In the actual state-of-the-art, AES designers input a functional specification in the form of a network of
software components (like a FN model) and a HW platform specification in the form of interconnected
devices (e.g. a HN model). This models might be explicit enough to describe the system, but they are
not optimized to support the partitioning of the system specification. We needsynthesizable models
that can enable the analysis of the data flow and highlight the closeness between the elements of the
specification. In this chapter, we define the synthesis model, i.e. the modeling format that will be used
to support the partitioning of AES functional specifications, and the transformation rules that shall
govern the translation of an input FN model into this modeling format.

8.1 Definition of the synthesis model

8.1.1 Requirements for the synthesis model

The FN allows clear screening of the communication paths and the tracing of the data flowing upon
each connector. But, in order to solve the partitioning problem, we need to transform each FN
model into a formal representation on which we can use efficient and reliable mathematical tools
to perform data flow analysis and quantify the relationships between the elements of the functional
specification of the system. This will be achieved through the definition of an intermediate model
that we call the synthesis model. The usefulness of a synthesis model is given by its ability to
support the intended design task, in the present case, the partitioning. This includes the ability to
reflect the system architecture as given in the FN input model, the ability to specify the information
that is needed for the partitioning and the ability to enable rapid estimation of the partitioning
metrics. Reflecting the system architecture requires that the intermediate model must be at least
at the same level of granularity with the input FN model. A FN model is made of atomic software
components like those described in AUTOSAR. The synthesis model must allow to estimate and
compare the closeness between different pairs of components. Enabling rapid metrics estimations
requires that as much information as possible is known before the partitioning begins, e.g. the
access frequencies, the timing behaviors of the inter-components communications, the quantity
of data exchanged, the relationships between these data objects and between the components
themselves, etc.

Depending on the type of representation used, the formal representations that meet the re-
quirements for the synthesis model can be roughly classified in two groups: Those based on FSMs
and Petri nets and those based on graphs. In contrast to graph-based representations that consider
a unique system state, FSMs [123] and Petri nets [35,119] are powerful in modeling and verifying
the dynamics of a system. But, FSMs- and Petri nets-based representations are obviously not the
best representation forms for systems for which the architecture is important. The main kinds of
architecture-oriented forms of FSMs used in the design of embedded systems include the FSM with
data paths (FSMD) [53] and the FSM with Coprocessors (FSMC) [75]. But even these special
forms cannot reproduce the system’s architecture in a useful way. Moreover, they considerably

81

82 CHAPTER 8. THE SYNTHESIS MODEL

suffer from the state explosion problem. In the end, as our input models are not aware of any state
information, FSMs and Petri-nets are certainly not the solution for our synthesis model.

In contrast, because they more easily reflect the architecture of the system, graph-based rep-
resentations have been largely used to solve partitioning problems. The most usual graph-based
models include data flow graphs (DFG)[38,95], control flow graphs (CFG), data control flow graphs
(DCFG)[69] and task graphs. A DFG is a directed acyclic graph in which the nodes represent the
system components and the edges represent the data flow. DFGs are well-featured to describe
the data dependencies. A CFG is a directed graph of behavioral components in which the edges
represent the sequencing of the operations, i.e. the execution order of the nodes. CFGs are well-
suited to model control-oriented systems, but they provide restricted facilities for the data flow
analysis. CDFGs extend the DFG with control nodes. They provide good models for data flow
oriented applications for which the control information is important. Task graphs are similar with
DFGs in their structure. But, in opposition to DFGs, special types of task graphs may be cyclic or
undirected [26,95,122]. Following the configuration of the input models and the requirements for
the synthesis model, such a special form of a task graph is probably the solution to our problem.

Various special task graph-based modeling formats have been used for similar problems. In [89],
a data flow machine that is built of networked rings is used to analyze the data flow in a network of
processors and memories. In [115], a directed task graph, called access graph, is used to model the
accesses (i.e. data exchange) between the functional components of the system, while a similar,
but undirected graph, called communication graph is used in [21] to model the communication
between a set of tasks. All these solutions yield static models that however effectively reproduce
the system’s structure and the data dependencies.

8.1.2 The synthesis model

The synthesis model is intended to specify the components of the system, their communication
and all relevant relationships between them. We chose to represent each synthesis model with
a task graph (V,E,Ω,S). Each node vi ∈ V represents a behavioral or a data component of
the corresponding (FN) input model. If each connector of FN is replaced by an edge in the
synthesis model, this will be a multigraph, i.e. a graph with multiple edges between two nodes.
Synthesizing the communication between two nodes that are related by multiple edges is much more
complicated than when each two collaborating nodes are connected by a single edge. However,
reducing multiple connectors to a single one requires that we must ignore the directions of the
original connectors. This leads to undirected edges. Undirected edges keep the synthesis model
safe from the specification of the direction of the communication and consequently enable the
unification of the connectors regardless of their individual directions. Therefore, with undirected
edges, each edge ei j = (vi ,v j) = (v j ,vi) ∈ E materializes the communication between the FN
components represented by vi and v j . Such an edge thus models exclusively the fact that two
nodes exchange data in a direction that is ignored by the edge itself or in the two directions. Thus,
in the context of the synthesis model, ”edges” and ”connectors” are semantically identical with
the adoption of undirected edges, i.e. the semantics of an edge in the synthesis model is reduced
to: ”These connected nodes represent two FN components that exchange data in some way”.

Evidently, transforming multiple and oppositely directed connectors into a single undirected
link gives rise to two problems: Firstly, we need a convenient interpretation of the connections
with multiple connectors that will allow to properly capture the data shared between the connected
nodes on a single edge. Secondly, as the edges are undirected, we have to specify the direction
of the communication somewhere else. The direction and the timing of the communication are
essential for the mapping in a frames-oriented communication network, since a device is concerned
only with the packaging of the data objects that it sends, but not with the objects that it receives.
The packaging and the sending of the tokens are submitted to the constraints concerning the
dates of their occurrences and the dates at which they are sent. In order to bundle several
differently directed connectors into a single edge, it is necessary to separate the data objects from

8.1. DEFINITION OF THE SYNTHESIS MODEL 83

the connectors. To do that, we model the data that is exchanged between the nodes of the
synthesis model by means of tokens. Ω is the set of the tokens flowing around the graph. A
token Tk

i j ∈ Ω represents the data object k that is exchanged between two nodes vi and v j . A
token is unbounded in the dimension and is not supposed to contain any additional information
such as token delimitation information (i.e. begin of token, end of token), etc. Independently
of the connector through which a data object is exchanged in FN, the corresponding token Tk

i j
is associated with the edge ei j that connects the nodes vi and v j . Thus, the set of the tokens
associated with an edge models the intensity of the communication between the two nodes. Now,
as the edges are undirected, we model the direction of the communication in the tokens. The
direction of a token defines the sense of the data transfer on the corresponding edge, i.e. a token
has a source and a destination node, both related by the associated edge. So, due to the direction
of the tokens, we can distinguish the data sent by a node to another node within the total data
exchange between two nodes. Remember that we defined a connection in FN as the interfacing
between two components, i.e. the bundle or the set of all connectors connecting two components
(see chapter 6).

This definition of the synthesis model leads to the following straightforward transformation of
FN models into synthesis models:

• Each component of a FN model is transformed into a node in the corresponding synthesis
model.

• Each connection of a FN model is transformed into a single edge in the corresponding
synthesis model.

• Each data object exchanged between two components of a FN model is transformed into a
token in the corresponding synthesis model.

For illustration, suppose the case of a client-server communication in which a client component
vi produces a token Tk

i j and sends it to a component v j (destination of Tk
i j). v j performs the

necessary job with the received data and responds to the client using two tokens, lets say Tm
ji and

Tn
ji . In the corresponding (FN) model, this transaction is modeled by two connectors: One going

from the client to the server with the token Tk
i j and the other one going in the opposite direction

with the tokens Tm
ji and Tn

ji . But in the synthesis model, the two operations, i.e. the sending and
the response, will be modeled by means of a single undirected edge ei, j associated with the three
tokens Tk

i j , Tm
ji and Tn

ji . However, due to the direction of the tokens, we can distinguish that token

Tk
i j is transferred from vi to v j while Tm

ji and Tn
ji flow in the opposite direction. Like the nodes and

the edges, each token has a system-wide identifier. This allows us to smoothly identify the tokens
among the whole system specification. In fact, the identification of a token is directly related with
the corresponding data object and the associated edge, i.e. if the same data element is transferred
repeatedly over a given edge, then it will be identified as the same token.

Several mechanisms can be used on this basic model to describe the data-passing procedure.
For example, a node can send data by placing it on the dedicated edge, i.e. the token is addressed
exclusively to the node connected at the other end of this edge, or the sender can just put the
token on its output where it will be collected by the destination node. These two mechanisms are
fundamentally different concerning the resulting behavior of the system. The first one processes a
peer-to-peer communication while the second one, if not enhanced with restrictive routing rules,
is merely adapted to realize broadcast communication, i.e. each component that is related with
the sender can access the data that is on the sender’s output port. Note that it is also conceivable
that the sender node pushes the data to the destination and so synchronous and asynchronous
communication schemata can be designed. Defining such mechanisms would introduce a dynamical
dimension in the specification of the communication in the synthesis model. But, as the model
is not intended to support the simulation, the dynamics of the data exchange and the routing
mechanisms will not be discussed in this paper. However, we agree that a token is created as soon

84 CHAPTER 8. THE SYNTHESIS MODEL

as the corresponding data object is emitted. We then say that the token is available. A token can
be sent to the destination nodes only if it is available. The date at which a token is sent is not
necessarily the date at which it is made available. A token is available solely means that the token
can be sent. A token is available at the date of its creation. But it can be sent later, depending on
its freshness requirements. So, while very hasty tokens must be sent as soon as they are available,
the sending of less hasty tokens can be delayed. These concepts are introduced to support the
scheduling of the communication and the control of the occupation of the communication bus.

In addition to the technical factors of performance and cost optimization such as the commu-
nication and the resource usage optimization, the design of an E/E system typically underlies a
full range of constraints and strategic concerns relative to the commercial, the technological and
the organizational conditions of the design, as well as the procurement and the production issues,
etc. Consequently, some components of the functional model might be specified to run on the
same device while others are required to run on different devices. The latter is the case when for
example it is known that the implementations of two components are not EMC-compatible. The
case of the components that must run on different devices include the components that are known
to have a high potential to share special hardware resources, those that must preferably be built
together by a given sub-contractor that has proved his competency in their specific production or
those between which the communication is so constrained that it is not acceptable to take the
risk of separating them. It is also conceivable that it may be profitable to group or to separate the
components following for example the similarities on their required level of safety, their level of mis-
sion or business-criticality, the productivity capability of the source of procurement, the conditions
of production, etc. For illustration, components to be implemented in-house might be separated
from those to be implemented by sub-contractors and those to be implemented by COTS while
components to be implemented by programmer X can be separated from those to be implemented
under the responsibility of Y. Further strategic relationships between the components might in-
clude the potential level of reuse (i.e. typically reusable components vs. components with low
probability to be reused), the rhythm of changing (i.e. frequently changing components vs. rarely
changing components), the target of the procured service, the activation time (e.g. components
that are active during driving vs. components that are activated during parking), components
implementing system internal services vs. components implementing system external services, etc.

These relationships between the components typically have heavy consequences on the par-
titioning and must be specified in the synthesis model. We do this by means of needs and
excludes relations. Two nodes vi and v j are in a needs relationship, i.e. needs(vi ,v j), if they must
be implemented on the same device. Two nodes vi and v j are in an excludes relationship, i.e.
excludes(vi ,v j), if it is forbidden to implement them on the same device. Note that the needs
and excludes relationships are also defined between the tokens. In relation with our taxonomy,
all needs-related tokens build a message. Note also that indefinitely similar relationships can be
defined on this model. S is the set of these kinds of relations that exist between the nodes and
between the tokens of a synthesis model.

In the remainder of this work, we will call this modeling format the ”Components Data Flow
Machine (CDFM)”. The CDFM enables the synthesis of the communication by allowing the
scanning of the data exchange and the tracing of the communication paths. However, it does
not yet contain the information that is needed to guide the partitioning. In addition to the
modeling of the components and the inter-components communication, a system partitioner needs
the information that will help to decide the destination device of each component and also enable
to investigate the cost and the performance of the resulting partition. The CDFM provides these
information by means of the attributes that capture the runtime characteristics of the model
elements.

8.2. ANNOTATIONS FOR THE SYNTHESIS MODEL 85

8.2 Annotations for the synthesis model

8.2.1 Concurrency, sequencing

The information concerning the concurrency between the tasks of a system and their sequencing
is certainly important for the partitioning. But, this is not actually explicitly specified in the FN
models and thus must not be supported by the synthesis model. Nevertheless, as the connectors
specify the data flow, they induce a certain level of data dependency information in the FN models
that is replicated in CDFM models, saving their affinity with the FN models. Anyway, we do
not have concurrency and sequencing information at this level of the design where we are dealing
with software components the implementation of which might give rise to multiple tasks that
can be scheduled in various processes depending on whether they need to run concurrently or
sequentially. Thus, unless the components of a FN model consist each of a single task, we can
neither establish concurrency or sequencing relationships between them, nor can they be reasonably
scheduled. However, as we firstly intend to map the components of the input FN models on the
devices of the E/E system, we do not need concurrency and sequencing information between them.
Concurrency and sequencing information is more useful for the deployment and the scheduling of
the ”runnables” within a device.

8.2.2 Annotations for the nodes

The performance and the cost of a node are determined by the duration of its execution, the
frequentness of its execution, the size of the resulting software code or the size of the hardware
that should be needed to implement the component. While the size of the software code is easy
to determine, the execution time of a component depends on the behavior of its runnables. As
long as a component is not implemented, estimating its execution time is very difficult and even if
possible, it might be useless to do that since the component will probably not be executed as a non-
interrupted sequence of instructions. Actually, the most components are designed to encapsulate a
functionality that is well-known, thus the software code is known or can be estimated, but as they
mostly result in several tasks at the runtime, it remains difficult to estimate their execution time.
Estimated values are given as requirements for the implementation. Assuming that a particular
hardware unit or a family of hardware units have been identified to implement or to store each
component so that the memory needs for the code size and for the stacks or heaps for its runnables
are known (or can be estimated), the attributes of the nodes of the synthesis model include:

• The software size (swSize): The software size of a node is the total amount of memory
required to store the code and the data of the corresponding component when implemented
in software. The software code size of a component depends on its implementation. An
efficient implementation of a software component may results in the consumption of less
memory space. As we consider an optimistic resource reservation strategy, we can take for
granted that there is sufficient storing capacity on the platform to store the code of the
nodes.

• The hardware size (hwSize): The hardware size of a node is the total amount of hard-
ware components that would be used to implement the functionality of the corresponding
component.

• The execution rate (eR): The execution rate of a node is the maximum of the execution
rates of the runnables of the corresponding component. The execution rate of a runnable
is the number of times that it is executed during an activation time of the system. This is
also known as the frequency. If a runnable is periodically executed, its execution rate is easy
to determine. For non-periodic runnables, we define the execution rate on the basis of the
mean interval between two successive executions. This assumption holds in the most cases
since a large majority of tasks in embedded systems are periodic.

86 CHAPTER 8. THE SYNTHESIS MODEL

• The priority (prio): The priority of a node is the priority order of the most prioritized
runnable of the corresponding component. The priority order of a runnable is the priority
that it enjoys in the competition for the occupation of a given processor as assigned during
the system design.

• The execution time (eT): If available, the execution time of a node is the ”sum” of the
execution times of the runnables of the corresponding component. The execution time of
a runnable is the time between the end of its triggering and the end of its execution. The
execution time of a runnable depends on the processor on which it is executed and the
context in which it runs. A runnable may thus be characterized by several execution time
values, i.e. one execution time for each CPU on which it might run.

8.2.3 Annotations for the edges

The set of tokens associated with an edge is its weight. The determination of the weight of a
token is explained in section 8.3.1. An edge may underly some constraints such as the allowed
maximum transmission errors (i.e. the jitter) or the allowed maximum latency (i.e. transmission
time). For illustration, the attributes of the edges of a CDFG model include:

• The weight (T): The weight of an edge is the set of tokens that flow over the edge during
an activation period of the system.

• The access frequency (accFreq): The access frequency of an edge is the access frequency
of the most accessed connector within the corresponding connection. The access frequency
of a connector is the number of times that the connector is accessed during an activation
period of the system.

• The constraints (cons): The constraints on an edge are given by all the constraints on all
the connectors of the corresponding FN connection. The constraints on the edges might
include the latency, the reliability, the security, the safety, etc. Care must be taken to have
consistent sets of constraints.

8.2.4 Annotations for the tokens

Concerning the tokens, the most relevant information for the partitioning include their dimension,
their dates of occurrence, their freshness requirements, their direction and their priority, i.e. :

• The direction (dir): The direction of a token defines the sense in which it is transferred.
Like the direction of the corresponding data object, the direction of a token is given by the
source node and the destination node of this token.

• The resolution (res): The resolution (or the dimension) of a token is the number of bits
that is needed to encode the corresponding data object.

• The frequency (freq): The frequency of a token is the frequency at which the corresponding
data object is emitted.

• The priority (prio): The priority of a token is the priority level that the corresponding data
object enjoys in the occupation of a given communication channel.

• The date of occurrence (occur): The date of occurrence of a token is the time at which
it is available. The tokens will be available in the same order with their dates of occurrence.
The date of occurrence of a token is different from the date at which it is effectively sent
(i.e. the sending date). The sending date of a token depends on the scheduling of the
communication.

8.2. ANNOTATIONS FOR THE SYNTHESIS MODEL 87

• The freshness (fresh): The freshness requirements of a token determine the latest date at
which it must be sent.

• The constraints (cons): The data objects, thus the tokens, may underly some constraints
concerning for example their freshness, their safety, etc.

8.2.5 Formal definition of the synthesis model

Given a FN model A = 〈F,R,P, I ,C〉 of the functionalities of an E/E system with the components
M = {M1,M2, ...,Mk}= F ∪R, the corresponding synthesis model is a graph G= (V,E,Ω,S), where
V = M is the set of nodes, E is the set of edges ei j = (vi ,v j) = (v j ,vi), Ω is the set of the tokens
and S is the set of the relationships induced by the constraints and the strategic concerns of the
design over the set of the nodes and the set of the tokens, i.e.

* for each Mi ∈ M there is a corresponding node vi ∈V,

* for each data object exchanged between two components Mi and M j there is a corresponding
token Tk

i j or Tk
ji ∈ Ω,

* each relation between two components (resp. two data objects) also exists between the
corresponding nodes (resp. the corresponding tokens), and:

• Each node vi =< swSize,hwSize,eR, prio,eT > where

– vi .swSize(resp. vi .hwSize) is the software (resp. the hardware) size of vi

– vi .eR is the execution rate of vi

– vi .prio is the priority of vi

– vi .eT is the execution time of vi

• Each edge ei j = eji =< T,accFreq,cons> where

– ei j .T = Ti j ∪Tji is the weight of the edge ei j , i.e. of the edge eji , where Ti j =
{

Tk
i j ,k∈ N

}

is given by the set of the tokens transferred from node vi to node v j and Tji =
{

Tk
ji ,k∈ N

}

is given by the set of the tokens transferred from node v j to node vi .

Note that ei j .T = eji .T for all i, j ∈ N but Ti j 6= Tji for each given pair of nodes i, j

– ei j .accFreqis the access frequency of the edge ei j , i.e. of eji

– ei j .consis the set of constraints on the edge ei j , i.e. on eji

• Each token Tk
i j =< dir, res, f req, prio,occur, f resh,cons> where

– Tk
i j .dir is the direction in which Tk

i j flows. Note that the direction is already given by
the foot notation i j of the token

– Tk
i j .res is the resolution of the token Tk

i j

– Tk
i j . f req is the emission rate of the token Tk

i j

– Tk
i j .prio is the priority of the token Tk

i j

– Tk
i j .occur is the date of occurrence of the token Tk

i j

– Tk
i j . f reshare the freshness requirements on the token Tk

i j

– Tk
i j .consis the set of the constraints and requirements on the token Tk

i j

88 CHAPTER 8. THE SYNTHESIS MODEL

8.3 Applications

8.3.1 The weight of an edge in aCDFM model

We illustrate the calculation of the weight of an edge in a CDFM model with the following simple
example. Suppose that two FN components are connected with a sender-receiver port interface,
i.e. an interface through which they can exchange data elements, and a client-server interface, i.e.
an interface through which operation calls can be initiated. Every 10 seconds, the first component
A1 sends for example the actual distance covered since the very first start of the system as read from
the odometer to the second component A2. This is done through the sender-receiver interface.
Then with a time interval of 1 minute, A1 triggers A2 periodically so that it calculates the total
mileage, i.e. the total number of kilometers that have been covered by the vehicle during the
beginning of the actual trip. The mileage is communicated to A1 that displays it to inform the
driver. This is done through the client-server interface. These two communication interfaces are
modeled in FN with three connectors (see figure 8.1). In fact, following the semantics of the FN,
as A1 must receive the result of the mileage computation done by A2, the client-server interface
will be modeled by two connectors, one from A1 to A2 and the other one from A2 to A1.

A1 A2

odometer_St

req_mileage

resp_mileage

Figure 8.1: The FN graphical representation of the mileage inquiry

The weight of the edge e12 of the corresponding CDFM model is the set of tokens exchanged
between v1 and v2.

A1 A2

odometer_State
req_mileage
resp_mileage

Figure 8.2: The graphical CDFM representation of the mileage inquiry

We now define the metric that we use to determine the weight of the edges of CDFM models:
Given a FN model A and its corresponding CDFM model G, consider the operator widthi j that
defines the set of connectors of A that are represented by the edge ei j in G. These are the
connectors that relate Ai with A j . Assume that the operator srcConnectors(Ai) returns the set
of connectors for which Ai is the source and the operator dstConnectors(Ai) returns the set of
connectors for which Ai is the destination, i.e.:

srcConnectors(Ai) = {c∈C|c.src∈ Ai .Int}
dstConnectors(Ai) = {c∈C|c.dst∈ Ai .Int}
widthi j = srcConnectors(Ai)∩dstConnectors(A j)

Given two nodes vi and v j of G, the weight of ei j (i.e. the set of tokens transferred over the
edge ei j) is:

ei j .T = Ti j ∪Tji =
⋃

c∈widthi, j

c.Int (8.1)

Now, assuming that the resolution of the mileage is 16 bits, the parameters sent for the
operation call are altogether 72 bits (i.e. operation description, input values and addresses) and
the return value is 32 bits, we have:

8.4. CONCLUSION 89

|widthi, j | = 3 connectors
T12 = {the 16 bits token, the 72 bits token}
T21 = {the 32 bits token} and
e12.T = {the 16 bits token, the 72 bit token, the 32 bits token}

Given a period of time in which the system is activated, the frequencies of the tokens determine
the number of appearances of each token on the associated edge. For example if we consider that
the sender-receiver connector is accessed 5 times during an activation period of A1 and the client-
server connector is accessed 2 times during the same period, then:

T12 = 5 times the16 bits token + 2 times the72 bits token
and
T21 = 2 times the32 bits token
The date of occurrence of the tokens determines the order in which the tokens appear on an

edge, i.e. each token is emitted at a given date that determines its position in the sequence of
the tokens associated with a given edge. Thus, the tokens associated with an edge can be ordered
in a n-vector in ascending order following their date of occurrence where n is the total number of
tokens transferred between two nodes during an execution period of the system.

8.3.2 Model transformation

The following example illustrates the transformation of FN models into CDFM models. Figure
8.3 shows the CDFM model corresponding to the FN model of the ACC (active cruise control)
functionality presented in figure 7.3.

Curve
treatment

Speed control
retarder

Lane
determination

Obstacle
screening

Speed control
overall

Obstacle
identification

Security distance
setting

Max speed
setting

objects_sto

object_found

state_radar_sensor

hor_just_state
ver_just_state

lane_attributes

speed_selection

set_distance_min

potencial_stationary_objects
regulation_obl_objects

objects_sto
nominal_distance

Figure 8.3: Model transformation: TheCDFM representation of theFN model of figure 7.3

8.4 Conclusion

The CDFM provides a powerful modeling format for the design of automobile E/E systems archi-
tectures. These intermediate models are defined to allow the analysis of E/E system specifications,
particularly the synthesis of the data flow for the partitioning. CDFM models are flexible as they
can be enhanced without limitation and they do not state any restriction on the granularity of
their elements (i.e. nodes and tokens). CDFM models are obtained from a simple and straightfor-
ward transformation of FN models. They provide a graph formulation of the system’s functional
specification that enables the application of usual graph partitioning algorithms for the mapping
as well as for the deployment.

90 CHAPTER 8. THE SYNTHESIS MODEL

Chapter 9

The partitioning: State-of-the-art

In this chapter we at first give a more concrete formulation of the partitioningproblem from which we
deduce the requirements for the partitioning algorithms that are adequate forour problem. Then the
state-of-the-art in the partitioning is outlined. This includes a presentation of thedifferent partitioning
methods and the most popular classes of partitioning algorithms. We finally specify the algorithmic
process of the partitioning.

9.1 The partitioning problem

9.1.1 Frames of the problem

We consider that the input functional model specifies the functionalities of a given AES functional
domain, e.g. power train, comfort, multimedia and telematics, etc. that will be implemented on
a network that does not integrate a gateway, e.g. a CAN, a MOST or a FlexRay bus. As the
most AES inter-device communication protocols are message-oriented, we consider that the target
platform architecture is made of the most popular of them, a CAN bus, on which the devices (ECUs,
sensors, actuators) are connected. The partitioning will be done by grouping together-belonging,
i.e. related components of the input functional specification, following a set of closeness patterns
in order to build the functional clusters that will be mapped on the devices. A feasible partitioning
will result in clusters that respect the capacity of the devices and use no more than the available
stock of messages to communicate. This means that although extreme load-imbalance must be
avoided, the partitioning is not reduced to a load-balancing problem, but is rather an optimization
problem, i.e. the communication overhead must be minimized, the real-time communication of
the system must be optimized, the resource utilization and the dependability of the system must
be maximized by avoiding computing and communication faults. However, following the actual
trends in the automobile market, although the goal of this work is to avoid underutilization of
the resources in order to prevent the overhead of costs due to unnecessary computing power and
communication bandwidth, it is well-advised to have some reserve resources in the system where
new functionalities can be implemented.

To solve this problem, the design space has to be explored with a strategy which at least con-
verges toward a solution close to one which yields the optimal solution. Actually, AES architectures
are designed based on the designer’s inspiration. AES system designers are highly-experienced en-
gineers that mostly act as system integrators, i.e. they order devices from components suppliers
and plug them on the rest of the system. As they actually do this successfully, one can argue
that automatic partitioning tools might not perform competitively with humans. This assertion is
perhaps reasonable when the input set of components and the partitioning patterns are reduced
and easy to trace and to manage. But like most real-life problems, the design of AES architectures
involves the manipulation of very large sets of items with a large range of partitioning criteria that
are not always easy for a human intelligence to manage optimally. The level of expertise needed by
humans is very expensive as long as system architects are rather artists than engineers. A system

91

92 CHAPTER 9. THE PARTITIONING: STATE-OF-THE-ART

architect needs to invest a very long time to acquire this level of expertise and then it is very
adventurous to replace him. Furthermore, the solution space is often so large that humans will
never get time to scan it in order to pick out the best solution. With an automatic partitioning,
we provide a powerful engineering tool for the design of AES architectures, helping this activity to
make the transition from its actual status of art to an engineering discipline.

In this work, we are concerned with the mapping. A mapping and definitely a partitioning
can be static or dynamic. In static mapping, the elements of the functional specification are as-
signed to the platform elements prior to the execution and are not changed until the execution
finishes. Dynamic mapping is needed when the functional specification changes dynamically dur-
ing the running time and needs to be redistributed. Based on the input functional specification
and the resource platform, static mappings can be classified following two taxonomies: The first
classification is based on the specialization of the functional specification and/or of the platform.
Following this classification, we can distinguish the mapping of specialized components on special-
ized platforms, specialized components on arbitrary platforms, arbitrary components on specialized
platforms and arbitrary components on arbitrary platforms. The second classification is based on
the uniformity of the attributes of the elements of the functional specification (e.g. the attributes
of the components and the weights of the connections) and the characteristics of the elements of
the hardware platform. Following this classification, we can distinguish the mapping of uniform
functional specifications on uniform platforms, non-uniform functional specifications on uniform
platforms, uniform functional specifications on non-uniform platforms and non-uniform functional
models on non-uniform platforms.

In our case, the partitioning problem is how to map CDFM models onto multi-device architec-
tures of heterogeneous multi-processor hardware platform devices. Considering the CDFM, this
problem is a graph partitioning problem. However, even though this work is focused on a spe-
cialized domain, i.e. the automotive domain, the problem we address here is a static mapping of
a non-uniform graph of arbitrary components on an arbitrary non-uniform multi-device platform
architecture, since the mapping is done once during the system conception and remains unchanged
for the whole life of the resulting system. Furthermore, a particular architecture might be used for
years on a wide range of product series. The functional components contained in the nodes of the
CFDM models do not underlie neither a specialization nor a granularity constraint. They are just
required to be atomic components. The communication data described in the tokens of the CDFM
models might be of every possible nature, i.e. information, computation value, control directive,
power supply, etc. The target platform is also unconstrained on the type and the capacity of its
elements.

9.1.2 Requirements for the partitioning algorithm

Because of the wide range of its application fields, the partitioning of graphs have been widely
investigated. The most active research communities applying graph partitioning for the last decade
include the microelectronic design (e.g. for SW/HW co-design), the system analysis domain (e.g.
for pattern- and similarity-based classification), the network engineering and the business manage-
ment (to solve optimization problems). These communities have different terminologies, different
patterns for the partitioning and make different compromises for the partitioning process. But
commonly, the aim of the partitioning is to achieve a clustering of a given set of objects following
some similarity patterns. As the overall goal of a partitioning algorithm is to find a global optimal
solution while performing as little computation as possible, it is necessary to identify the most
suitable clustering techniques when solving a partitioning problem. A vast collection of clustering
algorithms is available in the literature. Near general-purpose partitioning algorithms, a full range
of specific-purpose algorithms have been designed. General-purpose algorithms propose generic
solutions while specific-purpose algorithms propose more effective solutions, each however opti-
mized for a specific problem. Unfortunately, we are not aware of an algorithm for the partitioning
of automotive systems functional specifications. Moreover, because clustering algorithms often

9.2. PARTITIONING METHODS 93

contain implicit assumptions about the cluster shapes, the measurement of the similarities and the
grouping criteria, there is no clustering algorithm that is universally applicable on all input struc-
tures or with all possible clustering patterns. Thus, there is no competent perspective enabling
someone to select one of the existing algorithms that is suitable for the problem at hand.

The usefulness of a partitioning algorithm is determined by its ability to match with the partic-
ular problem under resolution and its complexity (in time and eventually in space). Matching the
problem includes the support of the format of the input specification with the involved artifacts (i.e.
abstraction level, granularity), the capacity to accommodate the considered clustering patterns and
the organization of the clustering objects as well as the ability to produce good partitions. The
latter involves the manner in which the clusters are formed and the sensitivity of the clustering
technique to changes that do not affect the intrinsic structure of the input objects, e.g. changes
in the order of the input objects, or on the formulation of the clustering criteria. For our purpose,
a partitioning algorithm must preserve the functional structure of the system (i.e. conservation of
the connectivity within the input specification), allow user interaction (i.e. the system architect
must be able to impose the composition of the clusters at every time in the partitioning process)
and afford the flexibility (i.e. the ability to rapidly integrate the changes occurring on the functional
model, the platform or the design constraints). To achieve good results, such an algorithm shall
certainly enjoy a global view on the system specification that enables the comparison of the close-
ness between surrounding objects. As our partitioning is done for a static mapping of functional
specifications on quite similar platforms of a wide range of vehicle series, the time and the space
complexity of the algorithm is not very critical. However, the algorithm must be able to find the
best result in the best possible time.

9.2 Partitioning methods

9.2.1 Exact and heuristic methods

A partitioning algorithm might make use of either exact or heuristic methods (figure 9.1). There are
two broad approaches for exact methods. The first approach follows a systematic enumeration of all
solutions. This approach is not practicable when the solution space is very large like in the present
case. The second approach makes use of linear programming methods. Linear programing is an
important modeling tool in operations research. It has been widely used in business management
to minimize the cost of production systems, in transportation to optimize the traffic flow, in
telecommunication for routing problems, in microelectronics to optimize the cost of embedded
HW/SW systems, in the embedded software engineering for scheduling and allocation problems
and in a lot of other engineering and management fields. If there exist some points in the solution
space where the objective function has the largest value, linear programming methods guarantee
that at least one of them will be found. The description of a problem through linear programs
consists of a linear function CTx, e.g. the objective function, that is to be maximized, the problem
constraints in the form Ax≤ B and a set of non-negative variables x ≥ 0, where x is a vector
of variables (representing for example the components of the cost function), C (representing for
example the weights of the components of the cost function) and B (the constraints) are vectors
of coefficients and A is a matrix of coefficients, e.g. a distance matrix. A linear program is
usually expressed in matrix form and then becomes: Maximize CTx subject to Ax≤ B and x≥ 0.
The most usual form of the linear programming method known in the partitioning of embedded
systems is based on Integer Linear Programs (ILP), e.g. [105]. ILPs can be exactly solved by
branch-and-bound algorithms. But the problems with ILPs include the difficulty to solve the
equations, the cost in time (exponential time-complexity) of ILP solutions and the difficulty to
model non-linear constraints. Because of the complexity of the problem we are solving, even if we
could find an exact solution, linear programming would not be practicable due to the expensive
computation time it would need (i.e. exponential runtime), the difficulty to model the constraints
as mathematical propositions and the loss of fidelity with the problem definition that will be

94 CHAPTER 9. THE PARTITIONING: STATE-OF-THE-ART

induced by the unavoidable assumptions. As the partitioning problems are generally NP-Complete
[34, 54, 106], heuristic algorithms are the best way to find good solutions in a reasonable amount
of time.

Heuristics attempt at finding optimal or nearly optimal solutions whereas no guarantee is given
on the optimality of the solution found. However, approximative methods, i.e. that find solu-
tions whose proximity to the optimum is provable, can be applied to complete heuristic methods.
Furthermore, problem-specific heuristics can use information about the problem both to acceler-
ate the partitioning and to approach the optimal solution. Following the approach used, we can
distinguish two groups of heuristics: Those using constructive techniques and those using parti-
tional techniques (e.g. iterative improvement techniques). Constructive partitioning techniques are
based on clustering techniques. Given a set of objects and a partitioning problem on these objects,
constructive partitioning techniques process by stepwise grouping these objects in order to achieve
a complete partition while partitional techniques determine all the clusters at once. Partitional
techniques usually process by relocating (iteratively) the objects across the clusters to optimize an
objective function defined either locally (on a subset of the objects) or globally (over all of the
objects). Partitional methods have advantages in applications involving large sets of objects for
which the construction of a dendrogram, i.e. a tree showing a sequence of clusterings where each
clustering is a partition of the set of objects, is computationally prohibitive. But in practice, parti-
tional algorithms are generally used to refine an existing partition. As they do this iteratively, they
are also called iterative improvement algorithms. Nevertheless, some hybrid algorithms exploiting
the positive features of both the constructive and the partitional methods have been presented
[102] but the results are obviously very poor, particularly concerning the time complexity of the
algorithms [73]. Most partitioning problems are solved using a combination of constructive and
iterative algorithms whereas constructive algorithms are used to generate the start partition that
will be refined iteratively. We also proceed in this way, i.e. we first construct a partition and then
we use an iterative improvement algorithm to ameliorate the quality of this partition.

Partitioning
Methods

Exact

Heuristic

Enumerative

LP

ILP

Random

Strategic

Constructive

Partitional

Hybrid

Agglomerative

Divisive

Enumerative

Move-Based
(K&L, Tabu search)

EA (GA, ESs, EP)

SA

Deterministic

Stochastic

MILP
Dynamic Programing
Constraint Programing

Random

Strategic

Figure 9.1: Taxonomy of the partitioning methods

9.2. PARTITIONING METHODS 95

9.2.2 Constructive partitioning techniques

The construction of a partition can be done by assigning randomly each object to a part of the
partition (random assignment) or by clustering the input objects using closeness (or distance)
measures. Because random assignment methods are easy to implement and economical in com-
putation time, they are used essentially to build the start partitions for improvement algorithms,
i.e. partitions that will be refined. But, as the performance of the refinement procedures depend
on the quality of the start partition, inputting randomly constructed partitions can significantly
damage the quality of the end-partition as well as the performance of the partitioning procedure
itself. In fact, random assignment methods are characterized by the unpredictable quality of their
solutions. Furthermore, they can completely destroy the connectivity of the system specification.
Because of these shortcomings and the fact that they do not guarantee any quality for the result,
random assignment methods will not be considered in this work.

Given a system of closeness patterns on a set of objects, clustering algorithms can classify
these objects following the values of their closeness measures to each other. Depending on the
configuration of the problem to be solved through a clustering algorithm, we can process hierarchi-
cally either with an agglomerative (bottom-up) or with a divisive (top-down) clustering. Divisive
partitioning algorithms follow a top-down splitting method. They start with all the objects in a
single cluster and successively split this cluster into smaller ones as desired or until each object falls
in one cluster. Divisive methods have been rarely applied to solve real-life partitioning problems.
A divisive clustering algorithm is developed in [127]. It exploits the minimal spanning tree (MST)
of the input set, i.e. the MST is constructed and the clusters are generated by deleting the edges
with the largest lengths. Even though the time and space complexities of divisive algorithms are
typically lower than those of agglomerative algorithms, a typical divisive algorithm works well only
on object sets containing non-isotropic clusters, i.e. containing well-separated, chain-like or con-
centric clusters, whereas an agglomerative algorithm equally accommodates with object sets having
isotropic distribution, i.e. with uniformly or orderless distributed objects. Consequently, divisive
partitioning algorithms are inadequate for our problem since AES functional models generally have
heterogeneous unordered distributed components.

Agglomerative clustering algorithms follow the opposite strategy of the divisive algorithms,
i.e. they follow a bottom-up merging strategy. Agglomerative clustering algorithms build clusters
by progressively merging the previously established clusters. They start with each object being a
separate cluster itself, and successively merge them according to a closeness measurement until each
object is in a cluster or any other desired configuration is reached. The steps of an agglomerative
clustering algorithm can be roughly summarized as follows:

1. Consider each object as a cluster

2. REPEAT UNTIL a termination criterion is met

3. Merge the two closest clusters

4. Determine the new closeness values

Such an algorithm has been used in [116]. A problem accompanying the use of agglomerative
clustering methods is the definition of the termination criterion. Defining the condition to stop
the clustering in a way that the solution is optimal is a delicate issue that can easily turn to be a
drawback for the algorithm. In fact, a combinatorial search of the set of all possible solutions to
discover an optimum value of a termination criterion is clearly computationally extremely prohibitive
and thus unattractive. Generally, although this issue is extremely relevant for the quality of the
partition, its definition is generally left up to the user. Other weaknesses of agglomerative clustering
methods include their poor time (at least O

(

n2 logn
)

) and their space complexity O
(

n2
)

, where n
is the total number of input objects. A good solution to these problems is provided if the number
of the output clusters is known. If this is given, the problem resumes to a N-way clustering. The
functioning of N-way clustering algorithms can be roughly outlined as follows:

96 CHAPTER 9. THE PARTITIONING: STATE-OF-THE-ART

1. Choose (or given) the number N of output clusters

2. Generate N clusters and determine their centers

3. REPEAT UNTIL each object is assigned to at least one of the N clusters

4. Assign each object to the nearest cluster

5. Compute the new closeness values between the clusters and the remaining objects

N-way partitioning algorithms are popular because they are easy to implement, and their time
complexity can be reduced to O(n) where n is the number of objects. In the definition of our
problem, we avoid to suppose that we know the number of devices that will be installed in the
system to execute the functionalities that are specified in a given FN model. Setting the number of
devices a priori can lead either to computation surcharges in the devices with negative consequences
on the inter-device communication or to underutilized devices. To stay close with reality, it will
be rather assumed that we know the capacity of the available devices and we can determine the
amount of resources that is reserved for future enhancements of the system’s functionality. The
objective is then to use the least possible number of devices so that the system functioning and the
reserve resource (i.e. distributed on the devices) are guaranteed and the frames usage is minimal.

If the number of output clusters is not given within the definition of the problem, a clustering
approach that is based on the quality threshold (QT) can be used as demonstrated in [98]. The
QT approach can be roughly summarized as follows:

1. Choose the maximum size and a candidate object for a cluster

2. Build the cluster by including the closest object, the next closest object, and so on, until the
size of the cluster meets the threshold

3. Save the candidate cluster and repeat with the remaining objects

The main advantages of these algorithms include the ability to divide the set of the objects into
a large number of partitions without augmenting the runtime. This corresponds to the objective
of the partitioning of AES as we stated above. Obviously QT algorithms are adequate for solving
our problem. We have developed a partitioning algorithm based on the QT scheme to build a
partition of CDFM models. Unfortunately, the quality of the partitions built with QT algorithms
is not always good. For illustration, when partitioning the functional specification of a system, the
last parts tend to be disconnected. QT algorithms also tend to be sensitive to the choice of the
beginning cluster but since they are quite fast, one can run the algorithm with different starting
points and simply choose the best result. However, these problems are due to the fact that QT
algorithms, like all the preceding agglomerative algorithms, have a local view on the system. A
clustering method that will take a global view on the closeness landscape of all the components of
the system will obviously produce better results. An important class of clustering techniques that
take advantage from a global view on the set of clustering objects use spectral methods.

The spectral approach for solving the partitioning problem uses global information about the
set of objects that must be clustered by analyzing the spectrum of a matrix representing the
relationships between these objects before making assignment decisions. Spectral partitioning
methods are based on the use of eigenvectors of a graph adjacency, laplacian, or any other matrix
representation which captures the properties of the graph to construct a geometric representation
of its nodes (e.g., linear ordering) which are subsequently (heuristically) partitioned. The general
flow of a spectral partitioner is as follows:

1. Compute A = Adjacency matrix and D = Degree matrix of the graph G

2. Compute the second smallest eigenvalue λ (L) of L = D−A, where L is the Laplacian of G

3. Compute x, the real valued eigenvector associated with λ (L)

9.2. PARTITIONING METHODS 97

4. Map x into a heuristic partition of G

Spectral partitioning methods might potentially give a qualitatively better result than standard
agglomerative clustering algorithms [20] which rely on local information (like the one we used
before). Further advantages of spectral partitioning methods over agglomerative methods include
their stability and their scalability. The stability of spectral partitioning methods is provided by
their stability, i.e. their performance is predictable, as there is no need of resorting to multiple
solutions derived from random starting points. The scalability is provided as the quality of the
solutions found with spectral partitioning methods is maintained as the problem size increases. This
is especially important for large graphs as sub-optimality of iterative improvement-based heuristics
can affect the partitioning adversely. Spectral methods have been proved to be extremely useful for
computing good minimum and ratio cuts of graph bi-partitioning problems [64]. Other successful
applications of spectral methods include the geometrical as well as the temporal placement of
computation modules on hardware layouts of FPGAs [29]. But these problems are very different
from the one we are solving here:

• Firstly, because of the real formulation of the partitioning problem. While most of the
known approaches have applied spectral methods on two-way partitioning problems, we are
dealing with a multi-cluster partitioning problem. The multi-cluster partitioning, as needed
for example for the placement of modules on FPGAs, is solved by means of hierarchical
bi-partitioning with the objective of obtaining sized-balanced parts. Load balancing is not in
our objective.

• Secondly, because of the input model, i.e. while the direction of the communication between
two nodes of the graph is of high relevance for us, these problems totally mask the direction
in which the data is communicated on an edge.

• Thirdly, because of the different natures of the objective functions, i.e. number of messages
vs. mostly the number of edges in the cut set. In most applications, the objective is to
minimize the number of cut edges combined with a given cluster size balance requirement
or when the graph is weighted, the problem is formulated as to minimize the sum of the
weights of the edges in the cut.

We aim in contrast at minimizing a particular packing of the objects in the cut whereas the
clusters might be of very different sizes. However, spectral partitioning algorithms also can underlie
some drawbacks the heaviest of which is e.g. their excessive computation needs in terms of runtime.
Nevertheless, it is our interest to make a profit from the advantages of spectral methods if there
is a relationship between the spectral properties and the partitioning properties of CDFM models.
Hoping to obtain high quality, stable and scalable partitioning solutions, we have investigated the
ability of spectral methods for computing good solutions in our context and then we applied spectral
methods for the clustering of CDFM models as another constructive partitioning algorithm.

In conclusion, clustering algorithms are supposed to optimize an objective function, but this
is very difficult for certain reasons including the fact that they do not support back-tracking, i.e.
they generally never undo an assignment decision. The reason for this is obviously the overhead in
computation cost that will occur on the algorithm. In some cases, the objective function cannot be
precisely apprehended by a clustering algorithm. Iterative improvement algorithms are then used
to improve the quality of the partitions built with clustering algorithms.

9.2.3 Iterative improvement techniques

Iterative refinement algorithms process by successive transformations of an existing partition. They
begin with a possible solution, i.e. a complete partition. This initial solution is iteratively modified
and evaluated with the objective function whereas each step of the partitioning produces a valid
partition. An iterative improvement partitioning algorithm can be lightly formulated like a proce-
dure which inputs a partition P and returns a partition P′ such that: Cost(P′) ≥Cost(P). To find

98 CHAPTER 9. THE PARTITIONING: STATE-OF-THE-ART

the next best solution, iterative improvement partitioning algorithms perform different variants of
neighborhood search. The neighborhood of a solution s is a set of solutions that can be reached
from sby a simple operation (e.g. move). A neighborhood search procedure operates by recursively
comparing the actual solution with the surrounding solutions and then sets the best solution as the
actual solution. The general flow of a neighborhood search procedure of an iterative improvement
algorithm can be summarized as follows:

1. Start with Current-Solution = Initial-Solution

2. Until Current-Solution = Goal-Solution OR there is no change in Current-Solution

3. Use the evaluation function to assign a value to each neighbor of the current solution

4. If one of the neighbors has a better value than the current Current-Solution then set this
neighbor to be the new Current-Solution

Iterative improvement partitioning algorithms can be classified following the search technique
that they use. Some use deterministic while others use non-deterministic search techniques. Deter-
ministic search techniques guarantee an optimal partition by performing the exhaustive enumeration
of the solution space. A deterministic search technique is very critical for the performance of the
related algorithm. A non-deterministic search technique generates a near-optimal partition but
reasonably quickly. Some non-deterministic search techniques can guarantee asymptotic conver-
gence to the optimal partition. Very popular examples of iterative improvement techniques based
on non-deterministic search techniques include the Kernighan & Lin (K&L) algorithm, the simu-
lated annealing (SA) and the evolutionary algorithms (EA). Evolutionary approaches and simulated
annealing use stochastic search while the K&L uses more goal-oriented, strategic search methods.
In the strict meaning of the term, only K&L processes an iterative improvement. SA and EA
temporarily accept solutions that are not better than the actual solution in order to escape from
local minima. This feature is called hill-climbing.

Evolutionary approaches follow the Darwin theory of natural evolution based on ”the survival
of the fittest” to find the globally optimal partition. They operate by applying evolutionary op-
erators on a given population of candidate solutions that are coded as chromosomes. A fitness
function determines the capability of the chromosomes to survive into the next generation. Each
evolutionary operator transforms one or more input chromosomes (called parents) into one or more
output chromosomes (called offspring). The most commonly used evolutionary operators are the
selection, the recombination and the mutation. An evolutionary algorithm proceeds as follows:

1. Choose a random population of solutions, i.e. of complete partitions

2. Assign a fitness value to each solution

3. REPEAT UNTIL some termination condition is satisfied

4. Use the evolutionary operator to generate the population of the next generation of solutions

5. Evaluate the fitness values of these solutions

Between the algorithms making use of evolutionary techniques, genetic algorithms (GA) have
been the most used in clustering problems [59, 70, 71]. In GAs, the space of all the possible
solutions (chromosomes) is mapped onto a set of finite strings over a finite alphabet and hence
each solution is represented by an array or a string of values like in genetics. Generally the solutions
are represented by binary digit-coded strings. The algorithm starts with an initial population of
solutions that will evolve over generations. A probabilistic selection operator is used to identify the
fittest solutions, i.e. those that will be promoted for the next generation. The selection probability
(i.e. the fitness of a solution) is set proportional to the selection representation scheme, e.g. the
dimension of the space in the roulette wheel. In GAs, the most used recombination operator is the

9.2. PARTITIONING METHODS 99

crossover. A crossover inputs a pair of chromosomes (parents), exchanges genes between them
and generates a new pair of chromosomes (called children, descendants or offspring). A mutation
operator that enables small random perturbations on a given single solution is used in a way that
makes sure that all the parts of the search space will be explored. Doing so, the recombination
(i.e. the crossover) and the mutation operators provide hill-climbing behavior to GAs, since they
can produce new solutions that are completely different from the current ones. Thus in contrast
with the clustering methods that perform a localized search, i.e. the solution obtained at the next
iteration of the procedure is in the vicinity of the current solution, GAs perform a globalized search
for solutions. Some partitioning solutions using GAs have been presented in the embedded system
domain, e.g. [18,111] for min-cut partitioning and [31] for ratio-cut bisection problems. Designing
the selection scheme, the crossover and the mutation operators of a GA is critical for its quality.
Random selection schemes can dramatically disconnect the graph, e.g. the roulette wheel that is
commonly used in GAs to select the parent solutions. Thereto, it is obvious that GAs are extremely
sensitive to the selection of the parameters of the algorithms (size of the population, crossover
and mutation probabilities, etc.). Furthermore, as GAs do not support the direct representation
of the attributes of the solutions as real-valued vectors, the real values of these attributes will be
discretized by the commonly used binary coding and this may disrupt the search space because of
the non-linear structure of binary codes.

Simulated annealing [87] is a well-known optimization technique that emulates the physical
annealing process. It is used as an alternative to greedy approaches which are easily trapped in
local optima or to recover from solutions which correspond to local optima of the cost function.
Given the initial solution, a SA algorithm randomly picks a neighbor solution and moves to it for
the next iteration if it is better than the current solution. If not, the SA algorithm can accept
the new solution for the next iteration with a probability e

−∆
T (i.e. the Bolzmann acceptance rule).

Otherwise it will retain the current solution and continue the search. The probability of acceptance
is governed by the parameter T called temperature (in analogy with the annealing in metals) which
is varied to guide the optimization, i.e. the exploration of the solution space. For SA to work, the
starting temperature (for the first iteration), the final temperature, the cooling schedule as well as
the cost function must be defined. ∆ is the cost of the new solution minus the cost of the current
solution. The cooling schedule states the interval by which T varies. The general scheme of SA is
as follows:

1. Select an initial partition P0 and select the values for the control parameters, i.e. the initial
and the final temperatures T0 and Tf

2. REPEAT UNTIL T0 ≤ Tf or the optimal solution is found

3. REPEAT this step for a fixed number of iterations

4. Select randomly a neighbor P1 of P0 and compute ∆; If ∆ ≤ 0 then replace P0 with P1 with a
temperature-dependent probability e

−∆
T ; Else replace P0 with P1

5. Reduce the value of T0, i.e. T0 = cT0, where c is a predetermined constant (sometimes the
number of iterations of the preceding step)

There are some applications of SA in the embedded system design, particularly for HW/SW
partitioning [42,43]. In theories [65,91], SA can always find the global optimal solution [17]. But
the definition of the control parameters of the algorithm, i.e. the start and the final values for the
temperature and the temperature (cooling) schedule, is very critical for the performance of SA. To
have the chance to reach the optimal solution, the temperature must be decreased very slowly from
an iteration to the following one and the start and final temperatures must be optimally chosen.
Like GAs, SAs are very expensive and make use of random choices of the candidate solutions. It
is reported in [78] that these approaches can be competitive on uniform and geometric random
graphs. But multiple runs of K&L may be preferable for sparse graphs that have a local structure.
CDFM models are such graphs.

100 CHAPTER 9. THE PARTITIONING: STATE-OF-THE-ART

According to [97], K&L-based improvement heuristics are the main robust methods for graph
partitioning that generate satisfactory results. Presented by Kernighan and Lin [86] to solve graph
bi-partitioning problems, the K&L algorithm was extended in [49] to run in linear time and has
been continuously improved to enhance the performance both in terms of the quality of the results
and in terms of its complexity. The K&L-algorithm relies on the definition of the cut of a graph
bisection as well as the notion of the gain of moving a vertex from one side of the bisection to the
other side. For this reason, the K&L algorithm is also called group migration or min-cut algorithm.
Given a graph, the cut is defined as the sum of all the edges crossing between the parts. By moving
a node from one part into the other, the number of crossing edges is modified and the value of the
cut changes. If the gain of moving a vertex is positive, then operating that move will reduce the
total cost of the cut of the partition. The K&L-algorithm allows a series of moves which reduce
the cut. The best advantage of the K&L heuristic is its simple but yet powerful control strategy,
which can overcome many local minima without using excessive moves. However, K&L algorithms
are sensitive to the selection of the initial partition and they may converge to a local minimum of
the cost function if the initial partition is not properly chosen. In order to maintain the sizes of
the parts, two nodes are swapped rather than moving a single node. During one iteration of the
K&L algorithm, the nodes that are moved from one side of the bisection are locked on the other
side. The cost of all possible swaps of unlocked nodes is computed and the nodes with the best
gain (greatest decrease or less increase of the cut) are swapped. If all the nodes are locked, the
current partition is set to be the best partition if it improves the cost of the cut. One iteration
of the K&L-algorithm is called a pass. After one pass, all the nodes are unlocked and a new pass
is executed. The iteration terminates if a pass produces no further improvement on the cut. The
basic K&L algorithm can be summarized as follows:

Given an edge-weighted graph G(V,E) and a partition G = A∪B with |A| = |B|, the goal is to
minimize the cut set of the partition

1. REPEAT UNTIL there is no more improvement on the cost of the cut

2. Find equal-sized subsets X in A and Y in B, such that swapping X with Y reduces the total
cost of edges between A and B

3. If the cost of the new partition is less than the cost of the old one, then consider the new
partition as the actual partition and restart

The following definitions are used: Let E(a) be the external cost of the graph’s node a and
I(a) the internal cost of the node a. E(a) is the part of the total cost of the partition that is due
to the fact that a is in the part that actually contains it. I(a) is the cost that would arise if a
was moved into the other part. Consider D(a) = E(a)− I(a) the cost difference of a. D(a) is the
difference that would occur on the cost of the partition if a is moved.

The gain of switching two components between two parts is:

Gain(a,b) = D(a)+D(b)−2∗ω(a,b);

Gain(a,b) measures the improvement in the cost of the partition that would result from swap-
ping a and b.

If a and b are swept, then the new cost will be:

NewCost= Cost−Gain(a,b) and the values of D will become:

NewD(a′) = D(a′)+2∗ω(a′,a)−2∗ω(a′,b) for all a′ in A, a 6= a′

NewD(b′) = D(b′)+2∗ω(b′,b)−2∗ω(b′,a) for all b′ in B, b 6= b′

A good adaptation of the K&L algorithm, i.e. one with judiciously defined move operation,
well-adapted definition of the gain and of the cost difference related with the nodes moving will
certainly be the solution to find the best output to our problem.

9.3. CONCLUSION 101

9.3 Conclusion

The partitioning will be done by building a partition that will be refined. Although QT algorithms
do not guarantee the best partition, they are good enough for building the start partition as the
number of output clusters is not given. In this context, a QT-based partitioning algorithm is the
best solution as it enables the flexible determination of the number of clusters. Otherwise, spectral
methods that take advantage from their global view on the system and enable the conservation
of the system connectivity can provide better start partitions. But they are computationally too
expensive for our problem and furthermore, as spectral methods are not really well-featured for
n-way partitioning problems by which the resulting clusters might have very different sizes, the
effort of using them will obviously not be profitable for solving our problem.

EA, SA and K&L are the candidate solutions for the improvement of a partition. EA and SA
randomly search the solution within the solution space and try to refine it stochastically. This
approach supposes that the number of clusters is known beforehand. This is unfortunately not
the case in the problem we are solving. However, although the most implementations of the K&L
are applied on bi-partitioning problems, we think that the K&L algorithm provides a supportable
starting point for developing an improvement algorithm for our problem. This necessitates a
good adaptation of the move operations of the K&L to the context of our problem. But the major
problem with the K&L algorithm, i.e. its sensitivity to the initial partition, will remain a challenging
issue that must also be managed. In fact, the K&L algorithm may converge to a local minimum
of the cost function if the initial partition is not properly chosen. It is thus important both to find
the best initial partition and to design the adequate K&L algorithm for its improvement. The first
of these two issues is the purpose of the next chapter. The improvement algorithm will be defined
in chapter 11.

102 CHAPTER 9. THE PARTITIONING: STATE-OF-THE-ART

Chapter 10

The partitioning algorithms

In this chapter we present the partitioning algorithms for solving the problem defined in this work. We
firstly specify our partitioning strategy. Then, we describe the algorithms forthe pre-clustering and
the clustering. To make the algorithms understandable, we profoundly discuss the conditions ruling
the pre-clustering as well as the definition of the closeness metrics and the choice of the closeness
function. The clustering is done by a QT algorithm that supports the relationships that are induced in
the input models by the constraints and the strategic orientations of the design.

10.1 The partitioning strategy

10.1.1 A three-step process

Given a CDFM model G, we solve the partitioning problem in three steps as follows:

1. We first merge the nodes of G that need each other and those whose separation would
obviously not produce a good solution. This is the pre-clustering.

2. Based on the result of the pre-clustering, we build the clusters that represent the logical
devices, i.e. that will be implemented as the platform devices.

3. The third step applies an iterative improvement by means of a K&L algorithm on the result
of the second step.

Figure 10.1 illustrates the three-step partitioning process.

Pre-Clustering

Input: CDFM model

Clustering

Improvement

Output: Logical
devices

Figure 10.1: The partitioning process

The first step of the partitioning operates a pre-clustering of the nodes of the input model.
During this operation, we merge the nodes of the input model that must run on the same device.

103

104 CHAPTER 10. THE PARTITIONING ALGORITHMS

To do that, we solve the relationships that induce a dependency between the nodes of the input
CDFM model. These relationships are specified by means of needs and excludes relations between
the nodes and between the tokens of the input model. As needs and excludes relations are formally
defined, they can be treated automatically as well as manually. The result of this operation is a
graph of atomic modules (called super-modules) that will be assigned each unbroken to a device
of the system and a set of messages. At the end of this operation, there are no further needs
relations in the graph of super-modules.

The second step of the partitioning is a constraints-oriented clustering. We operate a bottom-
up clustering on the result of the first step of the partitioning. In this operation, we progressively
merge the modules that are related according to the strength of their relation. The result of this
step of the partitioning is a graph of clusters, each representing a logical device of the system. As
we assume that the number of devices that will be implemented on the platform is not pre-defined,
we have two possibilities to terminate the clustering: Firstly, the size of each device (upper bound
capacity) is known. Secondly, the maximum number of messages allocated to a device is known.
These are the most probable constellations of the architectural design of AES.

The third step of the partitioning deals with the improvement of the result of the second step.
Two super modules that are assigned to different devices will communicate by passing signals
through the bus. A frame can contain several signals produced by several super modules that
are assigned to the same device (cf. frames multiplexing in section 11.1.4). At this step of the
partitioning process, we assign the signals to the frames, then we optimize progressively these
assignments. Here, we can redefine the partitioning problem as follows:

Problem formulation 10.1 (Improvement). : Assuming that the functioning of the system is guar-
anteed by its actual configuration under the given constraints, what is thegain in terms of frames
economy if we change this architecture?

10.1.2 Definitions of terms

We now introduce the following terms that will be used to describe the partitioning.

Definition 10.1(Configuration). At each time in the partitioning process, the configuration of aCDFM
model is the actual composition of its nodes and the characteristics of its edges. A configuration is
changed by a clustering operation.

Definition 10.2 (Partition). A partition P of a CDFM model is a configuration{P1,P2, . . . ,Pn} of the
given CDFM model where each clusterPi represents the functionality of a device. A partition is a
graph of clusters.

Definition 10.3 (Part). Each nodePi of a partitionP is called a part ofP. A part is a cluster of
components that represents a logical device. Per analogy with the real system, we may also say part of
the system or device.

Definition 10.4 (Clustering). The clustering is the process of building hierarchical modules (i.e. clus-
ters) from the nodes of aCDFM model.

Definition 10.5 (Partitioning). The partitioning is the process of building a partition, i.e. the process
of grouping the system’s components (i.e. the nodes of aCDFM model) to build parts.

Definition 10.6 (Membership). A modulem1 is a member of a bigger modulem2 if m1 is embedded
in m2, i.e. the functionality ofm1 is a part of the functionality ofm2.
The notationm2+m1 means thatm2 andm1 become members of the same cluster.
The notationm2-m1 means thatm1 looses its membership inm2.
A token Tk

i j is a member of a messageMq
i if the significance ofMq

i looses its plenitude whenTk
i j is

extracted fromMq
i .

Definition 10.7(Sub-module). A modulem1 is a sub-module of a modulem2 if m1 is a member ofm2.

10.2. THE PRE-CLUSTERING 105

10.1.3 The main procedure

The main procedure described in algorithm 1 implements the three-step partitioning process. It
inputs a CDFM model G and outputs the final configuration of the logical architecture of the
system, i.e. the best partition.

Algorithm 1 PROCEDURE Partitioning(G: CDFM)
1: SuperModules:= Pre-Clustering(G);//* Builds the graph of super-modules by solving needs and

excludes relationships
2: InitialConfig:= Clustering(SuperModules);//* Partitions the graph of super-modules and returns

the initial configuration of the system
3: FinalConfig:= Improvement(InitialConfig);//* Improves the initial configuration of the system and

returns the final configuration, i.e. the best partition
4: return FinalConfig;//* Final definition of the logical devices and the frames

10.2 The pre-clustering

10.2.1 Definition

The procedure ”Pre-clustering” must find the pairs of nodes (vi ,v j) of the input CDFM model G
that must be merged and build the super-modules with them. We first introduce the following
rules to solving the needs and the excludes relations.

Definition 10.8(needsandexcludes). For each two nodesvi andv j , the notations ”vi needsv j ” and ”vi

excludesv j ” mean that there is a needs resp. an excludes relation betweenvi andv j while needs(vi ,v j)
andexcludes(vi ,v j) mean that the two nodes can effectively be clutched resp. must be separated. Thus
for each two nodesvi andv j of aCDFM model,

• IF needs(vi ,v j) THEN vi andv j must run on the same device and thus must be merged to form
a super-module.

• IF excludes(vi ,v j) THEN vi andv j may never run on the same device.

All the relations guiding the pre-clustering can be specified in terms of needs and excludes
relations between the nodes of G. The pre-clustering thus finally aims at merging the needs-related
components. Excludes relations will be treated later in the partitioning process, always when
necessary. The following properties of the needs and excludes relationships state the rules that
guide the pre-clustering. Note that these properties are identical for both the nodes and the tokens.

The needs relation is:

• reflexive, i.e. for each vi , vi needs vi AND needs(vi ,vi).

• transitive, i.e. IF needs(vi ,v j) AND needs(v j ,vk) THEN needs(vi ,vk).
Similarly, IF vi needs v j AND v j needs vk THEN vi needs vk.

• not symmetric (per agreement), i.e. IF needs(vi ,v j) THEN not obligatorily needs(v j ,vi).
Similarly, IF vi needs v j THEN not obligatory v j needs vi

and the excludes relation is:

• not reflexive, i.e. for each vi , ¬(vi excludes v j) AND ¬excludes(vi ,vi).

• not transitive, i.e. IF excludes(vi ,v j) AND excludes(v j ,vk) THEN not obligatorily excludes(vi ,vk).
Similarly, IF vi excludes v j AND v j excludes vk THEN not necessarily vi excludes vk.

106 CHAPTER 10. THE PARTITIONING ALGORITHMS

• but symmetric (per definition), i.e. IF excludes(vi ,v j) THEN excludes(v j ,vi).
Also, IF vi excludes v j THEN v j excludes vi .

The needs and excludes relations between the tokens induce some needs and excludes rela-
tionships between the nodes producing these tokens. Given two tokens Tk

il and Tn
jm ∈ Ω,

• IF Tk
il needs Tn

jm THEN vi needs v j

• But IF Tk
il excludes Tn

jm THEN vi and v j don’t care.

However, when solving the needs and excludes relations, some conflicts can arise, for example,
when a single node is involved in several needs and excludes relationships or when the relationships
between the nodes are conflicting with the relations between the tokens. In the following, we
examine these conflicting situations. The needs relations are intended to augment the quality of
the partition (i.e. performance and cost). Passing over a needs relation can reduce the chance to
find the optimal system architecture, but it will not be dramatic for the functioning of the system.
In contrast, ignoring an excludes relation can cause serious faults in the system’s functioning. Since
our primary objective is to build well-functioning systems, we agree that the excludes relationship
is stronger than the needs relationship, i.e. for each two nodes vi and v j of G, given two tokens
Tk

il and Tn
jm ∈ Ω,

• IF vi needs v j AND vi excludes v j THEN excludes(vi ,v j).

• IF vi needs v j AND v j excludes vi THEN excludes(vi ,v j).

• IF a sub-module of vi excludes a sub-module of v j THEN excludes(vi ,v j) (and consequently
excludes(v j ,vi)).

• IF needs(Tk
il , Tn

jm) THEN vi needs v j AND (Tk
il and Tn

jm) build a message.

• But IF excludes(Tk
il , Tn

jm) THEN vi and v j don’t care.

Proposition 10.1(needs). needs(vi ,v j) == TRUE if and only if there is at least one sub-module of
vi that needs a sub-module ofv j AND there is no sub-module ofvi that excludes a sub-module ofv j

AND no sub-module ofv j excludes a sub-module ofvi .

10.2.2 The pre-clustering algorithm

The procedure ”Pre-Clustering” finally runs the following algorithm:
In procedure 2, the instruction ”Actualize the edges connecting the new SuperModules” deter-

mines the connections of the new super modules, i.e. the edges connecting a new super module
with any other node and the corresponding weights (see definition 10.11 and figure 10.2). The
following definitions specify the process of actualizing the edges of the graph of super modules.

Definition 10.9 (Neighborhood of a node). : Given a nodevi of G, the neighborhood ofvi , called
Neighborhood(vi) is the set of the nodes that are directly related withvi , i.e. Neighborhood(vi) = set of
the nodesv j , so that there is an edgeei j in G.

Definition 10.10(Neighborhood of a super module). : Given a super modulevi with sub-modulesvik,
k∈ N, Neighborhood(vi) =

⋃

k Neighborhood(vik)

Definition 10.11 (Weight of a super edge). : If vi is a super module with sub-modulesvik, then for
eachv j ∈ Neighborhood(vi),

Ti j =
⋃

k Tik j andTji =
⋃

k Tjik

thusei j .T =
⋃

k eik j .T

10.3. THE CLUSTERING 107

Algorithm 2 PROCEDURE Pre-Clustering(G: CDFM)
1: nbModules :=|SetO f SuperModules|; //* SetOfSuperModules is the set of the nodes of G
2: k:= nbModules + 1;//* temporary index for the new modules
3: for all vi , v j in SetOfSuperModulesdo
4: if needs(vi ,v j) then
5: vk := vi + v j ; //* merge them into a new hierarchical module vk following property 10.1
6: SetOfSuperModules:= (SetOfSuperModules -vi - v j) ∪ vk;
7: nbModules:= nbModules - 1;
8: k:=k+1;
9: Actualize the edges connecting the new SuperModules;//* Super-edges following definition

10.11
10: end if
11: end for
12: Actualize the indexes of the SuperModules;//* Allocate the indexes from 1 to nbModules
13: return SuperModules;//* Graph of super-modules with actualized edges

(a) Modules and edges

v1

v2
v3

v4

v6

v7

v5

T1
15

T2
15

T1
25

T1
35

T2
36T1

36

T2
27T1

27 T3
27

T1
47

(b) A super module with the super-
edges

v1

v2
v3

v4

v6

v7

v5

T1
15

T2
15

T1
25

T1
35

T2
36T1

36

T2
27T1

27 T3
27T1

47

Figure 10.2: The super graph

10.3 The clustering

10.3.1 Closeness metrics

The procedure ”Clustering” implements the second step of the partitioning. It clusters the nodes
of the graph of super modules in order to build the logical devices. To do this, it merges closely
related modules in order to implement them on the same device. Concretely, the problem to solve
here is to find a clustering that minimizes the data exchange on the bus, i.e. the inter-clusters
communication, and that at the same time meets the design constraints and the other optimality
concerns such as maximizing the HW sharing, optimizing the grouping of the components following
the strategic requirements like the level of safety, the mission- or the business-criticality, the source
of procurement, the production issues, the potential level of reuse, the rhythm of changing, the
target of the procured service, etc. For instance, two modules will be closely-related if there is no
excludes relationship between them and they are related with each other in some way, for example
if:

• they can share resources (i.e. HW and frames),

• they have common accesses,

• they communicate with each other,

• they underlie a relation given by the strategic orientation of the design

In order to determine the closeness between two modules, all the involved closeness factors
must be quantified and combined with each other. The first step in solving this multi-objectives
optimization problem is to formalize the objectives. This step may yield a set of closeness functions.

108 CHAPTER 10. THE PARTITIONING ALGORITHMS

A closeness function is defined by a closeness metric that can measure and compare the strength of
a given relation between two modules. The higher the closeness between two modules, the closer
the two modules are related. The closeness metrics must thus reflect the closeness factors and the
objectives of the design.

The resource sharing metric: The potential that two modules have to share a given hardware
unit is often considered as a closeness factor in the design of embedded systems [116]. However,
a satisfactory HW (processing unit, e.g. ASIC) sharing metric cannot be extracted from our input
model because of its high resolution. Thereto, as the components of the HW devices of the platform
are not allocated, it will be particularly difficult to analyze the potentiality of two components to
share a given HW. Furthermore, the hardware sharing is obviously not useful in our case, since we
are concerned with the mapping of the modules on the logical devices (i.e. Partitioning 1) rather
than with the deployment of the tasks and processes (Partitioning 2). However, if known, the HW
sharing can be considered as a strategic decision that is taken before the partitioning, specified
in the input model, e.g. in the form of needs, and used in the pre-clustering to build the super
modules. Therefore, the HW sharing metric will certainly not induce any substantial benefit in the
quality of the partitioning (i.e. in the mapping).

The frames sharing metric: The frames sharing metric measures the potential of two modules
to share frames. The likelihood to share frames is determined by the number of tokens that are
produced in the same range of time by two modules. Modules that produce a high number of
tokens within the same range of time are more likely to share frames. Thus, following the frames
sharing metric, the higher the number of tokens produced within the same range of time, the closer
the producing modules are related. If vi .datesis the set of ranges of time within which the module
vi produces its tokens, the frames sharing metric can be defined as:

FrameSharing(vi ,v j) = |vi .dates∩v j .dates| (10.1)

The common accesses metric: Grouping two modules that have a great number of common
accesses would probably improve the quality of the communication by reducing the number of
frames needed for the inter-components communication. Assuming that each module is its own
neighbor, the common neighborhood of two modules vi and v j defines the number of modules that
access, i.e. exchange tokens with, both vi and v j . The common accesses metric is defined as:

CommonAccesses(vi ,v j) = |Neighborhood(vi)∩Neighborhood(v j)|

The communication metric: Grouping two modules that heavily communicate with each other
will obviously increase the performance of the communication. The communication metric mea-
sures the magnitude of the communication between two modules. This is determined by the
amount of data exchanged between the two modules. The simplest and most usual way to mea-
sure the communication between two modules is to count the number of bits exchanged between
them, i.e.

Communication(vi ,v j) = ∑k Tk
i j .res×Tk

i j . f req + ∑k Tk
ji .res×Tk

ji . f req.
In this case, the modules exchanging the highest number of bits are the closest. But, in

our case, two components that are assigned to different devices will communicate by exchanging
signals over the bus. The communication metric must measure the impact of the separation of two
modules on the occupation of the bus. This depends on the number of frames that are sent on the
bus and the length of each of them. Each short token (i.e. resolution≤ max f rameL) can fit into a
frame. A long token will be fragmented into the corresponding number of signals that can fit each
into a frame. Short frames occupy the bus differently, depending on their length. The following

10.3. THE CLUSTERING 109

example illustrates the expressiveness of this metric. Suppose four modules v1, v2, v3 and v4 of a
CDFM model. Within an activation time of the system, v1 exchanges a token of 20 bits 10 times
with v2 (interface e12), a token of 100 bits 3 times with v3 (interface e13) and a token of 112 bits
3 times with v4 (interface e14). Considering the number of bits exchanged, Communication(v1,v3)
= 100×3 = 300bits is greater than Communication(v1,v2) = 20×10 = 200bits, meaning that
v1 is closer to v3 than to v2. But considering the number of signals (assuming that max f rameL=
8 Bytes), e12 would produce 10 signals while e13 produces 2×3 = 6 signals, meaning that v1 is
closer to v2 than to v3.

These two conclusions are contradictory. But the number of signals produced by an interface
clearly better captures the impact of the merging or the separation of two modules on the bus
occupation than the number of bits exchanged between them. Now, e14 also produces 2×3 = 6
signals. But these signals are longer than the signals produced by the interface e13, what means
that the medium would be more occupied by e14 than by e13 and consequently v1 is closer to v4

than to v3, although both interfaces produce each 6 signals. Thus, the closeness of two modules
does not depend only on the number of signals produced by their interface, but also on the length
of the signals. However, the length of the signals makes the difference only when two interfaces
produce the same number of signals. To get a feeling of the impact caused by the length of a
signal on the load of the medium, suppose that the bit-time on a given medium is tb. The bit-time
is the latency resulting from the propagation of a bit on the medium, i.e. the diffusion time of
one bit. In a CAN network, the bit-time depends on the operating rate of the network and the
length of the bus. Note that the bit-time is different from the transmission time of a bit. The
latter is made up by the delay caused by the medium driver, the time spent in the CAN-controller
and the CAN-transceiver of the receiver device, and the diffusion time of the bit on the specific
actual medium. Since each frame contains the user data that is of variable length and a relatively
constant number (i.e. 47) of framing bits, we will consider in the following only the delay induced
by the user data for each frame. In a serial transmission method, the time that is necessary for the
diffusion of a signal s of length signalL (the framing bits are not included) will be approximately:

t(s) = signalL∗ tb

and the total medium occupation time induced by the throughput of an interface ei j is equal to:

t(ei j) = ∑s∈ei j
t(s)∗s. f req

Thus, the higher t(ei j), the closer the modules i and j. This formulation of the closeness results
again in the number of bits exchanged between two modules. However, it only makes sense if it is
applied on two comparable interfaces that produce the same number of signals.

In conclusion, the number of signals is by far the most efficient communication metric in a
CDFM model. The higher the number of signals produced by an interface, the closer the two
modules. When two interfaces produce the same number of signals, the communication load
induced by each of them can be used to make the difference. The combination of these two
metrics allows to fairly compare the magnitude of the communication between the modules of a
CDFM model. The communication metric can thus be defined as follows:

Communication(vi ,v j) = nbSignals(ei j)

= ∑
k

nbSignals(Tk
i j)+∑

k

nbSignals(Tk
ji)

To compare two interfaces that have the same number of signals,

Communication(vi ,v j) = t(ei j)

110 CHAPTER 10. THE PARTITIONING ALGORITHMS

The constraints and strategic relationships metric: The closeness factors between the modules
induced by the constraints on the communication and the strategic factors must also be quantified.
These factors tend to change constantly and depend on unpredictable events. They cannot be
accurately formalized. However, following their importance, these closeness factors can be classified
objectively. For example, if a constraint or a strategic factor induces strength relationships between
the modules, it can be modeled by the means of needs and excludes relations and then solved during
the pre-clustering. Else, the designer will quantify these factors following the level of accuracy of
their demand for achievement. In fact, the strategic closeness factors as well as the non-functional
constraints can be classified in ”must be” and different degrees of ”will be nice” closeness levels
whereas ”must be” relationships can be modeled as needs and excludes relations. The degree of
importance of a closeness factor in the ”will be nice” class can be easily fixed exactly as the level
of priority of a message or a task. In practice, an integer is sufficient to model such a ranking
as the level of nicety of these factors can be evaluated so that each becomes the desired weight
compared to the other factors. Thus, if a closeness factor is very important, it receives a high
closeness value that will prevent the partitioning algorithm to ignore it. Otherwise, it is assigned a
closeness value that can make the clustering difficult or easy depending on its level of nicety. We
can thus assign a tag to each relation induced by a strategic factor that corresponds to its level of
nicety. Each tag is an integer.

Relationships(vi ,v j) = ∑ tags(ei j)

= Tag(ei j)

10.3.2 The closeness function

Because the closeness factors are disparate and mostly competing, some trade-offs must be done.
Making trade-offs means that there is no unique solution. We thus have to find the best possible
closeness function or the closeness functions that are achieved by acceptable trade-offs between the
closeness factors and choose the optimal one. In this case, the optimality is not absolute, since the
optimal solution refers to a point in the set of the optimal solutions, i.e. a Pareto optimal point.
Anyway, deciding which trade-offs are acceptable might be subject to laborious investigations. The
most intuitive approaches to make trade-offs include the weighting of the factors, the hierarchical
optimization (also multilevel programming) method and the goal programming method. When
proceeding by weighting the factors, the closeness functions are positively weighted and a single
scalar closeness function is obtained by adding the weighted closeness functions. The weighting
coefficients are then varied to yield a set of feasible optima, e.g. the Pareto optimal set. It is up to
the user to choose appropriate weights to generate various points in the Pareto set. The weighting
strategy is a standard technique for solving multi-objective optimization problems. But, typically
for linear functions, the relationship between the weights and the Pareto curve is generally so that
a uniform spread of weights rarely produces a uniform spread of points in the Pareto set. Often,
all the points found are clustered in certain parts of the Pareto set with no point in the interesting
middle part of the set, providing thereby little insight into the shape of the trade-off curve. In
general, it is difficult for the user to find the optimal vector of weights. However, the closeness
factors of our problem show that we can probably achieve a very simple closeness function with a
combination of the closeness metrics.

The hierarchical optimization method aims at finding just one optimal point in opposition
to the entire Pareto set. In this method, the closeness factors are firstly ordered following their
importance. Each closeness function is then optimized individually, subject to a constraint that
does not allow its minimum to exceed a prescribed fraction of the minimum of the previous function.
The method proceeds recursively until all the objectives have been optimized on successively smaller
sets of possible optimal solutions. This method is also called multilevel programming. Multilevel
programming is a useful approach if the hierarchical order among the objectives is important and
the designer is not interested in the continuous trade-offs among the functions. However, the

10.3. THE CLUSTERING 111

problem becomes very tightly constrained in the lower steps down in the hierarchy and often
becomes numerically infeasible, so that the less important factors have no influence on the final
result. Our problem easily fits in this method as the closeness factors can be clearly ordered.
Furthermore, ignoring the less important closeness factors (resource sharing and common accesses
metrics) is not dramatic at all.

The goal programming method aims at minimizing the deviation from the target constraints. In
this approach, we optimize one factor while constraining the remaining factors to be less than the
given target values. The user chooses weighting factors to rank the goals in order of importance.
Finally a single objective function is written as the minimization of the deviations from the above
stated goals. This is perhaps the most well-known method for solving multi-objectives optimization
problems. However, it is not always easy to choose the appropriate goals and the good weights for
the constraints. For these reasons the goal programming method is not a viable solution for our
problem.

Consider the following function: Closeness(vi ,v j) = ∑k αkClosenessMetrick(vi ,v j) where the
weights αk correspond to the relative importance of the closeness factors (i.e. resource sharing,
frame sharing, common accesses, relationships, constraints, communication). We now examine
the weighting of the closeness factors: In a CAN network, the frames are owned by the sender, not
by the receiver. Each frame can have several receivers but only one sender. There is therefore no
obvious advantage to cluster the modules that have common accesses. In opposition, clustering
the modules that can share frames can be beneficial. But before doing this, it is necessary to reduce
the inter-device communication load as described in section 11.1.5. The reason of the uselessness
of the resource sharing metric have been discussed above. In the end, the communication metric
and the strategic relationships are the most useful metrics for the clustering. As the tags are
assigned to the relationships in a way that they correspond to the weight they need, we can define
the closeness function as follows:

Closeness(vi ,v j) = Communication(vi ,v j)+Relationships(vi ,v j)

= nbSignals(ei j)+Tag(ei j)

= ∑
k

nbSignals(Tk
i j)+∑

k

nbSignals(Tk
ji)+Tag(ei j)

10.3.3 The QT clustering algorithm

The clustering deals with the multi-objective optimization problem identified above. The problem
is to cluster the modules whose communication, if separated, might highly occupy the bus and to
conjointly satisfy the given strategic concerns of the design. The capacities of the available devices
are given. Using the above defined closeness function, we can easily extract the closeness values
from the input model (i.e. the CFDM graph of super modules) and display them for example in a
closeness matrix where excludes relations can be represented with a negative value, e.g. −1. The
procedure ”Clustering” finally runs the algorithm 4. It uses the procedure ”InitialConfiguration”
described in algorithm 3 to solve the excludes relations.

This clustering procedure assures that whenever two nodes underlie an excludes relation, they
will not be assigned to the same cluster. At the beginning, all the nodes that can definitely not
belong together are set as starting points for different clusters (in algorithm 3). These clusters
are then completed before checking if new clusters are necessary (in algorithm 4). The remaining
modules are thereafter clustered following an agglomerative clustering technique by which the
closest pairs are merged. After the completion of the initial clusters, the working principle of the
procedure can be resumed as: Whenever a cluster is initialized, grow it up until the given limit
before the construction of the next cluster begins. This is a QT algorithm. At each time, the
actual configuration of the partitioning is made of the remaining modules (i.e. super modules)
that are not yet assigned to a part and the parts that are not yet completed. A module can be
assigned to a part only if it is the closest for which the assignment is feasible. An assignment is

112 CHAPTER 10. THE PARTITIONING ALGORITHMS

Algorithm 3 PROCEDURE InitialConfiguration(SuperModules)
1: InitialConfig:= SuperModules;//* Initial set of parts
2: repeat
3: Traverse the set of super-modules;
4: until The first pair(vi ,v j) with excludes(vi ,v j) is found;
5: Setvi andv j to be 2 different initial partsPi andPj of the partition;
6: RestOfSuperModules:= SuperModules -

{

vi ,v j
}

;
7: InitialConfig:=RestOfSuperModules∪

{

Pi ,Pj
}

;
8: for all vl ∈ RestOfSuperModulesdo
9: for all elementsvm that are already in a starting partitiondo

10: if excludes(vl ,vm) then //* v l excludes all the existing parts
11: Setvl to be another initial partPl ;
12: RestOfSuperModules:= RestOfSuperModules -{vl};
13: InitialConfig:= InitialConfig∪ Pl ;
14: end if;
15: end for;
16: end for;
17: return InitialConfig; //* The graph of the first initial clusters and the remaining super modules

Algorithm 4 PROCEDURE Clustering(SuperModules)
1: Initialize CompletedParts:={}; //* Full clusters
2: Run InitialConfiguration(SuperModules);//* Outputs the initial parts and the remaining super

modules
3: repeat
4: Find the closest pair(vi ,Pj) that is not constrained by an excludes relationship;//* Best next

assignment
5: if Pj can aggregatevi then //* Content of Pj + vi ≤ Capacity of Pj
6: Assignvi to Pj and deletevi from RestOfSuperModules;
7: else//* Content of Pj + vi > Capacity of Pj but CAUTION! Pj is possibly not full
8: CompletedParts:= CompletedParts∪ Pj ;
9: InitialConfig:= InitialConfig -Pj ;

10: end if
11: until InitialConfig=={}; //* The initial parts found by ”InitialConfig” are all completed
12: repeat
13: if RestOfSuperModules6= {} then
14: Choose acentral elementvi of RestOfSuperModules and set it to be an initial partPi in

InitialConfig;
15: Assign the closest modulev j of RestOfSuperModules toPi , Then the next closest, and so on

UNTIL the size ofPi meets its limit;
16: CompletedParts:= CompletedParts∪ Pi ;
17: end if
18: until no remaining RestOfSuperModules;
19: InitialConfig:= CompletedParts;
20: return InitialConfig;

10.3. THE CLUSTERING 113

feasible if the behavior of the part and the behavior of the system are not compromised by the
assignment. Whenever a module is assigned to a part, the closeness matrix is actualized.

The QT clustering procedure terminates successfully if each module is assigned to at least
one part. It behaves greedily for both the initialization of the parts and their growing, i.e. no
backtracking. This one-shot, one-dead strategy leads perforce to a hard, i.e. exclusive partition-
ing. However, the procedure can be easily adapted to achieve fuzzy, overlapping and redundant
partitioning, for example by enabling the concerned modules to be assigned to the closest, the
next closest part and so on, or by correspondingly modifying the assignment process, for example
by marking instead of deleting a module from the set of free modules after its assignment to a
cluster. Redundant partitioning is needed for example if redundant implementation of some mod-
ules is required, e.g. for safety and reliability reasons. Modules that must be partitioned fuzzily
may have a degree of membership for each potential target cluster. The degree of membership is
for example a number between 0 and 1 indicating the probability that the module will be assigned
to the corresponding cluster. Fuzzy partitioning is a realistic partitioning option at the level of
product-lines design where the mappings might change from a product variant to another one
following some stochastic rules. These features can be easily implemented in an extended version
of our algorithm.

10.3.4 Conclusion

We follow a three-step partitioning process beginning with the pre-clustering that solves the needs
relationships and merges the needs-related components. Then, we use a powerful closeness function
to proceed the clustering of the nodes of the graph that has been produced by the pre-clustering.
The closeness of two given nodes of the super-graph is measured by a combination of the magnitude
of the communication with the relations induced by the constraints and the strategic relationships
between the modules of the system under design. At this step, we use a QT algorithm that is able
to solve the excludes relationships. The algorithm designed here assumes that the capacities of the
available devices are given. This information is used as the threshold. The clustering algorithm
always yields a feasible partition of the input CDFM model, i.e. in the sense of the capacities of
the allocated devices. But a further important question remains open: Is this the best algorithm
or at least is this a good one? This question will be answered in the next chapters.

114 CHAPTER 10. THE PARTITIONING ALGORITHMS

Chapter 11

Evaluating and improving a partition

The purpose of this chapter is to explain the method by which we improve a partition. Before improving
a partition, we must evaluate it. Then we process a perturbation of its configuration and we evaluate
the result. This is done a few times. At the end, we take the best solution. To achieve this process, we
must define the cost function, i.e. the metric by which the value of a partition willbe determined. As
the optimizing of the usage of the consumption of communication frames is the primary declared goal
of the partitioning process followed in this work, we begin this chapter by introducing the CAN pro-
tocol as the example for the frames-oriented communication protocols. Frames-oriented automotive
communication protocols include LIN, FlexRay, CAN, MOST, etc. The CANis the most prominent of
this class of communication protocols in the automotive domain. We hereby discuss the frames multi-
plexing techniques and their relations with the partitioning. This discussion alsoincludes an outline
of the requirements for the multiplexing of the frames, the constraints that govern the multiplexing and
the rules that guarantee a good partitioning in relation with the multiplexing of frames. Then, as the
cost function is defined as a bin packing problem, we revise the state-of-the-art in the resolution of bin
packing problems in order to find out if there exists a solution that is adequate for our problem. The
FFD that is investigated as the best solution that fits to our purpose is used to design the algorithm
implementing the cost function. We finally present our improvement algorithm. It is an adaption of the
K&L partitioning approach.

11.1 The CAN: A frame-oriented communication protocol

11.1.1 Organization of a CAN network

CAN (Control Area Network) is a frames-oriented event-triggered communication concept used in
automotive systems. The CAN uses a synchronous serial bit transmission method that affords the
economizing of the communication bandwidth, i.e. an information is transmitted as a sequence of
bits in a frame and when necessary, the synchronization between sender and receiver is done at
the beginning of the frame, rather than for each bit as it would be the case in an asynchronous
transmission mode. CAN is a multi-master network based on the carrier-sense multiple-access
method with collision detection (CSMA/CD). Thus, a CAN network enjoys a flat organization in
which all the nodes are equal in rights. Each node can place a frame on the medium as soon
as it is ready. When a collision is detected, the node sending the frame with the highest priority
wins the competition. The priority of a frame is coded in its identifier (ID). The lower the ID of
a frame, the higher its priority, i.e. the frame with the smallest ID value has the highest priority.
Collisions are resolved through a bitwise comparison of the IDs of the competing frames. Once
a node wins the competition, it takes the control of the medium and finishes to send its frame
before releasing. Furthermore, to each frame, a minimal time interval (i.e. the Inhibit-Time) can
be assigned between two successive medium accesses (see the CMS-CAN frame Specification) that
ensures that each frame will have the possibility to be placed on the medium independently of its
priority and no node will be able to confiscate the medium for too long time.

115

116 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

Each CAN frame that is set on the medium is broadcast in the whole network and can be
read by every device that is ready. Excepting some particular types of frames such as the network
management (NM) and the diagnosis frames for which the receiver’s address is introduced in the
data part of the frames, the addressees of a CAN frame, i.e. those that are interested in the
contents of the frame, are not coded in the frame. A device identifies a frame that is addressed
to it only if it knows the ID of this frame. This is, it has been preprogrammed to receive the
frame. CAN networks are generally implemented on linear two-wire buses, but the CAN protocol
can be implemented as star topologies, on optic fiber or on single-wire buses as actually done for
the comfort functions in AES (e.g. see section 1.1).

11.1.2 CAN frames

Following the CAN protocol, four classes of frames, also called telegrams, can be identified in a
CAN network:

• The data frames: These are the frames that transport the application data.

• The remote frames: These are the frames used for data request, i.e. they are used by a node
to require an information from another node.

• The error frames: These are the frames that can be used to notify a functioning error (e.g.
during sending or reading).

• The overload frames: These are the frames that can be used by a node to request an extra
delay between two consecutive frames.

The error frames are not used by the application, but rather by the basic software. Equally,
the overload frames are not used by the application, but rather by the CAN drivers. The remote
frames are formatted like the data frames as shown in figure 11.1 while the error and the overload
frames have different formats [46]. The most known CAN implementations (CAN-controllers) do
not use the overload and the remote frames. The spacing of successive frames is realized through
the placement of ”intermission” fields between two frames that impose a respectable inter-frame
space. Data requests are achieved with data frames. The data frames are thus the only interesting
frames for our purpose.

Depending on their role, there are the following types of data frames in a CAN system:

• Diagnosis frames

• Network management frames

• Data request frames

• Standard frames

The diagnosis frames are received by all the devices in the system including the diagnosis
gateways. The network management frames are received by all the networked devices. The data
request frames are received only by the devices that can send the requested information. The
standard frames are received only by the devices that need the sent information. In this work, we
are interested only in the transfer of the data (i.e. tokens) of the application software, thus in the
standard data frames that can be used to send or request application-relevant information.

11.1.3 Format of a standard CAN data frame

We can distinguish three versions of the CAN protocol: The low-level CAN (ISO 11519) running
up to 125 kbps, the so-called standard CAN (2.0A; ISO 11898:1993) and the extended CAN (2.0B;
ISO 11898:1995) both running up to 1Mbps. Following the CAN specification (ISO-WD 16845),

11.1. THE CAN: A FRAME-ORIENTED COMMUNICATION PROTOCOL 117

each frame has a unique identifier of 11 bits length in the ”Standard format” and 29 bits in the
so-called ”Extended format”. In this work, we consider the standard format (i.e. IDE-bit = 1).
The ID of a CAN frame, defined between 0 and 2047, clearly identifies the frame and the sender.
As shown in figure 11.1, a standard CAN data frame is made up by 1 bit SOF (Start Of the Frame)
+ 11 bits Identifier + 1 bit RTR (Remote Transmit Request) + 1 bit IDE (Identifier Extension
Bit) + 1 bit that is reserved for scalability + 4 bits for DLC (Data Length Code) + 0..8 bytes for
User Data + 15 bits CRC (Cyclic Redundancy Check) + 1 bit DEL (Delimiter) + 1 bit ACK + 1
bit again DEL + 7 bits EOF (End Of Frame) + 3++ bits IFS (Inter Frame Space). The IFS has
at least three bits that are part of the frame. All additional bits that can appear in the IFS are not
part of the frame, but they are solely considered as separation bits.

IFSEOF

 D
E

L

 A
C

K

 D
E

L

CRC User DataDLC
 R

es
.

 R
T

R

 Identifier

 S
O

F

1 11 1 2 0..8 bytes4 15 1 1 71 3++

Figure 11.1: Format of a standard CAN data frame

The CRC contains the information needed to check the safety of the transmission, i.e. the
integrity of the frame, that is confirmed by setting the ACK (acknowledge) bit. The CRC has a
1 bit delimiter (DEL). The IDE-bit, the scalability-bit and the DLC-bits build the Control Field of
a CAN frame. The IDE-bit indicates the format of the frame, i.e. value 1 for standard and 0 for
extended format. The RTR-bit is used to distinguish a data frame (RTR = 1, i.e. dominant) from
a remote frame (RTR = 0, i.e. recessive). All the bits used in a CAN frame around the user data
(e.g. the 47 heading and queue bits used in the best case, i.e. with the minimum -3 bits- EOF in
standard CAN frames) will be called in the remainder of this work ”Framing Bits”.

11.1.4 Frames multiplexing

In a CAN network, each piece of information exchanged between two functional components of the
system that are located on different devices is transported by a frame. After the partitioning, each
device is assigned a given set of data frames, i.e. frames IDs, that must be sufficient to transfer
the application’s data to the other devices. The application’s data of a device is the set of the
tokens that are emitted by the corresponding logical device. For a device Pi of a partition P, this
set is given by the operator Tokens(Pi) that extracts all the tokens for which the source is Pi , i.e.

Tokens(Pi) :=
{

Tk
i j , f or each device j; k∈ N

}

The name, the ID, the DLC and the contents of the user data part of each frame are statically
predefined. In complex systems like automotive systems, the number of tokens exchanged via the
network medium is generally more than the number of the frames that are available. For illustration,
less than half of the total possible 2048 frames are available in the CAL (CAN Application Layer)
DBT-Model, i.e. are free to be used for data transfer, and a large number of these frames is
reserved for the system, the basic software services and other predefined messages like the network
management and the diagnosis messages. Thus, it is not opportune to invest one frame for each
token. Even if we are provided sufficient frames, the bandwidth of the network is not unlimited
and the throughput in an AES network must be designed so that even by maximal load, there is
still room for the transmission of asynchronous messages, particularly in the case of event-triggered
communication systems.

As the number of frames is limited, the designer must optimize their usage. An effective way to
optimize the usage of frames is to make use of frames multiplexing [46], i.e. under some conditions
several pieces of information can be joined together in a single frame in a way that increases the
economy of the frames. A frame to which more than one piece of information is assigned is a

118 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

multiplexed frame. A device receiving a multiplexed frame must de-multiplex it to extract the
information that is addressed to it. In order to enable the frame de-multiplexing, a part of the user
data field (e.g. the first byte of the user data field in CAN) of a multiplexed frame is used to code
the sub-identifiers of the sub-frames, i.e. the IDs of the different entities of information contained
in the frame. We now introduce the following definitions for the terms that will be used in the
context of frame multiplexing. The relationships between these terms are illustrated in figure 11.2.

Definition 11.1 (Data object). A data object is a piece of user information exchanged between two
functional components.

Definition 11.2 (Token). A token is the logical representation of a data object in the context of syn-
thesis models.

Definition 11.3 (Signal). A signal is an atomic, i.e. an elementary piece of user information that is
sent by a device to another one. Each signal represents a token or a fraction of a token. For example,
a token that fits in a frame constitutes one signal. A token that is longer than a frame can be split in
several signals. Thus, a multiplexed frame contains several signals.

Definition 11.4 (Packet). A packet is a set of signals that are sent together within a frame, i.e. as
a block of sequential signals. A multiplexed frame contains exactly one packet of signals, whereas
each signal constitutes a sub-frame. The sum of the signals transported within a frame determines the
payload of this frame.

Definition 11.5(Message). A message is a meaningful and complete piece of information. A message
might be made of one or several tokens. For example, some tokens are constrained to be always shipped
together. This relationship is modeled inCDFM models by means ofneedsrelations. The tokens that
needeach other are bundled within a message. If a token isneeds-related with several other tokens,
then it will be redundantly instantiated in each message containing an associated token. The length of
a messagemessLis defined as the sum of the resolutions of the constituting tokens.

Definition 11.6 (Sub-frame). A sub-frame is a distinguishable and separable part of a multiplexed
frame. This concept aims at providing an ID to each signal within a multiplexed frame. From the point
of view of a multiplexed frame, these IDs are sub-IDs. A sub-frame is thus made of one signal and the
corresponding sub-ID. Note that the sub-identification of frames is not recursive, i.e. sub-frames do
not incorporate sub-IDs, since each sub-frame contains exactly one signal.

Definition 11.7(Frame). A frame is a block of information that is transferred from a sender device to
the receivers. A frame is made up of one signal or when multiplexed, it contains several sub-frames.
The concept of frame is analog to the concept of slots known in some protocols like FlexRay or MOST.

Frame * 1..*Sub-Frame Packet Signal1 10..1 1..*

1if 0 sub-frame1..*

MessageToken

1

1..* 1..*

1..*
is transmitted as

Data object
1 1

is a

Figure 11.2: Semantical relationships between the concepts for the frames multiplexing

Another multiplexing technique allows the variable occupation of some positions within a mul-
tiplexed frame. For example, different signals can rotatively occupy the same position in a given
frame. This multiplexing technique is used for example when a periodic signal can share a frame
with other signals, but at different sending times of the frame, different signals are available that
can occupy the free positions. When this multiplexing technique is used, a switch is used to identify

11.1. THE CAN: A FRAME-ORIENTED COMMUNICATION PROTOCOL 119

the signal that actually occupies the varying position in the frame. A switch is a bit field within the
user data field of a varying multiplexed frame that indicates the signal that actually occupies the
corresponding varying position so that depending on its actual runtime value, a device receiving
the frame knows which signal is actually occupying the corresponding position. Both the values of
the sub-frames and the switches are assigned statically during the system design.

11.1.5 Relations with the partitioning

The frames multiplexing itself is a signal partitioning problem. Actually, the frames are assigned to
the network nodes based only on the experience and the feeling of the designer. The assignment
of the signals to the allocated frames is done per hand, based on approximative calculations and
puzzles reasoning. Inexperienced designers cannot expect to find optimal solutions in a relative
short time. Even experimented designers cannot verify the optimality of their solutions, although
there is a need of optimal system architectures and design time saving. Sustaining the frames
multiplexing through CAD is obviously necessary to allow AES system architects to explore new
system architectures. CAD-based frames multiplexing will promote the evolution in the quality
of AES architectures and enable savings in the design time of systems that are based on frames-
oriented protocols. Since we make benefits if we optimally occupy the user data field of each
frame, we will provide efficient solutions for the frames multiplexing problem if we are able to solve
the two following sub-problems:

1. Minimize the number of tokens that must be exchanged between the system components
through the network.

2. Optimize the frames multiplexing for these tokens.

The first sub-problem is a graph partitioning problem. In fact, we will minimize the number
of tokens exchanged between the logical devices if we assign heavily communicating components
to the same device. The goal here is to minimize the inter-device communication. The second
sub-problem is a combinatorial optimization problem that is to be solved by finding the best com-
binations of the signals derived from the inter-device communication tokens that will be assigned
to a given set of frames. In fact, the combination of data objects to fill up the frames is a classical
packing problem.

11.1.6 Practical considerations for the frames multiplexing

When multiplexing the frames, we must observe some practical considerations concerning the
capacity of the frames and the relationships between the tokens. For instance:

• Each frame, i.e. each frame ID, can be attributed to only one sender device.

• The quantity of data that can be packed in a frame is bounded by the length of the user data
field of the frame. We call the latter (maxframeL). In the standard CAN max f rameL= 8
bytes.

• 0 byte signals are not allowed, i.e. min f rameL> 0.

The length of a token is its resolution. We now identify a token that is shorter or equal to
maxframeL as a ”short” token and a token that is longer than maxframeL as a ”long” token.

• Each short token can be assigned only entirely to a frame, i.e. a short token cannot be
truncated to fill several different frames. For example, if a token Tk

i j is 4 bytes long and a
frame that could take it already contains 5 bytes of user data, it is not allowed to assign 2
bytes of Tk

i j to this frame and the remaining 2 bytes to another frame, but rather the 4 bytes

of Tk
i j must be assigned together to a frame that provides free space for 4 bytes. In other

120 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

words, fragmenting short tokens is not allowed although doing so might enable to fill the gaps
in the frames and could drastically enhance the economy of the frames. But, considering
the recovery time, i.e. extraction and reconstitution time, and the related computation
efforts with regards to the fragmented tokens, the fragmentation of short tokens is clearly
not profitable.

• In contrast, long tokens must be fragmented and distributed to several frames. For example
if a token is 18 bytes long, it will be assigned to 3 frames, i.e. 2 frames for the first 2 x 7
bytes and the last 4 bytes in a third frame. However, it won’t work differently, since a long
token cannot fit in a single frame. The case of long tokens appears for example when texts,
system initialization information, configuration parameters or program codes are transferred.
The fragmentation of tokens is done by a fragmentation protocol that can be easily specified
by the designer.

When assigned to a frame, each short token results in one signal whereas long tokens must
be transformed into several signals. Remember that a part of the user data field of each frame
transporting a fragment of a token is used to encode the fragment’s number so that the receiver
can easily reconstitute the order of the fragments as it is in the original token. In some CAN
implementations, the segment code occupies the first byte of the user data field. This explains
why a frame containing a fragment of a token has a capacity of 7 bytes instead of 8 bytes of user
data in the above illustrations. Similarly, because of the sub-IDs, the full capacity of a multiplexed
frame cannot be occupied by the user data. Let segmentCode be the space needed to code this
information. The number of signals corresponding to a token Tk

i j is:

nbSignals(Tk
i j) =

1 if Tk
i j is short

⌈

Tk
i j .res

(max f rameL−segmentCode)

⌉

if Tk
i j is long

(11.1)

A message Mq
i (q identifies the message itself) is built with the tokens Tk

i j , k ∈ N that ver-

ify ∀Ts
ip,T

r
il ∈ Mq

i , needs(Ts
ip,T

r
il) where i is the device source of the message Mq

i ; j, l , p are the
destination devices of the tokens and k,s, r identify the tokens.

The number of signals corresponding to a message Mq
i is:

nbSignals(Mq
i) = ∑

j
∑
k

nbSignals(Tk
i j) (11.2)

As the devices must compete for the bus in a CAN network, the frame IDs should be allocated
to the devices according to the characteristics and the constraints of the signals that must be
transferred, e.g. priority, date of occurrence, freshness, etc. Thereto, as we are designing systems
that are highly business- and mission-critical, the frames multiplexing will be constrained by the
reliability- and the safety-relevant requirements of the system. For instance, each signal underlies
real-time and safety constraints. Hard real-time signals must be transmitted as soon as possible,
thus they necessitate high priority. Soft real-time signals are less hasty than hard real-time ones
and can wait for some payload completing signals for a given time as authorized by their freshness
requirement. However, each signal must be transmitted and received safely. Depending on the
characteristics of the signals that must be transferred, we can classify them on the basis of the
following criteria:

• The synchrony: We distinguish event-triggered (i.e. asynchronous, sporadic) and time-
triggered (i.e. synchronous, basically periodic) signal. Both periodic and non-periodic signals
might underly real-time constraints.

• The dynamic: This is the periodicity or the rate at which a signal must be sent. Between
the signals that are sent repeatedly, some appear very fast while some others are rare as
their instances appear always after a long period of time. Same, some asynchronous signals
appear regularly while others are very rare.

11.2. THE VALUE OF A PARTITION 121

Based on the synchrony ans the dynamic of the signals, we consider two classes of signals:

• ASAP signals, i.e. signals that must be sent ”As Soon As possible”. This class contains
both cyclic and event-triggered hard real-time signals. The frames transporting ASAP signals
must enjoy high priority so that they can be transferred as soon as possible. ASAP signals
can share frames only with signals that are available at the date at which they are sent (i.e.
their sending date).

• SOFT signals, i.e. signals with an allowed retardation time. SOFT signals can be retarded
for a given time that is defined according to their freshness requirement. The freshness
attribute of a signals is given by the freshness requirement of the corresponding token. This
class of signals can be subdivided in several sub-classes, each containing the signals that are
available within a given range of time so that they can share the same frame as allowed by
their resolutions.

In conclusion, a short token can share frames with every other token that is available at its
sending time. Long tokens must be segmented and sent in combination with the tokens that are
available at their sending time. However, in order to avoid mini frames, the partitioning process
must prevent the existence of mini signals that are ASAP, e.g. by avoiding the exchange of mini
tokens that are ASAP through the network. These are additional requirements for the partitioning.
In the end, the priority of a frame will be assigned depending on the priority of the highest prioritized
signal contained in it. The sending time and the waiting time of a frame is given by the sending
time of the most hasty signal contained in it.

11.2 The value of a partition

11.2.1 The cost function

The cost of a partition is the magnitude of the communication on the network bus. This is the
number of frames needed to realize the inter-cluster communication. Good partitions need fewer
frames. Given a partition P = {P1,P2, . . . ,Pn},

Cost(P) = NbFrames(P)

NbFrames(P) is the total number of frames that is used by all the parts Pi of the partition P
to communicate. Since each frame is owned by a cluster, NbFrames(P) is the sum of the frames
used by all the clusters Pi of the partition P. Given the set Signals(Pi) of the signals that are
produced by the cluster Pi , we can extract the set Signals(Pi).occur of the dates of occurrence of
the signals emitted by Pi and the set Signals(Pi). f reshof their freshness requirements. Note that
Signals(Pi).occur and Signals(Pi). f resh are given by the dates of occurrence of the tokens from
which Signals(Pi) is derived, i.e. given a signal s derived from a token Tk

i j ,

s.occur = Tk
i j .occur and s. f resh = Tk

i j . f resh

Thus

waiting time(s) = waiting time(Tk
i j) (11.3)

= s. f resh−s.occur (11.4)

Given a set of signals, we can group them according to their waiting time so that each group
is made of signals that can share frames, i.e. signals that can be sent at the same time. The
sending date of an ASAP signal is the first opportunity that is given by the scheduling of the bus
occupation to sent it. In contrast, SOFT signals can wait for other signals until the date defined
by their freshness attribute as they must not be sent at the first opportunity, i.e. SOFT signals can

122 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

be grouped together with the signals that are available within their waiting time. Equally, even
though the waiting time of ASAP signals is very reduced (theoretically zero), ASAP signals can
share frames with signals that are available at their sending date regardless of whether these signals
are ASAP or SOFT. Each frame will thus contain a particular combination of signals that can be
either ASAP or SOFT. Concretely, each group of signals will content the signals that are available
within a given range of time that begins with the date of occurrence of the oldest between them
and finishes with their common sending date. Each of such groups will need a certain number
of frames to transfer its signals. Let us identify each such group g of signals with the date dg

at which its signals must have been sent and call it Signals(Pi).dg. Let NbFrames(Pi).dg be the
number of frames that will be used by the group Signals(Pi).dg. NbFrames(Pi).dg is thus the
number of frames that will be used by the cluster Pi at a given date around dg, more exactly at a
give date that hopefully precedes dg. Note that even if dg can coincide with the date of occurrence
of some signals, it neither represents the date of occurrence of signals nor it states the exact date
of emission of frames. dg rather specifies the time at which the signals that can build a frame
must have been sent. The number of frames used by a cluster Pi is consequently the sum of all
the frames emitted by Pi at the dates {dg, g ∈ P(Signals(Pi))}., i.e. g is a group.

Given a partition P, we can formalize the cost of P as follows:

Cost(P) = NbFrames(P) (11.5)

= ∑
i

NbFrames(Pi) (11.6)

= ∑
i

∑
g

NbFrames(Pi).dg, (11.7)

where P is the actual partition, Pi is the i-th part of the partition P, {dg, g ∈ P(Signals(Pi))}
is the set of dates at which the signal groups must have been sent.

Given a part Pi , each frame of Pi will contain a particular combination of the elements of the cor-
responding Signals(Pi).dg. As the objective is to minimize the usage of the frames, NbFrames(Pi).dg

must be determined by a function that optimally combines the signals of Signals(Pi).dg into the
frames. If only one signal is available in a given group Signals(Pi).dg, then the corresponding frame
will contain only this signal, else, i.e. several signals are available at the same time, the signals
must be packed into the frames in a way that the capacity of the frames is used optimally in order
to minimize the number of frames used by Pi , i.e. NbFrames(Pi). The problem of determining
NbFrames(Pi).dg can be specified as follows:

Problem formulation 11.1 (NbFrames(Pi).dg). : Given a finite setSignals(Pi).dg of signals of differ-
ent sizes and a supply of frames of fixed capacitymaxFrameL, compile a packing list of the signals
such that the sum of the signals in each frame is equal or less to the frames capacity, a minimal number
of frames is used and the given constraints on the contents of the frames are satisfied.

This problem is a bin packing problem.

11.2.2 The cost as a bin packing problem

The purpose of a bin packing problem is to fill large spaces with specified smaller pieces in the most
economical way. In the classical bin packing problem, a set or a sequence [37] of objects are to be
packed into fixed-size bins (i.e. containers of fixed volume). The supply of the bins is unbounded
and the sum of the sizes of the objects in a bin cannot exceed the size of the bin. The problem is to
minimize the number of bins used, i.e. to determine the minimum number of identical bins needed
to store a finite collection of objects of discrete sizes. Formulated like this, a bin packing problem
is an optimization problem, since the solution is to find an optimal partitioning of the objects to fill
the bins. Bin packing problems have many applications, e.g. trucks loading, memory management
[114], temporal partitioning of reconfigurable processors (FPGA) [29], etc. Even though these

11.3. BIN PACKING TECHNIQUES 123

problems seem to be simple, they are NP-hard, i.e. no procedure is able to solve each instance of a
bin packing problem in polynomial time [54]. In fact, the decision version of a bin packing problem
is known to be NP-complete. That is, given a capacity K and a list L of objects with different sizes
and an integer N, the problem of determining if the objects in L can be packed into N or fewer bins
of capacity K is NP-complete. A proof is given in [34]. We know that each optimization problem
whose decision version is NP-complete is NP-hard. Thus formulated as an optimization problem,
the bin packing problem is NP-hard. Detailed proofs of the NP-completeness and NP-hardness of
bin packing can be found in [54] and [106]. Thus, when solving a bin packing problem, finding
approximately optimal solutions in polynomial time is probably the best we can hope for.

As knapsack problems, bin packing problems are members of the class of combinatorial and
discrete optimization problems. In this domain, mathematics usually meet puzzle. The most
efficient algorithms for solving bin packing problems use heuristics. The problem we are dealing
with is a linear (i.e. one-dimensional) version of the bin packing problem. We are concerned
with finding the fewest number of frames needed to hold a set of signals of different sizes. This
formulation meets the optimization version of the bin packing problem that is NP-hard. Knowing
the constraints of our problem, we need to design the best algorithm that will optimally solve it.
As the problem is NP-hard, we mean best algorithm in terms of the quality of the output (i.e.
distance from the optimal solution). The quality of the algorithm in terms of its computation
complexity and its consumption of memory space is of secondary relevance. In fact, given a bin
packing problem, we can calculate the optimal solution (OPT) by computing the total sum of the
sizes of the objects E and dividing this number by the capacity of the bins C. Since we are dealing
with integers, the number of bins we need must be at least OPT = ⌈E/C⌉. But, the objects to
be packed are generally of different sizes so that they cannot be distributed uniformly in the bins.
The number of bins used is thus typically greater than the optimal solution.

11.3 Bin packing techniques

11.3.1 The Next Fit, the First Fit and the Best Fit strategies

Most solutions for bin packing problems rely on very natural ideas. The simplest is the Next Fit
(NF) strategy. In the NF strategy, a bin is opened and the objects are placed into it in the order
in which they appear in the list of objects. If an object will not fit into the open bin, we close
this bin permanently and we open a new one in which we continue to pack the remaining objects.
NF is very simple and fast. The time required to pack n objects is linear in time, i.e. O(n). But
clearly, it is difficult to achieve an optimal usage of bins with NF. Indeed, NF is the best solution
in certain settings of the bin packing problem. For example, NF allows for bins to be shipped
off quickly because even if some free room remains in a bin, we do not wait around in the hope
that an object which will fill this empty space will come out later in the list. We ship the bins as
soon as they cannot take the actual object and gain in storing space. Unfortunately, we are not
in the situation where there is limited space to place the bins, implying that they must be rapidly
closed and shipped, but in opposition we are interested essentially in achieving the best usage of
the available space in the bins. NF is not the best strategy for solving our problem.

In contrast to NF, some solutions try to take advantage from the intuitive fact that if the bins
are kept open, some objects that can fill the empty spaces will come out from the list later so
that they will consume fewer bins. The most famous strategies based on this idea include First
Fit (FF), Best Fit (BF) and Worst Fit (WF). Following a FF strategy, we place the next object
into the first bin that has room for it (the leftmost thought of as numbered from left to right) and
we open a new bin if the object does not fit in any existing bin. The objects are considered for
packing in the order 1, 2, 3, . . . The bins are labeled as 1, 2, 3, . . . FF then packs object i in bin
j where j is the least index so that bin j can contain object i. The BF procedure runs through
the same steps as FF, except that when object i is to be packed, it finds out the bin which after
accommodating object i will have the least amount of space left, i.e. it puts the next object in the

124 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

fullest bin that has room for it and opens a new bin if the object does not fit in any existing bin.
FF and BF can be implemented to run in O(nlogn) time. In contrast to BF, Worst Fit (WF) puts
the next object in the emptiest bin that has room for it and opens a new bin if the object does
not fit in any existing bin. WF has the same worst-case performance ratio with NF [76]. But in
general, it apparently does not take advantage from the fact that it never closes a bin. [77] Finally,
one can consider a further procedure, called Almost Worst Fit (AWF) that puts the next object in
the second emptiest bin if that bin has room for it and opens a new bin when the object does not
fit in any open bin. Although AWF is just a slight modification of the WF algorithm, [77] reports
that it performs clearly better than WF, i.e. just as good as FF and BF. The time necessary to
find the minimum number of bins for n objects using either FF, AWF or BF is higher than for NF,
i.e. O(n) against O(nlogn). These strategies behave as if the objects to pack arrive surprisingly,
one-after-one, like on-line algorithms. This is surely a limitation. The parameters of our problem
(i.e. the number and the sizes of the signals) are all known in advance. Thus we can organize the
signals in a way that enables more advantageous packing.

11.3.2 Off-line packing strategies

Some algorithms have demonstrated that they guarantee better packings when the on-line restric-
tion is removed. The idea guiding the most known of these algorithms is to apply FF or BF on
a sorted list of objects, i.e. they first sort the objects to be packed in the bins in decreasing or
in increasing order by the size. The sorting is relatively expensive (O(n2)), but without sorting,
the packing can achieve only the bound of 17/10 OPT+2 bins [56]. The most popular of these
strategies have an intuitive appeal. They pack the bulky objects first and hope that the smaller
objects can be used to fill up the gaps. In the First Fit Decreasing (FFD), the objects are sorted
in decreasing order of size. The biggest object is the first and the smallest is the last. Then FF
is used, i.e. FFD inserts the objects of the sorted list one-by-one into the first bin with sufficient
remaining space. Similarly, Best Fit Decreasing (BFD) orders the objects like FFD but uses BF.
Doing so, FFD and BFD improve drastically the performance of FF and BF. Depending on the
implementation, the FFD and BFD strategies can achieve the bound of 11/9 OPT+1 [125]. The
theorem 2.9 in [34] (p.17) referring to [76] states that: Any algorithm that sorts the items by
decreasing size and then applies any fit packing rule is worse than BFD and FFD, more precisely
11/9≤ RA ≤ 5/4. Also, any algorithm that applies any fit algorithm after first sorting the objects
in increasing order by the size has a ratio RA ≥ 1.69103, thus is worse than the decreasing sort.

Thus, between all the algorithms studied till now, FFD and BFD provide the best performance.
They also fit at best to our problem. When well implemented, they can require O(nlogn+bn) time
to pack n objects, where b≤ min(n,m) and m is the number of bins actually used. Analytical and
empirical results suggest that the best of the two heuristics is FFD. In [55] and [126] an efficient
version of FFD that uses no more than 71/60 OPT+1 bins is presented. However, [76] states that
for all lists L with no element smaller than 1/6 of the bin size, BFD(L) ≤ FFD(L) and precises
that for such lists, BFD(L) ≤ 6/5 OPT(L)+1. But the authors of [55] and [126] also claim that
if smaller objects are present in the list, BFD can result in worser packing than FFD. Thereto,
according to [76], the worst-case ratios of FFD and BFD are improved as the minimum item size
decreases. In the purist sense of optimization theories, this is a notable improvement. But, is this
improvement interesting for our particular purpose? The signals we need to pack are of disparate
sizes, i.e. we are not aware of any restriction on the size of a signal, except the basic constraint
stating that the maximal length of a packet, thus of a signal, must not exceed the size of a frame.
At this level of investigation, FFD is the best solution for solving our problem.

11.4. INVESTIGATING THE COST OF A PARTITION 125

11.4 Investigating the cost of a partition

11.4.1 The FFD strategy for the cost estimation

As we need the best packing solution for our problem, i.e. the packing tool that achieves the
minimum number of bins, it is interesting to investigate the improvements of FFD. There are
basically two approaches to improve the worst-case performance of the FFD and BFD. Firstly, one
can imagine a procedure that packs pairs or groups of objects at the same time in combination with
FFD or BFD instead of one-by-one as done by classical FFD and BFD. It is also imaginable to pick
the objects from the list in a different order than the decreasing one as done so far. In a second
approach, going from the intuitive apprehension that the configuration of the list of the objects is
a highly influencing factor for the outcome of the packing, we can legitimately imagine to restrict
the attention to specific types of input lists. These two approaches have retained the attention
of researchers working on packing problems and the literature on the corresponding investigations
reveals very useful information.

We first pay attention to the run-time behavior of FFD and BFD. Rememeber that we are
working on a static partitioning problem for which the solution will be reused for a long period of
time on different products or on several variants of the same product. The most important goal
of the partitioning is the optimality of the space usage in the bins. It is thus preferable to spend
extra time to search the best packing than to save computing time at the cost of the quality of
the packing solution. However, as the partitioning runs the packing algorithm many times, it will
still be opportune to take care not to spend too much time in each execution of the algorithm.
Concerning the time-complexity of FFD and BFD, an interesting question is to see what can be
done better than FFD and BFD with less than O(nlogn) time. We pick an answer once more from
[34] that claims that ”No algorithm is currently known that does better than 4/3 bound and runs
in linear time on a sequential computer”.

We are now interested in investigating what we can gain if we are allowed more than O(nlogn)
time. The answer is given in [124] where the existence of an algorithm with asymptotic worst-
case ration 11/9−10−7 and O(n10logn) run-time, called Refined FFD is shown. This algorithm
provides an improvement of bin utilization that is however not so significant that we are motivated
to adopt it. Garey and Johnson [55] proposed an algorithm called Modified FFD (MFFD) that
is supposed to improve the classical FFD more substantially than the Refined FFD. The MFFD
differs from FFD in the way that it treats the objects with sizes in the interval [1/6,1/3]. When
packing these objects, the MFFD currently considers the bins containing a single object of size >
1/2 (called A-bins) from right to left, i.e. in order of decreasing gaps. To treat the current A-bin,
the algorithm first checks if the two smallest still unpacked objects with size in [1/6,1/3] will fit
together in the A-bin. If so, it places the smallest of such objects in the bin, together with the
largest of the remaining objects that will fit with it. If not, this special phase is over and all the
remaining unpacked objects are added to the current packing according to FFD. The MFFD has
the same O(nlogn) running-time as FFD, and has roughly the same constant of proportionality.
Its worst-case performance is somewhat better than the one of FFD, i.e. 71/60. Also trying to
improve FFD, Friesen and Langston [50] proposed an approach to beat the worst-case performance
of FFD. Same like the MFFD, their algorithm, the Best Two Fit (B2F), tries to improve the packing
of individual bins by considering pairs of objects as well as individual objects in making the packing
decisions. They showed that the worst-case performances of their algorithm and of FFD were
complementary and concluded that the compound algorithm (CFB) that runs both the B2F and
the FFD and outputs the best of the two solutions shall do better than each of the algorithms.
But although it runs in twice the overall running time, even the compound algorithm does not
improve the FFD notably.

Further attempts to beat the FFD by relaxing the constraint of O(nlogn) running-time on
the packing algorithm can be found in [62, 77]. In any case, a good news is that, for all these
solutions, worst-case ratios approach 1 as the maximum object size approaches 0 (this meets the

126 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

human intuition). But at the end, except the enumeration of all possible combinations, it is
difficult to find a real improvement of the FFD that can motivate our choice for it by guaranteeing
better outcomes on non-restricted input lists of objects. It is shown in [33] that if the list is a
divisible sequence, FFD always produces optimal packing. Further instances of the packing problem
that theoretically can be solved optimally in polynomial time (i.e. without trying all packing) by
setting profitable restrictions on the list are those where the number of object sizes are bounded
independently of the number of objects. These algorithms would be the solution to our problem
if we had the corresponding lists. Unfortunately we do not have either divisible lists nor given
bounds on the number of object sizes in our groups of signals. There is also a particular class of
algorithms that can find a suboptimal solution for the bin packing problem that is within a known
percentage of the optimal solution for sufficiently large inputs of arbitrary lists in linear time. These
algorithms are called asymptotic approximation schemes. Asymptotic polynomial approximation
schemes can be found in [48, 58, 80]. In conclusion, the algorithms improving FFD might yield
good performance, but at the price of either setting restrictions on the type of the list for the
first ones or as the latter, giving up too much performance in the worst case and so, they cannot
profitably serve our purpose of searching an algorithm with the best worst-case guarantee. We
thus maintain finally the FFD.

11.4.2 The frames packing algorithm for the cost investigation

Our procedure for the packaging of signals follows the process described by algorithm 5.

Algorithm 5 PROCEDURE FramesPacking(Signals(Pi).dg)

1: Sort the elements ofSignals(Pi).dg in the decreasing order of their lengths in a vector
vSignals(Pi).dg; //* indexes 1,2,3, . . .

2: k:=1;
3: Initiate a frameFramek of the corresponding priority;//* First frame for the group
4: for all signals in the vectorvSignals(Pi).dg beginning with the first onedo
5: Assign the signal to the first frame that can accommodate it;//* FFD
6: if no frame can accommodate the signalthen
7: Add a new frame to the list of frames and put the signal inside;
8: end if
9: end for

10: return NbFrames(Pi).dg; //* Number of frames used by Signals(Pi).dg

11: return The packing list of the frames;//* The composition of the frames, i.e. the packets

The cost of a partition P is computed by the procedure ”Cost” the processing of which is
described in algorithm 6.

Algorithm 6 PROCEDURE Cost(P)
1: Cost(P):=0;
2: for all partsPi of P do //* P = {P1,P2, . . . ,Pn}
3: NbFrames(Pi):= 0;
4: for all groups of signalsSignals(Pi).dg do
5: FramesPacking(Signals(Pi).dg); //* Returns the number and the composition of the frames

used
6: NbFrames(Pi):= NbFrames(Pi) + NbFrames(Pi).dg;
7: end for;
8: Cost(P):= Cost(P) + NbFrames(Pi);
9: end for;

10: return Cost(P);//* Number of frames used, Total cost of the partition

11.5. IMPROVING THE PARTITION 127

11.5 Improving the partition

11.5.1 The Kernighan & Lin strategy

Despite its popularity, the K&L heuristic [86] is not a standard solution for every partitioning
problem. It was designed to solve bi-partitioning problems on undirected graphs for which the
output must be two parts with equal sizes. Our problem is totally different from the general
formulation of the K&L algorithm, for example: We have more than two parts. Thus, our problem
necessitates a multi-way partitioning solution rather than the original two-way K&L solution. The
sizes of the nodes of the graphs on which we are working are very different from each other. Thus,
swaps may not be sufficient. The sizes of the parts of the partitions are also very divers and it is
not obligatory to maintain them constant during the partitioning. They can change as the free
space on each device is known. Thus, the improvement algorithm for our problem must allow the
nodes to be moved both without and with swaps, as the case may be. The cost of the partition
is given by the packing of the packets rather than the sum or the weights of the cutting edges.
Thus, in its classical form, the K&L algorithm does not fit to our problem.

The most famous extension of the K&L that allows the moves without swaps is the algorithm of
Fiduccia and Mattheyses (F&M)[49]. F&M extended the K&L algorithm to handle multi-terminal
graphs (i.e. hyper-graphs) by redefining the cut metric and the move operation. Like the K&L, the
F&M allows each node to move only once. However, F&M abandoned the idea of interchanging
two nodes in a single move. They adopted instead the move of a single node. Consequently,
for each move, only the gain of moving each single node must be computed. Then, instead of
swapping two nodes like in the K&L, only the node with the highest gain is moved. This led to
a faster and more flexible algorithm that supports unbalanced partitions. In order to avoid that
all the nodes move to one part, F&M introduced a balance criterion (r = |A|/(|A|+ |B|)) that
states the minimum number of nodes for each part. The third major change was done on the data
structure. F&M used an array of lists to store the gain of the nodes. This structure enables to
find the best next move and to adjust the recomputed node gains in constant time, since the list
of the candidates for a move in each part is kept sorted every time.

Several variations of the F&M algorithm have been proposed to solve similar problems. For
example, still considering the problem of bi-partitioning hyper-graphs, [90] proposed a refined
method for choosing the best cell to be moved. The cost function is the number of nets in the
cut set of the hyper-graph. This solution introduced the binding number for the nets, a value that
indicates how strongly a net is bound to a part, and the notion of the level gains which measures
the potential decrease of the size of the cut set that would result from moving a node from its
home part to the other part. The number of level gains is an input parameter for the algorithm. At
each iteration of the algorithm, the free node with the largest gain vector is chosen to be moved.
The components of the gain vector of a node are the level gains of this node, beginning with
the first level gain. The definition of the first level gain is based on the gain concept used in the
graphs partitioning algorithms. With the binding number and the level gains, this algorithm is very
powerful for partitioning hyper-graphs, but like the F&M it is tailored for bi-partitioning problems
for which the cost is the number of nets in the cut set. Neither the bi-partitioning nor the cost
matches with the purpose of our matter. However, the idea of the binding and the gain levels
can be useful guides for moving the nodes of CDFM graphs if adapted to a multi-way partitioning
problem that supports the definition of our cost function.

There are several ways in which a two-way partitioning algorithm can be adapted to solve
a multiple-way partitioning problem. One way is to use the two-way partitioning algorithm to
construct the partition progressively, i.e. going from the total stock of components, the parts
of the partition are built successively. At each execution of the bi-partitioning algorithm, the
components of the part under construction are chosen from the remaining stock of components
in a way that the cost will be the best at the end. For illustration, we can build the first part
by moving the first components into a cluster until the desired size is reached, then we apply a

128 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

two-way optimization algorithm between the new part and the rest of the system, and we process
the same way for the further parts. Following this method, it might be simple to minimize the cost
of the partition with the first parts. But as this is achieved by maximizing the connections inside
the remaining set of components, it will be hard to obtain good partitions afterward. Another
way to use a bi-partitioning algorithm to solve a multi-way partitioning problem is to make use of
the two-way partitioning algorithm hierarchically. In this context, there are two methods for the
hierarchical partitioning. The first method consists of finding a starting bi-partition and applying
recursively the algorithm on each part until the desired number of parts is found. For example,
for a n-parts partitioning, we can firstly split the system into two equal parts, optimize the cost of
this partition and then we split each part into two other parts and apply the optimization on each
new bi-partition and so forth until we obtain n parts. This method also suffers from the problems
of the preceding one. Thereto, it might propagate the deficiencies of a bad result obtained in the
first partitioning into the following partitioning operations, inducing important defaults for a large
number of parts.

A further idea consists of building a start partition and apply a pairwise optimization among
the parts of the partition using the two-way improvement technique. For example, based on the
intuitive apprehension that, in order to remove a net from the cut set, the probability that more
than one node will have to be moved should increase with an increasing number of parts, the
algorithm of [90] was enhanced in [109] following this orientation and adapted to the multi-way
partitioning of hyper-graphs. this solution tries to take advantage from the power of the level gains.
This approach guarantees the conservation of the connectivity acquired in the starting partition,
but it is still not better than the preceding ones concerning the overall quality of the partition.
For illustration, if we reduce the number of signals exchanged between two given parts, this does
neither guarantee a reduction of the overall inter-parts communication nor does it absolutely induce
the reduction of the number of frames used for the overall system communication. In fact, the
communication between two parts is not the matter of improvement in our problem. We are rather
interested in the cumulative communication of a part with all its neighbors, since the frames used
by a part to communicate contain the signals that are addressed to several neighbors. Because
of the singular formulation of our problem, none of these solutions can be applied one-to-one to
it. We need an original solution that is coupled with our cost function and that can optimize
the partition uniformly. This solution must extend its view on the whole neighborhood of each
candidate for a move, instead of considering only one neighbor during each move.

11.5.2 The improvement technique

The clustering algorithm (cf. algorithm 4) used the best next assignment method, i.e. each node
was assigned to a part regardless of its closeness to the other nodes that were not in this part. We
can improve the result of the best next assignment by moving the nodes from parts to parts in a way
that improves the quality of the partition. The quality of a partition is given by the compactness
of the clusters and the cost of the partition, i.e. the number of frames used for the inter-clusters
communication. To uniformly improve the quality of the partition, it is necessary to consider the
gain of moving each node from its actual part to all its possible destinations concurrently, so that
each node is moved into the part to which it is at the highest bound. So we can achieve more
compact clusters. But, these perturbations will be useful only if they do not deteriorate the cost
of the partition. Thus, depending on the priorities assigned to the optimization goals, a good
perturbation, i.e. one that increases the quality of the partition, might be a perturbation that
results into more compact clusters and at least without a deterioration of the cost of the partition
or better with an amelioration of the cost, or one perturbation that consumes fewer frames with
the less augmentation of the compactness.

The possible destinations of a node v are its neighbor parts, i.e. each part that contains a
node that is related with v, i.e. that exchanges signals with v or is bound with v by a Tag-relation.
The binding of a node to a cluster determines the goodness or the badness of moving this node in

11.5. IMPROVING THE PARTITION 129

order to enhance the compactness of the cluster. Given a node v of a CDFM model, its binding
to a part Pi is measured by its closeness to the nodes vik of Pi in relation with the number of nodes
contained in Pi , i.e.:

Binding(v,Pi) :=
1
|Pi |

∑
vik∈Pi

Closeness(v,vik) (11.8)

The higher the binding of a node to a part, the closer is the node to this part. If a node has
the same closeness value with different parts of the partitioning, then it is closer to the one with
the least number of nodes than to any other of the rest. There might be some nodes in a part Pi

that do not exchange any data with v, but that might be either Tag-related or not related with v
at all. The formulation of the binding takes all these nodes in consideration, since the binding is
based on the closeness metric that already takes the Tags into account and considers all the nodes
of the given part. Based on equation 11.8, we can define:

• The internal binding IBinding(vik,Pi) of a node vik ∈ Pi as the binding of vik to its actual
home part and

• The external binding EBinding(vik,Pj) of a node vik ∈ Pi relative to a neighbor part Pj as its
binding to this part.

Thus, since a node might have several neighbor parts, each node will have several external
binding values too. A part that does not contain any node that is related with a node v has a
binding value zero with v.

We also define the binding difference of a node vik relative to a neighbor part Pj with:

DBinding(vik,Pj) := EBinding(vik,Pj)− IBinding(vik,Pi) (11.9)

As each node vik might have several possible destinations Pj within a move operation, the best
destination for a node will be the one to which it is best bound, i.e. maxPj (DBinding(vik,Pj)).

Each configuration of the partition must respect the excludes relations and the capacities of
the parts. Clearly, a node cannot be moved into a part that excludes it. Theoretically, the best
configuration is the one in which:

1. the excludes relations are respected,

2. the capacities of the parts are respected,

3. each node is assigned to the part to which it has the highest binding value and

4. the cost is optimal.

The first two points (i.e. 1. and 2.) must be observed by each move operation in order to
guarantee the consistency of the partitioning with the design constraints. Furthermore, with such
a move operation it cannot happen that all the nodes migrate into the same parts. The two last
points (i.e. 3. and 4.) do not always behave in the same sense. The highest binding does not
always imply the best frame sharing and vice versa. Thus, some trade-offs must be done between
the compactness and the cost optimization. If our ultimate objective is to achieve the best cost
with the partitioning algorithm, we also have to respect the strategic relationships as far as possible.
For example, following the importance that we give to each of these two factors, we can classify
them in a way that the partitioning prioritizes our goals. Anyhow, the improvement algorithm will
depend on the order of preference assigned to the objectives above. Making trade-offs between
the compactness and the cost of a partition imply that both must be measurable. We measure
the compactness of a partition P having n parts as the average compactness over all the parts
Pi(1≤ i ≤ n) of the partition P.

130 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

Compactness(P) :=
1
n

n

∑
i=1

Compactness(Pi) (11.10)

The compactness of a part Pi of a partition P is defined by its (internal) binding value as
follows:

Compactness(Pi) := ∑
vik∈Pi

IBinding(vik,Pi) =
1
|Pi |

∑
(vik ,vil)∈P2

i

Closeness(vik,vi l) (11.11)

for all vik and vi l ∈ Pi with vik 6= vi l .

11.5.3 The improvement procedure

The primary gaol of the improvement procedure is to optimize the cost of the actual partition, but
this cannot be done at the cost of the compactness. Theoretically, the cost of a partition must
decrease as the compactness increases. Obviously, the compactness of a partition increases if the
nodes that are very closed are assigned to the same cluster. The improvement procedure follows
this logic. It first moves the nodes in a way that increases the compactness of the clusters and
then it searches the optimal cost. The nodes are sorted in a list following their individual capability
to augment the compactness of the clusters and then moved in this order. For this reason, we call
this procedure the List Assignment Procedure (LAP). The binding difference is used to measure
the likelihood of a node to be moved. If a node is moved, only the binding values of its neighbor
nodes will be affected by this move operation. This operational organization will strongly optimize
the runtime complexity of the LAP. A move operation will affect only the compactness and the
communication of the origin and the destination parts of the node moved, i.e. as follows:

Compactness(Pi +v) := Compactness(Pi)+EBinding(v,Pi) (11.12)

Compactness(Pi −v) := Compactness(Pi)− IBinding(v,Pi) (11.13)

The LAP (i.e. algorithm 7) searches the partition that provides the best cost with the best
possible compactness. If two configurations provide the same cost, the LAP retains the one with
the best compactness. The node the move of which has the highest potential to augment the
compactness of the partition is moved into the closest part, called the best destination, i.e. the
neighbor part to which the node has the highest binding. A node v is bound to a part only if there
is no excludes relation between them and there is at least one node of this part that is related with
v. If the capacity of a part is exceeded after a move operation, the LAP takes the nodes with the
least binding out of this part and makes them occupy the free space created by the move in the
origin part of the moved node.

Furthermore, the LAP has an intuitive appeal. It supposes that a single move operation can
difficultly produce a perceptible impact on the quality of the partition. Thus, it might be necessary
to operate many more moves than achievable within a single pass to obtain a measurable change
on the cost of the partition. It thus continues to perturb each configuration that is not better
than the actual best partition, hoping that several consecutive perturbations might ameliorate the
partition. The number of consecutive perturbations is given by the user. This parameter is at the
same time the termination condition for the algorithm. Thus, LAP terminates either because the
given number of passes is achieved or because it has found the best configuration of the partition.
Thank to its ability to process consecutive perturbations on provisional configurations, the LAP is
able to jump from a hole. With this hill-climbing feature, the LAP will never be trapped in a local
minimum of the cost, but will rather explore all the parts of the solution space before stopping.
For the assignment of each node to its best destination, the LAP uses, as a further complexity
optimization matter, a priority list that is always maintained sorted without a particular ordering

11.5. IMPROVING THE PARTITION 131

Algorithm 7 PROCEDURE ListAssignment (InitialConfig)
1: ActualConfig:=InitialConfig;
2: Compute Cost(ActualConfig);
3: Compute Compactness(Pi) for each partPi of ActualConfig;
4: repeat
5: Unlock all nodesv in ActualConfig;
6: Extract the neighbor parts of each nodev; //* Parts that content each at least one neighbor of v
7: if NeighborParts(v):= {} then
8: print ”v HAS NO POSSIBLE DESTINATION”;//* v cannot be moved
9: Lock v;

10: else
11: ComputeDBinding(v,Pj) for each nodev and for each neighbor partPj of v;
12: Lock all nodesv for which all DBinding(v,Pj) are negative;//* Home part is the best desti-

nation
13: Place the highest positiveDBinding(v,Pj) of each unlocked nodev in a sorted queueQ with

the highestDBinding(v,Pj) on the top;//* List of unlocked nodes corresponding to the best
destination of each

14: end if
15: while there are unlocked nodes in the queueQ do
16: Move the Top Node ofQ to BestDestination(TopNode);//* the closest part of Top Node
17: Remove this Top Node from the queueQ and lock it;
18: Update theDBinding(v,Pj) values of its neighbor nodes and investigate the best destination

of each;
19: Lock each of them for which allDBinding(v,Pj) are negative;//* Home part is the best

destination
20: Place the highest positiveDBinding(v,Pj) of each of them at the corresponding position inQ

so that Q is maintained sorted with the highestDBinding(v,Pj) value on the top;
21: if the capacity of BestDestination(TopNode) is exceeded after the movethen //* Because of

the move
22: repeat
23: Move the node v with the smallest positiveDBinding(v,BestDestination(TopNode))

into the origin of Top Node;//* Conditional swap
24: Lock it;
25: Update Compactness(BestDestination(TopNode)) and Compactness(Origin(TopNode));
26: until the capacity of BestDestination(TopNode)≤ the size of (BestDestination(TopNode)

∪ Top Node);
27: end if
28: end while
29: Compute Compactness(ActualConfig);
30: Compute Gain(ActualConfig):= Cost(InitialConfig)-Cost(ActualConfig);
31: if {Gain(ActualConfig)> 0} OR {Gain(ActualConfig)==0 AND Compactness(ActualConfig)

≥ Compactness(InitialConfig)} then
32: InitialConfig:=ActualConfig;
33: else
34: Decrement the number of passes;//* This is an input parameter for the algorithm
35: end if
36: until all the passes are executed;
37: return The InitialConfig;

132 CHAPTER 11. EVALUATING AND IMPROVING A PARTITION

effort. Thereto, after each move, only the binding values of the neighbors of the moved node and
the compactnesses of the involved parts are updated so that the compactness of the partition that
is found after a pass is computed simply by adding the most actual compactnesses of the parts.
The update for a part consumes only one addition. Definitely, the control process of the LAP is
quite simple. It allows the user to define the number of iterations of the algorithm.

11.6 Conclusion

Regarding the mapping, the cost of a partition is defined as the number of frames used for the
inter-device communication. This is computed by packing the inter-device signals in the allocated
frames. We follow the first fit decreasing procedure to do that. As the starting partition was built
following a best next assignment method, we can improve it by moving the nodes from a part
to another one in the sense that improves its quality. The quality of a partition is defined by its
cost and its compactness. These two attributes do unfortunately not always behave in the same
sense. To achieve the necessary compromises, we first observe the incidence of a potential move
on the compactness of a partition before operating the move, hoping that it will not deteriorate
the cost. In order to determine the best move for a node, the improvement procedure considers all
its possible moves concurrently. A node is then assigned to the part to which it is best bound. The
subsequent augmentation of the compactness of the partition likely reduces the number of inter-
device signals, thus the cost of the partition. However, as only a succession of moves can produce
a perceptible change on the quality of the partition, several moves are operated consecutively
before the evaluation (i.e. in terms of costs) of the consequences of the perturbation on the
quality of a partition. The configurations that are better than the initial configuration are stored
as intermediate results. The LAP then compares these results at the end and picks out the one
with the lowest cost and the highest compactness.

Chapter 12

Applications

In this chapter we discuss the applications of the design method provided in this thesis. As the function-
ality of the active cruise control (ACC) is distributed on several devices (see section 2.1.2), the ACC’s
presents a good choice to illustrate the profits induced by novel systems’ architectures. We firstly
present the ACC functionality to which we applied our partitioning algorithms. Then, we explain the
objectives of our investigation in this application case and the scenario adopted for the investiga-
tion. In the following, we comment the investigation itself and then, we compareand comment the
results obtained from the different architectures that were obtained from varying the configuration of
the system’s platform and the number of the required clusters.

12.1 The application case

12.1.1 Presentation of the application case

We applied our design method on the specification of the active cruise control (ACC) functionality
that was previously introduced in the chapters 2, 7 and 8. As shown in figure 12.1, the functionality
of the ACC is distributed on several devices that are interconnected through a high-speed CAN
bus in the power-train and a lower-speed CAN bus in the body.

Active Cruise
Control unit

Engine
Management

unit

Dynamic
Stability

Control unit

Automatic
Gear Control

unit

Integrated
Dashboard
Control unit

G
at

ew
ay

Steering Block
Electronic

Control unit

Central Lighting
System Control

unit

Car Access
System

Control unit

Sound
System

Control unit

H - CAN Bus

L - CAN Bus

Figure 12.1: The ACC’s CAN bus interconnection

In this architecture, we distinguish a device dedicated to the main functions of the ACC. This
device is called itself ACC. It executes for example the obstacle sensing, the lane prediction and
the security distance and speed control functions while the functions that are in charge of e.g. the
acceleration, the deceleration and the throttle adjustment are located on the engine management
unit (EEM). The automatic dynamic stability control unit (ASC) provides the trajectory informa-
tion management, the manipulation of the hydraulic brakes and the velocity management functions

133

134 CHAPTER 12. APPLICATIONS

while the automatic gear control unit (EGC) provides the gear status management and the auto-
matic gear-to-speed adjustment functions. The dashboard control unit executes the ACC-related
visual and audio signalization for the driver. This includes e.g. the information about the ACC’s
activities, the announcements and requirements of the ACC for the driver, etc. The functions for
the automatic activation of the brakes, the blinkers, the flash lights, etc. are located in the lighting
control and the steering block control units.

12.1.2 Objectives and scenario

Basing on the implementation of the ACC presented above, our objective was to prove that better
architectures could be found if the designers had the possibility to generate several solutions and
to compare them. As we explained along this thesis, generating multiple architectures for such a
complex system is practically not possible without a CAD support. With the method defined in
this thesis, it will be possible for systems architects to generate several architectures easily and
in a very short time, by varying for example the partitioning parameters, e.g. the set of output
devices, the individual capacity of the different devices, the partitioning criteria, the priorities
given to the objectives of the partitioning, etc. Thus, different architectures can be created and
compared. Remember that the quality of an AES architecture was defined on the basis of the
consumption of the communication frames and the compactness of the clusters of the functional
components. Regarding the frames consumption, the best solution must consume the smallest
number of frames. Regarding the compactness, highly compact solutions have a higher quality.
The choice of the best solution depends on the objectives of the partitioning, for example on
the decision about the quantity of space that must be reserved in the architecture of a system
under construction in prevision to its future functional enhancements. Very compact partitions can
difficultly be enhanced. Less compact solutions consume more frames. At this point of the design,
the designer is free to decide the convenient trade-offs. An illustration of this decision-making is
given in section 12.3.

Anyway, for each utilization of our partitioning method, the following steps are necessary:

1. The specification of the system under design must be modeled following the FN format.

2. The partitioning tool transforms this input into a synthesis model, i.e. in a CDFM format.

3. The closeness metrics and the closeness function are calculated.

4. Using the closeness function, the synthesis model is pre-clustered and then clustered following
the algorithms described in the procedures 2 and resp. 4 (chapter 10).

5. The value of the resulting partition is estimated with the cost procedure (of algorithm 6 in
chapter 11).

6. And the improvement procedure defined in algorithm 7 (chapter 11) is started.

As the main goal of this application was to investigate the impact of our partitioning technique
on the design of the system’s architecture, we had to compare the solutions found with our
algorithms with the existing original solution, considered as the reference solution. This is the
architecture of the ACC presented in section 12.1. In this solution, the system described in section
12.1 was implemented on the devices shown in figure 12.1, i.e. as 9 clusters. This implementation
uses 46 frames to communicate. Thereby, the part of the system that is implemented in the power
train of the concerned vehicle uses 34 frames. This is the part around the high-speed CAN bus,
i.e. 6 clusters. Assuming that the functions can be shifted from a device to another one, we
compared different mapping options found with our partitioning algorithms. In order to investigate
the impact of new architectures on the quality of the partition, we firstly considered that the
system’s architecture cannot be changed, i.e. we built 9 clusters just as in the reference partition,

12.2. THE INVESTIGATION 135

but with different assignments. This solution is identified with ”9 new” in contrast to the original
”9 orig” solution of the reference architecture (in results table 12.2). Then, we began to decrease
the number of clusters. Given the number of clusters, we firstly applied the clustering algorithm
(i.e. algorithm 4) on the synthesis model (CDFM) of the input specification. Then, in order to
fairly compare the different solutions,

1. we measured the number of signals that realized the inter-clusters communication, i.e. the
number of signals derived from

⋃

i Tokens(Pi) where each

Tokens(Pi) :=
{

Tk
i j , f or each destination cluster j; k∈ N

}

2. before applying the frames packing algorithm (i.e. algorithm 5) on these signals in order to
obtain the number of frames that will be necessary to package and ship them.

Secondly, we applied the improvement algorithm on the solution found with the clustering
algorithm, we counted the inter-cluster signals and then we applied once more the bin packing on
them. These operations are presented with more details in the following sections and the results
are given in section 12.3.

12.2 The investigation

12.2.1 The models

Figure 12.2 shows an extract of the graphical representation of the FN model of the ACC. The
corresponding CDFM format is shown in figure 12.3 with the original configuration of the mapping.
The clusters are materialized in figure 12.3 by the dotted lines. As seen in figure 12.2, the FN
is an intuitive model. The components are defined by their ports and connected through directed
connectors (i.e. directed ports). Remember that each component shown in these figures is an
atomic entity representing either a functional component or a data block of the ACC system’s
specification. Each port is associated with an interface. An interface specifies the information
that is provided (or needed) by the associated ports. This is a typical modeling style used in the
high-level design of complex systems. However, with the FN, the connectors clearly indicate the
communication paths. But it is not easy to recognize the information that is exchanged through
each connector. For example, when a single port is connected with several ports, i.e. associated
with multiple connectors, a partitioner must analyze the contents of the concerned interfaces
in order to associate the data elements to the connectors that materialize the corresponding
communication. Thereto, the model has too many interfaces. These problems are solved in the
CDFM format.

The CDFM representation of the system’s functional specification is an undirected graph of
atomic components in which each two communicating nodes are related by means of a single
undirected edge (see definition of model transformation in section 8.3.2). The dashed rectangles
represent each the communication interface of the two nodes that are related by the associated
edge. The set of data objects contained in each communication interface represents the data
elements that are exchanged between these nodes during an activation time of the system. These
sets of data determine the weight of the corresponding edges as defined in section 8.2. At this
level of the design, the inter-components communication data objects are observed like tokens and
they also behave as such (see section 8.1.2). But for the data flow analysis, these data objects,
i.e. these tokens, must be transformed into signals following the formula explained in equation
11.1. The figure 12.3 shows all the atomic components that have been mapped on the principal
device involved in the functionality of the ACC, called itself ACC. One component that runs on
the ACC sensor, i.e. the Lens heater, is shown. It is also shown that the system’s functionality
is distributed on several devices, e.g. the ASC, the EGC, the EEM, etc. that can be seen in the
picture. But since the detailed knowledge of the actual implementation of the system is useless

136 CHAPTER 12. APPLICATIONS

for the understanding of the experimentation, the figure does not depict the whole ACC-related
contents of the satellite devices. Note that there are more satellite devices (see figure 12.1) that
are not shown in this picture.

speed_actual
speed_regulation_state

acceleration_min
set_distance_min

potencial_stationary_objects
regulation_obl_objects

objects_sto

display_collision_alert
display_driver_reation

max_acceleration
obstacle_nomination

nominal_distance

speed_actual
speed_lateral_state
acceleration_angle
nominal _distance
acceleration_min
obstacle_detection

objects_sto

Curve treatment acceleration_limit_ped
acceleration_limit_eng

min_Accelerator

display_speed
limit_accelerationSpeed control

overall

speed_actual
speed_regulation_state

acceleration_min
speed_odometer
speed_selection

distance_selection

tempomat_setting

display_distance
set_distance_min display_max_speed

speed_selection

Max speed setting

Security distance
setting

Obstacle
screening

object_nomination
speed_angle_wheel

radar_signal
speed_actual

object_found
state_radar_sensor

hor_just_state
ver_just_state

object_found

speed_angle_wheel
radar_signal
speed_actual

Lane
determination

lane_attributes

potencial_stationary_objects
regulation_obl_objects

objects_sto

Obstacle
identification

Speed control
retarder

Longitudinal
accelerator

min_Accelerator

Figure 12.2: TheFN specification of the ACC: Extract

Curve
treatment

Speed control
retarder

Lane
determination

Obstacle
screening

Speed control
overall

Obstacle
identification

Security distance
setting

Max speed
setting

objects_sto

object_found

state_radar_sensor

hor_just_state
ver_just_state

lane_attributes

speed_selection

set_distance_min

potencial_stationary_objects
regulation_obl_objects

objects_sto
nominal_distance

Speeding up
mixer

Longitudinal
accelator

Torque
Interpreter

Velocity
control

Lens heater Lens heater
activator

outer_Temp
inner_Temp curr_Longitudinal

_accelerator

min_Acceleration desired_Torque
new_Torque_St

desired_Torque
new_Torque_St

desired_Torque_shift
schear_preventer

Radar data
processing

radar_Data

Bracke pressure
analyzer

pressure_req
st_pressure_brake

acc_longi_status
acc_longi_limit

Sensor

ACC

EEM

EGC

ASC

speed_Req

Figure 12.3: The correspondingCDFM-formatted specification of the ACC

Even with this fairly-reduced representation of the functional specification of the ACC, a visual
exploration of the reference architecture (figure 12.3) shows that the distribution of the functional
components of the ACC is not optimal, at least from the point of view of the inter-devices com-
munication. For example, the functions Max speed setting and Speed control overall are located
on the ACC device although they do not communicate with any other function of this device,
but their communication partners are rather on the ASC, the dashboard and the steering block
control units. This is a consequence of the device-oriented design process that is usual in the AES
domain. Several reasons can justify this architecture, e.g. the ACC is a relative new feature that
uses some functions that already exist in the system. Thus, basically if there is no justification
for a redundant implementation of such functions, it is natural to confirm their actual assignment

12.2. THE INVESTIGATION 137

and pick the results of their computations and to transmit them through the bus to the devices
that need them. This approach results in an economy in the implementation of such functions.
But, it induces the consumption of more frames for the inter-device communication. Moreover,
this distribution of the functions can have negative consequences on the real-time behavior of the
system.

12.2.2 The attributes of the tokens

Table 12.1 shows more ACC-related functions (vi) with the outgoing tokens of each of them (i.e.
Tokens Tk

i j) and their attributes. The destination of the tokens is not integrated in the table
because of its lower relevance for the partitioning. In fact, as shown in figure 12.1, the devices that
run these functions communicate through a CAN network. Thus, after the clustering, the parts of
the system will communicate through such a frame-oriented communication system, in which the
addressee of a frame is not considered, but rather the sender. However, note that the destinations
of the tokens can be seen in figure 12.3. In the chapters 7 and 8, we defined the resolution, the
frequency, the priority, the occurrence and the freshness attributes of CDFM tokens. In table 12.1,
the resolution (Tk

i j .res) is given in bits. The frequency (Tk
i j . f req), i.e. the period, and the freshness

(Tk
i j . f resh) are given in milliseconds.

Using the formula 11.1 we can easily calculate the number of signals corresponding to each
token. Remember that:

nbSignals(Tk
i j) =

1 if Tk
i j is short

⌈

Tk
i j .res

(max f rameL−segmentCode)

⌉

if Tk
i j is long

(12.1)

For illustration, each token that is equal to or shorter than 64 bits (payload of a CAN frame)
is equivalent to one signal. This is the case for most of the tokens shown in table 12.1 (i.e. with
Tk

i j .res≤ 64 bits). Considering a segmentCodeof 1 Byte, token ”promtOrderingSt” (26th row of
the table) will produce for example 2 signals (one with 7 Bytes and one with 5 Bytes).

We distinguished 4 classes of priority for the tokens, thus for the resulting signals:

• The priority class 1 defines the highest order of priority within the signals. In addition to
vehicle deactivation signals, the priority class 1 includes highly prioritized ASAP signals such
as the demand to activate the brakes when an obstacle is identified.

• The priority class 2 includes the vehicle activation signals as well as the signals announcing
severe functioning irregularities, such as blind radar, etc.

• The classes 3 and 4 are the lowest priority classes. They contain the status monitoring
signals, the alive confirmation signals and so on.

We defined three groups for the date of occurrence of the signals:

• The group A is reserved for the signals the first occurrence of which is immediately after
the starting of the system. The starting of the system is defined as the time at which the
electric circuit is firstly completed, e.g. when the driver turns the key in the ignition block.

• The group B is reserved for the signals that begin to appear after a certain time, e.g. some
functions wake up only when the vehicle velocity reaches a given speed, e.g. security dist
setting is activated only when the vehicle goes at 20 km/h minimum. Equally, some other
functions wake up after the system has run for a given time.

• The group C is reserved for the event-triggered and sporadic signals.

All these signals must be mapped on the frames of the CAN communication network.

138 CHAPTER 12. APPLICATIONS

Table 12.1: The input ACC’s specification for the application
Ids Functions vi TokensTk

i j Tk
i j .res Tk

i j . f req Tk
i j .prio Tk

i j .occur Tk
i j . f resh

1 Radar data processing radarScreData 24 10 1 B 10
2 Security dist setting setDistMin 16 10 2 B 1000

3 Obstacle screening
stateRadarSensor 4 10 3 B 1000
horJustState 12 20 3 B 20
verJustState 12 20 3 B 20

4 Speed control retard
regulOblObjects 24 10 2 B 10
accLongStatus 4 20 3 B 60
accLongiLimit 4 20 3 B 60

5 Obstacle identification
potentialStatiObj 16 10 2 B 20
objectFound 2 10 1 B 10
objectsSto 4 10 1 B 10

6 Lane determination laneAttributes 32 10 1 B 10
7 Lens heater outerTemp 8 100 2 B 300
8 Lens heater activator innerTemp 8 1000 4 B 2000

9 Speeding up mixer currLongAcc 8 20 2 B 40
currAccOverall 8 20 2 B 20

10 Curve treatment
nominalDistance 24 10 1 B 10
pressureReq 16 10 1 B 10
minAcceleration 12 20 2 B 60

11 Longitudinal accelerator
longitudinalAcc 12 20 2 B 60
desiredTorque 8 20 2 B 20
desTorqueShifft 8 10 2 B 20

12 Max speed setting speedSelect 8 10 1 B 1000

13 Speed control overall speedStatus 8 10 2 B 1000
speedReq 12 10 2 B 1000

14 Brake pressure analyzer statPressBrake 10 10 2 A 200
15 Torque interpreter newTorqueStat 8 10 2 A 200

16 Velocity control currTorqueSt 8 10 2 A 50
schearPreventer 12 20 3 B 20

17 Clutch pedal sensor
pedalSt 2 20 3 B 40
pedalTensioner 8 10 3 B 30
pedalNook 12 100 3 B 200

18 Signal processing clutch
levelSignaling 3 20 3 B 60
operationSt 2 20 3 B 40
levelReq 2 20 3 B 50

19 Target area control radarOrientation 4 100 3 C 100
angleSetting 8 100 3 C 100

20 Wheel brake control
brakingDemand 12 10 1 B 10
clampLevel 3 10 2 B 100
pressureIndication 2 10 2 B 10

21 Wheel braker

clampLevelSetting 4 10 2 A 20
pressureSett 16 10 1 A 10
slowdounInfo 8 10 4 B 1000
demandResponse 1 10 3 B 200

22 Engine interposition celerityReq 12 20 1 B 20
torqueMomment 12 10 2 A 20

23 Engine control

aliveTorque 16 100 2 B 200
minTorque 12 100 2 B 200
revolutionMin 16 100 3 B 200
revolutionFault 2 100 2 B 200
speedRegulationSt 16 100 3 B 500

24 Wheel rotation

speedFR 8 20 3 B 100
speedFL 8 20 3 B 100
speedBR 8 20 3 B 100
speedBL 8 20 3 B 100

25 Wheel move balance

tolerancebalFR 12 1000 3 C
toleranceBalFL 12 1000 3 C
toleranceBalBL 12 1000 3 C
toleranceBalBR 12 1000 3 C

26 Setting function promptOrderingSt 96 10 1 B 10
on-off 4 100 2 A 20

27 Display status

displaySettingSt 4 10 3 A 200
torqueLevel 8 10 2 B 20
obstacleDist 8 10 2 B 30
handoverReq 8 100 4 C 100

. .

12.3. RESULTS 139

12.2.3 The partitioning

As we can observe in the models of the ACC introduced above, the strategic constraints and
the resulting needs relationships between the elements of the functional model of the ACC have
been already solved within the reference solution. For these reasons, the partitioning process done
in this application did not need a pre-clustering. Furthermore, there was no excludes relation
neither between the functions nor between the tokens. Thus, the functions that were partitioned
(see table 12.1) are all atomic components, more precisely super-modules (see section 10.2), and
the super-graph is free from excludes relations. Note that the resolution of needs and excludes
relations is objectively not significant for the objectives defined in this investigation. Consequently,
as the input model was free from needs and excludes relations, the closeness metric between two
components was the number of exchanged signals, i.e. Tag(ei j) = 0, ∀i, j (see the definition of
Tag(ei j) in the section defining the closeness metrics, i.e. in section ClosenessMetrics. With these
dispositions, the objective of the clustering was finally to cluster the functions depending on the
heaviness of their communication. The results are reported in table 12.2.

For the determination of the quality of the partitions, remember that each frame provides a
payload capacity (8 bytes for CAN frames) of user data that can be occupied by several signals, i.e.
in the case of multiplexed frames. According to table 12.1, the period of validity (i.e the freshness
requirement) of the most signals is longer than the required periodicity of their occurrences. Thus,
these signals enjoy each a quite long individual waitingtime (cf. equation 11.3) that allowed a
right flexible configuration of the groups Signals(Pi).dg defined in section 11.2 and thus a flexible
packing of the signals in the frames. Remember that each set Signals(Pi).dg is a group of signals
that can be shipped together, and thus can be packed together in the same frames. The signals
contained in each set Signals(Pi).dg are all produced by the same cluster. But, note that except
the frames used by the ACC device, most of the frames used by the other devices that contain the
signals involved in the functioning of the cruise control might also contain several signals that are
totally irrelevant for this functionality. To take this fact into account, it was sufficient to introduce
a placeholder signal with the corresponding resolution for each such signal in the lists of signals
to be packed, more precisely in the corresponding groups Signals(Pi).dg so that we could be sure
that the number of frames resulting from the frames packing will fairly reflect the result obtained
with the whole system. Fortunately, this disposition did not impose an important modification of
the frames packing algorithm since the placeholder signals were defined with the same attributes,
i.e. resolution, occurrence and frequency like the real signals that they were supposed to replace.

12.3 Results

Table 12.2 summarizes the results of our investigation. In the second row, the approximated
augmentation (+) or diminution (-) of the number of signals realizing the inter-clusters commu-
nication is given in comparison to the original 9-clusters solution in percent. The third row of
the same table documents the economy in the number of frames used to realize the inter-clusters
communication for each investigated solution. The compactness of the partitions, calculated as
defined in the equation 11.10 and given in the fourth row of the table of the results, was used
to measure the opportunity to adopt a partition. With regard to the number of components in a
cluster, we distinguished very low (vl), low (l), medium (m), high (h) and very high (vh) levels
for the compactness. Depending on the range of the values found for the compactness, such a
categorization might lead to several interpretations. But, with a basic knowledge of the AES ar-
chitectural design domain, we could easily interpret the compactness levels in terms of the ability
of the corresponding architecture to integrate the rest of the system or to leave room for their own
functional enhancements.

Theoretically, the 1-cluster solution should be the optimal solution, i.e. the one with 0 external
signal, 0 frame consumption and the highest compactness. But, as shown in table 12.2, this was
not the case. The reason is quite simple: The ACC is not an isolated feature. In fact, in the

140 CHAPTER 12. APPLICATIONS

1-cluster solution, all the functions of the ACC are assigned to a single device that unifies the
sensor with the rest of the functions involved in this functionality. Thus, for these functions, the
inter-functions communication is realized within the device, but there is still a need to communicate
with e.g. the actuators that cannot be located in this device. Furthermore, with this solution,
several functions are detached from their ”natural” home-devices and placed into the ACC device.
Even so, these functions must communicate each with its home-device. This explains the poor
compactness of the partition with the 1-cluster solution. In fact, even if the unified ACC cluster
is very compact, the compactness of the other clusters is thereby so deteriorated that the global
compactness of the system is dramatically penalized. Thereto, since the functions detached from
their home must continue to communicate with their ”brothers” and with other associated devices,
this solution augments the number of frames. A similar tendency is observed for the 2-, the 3- and
the 4-clusters solutions. The following partitions made economy of the number of inter-clusters
signals and of the frames. Particularly, the 5-, the 6- and the 7-clusters partitions seam to yield
the best costs, but with different levels of compactness.

Number of clusters 1 2 3 4 5 6 7 8 9 orig 9 new
Variation of the num-
ber of inter-clusters
signals

+25 +18 +5 +11 -58 -42 -29 -16 0 -11

Variation of the num-
ber of frames

+13 +8 +6 +2 -11 -8 -6 -3 0 -3

Compactness of the
partition

vl vl l l vh h h m m m

Table 12.2: Impact of the partitioning on the cost of the architecture

As the quality of a partition is given by the compactness of the clusters and the cost of the
partition (section 11.5.2), the 5-clusters solution seems to be the best solution. This solution uses
some fewer frames than the 6-clusters solution, but its very high compactness indicates that it will
probably not be a good partition when embedded in the rest of the AES from which the application
case was extracted. Obviously, it will be easier to integrate the partition with 6 clusters in the rest
of the system or to enlarge its functional contents than it will be with the 5-clusters solution.

12.4 Conclusion

The application shown in this chapter demonstrates the usefulness and the power of our parti-
tioning solution. Depending on the tuning of the partitioning parameters, the partitioning tool
implementing this method will report the different solutions and the designer is free to choose the
one that satisfies its goals. Even if this example is sufficient to demonstrate the efficiency of our de-
sign solution, we agree that more investigations on different examples with different sizes, different
attributes and different constraints would better support the experimentation of our solution. But,
due to the severe policy of protection of intellectual property that is imposed in the automotive
industry by the stringent conditions of the competition ruling the automobile market, there is no
concrete example of AES, that can be entirely made public. The application case presented in this
thesis is a concrete example.

Chapter 13

General conclusion

In this chapter, we firstly summarize the work we have done for this thesis, i.e. the identification of the
problem, its comprehension, the extraction of its core issues, its presentation, its final definition and
the solution proposed. Basing on a practical industrial observation, we identified the problem related
with the need of a methodical and CAD-supported approach to the design of AES architectures. This
problem was motivated and defined in this thesis as the combination of a partitioning problem and a
bin packing problem, both formulated as multi-objective optimization problems.In order to enable
rapid comprehension of the solution we proposed to this problem, we present our solution schema in
the form of a design scenario. Since the solution targets specifically on the problem defined in this
thesis, we also give an outlook on its possible expansions, for example for addressing more generally
defined similar problems or for enlarging the application field of our solution.We thereby enumerate
the questions that are related with the extensions of our solution, but that could not be treated in the
defined range of the present doctoral dissertation. For these reasons, the outlook is intentionally given
in such a way as to encourage interested researchers to confirm and fulfillthe results presented in this
thesis.

13.1 Summary

In the actual context that is characterized by the rapid evolution of the quantity of software- and
electronic-actuated features in automobile E/E systems and the related hard competition in the
automobile market, it is necessary to design optimal architectures for automobiles’ E/E systems
in a relative short time. In this thesis, we proposed to solve this problem by providing a CAD-
supported method for the architectural design of automobiles’ E/E systems. As settled in chapter
1, we defined the problem to be solved as a partitioning problem that we firstly formulated as
follows: Given the functional specification of an E/E system and the related constraints, our aim
is to provide a CAD-supported method to find the best architecture of this E/E system, i.e. the
architecture that minimizes the usage of the hardware (i.e. processing units, memory elements,
communication cables) and that concurrently optimizes the functioning and the quality (i.e. the
performance, the reliability, etc.) of the resulting system. Following a procedural discussion on
the above defined partitioning problem, we concluded, again in chapter 1, that the problem must
be solved by a goal-oriented clustering of the system’s logical functions, called the mapping, the
result of which must define the logical devices of the system that must be deployed on the allocated
components of the system’s hardware platform. We then closed chapter 1 with the presentation
of our approach to solve this problem, the intended scientific contributions and the organization
of the detailed treatment of the problem.

After a profound study of the relations between software, electronic components and automo-
biles’ E/E systems in chapter 2, we gave a clear and particularly complete definition of E/E systems
as AES. Then, a comparative study of the different design processes that are usually followed in the
design of both embedded systems and automotive E/E systems allowed us to define the system-

141

142 CHAPTER 13. GENERAL CONCLUSION

oriented approach to the architectural design of AES that is explained and analyzed in the chapters
3 and 4. Our design process follows a co-design approach, i.e. the system’s components are con-
currently designed. Since it allows a global view on the system, the co-design approach is the best
solution to enable efficient partitioning of the system’s functionality within the given platform.
However, following a system-oriented design approach within a model-driven system development
scheme, it was necessary to make sure that the input models satisfy the requirements of both the
system-level design and the partitioning. In fact, while the system-level design needs abstract and
coarse-granular models, the partitioning is done optimally with precise and fine-granular models.
Thus, ideally, the right models must incorporate these contradictory features at the same time. As
we were not aware of such an all-rounder modeling solution, we started an expansive study of the
capabilities of the modeling solutions used in the AES design domain with the goal to evaluate their
ability to support the system-level design on the first hand and the partitioning on the second hand.
This part of the work included an overview of the state-of-the-art in modeling AES (chapter 5),
the evaluation of the usual AES modeling solutions (chapter 6) and the proposition of a modeling
solution that is optimized for the partitioning (in chapter 7). To achieve the latter, we defined
the FN (definition 7.1) to formulate the input functional specifications of the AES under design.
The FN is a modeling format that is based on AUTOSAR, SysML and EAST ADL concepts of
atomic software components with ports, interfaces and connectors, but that is featured to enable
easy tracing of the inter-components communication paths. We completed the FN with the HN
(definition 7.2) for capturing the hardware platform characteristics (i.e. hardware components and
their attributes) and so, we could give a formal definition of the partitioning problem addressed in
this thesis in its original form (definition 7.3).

FN models allow to capture the system’s functional architecture in a way that the closeness
information between its components is highlighted. However, we rapidly noticed that despite its
power, the FN could not allow the handling of the communication between the system’s software
components as needed for the partitioning, e.g. the extraction and the measurement of the
heaviness of the communication. We therefore defined the synthesis model, called the CDFM,
in chapter 8 to fill the drawbacks of the FN. With the synthesis model, each FN model that is
given to the partitioning tool can be transformed into an undirected graph on which the common
partitioning algorithms can be applied, enabling in this way a CAD-supported approach for the
partitioning of AES system-level functional specifications. In order to allow the measurement of
the closeness between the system’s software components, we introduced the concept of tokens
in the CDFM. CDFM’s tokens enable the analysis of the data flow within the AES functional
models. They also enable the automatic extraction and the computation of the closeness between
the functional components of the system. In addition to these features of the CDFM enabled by
the concept of tokens, CDFM models are almost dynamical models. Each CDFM model only needs
to be meaningfully enhanced with the desired communication mechanisms and the corresponding
protocols to be transformed into dynamical models the behavior of which can be simulated.

Nevertheless, following a more precise examination of the problem to be solved from the point
of view of the quality of the input models, it was clear that with the chosen design process, the
allocation of the hardware platform for an AES under design could not precise more than the
sample of the available electronic devices (ECUs, sensors, actuators), their individual capacities,
their cabling (inter-devices communication buses) and the associated communication protocols.
Thus, the corresponding partitioning process must firstly execute the allocation, then the mapping
and finally the deployment, whereas the allocation determines the sample of the devices that are
available in terms of their individual capacities, i.e. the capabilities of the devices that can be
used to implement the system’s functionality. Note that a partitioning process typically proceeds
a certain number of loops through these operations. However, since we cannot determine the
capacities of the needed devices at the high-level of the design, we must take for granted that
the allocation, just as the deployment, is given. Note that the deployment is the concern of the
components supplier. The deployment deals with the scheduling of the tasks on the processing
units and similar low-level design activities. Consequently, the partitioning problem to be solved

13.1. SUMMARY 143

in this thesis was reduced to the mapping, i.e. the optimal distribution of the system’s software
components to the allocated devices (figure 13.1).

Functional components, constraints and
relationships

Functions and
constraints
specification

Logical
architecture
-functional
clusters-

Logical
device 1

Logical
device n

...

Physical
architecture
and topology
-as allocated-

Tasks Data

BSW

CPU Mem I/O Int Bus Int I/O CPU

BSW

DataTasks

Mem

Signals

ECU ECUNW

Frames

deployment mapping deployment

mapping

Logical
device 2

...

Figure 13.1: The partitioning

Since the input functional specifications (i.e. the FN models) are made of inter-communicating
atomic software components like those defined in AUTOSAR models, each component can be
assigned to a device only entirely or not and two components that are assigned to different parts
of the system communicate over networking bus as shown in figure 13.2. Because of the general
characteristics of the most automotive communication protocols (see section 2.2), it is assumed
that in the final system, the system’s devices will communicate through a bus network that runs a
frame-oriented communication protocol and probably makes use of a frames multiplexing technique.
A highly representative example of this class of protocols, the CAN, was introduced in section 11.1
for more comprehension of frame-oriented communication and frame multiplexing.

ECU Gateway ECU

ECU ActuatorSensor

Sensor Actuator

CAN High

LIN

FlexRay

CAN Low

Figure 13.2: The mapping

As a consequence to these conditions, the primary goal of the mapping became the minimizing
of the inter-devices communication, i.e. the minimizing of the number of frames used to exchange
the information through the buses. These conditions enforced an adjustment of the problem
definition that aimed at keeping our work conform with the reality and at the same time stay close
to our declared goals. We then reformulated the partitioning problem as follows:

Problem formulation 13.1. (The partitioning) Given A a FN functional specification of an AES,
given a sample of the capacities of the platform’s devices on which the specification of A can be
implemented, find the best partition ofA, each part representing a device that will communicate with
the others through a bus network running a frame-oriented communication protocol, so that the bus
load is minimal, the functioning and the performance of the system are guaranteed and the strategic
constraints of the design are fulfilled.

Our solution to this problem can be roughly resumed in the two following steps: Given such a
model A,

144 CHAPTER 13. GENERAL CONCLUSION

1. We firstly transform A into a CDFM model.

2. Then, we find a partition of the CDFM model of A that minimizes the number of frames
used for the inter-devices communication and hopefully also minimizes the need of hardware
units within the devices under the observation of the given design constraints.

Remember that minimizing the usage of the hardware units within the devices is the duty of
the deployment. Each FN model can be automatically transformed into a CDFM model following
the transformation rules described in chapter 8. To realize the partitioning, i.e. the mapping,
we defined quite conventional but specific partitioning algorithms that take the strategic concerns
of the design into account. Our solution to this complex multi-objective optimization problem is
given in the third part of this thesis. It begins with the synopsis of the state-of-the-art in the
resolution of partitioning problems that is given in chapter 9. Then, our partitioning strategy is
presented in chapter 10. It follows three clearly distinguished steps including the pre-clustering, the
clustering and the improvement of the result of the clustering. The pre-clustering is the procedure
by which the needs-relations established between the model elements are solved. The software
components that must be implemented together on the same device are related by the means of
needs relations in CDFM models. Similarly, those that might never be implemented on the same
device are related by the means of excludes relations. Note that needs and excludes relations also
exist between the tokens for similar reasons. The pre-clustering procedure merges the software
components of a given CDFM model that need each other into super-modules and thus, results
in a super-graph of super-modules and super-edges as defined in section 10.2.

To find an effective clustering, the components of the functional specification must be assigned
to the allocated devices following their closeness. Depending on their relative closeness to each
other, the clustering procedure groups the nodes of the super-graph produced by the pre-clustering
into logical devices following the process defined in section 10.3. Each such logical device is a clus-
ter of software components that are so close to each other that the result of their actual distribution
within the logical architecture of the system is supposed to minimize the inter-devices communi-
cation by concurrently fulfilling the practical design constraints, for example those concerning the
production conditions of the system’s components, the conditions of their procurement, the techni-
cal factors of their implementation, the composition of the existing system, the factors influencing
the marketing of the products, etc. The closeness metrics used for the clustering are defined on
the basis of the quantification of the needs and the excludes relations and of the inter-components
data flow analysis enabled by the definition of the tokens. We formally defined a closeness function
that combines several closeness factors including the magnitude of the inter-components commu-
nication, their potential to share the resources and the relationships induced by the constraints and
the strategic concerns of the design between them. The clustering procedure itself is realized by
a QT algorithm that takes the excludes relations into account. The QT assignment strategy was
investigated in chapter 9 as the best solution for a partitioning problem for which the number of
clusters is not pre-defined, but rather the possible dimensions of the resulting clusters. The result
of the clustering is a set of clusters of software components that will be assigned each unbroken
to a device of the platform.

As the clustering procedure follows a best-next assignment strategy, there was no possible
statement in relation with the quality of the resulting partition. We consequently decided to solve
this problem by means of an improvement process, i.e. a process that allows to make a statement
on the optimality of a partition. This problem is solved in chapter 11. In order to explain the usage
of the communication frames, we begin this chapter with the presentation of the idea of frames
multiplexing and its consequences on the partitioning and we introduced it in section 11.1 with
the example of the CAN. Logically, before improving a partition, it is necessary to evaluate it. We
addressed the evaluation of a partition in section 11.2. As we defined the cost of a partition in
terms of the number of frames used for the inter-devices communication based on a protocol that
makes use of frames multiplexing, the cost function for the evaluation of a partition came out to
be a bin packing problem (section 11.2.2). We designed a bin packing algorithm based on the FFD

13.2. OUTLOOK 145

(First Fit Decreasing) packing strategy to investigate the cost of the partitions and we explained
it in section 11.4.2. The choice of the FFD strategy follows the discussion given in section 11.3
at the end of which the FFD was investigated as the packing strategy that at the best copes with
the requirements of the cost investigation procedure.

Finally, we investigated the possibility to improve the quality of a partition. Based on the
conclusions of the related discussion (resumed in section 11.5.2), we defined the improvement
technique used to ameliorate non-optimal partitions. The improvement procedure is implemented
by a powerful adaptation of the K&L principles of perturbations based on move operations. In
reality, excepting the idea of moving nodes, our improvement algorithm behaves very differently
with the K&L algorithm. For example, in contrast to the 2-way partitioning for which the K&L
algorithm was designed, our algorithm solves a multi-parts partitioning problem. Thereto, in order
to ameliorate the cost of a given partition, it moves the software components individually from a
part to another one instead of swapping them between the parts as processed by the K&L solution.
This definition of the move operation is justified by the fact that, firstly the dimensions of the
parts must not be equal and secondly the number of the parts is not pre-defined as a fix number.
A good partition can necessitate less devices than the preceding one. Further innovations of our
improvement algorithm include the sequencing of the move operations, the choice of the nodes to
be moved, the order in which these nodes are moved and the mechanisms by which the overloading
of the allocated devices is prevented. Another particularity of this algorithm is its ability to conserve
the established excludes relations. The improvement algorithm returns a set of clusters (i.e. parts,
logical devices) and the corresponding set of optimally packed frames.

The quality of the solution presented in this thesis for the partitioning problem of AES is
demonstrated in chapter 12. The partitioning process described in this thesis has been successfully
applied to the functional specification of the ACC. Note that even though this application is
based on the CAN, the solution developed in this thesis can be used with all frame-oriented
communication networks. Anyway, although the time complexity of the partitioning algorithms for
the architectural design of AES as defined in this work is not of significant relevance as we stated
in section 9.1.2, our algorithms are proved to yield good performance and they are highly flexible,
since they leave room for user interaction at every step of the partitioning and they can be used
in many different cases depending on the actual definition of the problem. For example, if the
number of devices is predefined instead of the capacity of the available devices or if the number of
frames assigned to each device is given instead of giving a total number of available frames that
must be shared between the devices, etc. Such particular cases can be perceived as the outlook
for the enhancement of the work presented in this thesis.

13.2 Outlook

For the application that is presented in chapter 12, we considered a closeness function that com-
bines the communication metric and the relationships induced by the strategic and the design
constraints between the components of the input model of the ACC (i.e. defined as Tags in
section 10.3.1). With regard to the results, this simple and unburdened closeness function was suf-
ficient to demonstrate the efficiency of our design method. Thus, an optimal configuration of the
design artifacts and a globally optimized adjustment of the design parameters will certainly produce
better solutions. For example, some configurations of the partitioning of AES the investigation of
which might be interesting include (the list is not exhaustive):

• The variation of the closeness metrics: As discussed in section 10.3.1, we can modify the
definition of the communication metric, the resource sharing metric, the constraints and
strategic relationships metric, etc. and investigate the impact of their variation on the
performance of the partitioning.

• The variation of the closeness function: Different combinations of the closeness metrics will
probably induce different consequences on the performance of the partitioning. It might be

146 CHAPTER 13. GENERAL CONCLUSION

also interesting to research the optimal weighting factor for each closeness metric in relation
with different combination factors, etc.

• The experimentation of different communication protocols: We considered in this work the
CAN as an example for the frame-based communication protocols used in the AES domain,
but we used the related concepts very abstractly, i.e. independently of the particularities of
the concrete protocols. It is certainly interesting to investigate the effects of such particu-
larities on the quality of the partitioning method. For example, how is the outcome of the
partitioning with a protocol following a different frame multiplexing technique?

• The observation of different optimization goals: Different classifications of the closeness
factors induce different priorities of the optimization goals. A manipulation of this partitioning
factor will produce different solutions. Depending on the closeness factors considered and
the order of priority given to each of them, the result of the partitioning will be differently
appreciated in terms of the quality. We can imagine a field of points in a geometrical space
representing each such a configuration of the partitioning from which a solution front (e.g.
a Pareto front) must be identified.

• The consideration of larger systems: As discussed in section 12.4, it will be interesting to
apply this partitioning method with its different variations on a very large system in which
the closeness criteria will be more globally considered.

Each of these points is a full topic of investigation for itself that cannot be effectively covered
within a single doctoral thesis. However, as we have provided the basic theoretical work for solving
the partitioning problem of AES in this thesis, we believe that the next steps in this area will be
easier. We thus strongly encourage interested researchers to joint us in investigating the open
points enumerated above. Moreover, we think that similar research, including the investigation
of the usefulness of our solution, for the design of the architectures of other kinds of distributed
systems that must be agile and adaptable (dynamically or not) or that are required to evolve rapidly
and to be constantly actualized or that have to share moving software agents, etc. might lead to
very interesting conclusions.

Appendix A

Zusammenfassung der Dissertation

Partitionierungsorientierte Modellierung und
Architekturdesign von automobilen E/E-Systemen

Autor: Augustin Kebemou

Vor dem Hintergrund der gegenwärtigen rapiden Zunahme von software- und elektronikgetriebe-
nen Bestandteilen in modernen Fahrzeugen und der damit verbundenen harten Wettbewerbssitua-
tion im Automobilmarkt ist es notwendig, optimale Architekturen für automobile E/E-Systeme (Elek-
trik/Elektronik) in relativ kurzer Zeit zu entwerfen. In dieser Dissertation schlagen wir vor, dieses
Problem durch eine CAD-gestützte Methode zu lösen.

A.1 Motivation

Heutzutage m̈ussen Autohersteller schöne, verl̈assliche und sichere Fahrzeuge mit kraftvollen Mo-
toren, robuster Technik und hohem Komfort bauen. Diese Anforderungen werden durch den Einsatz
von eingebetteten elektronischen Steuergeräten erf̈ullt. Automobile E/E-Systeme sind sehr komplexe
Systeme, deren softwarebasierte Funktionalitäten auf mehrere Steuergeräte (ECUs, Sensoren und Ak-
toren) verteilt sind, die nicht nur zusammenarbeiten, sondern auch voneinander abḧangen. Wegen der
wachsenden Nachfrage nach mehr Komfort, Sicherheit und Umweltverträglichkeit ist die Entwick-
lung dieser E/E-Systeme eine zentrale Aufgabe für Autohersteller geworden. Für jedes neue Fahrzeug
muss entschieden werden, welche Steuergeräte und wie viele von jeder Sorte zum Einsatz kommen.
Gegenẅartig werden diese Designarbeiten von hoch erfahrenen Systemarchitekten, dieüblicherweise
Systemintegratoren genannt werden, manuell durchgeführt. Die so entworfenen Fahrzeuge funktion-
ieren zufriedenstellend, aber die manuelle Suche nach der richtigen Architektur, d.h. die richtigen
Komponenten, die beste Topologie des Systems und die beste Nutzung der Leistung des Systems, ist
zeitaufwendig und erfahrungsabhängig. Denn sie ist mehr eine Kunst als eine Ingenieurleistung. Sie
ist deshalb auch kein Garant dafür, dass am Ende die beste Architektur gefunden wird. Im Gegenteil,
diese kreative Arbeit erfordert ein optimistisches Vorgehen in der Praxis. Die Architekten arbeiten
nach ihrem Gef̈uhl und hoffen, dass das Ergebnis trotzdem gut ist. Die risikoärmste Vorgehensweise,
die leider am weitesten verbreitet ist, ist die folgende: Um neue Funktionalitäten in einem Fahrzeug
zu implementieren, f̈ugen die Systemarchitekten dem bereits existierenden System neue Steuerger̈ate
hinzu, ohne es zu verändern.

Diese vorsichtige Vorgehensweise hat den Vorteil, dass sie die Menge der Arbeit, die die Integra-
tion von neuen Funktionen erfordert, verringert. Sie lässt sich also mit der Tatsache begründen, dass
die existierenden Systeme gut funktionierende und verlässliche Konfigurationen mit stabilen Kommu-
nikationsmatrizen sind. Ein neues Design des Systems würde eine Entwicklung von Grund auf be-
deuten, die natürlich noch mehr Zeit in Anspruch nehmen würde und deshalb wirtschaftlich ungünstig

1

2 APPENDIX A. ZUSAMMENFASSUNG DER DISSERTATION

wäre in diesem Industriebereich, in dem die Entwicklungszeit entscheidendist. Sie ist also eher re-
alistisch als pragmatisch. Aber sie hat viele negative Konsequenzen für die Wettbewerbsfähigkeit der
OEMs. Dies dr̈uckt sich z. B. durch die erhöhte Anzahl an ungenutzten Hardwareressourcen in den
Fahrzeugen und die daraus folgenden hohen Verkaufspreise und Nutzungskosten für die Kunden aus.
Auf dem Weg zu kommerziellen Alleskönnerfahrzeugen werden noch mehr software- und elektron-
ikgetriebene Funktionalitäten in automobilen E/E-Systemen hinzugefügt. Dies wird sich wieder auf
die Designkosten, die Fahrzeugpreise, die Entwicklungszeit, die Betriebskosten (Energie-, Kraftstof-
fverbrauch, Instandhaltung, etc.) und die Qualität (Leistung, Sicherheit, Verlässlichkeit, etc.) der
Fahrzeuge, auswirken. Diese Perspektive stellt eine große Herausforderung f̈ur die Autohersteller dar.
Können wir weiterhin so viele Steuergeräte wie neue Funktionalitäten einbauen? Wenn nicht, wie
hoch ist das Risiko beim Entwurf völlig neue Architekturen? Was ẅurde das eigentlich kosten? Was
würde uns dann die Erfahrung unserer Architekten kosten? Dies sind einige der Fragen in Zusam-
menhang mit dieser Problematik. Einfach gesagt kann die Herausforderung wie folgt formuliert wer-
den: Da wir die sẗandig wachsenden Forderungen der Verbraucher nach Komfort-, Sicherheits- und
Umweltvertr̈aglichkeitsfunktionen in ihren Fahrzeugen nicht stoppen können, wie k̈onnen wir weit-
erhin verl̈assliche und sichere Fahrzeuge schnell herstellen, die jede mögliche Funktion bieten, aber
dennoch kosteng̈unstig sind?

Die Antworten auf diese Frage beinhalten im Allgemeinen die folgenden Vorschläge: Eine radikale
Änderung der Entwicklungsmethoden, die Standardisierung von Systemkomponenten, die Harmon-
isierung von Designprozessen und die Entwicklung neuer Technologien.

• Eine Ver̈anderung des Designprozesses ist notwendig: Der aktuelle Designprozess basiert auf
einem komponentenorientierten Ansatz, was zu einemÜbermaß an in dem System installierten
Komponenten und einer starken Kommunikation zwischen den Komponenten führt. Um mehr
Funktionen auf weniger Komponenten zu implementieren, ist es notwendig, diederzeitige kom-
ponentenorientierte Entwicklung zugunsten einer systemorientierten Entwicklung aufzugeben.
Dies haben alle Automotiv Designer bereits erkannt, und das ist auch gut so.

• Eine Standardisierung sowie Harmonisierung der Prozessen sind erforderlich: In dieser Indus-
trie, in der die gute Zusammenarbeit zwischen Herstellern und Zulieferern besonders wichtig
ist, in der die Basisfunktionen so identisch sind, dass sie unter den Herstellern austauschbar
sind, in der ein Produkt im Allgemeinen nur eine Variante eines anderen ist, ist der Bedarf
an einer klaren Basis für die Kommunikation, einer systematischen Wiederverwendung von
Lösungen und einer profitablen Wettbewerbsplattform offensichtlich. AUTOSAR und FIBEX
sind vielversprechende Initiativen, die sich um eine Standardisierung innerhalb der Automotiv-
Domäne bem̈uhen.

• Das Aufkommen neuer Technologien wird mit Sicherheit einige Probleme lösen: Prominente
Beispiele hierzu umfassen die sich herausbildenden Mechatronik- und By-wire-basierten In-
novationen und die neuen automobilen Kommunikationsprotokolle wie TTCAN, TTP, MOST,
FlexRay, Byteflight, LIN, etc.

Obwohl diese Vorschläge das Problem scheinbar lösen, reichen sie offensichtlich nicht aus! Um
z.B. den Bedarf an den stetig wachsenden Kommunikationsanforderungen zu decken, ben̈otigen E/E-
Designer immer leistungsfähigere Kommunikationssysteme. Dies wird einerseits durch die Entwick-
lung von leistungsstarken und spezialisierten Kommunikationsprotokollen erreicht und andererseits
durch das Hinzuf̈ugen von neuen Bussen/Kabeln in das System. Kabel hinzuzufügen bedeutet, das
Kabelgeflecht zu erweitern. Dies wiederum bedeutet eine Zunahme des Gewichts, also des Energie-
verbrauchs, die Erḧohung des Verkaufspreises der Wagen und möglicherweise weitere Quellen für
technische Probleme. Wir können die Kosten optimieren, wenn wir sowohl die Designkosten als auch
den Hardwareressourcenverbrauch reduzieren. Die Designkosten können wir dadurch reduzieren,
dass wir effiziente und CAD-gestützte Designtechniken zur Verfügung stellen, womit auch uner-
fahrene Designer gute Architekturen entwerfen können. Daf̈ur müssen wir das Architekturdesign,

A.2. PROBLEMLÖSUNG 3

das gegenẅartig eher eine Kunst ist, in eine Ingenieurdisziplin umwandeln. Den Hardwareverbrauch
können wir reduzieren, indem wir die Systemarchitekturen so optimieren, dass die Menge an Hardwar-
eressourcen, die für die Implementierung der erforderlichen Funktionalitäten ben̈otigt wird, reduziert
wird. Dies kann dadurch erreicht werden, indem wir die Prozessorenund die Memories, die in dem
System installiert sind, sowie die Kabel für die Kommunikation zwischen den Steuergeräten optimal
nutzen.

A.2 Problemlösung

Unser Ziel war es, eine automatisierbare Methode für das Design der Architekturen von E/E-Systemen
vorzuschlagen. Diese Methode soll helfen, unabhängig von der Erfahrung und von dem Gefühl des
Designers innerhalb kurzer Zeit eine optimale Architektur für jedes E/E-System zu finden. In dieser
Dissertation haben wir das zu lösende Problem als ein Partitionierungsproblem definiert, das wir
zun̈achst wie folgt formulierten: Anhand der funktionalen Spezifikation einesE/E-Systems und der
entsprechenden Design-Constraints, gesucht wird die optimale Architektur, die die gegebenen An-
forderungen erf̈ullt. Die optimale Architektur ist die, die gleichzeitig die Verwendung von Hardwar-
eressourcen (Prozessorenleistung, Datenspeichern, Kommunikationskabel, etc.) minimiert und die
Qualiẗat (Leistung, Verl̈asslichkeit, etc.) des daraus entstehenden Systems optimiert. Die optimale
Architektur zu finden heißt dann, die minimale Anzahl der benötigten Hardwarekomponenten zu er-
mitteln, die kosteng̈unstigsten Hardwarekomponenten auszusuchen, von jeder die kostensparendste
Kalibrierung zu bestimmen und die vorhandenen Ressourcen am wirkungsvollsten auszunutzen. Dies
naẗurlich unter Ber̈ucksichtigung der gegebenen Designanforderungen und Constraintsund mit der
Garantie, dass das daraus entstehende System verlässlich funktioniert. Dies ist ein schwieriges Opti-
mierungsproblem. Verlässlichkeit und sicheres Funktionieren sind bei minimalen Ressourcen offen-
sichtlich schwer zu erreichen.

Nach der verfahrenstechnischen Diskussionüber dieses Problem haben wir in Kapitel 1 geschlussfol-
gert, dass das Problem durch ein zielorientiertes Clustering der Funktionen des Systems gelöst werden
kann. Ein Clustering bildet das sogenannte Mapping ab, dessen Ergebnis die logistischen Komponen-
ten des Systems darstellt. Kapitel 2 beschäftigt sich mit der Definition von automobilen E/E-Systemen.
Es entḧalt eine tiefgreifende Untersuchung der Beziehungen zwischen Software-, elektronischen Kom-
ponenten und automobilen E/E-Systemen. In den Kapiteln 3 und 4 erlaubte unseine Vergleichsstudie
der verschiedenen Designprozesse, dieüblicherweise sowohl beim Design eingebetteter Systeme als
auch von E/E-Systemen eingesetzt werden, einen systemorientierten Prozess zu definieren, der das De-
sign von optimalen Architekturen für E/E-Systeme unterstützt. Da dieser Prozess einem Co-Design-
Ansatz folgt, ben̈otigt es System-Level-Modelle. Folglich müssten wir angesichts der Komplexität
von E/E-Systemen zunächst sicherstellen, dass die Inputmodelle die Anforderungen des System-Level-
Designs und der Partitionierung erfüllen. Denn, ẅahrend System-Level-Modelle meistens abstrakt und
von grober Granulierung sind, erfordert die Partitionierung genaue und feine Modelle. Die Inputmod-
elle für das System-Level-Clustering müssen idealerweise diese widersprüchlichen Voraussetzungen
gleichermaßen erfüllen.

Da wir eine solche Allround-Modellierungslösung nicht kannten, haben wir eine ausführliche Un-
tersuchung der Modellierungslösungen, die f̈ur das modellbasierte Design von E/E-Systemen benutzt
werden k̈onnen, durchgeführt. Das Ziel der Untersuchung war dieüberpr̈ufung der F̈ahigkeit der
vorhandenen Modellierungstechniken, die Aktivitäten des System-Level-Designs einerseits und der
Partitionierung andererseits zu unterstützen. Dieser Teil der Dissertation umfasste eineÜbersichtüber
den Stand der Technik in der Modellierung von E/E-Systemen in Kapitel 5, dieBewertung der̈ublichen
Modellierungsl̈osungen in Kapitel 6 und in Kapitel 7 den Vorschlag einer Modellierungslösung, die
für die Partitionierung optimiert ist. Unsere Modellierungslösung, genanntFN für Functional Net-
work, definiert eine Syntax für die Formulierung der Funktionalität eines E/E-Systems. DasFN ist
ein Modellierungsformat, das auf AUTOSAR-, SysML und EAST ADL-Konzepten (z.B. atomare
Softwarekomponenten mit Ports und Connectors, Interfaces, etc.) basiert, das aber die Ausfilterung
der Kommunikationswege zwischen den Software-Komponenten erleichtert.Wir komplettierten das

4 APPENDIX A. ZUSAMMENFASSUNG DER DISSERTATION

FN mit demHN (Hardware Resource Network), um die Hardwareplattform zu erfassen. Mit diesen
Angaben konnten wir eine formale Definition des Partitionierungsproblems liefern. Wir bemerkten je-
doch, dass dasFN-Modellierungsformat trotz seiner Leistungsfähigkeit die Kommunikation zwischen
den Software-Komponenten nicht so darstellen kann, wie es für die Partitionierung optimal ist.

Wir definierten daher ein Synthesemodell in Kapitel 8, genanntCDFM für Components Data Flow
Machine, um die Nachteile desFN auszugleichen. Mit dem Synthesemodell kann jedesFN-Modell in
einen ungerichteten Graph umgewandelt werden, auf den die allgemeinen Partitionierungsalgorithmen
angewendet werden können. Um die Analyse des Datenflusses zwischen den Software-Komponenten
und die Ermittlung der Br̈uderlichkeiten zwischen ihnen zu ermöglichen, haben wir das Konzept der
Tokens in dasCDFM eingef̈uhrt. Die Tokens sind so definiert, dass außer ihrer optimalen Fähigkeit,
den Datenfluss abzubilden, sie ausCDFM-Modelle leicht Verhaltensmodelle machen können. Jedes
CDFM-Modell braucht nur mit den geẅunschten Kommunikationsmechanismen und den entsprechen-
den Protokollen versehen zu werden, um in ein dynamisches Modell umgewandelt zu werden. Nichts-
destotrotz war nach genauerer Prüfung des zu l̈osenden Problems hinsichtlich der Qualität der Modelle
klar, dass mit dem geẅahlten Designprozess die Definition der Hardwareplattform nicht präziser sein
kann als die Angabe der verfügbaren Steuergeräte mit ihren Kapaziẗaten, ihrer Verkabelung (Busse)
und der dazugeḧorigen Kommunikationsprotokolle. Daher musste sich der Partitionierungsprozess auf
das Mapping, d. h. die optimale Verteilung der Applikationssoftwarekomponenten eines E/E-Systems
auf die zugewiesenen Steuergeräte, konzentrieren.

Da die funktionale Spezifikation des Systems aus atomaren Softwarekomponenten besteht, kann
jede Komponente nur ganz oder gar nicht einem Steuergerät zugewiesen werden. Zwei Softwarekom-
ponenten, die verschiedenen Steuergeräten zugewiesen werden, können nur̈uber einen Netzwerkbus
kommunizieren. Aufgrund der allgemeinen Merkmale der meisten automotiven Kommunikationspro-
tokolle wird angenommen, dass die Kommunikationüber die Busse nach Frame-orientierten Pro-
tokollen erfolgt, die bestimmte Frame-Multiplexing-Techniken nutzen. Um diese Konzepte zu kl̈aren,
haben wir das Funktionieren eines prominenten Beispiels dieser Klasse vonProtokollen in Kapitel 11,
nämlich den CAN, zusammengefasst. Als Konsequenz dieser Bedingungen war das Ziel des Map-
pings das Minimieren des Verbrauchs der Kommunikationsressourcen, das wir formal durch die An-
zahl der verbrauchten Frames formalisiert haben. Diese Orientierung erforderte eine Anpassung der
Definition des zu l̈osenden Problems, die zur folgenden Formulierung führte: Gegeben seienA , eine
FN-funktionale Spezifikation eines E/E-Systems, die Kapazitäten der einzelnen Steuergeräte, auf die
A implementiert werden kann, die Anforderungen und die Constraints des Designs, gesucht wird die
beste Aufteilung der Elemente vonA über die vorhandenen Steuergeräte, sodass die Buslast minimal
ist, die Funktionaliẗat des Systems gewährleistet ist, die Leistung optimal ist und die strategischen
Bedingungen des Designs erfüllt sind.

Unsere L̈osung dieses Optimierungsproblems ist in dem dritten Teil dieser Dissertation beschrieben.
Sie kann grob in den zwei folgenden Schritten zusammengefasst werden: Gegeben sei einFN-Modell
A ,

1. Wir wandeln zun̈achstA in einCDFM-Modell um,

2. Dann, unter Ber̈ucksichtigung der vorgegebenen Einschränkungen, suchen wir eine Partition
desCDFM-Modells vonA , das die Anzahl der Frames, die für die Kommunikation verwendet
wird, minimiert.

In dieser L̈osung kann jedesFN-Modell automatisch in einCDFM-Modell umgewandelt wer-
den. Um die Partitionierung zu realisieren, haben wir spezifische Partitionierungsalgorithmen ent-
worfen, die die strategischen Gegebenheiten des Designs berücksichtigen. Die Partitionierung ist wie
folgt dokumentiert: Kapitel 9 zeigt einëUbersicht zum Stand der Technik bei der Lösung von Par-
titionierungsproblemen. Unsere Partitionierungsstrategie wird in Kapitel 10 beschrieben. Sie folgt
drei klar definierten Stufen: Pre-Clustering, Clustering und Optimierung des Clusterings. Die Soft-
warekomponenten, die zusammen auf das gleiche Steuergerät implementiert werden m̈ussen werden
durch Needs-Beziehungen miteinander verbunden. Diejenigen, die niemals auf das gleiche Steuergerät

A.3. WISSENSCHAFTLICHE BEITR̈AGE DER DISSERTATION 5

implementiert werden d̈urfen, sind durch Excludes-Beziehungen miteinander verbunden. Das Pre-
Clustering ist die Operation, die die Needs-Beziehungen zwischen den Modellelementen l̈ost, indem
es die Softwarekomponenten einesCDFM-Modells, die in Needs- Beziehung zueinander stehen, zu
Supermodulen b̈undelt und so einen Supergraph ergibt. Das Clustering gruppiert die Supermodule
in Abhängigkeit von ihrer relativen Distanz zueinander in logistische Steuergeräte. Die daf̈ur be-
nutzten Closeness Metriken und die Closeness Funktion sind in Kapitel 10 formalisiert. Das Clustering
selbst wird durch einen Quality-Threshold Algorithmus (QT) realisiert, derdie Excludes-Beziehungen
ber̈ucksichtigt. Die Optimierung des Clusterings ist in Kapitel 11 beschrieben. Sieist durch eine An-
passung des Kernighan&Lin-Algorithmus implementiert. Kapitel 12 beschreibtdie Anwendung dieser
Lösung auf das Architekturdesign des ACC (Active Cruise Control). Die englische Zusammenfassung
der Dissertation steht in Kapitel 13.

A.3 Wissenschaftliche Beitr̈age der Dissertation

Das Ziel dieser Dissertation war es, ein automatisierbares ingenieurmäßiges Vorgehen für die Bestim-
mung der Architekturen von E/E-Systemen zu produzieren. Diese Operation wird in der AUTOSAR-
Terminologie ”System-Generation” genannt. Wir haben dafür einen Designprozess definiert, die notwendi-
gen Modellierungskonzepte herausgearbeitet, die Verhältnisse zwischen den Komponenten eines E/E-
Systems formalisiert, und wir haben effiziente, CAD-gestützte Partitionierungsalgorithmen entworfen.
Insgesamt k̈onnen wir festhalten, dass diese Dissertation einen weitenÜberblicküber die Entwicklung
von automobilen E/E-Systemen bietet. Dabei können wir die folgenden Punkte hervorheben:

1. Eine ausf̈uhrliche Hintergrundinformation̈uber das Wesen der automobilen E/E-Systeme und
ihrer Entwicklung. Diese umfasst eine besonders gründliche Untersuchung der Spezifikation,
der Modellierung und des Architekturdesigns von automobilen E/E-Systemenund der damit
verbundenen Designprozesse und dokumentiert den aktuellen Stand derTechnik, die aktuellen
Anforderungen und die aktuellen und zukünftigen Herausforderungen bei der Entwicklung von
E/E-Systemen.

2. Eine Studie der Wechselwirkungen zwischen E/E-Designprozessen, -Modellen, -Abstraktionsniveau
und -Designoperationen.

3. Der Entwurf eines Frameworks für die Bewertung und die Klassifizierung von Modellierungssprachen,
die in das Design von automobilen E/E-Systemen eingesetzt werden können. Dieser umfasst
eine eingehende Prüfung und eine Klassifizierung der wichtigsten Modellierungssprachen,die
in der Automotiv-Dom̈ane verwendet werden, hinsichtlich ihrer Fähigkeit, die Implementierung
komplexer eingebetteter Systeme zu unterstützen.

4. Die Definition von Modellierungslösungen f̈ur die Abbildung von E/E-Systemen, die die Parti-
tionierung untersẗutzen.

5. Der Entwurf eines originalen Modellierungsformats für die Synthese von E/E-Systemen, das
auch f̈ur Validierungsẗatigkeiten, d. h. f̈ur Simulation, Verifizierung oder Test, verwendet wer-
den kann.

6. Die Definition eines Partitionierungsprozesses für das Architekturdesign von E/E-Systemen.
Dies umfasst die Formalisierung von komplexen Closeness-Faktoren und die Entwicklung von
leistungsf̈ahigen Clustering- und Optimierungsalgorithmen.

7. Die Definition eines Verfahrens für die Bewertung von E/E-Architekturen mit den entsprechen-
den Metriken.

6 APPENDIX A. ZUSAMMENFASSUNG DER DISSERTATION

Glossary of Terms and Abbreviations

A

ABS Anti-Block System.

ACC Active Cruise Control.

ADC Analog Digital Converter.

AES Automotive Embedded Systems.

ASC Automatic Stability Control.

ASIC Application-Specific Integrated Circuit.

ASIP Application-Specific Instructions set Processor.

ASSP Application-Specific Standard Product.

AUTOSAR AUTomotive Open System Architecture.

AWF Almost Worst Fit.

B

BF Best Fit.

BFD Best Fit Decreasing.

Business-Critical Systems Best efforts on the availability and security requirements.

C

C2d Chrysler Collision Detection.

CAD Computer Aided Design.

CAN Control Area Network.

CDFM Components Data Flow Machine.

CPU Central Processing Unit.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

CSMA/CR Carrier Sense Multiple Access with Collision Resolution.

D

DSC Dynamic Stability Control.

DSP Digital Signal Processing.

i

ii GLOSSARY OF TERMS AND ABBREVIATIONS

E

EA Evolutionary Algorithm.

ECU Electronic Control Unit.

E/E Electric/Electronic.

EEM Electronic Engine Management.

EGC Electronic Gear Control.

EP Evolutionary Programming.

ES Embedded Systems.

ESs Evolution Strategies.

F

FF First Fit.

FFD First Fit Decreasing.

FN Functional Network.

FPGA Field Programmable Gates Array.

G

GA Genetic Algorithm.

GPP General Purpose Processor.

H

HDL Hardware Description Language.

HN Hardware resources Network.

I

I2C Inter-Integrated Circuits Bus.

ILP Integer Linear Programming.

K

K&L Kernighan & Lin Algorithm.

L

LCD Liquid Crystal Display.

LIN Local Interconnect Network.

LP Linear Programming.

GLOSSARY OF TERMS AND ABBREVIATIONS iii

M

MCU Micro-Controller Unit.

MILP Mixed Integer Linear Programming.

Mission-Critical Systems Best efforts on the functionality.

MOC Model Of Computation.

MOST Media Oriented System Transport.

N

NF Next Fit.

NoC Network-On-Chip.

NRE Cost Non-Requiring Engineering Cost.

P

POF Plastic Optical Fiber.

Q

QT Quality Threshold.

R

RTE RunTime Environment.

RTOS Real-Time OS.

S

SA Simulated Annealing.

SAE Society of Automotive Engineers.

Safety-Critical Systems Best efforts on the safety requirements, reliability, real-time.

SoC System-On-Chip.

SPI Serial Peripheral Interface.

T

TDMA Time Division Multiple Access.

TTCAN Time-Triggered communication on CAN.

TTP Time-Triggered Protocol.

U

UART Universal Asynchronous Receiver-Transmitter.

USB Universal Serial Bus.

iv GLOSSARY OF TERMS AND ABBREVIATIONS

V

VFB Virtual Functional Bus.

W

WF Worst Fit.

List of Figures

1.1 A subset of a modern passenger car’s architecture: A network of sub-networks
(source: Elektronik Automotive 01/2005, pp. 82) 2

1.2 Activities in the AES development . 4
1.3 The partitioning with coarse-granular software components 6
1.4 The allocation, the mapping and the deployment 7
1.5 Detailed allocation and deployment . 8
1.6 Vertical logic of the thesis . 14

2.1 ECU architecture . 17
2.2 Automotive embedded systems . 17
2.3 The ACC radar sensor . 18
2.4 The ACC device . 18
2.5 ACC interconnection . 19
2.6 Some automotive in-vehicle communication technologies 26

3.1 Sequential embedded systems design method . 27
3.2 Concurrent design method of embedded systems 29
3.3 Specification languages in the HW/SW co-design method 30
3.4 Design of the embedded software . 31
3.5 Usual processing components . 32

4.1 OEM and suppliers views in the development process of AES 36
4.2 The components-based design process . 36
4.3 System-oriented design approach . 38
4.4 The AUTOSAR design approach (source: Autosar web content V23.4) 39

5.1 AES design conceptual levels . 45
5.2 AES FAs basic modeling concepts . 46
5.3 AES hardware platforms basic modeling concepts 46
5.4 Abstraction levels of the hardware devices . 47

7.1 AUTOSAR communication patterns . 69
7.2 The FN inherits the common concepts from the standards 71
7.3 A partial graphical representation of the ACC’s functionality following the FN format 72
7.4 The AUTOSAR ECU architecture (source: Autosar web content V2.0.1) 73
7.5 Overview of the AUTOSAR layered ECU architecture 74
7.6 Hardware infrastructure of a device . 75
7.7 Formal definition of the partitioning of automotive E/E systems 76
7.8 Data object is a generalization of operations and data elements 78

8.1 The FN graphical representation of the mileage inquiry 88
8.2 The graphical CDFM representation of the mileage inquiry 88
8.3 Model transformation: The CDFM representation of the FN model of figure 7.3 . 89

v

vi LIST OF FIGURES

9.1 Taxonomy of the partitioning methods . 94

10.1 The partitioning process . 103
10.2 The super graph . 107

11.1 Format of a standard CAN data frame . 117
11.2 Semantical relationships between the concepts for the frames multiplexing 118

12.1 The ACC’s CAN bus interconnection . 133
12.2 The FN specification of the ACC: Extract . 136
12.3 The corresponding CDFM-formatted specification of the ACC 136

13.1 The partitioning . 143
13.2 The mapping . 143

List of Algorithms

1 PROCEDURE Partitioning(G: CDFM) . 105
2 PROCEDURE Pre-Clustering(G: CDFM) . 107
3 PROCEDURE InitialConfiguration(SuperModules) 112
4 PROCEDURE Clustering(SuperModules) . 112
5 PROCEDURE FramesPacking(Signals(Pi).dg) . 126
6 PROCEDURE Cost(P) . 126
7 PROCEDURE ListAssignment (InitialConfig) . 131

vii

viii LIST OF ALGORITHMS

List of Tables

6.1 Programming languages, HDLs and ADLs are complementary 62
6.2 Level of support of AES modeling languages with regard to the cost of use 64
6.3 Level of support of AES modeling languages for the partitioning 65

12.1 The input ACC’s specification for the application 138
12.2 Impact of the partitioning on the cost of the architecture 140

ix

x LIST OF TABLES

Bibliography

[1] CAN Specification 2.0A, 2.0B available at www.can−cia.org.

[2] CAN Specification Version 2.0, Part A, Part B; Robert Bosch GmbH.

[3] DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18
September2000 on end-of life vehicles; - Official Journal of the European Communities; 21.10.2000.

[4] DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27
January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic
equipment; - Official Journal of the European Union; 13.2.2003.

[5] DIRECTIVE 2002/96/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27
January 2003 on waste electrical and electronic equipment (WEEE): - Official Journal of the European
Union; 13.02.2003.

[6] The Esterel v7 Reference Manual Version 7.30 - initial IEEE standardization proposal; Esterel Tech-
nologies, 3 Novembre 2005, France.

[7] I2C Bus Manual, Philips Semiconductors, March 24, 2003.

[8] ITU-T Serie Z; Languages and General Aspects for Telecommunication Systems; Formal Description
Technics- Specification and Description Language (11/99).

[9] LIN Specification Package, Revision 1.3; Dec 13, 2002
LIN Consortium available at htt p : //www.lin−subbus.org/.

[10] LIN Specification Package, Revision 2.0; Sep 23, 2003
LIN Consortium available at htt p : //www.lin−subbus.org/.

[11] MOST Specification Rev 2.4, 05/2005, Most Cooperation
www.mostcooperation.com.

[12] Systems Modelling Language (SysML) Specification, OMG document: ad/2006-03-01; version 1.0
Draft.

[13] UML Profile for AUTOSAR; V1.0.0; AUTOSAR Adminstration web content, 28.04.2006.

[14] Universal Serial Bus Specification, Revision 1.1, September 23, 1998
www.usb.org.

[15] Universal Serial Bus Specification, Revision 2.0, Apri 27, 2000
www.usb.org.

[16] AADL. http://www.aadl.info/.

[17] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing. Wiley-Interscience series in discrete mathematics
and optimization John Wiley and Sons, Inc., New York, NY., ACM Computing Surveys 35:516., 1994.

[18] D.H. Ackley. A Connectionist Machine for Genetic Hill Climbing. Kluwer, 1987.

[19] A. Albert. Comparison of Event-Triggerd and Time-Triggered Concepts with Regard to Distributed
Control Systems. Embedde World 2004, p235-252, 2004.

[20] C. J. Alpert and S.-Z. Yao. Spectral Partitioning: The More Eigenvectors, The Better. In 32nd
ACM/IEEE Design Automation Conference, 1995.

xi

xii BIBLIOGRAPHY

[21] P. Arato, Z. A. Mann, and A. Orban. Algorithmic Aspects of Hardware/Software Partitioning. In
ACM Transactions on Design Automation of Electronic Systems, Vol. 10, Nr. 1, pp 136-156, Jan
2005.

[22] AUTOSAR. www.autosar.org.

[23] A. Baghdadi, N.-E. Zergainoh, W.O. Cesario, and A.A. Jerraya. Combining a Performance Esti-
mation Methodology with a HW/SW Codesign Flow Supporting Multiprocessor Systems. In IEEE
Transactions on SW Engineering, Vol. 28, No 9, Sep 2002.

[24] H. Bauer, J. Crepin, and K.-H. Dietsche. Autoelektrik Autoelektronik; Systeme und Komponenten.
Vieweg, 2002.

[25] G. Berry and G. Gonthier. The Esterel Synchronous Programming Language: Design, Semantics,
Implementation. Science of Computer Programming, pages pp 87–152, 1992.

[26] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996.

[27] Lee Bilung and E.A. Lee. Hierarchical concurrent finite state machines in Ptolemy. In Fist International
Conference on Application of Concurrency to System Design, ACSD; pp 34 - 40, March 1998.

[28] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-Specific Software Architectures for
Guidance, Navigation and Control. International Journal of Software Engineering and Knowledge
Engineering, Vol 2, No 2, 1996.

[29] C. Bobda. Synthesis of Dataflow Graphs for Reconfigurable Systems using Temporal Partitioning and
Temporal Placement. PhD thesis, Universitat Paderborn, Heinz Nixdorf Institut, Entwurf Paralleler
Systeme, Germany, 2003.

[30] K. Buchenrieder and C. Veith. A Prototyping Environment for Control-Oriented Hardware/Software
Systems Using States Charts, Activity Charts and FPGA. EURODAC, 1994.

[31] T.N. Bui and B.R. Moon. A Genetic Algorithm for a Special Class of the Quadratic Assignment
Problem. In DIMACS Series on Discrete Mathematics and Theoretical Computer Sciences, Vol 16,
pp. 99-116, 1994.

[32] Inc: BCANPSV2.0/D Rev. 3 CAN Bosch Controller Area Network (CAN) Version 2.0; Protocol Stan-
dard, Frescale Semiconductor.

[33] E.G. Coffman, M.R. Garey, and D.S. Johnson. Bin Packing with divisible Item Sizes. J. Complexity,
3:405–428, 1987.

[34] E.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation Algorithms for Bin Packing: A survey,
chapter 2 in Approximation Algorithms for NP-Hard Problems, pages 46–93. PWS Publishing, Boston,
1996.

[35] Luis Alejandro Cortes, Petru Eles, and Zebo Peng. Verification of Real-Time Embedded Systems using
Petri Net Models and Timed Automata. In 8th International Conference on Real-Time Computing
Systems and Applications (RTCSA 2002), Tokyo, Japan, pp. 191-199, Mar 18-20, 2002.

[36] Luis Alejandro Cortes, Petru Eles, and Zebo Peng. A Petri Net Based Model for Heterogeneous
Embedded Systems. In 17th IEEE NORCHIP Conference, Oslo, Norway, pp. 248-255, Nov 8-9, 1999.

[37] J. Csirik and G.J. Woeginger. On-line Packing and Covering Problems. Online Algorithms: The State
of the Art, Lecture Notes in Computer Science, Springer, Berlin, Vol. 1442:pp. 147178, 1998.

[38] A. L. Davis and R. M. Keller. Data Flow Program Graphs. Computer, Vol. 15, Nr. 2:26–41, Feb.
1982.

[39] Bruce Powel Douglass. Real-Time UML. Developing Efficient Objects for Embedded Systems.
Addison-Wesley, 1998.

[40] EAST-EEA. Embedded Electronic Architecture. Definition of Language for Automotive Embedded
Electronic Architecture v. 1.02. Technical report, ITEA, 30.06.2006.

[41] S. Edwards, L. Lavagno, E.A. Lee, and Sangiovanni-Vincentelli. Design of Embedded Systems: Formal
Models, Validation, and Synthesis. Report, Nov, 1999.

BIBLIOGRAPHY xiii

[42] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System Level Hardware/Software Partitioning Based
on Simulated Annealing and Tabu Search. In Journal on Design Automation for Embedded Systems,
vol. 2, pp. 5-32, 1997.

[43] R. Ernst, J. Henkel, and T. Brenner. Hardware/Software Cosynthesis for Microcontrollers. IEEE
Design and Test of Computers, pages pp 64–75, Dec 1993.

[44] A. Bauer et al. AutoMoDe - Notations, Methods, and Tools for Model-Based Development of
Automotive Software. SAE International, 2005.

[45] U. Freund et al. Architecture Centric Modeling of Automotive Control Software. SAE, 2003.

[46] K. Etschberger. Controller-Area-Network. Grundlagen, Protokolle, Bausteine, Anwendungen. Hanser,
2002.

[47] ASAM e.V. FIBEX Field Bus Exchange Format; ASAM AE MCD-2[FBX] Version 2.0.1; 16.04.2007.
www.asam.net.

[48] W. Fernadez da la Vega and G.S. Lueker. Bin Packing can be solved within 1 + ε linear time.
Combinatorica, 1:349–355, 1981.

[49] C.M. Fiduccia and R. Mattheyses. A Linear-Time Heuristic for Improving Network Partitions. Pro-
ceedings of the 19th Design Automation Conference, pages 175–181, 1982.

[50] D.K. Friesen and M.A. Langston. Analysis of a Compound Bin Packing Algorithm. SIAM Journal of
Discrete Mathematics, 4:61–79, 1991.

[51] Daniel D. Gajsk and Loganath Ramachandran. Introduction to High-Level Synthesis. In IEEE Design
& Test; Volume 11 , Issue 4; pp 44 - 54, Oct 1994.

[52] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of Embedded Systems.
Prentice Hall, 1994.

[53] D. D. Gajski and L. Ramachandran. Introduction to High-Level Synthesis. In IEEE Design and Test
of Computers, Vol. 11, No. 4, pp. 44-54, Dec, 1994.

[54] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. ISBN 0-7167-1045-5, 1979.

[55] Michael R. Garey and David S. Johnson. A 71/60 Theorem for Bin Packing. Journal of Complexity,
Vol. 1:pp. 65106, 1985.

[56] M.R. Garey, R.L. Graham, D.S. Johnson, and A.C. Yao. Resource Constrained Scheduling as Gener-
alized Packing Problem. Journal of Combinatorial Algorithms, Ser. A, 21:257–298, 1976.

[57] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchenge Language. In
Proceedings of CASCON’97, Nov 1997.

[58] P.C. Gilmore and R.E. Gomery. A linear Programming Approach to the Cutting Stock Problem, Part
1 and 2. Operational Research, 1961 and 1963.

[59] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Publishing Co., Inc., Redwood City, CA., 1989.

[60] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-
Wesley, 2000.

[61] J. Gong, D. Gajski, and S. Bakshi. Model Refinement for Hardware/Software Codesign. ACM
Transations on Design Automation of Electronic Systems, Vol. 2, No 1, pp 22-41, jan 1997.

[62] R.L. Graham. Bounds on Multiprocessing Anomalies and related Packing Algorithms. Proc. of Spring
Joint Computer Conference, Montvale, AFIPS Press, pages 205–217, 1972.

[63] R. K. Gupta and G. DeMicheli. System Level Synthesis Using Reprogrammable Components. In
Proceedings of European Design Automation; pp 2-7, 1992.

[64] L.W. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. In IEEE
Trans. on CAD of Integrated Circuits and Systems, Vol. 11, Nr. 9, pp. 1074-1085, 1992.

[65] B. Hajek. Cooling Schedules for Optimal Annealing. Mathematics of Operations Research, 13,
2:311–329, 1988.

xiv BIBLIOGRAPHY

[66] R. W. Hartenstein. A Comparison of Hardware Description Languages, chapter 2 in Advances in CAD
for VLSI, vol 7. Elsevier Science Publishers B.V., 1987.

[67] J. Henkel, T. Brenner, R. Ersnt, W. Ye, N. Serafinov, and G. Glawe. A Software-Oriented Approach
to Hardware/Software Codesign. Journal of Computer and Software Engineering 2(3), pp 293-314,
1994.

[68] J. Henkel and R. Ernst. A Path-Based Technique for Estimating Hardware Run-time in Hw/Sw-
Cosynthesis. In Proceedings of the Eighth International Symposium on System Synthesis, Cannes,
France, pp 116-121, 1995.

[69] J. H. D. Herrmann, J. Henkel, and R. Ernst. An Approach to the Adaptation of Estimated Cost
Parameters in the COSYMA System. In Proceedings of the 3 rd International Workshop on Hardware
/Software Codesign - CODES/CASHE ’94, pp 100–107,, 1994.

[70] J. Holland. Genetic Algorithms. In Scientific american, pp. 44-50, July 1992.

[71] J. H. Holland and al. Adaption in Natural and Artificial Systems. In Press, Ann Arbor, MI., University
of Michigan, 1975.

[72] Farnam Jahanian and Aloysius K. Mok. Modechart: A Specification Language for Real-Time Systems.
In IEEE Transactions on Software Engineering, Vol 20, No 12, Dec 1994.

[73] A.K. Jain, N.N Murty, and P.J. Flynn. Data Clustering: A Review. In ACM Computing Surveys, Vol.
31, No. 3, September 1999.

[74] A. A. Jerraya and al. Multilanguage Specification for System Design, chapter 3 in System-Level
Synthesis, pages 103–135. Kluwer Academics Publishers, 1999.

[75] A.A. Jerraya, H. Ding, P. Kission, and M. Rahmouni. Behavioral Synthesis and Component Reuse
with VHDL. Kluwer Academic Publishers, Boston/ London / Dortrecht, 1996.

[76] David S. Johnson, Alan J. Demers, Jeffrey D. Ullman, M. R. Garey, and Ronald L. Graham. Worst-
Case Performance Bounds for Simple One-Dimensional Packing Algorithms. In SICOMP, Volume 3,
Issue 4, 1974.

[77] D.S. Johnson. Fast Algorithms for Bin Packing. Journal of Computer and System Sciences, 8:272–314,
1974.

[78] D.S. Johnson, C.R. Aragon, and al. Optimization by Simulated Annealing: An experimental evalua-
tion; Part I , Graph Partitioning. Operations Research, 37:865–892, 1989.

[79] R.K. Jurgen. Automotive Electronics Handbook, Second Edition. Mc Graw-Hill-Handbooks, 1999.

[80] M. Karmakar and R.M. Karp. An efficient Approximation Scheme for the one-dimensional Bin Packing
Problem. In proc. 23 rd. Annual Symposium on Foundations of Computer Science, pages 312–320,
1982.

[81] A. Kebemou. Partitioning Metrics for improved Performance and Economy of Distributed Embedded
Systems. IESS proceedings on IFIP TC10 Working Conference, pp 289-300, Aug. 15-17 2005.

[82] A. Kebemou, M. Feldo, and A. Borusan. Formale Spezifikation des Structurierten Anforderungman-
agements fur das Domain Engineering anhand eines Beispiels aus der Automobilindustrie. Technical
report, Fraunhofer ISST, Berlin; Bericht 69, 2003.

[83] A. Kebemou and I. Schieferdecker. AutomotiveArchitect: A Partitioning-Centric Modeling and Ar-
chitectural Design Environment for Automotive E/E Systems. In Comming 2008.

[84] A. Kebemou and I. Schieferdecker. The Components Data Flow Machine: An Intermediate Modeling
Format for the Design of Automotive E/E Systems Architectures. In Comming 2008.

[85] A. Kebemou and I. Schieferdecker. Evaluating Modeling Solutions on their Ability to Support the Par-
titioning of Automotive Embedded Systems. International Conference on Embedded and Ubiquituous
Computing, Taipei, Taiwan, 2007.

[86] B. Kernighan and S. Lin. An efficient Heuristic Procedure for Partitioning Graphs. In Bell System
Technical Journal, Feb. 1970.

[87] Scott Kirkpatrick, D. Gelatt Jr., and M.P. Vecchi. Optimization by Simmulated Annealing. Science,
220:671 – 680, 1983.

BIBLIOGRAPHY xv

[88] P. Kogut and P.C. Clements. Features Analysis of Architecture Description Languages. In Proceedings
of the Software Technology Conference (STC’95), Salt Lake City, April 1995.

[89] K. Koutsougeras, C. A. Papachristou, and R. R. Vemuri. Data Flow Graph Partitioning to Reduce
Communication Cost. In Proceedings of the 19th annual workshop on Microprogramming; pp 82 -
91, 1986.

[90] B. Krishnamurthy. An Improved Min-Cut Algorithm for Partitioning VLSI Networks. IEEE Trans.
Comput., vol C-33:pp 438–446, May 1984.

[91] P.J.M. Laarhoven and E.H.L. Aaarts. Simulated Annealing: Theory and Applications. Kluwer Aca-
demic Publischers D. Reidel, Boston, 1987.

[92] S. Lauesen. Software Requirements: Styles and Techniques. Addison-Wesley, 2002.

[93] L. Lavagno and al. Formal Models for Embedded System Design. IEEE Design and Test for Computer,
2000.

[94] Luciano Lavagno, Alberto Sangiovani-Vincetelli, and Ellen Sentovitch. Models of Computation for
Embedded Systems Design, chapter 2 in System-Level Synthesis, pages 45–102. Kluwer Academics
Publishers, 1999.

[95] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow Program for Digital
Signal Processing. In IEEE Transactions on Computers, 75(9):1235-1245, Jan. 1987.

[96] E. A. Lee and A. Sangiovanni-Vincentelli. Comparing Models of Computation. In International
Conference on Computer-Aided Design pp. 234-241, 1996.

[97] Thomas Lenghuaer. Combinatorial algorithms for Integrated Circuit Layout. John Wiley and Sons,
England, 1990.

[98] M. Lopez-Vallejo and J. C. Lopez. On the Hardware-Software Partitioning Problem: System Modeling
and Partitioning Techniques. In ACM Transactions on Design Automation of Electronic Systems, Vol.
8, No. 3, pp. 269-297, July 2003.

[99] D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language. In IEEE Transactions
on Software Engineering, Vol 2, No 9, pp 717-734, Sept 1995.

[100] N. Medvidovic and Richard N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages. Technical report, UCI and USC.

[101] M. Moriconi and R. A. Riemenschneider. Introduction to SADL 1.0: A Language for Specifying
Software Architecture Hierarchies. Technical report, SRI International, March 1997.

[102] M. N. Murthy and G. Krishna. A Computationally Efficient Technique for Data Clustering. In Pattern
Recogn. 12, pp 153158, 1980.

[103] M. Mutz, M. Huhn, U. Goltz, and C. Kroemke. Model Based System Development in Automotive.
SAE, 2002.

[104] G. Nicolescu, S. Yoo, A. Bouchhima, and Jerraya A. A. Validation in a Component-Based Design
Flow for Multicore SoCs. In ISSS’02, Kyoto, Japan, Oct 2002.

[105] R. Niemann and P. Marwedel. Hardware/Software Partitioning Using Integer Programming.
IEEE/ACM Proc. of EDAC 96, pp 473-479, 1996.

[106] C. Papadimitriou. Computer Complexity. Addison Wesley,, 1994.

[107] S. Poledna, W. Ettlmayr, and M. Novak. Communnication Bus for Automotive Applications. ess-
circ2001 Proceedings, 2001.

[108] C. Rupp. Requirements Engineering und Management: Professionelle, iterative Anforderungsanalyse
fur die praxis. Hanser, 2002.

[109] L.A. Sanchis. Multiple-Way Network Partitioning. IEEE Trans. On Computers, vol.38. No 1:pp.
62–81, Jan. 1989.

[110] M. Shaw, R. DeLine, D. V. Klein, T.L. Ross, and ... Abstraction for Software Architectures and Tools
to Support Them. In IEEE Transactions on Software Engineering, vol 21 No 4, pp 314-335, April
1995.

xvi BIBLIOGRAPHY

[111] A.J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and Multilevel Optimisation
Approach to Graph-Partitioning. Journal of Global Optimization 29 2004 Kluwer Academic Publishers.
Printed in the Netherlands., 225:225241, 2004.

[112] Friedhelm Stappert and Carsten Rust. Worst Case Execution Time Analysis for Petri Net Models of
Embedded Systems. In Embedded Systems and Applications, pp.176-182, 2003.

[113] W. Tracz. LILEANNA: A Parameterized Programming Language. Proceedings of the Second Inter-
national Workshop on Software Reuse, Lucca, Italy, pages pp 66–78, March 1993.

[114] D.J. Ullman. The performance of a memory allocation algorithm. Technical report, Princeton Unin-
versity, Princeton, NJ, 1971.

[115] F. Vahid and D. D. Gajski. SLIF: A Specification-Level Intermediate Format for System Design. In
1995 European Design and Test Conference (ED&TC ’95), 1995.

[116] F. Vahid and D.D. Gajski. Closeness Metrics for System-Level Functional Partitioning. IEEE Proceding
1995, 328-333, 1995.

[117] F. Vahid and J. Gajski. Specification and Design of Embedded Hardware/Software Systems. IEEE
Design and Test of Computers; pp 53-67, 1995.

[118] F. Vahid, S. Narajan, and Daniel. D. Gajski. SpecCharts: A VHDL Front-End for Embedded Systems.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol 14, No 6,
June 1995.

[119] Mauricio Varea. Modelling and Verification of Embedded Systems based on Petri Net oriented Rep-
resentations. PhD thesis, University of Southampton, United Kingdom, Sep 2003.

[120] S. Vestal. A Cursory Overview and Comparison of Four Architecture Description Languages. Technical
report, Honeywell Technology Center, Feb 1993.

[121] S. Vestal. MetaH Programmer’s Manual, Version 1.09. Technical report, Honewell Technologie
Center, Feb 1993.

[122] A. Vikram and R. Sakellariou. Application Representations for Multiparadigm Performance Model-
ing of Large-Scale Parallel Scientific Codes. International Journal of High Performance Computing
Applications, Vol. 14 , Issue 4:pp 304 – 316, Nov. 2000.

[123] Michael von der Beeck. A Comparison of Statecharts Variants. In Proceedings of the Third Interna-
tional Symposium Organized Jointly with the Working Group Provably Correct Systems on Formal
Techniques in Real-Time and Fault-Tolerant Systems ; pp 128 - 148, 1994.

[124] A.C. Yao. New Algorithms for Bin Packning. J. Assoc. of Computing Machinery, 27:207–227, 1980.

[125] M. Yue. A Simple Proof of the Inequality FFD(L) ≤ (11/9)OPT(L) + 1, for all L, for the FFD
Bin-Packing Algorithm. Acta Mathematicae Applicatae Sinica, Vol. 7, Nr. 4:pp. 321331, 1991.

[126] Minye Yue and Zhang Lei. A Simple Proof of the Inequality MFFD(L) ≤ 71/60 OPT(L) + 1, for all
L, for the MFFD Bin-Packing Algorithm. Acta Mathematicae Applicatae Sinica, Vol. 11:pp. 318330,
1995.

[127] C.T. Zahn. Graph-theoretical Methods for Detecting and Describing Gestalt Clusters. In IEEE Trans-
actions on Computers, Vol. 20, No 1, pp. 6886., 1971.

