
Linear constraints on
Face numbers of Polytopes

vorgelegt von
Diplom-Mathematiker

Axel Werner
aus Chemnitz

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Ulrich Pinkall
Berichter: Prof. Günter M. Ziegler

Prof. Margaret M. Bayer

Tag der wissenschaftlichen Aussprache: 20. Mai 2009

Berlin 2009

D 83





Contents

Introduction 1

1 Preliminaries 7

1.1 Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Eulerian posets . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 The 
d-index . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Linear inequalities . . . . . . . . . . . . . . . . . . . . . . . . 25

Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Lifting the 
d-index . . . . . . . . . . . . . . . . . . . . . . . 29

2 Inductive construction of polytopes 31

2.1 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Pseudostacking . . . . . . . . . . . . . . . . . . . . . . . . . . 34

General considerations . . . . . . . . . . . . . . . . . . . . . . 35

Pseudostacking 4-polytopes . . . . . . . . . . . . . . . . . . . 50

3 f- and flag vectors 53

3.1 Polytope bases . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The basis of Bayer and Billera . . . . . . . . . . . . . . . . . . 54

The basis of Kalai . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Linear inequalities and visualisation . . . . . . . . . . . . . . . 57

3.3 The 3-dimensional case . . . . . . . . . . . . . . . . . . . . . . 62

Centrally-symmetric 3-polytopes . . . . . . . . . . . . . . . . . 64

4 The cone of flag vectors of 4-polytopes 69

4.1 Visualisation and known facts . . . . . . . . . . . . . . . . . . 69

4.2 The ray ℓ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

The construction . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Polytopes with asymptotically few vertices . . . . . . . . . . . 82

iii



iv Contents

Breaking facets of neighbourly cubical polytopes . . . . . . . . 86

5 Kalai’s and Braden’s sequences 91

5.1 Admissible sequences and associated polytopes . . . . . . . . . 91

5.2 Defining facets . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Dimensions 4 to 6 . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Asymptotic facets . . . . . . . . . . . . . . . . . . . . . . . . . 103

Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 f-vectors of moderate-dimensional polytopes 111

6.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Dimension 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Dimension 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Unimodality and f -vector shapes . . . . . . . . . . . . . . . . 119

Dimensions 5 to 7 . . . . . . . . . . . . . . . . . . . . . . . . . 120

Logarithmically convex examples . . . . . . . . . . . . . . . . 124

6.3 Centrally-symmetric polytopes . . . . . . . . . . . . . . . . . . 126

Facet-hyperplane arrangements of polytopes . . . . . . . . . . 127

Dimension 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Higher dimensions and related conjectures . . . . . . . . . . . 141

7 Shelling 4-polytopes 151

7.1 Shelling polytopes . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Small 2-simple, 2-simplicial 4-polytopes . . . . . . . . . . . . . 152

Less than 9 vertices . . . . . . . . . . . . . . . . . . . . . . . . 154

Exactly 9 vertices . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 A computer-based approach . . . . . . . . . . . . . . . . . . . 162

General algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 162

2-simple, 2-simplicial 4-polytopes . . . . . . . . . . . . . . . . 169

Cubical 4-polytopes . . . . . . . . . . . . . . . . . . . . . . . . 170

Spheres with g2 < 0 . . . . . . . . . . . . . . . . . . . . . . . . 172

Bibliography 175

Index 181

Symbol Index 183



Introduction

Polytopes show up naturally in many fields of mathematics, as pure geometric
objects as well as in applied areas such as linear programming. Various
aspects of polytopes have been studied in the past, including their metric
properties, symmetry or—as in this thesis—combinatorial structure.

By the combinatorial structure of a polytope we mean the set of inclusion
relations that are satisfied by the faces, in other words its face poset. An
important invariant is the f -vector, whose entries count the numbers of faces
of each dimension. Similarly, the flag vector of a polytope counts the numbers
of incidences between faces of given dimensions, that is, chains of given types
in the face poset.

A central question in this area is the characterisation of the f -, and more
generally the flag vectors of polytopes. For the 3-dimensional case this prob-
lem was solved by Steinitz in 1906, but for polytopes of arbitrary dimension
it is still open.

Many restrictions, mostly linear constraints, have been established for the
entries of these vectors. The agenda for this thesis is to try to understand
the interplay between these relations, present conclusions that can be drawn
from them, obtain new examples with interesting, non-trivial properties, and
search for further necessary conditions that might hold for f - and flag vectors
of polytopes.

Overview and main results

The thesis starts with a short summary of basic definitions and notation in
Chapter 1. After an account of the most important examples and construc-
tions of polytopes, we mention the main tools and results from the literature,
both geometric and combinatorial, that are used throughout. We introduce
and give some examples of combinatorial techniques such as the 
d-index
and convolution of linear forms.

Chapter 2 is devoted to a rather elementary approach to understanding the
combinatorial structure of polytopes, namely, adding vertices successively.
The most basic instance of this is stacking, which we generalise to some
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2 Introduction

extent to the concept of pseudostacking. In both cases, the combinatorial
structure of the resulting polytopes is discussed, as well as the effect on the
f - and flag vector.

It turns out that major restrictions on the input are necessary for pseu-
dostacking if one hopes to get to reasonably useful statements about the
constructed polytopes. We therefore mainly restrict the discussion to some
special cases that are used later. After presenting the general results, we
conclude the chapter with the explicit statements in the 4-dimensional case.

In Chapter 3 we first discuss f - and flag vectors generally, without referring
to any particular dimension. We review two bases of polytopes: the one
introduced by Bayer and Billera [7], and the one given by Kalai [36]. The
latter will be used again later, whereas for the first, a close examination of
the original proof yields the following result:

Proposition 3.1.3. The flag vectors of the basis polytopes of Bayer and
Billera span the affine integer lattice ZFd−1.

We then turn our attention to linear inequalities for the flag vectors. We give
a recipe to visualise and aid in analysing properties of f - and flag vectors,
generalising a method used by Ziegler [59]. The central question is whether a
given inequality defines a facet of the convex hull of the set of all flag vectors
of polytopes, or if stronger restrictions can be found.

As an example of the presented method we apply it to the 3-dimensional
case and illustrate the connection to Steinitz’ characterisation of f -vectors of
3-polytopes [54]. Along the same lines we also give a characterisation of the
f -vectors of centrally-symmetric 3-polytopes:

Theorem 3.3.6. An integer vector (f0, f1, f2) is the f-vector of a centrally-
symmetric 3-polytope if and only if all entries are even, and the linear re-
lations f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4, and f0 + f2 ≥ 14
hold.

The flag vectors of 4-polytopes are the focus of Chapter 4. They are con-
tained in the cone defined by all currently known linear inequalities, given
by Bayer [6]. Using the visualisation recipe from the previous chapter we ob-
tain a new view of the cone and discuss examples of polytopes with extremal
properties. Furthermore, we construct new families of such extremal poly-
topes which show that the cone is in some sense a rather close description of
the convex hull of all flag vectors of 4-polytopes:

Theorem 4.1.6. All of the six inequalities for flag vectors given by Bayer
are facet-defining or asymptotically facet-defining for the convex hull of flag
vectors of 4-polytopes.
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The first of the mentioned families leads to the following result, obtained in
joint work with Andreas Paffenholz [43]:

Theorem 4.2.2. For every integer k ≥ 1 there is an elementary 2-simple,
2-simplicial 4-polytope on 4k + 1 vertices.

Another construction provides different interesting examples:

Theorem 4.3.7. There exists a family of 2-simplicial polytopes that are not
center-boolean and have asymptotically fewer vertices than facets.

The given examples lead to new inequalities that might be valid for all flag
vectors of 4-polytopes. Stated in terms of fatness and complexity, the most
interesting of them reads as follows:

Conjecture 4.1.7. Fatness F and complexity C of every 4-polytope satisfy
4F − C ≤ 20.

In particular, this would imply that fatness of 4-polytopes is bounded by 9.

In Chapter 5 we return to the arbitrary-dimensional case, this time taking
certain selected inequalities into account. The idea for the special structure
of these inequalities comes from Braden [16], whose sketch of the proof of the
following result we work out:

Proposition 5.2.8. For dimensions d ≤ 6 all non-trivial Braden sequences
are facet-defining or asymptotically facet-defining for the convex hull of flag
vectors of d-polytopes.

Additionally, we prove that in high dimensions there are a large number of
inequalities arising from Braden sequences that can at most be asymptotically
facet-defining. We can show for some special cases that this property is in
fact satisfied:

Propositions 5.3.4/5.3.5. For k ≥ 2 and dimensions 3k − 1, respectively
3k, the second-to-last, respectively third-to-last Braden sequence is asymptot-
ically facet-defining for the convex hull of polytope flag vectors.

In Chapter 6 we discuss f -vectors. The visualisation in the 4-dimensional case
according to our general method coincides with Ziegler’s original approach
in [59]. We proceed with the analogous discussion for the 5-dimensional
case which yields a 3-dimensional view and many interesting observations
concerning 5-polytopes. In particular, it seems that the known linear in-
equalities are rather weak and there might be either stronger restrictions or
more extremal examples of polytopes. In this respect, the question of offside
polytopes might be interesting.

Another apparent problem concerns f -vector shapes. One instance of this
is the question whether the f -vectors of polytopes are unimodal in general.
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We investigate this together with three other related properties of f -vector
shapes: convexity, logarithmic convexity and Bárány’s property. Different
results are known, depending on the dimension. We show that convexity
does not hold in general for polytopes of each dimension at least 5, whereas
unimodality holds for 5-polytopes. For 6-polytopes we can establish Bárány’s
property. This leaves logarithmic convexity in dimension 7 as the major open
problem, and we conclude by discussing examples that might be interesting
in this respect.

The last part of Chapter 6 is devoted to centrally-symmetric polytopes.
Kalai [37] posed three conjectures, the first of them—the 3d-conjecture—
stating that every centrally-symmetric polytope has at least 3d non-empty
faces. We show this for d = 4, presenting a slightly different proof than in
the joint paper with Raman Sanyal and Günter M. Ziegler [46].

Theorem 6.3.16. The 3d-conjecture is true for 4-dimensional polytopes.

It turns out that even the stronger Conjecture B of Kalai is true in dimen-
sion 4, although his Conjecture C fails. Additionally, both stronger conjec-
tures fail to hold for dimensions 5 and higher. Counterexamples are surpris-
ingly easy to describe and some of them, the Hansen polytopes, appear to
be an interesting topic for further research. In the effort to obtain a proof
of the 3d-conjecture in all dimensions we also establish the following partial
result:

Proposition 6.3.19. For every d ≤ 7, every centrally-symmetric d-polytope
with 2d + 2 vertices has at least 3d non-empty faces.

One can complement the discussion by characterising the cases where the
bound is attained with equality, which is done for both of the above results.

Finally, Chapter 7 is concerned with shellings. We give a neat proof of the
fact that there are few very small 2-simple, 2-simplicial 4-polytopes:

Theorem 7.2.13. Up to combinatorial equivalence, there is only one non-
trivial 2-simple, 2-simplicial 4-polytope with at most 9 vertices, namely the
polytope P9 from the family described in Theorem 4.2.2

The last part of the chapter describes an experimental backtracking algo-
rithm that uses shellings to search for polytopes with desired properties. We
derive some simple criteria for cutting the search tree and also remark on the
implementation and the used data structures. The implemented program
has been used to search for cubical polytopes, spheres with g2 < 0, and 2-
simple, 2-simplicial 4-polytopes. In the first two cases, no suitable candidates
were found, leading to the conjecture that there exists no cubical 4-polytope
with 34 vertices and the conclusion that if there exist 2-simple, 2-simplicial
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3-spheres with negative g2 their number of vertices cannot be too small. On
the other hand, the program found two candidates for a 2-simple, 2-simplicial
4-polytope on 12 vertices. However, these are not known to be realisable as
polytopes. Their combinatorial data is given on page 171.

Acknowledgements

Many people supported me, directly and indirectly, during my postgraduate
time.

I would like to express my gratitude to Günter Ziegler, for advising me, for
encouragement and support in every respect over the last few years. Likewise,
I want to thank Margaret Bayer for agreeing to co-referee the thesis and
making the long journey to Berlin that this involved.

Some of my colleagues helped proofreading parts of the thesis, for which
I am very thankful: Cornelia Dangelmayr, Ronald Wotzlaw, Andreas Paf-
fenholz, Thilo Rörig, Moritz Schmitt and Anton Dochtermann found stupid
mistakes, corrected weird formulations and made valuable suggestions for
improvements.

A different direct influence had my co-authors, who mostly already have been
mentioned—I explicitly add Raman Sanyal, also because it’s tradition.

Apart from those above, I am deeply grateful to many more people. To
all those on 6th and 5th floor, past and present, permanent and temporary,
close and distant, for creating an atmosphere which I will leave behind with
a heavy heart; most notably, Arnold, Bruno, Carsten, Carsten E.M.C., Ines,
Mareike, Nicole, Niko*, Nina, Sebastian, Sonja, Stephan, Wiebke, and many
more. My family, especially my Mum, as well as all those that accompanied
me, cheered me up and urged me on, even if they had little relation to my
work, such as Alina, Geli, Lena, Wolfgang, and Wolle. And finally to Eva,
among a lot of other things for Tā’





Chapter 1

Preliminaries

This chapter serves mainly as an overview over all definitions, examples and
general known results, as well as a place to introduce the notation that we
will use throughout this thesis.

There will be no proofs in this chapter. Proofs for the important results
can be found in the comprehensive books by Ziegler [58], Grünbaum [29],
Brøndsted [17] and Stanley [53]. These books also contain a more thorough
introduction to most of the examples.

We assume the reader to be familiar with the concepts of linear algebra, such
as affine and linear subspaces, linear combinations, dimension etc.

1.1 Polytopes

We denote the convex hull of a set M ⊆ Rd by

conv M :=

{
n∑

i=1

λivi

∣∣∣∣ n ∈ N,v1, . . . ,vn ∈M,λ1, . . . , λn ≥ 0,
n∑

i=1

λi = 1

}

and the affine hull of M ⊆ Rd by

aff M :=

{
n∑

i=1

λivi

∣∣∣∣ n ∈ N,v1, . . . ,vn ∈M,λ1, . . . , λn ∈ R,
n∑

i=1

λi = 1

}
.

The basic definition is that of a convex polytope.

Definition 1.1.1 (Convex polytope). A (convex) polytope is the convex hull
conv{v1, . . . ,vn} of finitely many points in Rd.

We also allow n = 0 points, so in particular conv ∅ = ∅ is a convex polytope.
It is possible to define non-convex polytopes, which we will not consider in
this thesis. Therefore the adjective “convex” will usually be dropped.

7



8 Chapter 1. Preliminaries

Equivalently, polytopes can be defined as the intersection of linear halfspaces,
provided it is bounded. This is a rather non-trivial statement (see Ziegler [58,
Chapter 1]) and has a lot to do with the concept of polarity or duality.

Definition 1.1.2 (Polytope dimension). The dimension of a polytope P is
the dimension of its affine hull: dim P := dim aff P . If dim P = d, we also
call P a d-polytope.

If the dimension of a polytope P ⊂ Rd coincides with the dimension of the
ambient space, that is, dim P = d, we call P full-dimensional. For questions
concerning the combinatorial structure of polytopes, we can usually assume
that the polytopes are full-dimensional.

Definition 1.1.3 (Faces of polytopes). A set F ⊆ P ⊂ Rd is a face of P
if there exists a linear functional that is maximised among all points in P
exactly on F ; that is, if there exists some a ∈ Rd and b ∈ R such that

a⊤x ≤ b ∀x ∈ P , a⊤x < b ∀x ∈ P \ F and a⊤x = b ∀x ∈ F.

Note that every polytope P has the faces ∅ and P , which are defined by the
inequalities 0⊤x ≤ −1 and 0⊤x ≤ 1 for instance.

The dimension of a face F is dim F = dim aff F , if F 6= ∅. Additionally, we
define dim ∅ := −1. Faces of dimension 0, 1, dim P − 2 and dim P − 1 are
called vertices, edges, ridges and facets, respectively, of P . Proper faces of P
are all faces F 6= P . We denote by vert P the set of all vertices of P .

It is easy to show that a face F of a polytope P is the convex hull of all
vertices of P that are contained in F . With this we get the following basic
property.

Proposition 1.1.4. Every polytope has finitely many faces.

If P is a polytope and F a face of P then F is again a polytope and every
face of F is also a face of P . If F ′ is another face of P then F ∩ F ′ is also a
face of P .

Definition 1.1.5 (Simple and simplicial). A d-polytope P is simple if every
vertex of P is contained in exactly d facets. P is simplicial if every facet of
P contains exactly d vertices.

There are many equivalent definitions of simple and simplicial, for example
in terms of duality or in terms of the face lattice. See [58, Proposition 2.16]
for an exhaustive treatment of simplicity and simpliciality.
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Definition 1.1.6 (Affine and projective equivalence). Polytopes P1 ⊂ Rd1

and P2 ⊂ Rd2 are affinely equivalent if there is an affine map f : Rd1 → Rd2

that maps P1 onto P2 bijectively.

P1 and P2 are projectively equivalent if they are affinely equivalent to full-
dimensional d-polytopes P ′

1 and P ′
2, respectively, and there exists a projective

transformation of Rd that maps P ′
1 bijectively onto P ′

2.

For basic notions of projective transformations see [58, Section 2.6], for in-
stance, and the references given there.

Both these relations are indeed equivalence relations and affine equivalence
implies projective equivalence, as every affine map implies the existence of a
suitable projective map.

Example 1.1.7. Here are some examples of polytopes that frequently serve
as “building blocks” to obtain interesting examples with special properties.

(1) A d-dimensional simplex is the convex hull of any d + 1 affinely inde-
pendent points. Since d + 1 affinely independent points define an affine
map uniquely, all d-dimensional simplices are affinely equivalent.
The standard d-simplex is a subset of Rd+1, defined by

∆d := conv{ei | 1 ≤ i ≤ d + 1} =
{
x ∈ Rd+1

∣∣ xi ≥ 0 ∀i,
d+1∑

i=1

xi = 1
}

where ei is the i-th unit vector. A full-dimensional standardised version
of the simplex would be conv{0, e1, . . . , ed} ⊂ Rd.

(2) A 2-dimensional polytope with n vertices is the regular n-gon

Dn := conv
{(

cos 2kπ
n

, sin 2kπ
n

)⊤ ∣∣∣ 1 ≤ k ≤ n
}

.

(3) The d-dimensional standard cube is given by

Cd := conv({−1,+1}d) = {x ∈ Rd | −1 ≤ xi ≤ 1 ∀i} = [−1, 1]d.

(4) The d-dimensional standard crosspolytope is

Cd
∆ := {x ∈ Rd | |x1|+ . . . + |xd| ≤ 1} = conv{±ei | 1 ≤ i ≤ d}.
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(5) Given real numbers t1 < t2 < . . . < tn, the d-dimensional cyclic polytope
on n vertices, n > d ≥ 2 can be defined as

Cd(n) := conv{(ti, t
2
i , t

3
i , . . . , t

d
i )

⊤ | 1 ≤ i ≤ n}.

The facial structure of Cd(n) turns out to be independent of the choice
of the parameters t1, . . . , tn, so combinatorially Cd(n) is well-defined. For
details see [58, Chapter 0].

(6) A generalisation of the standard simplex is the d-dimensional hypersim-
plex

∆d(k) := conv
{
x ∈ Rd+1

∣∣ 0 ≤ xi ≤ 1 ∀i,
d+1∑

i=1

xi = k
}

,

defined for 0 ≤ k ≤ d + 1. We have ∆d(0) = {0} and ∆d(1) = ∆d, and
it is easy to see that ∆d(k) is affinely equivalent to ∆d(d + 1− k).

By applying “recycling operations” [58, p. 9] it is possible to produce more
examples. Some of these constructions are standard and sometimes they are
combined to obtain new polytopes with interesting properties.

Definition 1.1.8 (Standard polytope constructions). Let P and Q be poly-
topes with vertices v1, . . . ,vn and w1, . . . ,wm, respectively. Without loss of
generality assume that P and Q are full-dimensional with the origin in the
interior.

The product of P and Q is defined by

P ×Q := conv

{(
vi

wj

) ∣∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

The direct sum of P and Q is the polytope

P ⊕Q := conv

{(
v1

0

)
, . . . ,

(
vn

0

)
,

(
0
w1

)
, . . . ,

(
0
wk

)}
.

The (free) join of P and Q is

P ∗Q := conv

{


v1

−1
0


 , . . . ,




vn

−1
0


 ,




0
1
w1


 , . . . ,




0
1

wm




}
.

In the special case dim Q = 1 the product is called a prism over P ,

prism P := P × [−1, 1],
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while the direct sum is called a bipyramid over P :

bipyr P := P ⊕ [−1, 1].

If dim Q = 0, the join specialises to a pyramid over P , denoted by

pyr P := P ∗ {0}.

Defined like this, the pyramid is not full-dimensional, but it is affinely equiv-
alent to

conv

{(
v1

−1

)
, . . . ,

(
vn

−1

)
,

(
0
1

)}
.

The point (0⊤, 1) is the apex of the pyramid.

Alternative notations also seen in the literature are ⊗ for the product and >

for the join of polytopes. The product of two polytopes coincides with the
usual set-theoretic product of two sets.

It is quite obvious that dim(P × Q) = dim(P ⊕ Q) = dim P + dim Q and
dim(P ∗ Q) = dim P + dim Q + 1. Accordingly, dim prism P = dim bipyr P =
dim pyr P = dim P + 1.

The next construction is due to Danzer, described by Eckhoff [22], and also
by Ziegler [58, Example 8.41].

Definition 1.1.9 (Connected sum). Let P ⊂ Rd be a simplicial and Q ⊂ Rd

a simple d-polytope. Choose a facet F of P and a vertex v of Q and let a ∈ Rd

define an inequality that “cuts off” v from Q, that is

a⊤v < b and a⊤x > b for all other vertices x ∈ Q.

Now let Q̂ be the “cut” polytope

Q̂ := Q ∩ {x ∈ Rd | a⊤x ≥ b}

and F̂ the facet that originated from the cut:

F̂ := Q̂ ∩ {x ∈ Rd | a⊤x = b}.

If f is a projective transformation on Rd such that f(F̂ ) = F = P ∩ f(Q̂)
and the set

P#Q := P ∪ f(Q̂)

is convex then P#Q is again a polytope, a connected sum of P and Q.
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Due to the simpliciality of P and the simplicity of Q such projective trans-
formations always exist, so a connected sum can always be obtained under
these prerequisites.

The connected sum can be viewed as a generalisation of the stacking opera-
tion, which is described in Chapter 2 together with the slightly less standard
procedure of “pseudostacking”.

The fundamental observation from Proposition 1.1.4 that every polytope has
finitely many faces suggests the following important definition.

Definition 1.1.10 (f -vector). Let P be a d-polytope. Denote by fi(P ) the
number of i-dimensional faces of P . The d-tuple

f(P ) := (f0(P ), f1(P ), . . . , fd−1(P )) ∈ Zd

is called the f-vector of P .

We denote by Fd the set of all f -vectors of d-polytopes:

Fd := {f(P ) | P is a d-polytope} ⊂ Zd

It is often convenient to extend the f -vector by the two entries f−1(P ) =
fd(P ) = 1, which correspond to the empty face and the full-dimensional
face, respectively.

The last definition immediately leads to the natural problem to explicitly
determine Fd: Give necessary and sufficient conditions for an integer d-tuple
to be the f-vector of a d-polytope.

This problem is trivial for d = 0, obvious for d = 1, easy for d = 2 and the
first interesting case d = 3 was solved by Steinitz [54] in 1906. In Section 3.3
we give a sketch of the proof. For d ≥ 4 the problem remains open and is a
major motivation for the topics covered in this thesis.

A complete characterisation of f -vectors of simplicial polytopes is given by
the g-Theorem, conjectured by McMullen [41] and proved by Stanley [50]
and Billera & Lee [13]. McMullen [42] gave another proof for the necessity
part using different techniques which is especially interesting for the proof of
the nonnegativity of the g-vector (cf. Section 1.4).

Example 1.1.11. The entries of the f -vector of a d-simplex are binomial
coefficients:

fj(∆d) =

(
d + 1

j + 1

)
for − 1 ≤ j ≤ d

since every choice of j + 1 vertices spans a j-dimensional face of ∆d.
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Example 1.1.12. If P is a d-polytope with f -vector f(P ) then the k-faces
of a pyramid over P are exactly the k-faces of P , plus all joins of (k−1)-faces
of P with the apex of the pyramid. Hence the f -vector of pyr P is

f(pyr P ) = (f0(P ) + 1, f1(P ) + f0(P ), . . . , fd−1(P ) + fd−2(P ), 1 + fd−1(P ))

= (f(P ), 1) + (1, f(P ))

To understand the structures of polytopes, visualisations are doubtless help-
ful. While it is easy to make pictures of up-to-3-dimensional polytopes, there
is no obvious way to do this for higher dimensions. We will regularly use
the following technique to at least visualise 4-dimensional polytopes—the
definition works for arbitrary dimension, however.

Definition 1.1.13 (Polytopal complex). A (finite) polytopal complex C is a
(finite) set of polytopes in Rd such that for all P,Q ∈ C their intersection is
again a polytope P ∩ Q ∈ C. The dimension of a polytopal complex is the
maximal dimension of one of its members.

Clearly, the set of all proper faces of a polytope is a finite polytopal complex.
By projecting all the proper faces of a d-polytope in a suitable way, one
obtains a finite polytopal complex of dimension d−1 that captures the whole
combinatorial information of the polytope.

Definition 1.1.14 (Schlegel diagram). Let P ⊂ Rd be a d-polytope and F
a facet of P . Furthermore, let p be a projective transformation and πp(F ) the
orthogonal projection of Rd onto the hyperplane aff(p(F )). If p is chosen in
such a way that the whole polytope P is mapped into the image of F , more
precisely,

(πp(F ) ◦ p)(P \ F ) = int
(
p(F )

)
,

then the polytopal complex

{
(πp(F ) ◦ p)(G) | G proper face of P

}

is called a Schlegel diagram of P .

Figure 1.1 shows examples of Schlegel diagrams of some 3- and 4-dimensional
polytopes.

An important issue in polytope theory is duality. In geometric terms this
concept is described by the polar polytope, although we will usually refer to
the more general, combinatorial definition introduced in Section 1.2.
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(a) ...a prism∆2 (b) ...a 4-cube C4 (c) ...some pyramid

Figure 1.1: Schlegel diagrams of...

Definition 1.1.15 (Polar polytope). Let P ⊂ Rd be a d-polytope with
vertices v1, . . . ,vn ∈ Rd. Suppose 0 ∈ Rd is contained in the interior of P .
Then the polar polytope of P is defined by

P∆ := {x ∈ Rd | x⊤vi ≤ 1 for 1 ≤ i ≤ n}.

Clearly, the restriction 0 ∈ Rd is not a severe one, since we can translate
every polytope such that this is satisfied. Also, it is immediate that the
polar polytope again has 0 in its interior.

Proposition 1.1.16. For all polytopes P and Q with 0 in their interior we
have:

(i) dim P = dim P∆,

(ii) P∆∆
= P ,

(iii) P ×Q = (P∆ ⊕Q∆)
∆
,

(iv) P ∗Q = (P∆ ∗Q∆)
∆
.

The last topic in this section concerns face figures, a concept dual to faces as
will become clear in the next section.

Definition 1.1.17 (Vertex figure). Let P ⊂ Rd be a d-polytope and v a
vertex of P . Let further a ∈ Rd define a hyperplane that separates v from
the other vertices of P , that is, for some b ∈ R,

a⊤v < b and a⊤w > b for all other vertices w ∈ P.

Then the set P/v := P ∩ {x ∈ Rd | a⊤x = b} defines a (d− 1)-polytope, the
vertex figure of v in P .
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It is easy to see that every two vertex figures of the same vertex in the same
polytope are projectively equivalent. Therefore it is justified to speak of the
vertex figure.

The faces of P/v correspond bijectively to those faces of P that contain v.
For instance, the vertices of P/v represent the edges of P that end in v. More
general, every k-face of P/v represents a (k + 1)-face of P containing v and
vice versa, for −1 ≤ k ≤ d− 1. In particular, the (−1)-face ∅ of P/v stands
for the vertex v itself and the (d− 1)-face P/v for the whole polytope P .

One consequence is that a polytope is simple if and only if every vertex figure
is a simplex.

The construction of a vertex figure can be iterated to obtain a more general
object.

Definition 1.1.18 (Face figure). Let P be a polytope and F a face of P
with dim F = k and 0 ≤ k < dim P . The face figure P/F of F in P is

(i) the vertex figure P/v if F = v is a vertex, that is, if dim F = 0, or

(ii) the face figure P/F ′ of F ′ in P/v, where v is an arbitrary vertex of F
and F ′ the (k − 1)-face of P/v that corresponds to the k-face F of P ,
if dim F > 0.

Additionally, we define P/∅ := P and P/P := ∅.

1.2 Posets

Proposition 1.1.4 suggests to turn one’s attention to the combinatorial struc-
ture of the set of faces of a polytope, since it essentially states that this
set, together with inclusion, is a poset. In this section we recall the basic
definitions and facts about posets that we will need later. A very compact
overview can also be found in [58, Section 2.2]. For a more extensive coverage
of the subject see the books of Stanley [53] and Aigner [3].

Definition 1.2.1 (Poset terminology). A poset (or partially ordered set) is
a finite set S together with a binary relation � satisfying

(i) Reflexivity : x � x for all x ∈ S,

(ii) Antisymmetry : if x, y ∈ S with x � y and y � x, then x = y,

(iii) Transitivity : x � y and y � z imply x � z for all x, y, z ∈ S.
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We also frequently write y � x for x � y, as well as x ≺ y (or y ≻ x) if
x � y and x 6= y. In situations of ambiguity the relation symbol is sometimes
written as �S. A minimal element 0̂ in a poset S is an element such that
0̂ � x for all x ∈ S. Accordingly, a maximal element 1̂ satisfies 1̂ � x for all
x ∈ S.

A chain of length n in a poset S is a set C = {x1, . . . , xn+1} ⊆ S such that
x1 ≺ . . . ≺ xn+1. We call a chain C ′ ⊆ S a subchain of C if C ′ ⊆ C, and
a proper subchain if additionally C ′ 6= C. A chain C is called maximal if S
contains no chain such that C is a proper subchain of it.

A poset is graded if it has a minimal element 0̂ and for every x ∈ S every
maximal chain of the form 0̂ ≺ . . . ≺ x has the same length. In this case the
length of such a chain is called the rank of x, denoted by rank x. If a graded
poset S also contains a maximal element then the rank of S is the rank of the
maximal element. An interval [x, y] in a poset S is the poset defined by all
elements w ∈ S with x � w � y, equipped with the induced order relation.

The join of elements x, y ∈ S, denoted by x∨y, is the minimal element z ∈ S
with z � x and z � y, provided it is unique. Accordingly, the meet x ∧ y is
the unique maximal element z ∈ S with z � x and z � y, if this exists. If S
is a graded poset with rank S = r then the elements of rank 1 are the atoms
and the elements of rank r − 1 are the coatoms of S.

Finally, the dual poset S⋄ is the poset on the same ground set S with the
relation reversed:

x �S⋄ y :⇐⇒ y �S x.

Definition 1.2.2 (Lattice). A lattice is a poset with a minimal and a max-
imal element, where all pairs of elements have a join (and a meet).

The set of all faces of P defines a graded lattice, which is atomic (that is, every
element can be written as the join of atoms) and coatomic (every element
can also be written as the meet of coatoms).

Definition 1.2.3 (Face lattice). Let P be a polytope. The face lattice L(P )
of P is the graded lattice of all faces of P , together with the partial order
induced by set inclusion.

We have rank L(P ) = dim P + 1 and, more generally, rank F = dim F + 1 for
all faces F of P . The minimal and maximal elements are the empty face ∅
and the whole polytope P , respectively. The atoms of L(P ) correspond to
vertices, while coatoms correspond to facets of P . Furthermore, the meet of
two elements of F, F ′ ∈ L(P ) is the face F ∩ F ′ and the join corresponds to
the smallest face of P that contains both F and F ′.
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Dual posets correspond to polar polytopes: L(P∆) = L(P )⋄. Furthermore,
the intervals of the special form [∅, F ] are exactly the face lattices L(F ) of
faces F , while, due to duality, intervals of the form [F, P ] are the face lattices
of the face figures P/F .

More general, an interval [F, F ′] with faces F ⊆ F ′ corresponds to the face
figure F ′/F of F in F ′, which is a polytope of dimension dim F ′− dim F − 1.
In particular, every interval of rank 2 is the face lattice of a 1-polytope and
therefore contains exactly 4 elements in the form of a diamond.

The face lattice of a polytope captures the complete combinatorial informa-
tion of its structure. Therefore it is natural to take it as a basis for the
combinatorial description of a polytope.

Definition 1.2.4 (Combinatorial equivalence). Two polytopes P and Q are
combinatorially equivalent, denoted by P ∼= Q, if their face lattices are
isomorphic, that is, there exists a bijection φ : L(P ) → L(Q) such that
x �L(P ) y ⇔ φ(x) �L(Q) φ(y) for all x, y ∈ L(P ).

In fact it suffices to claim the existence of a bijection that preserves the
relations between the atoms and coatoms, since all faces are determined by
the intersections of the vertex sets corresponding to the facets.

Since we are mainly interested in combinatorial properties, such as num-
bers of faces, we usually identify polytopes as geometric objects with their
equivalence class with respect to combinatorial equivalence. In particular,
we will regularly use notation for certain polytopes and constructions from
the previous chapter, without reference to the concrete geometric definition.

Eulerian posets

Face posets of polytopes are examples of an important class of posets, named
after their most striking property, which in turn is named after Leonhard
Euler (1707–1783). To define this, we introduce very briefly the Möbius
function—this fits into a much broader theory in general, for which the book
of Stanley [53] is a good reference.

Definition 1.2.5 (Möbius function). Let L be a graded poset. The Möbius
function µL : L× L→ Z of L is inductively defined by

µL(x, y) :=





0 if x 6� y
1 if x = y
−

∑
x�w≺y

µL(x,w) if x ≺ y
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Definition 1.2.6 (Eulerian poset). A graded poset L with maximal and
minimal element is called Eulerian if for all x, y ∈ L with x � y we have

µL(x, y) = (−1)rank[x,y].

Proposition 1.2.7. If P is a polytope then L(P ) is an Eulerian lattice.

Using the order complex of a poset one can show that for certain cell com-
plexes Γ the value µL(Γ)(0̂, 1̂) of the Möbius function of its face poset equals
the reduced Euler characteristic of the underlying topological space |Γ| (see,
for instance, Stanley [53, Chapter 3.8] for details).

For polytopes this yields the following outstanding result, which is the general
statement of Euler’s polyhedral formula.

Theorem 1.2.8 (Euler’s equation). If P is a d-polytope and (f0, . . . , fd−1)
its f -vector, then

d−1∑

i=0

(−1)ifi = 1− (−1)d.

Euler’s equation is the first deep result about the face numbers of polytopes.
The theory of poset combinatorics, however, provides even more insight.
Stanley [49] invented the following general concept of the h-vector.

Definition 1.2.9 (Generalised h-vector and toric g-vector). Recursively de-
fine two polynomials h(P, x) and g(P, x), associated to an Eulerian poset P
of rank d + 1, by

h(P, x) :=





1 if rank P = 0∑
0̂�F≺P

g([0̂, F ], x)(x− 1)d−rank F if d ≥ 0

and

g(P, x) :=





1 if rank P = 0
m∑

i=0

(hi(P )− hi−1(P ))xi if d ≥ 0

where h(P, x) =
d∑

i=0

hi(P ) xi and we set h−1(P ) = 0 and m = ⌊d/2⌋.

The h-vector of P is the (d+1)-tuple of coefficients of the polynomial h(P, x),
and the g-vector is the (⌊d/2⌋+ 1)-tuple of coefficients of g(P, x):

h(P ) := (h0(P ), . . . , hd(P )) and g(P ) := (g0(P ), . . . , g⌊d/2⌋(P )).



1.2. Posets 19

We have h0(P ) = 1 for all P , as can be shown by induction using Euler’s
equation. Examples for this quite intricate definition, as well as the proof of
the following result can be found in Stanley’s book [53, Section 3.14].

Theorem 1.2.10 (Dehn-Sommerville equations). If P is an Eulerian poset
of rank d + 1 then hi(P ) = hd−i(P ) for 0 ≤ i ≤ d.

If now P is a d-polytope, we can define its h-vector to be the h-vector of its
face lattice, h(P ) := h(L(P )). This is then a (d + 1)-tuple of integers and
accordingly we get the g-vector g(P ) := g(L(P )).

For a simplicial d-polytope P the h-vector has a direct combinatorial in-
terpretation, which makes it possible to reconstruct the f -vector from the
h-vector. See [58, Section 8.3] for a thorough treatment of this topic.

Theorem 1.2.11. Let P be a simplicial d-polytope, (h0, . . . , hd) its h-vector,
(f0, . . . , fd−1) its f -vector and f−1 = 1. Then we have

hk =
k∑

i=0

(−1)k−i

(
d− i

d− k

)
fi−1 for 0 ≤ k ≤ d and

fi =
i+1∑

k=0

(
d− k

i− k + 1

)
hk for 0 ≤ i ≤ d− 1.

This shows that for simplicial polytopes the h-vector completely determines
the f -vector and vice versa. Even more, due to the Dehn-Sommerville equa-
tions, the g-vector already contains all information about the f -vector. This
culminates in the g-Theorem, conjectured by McMullen [41] and proved by
Billera and Lee [13] and Stanley [50], which gives a complete characterisation
of the f -vectors of simplicial polytopes.

The same problem for non-simplicial polytopes seems to be much harder and
is a big open question in connection with combinatorics of polytopes. One
reason for this is that in the general case the h-vector cannot be written in
terms of the f -vector any more, but only in terms of the flag vector, which
we define below.

For notational convenience we introduce the notation [d] := {0, . . . , d − 1}
for the set of all non-negative integers smaller than d. Note that in this
thesis, in contrast to the common notation in books treating posets, such as
Stanley [53], the elements of this set are shifted by one, due to the fact that
we mainly have to deal with polytopes.
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Definition 1.2.12 (Flag vector). Let P be a graded poset of rank d+1. For
a set S = {i1, . . . , iℓ} ⊆ [d] with i1 < . . . < iℓ let

fS(P ) :=
∣∣∣
{
0̂ ≺ F1 ≺ . . . ≺ Fℓ ≺ 1̂ | Fj ∈ P, rank Fj = ij + 1

}∣∣∣.

The 2d-tuple (
fS(P )

)
S⊆[d]

is the flag vector of P .

For a polytope P its flag vector is the flag vector of its face lattice. Hence
for a polytope the index set S exactly prescribes the dimensions of the faces
in the chains to be counted.

When dealing with a specific entry of the flag vector we usually leave out the
set braces and the commas if there is no danger of confusion, writing only
f02 instead of f{0,2}, for instance. Moreover, the elements of the index set are
always denoted in increasing order.

As in the case of the f -vector (see Definition 1.1.10) it is sometimes conve-
nient to regard the index set S as a subset of {−1, 0, . . . , d− 1, d}. Then for
d-polytopes P we have fS(P ) = fS\{−1}(P ) = fS\{d}(P ), since there is only
one empty face and one d-dimensional face.

It is immediate that the f -vectors can be seen as projections of the flag
vectors:

f(P ) =
(
fS(P )

)
S⊆[d],|S|=1

.

Also, f∅(P ) = 1 for all polytopes P .

Example 1.2.13. The flag vector of a simplicial polytope P is already de-
termined by its f -vector. A complete formula can be obtained recursively,
using the f -vector of the simplex (see Example 1.1.11) and the fact that
fS(P ) = fS\{k}(∆k) · fk(P ), with k = max S. This results in

fi1,i2,...,ik(P ) =

(
i2 + 1

i1 + 1

)
· · ·

(
ik + 1

ik−1 + 1

)
· fik(P ).

Example 1.2.14 (cf. Stenson [55, Lemma 8]). If P is a polytope then the
flag vector of the pyramid pyr P can be expressed in terms of the flag vector
of P :

fS(pyr P ) = fS(P ) +
∑

k∈S

fS<k∪(S≥k−1)(P ).

Here, S<k := {j ∈ S | j < k}, accordingly S≥k := {j ∈ S | j ≥ k}, and
S − 1 := {j − 1 | j ∈ S}. This in particular implies the formula for the
f -vector of pyr P , see Example 1.1.12.
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The sum in the above formula will show up rather frequently in Chapter 2,
so for the sake of shorter notation we introduce an abbreviation for it:

apf
S

P :=
∑

k∈S

fS<k∪(S≥k−1)(P ).

In plain words, apfS P is the number of “additional pyramid flags”, that
is, flags with index set S of the pyramid pyr P , that contain faces which
themselves contain the apex of the pyramid. It is worth mentioning some
special cases: For dim P = d we have

apf
∅

P = 0,

apf
{j}

P = fj−1(P ) for 0 ≤ j ≤ d,

apf
{0,2}

P = f−1,1(P ) + f0,1(P ) = 3f1(P ) for d ≥ 2.

In particular, apf{d} P is the number of facets of P and apf{d+1} P = 1. Note
that the index set S might also contain −1 or d + 1, in which case we have
apfS\{−1} P = apfS P = apfS\{d+1} P .

Obviously, the flag vector carries much more information than the f -vector.
Still, this information is highly redundant, in the sense that the entries of the
flag vectors of Eulerian posets satisfy a number of relations. These “Gener-
alized Dehn-Sommerville equations”were first obtained by Bayer and Billera
and can be viewed as the analogue for flag vectors of Euler’s equation for the
f -vector.

Theorem 1.2.15 (Generalized Dehn-Sommerville equations [7]). Let P be
an Eulerian poset of rank d and S = {i1, . . . , iℓ} ⊆ [d]. Suppose we have
−1 = i0 < i1 < . . . < iℓ < iℓ+1 = d and ik < ik+1 − 1 for some k. Then

ik+1−1∑

j=ik+1

(−1)j−ik−1fS∪{j}(P ) = (1− (−1)ik+1−ik−1) fS(P )

The proof of the equations is remarkably short and simply uses the fact
that every interval of an Eulerian poset is again Eulerian und hence Euler’s
equation can be applied. Not surprisingly, the theorem comprises Euler’s
equation itself as the special case S = ∅.

The equations in fact completely describe the affine space that contains all
flag vectors of Eulerian posets of a given dimension. We will get back to this
in Chapter 3.
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The Generalized Dehn-Sommerville equations imply that the complete flag
vector of a polytope is already determined by a subset of its entries. A natural
choice is described in the following.

Definition 1.2.16 (Sparse sets). Let d ≥ 1. The set Ψd is the set of all
subsets of {0, . . . , d − 2} that do not contain two consecutive integers. The
elements of Ψd are the sparse subsets of [d].

The number of sparse subsets of [d] is given by the (d + 1)-st Fibonacci
number, defined by F0 = F1 = 1 and Fd = Fd−1 + Fd−2 for d ≥ 2.

Theorem 1.2.17 (Bayer & Billera [7]). Let d ≥ 1. For all T ⊆ [d] there is a
relation

fT (P ) =
∑

S∈Ψd

cSfS(P )

with certain cS ∈ Z, valid for all Eulerian posets P of rank d + 1.

Definition 1.2.18 (Reduced flag vector). Given an Eulerian poset P of rank
d + 1, we call f(P ) := (fS(P ))S∈Ψd

the reduced flag vector of P .

If P is a polytope then f(P ) is an integer vector of length Fdim P . We denote
by Fl d ⊂ ZFd the set of reduced flag vectors of all d-polytopes. The reverse
lexicographic order on [d] induces a natural ordering of the components of the
reduced flag vector. Stated explicitly, the reduced flag vector can be denoted
as follows:

f = (f∅, f0, f1, f2, f02, f3, f03, f13, f4, f04, f14, f24, f024, f5, f05, . . . , fτ,...,d−2)

where τ is 0 or 1 if d is even or odd, respectively. We will always use this
convention in formal expressions and examples involving the reduced flag
vector.

Casually, Theorem 1.2.17 states that knowing the entries of the flag vector of
an Eulerian poset subscripted by the sparse subsets suffices to know the whole
flag vector. In terms of linear algebra, the flag vectors of Eulerian posets of
rank d+1 are all contained in an affine subspace of R2d

of dimension Fd− 1,
since f∅(P ) = 1 for every Eulerian poset P .

1.3 The 
d-index

The 
d-index captures the same information as the flag vector in a very
elegant form. It was invented by J. Fine and first published by Bayer and
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Klapper [10]. Since then a wealth of results has been produced in this field by
a number of people, notably Bayer, Billera, Ehrenborg, Readdy, and Stanley,
see for instance [9], [11], [12], [24], [25], and [52].

Let P be an Eulerian poset of rank d + 1. For a subset S ⊆ [d] define
wS := w0 · · · · · wd−1, where

wi :=

{ b if i ∈ Sa− b if i 6∈ S

with non-commuting variables a and b. Then the ab-index of P is

Ψ(P ) :=
∑

S⊆[d]

fS(P ) wS.

The ab-index is a homogeneous polynomial of degree d in aand bwith integer
coefficients. Bayer and Klapper [10] proved that for Eulerian posets this
polynomial can be written uniquely in terms of the two (also non-commuting)
variables 
 := a+ b and d := ab+ ba
and then becomes the 
d-index of P . With deg 
 = 1 and degd = 2 the
d-index of an Eulerian poset is then also a homogeneous polynomial of
degree d.

The 
d-index of a polytope P is Ψ(P ) := Ψ(L(P )), the 
d-index of its face
lattice. It is not hard to see that the 
d-index of the polar polytope is
obtained by simply reversing the order of the variables in each monomial. In
particular, the 
d-index of self-dual polytopes exhibits a certain symmetry
in this respect, as can be seen from the examples below.

Example 1.3.1. Here are the 
d-indices of a few polytopes of not too high
dimension, computed with polymake [28], using Theorem 1.3.2 below.

Ψ([0, 1]) = 

Ψ(Dn) = 
2 + (n− 2)d
Ψ(∆4) = 
4 + 3
2d+ 5
d
+ 3d
2 + 4d2

Ψ(C4) = 
4 + 6
2d+ 16
d
+ 14d
2 + 20d2

Ψ(C4
∆) = 
4 + 14
2d+ 16
d
+ 6d
2 + 20d2

Ψ(D7 ∗D7) = 
5 + 12
3d+ 49
2d
+ 49
d
2 + 84
d2 + 12d
3

+ 74d
d+ 84d2
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It follows directly from the definition that the coefficients of the 
d-index are
linear combinations of flag vector entries. While for some monomials their
coefficients in the 
d-index of polytopes can be calculated easily, in general
this is a complicated matter.

We adopt the following convenient notation from Ehrenborg [24] to express
those coefficients: For two 
d-monomials u and v let

〈u | v〉 := δu,v =

{
1 if u = v
0 otherwise

This extends linearly to a bilinear form on the space of all 
d-polynomials.

It is now an easy observation that if P is a d-polytope then 〈
d | Ψ(P )〉 = 1
and 〈
d−2d | Ψ(P )〉 = fd−1(P )−2, and dually 〈d
d−2 | Ψ(P )〉 = f0(P )−2. In
general, to obtain the expression of a coefficient in terms of the flag vector, a
recipe can be given, as was done by Billera, Ehrenborg and Readdy, see [11,
Section 7].

Theorem 1.3.2 (Billera & Ehrenborg [11, Proposition 7.1]). Given a 
d-
monomial u = 
n1d
n2 · · ·
npd
np+1, for every polytope P ,

〈u | Ψ(P )〉 =
∑

i1,...,ip

(−1)(m1−i1)+...+(mp−ip) ki1,...,ip(P )

where m0 := 0 and mi := mi−1 +ni +2 for i ≥ 1, the sum is over all p-tuples
(i1, . . . , ip) with mj−1 ≤ ij ≤ mj − 2 for 1 ≤ j ≤ p, and the sparse flag
k-vector is defined by

kS(P ) :=
∑

T⊆S

(−2)|S|−|T |fT (P ) for S ∈ Ψd

Theorem 1.3.2 in fact establishes a one-to-one correspondence between the
reduced flag vectors and the 
d-indices of Eulerian posets. Consequently,
the number of 
d-monomials of degree d is again the Fibonacci number Fd,
as can easily be shown by induction, matching the size of the reduced flag
vectors of the degree d+1 Eulerian posets. Also, both the reduced flag vector,
as well as the 
d-index start with a constant term: f∅(P ) = 〈
d | Ψ(P )〉 = 1.

An important feature of the 
d-index of polytopes is the non-negativity of
its coefficients, proved by Stanley [52]. In fact, even a stronger statement is
true. For two 
d-polynomials Ψ1 and Ψ2 write Ψ1 ≥ Ψ2 if every coefficient
of the polynomial Ψ1 − Ψ2 is non-negative, that is, 〈u | Ψ1 −Ψ2〉 ≥ 0 for
all 
d-monomials u. In other words, we read inequalities for polynomials
coefficient-wise.
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Theorem 1.3.3 (Billera & Ehrenborg [11, Theorem 5.3]). If P is a d-poly-
tope then Ψ(P ) ≥ Ψ(∆d). In other words, 〈u | Ψ(P )〉 − 〈u | Ψ(∆d)〉 ≥ 0 for
every 
d-monomial u.

Stanley’s result then follows from the non-negativity of the 
d-index of the
simplex. See, for instance, Purtill [45, Section 6], where he shows that the
coefficients of the 
d-index of the simplex, the cube and the octahedron count
certain classes of André permutations.

1.4 Linear inequalities

Why do we care∗ about such a complicated technique as the 
d-index? One
reason is that due to the inequalities from Theorem 1.3.3 and the fact that
the coefficients can be written in terms of the flag vector they provide linear
inequalities and therefore necessary conditions for the flag vectors of poly-
topes.

Although it looks as though we are dealing with affine inequalities here,
since they usually have a non-zero right-hand-side, they are indeed linear
inequalities in the reduced flag vectors, since the constant term can always
be written as a multiple of f∅ = 1.

Example 1.4.1. As remarked in Section 1.3, 〈d
d−2 | Ψ(P )〉 = f0(P )−2 for
every d-polytope P . Together with 〈d
d−2 | Ψ(∆d)〉 = f0(∆d) − 2 = d − 1,
Theorem 1.3.3 implies f0(P ) ≥ d + 1.

This is of course quite a trivial statement, but it shows how the machinery
works. Since every flag vector entry denoted by a sparse set can be reformu-
lated in terms of the 
d-index, it is possible to write every linear flag vector
relation as a 
d-polynomial. Using Ehrenborg’s notation, a linear functional
L on the reduced flag vectors, evaluated on an Eulerian poset P , is then
simply 〈z | Ψ(P )〉, where z is the 
d-polynomial corresponding to L.

Example 1.4.2. The 
d-polynomial d
d−2−(d−1)
d encodes the functional
f0− (d+1)f∅, cf. Example 1.4.1. For a slightly less obvious example consider

−2(d− 2)
d + 2
d
d−3− (d− 2)d
d−2

which translates into the innocently looking functional 2f1 − df0.

∗Barvinok 2007
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Note that both functionals in Example 1.4.2 are non-negative for all polytopes
of suitable dimension. This is not at all obvious from the 
d-polynomials (at
least not for the second example), but it can be derived using the techniques
to be described in this section.

Before we focus on that, let us consider another source of linear inequalities,
which is the g-vector of a polytope. Recall from Section 1.2 that the entries
of the g-vector are simply the differences of the entries of the h-vector. The-
orem 1.2.10 implies that only one half of the g-vector is in fact interesting
and for simplicial polytopes P we have gk(P ) ≥ 0 for 0 ≤ k ≤ ⌊d/2⌋.

This follows from the proof of the necessity part of the g-Theorem by Stan-
ley [50] and uses a considerable amount of algebraic geometry and topology.
For non-simplicial polytopes the situation is even more complicated. For
polytopes with rational coordinates Stanley [49] proved that the entries of
the h-vector are the Betti numbers with respect to intersection cohomology
of the toric variety associated with the polytope. It then follows from the
Hard Lefschetz Theorem that h0 ≤ . . . ≤ h⌊d/2⌋.

Karu [38] provided a proof of the Hard Lefschetz Theorem for projective
fans, thus extending the unimodality property of the h-vector to general
(non-rational) polytopes.

Theorem 1.4.3 (Karu [38]). If P is a d-polytope then gi(P ) ≥ 0 for all
i ∈ {0, . . . , ⌊d/2⌋}.

The special cases g1(P ) ≥ 0 and g2(P ) ≥ 0 correspond to the fact that
2f1 ≥ df0 (cf. Example 1.4.2), respectively to the rigidity inequality

f1(P )− d f0(P ) + f02(P )− 3f2(P ) +

(
d + 1

2

)
≥ 0,

due to Kalai [35] and Whiteley.

Since every entry of the g-vector can be seen as a linear combination of
entries of the flag vector, the g-vector can again be stated in terms of a 
d-
polynomial. An explicit formula was given by Bayer and Ehrenborg in [9]
and [24]. For example, the above expression for g2(P ) using the 
d-index
reads g2(P ) = 〈gd

2 | Ψ(P )〉 with the 
d-polynomial

gd
2 =

d(d− 3)

2

d− 
2d
d−4− (d− 3)d
d−2 + d2
d−4.
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Convolution

It is possible to recycle known linear inequalities for the flag vector to obtain
new ones in higher dimensions. One possibility to do this is convolution,
introduced by Kalai [36].

If we denote the polytope dimension with a superscript at the flag vector,
we can define the following formal multiplication for flag vector entries of d-,
respectively e-dimensional polytopes:

(fd
S ∗ f e

T ) := fd+e+1
S∪{d}∪(T+d+1)

where T + k := {t + k | t ∈ T} denotes the set T , shifted by k.

Now suppose we are given two linear functionals

L =
∑

S⊆[d]

αSfd
S and M =

∑

T⊆[e]

βT f e
T

for flag vectors of d- and e-polytopes, respectively. Then we can define a new
functional for flag vectors of (d + e + 1)-dimensional polytopes by

L ∗M :=
∑

S⊆[d], T⊆[e]

αSβT (fd
S ∗ f e

T ).

If the functionals are non-negative for all polytopes, that is, if

L(P ) :=
∑

S⊆[d]

αSfd
S(P ) ≥ 0 and likewise M(Q) ≥ 0

for all d-polytopes P , respectively all e-polytopes Q, then also

(L ∗M)(R) ≥ 0

for all (d + e + 1)-dimensional polytopes R. The reason is that

fd+e+1
S∪{d}∪(T+d+1)(R) =

∑

F d-face
of R

fd
S(F ) · f e

T (R/F )

and therefore

(L ∗M)(R) =
∑

S⊆[d], T⊆[e]
F d-face of R

αSfd
S(F ) · βT f e

T (R/F )

=
∑

F d-face
of R

( ∑

S⊆[d]

αSfd
S(F )

︸ ︷︷ ︸
≥0

)
·

( ∑

T⊆[e]

βT f e
T (R/F )

︸ ︷︷ ︸
≥0

)
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Example 1.4.4. For d ≥ 1, the elementary inequality 2f1 ≥ df0 arises as a
convolution: Consider the two inequalities

f0
∅ ≥ 0 and fd−1

0 − df∅ ≥ 0

for 0-, respectively (d − 1)-dimensional polytopes. The convolution of the
left-hand-side functionals is

fd
01 − dfd

0

which, using the Generalized Dehn-Sommerville equations (or simply the
fact that every edge contains 2 vertices) to obtain f01 = 2f1, yields the above
inequality. Since f0

∅ is always equal to 1, the inequality is tight exactly for
polytopes where all vertex figures attain equality in the second inequality,
that is, if and only if the polytope is simple.

The convolution of two inequalities can also be expressed in terms of the
d-index, see, for instance, Stenson [55]. The following quite compact for-
mulation was given by Ehrenborg [24, Section 2]. If two homogeneous 
d-
polynomials expressing two linear inequalities are given, then their convolu-
tion corresponds to the 
d-polynomial obtained by linear extension of the
following multiplication rule, defined on the monomials: Let u, v be 
d-
monomials and write u = ũū, v = v̄ṽ with

ū :=

{ 
 , if u ends with 

1 , if u ends with d and v̄ :=

{ 
 , if v starts with 

1 , if v starts with d

Then u ∗ v is the polynomial ũpṽ with

p :=





2
 if {ū, v̄} = {1}
2
2 + d if {ū, v̄} = {1,
}
2
3 + d
+ 
d if {ū, v̄} = {
}

Example 1.4.5. Let p := 1 and q := d
d−3−(d−2)
d−1, which encode linear
inequalities for 0- and (d− 1)-dimensional polytopes, respectively (cf. Exam-
ple 1.4.2). Their convolution amounts to

p ∗ q = (1 ∗ d
d−3)− (d− 2)(1 ∗ 
d−1)

= (1 · 2
 · d
d−3)− (d− 2)(1 · (2
2 + d) · 
d−2)

= 2
d
d−3− 2(d− 2)
d− (d− 2)d
d−2

which explains the second polynomial in Example 1.4.2.

The question how the 
d-index and convolution are related was investigated
by Stenson [55]. She showed that there are inequalities that arise from The-
orem 1.3.3, but cannot be obtained via convolution. Likewise, there are
convoluted g-vector inequalities that are not implied by the basic 
d-index
inequalities.
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Lifting the 
d-index

Another way to get inequalities from lower-dimensional ones is provided by
the following Lifting Theorem by Ehrenborg [24].

Theorem 1.4.6 (Ehrenborg [24, Theorem 3.1]). Let p be a 
d-polynomial
that represents a non-negative linear inequality, that is,

〈p | Ψ(P )〉 ≥ 0

for all polytopes P . Furthermore, let u and v be 
d-monomials such that u
does not end in 
 and v does not begin with 
. Then

〈u · p · v | Ψ(P )〉 ≥ 0

for all polytopes P .

Combining Theorems 1.3.3 and 1.4.6 one obtains the following family of in-
equalities (see Ehrenborg [24, Theorem 3.7]):

〈u · p · v | Ψ(P )〉 ≥ 〈p | Ψ(∆k)〉 · 〈u · 
k · v | Ψ(P )〉

for all 
d-monomials u, v and p and every polytope P , where k is the degree
of p.

Note that one cannot lift with completely arbitrary monomials, but only
with those that end, respectively begin in a compatible way. Furthermore,
the Lifting Theorem in general yields inequalities that are not tight at the
simplex, even if one starts with tight inequalities, as the following example
demonstrates.

Example 1.4.7. Consider the 
d-polynomial describing the entry g2 of the
g-vector of 6-dimensional polytopes,

g6
2 = 9
6− 
2d
2− 3d
4 + d2
2

Lifting with the monomials 1 from the left and d from the right according
to Theorem 1.4.6 gives 〈g6

2 · d | Ψ(P )〉 ≥ 0 for all 8-polytopes P , while
〈g6

2 · d | Ψ(∆8)〉 = 3. So the lifted inequality is not tight for ∆8, although
g2(∆6) = 0.

It is still an open question whether the theorem can be strengthened in this
respect. This can also be seen as a non-symmetric analogue of Kalai’s Con-
jecture C for centrally-symmetric polytopes. For details see the discussion at
the end of Section 6.3.





Chapter 2

Inductive construction of polytopes

Since a polytope is the convex hull of its vertices, all possible properties
of polytopes can theoretically be described in an inductive way: For a d-
polytope choose out of its vertices d+1 affinely independent ones, which will
yield a d-simplex P (1). Then for every further vertex vk describe the polytope
P (k+1) := conv(P (k) ∪ {vk}) in terms of the polytope P (k), for k ≥ 1.

This principle appears for instance in Grünbaum [29, Section 5.2] and was
extended by Altshuler & Shemer [4]. Similar concepts were introduced by
Shephard [48, Section 3] and by Edelsbrunner [23, Section 8.4.1]. Algorith-
mically, this describes the basic idea of the beneath-and-beyond algorithm to
compute the convex hull of points (cf. Joswig [32] and de Berg et al. [20,
Chapter 11]).

Unfortunately, for a complete combinatorial characterisation of polytopes
this approach is rather unsuitable, due to the vast number of possibilities
that have to be taken into account. However, there are special cases in which
the situation is managable and we will discuss some of these construction
steps here.

We describe stacking and pseudostacking only for full-dimensional polytopes.
This presents no loss of generality, since one could easily extend the con-
structions to the general case. This would, however, entail a greater level of
technicality in both notation and argumentation. So unless stated otherwise,
for the rest of this chapter P always denotes a d-polytope in Rd.

2.1 Stacking

Definition 2.1.1 (Beneath and beyond). Let P be a d-polytope and F a
facet of P , defined by the linear inequality a⊤x ≤ b. A point p ∈ Rd is
beyond F if a⊤p > b and beneath F if a⊤p < b.

The interior of a polytope is therefore the set of all points that are beneath
all of the polytope’s facets.

31
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Figure 2.1: Stacking beyond the shaded triangle

Definition 2.1.2 (Stacking). Let P be a polytope and F a facet of P .
Furthermore, let v be a point beyond F and beneath all other facets of P .
Then the polytope P ′ that arises from P by stacking beyond the facet F is
P ′ := conv(P ∪ {v}).

It is clear that a point v as in Definition 2.1.2 always exists. For instance
take

v := bF + ε (bF − bP )

for small enough ε > 0, where bF is the vertex-barycenter of the facet F and
bP the barycenter of the polytope P .

Furthermore, for the combinatorial properties of P ′ it is irrelevant which
point exactly is chosen—any point beyond F and beneath all other facets
will yield the same combinatorial type of polytope.

The dual operation to “stacking beyond a facet” is “cutting off a vertex”,
which adds a new facet as well as all faces of it.

Casually, stacking beyond a facet means to “glue” a pyramid over the facet
on the polytope such that the result is convex again and all faces, except for
the selected facet itself, survive the operation. With this in mind it is easy
to see how the flag vector changes when the stacking operation is applied.

Proposition 2.1.3. Let P be a d-polytope and F a facet of P . Suppose P ′

arises out of P by stacking beyond F . Then for the flag vector of P ′ we have

fS(P ′) =

{
fS(P ) + apfS F if d− 1 6∈ S
fS(P ) + apfS F − fS(F ) if d− 1 ∈ S

Proof. Let S ⊆ [d]. If d − 1 6∈ S then every flag of faces that is counted by
fS(P ′) is either a flag in P or one in pyr F . However, flags of faces of F are
counted by both fS(P ) and fS(pyr F ), but occur only once in P ′. Hence,

fS(P ′) = fS(P ) + fS(pyr F )− fS(F ).
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Using the formula for the flag vector of a pyramid in Example 1.2.14, the last
term cancels out and we get the first part of the claim.

If d − 1 ∈ S, then the same holds, except that those flags of both P and
pyr F that contain F are not at all present in P ′. The number of these flags
is exactly fS\{d−1}(F ), so we get

fS(P ′) = fS(P ) + fS(pyr F )− 2fS\{d−1}(F ).

Since dim F = d − 1 and therefore fS\{d−1}(F ) = fS(F ), the rest of the
assertion follows again from the pyramid formula.

By considering the special case S = {j}, the proposition immediately yields
the following formula for the f -vector.

Corollary 2.1.4. For P , F and P ′ as in Proposition 2.1.3 we have

fj(P
′) = fj(P ) + fj−1(F ) for 0 ≤ j ≤ d− 2, and

fd−1(P
′) = fd−1(P ) + fd−2(F )− 1.

Classically, stacking is regarded with respect to simplex facets. In this case,
the above formula can be stated more explicitly, using the formula in Exam-
ple 1.1.11.

Corollary 2.1.5. Let P , F and P ′ be as in Proposition 2.1.3 and F a (d−1)-
simplex. Then

fj(P
′) = fj(P ) +

(
d

j

)
for 0 ≤ j ≤ d− 2, and

fd−1(P
′) = fd−1(P ) + d− 1.

Special classical examples are stacked polytopes, defined as follows.

Definition 2.1.6 (Stacked polytope). A d-dimensional stacked polytope on
n vertices is the result of n− d− 1 consecutive stacking operations, initially
applied to a d-simplex.

It follows immediately that all stacked polytopes are simplicial. To calculate
the flag vector, one therefore only has to consider the f -vector (see Exam-
ple 1.2.13).

Proposition 2.1.7. If P is a d-dimensional stacked polytope on n vertices,
then

fj(P ) =

(
d + 1

j + 1

)
+ (n− d− 1)

(
d

j

)
for 0 ≤ j ≤ d− 2, and

fd−1(P ) = d + 1 + (n− d− 1)(d− 1) = (n− d)(d− 1) + 2.
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(a) Pseudostacking into one adjacent
facet (light grey)

(b) Pseudostacking beyond one adja-
cent facet and into two others

Figure 2.2: Pseudostacking beyond a triangle

2.2 Pseudostacking

Pseudostacking can on the one hand be seen as a generalisation of stacking,
on the other hand also as a special—and therefore more easily treatable—
case of the general situation investigated by Grünbaum [29, Section 5.2] and
Altshuler & Shemer [4].

We follow more or less the notation already used in the joint paper with
A. Paffenholz [43], but confine ourselves to dimensions at least 3. The 2-
dimensional case is usually trivial and would complicate statements consid-
erably.

Definition 2.2.1 (Pseudostacking). Let P be a d-polytope and F a facet of
P . Denote by adj F the facets of P that are adjacent to F , that is, the facets
F ′ of P such that F ∩ F ′ is a ridge of P .

For two disjoint subsets F ,N ⊆ adj F we call a point v ∈ Rd a pseudostacking
point with respect to F , F and N if v is beyond F and all facets in N , lies
in the affine hull of every facet in F and beneath all remaining facets of P .

The polytope
PSF

F ,N (P ) := conv(P ∪ {v})

is then obtained by pseudostacking P beyond the facet F with respect to F
and N .

The usual stacking operation is the special case F = N = ∅.

Already with this cautious generalisation, quite a lot of things can happen.
Figure 2.2 shows two examples: On the left the case that F contains exactly
one element and N = ∅. On the right we have an example where |F| = 2
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and |N | = 1; note that the number of vertices decreases. Moreover, another
facet of P vanishes, although it is not contained in F nor N , not even in
adj F .

In contrast to the usual stacking, it is possible that a pseudostacking point
does not exist at all. In terms of the notation of Altshuler & Shemer [4]:
the pair N | F might not be coverable in P . In the following section we
study some situations for which the existence of a pseudostacking vertex—
that is, the coverability of the pair N | F—can be established and investigate
the combinatorics and the flag vector of the polytope that arises from the
pseudostacking operation.

The general facial structure of pseudostacked polytopes can be read off from
the following theorem of Grünbaum, which in fact covers an even more gen-
eral situation. We quote the version of Altshuler & Shemer [4, Section 2],
which remedies a slight error in the original formulation.

Theorem 2.2.2 (Grünbaum [29, Theorem 5.2.1]). Let P ⊂ Rd be a d-
polytope and v ∈ Rd \ P . Let A, B, C be the partition of the facets of P
such that v lies in the affine hull of every A ∈ A, beyond every B ∈ B and
beneath every C ∈ C. Define three types of sets G:

(A) G is a face of a member of C.

(B) G = conv(F ∪ {v}), where F is the intersection of a subset of A (or,
equivalently, F is a face of P and v ∈ aff F ), with

⋂
∅ := P .

(C) G = conv(F ∪ {v}), where F is a face of a member of B and also a face
of a member of C.

Then the sets of types (A), (B) and (C) are faces of P ′ := conv(P ∪{v}), and
each face of P ′ is of exactly one of those types.

We will make extensive use of this theorem to work out the flag vectors of
pseudostacked polytopes.

General considerations

The most modest modification of stacking is to choose the point in the affine
hull of only one adjacent facet. This is always possible.
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Proposition 2.2.3. Let P be a d-polytope, d ≥ 3, and F a facet of P .
Choose an arbitrary facet F ′ ∈ adj F and define F := {F ′} and N := ∅,
Then a pseudostacking point with respect to F , F and N exists and for the
flag vector of the polytope PSF

F ,N (P ) we have

fS(PSF
F ,N (P )) = fS(P ) + apf

S
F − ΞS

for S ⊆ [d], with

ΞS =





0 if {d− 2, d− 1} ∩ S = ∅
fS<d−2

(R) if {d− 2, d− 1} ∩ S = {d− 2}
fS(F ) + fS<d−2

(R) if {d− 2, d− 1} ∩ S = {d− 1}
fS(F ) + 2fS<d−2

(R) if {d− 2, d− 1} ⊆ S

where R := F ∩ F ′ is the ridge between F and F ′.

For a sketch of the situation see Figure 2.2(a), where the facet F ′ is shaded
light grey and the ridge R is the dotted edge.

Proof. It is easy to show that a pseudostacking point v exists: Consider the
polyhedron defined by the reversed inequality for the facet F and the facet-
defining inequalities for all other facets of P . This polyhedron is non-empty
and since F ′ intersects F in a ridge of P , the inequality corresponding to F ′

also defines a facet of the polyhedron. Any point in the relative interior of
this facet is a valid choice for v.

All facets of P are again facets of PSF
F ,N (P ), except for F which vanishes in

the interior of PSF
F ,N (P ), and F ′ which is replaced by the new facet F̂ ′ :=

conv(F ′ ∪ {v}), that is F ′ stacked beyond R.

Let S ⊆ [d] be given. Similar to the situation in Proposition 2.1.3, the flags
of PSF

F ,N (P ) are exactly the flags in P , plus those in pyr F = F ∗ v, except
for

(A) one instance of each flag of proper faces of F (they are counted twice in
fS(P ) + fS(pyr F )),

(B) all flags in both P and pyr F that contain F (which is not a face of
PSF

F ,N (P ) any more),

(C) all flags in pyr F that contain R ∗ v and apart from that only faces in R
(they are also counted twice, see the remark below),
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(D) all flags in both P and pyr F that contain R (which also vanishes in
PSF

F ,N (P )).

Note that the flags of type (C) contain R ∗v, which is, strictly speaking, not

a face of PSF
F ,N (P ); however, it is merged with F ′ into the facet F̂ ′ and hence

these flags are in one-to-one correspondence to the flags containing F̂ ′ and
faces of R. So in general we have

fS(PSF
F ,N (P )) = fS(P ) + fS(pyr F )− xS

and it remains to determine the number xS of flags that are overcounted.
With the formula for fS(pyr F ) from Example 1.2.14 and the definition of
apfS F we then obtain the assertion with ΞS = xS − fS(F ).

For d−1, d−2 6∈ S we only have to subtract the flags in (A) that we counted
twice and their number is exactly fS\{d−1} = fS(F ). Therefore xS = fS(F )
and this yields ΞS = 0.

If d − 1 6∈ S and d − 2 ∈ S, then as before we subtract the twice counted
flags, plus those flags of type (D) that are not already covered by type (A),
that is, all flags of faces of R in pyr F . Since there are fS<d−2

(R) of these, we
get xS = fS(F ) + fS<d−2

(R), which implies ΞS = fS<d−2
(R).

Now suppose d− 1 ∈ S, but d− 2 6∈ S. Then the number of flags of type (B)
has to be subtracted, which amounts to 2fS(F ). Additionally, the flags in
(C) do not exist in PSF

F ,N (P ) and their number is exactly fS<d−2
(R). Hence

xS = 2fS(F ) + fS<d−2
(R) and therefore ΞS = fS(F ) + fS<d−2

(R).

Finally, suppose S contains both d − 1 and d − 2. Then again all flags of
type (B) are not present in PSF

F ,N (P ). Also the flags in (D) vanish, but half
of them (those that contain both R and F ) have already been scheduled for
subtraction, since they are also listed under (A). The remaining ones (those
that contain R and F ′, respectively R ∗ v) add up to 2fS<d−2

(R). Summing
up, xS = 2fS(F ) + 2fS<d−2

(R), so ΞS = fS(F ) + 2fS<d−2
(R), which finishes

the proof.

In particular, Proposition 2.2.3 implies that f0(PSF
F ,N (P )) = f0(P ) + 1, that

is, the number of vertices really increases. In a more general situation this
might not be true, and it can even decrease, as one can see from the example
in Figure 2.2(b).

Also, the combinatorial description of the resulting polytope might be much
more complicated, since it depends not only on the sets F and N , but also on
other facets that might “squeeze in” between those facets we are considering.
If this is the case then at least no harm is done to those faces that are not
directly involved.
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(a) The red vertex is contained in an un-
involved facet

(b) The red edge is contained in the non-
shaded facet

Figure 2.3: Nonsimple facet sets (light grey) adjacent to a (dark
grey) facet

Lemma 2.2.4. Let P be a polytope, F a facet of P and F and N disjoint
subsets of adj F . Assume that a pseudostacking point with respect to F , F
and N exists. Then a face of F is again a face of PSF

F ,N (P ) if and only if it
is contained in at least one facet which is not in F ∪N .

Proof. Follows directly from Grünbaum’s Theorem 2.2.2.

It is desirable to have the condition in Lemma 2.2.4 for all faces of dimension
up to d − 3, since this gives a bit more control over the combinatorics and
the resulting flag vector. Under certain prerequisites this situation can be
ensured.

Definition 2.2.5 (Nonsimple facet set). Let P be a polytope and F a facet
of P . A subset F of adj F is called nonsimple if for all facets F1, F2 ∈ F the
face G := F1 ∩ F2 ∩ F of F is (d − 3)-dimensional and contained in some
other facet F ′ 6∈ F .

Figure 2.3 shows examples of nonsimple facet sets. In the light of Defini-
tion 2.2.5, Lemma 2.2.4 states that if we choose F ,N ⊆ adj F such that
F ∪ N is nonsimple then the only lower-dimensional faces that completely
vanish in PSF

F ,N (P ) are the ridges between F and the facets in F ∪N .

Proposition 2.2.6. Let P be a d-polytope and F a facet of P . Choose a
nonsimple set F = {F1, . . . , Fk} ⊆ adj F . Set N := ∅ and assume that there
exists a pseudostacking point with respect to F , F and N . Then for S ⊆ [d],

fS(PSF
F ,N (P )) = fS(P ) + apf

S
F − ΞS
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with

ΞS =





0 if {d− 2, d− 1} ∩ S = ∅
k∑

i=1

fS<d−2
(Ri) if {d− 2, d− 1} ∩ S = {d− 2}

fS(F ) +
k∑

i=1

fS<d−2
(Ri) if {d− 2, d− 1} ∩ S = {d− 1}

fS(F ) + 2
k∑

i=1

fS<d−2
(Ri) if {d− 2, d− 1} ⊆ S

where Ri := F ∩ Fi is the ridge between F and Fi.

Proof. The same arguments as in the proof of Proposition 2.2.3 hold here,
except that the overcounted flags have to be subtracted for every facet in
F . Since F is nonsimple, all faces of dimension at most d − 3 survive the
pseudostacking, including the proper faces of the vanishing ridges Ri. Hence,
the numbers that have to be subtracted are independent of each other.

We also have to investigate less restricted situations. This means that we
have to generalise the above setting in some respect, which we will do in the
rest of this section. Proofs for the following results that are analogous to the
one of Proposition 2.2.3 are still possible in principle, however, they tend to
get quite messy. Therefore we give another approach which uses more the
combinatorics of the face poset than the geometric view.

Lemma 2.2.7. Let P be a d-polytope and S ⊆ [d]. Let m := max S. Then

fS(P ) =
∑

F m-face
of P

fS(F ) =
∑

F m-face
of P

fS<m
(F ).

In particular,

fS(P ) =





∑
F facet
of P

fS(F ) if d− 1 ∈ S

1
2

∑
F facet
of P

fS(F ) if {d− 2, d− 1} ∩ S = {d− 2}

Proof. Clearly, for S = {i1, . . . , iℓ,m} with i1 < . . . < iℓ < m, the family

{
{∅ ⊂ F1 ⊂ . . . ⊂ Fℓ ⊂ Fm ⊂ P | Fj face of Fm , dim Fj = ij}

∣∣∣

Fm m-face of P

}
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is a partition of the set of face flags
{
∅ ⊂ F1 ⊂ . . . ⊂ Fℓ ⊂ Fm ⊂ P | Fj, Fm faces of P, dim Fj = ij, dim Fm = m

}

whose cardinality determines fS(P ). The rest of the first assertion follows
from the fact that fS(F ) = fS<dim F

(F ), see the remark on page 21.

The second assertion is a direct consequence of the first. For the third observe
that, for max S = d − 2 we have fS∪{d−1}(P ) = 2fS(P ), since every (d − 2)-
face of P is contained in exactly two facets of P , or, alternatively, by the
Generalized Dehn-Sommerville equations, Theorem 1.2.15.

Lemma 2.2.8. Let F be a (d− 1)-polytope and S ⊆ [d].

(a) If d− 1 ∈ S then

∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
= apf

S
F.

(b) If {d− 2, d− 1} ∩ S = {d− 2}, then

∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
= fS(F ) + 2 apf

S
F.

Proof. If d− 1 ∈ S then by Lemma 2.2.7 we can write

fS(pyr F ) =
∑

F ′ facet
of pyr F

fS<d−1
(F ′) = fS<d−1

(F ) +
∑

R facet
of F

fS<d−1
(pyr R)

= fS<d−1
(F ) +

∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
.

On the other hand, since dim F = d− 1,

fS(pyr F ) = fS(F ) + apf
S

F = fS<d−1
(F ) + apf

S
F

which implies (a).

If d−1 6∈ S, but d−2 ∈ S, then the analogous calculation using Lemma 2.2.7
yields

fS(pyr F ) =
1

2
fS<d−1

(F ) +
1

2

∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
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and this implies

∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
= 2fS(pyr F )− fS<d−1

(F )

= fS(F ) + 2 apf
S

F.

Lemma 2.2.9. Let P be a d-polytope and F a facet of P . Choose disjoint
subsets F ,N ⊆ adj F such that the set F ∪ N is nonsimple. Assume that
there is a pseudostacking point v with respect to F,F and N . Then for
S ⊆ [d],

fS(PSF
F ,N (P )) = fS(P ) + apf

S
F +

∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )− ΞS

with

ΞS =





0 if {d− 2, d− 1} ∩ S = ∅
∑

F ′∈F∪N

fS<d−2
(F ′ ∩ F ) if {d− 2, d− 1} ∩ S = {d− 2}

Γ if {d− 2, d− 1} ∩ S = {d− 1}

Γ +
∑

F ′∈F

fS<d−2
(F ′ ∩ F ) if {d− 2, d− 1} ⊆ S

and

Γ = fS(F ) +
∑

F ′∈F∪N

fS<d−2
(F ′ ∩ F )

+
∑

F ′∈N

(
fS(F ′) + fS<d−2

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)
.

Proof. By Grünbaum’s Theorem 2.2.2, the facets of PSF
F ,N (P ) can be parti-

tioned into three types:

(A) facets of P , not in F ∪N ∪ {F},

(B) facets of the form conv(F ′ ∪ {v}) for all facets F ′ ∈ F ,

(C) pyramids R∗v for all ridges R of P that satisfy the following conditions:
R is a facet of some facet F ′ ∈ {F}∪N , but not in {F∩F ′ | F ′ = F∪N}.
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Hence, if d− 1 ∈ S, then by Lemma 2.2.7 we get

fS(PSF
F ,N (P )) =

∑

F ′ of
type (A)

fS<d−1
(F ′) +

∑

F ′ of
type (B)

fS<d−1
(F ′) +

∑

F ′ of
type (C)

fS<d−1
(F ′)

where the sums are over all facets F ′ of the respective types. The first term
simply equals

∑

F ′ of
type (A)

fS<d−1
(F ′) =

∑

F ′ 6∈F∪N∪{F}

fS<d−1
(F ′).

In the second term, the sum is over all facets of type (B) and by nonsimplicity,
each of these facets is the original facet F ′, stacked beyond the ridge F ′ ∩F .
Hence, by Proposition 2.1.3

∑

F ′ of
type (B)

fS<d−1
(F ′) =

∑

F ′∈F

(
fS<d−1

(F ′) + apf
S<d−1

(F ′ ∩ F )− δSfS<d−1
(F ′ ∩ F )

)

where δS := 0 if d− 2 6∈ S and δS := 1 if d− 2 ∈ S.

The third term can be rewritten into a sum over all ridges satisfying the
conditions in (C), that is, all ridges of F and all of every facet F ′ ∈ N , less
those that connect F to the facets in F as well as those that are between F
and the facets in N—note that the latter were counted twice before.

∑

F ′ of
type (C)

fS<d−1
(F ′) =

∑

R ridge
as in (C)

fS<d−1
(pyr R)

=
∑

R facet
of F

fS<d−1
(pyr R) +

∑

F ′∈N

∑

R facet
of F ′

fS<d−1
(pyr R)

−
∑

F ′∈F

fS<d−1
(pyr R)−

∑

F ′∈N

2fS<d−1
(pyr R)

=
∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
+

∑

F ′∈N

∑

R facet
of F ′

(
fS<d−1

(R) + apf
S<d−1

R

)

−
∑

F ′∈F

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

−
∑

F ′∈N

2

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)
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= apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈F

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

−
∑

F ′∈N

2

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

For the last equation we have used Lemma 2.2.8. Gathering all the terms
and reordering the summands, we obtain:

fS(PSF
F ,N (P )) =
∑

F ′ 6∈N∪{F}

fS<d−1
(F ′) + apf

S
F +

∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )

−
∑

F ′∈F∪N

fS<d−1
(F ′ ∩ F )−

∑

F ′∈N

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

− δS

∑

F ′∈F

fS<d−1
(F ′ ∩ F ).

From Lemma 2.2.7 we get
∑

F ′ 6∈N∪{F}

fS<d−1
(F ′) = fS(P )−

∑

F ′∈N

fS<d−1
(F ′)− fS<d−1

(F )

and this yields

fS(PSF
F ,N (P )) = fS(P ) + apf

S
F +

∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )

−Γ− δS

∑

F ′∈F

fS<d−1
(F ′ ∩ F ),

with

Γ = fS(F ) +
∑

F ′∈F∪N

fS<d−2
(F ′ ∩ F )

+
∑

F ′∈N

(
fS(F ′) + fS<d−2

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

as claimed.

If d − 1 6∈ S, but d − 2 ∈ S, we can basically do the same calculations, but
have to take care of minor changes due to the differences in the Lemmas.
From Lemma 2.2.7 we have

fS(PSF
F ,N (P )) =

1

2

( ∑

F ′ of
type (A)

fS<d−1
(F ′)+

∑

F ′ of
type (B)

fS<d−1
(F ′)+

∑

F ′ of
type (C)

fS<d−1
(F ′)

)
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The first sum yields the same expression as before, as well as the second,
with δS = 1 by assumption. The third sum now rewrites as

∑

F ′ of
type (C)

fS<d−1
(F ′) =

=
∑

R facet
of F

(
fS<d−1

(R) + apf
S<d−1

R

)
+

∑

F ′∈N

∑

R facet
of F ′

(
fS<d−1

(R) + apf
S<d−1

R

)

−
∑

F ′∈F

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

−
∑

F ′∈N

2

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

= fS(F ) + 2 apf
S

F +
∑

F ′∈N

(
fS(F ′) + 2 apf

S
F ′

)

−
∑

F ′∈F

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

−
∑

F ′∈N

2

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

by Lemma 2.2.8. Summing up and using Lemma 2.2.7 again,

fS(PSF
F ,N (P )) =

1

2

∑

F ′ 6∈N∪{F}

fS<d−1
(F ′) +

1

2

∑

F ′∈N

fS(F ′) +
1

2
fS(F )

+ apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )

−
∑

F ′∈F

fS<d−1
(F ′ ∩ F )−

∑

F ′∈N

fS<d−1
(F ′ ∩ F )

= fS(P ) + apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )

−
∑

F ′∈F∪N

fS<d−1
(F ′ ∩ F ).

Finally, if m := max S < d−2 then all faces of dimension m of P are also faces
of PSF

F ,N (P ), as can be seen from Grünbaums Theorem 2.2.2. Therefore, by
Lemma 2.2.7 we can sum up over all m-faces of P , plus all m-faces of pyr F ′

for all F ′ ∈ N and have to subtract the term for all m-faces that are counted
twice. Here we imagine that PSF

F ,N (P ) arises from P by“gluing”pyramids on
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P

pyr F ′

F

F ′

v

F
′∩F

Figure 2.4: Proof of Lemma 2.2.9 if maxS < d− 2

F and all facets F ′ in N , each of them along the pyramid facet (F ′ ∩F ) ∗v;
see Figure 2.4 for an illustration. This leads to

fS(PSF
F ,N (P ))

= fS(P ) + fS(pyr F ) +
∑

F ′∈N

fS(pyr F ′)

− fS(F )−
∑

F ′∈N

(
fS(F ′) + fS(pyr(F ′ ∩ F ))− fS(F ′ ∩ F )

)

= fS(P ) + fS(F ) + apf
S

F +
∑

F ′∈N

(
fS(F ′) + apf

S
F ′

)

− fS(F )−
∑

F ′∈N

(
fS(F ′) + fS(F ′ ∩ F ) + apf

S
(F ′ ∩ F )− fS(F ′ ∩ F )

)

= fS(P ) + apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F ).

The next case is similar to the previous one, except that the nonsimplicity
gets lost to some extend; see Figure 2.5 for a 3-dimensional sketch. We call
a face F of a polytope P a simple face if the face figure P/F is a simplex. In
particular, a simple face of dimension d−k of a d-polytope P is contained in
exactly k facets of P . We now allow one carefully chosen simple face among
the faces of the otherwise nonsimple set F ∪N .

Proposition 2.2.10. Let P be a d-polytope and F a facet of P . Further-
more, let F and N be non-empty, disjoint subsets of adj F with F0 ∈ N and
F1 ∈ F . Suppose the set F ∪ N is nonsimple except that the (d − 3)-face
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F0F1

G

R

Figure 2.5: The situation in Proposition 2.2.10

G := F ∩F0∩F1 is a simple face of P . Then, if there exists a pseudostacking
point with respect to F , F and N ,

fS(PSF
F ,N (P )) = fS(P ) + apf

S
F +

∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )− ΞS

with

ΞS =





0 if max S < d− 3
fS<d−3

(G) if max S = d− 3

Γ + fS<d−3
(G) if max S = d− 2

Γ + Γ̃S + fS<d−1
(F ) +

∑
F ′∈N

(
fS<d−1

(F ′)

+ fS<d−1
(F ′ ∩ F ) + apf

S<d−1

(F ′ ∩ F )
)

if max S = d− 1

where
Γ = apf

S<d−2

G + fS<d−1
(R) +

∑

F ′∈F∪N

fS<d−1
(F ′ ∩ F )

and

Γ̃S =





0 if max S<d−1 < d− 3
fS<d−3

(G) if max S<d−1 = d− 3

2fS<d−3
(G) + apf

S<d−2

G

+ fS<d−1
(R) +

∑
F ′∈F

fS<d−1
(F ′ ∩ F ) if max S<d−1 = d− 2

with R := F0 ∩ F1.

Proof. By assumption and Grünbaum’s Theorem 2.2.2, G is the only (d−3)-
face of P that is not a face of PSF

F ,N (P ). Additionally, all proper faces of
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G are again faces of PSF
F ,N (P ), since they are contained in facets not in

F ∪N ∪{F}. Therefore, if max S < d− 3 nothing changes, compared to the
proof of Lemma 2.2.9 and if max S = d− 3 we only have to subtract a term
fS<d−3

(G).

Now suppose d−1 ∈ S. We again split the term for fS(PSF
F ,N (P )) into three

sums over the respective facet types. Nothing changes for the first sum. For
the second observe that the facet F1 of P is responsible for a facet F̃1 of
PSF

F ,N (P ) of type (B) and we have

F̃1 = conv(F1 ∪ {v}) ∼= PSF1∩F
∅,{R}(F1)

combinatorially, since F1 intersects F0 in the ridge R. Therefore, we can use
Lemma 2.2.9 itself to calculate fS<d−1

(F1) and get
∑

F ′ of
type (B)

fS<d−1
(F ′)

=
∑

F ′∈F\{F1}

(
fS<d−1

(F ′) + apf
S<d−1

(F ′ ∩ F )− δSfS<d−1
(F ′ ∩ F )

)

+ fS<d−1
(F1) + apf

S<d−1

(F1 ∩ F ) + apf
S<d−1

R− apf
S<d−2

G

−





0 if d− 3, d− 2 6∈ S
fS<d−3

(G) if d− 3 ∈ S, d− 2 6∈ S
fS<d−1

(F1 ∩ F ) + 2fS<d−3
(G)

+ fS<d−1
(R) + apf

S<d−2

G if d− 2 ∈ S

=
∑

F ′∈F

(
fS<d−1

(F ′) + apf
S<d−1

(F ′ ∩ F )

)
+ apf

S<d−1

R − apf
S<d−2

G− Γ̃S

with Γ̃S as stated.

In the third sum the additional term fS<d−1
(pyr R) has to be subtracted from

the expression in the previous proof, since R is not a face of PSF
F ,N (P ) either.

This yields
∑

F ′ of
type (C)

fS<d−1
(F ′) =

apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈F

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

−
∑

F ′∈N

2

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)
−

(
fS<d−1

(R) + apf
S<d−1

R

)
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Adding up all three sums gives the asserted expression.

The last open case is that d − 2 ∈ S and d − 1 6∈ S. Then the second sum
evaluates to

∑

F ′ of
type (B)

fS<d−1
(F ′)

=
∑

F ′∈F\{F1}

(
fS<d−1

(F ′) + apf
S<d−1

(F ′ ∩ F )− fS<d−1
(F ′ ∩ F )

)

+ fS<d−1
(F1) + apf

S<d−1

(F1 ∩ F ) + apf
S<d−1

R− apf
S<d−2

G

− fS<d−1
(F1 ∩ F )− fS<d−3

(G)− fS<d−1
(R)− fS<d−3

(G)− apf
S<d−2

G

=
∑

F ′∈F

(
fS<d−1

(F ′) + apf
S<d−1

(F ′ ∩ F )− fS<d−1
(F ′ ∩ F )

)

+ apf
S<d−1

R− 2fS<d−3
(G)− 2 apf

S<d−2

G− fS<d−1
(R)

and the last sum, as in the previous proof, with fS<d−1
(pyr R) subtracted:

∑

F ′ of
type (C)

fS<d−1
(F ′) = fS(F ) + 2 apf

S
F +

∑

F ′∈N

(
fS(F ′) + 2 apf

S
F ′

)

−
∑

F ′∈F

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)

−
∑

F ′∈N

2

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)
−

(
fS<d−1

(R) + apf
S<d−1

R

)
.

Finally,

fS(PSF
F ,N (P )) =

1

2

∑

F ′ 6∈N∪{F}

fS<d−1
(F ′) +

1

2

∑

F ′∈N

fS<d−1
(F ′) +

1

2
fS<d−1

(F )

+ apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈F

fS<d−1
(F ′ ∩ F )− apf

S<d−2

G− fS<d−3
(G)

−
∑

F ′∈N

(
fS<d−1

(F ′ ∩ F ) + apf
S<d−1

(F ′ ∩ F )

)
− fS<d−1

(R)

= fS(P ) + apf
S

F +
∑

F ′∈N

apf
S

F ′ −
∑

F ′∈N

apf
S<d−1

(F ′ ∩ F )− Γ− fS<d−3
(G).
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F
F N

Figure 2.6: A pseudostacking point cannot be obtained

For the last few results we had to assume that a pseudostacking point exists.
This cannot always be guaranteed in general. Figure 2.2 illustrates an exam-
ple where this is not possible and cannot be made possible by a projective
transformation either: Here, F consists of 3 facets whose defining hyper-
planes already fix a unique candidate for a pseudostacking point, which is,
however, beneath the facet in N .

Therefore, in the following we consider pseudostacking beyond a simplex
facet, that is, a facet which is combinatorially equivalent to a (d−1)-simplex.
We show that in this case it is virtually always possible to find a pseudostack-
ing point, almost independent on how F and N are chosen.

Lemma 2.2.11. Let P ⊂ Rd be a d-polytope and F a simplex facet of P .
Choose two disjoint sets F ,N ⊂ adj F such that F ∪N 6= adj F . Then there
exists a pseudostacking point with respect to F , F and N .

Proof. For a facet F ′ of P let HF ′ := aff F ′ and H+
F ′ and H−

F ′ be the open
halfspaces of points beneath F ′ and beyond F ′, respectively. Furthermore,
denote by nF ′ the inward pointing normal vector to the facet F ′, that is

HF ′ = {v | nF ′ · v = aF ′} and H−
F ′ = {v | nF ′ · v < aF ′}.

Since F is a simplex, the intersection of all facets F ′ in F̃ := F ∪ N is
non-empty and therefore the subspace

UF̃ :=
⋂

F ′∈F̃

HF ′

of Rd is of dimension at least 1. (Here we have used that F̃ 6= adj F .) In
particular, we can choose a point ṽ ∈ relint(H−

F ∩ UF̃).
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Now let mF ′ be the vector nF ′, projected to the subspace UF̃\{F ′} and consider

v := ṽ + ε
∑

F ′∈N

mF ′

for ε > 0. Since every mF ′ is contained in UF , the point v is again in the
affine hull of every facet F ′ ∈ F . Additionally, v is beyond every F ′ ∈ N
and therefore is a pseudostacking point with respect to F , F and N .

The condition F ∪ N 6= adj F in Lemma 2.2.11 can also be dropped if the
facet F is in bounded position (see [43]), which basically means that the region
H−

F ∩
⋂

F ′∈adj F H+
F ′ is bounded. This can always be achieved by applying a

projective transformation if there is at least one facet F ′ of P with F ′ 6∈ adj F .

Pseudostacking 4-polytopes

In the following chapters, we will often be interested in 4-polytopes. For this
case, the above results can be substantially specialised. We only give the
sparse entries of the flag vectors, from which the whole flag vectors can be
reconstructed, if needed.

Proposition 2.2.12. Let P be a 4-polytope and F , F ′, F and N as in
Proposition 2.2.3. Then

f0(PSF
F ,N (P )) = f0(P ) + 1,

f1(PSF
F ,N (P )) = f1(P ) + f0(F ),

f2(PSF
F ,N (P )) = f2(P ) + f1(F )− 1,

f02(PSF
F ,N (P )) = f02(P ) + 3f1(F )− f0(F ∩ F ′).

Proof. Apply Proposition 2.2.3 and use that apf{0,2} F = 3f1(F ) (see Sec-
tion 1.2) and f∅(F ∩ F ′) = 1.

Corollary 2.2.13. Let P be a 4-polytope, F a simplex facet of P , and
F ′ ∈ adj F . Then

(f0, f1, f2, f02)(PSF
{F ′},∅(P )) = (f0, f1, f2, f02)(P ) + (1, 4, 5, 15).

We close this chapter with different 4-dimensional versions of the remaining
results of the previous sections. These will all be used in Section 4.2 to
construct a family of elementary 2-simple, 2-simplicial 4-polytopes.
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F
F0

F1

F2

Figure 2.7: The red edge is contained in F , F0 and F1, but in no
other facet (F1 is the flat triangular bipyramid at the bottom)

Proposition 2.2.14. Let P be a 4-polytope, F a simplex facet of P , and
F ⊂ adj F a nonsimple set of two facets. Then

(f0, f1, f2, f02)(PSF
F ,∅(P )) = (f0, f1, f2, f02)(P ) + (1, 4, 4, 12).

Proof. A pseudostacking point exists due to Lemma 2.2.11 and the formula
for the flag vector follows directly from Proposition 2.2.6, with F ∼= ∆3 and
Ri
∼= ∆2 for all i.

Proposition 2.2.15. Let P be a 4-polytope, F simplex facet of P , and
F ⊂ adj F a nonsimple set of three facets. Then

(f0, f1, f2, f02)(PSF
F ,∅(P )) = (f0, f1, f2, f02)(P ) + (1, 4, 3, 9).

Proof. Analogous to the previous proof.

The last result of this chapter applies Proposition 2.2.10 to a very special case.
Figure 2.7 shows a sketch of a part of a Schlegel diagram that illustrates the
setting.

Proposition 2.2.16. Let P be a 4-polytope, F and F0 simplex facets of P
with F0 ∈ adj F , and F1, F2 ∈ adj F \{F0} such that the (d−3)-face F∩F0∩F1

is a simple face of P , but each of the faces F ∩ F0 ∩ F2 and F ∩ F1 ∩ F2 is
not.

Then with F = {F1, F2} and N = {F0},

(f0, f1, f2, f02)(PSF
F ,N (P )) = (f0, f1, f2, f02)(P ) + (1, 4, 4, 12).

Proof. Apply Lemma 2.2.11 and Proposition 2.2.10 and use f(F ) = f(F0) =
f(∆3) and f(F ∩ F0) = f(∆2).





Chapter 3

f- and flag vectors

In this chapter we aim at a first closer examination of f -vectors and flag
vectors of polytopes. First we mention two different polytope bases, that
is, sets of polytopes whose flag vectors span the affine space defined by the
Generalized Dehn-Sommerville equations (Theorem 1.2.15).

We then examine linear inequalities for the flag vectors of polytopes. The
techniques decribed in Section 1.4 give rise to plenty of inequalities, where
for the vast majority of them questions like necessity or tightness are open.
These topics will be considered for low dimensions in later chapters.

However, these linear restrictions can be used to visualise the space inhab-
ited by the polytope flag vectors. Here we describe this method in general
and later use it for polytopes of not too high dimension to obtain visualisa-
tions that lead to new conjectures and questions. Although we mainly deal
with flag vectors in this chapter, one can specialise the statements and get
analogous results for the f -vectors.

In the last section we illustrate the given visualisation method by consid-
ering 3-dimensional polytopes and review Steinitz’ characterisation of their
f -vectors. Additionally, we characterise the f -vectors of centrally-symmetric
3-polytopes.

3.1 Polytope bases

We will see in this section that the flag vectors of Eulerian posets—indeed,
even of polytopes—affinely span the subspace defined by Theorem 1.2.15.
This implies that

dim aff Fd = d− 1 and dim aff Fl d = Fd − 1.

To show this one has to find a basis of polytopes of size Fd, that is, a set Ω of
d-polytopes such that |Ω| = Fd and aff{f(P ) | P ∈ Ω} = aff Fl d. Two such
bases are discussed in the next two subsections.

53
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The basis of Bayer and Billera

The basis of polytopes described by Bayer and Billera [7] can be obtained by
recursively applying pyramiding and bipyramiding operations.

In contrast to the basis of Kalai that we describe later in this section, we
will not use the Bayer-Billera basis again. Nevertheless it is interesting in its
own right due to an additional property not mentioned in the original proof
in [7]: the flag vectors of its polytopes span the affine integer lattice of the
corresponding dimension.

Definition 3.1.1 (Bayer-Billera basis). For d ≥ 1 define Ωd := Ωpyr
d ∪Ωbipyr

d ,
where

Ωpyr
d :=

{
{∆1} if d = 1
{pyr P | P ∈ Ωd−1} if d > 1

and

Ωbipyr
d :=

{
∅ if d = 1
{bipyr P | P ∈ Ωpyr

d−1} if d > 1

Furthermore, let Ω̃d := Ωd \ {∆d}.

Ωd is the set of all d-polytopes that arise from iteratively building pyramids
or bipyramids over the 1-simplex, without ever constructing two bipyramids
consecutively. It is easy to show that |Ωd| = |Ψd| = Fd.

Definition 3.1.2 (Relative flag vector). For d ≥ 1 let Ψ̃d := Ψd \ {∅}. The
relative reduced flag vector of a d-polytope P is the vector

f̃(P ) := (f(P )− f(∆d))|eΨd

where we consider only the components corresponding to the non-empty
sparse sets.

Note that f∅(P ) − f∅(∆d) = 0 for all polytopes P , so no information is lost
by restricting the relative flag vector to the Fd − 1 essential components.

Proposition 3.1.3. The system

{
f̃(P )

∣∣ P ∈ Ω̃d

}

of Fd − 1 reduced relative flag vectors spans ZFd−1.
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Proof (cf. Bayer and Billera [7]). Let L̃d be the (Fd − 1)× (Fd − 1) matrix,

rows indexed by Ω̃d, columns indexed by Ψ̃d, representing the vectors in
question, that is,

L̃d =
(
f̃S(P )

)
P∈eΩd,S∈eΨd

We show that det L̃d = 1. Define the Fd × Fd matrix

Ld =




1 d + 1 d(d+1)
2

· · ·

0
... L̃d

0




that contains the reduced flag vector of the simplex in the first row. Obviously
det L̃d = det Ld. A row of Ld indexed by P ∈ Ωd, P 6= ∆d contains the
relative flag vector of the polytope P , so adding the first row to every other
yields the matrix

Kd =
(
fS(P )

)
P∈Ωd,S∈Ψd

and det Ld = det Kd. Therefore it suffices to show that det Kd = 1.

For d ≤ 3 one can easily verify that det Kd = 1 holds. Bayer and Billera
show in [7, Lemma 2.4] that Kd = AdTd where Ad is a certain Fd×Fd matrix
and

Td =




1 0
0 1

K1

K2

. . .

Kd−2




By induction, det Td = det K1 · · · · · det Kd−2 = 1. Furthermore, Bayer and
Billera show that det Ad = 1 for d ≤ 3 and Ad can be constructed from an
(Fd × Fd)-matrix

E :=

(
Ad−1 ∗

0 I

)

by performing row and column operations that do not change the determi-
nant. Therefore we have det Ad = det E = 1 by induction, which implies
det Kd = det Ad · det Td = 1.
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The basis of Kalai

Kalai [36] gave a different basis of polytopes. Its members are constructed
from sums and joins of simplices whose dimensions comply with certain rules.
We give the basic definitions and the main result, on which we build in
Chapter 5.

Definition 3.1.4 (Admissible sequences). An admissible sequence is a (2k)-
tuple (m1, ℓ1; . . . ;mk, ℓk) of non-negative integers, k ≥ 1, such that

(i) mi ≥ ℓi ≥ 1 for i ∈ {1, . . . , k − 1} and

(ii) mk ≥ ℓk ≥ 0.

We call dim b := m1 + ℓ1 + . . . + mk + ℓk + k − 1 the dimension of the
admissible sequence b and denote by Bd the set of all admissible sequences
of dimension d.

For example, the sequences (3, 0) and (2, 1) are admissible sequences of di-
mension 3, while (1, 1; 1, 0) and (2, 1; 0, 0) are admissible sequences of di-
mension 4. The tuples (4, 2; 1, 0; 1, 1) and (1, 3; 3, 2; 1, 1) are no admissible
sequences, and also (3, 1; 1, 1; 0, 1) is not.

It is not hard to show that the number of admissible sequences is |Bd| = Fd,
see [36, Claim 2.1].

Definition 3.1.5 (Kalai basis). Given an admissible sequence

b = (m1, ℓ1; . . . ;mk, ℓk) , dim b = d,

define the polytope

P [b] := ((. . . (∆m1 ⊕∆ℓ1) ∗∆m2)⊕∆ℓ2) ∗ . . . ∗∆mk
)⊕∆ℓk

Let Θd := {P [b] | b ∈ Bd} be the set of all polytopes defined by admissible
sequences of dimension d.

Definition 3.1.5 to some extend justifies the postulations in Definition 3.1.4:
It is obvious that dim P [b] = dim b for an admissible sequence b. Furthermore,
the sum of a polytope with a 0-dimensional simplex yields the same polytope,
so ℓi should be greater than 0 for all indices i except possibly the last.

Θd always contains the d-dimensional simplex ∆d = P [(d, 0)]. Another easily
recognisable element of Θd for d ≥ 2 is P [(d−1, 1)] = ∆d−1⊕∆1 = bipyr ∆d−1.
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Additionally, to every admissible sequence a linear functional for flag vectors
of d-polytopes can be associated. From Section 1.4 we know that every entry
of the g-vector can be expressed as a linear combination of entries of the
flag vector. Accordingly, we denote by gd

ℓ , for d ≥ 2ℓ, the linear flag vector
functional related to the ℓ-th entry of the g-vector of d-polytopes.

Now, given an admissible sequence b = (m1, ℓ1; . . . ;mk, ℓk) of dimension d,
associate to b the linear functional

G[b] := gm1+ℓ1
ℓ1

∗ . . . ∗ gmk+ℓk

ℓk

where ∗ denotes convolution (see Section 1.4).

To show that the system Θd defines a polytope basis, Kalai proved that the
functionals G[b] applied to the polytopes P [b] yield 0 sufficiently often. More
precisely, define the following partial order on Bd:

b = (m1, ℓ1, . . . ,mk, ℓk) 4 b′ = (m′
1, ℓ

′
1, . . . ,m

′
k′ , ℓ′k′) :⇐⇒

j∑

i=1

(mi + ℓi) ≤

j∑

i=1

(m′
i + ℓ′i) for all j ∈ {1, . . . ,min{k, k′}} or

k = k′, and mi + ℓi = m′
i + ℓ′i and ℓi ≥ ℓ′i for all i ∈ {1, . . . , k}

With this partial order, the sequence (d, 0) ∈ Bd is always maximal, and
(1, 1; . . . ; 1, 1; 1, 0), respectively (1, 1; . . . ; 1, 1; 1, 1), depending on the parity
of d, is minimal. Then the set Θd is a polytope basis as a consequence of the
following theorem.

Theorem 3.1.6 (Kalai [36, Theorem 4.1]). G[b](P [b]) = 1 for every b ∈ Bd,
and G[c](P [b]) = 0 for all b, c ∈ Bd with b 64 c.

Important parts of the proof will be referred to in Chapter 5, where the
polytopes in Θd are used to show tightness of certain flag vector inequalities.

3.2 Linear inequalities and visualisation

The results in the previous section, together with the Generalized Dehn-
Sommerville equations fully describe the affine hull of all flag vectors of d-
polytopes. The next step in understanding flag vectors would be to determine
the “region”within this affine hull that contains all flag vectors. More explic-
itly, we are looking for the convex hull

FlCd := conv Fl d , respectively FCd := conv Fd.
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This task seems to be much more difficult than the previous and indeed we
can currently only give linear inequalities describing a generally larger set
containing the closure of this convex hull.

An efficient way to encode a linear inequality for flag vectors of d-polytopes
is by stating the (dual) vector (αS)S∈Ψd

∈ RFd of coefficients on the left hand
side. With the convention that the sense of the inequality is always “≥”, a
linear inequality is completely described by such a vector αS.

Example 3.2.1. Consider the valid inequalities

2f0(P )− d f1(P ) ≤ 0

2fd−1(P )− d fd−2(P ) ≤ 0

g2(P ) = f1(P )− d f0(P ) + f02(P )− 3f2(P ) +

(
d + 1

2

)
≥ 0

They yield the following vectors (αS)S∈Ψd
∈ RFd :

( α∅ , α0 , α1 , α2 , α02 , . . . , αd−2 , . . . )
( 0 , −2 , d , 0 , 0 , . . . , 0 , . . . )
(2 (1− (−1)d) , 2 (−1)d , −2 (−1)d , 2 (−1)d , 0 , . . . , 2− d , . . . )

(
(

d+1
2

)
, −d , 1 , −3 , 1 , . . . , 0 , . . . )

Note that the second inequality had to be rewritten using the Euler equation
in order to express it in terms of sparse sets.

Given a vector α ∈ RFd and a d-polytope P we can evaluate the linear
functional corresponding to α on the flag vector of P :

α(P ) :=
∑

S∈Ψd

αSfS(P ) = α · f(P ).

Then the statement that the inequality represented by α is valid for all flag
vectors of d-polytopes can be reformulated as

α(P ) ≥ 0 for all d-polytopes P.

All the examples mentioned above are linear inequalities that are tight at
the flag vector f(∆d) of the d-simplex. Inequalities of this type help us to
visualise f - and flag-vectors, provided the dimension is not too high. This
was first done by Ziegler [59] for f -vectors of 4-polytopes. In the rest of this
section we describe this method in general to apply it later.
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f(∆d)

C P

ϕFd
−1

= 0

Figure 3.1: Projective coordinates for a cone of flag vectors.

Suppose we are given a finite set of linear inequalities, represented by vec-
tors α(1), . . . , α(m), that are tight at f(∆d), that is, α(ℓ)(∆d) = 0 for all ℓ.
We further assume that α(1)|

eΨd
, . . . , α(m)|

eΨd
span the linear space RFd−1 and

therefore the set

C := {f | α(ℓ) · f ≥ 0 for all ℓ} ∩ {f | f∅ = 1}

is a polyhedral cone with apex f(∆d).

We now introduce—in two steps—coordinates such that C is mapped to a
polyhedron P of dimension Fd− 2, making it possible to visualise the region
defined by the inequalities if d is not too large. Geometrically, this amounts
to considering a suitable cut through the cone C. See Figure 3.1 for an
illustration.

As first step we consider a linear transformation, given by an invertible matrix

T = (τk,S) 0≤k≤Fd−1
S∈Ψd

that satisfies the following conditions (where τk is the k-th row of T ):

(i) τ0 = (1, 0, . . . , 0),

(ii) T · f(∆d) = (1, 0, . . . , 0)⊤,

(iii) {f | τFd−1 · f = 0} ∩ C = {f(∆d)}.

In other words, T allows us to express any (potential) flag vector f ∈ C in
terms of different coordinates ϕ = (ϕ0, . . . , ϕFd−1), given by

ϕ = T · f (3.1)
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where ϕ0 = f∅ = 1 and the last coordinate ϕFd−1 6= 0 if f ∈ C \ {f(∆d)}.

In the second step we “mod out” the last coordinate by considering the map

Φ :
(
ϕ0, . . . , ϕFd−1

)
7→ (ϕ0, . . . , ϕFd−2)

with

ϕk :=
ϕk

ϕFd−1

for 0 ≤ k ≤ Fd − 2 (3.2)

and define

P := Φ(T · C).

From the properties of the two maps and the prerequisites on the inequalities
we get the following statement.

Proposition 3.2.2. Under the conditions (i)–(iii) above, the cone C maps to
a polyhedron P ⊆

{
(ϕ0, . . . , ϕFd−2)

⊤ ∈ RFd−1 | ϕ0 = 1
}

with dimP = Fd−2.

In the space
{
(ϕ1, . . . , ϕFd−2)

⊤ | ϕ1, . . . , ϕFd−2 ∈ R}
∼= RFd−2, the polyhe-

dron P is defined by the inequalities

Fd−2∑

k=1

(α(ℓ)T−1)k ϕk ≥ −(α(ℓ)T−1)Fd−1

for 1 ≤ ℓ ≤ m.

Proof. Due to condition (i) the set {f | f∅ = 1} is mapped to the affine sub-
space

{
(ϕ0, . . . , ϕFd−2)

⊤ ∈ RFd−1 | ϕ0 = 1
}
.

By (3.1) we have f = T−1ϕ, therefore the points in C are exactly those with
ϕ satisfying α(ℓ)T−1ϕ ≥ 0 for all ℓ and ϕ0 = 1. By (3.2) and condition (iii)
this is for all f ∈ C \ {f(∆d)} equivalent to

Fd−2∑

k=0

(α(ℓ)T−1)k ϕk + (α(ℓ)T−1)Fd−1 ≥ 0

for 1 ≤ ℓ ≤ m. We show that (α(ℓ)T−1)0 = 0 for all ℓ, which implies the
assertion. Assume that (α(ℓ)T−1)0 6= 0 for some ℓ. By condition (ii) we get

α(ℓ)f(∆d) = α(ℓ)T−1 · (1, 0, . . . , 0)⊤ = (α(ℓ)T−1)0 6= 0,

in contradiction to α(ℓ)(∆d) = 0 for all ℓ.
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Hence every vertex of P corresponds to an extreme ray of the cone C and
facets of P correspond to facets of C.

We will in later chapters apply this procedure to linear inequalities that hold
for all flag vectors of polytopes. Then our main concern will be the question
if extreme rays or facets of C are also rays or facets, respectively, of the set
FlCd.

Definition 3.2.3 (Facet-defining inequality). Let α be an inequality for flag
vectors of d-polytopes. We say that α is facet-defining for FlCd if

dim aff
(
FlCd ∩ {f | α · f = 0}

)
= dim FlCd − 1 = Fd − 2

that is, there are Fd − 1 polytopes such that their flag vectors are affinely
independent and satisfy α · f = 0.

However, FlCd is defined as the convex hull over infinitely many points.
Therefore chances are that it is not a polyhedron and in general it is not
even closed (see Bayer [6]). Hence there might be inequalities that are not
facet-defining, but cannot be improved either.

Definition 3.2.4 (Asymptotic faces and inequalities). A face (vertex/edge/
ray/facet) F of C is called an asymptotic face (vertex/edge/ray/facet) of FlCd
if

dim aff
(
FlCd ∩ F

)
= dim F.

Here FlCd denotes the closure of FlCd.

A linear inequality is asymptotically facet-defining or an asymptotic inequal-
ity if it defines an asymptotic facet of FlCd, that is, an asymptotic face of
dimension Fd − 2.

To show that a face is an asymptotic face one can use the transformation de-
scribed above and apply it to the flag vectors of suitable families of polytopes.
In this way asymptotic flag vectors are obtained.

Definition 3.2.5 (Asymptotic flag vector). A point f ∈ RFd is an asymptotic
flag vector if there is a familyF of polytopes such that the image point Φ(T ·f)
is a limit point of the set {Φ(T · f(P )) | P ∈ F}.

Then F is an asymptotic face if it contains enough points that are asymptotic
flag vectors of polytope families or genuine flag vectors of polytopes that span
aff F . With this it is not hard to see that asymptotic inequalities that are
not facet-defining really exist; see Chapters 4 and 5.



62 Chapter 3. f- and flag vectors

3.3 The 3-dimensional case

To illustrate the method we have described in the last section we apply it to
the well-known case of 3-dimensional polytopes. Since Ψ3 = {∅, {0}, {1}},
the characterisation of flag vectors of 3-polytopes is contained in the charac-
terisation of f -vectors, which in turn was done by Steinitz [54] in 1906.

Theorem 3.3.1 (Steinitz [54]). An integer vector (f0, f1, f2) is the f -vector
of a 3-polytope if and only if the following conditions hold:

(i) f0 − f1 + f2 = 2,

(ii) f2 ≤ 2f0 − 4 and f0 ≤ 2f2 − 4.

The inequalities in (ii) are satisfied with equality for simplicial and simple
3-polytopes, respectively.

Sketch of proof. Necessity of the conditions can be derived from the fact that
the graphs of 3-polytopes are planar. Proofs of Euler’s formula and the
relations between the number of vertices, edges and faces of planar graphs
can be found in every basic book on graph theory; see [21] or [34] for instance.

To show sufficiency, one has to prove that every integer point contained in
the 2-dimensional cone C defined by the equation and the two inequalities is
the f -vector of some 3-polytope. This can be done by giving constructions
that “reach” a new point f ′ ∈ C from an old one f ∈ C, provided f is already
established as the f -vector of some polytope. By taking the symmetry into
account, which is the consequence of duality of polytopes, it is sufficient to
consider one operation and two f -vectors to start with.

The operation is the usual stacking over a triangular facet, which establishes
the point f ′ = f + (1, 3, 2). The initial f -vectors are that of a tetrahedron,
(4, 6, 4), and that of a pyramid over a quadrangle, (5, 8, 5). Starting with
these two points, every integer point in C can be reached by suitable appli-
cation of stacking and dualisation.

Figure 3.2 gives an illustration of the cone C and the integer points in it.

Reformulated in terms of the reduced flag vector Steinitz’ theorem reads as
follows.

Theorem 3.3.2. An integer vector f = (f∅, f0, f1) is the reduced flag vector
of a 3-polytope if and only if f∅ = 1 and 2f1 ≥ 3f0 ≥ f1 + 6.

The two inequalities are tight exactly for simple and simplicial polytopes,
respectively.
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simplicial

simple

f(∆3)

f0

f2

C

P3

ϕ

Figure 3.2: Cone of flag vectors of 3-polytopes

In terms of the previous section, the flag vectors of 3-polytopes are exactly
the integer vectors of the cone C3, defined by the inequalities given by

α(1) = (0,−3, 2)

α(2) = (−6, 3,−1)

As the transformation matrix we choose

T =




1 0 0
−2 −1 1
−4 1 0




which is obviously regular and has the property that ϕ2 = T ·f = f0−4f∅ = 0
occurs only if f is the flag vector of a 3-polytope with 4 vertices, which can
then only be a 3-simplex. Additionally, T · f(∆3) = T · (1, 4, 6)⊤ = (1, 0, 0)⊤.

After performing the second stage and applying Proposition 3.2.2 we arrive
at the 1-dimensional polytope P3 = {ϕ ∈ R | 1/2 ≤ ϕ ≤ 2}, see Figure 3.2.

The two vertices of P3 coming from the two rays—which are also facets—of
C3 correspond to simple and simplicial polytopes, respectively. In particular,
C3 has no asymptotic faces that are not also genuine faces.

Due to Steinitz’ theorem we know that in the 3-dimensional case C3 equals
FlC3. Even more, every integer point in FlC3 is a flag vector of a 3-polytope.
Both statements are false already for dimension 4. Even considering the

closure FlCd, it is an open question if this in general defines a cone at all, cf.
Conjecture 6.3.26.
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Centrally-symmetric 3-polytopes

Centrally-symmetric polytopes are an interesting special class of polytopes,
due to their outstanding geometric feature. It turns out that in dimension
3 we can easily identify the flag vectors of centrally-symmetric polytopes
among those of general polytopes.

Without loss of generality we can restrict ourselves to central symmetry with
respect to the origin.

Definition 3.3.3 (Centrally-symmetric). A polytope P ⊂ Rd is centrally
symmetric if x ∈ P implies −x ∈ P for all x ∈ Rd.

Before we state the characterisation of flag vectors of centrally-symmetric 3-
polytopes, we gather some general observations that will be helpful and whose
easy proofs we omit. The less obvious implication of part (b) is proved in
Lemma 6.3.10.

Proposition 3.3.4. Let P be a centrally-symmetric d-polytope.

(a) All entries of the flag vector f(P ) are even, except for f∅(P ) = 1.

(b) f0(P ) ≥ 2d and equality holds if and only if P is affinely equivalent to
the d-dimensional crosspolytope.

(c) The polar polytope P∆ is again centrally-symmetric.

Proposition 3.3.4 already contains a characterisation of the possible flag vec-
tors of centrally-symmetric 2-polytopes.

Lemma 3.3.5. Let P be a centrally-symmetric d-polytope, d ≥ 2. Then

f0(P ) + fd−1(P ) ≥





8 for d = 2
14 for d = 3
4d + 4 for d ≥ 4

The bound is tight for d = 2 and d = 3, satisfied with equality exactly for
the cube and the crosspolytope of the respective dimension.

Proof. Suppose f0(P ) = 2d. Then by Proposition 3.3.4 (b) P is a d-crosspo-
lytope, therefore fd−1(P ) = 2d and

f0(P ) + fd−1(P )





= 8 for d = 2
= 14 for d = 3
> 4d + 4 for d ≥ 4
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d Polytope f0 fd−1 f0 + fd−1 Bound

4 bipyr C3 10 12 22 20
5 ∆5(3) 12 20 32 24

H(G4) 16 16 32
6 H(G5) 24 24 48 28
7 prism(C3 ⊕ C3) 32 38 70 32

Table 3.1: Centrally-symmetric polytopes nearest to the bound in
Lemma 3.3.5

Now suppose fd−1(P ) = 2d. Then by duality and Proposition 3.3.4, P is a
d-cube, f0(P ) = 2d and the same conclusion as above holds.

Therefore we are left with the case that f0(P ) ≥ 2d+2 and fd−1(P ) ≥ 2d+2,
but this immediately implies that f0(P ) + fd−1(P ) ≥ 4d + 4, as claimed.

The bound for d ≥ 4 in Lemma 3.3.5 is not tight. An enumeration approach
(cf. Section 6.3) shows that for d = 4 the correct bound is 22 instead of 20,
and is attained at bipyr C3.

For 5 ≤ d ≤ 7 the results of the computer search in fact imply that the bound
is at least 4d + 8, but it is probably much larger in general. Table 3.1 shows
polytopes that are interesting in this respect. Currently known to be nearest
to the bound for d = 5 are the hypersimplex ∆5(3) and the Hansen polytope
of the path on four vertices. They both achieve the value 32, thereby also
disproving the extended 3d-conjecture—see Section 6.3 and [46] for details,
as well as the paper of Hansen [31].

Theorem 3.3.6 (f -vectors of centrally-symmetric 3-polytopes). An integer
vector (f0, f1, f2) is the f -vector of a centrally-symmetric 3-polytope if and
only if the following conditions hold:

(i) f0, f1, f2 are even,

(ii) f0 − f1 + f2 = 2,

(iii) f2 ≤ 2f0 − 4 and f0 ≤ 2f2 − 4,

(iv) f0 + f2 ≥ 14.

The inequalities in (iii) are tight exactly for simple and simplicial polytopes,
respectively, and the inequality (iv) is tight only for the octahedron and the
cube.
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f(C3
∆)

f(C3)
f0

f2

(a) Black dots mark lattice points that
are flag vectors of polytopes, but not of
centrally-symmetric ones

f(C3
∆)

f(Ĉ3)

(b) Closeup of the cone showing the con-
structions needed in the proof of Theo-
rem 3.3.6

Figure 3.3: Flag vectors of centrally-symmetric 3-polytopes

Proof. Necessity of the conditions as well as the tightness assertions follow
from Theorem 3.3.1, Proposition 3.3.4 (a) and Lemma 3.3.5.

It remains to show that every vector satisfying the conditions (i) to (iv) is the
flag vector of a centrally-symmetric 3-polytope. This is done in an analogous
way as in the proof of Steinitz’ Theorem. The illustration in Figure 3.3(a)
might help to get an overview over what has to be done.

Let A be the polyhedron defined by the conditions (ii) to (iv) in the theo-
rem. As before, we use two constructions to “reach” all desired points in the
upper half of A, that is, all points in A with f2 ≥ f0 and even entries; see
Figure 3.3(b). The first construction is the usual stacking operation, applied
in a centrally-symmetric way to two opposite triangular facets. By Propo-
sition 2.1.4 this results in the f -vector f + 2 · (1, 3, 2) = f + (2, 6, 4) when
applied to a polytope with f -vector f .

The second construction amounts to symmetrically pseudostack two opposite
triangular facets. In the notation of Section 2.2, given a centrally-symmetric
polytope P with a triangular facet F , choose an adjacent facet F ′ ∈ adj F ,
and let F := {F ′}. Then there are symmetric facets −F and −F ′, and with
F ′ := {−F ′} the polytope

PS−F
F ′,∅(PSF

F ,∅(P ))

exists by Proposition 2.2.3, is centrally-symmetric again, and the f -vector
increases by 2 · (1, 2, 1) = (2, 4, 2). See Figure 3.4(a).

Both constructions require a centrally-symmetric polytope with a triangular
facet. Therefore we still have to show that all polytopes onto which we want
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(a) To obtain f + (2, 4, 2) (b) To obtain f -vector (8, 14, 8)

Figure 3.4: Pseudostacking to prove Theorem 3.3.6

to perform the described steps, have such a facet. Both operations create
new simplex facets and therefore every resulting polytope can again be used
as input to the constructions.

The octahedron C3
∆ is simplicial and therefore clearly contains triangular

facets. Now let Ĉ3 be the polytope obtained by symmetrically pseudostacking
a cube C3 such that each added vertex is contained in the affine hull of an
edge, see Figure 3.4(b). Using pseudostacking terminology,

Ĉ3 := PS−F
{−F1,−F2},∅

(PSF
{F1,F2},∅(C3))

with an arbitrary facet F of C3 and two intersecting facets F1, F2 ∈ adj F .
Section 2.2 contains no statement that this can be done in general, since the
vertex F ∩ F1 ∩ F2 is not nonsimple and F is not a simplex—in this case,
however, it is obvious that a pseudostacking point exists, and also how the
f -vector changes. The two facets F and −F are broken into two triangles
each, while the rest of the cube remains combinatorially unchanged. Hence
f(Ĉ3) = (8, 14, 8) and in particular Ĉ3 contains triangles.

Taking either C3
∆ or Ĉ3 as a starting point, we can now for any given vector f

in A ∩ {(f0, f1, f2) | f2 ≥ f0} with even entries obtain a centrally-symmetric
polytope P with f(P ) = f . See Figure 3.3(b), where the two operations
applied to the two starting polytopes are indicated by dotted lines.

Finally, all points in A with f0 ≥ f2 are also f -vectors of centrally-symmetric
polytopes, by taking duals of the above constructed polytopes.

For sake of completeness we again rewrite the above theorem in terms of the
reduced flag vector.

Theorem 3.3.7. An integer vector f = (f∅, f0, f1) is the reduced flag vector
of a centrally-symmetric 3-polytope if and only if the following conditions
hold:
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(i) f∅ = 1,

(ii) f0 and f1 are even,

(iii) 2f1 ≥ 3f0 ≥ f1 + 6 ≥ 18.

The first two inequalities are tight exactly for simple and simplicial polytopes,
respectively, and the last one is tight only for the octahedron and the cube.

We conclude this section by mentioning that one could also focus on other
subclasses of 3-polytopes. A concise account of the region spanned by flag
vectors of cubical polytopes and zonotopes, for instance, has been provided
by Stenson [56].
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The cone of flag vectors of 4-polytopes

The first visualisation of the flag vector cone of 4-polytopes was given by
Bayer [6]. Using the method described in Section 3.2 we provide a new
version of the picture and explain classes of extremal polytopes that occur.

We further prove that one of the rays of the cone completely belongs to FlC4.
This new result is also published in [43]. Similarly, we give a construction
showing that one of the facets is an asymptotic facet of FlC4.

With these results we can conlude that none of the inequalities that define the
cone are redundant, that is, the cone is in this sense a close approximation of
FlC4. Additionally, we state the closest further inequalities that the currently
known examples would allow.

4.1 Visualisation and known facts

Bayer [6] gave a list of all known linear inequalities valid for all flag vectors of
4-polytopes. Despite some effort, no new such inequalities have been proved
up to this day, so the following list that describes the cone C4 is the closest
approximation to FlC4 that we currently have.

Theorem 4.1.1 (Bayer [6, Theorem 1]). The reduced flag vector f of every
4-polytope satisfies the six inequalities

f0 − 5f∅ ≥ 0,

6f1 − 6f0 − f02 ≥ 0,

f2 − f1 + f0 − 5f∅ ≥ 0,

f02 − 3f1 ≥ 0,

f02 − 3f2 ≥ 0,

f02 − 3f2 + f1 − 4f0 + 10f∅ ≥ 0.

69
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We now apply the visualisation recipe from Section 3.2 to obtain a projective
version P4 of C4. For this we use the transformation matrix

T =




1 0 0 0 0
−5 1 0 0 0

0 −6 6 0 −1
−5 1 −1 1 0
−20 2 −2 0 1




Again, T · f(∆4) = (1, 0, 0, 0, 0)⊤, and −20 + 2f0 − 2f1 + f02 = f03 − 20 = 0
is equivalent to a 4-polytope having exactly five facets with four vertices
each, which can only be a 4-simplex. Also, det T = 4, hence it meets all the
prerequisites from Section 3.2. After transformation to the coordinates

ϕ1 =
f0 − 5

f03 − 20

ϕ2 =
6f1 − 6f0 − f02

f03 − 20
=

2(f1 + f2)− 2(f0 + f3)− f03

f03 − 20

ϕ3 =
f0 − f1 + f2 − 5

f03 − 20
=

f3 − 5

f03 − 20

we get the polyhedron P4 defined by the inequalities

ϕ1 ≥ 0 (4.1)

ϕ2 ≥ 0 (4.2)

ϕ3 ≥ 0 (4.3)

12ϕ1 + ϕ2 ≤ 3 (4.4)

ϕ2 + 12ϕ3 ≤ 3 (4.5)

3ϕ1 + 3ϕ3 ≤ 1 (4.6)

For an illustration of P4 see Figure 4.1. The vertices of P4 are highlighted
and named in accordance with the sketch of Bayer [6].

The symmetry of P4 reflects duality of polytopes: Let

ϕ = (ϕ1, ϕ2, ϕ3) = Φ(T · f(P ))

for a polytope P , then (ϕ3, ϕ2, ϕ1) = Φ(T · f(P∆)). In other words, the
involution p : (ϕ1, ϕ2, ϕ3) 7→ (ϕ3, ϕ2, ϕ1) maps the projective image of the
flag vector of a polytope to that of its polar. Therefore P4 (and also C4 for
an analogous mapping) are invariant under p. Additionally, for all self-dual
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Figure 4.1: Projective cone of flag vectors of 4-polytopes

polytopes ϕ is contained in the set of fixed points of p, which is the plane
given by ϕ1 = ϕ3.

This has the consequence that in the following we only have to investigate
“one half” of P4 and get the corresponding statements about the “other half”
by duality.

Each facet of P4 represents an inequality, which can be interpreted as a
special property that 4-polytopes can have.

Definition 4.1.2 (Extremal properties of 4-polytopes). A 4-dimensional
polytope P is called

(a) elementary if g2(P ) = 0,

(b) 2-simplicial if every 2-face of P is a triangle (equivalently, every facet of
P is simplicial),

(c) 2-simple if every edge of P is contained in 3 facets (equivalently, P∆ is
2-simplicial),

(d) center-boolean if every facet of P is simple (equivalently, the vertex figure
P/v of every vertex v of P is simplical).
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Proposition 4.1.3. Let P be a 4-polytope and f = f(P ) its flag vector.

(a) P is elementary if and only if f02− 3f2 + f1− 4f0 + 10 = 0, that is, (4.6)
holds with equality.

(b) P is 2-simplicial if and only if f02 − 3f2 = 0, that is, (4.5) holds with
equality.

(c) P is 2-simple if and only if f02−3f1 = 0, that is, (4.4) holds with equality.

(d) P is center-boolean if and only if 6f1− 6f0− f02 = 0, that is, (4.2) holds
with equality.

Proof. (a) follows directly from the definition of elementary, by the formula
for g2, cf. Sections 1.4 and 3.2.

(b) P is 2-simplicial if and only if every 2-face contains exactly 3 vertices,
that is

f02 =
∑

2-faces F

f0(F ) =
∑

2-faces F

3 = 3f2.

(c) P is 2-simple if and only if every edge is contained in exactly 3 facets,
that is f13 = 3f1. By the Generalized Dehn-Sommerville equations we get

f02 = f03 − 2f0 + 2f1 = f13 − 2f0 + 2f1 − 2f2 + 2f3 = f13.

(d) P is center-boolean if and only if every facet F is a simple 3-polytope,
that is f0(F ) = 2f2(F )− 4. Summing up over all facets we get

f03 = 2f23 − 4f3 = 4f2 − 4f3

and writing this in terms of f02 as before and using Euler’s equation

f02 = 2f1 − 2f0 + 4f2 − 4f3 = 6f1 − 6f2.

Another way to interpret g2(P ) is by way of the complexity of a polytope

C :=
f03 − 20

f0 + f3 − 10

as introduced by Ziegler [59]. By definition, we have ϕ1 + ϕ3 = 1/C and
inequality (4.6) states that the complexity of every polytope is at least 3. So
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the polytopes with flag vectors on the facet 〈ℓ1, ℓ3, ℓ5〉 are exactly those with
minimal complexity.

Table 4.1 summarises the depiction of the above properties. Note that the two
facets 〈ℓ2, ℓ4, ℓ7〉 and 〈ℓ2, ℓ6, ℓ7〉 cannot contain any flag vectors of polytopes.
To see this assume P 6= ∆4 is a 4-polytope with ϕ = Φ(T · f(P )) and ϕ1 = 0
or ϕ3 = 0. Then f0 = 5 or f3 = 5, but this both implies that P is a
simplex. Accordingly, the edge of P4 on the ϕ2-axis can only represent an
asymptotic face. If there really are asymptotic flag vectors on the respective
2-face of FlC4 is an open problem and is equivalent to the question if there
exist polytopes of arbitrarily high fatness

F :=
f1 + f2 − 20

f0 + f3 − 10

cf. Section 6.1 and Ziegler [59] for details.

In the following we describe extremal polytopes to show that all of the
six inequalities for C4 also define facets of FlC4, some of them asymptotic.
Most of these examples are well-known, others are relatively new and some
constructions—see Sections 4.2 and 4.3—have not been described before.

To show that an inequality is (possibly asymptotically) facet-defining we have
to find 3 affinely independent (possibly asymptotic) flag vectors of polytopes
with the respective property. For this it is useful to give polytopes that
feature more than one of these properties, resulting in flag vectors on edges
or even vertices of P4, that is, rays of C4.

Such polytopes can indeed be found and are listed in Table 4.2, together
with the projective coordinates of the rays of C4. The given examples show
that the rays marked by the green dots in Figure 4.1 are rays of FlC4, either
asymptotic, like ℓ4 and ℓ6, or exact, like ℓ1, ℓ3 and ℓ5 which contain flag
vectors of polytopes with arbitrarily many vertices.

Facet Property Associated flag vector inequality

〈ℓ1, ℓ3, ℓ5〉 elementary g2 = f02 − 3f2 + f1 − 4f0 + 10 ≥ 0
〈ℓ1, ℓ2, ℓ3, ℓ4〉 2-simplicial f02 − 3f2 ≥ 0
〈ℓ1, ℓ2, ℓ5, ℓ6〉 2-simple f02 − 3f1 ≥ 0
〈ℓ3, ℓ4, ℓ5, ℓ6, ℓ7〉 center-boolean 6f1 − 6f0 − f02 ≥ 0
〈ℓ2, ℓ4, ℓ7〉 few vertices f0 − 5 ≥ 0
〈ℓ2, ℓ6, ℓ7〉 few facets f3 − 5 ≥ 0

Table 4.1: Properties associated to the facets of P4
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Since ℓ4 and ℓ6 are asymptotic rays, we have so far only shown that the
involved inequalities (4.4), (4.5) and (4.2) are asymptotically facet-defining.
However, we can give other examples away from the rays that span the desired
facets.

All simplicial polytopes have flag vectors resulting in points on the edge
〈ℓ3, ℓ4〉. This is due to the fact that all facets of a simplicial polytope P
are simplices and hence both simplicial and simple; that is, P is both 2-
simplicial and center-boolean. Examples of simplicial polytopes away from
ℓ3 and ℓ4 include the 4-dimensional crosspolytope, as well as direct sums of
2-polytopes. The latter are especially interesting, since

f(Dn ⊕Dm) → ℓ4 for n = m→∞

and
f(Dn ⊕D3) → ℓ3 for n→∞.

So in the projective picture their flag vectors somehow“interpolate” between
those of cyclic and stacked polytopes.

This settles the facet-defining property for the three mentioned inequalities
and implies the following (intermediate) result about C4.

Proposition 4.1.4. The facets

〈ℓ1, ℓ3, ℓ5〉 , 〈ℓ1, ℓ2, ℓ3, ℓ4〉 , 〈ℓ1, ℓ2, ℓ5, ℓ6〉 and 〈ℓ3, ℓ4, ℓ5, ℓ6, ℓ7〉

of C4 represent facet-defining inequalities for FlC4.

It remains to show that the two hyperplanes spanned by 〈ℓ2, ℓ4, ℓ7〉 and
〈ℓ2, ℓ6, ℓ7〉 are indeed asymptotically facet-defining, where we again—due to
polytope duality—have to consider only one of them. The ray ℓ4 already
contains an asymptotic flag vector, that of cyclic polytopes. It turns out

Ray (ϕ1, ϕ2, ϕ3) Polytope properties Examples

ℓ1 (1
6 , 1, 1

6) elementary 2-simple, 2-simplicial see Section 4.2
ℓ2 (0, 3, 0) “fat” 2-simple, 2-simplicial unknown
ℓ7 (0, 0, 0) “fat” center-boolean unknown
ℓ4 (0, 0, 1

4) simplicial with few vertices cyclic polytopes
ℓ3 ( 1

12 , 0, 1
4) elementary simplicial stacked polytopes

ℓ5 (1
4 , 0, 1

12) elementary simple truncated polytopes
ℓ6 (1

4 , 0, 0) simple with few facets dual cyclic polytopes

Table 4.2: Known polytopes on or close to the rays of C4
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that we can find asymptotic flag vectors for both faces, 〈ℓ4, ℓ7〉 and 〈ℓ2, ℓ4〉,
away from ℓ2.

The polytopes in a family with an asymptotic flag vector for 〈ℓ4, ℓ7〉 are
asymptotically center-boolean, which means that nearly all facets are sim-
ple, and the number of vertices is less than the number of facets by order
of magnitude. Polytopes that accomplish this and are asymptotically not
simplicial are for instance projected products of polygons (see Ziegler [60])
or the neighbourly cubical polytopes obtained by Joswig & Ziegler in [33].
Also, Thilo Rörig constructed “Armadillotopes”, polytopes with large simple
facets, but few vertices, that yield the same asymptotic flag vector as the
neighbourly cubical polytopes.

Flag vectors of polytopes in the interior of 〈ℓ2, ℓ4〉 had up to now not been
explicitly described. Such polytopes can be obtained by breaking facets of
neighbourly cubical polytopes, which is the result of Section 4.3. This finally
shows the following statement complementing Proposition 4.1.4.

Proposition 4.1.5. The facets 〈ℓ2, ℓ4, ℓ7〉 and 〈ℓ2, ℓ6, ℓ7〉 of C4 are asymptot-
ically facet-defining for FlC4.

The conclusion is that all of Bayer’s inequalities are indeed necessary.

Theorem 4.1.6. None of the six inequalities for flag vectors of polytopes
in Theorem 4.1.1 is redundant or can be improved—all of them are facet-
defining, at least asymptotically.

However, this does not mean that FlC4 is completely described. As men-
tioned, the quest for polytopes with arbitrarily high fatness is still under
way. The “fattest” examples currently known are projected products of poly-
gons and their duals with F = 9−ε (see Ziegler [60]), and polytopes that arise
from the E-construction (see Paffenholz and Ziegler [44]). In Figure 4.2 the
asymptotic flag vectors of these are represented by the points P = (0, 0, 1

16
)

and E = (1
8
, 3

2
, 1

8
), respectively.

Together with the asymptotic flag vectors of the broken neighbourly cubical
polytopes—the point N = (0, 1

4
, 11

48
)—and their duals, this gives rise to three

more inequalities which would be satisfied with equality asymptotically by
the respective examples. They are indicated as shaded planes in Figure 4.2.

Conjecture 4.1.7. The reduced flag vectors of 4-polytopes satisfy the fol-
lowing linear inequalities:

42f0 − 26f1 + 16f2 − f02 ≥ 140,

594f0 − 234f1 + 48f2 + 29f02 ≥ 1980,

594f0 − 546f1 + 360f2 + 29f02 ≥ 1980.
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ϕ1

ϕ2

ϕ3

P

N

E

Figure 4.2: More special flag vectors and conjectured inequalities

While the last two of the inequalities above seem a bit too strange to be
capable of a sensible interpretation, the first one is quite interesting. Since
it is self-dual, it can be written more symmetrically:

20f0 − 4f1 − 4f2 + 20f3 + f03 ≥ 140

and in terms of fatness and complexity:

4F − C ≤ 20.

In particular, together with C ≤ 2F − 2 (see Ziegler [59]) this would imply
that F ≤ 9 and therefore solve the fatness problem for the f -vectors of
4-polytopes.

Concluding this overview, we remark that there are also examples of poly-
topes with flag vectors in the relative interior of facets of C4, indicated by
green dots in Figure 4.2:

• The Kalai basis polytope P [(1, 1; 1, 0)] = pyr2 C2 as well as the mul-
tiplexes (see Bayer [8]) are elementary and give rise to points in the
interior of facet 〈ℓ1, ℓ3, ℓ5〉.
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• Center-boolean polytopes having none of the other special properties in
Proposition 4.1.3 can be obtained by taking connected sums (see Sec-
tion 1.1) of non-elementary simplicial polytopes with their duals. Ex-
amples for these include direct sums of polygons, as mentioned above.

• Finally, 2-simplicial polytopes that are not 2-simple can be constructed
from 2-simple, 2-simplicial polytopes that contain at least one simplex
facet. Performing only the first three pseudostacking steps described
in Section 4.2 destroys 2-simplicity while keeping 2-simpliciality.

4.2 The ray ℓ1

The aim of this section is to prove that the ray ℓ1 of C4 is indeed a ray of FlC4.
This result first appeared in [43]. Before, only two examples of polytopes
were explicitly known to have flag vectors on ℓ1, namely the simplex and
the hypersimplex ∆4(2). In the following we will construct arbitrarily large
polytopes with flag vectors on ℓ1.

We do this in a similar way as in the proofs of Theorems 3.3.1 and 3.3.6: we
describe an operation that produces a new polytope from a smaller one with
the desired effect on the flag vector, that is, the change in the flag vector
matches exactly the direction of the ray ℓ1.

The construction that has all the desired properties consists of four pseu-
dostacking steps and we refer to the results from Section 2.2 to prove the
claims. Figures 4.3 and 4.4 illustrate the construction. For the sake of a
shorter notation we use the abbreviation

[p1, . . . , pn] := conv{p1, . . . , pn}

for points p1, . . . , pn ∈ R4 in the following. Furthermore, given a facet F of
a polytope P and a ridge R = [p1, . . . , pn] contained in F , then we denote by
F (p1, . . . , pn) the unique facet F ′ of P with the property that F ′ ∩ F = R.

The construction

Let P be an elementary 2-simple, 2-simplicial 4-polytope that contains a
simplex facet F . Denote the vertices of F by v0, v1, v2, v3, see Figure 4.3(a).

Step (i): Let F (i) := F and F ′ := F (v0, v1, v3). Then by Corollary 2.2.13

the polytope P (i) := PSF (i)

{F ′},∅(P ) exists and

f(P (i)) = f(P ) + (0, 1, 4, 5, 15).
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replacemen

v0

v1

v2

v3

(a) Part of the Schlegel diagram of P with
the labelling of the vertices of the facet F

v0

v1

v2

v3

v4

(b) Part of the Schlegel diagram of P (i)

with the labelling inherited from P

v0

v1

v2

v3

v4

v5

(c) Part of the Schlegel diagram of P (ii)

with the bipyramid facet [v0, v1, v2, v4, v5]

v0

v1

v2

v3

v4

v5

v6

(d) Part of the Schlegel diagram of P (iii);
the (simple) edge [v2, v4] vanishes

Figure 4.3: Constructing I(P ) from P—first three steps

We denote the pseudostacking point in this step by v4; see Figure 4.3(b).

Step (ii): Let F (ii) := [v1, v2, v3, v4], which is a simplex facet of P (i) by Grün-
baum’s Theorem 2.2.2, and F1 := [v0, v1, v2, v4] and F2 := F (ii)(v1, v2, v3).
The edge [v1, v2] = F (ii) ∩ F1 ∩ F2 is contained in at least one other facet
of P (i) (namely, F1(v0, v1, v2)), hence the set {F1, F2} is nonsimple.

Then by Proposition 2.2.14 the polytope P (ii) := PSF (ii)

{F1,F2},∅(P
(i)) exists
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v0

v1

v2

v3

v4

v5

v6
v7

Figure 4.4: Last step of the construction, showing a part of the

Schlegel diagram of I(P ) = P (iv)

and

f(P (ii)) = f(P (i)) + (0, 1, 4, 4, 12) = f(P ) + (0, 2, 8, 9, 27).

Denote the pseudostacking point by v5.

Step (iii): Let F (iii) := [v0, v2, v3, v4], which is a simplex facet of P (ii), again
by Grünbaum’s Theorem 2.2.2, F0 := [v2, v3, v4, v5], F1 = [v0, v1, v2, v4, v5]
and F2 := F (iii)(v0, v2, v3). The two edges [v0, v2] and [v2, v3] are again
contained in uninvolved facets and the edge [v2, v4] is simple. Thus the
prerequisites of Proposition 2.2.16 are satisfied and we get the polytope

P (iii) := PSF (iii)

{F1,F2},{F0}(P
(ii)) with

f(P (iii)) = f(P (ii)) + (0, 1, 4, 4, 12) = f(P ) + (0, 3, 12, 13, 39).

In this step, the vertex v6 is added and the simple edge [v2, v4] of P (ii)

vanishes, see Figure 4.3(d).

Step (iv): For the last step (see Figure 4.4) let F (iv) := [v3, v4, v5, v6] and
F1 := [v0, v3, v4, v6], F2 := [v1, v3, v4, v5] and F3 := [v2, v3, v5, v6]. The edges
[v3, v4], [v3, v5] and [v3, v6] are again contained in other facets, so Propo-

sition 2.2.15 applies and yields the polytope P (iv) := PSF (iv)

{F1,F2,F3},∅(P
(iii))

with

f(P (iv)) = f(P (iii)) + (0, 1, 4, 3, 9) = f(P ) + (0, 4, 16, 16, 48).
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Eventually, define I(P ) := P (iv) as the outcome of the construction, applied
to P .

Proposition 4.2.1. If P is an elementary, 2-simple, 2-simplicial 4-polytope
that contains a simplex facet, then I(P ) is again elementary, 2-simple, 2-
simplicial and contains a simplex facet.

Proof. In Step (iv), the facet F (iv)(v4, v5, v6) is adjacent to F (iv) and the
pseudostacking point v7 is beneath it. Hence, by Grünbaum’s Theorem 2.2.2
P (iv) = I(P ) contains a pyramid over the ridge [v4, v5, v6] as facet, which is
the simplex [v4, v5, v6, v7].

2-simpliciality can be read off from the f -vector, by Proposition 4.1.3:

f02(I(P )) = f02(P ) + 48 = 3f2(P ) + 3 · 16 = 3f2(I(P ))

and accordingly 2-simplicity:

f02(I(P )) = f02(P ) + 48 = 3f1(P ) + 3 · 16 = 3f1(I(P )).

Finally, I(P ) is elementary, since

g2(I(P )) = f1(I(P ))− 4f0(I(P )) + 10

= (f1(P ) + 16)− 4(f0(P ) + 4) + 10

= f1(P )− 4f0(P ) + 10

= 0.

Here we have already used 2-simpliciality of both, P and I(P ).

The last thing that remains to do is to find a polytope P to apply Proposi-
tion 4.2.1 to. But this is easy—the simplex has all the desired properties.

Theorem 4.2.2. For every integer k ≥ 1 there exists an elementary 2-simple,
2-simplicial 4-polytope P4k+1 on 4k + 1 vertices.

Proof. For k = 1 take P5 := ∆4, which is clearly elementary, 2-simple and
2-simplicial. The existence of P4k+1 for k > 1 then follows by induction using
Proposition 4.2.1.

Corollary 4.2.3. The ray ℓ1 is contained in FlC4, the convex hull of flag
vectors of 4-polytopes.
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Figure 4.5: Symmetric Schlegel diagram of P9.

It turns out that the polytope P9 := I(∆4) is the unique smallest 2-simple,
2-simplicial 4-polytope except for the simplex itself; see Section 7.2 for a
proof. A particularly symmetric realisation of P9 is given by
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see Figure 4.5.

In [43], examples of elementary 2-simple, 2-simplicial 4-polytopes are con-
structed for every integer n ≥ 9 of vertices, except for 12. It is still open,
whether even a non-elementary 2-simple, 2-simplicial 4-polytope on 12 ver-
tices exists. Two examples of combinatorial spheres are given in Section 7.3.
No geometric realisation of either of these examples is known to the author.
Also, both fail to be elementary, with g2 = 1 and g2 = 2, respectively.
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4.3 Polytopes with asymptotically few vertices

In this section we describe how to obtain 4-polytopes that are interesting
primarily for two reasons: first, they have asymptotically fewer vertices than
facets, that is, their flag vectors approach the facet 〈ℓ2, ℓ4, ℓ7〉 of the flag vector
cone and second, they are not center-boolean, that is, their flag vectors stay
away from the facet 〈ℓ3, ℓ4, ℓ5, ℓ6, ℓ7〉.

Together with the cyclic polytopes and projected products of polygons these
broken neighbourly cubical polytopes establish the asymptotic facet-defining
property of 〈ℓ2, ℓ4, ℓ7〉. Taking polarity into account, this completes the proof
of Proposition 4.1.5.

The examples are constructed by pushing a carefully chosen subset of vertices
of neighbourly cubical polytopes, as defined by Joswig and Ziegler [33], thus
modifying their facets in an appropriate way. It turns out that the result-
ing polytopes are additionally 2-simplicial, hence their flag vectors actually
approach the interior of the face 〈ℓ2, ℓ4〉 of the flag vector cone C4.

We first give a general description of how to break facets of polytopes before
we recall the statements about neighbourly cubical polytopes that we are
going to use. Eventually, we describe the concrete approach and verify the
claims about the flag vectors.

Definition 4.3.1 (Pushing). Let P ⊂ Rd be a d-polytope and v ∈ vert P a
vertex of P . Then P ′ arises from P by pushing v if

P ′ = conv (vert P \ {v} ∪ {v′})

where v′ is a point in P such that the intersection of the half-open segment
]v,v′] with every hyperplane spanned by points in vertP is empty.

This definition appears for example in a paper of Klee [39]. He continues with
a lower bound for the number of faces of P ′ and also proves that every face of
P ′ that contains v′ is in fact a pyramid with v′ as its apex [39, Theorem 2.4].
We will use this fact, and also some of the statements in Klee’s proof, for the
proof of the following proposition.

We call a vertex v of a d-polytope Q a simple vertex in Q if the vertex figure
Q/v is a (d− 1)-simplex; equivalently, v has exactly d neighbours in Q, that
is, the set

NQ(v) := {w | w ∈ vert Q and [v,w] edge of Q}

has exactly d elements.
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Proposition 4.3.2. Let P ⊂ Rd be a d-polytope and v ∈ vert P . Suppose
v is a simple vertex in all facets of P containing it.

If P ′ arises from P by pushing v then each facet of P ′ belongs to exactly one
of the following three types:

(A) facets F of P with v 6∈ F ,

(B) facets of the form conv(NF (v)∪ {v′}) ∼= ∆d−1 for all facets F of P with
v ∈ F ,

(C) facets of the form conv(vert F \ {v}) for all facets F of P with v ∈ F
and F 6∼= ∆d−1.

Proof. Let v′ be the pushed vertex. Obviously, facets F of P with v 6∈ F are
again facets of P ′ with v′ 6∈ F and vice versa.

Now let F be a facet of P with v ∈ F and h := aff F the hyperplane
defining F . Since v is a simple vertex in F , it has d−1 neighbouring vertices
v1, . . . ,vd−1 ∈ F . If F contains further vertices, that is, F 6∼= ∆d−1, then it
follows from Klee’s proof that h defines a facet conv(vert F \ {v}) of P ′ (see
[39, p. 709], statement (c)), which is of type (C). By the same statement (c)
of Klee the set conv(v′,v1, . . . ,vd−1) is also a facet of P ′, and it is clearly a
(d− 1)-simplex.

Conversely, let F ′ be a facet of P ′ and suppose v′ ∈ F ′. We show that in
this case F ′ is a facet of type (B) and for this we have to find a facet of P
that contains v, in which the neighbours of v are exactly those of v′ in F ′.

By Klee’s theorem [39, Theorem 2.4], F ′ is a pyramid with v′ at its apex.
Hence, if v1, . . . ,vn are the vertices in vertF ′ \ {v′}, they are all connected
to v′ by an edge, aff{v1, . . . ,vn} is a (d − 2)-dimensional affine space, and
R := conv{v1, . . . ,vn} is a ridge of P ′.

This implies that there is a facet F ′′ of P ′ such that R = F ′ ∩ F ′′ and a
hyperplane h′′ defining F ′′ as a facet of P ′. All vertices of P ′ are contained
in the same closed halfspace, defined by h′′, and v is also in the same half-
space: otherwise the segment ]v,v′] would intersect h′′, in contradiction to
the definition of pushing. Since the vertices of P coincide with the vertices
of P ′—up to v and v′—we get that h′′ also defines a facet F of P .

If v 6∈ F , that is, F ′′ = F , then R is also a ridge of P and we have a unique
facet F̃ of P such that F ∩ F̃ = R. This facet has v as a vertex, since
otherwise it would also be a facet of P ′, by Proposition 4.3.2, and then there
were three different facets of P ′ containing the ridge R. For the same reason,
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none of the other vertices of P can be a vertex of F̃ , so F̃ is a pyramid over R
with v at the apex, since v 6∈ aff R (otherwise v would be in h′′ and therefore
also in F ). But v is a simple vertex in F̃ , which implies that n = d− 1 and
F ′ ∼= ∆d−1. Hence F ′ is of type (B), coming from the facet F̃ ∼= ∆d−1.

If v ∈ F then v is obviously also in h′′ and F turns out to be F ′′, pseu-
dostacked beyond R. To prove this, we show that in h′′

(i) v is beneath or in the affine hull of every facet R′ of F ′′, except for R,
and

(ii) v is beyond R.

Let R′ 6= R be another facet of F ′′. Then R′ is a ridge of P ′ and hence
there exists some facet F ′′′ such that F ′′′ ∩ F ′′ = R′. This facet does in
fact not contain v′, since otherwise v′ had more neighbours in F ′′ than only
v1, . . . ,vn, by Klee’s theorem [39, Theorem 2.4]. Let h′′′ := aff F ′′′. Then all
vertices of P ′ that are not in vert F ′′′ (this includes v′) are in the same open
halfspace with respect to h′′′. Since the segment ]v,v′] does not intersect
h′′′, the point v also lies in this halfspace, possibly only in its closure. Since
h′′′ ∩ h′′ = aff R′, this shows (i).

For (ii) let w ∈ vert P ′ \ (vert F ′′ ∪ {v′}) and consider the hyperplane h :=
aff(R ∪ {w}). Then F ′′ and v′ are in different halfspaces defined by h, since
w is in neither of the two facets incident to R. Again by the definition of
pushing, v is in the same halfspace as v′, that is, beyond or in the affine hull
of R as a facet of F ′′ in h′′. In fact, v 6∈ aff R, since otherwise it would also
be in R, by (i).

Now Theorem 2.2.2 implies that for each vertex vi there has to be a facet R′

of F ′′ with vi ∈ R′ such that v is indeed beneath R′ in h′′. Again by Theo-
rem 2.2.2 we get that conv{vi,v} is a face of F (of type (C)), in other words,
vi is a neighbour of v in F . Since v1, . . . ,vn span the (d − 2)-dimensional
space aff R, we have n ≥ d − 1, and since v is a simple vertex in F , we get
n = d− 1. As above, F ′ ∼= ∆d−1 is of type (B), coming from the facet F .

Finally, consider the case that v′ 6∈ F ′ and let h := aff F ′ be the hyperplane
such that F ′ = P ′∩h. Then every vertex of P is in the same closed halfspace
defined by h, since the vertices of P are the vertices of P ′, except that v′

is replaced by v. In fact, would v be in the open halfspace that does not
contain the remaining vertices of P ′ then the segment ]v,v′] would intersect
the hyperplane h, in contradiction to the definition of pushing.

If v ∈ h then F ′ is of type (C), otherwise F ′ is of type (A). This finishes the
proof.
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Figure 4.6: Sign vectors and heights of vertices in a 3-cube

Next we introduce the polytopes to which we want to apply the above pushing
operation. The following theorem is the main result of [33], in fact in a more
general statement than is needed for our construction.

Theorem 4.3.3 (Joswig & Ziegler [33, Theorem 16]). For every n ≥ d ≥
2r + 2 there exists a combinatorial n-cube Cn ⊂ Rn and a linear projection
map π : Rn → Rd such that Cn

d := π(Cn) is a cubical d-polytope, and π
induces an isomorphism between the r-skeleton of Cn

d and that of Cn.

The combinatorics of these neighbourly cubical polytopes can be described
more explicitly, which leads to a formula for the number of facets of Cn

d

(see [33, Corollary 19]). We only need the 4-dimensional case, for which
Theorem 4.3.3 provides us with cubical 4-polytopes on 2n vertices, which
have the graph of the n-dimensional cube. Their flag vectors are given by

(f0, f1, f2, f3, f03)(C
n
d ) = 2n−2 ·

(
4, 2n, 3(n− 2), n− 2, 8(n− 2)

)
.

Let us shortly review a standard notation to describe the combinatorics of
the cube. The vertices of the n-cube correspond to the n-tuples in {−,+}n.
More precisely, every vertex of a combinatorial n-cube Cn can be associated
via a combinatorial equivalence to a vertex of the standard cube [−1, 1]n,
which is an n-dimensional vector in {−1, 1}n. Replacing −1 by − and +1
by +, we get a unique sign vector in {−,+}n for every vertex of Cn, see
Figure 4.6. Having done this, we define the height ht v of a vertex v of Cn as
the number of + in its combinatorial description.

We can even describe every face of Cn in a similar way. Choose k out of the
n positions in an n-tuple and fix a sign for all the remaining n− k positions.
Now all vertices of Cn whose sign vectors coincide at the n−k fixed positions
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and are filled up with either sign at the chosen k positions span a k-face F
of Cn. Hence, F can be associated to the vector in {−,+, 0}n that has the
common signs of its vertices at the n− k fixed positions and 0 at the chosen
k positions. Conversely, every k-face can by uniquely described in this way.

Proposition 4.3.4. Every face F of an n-dimensional cube can be associated
uniquely to a sign vector σ(F ) ∈ {−,+, 0}n. The dimension of F equals the
number of 0’s in σ(F ), and the sign vectors of faces G ⊆ F are exactly those
that are obtained from σ(F ) by replacing 0-entries with either + or −.

For instance, in Figure 4.6, the bottommost edge corresponds to the vector
(0,−,−), and the front quadrangle to (0,−, 0).

The faces of the neighbourly cubical polytopes inherit this combinatorial
description from the cubes they are projected from. By Theorem 4.3.3, for
d ≥ 2 all vertices are retained by the projection and hence for every k-face F
of Cn

d there is a k-face of the original n-cube, spanned by the corresponding
vertices, that is projected to F . Accordingly, a height can be assigned to
every vertex of Cn

d , via its sign vector.

In particular, in the 4-dimensional case, every facet F of a neighbourly cubical
polytope Cn

4 is equipped with a sign vector in {−,+, 0}n that has exactly
three 0-entries. Furthermore, the vertices of F are the ones that correspond
to sign vectors obtained from the sign vector of F by replacing the 0’s with
− or +. From this it is clear that the following statement holds.

Proposition 4.3.5. For every facet F of Cn
d the heights of its vertices are four

consecutive integer numbers h, h+1, h+2, h+3, with some h ∈ {0, . . . , n−3}.
Furthermore, F comprises exactly one vertex of each height h and h+3, and
three of height h + 1 and h + 2, respectively.

Compare Figure 4.6, where h = 0. Proposition 4.3.5 turns out to be the
crucial observation for the facet breaking strategy, which we describe in the
following section.

Breaking facets of neighbourly cubical polytopes

The strategy is as follows: push every vertex v of Cn
d with height

ht v ≡ 0 mod 3.

We call the polytope obtained in this way a broken neighbourly cubical poly-
tope, denoted by Čn

d . The last observation of the previous section, together
with Proposition 4.3.2 allows us to describe the facets of Čn

d .
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(a) An octahedron and two simplices
arising from an O-facet

�
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(b) A bipyramid and three simplices
arising from a B-facet

Figure 4.7: Broken 3-cubes—the blue edges, together with the shaded
triangle 2-faces arise from pushing in the indicated way

Consider a facet F of Cn
d and let h := min {ht v | v ∈ F, v vertex of Cn

d }. If
h ≡ 0 mod 3 then by Proposition 4.3.5 two opposite vertices of F are pushed
and Proposition 4.3.2 implies that the facet breaks up into an octahedron
and two simplices; see Figure 4.7(a). In this case we call F an O-facet.

If, on the other hand, h ≡ 1 mod 3 or h ≡ 2 mod 3, then three vertices of
F are pushed which are all neighbours of some other vertex in F . Propo-
sition 4.3.2 now implies that F is replaced by a bipyramid over a triangle
and three simplices in Čn

d . Then F is called a B-facet, as illustrated in Fig-
ure 4.7(b).

Proposition 4.3.6. Let n ≥ 4. Then for the flag vector of the 4-dimensional
broken neighbourly cubical polytope Čn

4 we have

(f0, f1, f2, f3; f03)(Č
n
4 ) =

(
2n, 2n−2(5n− 6), 9(n− 2) · 2n−2 − o, 2n(n− 2)− o; 17(n− 2) · 2n−2 − 3o

)

with 0 ≤ o ≤ f3(C
n
4 ) = 2n−2(n− 2).

Furthermore, Čn
4 is 2-simplicial.

Proof. Let o be the number of O-facets of Cn
4 . The pushing operation does

not change the number of vertices of a polytope, so f0(Č
n
4 ) = f0(C

n
4 ) = 2n.

Clearly, every facet of Cn
4 is either an O-facet or a B-facet. Furthermore,

every O-facet gives rise to 3, every B-facet to 4 facets of Čn
4 . Hence

f3(Č
n
4 ) = 3o + 4 (f3(C

n
4 )− o) = 2n(n− 2)− o.
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The number of 2-faces can be computed in the following way: for every O-
facet 2 new triangles are created and 6 quadrilaterals break into 2 triangles
each. The triangles that arise from the broken quadrilaterals, however, are
counted twice, since they also break apart in the neighbouring facets. There-
fore, every O-facet accounts for 2 + 1

2
· 6 = 5 new 2-faces in Čn

4 . Similarly,
every B-facet creates 3 + 1

2
· 6 = 6 new 2-faces. In total, we get

f2(Č
n
4 ) = f2(C

n
4 ) + 5o + 6 (f3(C

n
4 )− o)

= 3 (n− 2) · 2n−2 + 6 (n− 2) · 2n−2 − o = 9 (n− 2) · 2n−2 − o.

The number of edges can then be computed from Euler’s equation.

Finally, for everyO-facet in Cn
4 the broken Čn

4 contains 2 facets with 4 vertices
each and 1 facet with 6 vertices. Analogously, for every B-facet we have 3
facets with 4 vertices each and 1 facet with 5 vertices in Čn

4 . This leads to

f03(Č
n
4 ) = o(2 · 4 + 6) + (f3(C

n
4 )− o)(3 · 4 + 5) = 17 (n− 2) · 2n−2 − 3o.

2-simpliciality follows from the fact that every quadrilateral of Cn
4 is broken

into triangles and all new 2-faces are also triangles.

Theorem 4.3.7. The family of broken neighbourly cubical polytopes Čn
4

gives rise to an asymptotic flag vector in the interior of the face 〈ℓ2, ℓ4〉 of C4.

Proof. Using the transformation in Section 4.1, we obtain from Proposi-
tion 4.3.6:

ϕ1 =
f0 − 5

f03 − 20
=

2n − 5

17(n− 2) · 2n−2 − 3o− 20

≤
2n − 5

14(n− 2) · 2n−2 − 20

n→∞
−→ 0

ϕ2 =
2(f1 + f2)− 2(f0 + f3)− f03

f03 − 20

=
2(2n−2(14n− 24)− o)− 2(2n(n− 1)− o)− (17(n− 2) · 2n−2 − 3o)

17(n− 2) · 2n−2 − 3o− 20

=
3 · 2n−2(n− 2) + 3o

17 · 2n−2(n− 2)− 3o− 20
≥

3 · 2n−2(n− 2)

17 · 2n−2(n− 2)

n→∞
−→

3

17
> 0

Here we have used both bounds for o from Proposition 4.3.6. The first limit
shows that we get arbitrarily close to 〈ℓ2, ℓ4, ℓ7〉 and the second that the
asymptotic flag vector has positive distance from the face 〈ℓ3, ℓ4, ℓ5, ℓ6, ℓ7〉.
Furthermore, 2-simpliciality of Čn

4 ensures that all flag vectors, including the
asymptotic, lie on the face 〈ℓ1, ℓ2, ℓ3, ℓ4〉.
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Using the combinatorial description of neighbourly cubical polytopes by San-
yal and Ziegler [47] one can obtain explicit formulas for the numbers of O-
facets and B-facets, respectively. A precise calculation then yields an asymp-
totic flag vector of (f0, f1, f2, f02) = (0, 5, 26/3, 26) for the Čn

4 family. From
this one gets the point N = (0, 1/4, 11/48) in Figure 4.2.

A promising way to improve the above results (and thereby disprove Con-
jecture 4.1.7) might be to apply the pushing operation to break the facets
of projected products of polygons (see Ziegler [60]) instead of neighbourly
cubical polytopes. Their facet structure, however, is more complicated and
it seems much harder to provide a pushing strategy that works.





Chapter 5

Kalai’s and Braden’s sequences

What has been done in the last chapter for dimension 4, namely trying to
approximate the convex hull of flag vectors, FlCd, by the polyhedron given
by all linear inequalities we know, can in principle be done for arbitrary
dimension. However, we have to deal with some difficulties.

Firstly, the dimension of the object we want to understand is too high to
make useful visualisations of it. Furthermore, the number of inequalities
“grows rapidly”, as Ehrenborg remarks [24, p. 217]. On top of that, starting
with dimension 6, the known inequalities do not longer determine a cone,
that is, we cannot apply the projective transformation method to capture
the complete information available.

Therefore we focus on selected inequalities which seem promising due to
their special structure, and try to show that they are facet-defining for FlCd.
Braden (unpublished [16]) conjectured this for a certain set of inequalities
that arise from convolutions of g-vector entries. He worked this out for
dimension up to 6, and we will present a proof here. Furthermore, we show
that some of these inequalities are asymptotically facet-defining in general,
and cannot be more than that.

5.1 Admissible sequences and associated polytopes

Recall from Section 3.1 the basis polytopes defined by Kalai [36]: for a (2k)-
tuple b = (m1, ℓ1; . . . ;mk, ℓk) ∈ N2k with k ≥ 1 we define the polytope

P [b] :=

{
∆m1 ⊕∆ℓ1 if k = 1(
P [b̂] ∗∆mk

)
⊕∆ℓk

if k > 1

where b̂ = (m1, ℓ1; . . . ;mk−1, ℓk−1) if k > 1. We call b admissible, if

• for all i we have mi ≥ ℓi, and

• for all i, except possibly the last, ℓi ≥ 1.

91
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The number of admissible sequences of dimension d is the Fibonacci number
Fd. This coincides with the affine dimension of the space of flag vectors of
d-polytopes, see Section 1.2.

We now define a different set of sequences, which eventually yields the same
polytopes. These sequences were proposed by Tom Braden [16].

Definition 5.1.1 (Braden’s sequences). Let k ≥ 1 be an integer number. A
(2k)-tuple b = (m1, ℓ1; . . . ;mk, ℓk) ∈ N2k is a Braden sequence, if it satisfies
the following properties:

(i) If ℓi > 0 for some i ∈ {1, . . . , k} then mi = ℓi.

(ii) If ℓi = 0 for some i ∈ {1, . . . , k − 1} then ℓi+1 > 0.

As before, the dimension of b is dim b :=
( k∑

i=1

mi + ℓi

)
+k−1, and the length

of b is k. We denote by Td the set of all Braden sequences of dimension d.

We then have a one-to-one correspondence between the elements of Bd and
those of Td.

Proposition 5.1.2. There exists a bijective mapping φ : Bd → Td.

Proof. To define the mapping φ let b = (m1, ℓ1; . . . ;mk, ℓk) ∈ Bd. Then φ(b)
is the result of the following transformation: for every i ∈ {1, . . . , k} with
mi 6= ℓi > 0 replace

. . . ;mi, ℓi; . . . by the two pairs . . . ;mi − ℓi − 1, 0; ℓi, ℓi; . . .

Since b ∈ Bd, we have mi > ℓi, hence mi − ℓi − 1 ≥ 0. Clearly, the length of
φ(b) is at least the length of b.

That φ(b) is in Td is easy to see: (i) is satisfied since every pair that violated
mi = ℓi was replaced by two correct ones, and (ii) holds since the replace-
ments create no two consecutive pairs with ℓi = 0 and the only possible zero
entry in the admissible sequence b could have been the last one.

Obviously, the transformation is reversible: If b = (m1, ℓ1; . . . ;mk, ℓk) ∈ Td,
then mi ≥ ℓi for every i ∈ {1, . . . , k} by definition. If ℓi = 0 for some
i ∈ {1, . . . , k − 1} then ℓi+1 > 0, and we can replace the two pairs

. . . ;mi, 0;mi+1, ℓi+1; . . . by the one pair . . . ;mi + mi+1 + 1, ℓi+1; . . .

This yields an admissible sequence and the two mappings are inverse to each
other.
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dim. admissible↔ Braden dim. admissible ↔ Braden

4 (4, 0) ↔ (4, 0) 6 (6, 0) ↔ (6, 0)
(3, 1) ↔ (1, 0; 1, 1) (5, 1) ↔ (3, 0; 1, 1)
(2, 2) ↔ (2, 2) (4, 2) ↔ (1, 0; 2, 2)
(2, 1; 0, 0) ↔ (0, 0; 1, 1; 0, 0) (3, 3) ↔ (3, 3)
(1, 1; 1, 0) ↔ (1, 1; 1, 0) (4, 1; 0, 0) ↔ (2, 0; 1, 1; 0, 0)

5 (5, 0) ↔ (5, 0) (3, 2; 0, 0) ↔ (0, 0; 2, 2; 0, 0)
(4, 1) ↔ (2, 0; 1, 1) (3, 1; 1, 0) ↔ (1, 0; 1, 1; 1, 0)
(3, 2) ↔ (0, 0; 2, 2) (2, 2; 1, 0) ↔ (2, 2; 1, 0)
(3, 1; 0, 0) ↔ (1, 0; 1, 1; 0, 0) (2, 1; 2, 0) ↔ (0, 0; 1, 1; 2, 0)
(2, 2; 0, 0) ↔ (2, 2; 0, 0) (2, 1; 1, 1) ↔ (0, 0; 1, 1; 1, 1)
(2, 1; 1, 0) ↔ (0, 0; 1, 1; 1, 0) (1, 1; 3, 0) ↔ (1, 1; 3, 0)
(1, 1; 2, 0) ↔ (1, 1; 2, 0) (1, 1; 2, 1) ↔ (1, 1; 0, 0; 1, 1)
(1, 1; 1, 1) ↔ (1, 1; 1, 1) (1, 1; 1, 1; 0, 0)↔ (1, 1; 1, 1; 0, 0)

Table 5.1: Admissible and Braden sequences of dimensions 4 to 6

The partial order on the set Bd described in Section 3.1 induces, via φ, a
partial order on the set Td: for b, b′ ∈ Td define

b 4 b′ ⇐⇒ φ−1(b) 4 φ−1(b′)

Also, the number of elements in Td coincides with the number of admissible
sequences.

Corollary 5.1.3. The number of Braden sequences of dimension d is Fd.

Table 5.1 lists the Braden sequences in T4, T5 and T6 together with their
counterparts in B4, B5 and B6, in decreasing order.

Though the sequences themselves are different, every Braden sequence yields
the same polytope as its counterpart in Bd.

Proposition 5.1.4. For all b ∈ Td we have P [b] ∼= P [φ−1(b)].

Proof. Let b = (m1, ℓ1; . . . ;mk, ℓk) ∈ Td and suppose b 6= φ−1(b). Then
ℓi = 0 for some i < k. Let i be the smallest such index. Then by definition
of φ, the sequence φ−1(b) contains the pair

. . . ;mi + mi+1 + 1, ℓi+1; . . . instead of . . . ;mi, 0;mi+1, ℓi+1; . . .

in b. The construction of the polytope P [b] involves the operations

P [(m1, ℓ1; . . . ;mi−1, ℓi−1)] ∗∆mi
⊕∆0 ∗∆mi+1

⊕∆ℓi+1
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(applied from left to right). By definition of direct sum and join (see Defini-
tion 1.1.8), we have P⊕∆0

∼= P and P ∗∆n∗∆m
∼= P ∗(∆n∗∆m) ∼= P ∗∆n+m+1

for every polytope P , hence

P [(m1, ℓ1; . . . ;mi−1, ℓi−1)] ∗∆mi
⊕∆0 ∗∆mi+1

⊕∆ℓi+1

∼= P [(m1, ℓ1; . . . ;mi−1, ℓi−1)] ∗∆mi
∗∆mi+1

⊕∆ℓi+1

∼= P [(m1, ℓ1; . . . ;mi−1, ℓi−1)] ∗∆mi+mi+1+1 ⊕∆ℓi+1

∼= P [(m1, ℓ1; . . . ;mi−1, ℓi−1;mi + mi+1 + 1; ℓi+1)]

Since i was the smallest index where b differs from φ−1(b), this is the polytope
constructed in the first i steps from φ−1(b). Iterating this argument proves
the assertion.

5.2 Defining facets

Every admissible or Braden sequence gives rise to a flag vector functional

G[b] = gm1+ℓ1
ℓ1

∗ . . . ∗ gmk+ℓk

ℓk

cf. Section 3.1. We have G[b](P ) ≥ 0 for all b and all polytopes P of the
correct dimension dim P = dim b, since the g-vector is non-negative for poly-
topes, and convolution preserves non-negativity of linear functionals (see Sec-
tion 1.4).

Kalai’s Theorem 3.1.6 implies that the inequality given by the minimal admis-
sible sequence bmin defines a facet of FlCd: G[bmin](P [b]) = 0 for all admissible
sequences b 6= bmin, that is, there are Fd − 1 many affinely independent flag
vectors of polytopes satisfying G[bmin] with equality, which then span a facet
of FlCd.

Note that affine independence follows from the theorem itself: The mapping
f(P [b]) 7→ (G[c](P [b]))c∈Bd

for b ∈ Bd, defines a linear map on the space
spanned by the vectors {f(P [b]) | b ∈ Bd}. By Kalai’s Theorem this map has
full rank and therefore the vectors in this set are linearly independent and
span the Fd-dimensional linear space of flag vectors. In particular, the affine
span aff{f(P [b]) | b ∈ Bd} is mapped to an (Fd− 1)-dimensional affine space.

In this section we show that the result about the facet-defining sequence
carries over to inequalities defined by Braden sequences, and try to extend
it. The desired result would be the following conjecture.

Conjecture 5.2.1 (Braden [16]). All Fd − 1 non-trivial inequalities repre-
sented by G[b], with b ∈ Td \ {(d, 0)}, are (possibly asymptotically) facet-
defining for FlCd.
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We prove the conjecture for d ≤ 6, following the sketch of proof given by
Braden. The next section considers special parts of the conjecture for gen-
eral d.

To keep the calculations reasonably clear, we introduce some more notation.
Most of it is taken over from Kalai’s paper [36]. For an admissible or Braden
sequence b = (m1, ℓ1; . . . ;mk, ℓk) define s(b) := (m1 + ℓ1, . . . ,mk + ℓk) and
ℓ(b) := (ℓ1, . . . , ℓk). If P is a d-polytope and s = (s1, . . . , sk) such that
( k∑

i=1

si

)
+ k − 1 = d, we call a chain ∅ = F0 ⊂ F1 ⊂ . . . ⊂ Fk−1 ⊂ Fk = P

of faces of P an s-chain, if dim Fi/Fi−1 = si for 1 ≤ i ≤ k. We denote by
C(s, P ) the set of all s-chains of the polytope P .

Braden sequences can be “turned round”: for b = (m1, ℓ1; . . . ;mk, ℓk) ∈ Td

define b∗ = (mk, ℓk; . . . ;m1, ℓ1), the dual sequence. This turns out to be quite
useful for our purposes.

Proposition 5.2.2. Let b ∈ Td. Then b∗ ∈ Td and for any d-polytope P the
convolution G[b] and that of the dual sequence, G[b∗], satisfy

G[b](P ) = G[b∗](P∆).

Proof. Let b = (m1, ℓ1; . . . ;mk, ℓk) ∈ Td. Obviously, b∗ also satisfies the
conditions in Definition 5.1.1. Furthermore

G[b∗](P∆) =
∑

F0⊂...⊂Fk

in C(s(b∗),P∆)

k∏

i=1

gsi

ℓi
(Fi/Fi−1)

If ℓi = 0 for some i then gsi

ℓi
(Fi/Fi−1) = 1 = gsi

ℓi
((Fi/Fi−1)

∆). For ℓi ≥ 1 we

have si = mi + ℓi = 2ℓi by 5.1.1.(i). Hence gsi

ℓi
(Fi/Fi−1) = gsi

ℓi
((Fi/Fi−1)

∆),
since the highest entry of the g-vector of an even-dimensional polytope coin-
cides with the one of the polar polytope (see, for instance, Bayer and Ehren-
borg [9, Theorem 5.1]).

Denoting with F∆ the face in P∆ corresponding to the face F of P , we
have (Fi/Fi−1)

∆ ∼= Fi−1
∆/Fi

∆. Every chain F0 ⊂ . . . ⊂ Fk in C(s(b∗), P∆)
corresponds uniquely to the chain Fk

∆ ⊂ . . . ⊂ F0
∆ in C(s(b), P ) and vice

versa. Putting everything together, we get

∑

F0⊂...⊂Fk

in C(s(b∗),P∆)

k∏

i=1

gsi

ℓi
(Fi/Fi−1) =

∑

Fk
∆⊂...⊂F0

∆

in C(s(b),P )

k∏

i=1

gsi

ℓi
(Fi−1

∆/Fi
∆) = G[b](P ).
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To verify Conjecture 5.2.1 we have to find—for every non-trivial Braden
sequence b—enough polytopes whose flag vectors give linearly independent
points in FlCd and yield 0 when evaluated on G[b]. Here, “enough” means
Fd−2, since the d-simplex already provides one suitable flag vector for every
b 6= (d, 0). As in Kalai’s paper, affine independence can be proved using the
values G[c](P [b]), b, c ∈ Td themselves.

Some inequalities will be only asymptotically facet-defining. For these we
have to include parametrised families of polytopes Pn and consider the values
G[b](Pn) by order of magnitude, with respect to the parameter n→∞.

To compute G[b](P ) for a given polytope P , one has to sum a certain product
of g-vector entries, over all s(b)-chains of P . Under some circumstances
such a chain contributes nothing to the sum, namely, if one of the factors
gsi

ℓi
(Fi/Fi−1) is 0. This happens, for instance, if the quotient polytope Fi/Fi−1

is a simplex and ℓi > 0.

Definition 5.2.3 (Degenerate). Given a sequence b = (m1, ℓ1; . . . ;mk, ℓk),
an s(b)-chain ∅ = F0 ⊂ F1 ⊂ . . . ⊂ Fk−1 ⊂ Fk = P is degenerate if Fi/Fi−1 is
an si-simplex for some i ∈ {1, . . . , k} with si = mi + ℓi and ℓi > 0.

For admissible sequences this notion of degeneracy is slightly less restrictive
than the one in Kalai’s paper [36, Section 4]. In other words, an admissi-
ble sequence that is degenerate due to Kalai’s definition is also degenerate
in the sense of Definition 5.2.3. The formulation given here is the natural
generalisation that also works for Braden sequences.

In terms of chains of faces, passing from a Braden sequence to the corres-
ponding admissible sequence amounts to taking subchains (see Section 1.2).

Lemma 5.2.4. Let b = (m1, l1; . . . ;mk, ℓk) ∈ Td and let F be an s(b)-chain
∅ = F0 ⊂ . . . ⊂ Fk = P in the face lattice of the polytope P . Then there is
a unique s(φ−1(b))-subchain F ′ of F .

If F ′ is degenerate then F is degenerate and

k∏

i=1

gsi

ℓi
(Fi/Fi−1) = 0.

Proof. Let s(b) = (s1, . . . , sk). Then for every i < k with ℓi = 0 the two
entries si, si+1 in s(b) are replaced by the entry si + si+1 + 1 in s(φ−1(b)).
Therefore removing every face Fi where i < k with ℓi = 0 from the chain F
uniquely defines an s(φ−1(b))-subchain F ′ of F .

If F ′ is degenerate, then it contains two consecutive faces F ⊂ F̃ , whose
quotient is a simplex of dimension at least 2. There are two possibilities:
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(i) F and F̃ are also faces in the chain F , that is, F = Fi−1 and F̃ = Fi

for some i ≤ k. Since F ′ was degenerate, we have ℓi > 0 and the chain
F is also degenerate.

(ii) Otherwise, exactly one face Fi in F is missing in F ′ between the faces
F = Fi−1 and F̃ = Fi+1, where 1 ≤ i ≤ k − 1. Since ℓi = ℓi+1 = 0 is
not allowed for sequences in Td, one of si or si+1 has to be at least 2.
That is, either Fi/Fi−1 or Fi+1/Fi is of dimension at least 2, and both
of these quotients are simplices, since they are quotients in the simplex
F̃ /F . Hence F is degenerate.

The following theorem is the main statement of this section and the counter-
part of Kalai’s Theorem 3.1.6 for Braden sequences.

Theorem 5.2.5. Let b ∈ Td and c ∈ Td with b 64 c. Then

(a) G[b](P [b]) > 0 and

(b) G[c](P [b]) = 0.

Proof. We prove this by adapting the proof of [36, Theorem 4.1.], using
Proposition 5.1.4 and Lemma 5.2.4. Let b, c ∈ Td with b 64 c and for notation
b′ := φ−1(b), c′ := φ−1(c). Then b′ 64 c′ and P [b] = P [b′] by Proposition 5.1.4.

We first show (b). As in Kalai’s proof, one of the following two cases applies:

(i) s(b′) 6≤ s(c′). Then Kalai shows (see [36, Proposition 4.2]) that every
s(c′)-chain in P [b′] is degenerate, and by Lemma 5.2.4 also every s(c)-
chain in P [b] is degenerate, so G[c](P [b]) = 0.

(ii) s(b′) = s(c′) and ℓη(c
′) > ℓη(b

′) for some η ≤ k. Then, again by
[36, Proposition 4.2], every s(c′)-chain in P [b′] is degenerate, with one
exception—the central chain

∅ ⊂ P [(m1(b
′), ℓ1(b

′))] ⊂ P [(m1(b
′), ℓ1(b

′);m2(b
′), ℓ2(b

′))] ⊂ . . . ⊂ P [b′]

Therefore we only have to care about s(c)-chains, of which the central

chain is a subchain. We show that the factor g
sη(c′)

ℓη(c′) occurs in G[c],
and, applied to the appropriate quotient polytope in each such chain,
equals 0.
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Comparing c′ and c there are again two possibilites: Either the pair
mη(c

′), ℓη(c
′) in c′ is also contained in c (which means mη(c

′) = ℓη(c
′)),

or it is replaced by the two successive pairs dη, 0; ℓη(c
′), ℓη(c

′) in c, where
dη := mη(c

′)− ℓη(c
′)− 1. In the first case the factor

g
2ℓη(c′)

ℓη(c′)

(
∆mη(b′) ⊕∆ℓη(b′)

)

occurs in every summand corresponding to a subchain of the central
chain, and since ℓη(b

′) < ℓη(c
′) < mη(b

′), this factor equals 0.

Otherwise, the part g
sη(c′)

ℓη(c′) in G[c′] is replaced by g
dη

0 ∗ g
2ℓη(c′)

ℓη(c′) in G[c],
and every summand contains a factor

g
2ℓη(c′)

ℓη(c′)

(
(∆mη(b′) ⊕∆ℓη(b′))/F

)

where F is a face of ∆mη(b′) ⊕ ∆ℓη(b′) of dimension dη. Then the
quotient (∆mη(b′) ⊕ ∆ℓη(b′))/F is combinatorially equivalent to a sum
∆mη(b′)−x ⊕ ∆ℓη(b′)−y with x, y ≥ 0. Since ℓη(c

′) > ℓη(b
′) ≥ ℓη(b

′) − y,

again g
2ℓη(c′)

ℓη(c′) (∆mη(b′)−x ⊕∆ℓη(b′)−y) = 0.

This proves (b). For the proof of (a), again by [36, Proposition 4.2], we have
to investigate only the contribution of those chains that contain the central
chain as a subchain. Consider any pair mη(b

′), ℓη(b
′). As before, two cases

are possible.

If mη(b
′) = ℓη(b

′), the pair survives the mapping φ and in G[b] the evaluation

of any chain of interest includes the factor g
sη(b′)

ℓη(b′) (∆mη(b′) ⊕∆ℓη(b′)) = 1.

Otherwise, as above, the pair splits up under φ into dη, 0; ℓη(b
′), ℓη(b

′), with
dη := mη(b

′) − ℓη(b
′) − 1, and the product over any s(b)-chain contains a

factor

g
dη

0 (F ) · g
2ℓη(b′)

ℓη(b′)

(
(∆mη(b′) ⊕∆ℓη(b′))/F

)

where F is a face of ∆mη(b′) ⊕∆ℓη(b′) of dimension dη. Since ∆mη(b′) ⊕∆ℓη(b′)

is combinatorially equivalent to (∆dη
∗∆ℓη(b′))⊕∆ℓη(b′), at least one of these

dη-faces F is a simplex. Then (∆mη(b′) ⊕∆ℓη(b′))/F ∼= ∆ℓη(b′) ⊕∆ℓη(b′). Thus
there is at least one chain, such that

g
dη

0 (∆dη
)︸ ︷︷ ︸

=1

· g
2ℓη(b′)

ℓη(b′) (∆ℓη(b′) ⊕∆ℓη(b′))︸ ︷︷ ︸
=1

= 1

is contained in the product.
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Altogether we can find at least one chain of faces in P [b], such that the

product
∏k

i=1 g
si(b)
ℓi(b)

(Fi/Fi−1) = 1, and therefore

G[b](P [b]) =
∑

F0⊂...⊂Fk

in C(s(b),P [b])

k∏

i=1

g
si(b)
ℓi(b)

(Fi/Fi−1) ≥ 1.

Corollary 5.2.6. Let bmin be the smallest (by partial order) Braden sequence
of dimension d. Then the inequality represented by G[bmin] is tight and facet-
defining for FlCd, as is the inequality given by G[b∗min].

Proof. By Theorem 5.2.5(b) the inequality G[bmin] ≥ 0 is satisfied with equal-
ity by the flag vectors of every P [b] with b ∈ Td, b 64 bmin, which are exactly
Fd − 1 many. Affine independence of these flag vectors follows from Theo-
rem 5.2.5(a).

Proposition 5.2.2 implies that the inequality G[b∗min] is also facet-defining, by
considering the polar polytopes P [b]∆.

Dimensions 4 to 6

For moderate dimensions∗ one can arrange the values G[b](P ) in a relatively
concise way and try to find more polytopes to prove Conjecture 5.2.1. We
build up a matrix of size n × (Fd − 1), indexing the rows by the polytopes
involved and the columns by the non-trivial Braden sequences, ordered ac-
cording to a total order extending the given partial order.

Then for every column we have to find Fd−2 rows containing a 0, which means
that the flag vectors of the specified polytopes lie on the hyperplane defined
by the specified convolution. Furthermore, there has to be an additional row
such that the resulting submatrix of size (Fd−1)×(Fd−1) has full rank. This
ensures that the flag vectors of the chosen polytopes are affinely independent.
Note that we leave out the simplex P [(d, 0)], which gives equality for all non-
trivial inequalities, thus already giving us one polytope for free.

By Theorem 5.2.5 the last column of this matrix already contains Fd − 2
zeros. More generally, ordering the polytopes P [b] with b ∈ Td consistently
to the inequalities shows a triangular (Fd−1)× (Fd−1)-matrix with positive

∗The“definition”of moderate dimension happens to be essentially the same as in Chap-
ter 6
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(1, 0; 1, 1) (2, 2) (0, 0; 1, 1; 0, 0) (1, 1; 1, 0)

P [(1, 0; 1, 1)] 6 0 0 0
P [(2, 2)] 9 1 0 0
P [(0, 0; 1, 1; 0, 0)] 3 0 3 0
P [(1, 1; 1, 0)] 1 0 2 1

C4 0 2 0 24

Table 5.2: Facet-defining Braden sequences in dimension 4

values on the diagonal. Adding more polytopes to treat the other inequali-
ties unfortunately gives a less clear structure, so regularity of the respective
submatrix has to be verified explicitly.

In dimension 4 we have F4−1 = 4 inequalities and need 3 polytopes for each
of them. Table 5.2 summarises the data. The sequence (1, 1; 1, 0) is smallest,
so its inequality, as well as the one arising from the dual sequence, (1, 0; 1, 1),
are facet-defining by Corollary 5.2.6.

Furthermore, the inequality of (2, 2) is facet-defining, already by considering
Kalai’s basis polytopes. For the last remaining inequality, corresponding to
the sequence (0, 0; 1, 1; 0, 0), we just need one other polytope. The 4-cube
gives a suitable flag vector.

In dimension 5 we have to deal with F5 − 1 = 7 sequences. The smallest
sequence (1, 1; 1, 1) is dual to itself, therefore no other inequality is proved
to be facet-defining by Corollary 5.2.6. In addition to that, Kalai’s basis
polytopes show that the inequality arising from (2, 2; 0, 0) is facet-defining.
By Proposition 5.2.2, this also settles the dual sequence (0, 0; 2, 2). For the
inequality corresponding to (0, 0; 1, 1; 1, 0) and its dual the 5-cube, the prism
over the 4-dimensional crosspolytope and four of the basis polytopes suffice.

There remain the inequalities from the sequence (1, 1; 2, 0) and its dual. As
we will prove in Section 5.3, these inequalities are only asymptotically facet-
defining. This can be seen by taking as a parametrised family of polytopes
the join of two n-gons, Dn ∗ Dn. The value G[(1, 1; 2, 0)](Dn ∗ Dn) grows
asymptotically less than that of other considered convolutions. More pre-
cisely, let

G̃[b](Dn ∗Dn) :=
G[b](Dn ∗Dn)

f0(Dn ∗Dn)
=

G[b](Dn ∗Dn)

n2

Then G̃[(1, 1; 2, 0)](Dn ∗Dn)→ 0 and G̃[(1, 1; 1, 1)](Dn ∗Dn)→ 2 as n→∞.
This shows that the asymptotic flag vector of the family is in the hyperplane
defined by (1, 1; 2, 0), and regularity holds with the limits lim

n→∞
G̃[b](Dn ∗Dn),
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(2, 0; 1, 1)

(0, 0; 2, 2)

(1, 0; 1, 1; 0, 0)

(2, 2; 0, 0)

(0, 0; 1, 1; 1, 0)

(1, 1; 2, 0)

(1, 1; 1, 1)

P [(2, 1; 1, 1)] 10 0 0 0 0 0 0
P [(0, 0; 2, 2)] 18 4 0 0 0 0 0
P [(1, 0; 1, 1; 0, 0)] 6 0 6 0 0 0 0
P [(2, 2; 0, 0)] 9 1 9 1 0 0 0
P [(0, 0; 1, 1; 1, 0)] 3 0 6 0 3 0 0
P [(1, 1; 2, 0)] 1 0 3 0 3 1 0
P [(1, 1; 1, 1)] 15 2 4 0 4 1 1

C5 0 0 0 20 0 80 0

prism C4
∆ 24 0 48 4 0 24 24

Dn ∗Dn → 0 0 → 2 0 → 2 → 0 → 2

Table 5.3: (Asymptotically) facet-defining Braden sequences in
dimension 5

hence the inequality is asymptotically facet-defining. See Table 5.3 for the
summary.

Finally consider the situation for d = 6. We have F6 = 13, so there are 12
inequalities and 12 basis polytopes. Again, by Corollary 5.2.6, the smallest
inequality (1, 1; 1, 1; 0, 0) and also its dual (0, 0; 1, 1; 1, 1) are facet-defining.
To show that in fact all inequalities are facet-defining, several additional
polytopes are needed, as well as parametrised families, cf. Section 5.3. Apart
from the standard constructions and examples from Section 1.1, we use the
following construction suggested by Braden [16].

Definition 5.2.7 (Capped prism). Let P be a polytope. The capped prism
F(P ) over P is the polytope that arises as prism P , stacked over the two
respective facets P × {−1} and P × {1}.

In other words, F(P ) := conv(prism P ∪ {p−,p+}), where p− and p+ are
points beyond the facets P × {−1}, respectively P × {1}.

All used polytopes are listed in Table 5.4. The inequalities (3, 3), (2, 2; 1, 0)
and (1, 1; 1, 1; 0, 0) are obviously (by use of Kalai’s polytopes and Corol-
lary 5.2.6, respectively) facet-defining. Proposition 5.2.2 then implies that
also (1, 0; 2, 2) and (0, 0; 1, 1; 1, 1) are facet-defining. Furthermore, inequality
(1, 1; 0, 0; 1, 1) can be seen to be facet-defining by replacing P [(1, 1; 2, 1)] by
∆2⊕∆1∗∆1⊕∆1. Similarly, (0, 0; 2, 2; 0, 0) is done by replacing P [(3, 2; 0, 0)]
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(3, 0; 1, 1)

(1, 0; 2, 2)

(3, 3)

(2, 0; 1, 1; 0, 0)

(0, 0; 2, 2; 0, 0)

(1, 0; 1, 1; 1, 0)

(2, 2; 1, 0)

(0, 0; 1, 1; 2, 0)

(0, 0; 1, 1; 1, 1)

(1, 1; 3, 0)

(1, 1; 0, 0; 1, 1)

(1, 1; 1, 1; 0, 0)

(∗) P [(5, 1)] 15 0 0 0 0 0 0 0 0 0 0 0
(∗) P [(4, 2)] 30 10 0 0 0 0 0 0 0 0 0 0
(∗) P [(3, 3)] 36 16 1 0 0 0 0 0 0 0 0 0

(∗∗) P [(4, 1; 0, 0)] 10 0 0 10 0 0 0 0 0 0 0 0
(∗∗) P [(3, 2; 0, 0)] 18 4 0 18 4 0 0 0 0 0 0 0

P [(3, 1; 1, 0)] 6 0 0 12 0 6 0 0 0 0 0 0
P [(2, 2; 1, 0)] 9 1 0 18 2 9 1 0 0 0 0 0
P [(2, 1; 2, 0)] 3 0 0 9 0 9 0 3 0 0 0 0

(∗∗) P [(2, 1; 1, 1)] 28 7 0 12 0 12 0 3 3 0 0 0
P [(1, 1; 3, 0)] 1 0 0 4 0 6 0 4 0 1 0 0
P [(1, 1; 2, 1)] 21 3 0 6 0 9 0 5 3 1 3 0
P [(1, 1; 1, 1; 0, 0)] 15 2 0 19 2 8 0 5 1 1 1 1
Dn ∗Dn ∗∆0 → 0 0 0 → 2 0 → 4 0 → 2 → 2 → 0 → 2 → 2
Dn ∗Dn ⊕∆1 → 1 → 2 → 1 → 4 0 → 6 0 → 2 → 6 → 0 → 6 0
∆2 ⊕∆1 ∗∆1 ⊕∆1 0 0 0 3 0 12 7 12 0 28 0 3
∆1 ⊕∆1 ∗∆2 ⊕∆1 1 0 0 5 0 9 3 6 0 21 3 3

(∗) C6 0 0 5 0 0 0 120 0 0 240 0 0
(∗∗) ∆6(3) 0 0 0 0 140 0 0 630 0 0 0 0

(∗∗) prismC5
∆ 80 20 15 160 40 0 0 0 0 40 240 0

(∗) F(∆4 ⊕∆1) 80 20 0 0 0 0 0 0 0 20 30 0
(∗∗) F(∆3 ⊕∆1) ∗∆0 50 8 0 50 8 0 0 14 6 14 6 6
(∗) F(∆3 ⊕∆1)⊕∆1 164 68 5 0 0 0 0 28 12 14 60 0

(∗ ∗ ∗) ∆4 ×∆1 ∗∆0 0 0 0 0 0 0 0 10 0 10 0 0
(∗ ∗ ∗) ∆3 ×∆2 ∗∆0 0 0 0 0 4 0 4 18 0 18 0 0
(∗ ∗ ∗) ∆3 ×∆1 ∗∆1 0 0 0 0 0 6 0 12 0 6 0 0
(∗ ∗ ∗) ∆2 ×∆2 ∗∆1 0 1 0 0 2 9 1 18 0 9 0 0

(∗ ∗ ∗) prism2 C4
∆ 24 0 13 96 0 96 40 0 0 104 144 96

(∗ ∗ ∗) Dn ∗ pyr prism∆2 0 0 → 0 → 0 0 → 3 → 7 → 3 0 → 25 0 → 3
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and P [(2, 2; 1, 0)] by ∆1 ⊕∆1 ∗∆2 ⊕∆1 and the 6-cube. The last (strictly)
facet-defining inequality is (1, 0; 1, 1; 1, 0), which can be seen by considering
all polytopes marked with (∗) and (∗∗).

The remaining sequences yield asymptotically facet-defining inequalities. For
(2, 0; 1, 1; 0, 0) one can take all polytopes marked with (∗) and (∗ ∗ ∗), which
includes a family of joins involving n-gons. Again, by Proposition 5.2.2 this
also settles the inequality given by (0, 0; 1, 1; 2, 0). Finally, (1, 1; 3, 0) and
the dual sequence (3, 0; 1, 1) are asymptotically facet-defining by using the
two families Dn ∗ Dn ∗ ∆0 and Dn ∗ Dn ⊕ ∆1 instead of P [(1, 1; 2, 1)] and
P [(1, 1; 1, 1; 0, 0)], and Proposition 5.2.2. This last argument is an example of
the more general principle discussed in the next section, see Proposition 5.3.5.

Summarising, we have the following result.

Proposition 5.2.8. Conjecture 5.2.1 is true for d ≤ 6. In other words, for
d ≤ 6 all inequalities given by convolutions G[b] with b ∈ Td \ {(d, 0)}, are
facet-defining or asymptotically facet-defining for FlCd.

5.3 Asymptotic facets

In dimension 5 we needed an infinite family of polytopes, the join of n-gons,
to prove that the sequence (1, 1; 2, 0) defines a facet of FlC5. Similarly, in
dimension 6 we needed two polytope families for the sequence (1, 1; 3, 0). The
question arises, whether this is necessary or if we may be able to find enough
individual polytopes with linearly independent flag vectors in the hyperplane.

It turns out that this is not possible. The situation is similar to that in
Chapter 4, where the inequalities f0 ≥ 5 and f3 ≥ 5 turn out to be asymp-
totically facet-defining, without containing any other flag vector than that
of the simplex. The difference is that for the inequalities considered here
several tight flag vectors of polytopes can be found, however, not enough
linearly independent ones.

In this section we show that there are lots of sequences that can produce only
asymptotically facet-defining inequalities. Furthermore, for some of these se-
quences in arbitrary high dimension we show that they are indeed asymptot-
ically facet-defining.

Lemma 5.3.1. Let w1, respectively w2, be linear functionals that are non-
negative on all flag vectors of d1-, respectively d2-polytopes, d1, d2 ≥ 0. Let

G1 := w1 ∗ ge
0 , G2 := ge

0 ∗ w2 and G3 := w1 ∗ ge
0 ∗ w2



104 Chapter 5. Kalai’s and Braden’s sequences

with e ≥ 0, and suppose for a polytope P of dimension d1 + e + 1, e + d2 + 1
or d1 + e + d2 + 2 we have Gi(P ) = 0, with

i =





1 if dim P = d1 + e + 1
2 if dim P = e + d2 + 1
3 if dim P = d1 + e + d2 + 2

Then for every linear functional w on flag vectors of e-polytopes the convo-
lution

G′
i :=





w1 ∗ w if i = 1
w ∗ w2 if i = 2
w1 ∗ w ∗ w2 if i = 3

also evaluates to 0 on P , that is: G′
i(P ) = 0.

Proof. We only show the case i = 3 explicitly, the other cases being exactly
the same, with w1, respectively w2, ignored. By definition of the convolution,

G3(P ) =
∑

F1⊂F2 faces of P
with dim F1=d1,
dim F2=d1+e+1

w1(F1) · g
e
0(F2/F1) · w2(P/F2).

F1, F2/F1 and P/F2 are again polytopes, so we have

w1(F1) ≥ 0 , ge
0(F2/F1) = 1 , and w2(P/F2) ≥ 0

for all occuring F1 and F2. Since G3(P ) = 0, every term in the sum must be
0, and therefore for every chain F1 ⊂ F2 either w1(F1) = 0 or w2(P/F2) = 0.
This implies

G′
3(P ) =

∑

F1⊂F2 faces of P
with dim F1=d1,
dim F2=d1+e+1

w1(F1) · w(F2/F1) · w2(P/F2)︸ ︷︷ ︸
=0

= 0.

Applying this lemma to the special case of Braden sequences immediately
gives the following result.

Proposition 5.3.2. Consider a Braden sequence b of the form

b = (m1, ℓ1; . . . ;mµ−1, ℓµ−1;mµ, 0;mµ+1, ℓµ+1; . . . ;mk, ℓk)

with 1 ≤ µ ≤ k. Suppose there is a polytope P with G[b](P ) = 0. Then for
every Braden sequence

b′ = (m1, ℓ1; . . . ;mµ−1, ℓµ−1; b̃ ;mµ+1, ℓµ+1; . . . ;mk, ℓk)

with any b̃ ∈ Tmµ
, also G[b′](P ) = 0.
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Corollary 5.3.3. Let b be a Braden sequence of dimension d ≥ 5 of the form
as in Proposition 5.3.2, where k ≥ 2 and mµ ≥ 2, and

(∑

i<µ

mi + ℓi

)
+ µ− 2 ≥ 2 or

(∑

i>µ

mi + ℓi

)
+ k − µ− 1 ≥ 2.

Then the affine dimension of the set

{f(P ) | P d-polytope with G[b](P ) = 0}

of all polytope flag vectors in the hyperplane defined by G[b] is at most Fd−3.

In other words, G[b] can only be asymptotically facet-defining for FlCd.

Proof. The hypotheses guarantee the existence of a Braden sequence b′ differ-
ent from b, for which the conclusion of Proposition 5.3.2 holds: For instance,
let

b̃ :=





(mµ

2
, mµ

2
), for mµ even

(0, 0; mµ−1
2

, mµ−1
2

), for mµ odd and (
∑

i<µ mi + ℓi) + µ− 2 ≥ 2

(mµ−1
2

, mµ−1
2

; 0, 0), for mµ odd and (
∑

i<µ mi + ℓi) + µ− 2 6≥ 2

then b′ = (m1, ℓ1; . . . ;mµ−1, ℓµ−1; b̃ ;mµ+1, ℓµ+1; . . . ;mk, ℓk) ∈ Td and b′ 6= b.

Now for every d-polytope P with G[b](P ) = 0, by Proposition 5.3.2 also
G[b′](P ) = 0. This means that the above set of flag vectors is contained in
the intersection of the two hyperplanes defined by G[b] and G[b′]. By Theo-
rem 5.2.5 these hyperplanes are linearly independent, hence their intersection
has strictly smaller dimension.

As a result of the hypotheses of Corollary 5.3.3, the first dimension, where
sequences of this form occur is 5. The first example is the sequence (1, 1; 2, 0),
for which we had to use joins of n-gons in Section 5.2. This situation can
be generalised to show that in each dimension d ≡ 2 mod 3 the penultimate
sequence is in fact asymptotically facet-defining.

Denote the j-fold join of n-gons by

D
∗j
n := Dn ∗ . . . ∗Dn︸ ︷︷ ︸

j times

.

Proposition 5.3.4. Let d = 3k − 1 with k ≥ 2. Then the inequality repre-
sented by the Braden sequence of length k,

(1, 1; . . . ; 1, 1︸ ︷︷ ︸
k−1 pairs

; 2, 0)

is asymptotically facet-defining for FlCd.
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Proof. Consider the set

B :=
{
P [b] | b ∈ Td \ {(d, 0), (1, 1; . . . ; 1, 1; 1, 1)}

}
.

The flag vectors of the polytopes in B are linearly independent by Theo-
rem 5.2.5. We first show that adding the “asymptotic” flag vector of the
family D

∗k
n does not destroy linear independence. For this we claim that

evaluating the convolutions corresponding to the last two sequences on D
∗k
n

yields

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
0

) (
D

∗k
n

)
= k! (n− 3)k−1,

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1

) (
D

∗k
n

)
= k! (n− 3)k.

We prove both equalities by induction: For k = 2 we have

(
g2
1 ∗ g2

0

) (
D

∗2
n

)
=

∑

2-faces F
of D

∗2
n

g2
1(F ) g2

0(D
∗2
n /F )

The 2-faces of D
∗2
n are triangles and two n-gons. For F being a triangle we

have g2
1(F ) = 0, for F an n-gon, g2

1(F ) = n− 3. Hence,

(
g2
1 ∗ g2

0

) (
D

∗2
n

)
=

∑

n-gon faces F

of D
∗2
n

g2
1(F )︸ ︷︷ ︸
=n−3

g2
0(D

∗2
n /F )︸ ︷︷ ︸

=1

= 2(n− 3).

For the other convolution,

(
g2
1 ∗ g2

1

) (
D

∗2
n

)
=

∑

2-faces F
of D

∗2
n

g2
1(F ) g2

1(D
∗2
n /F ).

Again only the two n-gon faces have to be considered for F and then D
∗2
n /F

is also an n-gon. Therefore

(
g2
1 ∗ g2

1

) (
D

∗2
n

)
=

∑

n-gon faces F

of D
∗2
n

g2
1(F )︸ ︷︷ ︸
=n−3

g2
1(D

∗2
n /F )︸ ︷︷ ︸

=n−3

= 2(n− 3)(n− 3).

Now let k > 2. Then

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
0

) (
D

∗k
n

)
=

∑

2-faces F
of D

∗k
n

g2
1(F ) ·

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
0

)
(D∗k

n /F ).
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As before, only the n-gon faces F are interesting, but now there are k of them
in D

∗k
n . Moreover, if F is an n-gon, then D

∗k
n /F is combinatorially equivalent

to D
∗(k−1)
n , so

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
0

) (
D

∗k
n

)
= k(n− 3) ·

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
0

)
(D∗(k−1)

n )

= k (n− 3) · (k − 1)! (n− 3)k−2

= k! (n− 3)k−1

by induction. Finally, the analogous argument yields

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1

) (
D

∗k
n

)
=

∑

2-faces F
of D

∗k
n

g2
1(F ) ·

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1

)
(D∗k

n /F )

= k(n− 3) ·
(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1

)
(D∗(k−1)

n )

= k (n− 3) · (k − 1)! (n− 3)k−1

= k! (n− 3)k.

Now dividing the obtained expressions by f0(D
∗k
n ) = (n−3)k, letting n→∞

and writing all polytopes and convolutions into a matrix as described in
Section 5.2 gives

(d
−

3, 0; 1, 1)

. . .

(1, 1; . . . ; 1, 1; 2, 0)

(1, 1; . . . ; 1, 1; 1, 1)

P [(d− 3, 0; 1, 1)] > 0
...

. . . 0

P [(1, 1; . . . ; 1, 1; 2, 0)] > 0

D
∗k
n

∗
→ 0 → k!

Obviously, linear independence still holds.

Furthermore, G[(1, 1; . . . ; 1, 1; 2, 0)](P ) = 0 for all P 6= P [(1, 1; . . . ; 1, 1; 2, 0)]
in B and for the family D

∗k
n we have

G[(1, 1; . . . ; 1, 1; 2, 0)](D∗k
n )/(n− 3)k n→∞

−→ 0

From this can be concluded that the inequality G[(1, 1; . . . ; 1, 1; 2, 0)] ≥ 0 is
asymptotically facet-defining.
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For dimensions d ≡ 0 mod 3 a similar argument can be given for the ante-
penultimate sequence.

Proposition 5.3.5. Let d = 3k with k ≥ 2. Then the inequality represented
by the Braden sequence

(1, 1; . . . ; 1, 1︸ ︷︷ ︸
k−1 pairs

; 3, 0)

is asymptotically facet-defining for FlCd.

Proof. The proof is very similar to the previous one, so we will carry out only
the details that are different. This time let

B :=
{
P [b] | b ∈ Td \ {(d, 0), (1, 1; . . . ; 1, 1; 0, 0; 1, 1), (1, 1; . . . ; 1, 1; 0, 0)}

}
.

We replace the two excluded polytopes by the two infinite families pyr D
∗k
n

and bipyr D
∗k
n and claim that

(
g2
1 ∗ . . . ∗ g2

1 ∗ g3
0

) (
pyr D

∗k
n

)
= k! (n− 3)k−1 (5.1)

(
g2
1 ∗ . . . ∗ g2

1 ∗ g0
0 ∗ g2

1

) (
pyr D

∗k
n

)
= k! (n− 3)k (5.2)

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1 ∗ g0

0

) (
pyr D

∗k
n

)
= k! (n− 3)k (5.3)

and

(
g2
1 ∗ . . . ∗ g2

1 ∗ g3
0

) (
bipyr D

∗k
n

)
= k! (n− 3)k−1 (5.4)

(
g2
1 ∗ . . . ∗ g2

1 ∗ g0
0 ∗ g2

1

) (
bipyr D

∗k
n

)
= 3k! (n− 3)k−1(n− 2) (5.5)

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1 ∗ g0

0

) (
bipyr D

∗k
n

)
= 0 (5.6)

To prove (5.1), (5.2) and (5.3) the same arguments as in the previous proof
work. Here the induction step relies on the observation that for any 2-face F
of pyr D

∗k
n that is not a triangle (that is, it is an n-gon), the quotient polytope

(pyr D
∗k
n )/F is equivalent to pyr D

∗(k−1)
n .

We still have to establish (5.4), (5.5) and (5.6). For shorter notation let
Pj := bipyr D

∗j
n . Again, the only 2-faces of Pk that are not triangles are n-

gons and Pk has k of them, which are all already contained in D
∗k
n . Therefore,

the quotient polytope Pk/F of an n-gon face F is again Pk−1 and (5.4) follows
by induction as before.

For the proof of (5.5) let k = 2 and consider P2 = bipyr(Dn ∗Dn). Then

(
g2
1 ∗ g0

0 ∗ g2
1

)
(P2) =

∑

F⊂F ′ faces of P2
with dim F=2,

dim F ′=3

g2
1(F ) g0

0(F
′/F ) g2

1(P2/F
′)
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Any n-gon F is contained in n different n-gon pyramids, which were already
3-faces of Dn ∗ Dn, and additionally in two n-gon pyramids, which arise
as pyramids over F by the bipyramid operation. For F ′ being of the first
kind we have P/F ′ ∼= D4, since F ′ is contained in four different facets of P2,
namely, the pyramids with the two apices, each over the two facets of Dn∗Dn

containing F ′. For the second kind of 3-face we have P/F ′ ∼= Dn, since the
facets containing F ′ are now exactly the pyramids with respect to the given
apex over those facets of Dn ∗Dn that contain F—and there are precisely n
of those. Putting it all together,

(
g2
1 ∗ g0

0 ∗ g2
1

)
(P2) = 2 (n− 3)

( ∑

3-faces F ′

of 1st kind

g2
1(P2/F

′

︸ ︷︷ ︸
D4

) +
∑

3-faces F ′

of 2nd kind

g2
1(P2/F

′

︸ ︷︷ ︸
Dn

)
)

= 2 (n− 3)
(
n · 1 + 2 · (n− 3)

)

= 2 (n− 3) · 3 (n− 2).

Now (5.5) follows again by induction, using the fact that Pk/F ∼= Pk−1 for
every n-gon 2-face F of Pk.

Finally, (5.6) can be proved be considering the facets of Pk. For every k ≥ 2,

(
g2
1 ∗ . . . ∗ g2

1 ∗ g2
1 ∗ g0

0

)
(Pk) =

∑

F facet of Pk

(g2
1 ∗ . . . ∗ g2

1 ∗ g2
1)(F ) g0

0(Pk/F ).

If F is a facet of Pk then it is a pyramid over one of the facets of D
∗k
n , which

are themselves of the form Dn ∗ . . . ∗ ∆1 ∗ . . . ∗ Dn. In other words, F is
combinatorially equivalent to D

∗(k−1)
n ∗ ∆2

∼= pyr2 D
∗(k−1)
n . Therefore, (5.6)

follows from the assertion that

(
g2
1 ∗ . . . ∗ g2

1

) (
pyr3 D

∗(k−1)
n

)
= 0.

This, in turn, can be shown by induction, using (pyr3 D
∗j
n )/Dn

∼= pyr3 D
∗(j−1)
n

for j ≥ 1.

Now the proposition is eventually proved by again dividing by (n− 3)k and
letting n→∞. We get the following matrix:



110 Chapter 5. Kalai’s and Braden’s sequences

(d
−

3, 0; 1, 1)

. . .

(1, 1; . . . ; 1, 1; 3, 0)

(1, 1; . . . ; 1, 1; 0, 0; 1, 1)

(1, 1; . . . ; 1, 1; 1, 1; 0, 0)

P [(d− 3, 0; 1, 1)] > 0
...

. . . 0

P [(1, 1; . . . ; 1, 1; 3, 0)] > 0
pyr D

∗k
n ∗ → 0 → k! → k!

bipyr D
∗k
n → 0 → 3k! 0

Again, linear independence is obvious and the hyperplane represented by the
sequence (1, 1; . . . ; 1, 1; 3, 0) contains the flag vectors of Fd− 4 polytopes out
of the set B, plus the asymptotic flag vectors of the two families pyr D

∗k
n and

bipyr D
∗k
n .

Questions

The situation in low dimensions suggests some questions for arbitrary d.

Conjecture 5.3.6. For even d the inequality given by G[(d
2
, d

2
)] is facet-

defining, as is for odd d the one given by G[(d−1
2

, d−1
2

; 0, 0)].

Additionally, for even d the convolution G[(d
2
− 1, d

2
− 1; 1, 0)] determines a

facet of FlCd.

This might even be provable by only using the basis polytopes P [b], b ∈ Td.

Conjecture 5.3.7. If G[b1] and G[b2] define facets of FlCdim b1 and FlCdim b2 ,
then G[(b1; b2)] is facet-defining for FlCdim b1+dim b2+1, provided (b1; b2) ∈ Td.



Chapter 6

f-vectors of moderate-dimensional

polytopes

In this chapter we will be concerned with f -vectors. Since the flag vector of
a polytope encodes a superset of the information in the f -vector, we can use
results about the flag vector to conclude properties of the f -vector.

The first topic is the application of our visualisation method from Section 3.2
to f -vectors of moderate-dimensional polytopes. Here “moderate” means 4
or 5, where the 4-dimensional case is just the executive summary of Ziegler’s
presentation in [59]. In the 5-dimensional case a number of interesting ob-
servations can be made.

A major question is that of unimodality of f -vectors. It is known that for
high-dimensional polytopes f -vectors are not unimodal in general. However,
the situation is not so clear in moderate dimensions, and there are some
related properties that are worth studying. Some of them can be proved,
others disproved, for polytopes for moderate dimensions, where “moderate”
now extends to dimension 6, partly even 7.

Finally, we come back to centrally-symmetric polytopes, which we already
discussed for dimension 3 in Section 3.3. We examine the 3d-conjecture by
Kalai [37] and prove it for 4-polytopes. Some partial results towards a proof
for higher dimensions are mentioned, as well as related conjectures and a
number of counterexamples to them. Some of these, notably the Hansen poly-
topes, reveal quite interesting properties and might be worth being studied
further.

6.1 Visualisation

The methods to visualise the space of flag vectors that we developed in
Section 3.2 can naturally be applied to f -vectors. This yields 2- and 3-
dimensional representations of the space of f -vectors of 4- and 5-polytopes,

111
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respectively. In either case we use all currently known linear inequalities for
these f -vectors.

Dimension 4

The visualisation for 4-polytopes was first done by Ziegler in [59], where he
discussed essentially the representation in Figure 6.1. It can be obtained
from the inequalities

f0 − 5 ≥ 0

f3 − 5 ≥ 0

f1 − 2f0 ≥ 0

f3 − 2f2 ≥ 0

2f1 − 5f0 − 5f3 + 2f2 + 10 ≥ 0

considering the transformation

T =




1 0 0 0
−5 1 0 0
−5 1 −1 1
−20 0 1 1




which leads to the projective coordinates

ϕ1 =
f0 − 5

f1 + f2 − 10
, ϕ2 =

f3 − 5

f1 + f2 − 10

We get a polytope P̃4 in (ϕ1, ϕ2)-space described by

ϕ1 ≥ 0

ϕ2 ≥ 0

1− 3ϕ1 − ϕ2 ≥ 0

1− ϕ1 − 3ϕ2 ≥ 0

2− 5ϕ1 − 5ϕ2 ≥ 0

as a projective representation of our approximation for FC4, the convex hull
of f -vectors of 4-polytopes. P̃4 is in fact a 5-gon, see Figure 6.1, and it is
symmetric with respect to the axis {ϕ1 = ϕ2}, which contains points coming
from self-dual polytopes.

As in the case of flag vectors of 4-polytopes in Section 4.1 the five facets of
P̃4 correspond to special properties of 4-polytopes. The first two inequalities
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Figure 6.1: P̃4 as in [59]

can be satisfied with equality only by the simplex, and therefore they can at
most be asymptotic facets. This they are, and polytope families which show
this are for instance the cyclic polytopes and projected products of polygons,
indicated by the arrows in Figure 6.1.

Cyclic polytopes, together with stacked polytopes and duality, also show that
the third and fourth inequality, where equality characterise simple and simpli-
cial polytopes, respectively, define facets of FC4. With these two examples—
and their duals—we can already conclude that all vertices of P̃4, except for
the point (0, 0), represent rays (asymptotic in the case of cyclic polytopes)
of FC4, and also that the last inequality is facet-defining for FC4.

This last inequality is in fact the most interesting one. Rewritten in terms
of the fatness F = (f1 + f2 − 20)/(f0 + f3 − 10), it states that F ≥ 5/2
for all 4-polytopes. In fact, polytopes with the same fatness F yield points
in P̃4 on lines {ϕ1 + ϕ2 = 1/F}, parallel to the facet defined by the last
inequality. In this respect, this inequality gives a lower bound for the fatness
of 4-polytopes.

Two questions arise immediately and are unsolved by now. First, is there
a corresponding upper bound, and second, is the lower bound also true for
more general objects than polytopes?

Problem 6.1.1. Find a polytope family with arbitrarily high fatness or prove
that fatness is bounded for 4-polytopes.

The current record holders with respect to fatness are the projected products
of polygons (Ziegler [60]) with F = 9− ε with arbitrarily small ε > 0.

Problem 6.1.2. Is it true that the inequality 2f1− 5f0− 5f3 + 2f2 + 10 ≥ 0
holds for all regular 3-spheres having the intersection property?
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Part of Section 7.3 is connected to this problem. At the time being, however,
no examples of 3-spheres violating this inequality are known.

Dimension 5

These are all the currently known linear inequalities for f -vectors of 5-
polytopes, stated in terms of the reduced f -vector:

f0 − 6f∅ ≥ 0 (6.1)

f3 − f2 + f1 − f0 − 4f∅ ≥ 0 (6.2)

2f1 − 5f0 ≥ 0 (6.3)

5f0 − 5f1 + 5f2 − 3f3 − 10f∅ ≥ 0 (6.4)

3f2 − 2f1 − 2f3 ≥ 0 (6.5)

All these inequalities are tight for the f -vector of the 5-simplex. Inequality
(6.5) is due to Kalai [36, Theorem 7.1].

We get as an approximation of FC5 a 4-dimensional cone C5 in R5 with its
apex at the point f(∆5) = (1, 6, 15, 20, 15). To transform this cone into a
3-dimensional polytope P5, we consider the transformation matrix

T =




1 0 0 0 0
−6 1 0 0 0

0 0 1 0 −1
−4 −1 1 −1 1
−20 0 0 1 0




We have det T = −2 and T · f(∆5) = (1, 0, 0, 0, 0)⊤ and f2(P ) − 20 = 0 if
and only if P ∼= ∆5, so all the necessary prerequisites are satisfied. Passing
to projective coordinates yields

ϕ1 =
f0 − 6

f2 − 20
, ϕ2 =

f1 − f3

f2 − 20
, ϕ3 =

f3 − f2 + f1 − f0 − 4

f2 − 20
=

f4 − 6

f2 − 20

Our original inequalities (6.1) to (6.5) translate into inequalities for ϕ0, ϕ2, ϕ3,
defining the polytope P5 (see Figure 6.2):

(6.1) ⇐⇒ ϕ1 ≥ 0

(6.2) ⇐⇒ ϕ3 ≥ 0

(6.3) ⇐⇒ 1− 4ϕ1 + ϕ2 + ϕ3 ≥ 0

(6.4) ⇐⇒ 1 + ϕ1 − ϕ2 − 4ϕ3 ≥ 0

(6.5) ⇐⇒ 1− 2ϕ1 − 2ϕ3 ≥ 0
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Figure 6.2: P5 with f -vectors on the boundary (green)

In the following we gather some properties of the polytope P5 as well as
consequences for the f -vectors of 5-polytopes. The vertices of the geometric
realisation are

ℓ1 =
(

0
−1
1/2

)
, ℓ2 =

(
0
−1
0

)
, ℓ3 =

(
0

−3/2
1/2

)
,

ℓ1
∆ =

(
1/2
1
0

)
, ℓ2

∆ =
(

0
1
0

)
, ℓ3

∆ =

(
1/2
3/2
0

)

and as in the case of flag vectors of 4-polytopes in Chapter 4 they correspond
to rays of C4, which (by slight abuse of notation) we also denote by ℓ1, . . . , ℓ3

∆.

P5 is symmetric with respect to the axis

Φ := {(ϕ1, ϕ2, ϕ3) ∈ R3 | ϕ1 = ϕ3, ϕ2 = 0}

and dualisation corresponds to exchanging ϕ1 and ϕ3 and reversing the sign
of ϕ2. This justifies the above notation for the “dual” rays and also implies
that f -vectors of self-dual 5-polytopes appear on Φ.

For simplicial polytopes equality holds in (6.4) and (6.5) by the Dehn-Som-
merville equations (see Theorem 1.2.10 and cf. Kalai [36, Section 7]). Hence
the corresponding f -vectors can be found in the intersection of the related
facets 〈ℓ1, ℓ2

∆, ℓ3
∆〉 and 〈ℓ1, ℓ3, ℓ1

∆, ℓ3
∆〉. Additionally, the inequalities ob-

tained from the Lower Bound Theorem by Barnette [5] define a smaller poly-
tope within P5 (cf. Figure 6.3), which therefore also contains all f -vectors of
simplicial polytopes.

This forces any point coming from the f -vector of a simplicial polytope to
lie on the line segment between the point (1/10,−1/2, 2/5)⊤ and the vertex
ℓ1. By duality, an analogous statement holds for simple polytopes.

Again, the facets described by (6.1) and (6.2) contain only asymptotic f -
vectors. Examples are given by the following families:
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Figure 6.3: P5 with region of simplicial polytopes by the Lower
Bound Theorem (red)

• joins of n-gons, Dn ∗Dn,

• neighbourly cubical 5-polytopes,

• prisms and pyramids over cyclic 4-polytopes,

• cyclic 5-polytopes.

The asymptotic flag vector arising from cyclic 5-polytopes is in fact on ℓ1

and those of joins of n-gons are in both of the facets (6.1) and (6.2), that is,
on the face 〈ℓ2, ℓ2

∆〉.

The only facet of C5 which actually contains f -vectors in its relative interior is
the one corresponding to Kalai’s inequality (6.5). It is obviously self-dual and
polytopes P satisfying it with equality are exactly those with the following
two properties (see Kalai [36, Theorem 7.1]:

• P is 2-hypersimplectic, that is, (g2
1 ∗ g2

1)(P ) = 0. Geometrically, this
means that for every 2-face F of P we have F ∼= ∆2 or P/F ∼= ∆2.

• P is center-boolean, that is, every proper face of P is simple (cf. Defini-
tion 4.1.2 for 4-polytopes); in Kalai’s terminology, P is semisimplectic.

Examples include simplicial and simple polytopes, as remarked earlier, as
well as connected sums of simplicial and simple polytopes. A particularly
interesting example is ∆5#∆5, whose f -vector is in the symmetry center of
the facet 〈ℓ1, ℓ3, ℓ1

∆, ℓ3
∆〉.

The fact that simplicial polytopes have f -vectors on Kalai’s facet implies that
the facet 〈ℓ1, ℓ2

∆, ℓ3
∆〉 corresponding to inequality (6.4) can at best contain

asymptotic f -vectors. If it really does, that is, if it defines an asymptotic
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Figure 6.4: P5 with f -vectors of 0/1-polytopes (blue) and offside
points (red; only one dually offside point is well visible)

facet of FC5, is in fact an open question. To solve this, it would be enough
to find an asymptotic f -vector on 〈ℓ1, ℓ2

∆, ℓ3
∆〉, away from the face 〈ℓ1, ℓ3

∆〉,
for which we already know f -vectors that span it.

Problem 6.1.3. Find a family Pn of polytopes with f -vectors f (n) := f(Pn)

and corresponding ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 such that

1 + ϕ
(n)
1 − ϕ

(n)
2 − 4ϕ

(n)
3

n→∞
−→ 0 , but 1− 2ϕ

(n)
1 − 2ϕ

(n)
3 ≥ ε for all n

for some ε > 0.

Reformulated in terms of the f -vector, the desired properties are

2f
(n)
3 − 5f

(n)
4

n→∞
−→ 0 , and 3f

(n)
2 − 2f

(n)
1 − 2f

(n)
3 ≥ ε for all n,

that is, the polytopes are “asymptotically closer to being simplicial than to
being 2-hypersimplectic and center-boolean”.

Problem 6.1.3 concerns“extremal”polytopes in the sense that their f -vectors
are close to one of the facets. Another, somehow weaker, concept of ex-
tremality reveals itself if one tries to examine the region of C5 that contains
the f -vectors of those polytopes having none of the facet-defining properties.

A possible source for many non-simplicial and non-simple polytopes are
0/1-polytopes. Figure 6.4 shows points in P5 arising from all possible 0/1-
polytopes, as well as some other constructions that yield non-simplicial and
non-simple polytopes. The 0/1-polytopes were obtained using the classifica-
tion of Aichholzer [2] and the accompanying database.

What is remarkable is that our usual examples of 5-polytopes seem to fill
only a very restricted subset of P5. More precisely, one could be tempted
to conjecture that all f -vectors of 5-polytopes in the (ϕ1, ϕ2, ϕ3)-space lie on
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one side of the hyperplane defined by the origin and the face 〈ℓ1, ℓ3
∆〉, and

also, by symmetry, the one defined by (0, 0, 0) and 〈ℓ1
∆, ℓ3〉. This yields the

inequalities

3ϕ1 − ϕ2 − 2ϕ3 ≥ 0 and − 2ϕ1 + ϕ2 + 3ϕ3 ≥ 0

which can again be retranslated into two dual inequalities for the f -vectors.

Definition 6.1.4. A 5-polytope P is called offside if

5f0(P )− 3f1(P ) + 2f2(P )− f3(P ) < 10

and dually offside if P∆ is offside.

So the above conjecture would be equivalent to the statement that there are
no offside 5-polytopes. This, however, is not true—there are 5-polytopes that
violate one of the two inequalities. The following examples are known to the
author and are indicated in Figure 6.4 as red dots:

• a single offside 0/1-polytope with 18 vertices,

• the 2-simplicial, 2-simple polytopes E2(Q
5
n) for n ≥ 1 (see Paffenholz

and Ziegler [44]) are dually offside,

• glued 5-cubes with stackings performed on it; more precisely: Let Cn,k

be a polytope obtained by gluing together n 5-cubes and after that
stacking k of the resulting facets (k ≤ 8n+2)—then for example C2,16,
C2,17 and C2,18 are offside. In general, for all n > 1, the “maximally
stacked” polytope Cn,8n+2 is offside.

The natural question to ask is whether these examples are really special or
there are actually a lot of offside polytopes. It might also be interesting to
know “how far” offside a 5-polytope can be.

Problem 6.1.5. Characterise and/or find more examples of offside or dually
offside polytopes. Is the value 5f0−3f1 +2f2−f3 (or its dual) bounded from
below for 5-polytopes?

Obviously, Problems 6.1.3 and 6.1.5 are related: if one finds a family as in
Problem 6.1.3 this also gives examples of offside polytopes.



6.2. Unimodality and f-vector shapes 119

6.2 Unimodality and f-vector shapes

The general motivation for this section is to understand the possible “shapes”
of polytope f -vectors. Particularly interesting might be the question whether
f -vectors of polytopes are unimodal, that is, the numbers fk(P ) increase up
to some k and then decrease again. This is known to be false in general; for
an extensive treatment of this problem see Ziegler’s book [58] and the paper
of Eckhoff [22].

Besides unimodality there are a number of related properties concerning the
shape of the f -vector f(P ) = (f0, . . . , fd−1) of a d-polytope P that are worth
investigating:

(C) convexity: fk ≥ (fk−1 + fk+1)/2 for all k ∈ {1, . . . , d− 2}

(L) logarithmic convexity: f2
k ≥ fk−1fk+1 for all k ∈ {1, . . . , d− 2}

(U) unimodality: f0 ≤ . . . ≤ fk ≥ . . . ≥ fd−1 for some k ∈ {0, . . . , d− 1}

(B) Bárány’s property: fk ≥ min{f0, fd−1} for all k ∈ {0, . . . , d− 1}

It is easy to see that each property implies the next one:

(C) ⇒ (L) ⇒ (U) ⇒ (B).

As remarked, unimodality is false in general for d ≥ 8, and counterexamples
are, for instance, given by connected sums of cyclic polytopes with their
duals; see [58, Example 8.41] and [22]. This implies that (C) and (L) are also
false for every d ≥ 8. On the other hand, (U)—and therefore also (B)—is
(rather trivially) true for all d ≤ 4.

For simplicial polytopes of arbitrary dimension a weaker version of unimodal-
ity was proved by Björner. It states that up to f⌊d/2⌋ the f -vector entries
increase and decrease again, starting with f⌊3(d−1)/4⌋; see [58, Theorem 8.39].
With this, (U) follows for simplicial—and therefore also for simple—polytopes
of dimensions d ≤ 8 and d = 10.

Similarly, convexity is trivially true up to d ≤ 3, and for d = 4 it follows
easily from f0 ≥ 5 and f2 ≥ 2f3 together with Euler’s equation and duality.
Therefore all four properties are true for d ≤ 4.

It remains to investigate all properties in dimensions 5 to 7, as well as
Bárány’s property for arbitrary dimenson. We show that (C) is false for
d ≥ 5, while (U) can be proved for d = 5. For dimension 6 we show (B),
while for dimension 7 the same line of argumentation gives not enough infor-
mation to prove (B). We conclude with some calculations that suggest that
in fact logarithmic convexity (L) might be true for d ≤ 7.
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Dimensions 5 to 7

That unimodality is true for 5-dimensional polytopes was also observed by
Eckhoff [22].

Proposition 6.2.1. Unimodality (U) holds for f -vectors of polytopes of di-
mension d ≤ 5.

Proof. Let P be a 5-polytope and f(P ) = (f0, f1, f2, f3, f4) its f -vector.
Obviously, 5f0 ≤ 2f1 and 5f4 ≤ 2f3, therefore f0 < f1 and f3 > f4. Kalai’s
inequality (6.5) in Section 6.1 implies 3f2 ≥ 2f1 + 2f3, hence

f2 ≥
2

3
(f1 + f3) >

f1 + f3

2
.

In particular, f2 > f1 or f2 > f3. Therefore f(P ) is unimodal.

This implies that also (B) holds for 5-polytopes. On the other hand, convexity
is false in general, already in dimension 5.

Proposition 6.2.2. Convexity (C) fails to hold for d ≥ 5, that is, the f -
vectors of d-polytopes are not convex in general.

Proof. For dimension 5 the f -vector of the cyclic polytope with n vertices is
given by

f(C5(n)) =
(
n,

n(n− 1)

2
, 2(n2 − 6n + 10),

5(n− 3)(n− 4)

2
, (n− 3)(n− 4)

)

(cf. [58, Chapter 8]), which implies

f1 =
n2 − n

2
<

2n2 − 11n + 20

2
=

f0 + f2

2

for n ≥ 8; see Figure 6.5.

For d ≥ 6, cyclic d-polytopes are 3-neighbourly, therefore f1 =
(

f0

2

)
and

f2 =
(

f0

3

)
with f0 ≥ d + 1. We conclude that

f0 + f2 − 2f1 =
1

6
f0(f0 − 2)(f0 − 7) > 0

for cyclic d-polytopes with f0 ≥ max{d + 1, 8}. Thus for d ≥ 7 already the
d-simplex is a counterexample for (C).
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Figure 6.5: (non-convex) f -vector of C5(8)

Hence for d = 5 the only remaining open question is whether logarithmic
convexity holds.

If we want to prove unimodality for f -vectors of 6-polytopes, we can use
some trivial facts, such as f0 < f1 and f4 > f5. From this, (U) would simply
follow from the statement

f1(P ) ≤ f2(P ) (6.6)

for all 6-polytopes P or, equivalently by duality, from f3(P ) ≥ f4(P ). How-
ever, this does not follow from the commonly known linear inequalities—we
only have a weaker statement.

Proposition 6.2.3. Let (f0, . . . , f5) be the f -vector of a 6-polytope. Then

f2 ≥
2

3
f1 + 21.

Proof. We claim that the following inequalities hold:

f1 − 3f0 ≥ 0 (6.7)

f0 − f1 + f2 − 21 ≥ 0 (6.8)

The assertion then follows by multiplying (6.8) by 3 and adding (6.7).

Inequality (6.7) is the familiar statement that every vertex is in at least 6
edges. For the proof of (6.8) we use Ehrenborg’s Lifting Theorem 1.4.6, which
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implies that 〈
2d
2− 19
6 | Ψ(P )〉 ≥ 0. Expressing the 
d-word 
2d
2 in
terms of the flag vector of the 6-polytope P by applying Theorem 1.3.2 yields

〈
2d
2 | Ψ(P )〉 =
2∑

i=0

(−1)4−iki = k0 − k1 + k2.

For the sparse flag k-vector we have

ki =
∑

T⊆{i}

(−2)1−|T |fT = −2f∅ + fi = fi − 2

and therefore 〈
2d
2 | Ψ(P )〉 = f0 − f1 + f2 − 2. The trivial 
d-word 
6

translates into f∅ = 1, hence

〈
2d
2− 19
6 | Ψ(P )〉 = f0 − f1 + f2 − 21.

Corollary 6.2.4. The f -vectors of 6-polytopes satisfy Bárány’s property (B).

Proof. Let (f0, . . . , f5) be the f -vector of a 6-dimensional polytope. Clearly,
f1 ≥ 3f0 > f0, thus by Proposition 6.2.3

f2 ≥
2

3
f1 + 21 ≥ 2f0 + 21 > f0.

Dually, we have f3 > f5 and f4 > f5.

As the desired inequality (6.6) for unimodality does not follow from the
known linear inequalities, one can find potential flag vectors that satisfies all
these, but not (6.6). An example for a family of vectors is

f (ℓ) = (f0, f1, f2, f3, f4;

f02, f03, f04, f13, f14,

f24; f024)

= (22 + ℓ, 111 + 3ℓ, 110 + 2ℓ, 35 + 4ℓ, 21 + 6ℓ;

780 + 15ℓ, 1340 + 50ℓ, 1080 + 51ℓ, 2010 + 90ℓ, 2160 + 132ℓ,

1260 + 114ℓ; 6480 + 396ℓ)

for ℓ ≥ 0. It is not clear whether a polytope P with f(P ) = f (ℓ) exists. For
the number of facets of such a polytope we get f5(P ) = 7 + 2ℓ by Euler’s
equation.

A similar statement to the one in Proposition 6.2.3 holds for 7-polytopes.
However, this is not enough to prove even Bárány’s property (B) completely,
since we have no condition for f3.
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Proposition 6.2.5. Let (f0, . . . , f6) be the f -vector of a 7-polytope. Then

f2 ≥
5

7
f1 + 36.

Proof. As before, we consider two valid inequalities which together imply the
assertion:

2f1 − 7f0 ≥ 0 (6.9)

f0 − f1 + f2 − 36 ≥ 0 (6.10)

Again, (6.9) is obvious. The nonnegativity of 〈
2d
3− 34
7 | Ψ(P )〉, due to
Theorem 1.4.6, gives inequality (6.10) by the same calculation as in the proof
of Proposition 6.2.3 (the additional 
 at the end makes no difference):

〈
2d
3 | Ψ(P )〉 = f0 − f1 + f2 − 2.

Together with 
7, which again represents f∅, we get

〈
2d
3− 34
7 | Ψ(P )〉 = f0 − f1 + f2 − 36.

Corollary 6.2.6. If (f0, . . . , f6) is the f -vector of a 7-polytope then

fk ≥ min{f0, f6} for k = 0, 1, 2, 4, 5, 6

with strict inequality for k 6= 0, 6.

Proof. We have f1 ≥
7
2
f0 > f0, and Proposition 6.2.5 implies

f2 ≥
5

7
f1 + 36 ≥

5

2
f0 + 36 > f0.

f4 > f6 and f5 > f6 follow by duality.

Again, one can find vectors satisfying all known linear inequalities, but vio-
lating both f3 ≥ f0 and f3 ≥ f6; take, for instance, the potential flag vector

f = (f0, f1, f2, f3, f4, f5;

f02, f03, f04, f05, f13, f14, f15, f24, f25, f35;

f024, f025, f035, f135)

= (134, 469, 371, 70, 371, 469;

2814, 6580, 10360, 8484, 9870, 20720, 21210, 13790, 20720, 9870;

62160, 84840, 84840, 127260).
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Dimension ≤ 4 5 6 7 ≥ 8
(C) ✔ ✘ ✘ ✘ ✘

(L) ✔ ? ? ? ✘

(U) ✔ ✔ ? ? ✘

(B) ✔ ✔ ✔ ? ?

Table 6.1: Properties of f -vector shapes of polytopes

A polytope with this flag vector would obviously be a counterexample for
(B). From Euler’s equation, we get f6 = 134. Note that f is symmetric, that
is, it could be the flag vector of a self-dual polytope.

The results from this section can be summarised as shown in Table 6.1. A
✔, respectively ✘, in the table indicates that the property in question holds,
respectively does not hold, for all polytopes of the given dimension, whereas
the question marks illustrate the cases that are still open.

Logarithmically convex examples

Another approach to solutions to the open questions is to try and find coun-
terexamples. Most promising may be connected sums of cyclic polytopes,
since this construction yields counterexamples for unimodality in dimen-
sion 8.

The effect of this construction on the f -vector essentially amounts to adding
the f -vectors of the involved polytopes (see for instance [58, pp. 274f]): If P
is a simplicial and Q a simple d-polytope, d ≥ 3, then the f -vector of P#Q
is given by

fi(P#Q) =

{
fi(P ) + fi(Q) for 1 ≤ i ≤ d− 2
fi(P ) + fi(Q)− 1 for i = 0 or i = d− 1

In particular, the f -vector of the connected sum of a d-polytope P with its
polar is symmetric:

fi(P#P∆) =

{
fi(P ) + fd−1−i(P ) for 1 ≤ i ≤ d− 2
fi(P ) + fd−1−i(P )− 1 for i = 0 or i = d− 1

= fd−1−i(P#P∆)

A straightforward calculation now shows that the connected sums of cyclic
7-polytopes with their duals are still logarithmically convex, although they
are asymptotically close to violating (L).
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Proposition 6.2.7. For all n ≥ 8, the f -vector of P n
7 := C7(n)#C7(n)∆ is

logarithmically convex and

f3(P
n
7 )2

f2(P n
7 )f4(P n

7 )

n→∞
−→ 1

Proof. The f -vector of the cyclic 7-polytope on n vertices is given by

f(C7(n)) =
(
n, n(n−1)

2
, n(n−1)(n−2)

6
, 5(n−4)(n2−8n+21)

6
,

(n−4)(3n2−31n+84)
2

, 7(n−4)(n−5)(n−6)
6

, (n−4)(n−5)(n−6)
3

)

(cf. [58, Chapter 8]). From this we obtain for f(P n
7 ) = (f0(n), . . . , f6(n)):

f0(n) = (n−3)(n2−12n+41)
3

, f1(n) = 7n3−102n2+515n−840
6

,

f2(n) = 5n3−66n2+313n−504
3

, f3(n) = 5(n−4)(n2−8n+21)
3

By symmetry of f(P n
7 ), these entries suffice to verify logarithmic convexity.

We get

f1(n)2

f0(n)f2(n)
=

(7n3 − 102n2 + 515n− 840)2

4(n− 3)(n2 − 12n + 41)(5n3 − 66n2 + 313n− 504)
> 1 ,

f2(n)2

f1(n)f3(n)
=

2(5n3 − 66n2 + 313n− 504)2

5(n− 4)(n2 − 8n + 21)(7n3 − 102n2 + 515n− 840)
> 1 ,

f3(n)2

f2(n)f4(n)
=

25(n− 4)2(n2 − 8n + 21)2

(5n3 − 66n2 + 313n− 504)2
> 1

for n ≥ 8. Since the leading coefficients of the polynomials in the numerator
and the denominator of the last fraction are equal,

f3(P
n
7 )2

f2(P n
7 )f4(P n

7 )

n→∞
−→ 1.

With this in mind, the following conjecture seems plausible.

Conjecture 6.2.8. (L) holds for all d-polytopes of dimension d ≤ 7.

The affirmative answer to this conjecture would settle the given open ques-
tions for moderate dimensions, leaving only Bárány’s property for d ≥ 8 as
the last open problem.
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6.3 Centrally-symmetric polytopes

As in Section 3.3 we call a polytope P centrally-symmetric (or cs for short)
if P = −P , that is, it is centrally-symmetric with respect to the origin. A
conjecture of Kalai [37, Conjecture A] states that the total number of faces
of centrally-symmetric polytopes is minimised precisely by the iterated sums
and products of 1-polytopes, which were studied by Hanner [30].

Definition 6.3.1 (Hanner polytope). A centrally-symmetric d-polytope P
is a Hanner polytope if d = 0 or P = [−1,+1] or P = P1×P2 or P = P1⊕P2

for two Hanner polytopes P1 and P2.

Conjecture 6.3.2 (Kalai [37, Conjecture A]). Let P be a centrally-sym-
metric d-polytope with f -vector f(P ) = (f0, . . . , fd−1). Then the number of
non-empty faces of P is at least 3d, that is,

d∑

i=0

fi ≥ 3d

Furthermore, equality holds if and only if P is a Hanner polytope.

Note that the sum also counts the face P itself, so taking only the proper
faces into account the conjectured inequality is equivalent to

d−1∑

i=0

fi ≥ 3d − 1

Conjecture 6.3.2 is trivially true for 0 ≤ d ≤ 2 and can easily be shown by
elementary methods for d = 3. Stanley [51] proved it for simplicial (and
therefore also for simple) polytopes for arbitrary d. Furthermore, one direc-
tion of the equivalence can easily be shown by induction.

Proposition 6.3.3. Let P be a d-dimensional Hanner polytope. Then

d−1∑

i=0

fi(P ) = 3d − 1.

In this section we prove Conjecture 6.3.2 for 4-dimensional centrally-symmet-
ric polytopes, see Theorem 6.3.16. This result also appeared in [46], with a
partly different proof.
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Again, we more or less explicitly make use of the basic facts in Proposi-
tion 3.3.4. In addition, we have that the total number of faces of the polar
polytope P∆ equals that of P itself, that is,

d−1∑

i=0

fi(P ) =
d−1∑

i=0

fi(P
∆)

and f0,d−1(P ) = f0,d−1(P
∆). (This actually holds for arbitrary polytopes, not

only for centrally-symmetric ones.)

For the proof of Theorem 6.3.16, the main work goes into the examination
of a centrally-symmetric 4-polytope having 10 vertices. To this end, and
also to establish the basis for the computer enumeration leading to Proposi-
tion 6.3.19, we study polytopes that arise as the convex hull of the regular
crosspolytope together with a symmetric pair of new vertices.

This comprises a more detailed analysis of Grünbaum’s Theorem 2.2.2. More
precisely, we have to understand how the resulting polytope changes if we
perturb the new vertex in a controlled way. Roughly spoken, “the more in
general position” the added vertex is, the more faces the resulting polytope
will have. This can be viewed as a generalisation of the well known fact that
the vertices of a nonsimplicial polytope can always be perturbed to obtain
a simplicial polytope with more faces. Here however, the situation is more
subtle.

Facet-hyperplane arrangements of polytopes

Given a d-polytope P ⊂ Rd, we denote by A(P ) the hyperplane arrangement
induced by the facet-defining hyperplanes of P . Adding a new point p ∈ Rd

gives us a polytope P ′ := conv(P ∪ {p}), as in Chapter 2. The point p will
be located in the relative interior of some face F of the arrangement A(P ),
and again the combinatorics of P ′ does not depend on the exact position of
p within relintF . However, the combinatorial structure does change if p is
contained in an arrangement face of dimension less than d and perturbed
freely within Rd.

To describe the situation combinatorially, we associate shadings to the facets
of P , with respect to the point p. Similar concepts were introduced for in-
stance by Shephard [48, Section 3], and also by Edelsbrunner [23, Section 8.4],
who associates (mixed) colours to the faces. Without loss of generality we
can always assume that the considered polytope is full-dimensional.
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Definition 6.3.4 (Shadings of facets). A facet F of a full-dimensional poly-
tope P is called





black
grey
white



 with respect to p if p is





beneath F
on the hyperplane aff F
beyond F

To illustrate the terminology imagine the point p to be a source of light
which illuminates the white facets, leaves black facets in the dark and sheds
some twilight on the grey facets. The special cases considered in Chapter 2
are those where all facets are black, except for one, which is white (stacking),
and, more generally, one facet F is white, all facets that do not intersect F are
black and the remaining ones can be black, grey or white (pseudostacking).

Grünbaum’s Theorem 2.2.2 tells us that black facets of P will again be facets
of P ′, grey facets expand to new facets of P ′ with the same facet-defining
hyperplane, whereas white facets vanish in the interior of P ′.

We can further categorise all faces of P by recording the shadings of the
facets they are contained in. Table 6.2 lists the possible types of faces of P
with respect to p and what happens to them in P ′ by Theorem 2.2.2. Note
that faces F of P with p ∈ aff F , that is, faces of type g are replaced by
conv(F ∪ {p}) in P ′.

Vertices of polytopes are special faces, in the sense that they have no non-
empty facets themselves. Due to this reason we have to take special care of
them.

Definition 6.3.5. Let P ⊂ Rd be a d-polytope and v a vertex of P . We say
that a point p ∈ Rd \ P swallows v if v is not a vertex of conv(P ∪ {p}).

Furthermore, a point p ∈ Rd is non-swallowing (with respect to P ) if
p 6∈ P and p does not swallow any vertex of P ; in other words, if we have
vert(conv(P ∪ {p})) = vert(P ) ∪ {p}.

type of F
shadings of facets of P
containing F

status in P ′

b only black again face of P ′

bg black and grey again face of P ′

bw black and white again face of P ′

g only grey again face of P ′, as conv(F ∪ {p})
gw grey and white vanishes in ∂P ′

w only white vanishes in int P ′

bgw black, grey and white again face of P ′

Table 6.2: Possible types of faces with respect to p
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P

p1

p2

p3

p4

v1

v2

v3

v4

Figure 6.6: Swallowing vertices of P : p1 is non-swallowing, while p2

and p3 both swallow the vertex v2; the point p4 swallows two vertices

See Figure 6.6 for an illustration.

Lemma 6.3.6. Let P ∈ Rd be a d-polytope, p ∈ Rd \ P and v a vertex of
P . Then p swallows v if and only if there is no facet-defining hyperplane h
of P containing v such that p is beneath h, in other words, v is of type w or
gw with respect to p.

Proof. If the vertex v were a g-face of P with respect to p, then v = p, in
contradiction to p 6∈ P . Therefore p swallows v if and only if v is of type
gw or w, as can be seen from Table 6.2. This happens if and only if every
hyperplane of A(P ) that contains v comes from a grey or white facet, in
other words, p is on it or beyond the corresponding facet.

In addition to the surviving faces of P , the new polytope P ′ has the following
new faces:

• the vertex p itself, if p 6∈ P ,

• pyramids conv(F ∪ {p}) for every bw-face F of P ,

• pyramids conv(F ∪ {p}) for every bgw-face F of P .

We call the faces of the latter types bw-pyramids and bgw-pyramids, respec-
tively.

As noted by Shephard [48], every polytope has at least one black and one
white facet, provided p 6∈ P . Furthermore, if F is a k-dimensional face of
type g, then the point p is contained in the affine hull of F , and we can
deduce the type of a face G ⊆ F “within P” from its type “within F”.
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Lemma 6.3.7. Let P ⊂ Rd be a d-polytope and p ∈ Rd \ P . Let F be a
k-dimensional face of P of type g with respect to p, for k ≥ 1.

(a) F contains at least one (k − 1)-dimensional face of type bg and at least
one (k − 1)-dimensional face of type gw.

(b) If F contains only one bg-face G of dimension k − 1 then every vertex v
of F that is not contained in G has type gw.

Proof. (a) Since F is grey, we have p ∈ (aff F ) \ F . The face F is a full-
dimensional polytope in aff F , so we can find a facet G1 of F such that p is
beyond G1 in aff F . Let F ′ be a facet of P containing G1. If F ′ also contains
F , it is grey, otherwise aff F ′ ∩ aff F = aff G1, and therefore p is beyond F ′,
which means that F ′ is a white facet. This shows that G1 is a gw-face of P .
Analogously, there is a facet G2 of F such that p is beneath G2 in aff F , and
by the same argument G2 is then a bg-face of P .

(b) Consider a vertex v ∈ F \G and let F ′ be some facet of P containing v.
If F ′ contains F then it is grey. Otherwise h := aff F ∩ aff F ′ is a hyperplane
in aff F , since it contains v and is therefore not empty. Then G′ := h∩F is a
face of F , not contained in G. Let G1, . . . , Gk be the facets of F that contain
G′. Then h is a positive combination of the respective hyperplanes that
define G1, . . . , Gk. Since p is beyond or on every one of these hyperplanes by
hypothesis, it is also beyond or on h, and therefore also beyond or on aff F ′.
This shows that F ′ is white or grey and hence v is of type gw.

We now come to the main tool we want to apply in the next subsection. This
basically states that perturbing the added point into some lower-dimensional
face of the facet-hyperplane arrangement yields a polytope with smaller or
equal total number of faces. We also describe some situations, in which the
number of faces decreases strictly.

Theorem 6.3.8. Let P ⊂ Rd be a d-polytope and F and G faces of the ar-
rangement A(P ) with G ⊂ F 6⊆ P and 0 ≤ dimG = dimF − 1. Furthermore,
let pG ∈ relintG and pF ∈ relintF , with pF non-swallowing with respect to
P , and PX := conv(P ∪ {pX}), where X ∈ {G,F}. Then

d−1∑

i=0

fi(PG) ≤
d−1∑

i=0

fi(PF)

Strict inequality holds in each of the following cases:

(i) G ⊂ P .
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Figure 6.7: Pushing (left) and pulling (right) a point (red). A
formerly grey facet becomes black, respectively white. Broken lines

indicate new faces of P ′ that were not present in P .

(ii) The point pG is pushed with respect to some hyperplane, that is, there
is a facet of P that is grey with respect to pG, but black with respect
to pF .

(iii) The point pG is pulled with respect to some hyperplane, that is, some
facet F of P is grey with respect to pG and white with respect to pF ,
and there are at least two ridges in F of type bg with respect to pG.

Figure 6.7 shows examples of pushing and pulling a point in A(C3
∆).

Proof. We compare the numbers of faces of PG and PF by a close examination
of the types of faces of P with respect to pG, respectively pF . Since G is a
face of F , every hyperplane of A(P ) that contains pF also contains pG. At
least one hyperplane, however, contains pG, but not pF , since dimG < dimF .
In terms of shadings of facets of P this means that every facet that is black
or white with respect to pG has the same shading with respect to pF , while
there is at least one grey facet with respect to pG that is either black or white
with respect to pF .

We therefore distinguish further between those facets of P that are grey with
respect to pG, but white, respectively black, with respect to pF and assign
the types g+, respectively g− to these. Then P may contain faces of types
bg−, gg+, bgg−w, etc. Table 6.3 describes all faces of P that yield faces of
PG, but vanish in PF or vice versa.
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Additionally, there are different new faces of PG, respectively PF , which are
listed in Table 6.4. The listing shows that each new face of PG corresponds
to some new face of PF , whereas some new faces of PF have no counterparts
in PG.

The asserted inequality now follows from Lemma 6.3.7(a), since to every face
of PG we can associate at least one face of PF . To the faces described in the
starred lines in Table 6.3, which are present in PG but not in PF , we associate
the faces described in the correspondingly marked lines in Table 6.4—this
is possible by Lemma 6.3.7(a). Note that the prerequisite of the Lemma,
namely that dim F ≥ 1, is met, since pF is non-swallowing with respect to P
by hypothesis, that is, there is no 0-dimensional face of P that is of type w

or gw with respect to pF , by Lemma 6.3.6.

It remains to prove that in the cases mentioned in the theorem PG has strictly
less faces than PF .

(i) If G ⊂ P then pG ∈ P and hence this point does not create a new face
in PG, while pF does in PF .

(ii) If F is a g−-facet of P with respect to pG then by Lemma 6.3.7(a)
there is at least one g−w-ridge which yields a face in PF , as well as a
new bw-pyramid in PF , as can be seen from Tables 6.3 and 6.4—both
these faces have no counterpart in PG. Hence PG has at least two faces
less than PF .

(iii) If F is a g+-facet of P with respect to pG then, by Table 6.3, F yields
a facet in PG, but not in PF . However, if there are at least two ridges
in F of type bg+ then PF has at least two bw-pyramids that have no
counterpart in PG, see Table 6.4, compensating for the “lost” facet F .

The special case we need for understanding centrally-symmetric polytopes
with 2d+2 vertices is the adding of two symmetric points to the d-dimensional

type of face F of P status of face F
w.r.t. pG w.r.t. pF in PG in PF

(∗) g+ w conv(F ∪ {pG}) —
(∗∗) gg+ gw conv(F ∪ {pG}) —

g−w bw — F (again a face)

Table 6.3: Faces of P yielding different faces of PG , respectively PF .
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new faces of PG corr. to new faces of PF

pG , if G 6⊂ P ←→ pF

bw-pyramids conv(F ∪ {pG}) ←→ bw-pyramids conv(F ∪ {pF})
— (∗) bw-pyramids over faces of type

bg+ w.r.t. pG

— — bw-pyramids over faces of type
g−w w.r.t. pG

bg±w-pyramids conv(F ∪ {pG}) ←→ bw-pyramids conv(F ∪ {pF})
bgw-pyramids conv(F ∪ {pG}) ←→ bgw-pyramids conv(F ∪ {pF})
— (∗∗) bgw-pyramids over faces of type

bgg+ w.r.t. pG

— — bgw-pyramids over faces of type
gg−w w.r.t. pG

Table 6.4: New faces of PG , respectively PF

crosspolytope. We can assume that the new points do not swallow any ver-
tices of the crosspolytope, otherwise the result will have only 2d vertices. We
call an arrangement face F of A(P ) with dimF > 0 non-swallowing if some
point in relintF (equivalently every point in relintF) is non-swallowing with
respect to P .

Lemma 6.3.9. Let F be a non-swallowing face of the arrangement A(Cd
∆)

with 0 < dimF ≤ d, p ∈ relintF and P := conv(Cd
∆ ∪ {p}).

(a) If F has a non-swallowing vertex p′ then for P ′ := conv(Cd
∆ ∪ {p′}) we

have vert P ′ = vertCd
∆ ∪ {p} and

d−1∑

i=0

fi(P
′) <

d−1∑

i=0

fi(P )

(b) If F has no non-swallowing vertices then
d−1∑
i=0

fi(P ) > 3d − 1.

Proof. (a) Since p′ is non-swallowing, it is a vertex of P ′, as are all vertices of
Cd

∆. Furthermore, by induction on the dimension of F , using Theorem 6.3.8,
we have

d−1∑

i=0

fi(P
′) ≤

d−1∑

i=0

fi(P ).

Assume that equality holds. Then in each step of the induction no pushing
is allowed and pulling is allowed only with respect to some facet-hyperplane
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for which the corresponding facet contains only one bg-ridge. The facet is
necessarily grey with respect to the pulled point and since it has only one
bg-ridge, by Lemma 6.3.7(b) there is a vertex vF of F of type gw. Then vF

vanishes in the resulting polytope (see Table 6.2), and therefore also in P , in
contradiction to p ∈ F being non-swallowing.

(b) Let v be a vertex of F . Then either it is a vertex of Cd
∆ or it swallows

a vertex of Cd
∆. In both cases, P ′′ := conv(Cd

∆ ∪ {v}) is combinatorially
equivalent to Cd

∆ and hence
∑d−1

i=0 fi(P
′′) = 3d − 1.

Since F is non-swallowing, p is beneath at least one facet-hyperplane for
every vertex of Cd

∆, by Lemma 6.3.6. Hence, to get from the swallowing
point v to p, one has to push at least once, and therefore, by Theorem 6.3.8,
the total number of faces of P is strictly larger than that of P ′′.

Concluding this subsection, we state the two lemmas that we will use in the
end, first for the proof of the 4-dimensional case, later for general d. The
first one is independent of the previous considerations and also gives a proof
of Proposition 3.3.4(b).

Lemma 6.3.10. Let P ⊂ Rd be a centrally-symmetric d-polytope with 2d
vertices. Then P is affinely equivalent to Cd

∆.

Proof. Denote the vertices of P by v1, . . . , vd,−v1, . . . ,−vd. Since P is full-
dimensional, v1, . . . , vd are linearly independent. Therefore there is a (unique)
non-singular, linear transformation that maps the standard unit normals ei

to vi for 1 ≤ i ≤ d. Hence P is the image under an affine transformation of
the d-crosspolytope Cd

∆.

Lemma 6.3.11. Let P ⊂ Rd be a centrally-symmetric d-polytope with 2d+2
vertices.

(a) There exists a point p 6∈ Cd
∆ such that P is combinatorially equivalent

to conv(Cd
∆ ∪ {p,−p}).

(b) If the point p in (a) is contained in at most d−1 hyperplanes of A(Cd
∆),

then P has strictly more than 3d − 1 proper faces, or there exists a
centrally-symmetric polytope P ′ = conv(Cd

∆ ∪ {p′,−p′}) with 2d + 2
vertices such that p′ is a point contained in d hyperplanes of A(Cd

∆)
and P has strictly more faces than P ′.

Proof. (a) As in the previous proof choose d vertices v1, . . . , vd of P that are
linearly independent. Then conv{±v1, . . . ,±vd} is again affinely equivalent to
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Cd
∆, and P itself is the image under the corresponding affine transformation

of the polytope conv(Cd
∆ ∪ {±p}), where p ∈ Rd is a non-swallowing vertex

with respect to Cd
∆.

(b) If p is in less than d hyperplanes of A(Cd
∆) then p ∈ relintF for some

arrangement face F of dimension at least 1. Additionally, since p is non-
swallowing, F is non-swallowing with respect to Cd

∆. (b) now follows from
Lemma 6.3.9 by taking as p′ a non-swallowing vertex of F if one exists or
applying Part (b) of the Lemma, if not.

Dimension 4

The proof of Conjecture 6.3.2 for dimension 4 is done in several steps. First,
we consider polytopes with relatively small number of vertices or facets and
enumerate in an elementary way the possibilities that can occur. If both
the numbers of vertices and facets is large enough—which means, at least
12—then the statement follows from certain linear inequalities, which partly
are more sophisticated.

For the rest of this subsection let P ⊂ R4 denote a centrally-symmetric
4-polytope with f -vector f(P ) = (f0, f1, f2, f3). For convenience we set

s :=
3∑

i=0

fi.

Then for the 4-dimensional case Conjecture 6.3.2 states that s ≥ 80.

Lemma 6.3.12. If f0 = 8 then P is affinely equivalent to the 4-dimensional
crosspolytope and s = 80.

Proof. This is Lemma 6.3.10 for d = 4. Since the crosspolytope is a Hanner
polytope, we get s = 34 − 1 = 80, by Proposition 6.3.3.

Lemma 6.3.13. If f0 = 10 then s ≥ 80. Equality holds if and only if P
is combinatorially equivalent to the bipyramid over the 3-dimensional cube,
bipyr C3.

Proof. By Lemma 6.3.11(a), P is combinatorially equivalent to a polytope
conv(C4

∆∪{v,−v}) for some point v 6∈ C4
∆. We enumerate all possibilities—

combinatorially and up to symmetry—for choosing the last vertex v in the
relative interior of some face of the facet-hyperplane arrangement A(C4

∆).
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Figure 6.8: Labelling of the vertices of C4.

By part (b) of Lemma 6.3.11 it suffices to consider only the vertices of the
hyperplane arrangement.

Dualising the situation, P∆ can be viewed as the image under an affine
transformation of a polytope obtained by chopping parts off the cube C4

with two symmetric hyperplanes h,−h. These hyperplanes can be chosen in
such a way that all facet-defining hyperplanes for C4 remain facet-defining for
the resulting polytope, that is, no facet of C4 “completely vanishes” and—by
dualising the result obtained from Lemma 6.3.11—h passes through 4 vertices
of C4.

Therefore it remains to show that for all possible choices of the hyperplane
h we have s ≥ 80, with equality only if P∆ is equivalent to prism C3

∆. To
keep track of the different cases, we refer to the Schlegel diagram of C4 in
Figure 6.8 and denote the vertices by the numbers in the picture. Also, we
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identify faces of C4 with the set of their vertices.

First observe that the symmetry of C4 allows to pick one fixed vertex out of
the 4 that are supposed to be contained in h, say vertex 0. The task is then
the following: first, find all possible choices of 3 out of the remaining vertices
1 to 15 that yield 4-tuples (v1 = 0, v2, v3, v4) with the properties (i) and (ii)
below; and second, in each case examine the respective polytope that arises
from intersecting C4 with two symmetric halfspaces that are defined by the
respective vertices. More precisely, the halfspaces contain the origin and are
bounded by h and −h, respectively, where h is the hyperplane defined by the
given vertices.

The vertex tuples have to satisfy the following conditions:

(i) No two opposite vertices are contained in the 4-tuple, that is, vi 6= −vj

for 1 ≤ i < j ≤ 4; using the numbering in Figure 6.8 this says that
vi+vj 6= 15 for 1 ≤ i < j ≤ 4. (Otherwise this yields a hyperplane which
cuts through the origin and therefore a lower-dimensional polytope.)

(ii) Not all 4 vertices lie on the same facet of C4. (Otherwise the hyperplane
h defines this facet and we get C4 again after cutting.)

Again we have to consider these tuples only up to symmetry of the cube.

Case 1: Three of the four vertices lie in one facet, w.l.o.g. the vertices v1, v2

and v3, in the facet F = {0, 1, 2, 3, 4, 5, 6, 7}. Then by (ii), we have to choose
v4 from the set {8, 9, 10, 11, 12, 13, 14, 15}.
Case 1.1: v1, v2, v3 even lie in one ridge, w.l.o.g. in the ridge {0, 1, 2, 3}.
Then w.l.o.g. we can take v2 = 1 and v3 = 2. By (i), v4 ∈ {15, 14, 13} rules
out, and by (ii) we cannot choose v4 ∈ {8, 9, 10, 11}, therefore v4 = 12. Then
the hyperplane h = aff{0, 1, 2, 12} contains the origin, so cutting C4 with h
and −h yields a lower dimensional polytope.

Case 1.2: v1, v2, v3 are not all contained in some ridge.
Case 1.2.1: Two of the three vertices are connected by an edge, w.l.o.g. the
vertices v1 = 0 and v2 = 1.
Then the third vertex in F cannot be 2, 3, 4 or 5, otherwise three vertices
would lie in a ridge; hence v3 has to be 6 or 7. For the same reason v4 cannot
be 8 or 9, so v4 ∈ {12, 13, 11, 10}, by (i). All these choices of v3 and v4 then
yield equivalent polytopes by symmetry, namely prisms over a 3-dimensional
crosspolytope.
Case 1.2.2: There are no edges between the three vertices.
Then v2, v3 ∈ {3, 5, 6} and w.l.o.g. we take v2 = 3 and v3 = 5. Respecting
property (i) and the fact that we are not in Case 1.2.1 leaves only the vertices
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9 and 14 for the last vertex v4. Both choices yield equivalent polytopes,
which have f -vector (14, 36, 32, 10) (see the proof of Theorem 6.3.25 for the
computation of the f -vector) and therefore s = 92.

Case 2: No three of the four vertices lie in the same facet.
Case 2.1: One of v2, v3, v4, say v2, lies in a ridge with 0, w.l.o.g. in {0, 1, 4, 5}.
Case 2.1.1: v2 even lies on some edge with 0, w.l.o.g. v2 = 1.
Then the only choice for v3 and v4, taking into account the hypothesis of
Case 2, are 14 and 15, but this 4-tuple obviously violates (i).
Case 2.1.2: v2 is not connected to 0 by an edge.
Then v2 = 5 and for v3 and v4 we can choose 10,11,14 or 15 without violating
the hypothesis of Case 2. Vertices 15 and 10 are forbidden by (i), so w.l.o.g.
v3 = 11 and v4 = 14. But then h = aff{0, 5, 11, 14} again contains the origin,
as in Case 1.1.

Case 2.2: none of v2, v3, v4 lies in a ridge with 0.
Then, respecting (i), v2, v3, v4 ∈ {7, 11, 13, 14}, and for every possible choice
there is a facet containing all three of them, in contradiction to the hypothesis
of Case 2.

The next ingredient for the proof of Conjecture 6.3.2 for dimension 4 is a
special case of a theorem by A’Campo-Neuen [1, Theorem 1.2]. Note that
she stated the theorem for rational polytopes, nevertheless it also holds for
non-rational polytopes by Karu’s proof of the Hard Lefschetz Theorem [38].

Proposition 6.3.14. For every centrally-symmetric 4-polytope P we have
f03(P ) ≥ 3f0(P ) + 3f3(P )− 8.

Proof. By [1, Theorem 1.2], we have h2(P )−6 ≥ h1(P )−4, that is, g2(P ) ≥ 2.
Expressing the g-vector in terms of the flag vector (see Chapter 1) implies
the assertion.

A different proof of Proposition 6.3.14 appears in [46]. It proceeds by adapt-
ing arguments of Kalai [35] using rigidity, to the centrally-symmetric situa-
tion.

Lemma 6.3.15. If f0 ≥ 12 and f3 ≥ 12 then s > 80.

Proof. We first prove that s ≥ 80. By Proposition 6.3.14, the following
inequalities hold for the flag vector of P :

f03 ≥ 3f0 + 3f3 − 8 (6.11)

f03 ≤ 4f1 − 4f0 (6.12)

f03 ≤ 4f2 − 4f3 (6.13)
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Inequalities (6.12) and (6.13) are basically the same statement, by Euler’s
equation, and arise from Bayer’s inequality 6f1 − 6f0 − f02 ≥ 0 (see Theo-
rem 4.1.1) by applying the Generalized Dehn-Sommerville equations. Com-
bining (6.11) and (6.12), we get

4f1 ≥ 7f0 + 3f3 − 8 ≥ 7 · 12 + 3 · 12− 8 = 112

and therefore f1 ≥ 28. Analogously, by (6.11) and (6.13), f2 ≥ 28. Hence,

s = f0 + f1 + f2 + f3 ≥ 12 + 28 + 28 + 12 = 80.

Now suppose s = 80. Then P has the f -vector (12, 28, 28, 12). By (6.11),
f03(P ) ≥ 3 · 12 + 3 · 12 − 8 = 64 and by (6.12), f03(P ) ≤ 4 · 28 − 4 ·
12 = 64, so f03(P ) = 64. In particular, in (6.12) and (6.13) equality holds,
which means that P is center-boolean, that is, all its facets are simple (cf.
Proposition 4.1.3). Since P has only 12 vertices, any of its facets can have
at most 6 vertices, by central symmetry. Therefore, any facet of P is either
a tetrahedron or a prism over a triangle.

Let t and p be the number of facets of P that are tetrahedra and prisms,
respectively. Then we have

f3 = t+ p = 12
f03 = 4t+ 6p = 64

which implies that p = 8 and t = 4.

The polar polytope P∆ is again centrally-symmetric, center-boolean and has
the same flag vector, so all the above calculations also hold for P∆. This
means, by duality, that P has 4 vertices of degree 4 and 8 vertices of degree
5, and, in particular, no vertex of degree higher than 5.

Now consider some prism facet P0 of P , see Figure 6.9. It contains three
quadrilateral ridges that connect it to three different facets P1, P2, P3, also
of prism type. Further, let R be one of the two triangular ridges and F the
facet of P such that R = P0 ∩F . Then F must be a tetrahedron—otherwise
F was the opposite facet of Pi for some i ∈ {0, 1, 2, 3}, but it intersects each
of the Pi in at least an edge.

Finally, let v be the vertex in F not contained in R. It is clearly not a vertex
of P0, so it has to be a vertex of P7 := −P0, since P0 already contains half of
all the vertices of P . Hence there are three edges from v to other vertices in
P7. Adding to the already known three edges to the vertices of R ⊂ P0, the
vertex v has at least six incident edges, and therefore degree larger than 5, a
contradiction.
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Figure 6.9: A prism facet P0 of P

Now the main result of this section, the proof that Kalai’s Conjecture A is
true in the 4-dimensional case, is a direct consequence of the three lemmas
above.

Theorem 6.3.16. Conjecture 6.3.2 is true for d = 4. In other words, every
centrally-symmetric 4-polytope has at least 34 non-empty faces, with equality
if and only if it is combinatorially equivalent to a 4-dimensional Hanner
polytope.

Proof. If f0 = 8 then, by Lemma 6.3.12, P is the 4-dimensional crosspolytope
and s = 80. If f3 = 8 then, by duality and Lemma 6.3.12, P is the 4-cube
and also s = 80.

If f0 = 10 then, by Lemma 6.3.13, s ≥ 80 with equality if and only if P is a
bipyramid over a 3-dimensional cube. Dually, if f3 = 10 then Lemma 6.3.13
implies that s ≥ 80 with equality if and only if P is dual to a bipyramid over
a 3-cube, that is, P is a prism over a 3-dimensional crosspolytope.

Finally, if f0 ≥ 12 and f3 ≥ 12 then, by Lemma 6.3.15, s > 80.
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Higher dimensions and related conjectures

The proof above can not easily be generalised to higher dimensions. Although
we can still use linear inequalities to get analogues to Lemma 6.3.15, for d > 4
the condition on f0 and fd−1 must be much stronger to get the desired bound
for the sum of face numbers, as the following computation shows.

Proposition 6.3.17. Let P be d-polytope with f -vector (f0, . . . , fd−1) and

sd :=
d−1∑
i=0

fi.

(a) If d = 5 and f0 + f4 ≥ 42, then s5 ≥ 242 = 35 − 1.

(b) If d = 6 and f0 + f5 ≥ 116, then s6 > 728 = 36 − 1.

Proof. (a) From Euler’s equation and Kalai’s inequality (see (6.5) in Sec-
tion 6.1) we get f1 + f3 ≥ 3f0 + 3f4 − 6, which implies

s5 = (f0 + f2 + f4) + (f1 + f3) = (f1 + f3 + 2) + (f1 + f3)

≥ 6f0 + 6f4 − 10 ≥ 6 · 42− 10 = 242.

(b) For d = 6 we use the inequalities f1 ≥ 3f0 and f2 ≥
2
3
f1 + 21 (see

Proposition 6.2.3) and their dual counterparts. Then

s6 = (f0 + f1 + f2) + (f3 + f4 + f5) ≥ (6f0 + 21) + (6f5 + 21)

= 6 · 116 + 42 = 738 > 728.

In other words, if a 5-polytope, respectively 6-polytope, violates Kalai’s con-
jecture then the number of vertices and facets cannot be too large. Hence,
in principle it suffices to consider “small” polytopes. However, the gap that
has to be bridged by the enumeration grows exponentially in d, which makes
this approach quite useless.

Similarly, Lemma 6.3.11 can in principle be used to examine the centrally-
symmetric d-polytopes with 2d + 2 vertices. One could either hope for a
higher-dimensional version of Lemma 6.3.13 or a counterexample to Conjec-
ture 6.3.2. The following special case is in the scope of this approach.

Conjecture 6.3.18. Let P be a centrally-symmetric d-polytope with 2d+ 2
vertices. Then the number of proper faces of P is at least 3d−1 with equality
if and only if P is a (d− 3)-fold bipyramid over a 3-cube.
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A computer-based enumeration using an adapted version of Edelsbrunner’s
algorithm for constructing hyperplane arrangements (see [23, Section 7]) gave
the following result.

Proposition 6.3.19. Conjecture 6.3.18 is true for d ≤ 7.

Instead of special cases of Kalai’s conjecture, one could also try to prove
stronger statements. In [37], Kalai gave other conjectures, which would imply
Conjecture 6.3.2.

Conjecture 6.3.20 (Kalai [37, Conjecture B]). For every centrally-symmet-
ric d-polytope P there exists a d-dimensional Hanner polytope H such that
fi(H) ≤ fi(P ) for all i ∈ {0, . . . , d− 1}.

Obviously, Conjecture 6.3.20 implies Conjecture 6.3.2, so to prove the latter,
one could prove the more general one instead. For dimension 4 this was done
in [46]. However, for d ≥ 5, Conjecture 6.3.20 fails, and counterexamples can
be constructed from the central hypersimplices

∆̃(k) := {x ∈ C2k−1 | −1 ≤ x1 + . . . + x2k−1 ≤ 1}.

The terminology is justified by the fact that ∆̃(k) is affinely equivalent to
∆2k−1(k). This can be seen using the affine transformation

φ : R2k → R2k , x 7→ 2x− 1

If x̃ = φ(x) then 0 ≤ xi ≤ 1 implies −1 ≤ x̃i ≤ 1 and x1 + . . . + x2k = k
implies x̃1 + . . . + x̃2k = 0. Therefore,

φ(∆2k−1(k)) = φ({x ∈ [0, 1]2k | x1 + . . . + x2k = k})

= {x ∈ C2k | x1 + . . . + x2k = 0}.

Furthermore, if x ∈ C2k then −1 ≤ x2k ≤ 1 and x1 + . . . + x2k = 0 implies
−1 ≤ x1 + . . . + x2k−1 ≤ 1. Conversely, if we have an x′ ∈ C2k−1 with
−1 ≤ x′

1+. . .+x′
2k−1 ≤ 1 then by defining x′

2k := −(x′
1+. . .+x′

2k−1) ∈ [−1, 1],

we get x := (x′, x′
2k) with x1 + . . . + x2k = 0. That is, ∆̃(k) is the bijective

image of φ(∆2k−1(k)) under the projection to the first 2k − 1 coordinates.

Proposition 6.3.21. The f -vector of the hypersimplex is given by

fi(∆d(k)) =





(
d+1
k

)
if i = 0

(
d+1
i+1

) i∑
p=1

(
d−i
k−p

)
if 1 ≤ i ≤ d− 1
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In particular, for the central hypersimplex of dimension d = 2k − 1 we have

f0(∆̃(k)) =

(
2k

k

)
and fd−1(∆̃(k)) = 4k.

Proof. Let h := {x ∈ Rd+1 |
∑d+1

i=1 xi = k}. The hypersimplex ∆d(k) is
obtained by cutting the 0/1-cube C := [0, 1]d+1 with the hyperplane h.

Let F be a face of C with sign vector σ(F ) ∈ {−,+, 0}d+1 (see Proposi-
tion 4.3.4), and suppose σ(F ) has p pluses and m minuses. h intersects the
relative interior of F if and only if F has two vertices on different sides of
h. The vertex v of F with the smallest possible value for the sum of its
entries has a sign vector that can be obtained from σ(F ) by replacing all 0’s
with −’s, and then

∑
vi = p. Similarly, replacing all 0’s in σ(F ) with +’s

gives the vertex w of F with largest possible sum
∑

vi = d + 1−m. Hence,
h ∩ relintF 6= ∅ if and only if p ≤ k − 1 and d + 1 − m ≥ k + 1, that is,
m ≤ d− k.

Furthermore, if h ∩ relintF 6= ∅ then the number of 0’s in σ(F ) equals

d + 1− (p + m) ≥ d + 1− (k − 1 + d− k) ≥ 2

and therefore, by Proposition 4.3.4 we get dim F ≥ 2. In other words, no
edge of [0, 1]d+1 is intersected in its interior by h and hence the vertices of
the hypersimplex are exactly those vertices of [0, 1]d+1 that lie on h. These
are the 0/1-vectors with exactly k entries equal to 1, and their number is

f0(∆d(k)) =

(
d + 1

k

)

Similarly, no edge of [0, 1]d+1 can be completely contained in h, since at
least one of the two vertices is not on h, and consequently no face of higher
dimension is completely contained in h. Therefore, the i-dimensional faces
of ∆d(k) (for 1 ≤ i ≤ d − 1) are in one-to-one correspondence to those
(i + 1)-dimensional faces of the cube that intersect h in their interior. They
in turn are given by the (d + 1)-tuples that meet the conditions above and
have exactly i + 1 zeros, that is, of the remaining d− i entries at most d− k
are minuses and at most k − 1 are pluses. The first of these condition states
that there are at least k + 1 entries that are either pluses or zeros, that is, if
we have i + 1 zeros, there are at least k − i pluses.

Now given a fixed number i + 1 of zeros, there are
(

d+1
i+1

)
ways to distribute

them to the entries of the (d + 1)-tuple. Additionally, for an admissible
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number p of pluses, with k − i ≤ p ≤ k − 1, there are
(

d−i
p

)
ways to put

them into the remaining free entries. The number of i-faces of ∆d(k), for
1 ≤ i ≤ d− 1, is therefore

fi(∆d(k)) =

(
d + 1

i + 1

) k−1∑

p=k−i

(
d− i

p

)
=

(
d + 1

i + 1

) i∑

p=1

(
d− i

k − p

)

Since ∆̃(k) is combinatorially equivalent to ∆2k−1(k), we immediately get the
asserted number of vertices, and the number of facets is

fd−1(∆̃(k)) =

(
d + 1

d

) d−1∑

p=1

(
d− (d− 1)

k − p

)
= (d + 1)

2k−2∑

p=1

(
1

k − p

)

For k ≥ 2, the only non-zero terms in the sum are the ones where k − p = 0
and k − p = 1, that is, for p = k and p = k − 1, and we get

fd−1(∆̃(k)) = 2k

((
1

1

)
+

(
1

0

))
= 4k.

Since the d-dimensional central hypersimplices have 2d + 2 facets, we only
have to investigate the Hanner polytopes with relatively few facets to estab-
lish them as counterexamples to Conjecture 6.3.20.

Lemma 6.3.22. Let H be a d-dimensional Hanner polytope, d ≥ 3. Then
fd−1(H) ≥ 2d and

(a) if fd−1(H) = 2d then H = Cd,

(b) if fd−1(H) = 2d + 2 then H = Cd−3 × C3
∆.

Proof. The bound on the number of facets and (a) follow from Proposi-
tion 3.3.4, respectively Lemma 6.3.10, by duality, since H is centrally-sym-
metric.

(b) is true for d = 3, since there are only two Hanner polytopes in this case,
the cube and the crosspolytope. Now assume that d ≥ 4. Then H is the sum
or the product of two Hanner polytopes H ′ and H ′′ of dimensions i and d− i,
respectively, with 1 ≤ i ≤ d/2. If H = H ′ ⊕H ′′, then, by induction on d,

fd−1(H) = fi−1(H
′) · fd−i−1(H

′′) ≥ 2i · 2(d− i) ≥ 4(d− 1) ≥ 2d + 4
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where for the last two inequalities we used 1 ≤ i ≤ d/2 and d ≥ 4, respec-
tively.

Therefore, if fd−1(H) = 2d + 2, we can assume that H = H ′ ×H ′′, and then
fd−1(H) = fi−1(H

′)+fd−i−1(H
′′). The condition in (b) is satisfied if and only

if it is satisfied for one of the polytopes H ′ or H ′′, which then necessarily has
dimension at least 3, and for the other we have the condition from (a). Since
the product of polytopes is (combinatorially) a commutative operation, we
can, by induction, assume that H ′ = Ci and H ′′ = Cd−i−3 × C3

∆, where
d− i ≥ 3. Since the product is also associative, we conclude that

H = Ci × Cd−i−3 × C3
∆ = Cd−3 × C3

∆.

This now implies that in odd dimensions a Hanner polytope with not more
facets than the central hypersimplex has in fact many more vertices. For even
dimensions the counterexamples are given by prisms over hypersimplices.

Theorem 6.3.23. For d ≥ 5, Conjecture 6.3.20 is false. Counterexamples
are given by the central hypersimplices ∆̃(k) for odd dimension d = 2k − 1
and prism ∆̃(k) for even dimension d = 2k, for k ≥ 3.

Proof. Let d = 2k−1 ≥ 5, and suppose H is a d-dimensional Hanner polytope
with fi(H) ≤ fi(∆̃(k)) for all i ∈ {0, . . . , d−1}. Since, by Proposition 6.3.21,
the hypersimplex has 2d + 2 facets, it follows from Lemma 6.3.22 that H is
either C2k−1 or C2k−4 × C3

∆. We have

f0(C2k−1) = 22k−1 = 4 · 22k−3 and

f0(C2k−4 × C3
∆) = f0(C2k−4) · f0(C3

∆) = 22k−4 · 6 = 3 · 22k−3

so in either case, f0(H) ≥ 3 · 22k−3 >
(
2k
k

)
= f0(∆̃(k)), where the strict

inequality holds for k ≥ 3.

For even dimension d = 2k consider prism ∆̃(k) = [−1, 1]× ∆̃(k), which has
2(2k − 1) + 2 + 2 = 2d + 2 facets. Again by Lemma 6.3.22, every Hanner
polytope H with componentwise smaller f -vector is of the form [−1, 1]×H ′,
with some (d − 1)-dimensional Hanner polytope H ′ and the result follows
from the odd-dimensional case.

Kalai also stated a third, even stronger conjecture. Recall the notation of
linear functionals α ∈ RFd on flag vectors of d-polytopes from Section 3.2.
Such a functional is non-negative for all d-polytopes P , if

α(P ) :=
∑

S∈Ψd

αSfS(P ) ≥ 0.
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Hanner

(a) Flag vectors of the Hanner poly-
topes and their cones

(b) Flag vector of a counterexample
for Conjecture 6.3.24 (red)

Figure 6.10: Geometric interpretation of Kalai’s Conjecture C and
Conjecture 6.3.24

Kalai’s Conjecture C in [37] then claims that for all centrally-symmetric
d-polytopes P there exists a Hanner polytope H such that for all linear
functionals α that are non-negative for all d-polytopes we have α(H) ≤ α(P ).

There is a nice geometric interpretation for this statement, see Figure 6.10(a).
For a Hanner polytope H the inequalities α·f ≥ α(H) for all α as above define
a cone CH with apex f(H). The conjecture states that every flag vector of
a centrally-symmetric polytope is contained in one of the cones CH for some
Hanner polytope H. So, to find counterexamples to the conjecture one has
to give a polytope with flag vector outside the union of the cones CH .

We consider the slightly weaker statement given below and show that this
is false in general, already for dimension 4. In the geometric interpretation,
we give a counterexample with flag vector not only outside the union of the
cones, but separated from it by a linear function, that is, even outside the
convex hull of this union, see Figure 6.10(b). Obviously, this implies that
Kalai’s Conjecture C does not hold for 4-dimensional centrally-symmetric
polytopes.

Conjecture 6.3.24. Let α ∈ RFd be a flag vector functional, which is non-
negative for all d-polytopes. Then for every centrally-symmetric d-dimen-
sional polytope P there exists a d-dimensional Hanner polytope H such that
α(H) ≤ α(P ).
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Theorem 6.3.25. Conjecture 6.3.24 is false for d = 4. Counterexamples are
given, for instance, by the polytope

P4 := C4 ∩ {x ∈ R4 | −2 ≤ x1 + x2 + x3 + x4 ≤ 2}

or the 24-cell.

Proof. Consider the flag vector functional

1

2
(f02 − 3f2) +

1

2
(f02 − 3f1)

which we denote by α, that is, α := (0, 0,−3/2,−3/2, 1) ∈ RFd . We have
α(P ) ≥ 0 for all 4-polytopes P and α(P ) = 0 if and only if P is 2-simple,
2-simplicial (see Proposition 4.1.3).

The polytope P4, as stated in the theorem, is obtained from the 4-cube by
“chopping off” the two vertices −1 and 1 with hyperplanes that pass through
the respective neighbouring vertices. To compute the flag vector of P4 first
note that all vertices of C4 are again vertices of P4, except for −1 and 1,
and no new vertices show up, since the cutting hyperplanes do not intersect
any edge of C4 in its relative interior. Therefore f0(P4) = f0(C4) − 2 = 14.
Furthermore, all facet-defining hyperplanes for C4 are again facet-defining
(that is, no facet of C4 is completely cut away), and there are two new facets,
defined by the cutting hyperplanes. Hence f3(P4) = f3(C4) + 2 = 10. The
number of edges of P4 is the number of edges of C4, subtracted those that
are cut away, and added those that arise as the intersection of 2-faces of the
cube with the cutting hyperplanes. We cut away the four incident edges to
each of the cube vertices −1 and 1, and create one new edge for every 2-face
that contains one of these vertices. Therefore,

f1(P4) = f0(C4)− 2 · 4 + 2 · 6 = 32− 8 + 12 = 36

The number of 2-faces of P4 can now be obtained by Euler’s equation:

f2(P4) = f3(P4) + f1(P4)− f0(P4) = 10 + 36− 14 = 32

Finally, to obtain f02(P4), note that of the 32 2-faces there are 2 · 4 = 8
triangles that arise as faces of the newly created simplex facets, 2·6 = 12 more
triangles originate from cutting quadrilaterals of the cube and the remaining
12 are quadrilaterals of the cube that are not intersected by the cutting
hyperplanes. Therefore,

f02(P4) = 3 · (8 + 12) + 4 · 12 = 108
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(f0, f1, f2, f3 ) f02 α

P4 (14, 36, 32, 10 ) 108 6
24-cell (24, 96, 96, 24 ) 288 0

C4 (16, 32, 24, 8 ) 96 12
C4

∆ ( 8, 24, 32, 16 ) 96 12
bipyr C3 (10, 28, 30, 12 ) 96 9
prism C3

∆ (12, 30, 28, 10 ) 96 9

Table 6.5: 4-dimensional Hanner polytopes and their f -vectors

and we get α(P4) = (108− 3 · 32 + 108− 3 · 36)/2 = 6.

The facets of the 24-cell are all octahedra, therefore it is 2-simplicial. It
is also self-dual, which implies 2-simplicity. Hence α(24-cell) = 0. (See,
for example, Coxeter [19, Section 8.2] for a discussion of the combinatorial
structure of the 24-cell.)

Compare that to the 4-dimensional Hanner polytopes, which are listed in
Table 6.5. The value of α is at least 9 for each of the four 4-dimensional
Hanner polytopes, and this implies the assertion.

The polytope P4 is in fact one of the examples that have to be considered
during the proof of Lemma 6.3.13. There we have seen that it does not
yield a counterexample for Conjecture 6.3.2, although it does for the stronger
Conjecture 6.3.24.

It might be worth considering a non-symmetric version of Conjecture 6.3.24.
The problem is that there is no obvious general analogue to the Hanner
polytopes as “minimal polytopes”, except possibly the simplex. With this,
the conjecture reads as follows.

Conjecture 6.3.26. Let α ∈ RFd be a flag vector functional, which is non-
negative for all d-polytopes. Then for every d-dimensional polytope P we
have α(∆d) ≤ α(P ).

A proof of this conjecture would imply that the inequalities obtained by
Ehrenborg’s Lifting Theorem 1.4.6, which are not sharp for the simplex, can
be improved. On the other hand, a counterexample to the conjecture might
arise from a lifted inequality.

The geometric interpretation of Kalai’s Conjecture C can also be carried over
to Conjecture 6.3.20, by considering only the very special linear functionals fi,
0 ≤ i ≤ d−1, instead of all α. Then for dimension 5, the central hypersimplex
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(a) Path on 4 vertices (b) Bull graph

Figure 6.11: Graphs as input for the Hansen construction

∆̃(3), is also a counterexample to a weaker version of Conjecture 6.3.20.
There are in fact more counterexamples with very interesting properties.
They arise from a construction given by Hansen [31], which we describe
shortly.

Consider a simple graph G (that is, without loops and multiple edges) on
the vertex set {1, . . . , n}. An independent set is a subset I ⊆ {1, . . . , n} such
that the subgraph of G induced by the vertices in I has no edges. For an
independent set I define the characteristic vector χI ∈ {0, 1}n by

χI
i :=

{
0 if i 6∈ I
1 if i ∈ I

The Hansen polytope of G is

H(G) := conv
{
±

(
1
χI

)
∈ Rn+1

∣∣ I ⊆ {1, . . . , n} independent set of G
}

From the definition it is clear that the Hansen polytopes are centrally-sym-
metric. Hansen [31] gave a combinatorial description of these polytopes for
perfect graphs G, using the cliques of G. From this, one sees that H(G)
is self-dual if G is self-complementary. Unfortunately, it turns out that it
is quite difficult to read off the f -vector from the combinatorics. An easy
observation is that f0(H(G)) is twice the number of independent sets of G
and fn(H(G)), the number of facets, equals twice the number of cliques of
G, but beyond that not much is known in general.

However, computations for small examples show that the Hansen polytopes
might be interesting in different respects. Consider as graphs G4, the path
on 4 vertices, and G5, the “bull graph” on 5 vertices, see Figure 6.11. Both
are self-complementary and perfect. Then H(G4) and H(G5) are also strong
counterexamples to Conjecture 6.3.20 in dimensions 5 and 6, respectively.
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Additionally, the total number of their faces is much closer to 3d than for any
other non-Hanner polytope. This phenomenon seems to continue with exam-
ples in growing dimension, as computations by Ragnar Freij and Matthias
Henze [27] suggest. Therefore, Hansen polytopes of suitable graphs might be
good candidates for counterexamples to the 3d-conjecture for larger d.

Even more surprising, the very same examples seem to be close to violating
the Mahler conjecture, one version of which states that the product of the
volumes of a polytope and its polar is minimised by the centrally-symmetric
cube. See Tao [57] for an overview. It would be interesting to investigate the
connection of this open problem to the 3d-conjecture.

Finally, we mention that H(G4) and H(G5) are also the polytopes closest to
the bound given in Lemma 3.3.5. This suggests the question, if there is an
improved bound which is tight for certain Hansen polytopes.



Chapter 7

Shelling 4-polytopes

By describing a shelling we combinatorially build up a discrete structure—in
our case a polytope, or, more generally, a regular sphere—by successively
adding the facets, according to certain rules.

Shellings provide an efficient way to formulate proofs using invariants that
are valid during the building procedure. An outstanding example might be
the Upper Bound Theorem which can be proved using shellings (see [58,
Section 8.4]).

In this chapter we consider only 4-dimensional polytopes and we use some
rather simple observations concerning shellings to aim at the construction of
polytopes with special properties. In Section 7.3 we describe an algorithmic
way to do this. An implementation of this framework exists and, for instance,
led the way to the construction of the polytopes described in Section 4.2. The
first interesting member of this family is also the smallest possible non-trivial
2-simple, 2-simplicial 4-polytope, which we prove in Section 7.2.

7.1 Shelling polytopes

There are different variants in the literature of which rules exactly should be
postulated to define a shelling. The following definition coincides with the
one in Ziegler’s book [58, Chapter 8] for the special case of polytopes.

Definition 7.1.1 (Shelling of a polytope). A shelling of a polytope P is a
total ordering F1, . . . , Fm of the facets of P such that either dim P ≤ 1 or the
following condition is satisfied: For every j ∈ {2, . . . ,m} the intersection

Tj := Fj ∩

j−1⋃

i=1

Fi

is non-empty and there is a shelling G1, . . . , Gk of the facet Fj such that
Tj = G1 ∪ . . . ∪Gℓ for some ℓ ≤ k.

151
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It can easily be shown that every polytope has a shelling. The first, very
intriguing proof was given by Brugesser and Mani [18], and describes a line
shelling. This concept is actually strong enough to guarantee the existence
of shellings with additional useful properties. See [58, Section 8.2] for proofs.

Theorem 7.1.2 (Brugesser & Mani [18]). Let P be a polytope. Given any
two facets F and F ′ of P , there exists a shelling of P that starts with F and
ends with F ′.

Similarly, given any face G of P , there exists a shelling of P that starts with
exactly those facets that contain G.

Furthermore, given any vertex v and a facet F containing v, there exists a
shelling of P that starts with F and shells all the other facets containing v
next.

Finally, reversing the order of the facets in a shelling of P again gives a
shelling of P .

We are solely concerned about shellings of 4-dimensional polytopes. This
basically amounts to “gluing together” 3-polytopes along their 2-faces, such
that the obtained polyhedral complex is topologically a 3-ball during the
whole process, only becoming a 3-sphere—the boundary of the shelled 4-
polytope—in the last step.

7.2 Small 2-simple, 2-simplicial 4-polytopes

A 4-polytope is 2-simple, 2-simplicial if every edge is contained in 3 facets
and every 2-face is a triangle (see Definition 4.1.2). These polytopes prove
to be rather interesting in different respects, as can be seen from Chapter 4.

Trivially, the 4-simplex is a 2-simple, 2-simplicial 4-polytope. Eppstein, Ku-
perberg and Ziegler [26] were the first to construct infinitely many 2-simple,
2-simplicial 4-polytopes. Rational realisations were given by Paffenholz and
Ziegler [44], the smallest of which is the hypersimplex, having 10 vertices and
30 edges.

An obvious question is whether there exists a smaller example and if so, how
many combinatorially different ones there are. In this section we show that
there is—up to combinatorial equivalence—only one non-trivial 2-simple, 2-
simplicial 4-polytope with at most 9 vertices, namely the polytope P9 de-
scribed in Theorem 4.2.2.

As discussed in Section 4.2, 2-simplicity and 2-simpliciality can be read off
from the flag vector: P is 2-simplicial if and only if f02(P ) = 3f2(P ), and it
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is 2-simple if and only if f13(P ) = 3f1(P ). Additionally, we make frequent
use of the following simple facts.

Lemma 7.2.1. Let P be a 2-simple, 2-simplicial 4-polytope.

(a) P∆ is also 2-simple, 2-simplicial.

(b) The f -vector of P is symmetric: f0(P ) = f3(P ) and f1(P ) = f2(P ).

(c) For the flag vector we have f03(P ) = 2f0(P ) + f1(P ).

Proof. (a) is obvious, 2-simplicity and 2-simpliciality being dual properties
to each other.

(b) By 2-simpliciality, every 2-face has 3 edges, so f12 = 3f2. On the other
hand, every edge is contained in 3 different 2-faces, by 2-simplicity, therefore
f12 = 3f1. We immediately conclude that f1 = f2 and by Euler’s equation
f0 = f1 − f2 + f3 = f3.

(c) By 2-simpliciality, f02 = 3f2. By the Generalized Dehn-Sommerville
equations (Theorem 1.2.15), we have f01− f02 + f03 = 2f0. Combining these
with (b),

f03 = 2f0 + f02 − f01 = 2f0 + 3f2 − 2f1 = 2f0 + 3f1 − 2f1 = 2f0 + f1.

Lemma 7.2.2. Let P be a 2-simple, 2-simplicial 4-polytope. If P contains
a facet with k vertices, then f0(P ) ≥ 2k − 3.

Proof. Let F be a facet of P with k vertices. Then F is a simplicial 3-
polytope and contains 2k − 4 triangles, which are ridges of P . Therefore, P
has at least 2k − 4 facets in addition to F . From Lemma 7.2.1(b) we get
f0(P ) = f3(P ) ≥ 2k − 4 + 1 = 2k − 3.

Lemma 7.2.3. Let P be a 4-polytope. Suppose v is a vertex of P and F a
facet containing v such that v has degree at least k within F , that is, v is
contained in at least k edges of F . Then v∆ is a facet of P∆ with at least
k + 1 vertices.

Proof. The vertex v having degree k within F translates to the facet v∆

having at least k different 2-faces that all contain the vertex F∆. In other
words, v∆ is a 3-polytope that contains a vertex of degree k and therefore
has at least k + 1 vertices.
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Less than 9 vertices

We first prove that there cannot be a non-trivial 2-simple, 2-simplicial 4-
polytope with less than 9 vertices. The following lemma is a special case of
the well-known fact that every k-simplicial, h-simple d-polytope is a simplex
if k + h ≥ d + 1 (see, for instance, Grünbaum [29, Exercise 4.8.12])—note
that simplicial is equivalent to 3-simplicial.

Lemma 7.2.4. Every simplicial, 2-simple 4-dimensional polytope is combi-
natorially equivalent to the 4-simplex.

Proposition 7.2.5. There is no 2-simple, 2-simplicial 4-polytope with less
than 9 vertices, except for the simplex.

Proof. Let P be a 2-simple, 2-simplicial 4-polytope with at most 8 vertices,
and not combinatorially equivalent to the 4-simplex. By Lemma 7.2.4, P
contains at least one facet F which has 5 or more vertices. On the other
hand, F cannot contain 6 or more vertices by Lemma 7.2.2.

Therefore, F has exactly 5 vertices. Since it is simplicial, it is a bipyramid
over a triangle. Let v be a vertex of F that is incident to 4 different triangles
R1, . . . , R4 in F . Then P has facets F1, . . . , F4 such that Fi ∩ F = Ri, and v
is contained in at least these 5 facets.

If v was in fact contained in more than 5 facets, then P∆ would be a 2-
simple, 2-simplicial 4-polytope with a facet v∆ containing at least 5 vertices,
so f0(P

∆) ≥ 9 by Lemma 7.2.2. Since f0(P
∆) = f3(P ), this contradicts

Lemma 7.2.1(b). Hence, the facet v∆ can only be a bipyramid over a triangle,
since it has to be simplicial. Back in the primal setting, this means that the
vertex figure P/v is a triangular prism.

Figure 7.1 attempts a sketch of the local situation around v. Here, dashed
edges belong to the facet F , as do the patterned triangles R1, . . . , R4 which
are partly hidden. Shaded triangles are 2-faces of the facets F1, . . . , F4.
Equally coloured regions and vertices are identified.

Since v was an arbitrary vertex of degree 4 in F , the above also holds for
each of the other two. Now consider a shelling of P where F and all its
neighbouring facets are shelled first. Such a shelling exists, because except
for F and its 6 neighbours there is at most one other facet of P left. This
can be taken as the first facet of a shelling, and then the reverse shelling is
the one we look at. Considering the complex after the last neighbour of F
was added leaves two possibilities, up to symmetry. The sketches are to be
read in the same fashion as before.
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v

Figure 7.1: Combinatorics of the vertex figure P/v

(i) All vertex figures at the equator of F are “equally directed”, see Fig-
ure 7.2. Then the two yellow circled vertices are both contained in two
different facets, hence they are in the 2-face that arises as their inter-
section. By 2-simpliciality, this 2-face must be a triangle, but there is
no edge between the two vertices.

(ii) Otherwise one of the three vertex figures is “directed contrary” to the
other two and the situation looks like in Figure 7.3. Here we have an

Figure 7.2: Case (i) in the proof of Proposition 7.2.5
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Figure 7.3: Case (ii) in the proof of Proposition 7.2.5

edge—coloured yellow in the picture—that is contained in 4 different
facets, contradicting 2-simplicity of P .

Exactly 9 vertices

There is one example of a 2-simple, 2-simplicial 4-polytope with exactly 9 ver-
tices we know from Chapter 4, which was denoted by P9. It is self-dual with
f -vector (9, 26, 26, 9) and features as facets one octahedron, two simplices
and six triangular bipyramids.

For the rest of this section let P be any 2-simple, 2-simplicial 4-polytope with
exactly 9 vertices. We want to show that P is combinatorially equivalent
to P9.

First of all, observe that by Lemma 7.2.2 there cannot be a facet with 7 or
more vertices in P . Additionally, due to 2-simpliciality, the only possible
types of facets with 6 vertices are the octahedron and the twice stacked
simplex. We call these two types large facets.

Lemma 7.2.6. P does not contain 4 or more large facets.
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Proof. If P contains at least 4 large facets, then f03(P ) ≥ 4 · 6 + 5 · 4 = 44.
Counting missing edges in the large facets gives f1(P ) ≤

(
9
2

)
−4 ·3 = 24, and

applying Lemma 7.2.1 yields f03(P ) ≤ 2 · 9 + 24 = 42, a contradiction.

Lemma 7.2.7. P does not contain 3 or more large facets.

Proof. Suppose, P has 3 large facets. By Lemma 7.2.6 there are no more
large facets. We show that additionally P has at least 2 facets which are
triangular bipyramids.

First of all, any two of the large facets must have precisely 3 vertices in
common: If two of them had at most 2 vertices in common, P would have
at least 2 + 2 · 4 = 10 vertices. On the other hand, two facets intersect in a
ridge, which, by 2-simpliciality, contains at most 3 vertices.

No vertex can be contained in all three of the large facets—otherwise there
would again be 6 + 3 + 1 = 10 vertices. Altogether, we get that every vertex
of P is incident to exactly two large facets.

Every vertex of degree at least 4 within a facet must be contained in two
other facets in which it also has degree at least 4, by 2-simplicity. Consider
a vertex that has degree at least 4 in one of the large facets. There have to
be two other facets in which it also has degree at least 4, but only one of
them can be another large facet. The only candidate for the other one is a
triangular bipyramid, which provides 3 vertices with degree 4.

Now we count the number of such vertices. If one of the large facets is an
octahedron then there are 6 vertices of degree 4 in that. Otherwise there are
at least 4 vertices in each of the 3 large facets, but we might have counted
each one twice. Hence there are at least 3 · 4/2 = 6 vertices in P that have
degree at least 4 in some large facet. Each of these vertices has to be in a
triangular bipyramid, so in either case there have to be at least 6/3 = 2 such
bipyramids.

Having established this, the same calculation as before yields a contradiction:
f03 ≥ 3 · 6 + 2 · 5 + 4 · 4 = 44, but f03 ≤ 2 · 9 +

(
9
2

)
− 3 · 3− 2 = 43.

Lemma 7.2.8. P does not contain 2 or more large facets.

Proof. Suppose P has two large facets F and F ′. As before, F and F ′ share
a ridge of P , otherwise there would be too many vertices. Now there are 3
cases.

(i) F and F ′ are both twice stacked simplices.
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F

F ′

e
A

A′

F ′′

(a) The twice stacked simplices
F and F ′

F

F ′

B1

C1

C ′
1

(b) Three edges (red) in F1∩F2,
but not in a ridge

Figure 7.4: Case (i) in the proof of Lemma 7.2.8

Then both vertices v1 and v2 of degree 5 within F must coincide with
the vertices of degree 5 within F ′—otherwise, by Lemma 7.2.3, P∆ had
more than 2 facets with 6 vertices, in contradiction to Lemma 7.2.7.

Let e be the edge between v1 and v2, see Figure 7.4(a). Then by 2-
simplicity, e can be in only one other facet F ′′ and F ′′∩(F∪F ′) consists
of two triangles A ⊂ F and A′ ⊂ F ′ with A∩A′ = e. Additionally, F ′′

cannot have more vertices than the ones in A ∪A′, since P has only 9
vertices. Therefore, F ′′ is a simplex.

Now let B1 6= A,A′ be one of the remaining triangle faces of F ′′, and
F1 the facet adjacent to F ′′ with B1 = F1 ∩ F ′′, see Figure 7.4(b).
Then by 2-simplicity, F1 contains 2-faces C1 and C ′

1, belonging to F
and F ′, respectively, that both intersect with B1. The same holds for
analogous 2-faces B2, C2, C ′

2 and another facet F2.

Since C1 and C2, as well as C ′
1 and C ′

2, intersect in F , respectively F ′,
we now have 3 edges of P that are contained in two different facets, F1

and F2, but not in a common ridge, a contradiction.

(ii) F and F ′ are both octahedra.

Let R be the ridge between F and F ′, v a vertex in R and e an edge
of R, incident to v. Like in Case (i), e is contained in a simplex S1,
intersecting both F and F ′ in ridges. The same is true for the other
edge e′ in R that is incident to v, so we get another simplex facet S2,
containing e′. Denote by e1 and e2 the edges in S1 and S2, respectively,
that do not intersect e, respectively e′, see Figure 7.5(a).

We get that v belongs to one more facet F1, in which it has degree 4,
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F

F ′

v
e e′

e1 e2

(a) The two octahedra F and F ′

and two simplices

e1

v′

R′

(b) The ridge R′ in the facets F1

(bold edges) and F2 (not drawn)

Figure 7.5: Case (ii) in the proof of Lemma 7.2.8

and which shares ridges with both simplices, S1 and S2. F1 must be a
bipyramid over a triangle by Lemma 7.2.7.

Since the same holds for the other vertices of R, the simplex S1 is also
adjacent to another triangular bipyramid F2, which also contains the
edge e1. By 2-simplicity, e1 cannot be contained in any other facet,
therefore also F1 and F2 intersect in a ridge R′. This ridge contains
e1 and an additional vertex v′, either in F or in F ′. The same ridge,
however, as a 2-face of F2 contains a different vertex from either F or
F ′, a contradiction. See Figure 7.5(b).

(iii) F is an octahedron and F ′ is a twice stacked simplex.

Then there is a vertex v with degree 5 within F ′. Since v has degree 4
in F , there are at least 7 incident edges to v. Dually, P∆ has a facet
v∆ with 7 or more 2-faces. Since v∆ is a simplicial 3-polytope, it has
in fact 8 or more 2-faces and therefore v lies on at least one more edge,
leading to another vertex v′.

v′ can neither be contained in F nor in F ′. Both of these facets have 6
vertices, 3 of them in common. Therefore, P must again have at least
2 · 6− 3 + 1 = 10 vertices.

Lemma 7.2.9. P does not contain a twice stacked simplex as facet.

Proof. By Lemma 7.2.3, every vertex v of degree 5 within a facet yields a
facet v∆ of P∆ with at least 6 vertices. Since a twice stacked simplex has
two vertices of degree 5, P∆ would contain at least 2 facets with 6 vertices,
in contradiction to Lemma 7.2.8.
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v

v′

Figure 7.6: Case (i) in the proof of Lemma 7.2.10

Lemma 7.2.10. If P contains an octahedron, then it is combinatorially
equivalent to P9.

Proof. Let F be an octahedral facet of P and v an arbitrary vertex of F .
We again consider the facet v∆ of P∆. v∆ cannot be a facet with 7 or
more vertices by Lemma 7.2.2, it cannot be a twice stacked simplex by
Lemma 7.2.9 and it cannot be a simplex, because in contains at least 5
vertices by Lemma 7.2.3.

Suppose v∆ is an octahedron. Then v is contained in some facet F ′, which is
different from F and from all four facets that are adjacent to F via a ridge
containing v. By Lemma 7.2.1(b) there are only 8 facets different from F ,
and they all share a ridge with the octahedron F . Hence, F ′ and F would
share a ridge that does not contain v, in addition to the vertex v. This is a
contradiction.

Therefore, v∆ is a bipyramid over a triangle and P/v is a triangular prism,
like in the proof of Proposition 7.2.5. This holds for all vertices of F , and by
Lemmas 7.2.8 and 7.2.9 all other facets are simplices or triangular bipyra-
mids. Choosing a neighbouring vertex v′, this leaves two possibilities, up to
symmetry, for the combinatorics of F and its adjacent facets:

(i) The vertex figures at v and v′ are “equally oriented”, see Figure 7.6.
Then the remaining two facets, which are not indicated in the sketch,
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vv′

Figure 7.7: Case (ii) in the proof of Lemma 7.2.10

have to be simplices, and the combinatorics arising is equivalent to that
of P9.

(ii) Otherwise there is only space for 4 bipyramids and the remaining facets
are simplices again, see Figure 7.7. Then the two yellow circled vertices
cannot have the required prism vertex figure and we get a contradiction.

Lemma 7.2.11. P or P∆ contains an octahedron.

Proof. Suppose, P as well as P∆, contains only facets with at most 5 vertices.
Let F be a facet of P which is a triangular bipyramid and v a vertex of
degree 4 within F . Then by the assumption and Lemma 7.2.3, v∆ is again
a bipyramid over a triangle. Now the same argument as in the proof of
Proposition 7.2.5 leads to a contradiction.

Therefore, P or P∆ contains a facet with 6 vertices, which can only be an
octahedron by Lemma 7.2.9.

Proposition 7.2.12. P is combinatorially equivalent to P9.

Proof. By Lemma 7.2.11, P or its polar contains an octahedron, hence by
Lemma 7.2.10, P or P∆ is combinatorially equivalent to P9. The claim now
follows from the self-duality of P9.
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Concluding, we get the main result of this section.

Theorem 7.2.13. P9 is the only non-trivial 2-simple, 2-simplicial 4-polytope
with f0 ≤ 9, up to combinatorial equivalence.

7.3 A computer-based approach

In the previous section we used shellings to prove that certain situations
cannot occur under certain circumstances. Shellings can also be used to
find interesting examples of polytopes. The basic idea is to enumerate all
possible shelling sequences of a possibly existing polytope which has required
properties. We give a depth-first search method which adds one facet in each
iteration, thus enumerating the shellings of polytopes with as many facets as
the maximal search depth.

In principle this yields two possible outcomes. Either we cannot find a
shelling, which means that such a polytope does not exist, or we get the
complete combinatorial information about a desired polytope. The algo-
rithm described here uses no geometric information, which means that in the
second case we get the combinatorics of a 3-sphere. This still has to be re-
alised as a polytope if we insist on finding such. In general, we will therefore
rather use the terminology “sphere” instead of “polytope” in this section.

The aimed type of polytope obviously restricts the possible shelling sequences.
For instance, for searching 2-simplicial spheres we would only have to use
simplicial polytopes as facets. Also, Theorem 7.1.2, as well as some rather
simple observations, provide means to speed up the enumeration. Still, the
algorithm is somehow a brute-force method which can probably be optimised
considerably.

General algorithm

The program starts with an empty polyhedral complex or, optionally, with
a given starting configuration. The shelling itself is then done by a recursive
function, triggered by the main procedure.

The concrete initialisation depends on the given shelling type, that is, the
properties the found spheres are supposed to have. Actually implemented
shelling types undertake the search for 2-simple, 2-simplicial spheres, cubical
spheres, and spheres with g2 < 0, but a lot more are imaginable. The general
structure of the initialisation routine is relatively fixed. It creates a space



7.3. A computer-based approach 163

to collect the found spheres in and returns the main data structure, the
algorithm structure.

Algorithm Main program
Input: shelling type t, options o
Output: collection of found 3-spheres
1. s← initialise algorithm(t, o)
2. b← empty collection of 3-spheres
3. shell recursive(s, b)
4. return b

The algorithm structure s is the central object. It contains all essential
data and functionality, tailored to the aimed shelling type, that is, for every
shelling type there has to be an adapted version of the algorithm structure.
Before we explain it in detail, we have a closer look at a single shelling step.

Each call to the recursive function shell recursive corresponds to a shelling
step. Here a list of possibilities for extending the current polyhedral complex
is assembled and afterwards successively executed, unless

• the current structure represents a completed sphere—in which case a
subroutine is called that tests for previous isomorphic results and saves
it if there are none; or

• for some reason backtracking comes into play and the current branch of
the search tree is cut—for example because the maximal search depth
has been reached or there are any obstacles that prohibit the current
complex from becoming a valid sphere with the prescribed properties.

Algorithm shell recursive
Input: algorithm structure s, collection b of already found spheres
Output: —
1. if s.finished()
2. then b.add(s)
3. return
4. if s.cut branch()
5. then return
6. s.calc extension possibilities()
7. while s.is extendable()
8. do s′ = s.extend()
9. shell recursive(s′, b)

Everything that is called in this recursive method—except for the function
b.add—is part of the algorithm structure s, which we examine closer next.
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Algorithm structure

The algorithm structure comprises all information as well as all routines
that are necessary to execute all possible shellings. In the general version it
contains the following parts:

• A structure to describe the current state of the shelling. This contains
on the one hand the boundary surface of the current 3-ball, represented
by two dual planar graphs with additional information on the vertices,
edges and faces, and on the other hand the complete vertex-facet inci-
dences of the complex.

• Information about the current and maximal search depth.

• A flag that can be set at various stages of a shelling step and indicates
if there has been an obstruction to further extending the complex to a
valid sphere of the given type.

• A list, together with an iterator, of possibilities to further extend the
complex.

The important routines that decide on the backtracking, calculate possible
further extensions and actually extend the current complex are mostly part
of the specialised versions, since they largely depend on the shelling type.
In the following we give an overview over the parts that all versions have
in common, and discuss some more details about the specialisations in the
concluding sections.

Recognising when the algorithm has arrived at a valid result, is rather easy:
The subroutine s.finished simply decides whether the boundary surface of
the current complex is empty or not.

The decision to backtrack, exercised in the method s.cut branch, in its most
general form depends exclusively on the current search depth, equally the
current number of facets: If this is larger than or equals the maximal number
of facets allowed, the recursion is stopped. There are, however, some criteria
to recognise earlier that a branch of the search tree has to be cut off. This
leads to some improvements of the general method, reducing the runtime of
the program, that are discussed in the next subsection.

The second half of the recursive function concerns the creation and applica-
tion of further shelling steps. After setting up a list of possible extensions
in s.calc extension possibilities , the loop simply traverses this list until the
end. In each iteration a copy of the algorithm structure is created, with the
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Figure 7.8: Possible extension surface—the dashed edges are about to
vanish from the surface, as well as the vertex 4

respective extension applied and the shelling function is called recursively
with this copy as a parameter.

The calculation of possible extensions, that is, next shelling steps, is the main
effort of this part, and again, the details differ considerably for the different
shelling types. The overall principle is to some extent given by the used data
structures that describe the boundary surface of the ball.

This surface determines, which facets can possibly be used in a next shelling
step, and how. Precisely, we have to match parts of the surface with parts
of the boundaries of the allowed facets to obtain the possible intersections
of the next facet in a shelling with the current polyhedral complex. We call
these 2-dimensional subcomplexes extension surfaces. They have to be either
topological 2-balls or the complete surface, which is topologically a 2-sphere,
in the last shelling step. Figure 7.8 shows an example of a possible extension
surface, which can be used to glue different new facets, see Figure 7.9.

Therefore, the procedure s.calc extension possibilities first identifies all such
subcomplexes as subgraphs of the dual graph contained in the boundary
surface description. Then for each suitable extension surface it exhibits all
possibilities to “glue” a facet onto this subcomplex, and records the changes
the boundary undergoes in each case, to be applied later by the function
s.extend .

The information to encode these changes consists of

• a list of vertices that have to be added to the primal surface graph;
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(b) Extension with a twice stacked simplex

Figure 7.9: Result of extending the surface part in Figure 7.8 with
different facets—the continuous lines represent new edges of the
surface, the dashed ones are now contained in one more facet

• a list of vertices that have to be added to the dual surface graph, that
is, faces that are new to the boundary surface;

• a list of edges that are new to the primal surface graph;

• a list of edges that already existed in the primal surface graph, but now
change their status, since they are contained in one more facet.

Note that both the new as well as the changing edges contain the information
needed to keep the duality between the two graphs consistent. See Figure 7.9
for examples.

Additionally, the vertex-facet-incidences of the complete complex have to be
updated. This amounts to simply adding a new facet containing all vertices
in the extension surface and all new vertices. The data necessary for this can
also be read off from the information above.

Improving runtime

As remarked, it is advisable to make the search tree as small as possible while
ensuring that the algorithm does not miss anything. Apart from some simple
observations about shellings, Theorem 7.1.2 provides us with possibilities for
doing this.
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For example, it suffices to consider shellings that start with all facets around
a given vertex. This fact can be applied on two ways. Either we declare some
arbitrary vertex of the first facet—the one with index 0 for instance—to be
the start vertex, and then we can skip any extension possibility that does
not involve this vertex, until it disappears from the surface.

The other possibility is to declare the start vertex to be one of the vertices
of the potentially resulting sphere with maximal degree. This is a bit more
tricky, since initially we do not know the vertices with highest degree. They
are determined in the first step in which a vertex disappears from the sur-
face. We then record the highest degree of the now interior vertices and in
the following prohibit any extension that would create vertices with higher
degree.

However, this strategy cannot be combined with the following one, since the
vertex with the highest degree is not necessarily contained in a specific facet.

Additionally, we can restrict the search to shellings starting with a chosen
facet. This means that facets that have been used to start earlier shellings
need not be considered any more, because any polytope that would contain
such a facet would have been found before. This reduces the number of exten-
sion possibilities immensely, once the program completed searching through
the first main branches of the search tree.

By default, the extension possibilities are applied in an undefined order.
It can make sense to sort the list after it is created, according to the size
of the surface parts that lie beneath the respective extension possibilities,
ascendingly or descendingly.

This actually does not speed up the overall runtime. In practise, however, it
seems that it could lead to resulting spheres found earlier. An explanation
may be that the smaller the extension surfaces used in the first steps, the
larger the overall surface of the complex—which is soon likely to be too large
to be completed within the remaining steps.

Some conditions can be given that imply that a complex has too large a
surface in this respect. They can be expressed using the number of vertices
and edges (following ideas of Arnold Waßmer).

Definition 7.3.1 (Vertex and edge hunger). Let F1, . . . , Fk be a shelling
sequence of a polytope P and 1 ≤ i ≤ k. Let G be an arbitrary face of the
polyhedral complex Ci defined by the facets F1, . . . , Fi.

The facet degree of G is

fdegi(G) := |{Fj | 1 ≤ j ≤ i, G ⊆ Fj}|.



168 Chapter 7. Shelling 4-polytopes

The vertex hunger of a vertex v of Ci at step i is

VHi(v) :=





0 if v is not on ∂Ci
1 if v is on ∂Ci and fdegi(v) ≥ 3
4− fdegi(v) otherwise

The edge hunger of an edge e of Ci at step i is

EHi(e) :=





0 if e is not on ∂Ci
1 if e is on ∂Ci and fdegi(e) ≥ 2
3− fdegi(e) otherwise

The vertex hunger, respectively edge hunger, of the complex Ci at step i is

VHi :=
∑

v vertex of Ci

VHi(v) , respectively EHi :=
∑

e edge of Ci

EHi(e).

So the vertex, respectively edge hunger, at step i gives a lower bound on
the number of facets that occur after step i and contain the given vertex,
respectively edge. Using this we can then give upper bounds on the vertex
and edge hunger, depending on the maximal total number of facets (the
maximal recursion depth) and the current number of facets (the current
recursion depth), see the concluding subsections. If such a bound is exceeded,
the shelling cannot be completed with less than the given total number of
facets, and can therefore be stopped early.

Notes on the implementation

The implementation of the described shelling algorithm comprises some more
features, such as interfaces for debugging and printing log messages to mon-
itor the progress of the shelling. Furthermore, the initialisation module can
read an option file which contains detailed information about the possible
extensions, maximal search depth and optional settings as described above.
This also includes the possibility of providing a skip list, making it possi-
ble to continue an interrupted shelling process at roughly the point where it
stopped.

The program is completely implemented in C++, using the Standard Template
Library, as well as data structures from polymake [28]. For locating extension
surfaces, that is, suitable subgraphs of the dual surface graph, as well as
isomorphism testing of the found spheres, the functionality of nauty [40] is
embedded.
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2-simple, 2-simplicial 4-polytopes

One possible instance of a shelling type is to look for 2-simple, 2-simplicial
spheres. In this case we can further specialise some parts of the algorithm,
notably the computation of extension surfaces.

The boundary surface is now a simplicial 2-dimensional complex. The enu-
meration of all extension surfaces can be done with another recursive search
on the dual surface graph. We start at some arbitrary triangle ∆ of the
boundary surface and search for a neighbouring triangle that is separated
from ∆ by an edge of degree 2. Note that every such edge, together with
the neighbouring triangle has to be contained in a facet that is to be glued
onto ∆, to ensure 2-simplicity. If a neighbour ∆′ is found, it is added to the
extension surface, receives a mark, to prevent it from being found from an-
other direction in the further progress, and the search is continued recursively
on ∆′.

The extension surface is completed if there are no more unmarked neigh-
bouring triangles left. We still have to take some care about the validity of
the result. For example, edges of degree 1 may not lie inside the extension
surface. If such a thing occurs, then there is no chance of completing the
current shelling. Similarly, there may be no identified vertices on the bound-
ary of the extension surface, since this would change its topological type to
something else than a 2-ball. Finally, there might be vertices which are not
connected by an edge in the extension surface, but both contained in some
earlier facet—these would both also be contained in the new facet, a situation
which is not allowed for a polyhedral complex.

As remarked after Definition 7.3.1, we can also give bounds on the vertex
and edge hunger that allow the algorithm to earlier recognise the necessity
for backtracking.

Proposition 7.3.2. Let P be a 2-simple, 2-simplicial 3-sphere with k facets
having at most α vertices each. Then for every shelling and 1 ≤ i < k we
have VHi ≤ α(k− i) and EHi ≤ (3α− 6)(k− i). Furthermore, the number of
2-faces of ∂Ci is at most (2α− 6)(k − i) + 2.

Proof. After shelling step i there are k − i more facets to come, which are
simplicial 3-polytopes, and therefore each have at most α vertices, 3α − 6
edges and 2α− 4 triangles. From this we immediately get the bounds on the
vertex and edge hunger.

Furthermore, in every shelling step after i, except for the last one, at most
2α − 4 triangles vanish from the surface boundary and at least 1 turns up
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new, so in each of k − i − 1 shelling steps the number of triangles on the
surface decreases by at most 2α− 6. Adding the last facet of the shelling, at
most 2α − 4 triangles vanish. In total, after step i the surface cannot have
had more than (2α−6)(k− i−1)+2α−4 = (2α−6)(k− i)+2 triangles.

Using these specialisations, the program enumerated all 2-simple, 2-simplicial
4-polytopes with up to 11 vertices, and found several instances on 13 and 14
vertices. Among them were the first two members of the family described in
Section 4.2, as well as the other small examples described in [43, Section 4].

We know that there are 2-simple, 2-simplicial 4-polytopes on n vertices for
n ∈ {5, 9, 10, 11} and all n ≥ 13 (see [43]), but none for 6 ≤ n ≤ 8 (see
Section 7.2). It is not known, however, if there exists an example on 12
vertices.

Conjecture 7.3.3. There exists a 2-simple, 2-simplicial 4-polytope on 12
vertices.

The program discovered two 2-simple, 2-simplicial combinatorial 3-spheres
on 12 vertices with f -vectors (12, 40, 40, 12) and (12, 39, 39, 12), respectively.
Their vertex-facet incidences are given in Table 7.1. Realising one (or both)
of these as polytopes would solve Conjecture 7.3.3 to the affirmative.

Cubical 4-polytopes

Cubical 4-polytopes were extensively studied in several papers by Blind and
Blind. Among other results, they showed in [14] that all even-dimensional
cubical polytopes have an even number of vertices and classified the cubical
d-polytopes with up to 2d+1 vertices, for d ≥ 4 (see Blind and Blind [15]).

For d = 4 they use a shelling argument which is very similar to our al-
gorithmic approach. In this case one gets a characterisation of all cubical
4-polytopes with at most 32 vertices. The first gap in vertex numbers is
at 34.

Conjecture 7.3.4. There is no cubical 4-polytope with 34 vertices.

In the following we describe how to specialise the general algorithm to search
for cubical 3-spheres. Most procedures for the cubical case are very similar to
those for the 2-simple, 2-simplicial case. The difference is mainly in obtaining
the extension surfaces. There are obviously only very few possible types, since
there is only one type of facet. On the other hand, different possible extension
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{v0, v1, v2, v3}

{v0, v2, v3, v4, v5, v6, v7}

{v0, v1, v3, v4, v8, v9}

{v0, v1, v2, v6, v9, v10}

{v0, v4, v7, v8}

{v0, v5, v6, v10}

{v0, v5, v7, v8, v9, v10}

{v1, v2, v3, v4, v10, v11}

{v2, v5, v6, v8, v10, v11}

{v1, v8, v9, v10, v11}

{v1, v4, v5, v7, v8, v11}

{v2, v4, v5, v11}

{v0, v1, v3, v4, v6, v8, v11}

{v0, v2, v3, v6, v7}

{v0, v2, v4, v5, v7, v8, v9}

{v0, v4, v6, v7}

{v1, v2, v3, v5, v6, v9, v10}

{v1, v2, v4, v6, v7}

{v0, v1, v5, v8, v10}

{v1, v2, v4, v8, v10}

{v0, v1, v5, v9, v11}

{v0, v2, v3, v9, v11}

{v2, v5, v8, v10}

{v1, v3, v9, v11}

Table 7.1: Vertex-sets of the facets of two 2-simple, 2-simplicial
3-spheres on 12 vertices

surfaces might now intersect, in contrast to the 2-simple, 2-simplicial case,
since edges can have degree larger than 2. We therefore have no simple
method to compute extension surfaces and have to enumerate them manually.

Additionally, we can use some nice properties of cubical polytopes. For ex-
ample, the vertex set of cubical polytopes of even dimension can be coloured
in such a way that adjacent vertices get different colours and the number of
vertices of the one colour equals that of the other, see Blind and Blind [14].
This means that during the shelling newly added vertices are equipped with a
suitable colour. If this is not possible in some step or we get too many vertices
of one colour, then the shelling will not yield a valid cubical polytope.

Furthermore, when searching for polytopes with at most 34 vertices, several
of the statements used by Blind and Blind in [15] can also be applied in our
case, including bounds on the vertex degrees, the simpliciality of the vertex
figures, and the fact that without loss of generality we can start the shelling
with one of two special complexes.

Similarly to the 2-simple, 2-simplicial case, there are also bounds on the
vertex and edge hunger.
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Proposition 7.3.5. Let P be a cubical 4-polytope on k facets, and a shelling
given. Then for 1 ≤ i < k we have VHi ≤ 8(k − i) and EHi ≤ 12(k − i).
Furthermore, the number of 2-faces of ∂Ci is at most 4(k − i) + 2.

Proof. This is proved in the same way as Proposition 7.3.2, using the fact
that all facets are 3-cubes with 8 vertices, 12 edges and 6 quadrilaterals as
2-faces.

Runs of the program with the two start complexes yielded no cubical com-
binatorial 3-sphere with 34 vertices. While we do not count this as a proof,
computer-based proofs being a very special subject anyway, it might still be
an indication that Conjecture 7.3.4 could be correct.

Spheres with g2 < 0

For every polytope P we have g2(P ) ≥ 0, see Theorem 1.4.3. This is still
unproved for general spheres. In particular, it is an open question whether
there are 3-spheres with g2 < 0.

One possible application of the shelling algorithm might therefore be the
quest for examples of spheres with negative g2. We hereby restrict the search
to 2-simple, 2-simplicial spheres, in which case we can use everything said in
the corresponding section above. Additionally, we have the following state-
ment about the vertex hunger.

Proposition 7.3.6. Suppose P is a 2-simple, 2-simplicial 3-sphere with
g2(P ) < 0 and F1, . . . , Fk a shelling sequence of P . Then for 1 ≤ i < k,

i∑

j=1

f0(Fj) + VHi < 6k − 10.

Proof. If P is 2-simple, 2-simplicial then g2(P ) = f1(P ) − 4f0(P ) + 10 (cf.
Section 1.4). With Lemma 7.2.1 we get

g2(P ) = 2f0(P ) + f1(P )− 6f0(P ) + 10 = f03(P )− 6f3(P ) + 10 < 0

The vertex-facet incidences can be counted separately for the facets before
step i and those after:

f03(P ) =
i∑

j=1

f0(Fj) +
k∑

j=i+1

f0(Fj)
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Now the vertex hunger at step i counts the incidences of vertices that are on
the surface in step i with the facets Fj, i < j ≤ k, therefore

VHi ≤
k∑

j=i+1

f0(Fj)

This implies

i∑

j=1

f0(Fj) + VHi ≤ f03(P ) < 6f3(P )− 10 = 6k − 10

The search for 3-spheres with up to 25 facets and g2 < 0 did not result in
any examples up to now. On the other hand, such examples might be quite
large, so one might have to increase search depth considerably, resulting in
very long computation times.
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