
Modeling and Verification of Distributed Algorithms in
Theorem Proving Environments

vorgelegt von

Dipl.-Inf.
Philipp Küfner

aus Berlin

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

-Dr.-Ing.-

genehmigte Dissertation

Promotionsausschuss:

Vorsitzende: Prof. Dr. rer. nat. Sabine Glesner

Gutachter: Prof. Dr.-Ing. Uwe Nestmann

Gutachter: Priv.-Doz. Florian Kammüller, PhD, habil.

Tag der wissenschaftlichen Aussprache: 19. September 2013

Berlin 2014

D 83

Abstract

The field of application for distributed algorithms is growing with the ongoing demand for
new network applications. Wherever a global goal must be achieved by a number of peers,
a distributed algorithm consisting of local computations and communication protocols must
be developed. In asynchronous environments the design of a distributed algorithm must
respect the fact that processes may vary in speed and that messages might be delayed for
an arbitrarily long time. Moreover, it is often required that the algorithm still works in
the presence of crash failures, i.e., in scenarios, where some processes stop working at some
time. The complex nature of concurrent executions in distributed systems often hinder the
application of common methods for modeling and verification. Although many different
formal approaches for modeling fault tolerant distributed algorithms, like e.g. I/O automata
and process calculi have been proposed, many works in the field of distributed systems use
informal pseudo-code representations to introduce new algorithms. On most cases this leads
to informal and crude arguments for correctness, which usually become incomprehensible if
all race conditions must be taken into account.

This work proposes new formal strategies to model and verify distributed algorithms,
whereas we focus on two main goals. Firstly, we introduce a means to satisfy a designer’s
demands by using methods that are easy to understand and to work with and which are very
similar to common applied methods as e.g. TLA+ and Abstract State Machines. Secondly,
our strategies are suitable for the formal use in a theorem proving environment. This enables
mechanical verification of our algorithms and therefore, we are able to produce machine-
checked proofs for correctness.

Our model adopts abstractions from the work of Fuzzati, which examines two similar
distributed algorithms in a logical framework. We lifted these abstractions to a more general
level to make them suitable and reusable for as many distributed algorithms as possible.
Furthermore, we present a new method to place local computation steps in the respective
global context. The advantage of our method is that, on the on hand, like with pseudo
code, computations can be described as local steps, but, on the other hand, it is possible
to formally reason over global system states. Our model for communication mechanisms
comprises modules for different kinds of message passing, broadcasts, and shared memory
access. We are convinced that our model can easily be extended to support almost all kinds
of communication infrastructures that can formally be described.

We show how properties that have to be verified can be expressed in terms of our model to
enable formal reasoning. Furthermore, we present appropriate strategies to verify different
classes of properties.

For the theorem proving environment Isabelle/HOL we provide a library which incor-
porates all introduced abstractions and can, therefore, be reused and extended for further
applications, new algorithms, and further verification projects.

Finally, we present case studies for the verification of different distributed algorithms
to demonstrate the applicability of our strategies. Four known algorithms are verified in
our model using our framework for Isabelle/HOL. The algorithms vary in complexity, the
used communication infrastructure, the failure model, and other constraints, so that many
different modeling and verification aspects are exemplified.

iii

Zusammenfassung

Mit dem wachsenden Markt für Netzwerkanwendungen gewinnt das Anwendungsgebiet
von verteilten Algorithmen immer mehr an Bedeutung. Sobald ein globales Ziel durch ein
koordiniertes Zusammenwirken mehrerer Prozesse erreicht werden muss, müssen lokale Be-
rechnungen auf die einzelnen Teilnehmer verteilt und Kommunikationsprotokolle festgelegt
werden. Dies erfordert die Entwicklung eines verteilten Algorithmus. In asynchronen Um-
gebungen müssen verteilte Algorithmen so konstruiert sein, dass sie das globale Ziel trotz
unterschiedlicher Laufzeiten der Teilnehmer und verzögert ausgelieferter Nachrichten errei-
chen. Oft ist es eine zusätzliche Anforderung, dass verteilte Algorithmen auch in Hinblick
auf den Ausfall einzelner Teilnehmer fehlertolerant sind. Die zusätzliche Komplexität, die
durch die nebenläufige Ausführung der Prozesse in verteilten Systemen entsteht, macht den
Einsatz konventioneller Methoden zur Modellierung und Verifikation der verteilten Algorith-
men häufig unmöglich. Obwohl es viele verschiedene formale Ansätze, wie z.B. I/O Auto-
maten und Prozesskalküle, zur Modellierung fehlertoleranter verteilter Algorithmen gibt, ist
das verbreitete Mittel zur Darstellung neuer Algorithmen Pseudocode. Diese wenig formale
Modellierung ermöglicht keine formale Verifikation und daher ist die Beweisführung zur Kor-
rektheit der Algorithmen meist eher eine unpräzise Argumentation, die durch die Vielzahl
der möglichen Ausführungsszenarien von verteilten Algorithmen häufig nicht nachvollziehbar
ist.

Inhalt dieser Arbeit ist die Erarbeitung neuer formaler Strategien zur Modellierung und Ve-
rifikation verteilter Algorithmen unter besonderer Berücksichtigung zweier Ziele: Zum einen
neue Methoden zur Verfügung zu stellen, die den Ansprüchen eines Algorithmendesigners
genügen, d.h. möglichst einfach zu verstehen und aufwandsarm anzuwenden sind. Auf der
anderen Seite sollen diese Methoden formal genug sein, um die Anwendung maschineller
Verifikation in Form von Theorembeweisern und damit eine mechanische Beweisführung für
die Korrektheit zu ermöglichen. Um das erste Ziel zu erreichen verwenden wir Methoden,
die bisherigen praxisnahen Modellierungsmethoden, wie z.B. Leslie Lamports Spezifikations-
sprache/-logik TLA+ oder Gurevichs Abstract State Machines sehr ähnlich sind.

Zur formalen Modellierung von Algorithmen verwenden wir viele Abstraktionen, die der
Arbeit von Fuzzatientnommen sind. Fuzzatis Arbeit untersucht zwei sehr ähnliche Algorith-
men auf der Basis einer formalen prädikatenlogischen Modellierung. Diese Arbeit greift diese
Abstraktionen auf und verallgemeinert sie so, dass sie zur passend und wiederverwendbar
für eine Vielzahl von Algorithmen sind. Zusätzlich stellt diese Arbeit eine neue Methode
vor, wie lokal beschriebene Berechnungsschritte auf einfache Weise in einen globalen Aus-
führungskontext übertragen werden können. Der Vorteil dieser Methode ist, dass Schritte,
die lokal vollzogen werden, lokal beschrieben werden, aber dennoch in der Beweisführung
für ein globales Ziel im globalen Kontext eingebettet werden können. Entsprechend ist die
Modellierung aufwandsärmer, da lokale Berechnungsschritte, ähnlich wie im Pseudocode, oh-
ne die Beschreibung des weiteren globalen Rahmens modelliert werden können. Gleichzeitig
ermöglicht die formal korrekte Einbettung in den globalen Kontext formale Beweise zum
Nachweis globaler Systemeigenschaften. Unser Modell umfasst dabei mehrere verschiedene
Kommunikationsmechanismen wie Punkt-zu-Punkt Nachrichten, Broadcasts und Kommu-
nikation über gemeinsam genutzte Speichersegmente. Erweiterungen dieser Möglichkeiten
um weitere mögliche Kommunikationsinfrastrukturen zu unterstützen können einfach in das
Modell integriert werden.

Neben der Modellierung ist ein weiterer Schwerpunkt dieser Arbeit die Analyse verschie-
dener Strategien zum formalen Nachweis von Systemeigenschaften. Dazu müssen diese Eigen-

v

schaften zunächst in unserem Modell beschrieben werden. Diese Arbeit stellt Methoden zur
Formulierung und Verifikation der beiden wesentlichen Klassen von Eigenschaften (Safety-
und Livenesseigenschaften) vor. Für den Theorembeweiser Isabelle/HOL stellen wir aus-
serdem eine Bibliothek zur Verfügung, die die vorgestellten Abstraktionen und ebenso die
Strategien zur Beweisführung in Form von Definitionen und Theoremen kapselt und dadurch
wiederverwendbar macht.

Der letzte Teil der Arbeit erbringt dann anhand mehrerer Fallstudien den Nachweis der
Anwendbarkeit der vorgestellten Strategien. Vier bekannte verteilte Algorithmen werden
in unserem Framework in Isabelle/HOL untersucht und verifiziert. Die vier Algorithmen
variieren dabei in mehreren Aspekten, wie Komplexität, Kommunikationsinfrastruktur, Feh-
lermodell und Annahmen über die Synchronität des Systems und veranschaulicht daher viele
wesentliche Modellierungs- und Verifikationsaspekte.

vi

Contents

1. Introduction 1

1.1. Overview . 1
1.2. Scope of Work . 2
1.3. Modeling and Verification . 2

1.3.1. Motivation . 3
1.3.2. Our Strategies and Organization of This Work 4
1.3.3. Summary of Contributions . 4

1.4. Technical Preliminaries . 5
1.4.1. Problems in Distributed Systems . 5
1.4.2. Theorem Provers . 6
1.4.3. Notation for Logic and Functions . 10

1.5. Related Work . 11
1.6. Own Work . 13

2. Modelling Distributed Algorithms 15

2.1. Level of Abstraction . 16
2.2. Related Approaches . 17
2.3. Developing a Formal Model . 18

2.3.1. Runs and Temporal Logic . 19
2.3.2. Distribution and Consistency of our Model 26
2.3.3. Modelling Actions . 35
2.3.4. Limitations of the Model . 38
2.3.5. Interprocess Communication (IPC): Message Passing 40
2.3.6. Interprocess Communication (IPC): Broadcasts 48
2.3.7. Interprocess Communication (IPC): Shared Memory 50
2.3.8. Failure Models . 63

2.4. Specifying Requirements . 65
2.4.1. Requirements of Distributed Consensus 68

2.5. Summarising Concepts of the Model . 71

3. Verifying Distributed Algorithms 75

3.1. ‘Inspection of the Code’ . 75
3.2. Invariant-Based Reasoning . 77
3.3. History-Based Reasoning . 82
3.4. Utilizing Fairness Assumptions . 82

vii

Contents

4. Distributed Algorithms in Isabelle/HOL 85
4.1. Basic Definitions . 86
4.2. Distributed Algorithm . 88

4.2.1. Safe Algorithms and Algorithms . 89
4.2.2. Distributed Algorithms . 94

4.3. Message Passing . 98
4.3.1. Message Passing without Message Loss . 101
4.3.2. Message Passing with Message Loss . 105

4.4. Regular Registers . 108
4.4.1. Subactions and Atoms . 109
4.4.2. Regular Registers used for Distributed Algorithms 113
4.4.3. Equivalence to Lamport’s Model . 123

4.5. Requirements in Isabelle/HOL . 125

5. Case Studies 127
5.1. Rotating Coordinator . 128

5.1.1. Informal Introduction to the Algorithm 129
5.1.2. Formal Model . 131
5.1.3. Proof Issues . 136

5.2. ♦S-Algorithm . 137
5.2.1. Informal Introduction to the Algorithm 138
5.2.2. Formal Model . 140
5.2.3. Proof Issues . 153

5.3. Paxos . 156
5.3.1. Informal Introduction to the Algorithm 157
5.3.2. Formal Model . 160
5.3.3. Proof Issues . 170

5.4. Using the Alpha-Abstraction . 171
5.4.1. Informal Introduction to the Algorithm 175
5.4.2. Formal Model . 178
5.4.3. Proof Issues . 184

6. Conclusion 189
6.1. Contributions of our Modeling Approach . 189
6.2. Contributions of our Verification Strategies . 191
6.3. Contributions of our Work with Isabelle/HOL . 191
6.4. Summary and Future Work . 193

A. Additional Propositions for Message Passing 195

viii

Acknowledgements

Firstly, I like to thank Prof. Dr. Ing. Uwe Nestmann for initiating this thesis, providing scientific
support and giving me the opportunity to finish this work under excellent conditions. I am very
grateful for the time when I have been a part of his group ‘Models and Theory of Distributed
Systems’ (MTV). I would like to express my very great appreciation to my co-supervisor PhD
habil. Florian Kammüller for many useful advices and discussions, which helped me to broaden
my horizon and recognize that many details of this work have counterparts in other theoretical
and practical applications.
Furthermore I wish to acknowledge the help provided by Sven Schneider, who always had the
patience to discuss all the technical details and furthermore gave me many useful hints especially
on Chapter 2 after the first version was finished.
Special thanks should be given to Dr. Stephan Merz for his patient introduction to Isabelle/HOL
and for his advices in modeling distributed algorithms.
I would also like to extend my thanks to the students who participated in our Isabelle/HOL
projects: Christina Rickmann, Matthias Rost, Étienne Coulouma, Benjamin Bisping and Liang
Liang Ji.
I would also like to thank the rest of the group at MTV for their discussions during our research
colloquiums.
English language assistance provided by Deborah Doughton was greatly appreciated.
Finally, I wish to thank Vivien Hucke for her great support and encouragements throughout
this work and I would like to thank my parents Monika Robl-Küfner and Joachim Küfner and
my sister Anna Küfner for their ongoing support in every aspect of my life.

1. Introduction

1.1. Overview

The world wide web and other global and local networks have become an essential part of modern
life. The example of cloud computing shows that there is a demand for distributed systems not
only in research but also commercially. Distributed systems, now a part of standard applications,
take on even more importance as mobile computing rapidly increases. With the growing demand
for interacting and communicating devices, the need for appropriate algorithms increases. The
efficiency of these algorithms might be desirable but their correctness is a necessary condition.

Many models and methods exist to analyse, test and verify algorithms and programs, but
only a few of them are suited for distributed computing. The most common and well-known
method for reasoning over sequential algorithm has been proposed by Hoare [Hoa69], and others
have followed. However, characteristics of distributed algorithms hinder the use of standard
verification methods in environments where more than one process is involved. Attiya and
Welch [AW04] mention three fundamental difficulties that arise in distributed situations:

• asynchrony

• limited local knowledge

• failures

Attiya and Welch [AW04] identify the model of computation, as the main difference compared to
the sequential case. For a non-randomised sequential algorithm, executions are fully determined
by the input values. Hence, there is only one single universally accepted model of computation
for the sequential case. In most distributed cases there are many possible executions (this will
further be explained later).

Therefore, the increasing importance of concurrent algorithms for practical applications causes
a need for adequate theories to model these algorithms and to demonstrate their correctness,
i.e., to verify that the algorithms do fulfil requirements.

Analysis of algorithms can be divided into two categories:

• dynamic analysis, i.e. inspecting the executions for errors (e.g. testing and model checking)

• static analysis, i.e. inspecting the code/algorithm without doing an execution (e.g. syntax
checking and formal verification)

If an algorithm can produce an infinite amount of different executions, the inspection of
executions can only prove correctness for a subset of all possible cases. In contrast, static
analysis includes verification methods that allow assertions for every execution.

1

1. Introduction

Using theorem provers can be regarded as the most rigourous method for formal verification.
Chou claims in [Cho95] that ‘the only practical way to verify the correctness of distributed
algorithms with a high degree of confidence is to construct machine-checked, formal correctness
proofs’. This work analyses ways to model and verify distributed algorithms and presents an
appropriate model that respects, on the one hand the belongings of the designer and, on the
other hand, it remains formal enough to be used in a theorem proving environment.

1.2. Scope of Work

A quote from Leslie Lamport states that ‘A distributed system is one in which the failure of a
computer you didn’t even know existed can render your own computer unusable’. In this work
we restrict the algorithms to be analyzed to systems with a fixed number of involved processes.
We adapt the definition from [AW04] to:

Definition 1.2.0.1 (Distributed System)
A distributed system DN is a collection of N individual computing devices (processes) that can
communicate with each other.

A more formal definition of a distributed algorithm will be given in Chapter 2. Modeling-
approaches for distributed algorithms differ in many aspects. Some describe local behaviours
(e.g. pseudo code descriptions) while others describe global behaviours in terms of state machines
that can interact with each other by using shared actions (e.g. process calculi as [Mil82] and
I/O automata [LT87]). Both, the level of abstraction a model uses and the formal semantics
which underly the model’s abstractions, are important aspects in considering the verification
of distributed systems. While semantics for process calculi and I/O automata are well defined,
there is no formal semantics for pseudo code. Nevertheless, from a designer’s point of view,
pseudo code is often the model of choice since it is easy to understand and closer to common
programming languages. It seems as process calculi and I/O automata are too far from the
natural way to describe how a program has to behave. For that reason, many algorithms and
also distributed algorithms are given as pseudo code fragments and the arguments for correctness
refer to these pieces of informal code. Naturally, since there is no interpreter, no compiler, and
no formal semantics for pseudo code these arguments always depend on the interpretation of
the code. Hence, more formal methods are needed for a formal verification of algorithms.

The intent of this work is to develop strategies that enable us to transfer a given piece of code to
a model that is formal enough to mechanically check proofs for correctness. Moreover, this work
provides a framework for the theorem prover Isabelle consisting of several libraries which support
the design of new algorithms and provide theorems for the meta theory of the model. Based on
case studies in which several distributed algorithms are verified we developed the libraries. We
finally succeeded in verifying those algorithms with a theorem proving environment.

1.3. Modeling and Verification

At first glance, modeling and verification might be regarded as two independent tasks during
the development process of a distributed system. But in fact verification depends on the former

2

1.3. Modeling and Verification

modeling process because verification can only be done in terms of already defined components.
If we want to reason about system components, we need to first specify all components and how
these modules behave during the execution of the system. Therefore, we consider the model of
a system as a formal specification of the algorithm and its environment.

The most concrete verification scenario would be a setting in which an algorithm is imple-
mented in some programming language. The subsequent verification task would be to prove
that the implementation meets the exact demands of the customer or user of the system. In this
case, a model would be the implementation, and verification would imply simply entering every
possible input value and checking that the system returns the right output. As long as inputs
are finite and the system consists only of one sequential process, this method seems reasonable,
and, if there is enough time available, this method is also applicable. But for distributed systems
in which two or more processes run in parallel, this approach turns out to be infeasible. The
following example demonstrates this thesis and, at the same time, motivates our approach for
formal reasoning.

1.3.1. Motivation

For example, assume N processes have to execute the same algorithm consisting of ten sequential
operations A0, . . . , A9. For a distributed system we would expect the processes to work in parallel
or at least concurrently. For most cases, (theoretical and practical), we are not able to say
whether processes will need exactly the same amount of time to execute a single command Ai.
Moreover, commonly, there is no assumption on synchronization between the processes. Hence,
we do not know which process will finish the execution of A0 first or when the last process will
finish the program by executing A9. Maybe there is one process that has finished the program
before all other processes have even started with the first operation A0. Usually we do not know
whether it will always be the same process that finishes first. In some systems these questions do
not matter (for example, if processes work autonomously), but for most distributed systems these
questions are very important due to interdependencies between operations of different processes.
Assume, for example, that processes communicate by sending messages to each other and an
action Ai executed by a process pj at time t depends on the messages pj has previously received.
Naturally, the messages pj has received until t will depend on the actions the other processes
executed before t. Hence, the first observation we make is: to prove correctness, we need a
model of computation. If we want to prove that our system always satisfies the requirements,
we have to consider all possible cases of computations that might happen, and then we need
to show that requirements are met in every scenario. Hence, at first we would have to analyse
which scenarios are possible within our model. Let us assume the processes are threads in Java
and that they run on a single processor machine such that there can only be one action at a
time. Let A0, . . . , A9 be the instructions the threads execute. Of course, we would not be able to
make any assumptions about how the Java Virtual Machine will schedule the different threads.
Therefore, it would be required to regard every possible schedule. Even if we only have two
threads, we would have to consider up to 20!

10! ∗ 10! = 184756 scheduling options (which correspond
to 184756 traces). It is obvious that, to prove correctness, we need the right strategy to reduce
these cases in our proofs. As long as we deal with a (preferably small) finite number of cases
we still can prove correctness by doing model checking (test every trace). However, if every

3

1. Introduction

process executes those instructions in an infinite loop we obtain an infinite number of cases.
Algorithms that run infinite loops are very common for distributed algorithms, and, therefore,
the model checking approach works only for a very limited number of algorithms. Hence, to
verify our algorithms mechanically we do not make use of model checking techniques but analyse
how theorem proving can be applied to distributed algorithms.

1.3.2. Our Strategies and Organization of This Work

As mentioned previously, to verify an algorithm it is important to have a suitable model of
computation. This model must be able to represent every possible execution of the algorithm.
Therefore, we analyse different aspects of modeling in Chapter 2, introducing our formal model
of computation in Section 2.3. Furthermore, for the process of doing the proofs it is, necessary to
specify the requirements for correctness in terms of the model. Therefore, Section 2.4 describes
how we can express the desired properties by the means introduced in Section 2.3. As we
have already demonstrated, an important aspect for a successful verification approach is the
right strategy to do the proofs. For this purpose, in Chapter 4 we explain different methods,
techniques and strategies we have applied for the verification of some sample algorithms. The
respective case studies are then further explained in Chapter 5, which consists of the verification
of four algorithms with different complexity. Finally, we present our conclusions in Chapter 6.

For all results in this work we provide formal proofs written down as proof scripts for Is-
abelle/HOL. Therefore, this work provides references to the formal proofs for all lemmas, propo-
sitions and theorems as footnotes. The following example shows how we reference to a provided
Isabelle theory file Example.thy, containing a verified lemma with name MyLemma: →֒ Isabelle1.
All formal proofs are provided in the respective files on the enclosed CD-rom. Selectively, we
also provide informal proof ideas to give the reader an idea how the proof was done.

1.3.3. Summary of Contributions

This work presents a new asynchronous model to represent Distributed Algorithms in theorem
proving environments (see Chapter 2). Beside the feature that it is formal enough to work with
theorem provers, our model is closely related to well-known modeling approaches such as TLA
and [abstract] state machines such that our models can be transfered into TLA or state machine
representations and vice versa. The model also comprises definitions for different communication
mechanisms such as shared memory (Regular Registers) and message passing. It has general
application for a large group of algorithms. To the best of our knowledge, our model of Regular
Registers is the first state-based approach that is formal enough to be used in a theorem proving
environment. We also describe how different failure models can be implemented in our model.
Finally, we consider how to avoid errors while using our model and provide constraints to give
a guarantee of consistency for modeled algorithms deliberating our notion of distribution.

The right strategy to verify an algorithm depends on the character of its properties that have
to be shown. We provide means for proving both, safety and liveness properties (see Chapter
3).

1Isabelle/HOL theory: MyLemma, Lemma(s): Example.thy

4

1.4. Technical Preliminaries

To support modeling and verifying new algorithms in a theorem proving environment, we
provide a library for the theorem prover Isabelle/HOL. This library implements the theory
described in Chapters 2 and 3 by providing types, datastructures, definitions and theorems
to comfortably model and verify a given distributed algorithm using different communication
infrastructures and failure models.

Finally, we checked the applicability of our concepts to different case studies (see Chapter
5). In these case studies we verified algorithms of different complexities by different means for
communication and different failure models.

1.4. Technical Preliminaries

1.4.1. Problems in Distributed Systems

An important comprehensive work on distributed algorithms is [Lyn96]. It presents solutions to
well-known distributed problems as, e.g.:

Leader Election Eventually exactly one process should output the decision it has become the
leader [Lyn96].

Mutual Exclusion As N cyclic processes enter and exit critical sections, the processes have to
be programmed in such a way that at any one moment only one of theses processes is in
its critical section [Dij65]

Distributed Consensus The basic setting is a network of N processes that have to agree on
exactly one value. Therefore, an algorithm that solves Consensus is supposed to exhibit
the follwing properties ([Lyn96], [CBS07]):

• Agreement: No two processes decide on different values

• Validity: If a process pi decides a value v then there has to be a process pj such that
v has been input for pj .

• Termination: All nonfaulty processes eventually decide.

• Irrevocability: Once a process decides on a value, it remains decided on that value.

Distributed Consensus is the problem this work focuses on. One main criterion affecting the
solvability of a problem is the degree of synchronicity of the system. In completely asynchronous
systems there is no guarantee for the message delay and no timing assumptions for local com-
mand executions. This can be an extreme handicap, especially while reasoning about liveness
properties of a system.

In fact the work of Fischer, Lynch and Paterson [FLP85] shows that Distributed Consensus (or
for short Consensus) is not solvable in asynchronous environments with crash failures. Hence,
there are many studies (e.g. [CHT96], [CBM09]) proposing additional assumptions which make
Consensus solvable in asynchronous environments.

Consensus belongs to the class of Agreement problems. Agreement problems are fundamental
to many distributed algorithms, because the task of disseminating and agreeing on a common

5

1. Introduction

knowledge is a requirement for almost every application that uses distributed services. Descrip-
tions of other commonly known Agreement problems (as for example Atomic Commitment and
total order broadcast) can be found in [GR06].

1.4.2. Theorem Provers

Theorem provers are computer programs that are able to do formal proofs either automatically
or in interaction with the user. Theorem provers, like the one considered in this work, can be
regarded as verification tools that can be used for a multitude of puposes. A theorem prover
enables the user to give a machine-checked proof that a certain statement (the conjecture) is a
logical consequence of a set of statements (axioms and hypotheses).

The application of a theorem prover requires the user to expose axioms, hypotheses, and
conjectures in a very detailed way. This might be regarded as a handicap because it requires
some effort to model all logical details. But this effort is wellworth its while if an error-prone
design process can be turned into an almost faultless development. An effective example for this
is the industrial application of theorem provers in hardware verification.

Theorem provers can be differentiated by the degree the user is involved in the proof process,
i.e. there are ‘Automated Theorem Provers’ like Otter[Mcc] and SPASS[WDF+09] and ‘Interac-
tive Theorem Provers’ that require the user to guide the software through the proofs by naming
the inference rules for the single steps of the proof or by writing and applying tactics to deduce
proof goals from the axioms. Some well-known examples for interactive provers are HOL[Hut94]
and Coq[FHB+97].

The input language for the theorem prover restrains the opportunities for the specification of
the model for the algorithm to inspect. Hence, another important criterion for the selection of
a theorem prover is the input language for the formulae. In most cases, this is first order logic
(e.g. Otter, SPASS) or higher order logic (HOL, Coq). While the meta-language for HOL is
ML, terms are drawn from typed λ-calculus and classical predicate logic.

Isabelle/HOL

For the mechanical verfication of algorithms we use the interactive theorem prover Isabelle
in this work. Nipkow et. al [NPW02] describe Isabelle as a ‘generic system for implementing
logical formalisms, and Isabelle/HOL is the specialization of Isabelle for HOL, which abbreviates
Higher-Order Logic’. Such a specialization of the generic theorem prover is called the object-
logic. Also, Isabelle’s logical framework, the meta-logic of Isabelle, uses higher-order logic based
on the typed λ-calculus [Pau89]. An overview of the object logic HOL can be found in [NPW].
Beside HOL, Isabelle supports several other logics (e.g. ZF a Zermelo-Fraenkel set theory,
which is build on top of FOL (First Order Logic) [PNW03]). We have chosen to use the HOL
specialization of Isabelle because it meets our requirements and, according to Paulson, is ‘the
best developed Isabelle object-logic, including an extensive library of (concrete) mathematics
and various packages for advanced definitional concepts’ [Pau13]. Isabelle, itself, is implemented
in the general-purpose functional programming language ML (see [MTM97]).

Every proof of a theorem (respectively lemma, proposition, corollary. . .) in Isabelle is given
as a proof script. A proof script can be seen as a list of commands which tell the theorem prover

6

1.4. Technical Preliminaries

how to obtain the proof. These commands in Isabelle can be e.g. references to proof rules (as
e.g. modus ponens etc.), references to lemmas and theorems that have been proven earlier, or
references to Isabelle methods, like auto, simp or induct. One step in a formal proof corresponds
to one application of a proof rule (respectively theorem or lemma). Sophisticated methods like
auto and simp try to automatically determine which proof rules to use next. Thereby simp uses
only simplification rules. The set of simplification rules is adaptable. Heuristics like auto can be
used to make Isabelle do the proof work for small proof steps. Figure 1.1 shows how the simple
theorem

2 ·

Ñ

∑

{ i∈N | i≤n }

i

é

= (n + 1) · n (1.1)

can be proved by induction and the extensive use of auto in Isabelle/HOL. First the name of
the theorem is declared as SumNat. Then the keyword shows introduces the assertion we want
to prove, which is here Equation 1.1. We tell Isabelle that i is of type nat (which corresponds
to the natural numbers in Isabelle) by writing i::nat. The function Suc denotes the successor
function (e.g. we have (Suc n) = (n + 1)). Note that Isabelle allows to omit the brackets for
function application and hence we have (Suc 1) = (Suc(1)). After the keyword proof we write
the method we want to apply to our current proof goal. At the beginning, our proof goal is the
conjecture of the theorem and hence Equation 1.1 and we want to prove this goal by induction
over n. Hence we apply method induct with parameter n. This generates two new proof goals:

• the base case: 2 ·

(

∑

{ i∈N | i≤0 }
i

)

= (0 + 1) · 0

• the step: For an arbitrary fixed n we have to show that the induction hypothesis

2 ·

Ñ

∑

{ i∈N | i≤n }

i

é

= (n + 1) · n (IH)

implies the assertion

2 ·

Ñ

∑

{ i∈N | i≤(n+1) }

i

é

= ((n + 1) + 1) · (n + 1).

The base case is shown by first proving the following equation

{ i ∈ N | i ≤ 0 } = { 0 }

which is derived by using method auto. This result is used to show

2 ·

Ñ

∑

{ i∈N | i≤0 }

i

é

= 0,

which finally implies the base case.

7

1. Introduction

For the inductional step we fix a variable n using the keyword fix and assume (by the
respective keyword assume) the induction hypothesis. Again method auto is used to derive

{ i ∈ N | i ≤ (n + 1) } = { i ∈ N | i ≤ (n) } ∪ { n + 1 } .

This yields
∑

{ i∈N | i≤(n+1) }

i =

Ñ

∑

{ i∈N | i≤n }

i

é

+ n + 1

With the induction hypothesis we can infer

2 ·

Ñ

∑

{ i∈N | i≤(n+1) }

i

é

= ((n + 1) · n) + 2 · (n + 1)

Hence we have

2 ·

Ñ

∑

{ i∈N | i≤(n+1) }

i

é

= (n + 2) · (n + 1) ,

which finally yields the step conjecture of the induction:

2 ·

Ñ

∑

{ i∈N | i≤(n+1) }

i

é

= ((n + 1) + 1) · (n + 1) .

Every described step corresponds to one line in the Isabelle proof script in Figure 1.1. For our
proofs we use the language Isar, which is recommended by Nipkow [Nip13] for larger proofs
since it is structured and not linear, and proofs become more readable without running Isabelle.
Compared to our informal description of the proof, we see that the description is very similar
to the proof script.

The work with Isabelle is structured in theories, which are named collections of types, functions
and theorems [NPW02]. Therefore, if we give references to our Isabelle proof scripts, we will
name the theory for the respective theorem or definition. A theory with name x must be located
in a file x.thy.

In the following we explain some of Isabelle’s keywords and constructs that are important for
this work. We will not explain the technical aspects of the proofs in this work but only describe
how we express our models in Isabelle presenting the most important theorems and proof ideas.
Therefore we focus on definitions and types in the following description and refer the reader to
[NPW02] and [Nip13] for more information on Isabelle’s proof languages.

A theory starts with the keyword theory followed by the name of the theory. After the name
it is possible to import other theories by the keyword imports followed by the name of the
imported theory. Then the keywords begin and end enclose the body of the theory.

A non recursive definition in Isabelle is introduced by the keyword definition. A definition
of an object T at first requires defining the type of T . For example, a function f : N→ bool
where f(n) is true if and only if n > 5 can be defined as follows:

8

1.4. Technical Preliminaries

theorem SumNat: shows "2*(
∑

i ∈ {i::nat. i ≤ n}.i) = (Suc n)*n"
proof (induct n)

have "{(i::nat). i ≤ 0} = {0}" by auto
hence "

∑

{(i::nat). i ≤ 0} = 0" by (auto)
thus "2 *

∑

{(i::nat). i ≤ 0} = (Suc 0) * 0" by auto
next

fix n
assume IH: "2 * (

∑

i ∈ {i. (i::nat) ≤ n}.i) = (Suc n) * n"
have "{i. (i::nat) ≤ Suc n} = {i. i ≤ n} ∪ {Suc n}" by auto
hence "(

∑

i ∈ {i. (i::nat) ≤ Suc n}.i) = (
∑

i ∈ {i. (i::nat) ≤ n}.i) + Suc n"
by auto

hence "2 * (
∑

i ∈ {i. (i::nat) ≤ Suc n}.i) = 2 * (
∑

i ∈ {i. (i::nat) ≤ n}.i) + 2 * (Suc n)"
by auto

with IH have "2 * (
∑

i ∈ {i. (i::nat) ≤ Suc n}.i) = (Suc n) * n + 2 * (Suc n)"
by auto

hence "2 * (
∑

i ∈ {i. (i::nat) ≤ Suc n}.i) = (n+2) * (Suc n)" by auto
thus "2 * (

∑

i ∈ {i. i ≤ Suc n}.i) = Suc (Suc n) * Suc n" by auto
qed

Figure 1.1.: Application of method auto in theorem SumNat

definition f:: "nat ⇒ bool" where

"f n ≡ (n > 5)"

Commonly, currying (cf. [Cur58]) is used for the definition of functions that require more than
one argument. Hence a function g : (N × N) →N with g(n, m) , n + m is defined in Isabelle as
follows:

definition g:: "nat ⇒ nat ⇒ nat" where

"g n m ≡ n + m"

Functions in Isabelle are always total functions. To define a function that is undefined for
some domain values the option datatype can be used. A variable of type ’a option is either
None or Some v where v is a value with type ’a. Hence the partial function h : N⇀N with

h(n) ,

{

n − 1 , if n > 0

⊥ , otherwise

can be defined in Isabelle as follows:

definition h:: "nat ⇒ nat option" where

"h n = (if (n > 0) then (Some (n - 1)) else None)"

9

1. Introduction

Isabelle provides an if ...then ...else construct to implement the case distinction. Note
that it is not possible to treat a return value of h like a natural number because the type of h n

is nat option and not nat. To work with the value v in Some v there is a function the such that
the(Some v) = v. Hence (h n) + 5 yields a type error but (the (h n)) + 5 is an expression of
type nat. Note that (the None) is not defined, i.e., the(h 0) is of type nat, but the value of
the(h 0) is not defined and hence unknown.

The keyword datatype permits the definition of new datatypes. A standard example is the
predefined definition of lists in Isabelle. We can define a list of elements of type ’a by using the
following datatype:

datatype ’a list = Nil | Cons ’a "’a list"

Note that ’a is a type variable and hence the definition allows defining lists for every type,
such that e.g. nat list is a datatype for a list of natural numbers and bool list is a list of
boolean values. Lists are inductively defined: Nil respectively [] represents the empty list. The
constructor Cons takes two arguments: the head of the list (with type ’a) and the tail of the
list (with type ’a list). Hence Cons 1 ((Cons 2) Nil) is the list [1,2]. For a list xs Isabelle
offers functions hd and tl such that hd xs returns the head and tl xs returns the tail of the
list xs. More information on lists and datatypes are also given in [NPW02] and [Nip13].

The keyword type_synonym allows introducing synonyms for existing types. Therefore

type_synonym T = nat

introduces the type synonym T for the type nat such that wherever the type nat is used we
can also use type T.

The other constructs we have used are more or less self-explanatory and described when used.
A detailed description of how Isabelle can be used is given in [NPW02] and some introduction
can be found in [Nip13].

1.4.3. Notation for Logic and Functions

In general our notation to denote our logical formulae and models is based on the syntax and
semantics of higher-order formulae in the theorem-prover Isabelle/HOL (see Section 1.4.2). We
have amended only some minor details. This section explains the most important elements of
the notation we use.

For definitions we use the symbol ,. Hence

P , Q

means P is defined as Q. , has lowest priority and, therefore, P , Q abbreviates (P) , (Q).
We define the set of boolean values as

bool , { True, False }

10

1.5. Related Work

True represents a tautology and False the absurdity (cf. [NPW]). A function with domain
A and co-domain B has type A → B. To denote such a function we write f : A → B. As
explained in the previous section, due to currying a function f : (A1 × A2 × . . . × An) → B is
represented by f ′ : A1 → (A2 → (. . . → (An → B))) in Isabelle. We will use the common notation
((A1 × A2) → B) for our logical description, but use the curried version in Isabelle.

We use the common logical connectives ∧, ∨ for logical ‘and’ and ‘or’ and ¬ for negation. We
will use the symbol → to represent steps of an algorithm in the later chapters and, therefore,
in contrast to Isabelle’s object logic HOL, we use the symbol ⇒ for implication to avoid
ambiguities. Furthermore we use P ↔ Q as an abbreviation for (P ⇒ Q) ∧ (Q ⇒ P).

We use the common binders ∀ and ∃ for universal and existential quantification. Precedences
are assumed as defined for Isabelle/HOL. Hence, priorities are transitively ordered as follows: ¬
has the highest priority, ∧ has higher priority than ∨, ∨ has higher priority than ⇒ and ⇒ has
higher priority than ∀ and ∃. Therefore ∃x . P (x)∨Q(x) is equivalent to ∃x . (P (x) ∨ Q(x)) (cf.
[NPW]). Priorities for equality etc. (=, ≤, <, ≥, >) are higher than for the logical connectives.
Logical connectives are right-associative but =, ≤, <, ≥, > are left-associative.

We use the notation ∀x ∈ A . P (x) to abbreviate ∀x . x ∈ A ⇒ P (x) and we write ∃x ∈
A . P (x) to denote ∃x . x ∈ A ∧ P (x). We also allow binders to bind more than one variable,
e.g., we write ∀x, y ∈ A . P (x, y) to abbreviate ∀x ∈ A . ∀y ∈ A . P (x, y).

We use the Hilbert description operator ǫ to deterministically choose a value that satisfies a
given condition. Hence ǫx. P (x) is some value x satisfying P . If there is no such value, then the
value of ǫx. P (x) is undefined. Hence we can only deduce P (ǫx. P (x)) if ∃x . P (x).

For a more detailed introduction to syntax and semantics of HOL the reader is refered to
[NPW].

1.5. Related Work

The work of Chou in [Cho94] describes a model for mechanical verification of distributed algo-
rithms in terms of Fair Transition Systems (FTL). An FTL is defined by a quadrupel (I, N, X, A)
where I is a predicate which describes the conditions for the initial states, N describes the pos-
sible transitions and X and A describe the fairness assumptions. As we will see in Section 2.3,
their model is very similar to this work, but we have extended the model further by attuning it
to the following aspects:

• We distinguish between global events and local actions (cf. Section 2.3.1).

• We introduce means to guarantee certain constrains for consistency of our model (cf.
Section 2.3.2).

• We introduce strategies to more conveniently describe local behaviour (cf. Section 2.3.3).

• We introduce reusable modules supporting different kinds of communication mechanisms
(cf. Section 2.3.5).

• We explain how different kinds of properties can be defined and verified in our model (cf.
Section 2.4 and Chapter 3).

11

1. Introduction

[Cho94] exemplifies their method by the verification of a simple distributed algorithm called
Dsum. Their work concludes with the remark that they want to verify more complex distributed
algorithms in their future work and that they want to automate as many parts of their proofs
as possible. Both goals are main objectives of our work. Moreover, in this thesis we examine
algorithms that are much more complex (cf. Chapter 5) than the considered Dsum algorithm.

The work of Toh Ne Win [Win03] introduces techniques to make theorem-proving for dis-
tributed algorithms more effecient. By generating and analyzing test executions Win tries to
automatically detect invariants. His work also presents a case study consisting of three algo-
rithms exemplifying how methods can be applied. Models and proof methods in [Win03] are
built upon a formalization of I/O automata and use Isabelle/HOL and Larch Prover as theorem
proving environments. Although the goals of [Win03] seem very similar to ours, the approach
differs in many aspects:

• [Win03] does not analyse which model might work well for the formalization but simply
uses a standard model (I/O automata)

• [Win03] uses some applications outside the theorem proving environment (namely the
Daikon invariant detector) to establish potential proof goals and lemmas in the theorem
provers. In contrast, we focus on methods to make proving within the theorem proving
environment more efficient.

• Win’s [Win03] focus is on safety properties, whereas we consider all kinds of properties
that matter for fault tolerant computing.

Our work is mainly inspired by the work of [JM05], which verifies the Disk Paxos Algorithm
given by Lamport and Gafni in [GL00]. The model that is used in [JM05] is some formalization
of Lamport’s specification language TLA (cf. [Lam02]), which combines temporal logic with a
notion of actions. We apply the TLA-action format for our formalizations in Isabelle, but we
extend the model of Jaskelioff and Merz adding the important notion of runs enabling us to
prove liveness properties.

In a joint work with Charron-Bost, Merz also proposed using the Heard-Of Model for veri-
fication purposes within the theorem prover Isabelle/HOL [CBM09]. The Heard-Of Model is
introduced by Charron-Bost and Schiper in [CBS07] as a new computational model for fault-
tolerant distributed computing. The model is based on the notion of transmission faults and
assumes that algorithms evolve in rounds. Although used to model asynchronous systems, the
model regards rounds as communication-closed layers. Therefore, proofs seem to be much sim-
pler since an induction on round numbers is a natural proof method for this model. Although the
algorithms in our case study use some notion of round numbers, we do not want to restrict the
algorithms to round-based algorithms by paradigm. Therefore we chose a more general model
of computation. For our Isabelle formalizations we applied some techniques from [CBM09] to
make our proofs reusable. This will be further explained in Chapter 4.

Finally, many ideas of our model are already developed in [Fuz08] and [FMN07] (we will give
detailed references at the respective parts of this work). Whereas these works give modeling
advices by presenting two elaborate examples, our approach provides general theory for modeling
distributed algorithms. Moreover [Fuz08] aims at giving a more formal model to enable more

12

1.6. Own Work

detailed reasoning but, nevertheless, still in form of paper proofs. This work also provides
concepts and libraries to model and verify distributed algorithms within the theorem proving
environment Isabelle/HOL.

Further references to related work will be given throughout the work at the relevant passages.

1.6. Own Work

Parts of this thesis have been published in

[KNR12] Philipp Küfner, Uwe Nestmann, and Christina Rickmann: Formal verifi-
cation of distributed algorithms - from pseudo code to checked proofs. In
Jos C.M. Baeten, Thomas Ball, and Frank S. de Boer, editors, IFIP TCS, volume
7604 of Lecture Notes in Computer Science. Springer 2012

I, Philipp Küfner, am principal author of [KNR12]. The article summarizes main ideas of my
thesis, but many concepts and details have been worked out after publication of [KNR12] or
were not mentioned due to space limitations. Hence the model presented in this thesis shows
many enhancements compared to the basic ideas described in [KNR12]. For example, the shared
memory abstraction presented in this work has not been part of the work in [KNR12]. Also
the strategies for verifying algorithms presented in Chapter 3 have only been roughly touched
upon [KNR12]. Moreover, [KNR12] focuses on the small example of the Rotating Coordinator
algorithm (see Section 5.1). In addition to the example of the Rotating Coordinator algorithm,
this work presents details of all four case studies involved.

Earlier versions of the case studies have been subjects of student projects, a bachelor thesis,
and a diploma thesis. All of these projects and work have been done under my supervision.

• Based on a model that has been worked out by myself, an earlier version of our Is-
abelle/HOL proof for the two safety properties of Distributed Consensus for the algorithm
considered in Section 5.2 Validity and Agreement has been presented by Christina Rick-
mann in her Bachelor thesis submitted at TU-Berlin with the title ‘Formalisierung der
Verifikation eines verteilten Konsens-Algorithmus mit Isabelle’ (‘Formal Verification of a
Distributed Consensus Algorithm’).

• An earlier version of the Isabelle/HOL model and Isabelle/HOL proofs for the Paxos
algorithm (see Section 5.3 have been developed in a student project at TU-Berlin. Models
and proofs have been carried out by the students Christina Rickmann, Matthias Rost and
Étienne Coulouma, and myself (Philipp Küfner).

• An earlier version of our model and proofs for the shared memory implementation for
the Alpha-Framework (see Section 5.4) have been part of a student project at TU-Berlin.
Models and proofs have been carried out by the students Benjamin Bisping, Liang Liang
Ji, and myself (Philipp Küfner).

• My basic model and the proofs for the algorithm considered in Section 5.2 have been
adapted and used for the verification of a broadcast-free variant of the mentioned algorithm

13

1. Introduction

(see Section 5.2.3). Parts of the proofs have been carried out in a diploma thesis by
Qiang Jin submitted at TU-Berlin with the title ‘Formal Verification of a Broadcast-Free
Consensus Algorithm in Isabelle’.

14

2. Modelling Distributed Algorithms

The term model is very abstract and of course can be used for many different applications.
Therefore our first concern is to clarify our notion of a model. As explained in the introduction,
our main goal is to develop new formal methods for proving the correctness of distributed
algorithms. Generally, for showing that an algorithm actually does what it is supposed to do,
we need a precise description of the algorithm and for doing formal proofs it is required that
formal semantics are given for this description. Last but not least, it is necessary to have
methods for reasoning over the given description. In the following, whenever we speak of a
formal model of an algorithm we mean the formal unambiguous description of A. Moreover,
if we speak of our model we mean the data structures and definitions introduced in this chapter
(see Section 2.3) that enable us to define a formal model of an algorithm. Those data structures
and definitions will make it possible to formally reason over the model. To apply a method for
reasoning, the description of the algorithm must be formulated in terms of the method. Useful
approaches for reasoning over our models are explained in Chapter 3.

For the next section it will be important to properly distinguish between the terms ‘model’,
‘(distributed) algorithm’, ‘distributed system’ and ‘specification’. In general by a model we
mean an abstraction or a concept for something. As explained before, an abstraction for a
certain algorithm becomes more concrete if we define it formally with the means introduced
in this chapter but since it is no ‘real world’ implementation it still remains an abstraction
(that is why we call it a model of the algorithm). A sequential algorithm is a description
how a process will behave and analogously a distributed algorithm is a description how a set
of processes behave within a distributed system. The distributed system comprises the set
of processes and furthermore all parameters of the setting, e.g. whether processes may fail or
how processes communicate. A specification can be either a specification of the algorithm or a
specification of the requirements, i.e. of the properties the algorithm must exhibit. As explained,
a specification of the algorithm can be given in terms of our model and will result in a formal
model of the algorithm. The usual way to show correctness is to prove that the algorithm meets
the specified requirements if the parameters of the system are as assumed. Therefore it must be
possible not only to specify the algorithm in terms of our model but also the requirements and
the parameters of the model to enable formal reasoning. Section 2.4 explains how our model
supports the specification of requirements and how they are expressed as properties.

For our later formalisation, we integrated all parameters of the setting of an algorithm into the
specification of the algorithm and therefore there is no formal difference between a distributed
system and a distributed algorithm in our model. Hence, in our formal descriptions we only use
the term distributed algorithm, which is then used synonymously to distributed system.

15

2. Modelling Distributed Algorithms

2.1. Level of Abstraction

Every model can only represent a subset of the real world. The level of abstraction describes
how detailed this subset is. Most people expect from a good model that it exhibits the essential
characteristics of the real world and hence captures the fundamental aspects that constitute
the objective of the later analysis. Therefore the choice of the model depends on the objective
which is to be analysed. In general one would like to avoid adding details to the model which
do not concern this objective since this might hinder to find and examine the relevant parts
of the model. Moreover, usually it is desired that the model is easy to understand. Hence,
a higher level of abstraction that hides irrelevant details seems to be desirable. On the other
hand, unforeseen side effects can be identified only, if the respective causes are modelled with
enough details. Therefore the right level of abstraction is very fundamental for the usefulness of
the model and this might be a trade-off between the level of detail and the ‘easy-to-understand’
performance of the model.

Verification means to prove that the (modelled) system meets the requirements. As already
explained, the intention to do formal verification raises a further demand: the desired proof
goals, i.e. the desired properties of the respective algorithm, must be formulated in terms of
the model (otherwise it would be impossible to reason about the model in the theorem prover).
Hence, the level of abstraction must be detailed enough to do formal proofs.

Most properties that matter in fault tolerant computing are of the kind ‘for every execution
of the algorithm it holds that . . .’. Hence the language or logic used to express the properties as
well as the model must comprehend the notion of an execution. Therefore it is necessary that
the specification of the algorithm must define the single steps the algorithm performs. We use
the term Run to capture one execution of the given algorithm and based on the terminology
of Lamport (cf. [Lam02], [Lam94]) we use the term Action for the specification of an atomic
transition a process can perform within a step (how actions can be defined will be explained in
Section 2.3.3).

Of course in practice a deviation from the specification is possible in the case of failures. If
failures are to be taken into account for a formal verification it is essential to specify the possible
failures that may occur. Hence a failure model must be integrated into the model. Section 2.3.8
gives a summary of common failure models including the failure models that are used for the
case studies in Chapter 5.

A further important part of a distributed system is the interprocess communication (ipc). For
the correctness of an algorithm it might be very essential whether communication is synchronous
or not.

In sum extending the different abstractions introduced in 2.1 the specification of a distributed
system must include:

• the specification of the steps that are executed on the different processes

• the specification of the communication media

• the specification of the failure model

• (additional assumptions about the environment)

16

2.2. Related Approaches

Commonly the level of abstraction varies for different components of a model. As an example
consider the pseudo code, which is an often used means for illustrating how processes locally
behave. Typically such a pseudo code will use directives like SEND or RECEIVE without a
further description how these subroutines for the message infrastructure work (as an example
see [CT96]).

Analogously to the four components enumerated above [GR06] names two basic abstractions
that matter in a distributed system model: the process abstraction (describing the behaviour of
the single local processes including failures etc.) and the communication abstraction (describing
the way processes can communicate including the media that may allow message losses etc.). As
an additional important abstraction [GR06] mentions the failure detector abstraction. Failure
detectors can be regarded as local modules monitoring the crash status of all involved processes
in the system.

Of course there are models and algorithms that do not make use of a failure detectors and
there are models using different external components (e.g. a leader detection unit). Hence, we
generalise this abstraction to an abstraction of the environment and so it can be seen as the
context in which processes and communication take place.

Each of these abstractions must be chosen with respect to the needed level of detail and must
be able to collaborate with each other to make the model consistent.

2.2. Related Approaches

The common way to present distributed algorithms is a pseudo-code-like representation based
on a state-machine approach (cf. [Sch90], [Lyn96]).

This is explained in [GR06] by the lack of an appropriate distributed programming language.
The argument in [GR06] is that notations of existing languages are to complicated and inventing
a new one would require at least a book to explain it. But of course there are no formal semantics
for pseudo-code.

Therefore the proofs given for the correctness of these algorithms often lack formal details.
As a reason for this Charron-Boste and Merz mention the ‘scalability problem of current formal
methods’ and propose to use the ‘HO-Model’ (introduced in [CBS07]). They claim this model
will overcome the subtleness that commonly is inherent in the operations and assumptions
that are used to describe distributed algorithms. [CBM09] shows that it is possible to adopt
this model in a theorem proving environment. The HO-Model is designed for algorithms that
proceed in rounds. Hence only round-based algorithms can be modelled within the framework
of the HO-Model.

A more general approach for formal modelling is given by Leslie Lamport in [Lam94]. Lamport
tries to overcome the lack of formal details by using his specification language Temporal Logic
of Actions (TLA/TLA+) for specifying distributed systems ([Lam02]). A formal proof based on
a TLA+ specification for the correctness of the distributed algorithm Disk Paxos can be found
in [JM05]. This work adopts the ideas of modelling actions as predicates from [JM05].

17

2. Modelling Distributed Algorithms

2.3. Developing a Formal Model

Fundamentals for our approach are given in [FMN07] and [Fuz08]. They translate a given
example of pseudo-code to formal transition rules. A main advantage of this approach is that it
can be understood as a step of refinement: while the raw idea and intuition can be formulated
via pseudo-code the transfer to transition rules forces the designer to define formal semantics
for every operation. The approach in [FMN07] is primarily engineered and customised for the
requirements given by the inspected algorithm (namely a Consensus algorithm given in [CT96])
but it shows many characteristics of common formal specification languages:

• It is based on predicate logic.

• Processes’ local steps and all further possible steps are modelled by an interleaving se-
mantics, i.e. a local step is mapped to a transition rule with well-defined pre- and post
conditions for the global view.

• The global view on the system is given by sequences of global states called ‘runs’.

• There is a designated set of initial states where every runs first state originates from.

• For every transition in a run from one state to its successor the transition rules are obeyed.

Notions of these characteristics are essential for formalism as abstract state machines (introduced
in [Gur95]) and TLA+ ([Lam02]). Moreover the approaches are similar enough to transfer models
from [Fuz08] to TLA+. Hence if needed a specification can be transferred from one model to
the other very quickly.

The model in [Fuz08] is chosen as a basis for the formalisation in this work because it offers
the following features:

• The fundamentals of the model (predicate logic) fit the input language of the theorem
prover (First Order Logic and Higher Order Logic)

• It is focused on the problem, i.e. all details that are needed for the proofs are modelled
and nothing more.

• A key contribution is that it can be used without formalising all details of a specifica-
tion language as TLA+ but is close enough to known formalism to be understood in the
respective communities.

• It is an asynchronous model.

In an asynchronous system we have no upper bounds on message delay and process speed.
There are different opinions about how realistic an asynchronous model is, because for the most
practical applications programmers have to assume upper bounds and a system where some
process is 10000 times slower than another does not seem realistic. Nevertheless, we develop
a model for the asynchronous case because from a theoretical point of view problems in an
asynchronous environment are more interesting. Since there are no assumptions on delay of
processes and messages this can be seen as the most general case and hence all synchronous

18

2.3. Developing a Formal Model

cases can be interpreted as subsets of the cases of the asynchronous case. In other words every
algorithm that has been verified in an asynchronous environment will also work in a synchronous
setting. Furthermore for practical application an extension of the model for synchrony can be
done by adding respective assumptions for the bounds on message delay and process speed.

After establishing the model, we used the proofs given in [Fuz08] as a guideline for our proofs
within the theorem prover. Particular attention in this work is paid to the differences between
the paper proofs and the mechanical proofs within the theorem prover.

2.3.1. Runs and Temporal Logic

As explained before, verifying a system usually means to show that the system behaves as
expected in every run. A run depicts the behaviour of a process in time. Hence, to prove that
a system meets the specified requirements, it is necessary that the underlying model supports a
notion of time to model the behaviour of the system along a time line. For our model we assume
a discrete time line.

The formalisation in this work uses the abstractions introduced in [Fuz08] which are build on
a set of inference rules that are used to describe the algorithm that is executed by a finite set of
processes denoted by P.

This can be interpreted as a trace semantics which is a simple kind of observation semantics
and defines an observation as a visible sequence of states and actions [Gä02]. A trace is then
commonly written as (cf. [Gä02]):

S0
A0→ S1

A1→ S2
A2→ . . .

which denotes that starting from an initial state S0 the system transits to state S1 by executing
action A0, then executes A1 and reaches S2 etc. [Gä02] mentions that trace semantics can also
be used for inspecting behaviours of concurrent systems by extending states to distributed states
or global states which are vectors of local states. Note that in this extension the state of a process
(a process state) is a local state, which is only a part of the global state.

Hence for two processes p, p′ working in parallel (without interaction) with traces S0
A0→ S1

A1→

. . . and S′
0

A′
0→ S′

1

A′
1→ . . . [Gä02] defines that

(S0, S′
0) A0→ (S1, S′

0)
A′

0→ (S1, S′
1) A1→ (S2, S′

1)
A′

1→ . . .

is a trace of the concurrent system where p and p′ take turns. The depicted trace describes
the special case of fair interleaving where p and p′ alternately execute their actions. Of course
different interleaving schedules are applicable. In [Fuz08] the already mentioned inference rules
describe when and how transitions from one state to another may be executed. Hence the
execution of an action corresponds to the application of some inference rule in [Fuz08] and the
application of some inference rule means moving forward to the next point in time. Since the
inference rules describe the algorithm this can be seen as the execution of one atomic step of the
algorithm. Thus, starting from a dedicated set of initial system states, all possible evolutions
of the system can be generated by applying a (possibly infinite) sequence of transition rules.

19

2. Modelling Distributed Algorithms

Note that having atomic steps between points in time implies a discrete time line. We observe
again that the sequence of transition rules induce a sequence of global states that are called
‘configurations’ in [Fuz08]. Literature (e.g. [Lam02]) often uses the term states but since our
work is based on the work of Fuzzati et al., we maintain their notion of configurations. A
configuration can be seen as a snapshot of the system between two atomic steps. Hence, a
configuration comprises all data that is relevant for computing a system step. [Fuz08] defines
a configuration as the combination of all the modules (e.g. communication modules or failure
detectors) that are present in the system and are used by the algorithm in addition to the state of
the involved processes. This is obviously an extension of the vectors of local states [Gä02] uses,
since our configurations contains an array of local states S but can additionally use modules for
communication and other demands. Putting all together, a computation step is now a transition
from one configuration to the next that respects the rules of the game, i.e. corresponds to one
of the given inference rules. Hence we write a configuration as a vector containing the states of
the processes and the states of the used modules. As Fuzzati [Fuz08] we allow to switch between
horizontal and vertical notation for vectors to increase the readability.

Figure 2.1 depicts a general pattern for a transition: the states of modules m1, . . . , mΓ are
represented by the values M1, M2, . . . , MΓ and the state of the involved processes s is repre-
sented by S in the preceding configuration. Then the system transits to a configuration where
the state of the modules has changed to M1′, M2′, . . . , MΓ′ and the state of the involved pro-
cesses is S′. So we assume that modules can be represented by some value Mx and the state S
of N involved processes is an array of the size N where each entry S(i) represents the state of
one process. Note that Mx and S(i) of course might be tuples or more complex data structures.

For a run of the algorithm the transition in Figure 2.1 must correspond to a transition rule as
depicted in Figure 2.2. We adopt the ideas from [Fuz08] and define a configuration as follows:

Definition 2.3.1.1 (Configurations and Process States)
Let M1, . . . , MΓ be the modules relevant for the modelled distributed system and S be the state

of all involved processes. Then a configuration C is an assignment {S 7→ SC, M1 7→ M1C, M2 7→
M2C, . . . , MΓ 7→ MΓC} of values M1C, . . . , MΓC and SC to M1, . . . , MΓ and S.
By SC we denote the array of process states in configuration C and SC(pi) denotes the state of
process pi ∈ P in configuration C. The set of all process states is denoted by S. Hence SC can be
interpreted as a mapping SC : P→ S

To project comfortably on different entries (state of modules) of a configuration and on entries
of process states and states of modules, we introduce the following notations, which generalise
the introduced notation for states:

Notation 2.3.1.2 (Accessing Tuples as Records)
Let C be a configuration and M be a module, such that the state of M is represented in C.
Moreover let the state of module M consist of the constituting parts x1, . . . , xk. Then

• MC denotes the state of module M in C.

• xi ⊲ MC denotes the state of part xi of module M in configuration C.

20

2.3. Developing a Formal Model

For more complex data structures where a constituting part x of a module consists in turn of
parts y1, . . . , yl, we allow the extensive application of ‘⊲’, i.e. we allow to write yr ⊲ x ⊲ MC, to
denote the state of yr (which is part of the state of x, which is part of the state of module M)
in configuration C.

















S
M1
M2

...
MΓ

















→

















S’
M1′

M2′

...
MΓ′

















Figure 2.1.: Transition in [Fuz08]

(Rule)
Conditions on some of the configuration entries

















S
M1
M2

...
MΓ

















→

















S’
M1′

M2′

...
MΓ′

















Figure 2.2.: Transition rule ([Fuz08])

As already discussed a computation step is a transition from a configuration Ci to a configu-
ration Ci+1. How to get from one configuration to the next depends on the next step taken by
the algorithm. Therefore the algorithm defines a step relation, i.e. let C denote the set of all
configurations then the step relation → must be defined as a subset of C×C. In [Fuz08] the step
relation is given by the introduced inference rules. In this work we differentiate between steps
taken by a process (process-steps) and steps where no dedicated actor is responsible for the step
(event-steps). The cause for a process-step is always that a process executes some process-action
while an event-step is caused by some event which happens unmotivated or at least without
a dedicated process that triggered the event (e.g. the loss of a message while the message is
transmitted). Formally a process-action is a predicate PA : C × C × P→ bool while an event
is a predicate EV : C × C→ bool. A Safe Algorithm in our model is fully determined by a
set of dedicated initial configurations, a set of process-actions and a set of events. We use the
term Safe Algorithm because for a given Safe Algorithm A we can prove that A behaves safe,
i.e., it does never violate given constrains (later we will formally introduce safety and liveness
properties, see Section 2.4).

21

2. Modelling Distributed Algorithms

Definition 2.3.1.3 (Safe Algorithm)
A Safe Algorithm A is a tuple (Init, Φ, Ψ) where Init is a (nonempty) set of (initial) configu-
rations, Φ is a (finite) set of process-actions and Ψ is a (finite) set of events.

Process-actions and events define the step relation of the algorithm.

Definition 2.3.1.4 (Steps)
Let A be a (Safe) Algorithm with a set of process-actions Φ and Ψ set of events Ψ.

1. A pair (Ci, Cj) of configurations is called a process-step in A

if and only if ∃A ∈ Φ . ∃pk ∈ P . A(Ci,Cj , pk).
We write Ci →A,pk:A Cj to denote a process-step in A of process pk from Ci to Cj with
action A.

2. A pair (Ci, Cj) of configurations is called an event-step in A

if and only if ∃A ∈ Ψ . A(Ci,Cj)
We write Ci →A,ev:A Cj to denote an event-step in A from Ci to Cj with action A.

3. A pair (Ci, Cj) of configurations is called a step in A

if and only if (Ci, Cj) is an event-step or a process-step.
We write Ci →A Cj to denote a step in A from Ci to Cj.

In the following we omit A and write only Ci →pk:A Cj, Ci →ev:A Cj, and Ci → Cj if there is
only one algorithm in the given context. The symbol →∗ denotes the reflexive-transitive closure
of → and the symbol →ω denotes an infinite sequence of →.
We write C 6→ if and only if from C no further step is possible (6 ∃C′ ∈ C . C → C

′). Then C is a
deadlock in A.

A run can now be defined as a (potentially infinite) sequence of configurations where each
configuration and its successor are in the step relation. Formally we define a run as a mapping
R : T→C where T denotes a countably infinite set of points in time. For convenience, in this
work, we assume T to be the set of natural numbers (T = N) so that we can move one step
forward in time by adding +1, backwards by adding −1 and 0 is the initial point in our time
line. Speaking more general, it would suffice that our time domain is a total ordered set with
a lower bound to apply our techniques. By Σω we denote the set of all infinite sequences of
configurations

Σω , { S : T→C } .

Definition 2.3.1.5 (Infinite Runs)
Let A be a (Safe) Algorithm with A = (Init, Φ, Ψ), let → be the corresponding step relation.

R ∈ Σω is an infinite run of A if and only if

1. R(0) ∈ Init

2. ∀t ∈ T . R(t) → R(t + 1)

22

2.3. Developing a Formal Model

Therefore, R(0) is the initial configuration of R, R(1) the next configuration etc. Figure 2.3
shows a run R where in the initial configuration R(0) action A0 is executed. By the execution
of A0 the system transits to configuration R(1) until A1 is executed and the system transits
to configuration R(2). Then consecutively actions A1, . . . , A13 are executed and each Ai leads
to configuration R(i + 1). Note that runs are sequences of configurations. Hence, for a given
run it might be possible to deduce which action has been executed from configuration R(i) to
R(i + 1), but this information is not explicitly given by a run. This means that our model is
strictly state-based.

initial
configuration

R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) R(8) R(9) R(10) R(11) R(12) R(13)

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Figure 2.3.: Execution of actions A0, . . . , A13 in Run R

Since the domain of a run R is the set of natural numbers, by definition a run is always
infinite. To take finite runs into consideration we allow final-stuttering for our general definition
of runs. A run R with final-stuttering reaches a deadlocked configuration in time t and for all
successive configurations t′ ≥ t we repeat the configuration R(t) (hence we have R(t′) = R(t)).
Formally we define a predicate FinSt : C × C→ bool for a given step relation →:

FinSt(Ci,Cj) , (Ci = Cj) ∧ Ci 6→

Now we are able to give a more general definition of runs:

Definition 2.3.1.6 (Runs)
Let A be a (Safe) Algorithm with A = (Init, Φ, Ψ), let → be the corresponding step relation.
R ∈ Σω is a run of A if and only if

1. R(0) ∈ Init

2. ∀t ∈ T . (R(t) → R(t + 1) ∨ FinSt(R(t), R(t + 1)))

Runs(A) denotes the set of all runs of an algorithm A.

Our definition of runs implies that a deadlocked configuration is repeated forever in a run:

Proposition 2.3.1.7 (Deadlocks last forever)
Let R ∈ Runs(A) be a run of a Safe Algorithm A with a corresponding step relation → and
t ∈ T.
If R is deadlocked at time t (R(t) 6→) then for all t′ ≥ t we have R(t′) 6→ and R(t′) = R(t).

Proof.1 →֒ Isabelle2

1As explained in the introduction, full formal proofs of our propositions, lemmas, theorems, etc. are done in
Isabelle/HOL. Therefore we will only give the reference to the Isabelle theory and theorem. Sometimes we
will mention the main arguments for the proof.

2Isabelle/HOL theory: DistributedAlgorithm.thy, Lemma(s): deadlockLastsForever

23

2. Modelling Distributed Algorithms

From the definition of a deadlock and the definition of runs we obtain that If R is deadlocked
at time t then we have

R(t + 1) 6→ and R(t + 1) = R(t). (DEADCONF)

This is used in the inductional proof of Proposition 2.3.1.7. Note that it is often easier to
use DEADCONF than the stronger version in Proposition 2.3.1.7 in similar inductional proofs.
Therefore in our formal proof we provide DEADCONF as an additional lemma.

It is necessary to make further assumptions to prove certain properties. This means to reduce
the set of considered executions to a subset that fulfills some defined constraints, e.g. that only
a limited number of processes is allowed to crash. Therefore we extend the definition of a Safe
Algorithm to Algorithms by adding a set of predicates Fad:

Definition 2.3.1.8 (Algorithm)
An Algorithm A is a tuple (Init, Φ, Ψ, Fad) where (Init, Φ, Ψ) is a Safe Algorithm and
Fad ∈ P (Σω → bool) is a set of predicates on sequences of configurations.

For Algorithms we introduce the notion of Admissible Runs which are the subset of runs where
the predicates in Fad hold:

Definition 2.3.1.9 (Admissible Runs)
An Admissible Run of an Algorithm A = (Init, Φ, Ψ, Fad) is a run R ∈ Runs(A) where P (R)
holds for all P ∈ Fad. Hence the set Runsad(A) is defined formally:

Runsad(A) , { R ∈ Runs(A) | ∀P ∈ Fad . P (R) }

The different notions of Runs and Admissible Runs enable us to distinguish properties that
hold for every run from properties that hold only under the assumptions in Fad. This will further
be explained in Section 2.4.

Subsection ‘Finite and Infinite Runs’ will present alternative Modelling approaches for runs
with special focus on the combination of finite and infinite runs.

Related Approaches Using Temporal Logic

We adopt the term ‘action’ from Leslie Lamport’s Temporal Logic of Actions (TLA). Overall,
our definitions for runs and steps have an obvious relation to temporal logic, e.g. TLA. In his
Temporal Logic of Actions, Lamport refers to the assignments (configurations) as states and to
the respective sequence of assignments (runs) as behaviours [Lam02]. Also our term ‘step’ has
similar semantics in TLA.

We focus on the view of exactly one distributed system and are interested in properties that
hold for every execution of this system. Recall that the term ‘configuration’ is used for the global
state of the system, i.e. the current assignment of values to the relevant variables used by the
system. On the contrary, Lamport’s states refer to all variables, even to those, which are not used
in the inspected system. Lamport ([Lam02]) proposes to use a relation Next which is typically
a disjunction of actions that describe possible steps of the algorithm. Our work adopts the
idea of actions in the way Jaskelioff and Merz ([JM05]) use actions in their formalisation of the

24

2.3. Developing a Formal Model

Disk Paxos [GL00] algorithm. This means that actions are predicates taking two configurations
as parameters. An action A is true for two configurations c, c′ (the value of (A c c′) is true)
if and only if a step from c to c′ can be taken by executing action A. Of course having two
(finite) sets of actions (process-actions and events) is a special case of a disjunction of actions:
Let A = (Init, { A1, . . ., Ak } , { Al, . . ., Am } , Fad) be an algorithm. By definition of our step
relation for two configurations Ci,Cj ∈ C the following holds:

Ci → Cj ≡ (∃p ∈ P . A1(Ci,Cj , p) ∨ . . . ∨ Ak(Ci,Cj , p)) ∨ Al(Ci,Cj) ∨ . . . ∨ Am(Ci,Cj).

Hence our model implements the idea of Lamport’s Next relation by using two sets of actions.

Enabledness

In TLA+ there exists a predicate ENABLED, which is true for an action if and only if the
action can be executed. Similar to TLA+ we define predicates Enabled A and Enabled E to
determine whether a process-action respectively an event can be executed:

Definition 2.3.1.10
Let A = (Init, Φ, Ψ, Fad) be an algorithm with A ∈ Φ, Â ∈ Ψ and C,C′ ∈ Runs(A).

Enabled A : (C × C × P→ bool) × C × P→ bool is defined as follows:

Enabled A(A,C, p) , ∃C′ ∈ C . A(C,C′, p)

Enabled E : (C × C→ bool) × C→ bool is defined as follows:

Enabled E(Â,C) , ∃C′ ∈ C . Â(C,C′)

To exclude runs in which some actions are always enabled, but never executed, the set of runs
may then be restricted by fairness assumptions in Fad. Techniques to define fairness assumptions
in terms of Weak Fairness and Strong Fairness are explained in [Lam02]. Examples for such
fairness assumptions are given in our case studies in Sections 5.2 and 5.4.

Finite and Infinite Runs

As explained before, infinite sequences of configurations can be modelled as a mapping

R : N → C

where C denotes the type of the configuration. We have also seen that problems occur if these
sequences are only possibly but not necessarily infinite (e.g. as explained before if the system
runs into deadlock and no successor configuration is reachable) and that we can solve these
problems by introducing final stuttering. The work of Devillers, Griffioen and Müller
[DGM97] analyses the advantages of alternative Modelling approaches for sequences of system
states. Since the approach they call HOL-Fun is very close to our approach and the dual

25

2. Modelling Distributed Algorithms

counterpart to this approach is (in some sense) the HOL-Sum, we give a short summary of the
results they mention for their analyses.

An important issue is the ability to model infinite as well as finite sequences using the different
approaches.

In the HOL-Fun approach sequences are modelled using partial functions of type N ⇀ C.
Functions are defined partially to allow finite sequences as follows: If the sequence is finite there
is a number n where for all m > n the function is not defined. Hence valid sequences must fulfil
the following predicate ([DGM97]):

is_sequence(s) = (∀i.s(i) = None ⇒ s(i + 1) = None) (2.1)

(where s(i) = None denotes that s is undefined for the argument i). Every operation on
sequences must obey to return only sequences fulfilling this predicate. Hence some kind of
normalisation is needed for every operation if it does not preserve the predicate is_sequence.
Devillers et al. regard this as the main disadvantage of the HOL-Fun approach ([DGM97]).

The HOL-Sum approach is proposed in [PC96]. The definition in this approach is split in two
sub definitions, one for the finite case and one for the infinite. The benefit of this alternative is
that no additional normalisation procedure as for the HOL-Fun is necessary ([DGM97]). But
due to the two sub definitions every operation must be implemented for both cases and hence the
effort is doubled up for every implementation of a new operation on the sequences (([DGM97]).
Therefore in our work we use a modification of the HOL-Fun approach: As explained before
we allow ‘stuttering steps’ (analogously to [AS86] and [Cho94]) from configuration s to s′ (steps
where all variables of the system do not change and therefore s = s′ holds) if and only if the
system is already terminated in state s. To understand why this is important for our model,
assume an algorithm that is supposed to terminate in every run. If we omit the final stuttering
option and allow only infinite runs this algorithm would render the set of (infinite) runs empty.
As mentioned before, most of the considered properties are of the kind ‘for every run R the
following proposition holds . . . ’. Since our set of considered runs has become empty such a
property is trivially true. Since often deadlocks are not intended this would be a fatal problem
of the model, which is ruled out by the introduction of final stuttering. The following section
analyses further but different problems that might occur when there are already inherent faults
in the model and shows techniques how these problems and faults can be avoided.

2.3.2. Distribution and Consistency of our Model

In the field of verification the most fatal error that may occur is that the proof of correctness is
error free but the model for the algorithm is wrong. The verification of the Paxos algorithm in
[Fuz08] gives an example for this: Redoing the proofs of [Fuz08] we discovered that the defined
inference rule for the delivery of a broadcast b was never enabled for any process but for the
sender of b. Based upon this broadcast, processes were meant to decide a value v. The extensive
proof of Agreement given by Fuzzati shows that if two processes decide values v1, v2 then v1 = v2

holds. As we see now, this property is actually trivial for the erroneous model since in every
execution of a run only one process at all was able to decide a value.

Therefore using a theorem prover may guarantee faultless reasoning but every faultless rea-

26

2.3. Developing a Formal Model

soning is rendered useless if the underlying model of the algorithm does not reflect the intended
implementation of the algorithm or does not respect the conditions of the assumed setting.

Of course it is not possible to rule out every error that might occur when the model for a
concrete algorithm is developed. But in the following we introduce means to avoid unintended
Modelling issues concerning the concept of distribution. Of course the concept of distribution is
a crucial notion in the field of distributed algorithms and of course there are certain constraints,
that must be respected by the algorithm. To rule out models which solve distributed problems
but disregard the concept of distribution, this section defines a Distributed Algorithm as an
algorithm that respects certain criteria which implement our notion of distribution.

Of course the idea of a distributed system is that processes work autonomously but can
communicate by using defined communication mechanisms. We assume that when a process
executes an action, it may read and manipulate its own state but not the state of other processes.
Moreover, e.g. for communication, it might be necessary that a process accesses other modules
of the configurations.

Let us consider how we can model distributed algorithms by the means introduced before.
Figure 2.4 gives an example which will be used throughout this section to explain the introduced
concepts. In this example every process pi stores only one number n ∈ N in his process state.
n represents the number of messages pi has already processed. Hence, whenever pi processes
a message it has received, pi increments n by one. If pi has no message to process, pi keeps
flooding the network by sending its value n to all other processes.

Formally a message m is represented as a triple (s, r, c) where s, r ∈ P are sender and
receiver and c ∈ N is the content of the message. By M we denote the set of all messages
M = P × P × N

We use a module M : M×{ outgoing, transit, received } →N to keep track of all messages
in our system. A message is outgoing after the sender of the message has put the message into
its outbox. A message is in transit after it has left the outbox of the sender until it reached
the inbox of the receiver and, of course, is received when it is in the inbox of the receiver.
M(m, outgoing) (respectively M(m, transit), M(m, received)) returns how many copies of
message m exist with status outgoing (respectively transit, received). The number of received
messages M(m, received) is decremented if the receiver of m has processed a message m. With
Tags we denote the set { outgoing, transit, received }.

Initially there are no messages in the system and hence for all m ∈ M and all t ∈ Tags we
have M(m, t) = 0. Processes initially have processed no message and hence their initial process
state is 0.

Figure 2.4 depicts the respective functions S0 : P→N and M0 : M × Tags →N for the initial
configuration and Initflood defines the respective set of initial configurations. Note that here we

defined S0 and M0 explicitly. As usual (cf. Notation 2.3.1.2), for a configuration C =
Ç

S
M

å

, we

will later write SC to denote the first entry M of C, i.e. the array of process states in C and MC

to denote the second entry.

27

2. Modelling Distributed Algorithms

We introduce the concept of function updates for a more comfortable way to notate actions:

Definition 2.3.2.1 (Function update)
Let f : α → β be a function and a ∈ α, b′ ∈ β.

Then f [a := b′] = f ′ where f ′ : α → β is defined as follows:

f ′(x) =

{

b′ , if x = a

f(x) , else

Note that we can also use nested function update: a function update (f [a1 := b′
1])[a2 := b′

2]
returns by definition a function f ′′ with

f ′′(x) =















b′
1 , if x = a1 ∧ a1 6= a2

b′
2 , if x = a2

f(x) , else

In our example the set of messages a process pi sends is constructed by the function Newmsgs :
P × N→ P (M). Newmsgs(pi, n) returns a set of messages which contains a message m for each
pj ∈ P such that the sender of m is pi and the content is n and the receiver of m is pj . In addition
we define a subaction Insertmsgs, i.e. a predicate Insertmsgs that is used by some action to assert
that messages are inserted from one configuration to the next. Hence, Insertmsgs(C,C′, new) is
true if and only if for all messages in the set new the value MC(m, outgoing) is incremented
by one to C

′ and all other values of MC′(m′, t) are equal to MC(m′, t).
We define two process-actions:

ProcessMsg : If there is a message mr for a process pi which is received then pi processes the
message by incrementing its state by one and decrementing the received copies of m by
one to indicate that m has been processed.

SendToAll : If there is no message to process for pi ∈ P, pi is able to send messages. As described,
the sending of messages uses Insertmsgs and the constructor Newmsgs. All process states
remain unchanged by this action.

Furthermore the communication infrastructure comprises two events:

SendMsg : SendMsg puts a message m from the status outgoing to transit, i.e. decrements
the number of copies of m that are outgoing by one and respectively increments the
number of copies that have status transit.

Deliver : This action works as SendMsg but moves a copy of m from transit to received.

Let us now inspect the details of the process-action ProcessMsg. As we would expect from a
process-action this action works only on values the executing process pi can read and write, i.e.
pi’s own process state and its received messages and no other storages which pi would not able
to access. But which values pi exactly is able to read and write is very implicit in the model.
Moreover, only the name outgoing of the status of a message m tells us that pi can not read

28

2.3. Developing a Formal Model

Initial function definitions:

S0 : P→N | S0(pi) , 0 M0 : M × Tags →N | M0(m, t) , 0

Model definitions:

Initflood ,

ß Å

S0

M0

ã ™

ProcessMsg(C,C′, pi) , ∃mr ∈ M . ∃ps, n . mr = (ps, pi, n) ∧ MC(mr, received) > 0

∧ MC′ = MC[(mr, received) := MC(mr, received) − 1]

∧ SC′ = SC[pi := SC(pi) + 1]

Newmsgs(ps, n) , { m ∈ M | ∃pr ∈ P . m = (ps, pr, n) }

Insertmsgs(C,C′, new) ,

Ç

MC′(m, t) =

®

MC(m, t) + 1 , if (t = outgoing ∧ m ∈ new)
MC(m, t) , else

å

SendToAll(C,C′, pi) , { m ∈ M | ∃ps, n . m = (ps, pi, n) ∧ MC(m, received) > 0 } = ∅

∧ Insertmsgs(C,C′, Newmsgs(pi, SC(pi)))

∧ SC′ = SC

SendMsg(C,C′) , ∃mo . M(mo, outgoing) > 0

∧ MC′ = (MC[(mo, outgoing) := MC(mo, outgoing) − 1])

[(mo, transit) := MC(mo, transit) + 1]

Deliver(C,C′) , ∃mt . M(mt, transit) > 0

∧ MC′ = (MC[(mt, transit) := MC(mt, transit) − 1])

[(mt, received) := MC(mt, received) + 1]

Φflood , { SendToAll, ProcessMsg }

Ψflood , { SendMsg, Deliver }

Fflood , ∅

Aflood , (Initflood, Φflood, Ψflood, Fflood)

Figure 2.4.: Simple Algorithm Aflood

the contents of m as long as there is no received copy of m. Formally nothing prevents us up
to now from defining a process-action ProcessMsgomnis where pi already increments its process
state for a message m that is still in the outgoing buffer of the sender:

ProcessMsgomnis(C,C′, pi) , ∃mr ∈ M . ∃ps, n . mr = (ps, pi, n) ∧ MC(mr, outgoing) > 0

∧ MC′ = MC[(mr, outgoing) := MC(mr, outgoing) − 1]

∧ SC′ = SC[pi := SC(pi) + 1]

29

2. Modelling Distributed Algorithms

Moreover, the ‘omniscient’ action ProcessMsgomnis changes the number of outgoing copies.
Obviously, this is not intended for the given example and hence it is modelled as described by
Figure 2.4. But the required global view from which a process-action is defined obviously can
cause unintended modelling of access to parts of configurations the executing process is not able
to read. This yields the need for means that enable us to define a more explicit separation of
things a process is able to access and resources it can either only access indirectly or never.

To limit the scope a process is allowed to read and write, we define the notion of a Localview
of a process. The Localview of a process can be interpreted as the variables and resources a
process can access. Of course this Localview is part of the distributed system and therefore
must be represented in a configuration. By L we denote the set of all Localviews and define a
function

C2LV : C × P→L

which returns for a configuration C and process pi the restricted view of pi on C. This function
varies for each algorithm and hence is a parameter for the definition of a distributed algorithm.
In general, one essential part of a Localview of a process pi is the (local) process state of pi.
Hence, we assume the Localview of a process pi in a configuration C to be a vector

(SC(pi), x1(C), x2(C), . . . , xκ(C)) (Localview)

where SC(pi) is the process state of pi in C and x1, . . . , xκ are functions over configurations. We
overload the function S and denote by Slv the process state of a Localview lv (which is the first
entry of lv, cf. Localview above).

For consistency of the model, a process-action A ∈ Φ executed by a process pi may only read
and affect parts of the configuration which pi can access in its Localview. Hence, for a step
C →pi:A C

′ there must be lv, lv′ ∈ L such that lv is the Localview of pi in C, lv′ is the Localview
of pi in C

′ and nothing else has changed from C to C
′ but only the parts that pi can access (this

stipulation is formally defined later with equation LocalviewRespect).
Note that from a designer point of view it is much more convenient to define a process-action

A by describing how A affects the Localview of a process (this will later be illustrated by
examples and is further explained in Section 2.3.3). Hence, instead of defining a global action A

which can be executed by a process pi, we might want to definea predicate a↓
A : L × L→ bool

that describes only the local behaviour of the action because a process action only performs
local changes. Since a↓

A is supposed to represent of A, C →pi:A C
′ must imply a↓

A(lv, lv′) with
lv = C2LV(C, pi) and lv′ = C2LV(C′, pi) and vice versa. We call such a predicate a↓

A the non-

lifted version of A and A the lifted version of a↓
A. Note the difference between the types of a↓

A

and A: a↓
A : L × L→ bool is a predicate over Localviews, A : C × C × P→ bool is a predicate

that takes two configurations and a process.
To define the relation between a↓

A and A formally, we need a further function that embeds
the Localview of a process back into a configuration. Note that the data of a Localview is only
a subset of the information of the corresponding configuration. Hence, additional information
must be provided for such an embedding. Let lv′ be the Localview of process pi. To extend
lv′ to a configuration we need the information that lv′ is pi’s Localview and how the rest of
the configuration should be arranged. During a process-step of pi from a configuration C to a

30

2.3. Developing a Formal Model

configuration C
′ only the data of pi’s Localview can be changed. Hence, it suffices to extract

the rest of the configuration C to compute the configuration C
′. Therefore we define a function

LV2C : L × P × C→C

that embeds a Localview of a given process into a configuration and returns the resulting con-
figuration. Note that obviously the domain of LV2C differs from the co-domain of C2LV and
furthermore C2LV is not injective. Therefore LV2C is not the inverse function of C2LV. Hence,
it is not possible to derive LV2C from C2LV directly. Thus, LV2C must be given as a further
parameter in our definition of a Distributed Algorithm. For our example (Figure 2.4) the vari-
ables a process pi can read, are the messages pi has received (its inbox) and its program state.
What pi is able to do, is: put messages into its outbox, change its process state, and delete a
processes message from its inbox. Let us first define a function inboxpi

C
that extracts the inbox

of pi from a configuration C. We model the inbox analogously to the module M, hence for a
given message m the function inboxpi

C
: M →N returns the number of copies of m the process

pi got in his inbox. Therefore we can define inboxpi

C
as follows:

inboxpi

C
(m) ,

{

MC(m, received) , if ∃ps . ∃n . m = (ps, pi, n)

0 , else

Let us assume pi is not able to see messages it has sent before. We can define C2LV flood as:

C2LV flood(C, pi) ,
(

SC(pi), inboxpi

C
, ∅, pi

)

(C2LV flood)

Hence, for our example a Localview lv is a vector (S, In, Out, ID) where S is the process state
of the Localview, In is the inbox (modelled as a function as described) and Out is the outbox,
which is modelled as an (initially empty) set of messages. Note that the decision to use a set for
the outbox implies a process is not able to send more than one copy of a message at once). Since
process pi has to set itself as the sender when generating messages, we use an extra field ID to
store the identity of pi (note that the executing process is not a parameter for the non-lifted
versions of actions). Usually (if we do not consider a Byzantine process model) a process is not
allowed to change its id.

As for configurations we denote the state entry of a Localview lv by Slv, the inbox entry by
Inlv, the outbox entry by Outlv and the id entry by IDlv.

Now we can define non-lifted versions of SendToAll and ProcessMsg(cf. Figure 2.4):

ProcessMsg↓(lv, lv′) , ∃mr ∈ M . Inlv(mr) > 0

∧ lv′ = (Slv + 1, Inlv[mr := Inlv(mr) − 1], Outlv, IDlv)

SendToAll↓(lv, lv′) , ∀mr ∈ M . Inlv(mr) = 0

∧ lv′ = (Slv, Inlv, Newmsgs(pi, Slv), IDlv)

Note how simple the definition of local transitions is compared to the long-winded lifted actions
in Figure 2.4, which need the extra definition of Insertmsgs.

To re-embed the Localview lv′ of a process pi in a configuration C for Aflood we have to define

31

2. Modelling Distributed Algorithms

the function LV2C flood. First let us define how the message module M will change after a step
from a Localview lv to lv′. On the one hand we have to increase the values of the messages
pi added to its outbox. To be sure that pi does not sail under false colours, we increase the
outgoing values only for messages were pi is indeed the sender of the message. Furthermore,
we have to delete the messages that pi has already processed. To determine the right messages,
we have to consider only received messages where pi is the receiver of the message. For these
messages we apply the values from Inlv. Note that the first update concerns only outgoing
messages while the second deals with received messages. Therefore there can be no interference
between both updates. We define a function M̂

pi

lv′,C : M × Tags →N that returns MC updated
by the information of a given Localview lv′, which is assumed to be the (updated) Localview of
process pi after pi executed an action in C:

M̂
pi

lv′,C(m, t) ,



































min(Inlv′(m), MC(m, received)) , if t = received

∧ (∃ps ∈ P . ∃n . m = (ps, pi, n))

MC(m, t) + 1 , if (t = outgoing ∧ m ∈ Outlv′)

∧ (∃pr ∈ P . ∃n . m = (pi, pr, n))

MC(m, t) , else

LV2C flood(lv′, pi,C) ,
Ç

SC[pi := Slv′]
M̂

pi

lv′,C

å

(LV2C flood)

Note that the use of min in M̂
pi

lv′,C makes it impossible for pi to add received messages on its
own authority. pi is only able to process (respectively delete) messages. Note further that by
the definition of C2LV flood and LV2C flood a process pi can see its identity but it is not able to
change it, i.e. it can change it locally in his own scope and view for the execution of one action
but this change will not be globally applied. Hence, the use of LV2C and C2LV enable us to
model read-only values. Moreover, our notion of the outbox implements the concept of a blind
write: although pi is not able to see (and possibly) change its former outgoing messages, pi can
write and add new messages. We see that there are two main advantages that come with the
use of non-lifted actions:

• Non-lifted actions describe local changes concisely and therefore are better readable.

• The use of C2LV and LV2C enable us to introduce some notion of read and write privileges
for global variables, i.e. enable us to appoint which variables a process may only read,
which variables it is also allowed to write and which variable it can also modify.

Of course, the embedding of a Localview of process pi in a configuration C back into C for pi

must result in the configuration c and hence, we assume for C2LV and LV2C that for all pi ∈ P

and C ∈ C:

LV2C(C2LV(C, pi), pi,C) = C (locViewProp1)

Obviously this holds for our example C2LV flood and LV2C flood. Note that we do not explicitly
require C2LV(LV2C(C, pi, lv), pi) = lv, since for our model it is only relevant to get from a

32

2.3. Developing a Formal Model

configuration to a Localview and back to a configuration (see Figure 2.5). Later, we will give
examples where we actually have C2LV(LV2C(C, pi, lv), pi) 6= lv.

Having C2LV and LV2C we are now able to formally express what it means for a process-
actionto respect the Localview of processes. We stipulate that for every process-action A there
must be a non-lifted version a↓

A of A such that for all C,C′ ∈ C and pi ∈ P the following holds:

(

C →pi:A C
′) ↔

Ä

∃lv′ . a↓
A(C2LV(C, pi), lv′) ∧ C

′ = LV2C(lv′, pi,C)
ä

(LocalviewRespect)

Intuitively this means: There is a step C →pi:A C
′ if and only if we can find a Localview lv′

such that C
′ is the embedding of lv′ for pi in C and a ‘non-lifted step’ with a↓

A is possible from
C2LV(C, pi) (which denotes the Localview of pi in C) to lv′. Figure 2.5 illustrates the concept
of a non-lifted action: instead of computing the step for an action A of a process pi on the
level of configurations we compute the Localview lv of pi by using the function C2LV. Then
we compute the local changes processed by executing the non-lifted action a↓

A resulting in lv′.
Then we embed lv′ back into R(t) and the result we get is R(t + 1).

We define a function Lift : (L×L→ bool) → (C×C×P→ bool) that returns the lifted version
of a non-lifted action by giving the following abstraction:

Definition 2.3.2.2 (Lift)
For an arbitrary non-lifted action a↓ let lfa↓ : C × C × P→ bool denote the following function:

lfa↓(C,C′, pi) ,
Ä

∃lv′ . a↓(C2LV(C, pi), lv′) ∧ C
′ = LV2C(lv′, pi,C)

ä

Then Lift : (L × L→ bool) →(C × C × P→ bool) is defined as:

Lift(a↓) , lfa↓

With this definition of Lift, equation LocalviewRespect can be rewritten as: for every process-
action A there must be a non-lifted version a↓

A of A such that A = Lift(a↓
A).

Note that for our example we already gave an equivalent non-lifted version for each A ∈ Φflood

(cf. ProcessMsg↓, SendToAll↓).

R(t) R(t+1)−→pi:A

lv lv′→
a

↓
A

C2LV(R(t), pi) LV2C(lv′, pi, R(t))

Figure 2.5.: Configurations, Localviews, C2LV and LV2C

To reflect processes’ local state transitions and to circumvent process states of other processes
to be manipulated, we stipulate that LV2C satisfies the following equation for all lv ∈ L, pi, pj ∈

33

2. Modelling Distributed Algorithms

P,C ∈ C:

SLV2C(lv,pi,C)(pj) =

{

Slv , if pj = pi

SC(pj) , else
(locViewProp2)

Since our example LV2C flood only uses function update at pi, LV2C flood respects locViewProp2.
Regarding only process states, of course we want that the computation of a step by a process

pi may not depend on other processes’ states but on the process state of pi. Until now, it would
still be possible to define C2LV flood as a function which maps states of all processes to the entries
of the Localview and therefore make it possible for pi to use information from other processes
for its local computation.

To restrain such constructions by an assertion NoRemoteAccess, we define a predicate
LocallyEqual : C × C × P→ bool. For two configurations C,C′ and a process pi ∈ P we define:

LocallyEqual(C,C′, pi) , SC(pi) = SC′(pi)

∧ (∀n ∈ { n ∈ N | 1 ≤ n ≤ Γ } . MnC = MnC′)

where MnCk
denotes the state of the n-th module of the system in configuration Ck and Γ is

the number of modules in the system. Hence two configurations C,C′ ∈ C are LocallyEqual for
a process pi ∈ P as long as C and C

′ only differ in process states of pj 6= pi (note that other
module states must also be equal). Now we are able to formally define NoRemoteAccess. For
all pi ∈ P, for all C,C′,C1,C′

1 ∈ C and for all A ∈ Φ the following assertion must hold:

A(C,C′, pi) ∧ LocallyEqual(C,C1, pi) ⇒ A(C1,C′
1, pi) (NoRemoteAccess)

where C
′
1 ,

















S2

M1C′

M2C′

...
MΓC′

















and S2(pj) =

{

SC′(pj) , if pj = pi

SC1(pj) , else
.

Our example clearly respects NoRemoteAccess because only the process state of pi is repre-
sented in a Localview and with the equivalence of the lifted actions in Φ with the non-lifted
versions, it follows that a process does not use information of other process states.

Finally we want that events do not change the local state of processes, i.e. events may affect
every entry of a configuration but S. Therefore we postulate that for all C,C′ ∈ C and all A ∈ Ψ
the implication

A(C,C′) ⇒ SC = SC′ (StateInvEv)

must hold.
As defined in Figure 2.4 SendMsg and Deliver do not change process states. Hence our

example respects StateInvEv.

34

2.3. Developing a Formal Model

Based on the stipulated assertions, we define a Distributed algorithm as follows:

Definition 2.3.2.3 (Distributed Algorithm)
A Distributed Algorithm A is a tuple (Init, Φ, Ψ, Fad, C2LV, LV2C) where

1. (Init, Φ, Ψ, Fad) is an algorithm

2. C2LV and LV2C respect locViewProp1 and locViewProp2

3. every A ∈ Φ respects LocalviewRespect and NoRemoteAccess

4. every A ∈ Ψ respects StateInvEv

We have already seen that C2LV flood and LV2C flood respect locViewProp1 and locViewProp2,
that every A ∈ Φflood respects LocalviewRespect and NoRemoteAccess and every event in Ψflood

respects StateInvEv. Moreover Aflood is an algorithm. By Definition 2.3.2.3 it follows that
(Initflood, Φflood, Ψflood, Fflood, C2LV flood, LV2C flood) is a Distributed Algorithm.

Note that the difference between our definitions of an Algorithm and a Distributed algorithms
is a restriction of modelling concepts. Therefore, many results in this work also hold for the
more general concept of an algorithm. Hence, many of the following theorems are shown for
algorithms and only when needed we use the concept of a Distributed Algorithm.

We conclude this section by establishing that LocalviewRespect and locViewProp2 assure that
no process manipulates the state of other processes in a given Distributed Algorithm:

Lemma 2.3.2.4 (StateInv1)
Let A = (Init, Φ, Ψ, Fad, C2LV, LV2C) be a Distributed Algorithm. For all pi, pj ∈ P, for all
C,C′ ∈ C and all actions A ∈ Φ the following implication holds:

A(C,C′, pi) ∧ (SC(pj) 6= SC′(pj)) ⇒ (pi = pj)

Proof.→֒ Isabelle3

2.3.3. Modelling Actions

Considering the definition of a Distributed Algorithm it seems as much effort is needed to
model an algorithm and moreover to prove that a modelled algorithm is actually a Distributed
Algorithm. This section will explain how this effort can be reduced to a minimum.

Regarding the different tasks, defining the initial states and the Localview mappings C2LV and
LV2C is rather simple and fast, because it does not depend on the complexity of the algorithm
and can be similar from one algorithm to the next (cf. the case studies in Chapter 5). Even
the tasks to show that events do not change process states and therefore satisfy StateInvEv
and to show all process-actions respect NoRemoteAccess will usually be more or less obvious
(depending on the Modelling of the actions). Most work is required to model the process-
actions of an algorithm and to show that these actions satisfy LocalviewRespect. At first glance

3Isabelle/HOL theory: DistributedAlgorithm.thy, Lemma(s): StateInv(1)

35

2. Modelling Distributed Algorithms

LocalviewRespect seems to double the effort needed to model one process-action, because for
every modelled action A a non-lifted version a↓

A has to be given as a witness to show that there
is one. Moreover, for each A we have to show A = Lift(a↓

A). Of course it is possible to model
all non-lifted versions of all actions a↓

1, . . . , a↓
n and then define Φ ,

¶

Lift(a↓
1), . . ., Lift(a↓

n)
©

.
This reduces the effort for Modelling the algorithm and for proving consistency but we do not
recommend this strategy because the effort for the later correctness proofs will vastly increase
due to the definition of Lift. As an example consider the typical case where we know that some
predicate P : C→ bool holds for C (hence we have P (C)) and we want to show that if there is a
step C →pi:A C

′ then P (C′) holds as well. Let us further assume we defined A , Lift(a↓
A) where

a↓
A is the concrete implementation of the intended process-action. Hence we have to show

P (C) ∧
(

C →
pi:Lift(a↓

A)
C

′
)

⇒ P (C′)

which is reduced to

P (C) ∧
Ä

∃lv′ . a↓
A(C2LV(C, pi), lv′) ∧ C

′ = LV2C(lv′, pi,C)
ä

⇒ P (C′)

by unfolding the definition of Lift. Even in a paper proof it would not be easy to deal with the
existential quantifier for lv′ and to handle it within a theorem prover will clearly be even more
difficult. Since this kind of reasoning occurs very often (why this can be regarded as a typical
case will be explained in Sections 3.1 and 3.2) this is harmful for most of the cases.

Moreover, while time costs spent for the effort in modelling each action twice and doing the
respective equivalence proofs is constant over the number of proofs that have to be done to show
correctness, the required reasoning for dealing with Lift scales with the number of invariants
that have to be proven. Since it seems still not satisfying to model each process-action twice,
we propose an alternative approach. As we will see this approach requires to model each action
only once and additionally does rather reduce the effort for proving correctness.

To understand why we need the bounded variable lv′ and the respective existential quantifier
in the definition of Lift, consider the following alternative definition for a similar function Lift ′

where we replaced lv′ by C2LV(C′, pi). This would be the expected natural option for lv′:

lf ′
a↓(C,C′, pi) , a↓(C2LV(C, pi), C2LV(C′, pi)) ∧ C

′ = LV2C(C2LV(C′, pi), pi,C)

Lift ′(a↓) , lf ′
a↓ (AltLiftA)

This definition is indeed very similar to the original and, at first sight, seems to solve the rea-
soning problems, since there is no existential quantifier anymore. The problem occurs when
we try to model blind writes as we did for the outbox in our example. Remember that,
in our example, C2LV sets the value of the outbox to ∅. The Definition AltLiftA requires
a↓(C2LV(C, pi), C2LV(C′, pi)) and hence there must be a non-lifted step a↓(lv, lv′) where the
outbox is still ∅ in the successor configuration lv′, which would imply that it is impossible to
send a message. More generally speaking, with this alternative definition we eliminate the op-
tion to model blind writes (writes where the process is not allowed to read the current value but
is able to affect the value in the successor configuration, see example). Therefore we maintain

36

2.3. Developing a Formal Model

Definition 2.3.2.2.
But still it is the required existential quantifier in the definition of Lift that makes it impossible

to effectively generate lifted versions from non-lifted by using Lift. Handling this quantifier is
difficult because there can be several witnesses for lv′ which must be regarded in the proofs
(we have to show whenever there is one, the implication holds). In real world applications (and
furthermore in many theoretical studies) local process-actions are usually deterministic (even in
our case studies). Hence, whenever a non-lifted action a↓ is enabled, there is only one option
for lv′ such that a↓(lv, lv′) holds. For a deterministic version of a↓ we need only to assert for
which a↓ is enabled and how to compute the successive Localview lv′ from a given Localview lv.
Hence, we define:

Definition 2.3.3.1 (Deterministic non-lifted Action (DnA))
A Deterministic non-lifted Action (DnA) is a tuple d↓ = (en, ∆), where

1. en : L→ bool returns true if and only if d↓ is enabled.

2. ∆ : L→L is a function which computes the successive Localview lv′ for a given Localview
lv.

We write d↓
en to denote the enabled predicate of a DnA d↓ and

d↓
∆ to denote the second entry,

Let DnA , ((L→ bool) × (L→L)) denote the set of all DnAs. Analogously to Lift we define
a function DLift : DnA →(C × C × P→ bool) that returns a lifted version Ad↓ for a given DnA
d↓:

Definition 2.3.3.2 (DLift)
For an arbitrary DnA d↓ let dlfd↓ : C × C × P→ bool denote the following function:

dlfd↓(C,C′, pi) , d↓
en(C2LV(C, pi)) ∧ C

′ = LV2C(d↓
∆(C2LV(C, pi)), pi,C)

Then DLift : DnA →(C × C × P→ bool) is defined as:

DLift(d↓) , dlfd↓

This implies that we can lift DnAs without the burden of an existential quantifier. Therefore
DnAs can effectively be used for (invariant) reasoning. The following theorem abates the proof
obligation for lifted DnAs concerning the LocalviewRespect assumption:

Theorem 2.3.3.3
Let d↓ ∈ DnA be a DnA. There is a non-lifted version (of type L × L→ bool) for DLift(d↓).

Proof.→֒ Isabelle4

This theorem is very helpful for modelling algorithms and manifests the main advantage of
DnAs: It shows that there is a (standard) non-lifted action of type L × L→ bool for every
DnA. This enables us to model (at least all deterministic) process-actions by giving only the

4Isabelle/HOL theory: DistributedAlgorithm.thy, Lemma(s): DLiftImpLocalViewRespect1

37

2. Modelling Distributed Algorithms

corresponding DnAs. Assume that we defined an algorithm using DnAs d↓
1, . . . , d↓

k. Then we can
define the set Φ of process-actions as Φ ,

¶

DLift(d↓
1), . . ., DLift(d↓

k)
©

. The proof obligation
for equation LocalviewRespect is abated by Theorem 2.3.3.3.

This yields a second advantage: defining lifted actions requires to make assertions over the
entries of configurations and thus over global behaviour. A DnA makes assertions over local
behaviour. Therefore we need only to define the local transitions which is obviously more
adequate to describe local behaviour. For our example we can model the action SendToAll by
the DnA SendToAll↓ , (STAen, STA∆) with

STAen(lv) , (∀mr ∈ M . Inlv(mr) = 0) (SendToAllDNA)

STA∆(lv) , ((Slv, Inlv, Newmsgs(pi, Slv), IDlv))

Let us now consider the ProcessMsg action of our example. This is a typical case for a non-
deterministic action: there is some message mr such that mr is processed. Based on a Localview
lv we cannot determine a fixed Localview lv′ such that we transit from lv to lv′ by executing
ProcessMsg since we do not know which message will be processed. In a real system, perhaps
this would be the first message in a buffer or the first message on a stack but this is not part
of our model and therefore it is not possible to give a DnA that is equivalent to ProcessMsg.
Similarly we could also use something like a Choose operator (cf. [Lam02]) but that is not
equivalent to the given Definition ProcessMsg because it also chooses a value deterministic and
the given definition does not.

Therefore for the remaining Non-deterministic actions we have the two already discussed
options:

1. Model both versions (lifted and non-lifted), show that they are equivalent and work with
the lifted version for reasoning.

2. Model only the non-lifted version and hazard the consequences of the increased effort
within the proofs.

Of course for a real system the adequate option would be to choose the best deterministic
implementation.

2.3.4. Limitations of the Model

In the last section we showed how we can model variables that processes can access and how to
avoid unintended modelling of access to non-shared variables.

Let us now consider an example that depicts the boundaries of our model. In this example
(see Figure 2.6) we model an algorithm where the involved processes share (unsynchronised)
access on a central storage. This storage stores exactly one natural number. Moreover processes
store a natural number in their process state. We will refer to this value by ‘pi’s value’ for a
process pi. Configurations are therefore vectors (S, n) where n ∈ N is the value of the central
storage and S : P→N represents the array of process states which is in this example an array of
natural numbers. As described for Notation 2.3.1.2 for a configuration C = (S, n), we write nC

38

2.3. Developing a Formal Model

to denote the entry n for the storage of C and SC to denote the entry for the array of process
states in C. Initially the storage contains a value n0 ∈ N with n0 < 200 and the initial values
for the process states are determined by an arbitrary function vinp : P→N.

Three atomic process actions are defined to access the storage:

Readstore: A process pi can read the value from the storage. The value will then be written
into the own process state (which can be interpreted as a local variable of pi in its own
memory).

Writestore: A process pi can write a value to the storage. In this example pi adds an arbitrary
value m ∈ N to its own value and writes the result to the storage and back into memory.

Resetstore: If a process pi recognises that its value is greater than 400, it is able to reset the
storage and writes 0 to the storage and back into memory.

Initstore , { (vinp, n0) | n0 ∈ N ∧ n0 < 200 }

Readstore(C,C′, pi) ,

(

C
′ =

((

λpj .

{

nC , if pi = pj

SC(pj) , else

)

, nC

))

Writestore(C,C′, pi) ,

(

∃m ∈ N. C′ =

((

λpj .

{

SC(pi) + m , if pi = pj

SC(pj) , else

)

, SC(pi) + m

))

Resetstore(C,C′, pi) , (SC(pi) > 400

∧ C
′ =

((

λpj .

{

0 , if pi = pj

SC(pj) , else

)

, 0

)

)

Φstore , { Writestore, Readstore, Resetstore }

Ψstore , ∅

Priostore(R) , (∀t ∈ dom(R) . ∀pi ∈ P . Enabled A(Reset, R(t), pi)

⇒ (∀A ∈ { Writestore, Readstore } . ¬A(R(t), R(t + 1), pi)))

Fstore , { Priostore }

Astore , (Initstore, Φstore, Ψstore, Fstore)

Figure 2.6.: Algorithm with Shared Storage

In this scenario we define no events. A predicate Priostore is used to assert that if Resetstore is
enabled this action is prioritised over all other actions. From an algorithmic point of view this
algorithm shows typical interference problems as for example the value of the storage can be
reset more than once although it has only violated the bound of 400 for one time. The reason is
that we choose the (probably) right abstraction for the Writestore and Resetstore actions where
a process pi is not able to read and write the storage in one atomic step. Otherwise we rather

39

2. Modelling Distributed Algorithms

would have modelled Resetstore such that it uses the original value from the storage and not pi’s
value:

Resetomnis
store (C,C′, pi) ,

(

nC > 400 ∧ C
′ =

((

λpj .

{

0 , if pi = pj

SC(pj) , else

)

, nC

))

Hence the latter ‘omniscient’ definition of Resetomni
store would imply that a process pi always sees

the current value of the storage. Obviously in the given example this is not intended and hence
it is modelled as described by Figure 2.6. But regarding the example this is only implicitly given
by the chosen implementation. Of course we would like to use the means introduced in Sections
2.3.2 and 2.3.3 to model the read and write options of a process, but since the same functions
C2LV and LV2C are used for all actions, we would have to decide if a process pi can either see
the current value of n or has to do blind writes. If we choose to model the blind write (which
would be appropriate for the Writestore and the Resetstore actions) we are not able to read the
value within the Readstore action. Hence, we have to allow read and write access to n. What we
suggest for such a situation is to provide two variables in a Localview: one to which pi is only
allowed to write and which is initially undefined and one which pi is allowed to read. This does
not prevent unintended read access but makes the distinction between the read and writes to n
more obvious. Furthermore, Section 2.3.7 will show how we provide a more elaborate model for
shared memory that provides subactions to prevent wrong access to a shared storage.

2.3.5. Interprocess Communication (IPC): Message Passing

An important part of a distributed system is the communication infrastructure the system
is based on. Without communication there is no distributed system but only a collection of
autonomous processes. Different options of communication mechanisms are possible. A common
communication model is message passing. Here processes are able to send and receive point-
to-point messages. Point-to-point communication means that there is a reserved channel for
each pair of processes in the system [Fuz08]. If there is an upper bound on communication
delays, then we speak of synchronous message passing. Since we deal with problems that are
only interesting in asynchronous models, we use a model of asynchronous message passing, i.e.
a model where no bound for the delay of messages is known. Moreover we assume that there is
no guarantee that messages are delivered in order (i.e. a reordering of the messages is possible).
As in our example in Figure 2.4, we assume that processes can put multiple point-to-point
messages to their outbox at once but as long as the messages are in the outbox message loss by
process crash is still possible. Hence, there is no guarantee that if one of the messages reaches
the receiver all other messages will because if the sender crashes after only one messages of
many has been transmitted to the media, messages left in the outbox will be lost. Moreover, for
some applications message loss during transmission is part of the model. Therefore, we use two
different models for message passing based on the assumed reliability:

Quasi-reliable Message passing: There is a guarantee that all messages sent from a correct
sender to a correct receiver will eventually be delivered. Note that in this context a process
is correct if it does not crash in the given run. A more general definition for correct will

40

2.3. Developing a Formal Model

be given later.

Message passing with message loss: Messages might get lost during the transmission although
sender and receiver do not crash due to lossy channels.

We also provide means to model a duplication of messages. Hence we will regard both mis-use
cases: the loss of a message and a duplication of a message. The fundamental concepts for our
model of message passing are already introduced in our example in 2.4 and are mainly adopted
from [Fuz08].

Quasi-reliable Message Passing

Certainly, the basic entity for our message passing model is a message. A message m is a n-tuple
m = (snd, rcv, cnt, . . .) where snd, rcv ∈ P are sender and receiver of the message and cnt is a
content of an arbitrary type α (note that in our example in Figure 2.4 α = N) represents the
content of the message. Of course a message can be extended by further information in the . . .
part of the message, e.g. a local time stamps for send or receive data. We denote the sender
of a message m by sndm, the receiver of m by rcvm, and the content of m by cntm. In our
model a message traverses three states on its way from the sender to the receiver (cf. [Fuz08]
and [KNR12]):

• outgoing: When a sender wants to send a message (or a set of messages) it puts the
message into its outgoing buffer. Messages in the outgoing buffer are still at the senders
site, i.e. outgoing messages are lost if the sender crashes.

• transit: The message is on its way to the receiver.
A crash of the sender does no longer concern messages that are in transit, but if the
receiver crashes the message will always be in transit.

• received: The message has already arrived on the receiver’s site.
It is now ready to be processed by the receiver.

These states are referred to as message tags and we define (cf. Section 2.3.2)

QPPT , { outgoing, transit, received } .

As for the example in Figure 2.4, we use a multiset-like structure to represent messages in our
system, i.e. for every message the number of copies that are outgoing, (respectively transit,
received) are stored by mapping pairs of messages and message tags (m, t) to the number of
copies that exist of m with status t. For such a mapping we use the term Message History (in our
example the Message History is represented by the M part of the configuration). The Message
History is part of each configuration of algorithms that use message passing and represents the
state of the message evolution. Analogously to [Fuz08] we use Q to denote the Message History
of an algorithm with quasi-reliable message passing. Therefore the standard configuration with

41

2. Modelling Distributed Algorithms

quasi-reliable message passing is of the form:
â

S
...

Q
...

ì

As always, we refer to the array of process states of a configuration C by SC and to the Message
History of C by QC.

To work with the messages in a Message History, we define the following message sets based
on the set M which is the set of all messages:

Definition 2.3.5.1 (Message Sets)
Let Q : M × QPPT →N be a Message History.
Then we define the set of all outgoing messages for Q as:

outMsgs Q , { m ∈ M | Q(m, outgoing) > 0 },

the set of all messages in transit as:

transitmsgs Q , { m ∈ M | Q(m, transit) > 0 }

and the set of all received messages as:

recmsgs Q , { m ∈ M | Q(m, received) > 0 }

Finally, we define the set of existing messages in a Message History Q as:

msgs Q , outMsgs Q ∪ transitmsgs Q ∪ recmsgs Q

For Message Histories we provide subactions that can be used within actions to describe the tran-
sition from one Message History QC to the Message History QC′ in the successive configuration
C

′.
At first, we define the Message History sndupdQ,M : M × QPPT →N, which is the update of

Message History Q resulting from sending a given set of messages M ⊆ M in Q:

sndupdQ,M (m, t) ,

{

Q(m, t) + 1 , if (t = outgoing ∧ m ∈ M)

Q(m, t) , else

Using sndupd we can now define the subaction

MultiSend : (M × QPPT →N) × (M × QPPT →N) × P (M) → bool

to model the sending of a set of messages M ⊆ M:

MultiSend(Q, Q′, M) ,
Ä

Q′ = sndupdQ,M

ä

42

2.3. Developing a Formal Model

Using function update we define subactions for sending a single message m, transmitting a
message m (setting its status from outgoing to transit) and for receiving a message m (setting
its status from transit to received) in a step from a Message History Q to Q′:

Send(Q, Q′, m) , Q(m, outgoing) := Q(m, outgoing) + 1

Transmit(Q, Q′, m) , m ∈ outMsgs Q ∧ (Q(m, outgoing) := Q(m, outgoing) − 1)

[(m, transit) := Q(m, transit) + 1]

Receive(Q, Q′, m) , m ∈ transitmsgs Q ∧ (Q(m, transit) := Q(m, transit) − 1)

[(m, received) := Q(m, received) + 1]

Finally, we define a subaction to describe the duplication of a message m, which is modelled by
simply incrementing the transit number of copies of m:

Duplicate(Q, Q′, m) , m ∈ transitmsgs Q ∧ (Q(m, transit) := Q(m, transit) + 1)

As an example for the application of our introduced definitions for Message History consider the
rewritten algorithm Aflood (cf. Section 2.3.2) in Figure 2.7.

ProcessMsg(C,C′, pi) , ∃mr ∈ recmsgs QC
. rcvmr = pi

∧ MC′ = MC[(mr, received) := MC(mr, received) − 1]

∧ SC′ = SC[pi := SC(pi) + 1]

SendToAll(C,C′, pi) , { m ∈ recmsgs QC
| rcvm = pi } = ∅

∧ MultiSend(QC, QC′ , Newmsgs(pi, SC(pi)))

∧ SC′ = SC

SendMsg(C,C′) , ∃mo . Send(QC, QC′ , m0)

Deliver(C,C′) , ∃mt . Receive(QC, QC′ , m0)

Figure 2.7.: Simple Algorithm Aflood rewritten with Message Definitions

Obviously the definitions help to write more compact specifications. For the work with DnAs
the definitions help to define LV2C. As an example consider the following alternative definition
for LV2C flood (cf. the old definition of LV2C flood in Section 2.3.3):

M̂
pi

lv′,C(m, t) ,















min(Inlv′(m), MC(m, received)) , if t = received

∧ rcvm = pi

sndupdMC,Outlv′
(m, t) , else

43

2. Modelling Distributed Algorithms

LV2C flood(lv′, pi,C) ,
Ç

SC[pi := Slv]
M̂

pi

lv′,C

å

(LV2C flood)

Some proofs require assertions about how many messages of each status (outgoing, transit,
received) are in the system. We assume that there are no messages in the message history at
system start and only finitely many messages are added in every step to the Message History Q.
Then we define the following functions to determine the number of messages for each status:

Definition 2.3.5.2
Let Q be a Message History.

The number of outgoing messages can be determined by:

SumOutgoing Q ,
∑

m∈msgs Q

Q(m, outgoing)

The number of transit messages can be determined by:

SumTransit Q ,
∑

m∈msgs Q

Q(m, transit)

The number of received messages can be determined by:

SumReceived Q ,
∑

m∈msgs Q

Q(m, received)

Finally the sum of all messages in Q is:

SumMsgs Q ,
∑

m∈msgs Q

(

SumOutgoing Q + SumTransit Q + SumReceived Q

)

Of course the definition for SumOutgoing Q is equivalent to

SumOutgoing Q =
∑

m∈recmsgs Q

Q(m, outgoing)

and respectively:

SumTransit Q =
∑

m∈transitmsgs Q

Q(m, transit)

SumReceived Q =
∑

m∈recmsgs Q

Q(m, received).

Using these definitions we can determine how many transitions due to the movement from
messages in msgs Q one status to the next are possible. Because every message that is outgoing
can do two moves (to the transit status and then to received) remaining message moves are

44

2.3. Developing a Formal Model

calculated by:

MaxRemMsgMovesQ , 2 · SumOutgoing Q + SumTransit Q

Of course this value increases if new messages are added to the system.
The value MaxRemMsgMovesQ can be helpful to find out how many steps the system can make
before all messages are processed if it is already known that no further messages will be sent.

By the given definitions the following basic properties hold for all Message Histories Q:

Proposition 2.3.5.3 (Message Subsets)
Let Q be a Message History.

1. outMsgs Q ⊆ msgs Q

2. transitmsgs Q ⊆ msgs Q

3. recmsgs Q ⊆ msgs Q

Proof.→֒ Isabelle5

If we have a MultiSend step from a Message History Q to Q′ then the messages in M will be
added to the outgoing messages and hence:

Proposition 2.3.5.4 (MultiSend Properties)
If there is a MultiSend step (formally: MultiSend(Q, Q′, M)) for two Message Histories Q and
Q′ and a set of messages M then

1. outMsgs Q′ = outMsgs Q ∪ M

2. transitmsgs Q′ = transitmsgs Q

3. recmsgs Q′ = recmsgs Q

4. msgs Q ⊆ msgs Q′

5. msgs Q′ = msgs Q ∪ M

Proof.→֒ Isabelle6

For the subactions Send, Transmit, Receive we can make respective propositions, which are
provided in appendix A (Propositions A.0.0.2, A.0.0.3, A.0.0.4).

It is easy to see that for a Transmit and Receive step the set msgs does not change:

Proposition 2.3.5.5 (msgs Invariant)
If there is a Transmit or Receive step for two Message Histories Q and Q′ and a message
m ∈ M (formally: Transmit(Q, Q′, m) ∨ Receive(Q, Q′, m)) then

msgs Q = msgs Q′

5Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): MsgsProps
6Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): MultiSendProps,MultiSendMsgChange

45

2. Modelling Distributed Algorithms

Proof.→֒ Isabelle7

Furthermore it is strictly determined how a Transmit step affects SumOutgoing, SumTransit
and SumReceived:

Lemma 2.3.5.6 (Transmit Invariant)
If there is a Transmit step for two Message Histories Q and Q′ and a message m (formally:
Transmit(Q, Q′, m)) then

1. SumOutgoing Q > 0

2. SumOutgoing Q′ = SumOutgoing Q − 1

3. SumTransit Q′ = SumTransit Q + 1

4. SumReceived Q′ = SumReceived Q

Proof.→֒ Isabelle8

The respective lemma for Receive is:

Lemma 2.3.5.7 (Receive Invariant)
If there is a Receive step for two Message Histories Q and Q′ and a message m (formally:
Receive(Q, Q′, m)) then

1. SumTransit Q > 0

2. SumOutgoing Q′ = SumOutgoing Q

3. SumTransit Q′ = SumTransit Q − 1

4. SumReceived Q′ = SumReceived Q + 1

Proof.→֒ Isabelle9

Respective lemmas for Send, MultiSend and Duplicate trivially hold. By Lemma 2.3.5.6 and
2.3.5.7 we can deduce that the sum of messages SumMsgs is not affected by Transmit and
Receive steps:

Theorem 2.3.5.8
If there is a Transmit or Receive step for two Message Histories Q and Q′ and a message m
(formally: Transmit(Q, Q′, m) ∨ Receive(Q, Q′, m)) then

SumMsgs Q′ = SumMsgs Q

Proof.→֒ Isabelle10

Finally, we define a property that characterises what it means for the point-to-point message
passing to be quasi-reliable in our context:

7Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): MsgsInvariant
8Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): TransmitInv
9Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): ReceiveInv

10Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): SumInv

46

2.3. Developing a Formal Model

Definition 2.3.5.9 (QPPReliability)
Let R be a sequence of configurations and let Correct(R) denote the set of correct processes in
R.
R satisfies the property of QPPReliability if and only if for all times t > 0 and for all messages
m /∈ msgs(R(t − 1)) holds:

m ∈ outMsgs R(t) ∧ rcvm ∈ Correct(R) ∧ sndm ∈ Correct(R) ⇒
Ä

∃u > t . m ∈ recmsgs R(u)

ä

Note that we assume there are no messages in the system at time t = 0. The QPPReliability
property can for example be added to the set Fad of a Distributed Algorithm
A = (Init, Φ, Ψ, Fad, C2LV, LV2C) if the message infrastructure of A is assumed to be quasi
reliable. An example for this is the algorithm in Section 5.2.

These are the fundamentals for our model of quasi-reliable message passing. The next section
will explain the extensions that are required to model message loss.

Message Passing with Message Loss

For some algorithms we want to prove that they solve distributed problems even in the case of
lossy channels, i.e. in environments where messages might get lost on their way from sender
to receiver. Therefore we propose an option to extend our model of Message Histories by the
notion of message loss. At first we introduce a new status lost for messages. Hence we define:

T̂ags , { outgoing, transit, received, lost }

A Message History with message loss is then a mapping C : M × T̂ags →N (note that we use
Q for quasi-reliable Message Histories but C for Message Histories, where messages can also be
lost). Hence Message Histories with message loss work as the quasi-reliable Message Histories
but additionally provide a fourth status such that it is possible for a message to get lost. Once
a message has the status lost, it will never be received. The status lost is only reachable for a
message that currently has status transit.

Beside the already introduced sets outMsgs C, transitmsgs C, and recmsgs C we define the set
of lost messages for a Message History C:

lostmsgs C , { m ∈ M | C(m, lost) > 0 }

For a Message History with message loss we have:

msgs C , outMsgs C ∪ transitmsgs C ∪ recmsgs C ∪ lostmsgs C

And beside the definitions of Send, Transmit, Receive, and Duplicate we define a
subaction Lose : (M × T̂ags →N) × (M × T̂ags × msgs →N) → bool:

Lose(C, C′, m) , m ∈ transitmsgs C∧

C′ = (C[(m, transit) := C(m, transit) − 1]) [(m, lost) := C(m, lost) + 1]

47

2. Modelling Distributed Algorithms

We extend Proposition 2.3.5.3 for our notion of message loss as follows:

Proposition 2.3.5.10 (Message Subsets)
Let C be a Message History.

1. outMsgs C ⊆ msgs C

2. transitmsgs C ⊆ msgs C

3. recmsgs C ⊆ msgs C

4. lostmsgs C ⊆ msgs C

Proof.→֒ Isabelle11

And we extend the MultiSend-, Send-,Transmit- and Receive-Properties propositions by

• lostmsgs C′ = lostmsgs C

Finally we assert how the Lose subaction affects the sets outMsgs, transitmsgs, recmsgs, lostmsgs
and msgs:

Proposition 2.3.5.11 (Lose Properties)
If there is a Lose step (formally: Lose(Q, Q′, m)) for two Message Histories C and C′ and a
message m then

1. outMsgs Q′ = outMsgs Q

2. transitmsgs Q′ ⊆ transitmsgs Q

3. recmsgs Q′ = recmsgs Q

4. lostmsgs Q′ = lostmsgs Q ∪ { m }

5. msgs Q ⊆ msgs Q′

6. msgs Q′ = msgs Q ∪ M

Proof.→֒ Isabelle12

2.3.6. Interprocess Communication (IPC): Broadcasts

Of course, in a multiparticipant system, there is not only a need for bilateral relationships
but also for interactions between more than two peers. Therefore the broadcast abstraction is
introduced to enable communication between multiple processes: every single process is able
to send a message not only to one process but to a group of processes at once by using the
broadcast mechanism.

11Isabelle/HOL theory: MsgPassWLoss.thy, Lemma(s): MsgsProps
12Isabelle/HOL theory: MsgPassWLoss.thy, Lemma(s): LoseProps

48

2.3. Developing a Formal Model

Distinguished by their guarantees [CGR11] introduces several broadcast abstractions:

• Best-effort broadcast

• (Regular) Reliable Broadcast

• Uniform Reliable Broadcast

• Stubborn broadcast

• Probabilistic Broadcast

• Causal Broadcast

The Best-effort Broadcast abstraction gives the following guarantees ([CGR11]):

Validity: If a correct process broadcasts a message m, then every correct process eventually
delivers m.

No duplication: No message is delivered more than once.

No creation: If a process delivers a message m with sender s, then m was previously broadcasted
by process s.

In this work we focus on the (regular) Reliable Broadcast abstraction, which will be used for
two algorithms of our case study (see Section 5.2 and Section 5.3).

The Reliable Broadcast abstraction adds an Agreement property to the guarantees of Best-
effort Broadcasts and uses a slightly weaker Validity property (cf. [CGR11], [Fuz08]):

Validity: If a correct process p broadcasts a message m, then p eventually delivers m.

No Duplication: No message is delivered more than once.

No Creation: If a process delivers a message m with sender s, then m was previously broad-
casted by process s.

Agreement: If a message m is delivered by some correct process, then m is eventually delivered
by every process.

We adopt the ideas from [Fuz08] for our formal model of a Reliable Broadcast mechanism and
introduce an entry B, which keeps track of the broadcasts (B is the Broadcast History). We
assume that broadcasts are unique (every message is broadcasted at most once) and model B as
a set to which broadcasts are added as pairs bc = (cnt, P) where cnt is the content of broadcast
bc and P is the subset of processes that has not yet delivered bc. Every broadcast initially is
added by the sender with P = P (we assume that a broadcast is always sent to all processes) and
a process that delivers a broadcast removes itself from P . Hence if BC = { (cnt, { p1, p2 }) }
then in configuration C all processes but p1 and p2 already delivered the broadcast with content
cnt.

49

2. Modelling Distributed Algorithms

Based on this notion, we define a subaction Rbc_Broadcast to send a broadcast with content
cnt and a subaction Rbc_Deliver that can be used by a process pi to deliver broadcasts with
content cnt within a step from Broadcast History B to B′:

Rbc_Broadcast(B, B′, cnt) ,
(

B′ = (B ∪ { (cnt, P) })
)

Rbc_Deliver(B, B′, cnt, pr) , ∃bc ∈ B . ∃P . bc = (cnt, P) ∧ pr ∈ P

∧ B′ = (B \ { bc }) ∪ { (cnt, P \ { pr }) }

Note that Rbc_Broadcast does not require the sender ps as an argument since the sender is not
part of the broadcast message and ps ∈ P is automatically added to set of processes that have
to deliver the broadcast. In contrast for the delivery of a broadcast the process pr that executes
Rbc_Deliver is needed as an argument, since it must be removed from the set of processes that
still have to deliver the broadcast in B′. Examples for the application of broadcasts and the use
of these subactions are given in Sections 5.2 and 5.3.

2.3.7. Interprocess Communication (IPC): Shared Memory

As a third option for interprocess communication we introduce the notion of shared memory
where multiple processes can access the same memory area. Hence, for processes it is possible
to communicate by writing to a dedicated shared area of memory, which other processes are
supposed to read afterwards.

Literature distinguishes different kinds of shared memory dependent on the conditions that
are assumed for the access on the different parts of the shared memory. In a seminal paper
Lamport [Lam85] introduces the following shared memory abstractions as forms of persistent
communication:

• Safe Registers

• Regular Registers

• Atomic Registers

All three abstractions assume that a register can be read by multiple reader processes but there
is only one dedicated process that is allowed to write values to the register, i.e. for every process
pi there is exactly one register Regpi

to which pi is allowed to write. Read and write operations to
the registers are assumed to be non-atomic, i.e. read and write operations may overlap in time.
Therefore there might be interference between overlapping (i.e. concurrent) reads and writes.
Generally it is assumed that read operations do not affect other read operations and hence there
is no interference between two reads. Since every process pi performs actions sequentially and is
only allowed to write to its own register Regpi

, concurrent writes to the same registers are ruled
out. Therefore interference can only occur between a single write and one or more reads. For a
Safe Register there is no assumption about the value that is returned by a read operation that
is concurrent to a write but only that it is one of the possible values of the register [Lam85].
Note that a read operation that is not concurrent to a write returns the most recent value that
was written to the register (respectively the initial value if there is no such value). Lamport

50

2.3. Developing a Formal Model

furthermore defines that ‘a Regular Register is a register, which is safe and in which a read that
overlaps a write obtains either the old or new value’ [Lam85]. As explained before, safe means
here that a read not concurrent with a write gets the correct value. The following example
(depicted in Figure 2.8) illustrates the difference between a Regular Register and an Atomic
Register : assume two consecutive read operations Rd1 and Rd2 to the same register R where
Rd2 starts strictly after Rd1 has finished. Assume furthermore that both reads are concurrent
to the same write operation Wr , which overwrites an old value v by a new value v′. Assuming
an Atomic Register the result of the two read operations behaves as one would normally expect,
i.e.

• if Rd1 returns v′ then Rd2 must return v′

• if Rd1 returns v then Rd2 returns either v or v′.

In contrast for a Regular Register we only assume Rd1 and Rd2 return either v or v′ and hence
the case where Rd1 returns the newer value v′ while Rd2 still returns the old value v is not ruled
out.

0 t

pr

pw

Rd1 Rd2

Wr(v′)

Figure 2.8.: Concurrent read and write operations

In the following we explain how we formally model Regular Registers and describe how this
model can be adapted for Safe and Atomic Registers.

A Formal Model for Regular Registers

The difficulty in modelling Lamports register abstractions lies in the kind of specification of
these abstractions. By the definition of runs, a run in our model is a sequence of configurations.
Hence there is no explicit notion of actions for a run, i.e. given two succeeding configurations
R(t) and R(t + 1) in a run R, it might be impossible to deduce which action caused the step
from R(t) to R(t + 1) because more than one action may be able to cause the same result.
This means that our model is state-based, but obviously the definitions and assumptions for the
register abstractions (see previous subsection) are action based (based on the notions of reads
and writes). This implies that for the representations of Regular Registers in our model, we
need to develop a state based formal model of the Regular Register abstraction and prove that
our model is equivalent to the action-based specification.

We use a module Sh for our Regular Register abstraction and call it a Shared Memory History.
At first let us consider the view a fixed process pi has on the shared memory. We section pi’s
view into two parts:

51

2. Modelling Distributed Algorithms

• The (write-oriented) view pi has on the register it is allowed to write.

• The (read-oriented) view on all registers.

Let us give an example for this: As explained, we assume that there is a register Regpi
for each

process pi ∈ P. Let us further assume pi writes a value v′ in its register Regpi
where the value v

is stored before v′ replaces v. The following considerations explains how this is reflected by the
write-oriented view of pi and the read-oriented views of all processes on pi’s register. Firstly,
we distinguish between stable periods of the register (between write operations) and transient
periods (during the write operations). In the write-oriented view of pi, there is an old value v in
the register and v is supposed to be replaced by v′. Thus, during a transient period of writing,
in pi’s view there are two values v and v′ assigned to Regpi

. For the stable periods, where there
is no write to Regpi

, pi knows that Regpi
contains the value pi has written most recently and

therefore there is only one value v for stable periods. In our example this is v before the write
operation starts and v′ after the write operation is finished. Hence for write-oriented views we
have a value v for the stable periods but a pair of values (v, v′) for the transient periods.

In the read-oriented view we store the values for each register Regpj
, that could be currently

returned if pi reads Regpj
based on the last begin of a read operation to Regpj

. As an example
assume again that there is a process pw, which overwrites a value v in Regpi

with a value v′.
During the write operation of pw another process pr starts reading Regpw

. Of course when pr

starts reading, both values, v and v′, are possible candidates for the return of the read operation.
While pr has not finished reading Regpw

every write operation of pw adds further values to the
set of possible return values. Hence if pw finishes writing v′ and starts writing a value v′′ before
pr has finished reading Regpw

, the set of possible returns is (at least) { v, v′, v′′ }. This is our
notion of the read-oriented view on the registers.

Let Vreg denote the set of values that can be stored in a register. We then define the view
of a process pi on the status of the registers (for short: pi’s register status value) as a tuple
rstpi

= (rPhs, vieww, viewr) where rPhs is the phase of pi concerning read and write operations
of registers. Since pi is supposed to be a sequential process pi’s phase can be either reading a
register Regpj

(denoted by rReadingpj
) or writing its own register (denoted by rWriting) or

neither reading nor writing (denoted by rIdle). We denote the set of possible register phases
as:

Rphs , { rReadingpj
, rWriting, rIdle | pj ∈ P }.

vieww ∈ (Vreg ∪ (Vreg × Vreg)) is the write-oriented view on the state of the register of pi and
finally viewr : P→ P (Vreg) is the read-oriented view of pi on all registers. Hence vieww is either
a value v ∈ Vreg (if the register is stable) or a pair (v, v′) ∈ (Vreg × Vreg) where v is the old and
v′ the new value during a transient periods of a write operation. viewr(pj) is pi’s read-oriented
view on pj ’s Register Regpj

and therefore a set V ⊆ Vreg of register values that are possible
candidates for a read return if pi would finish the read of Regpj

with the current read-view.
By R we denote the set of all register status values. We define the module Sh : P→R as a

mapping over processes such that Sh(pi) returns the register status (rPhs, vieww, viewr) for
a process pi ∈ P. As always for a configuration C =

Ä

S, . . . , Sh, . . .
ä

we use the notation ShC

to denote the Sh entry of C. Moreover we use rPhs ⊲ Sh(pi) to denote the register phase for
process pi ∈ P in a Shared Memory History Sh, vieww ⊲Sh(pi) to denote the write-oriented view

52

2.3. Developing a Formal Model

of pi in Sh and viewr ⊲Sh(pi)(pj) to denote pi’s read-oriented view on the register of pj in Sh
(cf. Notation 2.3.1.2).

WriteBegin - Now we can define a subaction for the begin of a write (WriteBegin) that
happens in a step from a Shared Memory History Sh to a shared Memory History Sh′ where
pi wants to write value v′ to its register. Consider the following definitions (an explanation is
given below):

viewupdrv′

Sh,pi
(pj) , (viewr ⊲Sh (pj)) [pi := (viewr ⊲Sh (pj)) (pi) ∪

{

v′ }]

rwbupd(v,v′)
Sh,pi

(pj) ,

{Ä

rPhs ⊲ Sh(pj), vieww ⊲Sh(pj), viewupdrv′

Sh,pi

ä

, if pi 6= pj
Ä

rWriting, (v, v′), viewupdrv′

Sh,pi

ä

, if pi = pj

WriteBegin(Sh, Sh′, pi, v′) , rPhs ⊲ Sh(pi) = rIdle

∧ ∃v ∈ Vreg . vieww ⊲Sh(pi) = v ∧ Sh′ = rwbupd(v,v′)
Sh,pi

If pi begins to write a value v′ in a step from a Shared Memory History Sh to the next Shared
Memory History Sh′ then:

• the register phase of pi is rIdle

• there is a value v such that

– v is the old value in the write-oriented view of pi’s register

– all read-oriented views of all processes pj on pi’s register are updated by adding v′ to
the possible return values (this is done by viewupdrv′

Sh,pi
(pj))

– the new register phase of pi in Sh′ is rWriting (cf. rwbupd(v,v′)
Sh,pi

(pj))

– (v, v′) is the new value in the write-oriented view of pi (cf. rwbupd(v,v′)
Sh,pi

(pj))

• everything else is unchanged from Sh to Sh′

WriteEnd - If pi finishes a write, in the current Shared Memory History Sh there must be a
pair of register values (v, v′) ∈ (Vreg ×Vreg) such that (v, v′) is the value in the write-oriented
view of pi and the register phase of pi. In the subsequent Shared Memory History the value in
the write-oriented view of pi must be set to v′, and the register phase has to be set to rIdle.
We define a respective subaction WriteEnd:

WriteEnd(Sh, Sh′, pi) , ∃v, v′ ∈ Vreg . vieww ⊲Sh(pi) = (v, v′)

∧ rPhs ⊲ Sh(pi) = rWriting

∧ Sh′ = Sh[pi := (rIdle, v′, viewr ⊲Sh(pi))]

We define the following function vset : Vreg ∪ (Vreg × Vreg) → P (Vreg) to convert the values of
a write-oriented view to a set, by putting either two values v, v′ ∈ Vreg of a pair or one value

53

2. Modelling Distributed Algorithms

v ∈ Vreg into a set:

vset(vx) =

{

{ v, v′ } , if vx = (v, v′)

{ vx } , else

RdBegin - To start reading a register Regpj
in a Message History Sh, a process pi has to put

the values from the write-oriented view of pj (vieww ⊲Sh(pj)) to its own read-oriented view on
the register of pj . Furthermore the register phase of pi has to be rIdle in Sh and in the next
Message History Sh′ the register phase must be rReadingpj

and the read-oriented view is set
to (vset (vieww ⊲Sh(pj))):

RdBegin(Sh, Sh′, pi, pj) , rPhs ⊲ Sh(pi) = rIdle

∧ Sh′ = Sh[pi := (rReadingpj
, vieww ⊲Sh(pi),

viewr ⊲Sh(pi)[pj := vset (vieww ⊲Sh(pj))])]

RdEnd - Finally we define a subaction RdEnd to be used to finish a read operation.
RdEnd(Sh, Sh′, pi, pj , v) is true if pi finishes a read operation for register Regpj

by a transition
from Sh to Sh′ with reading the value v ∈ Vreg. This must be a value from pi’s read-oriented
view on register Regpj

. The transition from Sh to Sh′ must be set the register phase of pi from
rReadingpj

to rIdle.

RdEnd(Sh, Sh′, pi, pj , v) , rPhs ⊲ Sh(pi) = rReadingpj

∧ v ∈ viewr ⊲Sh(pi)(pj)

∧ Sh′ = Sh

[i := (rIdle, vieww ⊲Sh(pi), viewr ⊲Sh(pi))]

The usage of this subaction should be ∃v ∈ Vreg . RdEnd(Sh, Sh′, pi, pj , v), i.e. there must be
no restrictions for v. Otherwise we would allow only to read predetermined values from the
register.

Let us consider the example for the read- and write-oriented views in Figure 2.9. We have
four processes pw, pr1, pr2 and pr3. We assume that pr1, pr2 and pr3 read the register Regpw

. pr1

and pr3 perform two reads each, pr2 performs only one read and pw performs three consecutive
write operations. Our system starts at time t0. At this time the write-oriented view of pw

(vieww ⊲Sh(pw)) is set to an initial value ipw . At time t1 process pw begins writing the value 5
to its register by executing WriteBegin (WB) with value 5. During the transient phase from t1

until t2 the write-oriented view of pw is (ipw , 5). At time t2 pw is finished with the first write and
calls WriteEnd (WE). Hence the write-oriented view of pw during the subsequent stable phase is
set to 5. At time t3 the processes pr1, pr2 and pr3 start reading the register Regpw

by executing
RdBegin (RB). Therefore their read-oriented view (viewr ⊲Sh(pr1)(pw), viewr ⊲Sh(pr2)(pw) and
viewr ⊲Sh(pr3)(pw)) contains only the value of the write-oriented view of pw: 5. At time t4 the
first read operation of pr1 is finished. Since pr1’s read-oriented view on pw’s register contains
only one value, the only option for the return value of the read is 5. At time t5 pw starts writing

54

2.3. Developing a Formal Model

pw

pr1

viewr ⊲Sh(pr1)(pw)

pr2

viewr ⊲Sh(pr2)(pw)

pr3

viewr ⊲Sh(pr3)(pw)

vieww ⊲Sh(pw)

WB(5) WE WB(4) WE WB(7) WE

ipw (ipw , 5) 5 (5, 4) 4 (4, 7) 7

RB RE RB RE

RB RE

RB RE RB RE

{ 5 } { 5, 4 } { 5, 4, 7 }

{ 5 } { 5, 4 } { 5, 4, 7 }

{ 5 } { 5, 4 } { 5, 4 }

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13t0

Figure 2.9.: Read- and write-oriented views

again. This time pw writes the value 4. Therefore pw’s write-oriented view is set to (5, 4).
Since pr2 and pr3 have not yet finished reading, value 4 is added to the sets that represent the
read-oriented view of pr2 and pr3. Before pw finishes writing, at time t6 pr1 starts reading again.
pw is therefore still in a transient period at t6 and therefore both values of the pair (5, 4)
are added to the read-oriented view of pr1. At t7 process pr3 finishes its read operation while
its read-oriented view is the set { 5, 4 }. Therefore RdEnd in t7 must either return 5 or 4. At
t8 process pr3 starts reading again and since pw is still in a transient period 5 and 4 are again
applied to read-oriented view of pr3. At t9 pw finishes writing by executing WriteEnd. Shortly
after, at time t10 process pr3 finishes reading for the second time. Again the read-oriented view
of pr3 is { 5, 4 } and therefore the result is again either 5 or 4. Therefore here we have the case
were the first read of pr3 might return the new value (4) but the second possibly returns the
old value (5) although the first read is finished before the second read started. At t11 the writer
pw starts writing again, this time for the value 7. Hence both read-oriented views are updated
by adding the value 7 to the respective sets. Hence the read-oriented views of pr1 and pr2 are
set to { 5, 4, 7 }. Therefore values returned by the ending reads in t12 are chosen from the set
{ 5, 4, 7 }. Finally pw finishes writing at t13.

Note that the right sequential arrangement of begin and end operations are enforced by the
register phase of the processes (at least as long as we access the shared memory by the defined
subactions). If we start with the register phase rIdle we are allowed to execute RdBegin or al-
ternatively WriteBegin, but we cannot execute RdEnd and WriteEnd because these subactions
require the phase to be either rReadingpj

or rWriting. Then after executing RdBegin (respec-
tively WriteBegin) we enter rReadingpj

(rWriting) and now we are able to execute RdEnd
(WriteEnd) and therefore to return to phase rIdle. The possible transitions between the register
phases are depicted in Figure 2.10. Let σsh = { WriteBegin, WriteEnd, RdBegin, RdEnd } be

55

2. Modelling Distributed Algorithms

rIdlerReadingpj rWriting

RdBeginpj

RdEnd WriteBegin

WriteEnd

Figure 2.10.: Register phases

the set of the defined subactions. We introduce the notion of a ProperMemStep to guarantee
that read and write operations are in accordance with these subactions:

Definition 2.3.7.1 (ProperMemStep)
A step C → C

′ is called a ProperMemStep of process pi

(written formally: ProperMemStep(C,C′, pi)) if and only if

1. ∃v ∈ Vreg . WriteBegin(ShC, ShC′ , pi, v) or

2. WriteEnd(ShC, ShC′ , pi) or

3. ∃pj ∈ P . RdBegin(ShC, ShC′ , pi, pj) or

4. ∃pj ∈ P . ∃v ∈ Vreg . RdEnd(ShC, ShC′ , pi, pj , v)

To ensure the controlled access to the shared memory, we require the following additional prop-
erties for a distributed algorithm (Init, Φ, Ψ, Fad, C2LV, LV2C) that uses the Regular
Register Module:

1. There is a mapping initval : P→ Vreg from processes to register values such that initval(pj)
returns the initial value of the register Regpj

.

2. For all processes the initial register phase is rIdle.

3. If there is a process-step C →pi:A C
′ for a process-action A ∈ Φ by a process pi ∈ P and

ShC 6= ShC′ then there must be a ProperMemStep from ShC to ShC′ by pi.

4. If there is an event-step C →ev:A C
′ for an event A ∈ Ψ then ShC = ShC′ .

We define

InitReg(Sh) , ∀pi ∈ P . rPhs ⊲ Sh(pi) = rIdle

∧ vieww ⊲Sh(pi) = initval(pi)

∧ (∀pj ∈ P . viewr ⊲Sh(pi)(pj) = ∅)

56

2.3. Developing a Formal Model

and require formally for a Distributed Algorithm (Init, Φ, Ψ, Fad, C2LV, LV2C) that uses
the module for Regular Registers for all configurations C,C′ ∈ C, for all A ∈ Φ, A′ ∈ Ψ and for
all pi ∈ P the following assertions hold:

C ∈ Init ⇒ InitReg(ShC) (InitRegPred)
(

C →pi:A C
′) ⇒ ProperMemStep(C,C′, pi) (ProperSteps1)
(

C →ev:A′ C
′) ⇒ ShC = ShC′ (ProperSteps2)

Equivalence to Lamport’s Regular Registers

To see that our model is equivalent to the action-based definition of a Regular Register given
by Lamport [Lam85], let us at first consider which values a read of a register are candidates
for a return value respecting Lamport’s definitions. Let us assume we have a process pi, which
performs a read operation Rd on register Regpj

, starting at time t1 and ending at time t2 in
a run R. If there is no concurrent write to Regpj

we know that the value that is returned has
to be the value that was written most recently to Regpj

by process pj or initval(pj) if there is
no such value. Considering our write definitions the former is the value in pj ’s write-oriented
view during the stable period that follows pj ’s last WriteEnd operation before t1. To determine
this value we define a function WrEndsUntilt′ : Σ × P→ P (T). For a given run R and a given
process pj this function returns all times until t at which pj ended a write, i.e. returns the set
of all points in time W where for all t ∈ W process pj executed a WriteEnd operation at time t
in R and t < t′. Note that this set is always finite:

WrEndsUntilt′(R, pj) , { t ∈ T | t < t′ ∧ WriteEnd(R(t), R(t + 1), pj) }

Based on this definition we define a function LastWrEndt′ : Σ × P→T ∪ { ⊥ }, which for a run
R and a process pj returns the most recent time at which pj executed a WriteEnd operation:

LastWrEndt′(R, pj) ,

{

Max (WrEndsUntilt′(R, pj)) , if WrEndsUntilt′(R, pj) 6= ∅

⊥ , else

Now we are able to define a function LastStableValt : Σ × P→ Vreg that returns the last written
value if there is one or the initial value for register Regpj

if the given process pj has not finished
any writes before t′:

LastStableValt′(R, pj) ,

{

vieww ⊲ShR(LastWrEndt′ (R,pj)+1)(pj) , if LastWrEndt′(R, pj) 6= ⊥

initval(pj) , else
(LastStableValue)

Considering our read operation Rd, which starts at t1 and ends at t2, the value of
LastStableValt1(R, pj) is obviously the value Lamport refers to as ‘the old value’ of the register.
Regarding Lamport’s definition, this value is the value that must be returned if Rd is not
concurrent to a write operation of pj . Furthermore if we regard the case where there is a
write operation concurrent to Rd then this value is still a candidate for the return value of

57

2. Modelling Distributed Algorithms

the read operation. The further candidates are then the values Lamport refers to as ‘the new
values’, i.e. all values v for which there exists a concurrent write operation Wr such that
Wr starts writing v to register Regpj

. Let us consider such an operation Wr that writes a
value v. Let us assume Wr starts with a WriteBegin at tw1 and may end with a WriteEnd
at tw2. Note that due to our assumptions InitRegPred, ProperSteps1 and ProperSteps2 there
has to be a matching WriteBegin for every WriteEnd, but there can be a WriteBegin without
a matching WriteEnd (note that this enables us to model a situation where a process crashes
before finishing a write operation). For this case we assume tw2 = ∞. Since Rd and Wr
are concurrent both operations must overlap, i.e. one of the following assertions must hold:

1. Wr starts before t1 but does not end before t1. Hence: tw1 < t1

and tw2 > t1

2. or Wr starts during the execution of Rd: tw1 > t1 and tw1 < t2

(ConcAssertions)

Note that due to our interleaving model we do not need to consider the case where tw1 = t1.
For the first case (1.) at time t1 the value of pj ’s write-oriented view at time t1 must be
the pair consisting of the old value LastStableValt1(R, pj) and the new value v (the value Wr
writes to register Regpj

). Hence vieww ⊲ShR(t1)(pj) = (LastStableValt1(R, pj), v). For
the case where there is no concurrent write we already noticed that vieww ⊲ShR(t1)(pj) =
LastStableValt1(R, pj). Therefore, obviously vset(vieww ⊲ShR(t1)(pj)) returns the set of pos-
sible candidates for the return value of Rd for the case where there is no concurrent write access
(in this case vset(vieww ⊲ShR(t1)(pj)) = { LastStableValt1(R, pj) }) and for the case where there
is a concurrent write operation that starts before Rd (in this case vset(vieww ⊲ShR(t1)(pj)) =
{ LastStableValt1(R, pj), v }). For the second case (2.) where a write operation Wr starts writ-
ing v during the execution of Rd, we know that there is a WriteBegin(ShR(tw1), ShR(tw1+1), pj , v).
Putting all together we claim that the set of possible candidates VRd for the return value of read
Rd is:

VRd =
Ä

vset(vieww ⊲ShR(t1)(pj))
ä

∪ { v ∈ Vreg | ∃t′ > t1 . t′ < t2 ∧ WriteBegin(ShR(t′), ShR(t′+1), pj , v) }

Remember that the term
Ä

vset
Ä

vieww ⊲ShR(t1) (pj)
ää

describes the set of values consisting of
the old value of Regpj

and (if there is such a value) the value a concurrent write operation that
has started before Rd writes the register Regpj

. The set { v ∈ Vreg | ∃t′ > t1 . t′ < t2 ∧
WriteBegin(ShR(t′), ShR(t′+1), pj , v) } consists of all values, that are written by write operations
that started during the execution of Rd. As stated before there are no further concurrent write
operations and therefore this equation is equivalent to Lamports characterisation of a Regular
Register. It remains to show in our model that this set is exactly the set of values the subaction
RdEnd picks values from. By definition of RdEnd an execution RdEnd(Sh, Sh′, pi, pj , v′) picks
values from pi’s read-oriented view on the register Regpj

. To show that our model indeed
implements a Regular Register, we prove that during a read Rd where pi reads from register
Regpj

the values in pi’s read-oriented view equal the set of possible candidates for a return VRd :

58

2.3. Developing a Formal Model

Theorem 2.3.7.2 (Values in Read-oriented View)
Let R be a run of a Distributed Algorithm A = (Init, Φ, Ψ, Fad, C2LV, LV2C) that respects
InitRegPred, ProperSteps1 and ProperSteps1. Let Rd be a read operation that starts reading a
register Regpj

at time t1 with RdBegin(ShR(t1), ShR(t1+1), pi, pj) and ends at time t2 ≥ t. Then
pi’s read-oriented view on Regpj

at time t is the following set of values:

viewr ⊲ShR(t)(pi)(pj) =
Ä

vset(vieww ⊲ShR(t1)(pj))
ä

∪ { v ∈ Vreg | ∃t′ > t1 . t′ < t ∧ WriteBegin(ShR(t′), ShR(t′+1), pj , v) }

Proof.→֒ Isabelle13

Using this result it is easy to show that if there is a read operation Rd on a register Regpj

and there may be concurrent write operations by pj then the returned value is either one of the
concurrently written values or the last stable value of register Regpj

:

Theorem 2.3.7.3 (Read Result 1)
Let R be a run of a Distributed Algorithm A = (Init, Φ, Ψ, Fad, C2LV, LV2C) that respects
InitRegPred, ProperSteps1 and ProperSteps1. Let Rd be a read operation that starts reading
a register pj at time t1 with RdBegin(ShR(t1), ShR(t1+1), pi, pj) and ends at time t2 > t1 with
RdEnd(ShR(t2), ShR(t2+1), pi, pj , v). Then at least one of the following assertions holds:

• v = LastStableValt1(R, pj) or

• there is a time t′ such that WriteBegin(ShR(t′), ShR(t′+1), pj , v) and either t′ > t1 ∧ t′ < t2

or t′ < t1 and the write operation ends either after t1 or never.

Proof.→֒ Isabelle14

Note that assertions for t′ correspond to the assertions made at ConcAssertions. For a non-
concurrent read we show that a read must return the last stable value:

Theorem 2.3.7.4 (Read Result 2)
Let R be a run of a Distributed Algorithm A = (Init, Φ, Ψ, Fad, C2LV, LV2C) that respects
InitRegPred, ProperSteps1 and ProperSteps1. Let Rd be a read operation that starts reading
a register pj at time t1 with RdBegin(ShR(t1), ShR(t1+1), pi, pj) and ends at time t2 > t1 with
RdEnd(ShR(t2), ShR(t2+1), pi, pj , v).
If there are no concurrent write operations for Regpj

then

v = LastStableValt1(R, pj)

Proof.→֒ Isabelle15

Now we are able to establish the equivalence of our and Lamport’s model. By Theorems
2.3.7.3 and 2.3.7.4 we can deduce that every value that is read by RdEnd in our model is a
value, which is a possible candidate for a return by a corresponding read in Lamport’s model
(⇒).

13Isabelle/HOL theory: Register.thy, Lemma(s): ReadResultHelp
14Isabelle/HOL theory: Register.thy, theorem(s): ReadResult1
15Isabelle/HOL theory: Register.thy, theorem(s): ReadResult2

59

2. Modelling Distributed Algorithms

Also using Theorem 2.3.7.2 we show that if we consider a prefix of a run R where a read
operation Rd started by a RdBegin at t1 and ended at t2 for every v ∈ VRd there is a continuation
of R such that a RdEnd returns v(→֒ Isabelle16). This implies that every value that is returned
by a read operation in Lamport’s model is a possible candidate for a return by a corresponding
read in our model (⇐).

By (⇒) and (⇐) we get that both models are equivalent.

Safe and Atomic Registers

For modelling a Safe register RdBegin can be used without change and for the further subactions
we use the following subactions Asf

instead of A for A ∈ { WriteBegin, WriteEnd, RdEnd } (we assume ⊥ /∈ Vreg):

WriteBeginsf (Sh, Sh′, pi, v′) , rPhs ⊲ Sh(pi) = rIdle

∧ Sh′ = rwbupd(v′,⊥)
Sh,pi

WriteEndsf (Sh, Sh′, pi) , ∃v′ ∈ Vreg . vieww ⊲Sh(pi) = (v′, ⊥)

∧ rPhs ⊲ Sh(pi) = rWriting

∧ Sh′ = Sh[i := (rIdle, v′, viewr ⊲Sh(pi))]

RdEndsf (Sh, Sh′, pi, pj , v) , rPhs ⊲ Sh(pi) = rReadingpj

∧ (⊥ /∈ viewr ⊲Sh(pi)(pj) ⇒ v ∈ viewr ⊲Sh(pi)(pj))

∧ Sh′ = Sh

[i := (rIdle, vieww ⊲Sh(pi), viewr ⊲Sh(pi))]

These modified subactions provide a ⊥ in every read-oriented view at the end of every read
operation that has been concurrent with a write-operation to the same register. Moreover
RdEnd does now only restrict the returned value if there is no such ⊥ value at the end of the
read. This implements a Safe Register, since by definition, a Safe Register behaves as a Regular
Register for reads that are not concurrent to a write and return some arbitrary value otherwise.

Reusing our model of a Regular Register for an Atomic Register is rather difficult. Since
Atomic Registers are not used in the case study in Chapter 4 we restrict ourselves to a rough
idea for a model of an Atomic Register. An atomic register stores an old value old and a new
value new. A new value v′ is written to a register Regpj

by setting new := v′. Somewhere
between the beginning and the end of a write the value in new overwrites the value in old (a
new subaction is needed for that). A process that reads from a register Reg always applies the
value from old. This will guarantee the properties of an Atomic Register.

16Isabelle/HOL theory: Register.thy, theorem(s): ReadNewValuePossible,ReadOldValuePossible

60

2.3. Developing a Formal Model

Using Regular Registers with DnAs

To use our subactions of for Regular Registers with DnAs we have to split the subactions into
two parts: one that can be used within the enabled predicate of a DnA and one to be used in the
transition function of the DnA. Since all subactions are deterministic, splitting the subaction is
simple. We define the following atoms to be used in an enabled predicate of a DnA:

WriteBeginen : R × P→ bool

WriteEnden : R × P→ bool

RdBeginen : R × P→ bool

RdEnden : R × P × P × Vreg → bool

WriteBeginen(Sh, pi) , rPhs ⊲ Sh(pi) = rIdle

∧ ∃v ∈ Vreg . vieww ⊲Sh(pi) = v

WriteEnden(Sh, pi) , ∃v, v′ ∈ Vreg . vieww ⊲Sh(pi) = (v, v′)

∧ rPhs ⊲ Sh(pi) = rWriting

RdBeginen(Sh, pi) , rPhs ⊲ Sh(pi) = rIdle

RdEnden(Sh, pi, pj , v) , rPhs ⊲ Sh(pi) = rReadingpj

∧ v ∈ viewr ⊲Sh(pi)(pj)

Each of these atoms is true if the correspondent subaction is enabled. The following atoms can
then be used in the transition part of a DnA (as always we denote the second entry of a pair p
by 2nd(p)):

WriteBegin∆ : R × P × Vreg →R

WriteEnd∆ : R × P→R

RdBegin∆ : R × P × P→R

RdEnd∆ : R × P→R

WriteBegin∆(Sh, pi, v′) , rwbupd(vieww ⊲Sh(pi),v
′)

Sh,pi

WriteEnd∆(Sh, pi) , Sh[pi := (rIdle, 2nd(vieww ⊲Sh(pi)), viewr ⊲Sh(pi))]

RdBegin∆(Sh, pi, pj) , Sh[pi :=(rReadingpj
, vieww ⊲Sh(pi),

viewr ⊲Sh(pi)[pj := vset (vieww ⊲Sh(pj)))]]

RdEnd∆(Sh, pi) , Sh[pi := (rIdle, vieww ⊲Sh(pi), viewr ⊲Sh(pi))]

Finally we show that all subactions in σsh can be constructed from these atoms:

61

2. Modelling Distributed Algorithms

Theorem 2.3.7.5 (Subaction Reconstruction)
For all configurations C,C′ ∈ C, pi, pj ∈ P and all v ∈ Vreg the following assertions hold:

1. WriteBegin(Sh, Sh′, pi, v) ≡
(

WriteBeginen(Sh, pi) ∧ Sh′ = WriteBegin∆(Sh, pi, v)
)

2. WriteEnd(Sh, Sh′, pi) ≡
(

WriteEnden(Sh, pi) ∧ Sh′ = WriteEnd∆(Sh, pi)
)

3. RdBegin(Sh, Sh′, pi, pj) ≡
(

RdBeginen(Sh, pi) ∧ Sh′ = RdBegin∆(Sh, pi, pj)
)

4. RdEnd(Sh, Sh′, pi, pj , v) ≡
(

RdEnden(Sh, pi, pj , v) ∧ Sh′ = RdEnd∆(Sh, pi)
)

Proof.→֒ Isabelle17 and →֒ Isabelle18

For a better understanding of the atoms for DnAs consider the following example. Assume we
have a Distributed Algorithm that uses a module Sh for Regular Registers as described before.
Furthermore in a state of a process only a natural number n is stored, therefore we have an
array of states S : P→N. The algorithm uses the following process-action Wr100 . If pi’s current
value is less than 100, Wr100 writes the value to the shared register of pi and increments the
value by 1:

Wr100 (C,C′, pi) , (SC(pi) < 100

∧ WriteBegin(ShC, ShC′ , pi, SC(pi))

∧ SC′ = SC[pi := SC(pi) + 1])

For working with DnAs we define functions C2LV100 and LV2C100 as follows:

C2LV100(C, pi) , (SC(pi), ShC, pi)

LV2C100(lv′, pi,C) ,
Ç

SC[pi := Slv′]
Shlv′

å

Again, we denote the first entry of a Localview lv by Slv, and the second by Shlv. The third
entry is denoted by IDlv. Hence in its Localview a process pi has access to its state SC(pi), the
registers in ShC and to its identity. Note that since the complete module ShC is mapped to the
Localview of pi by C2LV100 and back into the configuration by LV2C100 we allow a process to
read and write the whole content of the shared memory. This is due to the considerations in
Section 2.3.4. Anyway manipulations of registers and other intended access to the module will
be ruled out by the use of the provided atoms. Now we can define a corresponding DnA Wr100 ↓

for Wr100 . Wr100 ↓ is the tuple Wr100 ↓ = (Wr100 en, Wr100 ∆) with:

Wr100 en(lv) , (Slv < 100 ∧ WriteBeginen(Shlv, IDlv))

Wr100 ∆(lv) , (Slv + 1, WriteBegin∆(Shlv, IDlv, Slv), IDlv)

Wr100 en ensures that for the execution of Wr100 ↓ the WriteBegin subaction is enabled and
the value in the state of pi is less than 100. Wr100 ∆ reflects the changes in the Localview of
17Isabelle/HOL theory: Register.thy, theorem(s): RWBEqEnExecRWB,RWEEqEnExecRWE
18Isabelle/HOL theory: Register.thy, theorem(s): RRBEqEnExecRRB,RREEqEnExecRRE

62

2.3. Developing a Formal Model

pi caused by Wr100 ↓: the value in pi’s state is incremented by one and the register module is
changed by the atom WriteBegin∆. The identity of pi is unchanged. Note that also in this case
the definition of the DnA is much more compact compared to the definition of the lifted action.

Note that the atoms for RdEnd are given for theoretical considerations but have no practical
relevance. This is due to the fact, that there can be no equivalent DnA for a non-deterministic
action and, as described before, a proper use of RdEnd may not restrict the parameter v for the
read value. On the one hand in a system with concurrent writes it is obviously intended that
there is more than one option for v in term ∃v ∈ Vreg . RdEnd(Sh, Sh′, pi, pj , v). On the other
hand a deterministic use of RdEnd has to restrict the value v to exactly one value, but this
contradicts the intention of the modelled read operation, because a process can not predict the
value it is going to read. This yields a non-determinism if value v is used for the computation of
the next configuration. Nevertheless regarding the atoms for RdEnd, we can construct a DnA
which uses the atoms. Consider the following example that defines a DnA rdx↓. A process that
executes rdx↓ reads a register of process px:

rdx↓ , (rdxen, rdx∆)

rdxen(lv) , ∃v ∈ Vreg . RdEnden(Shlv, IDlv, px, v)

rdx∆(lv) , (Slv, RdEnd∆(Shlv, IDlv), IDlv)

This DnA is obviously deterministic and uses the atoms for RdEnden and RdEnd∆. But the
variable v is locally bound in the definition of RdEnden. Therefore it cannot be used for calcu-
lations in RdEnd∆. A read action where the value read can not be utilised for calculations is of
no practical relevance.

2.3.8. Failure Models

A crucial characteristic for a distributed algorithm is its ability to guarantee the desired prop-
erties in the presence of failures. A failure can be caused e.g. by a hardware defect or malicious
intrusion and may result in malfunctions of the involved processes or can corrupt, reorder, du-
plicate or destroy messages that are not yet delivered. A common verification objective is to
show that a certain algorithm is able to solve a problem even if a certain amount of failures
occur. To do this kind of verification the possible failures must be covered by the model. Hence
the model must comprise the expected faultless behaviour as well as a model for the possible
cases of failure.

The problem of modelling failures is obvious: a failure is an undesirable behaviour of the
system. Hence, if a failure occurs, it is not intended by the developer of the algorithm and
therefore the consequences can not be anticipated in all details. Every failure model can therefore
only capture a restricted view of the ‘real’ behaviour and for every fault-tolerant algorithm the
failure class it tolerates has to be defined.

Well-known examples for failure models are ([Gä99], [GR06]):

• Crash-Failure (where processors simply stop their execution)

63

2. Modelling Distributed Algorithms

• Fail-Stop (where processors also crash but their neighbours can detect this easily)

• Fail-Silent (where process crashes are not reliably detected)

• Fail-Noisy (where crashes can be detected but not always in an accurate manner)

• Fail-Recovery (where crashed processes can recover)

• Byzantine (where faulty processors can behave arbitrarily)

[GR06] introduces these notions as classes for algorithms (not as failure models) and notes
that these classes are not necessarily disjoint. Hence it is possible that certain algorithms are
implemented to work in more than one of these models.

While an instance of the crash failure model will be used in Chapter 5.2. In Chapter 5.3 this
model will be extended to an instance of the Fail-Recovery model that allows a resurrection of
crashed processes.

Gärtner also introduces technical means to model failures. For a simple Crash Failure Model
he proposes to apply the concept of [Aro92] to add virtual variables extending the actual state
space of processes. These variables can then be used to indicate whether a process is up or
crashed. The Crash Failure model can then be implemented by adding the condition that the
process is not crashed as an additional guard to every action. This model for a crash is used for
the algorithms in Section 5.1 and Section 5.3.

A variant of this model is used in Section 5.2. There we use an additional module Crashed
(for modules cf. 2.3.1), which is simply a set of processes. A crash of a process is therefore
modelled as the execution of the following process-action, which adds a non-crashed process to
the set of crashed processes:

Crash(C,C′, pi) , pi /∈ CrashedC ∧ CrashedC′ = CrashedC ∪ { pi }

Of course, a process-action would normally not be enabled if the executing process is crashed.
Therefore every definition of a process-action A ∈ Φ should be of the kind:

A(C,C′, pi) , pi /∈ CrashedC ∧ . . .

We can use a dual process-action Recover to model recovery of a process (i.e. an action that
sets pi alive again after it has crashed). Hence, such an action for recovery must only be enabled
if pi is crashed:

Recover(C,C′, pi) , pi ∈ CrashedC ∧ CrashedC′ = CrashedC \ { pi }

The idea of recovery is exemplarily used for the algorithm in Section 5.3. Note that except
for Recover and Crash all actions usually assert CrashedC′ = CrashedC.

Note that the failure scenario might restrict the safety and liveness properties that can be
guaranteed (definitions for certain safety and liveness properties will be given in Section 2.4).

64

2.4. Specifying Requirements

Hence [Gä99] introduces the following terms to classify the different abilities of fault tolerant
algorithms:

• Masking: An algorithm is called masking if it guarantees both safety and liveness for the
respective failure model.

• Nonmasking: An algorithm is called nonmasking if it still guarantees liveness but not
safety for the respective failure model.

• Fail safe: An algorithm is called nonmasking if it still guarantees safety but not liveness
for the respective failure model.

Correct Processes

For the definition of requirements, it is often useful to divide correct and faulty processes with
respect to a specific run. With Correct(R) we denote the subset (Correct(R) ⊆ P) of processes
that are correct in run R. Since definitions of the term ‘correct process’ differ for different
failure models we will give different definitions of correct processes for the different presented
algorithms in the respective chapters.

2.4. Specifying Requirements

Requirements for algorithms can be defined as functional properties the considered algorithms
must provide. Commonly the term properties refers to trace properties and hence in [AS86]
properties are defined as sets of traces (in our terms a trace corresponds to a run). Note that
this is indeed a sufficient definition for most applications in fault tolerant distributed computing.
But some concerns, as for example security policies as Noninterference, can not be formulated
by regarding only single runs (cf. [McL96]). Therefore extensions as e.g. Hyperproperties are
introduced (cf. [CS10]). Since this work considers applications of fault tolerant computing we
restrict ourselves to trace properties.

Alpern and Schneider ([AS86]) showed that every property can be decomposed into a safety
property (informally: a property, which states that something bad does not happen [Lam77]) and
a liveness property (informally: a property asserting that something good eventually happens
[Lam77]). While for a violation of a safety property it is possible to give a finite prefix of a
run as a witness, this is impossible for a liveness property. If the liveness property is satisfied
it might suffice to give a finite prefix of a run as a witness. But for proving that a liveness
property is violated we have to regard the entire possibly infinite run. For the verification of
a program it is very important to distinguish between safety and liveness properties because
the prove-strategies differ. While for safety properties arguments are based on invariants, for
liveness properties well-foundedness arguments are needed ([AS86]). For a more comprehensive
treatment and for references to the extensive literature on the subject of safety and liveness one
may refer to [Kin94].

To formally define safety and liveness properties in our context, we need to introduce some
operations on runs. Therefore let T

n , { m ∈ T | m < n } and T
∞ , T. For n ∈ T with Σn

65

2. Modelling Distributed Algorithms

we denote the set of all sequences of configurations

Σn , { S : Tn →C }

with length n. With Σ∗ we denote the set of all finite sequences of configurations:

Σ∗ ,
⋃

n∈T

Σn.

And finally with Σ we denote the set:

Σ = Σ∗ ∪ Σω

We use len : Σ →T ∪ { ∞ } as a function that returns the length of a sequence, hence for a
sequence s ∈ Σ:

len(s) ,

{

n , if s ∈ Σn and n ∈ T

∞ , else

Furthermore for a sequence s ∈ Σ the domain dom(s) is the time domain of s, i.e.

dom(s) =

{

T , if len(s) = ∞

T
len(s) , else

Now we define prefixes and extensions of sequences of configurations (adopted from [VVK05]):

Definition 2.4.0.1 (Prefixes, Extensions and Concatenation)
Let r, r′ ∈ Σ be two sequences of configurations.

1. r is a prefix of r′ (denoted by r ⊑ r′) if and only if

dom(r) ⊆ dom(r′) and ∀m ∈ dom(r) . r(m) = r′(m).

2. r is a finite prefix of r′ if and only if

r ⊑ r′ and len(r) 6= ∞.

3. [r ↑] , { r′ ∈ Σ | r ⊑ r′ } is the set of all extensions of r.

4. For a finite sequence r ∈ Σn (n ∈ T) and a sequence r′ ∈ Σy, we define the concatenation

of r and r′ as r · r′ ∈ Σz with:

z =

{

∞, if y = ∞

n + y, else

r · r′(m) =

{

r(m), if m < n

r′(m − n), else

66

2.4. Specifying Requirements

Furthermore we use the notation r⊑n to denote the finite prefix of r with length n.

A safety property P is a predicate where the following implication holds: if P is violated in a
sequence s there is already a finite prefix s⊑n such that for every extension of s⊑n in [s⊑n ↑] the
property is violated. Formally (cf. [VVK05]):

Definition 2.4.0.2 (Safety property)
A predicate P : Σ → bool is a safety property if and only if

∀s ∈ Σ . ¬P (s) ⇒
(

∃n ∈ dom(s) . ∀s′ ∈ [s⊑n ↑] . ¬P (s′)
)

We define a liveness property analogously to [AS86]:

Definition 2.4.0.3 (Liveness property)
A predicate P : Σ → bool is a liveness property if and only if

∀s ∈ Σ∗ . ∃s′ ∈ Σω . P (s · s′)

Note that we define properties to be predicates on configuration sequences and not as sets of
traces as [AS86]. Of course, these definitions are equivalent since if we consider a predicate
P : Σ → bool we can obtain the respective set of configuration sequences as { s ∈ Σ | P (s) }.
By using the predicate instead of the set, we have the characteristic function of the set at hand.

Lamport ([Lam94]) defines a state predicate to be a mapping from states to booleans. Since
in our context states are configurations, we use the term configuration predicate for a mapping
from configurations to booleans. We denote the set of all configuration predicates by CP :

CP , C→ bool

Now we can define a configuration invariant:

Definition 2.4.0.4 (Configuration invariant)
A predicate P : Σ → bool is a Configuration invariant if and only if

∃Q ∈ CP . ∀s ∈ Σ . P (s) ↔ (∀t ∈ dom(s) . Q(s(t)))

Theorem 2.4.0.5
Let P : Σ → bool be a Configuration invariant.

1. P is a safety property.

2. P is not a liveness property.

Proof.→֒ Isabelle19

Until now we only defined properties of sequences. To verify a Distributed Algorithm, we
have to show that the desired properties hold for every execution (run) of the algorithm. Hence
we define a property of an algorithm as follows:

19Isabelle/HOL theory: ConfSeq.thy, theorem(s): ConfInvariantIsSafety, InvNoLiveness

67

2. Modelling Distributed Algorithms

Definition 2.4.0.6 (Property)
Let A = (Init, Φ, Ψ, Fad) be an Algorithm.

1. A predicate P : Σ → bool is a property of A if and only if

∀R ∈ Runs(A) . P (R).

2. A predicate P : Σ → bool is a property of A under assumptions Fad if and only if

∀R ∈ Runsad(A) . P (R).

Since (obviously) for an Algorithm A the set of Admissible Runs (Runsad(A)) is a subset of all
runs (Runs(A)), every property P of A is a property under assumptions Fad for all (reasonable)
sets Fad.

2.4.1. Requirements of Distributed Consensus

The problem we focus on in this thesis is the problem of Distributed Consensus. A distributed
algorithm A that solves Consensus must exhibit the four properties Validity, Agreement, Ter-
mination, and IrrevocabilityN processes that have to agree on exactly one value. Therefore, an
algorithm that solves Consensus is supposed to exhibit the follwing properties ([Lyn96], [CBS07]
(cf. Section 1.4.1). To show that A actually respects these properties we have to rewrite these
properties in terms of our model. Regarding the mentioned properties, obviously the main con-
cern is a local decision procedure of the single processes. Let I be the set of possible input values
for the processes. Due to the Agreement property, if a process decides a value v ∈ I, it must be
sure that no other process decides some other value v′ with v′ 6= v. We assume that the decision
value of a process pi is encoded in its state S(pi). We define a function dc : S→ I ∪ { ⊥ } that
extracts the decision from a process state. Hence if dc(SC(pi)) 6= ⊥ process pi has decided a
value in configuration C. If dc(SC(pi)) = ⊥, pi has not yet decided in C. To respect the Validity
property the decided value must have been an input value for one of the processes. Therefore
we define a mapping vinp : P→ I which assigns an input value to every process.

Now we are able to formally redefine the properties of Consensus. Recall that we defined
properties to be predicates with type Σ → bool.
Validity holds for a run s if and only if for all t of the time domain of s whenever a process pi’s
decision value vt in configuration s(t) is defined (formally: vt 6= ⊥) there is a process pk ∈ P

such that vinp(pk) = vt.

Validity(s) , ∀t ∈ dom(s) . ∀pi ∈ P.dc(Ss(t)(pi)) 6= ⊥ ⇒
Ä

∃pk ∈ P . vinp(pk) = dc(Ss(t)(pi))
ä

Agreement holds for a run s if and only if for all configurations s(t) of s whenever for two

68

2.4. Specifying Requirements

processes pi, pj ∈ P decision values vt,i, vt,j are defined then vt,i = vt,j .

Agreement(s) , ∀t ∈ dom(s) . ∀pi, pj ∈ P.(dc(Ss(t)(pi)) 6= ⊥ ∧ dc(Ss(t)(pj)) 6= ⊥ ⇒

dc(Ss(t)(pi)) = dc(Ss(t)(pj)))

Termination holds for a run s if and only if for all processes pi ∈ Correct(s) the decision value
of pi is eventually defined.

Termination(s) , ∀pi ∈ Correct(s) . ∃t ∈ dom(s) . dc(Ss(t)(pi)) 6= ⊥

Irrevocability holds for a run s if and only if whenever for some configuration s(t) (t ∈ dom(s))
of s the decision value vt of a process pi ∈ P is defined, then for all subsequent configurations
s(t′) (t′ ∈ dom(s), t′ ≥ t) the decision value vt′ will not be altered (vt′ = vt).

Irrevocability(s) , ∀t ∈ dom(s) . ∀pi ∈ P. dc(Ss(t)(pi)) 6= ⊥ ⇒

∀t′ ∈ dom(s) .
Ä

t′ ≥ t ⇒ dc(Ss(t′)(pi)) = dc(Ss(t)(pi))
ä

Considering our definitions of Configuration invariants we observe:

Lemma 2.4.1.1

1. Validity is a Configuration invariant.

2. Agreement is a Configuration invariant.

Proof.→֒ Isabelle20

With Theorem 2.4.0.5 this implies that Validity and Agreement are pure safety properties:

Corollary 2.4.1.2

1. Validity is a safety property and not a liveness property.

2. Agreement is a safety property and not a liveness property.

Proof.→֒ Isabelle21

Although often mentioned and used, this result of course depends highly on the definition
of Validity and Agreement. [CBTB00] gives an example for the effect of a slightly different
definition: if for Agreement only correct processes are required to decide equal values, every
prefix of a run where two processes decide for different values can be extended by a run where
one of the two processes crashes and hence Charron-Bost et al. claim that Agreement is a
liveness property.

A Configuration invariant is an assertion about what has to be true for every single configu-
ration. Irrevocability makes assertions about a configuration and its successors. Hence it is an

20Isabelle/HOL theory: ConfSeq.thy, Lemma(s): ValidityInv, AgreementInv
21Isabelle/HOL theory: ConfSeq.thy, Corollaries: Validity_Is_Safety, Agreement_Is_Safety

69

2. Modelling Distributed Algorithms

assertion about more than one configuration and therefore it is no Configuration invariant. Nev-
ertheless Irrevocability is a safety property: once we have a sequence s ∈ Σ where Irrevocability
is violated, by the definition of Irrevocability there are t, t′ ∈ dom(s), pi ∈ P with t ≤ t′ such
that ⊥ 6= dc(s(t), pi) and dc(s(t), pi) 6= dc(s(t′), pi). Obviously all extensions of s⊑(t′+1) violate
Irrevocability and therefore:

Theorem 2.4.1.3
Irrevocability is a safety property.

Proof.→֒ Isabelle22

Let sd be a sequence where all processes eventually decide at time td and hence dc(sd(td), p) 6= ⊥
for all p ∈ P. For every finite sequence s that is extended by sd Termination holds (formally:
Termination(s · sd)). With the definition of liveness properties we obtain:

Theorem 2.4.1.4
Termination is a liveness property.

Proof.→֒ Isabelle23

Of course sometimes it is possible to have safety properties which are also liveness properties,
but we also showed:

Theorem 2.4.1.5

1. Irrevocability is not a liveness property.

2. Termination is not a safety property.

Proof.→֒ Isabelle24

22Isabelle/HOL theory: ConfSeq.thy, theorem(s): Irrevocability_Is_Safety
23Isabelle/HOL theory: ConfSeq.thy, theorem(s): Termination_Is_Liveness
24Isabelle/HOL theory: ConfSeq.thy, theorem(s): IrrevocabilityNoLiveness,TerminationNoSafety

70

2.5. Summarising Concepts of the Model

2.5. Summarising Concepts of the Model

Before we will explain the strategies for the verification of a distributed algorithm, this section
gives a summary of the introduced concepts of our model.

To model a distributed algorithm, we have to be aware what are the data structures the
algorithm deals with. The mind map in Figure 2.11 illustrates the relations between the used
data structures. Central to our concept is the data structure for a configuration. Therefore, the
first step to model an algorithm is to define the domain of configurations C. This means also to
define the domain of process states S and to define all domains for the modules. This includes
the decision for the used mechanism for interprocess communication (IPC).

Datastructures

Configuration

Process-
states

Program
Counter

. . .

Modules

Failure
Detector

IPC

. . .

Localview

. . .

Inbox

Outbox

Process id

Process-
state

Program
Counter

. . .

C2LV and

LV2C

Figure 2.11.: Mindmap for Datastructures of the Model

For our concept of distribution, it is necessary to separate data a process is able to access

71

2. Modelling Distributed Algorithms

from data the process cannot see. Therefore, we use the introduced concept of Localviews.
A Localview lvC,pi

for a process pi and a configuration C is a projection of C to the part of
C a process pi is able to access. This projection has to be given explicitly by the function
C2LV : C × P→L. To re-embed a Localview into a configuration, we define a dual function
LV2C : L × P × C→C, which takes a Localview lv, a process pi and a configuration C and
returns a configuration C

′ where lv has replaced the Localview of pi in C. Usually, in a message
passing environment, beside the process state, a Localview comprises the inbox and the outbox
of a process. Of course this is different for other communication infrastructures. Additionally it
may be required that processes know their (unique) process id.

1. Define Datastructures

2. Define C2LV and LV2C

3. Define Initial Process States

4. Define Initial Configurations

5. Determine Atomic Actions and Events

6. Serialize Actions

7. Formalize Actions and Events

8. Define Fairnessassumptions

9. Show Constraints for Consistency

10. Define Requirements
in Terms of the Model

11. Verify Safety Properties

12. Verify Liveness Properties

M
odelling

V
erification

Figure 2.12.: Process of Modelling and Verification

72

2.5. Summarising Concepts of the Model

Figure 2.12 shows our modelling and verification process. After datastructures and functions
C2LV and LV2C have been defined (Step 1 and 2), we have to fix the initial configurations (Step
4). Before we are able do this, it is necessary to define the initial process states (Step 3) for the
single processes. When this is done, we can turn towards modelling the steps in our system.
Firstly, we have to identify the atomic actions and events (Step 5) in our system. Therefore,
our focus must be put on the communication protocol. While it may be possible to summarise
local computation steps as a single atomic step, a main principle in distributed computing
for inspecting concurrency problems is that different communication steps must be modelled
as different atomic steps. That is necessary because the order of communication steps may
influence the processes computations and therefore determines the sequence of configurations.
Moreover the example of shared memory (see Section 2.3.7) shows that sometimes it is necessary
to model a single read as multiple steps. Further examples and explanations for this will be
given in our case study in Section 5.4. Usually the local behaviour of a process is given as
a sequential algorithm. Therefore, process-actions have to respect the order in which actions
are executed. Since our modelling approach uses a disjunction for selecting the next action to
execute, we have to serialise process-actions by introducing phases and program counters which
are used to define the conditions when an action is enabled (Step 6) (cf. [Fuz08]). Examples
will be given in our case studies (see Chapter 5). In the next step we have to formally define
the events and actions (Step 7).

Whereas events have always to be defined globally, with the introduction of non-lifted actions
we introduced a concept to model transitions locally in a global context. Figure 2.13 depicts our
advice how to decide for a formalisation of a process-action A: If the action can be modelled
deterministically, then the best way is to use our concept of DnAs and define a DnA A↓ (cf.
Section 2.3.3). For the entry Φ in A we use DLift(A↓) such that DLift(A↓) ∈ Φ. Due to the
constraint LocalviewRespect, we have to give a non-lifted version A↓ of A even if the action
cannot be modelled deterministically. On the other hand, proofs are much simpler if we use the
globally defined version of A. Hence the recommended way here is to define both, A and the non-
lifted version A↓ and to show that A = Lift(A↓). In this case, we use A in Φ, such that A ∈ Φ.
The non-lifted version A↓ only has to be defined, to satisfy the constraint LocalviewRespect,
which serves to guarantee that no process uses inaccessible global information. To make the
entries in A complete we have to define the fairness assumptions (Step 8) for our algorithm. In
our experience these assumptions will often be revised later, since many subtle assumptions may
not be recognised until they are needed for the proofs. The last modelling step is to show that
the defined tuple A satisfies the constraints locViewProp1, locViewProp2, LocalviewRespect,
NoRemoteAccess and StateInvEv (Step 9).

The verification process starts with the definition of the requirements in terms of the model
(Step 10, as explained in Section 2.4). Finally, the proofs have to be done. Our examples exhibit
that it is often an advantage to start with the safety properties (Step 11). Firstly, many simple
flaws in the model may be recognised instantly, while proving simple safety properties. Secondly,
many simple invariants are of use when proving elaborated liveness properties (Step 12). The
next chapter will explain the process of doing the proofs and introduce general proof strategies
for distributed algorithms that are modelled within our framework.

73

2. Modelling Distributed Algorithms

Choose Action
A to Formalise

Is A Deter-
ministic?

Model A as DnA A↓

Model A as
(Standard) Non-
lifted Action A↓

Model A Explicitly
as an (Lifted) Action

Φ = . . . ∪ { A }Φ = . . .∪
¶

DLift(A↓)
©

yes
no

Figure 2.13.: Modelling process-actions

74

3. Verifying Distributed Algorithms

This chapter outlines schemata for the most important proof-techniques that are used during the
verification of different distributed algorithms (cf. case studies in Chapter 5). The respective ap-
plied technique depends on the kind of property that must be verified. As will be demonstrated,
the strategies used to verify safety properties differ from applied techniques for verifying live-
ness properties. This is in compliance with a well known result of Alpern and Schneider [AS86],
which states that verifying a safety property requires an invariance argument while for showing
a liveness property a well-foundness argument is needed.

We will present proof-techniques at a general level and introduce examples for their application
for the problem of Distributed Consensus.

3.1. ‘Inspection of the Code’

As explained in [KNR12] to show that an algorithm exhibits certain properties, we have to
refer to its ‘code’. On the level of pseudo code this kind of reference cannot be formal because
pseudo code (by definition) has no formal semantics. The reader is to believe that certain basic
assertions are implied by the presented lines of code; e.g., if line 27 states x := 5 then, after
line 27 is executed by pi, variable x will indeed have value 5. Reasoning is done by ‘inspection
of the code’. Such scenarios seem very simple and the reasoning convincing as long as we deal
with sequential programs. For distributed algorithms, this kind of local reasoning is, of course,
error-prone, because one might assume x = 5 when executing line 28, which might be wrong if
x is shared and another process changes x while pi moves from line 27 to 28. In [FMN07], the
reference to pseudo code is replaced by the reference to formally-defined global transition rules.
Then, if some action Ax is provably the only one that changes the variable x of process pi and
process pi’s variable has changed from time tx to t then, obviously, “by inspection of” the rules,
we can infer that Ax was executed between tx and t. This concept for reasoning is a useful basis
for the later application within a theorem prover.

In the context of configurations, we use the term ‘component’ for a mapping cp : C→ α,
where α denotes an arbitrary type (in Isabelle α is a type variable, i.e. a variable that can be
instantiated with a concrete type when we are dealing with a concrete component). Hence in
the following a component is an arbitrary function cp : C→ α, where α is an arbitrary type.

Definition 3.1.0.6 (Component preserving Actions and Events)
Let A = (Init, Φ, Ψ, Fad) be an algorithm and c : C→ α be a component.
An action A ∈ Φ preserves component c if and only if

∀pi ∈ P . ∀C,C′ ∈ C .
(

A(C,C′, pi) ⇒ c(C) = c(C′)
)

75

3. Verifying Distributed Algorithms

An event A ∈ Ψ preserves component c if and only if

∀C,C′ ∈ C .
(

A(C,C′) ⇒ c(C) = c(C′)
)

With ΞΦ(c) ⊆ Φ we denote the set of process − actions that do not preserve component c.
With ΞΨ(c) ⊆ Ψ we denote the set of events that do not preserve component c.
And finally with Ξ(c) we denote ΞΦ(c) ∪ ΞΨ(c).

In our introductory example Ax does not preserve component x.
To show that certain subsets A ⊆ (Φ ∪ Ψ) preserve a component c can help to reduce the effort
for proving properties dealing with c.

For example, let us assume that c : C→N is a component of the configurations of an algorithm
A = (Init, Φ, Ψ, Fad) and R ∈ Runs(A) is a run of A. Furthermore, let us assume that
we want to show that the implication (c(R(t)) = 4) ⇒ (c(R(t + 1)) = 4) holds for all t ∈ T.
Since R is a run we know that there is a step R(t) → R(t + 1) or FinSt(R(t), R(t + 1)). The
final stuttering case is trivial because R(t) = R(t + 1) holds. So, let us consider the case
where there is a step R(t) → R(t + 1). R(t) → R(t + 1) implies there is an A such that
∃pi ∈ P . A ∈ Φ ∧ A(R(t), R(t + 1), pi) or A ∈ Ψ ∧ A(R(t), R(t + 1)). Hence, A ∈ (Φ ∪ Ψ),
and since A is an algorithm we know that (Φ ∪ Ψ) is finite. This yields a case distinction
on A with |Φ| + |Ψ| many cases. But, if we know that there are only two actions that do
not preserve c, we have to only consider these two actions since all other actions would imply
c(R(t)) = c(R(t + 1)). Therefore we can reduce the cases to the relevant set of actions Ξ(c),
as we would have done in a paper proof by telling the reader that for all other actions the
implication (c(R(t)) = 4) ⇒ (c(R(t + 1)) = 4) holds obviously since they do not change c(R(t).
This is summarized by the following theorem:

Theorem 3.1.0.7
Let A = (Init, Φ, Ψ, Fad) be an algorithm, let c : C→ α be a component of the configurations,
P : α → bool a predicate on α, R ∈ Runs(A) and t ∈ T.

If ∀A ∈ ΞΦ(c) . ∀pi ∈ P . (A(R(t), R(t + 1), pi) ∧ P (c(R(t))) ⇒ P (c(R(t + 1))))

and ∀A ∈ ΞΨ(c) . (A(R(t), R(t + 1)) ∧ P (c(R(t))) ⇒ P (c(R(t + 1))))

then

P (c(R(t))) ⇒ P (c(R(t + 1)))

Proof.→֒ Isabelle1

Proposition 3.1.0.8
Let A = (Init, Φ, Ψ, Fad, C2LV, LV2C) be a Distributed Algorithm and let cS : C→(P→ S)
be the function cS(C) , SC that extracts the array of process states from a given configuration.
Every event A ∈ Ψ preserves cS.

Proof.→֒ Isabelle2

1Isabelle/HOL theory: DistributedAlgorithm.thy, theorem(s): NonCompPreservingActionsMatter
2Isabelle/HOL theory: DistributedAlgorithm.thy, Lemma(s): EventspreserveStates

76

3.2. Invariant-Based Reasoning

Hence, whenever we have to verify a property that is only an assertion about local process states,
we do not need to consider events but only process-actions in the respective case distinction.
With Theorem 3.1.0.7 we get:

Corollary 3.1.0.9
Let A = (Init, Φ, Ψ, Fad) be an algorithm,
let cS : C→(P→ S) be the function cS(C) , SC that extracts the array of process states from a
given configuration, P : (P→ S) → bool a predicate on process arrays, R ∈ Runs(A) and t ∈ T.

If ∀A ∈ ΞΦ(cS) . ∀pi ∈ P . A(R(t), R(t + 1), pi) ∧ P (cS(R(t))) ⇒ P (cS(R(t + 1)))

then

P (cS(R(t))) ⇒ P (cS(R(t + 1)))

Proof.→֒ Isabelle3

Hence, if we want to verify a property P (cS(R(t))) ⇒ P (cS(R(t+1))) by application of Corollary
3.1.0.9, we only have to consider the cases for the process-actions.

By Lemma 2.3.2.4 pi’s local state can only be changed by pi in a distributed algorithm.
Therefore, to show an assertion about the state of pi, it suffices to consider the cases where pi

executes a process − action.

Corollary 3.1.0.10
Let A = (Init, Φ, Ψ, Fad) be a distributed algorithm,
let cS : C→(P→ S) be the function cS(C) , SC that extracts the array of process states from a
given configuration and , P : S→ bool a predicate on S, R ∈ Runs(A) and t ∈ T.

If ∀A ∈ ΞΦ(cS) . A(R(t), R(t + 1), pi) ∧ Px(cS(pi)(R(t))) ⇒ Px(cS(pi)(R(t + 1)))

then

P (cS(pi)(R(t))) ⇒ P (cS(pi)(R(t + 1)))

where for a configuration C and pi ∈ P the term cS(pi)(C) is defined as cS(pi)(C) , (cS(C))(pi)
(the entry of pi in the array of states).

Proof.→֒ Isabelle4

The following section will explain why assertions of the kind P (c(R(t))) ⇒ P (c(R(t + 1))) are
extremely relevant.

3.2. Invariant-Based Reasoning

In the previous section we showed how to deal with assertions of the form P (c(R(t))) ⇒
P (c(R(t + 1))). In this section we make use of these kind of assertions to prove invariants.
Let us assume we want to verify an arbitrary Configuration invariant Pinv. By definition of a

3Isabelle/HOL theory: DistributedAlgorithm.thy, Corollary: NonStPreservingPAMatter
4Isabelle/HOL theory: DistributedAlgorithm.thy, Corollary: NonStPreservingPAMatter2

77

3. Verifying Distributed Algorithms

Configuration invariant (Definition 2.4.0.4) there is a Q ∈ CP such that for a sequence s ∈ Σ
invariant Pinv(s) can be represented by

∀t ∈ dom(s) . Q(s(t)). (PINV)

To show that Pinv is a property of a distributed algorithm A = (Init, Φ, Ψ, Fad) we have to
show

∀R ∈ Runs(A) . Pinv(R).

By definition of a run (runs are always infinite) the domain of a run is T. Hence, with PINV we
have to show that for an arbitrary run R the assertion

∀t ∈ T . Q(R(t))

holds. Of course, this can be easily done by induction using the following induction scheme:

Q(R(0)) ∧ (∀t ∈ T . Q(R(t)) ⇒ Q(R(t + 1))) ⇒ ∀t ∈ T . Q(R(t))

To show ∀t ∈ T . Q(R(t)) we have to prove:

1. Q(R(0))

2. ∀t ∈ T . Q(R(t)) ⇒ Q(R(t + 1))

The first will usually be implied by the Init predicate, the latter is an assertion of the kind we
discussed in Section 3.1. Hence, for this technique, the presented formal version of ‘inspection
of the code’ is pertinent.

This strategy to find a proof that a Configuration invariant is a property of a distributed
algorithm, leads to the standard proof technique of induction over time t, i.e., along the config-
urations of a run (cf. [KNR12]).

For example let us consider the sketch of a proof for Validity for a Distributed Consensus
algorithm A = (Init, { A1, . . ., Ak } , { Al, . . ., Am } , Fad). Recall the definition of Validity:

Validity(R) = ∀t ∈ T . ∀pi ∈ P.(dc(R(t), pi) 6= ⊥ ⇒ (∃pk ∈ P . vinp(pk) = dc(R(t), pi)))

We can define QV ∈ CP :

QV (C) = ∀pi ∈ P.(dc(C, pi) 6= ⊥ ⇒ (∃pk ∈ P . vinp(pk) = dc(C, pi)))

such that we have
Validity(R) = ∀t ∈ T . QV (R(t)).

Applying the induction scheme for Validity means to show:

1. QV (R(0))

2. ∀t ∈ T . QV (R(t)) ⇒ QV (R(t + 1))

78

3.2. Invariant-Based Reasoning

A Consensus algorithm where processes start with a predetermined decision would be useless.
Hence, we assume that the predicate Init implies ∀pi ∈ P . dc(SR(0)(pi)) = ⊥. This implies
QV (R(0)). Therefore, it remains to show ∀t ∈ T . QV (R(t)) ⇒ QV (R(t + 1)).
Assume

QV (R(t)) (A1)

for an arbitrary time t ∈ T. Using the definition of QV , we have to show QV (R (t + 1)):

∀pi ∈ P.
Ä

dc(SR(t+1)(pi)) 6= ⊥ ⇒
Ä

∃pk ∈ P . vinp(pk) = dc(SR(t+1)(pi))
ää

.

Assume pi ∈ P is an arbitrary process. Let PV : S→ bool be the predicate

PV (Sx) , (dc(Sx) 6= ⊥ ⇒ (∃pk ∈ P . vinp(pk) = dc(Sx))). (PVDEF)

From A1 we have ∀pi ∈ P . PV (SR(t)(pi)) and hence PV (SR(t)(pi)) and it remains to show that
PV (SR(t+1)(pi)). Putting it all together, we have to show the implication

PV (SR(t)(pi)) ⇒ PV (SR(t+1)(pi))

where PV is a predicate on S. By Corollary 3.1.0.10 we get the conjecture by showing

∀A ∈ ΞΦ(cS) . A(R(t), R(t + 1), pi) ∧ PV (cS(pi)(R(t))) ⇒ PV (cS(pi)(R(t + 1)))

where cS : C→(P→ S) is the function cS(C) , SC that extracts the array of process states from
a given configuration. Hence, if we are lucky and there is only one action Adecide that changes
the decision value (i.e. ΞΦ(cS) = { A }), we only have to show that this action preserves the
invariant, i.e.

Adecide(R(t), R(t + 1), pi) ∧ PV (cS(pi)(R(t))) ⇒ PV (cS(pi)(R(t + 1)))

Otherwise (if |ΞΦ(cS)| > 1) we have to show |ΞΦ(cS)| many cases.
We manifest this strategy by formulating a general induction theorem. It states that to show

an assertion P : α → bool on a component c : C→ α, it suffices to show that every action and
event that does not preserve component c preserves the value of P :

Theorem 3.2.0.11 (CPInduct)
Let A = (Init, Φ, Ψ) be a Safe Algorithm, R be a run of A and c : C→ α be a component of
the configurations.

∀t ∈ T . P (c (R (t)))

is implied by the conjunction of the following assertions:

Base: P (c(R(0)))

I1: ∀t ∈ T . ∀pi ∈ P . ∀A ∈ ΞΦ . (R (t) →pi:A R (t + 1)) ∧ P (c (R (t))) ⇒ P (c (R (t + 1)))

I2: ∀t ∈ T . ∀A ∈ ΞΨ . (R (t) →ev:A R (t + 1)) ∧ P (c (R (t))) ⇒ P (c (R (t + 1)))

79

3. Verifying Distributed Algorithms

Proof.→֒ Isabelle5

This technique is evidently a suitable strategy to prove Validity and Agreement and was used
to prove many further configuration invariants. In the following, we present a method to handle
safety properties that are no Configuration invariants. Therefore, let us examine the case for
Irrevocability:

Irrevocability(s) , ∀t ∈ dom(s) . ∀pi ∈ P. dc(Ss(t)(pi)) 6= ⊥ ⇒
Ä

∀t′ ∈ dom(s) .
Ä

t′ ≥ t ⇒ dc(Ss(t′)(pi)) = dc(Ss(t)(pi))
ää

To prove that every run R ∈ Runs(A) satisfies Irrevocability we consider an arbitrary time t ∈ T

and an arbitrary process pi ∈ P and prove:

Irrevocabilityt,pi
(R) , dc(SR(t)(pi)) 6= ⊥ ⇒

Ä

∀t′ ∈ T .
Ä

t′ ≥ t ⇒ dc(SR(t)(pi)) = dc(SR(t′)(pi))
ää

At first, let us inspect the general characteristics of formula Irrevocabilityt,pi
. The premise

of Irrevocabilityt,pi
is a condition b on a component c : C→ α. After b(c(R(t))) is fulfilled

once in configuration R(t), some assertion c(R(t)) = c(R(t′)) has to be true for all successive
configurations R(t′). Hence, we are looking for a proof of a formula with the following pattern:

b(c(R(t))) ⇒
(

∀t′ ∈ T . t′ ≥ t ⇒ c(R(t)) = c(R(t′))
)

(Goal)

Since this is true if and only if c(R(t)) = c(R(t + 1)) = c(R(t + 2)) = . . . it suffices to show the
proposition

b(c(R(t′))) ⇒ c(R(t′)) = c(R(t′ + 1)). (Step)

for an arbitrary time t′ ∈ T and an arbitrary run R ∈ Runs(A). Of course Step can be proved
again by case distinction on the action (respectively event) that happens from t′ to t′ + 1 and
the same techniques as for Configuration invariants for reducing the cases can be applied. After
proving Step we can prove Goal, i.e. we show that the following theorem holds:

Theorem 3.2.0.12
Let s ∈ Σω, c : C→ α be a component of configurations, let b : α → bool be a predicate and t ∈ T.

∀t′ ∈ T . b(c(s(t′))) ⇒ c(s(t′)) = c(s(t′ + 1)) (Step)

implies
b(c(s(t))) ⇒

(

∀t′ ∈ T . t′ ≥ t ⇒ c(s(t)) = c(s(t′))
)

(Goal)

Proof. We show t′ ∈ T ∧ t′ ≥ t ⇒ c(s(t)) = c(s(t′)) under the assumption

b(c(s(t))) (A1)

using Step by induction on t′. Let us assume we have t′ ∈ T and t′ ≥ t.

5Isabelle/HOL theory: DistributedAlgorithm.thy, theorem(s): CPInduct

80

3.2. Invariant-Based Reasoning

Base case t′ = 0: With t′ = 0 we have 0 = t′ = t. Hence, c(s(t)) = c(s(0) = c(s(t′).

Inductive step: For induction hypothesis assume

t′ ∈ T ∧ t′ ≥ t ⇒ c(s(t)) = c(s(t′)). (IH)

We have to show

((

t′ + 1
))

∈ T ∧
((

t′ + 1
)

≥ t
)

⇒ c(s(t)) = c(s(t′ + 1)).

Hence, assume t′ +1 ≥ t. For the case where t′ +1 = t the proposition c(s(t)) = c(s(t′ +1))
is trivial. Hence, consider the case where t′ + 1 > t. Since t′, t ∈ T this implies t′ ≥ t and
with IH we get c(s(t)) = c(s(t′)). With A1 we get b(c(s(t′))). Furthermore with Step we
have c(s(t′)) = c(s(t′ + 1)). Since c(s(t)) = c(s(t′)) we finally have c(s(t)) = c(s(t′ + 1)).

�(see also →֒ Isabelle6)
For proving Irrevocabilityt,pi

(R), we define cV : C→ (I ∪ { ⊥ }) with cV (C) , dc(SC(pi)) and
bV : I→ bool as bV (x) , x 6= ⊥.
By application of Theorem 3.2.0.12 it suffices to show

∀t′ ∈ T . bV (cV (R(t′))) ⇒ cV (R(t′)) = cV (R(t′ + 1)) (IrreStep)

for proving

bV (cV (R(t))) ⇒
(

∀t′ ∈ T . t′ ≥ t ⇒ cV (R(t)) = cV (R(t′))
)

. (IrreGoal)

Finally, by the defintions of bV and cV we have

bV (cV (R(t))) ⇒
(

∀t′ ∈ T . t′ ≥ t ⇒ cV (R(t)) = cV (R(t′))
)

Def. bV
≡ cV (R(t)) 6= ⊥ ⇒

(

∀t′ ∈ T . t′ ≥ t ⇒ cV (R(t)) = cV (R(t′))
)

Def. cV
≡ dc(SR(t)(pi)) 6= ⊥ ⇒

Ä

∀t′ ∈ T . t′ ≥ t ⇒ dc(SR(t)(pi)) = dc(SR(t′)(pi))
ä

Def. Irrevocabilityt,pi

≡ Irrevocabilityt,pi
(R)

Hence, to prove Irrevocability it suffices to prove IrreStep which can be done by case distinction
on actions and events from t′ to t′+1 and the techniques presented to reduce the case distinctions
(see Section 3.1).

6Isabelle/HOL theory: DistributedAlgorithm.thy, theorem(s): CondGe

81

3. Verifying Distributed Algorithms

3.3. History-Based Reasoning

[KNR12] adressed the problem that reasoning along the timeline gets more difficult if assertions
about the past are included. Showing that pi received a message m on its way to configuration C

would require inspecting every possible prefix of a run unless there is some kind of bookkeeping
implemented in the model. In [FMN07], this problem is solved by the introduction of history
variables [Cli73, Cla78, Cli81] that keep track of events during the execution of the algorithm. For
verification purposes of concurrent programs, history variables are common (see [GL00, Owi76]).
Technically, we make history variables an explicit part of our model that also serves for the
needed Interprocess Communication (IPC). This provides access to the entire communication
history. Every sent message is stored in the history and will not be deleted during a run. Hence,
when inspecting a configuration R(t), all messages sent before t are accessible. Therefore, the
above-mentioned assertion can be reduced to the simple check that m is in the message history
of C.

Let us again consider the example of Validity. To prove Validity, we have to show that every
value decided by a process pi has been an input value of a process pk. Hence, a standard proof
would start with an assumption that an arbitrary process pi decided a value vi and would then
constrain that vi must have been an input value of some process pk. As a first step, let us
assume pi decided the value vi because pi received a broadcast message b that told pi to decide,
and let us assume that this is the only way to make pi decide. Now, a proof without history
variables would require going back in time to the point where pi obtained the message b. Hence,
a lemma would be needed showing that if pi decides in run R, there must be one and only one
point in time in R before the decision is made, when pi got the broadcast message etc. In our
model, in most cases we can omit reasoning along the timeline because the information needed
is still there, although if it is ‘older’ than the inspected configuration. A received tag will be set
for received broadcast messages but the messages are still part of the configuration. Hence, we
can formulate an (configuration) invariant: ‘Whenever the decision value of a process pi is set
to vi, then there is a broadcast message with content vi’. Hence, all that remains to be shown is
that all broadcast messages contain only input values. Let us assume that broadcast messages’
contents are generated from the information in point to point messages. Since these messages
are also still available, it remains to establish an invariant that states that all messages only
contain input values and so on. The developed libraries for interprocess communication will be
presented in Chapter 4 and more detailed characteristics of proofs for the inspected algorithms
are given in Chapter 5.

3.4. Utilizing Fairness Assumptions

If we did not assume that there is any progress in a distributed system, it would be impossible to
show liveness properties like Termination. In other words, we are only able to prove properties
like Termination if we assume that processes are not permitted to remain idle. Hence, we need
some fairness assumptions forcing the constituent parts to make progress if progress is possible.

Considering our introduced model, there is already an inherent notion of fairness in our runs.
By the definition of a run, the algorithm is only allowed to do nothing if we end up in a deadlock.

82

3.4. Utilizing Fairness Assumptions

Note that this is a fundamental difference to models like e.g. TLA+ where the system is supposed
to have the option of stuttering (repeat a state/configuration) for an infinitely long time.

Despite this intrinsic fairness, for some algorithms more assumptions have to be added to
guarantee the desired properties. Moreover, [FLP85] showed that without further assumptions
it is not possible to solve Consensus in asynchronous environments with crash failures. Due to
the unbounded delay of messages, in an asynchronous system, processes are not aware if other
processes have already crashed or just need more time to answer to a posed request.

In [CT96] failure detectors are proposed to overcome the lack of synchrony and make Consen-
sus solvable. As explained in Section 2.3.8, failure detectors can be seen as modules located at
the processes. For a process pi, the local failure detector module provides a list of processes that
are presumed to be crashed. This helps processes decide whether to wait for delayed messages
or not. If the information provided were to be totally correct, the assumption would be stronger
than needed. Hence, the delivered list of crashed processes is assumed to be erroneous and
the question examined in [CT96] is, how incorrect the list may be without making Consensus
unsolvable, in other words the task is to find the weakest assumptions for the failure detector
under which Consensus is still solvable. There may be of course further assumptions that are
needed as e.g.:

• Bounds on the maximum number of processes that crash during a run.

• Timing assumptions for maximum delay times of messages sent and for process speed.

• Assumptions on the message infrastructure as e.g. that every sent message is eventually
received.

• Fairness assumptions for the modeled actions as Weak or Strong Fairness (c.f. [Lam02]).

Our definition of a distributed algorithm A = (Init, Φ, Ψ, Fad) supports additive assump-
tions by the component Fad. As an example assume there is a function crashed : C→ P (P) that
returns the set of crashed processes in a given configuration, then the predicate

maxCrashn : Σ → bool | maxCrashn(s) , ∀t ∈ dom(s) . |crashed(s(t))| ≤ n

is true if and only if there are n processes crashed at maximum in a sequence s.
Hence, by equipping an algorithm with Fad = { maxCrashn } we obtain Admissible Runs

where less (or equal) than n processes crash. Of course, it is much more difficult to implement
timing assumptions in our model. In Chapter 9 of [Lam02] Leslie Lamport illustrates how real
time can be implemented in TLA+ models. The same techniques can be applied to our model.
In Chapter 5 we will show further applications of Fad.

Regarding our proofs for Termination, the scheme for proving liveness properties can be
depicted as follows: At first we show that, due to the assumed fairness assumptions, every
correct process will reach a certain point in the execution, where, from the external global view,
we know it has reached a decision. Then, by contradiction we assume that there is a correct
process pi that does not decide and show that, on the other hand pi will reach the point where
it must have decided. This implies the contradiction. Obviously, the challenge is to identify
the point in time that must have been reached by every correct process. Most effort will be

83

3. Verifying Distributed Algorithms

spent to show that every pi will indeed reach this point. But since there are infinitely many
possible fairness assumptions which vary widely, we are not able to develop a universal proof
methodology. Practical examples will be given in Chapter 5.

84

4. Distributed Algorithms in Isabelle/HOL

Our main goal is to establish a methodology that enables us to formally model and verify a
given distributed algorithm within a theorem proving environment. This methodology of course
should be applicable for different distributed algorithms and hence we focus on the reusability of
all single parts of our model and verification techniques. This section presents our library that
can be seen as a tool box for modeling and verification of distributed algorithms in Isabelle/HOL.

To have a reusable approach for different algorithms the concept of encapsulating a distributed
algorithm in a locale is borrowed from [CDM11]. Locales for Isabelle are used to section theories
and can be used as a simple form of modules [KWP99]. Theorems proven abstractly for the
locale can then be used for every instantiation of the locale. Hence theorems proven for an
abstract locale DistributedAlgorithm can be used in every concrete instantiation of this locale.
An instantiation of a locale in Isabelle is called interpretation.

This work uses a locale DistributedAlgorithm and accordingly every distributed algorithm
considered in the case study will be an interpretation of this locale or of some extension of this
locale. The different algorithms are thereby defined by passing parameters to the locale. These
parameters correspond to the entries of our tuple representation of a distributed algorithm (cf.
Chapter 2).

Of course the locale DistributedAlgorithm is central to our formalization. But without com-
munication a distributed system would just be a collection of sequential processes. Therefore,
beside the models of concrete algorithms that will be presented in Chapter 5 and the presented
locale, a further essential part of our formalization is the interprocess communication (IPC). A
distributed system may use different options for communication, e.g. message passing, shared
memory, and remote procedure calls. All in all we developed four theories containing definitions,
datastructures and theorems that generally assist with modelling processes, process interactions,
and with proving the correctness of the aggregated distributed system:

1. A theory containing the basic definitions concerning the set of processes (→֒ Isabelle1).

2. A theory containing the presented locale DistributedAlgorithm and additional definitions
and lemmas to work with the locale (→֒ Isabelle2). The theory with the locale uses the
afore mentioned basic definitions (see 1.).

3. Theories featuring the communication via message passing. If communication is supposed
to work over messages these theories can be applied. In the following sections we will
present different versions that have been developed to support different message passing

1Isabelle/HOL theory: DistrAlgBasic.thy
2Isabelle/HOL theory: DistributedAlgorithm.thy

85

4. Distributed Algorithms in Isabelle/HOL

infrastructures. (→֒ Isabelle3, →֒ Isabelle4 and →֒ Isabelle5)

4. A theory for shared memory, i.e. for regular registers (cf. Section 2.3.7, see [Lam85]). Al-
though Regular Registers are only a certain kind of shared memory, many typical problems
and characteristics are enlightened by this example. (→֒ Isabelle6)

To model a newly developed distributed algorithm with our library, an interpretation of our
locale (defined in 2) must be written. The interpretation has to define the parameters for
the locale. Defining actions and events requires to formalize the communication. According
to requirements, the respective communication theory (from 3. or 4.) must be chosen. The
following sections explain the details of the four introduced theories. The descriptions are given
by the annotated Isabelle libraries.

4.1. Basic Definitions

theory DistrAlgBasic imports Main

begin

At first we define the time domain T to be the set of natural numbers.

— we define runs on a discrete timeline
type_synonym T = nat

We axiomatize that the constant N with 1 ≤ N represents the (fixed) number of processes of
the considered distributed system.

axiomatization
N — the count of procs in our Model
where
— There will be at least one process
NgreaterZero: "1≤(N::nat)"

Furthermore, we define a type proc for the processes. We define proc by turning the set
{ n ∈ N | 1 ≤ n ≤ N } into a new type. The correspondent set of natural numbers can be
interpreted as the set of process ids (PIDs).

typedef proc = "{(1::nat)..N}"

definition
proc :: "nat set" where
"proc ≡ {(1::nat)..N}"

The set of processes is now defined as the set of all i of type proc

definition

3Isabelle/HOL theory: MsgPassBasic.thy
4Isabelle/HOL theory: MsgPassNoLoss.thy
5Isabelle/HOL theory: MsgPassWLoss.thy
6Isabelle/HOL theory: Register.thy

86

4.1. Basic Definitions

procs :: "proc set" where
"procs ≡ {i::proc. True}"

Sometimes it will be helpful to order procs by their process id. Hence we define an ordering
on the processes. The function Rep_proc p returns the natural number that corresponds to the
process p (based on the definition of the type proc) and hence is used as the process id of process
p.

abbreviation "PID ≡ Rep_proc"

The ordering is then simply applied from the ordering of natural numbers.

instantiation "proc" :: linorder

begin

Hence, we define p1 < p2 (p1 ≤ p2) if and only if the process id of p1 is smaller (smaller or
equal) than the process id of p2.

definition le_proc_def: "p1 ≤ p2 ≡ PID p1 ≤ PID p2"

definition less_proc_def: "p1 < p2 ≡ PID p1 < PID p2"

instance
end

Our first three lemmas concern the finiteness of sets of processes and process ids:

1. The set of process ids is finite.

2. The set of processes procs is finite.

3. Since there are only N different processes, every arbitrary set of processes must be finite.

Note that the notation PID ‘ procs denotes the set of process ids that are obtained by the
application of PID for every element of procs. Hence

PID ‘ procs , { x | ∃y ∈ procs . PID y = x }

lemma FinitePIDs: shows "finite (PID ‘ procs)"

lemma FiniteProcs: shows "finite procs"

lemma FiniteSubsetProcs: shows "finite (A::proc set)"

The function Abs_proc denotes the inverse function of PID, hence, it returns processes to given
process ids. Since proc is the set of natural numbers from 1 to N, Abs_proc ‘ proc is the set of
processes procs.

lemma ProcsAbs: "procs = Abs_proc ‘ proc"

Finally, we deduce that we have N elements in procs.

lemma ProcsCard: "card procs = N"

end

87

4. Distributed Algorithms in Isabelle/HOL

4.2. Distributed Algorithm

theory DistributedAlgorithm

imports DistrAlgBasic

begin

This theory contains the fundamental definitions for our concept of algorithms and distributed
algorithm as it has been introduced in Section 2.3. This includes:

• Definitions for the types of localviews, configurations, actions etc.

• The definitions of the locales SafeAlgorithm, Algorithm , and DistributedAlgorithm, which
conform to the definitions of algorithms (cf. Definition 2.3.1.3, Definition 2.3.1.8 and
Definition 2.3.2.3)

• Definitions for steps, deadlocks (cf. Definition 2.3.1.4), and runs (cf. Definition 2.3.1.6)

• Definitions for component preserving process-actions, and events (cf. Definition 3.1.0.6)

• Definitions for enabledness (cf. Definition 2.3.1.10)

Moreover, it contains helpful theorems for reasoning over modeled algorithms where an algorithm
is an interpretation of the locale.

At first, we define the basic type conf for a configuration. This type is modeled as a record and
already contains a field P_State for the array of process states (this corresponds to S, cf. Section
2.3.1). The type of process-states depends on the algorithm and hence on the interpretation of
the locale. Therefore, we use a type variable ’ps for the type of the process-state.

record ’ps conf =

P_State :: "proc ⇒ ’ps"

To be able to extend the record for a configuration by further modules, we have to use the
scheme (’ps, ’a) conf_scheme of the defined record ’ps conf (see Section 8.2.2 in [NPW02]).
The extension requires to use a further type variable ’a. Therefore, the type we employ uses
two type variables (’ps,’a). We define a type synonym to abbreviate (’ps, ’a) conf_scheme.

type_synonym (’ps,’a) confT = "((’ps,’a) conf_scheme)"

In the following (’ps, ’a) confT will be used as the type for configurations.

The type of a process-action is a predicate over configuration pairs and processes. We intro-
duce a type procActionT for process-actions:

type_synonym
(’ps, ’a) procActionT = "(((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ proc ⇒ bool)"

Events are predicates over configurations pairs. We introduce a type eventT for events:

type_synonym (’ps, ’a) eventT = "(((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool)"

Note that the type variables for configurations (’ps and ’a) are also required for actions and
events because the type of actions and events depend on the type of configurations.

88

4.2. Distributed Algorithm

4.2.1. Safe Algorithms and Algorithms

Now we are ready to introduce the locale for Safe Algorithms (cf. Definition 2.3.1.3). As
described in Section 2.3.1 a Safe Algorithm is completely defined by the set of valid initial
configurations and the actions and events of the algorithm. Therefore, our locale has three
parameters:

• InitPred : A predicate that defines the initial configurations of the algorithm. In our model
this corresponds to the Init predicate of a distributed algorithm A = (Init, Φ, Ψ, Fad).

• ProcActionSet : A (finite) set of Actions that can be performed by processes. In our model
this corresponds to the set Φ of a distributed algorithm A = (Init, Φ, Ψ, Fad).

• EventSet : A (finite) set of Events. In our model this corresponds to the set Ψ of a
distributed algorithm A = (Init, Φ, Ψ, Fad).

The definition of a Safe Algorithm requires the sets of actions and events to be finite.

locale SafeAlgorithm =

fixes
InitPred :: "((’ps,’a) confT) ⇒ bool" and
ProcActionSet :: "((’ps,’a) procActionT) set" and
EventSet :: "((’ps,’a) eventT) set"

assumes
ActionSetsFin:

"finite ProcActionSet"

"finite EventSet"

context SafeAlgorithm begin

In the context of the locale SafeAlgorithm , we consider an arbitrary fixed Safe Algorithm
A = (Init, Φ, Ψ) (in terms of our Isabelle notation: (InitPred, ProcActionSet, EventSet)).
Hence the variables Init, Φ, and Ψ (which correspond to InitPred,ProcActionSet,EventSet in the
Isabelle formalization) are fixed variables in the following definitions, lemmas and theorems.

As introduced in Section 2.3.1, computation steps of our model generate discrete transitions
from one configuration to the next. As already explained in Section 2.3.1, these steps are caused
by defined actions. Actions can be performed by processes, e.g., if a process manipulates its
state or sends a message the system transits from one state to the next. In most environments
there are also things that occur without any influence of a process. As an example consider
transitions where a message is lost due to the instable communication media. Therefore, we
distinguish the introduced types of actions in our Isabelle-model:

• process-actions - process-actions are performed by processes and hence are ternary relations
between two configurations and one process. If Ap(C,C′, pi) for two configurations C,C′

and a process pi holds then this can be interpreted as pi executes Ap in configuration c
and the result is a transition to configuration c′ (note that in Section 2.3.1 we introduced
the notation C →pi:A C

′ for Ap(C,C′, pi)). Since actions are not always deterministic, there
might be C

′′ 6= C
′ such that Ap(C,C′, pi) and Ap(C,C′′, pi).

89

4. Distributed Algorithms in Isabelle/HOL

• events - events are performed independently from the processes. If A is an event holding for
two configurations C,C′, A happens in configuration C and the system enters configuration
C

′.

These types of actions induce two defined types of steps (cf. Section 2.3.1).

• ProcessSteps - Steps directly caused by processes, i.e. executions of ProcActions.

• Events - Steps that are not caused by a certain process, i.e. occurences of events where no
dedicated process is responsible for the transition to the next configuration.

A Step of the system is then defined as the happening of a process-step or an event-step (cf.
Definition 2.3.1.4).

definition
ProcessStep:: "((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool" where
"ProcessStep c c’ ≡ ∃ i. ∃ A ∈ ProcActionSet. A c c’ i"

definition
Event:: "((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool" where
"Event c c’ ≡ ∃ A ∈ EventSet. A c c’"

definition
Step:: "((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool" (infixl "→" 900) where
"Step c c’ ≡ ProcessStep c c’ ∨ Event c c’"

If the system reaches a configuration where no further step is possible, the system is deadlocked
(cf. Definition 2.3.1.4).

definition
deadlock :: "((’ps,’a) confT) ⇒ bool" where
"deadlock c ≡ ∀ c’. ¬ c → c’"

Verification for an algorithm A requires to make assertions about all possible executions of A.
As explained in Section 2.3.1, a run is an infinite sequence of configurations where InitPred holds
in the initial configuration and every configuration and its successor is in the Step relation (cf.
Definition 2.3.1.6). Of course, deadlocks may occur (configurations where no further steps are
possible). Due to the type restrictions of Isabelle, the option of having finite Runs is avoided and
therefore in these cases stuttering is allowed (see Section 2.3.1, cf. [Lam02]), i.e. to infinitely
repeat the deadlocked configuration. Therefore, we define a predicate FinalStuttering that
allows to stutter if the system is deadlocked.

definition
FinalStuttering :: "((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool" where
"FinalStuttering s s’ ≡ (s = s’) ∧ deadlock s"

definition
Run :: "(T ⇒ ((’ps,’a) confT)) ⇒ bool" where
"Run R ≡ InitPred (R 0) ∧ (∀ t::T. ((R t) → (R (t+1)))

∨ FinalStuttering (R t) (R (t+1)))"

90

4.2. Distributed Algorithm

An InfiniteRun is a run without deadlocks.

definition
InfiniteRun :: "(T ⇒ ((’ps,’a) confT)) ⇒ bool" where
"InfiniteRun R ≡ Run R ∧ (∀ t. ¬ deadlock (R t))"

In the following, we show two basic lemmas for deadlocks. The first states that if a run R
exhibits a deadlock in a configuration R(t) then configuration R(t + 1) is also deadlocked and
we have R(t) = R(t + 1) (the step from R(t) to R(t + 1) is a finalstuttering step):

lemma deadlockLastsForeverStep:

assumes R: "Run R" and tm: "deadlock (R t)"

shows "deadlock (R (Suc t))" "(R t) = (R (Suc t))"

Using the previous lemma, we can now show Proposition Deadlocks last forever (Proposition
2.3.1.7) from Section 2.3.1.

lemma deadlockLastsForever:

assumes R: "Run R" and tm: "deadlock (R t)" and t: "t’ ≥ t"

shows "deadlock (R t’)" "(R t) = (R t’)"

For process-actions, we define a predicate Enabled_A to determine whether it is possible to
execute an action in a given configuration by a given process (cf. Definition 2.3.1.10). For
events, we define the respective predicate Enabled_E. This corresponds to Definition 2.3.1.10.

definition
Enabled_A

:: "((’ps,’a) procActionT)

⇒ ((’ps,’a) confT) ⇒ proc

⇒ bool" where
"Enabled_A A c i ≡ ∃ c’. A c c’ i"

definition
Enabled_E ::

"((’ps,’a) eventT) ⇒ ((’ps,’a) confT) ⇒ bool" where
"Enabled_E A c ≡ ∃ c’. A c c’"

For actions and events we define predicates ComponentPreservingA and ComponentPreservingE.
As described in Definition 3.1.0.6, an action preserves a component if the component is not
changed by the action. For a given component cp the set Ξ_A cp (respectively Ξ_E cp) contains
all process-actions (respectively events) which are not component preserving for cp.

definition
ComponentPreservingA ::

"(((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ proc ⇒ bool)

⇒ (((’ps,’a) confT) ⇒ ’xyz)

⇒ bool" where
"ComponentPreservingA A cp ≡ ∀ i. ∀ c c’. A c c’ i −→ cp c = cp c’"

definition

91

4. Distributed Algorithms in Isabelle/HOL

ComponentPreservingE ::

"(((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool)

⇒ (((’ps,’a) confT) ⇒ ’xyz)

⇒ bool" where
"ComponentPreservingE A cp ≡ ∀ c c’. A c c’ −→ cp c = cp c’"

definition
Ξ_A

:: "(((’ps,’a) confT) ⇒ ’xyz)

⇒ (((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ proc ⇒ bool) set" where
"Ξ_A cp ≡ {A ∈ ProcActionSet. ¬ ComponentPreservingA A cp}"

definition
Ξ_E

:: "(((’ps,’a) confT) ⇒ ’xyz)

⇒ (((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ bool) set" where
"Ξ_E cp ≡ {A ∈ EventSet. ¬ ComponentPreservingE A cp}"

As a basic lemma we show that whenever a configuration R(t) differs from its successor R(t+1)
in a run R

• there is no deadlock in R(t)

• there is either a process-step or an event-step from R(t) to R(t + 1).

This lemma is fundamental for reasoning methods as described in Sections 3.1 and 3.2.

lemma ConfigInv: assumes R: "Run R" and Rneq: "R t 6= R (Suc t)"

shows "¬ deadlock (R t)" "ProcessStep (R t) (R (Suc t))∨ Event (R t) (R (Suc t))"

By the definition of component preserving events(process-steps) it is easy to show that if there
is an event(process-step) between two configurations C and C

′ that preserves component cp, then
cp(C) = cp(C’).

lemma NotConcernedC:

assumes A: "ComponentPreservingE A cp" and step: "A c c’"

shows "cp c = cp c’"

lemma NotConcernedL:

assumes A: "ComponentPreservingA A cp" and step: "A c c’ i"

shows "cp c = cp c’"

If there is a process-step between two configurations C and C
′ and a component cp is not

preserved (i.e. cp(C) 6= cp(C′)), then (of course) there must be a process pi and a process-action
A such that A is executed by pi from C to C

′ and A does not preserve component cp. Therefore,
we can obtain a fixed process-action A ∈ Φ and a process pi ∈ P such that A is one of the
actions in Φ that do not preserve component cp and C →pi:A C

′.

lemma GetProcessAction:

92

4.2. Distributed Algorithm

assumes step: "ProcessStep c c’" and cp: "cp c 6= cp c’"

obtains A i where "A ∈ ProcActionSet" "¬ ComponentPreservingA A cp" "A c c’ i"

The respective lemma for events assumes an event between two configurations C and C
′ and

obtains a fixed A ∈ Ψ that does not preserve component cp.

lemma GetEvent:

assumes step: "Event c c’" and cp: "cp c 6= cp c’"

obtains A where "A ∈ EventSet" "¬ ComponentPreservingE A cp" "A c c’"

Using the introduced lemmas and definitions, we can now show Theorem 3.1.0.7 which helps
to reduce the cases to consider in invariant-based reasoning (cf. Section 3.1):

theorem NonCompPreservingActionsMatter:

assumes R: "Run R"

and x1: "∀ A ∈ (Ξ_A cp). ∀ i.

A (R t) (R (Suc t)) i ∧ P(cp(R t)) −→ P(cp(R (Suc t)))"

and x2: "∀ A ∈ (Ξ_E cp).

A (R t) (R (Suc t)) ∧ P(cp(R t)) −→ P(cp(R (Suc t)))"

shows "P(cp(R t)) −→ P(cp(R (Suc t)))"

To show an invariant P by induction, we can use the following lemma, which states that if
we assume the invariant holds in R(t) and every step preserves the invariant, it still holds in
R(t + 1). Finalstuttering steps do not need to be considered, since they imply R(t) = R(t + 1)
and therefore P (R(t)) = P (R(t + 1)).

lemma FinalStutteringInd:

assumes R: "Run R"

and P: "P (R t)"

and st: "((R t) → (R (t+1))) =⇒ P (R (Suc t))"

shows "P (R (Suc t))"

Based on the definitions of component preserving actions and events we formulate another
induction Theorem CPInduct, which can be used to show invariants and which has been already
discussed in Section 3.2 (cf. Theorem 3.2.0.11). To prove that P (cp(R(t))) holds for every
arbitrary t, we have to show P (cp (R (0))) for the base case. For the step we assume P (cp (R (t)))
for induction hypothesis and have to show that every step that does not preserve cp implies
P (cp (R (t + 1))).

theorem CPInduct: assumes R: "Run R"

and IH: "P (cp (R 0))"

and IS: "
∧

t’ i A.

[[A ∈ Ξ_A cp; A (R t’) (R (Suc t’)) i;P(cp(R t’))]]
=⇒ P (cp (R (Suc t’)))"

"
∧

t’ A.

[[A ∈ Ξ_E cp; A (R t’) (R (Suc t’));P(cp(R t’))]]
=⇒ P (cp (R (Suc t’)))"

shows "P(cp(R t))"

93

4. Distributed Algorithms in Isabelle/HOL

The following theorem can be used to show assertions of the kind of Irrevocability, i.e., propo-
sitions that assert if a condition b(c(R(t))) is satisfied for a component c at time t then for all
t′ ≥ t we have c(R(t)) = c(R(t + 1)) (cf. Theorem 3.2.0.12).

theorem CondGe:

assumes step: "
∧

t’. [[b(c((s::nat⇒((’ps,’a) confT))(t’)))]]
=⇒ c(s(t’)) = c(s(t’+1))"

and b: "b(c(s(t)))"

shows "∀ t’ ≥ t. c(s(t)) = c(s(t’))"

end — Safe Algorithm context

Now we use the definition of a Safe Algorithm to define an Algorithm (cf. Section 2.3.1). For an
Algorithm we extend the definition by a parameter Fad, which corresponds to AdmissiblePreds

in our Isabelle formalization. Fad must be a set of predicates that define the Admissible Runs
of the algorithm (cf. Definition 2.3.1.9).

locale Algorithm = SafeAlgorithm +

fixes
AdmissiblePreds:: "((T ⇒ ((’a,’b) confT)) ⇒ bool) set"

context Algorithm begin

An AdmissibleRun is a run where additionally the predicates in set AdmissiblePreds hold
(which corresponds to Fad in Section 2.3.1).

definition
AdmissibleRun :: "(T ⇒ ((’a,’b) confT)) ⇒ bool" where
"AdmissibleRun R ≡ Run R ∧ (∀ P ∈ AdmissiblePreds. P R)"

end — Algorithm context

4.2.2. Distributed Algorithms

We define a basic type AbsLocalView for a Localview to be used in our definition of a Distributed
Algorithm. This type is modeled as a record and already contains a field P_State_i for process
states (this corresponds to S, cf. Section 2.3.2). The type of process-states depends on the
algorithm and hence on the interpretation of the locale. Therefore, we use a type variable ’ps

for the type of the process-state.

record ’ps AbsLocalView =

P_State_i :: "’ps"

To be able to extend the record for a Localview by further entries, we have to use the
scheme (’ps, ’a) conf_scheme of the defined record ’ps AbsLocalView (see Section 8.2.2 in
[NPW02]). The extension requires to use a further type variable ’b. Therefore the type we
employ uses two type variables (’ps,’b). We define a type synonym to abbreviate (’ps, ’b)

AbsLocalView_scheme :

type_synonym

94

4.2. Distributed Algorithm

(’ps,’b) LocViewT = "((’ps,’b) AbsLocalView_scheme)"

The type of a non-lifted action is L×L→ bool. In Isabelle we define a type synonym for the
type of non-lifted actions:

type_synonym
(’ps, ’b) nonliftedactionT = "((’ps,’b) LocViewT) ⇒ ((’ps,’b) LocViewT) ⇒ bool"

The introduced function Lift depends on the definitions of C2LV and LV2C for the respective
Distributed Algorithm (cf. Definition 2.3.2.2). Therefore in Isabelle we define a parametrized
version ParamLift_A which takes these functions and a non-lifted action as arguments.

definition
ParamLift_A :: "

(((’ps,’a) confT) ⇒ proc ⇒ (’ps,’b) LocViewT)

⇒ ((’ps,’b) LocViewT ⇒ proc ⇒ ((’ps,’a) confT) ⇒ ((’ps,’a) confT))

⇒ ((’ps,’b) nonliftedactionT)

⇒ (’ps,’a) procActionT" where
"ParamLift_A Conf2LocView LocView2Conf a ≡ (λc. λc’. λi::proc. ∃ lv.

a (Conf2LocView c i) lv

∧ c’ = LocView2Conf lv i c)"

For the definition of the type of a DnA, we use a record based on a type variable ’lv for the
type of a Localview.

record ’lv DnA =

enabledcond :: "’lv ⇒ bool"

smallstep :: "’lv ⇒ ’lv"

Analogously to the definition of ParamLift_A , we define a parametrized version of DLift that
takes C2LV, LV2C, and a DnA as arguments and returns a corresponding process-action.

definition
ParamDLift_A :: "

(((’ps,’a) confT) ⇒ proc ⇒ (’ps,’b) LocViewT)

⇒ ((’ps,’b) LocViewT ⇒ proc ⇒ ((’ps,’a) confT) ⇒ ((’ps,’a) confT))

⇒((’ps,’b) LocViewT) DnA

⇒ ((’ps,’a) procActionT)" where
"ParamDLift_A Conf2LocView LocView2Conf a ≡

(λc.λc’.λi. (enabledcond a) (Conf2LocView c i)

∧ c’ = (LocView2Conf ((smallstep a) (Conf2LocView c i)) i c))"

As introduced in Section 2.3.2, we define a predicate LocalViewRespect, which is true if an
process-action respects the Localview of a process (cf. LocalviewRespect). LocalViewRespect

also depends on functions C2LV and LV2C and therefore they must be given as arguments.

definition
LocalViewRespect :: "

(((’ps,’a) confT) ⇒ proc ⇒ (’ps,’b) LocViewT)

⇒ ((’ps,’b) LocViewT ⇒ proc ⇒ ((’ps,’a) confT) ⇒ ((’ps,’a) confT))

⇒ ((’ps,’a) procActionT) ⇒ bool" where
"LocalViewRespect Conf2LocView LocView2Conf A ≡

∃ a. A = ParamLift_A Conf2LocView LocView2Conf a"

95

4. Distributed Algorithms in Isabelle/HOL

We show that every lifted DnA satisfies LocalViewRespect for arbitrary functions C2LV and
LV2C (by the definition of LocalViewRespect this is equivalent to Theorem 2.3.3.3).

lemma DLiftImpLocalViewRespect1:

"LocalViewRespect C2LV LV2C (ParamDLift_A C2LV LV2C a)"

Let ap be a set of DnAs. By the previous lemma we can deduce that every process-action A
in the set of the lifted actions of ap satisfies LocalViewRespect.

theorem DLiftImpLocalViewRespect2: fixes
"Conf2LocView"::"

(((’ps,’a) confT) ⇒ proc ⇒ (’ps,’b) LocViewT)" and
"LocView2Conf"::

"((’ps,’b) LocViewT ⇒ proc ⇒ ((’ps,’a) confT) ⇒ ((’ps,’a) confT))"

assumes a: "A ∈ ((ParamDLift_A Conf2LocView LocView2Conf) ‘ ap)"

shows "LocalViewRespect Conf2LocView LocView2Conf A"

As explained in Section 2.3.1, we use a predicate LocallyEqual to formulate the assertion
NoRemoteAccess. Two configurations are LocallyEqual for a process i ∈ P if and only if
the process-state of i and the extension (the states of the further modules) are equal in both
configurations.

definition
LocallyEqual :: "((’ps,’a) confT) ⇒ ((’ps,’a) confT) ⇒ proc ⇒ bool" where
"LocallyEqual c1 c2 i ≡ P_State c1 i = P_State c2 i ∧ conf.more c1 = conf.more c2"

Now we are able to define the locale for a Distributed Algorithm. For the definition we extend
the defined algorithm by the parameters for C2LV and LV2C. Furthermore, we postulate that
for a Distributed Algorithm the constraints locViewProp1, locViewProp2, LocalviewRespect,
NoRemoteAccess and StateInvEv must be satisfied (cf. definition2.3.2.3). Therefore, we add the
assumptions locViewProp1, locViewProp2, LocalViewRespect, NoRemoteAccess and StateInvEv to
our locale.

locale DistributedAlgorithm = Algorithm +

fixes
Conf2LocView :: "((’a,’b) confT) ⇒ proc ⇒ (’a,’lvt) LocViewT" and
LocView2Conf :: "(’a,’lvt) LocViewT ⇒ proc ⇒ ((’a,’b) confT) ⇒ ((’a,’b) confT)"

assumes
StateInvEv:

"
∧

c c’ A. [[A∈EventSet; A c c’]]=⇒ P_State c = P_State c’" and
locViewProp1:

"LocView2Conf (Conf2LocView c i) i c = c" and
locViewProp2:

"P_State (LocView2Conf lv i c) = (P_State c) (i := P_State_i lv)" and
LocalViewRespect:

"
∧

A. [[A ∈ ProcActionSet]] =⇒ LocalViewRespect Conf2LocView LocView2Conf A" and
NoRemoteAccess:

"
∧

c c’ A i c1.

[[A∈ProcActionSet; A c c’ i; LocallyEqual c c1 i]]

96

4.2. Distributed Algorithm

=⇒ A c1 (|P_State = (P_State c1)(i := P_State c’ i), . . . = conf.more c’ |) i"

For every interpretation of this locale it has to be shown that the action sets are finite and the
assertions locViewProp1, locViewProp2, LocalviewRespect, NoRemoteAccess, and StateInvEv
hold for the concrete instances of the parameters.

This models a distributed algorithm as introduced in Chapter 2. Starting from the defined
initial configurations, the execution of the algorithm corresponds to the successive execution of
actions from the given action sets.

context DistributedAlgorithm begin

In the context of the locale DistributedAlgorithm , we consider an arbitrary fixed Distributed
Algorithm A = (Init, Φ, Ψ, Fad, C2LV, LV2C).

For A we can deduce from locViewProp1 and locViewProp2 that for a process pi and a
configuration C we have SC(pi) = SC2LV(C,pi).

lemma locViewProp0: shows "P_State_i (Conf2LocView c i) = P_State c i"

By StateInvEv we have that events do not manipulate the process states. By LocalviewRe-
spect we can deduce that processes do only manipulate their own process state if they execute
a process-action but not the process state of other processes.

lemma StateInv:

"
∧

c c’ i j A. [[A∈ProcActionSet; A c c’ i; P_State c j 6= P_State c’ j]]=⇒ i = j"

"
∧

c c’ A. [[A∈EventSet; A c c’]]=⇒ P_State c = P_State c’"

Therefore, if there is a process pj 6= pi and pi executes a process-action A from a configuration
C to a configuration C

′, then SC(pj) = SC′(pj).

lemma StateNotConcerned:

assumes A: "A ∈ ProcActionSet"

and step: "A c c’ i"

and i: "i 6= j"

shows "P_State c j = P_State c’ j"

Since events do not manipulate the process states, every A ∈ Ψ preserves the component
S (note that S can be interpreted as a component since it maps configurations to an array of
process states).

lemma EventspreserveStates:

assumes R: "Run R" and A: "A ∈ EventSet"

shows "ComponentPreservingE A P_State"

Furthermore, since events do not manipulate process states, we can deduce that if we have
SR(t) 6= SR(t+1) there must be a process-action A and a process pi such that R(t) →pi:A R(t+1).
Hence, we can obtain the respective action and process.

lemma GetAction:

assumes R: "Run R"

97

4. Distributed Algorithms in Isabelle/HOL

and st: "P_State (R t) i 6= P_State (R (Suc t)) i"

obtains A where "A ∈ ProcActionSet" "A (R t) (R (Suc t)) i"

As described in Section 3.1, for showing invariants that are assertions on process states we
do not need to consider events but only process-actions in the respective case distinction (cf.
Corollary 3.1.0.9).

corollary NonStPreservingPAMatter:

assumes R: "Run R"

and x1: "∀ A ∈ (Ξ_A P_State). ∀ i.

A (R t) (R (Suc t)) i ∧ P(P_State(R t)) −→ P(P_State(R (Suc t)))"

shows "P(P_State(R t)) −→ P(P_State(R (Suc t)))"

As stated in Section 3.1, if we have an assertion about the state of pi, it suffices to consider
the cases in which pi executes a process − action (cf. Theorem 3.1.0.10).

corollary NonStPreservingPAMatter2:

assumes R: "Run R" and
x1: "∀ A ∈ (Ξ_A P_State).

A (R t) (R (Suc t)) i ∧ P((P_State(R t))i) −→ P(P_State((R (Suc t)))i)"

shows "P((P_State(R t))i) −→ P((P_State(R (Suc t)))i)"

end — Distributed Algorithm context

end — theory

4.3. Message Passing

theory MsgPassBasic

imports DistrAlgBasic

begin

This theory implements the basic concepts introduced in Section 2.3.5. It provides the funda-
mental functions to keep track of messages by using a Message History module. To be used by a
distributed algorithm the type of a configuration must be extended by an entry for the Message
History. A basic type for this entry is defined in this theory but the type actually used depends
on the type of messages the algorithm defines. A basic message type Message is introduced as a
record in this module. It should be extended by entries for the content of messages. The basic
type only provides the entries snd and rcv for the sender and the receiver of a message.

record Message =

snd :: proc

rcv :: proc

As described in Section 2.3.5, a Message History maps messages to message status values.
Since we assume there might be multiple copies of a message in the system, the message status
counts the number of copies for each possible status. As introduced in Section 2.3.5, the basic

98

4.3. Message Passing

options for the status of a message are given by the set Tags= { outgoing, transit, received }.
These basic options will be extended later by the theory for message loss (cf. Section 2.3.5,
Message passing with message loss).

record MsgStatus =

outgoing :: nat

transit :: nat

received :: nat

Using the types Message and MsgStatus, we define a type synonym for the type of a Message
History. As already explained, a Message History is a mapping from messages to message status
values. Since both types Message and MsgStatus are supposed to be extended, we have to use
the schemes ’a Message_scheme and ’exMS MsgStatus_scheme of the defined records (see Section
8.2.2 in [NPW02]). Therefore, the resulting type synonym makes use of two type variables: ’a

for the extension of a message and ’exMS for the extension of the message status.

type_synonym
(’a,’exMS) msghistoryT = "(’a Message_scheme) ⇒ (’exMS MsgStatus_scheme)"

To add an outgoing message, we define a function incOutgoing, which takes a message status
and increments the value for the outgoing copies and returns a modified message status.

definition
incOutgoing :: "(’exMS MsgStatus_scheme) ⇒ (’exMS MsgStatus_scheme)" where
"incOutgoing st ≡ st (|outgoing := Suc (outgoing st) |)"

Furthermore, we define the functions outMsgs, transitmsgs, and recmsgs as introduced in
Definition 2.3.5.1 in Isabelle as OutgoingMsgs,TransitMsgs and ReceivedMsgs.

definition
OutgoingMsgs :: "((’a,’exMS) msghistoryT) ⇒ ((’a Message_scheme) set)" where
"OutgoingMsgs M ≡ {m. outgoing (M m) > 0}"

definition
TransitMsgs :: "((’a,’exMS) msghistoryT) ⇒ ((’a Message_scheme) set)" where
"TransitMsgs M ≡ {m. transit (M m) > 0}"

definition
ReceivedMsgs :: "((’a,’exMS) msghistoryT) ⇒ ((’a Message_scheme) set)" where
"ReceivedMsgs M ≡ {m. received (M m) > 0}"

To send a set of messages, we introduced the subaction MultiSend in Section 2.3.5. This
subaction returns true for two Message Histories Q and Q′ and a set of messages msgs if Q′ is
an update of Q such that each outgoing value of each message of the set msgs is incremented
by one in Q′.

definition
MultiSend :: "

((’a,’exMS) msghistoryT)

⇒ ((’a,’exMS) msghistoryT)

⇒ (’a Message_scheme) set

⇒ bool" where

99

4. Distributed Algorithms in Isabelle/HOL

"MultiSend Q Q’ msgs ≡ Q’ = (λm. if (m ∈ msgs) then incOutgoing (Q m) else Q m)"

For the use with DnAs, we provide a functional version MultiSend_Get of MultiSend. For
a given Message History Q and a set of messages msgs, MultiSend_Get returns the updated
Message History Q′, where each value of Q′ is equal to the value of Q but the outgoing values
of the messages in msgs are incremented by one.

definition
MultiSend_Get ::

"((’a,’exMS) msghistoryT)

⇒ ((’a Message_scheme) set)

⇒ ((’a,’exMS) msghistoryT)" where
"MultiSend_Get Q msgs ≡ (λm. if (m ∈ msgs) then incOutgoing (Q m) else Q m)"

In the following, the subactions Send, Transmit, Receive, and Duplicate are defined as intro-
duced in Section 2.3.5:

• Send increments the outgoing value of a single message.

• Transmit decrements the outgoing and increments the transit value of a given message.

• Receive decrements the transit and increments the received value of a given message.

• Duplicate creates another copy of a message in transit by incrementing the transit value.

Note that these subactions are only enabled if the values that are decremented from Q to Q′ are
greater than zero. Furthermore, the execution of Duplicate requires that there must be at least
one message that can be copied, i.e. the value transit of the given message must be greater
than zero.

definition
Send ::

"((’a,’exMS) msghistoryT)

⇒ ((’a,’exMS) msghistoryT)

⇒ (’a Message_scheme)

⇒ bool" where
"Send Q Q’ m ≡ Q’ = Q (m := (incOutgoing (Q m)))"

definition
Transmit ::

"((’a,’exMS) msghistoryT)

⇒ ((’a,’exMS) msghistoryT)

⇒ (’a Message_scheme)

⇒ bool" where
"Transmit Q Q’ m ≡ m ∈ OutgoingMsgs Q

∧ Q’ = Q (m := (Q m)

(| outgoing := (outgoing (Q m))-(1::nat),

transit := Suc(transit (Q m)) |))"

definition
Receive ::

100

4.3. Message Passing

"((’a,’exMS) msghistoryT)

⇒ ((’a,’exMS) msghistoryT)

⇒ (’a Message_scheme)

⇒ bool" where
"Receive Q Q’ m ≡ m ∈ TransitMsgs Q

∧ Q’ = Q (m := (Q m)

(| transit := transit (Q m)-(1::nat),

received := Suc(received (Q m)) |))"

definition
Duplicate ::

"((’a,’exMS) msghistoryT)

⇒ ((’a,’exMS) msghistoryT)

⇒ (’a Message_scheme)

⇒ bool" where
"Duplicate Q Q’ m ≡ m ∈ TransitMsgs Q

∧ Q’ = Q (m := (Q m)(| transit := Suc(transit (Q m)) |))"

end — theory

4.3.1. Message Passing without Message Loss

theory MsgPassNoLoss

imports MsgPassBasic

begin

This theory extends the basic theory for message passing for the case where there is no message
loss and therefore the message status record needs no further entries.

In this case, for a Message History Q the set of messages msgs(Q) (cf. Section 2.3.5) is the
set of messages where for each m ∈ msgs(Q) at least one of the values outgoing, transit, or
received is greater than zero.

definition Msgs ::

"((’a Message_scheme)

⇒ MsgStatus)

⇒ ((’a Message_scheme) set)" where
"Msgs M ≡ {m. outgoing (M m) > 0 ∨ transit (M m) > 0 ∨ received (M m) > 0}"

Initially there are no messages or copies of messages in the system. Hence, we assume that
every initial Message History must return zero values for the outgoing, transit, and received
values of every message. Therefore, we define the initial Message History as follows:

definition InitialMsgHistory :: "(’a Message_scheme) ⇒ MsgStatus" where
"InitialMsgHistory ≡ (λm. (|outgoing = 0, transit = 0, received = 0|))"

In Section 2.3.5 we introduced functions SumReceived Q, SumTransit Q, and SumOutgoing Q

to determine the corresponding numbers of copies of messages that are received, in transit
and outgoing in a Message History Q. In the following, these functions are defined in Isabelle
as RemReceived, RemTransit, and RemOutgoing.

101

4. Distributed Algorithms in Isabelle/HOL

definition RemReceived :: "((’a Message_scheme) ⇒ MsgStatus) ⇒ nat" where
"RemReceived Q = (

∑

m ∈ Msgs Q. received (Q m))"

definition RemTransit :: "((’a Message_scheme) ⇒ MsgStatus) ⇒ nat" where
"RemTransit Q = (

∑

m ∈ Msgs Q. transit (Q m))"

definition RemOutgoing :: "((’a Message_scheme) ⇒ MsgStatus) ⇒ nat" where
"RemOutgoing Q = (

∑

m ∈ Msgs Q. outgoing (Q m))"

Finally, the sum of all messages in a Message History Q is retrieved by adding the return values
of all three defined functions. Hence, the corresponding function for SumMsgs Q is defined as
follows:

definition SumMessages :: "((’a Message_scheme) ⇒ MsgStatus) ⇒ nat" where
"SumMessages Q = (RemReceived Q + RemTransit Q + RemOutgoing Q)"

As explained in Section 2.3.5, we use a function MaxRemMsgMoves to calculate how many
transitions due to the movement of messages in a Message History Q are possible. This function
is here given by MaxRemMsgMoves :

definition MaxRemMsgMoves :: "((’a Message_scheme) ⇒ MsgStatus) ⇒ nat" where
"MaxRemMsgMoves Q = RemTransit Q + (2*RemOutgoing Q)"

Sometimes it is easier to use alternative definitions for SumReceived Q, SumTransit Q, and
SumOutgoing Q in the proofs. Therefore, the following lemmas provide alternative representa-
tions where summation is only made over the respective recmsgs Q, transitmsgs Q, and outMsgs Q

sets.

lemma RemReceivedAlt:

assumes fin: "finite (Msgs Q)"

shows "RemReceived Q = (
∑

m ∈ ReceivedMsgs Q. received (Q m))"

lemma RemTransitAlt:

assumes fin: "finite (Msgs Q)"

shows "RemTransit Q = (
∑

m ∈ TransitMsgs Q. transit (Q m))"

lemma RemOutgoingAlt:

assumes fin: "finite (Msgs Q)"

shows "RemOutgoing Q = (
∑

m ∈ OutgoingMsgs Q. outgoing (Q m))"

As explained in Section 2.3.5, for the different message sets we can deduce some simple
properties like subset relations etc. (cf. Proposition 2.3.5.3, Proposition 2.3.5.4, Proposition
A.0.0.2, Proposition A.0.0.3, and Proposition A.0.0.4). Therefore, the following lemmas support
convenient reasoning over those message sets by listing up simple facts, which are retrieved by
using the definitions.

lemma MsgsProps:

shows
"OutgoingMsgs c ⊆ Msgs c"

"TransitMsgs c ⊆ Msgs c"

102

4.3. Message Passing

"ReceivedMsgs c ⊆ Msgs c"

"OutgoingMsgs c ∪ TransitMsgs c ∪ ReceivedMsgs c = Msgs c"

lemma MultiSendProps:

assumes x:

"MultiSend c c’ msgs"

shows
"OutgoingMsgs c’ = OutgoingMsgs c ∪ msgs"

"TransitMsgs c’ = TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c"

lemma MultiSendMsgChange:

assumes x: "MultiSend c c’ msgs"

shows
"Msgs c ⊆ Msgs c’"

"Msgs c’ = Msgs c ∪ msgs"

lemma TransmitProps:

assumes x: "Transmit c c’ m"

shows
"OutgoingMsgs c’ ∪ {m} = OutgoingMsgs c"

"OutgoingMsgs c’ ⊆ OutgoingMsgs c"

"TransitMsgs c’ = TransitMsgs c ∪ {m}"

"ReceivedMsgs c’ = ReceivedMsgs c"

lemma ReceiveProps:

assumes x: "Receive c c’ m"

shows
"TransitMsgs c’ ∪ {m} = TransitMsgs c"

"OutgoingMsgs c’ = OutgoingMsgs c"

"TransitMsgs c’ ⊆ TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c ∪ {m}"

lemma SendProps:

assumes x: "Send c c’ m"

shows
"OutgoingMsgs c’ = OutgoingMsgs c ∪ {m}"

"OutgoingMsgs c ⊆ OutgoingMsgs c’"

"TransitMsgs c’ = TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c"

lemma DuplicateProps:

assumes x: "Duplicate c c’ m"

shows
"OutgoingMsgs c’ = OutgoingMsgs c"

"TransitMsgs c’ = TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c"

"Msgs c = Msgs c’"

103

4. Distributed Algorithms in Isabelle/HOL

lemma SendMsgChange:

assumes x: "Send c c’ m"

shows
"Msgs c ⊆ Msgs c’"

"Msgs c’ = Msgs c ∪ {m}"

Since subactions Receive, and Transmit only shift messages between the different subsets of
msgs Q, the execution of such a subaction does not change msgs Q. This is expressed by the
lemma MsgsInvariant (cf. Proposition 2.3.5.5).

lemma MsgsInvariant:

shows
"Receive c c’ m =⇒ Msgs c’ = Msgs c"

"Transmit c c’ m =⇒ Msgs c’ = Msgs c"

The following lemma describes how a Transmit step affects SumOutgoing, SumTransit, and
SumReceived (cf. Lemma 2.3.5.6).

lemma TransmitInv:

assumes fin: "finite (Msgs Q)"

and tm: "Transmit Q Q’ m"

shows
"RemOutgoing Q > 0"

"RemTransit Q’ = Suc (RemTransit Q)"

"RemOutgoing (Q’) = RemOutgoing (Q)-(1::nat)"

"RemReceived Q’ = RemReceived Q"

Analogously to the previous lemma, the following lemma describes how a Receive step affects
SumOutgoing, SumTransit, and SumReceived (cf. Lemma 2.3.5.7).

lemma ReceiveInv:

assumes fin: "finite (Msgs Q)"

and tm: "Receive Q Q’ m"

shows
"RemTransit Q > 0"

"RemOutgoing Q’ = RemOutgoing Q"

"RemTransit (Q’) = RemTransit (Q)-(1::nat)"

"RemReceived Q’ = Suc (RemReceived Q)"

By the previous two lemmas we can deduce that the sum of messages is invariant under the
execution of the subactions Transmit, and Receive(cf. Theorem 2.3.5.8).

lemma SumInv:

assumes fin: "finite (Msgs Q)"

shows
"Transmit Q Q’ m =⇒ SumMessages Q = SumMessages Q’"

"Receive Q Q’ m =⇒ SumMessages Q = SumMessages Q’"

104

4.3. Message Passing

end — theory

4.3.2. Message Passing with Message Loss

theory MsgPassWLoss

imports MsgPassBasic

begin

This theory extends our basic theory for message passing for the case in which message loss
is possible during the transmission of the message. Therefore, the message status record needs
to be extended by an entry for the lost messages (cf. Section 2.3.5).

record MsgStatusWLoss = MsgStatus +

lost :: nat

Hence, a Message History is a mapping from message schemes to the new type
MsgStatusWLoss.

type_synonym
’a msghistoryT = "(’a Message_scheme) ⇒ MsgStatusWLoss"

As for the case with no message loss, initially there are no messages or copies of messages in
the system. Hence, we assume that every initial Message History must return zero values for
the outgoing, transit, received and also for the lost values of every message. Therefore, we
define the initial Message History as follows:

definition InitialMsgHistory :: "’a msghistoryT" where
"InitialMsgHistory ≡ (λm. (|outgoing = 0, transit = 0, received = 0, lost = 0|))"

In this case, for a Message History C the set of messages msgs(C) (cf. Section 2.3.5) is the set
of messages where for each m ∈ msgs(C) at least one of the values outgoing, transit, received
or lost is greater than zero.

definition Msgs ::

"(’a msghistoryT) ⇒ ((’a Message_scheme) set)" where
"Msgs C ≡ {m. outgoing (C m) > 0

∨ transit (C m) > 0

∨ received (C m) > 0

∨ lost (C m) > 0}"

In addition to the sets outMsgs C, transitmsgs C and recmsgs C that have been defined in
MsgPassBasic we define the set lostmsgs C for the messages that have been lost (cf. Section
2.3.5).

definition LostMsgs :: "(’a msghistoryT) ⇒ ((’a Message_scheme) set)" where
"LostMsgs C ≡ {m. lost (C m) > 0}"

Furthermore, in addition to the subactions MultiSend, Send, Transmit, and Receive, we pro-
vide a subaction Lose to describe how a message gets lost (cf. Section 2.3.5). For a loss of a
message we decrement the transit and increment the lost value of a message.

105

4. Distributed Algorithms in Isabelle/HOL

definition Lose ::

"(’a msghistoryT)

⇒ (’a msghistoryT)

⇒ (’a Message_scheme)

⇒ bool" where
"Lose C C’ m ≡ m ∈ TransitMsgs C

∧ C’ = C (m := (C m)(| transit := transit (C m)-(1::nat), lost := Suc(lost (C m)) |))"

As for the case without message loss, for the different message sets we can deduce some simple
properties like subset relations etc. (cf. Proposition 2.3.5.3, Proposition 2.3.5.4, Proposition
A.0.0.2, Proposition A.0.0.3 and Proposition A.0.0.4). Therefore, the following lemmas support
convenient reasoning over those message sets by listing up simple facts, which are retrieved by
using the definitions. The respective lemmas are very similar to the case without message loss
but are adapted for the set lostmsgs C and for the subaction Lose.

lemma MsgsProps:

shows
"OutgoingMsgs c ⊆ Msgs c"

"OutgoingMsgs c ⊆ Msgs c"

"TransitMsgs c ⊆ Msgs c"

"ReceivedMsgs c ⊆ Msgs c"

"LostMsgs c ⊆ Msgs c"

"OutgoingMsgs c ∪ TransitMsgs c ∪ ReceivedMsgs c ∪ LostMsgs c = Msgs c"

lemma MultiSendProps:

assumes x: "MultiSend c c’ msgs"

shows
"OutgoingMsgs c’ = OutgoingMsgs c ∪ msgs"

"TransitMsgs c’ = TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c"

"LostMsgs c’ = LostMsgs c"

lemma MultiSendMsgChange:

assumes x: "MultiSend c c’ msgs"

shows
"Msgs c ⊆ Msgs c’"

"Msgs c’ = Msgs c ∪ msgs"

lemma SendMsgChange:

assumes x: "Send c c’ m"

shows
"Msgs c ⊆ Msgs c’"

"Msgs c’ = Msgs c ∪ {m}"

lemma SendProps:

assumes x: "Send c c’ m"

shows
"OutgoingMsgs c’ = OutgoingMsgs c ∪ {m}"

"OutgoingMsgs c ⊆ OutgoingMsgs c’"

106

4.3. Message Passing

"TransitMsgs c’ = TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c"

"LostMsgs c’ = LostMsgs c"

lemma TransmitProps:

assumes x: "Transmit c c’ m"

shows
"OutgoingMsgs c’ ∪ {m} = OutgoingMsgs c"

"OutgoingMsgs c’ ⊆ OutgoingMsgs c"

"TransitMsgs c’ = TransitMsgs c ∪ {m} "

"ReceivedMsgs c’ = ReceivedMsgs c"

"LostMsgs c’ = LostMsgs c"

"Msgs c = Msgs c’"

lemma ReceiveProps:

assumes x: "Receive c c’ m"

shows
"TransitMsgs c’ ∪ {m} = TransitMsgs c"

"OutgoingMsgs c’ = OutgoingMsgs c"

"TransitMsgs c’ ⊆ TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c ∪ {m}"

"LostMsgs c’ = LostMsgs c"

"Msgs c = Msgs c’"

lemma DuplicateProps:

assumes x: "Duplicate c c’ m"

shows
"OutgoingMsgs c’ = OutgoingMsgs c"

"TransitMsgs c = TransitMsgs c’"

"ReceivedMsgs c’ = ReceivedMsgs c"

"LostMsgs c’ = LostMsgs c"

"Msgs c = Msgs c’"

lemma LoseProps:

assumes x: "Lose c c’ m"

shows
"OutgoingMsgs c’ = OutgoingMsgs c"

"TransitMsgs c’ ⊆ TransitMsgs c"

"ReceivedMsgs c’ = ReceivedMsgs c"

"LostMsgs c’ = LostMsgs c ∪ {m}"

"Msgs c = Msgs c’"

end — theory

107

4. Distributed Algorithms in Isabelle/HOL

4.4. Regular Registers

theory Register

imports DistributedAlgorithm

begin

This theory provides datastructures, definitions, and theorems for modeling Distributed Al-
gorithms that use shared memory, i.e., the Regular Register abstraction, which was introduced
by Lamport (cf. [Lam85]). Since Lamport’s abstractions are action-based, whereas our model
is state-based, in Section 2.3.7 we introduced a new state-based model for Regular Registers. A
main contribution of this theory is a proof which shows that both models are equivalent. The
main ideas of this model and of the proof have already been discussed in Section 2.3.7. There-
fore, in the following we will focus on the specific characteristics of the Isabelle formalization
and only give references to the definitions, theorems, and explanations of Section 2.3.7.

For Vreg we use a type variable ’content which represents the possible content of a register.
As introduced in Section 2.3.7 processes make use of a read-oriented and a write-oriented view
on the registers in our model. As explained, during the transient phase of writing, the value
vieww of the write-oriented view is a pair (vold, vnew) ∈ (Vreg × Vreg). For the stable phases
between two write operations, the value of vieww is a value v ∈ Vreg. In Isabelle, we model this
by a datatype reg_state :

datatype ’content reg_state =

WriteInProgress "’content" "’content"

| WriteStable "’content"

Therefore, a variable of type ’content reg_state can either be WriteInProgress vold vnew

or WriteStable v, where vold,vnew and v are arbitrary values of type ’content.

The introduced function vset is therefore defined as follows (in Isabelle we use the name
regValueSet):

definition regValueSet

:: "’content reg_state ⇒ ’content set" where
"regValueSet reg ≡ (case reg of

(WriteStable cnt) ⇒ {cnt}

| (WriteInProgress cnt cnt’) ⇒ {cnt,cnt’})"

For a variable vieww of type ’content reg_state, it returns a set V , where V contains only cnt

if vieww = WriteStable cnt and if vieww = WriteInProgress cnt cnt’ then V = {cnt, cnt’}.
It is easy to see that for a given x, regValueSet x can never be the empty set.

lemma regValueNotEmpty: shows "regValueSet x 6= {}"

We use another datatype to model the different phases of Rphs:

datatype RegPhase = RIdle | RReading "proc" | RWriting

Note that we use a parameter to store which register a process reads. Since there is only one
register that a process is allowed to write, this parameter is not needed for the writing phase.

As described in Section 2.3.7, the register status of a process pi is a triple with three entries:

108

4.4. Regular Registers

• the register phase of pi

• pi’s write-oriented view on its own register Regpi

• pi’s read-oriented view on all registers

In Isabelle, we make use of a record to easen the access to the single entries.

record ’content ProcRegStatus =

regphs :: RegPhase

wReg :: "’content reg_state"

rRegs:: "proc ⇒ ’content set"

The type of a Shared Memory History is then defined as a mapping from P to the set of
register status values:

type_synonym ’content shmemhistoryT = "proc ⇒ ’content ProcRegStatus"

4.4.1. Subactions and Atoms

Now we define the different subactions as they have defined and explained in Section 2.3.7. We
start with the subactions for the begin and end of a write operation, followed by the begin and
end of a read operation. Details, explanations and examples for applications are given in Section
2.3.7 (cf. subactions WriteBegin, WriteEnd, RdBegin, RdEnd).

— For the begin of a write operation
definition

RegWriteBegin ::

"(’content shmemhistoryT)

⇒ (’content shmemhistoryT)

⇒ proc

⇒ ’content

⇒ bool" where
"RegWriteBegin c c’ i cnt’ ≡
regphs (c i) = RIdle

∧ (∃ cnt. wReg (c i) = WriteStable cnt

∧ c’ = (λj. (|
regphs = (if (i = j) then RWriting else regphs (c j)),

wReg = (if (i = j) then WriteInProgress cnt cnt’ else wReg (c j)),

rRegs= (rRegs (c j)) (i:= rRegs (c j) i ∪ {cnt’})

|)))"

— For the end of a write operation
definition

RegWriteEnd ::

"(’content shmemhistoryT)

⇒ (’content shmemhistoryT)

⇒ proc

⇒ bool" where
"RegWriteEnd c c’ i ≡
regphs (c i) = RWriting

109

4. Distributed Algorithms in Isabelle/HOL

∧ (∃ cnt cnt’. wReg (c i) = WriteInProgress cnt cnt’

∧ c’ = (c) (i := (| regphs = RIdle, wReg = WriteStable cnt’, rRegs = rRegs (c i) |)))"

— For the begin of a read operation
definition

RegReadBegin ::

"(’content shmemhistoryT)

⇒ (’content shmemhistoryT)

⇒ proc

⇒ proc

⇒ bool" where
"RegReadBegin c c’ i regno ≡
regphs (c i) = RIdle

∧ c’ = (c) (i := (| regphs = RReading regno,

wReg = wReg (c i),

rRegs = (rRegs (c i))

(regno := regValueSet (wReg (c regno)))

|))"

— For the end of a read operation
definition RegReadEnd ::

"(’content shmemhistoryT)

⇒ (’content shmemhistoryT)

⇒ proc

⇒ proc

⇒ ’content

⇒ bool" where
"RegReadEnd c c’ i regno cnt ≡
regphs (c i) = RReading regno

∧ cnt ∈ ((rRegs (c i)) regno)

∧ c’ = (c) (i := (| regphs = RIdle, wReg = wReg (c i), rRegs = (rRegs (c i)) |))"

As explained in Section 2.3.7, we also provide atoms for the use in DnAs. As described for each
subaction a two atoms aen (for the use in the enabled predicate of a DnA) and a∆ (for the use
in the transition function of a DnA) are defined (cf. WriteBeginen, WriteBegin∆, WriteEnden,
WriteEnd∆, RdBeginen, RdBegin∆, RdEnden, RdEnd∆). In Isabelle we denote aen atoms by
a_Enabled and the a∆ atoms by a_Delta.

— Atoms for RegWriteBegin

definition
RegWriteBegin_Enabled ::

"(’content shmemhistoryT)

⇒ proc

⇒ bool" where
"RegWriteBegin_Enabled c i ≡ regphs (c i) = RIdle

∧ (∃ cnt. wReg (c i) = WriteStable cnt)"

definition
RegWriteBegin_Delta ::

"(’content shmemhistoryT)

110

4.4. Regular Registers

⇒ proc

⇒ ’content

⇒ (’content shmemhistoryT)" where
"RegWriteBegin_Delta c i cnt’ ≡

(λj. let cnt = (ǫ cnt. wReg (c i) = WriteStable cnt) in

(| regphs = (if (i = j) then RWriting else regphs (c j)),

wReg = (if (i = j) then

WriteInProgress cnt cnt’

else

wReg (c j)),

rRegs = (rRegs (c j)) (i:= rRegs (c j) i ∪ {cnt’})

|))"

— Atoms for RegWriteEnd

definition
Enabled_RegWriteEnd ::

"(’content shmemhistoryT)

⇒ proc

⇒ bool" where
"Enabled_RegWriteEnd c i ≡ regphs (c i) = RWriting

∧ (∃ cnt cnt’. wReg (c i) = WriteInProgress cnt cnt’)"

definition
RegWriteEnd_Delta ::

"(’content shmemhistoryT)

⇒ proc

⇒ (’content shmemhistoryT)" where
"RegWriteEnd_Delta c i ≡

let cnt’ = (ǫ cnt’. ∃ cnt. wReg (c i) = WriteInProgress cnt cnt’) in

((c) (i := (c i)(| regphs := RIdle, wReg := WriteStable cnt’ |)))"

— Atoms for RegReadBegin

definition Enabled_RegReadBegin ::

"(’content shmemhistoryT)

⇒ proc

⇒ bool" where
"Enabled_RegReadBegin c i ≡ regphs (c i) = RIdle"

definition RegReadBegin_Delta ::

"(’content shmemhistoryT)

⇒ proc

⇒ proc

⇒ (’content shmemhistoryT)" where
"RegReadBegin_Delta c i regno ≡

(c) (i := (| regphs = RReading regno,

wReg = wReg (c i),

rRegs = (rRegs (c i))

(regno := regValueSet (wReg (c regno)))

111

4. Distributed Algorithms in Isabelle/HOL

|))"

— Atoms for RegReadEnd

definition
Enabled_RegReadEnd ::

"(’content shmemhistoryT)

⇒ proc

⇒ proc

⇒ ’content

⇒ bool" where
"Enabled_RegReadEnd c i regno cnt ≡
regphs (c i) = RReading regno

∧ cnt ∈ ((rRegs (c i)) regno)"

definition
RegReadEnd_Delta ::

"(’content shmemhistoryT)

⇒ proc

⇒ (’content shmemhistoryT)" where
"RegReadEnd_Delta c i ≡ (c) (i :=

(| regphs = RIdle,

wReg = wReg (c i),

rRegs = (rRegs (c i))

|))"

By the following theorems, we prove that the subactions WriteBegin, WriteEnd, RdBegin,
and RdEnd can be constructed from the respective atoms (cf. Theorem 2.3.7.5). In order to
prove the main result, for every subaction a we show that (⇒) if the enabled predicate a_enabled

holds for a Shared Memory History c and a process i and the Shared Memory History c’ equals
a_Delta c i, then a c c’ i holds and (⇐) vice versa (note that for some cases more parameters
are required for the atoms and the subactions). Theorems RWBEqEnExecRWB, RWEEqEnExecRWE,
RRBEqEnExecRRB and RREEqEnExecRRE constitute Theorem 2.3.7.5. For each theorem we prove
(⇒) and (⇐).

theorem RWBEqEnExecRWB:

"RegWriteBegin c c’ i (cnt’::’content) = (RegWriteBegin_Enabled c i

∧ c’ = RegWriteBegin_Delta c i cnt’)"

theorem RWEEqEnExecRWE:

"RegWriteEnd c c’ i = (Enabled_RegWriteEnd c i

∧ c’ = RegWriteEnd_Delta c i)"

theorem RRBEqEnExecRRB:

"RegReadBegin c c’ i regno = (Enabled_RegReadBegin c i

∧ c’ = RegReadBegin_Delta c i regno)"

theorem RREEqEnExecRRE:

"RegReadEnd c c’ i regno cnt = (Enabled_RegReadEnd c i regno cnt

∧ c’ = RegReadEnd_Delta c i)"

112

4.4. Regular Registers

4.4.2. Regular Registers used for Distributed Algorithms

To separate valid steps from steps that access the shared memory in an uninteded way, we define
the notion of ProperMemSteps (cf. Definition 2.3.7.1).

definition
ProperMemStep ::

"(’content shmemhistoryT)

⇒ (’content shmemhistoryT)

⇒ proc

⇒ bool" where
"ProperMemStep c c’ i ≡ (∃ cnt’. RegWriteBegin c c’ i cnt’)

∨ (RegWriteEnd c c’ i)

∨ (∃ regno. RegReadBegin c c’ i regno)

∨ (∃ regno cnt. RegReadEnd c c’ i regno cnt)"

As explained in Section 2.3.7, we assume a mapping initval : P→ Vreg such that initval(pj)
returns the initial value of a register Regpj

. For the initial Shared Memory History, all register
phases must be rIdle, all write-oriented views on registers must be set to the respective initial
values, and all read-oriented views must be set to the empty set. Note that in our Isabelle
formalization InitialValue corresponds to initval in our formal model.

definition InitReg ::

"(proc ⇒ ’content)

⇒ (’content shmemhistoryT)

⇒ bool" where
"InitReg InitialValue rc ≡ ∀ i. regphs (rc i) = RIdle

∧ wReg (rc i) = WriteStable (InitialValue i)

∧ (∀ j. rRegs (rc i) j = {})"

To use our Shared Memory History module, we provide another locale SMAlgorithm, which
extends the locale DistributedAlgorithm. It needs two further parameters:

• SM : A mapping that returns the Shared Memory History for a given configuration (hence
in our terms we would define SM(C) = ShC.

• InitialValue : The mapping that defines the initial values of the registers.

locale SMAlgorithm = DistributedAlgorithm +

fixes SM :: "((’a, ’b) conf_scheme) ⇒ (’content shmemhistoryT)"

fixes InitialValue :: "proc ⇒ ’content"

assumes
ProperSteps: "

∧

A i c c’. [[A∈ProcActionSet; A c c’ i; SM c 6= SM c’]]
=⇒ ProperMemStep (SM c) (SM c’) i"

"
∧

A c c’. [[A∈EventSet; A c c’]]=⇒ SM c = SM c’"

and InitRegPred: "InitPred c =⇒ InitReg InitialValue (SM c)"

The assumptions of the locale guarantee that every process-step of the algorithm is either a
ProperMemStep or it does not change the Shared Memory and that all initial configurations are
configurations where the correspondend initial values are stored in the registers.

113

4. Distributed Algorithms in Isabelle/HOL

context SMAlgorithm begin

In the context of the locale SMAlgorithm, we consider an arbitrary fixed algorithm with the
additional parameters. At first we introduce some definitions to be used in the context of our
locale.

The predicate existsNextPMStep is true for a run R, a process pi and a time t if and only if
there is a time t′ ≥ t such that there is a ProperMemStep by pi in t′.

definition
existsNextPMStep ::

"(T ⇒ ((’a, ’b) conf_scheme))

⇒ proc

⇒ T

⇒ bool" where
"existsNextPMStep R i t ≡ ∃ t’ ≥ t. ProperMemStep (SM (R t’)) (SM (R (Suc t’))) i"

Analogously, the predicate existsLastPMStep is true for a run R, a process pi and a time t if
and only if there is a time t′ < t such that there is a ProperMemStep by pi in t′.

definition
existsLastPMStep ::

"(T ⇒ ((’a, ’b) conf_scheme))

⇒ proc

⇒ T

⇒ bool" where
"existsLastPMStep R i t ≡ ∃ t’ < t. ProperMemStep (SM (R t’)) (SM (R (Suc t’))) i"

We define a function GetNextPMStep which for a run R, a process pi and a time t returns the
minimum time t′ such that t′ ≥ t and there is a ProperMemStep of pi in t′. We use an option
datatype, which allows to return a value None for special cases (see Section 1.4.2 and [NPW02]).
Here it is used to return None in case there is no next ProperMemStep.

definition GetNextPMStep ::

"(T ⇒ ((’a, ’b) conf_scheme))

⇒ proc

⇒ T

⇒ T option" where
"GetNextPMStep R i t ≡ if ¬ existsNextPMStep R i t then

None

else

Some (ǫ t’. t’ ≥ t

∧ ProperMemStep (SM (R t’)) (SM (R (Suc t’))) i

∧ (∀ t’’. ProperMemStep (SM (R t’’)) (SM (R (Suc t’’))) i

∧ t’’ ≥ t ∧ t’’ 6= t’ −→ t’’ > t’))"

Analogously, we define a function GetLastPMStep which for a run R, a process pi and a time t
returns the maximum time t′ such that t′ < t and there is a ProperMemStep of pi in t′. Again
an option datatype is used such that None is returned in case there is no last ProperMemStep.

definition GetLastPMStep ::

"(T ⇒ ((’a, ’b) conf_scheme))

⇒ proc

114

4.4. Regular Registers

⇒ T

⇒ T option" where
"GetLastPMStep R i t ≡ if ¬ existsLastPMStep R i t then None

else

Some (Max {t’. t’ < t ∧ ProperMemStep (SM (R t’)) (SM (R (Suc t’))) i})"

Now we can show some basic properties for the definitions made. The first lemma states: if
there is a next ProperMemStep for a run R, process pi and a time t then for R, pi and t

• GetNextPMStep returns not None

• GetNextPMStep returns a time t′ ≥ t

• there is a ProperMemStep at the time GetNextPMStep

• there are no ProperMemSteps of pi between t and the time GetNextPMStep returns

lemma GetNextPMStepProps:

assumes ex: "existsNextPMStep R i t"

shows
"GetNextPMStep R i t 6= None"

"the(GetNextPMStep R i t) ≥ t"

"ProperMemStep

(SM (R (the(GetNextPMStep R i t))))

(SM (R (Suc (the(GetNextPMStep R i t)))))

i"

"(∀ t’’. ProperMemStep (SM (R t’’)) (SM (R (Suc t’’))) i

∧ t’’ ≥ t

∧ t’’ 6= the(GetNextPMStep R i t)

−→ t’’ > the(GetNextPMStep R i t))"

A dual result is proved for GetLastPMStep. We show that: if there is a last ProperMemStep
for a run R, process pi and a time t then for R, pi and t

• GetNextPMStep returns not None

• GetNextPMStep returns a time t′ < t

• there is a ProperMemStep at the time GetNextPMStep

• there are no ProperMemSteps of pi between the time GetLastPMStep returns and t

lemma GetLastPMStepProps: assumes ex: "existsLastPMStep R i t"

shows
"GetLastPMStep R i t 6= None"

"the(GetLastPMStep R i t) < t"

"ProperMemStep

(SM (R (the(GetLastPMStep R i t))))

(SM (R (Suc (the(GetLastPMStep R i t)))))

115

4. Distributed Algorithms in Isabelle/HOL

i"

"(∀ t’’. ProperMemStep (SM (R t’’)) (SM (R (Suc t’’))) i

∧ t’’ < t

∧ t’’ 6= the(GetLastPMStep R i t)

−→ t’’ < the(GetLastPMStep R i t))"

By the previous theorems we can deduce that for a run R, a process pi and for time t if we
have a time t′ with t′ ≥ t and GetNextPMStep returns None or a value greater than t′ for R, pi

and t, then there is no ProperMemStep of pi at t′ in R.

lemma NoProperMemStepInBetween1: assumes R: "Run R"

and t’: "t’ ≥ t"

and nn: "t’ < the(GetNextPMStep R i t) ∨ GetNextPMStep R i t = None"

shows "¬ ProperMemStep (SM (R t’)) (SM (R (Suc t’))) i"

And analogously we can deduce that for a run R, a process pi and for time t if we have a time
t′ with t′ < t and GetLastPMStep returns None or a value less than t′ for R, pi and t, then there
is no ProperMemStep of pi at t′ in R.

lemma NoProperMemStepInBetween2: assumes R: "Run R"

and t’: "t’ < t"

and nn: "t’ > the(GetLastPMStep R i t) ∨ GetLastPMStep R i t = None"

shows "¬ ProperMemStep (SM (R t’)) (SM (R (Suc t’))) i"

As a consequence of Theorem NoProperMemStepInBetween1, ProperSteps1, and ProperSteps2
we get that for a run R, a process pi and for time t if we have a time t′ with t′ ≥ t and
GetNextPMStep returns None or a value greater than t′ for R, pi and t, then the write-oriented
view of pi and the register phase of pi are equal for t and t′.

lemma RegphsInv: assumes R: "Run R"

and t’: "t’ ≥ t"

and nn: "t’ < the(GetNextPMStep R i t) ∨ GetNextPMStep R i t = None"

shows "regphs(SM (R t’) i) = regphs(SM (R t) i)"

"wReg(SM (R t’) i) = wReg(SM (R t) i)"

And as a consequence of Theorem NoProperMemStepInBetween2, ProperSteps1, and Proper-
Steps2 we get that for a run R, a process pi and for time t if we have a time t′ with t′ ≤ t and
GetLastPMStep returns None or a value less than t′ for R, pi and t, then the write-oriented view
of pi and the register phase of pi are equal for t and t′.

lemma RegphsInv2: assumes R: "Run R"

and t’: "t’ ≤ t"

and ge: "t’ > the(GetLastPMStep R i t)"

and nn: "¬ GetLastPMStep R i t = None"

shows "regphs(SM (R t’) i) = regphs(SM (R t) i)"

"wReg(SM (R t’) i) = wReg(SM (R t) i)"

116

4.4. Regular Registers

By the following definition an interval [begin, end] is called a concurrent access interval in a
run R for a reading process reader and a writing process writer if there is a time t between
begin and end such that the register phase of reader is rReadingwriter and the register phase
of writer is rWriting at time t.

definition ConcurrentAccessInterval

:: "(T ⇒ ((’a, ’b) conf_scheme)) ⇒ T ⇒ T ⇒ proc ⇒ proc ⇒ bool" where
"ConcurrentAccessInterval R begin end writer reader ≡ ∃ t ≥ begin. t ≤ end

∧ regphs (SM (R t) reader) = RReading writer

∧ regphs (SM (R t) writer) = RWriting"

For a run R, a time t′, processes pi, and pregno the following function ReadBeginsBefore returns
a set containing all times t < t′ such that pi starts a read operation on Regpregno

at time t in R.

definition
ReadBeginsBefore

:: "(T ⇒ ((’a, ’b) conf_scheme)) ⇒ T ⇒ proc ⇒ proc ⇒ T set" where
"ReadBeginsBefore R t’ i regno ≡

{t. t < t’ ∧ RegReadBegin (SM (R t)) (SM (R (Suc t))) i regno}"

Analogously, for a run R, a time t′, a processes pi the following function WriteEndsBefore

returns a set containt all times t < t′ such that pi ends a write operation at time t in R.

definition
WriteEndsBefore

:: "(T ⇒ ((’a, ’b) conf_scheme)) ⇒ T ⇒ proc ⇒ T set" where
"WriteEndsBefore R t’ i ≡

{t. t < t’ ∧ RegWriteEnd (SM (R t)) (SM (R (Suc t))) i}"

Based on these definitions we define functions LastReadBegin (LastWriteEnd) that return the
most recent access of type read begin (respectively write end) before a given time t′ of a process
pi to a register Regpregno

in a run R.

definition LastReadBegin

:: "(T ⇒ ((’a, ’b) conf_scheme)) ⇒ T ⇒ proc ⇒ proc ⇒ T option" where
"LastReadBegin R t’ i regno ≡ if ReadBeginsBefore R t’ i regno 6= {} then

Some (Max (ReadBeginsBefore R t’ i regno))

else

None"

definition LastWriteEnd

:: "(T ⇒ ((’a, ’b) conf_scheme)) ⇒ T ⇒ proc ⇒ T option" where
"LastWriteEnd R t’ i ≡ if WriteEndsBefore R t’ i 6= {} then

Some (Max (WriteEndsBefore R t’ i))

else

None"

In the following, we obtain some simple lemmas for our definitions. Obviously, for a fixed
run R, a process pi and a time t ReadBeginsBefore returns always a subset of the set that
ReadBeginsBefore returns for R, pi and t + 1.

lemma RBSubset:

117

4. Distributed Algorithms in Isabelle/HOL

"ReadBeginsBefore R t’ i regno ⊆ ReadBeginsBefore R (Suc t’) i regno"

Moreover, if LastReadBegin returns a value different from None for a run R, a time t and
process pi, pj then LastReadBegin also returns a value different from None for R, t + 1, pi and pj .

lemma LRBLastingStep:

assumes R: "Run R"

and LRB: "LastReadBegin R t i regno 6= None"

shows "LastReadBegin R (Suc t) i regno 6= None"

By induction we infer that this does not only hold for t + 1 but for all t′ ≥ t.

lemma LRBLasting:

assumes R: "Run R"

and LRB: "LastReadBegin R t i regno 6= None"

and t: "t’ ≥ t"

shows "LastReadBegin R t’ i regno 6= None"

With the definition of LastWriteEnd, we define the function LastStableVal, that returns the last
stable value of a register before a given time t for a process pi in a run R (cf. LastStableValue).

definition LastStableVal ::

"(T ⇒ ((’a, ’b) conf_scheme))

⇒ T

⇒ proc

⇒ ’content" where
"LastStableVal R t i ≡ if (LastWriteEnd R t i 6= None) then

(ǫ c. wReg ((SM (R (Suc (the (LastWriteEnd R t i))))) i) = WriteStable c)

else

InitialValue i"

If for a run R, for a process pi and a time t the function GetLastPMStep returns another value
than for R,pi and t + 1, then there must be a ProperMemStep by pi from t to t + 1.

lemma LastStepChange:

assumes eq: "GetLastPMStep R i t 6= GetLastPMStep R i (Suc t)"

shows "ProperMemStep (SM (R t)) (SM (R (Suc t))) i"

If the Shared Memory History changes from time t to t+1 in a run R, then some process must
have made a ProperMemStep. Hence, we can obtain a fixed process pi such that pi executes a
ProperMemStep from R(t) to R(t + 1).

lemma GetMemAction:

assumes R: "Run R"

and sm: "SM (R t) 6= SM (R (Suc t))"

obtains i where "ProperMemStep (SM (R t)) (SM (R (Suc t))) i"

Let R denote a run. If the register phase of a process pi is rReadingpj
in R(t + 1) and the

118

4.4. Regular Registers

phase in R(t + 1) differs from the phase in R(t), then pi must have made a RdBegin step from
t to t + 1.

lemma NewPhsRReading:

assumes R: "Run R"

and phs: "regphs(SM (R t) i) 6= regphs(SM (R (Suc t)) i)"

"regphs(SM (R (Suc t)) i) = RReading regno"

shows "RegReadBegin (SM (R t)) (SM(R (Suc t))) i regno"

Analogously, if the register phase of a process pi is rWriting in R(t + 1) and the phase in
R(t + 1) differs from the phase in R(t), then pi must have made a WriteBegin step from t to
t + 1 and we can obtain a value cnt such that WriteBegin(ShR(t), ShR(t+1), pi, cnt).

lemma NewPhsRWriting:

assumes R: "Run R"

and phs: "regphs(SM (R t) i) 6= regphs(SM (R (Suc t)) i)"

"regphs(SM (R (Suc t)) i) = RWriting"

obtains cnt where "RegWriteBegin (SM (R t)) (SM(R (Suc t))) i cnt"

If the register phase of a process pi is rWriting in R(t) and the phase in R(t + 1) differs from
the phase in R(t), then pi must have made a WriteEnd step from t to t + 1 and the phase in
R(t + 1) must be rIdle.

lemma OldPhsRWriting:

assumes R: "Run R"

and phs: "regphs(SM (R t) i) 6= regphs(SM (R (Suc t)) i)"

"regphs(SM (R t) i) = RWriting"

shows
"RegWriteEnd (SM (R t)) (SM(R (Suc t))) i"

"regphs(SM (R (Suc t)) i) = RIdle"

And again, if the register phase of a process pi is rReadingpj
in R(t) and the phase in R(t+1)

differs from the phase in R(t), then pi must have made a RdEnd step from t to t + 1, the phase
in R(t + 1) must be rIdle and we can obtain a fixed cnt such that
RdEnd(ShR(t), ShR(t+1), pi, pj , cnt).

lemma OldPhsRReading:

assumes R: "Run R"

and phs: "regphs(SM (R t) i) 6= regphs(SM (R (Suc t)) i)"

"regphs(SM (R t) i) = RReading regno"

obtains cnt

where
"RegReadEnd (SM (R t)) (SM(R (Suc t))) i regno cnt"

"regphs(SM (R (Suc t)) i) = RIdle"

Furthermore, if the register phase of a process pi at time t′ is rReadingpj
, in a run R we can

deduce that GetLastPMStep will return the time of the respective RdBegin step for R, pi, t′.

119

4. Distributed Algorithms in Isabelle/HOL

lemma phsImplReading1:

assumes R: "Run R"

and phs: "regphs (SM (R t’) i) = RReading regno"

shows
"GetLastPMStep R i t’ 6= None"

"RegReadBegin

(SM (R (the(GetLastPMStep R i t’))))

(SM (R (Suc (the(GetLastPMStep R i t’)))))

i

regno"

If GetLastPMStep does not return None for a run R, a process pi and a time t, then the returned
value is a fixpoint of GetNextPMStep for fixed parameters R and pi.

lemma GetNextLastFix:

assumes nn: "GetLastPMStep R i t 6= None"

shows
"the (GetNextPMStep R i (the(GetLastPMStep R i t))) = the(GetLastPMStep R i t)"

Let R denote a run. If there is a time t′ such that the register phase of a process is
rReadingpj

in some configuration R(t′), then we can obtain a time t with t < t′ such that
RdBegin(ShR(t), ShR(t+1), pi, pj) and GetNextPMStep returns either None or a value greater or
equal than t′ for R,pi and t + 1.

lemma phsImplReading2:

assumes R: "Run R"

and phs: "regphs (SM (R t’) i) = RReading regno"

obtains t

where
"t < t’"

"RegReadBegin (SM (R t)) (SM (R (Suc t))) i regno"

"the(GetNextPMStep R i (Suc t)) ≥ t’ ∨ GetNextPMStep R i (Suc t) = None"

If there is a RdEnd step by a process pi at time t in a run R for some register Regpj
, then

LastReadBegin returns not None for R,t,pi and pj .

lemma RREImpliesRRB:

assumes R: "Run R"

and Res: "RegReadEnd (SM (R t)) (SM (R (Suc t))) i regno cnt"

shows "LastReadBegin R t i regno 6= None"

If for a run R, a time t and two processes pi and pj the function LastReadBegin returns a
different value than for R, t + 1 and pi, pj , then there must be a RdBegin step in R from t to
t + 1.

lemma LastReadBeginChange:

assumes eq: "LastReadBegin R t i regno 6= LastReadBegin R (Suc t) i regno"

shows "RegReadBegin (SM (R t)) (SM (R (Suc t))) i regno"

120

4.4. Regular Registers

If in a run R the Shared Memory History changes from t to t+1, then we can obtain a process
pi such that pi makes a ProperMemStep from t to t + 1.

lemma GetProperMemStep:

assumes R: "Run R"

and sm: "SM (R t) 6= SM (R (Suc t))"

obtains i

where "ProperMemStep (SM (R t)) (SM (R (Suc t))) i"

As for GetLastPMStep, we show some basic properties of the function LastReadBegin. The
following lemma states: if the set ReadBeginsBefore is not empty for a run R, a time t and
processes pi, pj then for R, pi, pj and t

• LastReadBegin returns not None

• LastReadBegin returns a time t′ < t

• there is a RdBegin step at the time LastReadBegin

• there are no RdBegin steps of pi between the time LastReadBegin returns and t

lemma LastReadBeginProps:

assumes ex: "ReadBeginsBefore R t i regno 6= {}"

shows
"LastReadBegin R t i regno 6= None"

"the(LastReadBegin R t i regno) < t"

"RegReadBegin

(SM (R (the(LastReadBegin R t i regno))))

(SM (R (Suc (the(LastReadBegin R t i regno)))))

i

regno"

"(∀ t’’. RegReadBegin (SM (R t’’)) (SM (R (Suc t’’))) i regno

∧ t’’ < t ∧ t’’ 6= the(LastReadBegin R t i regno)

−→ t’’ < the(LastReadBegin R t i regno))"

The following theorem shows an important result for the read-oriented view of a process pi.
Assume the last read operation of pi for a register Regpj

in a run R before time t started at
t̂ < t. We show that pi’s read-oriented view on Regpj

at t is the union of the set of values in
pj ’s write-oriented view at time t̂ and all values for which pj started a write operation between
t̂ and t (cf. Theorem 2.3.7.2).

theorem ReadResultHelp:

assumes R: "Run R"

and nn: "LastReadBegin R t i regno 6= None"

shows
"rRegs (SM(R t) i) regno =

regValueSet (wReg (SM (R (the(LastReadBegin R t i regno))) regno))

121

4. Distributed Algorithms in Isabelle/HOL

∪ {cnt. ∃ t’ > the(LastReadBegin R t i regno). t’ < t

∧ RegWriteBegin (SM (R t’)) (SM (R (Suc t’))) regno cnt}"

thm Max_ge

If there is a WriteEnd step from t to t + 1 by a process pi in a run R, then LastWriteEnd

returns time t for for R, t + 1 and i.

lemma RWEImpliesLWE:

assumes RWE: "RegWriteEnd (SM (R t)) (SM (R (Suc t))) i"

shows "LastWriteEnd R (Suc t) i = Some t"

If for a run R, a time t and a processes pi the function LastWriteEnd returns a different value
as for R, t+1 and pi, then there must be a WriteEnd step in R from t to t+1 and LastWriteEnd

must return time t for R, t + 1 and pi.

lemma LastWriteEndChange:

assumes eq: "LastWriteEnd R t i 6= LastWriteEnd R (Suc t) i"

shows
"RegWriteEnd (SM (R t)) (SM (R (Suc t))) i"

"LastWriteEnd R (Suc t) i = Some t"

Analogously to LastReadBegin, we show some basic properties of the function LastWriteEnd.
The following lemma states: if the set WriteEndsBefore is not empty for a run R, a time t and
processes pi then for R, pi and t

• LastWriteEnd returns not None

• LastWriteEnd returns a time t′ < t

• there is a WriteEnd step at the time LastWriteEnd

• there are no WriteEnd steps of pi between the time LastWriteEnd returns and t

lemma LastWriteEndProps: assumes ex: "WriteEndsBefore R t i 6= {}" shows
"LastWriteEnd R t i 6= None"

"the(LastWriteEnd R t i) < t"

"RegWriteEnd

(SM (R (the(LastWriteEnd R t i))))

(SM (R (Suc (the(LastWriteEnd R t i)))))

i"

"(∀ t’’. RegWriteEnd (SM (R t’’)) (SM (R (Suc t’’))) i

∧ t’’ < t ∧ t’’ 6= the(LastWriteEnd R t i)

−→ t’’ < the(LastWriteEnd R t i))"

Assume the function LastWriteEnd returns a value different from None for a run R, a time t,
and a process pi and let t′ be a time with t′ ≥ t. Then, by the following lemma, LastWriteEnd

must be different from None for R, t′ and pi and, moreover, the returned value must be greater
or equal than the value returned for R, t and pi.

122

4.4. Regular Registers

lemma LastWriteEndMono:

assumes lwenn: "LastWriteEnd R t i 6= None"

and t: "t ≤ t’"

shows "LastWriteEnd R t’ i 6= None"

"the(LastWriteEnd R t i) ≤ the(LastWriteEnd R t’ i)"

If pi’s write-oriented view is a pair (v, v′) in a run R at time t, then pi’s register phase at
time t in R must be rWriting.

lemma WriteInProgressPhs:

assumes R: "Run R"

and wR: "wReg (SM (R t) i) = WriteInProgress cnt cnt’"

shows
"regphs (SM (R t) i) = RWriting"

With ReadResultHelp we characterised the values in the read-oriented view of a process pi.
The following theorem does the same for the write-oriented view of a process. Of course, during
a stable phase, the value of pi’s write-oriented view at time t is the LastStableVal. During a
transient phase this theorem shows that it is a pair (v, v′) where v is the LastStableVal and v′ is
a value such that there has been a WriteBegin step for v′ by pi before t.

theorem wRegContent: assumes R: "Run R" shows
"wReg (SM (R t) i) = (WriteStable cnt)

=⇒ cnt = LastStableVal R t i"

"wReg (SM (R t) i) = (WriteInProgress cnt cnt’)

=⇒ cnt = LastStableVal R t i

∧ (∃ t’ < t. RegWriteBegin (SM (R t’)) (SM (R (Suc t’))) i cnt’

∧ (the(GetNextPMStep R i (Suc t’)) ≥ t

∨ GetNextPMStep R i (Suc t’) = None))"

4.4.3. Equivalence to Lamport’s Model

The next theorem shows the first part of our claim that our model implements Lamport’s notion
of a Reguluar Register. As explained for Theorem 2.3.7.3, this result shows that every value
that is read during a RdEnd step is a possible candidate for a return of a corresponding read in
Lamports model, i.e. it is either the LastStableVal for the register or a value that was written
during the read operation.

theorem ReadResult1:

assumes R: "Run R"

and Res: "RegReadEnd (SM (R t)) (SM (R (Suc t))) i regno cnt"

and c: "ConcurrentAccessInterval R (the(LastReadBegin R t i regno)) t regno i"

shows
"(cnt = LastStableVal R (the(LastReadBegin R t i regno)) regno)

∨ (∃ t’. RegWriteBegin (SM (R t’)) (SM (R (Suc t’))) regno cnt ∧
((t’ > (the(LastReadBegin R t i regno)) ∧ t’ < t)

∨ (t’ < (the(LastReadBegin R t i regno))

123

4. Distributed Algorithms in Isabelle/HOL

∧ (GetNextPMStep R regno (Suc t’) = None

∨ the(GetNextPMStep R regno (Suc t’)) > (the(LastReadBegin R t i regno))))))"

If a process pi performs a RdEnd step for a register Regpj
in a run R from t to t + 1, then for

all times t′ with t′ ≤ t and t′ after the corresponding RdBegin step, the register phase of pi is
rReadingpj

.

lemma ReadPeriod:

assumes R: "Run R"

and Res: "RegReadEnd (SM (R t)) (SM (R (Suc t))) i regno cnt"

and t: "t’ > the(LastReadBegin R t i regno)" "t’ ≤ t"

shows "regphs (SM(R t’) i) = RReading regno"

If there is no write operation concurrent to a read operation on a register pj , then the read
operation must return the LastStableVal(cf. Theorem 2.3.7.4).

theorem ReadResult2:

assumes R: "Run R"

and Res: "RegReadEnd (SM (R t)) (SM (R (Suc t))) i regno cnt"

and c: "¬ ConcurrentAccessInterval R (the(LastReadBegin R t i regno)) t regno i"

shows "cnt = LastStableVal R (the(LastReadBegin R t i regno)) regno"

If pk performs a WriteBegin step and the read-oriented view of a process pi on register Regpj

is changed, then pk = pj .

lemma RWB_rRegs:

assumes rwb: "RegWriteBegin c c’ k cnt’"

and PR: "rRegs (c i) j 6= rRegs (c’ i) j"

shows "k = j"

If pi performs a RdBegin step and the read-oriented view of a process pk is changed, then
pi = pk.

lemma RRB_rRegs:

assumes rwb: "RegReadBegin c c’ i j"

and PR: "rRegs (c k) l 6= rRegs (c’ k) l"

shows "k = i"

If the read-oriented view of a process pk changes from a Shared Message History Sh to Sh′,
then there can be no RdEnd and no WriteEnd step between Sh and Sh′.

lemma RE_rRegs:

assumes PR: "rRegs (c k) l 6= rRegs (c’ k) l"

shows
"∀ i j cnt. ¬ RegReadEnd c c’ i j cnt"

"∀ i. ¬ RegWriteEnd c c’ i"

124

4.5. Requirements in Isabelle/HOL

We conclude this theory with the second part of our claim that our model implements Lam-
port’s notion of a reguluar register. As described in Section 2.3.7, if we consider the prefix of a
run R where a read operation started by a RdBegin step of a process pi for a register Regpj

and
there is a concurrent write access by pj where pj writes a value cnt to register Regpj

, then there
is a continuation of R such that pi reads value cnt.

theorem ReadNewValuePossible:

assumes R: "Run R"

and nn: "LastReadBegin R t i regno 6= None"

and phs: "regphs (SM (R t) i) = RReading regno"

and rwb: "RegWriteBegin (SM (R t’)) (SM (R (Suc t’))) regno cnt"

and t: "(t’ > (the(LastReadBegin R t i regno)) ∧ t’ < t)

∨ (t’ < (the(LastReadBegin R t i regno))

∧ (GetNextPMStep R regno (Suc t’) = None

∨ the(GetNextPMStep R regno (Suc t’)) > (the(LastReadBegin R t i regno))))"

obtains c’ where "RegReadEnd (SM (R t)) c’ i regno cnt"

For the second part of our claim, it remains to show that for every prefix of a run R with
a start of a read operation there is always a continuation of R where the read operation re-
turns the LastStableVal (the ‘old’ value). This result is represented by our final Theorem
ReadOldValuePossible.

theorem ReadOldValuePossible:

assumes R: "Run R"

and nn: "LastReadBegin R t i regno 6= None"

and phs: "regphs (SM (R t) i) = RReading regno"

and cnt: "cnt = LastStableVal R (the(LastReadBegin R t i regno)) regno"

obtains c’ where "RegReadEnd (SM (R t)) c’ i regno cnt"

end — SMAlgorithm context

end — theory

4.5. Requirements in Isabelle/HOL

The most direct way to show that a predicate P : Σ → bool is a property of a distributed
algorithm A with Isabelle/HOL is to prove a theorem asserting that for every run R ∈ Runs(A)
P (R) holds. Figure 4.1 shows how a theorem for Agreement in Isabelle/HOL can be formulated:
we assume there is a run R and for time t the decision value of the processes i,j is not None (we
use None for ⊥ in Isabelle). It remains to show that the decision value of i equals the decision
of j. Of course, it is also possible to define a predicate for the property first. In Figure 4.2 a
predicate Validity is defined. Here we take advantage of the fact that Validity is a Configuration
invariant and show that in an arbitrary run the expression ∀ t. Validity (R t) is a theorem.
As already mentioned, Termination is a liveness property. Hence, it is not enough to inspect an
arbitrary configuration of an arbitrary run R. Instead it is to show that for every arbitrary run

125

4. Distributed Algorithms in Isabelle/HOL

theorem Agreement:

assumes R: "Run R" and
di: "decision(St (R t) i) 6= None" and
dj: "decision(St (R t) j) 6= None"

shows "the(decision(St (R t) i)) = the (decision(St (R t) j))"

Figure 4.1.: Agreement as a theorem

definition
Validity :: "Configuration ⇒ bool" where
"Validity c ≡ ∀ i ∈ Procs. ∃ k ∈ Procs. St_d (State_S c i) 6= None −→ v_input k =

Decision_v c i"

theorem Validity: assumes R:"R ∈ Runs" shows "∀ t. Validity (R t)"

Figure 4.2.: Validity as a predicate and Validity as a theorem

theorem Termination: assumes R: "Run R" and i: "i ∈ Correct R"

shows "∃ t. decision (St (R t) i) 6= None"

Figure 4.3.: Termination as a theorem

R and for every correct process i there is some t such that in configuration R(t) process i has
decided a value (cf. Figure 4.3).

126

5. Case Studies

In this chapter we will demonstrate the applicability of the introduced model and proof methods
on extensive case studies. We examined four well-known algorithms of differing complexity. For
each of them, we applied the described methods, specified the formal model and the require-
ments and verified the correctness of the algorithms formally with Isabelle/HOL. As mentioned
before, we decided to place our considerations in the field of Distributed Consensus algorithms.
Therefore, all four algorithms deal with the problem of Distributed Consensus, a fundamental
concern in distributing computing (cf. Sections 1.4.1 and 2.4.1).

The first algorithm under consideration, the Rotating Coordinator Algorithm, is a small ex-
ample of about 5 lines of pseudo-code, which still features many different parts of our formal
model. To make Consensus solvable the Rotating Coordinator algorithm and the algorithm
inspected in Section 5.2 utilise failure detectors. As explained in Chapter 2, a failure detector
can be seen as a module located at every process. This module monitors the crash status of all
processes. A system in which the used failure detector modules always monitor the correct crash
status of all processes would be almost synchronous. Since we are interested in asynchronous
systems, the assumption of having such a perfect failure detector induces more synchrony to our
system than intended. Literature ([CT96],[CHT96]) shows that imperfect failure detectors, i.e.
failure detectors that do not always provide correct information and, hence, are unreliable to a
defined degree, are sufficient to solve Consensus in certain settings. The reliability of the used
failure detector determines the assumptions on the synchrony of the system. Since the Rotating
Coordinator uses a strong failure detector, the induced synchrony leads to a setting where Con-
sensus is solvable by a very simple algorithm. As to be seen, the other algorithms considered in
Sections 5.2, 5.3 and 5.4 use much weaker assumptions and hence are more complex examples.

To evaluate how different parts of our model and of our proofs can be reused, we chose very
similar algorithms: the Paxos algorithm (introduced in [Lam98]) and an algorithm that solves
distributed Consensus using failure detector ♦S. The latter algorithm and the description of its
failure detector are given in [CT96]. Based on the name of the failure detector, in the following we
refer to this algorithm as the ♦S-Algorithm. All three algorithms (Rotating Coordinator, Paxos
and the ♦S-Algorithm) use message passing mechanisms for communication. For the application
of our shared memory model, we choose a fourth algorithm that uses Regular Registers for
interprocess communication. This algorithm is embedded in some framework that is called the
alpha-abstraction (introduced in [GR07]).

In the following subsections, those four algorithms and the respective models and proofs are
introduced and inspected. But at first, let us explain the common setting all algorithms have to
face. For all algorithms we assume a fixed number of involved processes (as before, we denote
the (finite) set of processes by P and the number of processes by N). The system is assumed to
be asynchronous, i.e., there are no bounds on message delay or process speed. Processes perform
atomic steps and communicate by messages (Sections 5.1, 5.2 and 5.3) or by reading and writing

127

5. Case Studies

to shared memory (Section 5.4). According to our model, atomic process steps and global events
generate system runs typically in an interleaving fashion. Messages are not necessarily delivered
in the order they are sent. Although there are no synchronous communication rounds, a common
characteristic of many distributed algorithms is that there is a notion of asynchronous rounds.
This modeling idiom is used to simulate the spirit of synchronized executions, each process keeps
and controls a local round number in it its own state. This round number can be attached to
messages to give them a logical time stamp. In asynchronous systems, this enables receiving
processes to arrange the messages sent by other processes into their intended sequential order
[KNR12].

Locally, processes show sequential symmetric behaviour, but possibly hold different initial
data. To describe sequential behaviour in terms of our model, we have to map this behaviour
to (atomic) actions. Since we use an (unordered) set of actions, we have to add a notion of a
program counter to local process states to emulate the sequential character of the algorithm.
Fuzzati et al. ([FMN07], [Fuz08]) exemplify the way to achieve this: if the local algorithm is
meant to execute actions A0, . . . , An sequentially (i.e. such that each action Ai is executed
before Ai+1) we can implement this in our model by introducing phases P0, . . . , Pn. Every
process stores the phase it is going to execute next starting with P0 in its local proces state in
a variable phs. To implement the sequential behaviour we add a condition (phs = Pk) to every
action Ak, such that Ak is only enabled if phs = Pk. Additionaly every action Ak sets the value
of phs to Pk+1. Hence, we can model an action Ak that reflects the sequential character as:

Ak(C,C′, pi) , (phs ⊲ SC = Pk)

∧ . . .

∧ (phs ⊲ SC′ = Pk+1)

More details are explained in the following sections.
For each algorithm of our case study we introduce the setting of the algorithm, we explain

the algorithm with the help of pseudocode and present the formal model according to our
definitions in Chapter 2. Full extensive proofs for correctness and formal models are provided
in Isabelle/HOL. Presently, we intend to limit ourselves to special proof issues that are either
characteristic for all proofs or special for the respective kind of algorithm and give references to
the respective Isabelle theories.

5.1. Rotating Coordinator

The Rotating Coordinator algorithm is introduced in [Tel01]. Francalanza and Hennessy [FH07]
use this algorithm to illustrate a process-calculi-based methodology for verifying distributed
algorithms. Their approach introduces a partial failure language for specification. Proofs are
based on a fault tolerant bisimulation. The authors claim that, in contrast to their approach, the
use of theorem provers for verification of such algorithms ‘tend to obscure the natural structure
of the proofs’. With this in mind, we chose to examine this example for accurate analysis.
Although it is only a short algorithm, it exhibits many of the typical aspects that are integral
to tolerant distributed computing:

128

5.1. Rotating Coordinator

• It deals with an asynchronous setting with crash failures.

• It uses a point-to-point message passing communication infrastructure.

• Safety and liveness properties have to be regarded.

• The algorithm works round-based and uses a coordinator to manage rounds.

• The algorithm uses a failure detector for making Consensus solvable

The Rotating Coordinator solves Consensus by using the strong failure detector S introduced
in [CT96]. The assumption for this failure detector is that the information provided by the
failure detector may be wrong but will at least satisfy two conditions [CT96]:

1. Weak accuracy: Some correct process is never suspected.

2. Strong completeness: Eventually every process that crashes will be permanently sus-
pected to have crashed.

In a Crash-Failure model (cp. Section 2.3.8) a process is said to be correct in a run R if it
does not crash in R. Hence, by the weak accuracy property, in every run R there must be at
least one process that all processes can trust to be alive and which does actually not crash in
R. Since this process does not crash and is trusted by all other processes to be alive, we call
such a process a trusted-immortal process. Usually, an algorithm that uses a failure detector
with strong completeness stops waiting for a message if the sender of the awaited message is
suspected. Hence, the strong completeness property prevents processes from waiting eternally
for a message from a crashed process because every crashed process is eventually suspected
[Tel01]. Thus, the failure detector S guarantees that there is at least one trusted-immortal
process and that no process waits eternally for messages from crashed processes.

For the message infrastructure, we assume that messages cannot be lost in this setting and a
message that has been sent must eventually be delivered.

In a setting with N processes, this algorithm solves Consensus up to N − 1 crash failures.
Francalanza and Hennessy [FH07] identify two error conditions that the algorithm needs to
resolve: 1. processes waiting for messages that will never arrive due to crashed senders and
2. broadcast messages that are only received by a subset of the participants because the sender
crashed before the sending of the message had been finished for all receivers. It is easy to see that
the failure detector helps to overcome the first error condition. As we will see in the following
subsections, the second error condition can be resolved by repeating the broadcast.

5.1.1. Informal Introduction to the Algorithm

Listing 5.1 shows a pseudo code that captures the local behaviour of each of the N participants.
We assume that every process initially gets an input value from a set of possible input values I.
This value is stored in a variable Input

Initially, a participant pi sets a local variable x_i to its input value Input. Then the algorithm
performs N rounds. A variable r is used to represent a corresponding round number in a for loop
that runs from 1 to N . For simplicity, it is assumed that processes are numbered consecutively

129

5. Case Studies

from p1 to pN such that each round r can be assigned to process pr so that pr is the coordinator
of round r. In each round, pi first checks whether it is the coordinator of the current round r

and, if this is the case, then pi broadcasts its current value x_i. Note that in contrast to the
defined reliable broadcast in Section 2.3.6, broadcast in this context means just sending a (point-
to-point) message to every process. If the failure detector gives notice that the coordinator of
pi’s current round r is alive, pi waits for the message of the coordinator. After pi received this
message, pi sets x_i to the value that was broadcasted by the coordinator. After N rounds, pi

decides the value that it has stored in x_i.

Listing 5.1: The Rotating Coordinator Algorithm for participant pi [FH07]
1 x_i := Inpu t
2 f o r r := 1 to N do {
3 i f r = i then b r o a d c a s t (x_i) ;
4 i f a l i v e (p_r) then x_i := input_f rom_broadcas t ;
5 }
6 output (x_i) ;

Intuitively, this algorithm solves Consensus by utilising the guarantees of the failure detector.
It is easy to see that the Agreement property can be violated, if the processes always skip the
receipt of messages by assuming the coordinator not to be alive. In this case, every process
pi would decide its own input value Input. Consequently, Agreement would be violated for the
cases where input values vary between the processes. Since trusted-immortal processes are not
suspected to have crashed, the function alive always returns true in rounds of trusted-immortal
processes. Skipping messages of trusted-immortal processes is therefore not possible. Let pti

be a trusted-immortal process (the failure detector property for S assures that there is at least
one). Since skipping the message of pti is not possible in round ti + 1, every process must have
adopted the value xti that pti broadcasted to x_i in round ti. Therefore, in rounds ti + 1 . . . N ,
every broadcasted value must be xti and therefore xti is the only value that can be adopted
in rounds after round ti. Each process that reaches a decision (line 6) must have processed
these rounds (and, at least, must have processed the message of pti). Hence, the value a process
decides in line 6 must be xti. Thus, Agreement holds under the assumption that there is at least
one trusted-immortal process.

Processes use only input values for values in x_i and x_i values are only adopted from messages.
Also for the values in messages only input values are used. Hence, Validity can not be violated.

There can only be a finite number of rounds to process before the decision is made. Hence, if
a correct process pc neither blocks nor crashes (note that correct process do not crash), it must
reach a decision. The only point where a blocking of pc is possible, would be in line 4, where pc

waits for a message of the coordinator that is supposed to be alive. Assume for contradiction rb

is the smallest roundnumber in which a correct process pc blocks forever in line 4. Due to the
Strong completeness property of the failure detector, the sender of the message pc waits for must
be correct, otherwise alive would eventually have returned False. Let pb be the delayed sender
of this message. Since rb is the smallest roundnumber in which a correct process is blocked, pb

cannot block in a roundnumber smaller than rb. Furthermore, as deduced before, pb is a correct
process and hence can not crash. Thus pb must eventually reach round pb and send a message m
with its value x_i to all processes including pc. Since every sent message is eventually received,

130

5.1. Rotating Coordinator

pc must eventually receive m and, in contradiction to the assumption, no longer blocks in line 4
of round rb. Hence, Termination holds.

5.1.2. Formal Model

For our formal model we first need to define the datastructures for configurations, Localviews
and messages. For this simple algorithm we use two entries in our configurations:

• S: the array of process states

• Q: the Message History

As usual, we denote the array of process states of a configuration C by SC and the Message
History of C by QC. The module for the Message History (without message loss) is used as
introduced in Chapter 2.3.5. The state of a process pi is represented by a tuple (r, P, xi, c, d)
where

• r ∈ N is the current round number of pi.

• P ∈ { P1, P2 } is the current phase of pi.

• xi ∈ I is the current value of pi (corresponds to x_i in the pseudo code).

• c ∈ bool is the (boolean) crash status of pi (see Section 2.3.8).

• d ∈ I ∪ { ⊥ } is the decision value of pi. This value is undefined (⊥) when the algorithm
starts and is set to the decided value when pi decides.

Again, we use the introduced means for notation to denote the entries of a process state SC(pi)
of a process pi in a configuration C:

• the round number of pi is denoted by rnd ⊲ SC(pi)

• the phase of pi is denoted by phs ⊲ SC(pi)

• the value of pi is denoted by x ⊲ SC(pi)

• the crash status of pi is denoted by crashed ⊲ SC(pi)

• the decision value of pi is denoted by dcsn ⊲ SC(pi)

In a Localview lv a process can access its process state Slv and the respective entries rnd ⊲
Slv, phs ⊲ Slv, x ⊲ Slv, crashed ⊲ Slv, dcsn ⊲ Slv. Furthermore, the Localview comprises a set Outlv

for the outbox of the process, the inbox Inlv of pi, (the set of received messages of pi) and the
identity IDlv of pi. While we expect the values of the inbox and the identity to be read-only
values, we model the outbox as an emptyset where pi puts in the messages pi is willing to send
(as already explained and used in Sections 2.3.2 and 2.3.5).

A message m is a tuple (s, r, x) where

• s ∈ P is the sender of m

131

5. Case Studies

• r ∈ P is the receiver of m

• x ∈ I is the content of m (which is for this algorithm the value x of the respective coordi-
nator).

The sender of a message m is denoted by sndm, the receiver by rcvm, and the content by
cntm. Initially, every process pi starts with round number 1 in phase P1 with its input value
vinp(pi) (which corresponds to x_iin the pseudocode), alive (hence not crashed) and undecided.
Furthermore, the Message History contains no messages and hence returns zero for every pair of
messages and message status values. We define the initial process state S0(pi) for each process
pi, the initial Message History Q0 and finally the set of initial states Initrc as depicted in figure
5.1.

S0(pi) , (1, P1, vinp(pi), False, ⊥) Q0(m, t) , 0

Initrc ,

ß Å

S0

Q0

ã ™

Figure 5.1.: Initial definitions for Rotating Coordinator Algorithm

Now we are ready to define the actions for the algorithm. Initialization is already done by the
definitions in figure 5.1. Hence, there remain three steps, that matter for a process pi:

• In the first step pi sends messages to all processes if pi is the coordinator of its current
round rnd ⊲ SC(pi).

• In the second step either pi trusts the coordinator of the current round and processes
the respective message or pi suspects the coordinator to be crashed, skips waiting for the
message and transits to the next round.

• Finally, the decision must be taken after N rounds.

Figure 5.2 depicts how we use non-lifted actions to model these steps. The first step is represented
by the DnA MsgGen↓, which consists of the enabled condition MsgGen↓

en and the transition
function MsgGen↓

∆. As already explained, for serialization of the steps we use two phases P1
and P2. We use P1 to indicate that we are at the beginning of the for-loop of the pseudo-
code and hence MsgGen↓ is therefore only enabled if the phase of the executing process is P1.
Furthermore, the process must not be crashed and the current round of the process is less than or
equal to N . MsgGen↓

∆ describes the transition to the next phase: all values in the process state
are unchanged but the phase is set to P2. Furthermore, for the case that the executing process
is the coordinator of the current round, a message for every process containing the current x
value of the coordinator is put into the outbox. Otherwise, the outbox is the emptyset. The
Inbox and identity are (always) unchanged by process-actions.

132

5.1. Rotating Coordinator

MsgGen↓
en(lv) , (rnd ⊲ Slv ≤ N) ∧ (phs ⊲ Slv = P1) ∧ (¬crashed ⊲ Slv)

Msgsid,x(r) ,

®

{ (id, pj , x) | pj ∈ P } , if PID(id) = r

∅ , else

MsgGen↓
∆(lv) ,

Ü

(rnd ⊲ Slv, P2, x ⊲ Slv, crashed ⊲ Slv, dcsn ⊲ Slv),
MsgsIDlv,x⊲Slv

,
Inlv,
IDlv

ê

MsgGen↓ , (MsgGen↓
en, MsgGen↓

∆)

MsgRcvTrust↓(lv, lv′) , ∃m ∈ Inlv . PID(sndm) = rnd ⊲ Slv ∧ (phs ⊲ Slv = P2)

∧ (¬crashed ⊲ Slv)

∧ Slv′ = (rnd ⊲ Slv + 1, P1, cntm, crashed ⊲ Slv, dcsn ⊲ Slv)

∧ Outlv′ = ∅

MsgRcvSuspect↓
en(lv) , (rnd ⊲ Slv 6= PID(IDlv))

∧ (phs ⊲ Slv = P2)

∧ (¬crashed ⊲ Slv)

∧ (prnd⊲Slv
/∈ TI)

MsgRcvSuspect↓
∆(lv) ,

Ü

(rnd ⊲ Slv + 1, P1, x ⊲ Slv, crashed ⊲ Slv, dcsn ⊲ Slv),
Outlv,
Inlv,
IDlv

ê

MsgRcvSuspect↓ , (MsgRcvSuspect↓
en, MsgRcvSuspect↓

∆)

Finish↓
en , rnd ⊲ Slv > N

∧ (phs ⊲ Slv = P1)

∧ (¬crashed ⊲ Slv)

∧ (dcsn ⊲ Slv 6= ⊥)

Finish↓
∆(lv) ,

Ü

(rnd ⊲ Slv, P1, x ⊲ Slv, crashed ⊲ Slv, x ⊲ Slv),
Outlv,
Inlv,
IDlv

ê

Finish↓ , (Finish↓
en, Finish↓

∆)

Figure 5.2.: Actions and Events for Rotating Coordinator Algorithm (Part I)

133

5. Case Studies

The non-lifted action MsgRcvTrust↓ chooses a message to process. Although by the def-
inition of the algorithm it is clear that there can only be one possible message, in a general
setting we have to assume that there might be more than one message arriving at process pi

such that pi must choose one message to process out of a set of messages. Therefore, without
further restrictions, this message must be chosen nondeterministically. Hence, this action is not
modeled as a DnA but as a simple non-lifted action. The action is enabled if there is a message
for the current round of the process, the process is not crashed, and the phase is P2. If the
action is executed, the content of the message is adopted to the state of the process and the
phase is set back to P1.

We model the weak accuracy property by a nonempty set TI that contains the trusted-
immortal processes. Note that TI is fixed for a run R and hence is not part of a configuration
but can be modeled as a constant.

The DnA MsgRcvSuspect↓ models the case where a process suspects the coordinator of its
current round. Therefore, to be enabled, the coordinator of the current round must not be in
set TI (note that the coordinator of round r is pr). Of course, this action can also be executed
only if the process is not crashed and the phase is P2. Moreover, a process is not allowed to
suspect itself and therefore a process pi suspects only coordinators of rounds j with j 6= i. This
action does nothing more than incrementing the round number by one and setting the phase to
P1.

Finally, after N rounds have been completed, a process is able to decide by executing the
DnA Finish↓. Finish↓ is enabled if a round number greater than N is reached, the phase is
P1, the process has not yet decided, and is not crashed. To decide, a process simply copies the
value from the x value to the decision value and terminates. Note that after all processes either
decided or have crashed and all possible message movements have been done, the system reaches
a deadlock (there are no enabled actions or events any more).

To model crashes we provide an DnA Crash↓ (see figure 5.3), which is always enabled if the
process has not crashed already and is not a trusted-immortal process. In the case of crash-failure
the indicating boolean value crashed ⊲ SC(pi) of the process is set to True and everything else is
unchanged. Note that the state of being crashed is a sink, i.e. a process that has crashed in a
run R by the definition of the Crash-Failure model will never recover in R. Finally, we define two
events to manage message movements from one message status to the next (cf. section 2.3.5).
MsgSend shifts an outgoing message to the messages with status transit and MsgDeliver

advances a message from transit to status received. These two events use the introduced
subactions Transmit and Receive (see section 2.3.5). Note that from a model theoretic point of
view it is not obvious that Transmit and Receive are events because they require a process (for
Transmit the sender process and for Receive the receiver process) to be alive. Hence, they could
be regarded as process-actions of this process. But defining these actions as process-actions
would require to make transit messages accessible for processes, which does not conform to
our concept of Localviews. Therefore, we decided to model MsgSend and MsgDeliver as events.
Figure 5.4 shows how we convert configurations to Localviews and vice versa. The function
C2LV rc generates a Localview of a configuration C for a process pi by returning a vector of the

• state of a process: SC(pi)

134

5.1. Rotating Coordinator

Crash↓
en , (¬crashed ⊲ Slv)

∧ (IDlv /∈ TI)

Crash↓
∆ ,

Ü

(rnd ⊲ Slv, phs ⊲ Slv, x ⊲ Slv, True, dcsn ⊲ Slv),
Outlv,
Inlv,
IDlv

ê

Crash↓ , (Crash↓
en, Crash↓

∆)

MsgSend(C,C′) , ∃m . Transmit(QC, QC′ , m)

∧ (¬crashed ⊲ SC(sndm))

∧ (SC′ = SC)

MsgDeliver(C,C′) , ∃m . Receive(QC, QC′ , m)

∧ (¬crashed ⊲ SC(rcvm))

∧ (SC′ = SC)

Figure 5.3.: Actions and events for Rotating Coordinator Algorithm (Part II)

C2LV rc(C, pi) ,

Ü

SC(pi)
∅

{ m ∈ recmsgs QC
| rcvm = pi }

pi

ê

LV2C rc(lv, pi,C) ,
Å

SC[pi := Slv]
sndupdQC,Outlv

ã

Φrc ,
¶

DLift(MsgGen↓), Lift(MsgRcvTrust↓), DLift(MsgRcvSuspect↓)
©

∪
¶

DLift(Finish↓), DLift(Crash↓)
©

Ψrc , { MsgSend, MsgDeliver }

Arc , (Initrc, Φrc, Ψrc, ∅, C2LV rc, LV2C rc)

Figure 5.4.: Formal Rotating Coordinator Algorithm

• an empty outbox: ∅

• the received messages of pi in C: { m ∈ recmsgs QC
| rcvm = pi }

135

5. Case Studies

• the identity of pi: pi

LV2C rc embeds a Localview lv back in to a given configuration C by

• setting the state of process pi to the process state Slv of the Localview

• updating the outgoing messages by adding the messages from pi’s outbox (note that
sndupd is the function defined in Section 2.3.5)

Finally we lift the defined actions and define Φrc as the set of all lifted actions. Ψrc is defined
as the set of events MsgSend and MsgDeliver . We conclude with the tuple
(Initrc, Φrc, Ψrc, ∅, C2LV rc, LV2C rc) that defines the formal Distributed Algorithm Arc (see
figure 5.4).

5.1.3. Proof Issues

The algorithm aims to solve Consensus. Hence, in order to prove correctness, we have to verify
the properties defined in Section 2.4.1. Figure 5.5 shows the properties in terms of our formal
model. Proofs for correctness are given in →֒ Isabelle1. The idea for the proof of Termination
is, to show that in every run R there is a time td such that there is a deadlock in configuration
R(td) and every correct process has a round number greater than N (→֒ Isabelle2). As described
in Section 5.1.1, the proof requires to show that no trusted-immortal process pti blocks before
pti reaches round ti (→֒ Isabelle3). Verification of these lemmas are not as easy as it may
seem. First, different subgoals have to be proven, as for example, that every run R is finite (→֒
Isabelle4) and different lemmas concerning the enabledness of actions. Having established that
every correct process pc has a round number greater than N in time td, it is easy to show that
pc must have decided on a value. This implies Termination.

Validityrc(R) , ∀t ∈ T . ∀pi ∈ P . dcsn ⊲ SR(t)(pi) 6= ⊥ ⇒
(

∃pk ∈ P . vinp(pk) = dcsn ⊲ SR(t)(pi)
)

Agreementrc(R) , ∀t ∈ T . ∀pi, pj ∈ P . dcsn ⊲ SR(t)(pi) 6= ⊥ ∧ dcsn ⊲ SR(t)(pj) 6= ⊥

⇒ dcsn ⊲ SR(t)(pi) = dcsn ⊲ SR(t)(pj)

Terminationrc(R) , ∀pi ∈ Correct(R) . ∃t ∈ T . dcsn ⊲ SR(t)(pi) 6= ⊥

Irrevocabilityrc(R) , ∀t ∈ T . ∀pi ∈ P . dcsn ⊲ SR(t)(pi) 6= ⊥

⇒
(

∀t′ ∈ T .
(

t′ ≥ t ⇒ dcsn ⊲ SR(t′)(pi) = dcsn ⊲ SR(t)(pi)
))

Figure 5.5.: Formal Properties of Distributed Consensus for the Rotating Coordinator Algorithm

Let pti be a trusted-immortal process. The proof of Agreement relies mainly on four argu-
ments:

1RotatingCoordVerification.thy
2Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): CorrectProcs_reach_MaxPCHelp
3Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): NonBlockingTI
4Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): OnlyFiniteRuns

136

5.2. ♦S-Algorithm

• Processes only decide if they have reached a round number greater than N (→֒ Isabelle5).

• All processes have equal x values in rounds higher than ti (→֒ Isabelle6).

• If a process decides then it will decide for its x value (→֒ Isabelle7).

• ti ≤ N .

Naturally, the most effort will be spent in proving the second argument.
Finally, Validity and Irrevocability are shown by a simple application of the methods described

in Section 3.2.
In respect to our Isabelle proofs we do not comply the argument of Francalanza and Hennessy

that the natural structure of the proofs would be somehow obscured by the application of a
theorem prover. On the contrary, the use of Isabelle and the corresponding proof style Isar
enables us to transcribe the proofs in a very similar fashion to the paper proof given in [Tel01].
They differ only in regards to the level of detail.

5.2. ♦S-Algorithm

While the previous section presented an algorithm that solves Distributed Consensus by using
failure detector S, this section considers an example where the weaker failure detector ♦S is
used. As indicated by ‘⋄’, this failure detector eventually shows the properties of S (hence, it
is called the Eventually Strong failure detector). The failure detector used here satisfies the
following two conditions [CT96]:

1. Eventual weak accuracy: There is a time, after which some correct process is never
suspected by any correct proccess.

2. Strong completeness: Eventually, every process that crashes is permanently suspected
to be crashed.

The algorithm under inspection is introduced in [CT96]. Since assumptions for the failure de-
tector are weaker, the algorithm is much more complex. Moreover, some additional assumptions
are needed to solve Consensus:

• More than the half of all involved processes must be correct.

• The communication infrastructure must provide a Quasi-reliable point-to-point mechanism
and a reliable broadcast mechanism (see Sections 2.3.5 and 2.3.6).

Note that while variants of the algorithm with weaker assumptions for the communication infra-
structure are possible, the first assumption is mandatory for an algorithm that uses an Eventually
Strong (and even an Eventually Perfect) failure detector to solve Consensus (a proof is provided
in [CT96] and [Tel01]). [CT96] showed that a system that uses a failure detector with weak

5Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): DecidedAfterN
6Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): uniformRndsAfterTI2
7Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): Consistency

137

5. Case Studies

completeness (and weak accuracy) is equivalent to a system that uses a failure detector with
strong completeness (and weak accuracy). In the companion paper [CHT96] it is shown that
the failure detector with weak completeness (and weak accuracy) is the weakest failure detector
that solves Consensus. Therefore, there can be no algorithm that solves Distributed Consensus
in an asynchronous setting with crash failures that uses a failure detector that is effectively
weaker than the one used here. Compared to the Rotating Coordinator algorithm, the ♦S-
algorithm exhibits another feature that is important for most applications. While the Rotating
Coordinator algorithm might violate the Agreement property if the failure detector fails to
provide weak accuracy, this algorithm guarantees the safety properties of Consensus even in
the case where the failure detector violates the assumed guarantees and even if more than
the half of all processes fail. The eventual weak accuracy property makes it undecidable to
predetermine the time that is needed to solve Consensus and this, in contrast to the Rotating
Coordinator algorithm, leads to an unknown number of rounds that are required in a run to
reach Termination. Hence for this algorithm the maximum number of rounds that are needed
to solve Distributed Consensus is finite in every run but can not be determined any further.
Like the Rotating Coordinator algorithm, this algorithm is round based and uses the rotating
coordinator paradigm [Fuz08]: for each round, one process plays the role of the coordinator of r.
Based on collected messages from [other] processes, the coordinator of a round proposes a value
for decision. Since there might be more than N rounds, the role of the coordinator of round r
can no longer be assigned to pr. Therefore we use the function

Crd(r) , ((r−1) mod N) + 1

to determine the coordinator of round r. For more detailed information on this algorithm the
reader is refered to [CT96] and [Fuz08].

5.2.1. Informal Introduction to the Algorithm

The pseudo code (listing 5.2) describes the local behaviour of a process pi that executes the ♦S
algorithm. We adopt the listing from [NF03] instead of the original from [CT96] because it is
closer to our formalization.

The algorithm uses a directive QPP_SEND(snd,(round,phase),c)TO rcv for quasi-reliable point-to-
point communication. This directive is supposed to send a message from the sender snd to the re-
ceiver rcv. The pair (round,phase) is used as a logical time stamp that allows the receiver to arrange
messages in order. A message can be uniquely identified by the tuple (snd, rcv, (round, phase))
because every sender passes each round only once and in each round each phase is only visited
once or never. c is used for the content of the message. We assume that received messages are
stored in a set received_QPP and that we can access all received messages from round number r

and phase P as set received_QPP.Pr .
To send a message d with the reliable broadcast mechanism, a process snd uses the directive

RBC_BROADCAST(snd,d). After a broadcast d from a process snd has been delivered, the receiving
process is noticed by RBC_DELIVER(snd,d).

138

5.2. ♦S-Algorithm

Listing 5.2: ♦S- Algorithm for participant pi [Fuz08]
1 r := 0
2 b e l i e f . v a l u e := Inpu t
3 b e l i e f . stamp := 0
4 d e c i s i o n := ⊥
5

6 whi le (d e c i s i o n = ⊥)

7 { W r := r + 1

8 P1 QPP_SEND(p_i , (r , P1) , b e l i e f) TO Crd (r)

9

10 P2 i f (p_i = Crd (r)) then {

11 await | received_QPP . P1r | ≥ ⌈ N+1
2

⌉

12 f o r 1 ≤ j ≤ N do

13 QPP_SEND(p_i , (r , P2) , b e s t (received_QPP . P1r)) TO p_j

14 }

15 P3 await (received_QPP . P2r 6= ∅ or (¬ a l i v e (Crd (r))))

16 i f (received_QPP . P2r = {(Crd (r) , (r , P2) , (v , s)) }) then {

17 QPP_SEND(p_i , (r , P3) ,ACK) TO Crd (r)

18 b e l i e f . v a l u e := v

19 b e l i e f . stamp := r

20 } e l s e {

21 QPP_SEND(i , (r , P3) ,NACK) TO Crd (r)

22 }

23 P4 i f (p_i = Crd (r)) then {

24 await | received_QPP . P3r | ≥ ⌈ N+1
2

⌉

25 i f | ack (received_QPP . P3r) | ≥ ⌈ N+1
2

⌉ then RBC_BROADCAST(p_i , b e l i e f)

26 }

27 }
28

29

30

31 when (RBC_DELIVER (p_j , d) {
32 i f (d e c i s i o n = ⊥) then {
33 d e c i s i o n := d
34 output (d e c i s i o n . v a l u e)
35 }
36 }

Locally, each process makes use of variables belief , r, v, and j. belief and decision are records
with entries value and stamp, such that a value from the set of input values and a round number
can be stored in belief .value and belief .stamp (respectively decision .value and decision .stamp). For
the decision value it is also possible to be undefined (⊥) to represent an undecided process. The
belief of a process pi represents pi’s current belief, i.e., a value (belief .value) the process recently
adopted as a candidate for the decision value and a stamp belief .stamp denoting the round in
which pi adopted that value.

Initially, the round number r and belief .stamp are set to zero, belief .value is set to the input
value of the process, and the decision value is set to ⊥. Then, in a while-loop, processes cycle
through four phases P1, P2, P3, P4 (note that for our formalization we added a fifth phase W
that was originally not introduced by Chandra and Toueg but derives from the formalization in

139

5. Case Studies

[FMN07]). Before entering phase P1, the round number r is incremented by one. In phase P1
of a round r every process pi sends its current belief to the coordinator of r. In phase P2, if pi is
the coordinator of r then pi collects the sent beliefs of at least ⌈N+1

2 ⌉ processes and determines
the value to propose as a decision value by a function best. Among all received belief values, best

selects the value with the most recent stamp, i.e., the greatest stamp value associated with the
highest round number. To wait for at least ⌈N+1

2 ⌉ P1 messages of round r the statement await

is used. await b is assumed to suspend the local execution of the program until the (boolean)
condition b is satisfied. The best value is then sent to all processes. In phase P3, pi waits until
either it gets the P2 message for the current round from the coordinator or the function alive

indicates that the coordinator has crashed. In case pi has received the respective P2 message, pi

sends an acknowledgement ACK to the coordinator, adopts the proposed value for belief .value,
and sets belief .stamp to the current round. If pi suspects the coordinator to have crashed, pi

sends a NACK message to the coordinator to indicate that pi does not acknowledge the value
of the coordinator. Phase P4 is only executed if pi is the coordinator of the current round. In
this case pi waits for at least ⌈N+1

2 ⌉ P3 messages. If pi gets more than ⌈N+1
2 ⌉ acknowledgements

then pi will broadcast its current belief (the value pi proposed in phase P2) for decision. Then
pi continues at the beginning of the while-loop. Concurrently to the while-loop, processes wait
for broadcasts and hence the pseudo code after line 28 must be interpreted as a concurrent
sub-routine. If a process pi receives a broadcast (indicated by RBC_DELIVER) then pi decides for
the broadcasted value v by applying v for the local decision value and outputting v.

As a higher level description of the algorithm, Chandra and Toueg [CT96] explain that the
algorithm passes through three asynchronous epochs. In the first epoch, all input values of the
processes are possible candidates for the decision. During the second epoch, one input value v
gets locked: A value is locked for a round r if more than the half of all processes acknowledged
the value sent by the coordinator of r and from then on no other decision value will be possible.
In the third episode, processes decide for v. Coordinators use a maximal time-stamp strategy
and always wait for a majority of acknowledgements. Therefore a locked value v will always
dominate the other values[Fuz08], which is the main argument for the Agreement property.
Also for this algorithm the main argument for Validity is that no values are invented. All
values in messages and in process states originate from the input values of processes. Finally,
Termination depends on the assumption that at least a majority of all processes have not crashed,
because this implies that a coordinator does not wait forever for a majority of messages. Hence,
coordinators do not block while they wait for messages. On the other hand, the other processes
are able to skip waiting for messages of crashed coordinators by suspecting them. Therefore,
every possible round number can be reached by correct processes. If no decision has been taken
before, eventually a trusted-immortal process pc, that is not suspected, will be coordinator of
a round r. In this round r no (correct) process suspects pc. Thus, pc collects more than N/2
acknowledgements and broadcasts its value such that all correct processes must decide eventually
by the assumption of the Reliable Broadcast mechanism.

5.2.2. Formal Model

As for the previous algorithm, we begin with the introduction of the required datastructures for
configurations, Localviews and messages. Concepts for the datastructures are mainly influenced

140

5.2. ♦S-Algorithm

by the definitions of [FMN07], therefore, for more details of the single components, we refer the
reader to Fuzzati et al. A configuration for our ♦S-algorithm has five entries:

• S: the array of process states

• TI: the set of trusted-immortal processes

• B: the set of broadcast messages

• Q: the Message History

• Crashed: the set of crashed processes.

In contrast to the Rotating Coordinator the set of trusted-immortal processes for this algorithm
is not a constant function but modeled as a part of the configuration. The concept here is
that a process can become trusted-immortal at any point in time and an additional fairness
assumption OmegaProperty assures that eventually there is some process in the set of trusted-
immortal processes. This failure detector model originates from the concepts introduced in
[NF03] and actually models failure detector Ω, which is equivalent to ♦S (a proof is given in
[CHT96] and [NF03]).

Again, we denote the array of process states of a configuration C by SC, the set of trusted-
immortal processes by TIC, the set of broadcast messages by BC, and the set of crashed processes
by CrashedC. We use the same module for the Message History as for the Rotating Coordinator
model but add an additional fairness property QPPReliability (see Section 2.3.5). For broadcasts
we use the modeling techniques introduced in Section 2.3.6. As described in Section 2.3.8 we
keep track of crash failures by a set of processes. The state of a process pi is represented by a
tuple ((r, P), (v, s), d), where

• (r, P) is the program counter of pi consisting of the round number r of pi and the phase
P pi is in.

• (v, s) is the belief of pi consisting of a value v ∈ I and a stamp s ∈ N (see section 5.2.1).

• d is the decision value of pi. d must be either ⊥ (undecided) or a pair (vd, sd) where vd

is the value pi decided and sd is the stamp of the round where the decision was taken.

Again, we use the introduced means for notation to denote the entries for a process state SC(pi)
of a process pi in a configuration C:

• the program counter of a process is denoted by pc ⊲ SC(pi)

• the phase of pi is denoted by phs ⊲ pc ⊲ SC(pi)

• the round number of pi is denoted by rnd ⊲ pc ⊲ SC(pi)

• the belief of pi is denoted by bel ⊲ SC(pi)

• the value of the belief of pi is denoted by val ⊲ bel ⊲ SC(pi)

141

5. Case Studies

• the stamp of the belief of pi is denoted by stamp ⊲ bel ⊲ SC(pi)

• the decision of pi is denoted by dc ⊲ SC(pi)

• the value of the decision of pi is denoted by val ⊲ dc ⊲ SC(pi)

• the stamp of the decision of pi is denoted by stamp ⊲ dc ⊲ SC(pi)

In a Localview lv a process can access its process state Slv and the respective entries pc ⊲ Slv,
phs ⊲ pc ⊲ Slv, rnd ⊲ pc ⊲ Slv bel ⊲ Slv, val ⊲ bel ⊲ Slv, stamp ⊲ bel ⊲ Slv, dc ⊲ Slv, val ⊲ dc ⊲ Slv,
and stamp ⊲ dc ⊲ Slv. As for the Rotating Coordinator algorithm, the Localview comprises the
process state, a set Outlv for the outbox of the process, the inbox Inlv of pi, (the set of received
messages of pi), and the identity IDlv of pi. Again, we expect the values of the inbox and the
identity to be read-only values and we model the outbox as an emptyset where pi puts in the
messages pi is willing to send (as already explained and used in Sections 2.3.2 and 2.3.5). For
the ♦S-algorithm we add an entry Blv for the Broadcast History, a boolean value isCrashedlv

for the crash status of pi, and an entry Trustedlv for the set of trusted-immortal processes.
Messages are represented by tuples (s, r, rnd, phs, c) where

• s ∈ P is the sender of m

• r ∈ P is the receiver of m

• rnd ∈ N is the round number the message is associated with

• phs ∈ { P1, P2, P3, P4 } is the phase the message is associated with

• c is an arbitrary content of the message

The sender of a message m is denoted by sndm, the receiver by rcvm, the round by rndm, the
phase by Pm, and the content of a message is denoted by cntm.

Initially, every process pi starts with round number 0 and phase W, with the belief (vinp, 0)
and pi is initially undecided. Furthermore, the Message History contains no messages and hence
returns zero for every message/message-status pair. Therefore, we define the initial process state
S0(pi) for each process pi, the initial Message History Q0, and finally the set of initial states
Initct as depicted in Figure 5.6. The emptyset entries in Initct represent (in this order) the
emptyset of trusted-immortal processes, the emptyset of broadcast messages, and the emptyset
of crashed processes at initialization.

As annotated in the pseudo code, we divide this algorithm into five phases W, P1, P2, P3,
and P4. For modeling the actions, we transfered the transition rules for the algorithm given in
[FMN07] to our model. Only the addition of one action for the failure detector (ImmoTrust↓)
and a few minor changes were necessary. Hence, the reader is also refered to [FMN07] for
additional information on the single actions.

142

5.2. ♦S-Algorithm

S0(pi) , ((0, W), (vinp, 0), ⊥)

Q0(m, t) , 0

Initct ,























à

S0

∅
∅

Q0

∅

í 





















Figure 5.6.: Initial definitions for ♦S-Algorithm

The phases reflect the main steps of the algorithm:

• If the process pi is undecided in the first step (phase W), pi increments the round number
and proceeds to phase P1.

• As a second step, pi sends a message with its belief to the coordinator of the round. If pi

is the coordinator of the round, pi proceeds to phase P2 else pi proceeds to phase P3.

• If pi is in phase P2 (and therefore is the coordinator of its current round), pi waits for
P1 messages from the processes. If pi has received messages from more than a half of all
processes, pi determines the best belief (i.e. the belief with the most recent stamp) and
sends it as a proposal to all processes. Then pi proceeds to phase P3

• If pi suspects the coordinator of the current round in phase P3, pi sends a NACK message
to the coordinator and proceeds to phase P1. Otherwise, pi waits for the P2 message of
the coordinator, adopts the sent belief value for its own belief, sends a ACK message and
proceeds either to phase P4 (if pi is the coordinator of the round) or to W otherwise.

• If pi is in phase P4 (and therefore is the coordinator of its current round), pi collects P3
messages from the processes. If pi has received acknowledgements from more than a half
of all processes, pi broadcasts its belief as decision value. pi proceeds to phase W.

In our model, the first step is represented by the DnA While↓ (see Figure 5.7). This action
is enabled, if the executing process is not crashed, is in phase W and has not yet decided.
The transition increments the round number and sets the phase to P1, everything else in the
Localview is unchanged.

Then, in phase P1 DnA Phs1 ↓ is enabled if the process does not crash in between. Phs1 ↓

generates a P1 message to the coordinator with the current belief of the process and puts it into
the outbox. A function nxP(r, P, pi) determines the next phase dependent on the coordinator of

143

5. Case Studies

r and the phase P of process pi. In case of P = P1 this can be either P2 (if pi is the coordinator
of r) or P3 (otherwise).

While↓
en(lv) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = W

∧ dc ⊲ Slv = ⊥

While↓
∆(lv) ,





















((rnd ⊲ pc ⊲ Slv + 1, P1), bel ⊲ Slv, dc ⊲ Slv)
Inlv

Outlv

Blv

isCrashedlv

Trustedlv

IDlv





















While↓ , (While↓
en, While↓

∆)

nxP(r, P, pi) ,



















P2 , if P = P1 ∧ Crd(r) = pi

P3 , if P = P1 ∧ Crd(r) 6= pi

P4 , if P = P3 ∧ Crd(r) = pi

W , if P = P3 ∧ Crd(r) 6= pi

Phs1 ↓
en(lv) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = P1

Phs1 ↓
∆(lv) ,





















((rnd ⊲ pc ⊲ Slv, nxP(rnd ⊲ pc ⊲ Slv, P1, IDlv)), bel ⊲ Slv, dc ⊲ Slv)
Inlv

{ (IDlv, Crd(rnd ⊲ pc ⊲ Slv), rnd ⊲ pc ⊲ Slv, P1, bel ⊲ Slv) }
Blv

isCrashedlv

Trustedlv

IDlv





















Phs1 ↓ , (Phs1 ↓
en, Phs1 ↓

∆)

Figure 5.7.: Actions While↓ and Phs1 ↓

In phase P2 the DnA Phs2 ↓ is enabled if the process is not crashed and has already received
P1 messages from more than a half of all processes for the current round (see Figure 5.8). Among
those messages the executing process selects the belief with the most recent stamp by using the
following functions:

• highest(r, M) returns the highest (most recent) stamp of all P1 messages from set M with
round number r (note that the stamp is the 2nd entry of the content of a P1 message).

• winner(r, M) returns the process id j of the process pj that sent the message with the

144

5.2. ♦S-Algorithm

highest stamp. Since in general this process is not unique, we chose the one with the
minimal process id.

• best(r, M) returns the belief that corresponds to the winner message.

This belief is then sent to all processes in a P2 message and the process transits to phase P3.

Phs2 ↓
en(lv) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = P2

∧ |{ m ∈ Inlv | ∃c . ∃pj ∈ P . m = (pj , IDlv, rnd ⊲ pc ⊲ Slv, P1, c) }| >
N

2
highest(r, M) , Max{ s | ∃m ∈ M . rndm = r ∧ Pm = P1 ∧s = 2nd (cntm) }

winner(r, M) , Min{ j | ∃m ∈ M . rndm = r ∧ Pm = P1 ∧ sndm = pj ∧ 2nd (cntm) = highest(r, M) }

best(r, M) , ǫb. ∃m ∈ M . rndm = r ∧ Pm = P1 ∧ sndm = pwinner(r,M) ∧ cntm = b

Phs2 ↓
∆(lv) ,





















((rnd ⊲ pc ⊲ Slv, P3), bel ⊲ Slv, dc ⊲ Slv)
Inlv

{ (IDlv, pj , rnd ⊲ pc ⊲ Slv, P2, best(rnd ⊲ pc ⊲ Slv, Inlv)) | pj ∈ P }
Blv

isCrashedlv

Trustedlv

IDlv





















Phs2 ↓ , (Phs2 ↓
en, Phs2 ↓

∆)

Figure 5.8.: Action Phs2 ↓

Dependent on the messages a process pi has received, in phase P3 two actions can be en-
abled for pi: Phs3Trust↓ or Phs3Suspect↓ (see Figure 5.9). If pi has received a P2 message
from the coordinator of the current round, then pi trusts the coordinator and Phs3Trust↓ is
enabled. Otherwise, if the coordinator is not a trusted-immortal process and pi itself is not the
coordinator of the current round, pi may suspect the coordinator to have crashed and execute
Phs3Suspect↓. As for the Rotating Coordinator algorithm, the selection of the message is mod-
eled non-deterministically (see Section 5.1.2) and hence Phs3Trust↓ is not modeled as a DnA
but as a simple non-lifted action. In contrast to Phs3Trust↓, action Phs3Suspect↓ sends a NACK
to the coordinator. If pi is the coordinator of the current round, the phase is set to P4 (by using
again function nxP). Otherwise, the phase is set back to W to start a new round.

Also for a process in phase P4 two of the PhsX actions can be enabled: Phs4Success↓ and
Phs4Fail↓ (see figure 5.10). Both actions are modeled as DnAs. Phs4Success↓ is executed by a
coordinator pi if pi received P3 acknowledgements from more than the half of all processes. In
this case pi broadcasts its belief to make the other processes decide. Otherwise, if pi received P3
messages from more than the half of all processes but not enough acknowledgements, pi executes
Phs4Fail↓. In both cases pi transits to phase W.

145

5. Case Studies

Phs3Trust↓(lv, lv′) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = P3

∧ Inlv′ = Inlv

∧ Blv′ = Blv

∧ isCrashedlv′ = isCrashedlv

∧ Trustedlv′ = Trustedlv

∧ ∃m ∈ Inlv . (rndm = rnd ⊲ pc ⊲ Slv ∧ Pm = P2

∧ Outlv′ = { (IDlv, Crd(rnd ⊲ pc ⊲ Slv), rnd ⊲ pc ⊲ Slv, P3, ACK) }

∧ Slv′ =

((rnd ⊲ pc ⊲ Slv, nxP(rnd ⊲ pc ⊲ Slv, P3, IDlv)), (1st (cntm), rnd ⊲ pc ⊲ Slv)))

Phs3Suspect↓
en(lv) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = W

∧ Crd(rnd ⊲ pc ⊲ Slv) /∈ Trustedlv

∧ IDlv 6= Crd(rnd ⊲ pc ⊲ Slv)

∧ ∀m ∈ Inlv . rndm = rnd ⊲ pc ⊲ Slv ⇒ Pm 6= P2

Phs3Suspect↓
∆(lv) ,





















((rnd ⊲ pc ⊲ Slv, W), bel ⊲ Slv, dc ⊲ Slv)
Inlv

{ (IDlv, Crd(rnd ⊲ pc ⊲ Slv), rnd ⊲ pc ⊲ Slv, P3, NACK) }
Blv

isCrashedlv

Trustedlv

IDlv





















Phs3Suspect↓ , (Phs3Suspect↓
en, Phs3Suspect↓

∆)

Figure 5.9.: Actions Phs3Trust↓ and Phs3Suspect↓

For the concurrent task of processing broadcasts, we define an action RBCDeliver↓ (see
Figure 5.11). As for point-to-point messages, the selection of the broadcast is carried out non-
deterministically and therefore this action is not modeled as a DnA but as a standard non-lifted
action. A process pi processes a broadcast independendly from the phase and therefore the only
conditions for this action to be enabled are that pi is not crashed and that there is a broadcast
for pi available that has not been processed yet. Processing a broadcast means adopting the
value for decision (if pi has not yet decided a value).

As for the Rotating Coordinator, we model crashes by providing an DnA Crash↓, which is
always enabled if the process has not yet already crashed and is not a trusted-immortal process.
In the case of crash-failure the variable isCrashedlv′ for the process is set to True.

146

5.2. ♦S-Algorithm

Phs4Fail↓
en(lv) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = P4

∧ |{ m ∈ Inlv | ∃c . ∃pj ∈ P . m = (pj , IDlv, rnd ⊲ pc ⊲ Slv, P3, c) }| >
N

2

∧ |{ m ∈ Inlv | ∃pj ∈ P . m = (pj , IDlv, rnd ⊲ pc ⊲ Slv, P3, ACK) }| ≤
N

2

Phs4Fail↓
∆(lv) ,





















((rnd ⊲ pc ⊲ Slv, W), bel ⊲ Slv, dc ⊲ Slv)
Inlv

Outlv

Blv

isCrashedlv

Trustedlv

IDlv





















Phs4Fail↓ , (Phs4Fail↓
en, Phs4Fail↓

∆)

Phs4Success↓
en(lv) , ¬isCrashedlv

∧ phs ⊲ pc ⊲ Slv = P4

∧ |{ m ∈ Inlv | ∃pj ∈ P . m = (pj , IDlv, rnd ⊲ pc ⊲ Slv, P3, ACK) }| >
N

2

Phs4Success↓
∆(lv) ,





















((rnd ⊲ pc ⊲ Slv, W), bel ⊲ Slv, dc ⊲ Slv)
Inlv

Outlv

Blv ∪ { (rnd ⊲ pc ⊲ Slv, 1st (bel ⊲ Slv), P) }
isCrashedlv

Trustedlv

IDlv





















Phs4Success↓ , (Phs4Success↓
en, Phs4Success↓

∆)

Figure 5.10.: Actions Phs4Success↓ and Phs4Fail↓

147

5. Case Studies

An DnA ImmoTrust↓ is used to let processes become trusted-immortal. As described in
[NF03] a process can become trusted-immortal, if it is not crashed and has not yet become
already trusted-immortal. The execution of ImmoTrust↓ adds the process to the set of trusted-
immortal processes.

As for the Rotating Coordinator, we define two actions MsgSend and MsgDeliver to man-
age message movements from one message status to the next (see Section 2.3.5). MsgSend shifts
an outgoing message to the messages with status transit and MsgDeliver advances a message
from transit to status received (see Figure 5.12). These two events use the introduced subac-
tions Transmit and Receive (see Section 2.3.5). As for the Rotating Coordinator algorithm we
decided to model MsgSend and MsgDeliver as events.

Figure 5.13 shows the definitions for the functions C2LVct and LV2Cct that are used to convert
configurations to Localviews and vice versa. The function C2LVct generates a Localview out of
a configuration C for a process pi by returning a vector of the

• state of a process: SC(pi)

• the inbox of pi, i.e. the received messages of pi in C: { m ∈ recmsgs QC
| rcvm = pi }

• an emptyset for the outbox

• the Broadcast History

• the value isCrashed that is the boolean value of the assertion (pi ∈ CrashedC)

• the set of trusted-immortal processes

• the identity of pi: pi

LV2Cct embeds a Localview lv back in to a given configuration C by

• setting the state of process pi to the process state Slv of the Localview

• adding pi to the set of trusted-immortal processes if pi was added locally to the respective
set

• adopting the local Broadcast History to the global

• updating the outgoing messages by adding the messages from pi’s outbox (note that
sndupd is the function defined in Section 2.3.5)

• adding pi to the crashed processes if pi’s variable isCrashedlv is set to True

To define the required fairness assumptions for the ♦S-algorithm, we first formally define the
set of correct processes of a run R (see Figure 5.14). According to our definition, a process pi

is correct in R if and only if pi is never in set Crashed in R.
Based on this definition we define the fairness assumptions RBCValidity, RBCAgreement,

OmegaProperty, and CorrectPBound. RBCValidity and RBCAgreement are the formal
assertions for the guarantees explained in Section 2.3.6:

148

5.2. ♦S-Algorithm

sdc(v, r, d) ,

®

d , if d 6= ⊥

(v, r) , else

RBCDeliver↓
en(lv, lv′) , ¬isCrashedlv

∧ Outlv′ = Outlv

∧ Inlv′ = Inlv

∧ isCrashedlv′ = isCrashedlv

∧ Trustedlv′ = Trustedlv

∧ ∃b ∈ Blv . (IDlv ∈ 3rd (b)

∧ Blv′ = (Blv \ b) ∪
{

(1st (bc), 2nd (bc), 3rd (bc) \ IDlv)
}

∧ Slv′ = (pc ⊲ Slv, bel ⊲ Slv, sdc(1st (b), 2nd (b), dc ⊲ Slv)))

Crash↓
en(lv) , ¬isCrashedlv

∧ IDlv ∈ Trustedlv

Crash↓
∆(lv) ,





















Slv

Inlv

Outlv

Blv

True
Trustedlv

IDlv





















Crash↓ , (Crash↓
en, Crash↓

∆)

ImmoTrust↓
en(lv) , ¬isCrashedlv

∧ IDlv /∈ Trustedlv

ImmoTrust↓
∆(lv) ,





















Slv

Inlv

Outlv

Blv

isCrashedlv

Trustedlv ∪ { IDlv }
IDlv





















ImmoTrust↓ , (ImmoTrust↓
en, ImmoTrust↓

∆)

Figure 5.11.: Actions RBCDeliver↓, Crash↓ and ImmoTrust↓

149

5. Case Studies

QPPSnd(C,C′) , ∃m . sndm /∈ CrashedC

∧ Transmit(QC, QC′ , m)

∧ CrashedC′ = CrashedC

∧ TIC′ = TIC

∧ BC′ = BC

∧ SC′ = SC

QPPDeliver(C,C′) , ∃m . rcvm /∈ CrashedC

∧ Receive(QC, QC′ , m)

∧ CrashedC′ = CrashedC

∧ TIC′ = TIC

∧ BC′ = BC

∧ SC′ = SC

Figure 5.12.: Events QPPSnd and QPPDeliver

C2LVct(C, pi) ,





















SC(pi)
{ m ∈ recmsgs | rcvm = pi }

∅
BC

(pi ∈ CrashedC)
TI
pi





















LV2Cct(lv, pi,C) ,

à

SC[pi := Slv]
(TIC ∪ { pj | pj = pi ∧ pi ∈ Trustedlv })

Blv

sndupdQC,Outlv

(CrashedC ∪ { pj | pj = pi ∧ isCrashedlv }) Blv

í

Figure 5.13.: Functions C2LVct and LV2Cct

RBCValidity If a correct process pi broadcasts a message m, then pi eventually delivers m.

RBCAgreement If a broadcast message m is delivered by some correct process, then m is
eventually delivered by every process.

150

5.2. ♦S-Algorithm

The guarantees ‘No Duplication’ and ‘No Creation’ are implicitly given by the definition of
our broadcast model and therefore need no explicit declaration. Our fairness assumption for
ReliableBroadcast is therefore given by the conjunction of RBCValidity and RBCAgreement.

The OmegaProperty is the formal declaration of our assumption on the failure detector: There
is a process pk such that there is a time t ∈ T where pk is in the set of trusted-immortal processes.
Finally, CorrectPBound requires that at least more than the half of all processes are correct.

The definition of the set of predicates Fad that must hold for Admissible Runs contains the
three aforementioned predicates ReliableBroadcast, OmegaProperty, CorrectPBound, and addi-
tionally the predicate for QPPReliability that has been defined in Section 2.3.5.

Correct(R) , { pi ∈ P | ∀t ∈ T . pi /∈ CrashedR(t) }

RBCValidity(R) , ∀pi ∈ Correct(R) . ∀t ∈ T . ∀b ∈ BR(t) .

(DLift(Phs4Success↓))(R(t − 1), R(t), pi) ∧ t > 0 ∧ b /∈ BR(t−1) ⇒

∃u ∈ T . u > t ∧ ∃b′ ∈ BR(u−1) . ∃b′′ ∈ BR(u) .

∧ 1st (b′) = 1st (b) ∧ 1st (b′′) = 1st (b)

∧ 2nd (b′) = 2nd (b) ∧ 2nd (b′′) = 2nd (b)

∧ 3rd (b′′) =
(

3rd (b′) \ pi

)

∧ pi ∈ 3rd (b′)

∧ (Lift(RBCDeliver↓))(R(u − 1), R(u), pi)

RBCAgreement(R) , ∀pi ∈ Correct(R) . ∀t ∈ T . ∀b ∈ BR(t−1) .

(Lift(RBCDeliver↓))(R(t − 1), R(t), pi) ∧ t > 0 ⇒

∀pj ∈ Correct(R) . ∃u ∈ T . u > 0 ∧ ∃b′ ∈ BR(u−1) . ∃b′′ ∈ BR(u) .

∧ 1st (b′) = 1st (b) ∧ 1st (b′′) = 1st (b)

∧ 2nd (b′) = 2nd (b) ∧ 2nd (b′′) = 2nd (b)

∧ 3rd (b′′) =
(

3rd (b′) \ pj

)

∧ pj ∈ 3rd (b′)

∧ (Lift(RBCDeliver↓))(R(u − 1), R(u), pj)

ReliableBroadcast(R) , (RBCValidity(R) ∧ RBCAgreement(R))

OmegaProperty(R) ,
(

∃pk ∈ Correct(R) . ∃t ∈ T . pk ∈ TIR(t)

)

CorrectPBound(R) , (2 · |Correct(R)| ≥ (N + 1))

Fad , { QPPReliability, ReliableBroadcast, OmegaProperty, CorrectPBound }

Figure 5.14.: Fairness assumptions for the ♦S-algorithm

Figure 5.15 shows the formal definition of the ♦S-algorithm based on the definitions before.
We define the set of process-actions Φct as the set that contains the lifted versions of the non-
lifted actions defined before. The set of events Ψct contains only the two defined events QPPSnd

151

5. Case Studies

and QPPDeliver .
We conclude with the tuple (Initct, Φct, Ψct, Fad, C2LVct, LV2Cct) that defines the formal

Distributed Algorithm Act (see figure 5.15).

Φct ,
¶

DLift(While↓), DLift(Phs1 ↓), DLift(Phs2 ↓), DLift(Phs3Suspect↓)
©

∪
¶

DLift(Phs4Fail↓), DLift(Phs4Success↓), DLift(Crash↓)
©

∪
¶

DLift(ImmoTrust↓), Lift(Phs3Trust↓), Lift(RBCDeliver↓)
©

Ψct , { QPPSnd, QPPDeliver }

Act , (Initct, Φct, Ψct, Fad, C2LVct, LV2Cct)

Figure 5.15.: Formal model of the ♦S-algorithm

152

5.2. ♦S-Algorithm

5.2.3. Proof Issues

The ♦S-algorithm also is a Consensus algorithm. Therefore, again, the requirements defined in
Section 2.4.1 have to be satisfied. Figure 5.16 depicts the formal assertions for the properties.
Our proofs are mainly based on the lemmas and theorems given in [FMN07], but there is
also a mentionable addition to the properties that are to be proven: [FMN07] gives no proof for
Irrevocability. Indeed, in their work, processes that have once decided, upon do not change their
values and this fact is only mentioned as a small remark without a further proof. Actually, the
formulated Agreement property in [FMN07] does not rule out the case in which processes change
values simultaneously from one configuration to the next. On the other hand, the structure of
the proofs for the remaining properties, Validity, Agreement, and Termination, can be adopted
to our Isabelle formalization almost one to one. It is again a question of the level of detail
that makes a difference in using the theorem prover. Many small invariants had to be added,
which in a paper proof seem to be to obvious to be mentioned. This especially concerns proofs
that refer to the transition rules in [FMN07]. As already explained, a proof that states that
only rules A1, . . . , Ak change a variable in a configuration and, hence, no other rules have to be
regarded must use the means introduced in Sections 3.1 and 3.2 explicitly. As an example of the

Validityct(R) , ∀t ∈ T . ∀pi ∈ P . dc ⊲ SR(t)(pi) 6= ⊥ ⇒
(

∃pk ∈ P . vinp(pk) = val ⊲ dc ⊲ SR(t)(pi)
)

Agreementct(R) , ∀t ∈ T . ∀pi, pj ∈ P . dc ⊲ SR(t)(pi) 6= ⊥ ∧ dc ⊲ SR(t)(pj) 6= ⊥

⇒ val ⊲ dc ⊲ SR(t)(pi) = val ⊲ dc ⊲ SR(t)(pj)

Terminationct(R) , ∀pi ∈ Correct(R) . ∃t ∈ T . dc ⊲ SR(t)(pi) 6= ⊥

Irrevocabilityct(R) , ∀t ∈ T . ∀pi ∈ P . dc ⊲ SR(t)(pi) 6= ⊥

⇒
(

∀t′ ∈ T .
(

t′ ≥ t ⇒ val ⊲ dc ⊲ SR(t′)(pi) = val ⊲ dc ⊲ SR(t)(pi)
))

Figure 5.16.: Formal properties of Distributed Consensus for the ♦S-algorithm

different level of detail that is necessary for a proof in a theorem prover consider the statement
that a process in phase P2 and P4 is always the coordinator of its current round. This fact is
usually regarded to be obvious by the pseudo code, transition rules, and actions. Although this
is assumed as a fact in [FMN07], we have to strictly adhere to the given semantics in a theorem
prover. Hence, we have to consider the whole code/model and establish the above fact as an
invariant that must be proven by induction (see Section 3.2). Further examples of statements
that seem to be obvious facts but require more than a line of proof code in a theorem prover
are:

• The receiver of P1 and P3 messages is always the coordinator of the corresponding round.

• The sender of P2 and P4 messages is always the coordinator of the corresponding round.

• PhsX actions are only executed once per round.

• The intersection of two sets that contain more than the half of all processes, is not empty.

153

5. Case Studies

• If a coordinator pc obtained more than N/2 messages for phase PX in round r, then
more than the half of all processes have actually responded to the coordinators request
because a process sends only one message per phase and round and hence the senders of
the messages pc received are mutually distinct.

• many more . . .

Like Fuzzati et. al [FMN07], we strengthened the definition of Validity and proved the conjunc-
tion of the following assertions by induction:

Validity 1 Every value occuring in a broadcast is an input value of some process.

Validity 2 Every value occuring in a P1 message is an input of some process.

Validity 3 Every value occuring in a P2 message is an input of some process.

Validity 4 Every value occuring in belief of a process is an input of some process.

Validity 5 Every value occuring in decision value of a process is an input of some process.

Validity can easily be shown by induction because initially in every run the belief is set to the
input value of the process, the decision value is ⊥, and there are no broadcasts and messages.
Hence, the conjunction is trivially true initially. For the inductional step we assume that all
values in messages and in the process-state (beliefs and decision values) are input values. Since
actions only copy values from one of these stores to another, the conjunction remains true for
every step of the algorithm (the whole proof is given in →֒ Isabelle8).

To prove Irrevocability, we applied the techniques introduced in Section 3.2 and used Theorem
3.2.0.12. Hence, to show Irrevocability it suffices to show Step, which is to show the assertion

∀t′ ∈ T .
Ä

dc ⊲ SR(t′)(pi) 6= ⊥
ä

⇒ dc ⊲ SR(t′)(pi) = dc ⊲ SR(t′+1)(pi).

(If the decision value of a process pi is not undefined then every step from t′ to t′ + 1 does not
change the decision value of pi). This can be shown by case distinction on actions and events
from (fixed) t′ to t′ + 1. Application of the introduced concepts in Section 3.1 is used to reduce
the cases to consider (the proof is given in →֒ Isabelle9).

Obviously, the Agreement property must be shown by considering the values that are broad-
casted. To show Agreement, we have to prove that broadcasted values are always locked values
(see the previous section and [FMN07]). Then we have to show that if two values v and v′ are
locked, then v = v′ (the whole proof is given in →֒ Isabelle10). Inspired by the proof sketches
in [CT96], Fuzzati et al. [FMN07] use induction on the round number to prove this lemma: To
prove a proposition P holds for all rounds r′ with r′ ≥ r, the first step is to show P holds for
r = r′. In the inductive step, P is shown for round k under the assumption that P holds for
all r′ with r ≤ r′ < k. For a detailed description of this proof and the proof of Termination
we refer the reader to [FMN07]. Regarding the timeline, this approach dissents from standard

8Isabelle/HOL theory: CTValidity.thy, Lemma(s): Validity
9Isabelle/HOL theory: CTAgreement.thy, Lemma(s): Irrevocability

10Isabelle/HOL theory: CTAgreement.thy, Lemma(s): LockingAgreement, Agreement

154

5.2. ♦S-Algorithm

temporal reasoning techniques, as the ‘global’ round number does not proceed consistently with
the global clock. In fact, the round number might be different in all local states of the processes
and can evolve independently from the global progress as long as it is monotonically increasing;
it is possible that a round number ri of process pi is greater than the round number rj of a
process j and later in time ri < rj holds. Therefore, proofs done by this technique are intricate
as well as hard to follow by a reader, and therefore are not chosen for doing formal proofs. There
infeasibility can be highlighted by errors that we found in [FMN07, Fuz08]. Making such errors
within a theorem proving environment is not possible and, hence, we were forced to correct them
[KNR12].

For the proof of Termination, we had to show that every correct process eventually decides
a value. The concept of the proof is again very close to the reasoning done by Fuzzati et. al
[FMN07]. As explained by Fuzzati et al., we proved a lemma Infinity (→֒ Isabelle11) to show
that in every infinite run R and for every round number r > 0 there is a process pi ∈ P such that
pi is in round number r and phase P3 at some time t in R. It turns out that the reasoning in
[FMN07] is very hard to formalize in a theorem prover. Fuzzati et. al. give an upper bound for
the maximum number of steps a process may perform with a fixed program counter (rt, Pt).
In Isabelle, we had to define a function that represents that number of steps and we had to
show that the assertions of [FMN07] concerning the concrete values of this functions are correct.
This means much more effort than the arguments given in [FMN07]. Hence, to deduce that the
program counter must be incremented after the given number of derivations, we had to spend
about 3k lines of proof code only to prove this first lemma of Fuzzati’s proof for Termination.

After showing this fundamental lemma, the rest of the proof is done more or less analogously
to [FMN07]. We were able to show that all Admissible Runs for the ♦S-algorithm are finite (→֒
Isabelle12) and to prove that a process can only be deadlocked under certain defined conditions
(→֒ Isabelle13). This finally enabled us to prove Termination the way as it works in [FMN07].

Broadcastfree Variant of ♦S

We demonstrated the reusability of our approach in a master thesis which examinded a variant
of this algorithm without broadcast. Although the student was not familiar with Isabelle, after
some introduction to the theoretical premises of the previous work, he was able to verify the
modified algorithm by using and modifying the provided lemmas and theorems. It turned out
that whereas verifying Validity, Agreement, and Irrevocability was rather simple, but the proof
of Termination was more complex requiring additional fairness assumptions.

There are implicit modeled fairness assumptions in the model of [FMN07], which do not apply
in the case without broadcast. To explain these implicit assumptions, let us assume there is a
broadcast for a process pi available that has to be delivered. Since processes deliver a broadcast
message and decide simultaneously a respective value in one atomic step, and, furthermore, the
ReliableBroadcast assumption ensures that every broadcast message is eventually delivered, it is
implied that pi eventually decides. In our modified variant we replaced the broadcast message

11Isabelle/HOL theory: CTProofTermination.thy, Lemma(s): Infinity
12Isabelle/HOL theory: CTProofTermination.thy, Lemma(s): Finiteness_of_Admissible_Runs
13Isabelle/HOL theory: CTProofTermination.thy, Lemma(s): processDeadlock1,processDeadlock2

155

5. Case Studies

by a point-to-point message. Hence, let us assume that in this scenario we have a point-to-
point message for process pi available carrying the value to decide. Due to the QPPReliability
assumption, this message has to be received eventually by process pi. In the case of point-to-
point messages we use the standard way of delivering and receiving messages that has been
proposed in Section 2.3.5. As also proposed in [FMN07] this implies that the receipt of the
message and the step of processing the message are autonomic atomic actions. Hence, in this
case, the existing fairness assumption QPPReliability does not imply that the message that has
been sent to make a process pi decide upon a value is actually processed by pi. Therefore,
we had to introduce weak fairness for the PhsX (Phs1 ↓, Phs2 ↓, Phs3Trust↓, Phs3Suspect↓,
Phs4Success↓, Phs4Fail↓) actions in this setting to prove Termination.

5.3. Paxos

The Paxos algorithm has been introduced by Leslie Lamport in [Lam98]. In his original work
Lamport described the algorithm in terms of a parliament of an ancient Greek island named
Paxos. Later, for the purpose of understanding, Lamport shortened his description of the
algorithm [Lam01] and (together with Eli Gafni) introduced some variant of the algorithm
that used shared disks, instead of message passing in [GL00]. Although Paxos is supposed to
solve the problem of Distributed Consensus, strictly speaking, it is not a Consensus algorithm
because there is no proof of Termination for this algorithm. [Fuz08] argues that Paxos does not
terminate even under ‘best conditions’ and proved a theorem Non Termination, which states
that in their model of the Paxos algorithm, there can always be an infinite run. Regarding the
impossibility result of [FLP85], it appears that without other assumptions, Paxos is not able to
solve Consensus in an asynchronous setting with crash failures. Nevertheless Lamport states,
that the Paxos algorithm terminates if the system becomes stable for a sufficiently long time. De
Prisco et al. [PLL97] claim that they have given a definition, which can capture the conditions
under which Paxos satisfies Termination.

Since our interest lies on providing means to do proofs for distributed algorithms in theorem
proving environments but does not concern the analysis of the ability of certain algorithms to
solve distributed problems, we have only considered the properties that have been inspected
in the original paper, and, hence, in this case the safety properties (Validity, Agreement, and
Irrevocability) for this algorithm.

The Paxos algorithm has many similarities to the ♦S-algorithm considered in Section 5.2.
Regarding the message protocols given in Figure 5.17 we observe that in the Paxos algorithm
there is a leader, paralleling the coordinator in the ♦S-algorithm. In an asynchronous round r of
the Paxos algorithm this leader starts a round by sending the request number r to all processes
in P. As [Fuz08] we call such a message a P0 message. This message is needed because the Paxos
algorithm does not use the same rotating coordinator paradigm as the algorithms in the previous
sections, i.e., a leader process in the Paxos algorithm can skip arbitrary many rounds when it
starts a new round. Therefore, the P0 message is needed to establish a new round number. P1
and P2 messages are identical for both algorithms: processes send their current beliefs to the
coordinator/leader and the coordinator/leader selects the best belief (the belief with the most
recent stamp) and sends it back to the processes. For both algorithms a majority of messages

156

5.3. Paxos

is required before the selection can be made and for both algorithms the coordinator/leader
requires, furthermore, a majority of P3 messages to be sure that the round has succeeded and to
prepare for the decision. Since we keep our model close to the formalizations in [Fuz08], we also
provided the broadcast message for both algorithms even if in Lamport’s original work there
is no broadcast mentioned. Fuzzati has introduced the broadcast for the Paxos algorithm with
the argument that ‘it is mandatory that all the other correct processes receive the same success
message’.

P0

P1

P2

P3

Coordinator P Leader P

Current belief

Best belief

ACK, NACK

Broadcast decision value

Request number

Current belief

Best belief

Value to acknowledge

(Broadcast decision value)

Figure 5.17.: Round message protocol ♦S-algorithm vs. Paxos

Although Paxos is very similar to the ♦S-algorithm, there are some essential differences re-
alting to assumptions on the setting and, especially, the used failure model.

In contrast to the ♦S-algorithm, the Paxos algorithm works without the assumption of a
Quasi-reliable point-to-point communication, i.e., the failure model of Paxos allows message
loss. Moreover, it also allows the duplication of messages.

Processes can crash (as for the ♦S-algorithm), but may recover. Since processes may recover,
but do not have to, the chosen scenario also includes the case where processes do not recover.
Hence, the assumptions are strictly weaker for the Paxos algorithm than the assumptions for
the ♦S-algorithm. Paxos assumes stable storage that is used in the case of recovery. In this
storage, data is persistently stored and will therefore not be lost in case of process crash.

5.3.1. Informal Introduction to the Algorithm

In [Lam98] the Paxos algorithm is explained not by means of pseudo code but, more or less, in
natural language through many pages of the paper (maybe that is why Lamport often states that
people find it hard to understand). Lamport gives a more formal and more precise description in
the appendix. To give a short intuitive representation of the algorithm Fuzzati [Fuz08] rewrote
Paxos, i.e., what a process does in a round, in six steps. Since our model is very close to
the model of Fuzzati, the pseudo code we present here is based on these six steps using the
terms of Fuzzati rather than the terms of Lamport’s original paper. Lamport [Lam98] proposed
three roles a process can play: proposer, acceptor, and learner. Processes acting as proposers
(or leaders) act similar to the coordinator in the ♦S-algorithm and, hence, start new requests

157

5. Case Studies

(indexed by numbers similar to the round numbers for the ♦S-algorithm), collect messages and
disseminate beliefs. Acceptors reply to the messages of proposers and answer to the requests
and proposals of the proposer. Finally, learners use the value the proposer sends in a success
broadcast to make decisions.

Four variables that are used by the algorithm are assumed to be permanently stored (to a
persistent storage) only to be updated but never to be deleted (see above):

• r: A variable which stores the last request number that a process has proposed.

• p: A variable which stores the last request number to which a process answered as an
acceptor.

• belief : The current belief of the process (see Section 5.2).

• decision : The decision value of the process.

As in the ♦S-algorithm, the two latter variables are pairs: a value (belonging to the set of
possible decision values) and a request number. Additionally, we allow the decision to be ⊥ to
represent an undecided state. Listing 5.3 shows the initial setup for these variables.

Listing 5.3: Initialization for a participant of the Paxos algorithm
1 r := 0
2 p := 0
3 b e l i e f . v a l := Inpu t
4 b e l i e f . stamp := 0
5 d e c i s i o n := ⊥

The pseudo code in listing 5.4 shows the behaviour of a proposer. At first, a proposer pi chooses
a new request number r. For the algorithm it is important that different processes use different
request numbers. If we assume processes to be numbered p1, . . . , pN then this can be satisfied if
every process pi uses only numbers r > 0 such that (r mod N) = i. Moreover, request numbers
chosen by a process pi must increase. Therefore, we use a function nxreq(r ,p_i) for the choice of
the next request number and assume that this function returns a value greater than r from the
request numbers of p_i. After setting the value of r to the new request number, pi sends the
chosen number r to [all] participants (for simplicity we assume that pi sends the number to all
participants, although Lamport explains that it would suffice to send messages to a majority).
As in the ♦S-algorithm, pi awaits replies from a majority of the participants containing their
current beliefs. From these beliefs pi selects the best (the one with the most recent stamp), stores
it to a local variable b, and sends it back to the participants as a proposal. If, again, a majority
of the processes answers by sending a message to pi then pi initiates the decision process by
broadcasting b.

158

5.3. Paxos

Listing 5.4: Paxos algorithm for proposer/leader pi

1 r := nxreq (r , p_i)
2 f o r 1 ≤ j ≤ N

3 SEND(p_i , (r , P0) , r) TO p_j
4 await | r e c e i v e d . P1r | ≥ ⌈ N+1

2
⌉

5 b := b e s t (r e c e i v e d . P1r)
6 f o r 1 ≤ j ≤ N

7 SEND(p_i , (r , P2) , b) TO p_j
8 await | r e c e i v e d . P3r | ≥ ⌈ N+1

2
⌉

9 BROADCAST(p_i , b)

The corresponding behaviour of an acceptor pj is given in Listing 5.5. An acceptor pj first
waits until it receives a P0 message containing a request number r with r greater than its own
value p(which is the last request number of a request to which pj has answered). If pj received
such a message from a process pi then pj sends its current belief belief in a P1 message to pi and
waits until pi again answers with a corresponding P2 message with the best belief. pj adopts the
value of the best belief to its own belief value and sets the stamp to p. Then, as acknowledgement,
pj returns the value in a P3 message to pi.

Listing 5.5: Paxos algorithm for acceptor pj

1 await r e c e i v e d . P0rq 6= ∅ f o r some rq ≥ p from some p r o c e s s p_i
2 p := rq
3 SEND(p_j , (p , P1) , b e l i e f) TO p_i
4 await r e c e i v e d . P2p 6= ∅
5 i f (r e c e i v e d . P2p = {(p_i , (p , P2) , b) }) then {
6 b e l i e f . v a l := b . v a l
7 b e l i e f . stamp := p
8 SEND(p_j , (p , P3) , b . v a l) TO p_i
9 }

The learner role of our Paxos pseudo code equals the RBC_DELIVER procedure in the ♦S-
algorithm: if a process pi receives a broadcast message, then it decides for the respective value.

Listing 5.6: Paxos algorithm for learner pi

1 when (RBC_DELIVER (p_j , d) {
2 i f (d e c i s i o n = ⊥) then {
3 d e c i s i o n := d
4 output (d e c i s i o n . v a l u e)
5 }
6 }

To be non-blocking, processes are allowed to skip waiting for messages, to declare themselves
as leaders, and to start a new round at any point of the algorithm. Hence, semantics of the
used await statement may be interpreted differently than the corresponding statement in the
♦S-algorithm.

At any point in time a process may crash and recover. Following a crash, all received messages
of the process are deleted as are the messages in its outbox. Consequently, following recovery,
the mentioned four variables, which have been stored persistently, are the only local data that
survive a crash.

159

5. Case Studies

5.3.2. Formal Model

The required datastructures for configurations, Localviews, and messages for the Paxos algo-
rithm resemble the datastructures for the ♦S-algorithm. Concepts for the datastructures are
mainly influenced by the definitions of [Fuz08]. A configuration for our ♦S-algorithm has four
entries:

• S: the array of process states

• Q: the Message History

• BufIn: an array of inboxes for the processes

• B: the set of broadcast messages

Compared to the formal models introduced before, the configuration entry for the inboxes is
new. It is required because a process pi, pi is only able to access the messages it received since it
has recovered from its last crash. Therefore, messages pi received are inserted into the respective
buffer BufIn(pi). BufIn(pi) is then emptied everytime pi recovers from a crash.

Again, we denote the array of process states of a configuration C by SC, the inbox of a process
pi in C by BufInC(pi) and the set of broadcast messages by BC. For Paxos we use the Message
History with message loss as introduced in Chapter 2.3.5. For broadcasts, we use the modeling
techniques introduced in Section 2.3.6 but since there can be only one broadcast per request
number, we use request numbers as indices for the broadcasts. Hence, we model the broadcast
as a function over request numbers (which are natural numbers).

The state of a process pi is represented by a tuple ((l, P), r, p, (v, s), (c, ι), d), where
(c.f. [Fuz08])

• l is a boolean value, which is true if and only if pi is leader and
P ∈ { Idle, Trying, Waiting, Polling, Done } is a phase label.

• r is the last request number pi has chosen.

• p is the last request number pi has answered to as an acceptor (the prepare request number).

• (v, s) is the belief of pi consisting of a value v ∈ I and a stamp s ∈ N (see section 5.2.1).

• c is a boolean value that is true if and only if pi is alive (not crashed) and ι is the
incarnation number of pi. The incarnation number counts how often a process recovered
from a crash. This number is used for message administration: processes are allowed to
send only messages that originate from the same incarnation.

• d is the decision value of pi. d must be either ⊥ (undecided) or a pair (vd, sd) where vd

is the value pi decided and sd is the round number of the round where the decision was
taken.

Again, we use the introduced means for notation to denote the entries of a process state SC(pi)
of a process pi in a configuration C:

160

5.3. Paxos

• the pair (l, P) of pi is denoted by a ⊲ SC(pi)

• the last request number of pi is denoted by rnd ⊲ SC(pi).

• the prepare request number of pi is denoted by p ⊲ SC(pi)

• the belief of pi is denoted by b ⊲ SC(pi), the value of the belief of pi is denoted by val ⊲ b ⊲
SC(pi), and the stamp of the belief of pi is denoted by stamp ⊲ b ⊲ SC(pi).

• the (c, ι) pair of pi is denoted by g ⊲ SC(pi), the c value of the pair is denoted by
isUp ⊲ g ⊲ SC(pi), and the ι value is denoted by ic ⊲ g ⊲ SC(pi).

• the decision value of pi is denoted by dc ⊲ SC(pi), the value of the decision of pi is denoted
by val ⊲ dc ⊲ SC(pi), and the stamp of the belief of pi is denoted by stamp ⊲ dc ⊲ SC(pi).

As for the ♦S-algorithm, the Localview of pi comprises pi’s process state, the inbox Inlv of pi

(the set of received messages of pi), a set Outlv for the outbox of the process, an entry Blv

for the Broadcast History, and the identity IDlv of pi. In a Localview lv a process can access
its process state Slv and the respective entries a ⊲ Slv, rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, val ⊲ b ⊲ Slv,
stamp ⊲ b ⊲ Slv, g ⊲ Slv, isUp ⊲ g ⊲ Slv, ic ⊲ g ⊲ Slv, and dc ⊲ Slv.

Again, we expect the values of the inbox and the identity to be read-only values and we
model the outbox as an emptyset where pi puts in the messages pi is willing to send (as already
explained and used in sections 2.3.2 and 2.3.5).

In this algorithm we use tuples (s, r, req, phs, c, ic) for messages where

• s ∈ P is the sender of m.

• r ∈ P is the receiver of m.

• req ∈ N is the request number the message is associated with.

• phs ∈ { P0, P1, P2, P3 } is the phase the message is associated with.

• c is an arbitrary content of the message.

• ic is the incarnation of s when the message has been put into the outbox of s.

The sender of a message m is denoted by sndm, the receiver by rcvm, the round by rndm,
the phase by Pm, the content of a message is denoted by cntm, and the respective incarnation
number is denoted by icm.

Initially, there is no process with a leader role and every process pi starts in phase Idle with
request number and prepare request number set to 0. Furthermore, the belief is set to (vinp, 0),
pi is not crashed, and the incarnation number counts zero incarnations. pi is initially undecided.
Furthermore, the Message History contains no messages and hence returns zero for every pair
of messages and message status values. Since there are no broadcasts in the initial Broadcast
History but the Broadcast History is a (total) function over request numbers we map all request
numbers to ⊥ initially. Initially, the inbox for every process is empty. Therefore, we define the
initial process state array S0, the initial Message History C0, the array of inboxes BufIn0(pi),
the Broadcast History B0, and the set of initial states Initct as depicted in Figure 5.18.

Analogous to [Fuz08], we divide the Paxos algorithm in four phases for the leader:

161

5. Case Studies

S0(pi) , ((False, Idle), 0, 0, (vinp(pi), 0), (True, 1), ⊥) C0(m, t) , 0

BufIn0(pi) , ∅ B0(r) , ⊥

Initpx ,















Ü

S0

C0

BufIn0

B0

ê 













Figure 5.18.: Initial definitions for the Paxos Algorithm

• Idle: At the beginning a process is Idle.

• Trying: If a process decides to declare himself as a leader and to start a new round, it
transits from Idle to Trying.

• Waiting: When a leader process sends the P1 message, it transits from phase Trying to
the phase Waiting (it waits for the replies of the participants).

• Polling: After having received a majority of P1 replies, a leader process sends the P2
message and transits from phase Waiting to phase Polling.

• Done: A successful leader that has received a majority of P3 broadcasts a success message
and transits from phase Polling to Done.

As stated before, a process is always able to start a new request or end its leader role. Fur-
thermore, a process is always able to answer to requests (independently from the phase it is
in).

Again, we model crashes by providing a DnA Crash↓ (see Figure 5.19), which is always
enabled while the process is not already crashed and has not yet decided (decided processes are
assumed to be terminated). In the case of crash-failure isUp ⊲ g ⊲ Slv for the process is set to
False.

No other action but Recovery↓ is enabled for a process with ¬isUp ⊲ g ⊲ Slv. Recovery↓

increments the incarnation number of the process, empties its inbox and sets isUp ⊲ g ⊲ Slv back
to True. Furthermore, the phase of the process is set back to Idle and the process starts again
as being not in a leader role. Of course, this action preserves the values for the four persistently
stored variables rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv and dc ⊲ Slv.

The DnA LeaderYes↓ enables a process pi to assume the leader role for a new request
number. This request number is chosen from pi’s set of request numbers ReqNo(pi) by function
nxreq(pi, r). We use the Hilbert choice operator ‘ǫ’ to express that nxreq(pi, r) returns some value
r′ with r′ ∈ ReqNo(pi) and r′ > r without any further restrictions on this value. LeaderYes↓ is
only enabled for process pi, if pi is not already in a leader role and is in phase Idle. The boolean
value for being a leader is then set to True by LeaderYes↓.

162

5.3. Paxos

Crash↓
en(lv) , isUp ⊲ g ⊲ Slv

∧ dc ⊲ Slv = ⊥

Crash↓
∆(lv) ,

à

(a ⊲ Slv, rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, (False, ic ⊲ g ⊲ Slv), dc ⊲ Slv)
Inlv

Outlv

Blv

IDlv

í

Crash↓ , (Crash↓
en, Crash↓

∆)

rcIncarn(lv) , (True, ic ⊲ g ⊲ Slv + 1)

Recovery↓
en(lv) , ¬isUp ⊲ g ⊲ Slv

∧ dc ⊲ Slv = ⊥

Recovery↓
∆(lv) ,

à

((False, Idle), rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, rcIncarn(lv), dc ⊲ Slv)
Inlv[i := ∅]

Outlv

Blv

IDlv

í

Recovery↓ , (Recovery↓
en, Recovery↓

∆)

Figure 5.19.: Actions Crash↓ and Recovery↓

The dual DnA LeaderNo↓ models the inverse step from being a leader to not being a leader
anymore. Therefore, this step is only possible for a process that has a leader role. LeaderNo↓

then sets the respective boolean variable to False and sets the phase to Idle.
In every phase, a leader is able to start a new request by the DnA New↓ a leader. The new

request number is chosen by the function nxreq(pi, r) and the phase is set to Trying.
If a leader pi executes DnA SndPrepReq↓ (see Figure 5.21), pi must be in phase Trying. This

action puts a set of P0 messages into the outbox of the process and sets pi’s phase to Waiting.
An acceptor pj answers to some P0 message by executing RcvPrepReq↓. This action (and

the later actions RcvAccReq↓ and Success↓) is modeled as a non-deterministic action because
the received message that is processed is chosen non-deterministically (similar as described for
the Rotating Coordinator algorithm). pj is only supposed to answer to a P0 message if the
request number of the message is greater than the current value of pj ’s variable p ⊲ Slv. Then
RcvPrepReq↓ generates a correspondent P1 message to answer to this message containing pj ’s
current belief.

If a leader pi in phase Waiting received enough P1 messages containing beliefs of the partici-
pants, it selects the best belief and sends it back to the participants in a P2 message by executing
the DnA SndAccReq↓. To chose the best belief pi makes use of the functions highestlv, winnerlv

and bestlv. Similar to the ♦S-algorithm these functions determine the belief with the most recent
(highest) stamp. After the execution of SndAccReq↓, pi’s phase is Polling.

163

5. Case Studies

LeaderYes↓
en(lv) , isUp ⊲ g ⊲ Slv

∧ dc ⊲ Slv = ⊥

∧ a ⊲ Slv = (False, Idle)

nxreq(pi, r) , ǫr′. r′ ∈ ReqNo(pi) ∧ r < r′

LeaderYes↓
∆(lv) ,

à

((True, Idle), nxreq(IDlv, rnd ⊲ Slv), p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv)
Inlv

Outlv

Blv

IDlv

í

LeaderYes↓ , (LeaderYes↓
en, LeaderYes↓

∆)

LeaderNo↓
en(lv) , isUp ⊲ g ⊲ Slv

∧ dc ⊲ Slv = ⊥

∧ (∃P . a ⊲ Slv = (True, P))

LeaderNo↓
∆(lv) ,

à

((False, Idle), rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv)
Inlv

Outlv

Blv

IDlv

í

LeaderNo↓ , (LeaderNo↓
en, LeaderNo↓

∆)

New↓
en(lv) , isUp ⊲ g ⊲ Slv

∧ dc ⊲ Slv = ⊥

∧ (∃P . a ⊲ Slv = (True, P))

New↓
∆(lv) ,

à

((True, Trying), nxreq(IDlv, rnd ⊲ Slv), p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv)
Inlv

Outlv

Blv

IDlv

í

New↓ , (New↓
en, New↓

∆)

Figure 5.20.: Actions LeaderYes↓, LeaderNo↓ and New↓

164

5.3. Paxos

SndPrepReq↓
en(lv) , isUp ⊲ g ⊲ Slv

∧ a ⊲ Slv = (True, Trying)

SndPrepReq↓
∆(lv) ,

à

((True, Waiting), rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv)
Inlv

{ (IDlv, pj , rnd ⊲ Slv, P0, rnd ⊲ Slv, ic ⊲ g ⊲ Slv) | pj ∈ P }
Blv

IDlv

í

SndPrepReq↓ , (SndPrepReq↓
en, SndPrepReq↓

∆)

RcvPrepReq↓(lv, lv′) , isUp ⊲ g ⊲ Slv

∧ Blv′ = Blv

∧ Inlv′ = Inlv

∧ (∃m ∈ Inlv . p ⊲ Slv < cntm

∧ Pm = P0

∧ rndm = cntm

∧ Slv′ = (a ⊲ Slv, rnd ⊲ Slv, cntm, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv)

∧ Outlv′ = { (IDlv, sndm, cntm, P1, b ⊲ Slv, ic ⊲ g ⊲ Slv) })

SndAccReq↓
en(lv) , isUp ⊲ g ⊲ Slv

∧ a ⊲ Slv = (True, Waiting)

∧ |{ m ∈ Inlv | ∃c, ic . ∃pj ∈ P . m = (pj , IDlv, rnd ⊲ Slv, P1, c, ic) }| >
N

2

highestlv , Max{ s |
(

∃m ∈ Inlv . rndm = rnd ⊲ Slv ∧ Pm = P1 ∧ sndm = pi ∧ 2nd (cntm) = s
)

}

winnerlv , Min{ i |
(

∃m ∈ Inlv . rndm = rnd ⊲ Slv ∧ Pm = P1 ∧ sndm = pi ∧ 2nd (cntm) = highestlv

)

}

bestlv , ǫb. (∃m ∈ Inlv . rndm = rnd ⊲ Slv ∧ Pm = P1 ∧ sndm = pwinnerlv
∧ b = cntm)

SndAccReq↓
∆(lv) ,

à

((True, Polling), rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv)
Inlv

{ (IDlv, pj , rnd ⊲ Slv, P2, bestlv, ic ⊲ g ⊲ Slv) | pj ∈ P }
Blv

IDlv

í

SndAccReq↓ , (SndAccReq↓
en, SndAccReq↓

∆)

Figure 5.21.: Actions SndPrepReq↓, RcvPrepReq↓ and SndAccReq↓

165

5. Case Studies

If an acceptor pj receives a P2 message for a request number equal to pj ’s value of p⊲Slv, then
pj can reply to this message by executing the action RcvAccReq↓ (see Figure 5.22). RcvAccReq↓

puts a P3 message as an acknowledgement into the outbox of pj . Furthermore, the belief of pj

is updated with the belief value from the P2 message and stamp p ⊲ Slv.
If a leader pi is successful and receives a majority of P3 messages for his request, then pi can

execute Success↓ to initiate the decision process. By executing Success↓ pi broadcasts the value
it received in the P3 messages (which is the value it has formerly sent in the P2 message) as the
decision value and transits to phase Done.

A broadcast is finally processed by the action RbcDeliver↓. The process pi that executes
RbcDeliver↓ adopts the value from the broadcast as its decision value (if it has not already
decided a value).

Similar as for the algorithms described before, we define two actions ChSnd and ChDeliver

to manage message movements from one message status to the next (see Section 2.3.5). ChSnd
shifts an outgoing message to the messages with status transit and ChDeliver advances a
message from transit to status received (see Figure 5.23). These two events use the introduced
subactions Transmit and Receive (see Section 2.3.5). As stated before, processes are only allowed
to send messages that have been generated within the same incarnation. Therefore for Paxos
there is an additional condition for the ChSnd event: icm = ic ⊲ g ⊲ SC(sndm). The ChDeliver
event also updates the array of inboxes BufInC′ by putting the delivered message into the inbox
of the receiver. As for the algorithm considered before, we decided to model Transmit and
Receive as events.

In the Paxos setting also message loss and message duplication is possible. Therefore, we
provide two additional events ChDupl and ChLose. ChDupl uses the introduced subaction
Duplicate to create another copy of a message in transit. The subaction Lose is used by ChLose
to shift a message from status transit to lost (see Section 2.3.5).

Figure 5.24 shows the final definitions for the formal Paxos algorithm. Functions C2LVpx and
LV2Cpx are used to convert configurations to Localviews and vice versa. The function C2LVpx

generates a Localview out of a configuration C for a process pi by returning a vector of the

• state of a process: SC(pi)

• the inbox of pi, which is determined as the entry for pi in the array of inboxes in C

• an emptyset for the outbox

• the Broadcast History

• the identity of pi: pi

LV2Cpx embeds a Localview lv back into a given configuration C by

• setting the state of process pi to the process state Slv of the Localview

• updating the outgoing messages by adding the messages from pi’s outbox (note that
sndupd is the function defined in Section 2.3.5)

166

5.3. Paxos

RcvAccReq↓
en(lv, lv′) , isUp ⊲ g ⊲ Slv

∧ stamp ⊲ b ⊲ Slv < p ⊲ Slv

∧ Blv′ = Blv

∧ Inlv′ = Inlv

∧ (∃m ∈ Inlv . p ⊲ Slv = rndm

∧ Pm = P2

∧ Outlv′ =
{

(IDlv, sndm, p ⊲ Slv, P3, 1st (cntm), ic ⊲ g ⊲ Slv)
}

∧ Slv′ = (a ⊲ Slv, rnd ⊲ Slv, p ⊲ Slv, (1st (cntm), p ⊲ Slv), g ⊲ Slv, dc ⊲ Slv))

Success↓(lv, lv′) , isUp ⊲ g ⊲ Slv

∧ a ⊲ Slv = (True, Polling)

∧ |{ m ∈ Inlv | ∃c, ic . ∃pj ∈ P . m = (pj , IDlv, rnd ⊲ Slv, P3, c, ic) }| >
N

2
∧ Inlv′ = Inlv

∧ (∃m ∈ Inlv . rndm = rnd ⊲ Slv

∧ Pm = P3

∧ Blv′ = Blv[rnd ⊲ Slv := (cntm, P)]

∧ Outlv′ = Outlv

∧ Slv′ = ((True, Done), rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, dc ⊲ Slv))

sdc(v, r, d) ,

®

d , if d 6= ⊥

(v, r) , else

RbcDeliver↓(lv, lv′) , isUp ⊲ g ⊲ Slv

∧ Inlv′ = Inlv

∧ Outlv′ = Outlv

∧ (∃r . B(r) 6= ⊥

∧ IDlv ∈ 2nd (B(r))

∧ Blv′ = Blv[r := (1st (B(r)), 2nd (B(r)) \ IDlv)]

∧ Slv′ = (a ⊲ Slv, rnd ⊲ Slv, p ⊲ Slv, b ⊲ Slv, g ⊲ Slv, sdc(1st (B(r)), r, dc ⊲ Slv)))

Figure 5.22.: Actions RcvAccReq↓, Success↓ and RbcDeliver↓

167

5. Case Studies

ChSnd(C,C′) , BC′ = BC

∧ BufInC′ = BufInC

∧ SC′ = SC

∧ (∃m . isUp ⊲ g ⊲ SC(sndm)

∧ icm = ic ⊲ g ⊲ SC(sndm)

∧ Transmit(CC, CC′ , m))

ChDeliver(C,C′) , BC′ = BC

∧ SC′ = SC

∧ (∃m . isUp ⊲ g ⊲ SC(rcvm)

∧ BufInC′ = BufInC[rcvm := BufInC(rcvm) ∪ { m }]

∧ Receive(CC, CC′ , m))

ChDupl(C,C′) , BC′ = BC

∧ BufInC′ = BufInC

∧ SC′ = SC

∧ (∃m . Duplicate(CC, CC′ , m))

ChLose(C,C′) , BC′ = BC

∧ BufInC′ = BufInC

∧ SC′ = SC

∧ (∃m . Lose(CC, CC′ , m))

Figure 5.23.: Events ChSnd, ChDeliver , ChDupl and ChLose

168

5.3. Paxos

• updating the array of inboxes in the configuration by the inbox of pi in the Localview (this
is necessary because the process-action Recovery↓ empties the inbox)

• adopting the local Broadcast History to the global

We define the set of process-actions Φpx as the set that contains the lifted versions of the non-
lifted actions defined before. The set of events Ψpx contains the four defined events ChSnd,
ChDeliver , ChDupl, and ChLose. For the Paxos algorithm we are only interested in safety.
Therefore, we require no further fairness assumptions.

We conclude with the tuple (Initpx, Φpx, Ψpx, ∅, C2LVpx, LV2Cpx) that defines the formal
Distributed Algorithm Apx.

C2LVpx(C, pi) ,

à

SC(pi),
BufInC(pi),

∅,
BC,
pi

í

LV2Cpx(lv, pi,C) ,

Ü

SC[pi := Slv]
sndupdCC,Outlv

BufInC[pi := Inlv]
Blv

ê

Φpx ,
¶

DLift(Crash↓), DLift(Recovery↓), DLift(LeaderYes↓), DLift(LeaderNo↓)
©

∪
¶

DLift(New↓), DLift(SndPrepReq↓), DLift(SndAccReq↓)
©

∪
¶

Lift(RcvPrepReq↓), Lift(RcvAccReq↓), Lift(Success↓), Lift(RbcDeliver↓)
©

Ψpx , { ChSnd, ChDeliver , ChDupl, ChLose }

Apx , (Initpx, Φpx, Ψpx, ∅, C2LVpx, LV2Cpx)

Figure 5.24.: Formal Rotating Coordinator Algorithm

169

5. Case Studies

5.3.3. Proof Issues

We formally proved all required safety properties for our Isabelle/HOL model of the Paxos
algorithm: Validity, Agreement, and Irrevocability (as defined in Section 2.4.1, see Figure 5.25).
As in Lamport’s original work, we do not provide a formal proof for Termination. As for the

Validityct(R) , ∀t ∈ T . ∀pi ∈ P . dc ⊲ SR(t)(pi) 6= ⊥ ⇒
(

∃pk ∈ P . vinp(pk) = val ⊲ dc ⊲ SR(t)(pi)
)

Agreementct(R) , ∀t ∈ T . ∀pi, pj ∈ P . dc ⊲ SR(t)(pi) 6= ⊥ ∧ dc ⊲ SR(t)(pj) 6= ⊥

⇒ val ⊲ dc ⊲ SR(t)(pi) = val ⊲ dc ⊲ SR(t)(pj)

Irrevocabilityct(R) , ∀t ∈ T . ∀pi ∈ P . dc ⊲ SR(t)(pi) 6= ⊥

⇒
(

∀t′ ∈ T .
(

t′ ≥ t ⇒ val ⊲ dc ⊲ SR(t′)(pi) = val ⊲ dc ⊲ SR(t)(pi)
))

Figure 5.25.: Formal properties of Distributed Consensus for the Paxos algorithm

♦S-algorithm, proofs are based on the work of Fuzzati [Fuz08], but we have added a proof for the
property Irrevocability. Proofs mainly rely on simple invariants that are shown by application of
the methods introduced in Sections 3.1 and 3.2. Validity is strengthened analogously to Section
5.2.3 and is the conjunction of the following assertions:

Validity 1 Every value occuring in a broadcast is an input value of some process.

Validity 2&3 Every value occuring in a P1 or P2 message is an input of some process.

Validity 2&3a Every value occuring in a P3 message is an input of some process.

Validity 4 Every value occuring in belief of a process is an input of some process.

Validity 5 Every value occuring in decision value of a process is an input of some process.

Note that Validity 2&3a is (erroneously) missing in [Fuz08]. In our view it is required for the
later induction because the formal model (our formal model and the one used in [Fuz08]) makes
explicit use of the value of some P3 message for the broadcast in the Success↓ action. Therefore
the induction does not work without regarding also the value of P3 messages.

The proof is analogously to that in Section 5.2.3: initially, in every run the belief is set
to the input value of the process, the decision value is ⊥, and there are no broadcasts and
messages. Hence, initially the conjunction is trivially true. For the inductional step we assume
that there are only input values in all messages, belief, and decision values. Since actions only
copy values from one of those locations to another, the conjunction remains true for every step
of the algorithm (the formal proof is given in →֒ Isabelle14).

To prove Irrevocability the theorem from the ♦S-algorithm could be reused requiring for only
minor modifications concerning the names of the variables in configurations (→֒ Isabelle15).

14Isabelle/HOL theory: PxValidity.thy, Lemma(s): Validity
15Isabelle/HOL theory: PxAgreement.thy, Lemma(s): Irrevocability

170

5.4. Using the Alpha-Abstraction

Likewise the proof of Agreement is similar to the respective proof for the ♦S-algorithm (our
complete proof is given in →֒ Isabelle16). It uses the same notion of locked values. A detailed
description of this proof can be found in [Fuz08]. During our work, we encountered several
problems in the model and in the proofs. The major problems were found in the proofs for
Paxos of [Fuz08] (as we already noted in [KNR12]) and are:

• There was an error in the broadcast mechanism that circumvented a delivery of broadcasts
to all processes except for its sender, rendering executions, in circumstances in which only
a minimal majority of processes were alive when the first process decides, nonterminating.
Moreover, an assumption about the mechanism claimed that every broadcast will even-
tually be received by all correct processes. Due to the error mentioned before, this is in
contradiction to the transition rules. Of course, from this contradiction one could derive
any property needed.

• Another problem concerned the basic orderings that are introduced for the reasoning on
process states. It turned out that the ordering does not fullfill the required monotoncity
in time that was assumed. Since many proofs for the following lemmas relied on this
ordering, this problem is serious.

• The proof for one of the central lemmas (Locking Agreement) is wrong. It uses another
lemma (Proposal Creation), but its assumptions are not fullfilled. Therefore, we had to
find an adequate version of this lemma with weaker assumptions and redo both proofs (a
similar error occurs in [FMN07]).

5.4. Using the Alpha-Abstraction

Our last case study deals with a more general framework for Consensus algorithms. The frame-
work is introduced by Guerraoui and Raynal in [GR07]. In their work, they define an abstraction
Alpha which captures Consensus safety.

In our case study, we focus on the implementation of the Alpha abstraction in a shared memory
system. First, we are going to introduce the general ideas of Guerraoui et. al. ([GR07]).

In addition to the Alpha abstraction, the framework makes use of the more commonly known
Omega abstraction, which can be considered as an abstraction for eventual leader detection
and is also known as the weakest failure detector to solve Consensus [CHT96]. More specifically
Guerraoui and Raynal introduce a boolean function Omega(). Invoked by a process pi, Omega()
returns True if and only if the process is elected as leader. Omega() is assumed to satisfy the
following property Eventual Leadership [GR07]:

There is a time τ and a correct process pi such that, after τ , every invocation of
Omega() by pi returns True, and any invocation of Omega() by pj 6= pi returns
False.

This guarantees the eventual election of an unique and correct leader. As Guerraoui states, the
Alpha abstraction was motivated by the objective to devise the complement of Omega[GR07].

16Isabelle/HOL theory: PxAgreement.thy, Lemma(s): Agreement

171

5. Case Studies

While Omega captures Consensus liveness, the Alpha abstraction is supposed to capture Con-
sensus safety by introducing a ‘shared one-shot storage object’, which is invoked by processes
with a value to store. If two or more processes access the object concurrently, the object does
not guarantee that values are stored. In this case the object remains with its initial value ⊥. But
if processes access the object sequentially, the first process that accesses the object will succeed
in storing its value and the object will keep this value permanently [GR07]. Process access the
object by invoking a function Alpha. Alpha uses two parameters: a round number r and the
value to store v. It returns the stored value. As for Paxos, it is assumed that (1) processes
use distinct round numbers and (2) that each process pi uses strictly increasing round num-
bers [GR07]. Guerraoui and Raynal showed that in the context of their framework, Distributed
Consensus is solved if the function Alpha satisfies the following four properties[GR07]:

αValidity: If the invocation Alpha(r, v) returns, the returned value is either ⊥ or a value v′ such
that there is a round r′ ≤ r, and Alpha(r′, v′) has been invoked by some process.

αQuasi-agreement: For each two invocations Alpha(r, x) and Alpha(r′, y) that return v and v′

respectively, the following assertion must hold:

(

v 6= ⊥ ∧ v′ 6= ⊥
)

⇒
(

v = v′) .

αConditional non-⊥ convergence: An invocation I = Alpha(r, x) must return a non-⊥ value
if every invocation I ′ = Alpha(r′, y) that starts before I returns is such that r′ ≤ r.

αTermination: Any invocation of Alpha by a correct process returns.

Note that Guerraoui and Raynal wrote ‘r′ < r’ in property αConditional non-⊥ convergence
(instead of ‘r′ ≤ r’) but obviously the assertion

Every invocation I ′ = Alpha(r′, y) that starts before I returns is such that r′ < r

formally can never be true since I = Alpha(r, x) starts before I returns and r 6< r. Therefore,
we have chosen to write r′ ≤ r.

Listing 5.7 depicts the application of abstractions Alpha and Omega. The framework solves the
problem of Distributed Consensus if Omega satisfies the Eventual Leadership property and Alpha
satisfies αValidity, αQuasi-agreement, αConditional non-⊥ convergence, and αTermination in
the presence of up to N − 1 crash failures. In this setting, we assume that crashed processes do
not recover.

To calculate a decision value, a participant pi of the algorithm executes the function Consensus(v)

(see Listing 5.7) where v denotes the input value of pi. During the execution, pi uses a variable
r for the round number (note that the round number of participant pi is actually r+i) and a
variable res to store the result of invocations of Alpha. The variable DECIDED is a shared atomic
variable, which is used to disseminate a decision value (analogously to the broadcasts in Paxos
and Chandra/Toueg’s algorithm). Initially, r is set to 0. While pi is not decided, the process
checks continuously if it is the leader by using function Omega(). If this check succeeds pi

invokes Alpha(r+i, v) and stores the returned value to variable res. If this value is ⊥, pi advances
to the next round by incrementing r (note that r is incremented by N to ensure that processes

172

5.4. Using the Alpha-Abstraction

use distinct round numbers). If the result is a value different from ⊥ then pi sets the shared
variable DECIDED to this value.

The desired safety properties are satisfied by the utilisation of the assumed properties of
Alpha and the Eventual Leadership property is used to guarantee Termination. Let us at first
consider the Agreement property. Processes will not output different values: if processes pi and
pj output values vi and vj , then the shared variable DECIDED must have been set to vi and
vj at some time ti and tj . Due to the while-condition (see Listing 5.7) the value of DECIDED

must have been different from ⊥ before it is output by pi (pj respectively). Moreover, since
DECIDED is set to a value different from ⊥ only if it is set to a return value of Alpha, at the
time when pi (pj) evaluated the while-condition, DECIDED must have been set to such a return
value v′

i (v′
j) of Alpha with v′

i 6= ⊥ (v′
j 6= ⊥). Since DECIDED is a shared variable, of course,

other processes are able to manipulate DECIDED while pi (pj) advances from the while-loop to
the output statement. But due to the if-clause in line 7 and 8 once set to v 6= ⊥, it can never
be set back to ⊥. Moreover, since the value of res is always set to the return value of Alpha by
the αQuasi-agreement property, every process has the same return value v (or ⊥) for res, and,
hence, DECIDED is always set to the same value v. Therefore we obtain v = vi = v′

i = v′
j = vj .

This implies Agreement and Irrevocability.

Listing 5.7: Generic framework for Consensus, code for process pi [GR07]

1 f unct ion consen su s (v) :
2 r := 0
3 whi le (DECIDED = ⊥)
4 {
5 i f Omega () then {
6 r e s := Alpha (r+i , v) ;
7 i f (r e s 6= ⊥) then
8 DECIDED := r e s
9 e l s e

10 r := r + N

11 }
12 }
13 output (DECIDED)

Listing 5.7 shows that function Alpha is always invoked with the input value of the process. As
already stated, an assignment of ⊥ to the variable DECIDED is ruled out by the if-clause in line
7 and 8. Hence, an output value must be a return value v 6= ⊥ of Alpha. With αValidity this
implies Validity.

For the verification of the Termination property, assume for contradiction that there is a
correct process that does not decide a value. By inspection of the code (and with Irrevocability)
this can only be the case when we have DECIDED= ⊥ forever. This implies that all processes,
including the eventual leader pc, do not decide. Since Omega() eventually returns True only
for pc, after some time τ , only pc increments its round number and invokes Alpha. Therefore,
eventually pc will reach a round number r greater than all round numbers that were used by
other processes for invocations of Alpha. Hence, for the next invocation I of Alpha by pc the
assertion that every invocation I ′ = Alpha(r′, y) that starts before I returns is such that r′ ≤ r
will be true. By αConditional non-⊥ convergence this implies that I returns a non-⊥ value and

173

5. Case Studies

DECIDED will be set to this value. Hence, DECIDED can not be ⊥ forever: a contradiction.
To derive a formal, proof we modeled the given pseudo code similarly to the algorithms

considered in the previous chapters and finally showed the following theorem:

Theorem 5.4.0.1 (α-Consensus)
Every run R of the framework satisfies

• Validity(R)

• Agreement(R)

• Irrevocability(R)

• Termination(R)

Proof.→֒ Isabelle17

To understand the formal model it is necessary to understand that invocations of Alpha must
not be modeled as atomic steps. Regarding the given pseudo code we notice that communication
is completely abstracted away by Alpha (and Omega), i.e. communication between the processes
is (obviously) required to implement functions Alpha and Omega such that they satisfy the
required properties, but is hidden by these abstractions. Although it is not necessary for the
proof of Theorem 5.4.0.1 to know the implementation of Alpha and Omega, the communication
that takes place during an invocation of Alpha makes it indispensable to model invocations I of
Alpha as fixed periods in a run R such that they start at some configuration R(t) and end in
R(t+tI). In our model we defined an action InvokeAlpha for the start and an action AlphaReturn

for the end of an invocation. Of course, other processes were allowed to execute actions and
also invoke Alpha in between. The introduction of InvokeAlpha and AlphaReturn enabled us
to define the four assumptions on Alpha properly so that it could be demonstrated that these
assumptions imply that the framework represents a family of Consensus algorithms.

The reason why this framework actually provides a family of Consensus algorithms is that
Alpha can be implemented for arbitrary communication mechanisms. In [GR07] Guerraoui and
Raynal present implementations of the Alpha abstraction using (1) Shared Memory, (2) disks,
(3) message passing and (4) active disks.

Since in this case study we want to consider an algorithm using shared memory for communi-
cation, we focussed on (1), and, hence this last case study deals with the implementation of Alpha
in a shared memory system as it is described by Guerraoui and Raynal (see Section 4 in [GR07]).
The proposed algorithm is similar to an algorithm proposed by Gafni for his Round-by-round
failure detectors (see Section 4.2 in [Gaf98]). Gafni’s algorithm was originally not intended to
solve Consensus but to implement the adopt-commit protocol in a shared memory system. The
algorithm presented by Guerraoui and Raynal can be seen as an adaption of Gafni’s algorithm
for Distributed Consensus. As written by Guerraoui and Raynal, the algorithm can also be
interpreted as a variant of the Paxos algorithm (see [Lam98], [GL00]).

17Isabelle/HOL theory: Prototype.thy, theorem(s): AdmissibleImpliesValidity,

AdmissibleImpliesAgreement, Irrevocability, Termination

174

5.4. Using the Alpha-Abstraction

The assumed communication mechanism employed by Guerraoui and Raynal is that of Regular
Registers as introduced in Section 2.3.7. Let us recall the informal description of the properties
of a Regular Register (for a formal description see Section 2.3.7):

• a read not concurrent with a write gets the correct value,

• a read that overlaps a write obtains either the old or new value,

We assume that our system has N Regular Registers Regp1
, . . . , RegpN

. Moreover, only process
pi is allowed to write to register Regpi

but Regpi
can be read by any process. Hence, we speak

of 1WNR Regular Registers (1 writer, N readers). Moreover, we assume the registers to be
reliable, i.e., registers do not crash and do not corrupt data.

Every register stores a tuple (lre, lrww, val). The entries lre and lrww are used to store
round numbers and val stores either an input value or ⊥.

The next section explains how these registers can be used to solve Consensus.

5.4.1. Informal Introduction to the Algorithm

The implementation of the Alpha abstraction is given by Guerraoui and Raynal [GR07] as a piece
of pseudo code that simply shows the computation steps for the function Alpha with arguments
r and v. The pseudo code as it is presented in [GR07] is given in Figure 5.8.

Listing 5.8: Alpha in a shared memory system [GR07]
1 f unct ion Alpha (r , v) : // This i s the t e x t f o r p_i

2 // Step 1 −−

3 // 1 . 1 : p_i f i r s t makes p u b l i c the date o f i t s l a s t attempt
4 REG[i] . l r e := r
5 // 1 . 2 : Then , p_i r e a d s the sha r ed r e g i s t e r s to know the o t h e r p r o c e s s e s p r o g r e s s
6 r eg [1 . . N] := REG [1 . . N] // p_i r e a d s (i n any o r d e r) the r e g u l a r r e g i s t e r s
7 // 1 . 3 : p_i a b o r t s i t s attempt i f ano the r p r o c e s s s t a r t e d a h i g h e r round
8 i f (∃ j . r eg [j] . l r e > r)) then r e t u r n (⊥)

9 // Step 2 −−

10 // Then p_i adopts the l a s t v a l u e t h a t has been d e p o s i t e d i n a r e g i s t e r
11 // I f t h e r e i s no such va lue , i t adopts i t s own v a l u e v
12 l e t v a l u e be r eg [j] . v a l where j i s such that ∀k . r eg [j] . l rww ≥ r eg [k] . lrww
13 i f (v a l u e = ⊥) then v a l u e := v

14 // Step 3 −−

15 // 3 . 1 : p_i w r i t e s the v a l u e i t has adopted (t o g e t h e r w i th the c u r r e n t date)
16 REG[i] . (lrww , v) := (r , v a l u e)
17 // 3 . 2 : p_i r e a d s aga in the sha r ed r e g i s t e r s to know the p r o c e s s e s ’ p r o g r e s s
18 r eg [1 . . N] := REG [1 . . N]
19 i f (∃ j . r eg [j] . l r e > r) then r e t u r n (⊥)

20 // Step 4 −−

21 // Otherwise , v a l u e i s the r e s u l t o f the Alpha a b s t r a c t i o n : p_i r e t u r n s i t
22 r e t u r n (v a l u e)

We provide the original pseudo code from [GR07] with all its details and comments, on the
one hand, to give the reader an intuition for the algorithm and on the other hand to exemplify

175

5. Case Studies

how the latent ambiguity of pseudo code can lead to typical pitfalls, when transferring a given
pseudo code to a formal model. With this example we want to raise the readers sensitivity for
how typical concurrency problems might be hidden by the kind of presentation, and, in this
case, by the pseudo code.

The pseudo code uses record notation to denote access to the registers. Hence, REG[i]. lre

denotes the entry for the lre field of register Regpi
. Each process holds its own copy of the

registers in a local variable reg, which is repeatedly updated during an invocation of Alpha(see
pseudo code in Figure 5.8). The same notation used for registers is used for the variable reg

(reg . lre ,reg .lrww, reg . val).
As already explained, the function uses two parameters: a round number r and the value to

store v. It returns the actual value stored.
In reference to the pseudo code, the function Alpha can be implemented for Regular Registers

by executing the following steps:

1. (line 4) the lre entry of pi’s register is set to the current round number r.

2. (line 6) pi updates its local copy of the registers by copying the values of the registers to
its local variable reg.

3. (line 8) if pi recognizes that there is a process pj that has already written a higher round
number to pj ’s lre entry reg [j]. lre , then pi aborts the calculation and returns ⊥.

4. (line 12) otherwise pi determines the process pj with the greatest lrww entry reg [j]. lrww and
sets a local variable value to reg [j]. val.

5. (line 13) this value will be the value pi adopts for the designated return value unless it
turns out to be ⊥. In the latter case pi sets value to its own input value v.

6. (line 16) pi writes the current round number r to its register for entry reg [j]. lrww and the
content of variable value to entry reg [j]. val.

7. (line 18) pi updates again its local copy of the registers by copying the values of the
registers to its local variable reg.

8. (line 19) if pi recognizes that there is a process pj that has already written a higher round
number to pj ’s lre entry reg [j]. lre , then pi aborts the calculation and returns ⊥.

9. (line 22) otherwise pi returns the value that is stored in variable value.

Regarding the examples given in the previous sections, we recognize an obvious correspondence
from atomic steps to the the lines of pseudo code. Therefore, the reader might expect that
extracting a formal model from pseudo code means just to create an action for every line of
pseudo code. Of course, we already have given examples where two or more lines of pseudo
code can be summarized by one action, but this example shows that many steps that seem to
be atomic indeed are not and moreover, have to be handled very carefully since modeling these
steps as one atomic step would hide exactly the problems resulting from concurrency and more
specifically from the definition of Regular Registers.

176

5.4. Using the Alpha-Abstraction

As we know from Section 2.3.7, the problematic but interesting cases for Regular Registers
are those in which reads and writes to the same register are concurrent. If we modeled the first
step (which is actually a write to pi’s register) as an atomic action, it would not be possible to
have a concurrent read to this write. Hence, we are again forced to model this step as at least
two steps: a begin of the write and an end of the write. Furthermore, it must be possible for
other processes to read between or overlapping with these two actions (see Section 2.3.7). We
find the same situation in step 6, concerning the write to entries reg [j]. lrww and reg [j]. val (note
that Guerraoui and Raynal assume that processes trivially know the last value they wrote to
a register and hence to update only some entries by writing the old values to the other). In
steps 2 and 7 we find read operations for the registers. We recognize that there are indeed N
read operations appearing in only one single line of pseudo code. Furthermore (as remarked in
the comments), the order in which the registers are read, must be nondeterministicly chosen
(otherwise we would only prove correctness for a special case of this algorithm). Again, for
every read overlapping with writes (and other read operations) to the register must be possible.
And, again, this is enabled by modeling a read by a read begin and a read end (cf. Section
2.3.7) action. Hence, for the ‘execution’ of this single line of pseudo code we actually obtain 2N
executions of actions. This example illustrates the hiding of concurrency by the pseudo code
representation.

For correctness the four properties αValidity, αConditional non-⊥ convergence,
αQuasi-agreement, and αTermination (see previous section) must be shown. Intuitively, it is
again the ‘no values are invented’ argument that implies αValidity: there are simply no other
values stored in the val entries of registers and variables, and the returned value originates either
from such an entry or is ⊥.

Guerraoui and Raynal [GR07] state that the αTermination property is satisfied because the
algorithm is wait-free. This argument will be reconsidered in the later sections.

The argument for αConditional non-⊥ convergence is again adopted from [GR07]: let us
assume an invocation I = Alpha(r, v) by a process pi such that there is no invocation I ′ =
Alpha(r′, v′) with r′ > r, that starts before I returns. Hence, pi sees no greater values than its
own and pi always proceeds with the execution of Alpha. Since pi does not prematurely abort
the execution of Alpha, it must finally return the non-⊥ value that has been chosen in lines 12
and 13.

Our viewpoint is that a proof needs all formal details and can only be given for a formal model.
Therefore, we restrict ourselves, again, to a very rough idea of the proof for αQuasi-agreement for
the given pseudo code at this point and provide a full formal proof for our formal Isabelle model
(see next section, a more intuitive extensive description of the proof is given by Guerraoui and
Raynal [GR07]). For αQuasi-agreement, we have to consider two invocations I = Alpha(r, v)
and I ′ = Alpha(r′, v′) that return a value different from ⊥. Without loss of generality, let us
assume r < r′. Obviously, both invocations found no lre values higher than there own round
number in other registers for the checks in lines 8 and 19. Hence, I ′ can not have finished the
write operation in line 4 before I began the read operations in lines 6 and 18. Hence, pi must have
finished the write operation in line 16 (because 16 < 18) before I ′ started reading the registers
in line 6 (because 4 < 6). This implies that the value that I has written must have been taken
into account when I ′ chooses the value for decision in line 12. Of course, there might be further

177

5. Case Studies

invocations in between such that I ′ chooses a value from a different register. But, since round
numbers are natural numbers, we can recursively use the same argumentation for the round
number of the invocation from which the value is chosen and this implies αQuasi-agreement.

5.4.2. Formal Model

Although our model is supposed to examine executions of Distributed Algorithms and the pseudo
code for Alpha seems to be only a description of one single function, it is possible to prove
the required properties in terms of our model. In our formal setting, we consider processes,
which invoke Alpha infinitely often with increasing round numbers. Hence, we get a distributed
algorithm where each process sequentially performs invocations of Alpha in an infinite loop (for
the algorithm we use the term α-algorithm in the following). The only assumptions we make
for the invocations are the two assumptions of Guerraoui and Raynal: (1) distinct processes use
distinct round numbers and (2) each process uses strictly increasing round numbers. Then we
show that the desired properties hold in every admissible run and therefore in every possible
setting that satisfies the requirements. Note that we do not need the formal model for the
framework since the properties of Alpha are defined independently from the framework.

The datastructures for configurations and Localviews differ from the datastructures of the
previous algorithms because there are no messages and therefore is no Message History but the
introduced module for shared memory and Regular Registers (see Section 2.3.7).

A configuration for the α-algorithm has only two entries:

• S: the array of process states

• Sh: the module for shared memory, i.e., for the Regular Registers

Again, we denote the array of process states of a configuration C by SC.
To model the Regular Registers, we use the module specified in Section 2.3.7 with

Vreg = (N × N × (I ∪ { ⊥ })) .

This enables us to store tuples (lre, lrww, val) in the registers as described in the previous section.
The state of the module for shared memory of a configuration C is denoted by ShC. For access
on the registers we use the introduced subactions RdBegin, RdEnd, WriteBegin and WriteEnd.
Hence, there is no direct access to the entries of this module. Based on the assumption that it
is trivial for a process to store the most recent values it has written to the register, analogously
to Guerraoui and Raynal, we allow to update single entries of the registers. In our formal model
we write WriteBegin(Sh, Sh′, pi, (r′, -, -)) to denote that from module state Sh to Sh′ process
pi performs a WriteBegin subaction that writes a tuple (r′, x, y) to the register Regpi

where r′ is
a new value for the first entry and x and y are values equal to the values that have been already
stored in the second and third entry of the register (these values remain unchanged).

To serialize the used actions of a process pi for the α-algorithm we use the following phases:

• Idle: pi is Idle before the invocation starts.

• Publishing: While pi writes its own value to the register entry lre (see pseudo code line
4), pi is in phase Publishing.

178

5.4. Using the Alpha-Abstraction

• Fetching: Before pi starts reading one of the registers (see pseudo code line 6), pi is in
phase Fetching.

• FetchingWait: After pi started reading one of the registers and while pi waits for the
returned value, pi is in phase FetchingWait (see pseudo code line 6). Note that there is a
loop where pi alternately is in phase Fetching and phase FetchingWait until all registers
are read.

• Proposing: When pi starts writing the lrww and val entries of the register (see pseudo
code line 16), pi is in phase Proposing. Note that there is no communication in lines 12,
13 and therefore the begin of the write and the choice of the value can be modeled as one
step. The abort in line 8 is modeled as an alternative action to the begin of the write and
therefore no phases are modeled for lines 7-15.

• FetchingAgain: After pi finished writing the lrww and val entries of the register and before
pi starts again reading a register, pi is in phase FetchingAgain.

• FetchingAgainWait: After pi started reading one of the registers for the second time and
while pi waits for the returned value, pi is in phase FetchingAgainWait (see pseudo code
line 18). Again there is a loop where pi alternately is in phase FetchingAgain and phase
FetchingAgainWait until all registers are read.

• Returnedv′ : After pi finally returned a value v′, pi is in phase Returnedv′ . Note that we
have v′ = ⊥ when pi returns ⊥.

• Crashed: After pi crashed, pi is in state Crashed.

The state of a process pi is represented by a tuple (r, v, p, l, c), where

• r is pi’s round number (the first parameter for the invocation of Alpha).

• v is pi’s value (the second parameter for the invocation of Alpha).

• p is pi’s phase in the current invocation of Alpha.

• l is a list of processes, which is used to determine the next register pi reads. Before each
read cycle this list contains all processes and the order of the processes is determined
non-deterministically.

• c is pi’s local copy of the registers. This copy is updated twice per invocation (cf. pseudo
code).

We denote a list with (ordered) elements q1, . . . , qn by [q1, . . . , qn]. For a list l we define an
operation hd that returns the head (the first element) of the list and an operation tl that
returns the tail (the rest) of the list. [] denotes the empty list. hd([]) is undefined and we
define tl([]) , []. Furthermore we assume a predicate distinct, which is true for a list l if and
only if the elements in l are pairwise distinct. The function set(l) returns a set of all elements
of l. This definition corresponds to the lists defined in Isabelle/HOL (see [NPW02]).

Again we use the introduced means for notation to denote the entries of a process state SC(pi)
of a process pi in a configuration C:

179

5. Case Studies

• The round number of pi is denoted by rnd ⊲ SC(pi).

• pi’s value v is denoted by v ⊲ SC(pi).

• The list of processes that is used to determine pi’s next register to read is denoted by
rtd ⊲ SC(pi).

• Finally, pi’s copy of the registers is denoted by reg ⊲ SC(pi).

For pi’s local copy of the registers we use the notation lre ⊲ reg(pi) ⊲ SC(pi) (respectively lrww ⊲
reg(pi) ⊲ SC(pi) and val ⊲ reg(pi) ⊲ SC(pi)) to denote the entry for the lre (respectively lrww and
val) value of the register. Note that we do not need this notation for the entries of the registers
but only for the local copies of the registers. This is due to the fact that a register is only
accessed by the defined subactions (RdBegin,WriteBegin, . . .). Processes work only on their
local copies of the registers (reg(pi) ⊲ SC(pi)).

A Localview for the α-algorithm comprises pi’s process state, the module for the shared
memory, and the identity of pi. The module for shared memory is adopted identically from
configurations to Localviews since the shared memory can be accessed by all processes and, fur-
thermore, unintended access by wrong modeling is avoided by the use of the defined subactions.
In a Localview lv, a process can access its process state Slv and the respective entries rnd ⊲ Slv,
v ⊲Slv, rtd ⊲Slv, reg⊲Slv, and the entries lre⊲reg(pi)⊲Slv, lrww ⊲reg(pi)⊲Slv and val ⊲reg(pi)⊲Slv.

Initially, the read-oriented view of every process for every register contains no elements and is,
therefore, the emptyset (see Figure 5.26). Every register has an initial value of (0, i, ⊥) and is
initially in phase rIdle. The round number and the value for the first invocation of Alpha for a
process pi are chosen when pi transits from phase Idle to phase Publishing. Therefore, initially
pi stores an arbitrary round number r′ ∈ N and an arbitrary value v′ ∈ I in its process state.
The list of registers to read rtd ⊲ SR(0) is initially the empty list [] and the copy of the registers
is set to the initial value of the registers.

initviewr(pi) , ∅

initvalal(pi) , (0, i, ⊥)

initsh(pi) , (rIdle, initvalal(pi), initviewr)

Inital , {

Å

(r′, v′, Idle, [], initvalal)
initsh

ã

| r′ ∈ N ∧ v′ ∈ I }

Figure 5.26.: Initial definitions for the α-algorithm

pi starts a new invocation by executing the action ProcPublishRoundBegin↓ (see Figure
5.27). A new invocation can be started if pi either has never invoked Alpha and is in phase Idle
or has finished the last invocation and is in phase Returnedv for some v ∈ (I ∪ { ⊥ }).

180

5.4. Using the Alpha-Abstraction

pi chooses a new round number (which must be from pi’s set of round numbers and must be
greater than the one used before), adopts it to its state, and starts writing this number to the
register entry lre. Finally, pi transits to phase Publishing. Both actions ProcPublishRoundBegin↓

and ProcPublishRoundEnd↓ (see Listing 5.27) represent the write statement in line 4 of the
pseudo code. We model the write by using the subactions WriteBegin and WriteEnd. Being
in phase Publishing pi executes ProcPublishRoundEnd↓ to finish the write to pi’s register.
In the same step, pi non-deterministically determines the order in which pi will read from
processes’ registers. This is done by choosing a list pL of all processes and storing this list to
the local variable rtd ⊲ Slv. In this step, pi transits to phase Fetching. Actions ProcFetching↓

ProcPublishRoundBegin↓(lv, lv′) , ∃v′ . ∃r′ ∈ ReqNo(IDlv) . r′ > rnd ⊲ Slv

∧ phs ⊲ Slv ∈ { Idle, Returnedv | v ∈ (I × { ⊥ }) }

∧ Slv′ = (r′, v′, Publishing, rtd ⊲ Slv, reg ⊲ Slv)

∧ WriteBegin(Shlv, Shlv′ , IDlv, (r′, -, -))

ProcPublishRoundEnd↓(lv, lv′) , ∃pL . set(pL) = P ∧ distinct(pL)

∧ phs ⊲ Slv = Publishing

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, Fetching, pL, reg ⊲ Slv)

∧ WriteEnd(Shlv, Shlv′ , IDlv)

Figure 5.27.: Actions ProcPublishRoundBegin↓ and ProcPublishRoundEnd↓

and ProcFetchingStep↓ (see Figure 5.28) model the read of the registers in lines 6 and 18. For
starting the first read cycle (line 6), a process pi has to be in phase Fetching, for the second
cycle, pi must be in phase FetchingAgain. By executing ProcFetching↓ pi starts reading the
first register in list rtd ⊲ Slv (the register is obtained by the hd operation). If pi is in phase
Fetching, pi proceeds to phase FetchingWait, else, if pi is in phase FetchingAgain, it transits
to phase FetchingAgainWait. To finish a read operation on a register, pi performs operation
ProcFetchingStep↓. This operation stores the read value in pi’s process state by updating the
local copy of the respective register. Furthermore, the head of the list is removed from the list
to enable the read of the next register. To start the read of the next register, pi goes back to
phase Fetching (respectively FetchingAgain for the second cycle).

If pi is in phase Fetching and there are no more registers to read, by executing action
ProcFetchingFinish↓ (see Figure 5.29) pi chooses the value to write and starts writing its round
number and the value to its own register (entries lrww, val) using the subaction WriteBegin.
This action is only enabled, if pi has read no higher round number than its own in the lre entries.
ProcFetchingFinish↓ sets the phase to Proposing. If pi is in phase Fetching or FetchingAgain,
there are no more registers to read and pi has read a higher round number, then pi can execute
Abort↓ to abort the invocation. In this case the phase is set to Returned⊥.

In phase Proposing, pi processes action ProcPropose↓ to finish the writing that was started

181

5. Case Studies

nextPhs(p) ,



















FetchingWait , if p = Fetching
FetchingAgainWait , if p = FetchingAgain
Fetching , if p = FetchingWait
FetchingAgain , if p = FetchingAgainWait

ProcFetching↓(lv, lv′) , phs ⊲ Slv ∈ { Fetching, FetchingAgain }

∧ rtd ⊲ Slv 6= []

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, nextPhs(phs ⊲ Slv), rtd ⊲ Slv, reg ⊲ Slv)

∧ RdBegin(Shlv, Shlv′ , IDlv, hd(rtd ⊲ Slv))

ProcFetchingStep↓(lv, lv′) , ∃cnt . phs ⊲ Slv ∈ { FetchingWait, FetchingAgainWait }

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, nextPhs(phs ⊲ Slv), tl(rtd ⊲ Slv),

reg ⊲ Slv[(hd(rtd ⊲ Slv)) := cnt])

∧ RdEnd(Shlv, Shlv′ , IDlv, hd(rtd ⊲ Slv), cnt)

Figure 5.28.: Actions ProcFetching↓ and ProcFetchingStep↓

with ProcFetchingFinish↓. It furthermore chooses the list of processes for the next read cycle
and proceeds to phase FetchingAgain.

After registers have been read for the second time (using process-actionsProcFetching↓ and
ProcFetchingStep↓), pi is again in phase FetchingAgain. If there are no more registers to read,
pi can finally return a value if it has not read a lre value higher than its own round number. By
executing ProcReturn↓ pi sets the phase to Returnedv where v is the value pi returns, which
is the value pi has written to its register. If pi has read a higher value, pi executes Abort↓ to
abort the invocation.

If not already crashed, a process might always crash by executing ProcCrash↓. In this case
the phase is set to Crashed.

Figure 5.30 shows the final definitions for the formal α-algorithm. Functions C2LV al and
LV2C al are used to convert configurations to Localviews and vice versa. The function C2LV al

generates a Localview out of a configuration C for a process pi by returning a vector of the

• state of a process: SC(pi)

• the state of the registers: ShC

• the idenity of pi

LV2C al embeds a Localview lv back in to a given configuration C by

• setting the state of process pi to the process state Slv of the Localview

• adopting the state of the registers back into the configuration

182

5.4. Using the Alpha-Abstraction

valtowrite(v, v′) ,

®

v′ , if v = ⊥

v , else

ProcFetchingFinish↓(lv, lv′) , phs ⊲ Slv = Fetching

∧ ¬ (∃pj ∈ P . lre ⊲ reg(pj) ⊲ Slv > rnd ⊲ Slv)

∧ rtd ⊲ Slv = []

∧ (∃pj ∈ P . ∀pk ∈ P . lrww ⊲ reg(pj) ⊲ Slv ≥ lrww ⊲ reg(pk) ⊲ Slv

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, Proposing, rtd ⊲ Slv, reg ⊲ Slv)

∧ WriteBegin(Shlv, Shlv′ , IDlv,

(-, rnd ⊲ Slv, valtowrite(val ⊲ Reg(pj) ⊲ Slv, v ⊲ Slv)))

Abort↓(lv, lv′) , phs ⊲ Slv ∈ { Fetching, FetchingAgain }

∧ rtd ⊲ Slv = []

∧ (∃pj ∈ P . lre ⊲ reg(pj) ⊲ Slv > rnd ⊲ Slv)

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, Returned⊥, rtd ⊲ Slv, reg ⊲ Slv)

∧ Shlv′ = Shlv

ProcPropose↓(lv, lv′) , ∃pL . set(pL) = P ∧ distinct(pL)

∧ phs ⊲ Slv = Proposing

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, FetchingAgain, pL, reg ⊲ Slv)

∧ WriteEnd(Shlv, Shlv′ , IDlv)

result(Sh, pi) , ⊲ vieww ⊲Sh(pi)

ProcReturn↓(lv, lv′) , phs ⊲ Slv = FetchingAgain

∧ rtd ⊲ Slv = []

∧ ¬ (∃pj ∈ P . lre ⊲ reg(pj) ⊲ Slv > rnd ⊲ Slv)

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, Returnedresult(Shlv,IDlv), rtd ⊲ Slv, reg ⊲ Slv)

∧ Shlv′ = Shlv

ProcCrash↓(lv, lv′) , phs ⊲ Slv 6= Crashed

∧ Slv′ = (rnd ⊲ Slv, v ⊲ Slv, Crashed, rtd ⊲ Slv, reg ⊲ Slv)

∧ Shlv′ = Shlv

Figure 5.29.: Actions ProcFetchingFinish↓, Abort↓, ProcReturn↓, ProcPropose↓ and ProcCrash↓

183

5. Case Studies

We define the set of process-actions Φal as the set that contains the lifted versions of the non-
lifted actions defined before. The α-algorithm algorithm uses no events, therefore the set Ψal is
the emptyset.

In the pseudo code, it seems very obvious that a process pi successively executes one line of
code after the other. In a formal model, it becomes clear that nothing works without a notion
of fairness. To exclude runs where only some processes make progress, we need weak fairness
for our actions. Hence, we assume that every action always is either eventually disabled or
executed. We require this assumption for all defined actions but ProcCrash↓ because assuming
weak fairness for ProcCrash↓ would require every process to crash eventually.

We conclude with the tuple (Inital, Φal, Ψal, { Fairness }, C2LV al, LV2C al) that defines
the formal Distributed Algorithm Aal.

C2LV al(C, pi) ,

Ñ

SC(pi),
ShC

pi

é

LV2C al(lv, pi,C) ,
Å

SC[pi := Slv]
Shlv

ã

Correct(R) , { pi ∈ P | ∀t ∈ T . phs ⊲ SR(t) 6= Crashed }

WeakFairness(R, A) , ∀t ∈ T . ∀pi ∈ Correct(R) . ∃t′ ≥ t .

(R(t′) →pi:A R(t′ + 1)) ∨ ¬ Enabled A(A, R(t′), pi)

FairActions ,
¶

ProcPublishRoundEnd↓, ProcFetching↓, ProcFetchingStep↓
©

∪
¶

ProcFetchingFinish↓, ProcReturn↓, ProcPropose↓, Abort↓
©

Fairness(R) , ∀A↓ ∈ FairActions . WeakFairness(R, Lift(A↓))

Φal ,
¶

Lift(ProcPublishRoundBegin↓), Lift(ProcPublishRoundEnd↓)
©

∪
¶

Lift(ProcFetching↓), Lift(ProcFetchingStep↓), Lift(ProcFetchingFinish↓)
©

∪
¶

Lift(Abort↓), Lift(ProcReturn↓), Lift(ProcPropose↓), Lift(ProcCrash↓)
©

Ψal , ∅

Aal , (Inital, Φal, Ψal, { Fairness }, C2LV al, LV2C al)

Figure 5.30.: Formal α-algorithm

5.4.3. Proof Issues

For the α-algorithm, we restrict ourselves to the safety property: αQuasi-agreement (the prop-
erty with the most extensive proof) and the liveness property αTermination. As the work of

184

5.4. Using the Alpha-Abstraction

Guerraoui and Raynal [GR07] shows, the paper proofs for αConditional non-⊥ convergence and
αValidity are very short such that in a theorem prover they would only require many technical
arguments for the preservation of invariants during a run.

For αTermination we have to show that every correct process eventually returns a value
(maybe ⊥) in every invocation. That requires a definition clarifying what it means for a process
to be invoked in terms of our model.

Hence, we define a predicate invoked:

Definition 5.4.3.1 (Invoked)
Let pi be a process, C ∈ C a configuration, r ∈ N be a round number and v be a (input) value.
We define:

invokedC(pi, r, v) , phs ⊲ SC(pi) = Publishing ∧rnd ⊲ SC(pi) = r ∧ v ⊲ SC(pi) = v

For αTermination we show that every correct process pi that has been invoked with round
number r and value v at time t eventually is in phase Returnedx for some x ∈ I ∪ { ⊥ }. The
formal definition for αTermination for our model is:

αTermination(R) ,∀pi ∈ Correct(R) . ∀t ∈ T . ∀r ∈ N . ∀v ∈ I . invokedR(t)(pi, r, v)

⇒
Ä

∃t′ > t . ∃x . phs ⊲ SR(t)(pi) = Returnedx

ä

The only argument for αTermination by Guerraoui and Raynal is ‘As it is wait-free, the al-
gorithm described . . . trivially satisfies the termination property’. Since it is hard to find a
formal definition for wait-free in terms of our model, our proof for Termination is based on the
assumption of weak-fairness (see Section 5.4.2). This assumption enables us to show that

• After a correct process pi invoked Alpha, pi will eventually execute action
ProcPublishRoundEnd↓ (→֒ Isabelle18).

• After a correct process pi has visited phase Fetching, pi’s list of registers to read will
eventually be empty (→֒ Isabelle19).

• If a correct process pi is in phase Fetching or FetchingAgain in some configuration C and
it has a non-empty list of registers to read, then pi will eventually execute ProcFetching↓

in some configuration C
′ with SC = SC′ (→֒ Isabelle20).

• After a correct process pi has visited phase FetchingAgain and has an empty list of registers
to read, pi eventually executes ProcReturn↓ (→֒ Isabelle21).

• If a correct process pi is in phase FetchingWait or FetchingAgainWait in some configuration
C, then pi will eventually execute ProcFetchingStep↓ in some configuration C

′ with SC = SC′

(→֒ Isabelle22).
18Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): InvokedLeadsToPPRE
19Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): FetchingLeadsToPFF
20Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): FetchingLeadsToPF
21Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): FetchingAgainLeadsToPR
22Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): FetchingWaitLeadsToPFS

185

5. Case Studies

• If a correct process pi is in phase Fetching or FetchingAgain in some configuration C and
it has a non-empty list of registers to read, then pi will eventually be in the same phase
in some configuration C

′ and pi’s registers to read equal the tail of pi’s registers to read in
C (→֒ Isabelle23).

• If a correct process pi is in phase Proposing in some configuration C, then pi will eventually
execute action ProcPropose↓ (→֒ Isabelle24).

• After a correct process pi invoked Alpha, pi will eventually execute action ProcReturn↓ or
return the ⊥ value (by executing Abort↓) (→֒ Isabelle25).

Finally, it is easy to show that the last item implies αTermination. Note that again there is
an abundance of detail required for the formal proof compared to the proof of Guerraoui and
Raynal (see above). At this point we emphasize again that for verifying correctness, the pseudo
code Guerraoui and Raynal use for their reasoning is obviously an inedaquate representation of
the algorithm since it hides important details that are relevant for the proofs: single lines of
pseudo code (lines 6 and 18) are obviously loops, although they look like single statements. Of
course, loops are relevant for every proof of Termination but they are not even mentioned in
descriptions and proofs in [GR07].

To show the α-algorithm exhibits the αQuasi-agreement property, we have to prove that
whenever two invocations return values vi and vj and vi 6= ⊥ 6= vj , then vi equals vj . Formally
we define:

αQuasi-agreement(R) ,∀pi, pj ∈ P . ∀ti, tj ∈ T . ∀vi, vj . vi 6= ⊥ ∧ vj 6= ⊥

∧ phs ⊲ SR(ti)(pi) = Returnedvi
∧phs ⊲ SR(tj)(pj) = Returnedvj

⇒ vi = vj

We adopted the structure of the proof for αQuasi-agreement from Guerraoui and Raynal [GR07].
In the following, we will give a sketch of the proof and point out some details we consider of
importance in comparison with the given paper proof.

Agreement is shown by the proof that every returned value v′ of an invocation I ′ by a process
pj equals the value that is returned by the invocation I (invoked by a process pi) with the
smallest round number r that ever returned a value v 6= ⊥ (the formal proof for a respective
lemma is given in →֒ Isabelle26). So, analogously to [GR07] let us consider two invocations I
(the one with the smallest round number) and I ′ that returned values v 6= ⊥ and v′ 6= ⊥. We
use the following time instant definitions for these two invocations (cf. [GR07]):

• tpropE is the time at which I finishes the write of entries lrww and val by executing
ProcPropose↓.

• tfaS is the time at which pi in I (in phase FetchingAgain) starts reading the register Regpj

for the second time using action ProcFetching↓.
23Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): FetchingLeadsToFetching
24Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): ProposingLeadsToPP
25Isabelle/HOL theory: AlphaVerification.thy, Lemma(s): InvokedLeadsToProcReturn
26Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): AgreementToSmallest

186

5.4. Using the Alpha-Abstraction

• tpubE is the time at which pj in I ′ finishes the write of entry lre by executing action
ProcPublishRoundEnd↓.

• tfS is the time at which pj in I ′ (in phase Fetching) starts reading Regpi
for the first time

using action ProcFetching↓.

It is easy to see that tpropE < tfaS and tpubE < tfS. Let r′ be the round number pj uses
in invocation I ′. If pj finished writing round number r′ to entry lre before pi started reading
Regpj

, then pi would read a round number higher than its own round number (recall that r is the
smallest round number for which a value is returned) and would have aborted the invocation.
Therefore, we have tfaS < tpubE and hence tpropE < tfaS < tpubE < tfS. Thus, when pj reads
register Regpi

at time tfS, pj must read a value with a lrww entry x ≥ r (because processes use
increasing round numbers). Hence, the value pj chooses as a return value must have an lrww
entry greater or equal to x. Let us assume this value y ≥ x has been written by a process pk

in invocation I ′′. As marked by Guerraoui and Raynal, the case where x = y is trivial: since
processes use unique round numbers this implies pj adopted the value from pi and I = I ′′ and
hence, we have v = v′. For the case x 6= y Guerraoui and Raynal argue that if I 6= I ′′ the pair
of invocations I, I ′′ can be considered as we considered I, I ′ previously. As a result, they claim
that finally this yields an invocation that adopted the value from I. This, of course, is much too
sloppy to be used as a formal proof in a theorem prover. Formally, this idea yields an inductive
proof over the round number of r′. Therefore, the proof in →֒ Isabelle27 is done by induction on
the round number of I ′.

Much effort was required to formally do this proof. The main concern was that there are
many passages where Guerraoui and Raynal reason over the contents of registers and argue that
if a process had read some register value x it would have aborted the invocation, but actually
processes decisions are not taken on the base of register values but only on the base of the copies
of these values. Therefore formal reasoning must be done with respect to the values of the copies
and, hence, must always consider that this value of the copy must have been read by the process
from the respective register and that the value in the register must initially have been written by
some respective process. Moreover, as already described, Guerraoui and Raynal’s arguments are
only based on the event-based definitions for Regular Registers given by Lamport. Therefore,
we had to transfer every proposition they made to the model introduced in Section 2.3.7. These
two concerns and the fact that the scheme for the induction was not entirely clear from the
beginning made reasoning for this algorithm extremely difficult.

Furthermore, some errors in the work of Guerraoui and Raynal [GR07] impeded our work:
In a remark they claim that the test in line 8 (see pseudo code) would not be necessary. As
a consequence we omitted this test until we recognized, that the justification of Guerraoui and
Raynal that this test is never used in the proof, is wrong. Actually, it is needed, but Guerraoui
and Raynal erronously refer to some line number greater than their greatest line number (see
[GR07]: although their original pseudo code comprises only 9 lines they write ‘. . . does not return
⊥ at line 12 . . . ’). We do not claim that the algorithm does not satisfy αQuasi-agreement if
this test is omitted, but in our point of view the proof as it is written down by Guerraoui and

27Isabelle/HOL theory: RotatingCoordVerification.thy, Lemma(s): AgreementToSmallest

187

5. Case Studies

Raynal, crucially requires this test. As our intention was not to invent a new proof but only to
redo the proof in a theorem proving environment, our solution here was to insert the test back
into the algorithm allowing us to finish the proof for αQuasi-agreement.

The previous sections (see Sections 5.1.2, 5.2.2 and 5.3.2) showed how our model performs
for algorithms using message passing. This new example shows how we finally succeeded in
applying our model on an algorithm that uses shared memory for communication.

188

6. Conclusion

Although proofs for fault tolerant algorithms are considered an integral part of every published
work in the field of Distributed Algorithms, pseudo code is a widespread representation for such
algorithms. In our point of view, though, formal correctness proof should be based on formal
semantics. Since pseudo code lacks formal semantics, proofs derived on the basis of pseudo
code are informal and mostly incomplete. Nevertheless, pseudo code representation does have
some advantages: in that it is usually easily readable and understood without previous (formal)
knowledge. Furthermore, in some way it resembles implementation thus allowing programmers to
use that adhoc intuition in implementing an algorithm given by a pseudo code. Based on the high
level description, a reader is able to sort out the fundamental aspects of an algorithm without
having to learn a new model and without any knowledge of formal methods. Therefore, the
essential ideas of an algorithm can be recognized quickly through the pseudo code representation.
In consensus with these arguments, our representations of the algorithms in Chapter 5 also
include a pseudo code representation. Nevertheless, in our opinion, verification of an algorithm
is only possible using a formal model so that we have analysed existing approaches to model
distributed algorithms succeeding in developing a new formal model that is similar to some
well-known approaches such as [abstract] state machines and the TLA-format.

Reasoning based upon a formal model requires a higher effort that has to be spent for doing the
proofs. But we think that this process of formally writing down all details helps to identify what
is really meant by the properties, assumptions, and mechanisms used to describe an algorithm.
For example scientific literature (e.g. [FMN07], [CT96], [Lyn96]) lists only three properties for
Distributed Consensus: Validity, Agreement and Termination. Although nearly every work on
Consensus agrees that decision for a value must be irrevocable, only in the work of Charron-
Bost (e.g. [CBM09]) Irrevocability is an explicit property. Another example can be found in
different definitions of a broadcast. In some works as e.g. [Fuz08] the term broadcast implies that
the underlying infrastructure differs from point-to-point channels. But the work of Francalanza
and Hennessy [FH07] obviously uses the term broadcast synonymously to sending a message to
all processes. All in all, we agree with Aguilera [Agu10] that it should be common practice to
analyse and explain results intuitively and formally to profit from the benefit of both approaches.

6.1. Contributions of our Modeling Approach

The main contribution of our model is that all parts are formal enough to be used within
a theorem prover. Indeed we formalized the model within the interactive theorem proving
environment Isabelle/HOL. In contrast to other formal approaches to formal modeling, as e.g.
process calculi, our model is based on higher order logic, and, therefore, readable at hand for
anyone who has some basic knowledge of logics. Our introduced TLA-like actions can be seen as

189

6. Conclusion

a refinement of the pseudo code, i.e., a method to enrich the pseudo code with formal semantics.
Like many common approaches, the model uses interleaving semantics based on atomic steps
executed by processes and events. Starting from defined initial states, the formal definition of
actions and events enable us to compute the set of runs of the algorithm and, therefore, to
formally prove that the algorithm never violates the specified safety properties. Moreover, we
provide mechanisms to integrate fairness assumptions into the model that enable deduction of
liveness properties, which may rely on additional assumptions.

In Section 2.4 we explained how safety and liveness properties are specified in terms of our
model and gave explicit definitions for those classes of properties in terms of our model. Fi-
nally, we illustrated our terms and definitions by the example of the properties of Distributed
Consensus.

In contrast to other approaches, our model can be applied to a larger group of algorithms and
is not limited to round based algorithms (as e.g. the HO-model [CBS07]) nor to algorithms that
use only message passing for communication. The introduced mechanisms for communication
(message passing, broadcasts and shared memory) support a large spectrum of possible applica-
tions. It is, moreover, possible to easily adapt and extend these mechanisms if new applications
require a different communication infrastructure. As described in Sections 2.3.5, 2.3.6, and 2.3.7
the provided approaches for message passing, broadcasts, and shared memory comprise:

• a model for Quasi-reliable point-to-point communication without message loss

• a model for Quasi-reliable point-to-point communication with message loss

• a model for Reliable Broadcasts

• a model for Regular Registers

To the best of our knowledge, the formal model for shared memory is the first state based model
of Regular Registers that has been formally defined in a theorem proving environment. As
described in Section 2.3.7 we also provided a proof that our model is equivalent to the original
definitions given by Leslie Lamport [Lam85].

A crucial characteristic for different fault tolerant algorithms is the respective failure model
the algorithms assume. We believe that every possible failure model can be integrated in our
model and have provided examples for the Crash-Failure and for the Fail-Recovery model (see
Section 2.3.8 and Chapter 5).

As described in Section 2.3.2, our model supports different methods to guarantee consistency
with respect to the notion of distribution. The new concept of Localviews and Deterministic
non-lifted Actions(DnAs) (see Section 2.3.2) limits the data a process is able to access locally.
Thereby, the limit is defined by the designer of the model. Our concept exhibits advantages in
design as well as for the verification of the algorithm: in contrast to [Fuz08], process-actions are
defined by describing only local changes and the application of the introduced DnAs also works
well with automated proof strategies (e.g. the auto method in Isabelle/HOL). Furthermore, by
the introduced constraints that have to be satisfied for our definition of a Distributed Algorithm
(see Section 2.3.2), we ensure that processes only read and manipulate data that they can access
locally.

190

6.2. Contributions of our Verification Strategies

The presented case studies demonstrated how our introduced model can be used to mechani-
cally verify distributed algorithms.

6.2. Contributions of our Verification Strategies

Mostlikely, the most important observation regarding our proof strategies is that many ideas from
the existing paper proofs could be transferred to the proofs we carried out in the theorem prover.
This implies that basically a formal proof uses the same arguments as informal argumentations
but many details that often are omitted in informal proofs have to be particularised.

For application of a semi-automated theorem prover, we experienced that much effort (com-
pared to the paper proofs) will be spent in considering cases that seem to be too ‘trivial’ to
be mentioned in a paper proof. In Chapter 3, we presented different strategies to reduce the
work for such trivial cases. Furthermore, we analyzed the applicability of different proof meth-
ods relevant to different classes of properties. We identified the induction on runs as a standard
strategy for establishing invariants, and, therefore, as the preferred method to prove safety prop-
erties like Validity and Agreement. For more sophisticated properties like Irrevocability, which
in contrast to Validity and Agreement, is not a configuration invariant (see Section 2.4), we
provide a theorem reducing the proof of the property to a simple inductional argument similar
to the induction mentioned before.

In Section 3.3 we pointed out that a further helpful method to make assertions about what hap-
pened in a run before a certain configuration, is to use history variables. Our introduced modules
for Message Histories and Regular Registers and Broadcast Histories support this method.

For the proof of liveness properties, we found that the right strategy must usually depend on
the given fairness assumptions. We exemplified this in our proof of Termination. Our different
case studies actually showed how proofs for Termination based on different fairness assumptions
are carried out.

6.3. Contributions of our Work with Isabelle/HOL

Our work with Isabelle/HOL contributed both to establishing a library for distributed algorithms
(see Chapter 4) as also to the verification of different algorithms, demonstrated in our case studies
(see Chapter 5).

The library supports the modeling and verification of new algorithms with the theorem prov-
ing environment Isabelle/HOL. Fundamental to our formalization is our Isabelle/HOL locale
DistributedAlgorithm, which is the Isabelle/HOL counterpart of the introduced definition for a
Distributed Algorithm in Section 2.3.2. For interpretations of this locale, we provide theorems
to support the verification strategies introduced in Chapter 3 and, furthermore, some simple
lemmas for deducing basic properties of the algorithms.

The library comprises datatypes and definitions that correspond to the terms defined in Sec-
tion 2.3 (cf. Sections 4.1 and 4.2). This includes a hierarchy of algorithms (Safe Algorithms,
Algorithms, Distributed Algorithms), which is implemented by extending the local Algorithm.
Furthermore, the concept of component preserving actions and events and the corresponding
lemmas and theorems are provided to support the verification techniques introduced in Chapter

191

6. Conclusion

3. Finally, all modules for communication (as introduced in Sections 2.3.5, 2.3.6 and 2.3.7) are
given as Isabelle/HOL theories. This comprises point-to-point message passing communication
and shared memory communication. We have provided two versions of point-to-point message
passing including one with a failure model, where messages might be lost and one without mes-
sage loss. The theory for shared memory includes a full formal proof for the equivalence of
our state based model for Regular Registers to the event based definitions of Lamport. Well-
regulated access and control is guaranteed by the provided subactions for each of the different
communication mechanisms. The subactions are also part of the Isabelle/HOL theories. More-
over, the theories provide many basic but important lemmas, which are useful for reasoning over
communication.

Case studies chosen are drawn from a common fundamental problem of asynchronous dis-
tributed computing: Consensus. We verified four algorithms of different complexity using dif-
ferent failure models and different communication mechanisms. An overview may be found in
Figure 6.1. First, we analysed the comparatively simple Rotating Coordinator algorithm. It can
be represented by a pseudo code with only 6 lines of code (LOC). To verify all four properties of
Distributed Consensus, though, we had to write about 3000 lines of proof code in Isabelle/HOL
(exclusively the code of the library).

Verification of the more complex examples ♦S-algorithm and Paxos required more than 8000
lines of proof code respectively, although we only verified safety properties for Paxos. But if we
take the lines of pseudo code as a measure, the effort for proving the properties has only grown
in linear scale. Furthermore, the shared memory problem considered in the last case study took
even more lines of code to verify only two properties. This is both due to the definition and
the model of Regular Registers, which is much more complex compared to the more simple
model for message passing used before. Our work with Isabelle/HOL also enabled the detection
of several errors in existing proofs for the same algorithm as well as some problems with the
existing models (see e.g. Section 5.3.3 and Section 2.3.2).

We analyzed the models we designed and the proofs we made and found that a lot of theory
can be reused although algorithms and even the communication infrastructure the algorithms
use are different. The main ideas are reflected by the theory described in Chapter 2, by the locale
definitions and theorems (presented in Chapter 4) and by the ideas for verification strategies
described in Chapter 3.

Beside establishing a library and the verification of the algorithms, our work with the theorem
prover Isabelle/HOL included the verfication of the framework developed by Guerraoui and
Raynal [GR07] for the Alpha abstraction (cf. Section 5.4). Furthermore, we expanded upon
some basic work on definitions and reasoning with safety and liveness properties (cf. Section
2.4).

In work on the Alpha framework, we could establish a formal proof that the algorithm given
by Guerraoui and Raynal solves Distributed Consensus if the used Alpha satisfies the properties
αValidity, αConditional non-⊥ convergence, αQuasi-agreement, and αTermination.

192

6.4. Summary and Future Work

Algorithm Verified
Properties

Setting/ Failure model LOC
pseudo
code

LOC
proof
code

Source

Rotating
Coordinator

Validity
Agreement
Irrevocability
Termination

Message passing w/o
message loss,
Crash-Failure

6 3k [Tel01]

♦S Validity
Agreement
Irrevocability
Termination

Quasi-reliable message passing,
Reliable Broadcasts,
Crash-Failure

30 10k [CT96]

Paxos Validity
Agreement
Irrevocability

Message passing w/
message loss,
Fail-Recovery

30 8k [Lam98]

Alpha
for shared
memory

αQuasi-
agreement
αTermination

Regular Registers,
Crash-Failure

10 8k [GR07]

Figure 6.1.: Verified Algorithms (Case Studies)

6.4. Summary and Future Work

In summary, we have developed a framework to formally model Distributed Algorithms, which
supports verification in a theorem proving environment. Special focus is placed on communica-
tion mechanisms and the notion of distribution. We conclusively showed the applicability of the
framework in the verification of four different algorithms using Isabelle/HOL. We additionally
worked out results for meta theory on the Alpha-framework and safety and liveness properties.

In the future it would be interesting to develop more standard proof techniques for distributed
algorithms and especially for the verification of liveness properties. Lamport’s proof rules in
[Lam94] could be of use to estabish a formal approach for standard methods to utilize fairness
assumptions. Furthermore, it would be interesting to examine if Lamport’s notion of machine
closure could be integrated into our framework for a better support of Lamport’s refinement
proofs.

Finally, more libraries for communication mechanisms should be developed, as e.g. additional
libraries for shared memory abstractions like Atomic and Safe Registers (concepts are proposed
in Chapter 2.3.7). Imaginable is also a library for remote procedure calls as a communication
mechanism.

We would of course also be interested in the verification of more and different algorithms in
other case studies with our framework. This work has focused on Agreement problems with a
special emphasis on Distributed Consensus. A verification of algorithms that solves a different
problem with different safety and liveness properties could help in identifying new aspects in
modeling and reasoning.

193

A. Additional Propositions for Message Passing

Quasi-reliable Message Passing

Proposition A.0.0.2 (Send Properties)
If there is a Send step (formally: Send(Q, Q′, m)) for two Message Histories Q and Q′ and a

message m, then

1. outMsgs Q′ = outMsgs Q ∪ { m }

2. outMsgs Q ⊆ outMsgs Q′

3. transitmsgs Q′ = transitmsgs Q

4. recmsgs Q′ = recmsgs Q

5. msgs Q ⊆ msgs Q′

6. msgs Q′ = msgs Q ∪ { m }

Proof.→֒ Isabelle1

Proposition A.0.0.3 (Transmit Properties)
If there is a Transmit step (formally: Transmit(Q, Q′, m)) for two Message Histories Q and

Q′ and a message m, then

1. outMsgs Q = outMsgs Q′ ∪ { m }

2. outMsgs Q′ ⊆ outMsgs Q

3. transitmsgs Q′ = transitmsgs Q ∪ { m }

4. recmsgs Q′ = recmsgs Q

5. msgs Q = msgs Q′

Proof.→֒ Isabelle2

Proposition A.0.0.4 (Receive Properties)
If there is a Receive step (formally: Receive(Q, Q′, m)) for two Message Histories Q and Q′

and a message m, then

1Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): SendProps,SendMsgChange
2Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): TransmitProps

195

A. Additional Propositions for Message Passing

1. outMsgs Q = outMsgs Q′ ∪ { m }

2. transitmsgs Q′ ⊆ transitmsgs Q

3. transitmsgs Q = transitmsgs Q′ ∪ { m }

4. recmsgs Q′ = recmsgs Q ∪ { m }

5. msgs Q = msgs Q′

Proof.→֒ Isabelle3

Proposition A.0.0.5 (Duplicate Properties)
If there is a Duplicate step (formally: Duplicate(Q, Q′, m)) for two Message Histories Q and

Q′ and a message m, then

1. outMsgs Q′ = outMsgs Q

2. transitmsgs Q′ = transitmsgs Q

3. recmsgs Q′ = recmsgs Q

4. msgs Q′ = msgs Q

Proof.→֒ Isabelle4

3Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): ReceiveProps
4Isabelle/HOL theory: MsgPassNoLoss.thy, Lemma(s): DuplicateProps

196

Glossary

ProperMemStep
A step which is in accordance with the defined subactions for Regular Registers (cf. Defi-
nition 2.3.7.1). 56, 57, 113–116, 118, 121

Admissible Runs
For an Algorithms Admissible Runs are the runs where the defined fairness predicates hold
(cf. Definition 2.3.1.9). 24, 68, 83, 155, 205

Agreement
Property of Distributed Consensus: No two processes decide on different values. 5, 6, 26,
68, 69, 125, 153, 193, 198

algorithm
Procedure for calculation which is defined by single steps (cf. Definition 2.3.1.8). Our
definition of an algorithm depends on the definition of a Safe Algorithm also comprises
fairness assumptions. iii, 1–6, 11–13, 15–27, 35–39, 41, 43, 47, 49, 62–65, 67, 68, 71, 73,
75–79, 82, 83, 85, 127–132, 136–138, 140, 154–158, 170, 172, 174, 175, 177, 186–193, 197,
199

Byzantine
failure model where fa ulty processors can behave arbitrarily. 31, 64

configuration
Global state of the system which is a combination of all the modules (e.g. communication
modules or failure detectors) that are present in the system and are used by the algorithm
in addition to the state of the involved processes (cf. Definition 2.3.1.1). 20–26, 30–34,
36, 38, 41, 42, 47, 49, 51, 52, 57, 62, 63, 66–73, 75–80, 82, 83, 125, 126, 131, 136, 153, 170,
174, 185, 186, 191, 199, 200, 213

Configuration invariant
Predicates which are true for every configuration of a run (cf. Definition 2.4.0.4). 67, 69,
70, 77, 78, 80, 125

Crash-Failure
failure model where processors simply stop their execution. 63, 190

deadlock
A configuration where no further step is possible (cf. Definition 2.3.1.4). 22, 24–26, 82,
136

197

Glossary

Deterministic non-lifted Action
Deterministic Action defined over Localviews (cf. Definition 2.3.3.1). 37, 198

distributed algorithm
An algorithm designed to be processed by interconnected processes. Our definition of an
distributed algorithm is based upon the definition of an algorithm and comprises further
assertions (cf. Definition 2.3.2.3). iii, 2, 4, 5, 11–13, 15, 17, 35, 56, 63, 68, 71, 75, 77, 78,
83, 85, 86, 125, 128, 189, 191, 193

Distributed Consensus
A problem in distributed computing where the task is to make N processes agree on exactly
one value. Therefore, an algorithm that solves Consensus is supposed to exhibit Validity,
Agreement, Termination and Irrevocability. 5, 13, 68, 75, 78, 127, 136–138, 156, 172, 174,
189, 190, 192, 197, 199, 201, 213

distributed system
A distributed system DN is a collection of N individual computing devices (processes)
that can communicate with each other (cf. Definition 1.2.0.1). iii, 1–3, 15–17, 20, 24, 40,
82, 85

DnA
Acronym for Deterministic non-lifted Action (cf. Definition 2.3.3.1). 37, 38, 43, 61–63, 73,
74, 95, 96, 100, 110, 132, 134, 143–146, 148, 162, 163, 190, 203

event
Trigger of an event-step. 11, 21, 22, 25, 34, 35, 39, 56, 73, 76, 77, 79–82, 86, 88, 90–93,
98, 128, 134, 151, 154, 169, 190–192, 198

event-step
Atomic step which happens unmotivated or at least without a dedicated process that trig-
gered the event (e.g. the loss of a message while the message is transmitted)(cf. Definition
2.3.1.4). 21, 22, 56, 90, 92, 198, 200

Fail-Noisy
failure model where crashes can be detected but not always in an accurate manner. 64

Fail-Recovery
failure model where crashed processes can recover. 64, 190

Fail-Silent
failure model where processors also crash but their neighbours can detect this easily. 64

Fail-Stop
failure model where processors also crash but their neighbours can detect this easily. 64

198

Glossary

failure detector
Abstraction that can be regarded as local modules monitoring the crash status of all
involved processes in the system. 17, 20, 83, 127, 129, 130, 137, 138, 171

failure model
Model for the possible cases of failure. iii, 5, 16, 63–65, 157, 190, 192, 197, 198

fairness assumption
An assumption to guarantee progress for an algorithm.. 11, 25, 73, 83, 84, 155, 190, 191,
193, 197

final-stuttering
see FinSt. 23

function update
Concept to define a function with reference to another function (cf. Definition 2.3.2.1).
28, 34, 43

infinite run
An infinite sequence of configurations. (cf. Definition 2.3.1.5). 22, 24, 65, 155, 156

Irrevocability
Property of Distributed Consensus: Once a process decides on a value, it remains decided
on that value.. 5, 68, 70, 198

Leader Election
A problem in distributed computing where the task is that exactly one process should
output the decision it has become the leader [Lyn96]. 5

liveness
A liveness property is informally: a property asserting that something good eventually
happens [Lam77] (cf. Definition 2.4.0.3). 4, 5, 12, 21, 64, 65, 67, 69, 70, 73, 75, 82, 83,
129, 172, 184, 190–193

Localview
The variables and resources a process can access. 30–35, 37, 38, 40, 62, 72, 131, 190, 198,
200, 203, 213

message history
Mapping which represents the messages in the system. 44, 82, 204

message passing
Communication method where processes send each other messages. iii, 40–42, 85, 127,
129, 174, 188, 190, 192

199

Glossary

Mutual Exclusion
A problem in distributed computing where N cyclic processes enter and exit critical sec-
tions, the processes have to be programmed in such a way that at any one moment only
one of theses processes is in its critical section [Dij65]. 5

non-lifted
A nonlifted action is an action that is defined on Localviews (instead of configurations).
30–34, 36–38, 73, 95, 132, 134, 145, 146, 151, 169, 184, 190, 204

process state
Registers, variables and program counter of a process. (cf. Definition 2.3.1.1). 19, 20, 31,
33–35, 38, 39, 42, 68, 71–73, 76, 77, 79, 128, 131, 171

process-action
Atomic transition executed by a process. 21, 22, 25, 28–30, 33, 35–38, 56, 62, 64, 73, 74,
76, 77, 88, 89, 91, 92, 95–98, 132, 134, 151, 169, 182, 184, 190, 213

process-step
Step taken by a process(cf. Definition 2.3.1.4). 21, 22, 30, 56, 90, 92, 113, 200

run
A sequence of configurations where each configuration and its successor are in the step
relation (cf. Definition 2.3.1.6). 12, 16, 18–20, 22–26, 40, 51, 57, 59, 60, 65, 67–69, 76,
78–80, 82, 83, 125, 128, 129, 136, 138, 154, 174, 190, 191

Safe Algorithm
A formal specification of an algorithm which allows to verify safety properties (cf. Defini-
tion 2.3.1.3). 21–24, 79, 191, 197

safety
A safety property is informally a specification which states that something bad does not
happen [Lam77] (cf. Definition 2.4.0.2). 4, 12, 13, 21, 64, 65, 67, 69, 70, 73, 75, 80, 129,
138, 156, 170–173, 184, 190–193

sequential algorithm
The behaviour of a single process defined step by step.. 1, 73

step
A transition which is either a process-step or an event-step (cf. Definition 2.3.1.4). iii, 16,
18, 20–22, 24–26, 32–34, 36, 43–46, 48, 50, 51, 53, 56, 73, 154, 170, 176, 177, 195–197

step relation
Relation containing all pairs of configuration (C,C′) where a step is possible from C to C

′

(cf. Definition 2.3.1.4). 21–23, 25, 200

200

Glossary

Termination
Property of Distributed Consensus: All nonfaulty processes eventually decide.. 5, 68, 82,
185, 186, 198

Validity
Property of Distributed Consensus: If a process pi decides a value v then there has to be
a process pj such that v has been input for pj .. 5, 68, 198

201

Symbols

· Concatenation operator for sequences of configura-
tions. 66, 67, 70

⊑ Prefix relation for sequences of configurations. 66,
67, 70

A An algorithm. 15, 21–25, 29, 31, 35, 39, 43, 47, 59,
68, 73, 75–80, 83, 89, 90, 97, 125, 135, 136, 152, 169,
184, 213

Σ Set of all sequences. 22–24, 57, 65–68, 70, 78, 80, 83,
125, 205

bool The set of boolean values. 8, 10, 21, 23–25, 30, 33,
34, 36, 37, 42, 47, 67, 68, 76, 77, 79–81, 83, 95, 125,
131

Correct Set of all correct processes in the considered setting.
47, 65, 69, 136, 151, 153, 184, 185

C2LV A function which returns for a configuration C and
process pi the restricted view of pi on C. 30–37, 40,
47, 56, 57, 59, 62, 71–73, 76, 95–97, 134–136, 148,
150, 152, 166, 169, 182, 184, 213

C Set of all configurations. 21–23, 25, 26, 30–37, 57,
62, 66, 67, 71, 72, 75–77, 79–81, 83, 185

DnA Set of all DnAs. 37

Enabled A predicate which is true if a certain action/event
can be executed (cf. Definition 2.3.1.10). 25, 39, 184

FinSt A run R with final-stuttering reaches a deadlocked
configuration in time t and for all successive configu-
rations t′ ≥ t we repeat the configuration R(t) (hence
we have R(t′) = R(t)). 23, 76, 199

L Set of all Localviews. 30, 31, 33, 37, 72, 95

203

Symbols

Lift Function that returns the lifted version of a non-lifted
action. 33, 36, 37, 73, 95, 135, 151, 152, 169, 184

LV2C A function which embeds a Localview of a given pro-
cess into a configuration and returns the resulting
configuration.. 31–37, 40, 43, 44, 47, 56, 57, 59, 62,
71–73, 76, 95–97, 135, 136, 148, 150, 152, 166, 169,
182, 184, 213

M Set of all messages. 27–29, 31, 32, 38, 42, 45, 47
msgs All messages in the system (cf. Definition 2.3.5.1).

42, 44, 45, 47, 48, 101, 104, 105, 195, 196

lostmsgs All messages in the system with status lost(cf. Def-
inition 2.3.5.1). 47, 48, 105, 106

outMsgs All messages in the system with status outgoing(cf.
Definition 2.3.5.1). 42, 43, 45, 47, 48, 99, 102, 105,
195, 196

recmsgs All messages in the system with status received(cf.
Definition 2.3.5.1). 42–45, 47, 48, 99, 102, 105, 135,
148, 150, 195, 196

transitmsgs All messages in the system with status transit(cf.
Definition 2.3.5.1). 42–45, 47, 48, 99, 102, 105, 195,
196

P Set of all processes in the considered setting. 19–22,
25, 27–35, 37–39, 41, 49, 50, 52, 56, 57, 61, 62, 65,
68–70, 72, 75–80, 83, 92, 96, 109, 113, 127, 131–133,
136, 142, 145, 147, 151, 153, 155–157, 161, 165, 167,
170, 181, 183, 184, 186

QPPT Set of Tags used to describe the status of a message
(without message loss). 41, 42

Q message history in a setting with quasi-reliable mes-
sage passing. 41–48, 99–102, 104, 131, 132, 135, 141–
143, 148, 150, 160, 195, 196

R A run. 22, 23, 65, 203
Rphs Set of phases for Regular Registers. 52, 108
R Set of status values for Regular Registers. 52, 61
Vreg Set of all values that can be stored in the registers.

52–54, 56–63, 108, 113, 178
viewr Readoriented view of a process on Regular Registers.

52–56, 59–61

204

Symbols

vieww Writeoriented view of a process on Regular Registers.
52–61, 108, 183

S Set of all process states. 20, 68, 71, 76, 77, 79
SumMsgs Sum of all messages (cf. Definition 2.3.5.2). 44, 46,

102
SumOutgoing Sum of all messages with status outgoing (cf. Defi-

nition 2.3.5.2). 44–46, 101, 102, 104
SumReceived Sum of all messages with status received (cf. Defi-

nition 2.3.5.2). 44, 46, 101, 102, 104
SumTransit Sum of all messages with status transit (cf. Defini-

tion 2.3.5.2). 44–46, 101, 102, 104
Runsad Set of Admissible Runs. 24, 68
Σω Set of all infinite runs. 22

Tags Set of message status values. 27, 29, 32, 99
T A countably infinite set of points in time. 22, 23, 57,

65, 66, 76–81, 86, 136, 151, 153, 154, 170, 184–186

ΞΨ Subset of events which preserves a certain compo-
nent. 76, 79

ΞΦ Subset of actions which preserves a certain compo-
nent. 76, 77, 79

Ξ Subset of the actions and events which preserves a
certain component. 76

205

Bibliography

[Agu10] Marcos K. Aguilera. Replication. chapter Stumbling over consensus research: mis-
understandings and issues, pages 59–72. Springer-Verlag, Berlin, Heidelberg, 2010.

[Aro92] Anish Kumar Arora. A foundation of fault-tolerant computing. PhD thesis, Austin,
TX, USA, 1992. UMI Order No. GAX93-09117.

[AS86] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117–126, 1986.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing Fundamentals, Simula-
tions, and Advanced Topics Second Edition. 2004.

[CBM09] Bernadette Charron-Bost and Stephan Merz. Formal verification of a consensus
algorithm in the heard-of model. Int. J. Software and Informatics, 3(2-3):273–303,
2009.

[CBS07] Bernadette Charron-Bost and André Schiper. The Heard-Of Model: Computing
in Distributed Systems with Benign Failures. Technical report, 2007. Replaces
TR-2006: The Heard-Of Model: Unifying all Benign Failures.

[CBTB00] Bernadette Charron-Bost, Sam Toueg, and Anindya Basu. Revisiting safety and
liveness in the context of failures. In Proceedings of the 11th International Conference
on Concurrency Theory, CONCUR ’00, pages 552–565, London, UK, UK, 2000.
Springer-Verlag.

[CDM11] Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. Formal verification of
consensus algorithms tolerating malicious faults. In Xavier Défago, Franck Petit,
and Vincent Villain, editors, 13th Intl. Symp. Stabilization, Safety, and Security of
Distributed Systems (SSS 2011), volume 6976 of LNCS, pages 120–134, Grenoble,
France, 2011. Springer.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to Reliable
and Secure Distributed Programming (2. ed.). Springer, 2011.

[Cho94] Ching-Tsun Chou. Mechanical verification of distributed algorithms in higher-order
logic. In Proceedings of the 7th International Workshop on Higher Order Logic
Theorem Proving and Its Applications, pages 158–176, London, UK, 1994. Springer-
Verlag.

[Cho95] Ching-Tsun Chou. Using operational intuition about events and causality in asser-
tional proofs. Technical report, 1995.

207

Bibliography

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. J. ACM, 43:685–722, July 1996.

[Cla78] Edmund M. Clarke. Proving the correctness of coroutines without history variables.
In ACM-SE 16: Proceedings of the 16th annual Southeast regional conference, pages
160–167, New York, NY, USA, 1978. ACM.

[Cli73] M. Clint. Program proving: Coroutines. Acta Informatica, 2:50–63, 1973.
10.1007/BF00571463.

[Cli81] M. Clint. On the use of history variables. Acta Informatica, 16:15–30, 1981.
10.1007/BF00289587.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43:225–267, 1996.

[Cur58] Haskell B. Curry. Combinatory Logic. Amsterdam, North-Holland Pub. Co., 1958.

[DGM97] Marco Devillers, David Griffioen, and Olaf Muller. Possibly infinite sequences in
theorem provers: A comparative study. In Proceedings of the 10th International
Conference on Theorem Proving in Higher Order Logics (TPHOL 97, pages 89–104.
Springer-Verlag, 1997.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8:569–, September 1965.

[FH07] A. Francalanza and M. Hennessy. A Fault Tolerance Bisimulation Proof for Con-
sensus. In Proc. of ESOP, volume 4421 of LNCS, pages 395–410, 2007.

[FHB+97] Jean-Christophe Filliâtre, Hugo Herbelin, Bruno Barras, Samuel Boutin, Eduardo
Giménez, Gérard Huet, César Muñoz, Cristina Cornes, Judicaël Courant, Chetan
Murthy, Catherine Parent, Christine Paulin-mohring, Amokrane Saibi, and Ben-
jamin Werner. The coq proof assistant - reference manual version 6.1. Technical
report, 1997.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[FMN07] Rachele Fuzzati, Massimo Merro, and Uwe Nestmann. Distributed Consensus, Re-
visited. Acta Informatica, 44(6):377–425, 2007.

[Fuz08] Rachele Fuzzati. A formal approach to fault tolerant distributed consensus. PhD
thesis, Lausanne, 2008.

208

Bibliography

[Gaf98] Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony. In
In Proc of the 17th ACM Symp. Principles of Distributed Computing (PODC, pages
143–152, 1998.

[GL00] Eli Gafni and Leslie Lamport. Disk Paxos. In Distributed Computing, pages 330–344,
2000.

[GR06] R. Guerraoui and L. Rodrigues. Introduction to reliable distributed programming.
Springer-Verlag, 2006.

[GR07] Rachid Guerraoui and Michel Raynal. The alpha of indulgent consensus. Comput.
J., 50:53–67, January 2007.

[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide, 1995.

[Gä99] Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31, 1999.

[Gä02] Felix C. Gärtner. Revisiting liveness properties in the context of secure systems. In
IN PROC. FASEC, 2002.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[Hut94] Graham Hutton. Introduction to hol: a theorem proving environment for higher
order logic by mike gordon and tom melham (eds.), cambridge university press,
1993, isbn 0-521-44189-7. Journal of Functional Programming, 4(04):557–559, 1994.

[JM05] Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. In
Gerwin Klein, Tobias Nipkow, and Lawrence Paulson, editors, The Archive of Formal
Proofs. http://afp.sf.net/entries/DiskPaxos.shtml, June 2005. Formal proof
development.

[Kin94] Ekkart Kindler. Safety and Liveness Properties: A Survey. In EATCS Bulletin,
number 53, pages 268–272. June 1994.

[KNR12] Philipp Küfner, Uwe Nestmann, and Christina Rickmann. Formal verification of
distributed algorithms - from pseudo code to checked proofs. In Jos C. M. Baeten,
Thomas Ball, and Frank S. de Boer, editors, IFIP TCS, volume 7604 of Lecture
Notes in Computer Science, pages 209–224. Springer, 2012.

[KWP99] Florian Kammüller, Markus Wenzel, and LawrenceC. Paulson. Locales a section-
ing concept for isabelle. In Yves Bertot, Gilles Dowek, Laurent Théry, André
Hirschowitz, and Christine Paulin, editors, Theorem Proving in Higher Order Logics,
volume 1690 of Lecture Notes in Computer Science, pages 149–165. Springer Berlin
Heidelberg, 1999.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering, 3(2):125–143, 1977.

209

http://afp.sf.net/entries/DiskPaxos.shtml

Bibliography

[Lam85] Leslie Lamport. On interprocess communication, 1985.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16:872–923, 1994.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 16:133–169, 1998.

[Lam01] Leslie Lamport. Paxos Made Simple. SIGACT News, 32(4):51–58, December 2001.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing, PODC ’87, pages 137–151, New York, NY, USA, 1987. ACM.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[Mcc] William Mccune. Otter 3.3 reference manual.

[McL96] John McLean. A General Theory of Composition for a Class of "Possibilistic" Prop-
erties. IEEE Transactions in Software Engineering, 22(1):53–67, 1996.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1982.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[NF03] Uwe Nestmann and Rachele Fuzzati. Unreliable Failure Detectors via Operational
Semantics. In Advances in Computing Science - ASIAN 2003, Lecture Notes in
Computer Science, pages 54–71, 2003.

[Nip13] Tobias Nipkow. Programming and proving in isabelle/hol. Technical report, 2013.

[NPW] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle’s Logics: HOL.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[Owi76] Susan Owicki. A consistent and complete deductive system for the verification of
parallel programs. In STOC ’76: Proceedings of the eighth annual ACM symposium
on Theory of computing, pages 73–86, New York, NY, USA, 1976. ACM.

[Pau89] L. C. Paulson. The foundation of a generic theorem prover. J. Autom. Reason.,
5(3):363–397, September 1989.

210

Bibliography

[Pau13] Lawrence C. Paulson. Isabelle’s logics. Technical report, 2013.

[PC96] D. Peled and C. Chou. Formal verification of a partial-order reduction technique
for model checking. In In Proc. of the Second International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, pages 241–257. Springer-
Verlag, 1996.

[PLL97] Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. Revisiting the paxos
algorithm. In Marios Mavronicolas and Philippas Tsigas, editors, WDAG, volume
1320 of Lecture Notes in Computer Science, pages 111–125. Springer, 1997.

[PNW03] Lawrence C. Paulson, Tobias Nipkow, and Markus Wenzel. Isabelle’s logics: Fol and
zf. Technical report, 2003.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22:299–319, 1990.

[Tel01] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press,
New York, NY, USA, 2nd edition, 2001.

[VVK05] Hagen Völzer, Daniele Varacca, and Ekkart Kindler. Defining fairness. In Martín
Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory, 16th
International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-
26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science, pages
458–472. Springer, 2005.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski. Spass version 3.5. In Proceedings of the 22nd In-
ternational Conference on Automated Deduction, CADE-22, pages 140–145, Berlin,
Heidelberg, 2009. Springer-Verlag.

[Win03] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis. PhD
thesis, MIT Department of Electrical Engineering and Computer Science, (Cam-
bridge, MA), 2003.

211

List of Figures

1.1. Application of method auto in theorem SumNat 9

2.1. Transition in [Fuz08] . 21
2.2. Transition rule ([Fuz08]) . 21
2.3. Execution of actions A0, . . . , A13 in Run R . 23
2.4. Simple Algorithm Aflood . 29
2.5. Configurations, Localviews, C2LV and LV2C . 33
2.6. Algorithm with Shared Storage . 39
2.7. Simple Algorithm Aflood rewritten with Message Definitions 43
2.8. Concurrent read and write operations . 51
2.9. Read- and write-oriented views . 55
2.10. Register phases . 56
2.11. Mindmap for Datastructures of the Model . 71
2.12. Process of Modelling and Verification . 72
2.13. Modelling process-actions . 74

4.1. Agreement as a theorem . 126
4.2. Validity as a predicate and Validity as a theorem 126
4.3. Termination as a theorem . 126

5.1. Initial definitions for Rotating Coordinator Algorithm 132
5.2. Actions and Events for Rotating Coordinator Algorithm (Part I) 133
5.3. Actions and events for Rotating Coordinator Algorithm (Part II) 135
5.4. Formal Rotating Coordinator Algorithm . 135
5.5. Formal Properties of Distributed Consensus for the Rotating Coordinator Algorithm136
5.6. Initial definitions for ♦S-Algorithm . 143
5.7. Actions While↓ and Phs1 ↓ . 144
5.8. Action Phs2 ↓ . 145
5.9. Actions Phs3Trust↓ and Phs3Suspect↓ . 146
5.10. Actions Phs4Success↓ and Phs4Fail↓ . 147
5.11. Actions RBCDeliver↓, Crash↓ and ImmoTrust↓ 149
5.12. Events QPPSnd and QPPDeliver . 150
5.13. Functions C2LVct and LV2Cct . 150
5.14. Fairness assumptions for the ♦S-algorithm . 151
5.15. Formal model of the ♦S-algorithm . 152
5.16. Formal properties of Distributed Consensus for the ♦S-algorithm 153
5.17. Round message protocol ♦S-algorithm vs. Paxos 157

213

List of Figures

5.18. Initial definitions for the Paxos Algorithm . 162
5.19. Actions Crash↓ and Recovery↓ . 163
5.20. Actions LeaderYes↓, LeaderNo↓ and New↓ . 164
5.21. Actions SndPrepReq↓, RcvPrepReq↓ and SndAccReq↓ 165
5.22. Actions RcvAccReq↓, Success↓ and RbcDeliver↓ 167
5.23. Events ChSnd, ChDeliver , ChDupl and ChLose 168
5.24. Formal Rotating Coordinator Algorithm . 169
5.25. Formal properties of Distributed Consensus for the Paxos algorithm 170
5.26. Initial definitions for the α-algorithm . 180
5.27. Actions ProcPublishRoundBegin↓ and ProcPublishRoundEnd↓ 181
5.28. Actions ProcFetching↓ and ProcFetchingStep↓ . 182
5.29. Actions ProcFetchingFinish↓, Abort↓, ProcReturn↓, ProcPropose↓ and ProcCrash↓ 183
5.30. Formal α-algorithm . 184

6.1. Verified Algorithms (Case Studies) . 193

214

	1 Introduction
	1.1 Overview
	1.2 Scope of Work
	1.3 Modeling and Verification
	1.3.1 Motivation
	1.3.2 Our Strategies and Organization of This Work
	1.3.3 Summary of Contributions

	1.4 Technical Preliminaries
	1.4.1 Problems in Distributed Systems
	1.4.2 Theorem Provers
	1.4.3 Notation for Logic and Functions

	1.5 Related Work
	1.6 Own Work

	2 Modelling Distributed Algorithms
	2.1 Level of Abstraction
	2.2 Related Approaches
	2.3 Developing a Formal Model
	2.3.1 Runs and Temporal Logic
	2.3.2 Distribution and Consistency of our Model
	2.3.3 Modelling Actions
	2.3.4 Limitations of the Model
	2.3.5 Interprocess Communication (IPC): Message Passing
	2.3.6 Interprocess Communication (IPC): Broadcasts
	2.3.7 Interprocess Communication (IPC): Shared Memory
	2.3.8 Failure Models

	2.4 Specifying Requirements
	2.4.1 Requirements of Distributed Consensus

	2.5 Summarising Concepts of the Model

	3 Verifying Distributed Algorithms
	3.1 `Inspection of the Code'
	3.2 Invariant-Based Reasoning
	3.3 History-Based Reasoning
	3.4 Utilizing Fairness Assumptions

	4 Distributed Algorithms in Isabelle/HOL
	4.1 Basic Definitions
	4.2 Distributed Algorithm
	4.2.1 Safe Algorithms and Algorithms
	4.2.2 Distributed Algorithms

	4.3 Message Passing
	4.3.1 Message Passing without Message Loss
	4.3.2 Message Passing with Message Loss

	4.4 Regular Registers
	4.4.1 Subactions and Atoms
	4.4.2 Regular Registers used for Distributed Algorithms
	4.4.3 Equivalence to Lamport's Model

	4.5 Requirements in Isabelle/HOL

	5 Case Studies
	5.1 Rotating Coordinator
	5.1.1 Informal Introduction to the Algorithm
	5.1.2 Formal Model
	5.1.3 Proof Issues

	5.2 S-Algorithm
	5.2.1 Informal Introduction to the Algorithm
	5.2.2 Formal Model
	5.2.3 Proof Issues

	5.3 Paxos
	5.3.1 Informal Introduction to the Algorithm
	5.3.2 Formal Model
	5.3.3 Proof Issues

	5.4 Using the Alpha-Abstraction
	5.4.1 Informal Introduction to the Algorithm
	5.4.2 Formal Model
	5.4.3 Proof Issues

	6 Conclusion
	6.1 Contributions of our Modeling Approach
	6.2 Contributions of our Verification Strategies
	6.3 Contributions of our Work with Isabelle/HOL
	6.4 Summary and Future Work

	A Additional Propositions for Message Passing

