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Zusammenfassung

Das Thema der Dissertation ist die Entwicklung und Anwendung numerischer Modellierungsme-
thoden, um die Transformation vom fossil-fissilen zum erneuerbaren Energiesystem abzubilden.
Der Fokus liegt dabei speziell auf techno-ökonomischen Planungsmodellen basierend auf linearer
Optimierung.

Das erste Kapitel hinterfragt die Funktion von Planungsmodellen und beschreibt sie als
Instrumente im fachöffentlichen Diskurs über die Zukunft des Energiesystems. Aus dieser
Einordnung werden Empfehlungen für Modellentwicklung und -anwendung abgeleitet.

Das folgende Kapitel analysiert, ob die Verwendung reduzierter Zeitreihen eine adäquate
Strategie zur Reduktion von Modellkomplexität bleibt, wenn Energiesysteme zunehmend durch
fluktuierende Erzeugung aus Wind und Solar charakterisiert sind. Zu diesem Zweck werden
Kombinationen verschiedener Methoden zur Erzeugung und Modelleinbettung reduzierter
Zeitreihen hinsichtlich ihres Effekts auf Endergebnisse verglichen. Ergebnisse zeigen, dass
fluktuierende Erzeugung, aber auch die zunehmende Bedeutung saisonaler Speicher, die
Aussagekraft reduzierter Zeitreihen stark einschränkt, wobei die genauen Effekte in erster
Linie von der Modelleinbettung abhängen. Abschließend wird die Entwicklung alternativer
Methoden zur Reduktion von Modellkomplexität empfohlen.

Darauf aufbauend stellt das dritte Kapitel einen auf Graphentheorie basierenden techno-
ökonomischen Modellierungsansatz vor, der Mengen von Modellelementen, wie Zeitschritte oder
Regionen, in hierarchischen Bäumen anordnet. Neben weiteren Neuerungen ist der Ansatz in der
Lage, den zeitlichen und räumlichen Detailgrad innerhalb des Modells je nach Energieträger zu
variieren. Damit erreicht der Ansatz einerseits eine erhebliche Komplexitätsreduktion und kann
andererseits die inhärente Flexibilität von Infrastrukturen wie dem Gasnetz berücksichtigen.

Das vierte Kapitel dokumentiert AnyMOD.jl, ein Software-Framework, das die Formulierung
von Planungsmodellen auf Grundlage des Graph-basierten Ansatzes automatisiert und so
die ansonsten sehr komplexe Methode öffentlich und einfach zugänglich macht. Darüber
hinaus implementiert das Framework weitere numerische Methoden zur Reduktion von
Modellkomplexität.

Im letzten Kapitel der Dissertation werden die entwickelten Methoden angewandt, um
die Substituierbarkeit von Netzausbau durch einen räumlich gezielten Zubau von Speichern
und erneuerbaren Energien zu analysieren. Zu diesem Zweck wird ein optimales Szenario,
das Ausbau von Netz, Speichern und erneuerbaren Energien gleichzeitig optimiert, mit
einem sequenziellen Ansatz verglichen. Bei diesem Ansatz zuerst erneuerbare Energien sowie
Speicher und erst danach der Netzausbau optimiert, um das aktuelle Planungsverfahren
abzubilden. Das angewandte Modell zeichnet sich durch einen breiten räumlichen und sektoralen
Betrachtungsrahmen, aber gleichzeitig hohen zeitlichen Detailgrad aus, der durch den Graph-
basierten Ansatz ermöglicht wird. Die Ergebnisse weisen darauf hin, dass bei Berücksichtigung
der Flexibilität aus Sektorenkopplung der Ausbaubedarf des Stromnetzes durch den gezielten
Einsatz saisonaler Speicher deutlich reduziert werden kann.

Schlüsselwörter: techno-ökonomische Planungsmodelle, Makroenergiesystem, Energiesy-
stemmodellierung, Open-Source-Modellierung, erneuerbare Energie





Abstract

This dissertation develops and applies numerical methods to model the transformation from
a fossil and fissile towards a renewable energy system. Its specific focus is on bottom-up
planning models based on linear programming that analyze the system from a techno-economic
perspective.

The first chapter reflects on the purpose of bottom-up planning models and describes how
models are instruments in the expert and public discourse that shape the energy system’s future.
From this basis, implications for the development and application of bottom-up planning
models are derived.

The next chapter assesses whether time-series reduction is still an adequate strategy to
reduce the computational complexity when modeling renewable energy systems. To evaluate
how reduction affects model results, the chapter combines different methods for deriving reduced
time-series and for implementing them into bottom-up models. We find that intermittency of
renewables and dependency on seasonal storage reduce the accuracy of time-series reduction,
but effects are highly dependent on how reduced time-series are implemented. The chapter
proposes investigation of alternative methods to reduce computational complexity.

Following up on this, the third chapter introduces a novel graph-based formulation for
bottom-up planning models. The approach is based on organizing sets of elements in rooted
trees and is, among other things, capable to vary temporal and spatial resolution by energy
carrier within the same model. As a result, high resolutions can be limited to the power
sector to achieve a substantial reduction of computational complexity and capture the inherent
flexibility of large-scale infrastructures.

The fourth chapter introduces AnyMOD.jl, a modeling framework implementing the graph-
based formulation and automating the creation of models applying it. The purpose of the tool
is to make the method freely available and easily accessible. In addition, it introduces further
technical features to reduce model complexity.

The final chapter of the dissertation applies the developed methods to evaluate the benefits
of considering storage systems and different placement of renewables as substitutes for grid
expansion. To analyze these benefits, a first-best scenario that simultaneously optimizes
expansion of generation, storage, and the transmission grid is compared to several sequential
scenarios. Due to its large scope and detailed representation of sector integration, the applied
model can provide new insights and suggests that storage systems could greatly reduce the
need for grid expansion, even if sector integration doubles the demand for electricity.

Keywords: bottom-up planning models, macro-energy system, energy system modeling,
open-source modeling, renewable energy
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1
Introduction

1.1 Motivation

Energy supply from renewable sources is a fascinating but not a novel idea. First visions
for renewable energy systems surfaced in utopian literature authored in the early stages of
industrialization (Armytage 1956). In 1865 William Stanley Jevons’ The Coal question warned
about the expected depletion of coal reserves sparking one of the first public debates on energy
supply (Ergen 2015). In the following, the idea of renewable energy took deeper hold and in
the late 19th century advances in solar and wind power attracted academic attention rendering
them potential substitutes for steam engines (Kapoor 2019). In his main work Women and
Socialism August Bebel predicted that after the depletion of coal, a shift to renewable energy
is inevitable and will lead to a valuation of land based on renewable potential (Bebel 1900;
cited by Abelshauser 2014). Later Émile Zola’s novel Travail in 1901 or Archibald Williams’
book The Romance of Modern Invention in 1910 introduced the idea of renewable energy to a
popular audience (Zola 1901; cited by Febles 2008; Williams 1910; cited by Ergen 2015).

However, in spite of showing promise, renewable energy systems remained science fiction
and the industrial shift from steam to electricity was, with the exception of hydro power,
mainly fueled by coal and later oil. Insufficient technical maturity as a sole explanation for
this falls short of how technical and societal development are intertwined. Building on Thomas
Hughes (1993) historical studies on electricity supply, Ergen points out that early inventors
were too focused on engineering and failed to convey a broader vision for renewable energy
systems to governments and private investors. As a result, renewables did not receive long-term
investment to achieve learning effects and reach maturity. As an additional reason for little
support of renewable energies, Abelshauser (2014) cites that Jevons’ expectations regarding the
scarcity of fossil fuels turned out to be unfounded, especially due to the increasing exploitation
of oil and gas.

Correspondingly, renewables re-gained momentum in the United States when awareness for
the risk of depending on oil imports increased during the 1950s. Solar technology progressed at
the same time and the presentation of a first photovoltaic cell in 1954 met great public reception
being described by the New York Times as the eventual "realization of one of mankind’s most
cherished dreams — the harnessing of the almost limitless energy of the sun for the uses of
civilization" (“Vast Power of the Sun Is Tapped by Battery Using Sand Ingredient” 1954; cited
by Ergen 2015). However, photovoltaic was not yet market-ready and lacked government
support that rather focused on advancing nuclear power, also due to synergies between its
civil and military use (Ergen 2015; Clarke 2014).

1



1. Introduction

In subsequent years growing opposition to nuclear power and oil dependency reinforced
interest in renewable energy systems. In his article Energy Strategy: The Road Not Taken?
Amory Lovins (1976) contrasted energy systems characterized by fossil-fissile fuels and large-
scale infrastructure with an alternative path based on energy efficiency and small-scale
renewables tailored to end-use. Krause, Bossel, and Müller-Reissmann (1980) substantiated
these ideas for Germany and in 1980 introduced a comprehensive concept for a renewable
energy system. About the same time, similar studies on technical feasibility and economic
implications were also conducted for other countries like the United States, France, or Sweden
(Martinot et al. 2007).1 The common denominator in all these works is how they take a
systematic perspective to propose serious visions and thus mark the point where renewables
exited the realm of science fiction and entered public debate.

Since the 1980s, these visions were partly put into practice. With scientific consensus about
climate change as an additional driver, renewable energy made significant progress quadrupling
its global consumption of primary energy from 1980 to 2019. Due to rising consumption in
emerging economies, global shares only rose from 6.7% to 11.4% but in industrialized countries
the increase was more pronounced, for example from 1.4% to 17% in Germany (Ritchie and
Roser 2020). Reinforced investments induced learning effects that diminished levelized costs of
electrictiy from photovoltaic (PV) and wind in the last ten years by 89% and 70%, respectively
(Roser 2020).

The trend towards renewables is reflected again by the visions that are projected into the
future today. Studies on renewable energy systems are growing in number and detail (Hansen,
Breyer, and Lund 2019; Jacobson et al. 2017; Hohmeyer and Bohm 2015; Oei et al. 2020). While
in the 1980s many scholars expressed their skepticism or blunt rejection of the idea, consensus
emerged that renewable energy will make a significant contribution to energy supply and
controversy shifted to whether renewables can fully replace nuclear and fossil fuels (Hammond
1977; Schmitz and Voß 1980; T.W. Brown et al. 2018). Outside of academia, new visions for
renewable futures, like the Green New Deal, are put forward and many stimulus packages in
response to the COVID-19 pandemic are committed to a green recovery, eventually moving
renewable energy into the center of public policy (Galvin and Healy 2020; Carbon Brief 2020).

The outlined (and non-exhaustive) history of renewable energy illustrates how evolution
of energy systems is more than a deterministic process dictated by technology, but equally
shaped by human expectations for the future and their ingenuity, when facing it. Against this
background, the following section introduces Jens Beckert’s concept of fictional expectations
driving economic development and applies it to how planning of energy systems builds on
scenarios (Beckert 2013). The subsequent section introduces bottom-up planning models,
the key method for energy scenarios and focus of this dissertation. Section 1.4 links the two
previous sections and applies the insights on energy scenarios and derives implications for
developing and applying bottom-up planning models. Afterwards, the individual chapters of
the dissertation are outlined with specific regard to how they address the identified and the
last section concludes with the next steps proposed for future research.

1.2 Fictional expectations in energy scenarios

According to Beckert, economic behavior regarding the future is limited by unknowability.
Unlike uncertainty, unknowability is not only non-deterministic, it also cannot be captured
probabilistically to enable rational decisions. To remain capable of taking decisions,
intentionally rational actors develop fictional expectations of the future in place of perfect
information. These expectations extend empirical facts with assumptions that are narratively
convincing and formed by calculation and imagination. As a result, fictional expectations
are socially contingent and rest on conceptions “influenced by culture, history and power

1. The first corresponding study for Denmark was published even earlier in 1975 (Sørensen 1975).
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relations” (Beckert 2016; cited by Jackson 2017). Although not inevitably accurate, fictional
expectations are treated by actors "as-if" and, thus, decisively shape their actions (Beckert
2013). In application of his concept, Beckert revisits microeconomics to explain how fictional
expectations open a creative moment for innovation and, more importantly, considers forecasts
of economic or technological development as fictional expectations whose purpose is not to
predict the future, but to coordinate economy activity (Beckert 2016).

The equivalent to forecasts in energy are scenarios. Originating from military planning,
scenarios are strategic tools describing a hypothetical future and pathways from the present to
this future (Nielsen and Karlsson 2007). Scenarios are often categorized as either predictive
describing the most probable future, explorative investigating an imaginable future or normative
outlining a desirable future (Nielsen and Karlsson 2007). Correspondingly, Beckert describes
forecasts as "coordinating, performative, inventive, and political" (Beckert 2016, p. 217).
Different energy scenarios reflect these properties to a varying degree depending on the author:
Scenarios issued by governmental agencies are mostly predictive aiming to coordinate public
policy and private investment, but to build credibility and acceptance they refrain from
innovation and reflect political consensus. Scenarios from non-governmental organizations
(NGO), consulting firms, or industrial companies seek to influence public policy and opinion
in their respective favor. Therefore, they are more political, often normative and sometimes,
when it is inevitable to achieve their objective, innovative. Scientific scenarios exhibit the
greatest level of innovation and exploration, especially if addressed to an academic audience
and not the general public. In addition, energy scenarios can greatly differ in scope and can
range from comprehensive pathways for the entire world, like the IPCC report (Edenhofer
et al. 2014), to explorative concepts for energy supply of single buildings (Knosala et al. 2021).

To examine how scenarios shape decisions and drive the development of energy systems,
the following sections successively transfers the characteristics of forecasts identified by Beckert
to energy scenarios. As a result, the section’s structure loosely mirrors the chapter on forecasts
in Beckert (2016).

1.2.1 Power of persuasion

To convince recipients and guide their decisions, forecasts must be convincing. Beckert identifies
two instruments to achieve this, which are typically combined: quantitative model results
and narrative elements. For example, economic forecasts consist of a computed growth rate
and a story about economic development to support the rate. The purpose of quantitative
results and the underlying mathematical method is to evoke precision and objectivity (Beckert
2016, p. 220). To reinforce this perception, method complexity is even increased if it does
not benefit accuracy (Beckert 2016, p. 226). Narrative elements convince by suggesting
causal relationships and tying forecasts to existing knowledge and convictions of the recipients
(Beckert 2016, pp. 91, 221, 245). In Narrative Economics Robert Shiller (2019) provides a
similar, but more comprehensive description of narratives as an overlooked factor driving
markets and investment decisions.

Energy scenarios combine quantitative methods and narrative elements in a very similar
way (Nielsen and Karlsson 2007). Elaboration of quantitative and narrative parts varies and
scenarios targeting a professional audience typically emphasize quantitative elements; targeting
a general audience emphasizes narratives.

Similar to economic forecasts, the purpose of complex methods in energy scenarios is to
create legitimacy and credibility (Schmidt-Scheele 2020). This is for example reflected by
critique of the IIASA energy scenarios in Keepin and Wynne (1984). They find that the
applied model is needlessly complex and simple calculations using a few key assumptions are
sufficient to largely reproduce its results (Keepin and Wynne 1984; Häfele et al. 1981). In
addition, results are not robust to minor changes of these key assumptions. Based on this
analysis, Wynne (1984) even goes as far as stating that energy models are "symbolic vehicles
for gaining authority" only used to create an appearance of scientific objectivity.
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The role of narrative elements in energy scenarios is equally acknowledged in the literature
(Upham, Klapper, and Carney 2016; Moezzi, Janda, and Rotmann 2017). In contrast to
purely technical descriptions, stories get people engaged and create awareness for the societal
significance of energy scenarios, which is particular relevant for public policies (Miller et al. 2015;
Janda and Topouzi 2015).

Analogously to forecasts, energy scenarios are deemed plausible, if narratives correspond to
the knowledge and convictions of the recipient (Schmidt-Scheele 2020). Therefore, narratives for
transformative scenarios often draw on similar events in the past like the industrial revolution
or disruptions in other industries (Jänicke and Jacob 2009; Clark II and Li 2013).

For the same reason, energy scenarios are often associated with various political ideals.
Although there are several studies questioning the objectivity and authority evoked by
quantitative methods in energy scenarios, there is no research critically examining the
association of normative ideals. This seems particularly intriguing, because associations
are often conflicting and range from a broad political spectrum. For example, sovereignty is a
reoccurring argument in favor of national resources, both conventional and renewable, and
was first cited by Jevon regarding Britain’s dependence on coal (Jevons 1865; Sica and Huber
2017). Economic growth and the creation of jobs is also equally used as an argument in favor
of conventional and renewable energy (The White House 2021). At the same time, the idea of
degrowth serves as an argument for renewables as well. Conventional energy is often promoted
arguing it will induce economic growth to lift a significant share of the world’s population out
of poverty. On the other hand, ambitious mitigation scenarios are often motivated by pointing
out how climate change has the most severe impact on people in poverty. Sometimes, this
argument is also made specifically for women in poverty. Finally, renewable energy is argued
to increase democratic participation through decentralization of energy supply (Krause, Bossel,
and Müller-Reissmann 1980; Hirschhausen et al. 2018; Stephens 2019).

Beyond methods and storylines, persuasiveness of a scenario also depends on the authority
of its author (Schmidt-Scheele 2020). Braunreiter and Blumer (2018) for instance observes
that researchers refrained from citing a scenario by an environmental organization, not because
its quality was questioned, but because it would not "look serious".

1.2.2 Coordinating actors

Beckert points out that despite becoming increasingly sophisticated, economic forecasts are
rarely accurate and have a long record of not foreseeing recessions (Beckert 2016, pp. 241-223).
He ascribes this to flaws of the forecasting process itself, like incomplete data, inaccurate
models, or inability to foresee major changes but also to unpredictable exogenous shocks to
the economy, like political events or natural disasters (Beckert 2016, pp. 228-231). That
from today’s perspective also global pandemics must be added to this list, demonstrates how
unpredictable exogenous shocks are. Nevertheless, considerable effort is dedicated to forecasting
and forecasts are received with great reception, because their true purpose, according to Beckert,
is to coordinate economic activity. Facing an unknown future, relying on forecasts enables
actors to be seemingly rational and partly relieves them from responsibility, if decisions turn
out to be poor (Beckert 2016, p. 236). Consequently, government, businesses, and consumers
adapt their decisions to the same forecasts and as a result forecasts achieve consistent behavior
across the whole economy. This implies that forecasts are performative meaning they do not
just predict, but also shape economic activity (Beckert 2016, p. 237).2

Again, Beckert’s characterization of forecasts can be transferred to energy scenarios. Overall,
projections of energy scenarios are as inaccurate as economic forecasts, partly because they
must build on economic forecasts (Paltsev 2017; Stern 2017; Trutnevyte 2016). To stay abreast
even long-term scenarios 30 years into the future are outdated so quickly that they require

2. It does not necessarily imply that forecasts are self-fulfilling. For example, an optimistic forecast on the
eve of an unexpected recession might in fact have the opposite effect and deepen the recession.
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Figure 1.1: Comparing actual global additions of solar capacities to WEO, data from Carbon
Brief (2021)

substantial revision every year, for instance the World Energy Outlook (WEO) is updated
annually. Similar to forecasts, energy scenarios struggle to incorporate exogenous shocks
affecting demand or fuel prices (Govorukha et al. 2020; Craig, Gadgil, and Koomey 2002). In
addition, scenarios often neglect major changes and assume an overly conservative continuation
of present trends. A prominent example of this bias is displayed in Fig. 1.1. It shows how the
WEO continuously underestimated solar installations in the last ten years although estimates
were continuously revised upwards (Metayer, Breyer, and Fell 2015).

Irrespective of accuracy, scenarios impact the development of the energy system, because
they affect decisions of governments and investors (Schubert, Thuß, and Möst 2015). This
applies in particular to predictive scenarios from established institutions, like the International
Energy Agency (IEA), large companies, or governments. For example, higher solar projections
in the WEO could have encouraged additional investments and further drive up renewable
expansion (Carrington and Stephenson 2018). Similarly, Midttun and Baumgartner (1986)
argue that expansion of French nuclear capacities in the 1970s anticipated increasing electricity
demand based on prominent scenarios. These scenarios became self-fulfilling, when the added
capacity lowered prices and induced additional demand.

The importance of credible scenarios for decision making conversely implies that diverging
scenarios hinder planning and can stall the development of the energy system (Grunwald 2011).
For example, the official governmental objective in Germany is to achieve a renewable share of
65% in power consumption by 2030, but currently implemented policies will only achieve around
55% (Agora Energiewende, Wattsight 2020; Oei et al. 2019). In addition, very heterogenous
actors advocate for much higher shares up to 100% and projections for consumption these
shares are based on diverge as well (Gierkink and Sprenger 2020; Kendziorski et al. 2021).
Overall, the emerging uncertainty not only discourages investment into renewables, but into
complementary technologies like storage, electric mobility, or electric heating as well.

Explorative scenarios, often from academia or NGOs, rarely have a direct impact on
investments, but constitute an avant-garde and drive long-term innovation. If they become
sufficiently convincing, their ideas are eventually established and included into predictive
scenarios. For instance, first scenarios for renewable energy systems referenced in section 1.1
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were rejected by the established experts at the time and did not encourage great investments
(Schmitz and Voß 1980; Häfele and Rogner 1986). Also, they appear outdated from today’s
perspective including no PV, no electrification of heating, and an exclusive use of synthetic
fuels in the transport sector. Nevertheless, these scenarios sparked public discussion and further
academic research on renewables that finally resulted in significant progress and recognition of
renewables by established scenarios. A similar case can be made for the use of hydrogen as an
energy carrier, which was already described by Jules Vernes in his 1876 novel The Mysterious
Island and debated among experts since the 1970s, but only included in governmental scenarios
recently (Verne 1901; Bockris 2013; GOV.UK 2020; The White House 2021).

Finally, scenarios do not only influence governments and investors, but other scenarios as
well. To increase the legitimacy of their own work, researchers frequently use assumptions or
results from established scenarios as inputs to their own scenarios (Braunreiter and Blumer
2018). As a result, potential bias transfers to academic scenarios, which is especially critical in
case of sensitive assumptions like final demand.

In notable difference to economic forecasts, energy scenarios have become more reflective
about their epistemic value. According to Beckert, economic forecasts purport to predict
the future, despite their long record of inaccuracy. The IEA, publisher of the WEO, on the
other hand, acknowledges that "there is no single story about the future of global energy and
no long-term IEA forecast for the energy sector" and similarly many academic publications
stress the fictionality of energy scenarios (International Energy Agency 2021). However, this
clarification is of no difference, because actors nonetheless treat them as predictions when
making decisions. So, when the IEA states "the course of the energy system might be affected
by changing some of the key variables" to underline the limitations of their work, they are
modestly omitting that one variable are energy scenarios like the WEO (International Energy
Agency 2021).

1.2.3 Competition for influence

Since convincing forecasts affect decision-making, their authors hold considerable influence over
the future. Therefore, the competition for credibility between forecasters is also a competition
for political influence and forecasting methods are assets in this competition (Beckert 2016, p.
80).

In energy, scenarios are key contributions to the debate about the system’s future since
they shape economic and political decision-making. To influence expectations according to
their interests, different actors publish competing scenarios and create a "battlefield" of energy
system planning (Nørgård 2000; cited by Nielsen and Karlsson 2007).

In this debate, the state holds a central role, because planning concerns infrastructure and
the environment—both public goods (Midttun and Baumgartner 1986). Through research
funding, subsidies, market design, and building permissions the government decisively shapes
the energy system and examples like nuclear power or renewable energy demonstrate that
government support is a necessary (but not sufficient) condition for new technologies to emerge
(Ergen 2015). Therefore, scenarios by the government possess authority because they are likely
to reflect the future course of public policy.

Other actors present in the debate and publishing energy scenarios include industry
organizations, environmental NGOs, and academia (Kainiemi, Karhunmaa, and Eloneva 2020).
It is commonly acknowledged that scenarios often reflect their publishers’ interests, for example
scenarios from industry organizations tend towards higher consumption, and scenarios from
environmental NGOs towards lower consumption (Nielsen and Karlsson 2007). Drawing up
scenarios must carefully balance between diverging from the consensus to promote own interests
on the one hand but comply with the consensus to remain credible on the other. In addition
to these professional organizations, also the general public increasingly engages in the debate,
but unlike other groups, members of the general public do not typcially study energy scenarios
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directly and instead learn about their content from media (Braunreiter, Stauffacher, and
Blumer 2020).

The role of professional organizations and the authority of complex models restrict influence
on the debate and consequently on the development of the energy system as well. In
extreme cases, professional networks between universities, industry, and government form a
"cognitive monopoly" characterized by a common perspective on the energy system (Midttun
and Baumgartner 1986). Outsiders pointing out deficiencies of that perspective can be
denounced as uninformed by pointing out their lack of recognized expertise or sophisticated
methodology (Wynne 1984). Illustrating this, Midttun and Baumgartner (1986) describe how
environmentalists in several European countries had to establish expertise and forecasting
methods of their own to influence public policy according to their interests. At the time,
established models and scenarios expected a strong growth in demand that suggested the
expansion of nuclear power. In opposition to nuclear power, environmentalists rejected these
scenarios and developed methods forecasting constant demand. After gaining recognition,
these scenarios were included into planning of future polices and eventually proved much more
accurate. Overall, the process added new perspectives to the debate about energy and created
awareness of bias in models.

Finally, the previous description of how political debate shapes the energy system can be
used to reject a popular but illusive concept of scientific policy advice. Decision-makers do not
simply derive their actions from the scenarios presented by research, but decisions emerge out
of the current state of debate instead (Grunwald 2011). Only scenarios contributing to this
debate can have an actual, although indirect impact.

1.3 Bottom-up planning models

Bottom-up planning is the most frequently deployed quantitative method in the development
of energy scenarios (Laes, Gorissen, and Nevens 2014). In the past, scenarios from models
like MARKAL/TIMES or PRIMES had a considerable impact on energy policy (Taylor
et al. 2014). Bottom-up modeling refers to representing physical flows in the energy system
and is therefore also termed as the "engineering approach" (Ringkjøb, Haugan, and Solbrekke
2018). It is opposed to a top-down approach pursued by integrated assessment or computable
general equilibrium models that build on economic and social abstraction. Planning implies
investigating the optimal design of the system. Planning models are opposed to simulations
performed by agent-based or mixed-complementarity models, that account for the individual
objectives of different actors. Bottom-up planning models decide on the expansion and
operation of technologies to satisfy demand and maximize social welfare. In case of perfectly
in-elastic demand, a common assumption, maximizing social welfare is equivalent to minimizing
system costs. To solve large and detailed models within reasonable time, bottom-up planning
models are usually formulated as linear optimization problems.

Bottom-up planning models are also referred to as partial equilibrium or market models,
since markets achieve a welfare maximum if perfect competition is assumed. However, these
terms can be misleading, because several conditions of perfect competition do not apply to the
energy system. First, unknowability of the future, illustrated by the inaccuracy of scenarios
documented in the previous section, violates the assumption of perfect information. Second,
the energy system is subject to significant externalities, like environmental damage or massive
government intervention. Finally, perfect competition requires a long-term equilibrium, but
the transformation of the energy system is a dynamic process. Note that violations of perfect
competition apply particularly to the expansion of technologies, viz the planning part of
models. For bottom-up models limited to the operation of predefined capacities the term
market model can be considered more appropriate.

Thanks to their engineering focus, bottom-up planning models can identify technically
feasible solutions to satisfy demand under certain constraints, for example an upper limit on
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Figure 1.2: Graph representing exemplary bottom-up planning model

carbon emissions. By attributing costs to each decision on expansion and operation, models
can also estimate the economic costs of solutions. These characteristics render bottom-up
planning models suitable for techno-economic analyses of energy scenarios. Typical research
includes: to investigate the trade-offs between different technologies, for example heating with
electricity or hydrogen; to quantify the benefits of potential innovations, like further decreasing
costs of renewables; and to foster a systematic understanding of how technologies interact, for
example this dissertation finds that PV and batteries are typically complements, but power
grids and batteries substitute each other. To analyze specific policies, like a political limit on
wind power in certain areas, the effect of the policy must be translated into an appropriate
boundary condition of the model, for instance a corresponding capacity limit.

Since bottom-up planning models take a system perspective, they do not consider the
different agents in the system, like generators, consumers, or regulators and monetary flows
between these agents, like subsidies, taxes, or market prices. Accordingly, computed costs
are system costs, not the costs of individual agents, and computed prices are opportunity
costs of meeting demand, not the market price of transactions between agents. Consequently,
planning models are not suited to address strictly economic questions regarding individual
profits, market design, or subsidy schemes, which are better addressed by simulative tools.
In fact, this is not so much a shortcoming of optimization models, but rather reflects how
identifying an optimal system precedes research on implementing the system practically. For
example, if bottom-up planning models robustly find great benefits from expanding electricity
storage, but investments are not profitable under current regulations, this is not a flaw of
planning, but of the current policy framework.

The scope of bottom-up planning models ranges from single buildings over countries or
continents to the entire world. Since comprehensive decarbonization scenarios have to consider
more than one building, the term macro-energy systems has been termed to refer to larger
systems (Levi et al. 2019). In addition, also the sectoral scope of models varies ranging from
only one sector, like the power sector, to coverage of several sectors, like the power, heating,
and transport sector, plus their interaction. The graph in figure 1.2 shows the structure of
a stylized bottom-up planning model that is introduced in section 2 of chapter 2. In the
graph, carriers are symbolized by colored and technologies by gray vertices. Entering edges of
technologies refer to input carriers; outgoing edges refer to outputs. Accordingly, this model is
focused on the power sector and additionally includes hydrogen and synthetic gas to represent
technologies for long-term storage of electricity. Chapter 3 provides an exhaustive example for
the mathematical formulation of bottom-up planning models.
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1.4 Implications for bottom-up planning

This section applies insights on energy scenarios from section 1.2 to derive implications for the
development and application of bottom-up planning models introduced in section 1.3.

1.4.1 Openness and accessibility

Since scenarios are important communication tools in the debate about energy futures, equal
opportunity to participate in the debate implies equal access to the scenarios underlying
modeling knowledge. The consequence here is twofold: First, methods and inputs of scenario
must be transparent, so everybody in the debate has the knowledge to critically assess them.
Second, modeling tools must be openly available and accessible, so everybody in the debate can
contribute scenarios. In the academic literature the need for both transparent scenarios and
open models has been widely acknowledged (Pfenniger et al. 2017; Weibezahn and Kendziorski
2019; Morrison 2018; Junne et al. 2019). Since Keepin’s critique of the IIASA model that was
only possible because he worked at IIASA himself, influential models like TIMES have been
made publicly available and open-source has become the standard for new models (Wynne
1984; E4SMA 2021).

An essential but often overlooked factor in this context, especially beyond the scientific
community, is accessibility. Many actors outside of academia do not have the resources
in terms of working time or technical knowledge to familiarize themselves with complex
data documentations or programming tools. Open modeling tools that require substantial
programming skills, scenario data that is provided in a rare data format, or extensive
documentations that are hard to understand all formally comply with openness, but do
little to open up the debate.

1.4.2 Bias minimization

Analysis in section 1.2 revealed that quantitative models are not objective tools and inevitably
biased, either by the pursued method, or the assumed parameters. Nevertheless, there are
strategies to be transparent about potential bias and minimize it.

Methodologically, the engineering approach of bottom-up planning models leaves less room
for bias than models based on economics or other social sciences. In contrast to economic laws,
which can be highly ambiguous—Beckert describes for example how different macroeconomic
models either assume a positive, a negative, or no effect of public spending on economic growth—
natural laws are unambiguous (Beckert 2016, p. 229). However, bottom-up models are not exact
representations of the physical energy system but must approximate certain laws and heavily
aggregate the system to keep complexity reasonable. For instance, models usually approximate
the physical power grid by neglecting distribution grids, aggregating the transmission grid into
larger nodes, and applying some linear approximation of power flow equations (Leuthold, Weigt,
and Hirschhausen 2012). On the upside, research frequently questions such simplifications
and tests them against more accurate representations for validation (Neumann and Brown
2021; Frysztacki et al. 2021; Fattahi et al. 2021). In addition, an increasing number of studies
compares different models to investigate differences and identify bias (H. Lund et al. 2007;
Landis et al. 2019). To increase transparency about methodological bias, this research should
be pursued further and in addition, scenario studies should openly discuss how their methods
might bias results, especially if they diverge from standards.

The second source of bias in bottom-up planning models are quantitative assumptions.
Similar to methods, the reasonable range for technical parameters is much smaller than for
parameters that are related to economic or social questions. Calorific values of energy carriers
are exactly defined, full-load hours of renewables are limited by empirical data, and Carnot’s
rule gives maximum efficiencies, but estimates of capital costs, investment costs, or the socially
feasible potential of renewables can vary greatly. As described in the previous sections, some
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assumptions also depend on results of the scenario itself, for example heavy expansion of a
technology can induce learning effects and reduce investment costs. Here, one approach can
be to include this mechanism, in this case learning rates, into the model, although this always
comes at the risk of obscuring bias instead of reducing it, for instance, because a subjective
cost estimate is just replaced with a subjective learning rate (Lopion et al. 2019). A similar
example is to replace an exogenously fixed demand with an assumed demand elasticity.

In general, modelers should try to assess parameters critically and refrain from unquestioned
adoption of parameters used in other scenarios, even if they hold high authority. All parameters
should be documented transparently and key parameters with strong impact on results, like
demand or renewable potential, should be compared to the range from other scenarios and
ideally subjected to sensitivity analysis (Wynne 1984; Pfenniger et al. 2017).

1.4.3 Unknowability and probabilistic methods

Based on the concept of fictional expectations, Beckert draws conclusions about probabilistic
methods in economics, which can be transferred to bottom-up planning models. He states that
if future events are unknowable, and not uncertain, probabilistic methods are as inaccurate
as deterministic methods (Beckert 2016, p. 43). But, because probabilistic methods add
sophistication and probabilistic statements about the future are harder to refute, they are still
being used.

Various studies recommend the implementation of probabilistic methods into bottom-up
planning models to account for uncertainty and increase their accuracy (Pfenniger and Pickering
2018; Ringkjøb, Haugan, and Solbrekke 2018; Wiese et al. 2018). Given the limitations of
probabilistic methods, this can only be recommended for parameters that are actually uncertain,
not unknowable. In other words: Probabilistic implementation of a parameter requires a
well-founded estimate of its distribution to add accuracy and not just complexity to a model.
For example, historic weather data can quantify the distribution of renewable generation very
well rendering its probabilistic implementation sensible. On the other hand, deriving a robust
stochastic distribution for economic parameters, like capital or investment costs, appears much
more difficult, so a probabilistic implementation should be considered carefully.

1.4.4 Influence on decision making

Above methods and parameters, the ability of scenarios to advance the debate on energy futures
decisively depends on how they are deployed. The influence scenarios have on current debates
and decisions—often referred to as policy relevance—can be used to draw two implications for
modeling.

First, scenario scope, and therefore model scope must coincide with the decisions and
questions under consideration. Accordingly, Hughes and Lipscy (2013) describe how long-term
scenarios for decarbonization rarely have an effect on short-term decisions, because actors find
their insights difficult to apply. Overall, scope in bottom-up planning models can be divided
into temporal, regional, and sectoral scope, each having its significance. A temporal scope of
multiple years is important to model the dynamics of decarbonization, a large regional scope
to consider how energy carriers are exchanged between different regions, and a broad sectoral
scope to reflect the utilization of electricity outside of the power sector. For example, analysis of
the additional renewable capacity to achieve a certain renewable share by 2030 has to consider
how much of the existing capacity is decommissioned by 2030, net exchange of electricity
with neighboring countries, and the amount of added demand from the heat and transport
sector. To cover a large scope while maintaining a sufficient technical detail is challenging
for bottom-up planning models. Even if methods to reduce computational complexity are
deployed, models cannot have all-encompassing scope or detail and must flexibly adapt to
questions investigated in a specific scenario.
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Second, energy scenarios should carefully consider technical feasibility to prevent severe
path dependencies. To demonstrate the disruption, if widely shared fictional expectations,
or scenarios, are realized to be infeasible too late, Beckert attributes the financial crisis of
2008 to expectations regarding housing prices and homeownership that suddenly proved false
(Beckert 2016, p. 120). In energy scenarios, speculative assumptions on the availability of
technologies, for example the maturity of technologies like carbon capture or the effective
potential of specific renewables, could create similar effects (Braunger and Hauenstein 2020).
If their availability is widely expected and anticipated by decisions, sudden unavailability will
cause failure to achieve mitigation goals. Therefore, scenarios should focus on a risk-averse
approach and deviating, more explorative, scenarios should be labelled as such and be aware
of imposed path dependencies.

1.4.5 Socio-scientific questions

Bottom-up planning takes a technical perspective on energy systems, although section 1.2
shows how system development is equally a social process. Against this background, a growing
number of studies suggests that bottom-up planning models increasingly address socio-scientific
questions, too (Nikas et al. 2020; Senkpiel et al. 2020). Specific questions to be addressed
include: adoption of consumer technologies, acceptance of industry-scale technologies, and,
similar to past debates described in Midttun and Baumgartner (1986), behavioral change of
end-users. Literature discusses two ways for bottom-up planning models to address these
questions, either endogenously by integrating them into models or exogenously by adjusting
inputs accordingly (Senkpiel et al. 2020).

Generally, incorporating socio-scientific questions regarding individual preferences and
convictions into engineering-focused bottom-up models is not advised. Behavioral change or
attitude towards technology call for simulative or qualitative methods, but since bottom-up
planning models are based on optimization, any representation of social aspects within them
is restricted to optimization, too. To address socio-scientific questions anyway, external costs
that reflect social aspects can be added to the model and incorporated into the optimization
problem, analogously to other cost components. For example, the perceived discomfort from
wind turbines can be translated into monetary values and added to the objective function to
account for social acceptance of technologies. But the choice of considered externalities and
the quantification of their social costs is highly subjective. Estimates for specific technologies
often vary by a factor of 100, while estimates for other uncertain parameters, like capital costs,
investment costs, or renewable potential rarely vary by more than a factor of two (Stirling
1997; Kost et al. 2018; Bogdanov, Child, and Breyer 2019).3 Therefore, models considering
external costs will carry a huge potential bias imposed by the selection of external costs.
Overall, the optimization-based approach of bottom-up planning models is not well suited for
socio-scientific questions and, if used anyway, the great range of conceivable social costs is
likely to introduce a bias.

Nevertheless, bottom-up planning models can sensibly address socio-scientific questions if
their focus remains techno-economic and input assumptions reflect social aspects instead. For
example, behavioral change of end-users can be simulated using independent models and then
reflected by the exogenous inputs on demand to quantify its potential for climate mitigation.
Similarly, the adoption of consumer technologies can be analyzed separately and translated
into corresponding boundary constraints for optimization. Questions of public acceptance
are already addressed in various studies using bottom-up planning models. Typically, these
studies apply modeling for alternatives and quantify the additional cost arising if deployment of
certain technologies is limited according to social preferences (Buchholz, Gamst, and Pisinger
2020; Neumann and Brown 2021; Pedersen et al. 2021).

3. See section 3 in chapter 5 for a comparison of renewable potential assumed in different studies.
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In conclusion, striving for holistic planning models to address socio-scientific questions is
elusive (Silvast et al. 2020). The strictly techno-economic perspective of bottom-up planning
models is not a weakness but a strength, because it allows for robust results and small bias.
Non-technical questions are best addressed by interdisciplinary research connecting different
disciplines and their respective methods.

1.5 Outline and contributions of this dissertation

This dissertation advances bottom-up planning models to create techno-economic scenarios for
the transformation towards a renewable energy system. It consists of four original research
articles displayed in Fig. 1.3 starting with a revision of existing modeling approaches followed
by the development of an own approach and a corresponding software tool to address identified
shortcomings. Finally, this approach is applied in a scenario study on the planning of
transmission infrastructure to demonstrate its capabilities. In addition, the method was used
for several other research and policy papers not part of this dissertation, but listed in Table
1.1. An overview of the chapters including my own contribution and publication status is given
in Table 1.2. Both tables are provided at the end of this section. All programming scripts,
input data, and result files of the dissertation are openly available.

Chapter 1 Introduction and Outlook

Chapter 2 Is time-series reduction adequate for renewable energy
systems?

Chapter 3 A graph-based
formulation for modeling macro-
energy systems

Chapter 4 AnyMOD.jl: A Julia
package for creating energy
system models

Chapter 5 Accounting for spatiality of renewables and storage in
transmission planning

Review

Methods

Application

Figure 1.3: Outline of dissertation

Chapter 2 – Is time-series reduction adequate for renewable energy systems?

The chapter evaluates if time-series reduction (TSR) is adequate to use for bottom-up planning
models of renewable energy systems. Due to their extensive temporal, spatial, and sectoral
scope, macro-energy models commonly use a reduced time-series that is ought to preserve
all key characteristics of the original time-series, but contains fewer elements, aiming for a
favorable trade-off between complexity and accuracy (Hoffmann et al. 2020; Buchholz, Gamst,
and Pisinger 2019).

The characteristics of energy systems with high shares of renewables put the use of reduced
time-series into question. Unlike thermal generation, supply from wind and solar fluctuates and
depends on energy storage to match generation with demand. Moderate shares of renewables
only require small amounts of short-term storage, for example battery or pumped-hydro, but
needs change substantially as shares further increase towards 100%. In this case, in addition
to short-term storage, systems increasingly depend on long-term storage, for example based
on synthetic hydrogen, to balance supply and demand across seasons (Zerrahn and Schill 2017;
Schill 2020; Jenkins, Luke, and Thernstrom 2018). If reduced time-series cannot adequately
capture fluctuations and storage requirements, computed scenarios will either be sub-optimal
or cannot fully satisfy demand.
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For the analysis, the paper combines different methods for deriving reduced time-series and
for implementing them into bottom-up models. Considered implementation methods include
grouped periods with an extension for seasonal storage introduced in Kotzur et al. (2018b) and
chronological sequences. To evaluate different combinations of methods, a stylized bottom-up
planning model is first solved with a reduced time-series and then run again with a full
resolution, but capacities fixed to the values computed previously. Afterwards adequacy of
the reduced time-series is measured based on the amount of lost load in the second step. The
analysis deploys two external open-source tools, Calliope and TimeSeriesClustering.jl, and
extends the latter with additional methods.

The results show that TSR should be applied with caution when modeling renewable energy
systems, because intermittency of renewables and dependency on seasonal storage adversely
affect its accuracy. As suggested by former research, we found the accuracy of TSR to increase
with the length of the reduced time-series. Grouped periods did not consistently achieve small
shares of lost load and showed no bias towards certain technologies. For implementation as
chronological sequences, results highly depend on how the reduced time-series is scaled to
achieve consistency with a full time-series. Depending on the scaling method, results are either
biased towards short-term or long-term storage. The bias towards short-term storage causes
considerable loss of load, but when scaling with a bias towards long-term storage, loss of load
is small at the expense of overestimating system costs. Compared to chronological sequences,
grouped periods require more time to solve for the same number of time-steps, because
the approach requires additional variables and constraints. Therefore, the chapter proposes
investigation of alternative methods to reduce computational complexity, specifically the use
of different temporal resolutions within the same model and advanced solution algorithms.

Chapter 3 – A graph-based formulation for modeling macro-energy systems

Following up on the previous conclusions, this chapter introduces a novel graph-based
formulation for bottom-up planning models of macro-energy systems. It aims at reducing
computational complexity to mitigate dependence on TSR when modeling high shares of
renewables. In addition, it enables a large temporal scope not limited to a single year, but
capable of modeling pathways of multiple years under perfect foresight.

The formulation organizes sets of elements in rooted trees with multiple levels. For instance,
the tree for time-steps will typically have years on the first and the subsequent time-steps
within the year, likes days or hours, on the consecutive levels. Other sets organized in the
same fashion include regions, energy carriers, and technologies.

Specific models are created by defining these sets and relationships between them, like
assigning input and output energy carriers to technologies. Similarly, energy carriers are
assigned to time-steps and regions on a specific level to define the temporal and spatial
resolution they are modeled at. As a result, temporal and spatial resolution can be varied per
energy carrier, for instance modeling electricity hourly, but balancing supply and demand of
gas daily. This achieves the temporal detail to capture fluctuations of wind and solar, but
reduces the effort dedicated to other carriers and captures the inherent flexibility of large-scale
infrastructures, like the gas grid. To account for the substitution of energy carriers, a carrier
can substitute each of its ancestors on the preceding levels of the rooted tree. For example, if a
technology uses the carrier methane as an input and methane has the descendants natural gas
and synthetic gas, both can equally be used as an input fuel. The concept applies analogously
to demand, storage, and transport of energy carriers.

In addition, the formulation introduces several new features to model expansion and
operation of technologies. For expansion, these features aim to model the transformation
of the system more accurately and include uniform capacity expansion across several years,
endogenous decommissioning of capacities, and accounting for technological advances, like
increasing efficiencies of electrolyzers. For operation, features aim for a better representation
of flexibility. This includes different operational models for technologies, like cogeneration
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plants adjusting their heat-to-power ratio, and the combination of generation and storage
technologies, like home batteries paired with PV panels.

To demonstrate feasibility of the presented formulation, an example model is created and
solved at different temporal resolutions. Results show that limiting an hourly resolution to
electricity and modeling other carriers daily or in four-hour blocks reduces computation time
by about 70% but has negligible effects on system costs and installed capacities.

Chapter 4 – AnyMOD.jl: A Julia package for creating energy system models

The graph-based formulation introduced in the previous chapter holds great benefits but
is complex to implement. Against this background, the chapter introduces AnyMOD.jl, a
modeling framework implementing the graph-based formulation and automating the creation
of models applying it.

Following the ideas proposed in section 1.4.1, AnyMOD.jl promotes openness and
accessibility. Accordingly, it is implemented in the open programming language Julia deploying
the packages JuMP.jl as a backend for linear optimization and DataFrames.jl for efficient
SQL-style data processing. In addition, it is compatible with any open or commercial solver
implemented in Julia. Besides the open-access publication of this chapter, a comprehensive
online documentation and the commented code of the tool are publicly hosted on GitHub.4

To facilitate access, AnyMOD.jl follows an easy-to-use principle and creates individual
models solely from CSV files and a few lines of standard code. As a result, analyzing inputs,
running an existing model, or performing sensitivity analysis requires very little knowledge
about the framework or programming. A deeper understanding of the framework enables
users to create new models themselves and familiarity with the Julia language allows to add
own features to a model. Since models are defined from CSV files and short code scripts,
the framework supports version-controlled model development to promote collaboration and
transparency.

The read-in of parameter data exploits the tree-structure sets are organized in and enables
highly specific control over inputs but avoids redundance at the same time. Since parameter
data can be freely structured and distributed across input files, new models can be modularly
constructed from existing files.

To enable modeling at large scope and detail, AnyMOD.jl makes several efforts to increase
the performance of creating and solving models. To increase the performance of interior-
point-solvers, a scaling algorithm automatically moves coefficients of the model’s underlying
optimization problem into a desired range. In addition, model creation heavily deploys
multithreading and prevents creation of unnecessary model elements, like variables and
capacity constraints for PV generation during the night. As a result of these efforts, the model
deployed in chapter 2 is solved 80% faster when created with AnyMOD.jl compared to Calliope
but will provide the exact same results.

Finally, the chapter displays an application of the framework that was part of a policy
paper on the stimulus packages of the European Union in response to the COVID-19 pandemic.
Additional research and policy papers deploying the tool are listed in Table 1.1. The section
also introduces the framework’s capabilities to visualize model structure and results.

Chapter 5 – Accounting for spatiality of renewables and storage in transmis-
sion planning

The final chapter of the dissertation applies the developed methods to evaluate the benefits
of considering storage systems and different placement of renewables as substitutes for grid
expansion. To analyze these benefits, a first-best scenario that simultaneously optimizes
expansion of generation, storage, and the transmission grid is compared to several sequential

4. Link to the repository: https://github.com/leonardgoeke/AnyMOD.jl
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scenarios. These scenarios determine generation capacities in the first step assuming a
copperplate and then address grid expansion in a consecutive second step with fixed generation
capacities and a relaxed copper-plate assumption. Variations of the sequential scenarios
additionally allow the expansion of short- or long-term storage in the second step.

Analysis is focused on a renewable German power system but takes detailed account of
sector integration and exchange with other countries. The applied model is based on the
graph-based formulation for bottom-up planning models and the AnyMOD.jl framework. In
the model, capacity expansion is limited to technologies generating or storing either electricity,
hydrogen, or synthetic gas. Final demand for all carriers is set exogenously and accounts
for decarbonization of the heating, transport, and industry sector. The model applies an
hourly resolution for electricity while hydrogen and synthetic gas are balanced daily. Assuming
flexible charging, battery electric vehicles must cover their electricity demand across one day.
Residential and process heat apply a four-hour resolution to account for the thermal inertia of
buildings and load shifting potentials in the industry.

The spatial scope of the model includes 29 European countries and 38 NUTS-2 regions for
Germany, the focus of the study. Other European countries are included to account for the
flexibility im- and export of electricity and hydrogen provides, but to avoid a distortion of
results, capacities in these countries are fixed to the same value for all scenarios. Due to its
long lifetime, the current transmission infrastructure for electricity and gas is included in the
model and aggregated according to the covered regions. Apart from that, the model takes a
greenfield approach and is limited to a single year.

Results show that consideration of long-term storage as a substitute greatly decreases grid
expansion and thus also system costs, regardless of whether it is available in the fist-best
or one of the sequential scenarios. At a 4.5 percent increase of system costs, storage can
substitute grid expansion entirely. On the other hand, only small effects on grid expansion
and system costs arise from short-term storage or placing renewables differently. The latter is
partly explained by modest assumptions on renewable potential that is almost fully exploited
to satisfy demand and leaves little room to optimize placement.

In conclusion, the model achieves a great spatial and sectoral scope, high temporal detail and
a flexible representation of sector integration and provides results suggesting that modifications
to the current policy framework could greatly reduce the need for grid expansion, even if sector
integration doubles the demand for electricity. However, the chapter concludes that additional
research with a different perspective is necessary to ensure the robustness of these findings, in
particular more detailed models of grid operation.
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Table 1.1: Additional applications of the graph-based formulation and AnyMOD.jl

Publication details

European Green Deal: Using Ambitious Climate Targets and Renewable
Energy to Climb Out of the Economic Crisis (Hainsch et al. 2020)
Policy paper on the stimulus packages of the European Union in response to the COVID-
19 pandemic. AnyMOD.jl was used to re-iterate results of the energy system model
GENeSYSMOD at higher detail.
100% Renewable Energy Scenarios for North America—Spatial Distribution
and Network Constraints (Zozmann et al. 2021)
Research paper on a renewable North American electricity system with a focus on the
trade-off between transmission and local generation.
100 Prozent erneuerbare Energien für Deutschland: Koordinierte Ausbaupla-
nung notwendig (Kendziorski et al. 2021)
Policy paper on options for a fully renewable Germany energy system highlighting the need
for a coordinated expansion of different infrastructures.
The potential of sufficiency measures to achieve a fully renewable energy system
- A case study for Germany (Blaumann et al., forthcoming)
Research paper on sufficiency measures in the industry, heat, and transport sector and their
effect on the energy system.
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Table 1.2: Chapter origins and own contribution

Chapter Pre-publications & Own Contribution

2
Is time-series reduction adequate for renewable energy systems?
This chapter is based on: Göke, L., and M. Kendziorski. 2021. “The adequacy
of time-series reduction for renewable energy systems.” Energy 238:121701. doi:
10.1016/j.energy.2021.121701
Joint work with Mario Kendziorski. L.G. and M.K. both developed the model
and methodology and curated the data. L.G. wrote the paper and managed
the review and editing process.

3
A graph-based formulation for modeling macro-energy systems
This chapter is based on: Göke, L. 2021a. “A graph-based formulation for
modeling macro-energy systems.” Applied Energy 301:117377. doi:
10.1016/j.apenergy.2021.117377
Single-author original research article.

4
AnyMOD.jl: A Julia package for creating energy system models
This chapter is based on: Göke, L. 2021b. “AnyMOD.jl: A Julia package for
creating energy system models.” SoftwareX 16:100871. doi:
10.1016/j.softx.2021.100871
Single-author original research article.

5

Accounting for spatiality of renewables and storage in transmission
planning
This chapter is based on: "Accounting for spatiality of renewables and storage
in transmission planning", Under review in Energy Economics
Joint work with Mario Kendziorski, Claudia Kemfert, and Christian von
Hirschhausen. L.G. and M.K. both developed the model and methodology and
curated the data. L.G. wrote the paper and managed the review and editing
process. C.K. and C.v.H. initiated the research and provided critical feedback.
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1. Introduction

1.6 Research outlook

Irrespective of their exact design, future energy systems will be increasingly shaped by electricity
generation from wind and solar and its consumption outside of the power sector. To create
techno-economic scenarios of this transformation, the dissertation advances and applies bottom-
up planning models of macro-energy systems. It provides several starting points for further
research that can be grouped into methodological refinements and scenario applications.

1.6.1 Methodological refinement

As discussed in the previous section, the purpose of varying the temporal resolution within
a model is not only to reduce its size, but also to achieve a more accurate representation of
the system’s flexibility. Modeling carriers like hydrogen or gas at a daily resolution is well
justified, after all gas is traded daily and gas sector models typically have a daily resolution,
too, but the appropriate resolution applied to electric mobility or heating is debatable. The
best way to validate these assumptions is to explicitly represent their demand-side management
potential using existing formulations and compare results against different temporal resolutions
(Zerrahn and Schill 2015). Investigating this topic further also appears promising from a policy
perspective, because studying how different assumptions on demand-side flexibility impact
system costs is important to assess whether implementation of smart meters or bidirectional
charging is worth the effort.

Despite the considerable progress, computational complexity still limits the scope and
detail of bottom-up planning models. One approach to further reduce computation that has
not yet been exhaustively addressed is the solution algorithm deployed to solve a model. At the
moment, bottom-up planning models are best solved with off-the-shelf interior-point algorithms
that cannot exploit the specific problem structure and hardly benefit from parallelization on
high-performance computers.

Therefore, one promising strategy appears to decompose models into smaller parts and
then apply parallelized solution methods to solve them. First approaches of this kind have
already been published: Sepulveda (2020) introduces a solution algorithm combining various
decomposition methods and Rehfeldt et al. (2021) apply a specialized interior-point solver. In
addition, comparable approaches have been developed for models of small-scale systems that
unlike macro models include integer constraints (Bahl et al. 2018; Baumgärtner et al. 2020).
Advanced solution algorithms are particular necessary when bottom-up planning models
extend their scope to consider multiple climatic years within the same model, which several
recent studies recommend (Pfenninger 2017; A. P. Hilbers, D. J. Brayshaw, and Gandy 2021;
Ohlendorf and Schill 2020). From an application perspective, algorithms should intitally focus
on model feasibility at high temporal resolution rather than finding a guaranteed optimal
solution.

1.6.2 Scenario applications

The methodological improvements introduced in this dissertation open up several opportunities
for new research on decarbonization and renewable-based systems from a technical and
non-technical perspective.

On the technical side, the graph-based formulation can be applied to study how sector
integration impacts storage requirements of renewable energy systems, similar to the way
chapter 5 addresses grid expansion. Sector integration provides numerous options to provide
flexibility like flexible charging of electric vehicles, demand-side management, or heat storage,
but existing research does not account for all of them and often omits other options, like
reginal balancing, too. As a result, storage requirements could be overestimated, in particular
for short-term storage like batteries. Addressing this question would benefit from validating
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temporal resolutions as discussed in the previous section and from modeling the heat and
transport sector more explicitly.

Modeling pathways instead of single years is a feature of the formulation that has hardly
been used so far but offers insightful applications as well. Specifically, an analysis of the
consistency between short-term scenarios from transmission system operators (TSO), like the
Ten-Year Network Development Plan, and long-term scenarios for decarbonization appears
interesting (ENTSO-E 2020). For example, long investment cycles in the industry imply
that facilities built in the near future will still operate when the energy system should be
fully decarbonized, and switching these facilities to hydrogen requires the timely expansion of
infrastructure in the power sector to supply electricity for electrolyzers. If the power sector
cannot supply enough electricity, switching to hydrogen in time is impossible and will lead to
stranded assets or failure to achieve mitigation goals later.

The modular structure of AnyMOD.jl also facilitates the creation of new applications
from existing models for regions other than Europe or Germany. For example, one model
is currently developed for Round 37 of the Energy Modeling Forum5 on High Electrification
Scenarios for North America.

On the non-technical side, future work should concentrate on the impact that changes
in energy consumption can have on decarbonization pathways. As outlined in section 1.4.5,
this is not exclusively a task for bottom-up planning models but requires to connect input
assumptions on demand in planning models with independent analyses of consumption and its
sensitivity to behavioral change. A first analysis of this kind using the methods presented in
this dissertation is conducted in Blaumann et al. (forthcoming).

Finally, further research should compare how the system perspective of planning models
compares with how agents actually decide. One conceivable approach is to assess the
profitability of investments made by bottom-up models under the current policy framework
and use results as a starting point to evaluate the potential of specific policies to incentivize
investment.

5. The Energy Modeling Forum (https://emf.stanford.edu/) is an international group for collaborative work
on energy system modeling to inform decision-making.
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2
Is time-series reduction adequate for

renewable energy systems?

This chapter is based on a revised submission of Göke, L., and M. Kendziorski. 2021. “The
adequacy of time-series reduction for renewable energy systems.” Energy 238:121701. doi:
10.1016/j.energy.2021.121701.
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2. Is time-series reduction adequate for renewable energy systems?

2.1 Introduction

Mitigation of climate change and the consequential decarbonization of energy systems relies
on quantitative modeling. In particular long-term planning models investigate how large-scale
expansion of renewable energy, especially wind and solar, can replace fossil fuels. As result,
such models are characterized by an extensive temporal, spatial, and sectoral scope and require
special methods to keep their computational complexity manageable (Levi et al. 2019). The
most common approach is to use a reduced time-series, that is ought to preserve all key
characteristics of the original time-series, but contains fewer elements, aiming for a favorable
trade-off between complexity and accuracy (Hoffmann et al. 2020; Buchholz, Gamst, and
Pisinger 2019).

The characteristics of energy systems with high shares of renewables put the use of reduced
time-series into question. Unlike thermal generation, supply from wind and solar fluctuates
and requires energy storage to match generation with demand. While moderate shares of
renewables only require comparatively small amounts of short-term storage, e.g. battery or
pumped-hydro, needs change substantially as shares further increase towards 100%. In this
case, in addition to short-term storage, systems increasingly depend on long-term storage, for
example based on synthetic hydrogen, to balance supply and demand across seasons (Zerrahn
and Schill 2017; Schill 2020; Jenkins, Luke, and Thernstrom 2018). If reduced time-series
cannot adequately capture fluctuations and storage requirements, models will determine results,
like installed capacities, that are sub-optimal or cannot fully satisfy demand.

Although is often used to determine capacity scenarios with high shares of renewables,
evaluations of its accuracy for such systems are rare. When novel methods of TSR are
introduced, their accuracy is typically only tested for existing systems with moderate shares of
renewables (Teichgraeber and Brandt 2019; Nahmmacher et al. 2016; Almaimouni et al. 2018;
Poncelet et al. 2016b).

The highest renewable share evaluated in the existing literature is 90% (Pfenninger 2017).
The analysis compares resulting capacities and system costs for a hourly resolution of 8,760
time-steps to various reduced time-series with 168 to 2,920 time-steps derived by down-sampling,
heuristics, k-means and hierarchical clustering. Results show that the accuracy of TSR greatly
depends on the reduction method and length of the reduced time-series, but generally decreases
at higher shares of renewables. In addition, the inclusion of short-term storage is found to
increase accuracy of TSR, whereas the impact of seasonal storage is not investigated.

Mallapragada et al. (2018) analyze the impact of TSR on capacity expansion models up to
a renewable share of 70% and without any storage. For this purpose, 16 steps grouped into
independent slices are compared to a chronological sequence with 288 steps, both computed
using k-means clustering. When testing results with a detailed dispatch model, capacities
computed using grouped periods cannot meet between 0.15% and 0.5 % of demand. For the
chronological sequence unmet demand never exceeds 0.1% and strongly increases with the
renewable share. For both methods, low temporal resolution is found to overestimate solar
investments while underestimating wind and gas power plants.

Similarly, Reichenberg, Siddiqui, and Wogrin (2018) test TSR at a renewable share of 50%
omitting any storage technologies. With k-means clustering times-series of up to 200 steps are
derived and implemented into a capacity expansion model, either using an "integral" method
with limited suitability for more complex applications or, analogously to Mallapragada et al.,
grouped periods. Again, a low resolution is found to overestimate solar at the expense of wind
and gas.

Instead of enforcing a specific renewable share, Merrick (2016) analyze how adding wind
and solar to a stylized model impacts the accuracy of TSR. For this purpose, the paper adopts
a heuristic reduction algorithm and find that the reduced time-series needs to be extended
from 10 to 1,000 steps for the model to remain accurate when wind and solar are added.
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2.2 Implementation of reduced time-series

In addition to the literature cited above, two other types of studies on TSR can be identified.
First, there are several studies investigating high shares of renewables and even include storage,
but are limited to operation of pre-set capacities (Scott et al. 2019; Raventós and Bartels 2020).
At high shares of renewables, operational costs are negligible compared to investment, which
renders the studies inapplicable for comparison in the context of this paper. A second group
of studies considers TSR and capacity expansion, but does not analyze large-scale systems,
which also hinders comparison. Instead the focus is on models of small-scale systems, like
residential homes or industrial sites, with very different characteristics, for example the option
of flexible supply from the grid or integer constraints (Fahy et al. 2019; Schütz et al. 2018).

In summary, previous work finds that increasing shares of wind and solar reduce the
accuracy of TSR in large-scale capacity expansion models, though adequate reduction methods
and increased temporal resolution mitigate this effect. So far evaluations are limited to
renewable shares up to 90 % and consequently also neglect the need for seasonal storage arising
if shares increase further. Therefore, this paper evaluates the adequacy of TSR in capacity
expansion models of fully renewable macro-energy systems. For this purpose, capacities
computed with a reduced time-series are tested with regard to system costs and generation
adequacy using a full time-series again. Here, "full" refers to hourly data, which is the standard
generally considered adequate for large-scale models. Since these models cover extensive
geographical regions, any sub-hourly fluctuations are assumed to be balance out within each
region (T.W. Brown et al. 2018).

Our analysis of TSR makes a strict distinction between how reduced time-series are
implemented into models and how they are derived from a full time-series. Section 2.2 and
2.3 respectively introduce the different methods considered for implementation and derivation
of reduced time-series. Section 2.4 briefly introduces the capacity expansion model used
to evaluate the reduced time-series followed by section 2.5 that discusses the impact on
model results and solve time. The paper is closed of by a summary of key findings and their
implications for future modeling work.

2.2 Implementation of reduced time-series

Since literature shows that the way models implement reduced time-series greatly affects
results, this paper evaluates TSR for different implementation methods. We strictly separate
implementation of reduced time-series from their derivation that is discussed in the following
section. This section introduces two fundamentally different approaches to implement reduced
time-series and discusses their capabilities to account for storage.

2.2.1 Grouped periods

The first method groups the elements of the reduced time-series into periods and then considers
each of these periods separately. In this paper, we will refer to this method as "grouped
periods". Historically, this method originates from long-established models for planning energy
systems like TIMES or MARKAL (Loulou et al. 2016; Kannan 2011).

There are various terms for "grouped periods" in literature, that we’ve decided not to fall
back on, because their use is highly inconsistent and ambiguous. For example, Reichenberg,
Siddiqui, and Wogrin use the term "representative days" for this implementation method, while
Mallapragada et al. use the same term in a literal sense referring to days representative for a
whole year regardless of how they are implemented. On the other hand, Mallapragada et al.
refer to grouped periods as "time-slices", but Pfenninger uses the same term to describe a
method for deriving reduced time-series, not for their implementation into models.

Fig. 2.1 illustrates the method: A reduced time-series is grouped into several independent
periods each containing a chronological sequence of time-steps. The length of these sequences
is arbitrary, although most commonly each period is set to represent one day. Since time-steps
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Figure 2.1: Concept of grouped periods

from different periods are considered independently, computational effort is reduced, and
periods can be weighted to reflect characteristics of the original time-series more closely.

However, the use of independent periods faces limitations when modeling storage. As
indicated by the arrows in Fig. 2.1, cyclic conditions connecting the storage levels of consecutive
time-steps can only be enforced within each period. This prevents the exchange of energy
across periods, for example charging in period 1 and discharging in period 2. While this
simplification can argued to be reasonable for short-term storage, it cannot model seasonal
storage—a key component of renewable energy systems as described in section 2.1 (Zerrahn
and Schill 2017; Schill 2020; Jenkins, Luke, and Thernstrom 2018). Several studies identified
and addressed this drawback by extending the original approach that is limited to short-term
storage to include season storage as well (Kotzur et al. 2018a; Tejada-Arango et al. 2018).

For our test on the accuracy of TSR in renewable energy systems, we will apply the
method introduced in Kotzur et al. (2018b), because it is most widely used for large-scale
capacity expansion problems. Instead of enforcing an independent cyclic condition for each
period, Kotzur et al. introduce a new variable for the storage levels across periods, which is
illustrated by the dotted line in Fig. 2.1. This intra-period variable is subject to a yearly
cyclic condition replacing cyclic conditions in each grouped period. Its value is computed from
the net-balances of charging and discharging within each, formerly independent, period of the
reduced time-series. For example, consider a grouped period from the reduced time-series,
that that was selected to represent 12 periods of the original time-series and consequently has
a weight of 12. If charging and discharging of a storage technology in the grouped period nets
to 5 GWh, 5 times 12 GWh will consecutively be added to the intra-period storage level. In
addition, the capacity limits on each inter-period storage level are replaced with limits on the
sum of the intra-period variable and net-charging at each time-step. In summary, instead of
enforcing the same storage levels for each grouped period, the approach enforces charging and
discharging, the first derivative of the storage level, to be the same for each grouped period.

2.2.2 Chronological sequence

Alternatively to grouping periods, a reduced time-series can be implemented as one chronological
sequence. This method, illustrated by Fig. 2.2, simply puts the time-steps of the reduced
time-series into chronological order and connects the first and last step with a cyclic condition
for storage, which is analogous to how models represent time-series data that has not been
reduced. In contrast to grouped periods, chronological sequences prohibit to assign individual
weights to the steps of the reduced time-series. Most commonly, this method is applied by
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2.2 Implementation of reduced time-series

Figure 2.2: Concept of chronological sequence

capacity expansion models focused on the power sector (Tröndle et al. 2020; Neumann and
Brown 2021).

When implementing a reduced time series as a chronological sequence, there are two ways
to achieve consistency with a full time-series and still represent an entire year: First, the size
of each time-step can be increased, 2-hour instead of hourly steps for instance will reduce
a time-series from 8,760 to 4,380 steps. Second, step-size can be kept constant and instead
the year compressed to a smaller number of hours. This means, that, for example, 3,380
hourly time-steps now represent an entire year. Finally, both approaches can be combined,
for example, compressing the year to 2,190 hourly time-steps and then applying a 2-hour
resolution finally resulting in 1,095 time-steps.

Both approaches have not yet been formalized or discussed with regard to their impact on
model results, but are frequently deployed in the literature. Often implementation is closely
tied to the method for deriving reduced time-series. For example, down-sampling, a common
method for TSR, uses a reduced time-series derived by summing successive hours into new
times-steps, which increases step-size but keeps the length of the year constant (Hoffmann
et al. 2020). In contrast, Gerbaulet and Lorenz (2017) derive a reduced time-series by selecting
every n-th hour of the full time-series and implement the selected hours without adjusting their
size, effectively compressing the year. However, it is conceivable in both examples to combine
the methods for deriving and implementing reduced time-series differently. Down-sampling
could average instead of sum successive hours to keep step-size constant and compress the
year instead. On the other hand, hours selected by the method from Gerbaulet and Lorenz
could be scaled up and represent an entire year.

To demonstrate how implementation affects model variables and final results, consider the
capacity expansion problem in Eqs. 2.1a to 2.1h. To differentiate them, variables are written
in capital and parameters in lower-case letters. According to the energy balance in Eq. 2.1b,
the sum of generation Gent, storage input Stint and storage output Stout

t has to match demand
given by the parameter demt at each time-step t. The following storage balance connects
storage in- and output with the storage level Stsize

t at each time-step t. Eqs. 2.1d to 2.1f
enforce capacity constraints on storage in- and output, storage levels and generation ensuring
production does not exceed the capacity Capai. For generation, capacity constraints include a
capacity factor cft that specifies the share of capacity available for generation at time-step t.
Finally, the objective function Eq. 2.1a is composed of total investment costs InvC computed
from capacities Capai and specific investment costs invCi in Eq. 2.1g and total variable costs
V arC computed from generation Gent and specific variable costs varC in Eq. 2.1h.

In the example, time-series data includes the capacity factor cft and demand demt. Demand
is given in power units and is scaled according to the respective step-size by the parameter α.
At a step-size of 2 hours for instance, α has a value of 2 scaling a demand of 40 GW to 80
GWh. As a result, scaling changes the level of generation and storage variables requiring to
scale capacity variables accordingly. Note that the energy capacity of storage is not scaled,
because it is already denoted in energy units.

If the year is compressed by TSR, energy demand covered in the energy balance does not
correspond to actual demand. For example, if the reduced time-series consists of 4,380 hourly
steps, all generation variables will only sum to 50% of actual demand. To correct this, the
parameter β scales-up all other occurrences of the generation, storage input, or storage output
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variable outside of the energy balance, storage balance or the capacity constraints. In the
stylized example this only affects the computation of variable costs in Eq. 2.1h.

min InvC + V arC (2.1a)

s.t. Gent + Stout
t − Stint = demt · α ∀t ∈ T (2.1b)

Stsize
t−1 − Stout

t + Stint = Stsize
t ∀t ∈ T (2.1c)

cft · Capagen · α ≥ Gent ∀t ∈ T (2.1d)

Capast · α ≥ Stout
t + Stint ∀t ∈ T (2.1e)

Capasize ≥ Stsize
t ∀t ∈ T (2.1f)∑︂

∀i∈I

Capai · invCi = InvC (2.1g)

∑︂
∀t∈T

Gent · β · varC = V arC (2.1h)

Since β compensates any artificial shortening of the year induced by a compressed time-
series, the parameter can be defined as the inverse to the share of demand covered by the
summed generation variables. This share can again be expressed as the number of time-steps
m times the step-size α relative to the total number of hours, which translates into the relation
displayed in Eq. 2.2.

β =
(︃
m · α
8760

)︃−1
= 8760
m · α

(2.2)

Applied this relation shows that, if a reduced time-series of 384 time-steps is implemented
with an hourly step-size implying an α of 1, β equals 8760

384 . If conversely the time-series should
be implemented uncompressed, β takes a value of 1 and instead the step-size α increases to
8760
384 . In addition, infinite valid combinations of α and β in between these two points exist.

The graph in Fig. 2.3 plots these combinations for different lengths of the reduced time-series
m and shows how scaling factors decrease, when temporal resolution increases until α and β
ultimately converge to one for an hourly resolution.

At first glance, our formalization of implementation methods may appear captious. After
all, model results should not change, regardless of whether generation takes a smaller value in
the energy balance, but is re-scaled in other places, or takes a larger value in the first place.
However, this only holds true in the absence of any inter-temporal effects, like energy storage.
If models include storage, scaling step-size or compressing the year imposes a bias—each in
a different way. If step-size is increased, demand that is spread across a longer time span is
allocated to a single time-step. Therefore, any fluctuations and mismatches of supply and
demand within that time-step are neglected and investment into short-term storage to address
them is underestimated. On the other hand, only compressing the TSR, but leaving step-size
unchanged, neglects seasonal fluctuations. To illustrate this, consider a reduced time-series
of 384 steps. Since these steps were chosen to be representative for the entire year, average
demand complies with average demand of the full time-series, but total demand is smaller by a
factor of 8760

384 . As a result, short-term storage systems with small energy capacities are capable
to shift energy from beginning and middle to the time-series, representing spring and autumn,
and effectively operate as seasonal storage.
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Figure 2.3: Curves of valid scaling factors

2.3 Derivation of reduced time-series

The other important characteristic of TSR is how to derive the reduced from the full time-series.
Depending on whether a derivation method requires or prevents weighting of time-steps, it
can only be implemented as grouped periods or as a chronological sequence. If weighting is
optional, a method can be used with both.

Table 2.1 gives an overview of which derivation methods are applied for which implementa-
tion method in this paper. The methods were chosen so that a broad range is covered, and
the most common approaches are included. The first column specifies the method itself, while
the second columns list all included variations. Input to all clustering methods are demand
and capacity factors for wind and solar for the six different regions according to the model
description in section 2.4. All time-series were normalized to be equally weighted by the
respective reduction algorithms.

In the following, each of the considered reduction methods is briefly introduced. A
comprehensive documentation of each method can be found in the cited publications. When
deriving reduced time-series grouped into periods, each of these periods represents one day
and different lengths are achieved by selecting a different number of days, as it is the norm.

• k-Means: The method belongs to the group of partitional clustering algorithms that
minimize the Euclidean distance between the center of each cluster and its members
(Teichgraeber and Brandt 2019). In the centroid case, the center is the mean across all
members of the cluster. Whereas in the medoid case the center corresponds to the median,
the member of the cluster most similar to all others. The number of clusters is pre-set
and corresponds to the number of grouped periods meaning in our case the algorithm
clusters days based on their respective time-series. The individual weights for each period
then correspond to the number of days assigned to each cluster. This weighting prevents
implementation as a chronological sequence but facilitates representation of periods that
are rare and extreme.
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Grouped
periods

Chronological
sequence

k-Means centroid X

(medoid) X

Hierarchical centroid X

(medoid) X

10 bins X X

Poncelet 20 bins X X

(40 bins) X X

Gerbaulet X

Re-Sampling X

Table 2.1: Combinations of methods considered for TSR

• hierarchical: The used agglomerative hierarchical clustering algorithm consecutively
merges the closest points into clusters until the desired number of clusters is reached.
This process is again based on the Euclidean distance and either the centroid or medoid
of the existing clusters (Teichgraeber and Brandt 2019). Apart from that, the way
clusters translate into grouped periods is analogous to the k-Means algorithm.

• Poncelet: This method aims to match the duration curves of the reduced and the
full time-series (Poncelet et al. 2016a; Poncelet et al. 2016b). For this purpose, each
duration curve is stepwise linearized with the number of steps named bins. Afterwards,
days for the reduced time-series are selected minimizing the difference between the
linearized duration curve of the reduced and full time-series. Originally, the method
includes different weightings for each selected day. For this paper it was extended with
uniform weighting, so results can not only be implemented as grouped periods, but as a
chronological sequence as well. Since periods are solely selected and weighted to match
the duration curve of the full time-series, representation of extreme periods is limited.

• Gerbaulet: The method referred to as "Gerbaulet" in this paper combines heuristic
and optimization in a 3-step process (Gerbaulet and Lorenz 2017). In the first step,
every 25th (or 49th and so forth) of the full time-series is selected. Afterwards, the
resulting time-series is smoothed with a moving average to prevent sharp jumps in the
time-series. Finally, the resulting time-series is scaled using a non-linear optimization
to match minima, maxima and full-load hours of the reduced time-series with the full
time-series. As a result, the method preserves the extrema of each time-series, but not
how they are correlated, e.g. time-steps with high demand and low capacity factors.

• Re-Sampling: In case of re-sampling adjacent time-steps of the full time-series are
joined together into a single step. Typically, two-, four- or six-hour blocks are used for
this purpose and characteristics of the new time-steps are obtained by averaging the
original values.

In case of the Poncelet method, for the "40 bins" variation final results did not significantly
differ from results for the "20 bins" variation, which is they were omitted from the subsequent
analysis. The same applies for "medoid" and "centroid" clustering. To apply the k-means and
hierarchical clustering methods their implementation in the TimeSeriesClustering.jl package

28



2.4 Test case for time-series reduction

Figure 2.4: Graph of considered energy carriers and technologies

was used (Teichgraeber, Kuepper, and Brandt 2019). In addition, the package was extended
with the Poncelet method for the purpose of this paper. For details see the supplementary
material.

2.4 Test case for time-series reduction

The various methods for TSR are evaluated based on a stylized capacity expansion model. The
model is focused on the power sector due to its high relevance for future energy systems with
fully renewable generation. The spatial scope of the model is limited to a single node, resulting
in a so-called "island" system. Renewable potential and demand for that node corresponds to
data for Germany. Like most large-scale capacity expansion problems, the model is formulated
as a linear optimization problem without binary or integer variables.

Demand for electricity includes electricity demand from the heating, industry, and transport
sector, based on a scenario where these sectors are fully decarbonized (Hainsch et al. 2020).1
Accordingly, demand totals 956 TWh with conventional applications only accounting for 299
TWh and instead 456 TWh for industrial heating, 91 TWh for residential heating, and 109
TWh for the mobility sector. The applied load profiles also reflect the change in composition of
electricity demand. Since decarbonizing other sectors is found to exhaust the available energy
potential of biomass, power generation from biomass is excluded. The model does however
include the option of shedding load at a cost of 11,000 e/MWh (Growitsch et al. 2013). Since
estimates of load shedding costs greatly differ across sources, we also tested the model with
costs reduced by a factor of 10 to ensure robustness (Praktiknjo, Hähnel, and Erdmann 2011;
Leahy and Tol 2011).

Figure 2.4 provides an overview of the technologies and energy carriers considered in the
model. In the graph, carriers are symbolized by colored and technologies by gray vertices.
Entering edges of technologies refer to input carriers; outgoing edges refer to outputs.

In accordance with the research question, the model only includes renewable generation
technologies like wind, PV, and run-of-river. Capacity limits and factors for these technologies
are differentiated according to the six regions displayed in Fig. 2.5. Overall, potential for
openspace and rooftop PV amounts to 198 GW and 707 GW, respectively, for onshore wind
a potential of 297 GW is assumed, for offshore wind 84 GW. These limits are based on
assumptions used in the H2020 project openEntrance, the time-series of capacity factors are

1. In the respective study full decarbonization is achieved by 2040.
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Figure 2.5: Full-load hours and potential of renewables by region

taken from Kunz et al. (2017). The analysis separately considers the climatic years 2015 and
2017. In 2015 full-load hours of PV and wind are close to the long-term average; in 2017
full-load hours are above average for PV and below for wind.

The included technologies for short-term storage include lithium-ion batteries, pumped-
hydro, and compressed air energy storage (CAES). Capacities for pumped-hydro are subject
to an upper limit of 7 GW for power capacity and 35 GWh for energy capacity, which matches
the capacities installed today. For CAES, power and energy capacity is limited to 6 GW and
24 GWh, respectively (Elsner and Sauer 2015). For lithium-ion batteries only the ratio of
energy to power capacity is restricted and cannot exceed 10. The modeling of seasonal storage
is more elaborate and distinguishes the technologies for creation, storage, and re-conversion of
synthetic fuels. These include hydrogen created through electrolysis and used by hydrogen
turbines as well as synthetic gas created through methanation and used by conventional gas
turbines.

The energy flows that result from solving the model with a full time-series are provided by
the Sankey diagram in Fig. 2.6. Although the entire potential for CAES and pumped-hydro
is exploited, short-term storage is still dominated by lithium-ion batteries. Seasonal storage
of electricity is achieved by hydrogen, while synthetic methane does not play a role. Load
shedding is not used, even in runs with the value of lost load reduced by a factor of 10. Total
system costs amount to 61 billion of which 85% relate to PV and wind, 9% to long-term and
6% to short-term storage.

For the subsequent analysis of TSR, the model will first be solved with a reduced time-series.
In a second step, the model is run again, but with a 8,760 hourly time-steps and capacities
fixed to the values computed using TSR to evaluate, if demand can be satisfied. Evaluation
includes all the combinations of implementation and derivation methods listed in Table 2.1
and various lengths of the reduced time-series ranging from 24 to 7,680 time-steps.

All model runs implementing reduced time-series as grouped periods were carried of with
the Calliope framework, which includes the aforementioned extension for seasonal storage by
Kotzur et al. (Pfenniger and Pickering 2018). Since Calliope does not support the different
scaling methods for chronological sequences outlined in section 2.2.2, evaluation of chronological
sequences was instead performed with the AnyMOD.jl framework (Göke 2021b, 2021a). To
guarantee that observed differences result from the underlying methods and not from the use
of different frameworks, we ensured Calliope and AnyMOD.jl return the exact same results
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Figure 2.6: Energy flows when solving with full time-series

when run with a full hourly time-series. The supplementary material provides additional
documentation of input data and used modeling tools.

2.5 Results

The results section focuses on how TSR impacts the capability to answer key question of
modeling, what are feasible designs for renewable energy systems and what are their respective
costs? Consequently, the section is centered on two metrics: First, the share of unmet demand,
or loss of load, when running the model at full temporal resolution, but with the capacities
obtained using TSR. Second, the deviation of system costs when using a reduced time-series
compared to the reference case with full temporal resolution.

System costs when running at full temporal resolution, but with the capacities obtained
using TSR, are not compared, because they are neither informative nor robust results. The
only difference to system costs computed with TSR are costs associated with loss of load, that
already amount to 80% percent of total system costs at 1% of lost load. As a result, system
costs when running at full temporal resolution, but with the capacities obtained using TSR,
are highly correlated with the loss of load and sensitive to the assumed value of lost load, that
greatly differs across sources.

Based on the outlined test case, the first two section analyze TSR implemented as
grouped periods or chronological sequences. Subsequently, two sensitivities of the test case are
investigated and effects on solve time are discussed.

2.5.1 Implementation as grouped periods

For all reduction methods implemented as grouped periods, Fig. 2.7 provides the loss of load
on the left and deviation of system costs on the right, both depending on the length of the
reduced time-series. Results in the first row relate to 2015; results in the second to 2017. If
the reduced time-series is short, all methods exhibit significant lost load of up to 15 %, that
declines as length of the reduced time-series increases. This process is non-monotonic and
subject to strong outliers, since the selection procedure of each reduction method introduces
some randomness. None of the different methods for creating reduced time-series consistently
performs better than the others. Overall, loss of load is much smaller for 2015, the year with
average full-load hours, compared to 2017, which has above average full-load hours for PV.

Deviation of system costs shows a close and negative correlation with the share of lost load,
which is plausible considering additional investments can prevent loss of load but increase
system costs. When the reduced time-series is comparatively short, a small loss of load is only
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Figure 2.7: Loss of load and deviations of systems costs for TSR using grouped periods

achieved at the expense of overestimating system costs substantially. Increasing the length
of the reduced time-series mitigates this trade-off and has capacities converging towards the
optimal design of the system.

Fig. 2.8 compares installed power and energy capacities obtained with full resolution
against a reduced time-series of 768 time-steps derived using the Poncelet method with 20
bins or hierarchical clustering for the climatic year 2015. Openspace PV, pumped-hydro and
CAES are not included, because their technical potential is fully utilized in each case. Other
technologies, like methanation or gas turbines, are omitted, because they are not invested in
at all. In this example, Poncelet results in 0.8 % of lost load with unmet demand occurring in
107 hours of the year, compared to 0.9 % and 331 hours for hierarchical clustering. Poncelet
overestimates system costs by 0.7%; hierarchical clustering by 1.2%.

The comparison shows that compared to a full time-series and Poncelet, hierarchical
clustering finds much greater capacities for rooftop PV. Since generation from PV peaks in
summer, technologies for seasonal storage, like electrolyzers, hydrogen turbines, and hydrogen
storage, serve as a complement to shift generation from summer to winter and are consequently
overestimated by hierarchical clustering as well. This relation among errors can be observed in
other cases as well, but does not appear more frequently with a certain derivation method.
Overall, results revealed no fundamental bias on installed capacities from the respective
derivation method.

2.5.2 Implementation as a chronological sequence

Analogously to Fig. 2.7 for grouped periods, Fig. 2.9 provides the loss of load and deviation
of system costs for chronological sequences in 2015; Fig. 2.10 provides the same results for
2017. Section 2.2.2 introduced two options for implementing chronological sequences, either
compressing or or re-scaling the reduced time-series. Results when reduced time-series are
compressed are provided in the first row of Fig. 2.9. In the following rows the method
successively shifts until the forth row finally shows results if time-steps are strictly re-scaled.
Since results do not substantially differ for 2017, Fig. 2.10 only shows results for strictly
compressing or re-scaling.
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Figure 2.8: Comparison of installed capacities for different reduction methods

The left column shows the share of lost load when capacities computed with a reduced
time-series are tested with a full time-series. Loss of load decreases with increasing length of
the reduced time-series, in particular when the time-series is still comparatively short, since
more time-steps can capture characteristics of the full time-series more accurately. As observed
for grouped periods, the loss of load is substantially smaller for the climatic year 2015 than
for 2017. Of all reduction methods, "Poncelet" consistently achieves the smallest loss of load,
regardless of how many bins are considered, followed by "Gerbaulet" and lastly Re-Sampling.

However, the most significant impact on loss of load is not how the full time-series was
reduced, but how the chronological sequence was implemented. Loss of load is highest if
the reduced time-series is compressed. As implementation shifts towards demand, loss of
load strictly decreases and for 2015 ultimately drops below 4% in all cases but one. System
costs are again closely correlated with the share of lost load. High shares imply insufficient
investment and a consequential underestimation of system costs. Higher investments in other
cases decrease loss of load, but also drive up system costs, eventually even overestimating
them.

Implementation also has significant impact on installed power and energy capacities, which
are compared in Fig. 2.11 for the Poncelet method with 20 bins and a reduced time-series
of 768 time-steps. Analogously to Fig. 2.8, technologies with the same investment across all
cases are omitted. The graph confirms the bias of scaling proposed in section 2.2.2.

Compressing the reduced time-series overestimates investment into batteries, a technology
for short-term storage, but underestimates investment into hydrogen turbines and storage, both
technologies for seasonal storage. The effect of scaling on renewable generators depends on how
they interact with storage. Since generation from PV peaks in summer, but demand peaks in
winter, at one point additional PV generation can only be used, if it is stored seasonally. As
detailed in section 2.2.2, compressing overstates the ability of short-term storage like batteries
to provide seasonal storage and consequently overestimates investment into PV as well.

Results shift into the opposite direction when implementation shifts from compressing to
re-scaling. Now the model accurately reflects the storage technologies’ capability of seasonal
storage, but neglects short-term fluctuations on a hourly or daily scale. Correspondingly,
compressing greatly underestimates investment into battery storage, but approximates
capacities for seasonal storage very well. Since seasonal storage is reflected well, investment
into renewables also shifts from PV peaking in summer to wind with a more even seasonal
profile.

The bias compressing imposes on short-term storage even remains significant if the reduced
time-series is comparatively long and loss of load becomes negligible. When a full-time series
is re-sampled into blocks of 4-hours, resulting in a reduced time-series of 91 days, for batteries
power capacity is still underestimated by 73% and energy capacity by 23%. If sampled into
2-hour blocks, these values decrease to 12% and 6%, respectively.
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Figure 2.9: Loss of load and deviations of systems costs for TSR using a chronological sequences
and climatic year 2015
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Figure 2.10: Loss of load and deviations of systems costs for TSR using time-steps and climatic
year 2017
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Figure 2.11: Comparison of installed capacities for different scaling methods
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Figure 2.12: Loss of load sensitivity for seasonal storage

The discussed results on installed capacities, in particular for storage, also explain the
effect scaling has on loss of load. Since compressing overstates batteries’ capability of seasonal
storage, investment into actual seasonal storage is insufficient and a significant amount of
demand cannot be met, mostly during the winter months. Accordingly, if re-scaling is fully
applied, in the example 6.6% of demand are unmet and loss of load occurs in 1126 hours,
all of them in first or fourth quarter of the year. The implications of neglecting hourly and
daily fluctuations in case of re-scaling are not as severe. Since the installed capacities for
seasonal storage are technically also capable to balance short-term fluctuations, lost load is
much smaller and only occurs in nine hours totaling 0.001‰ of demand.

2.5.3 Sensitivities for seasonal storage and sector integration

The test case introduced in section 2.4 differs from today’s system in many ways. Not only does
the test case exclusively include renewable generation technologies but is also distinguished by
the role of seasonal storage and change of demand. Besides sector integration doubling total
demand, new applications for electricity, in particular electric heating, greatly affect the profile
of demand, seasonality becomes more pronounced and peak loads increase. These differences
raise the question if the preceding results are only caused by intermittent renewables or also
must be attributed to storage and demand.

Fig. 2.12 shows how loss of load for the reference case and climatic year 2015 compares
against a sensitivity without any technologies for seasonal storage. In the figure, length of the
reduced time-series and implementation method vary, but all cases apply the Poncelet method
with 20 bins. Note that excluding seasonal storage only serves the purpose of analysis and is
not a practical scenario since system costs double and battery capacity increase by a factor of
eight.

Again results exhibit a strong random variation, but at least for compressed chronological
sequences the share of lost load decreases, if seasonal storage is omitted from consideration.
This indicates that for this method the error from TSR is not only caused by the intermittency
of renewables, but also by difficulties to represent the operation of seasonal storage, which is
plausible considering the method’s characteristics.

Analogously to Fig. 2.12, Fig. 2.13 compares the reference case against a sensitivity on
demand, that does not account for sector integration and uses conventional demand data from
Germany in 2015 instead. In this case, results do not significantly improve or worsen for any
of the implementation methods suggesting that how sector integration changes demand does
not affect TSR.

2.5.4 Impact on computation time

Since the original motivation for TSR is to facilitate solving large models, Fig. 2.14 analyses
the impact the implementation method and the number of time-steps have on solve time. All

36



2.6 Conclusion and outlook

(a) grouped periods (b) chronological sequence

0%

4%

8%

12%

0 2000 4000 6000 8000

0%

4%

8%

12%



reference, grouped periods reference, compressed sequence reference, re-scaled sequence

conventional demand, grouped periods conventional demand, compressed sequence conventional demand, re-scaled sequence

0%

4%

8%

12%

0 2000 4000 6000 8000

number of time-steps

Figure 2.13: Loss of load sensitivity for demand
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Figure 2.14: Solve time relative to full temporal resolution

solve times are denoted relative to the solve time of the model at full temporal resolution
to adjust for the effect of the respective modeling framework.2 The reported times only
include optimizer time. All models were solved on the same cluster with Gurobi using the
Barrier method and 2 threads.3 Since solve times are subject to random variations, quadratic
regression curves were added to the figure to visualize the general trend.

As expected, the reduction of solve time strongly depends on the number of time-steps used.
At numbers around 3,000 that were found earlier to considerably reduce loss of load, TSR still
reduces solve-time significantly. For chronological sequences, solve times converge towards the
solve time with full temporal resolution, which is plausible considering chronological sequences
are implemented analogously to a full time-series. Solve time for grouped periods increases
faster and can even exceed the solve time with full temporal resolution. This effect is explained
by the inter-period variables and constraints added to the model increasing its complexity.

2.6 Conclusion and outlook

The results show that TSR should be applied with caution when modeling renewable energy
systems. Besides intermittency of renewables, dependency on seasonal storage adversely affects
the accuracy of TSR. As suggested by former research, we found the accuracy of TSR to
increase with the length of the reduced time-series.

Implementation of reduced time-series as grouped periods did not consistently achieve
small shares of lost load. Furthermore, no generally advantageous method for creating reduced

2. AnyMOD.jl solved the full model in 65 seconds; Calliope in 330 seconds, both producing the exact same
results.

3. The Gurobi parameters BarOrder and NumericFocus were set to 1 and 2, respectively.
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time-series nor any fundamental bias on installed capacities was identified. Compared to
chronological sequences, grouped periods required more time so solve for the same number of
time-steps, presumably due to variables and constraints added to implement seasonal storage.

For implementation as chronological sequences, results highly depend on how reduced time-
series are adjusted to achieve consistency with the full time-series. If the reduced time-series
is not re-scaled, results show a bias towards short-term storage and considerable loss of load.
If the reduced time-series is re-scaled on the other hand, results are instead biased towards
long-term storage overestimating system costs but achieving small shares of lost load. These
results are likely to differ for regions with less pronounced seasonal and greater short-term
fluctuations. Regarding the creation of reduced time-series, the Poncelet method performed
favorable with chronological sequences.

Our benchmark for TSR in this paper is a single climatic year at an hourly resolution,
which is not exhaustive. The impact the respective climatic year had on our results, which is
consistent with other studies, suggests to extend the scope of planning to multiple climatic years
(Bloomfield et al. 2016; A. Hilbers, D. Brayshaw, and A. Gandy 2019). In addition, adequacy
of hourly resolutions can be called into question, since it is based on assuming sub-hourly
fluctuations balance out across sufficiently large areas (Deane, Drayton, and Ó Gallachóir
2014; T.W. Brown et al. 2018). This is in particular questionable, if models further increase
spatial resolution to represent renewables more accurately, as frequently proposed (Frysztacki
et al. 2021; Martínez-Gordón et al. 2021). Lastly, spatial and temporal detail must be weighed
against methodological simplifications to reduce complexity and keep models linear. For
instance, the capacity expansion model applied in this paper assumes that time-series are
perfectly predictable and neglects unit commitment or operational constraints of thermal
power plants (Seljom and Tomasgarda 2015). So, in conclusion, necessary detail beyond out
test case adds to the deficiencies of TSR identified in this paper and suggests further efforts to
reduce complexity of large-scale capacity expansion models.

On the one hand, existing methods for TSR can be further improved. One approach is
to identify extreme situations in the full time-series where adequacy is threatened and add
them to the reduced time-series. However, identifying such situations with low supply and
high demand over a prolonged period of time is non-trivial, because both supply and demand
again depend on investment decisions by the model. Against this background, Teichgraeber
et al. (2020) introduce a method that iteratively adjusts the extreme periods in the reduced
time-series by performing a feasibility check with the full time-series. Although their work is
focused on small-scale systems, similar approaches could be adopted for macro-energy systems
as well. Another approach is to vary temporal resolution within the model and only apply
high detail where it is necessary. Renaldi and Friedrich (2017) introduce such a method for
small-scale systems; Göke (2021b) develops a similar approach for macro-energy systems.

On the other hand, complexity can be reduced by partitioning problems into smaller parts.
Therefore, one approach is to couple models with different scopes and resolutions instead of
using one comprehensive but highly complex model to get a broader picture of the energy
system. In this case, typically results of long-term planning models are evaluated with more
detailed operational models (Antenucci et al. 2019; Collins et al. 2017; Pavičevića et al. 2020).
A downside of this approach is the limited capability to feed information from the operational
model, like hours with unmet demand, back to the planning model. Alternatively to coupling
different models, complex models can be decomposed into smaller parts, typically relating to
planning or operation as well, and then solved faster with advanced solution methods. With
the exception of Sepulveda (2020), such methods have not yet been adopted for macro-energy
systems and are focused on small-scale applications (Yokoyama et al. 2015; Bahl et al. 2018;
Baumgärtner et al. 2020).
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This chapter is based on the accepted manuscript for Göke, L. 2021a. “A graph-based
formulation for modeling macro-energy systems.” Applied Energy 301:117377. doi:
10.1016/j.apenergy.2021.117377.

39

https://dx.doi.org/10.1016/j.apenergy.2021.117377


3. A graph-based formulation for modeling macro-energy systems

3.1 Introduction

Averting the impending harms of climate change requires to cut carbon emissions from current
record highs to zero by at least 2050. Fossil fuels account for the three quarters of all emissions
and consequently need to be replaced by renewable energies (Edenhofer et al. 2014). Especially
wind and solar have to take a predominant role, since their unexploited potential greatly
exceeds hydro or biomass.

This transformation has profound implications for the entire energy system: On the supply
side, the fluctuating nature of wind and solar requires additional flexibility to be reliable. On
the demand side, the source of primary energy must shift towards electricity from wind and
solar, either by direct electrification or synthetic fuels. To provide flexibility and shift primary
energy to renewable electricity, the different sectors of the energy system have to be closely
integrated. Charging electric vehicles for instance depends on supply from the power sector,
but can also contribute to balancing fluctuating supply with demand (Doucette and McCulloch
2011). Similarly, many industrial processes require renewable electricity for decarbonization,
but are capable of adding flexibility too (Burre et al. 2020).

Overall, these profound changes of the energy system result in new demands on models
analyzing and planning energy systems. To address these demands, Levi et al. (2019) propose
the discipline of "macro-energy systems" that is characterized by a large scope, covering several
years, different sectors, and a large region and, as a consequence, a high level of complexity,
that necessitates great abstraction. Following up on this idea, DeCarolis et al. (2020) argue
that the challenges in modelling marco-energy system can best be overcome by collaborative
development of open-source tools. The call for openness is also prominent in other publications
and is a consequence of the impact models can have on energy and climate policy, since they
allow assessing alternative designs of the system in terms of costs and emissions (Pfenniger
et al. 2017; Weibezahn and Kendziorski 2019).

This paper introduces a novel graph-based formulation for modelling macro-energy systems.
This novel formulation specifically addresses the challenges that the transformation towards a
system with high levels of renewables and sector integration imposes. The following literature
review provides a detailed overview of these challenges and how existing modelling frameworks
meet them. Afterwards, section 3.3 presents the graph-based formulation and its distinctive
features by listing the sets and equations constituting the model’s underlying optimization
problem. In section 3.4 the formulation is applied to create an example model and demonstrate
the benefits of the introduced formulation. For this purpose, the open-source modelling
framework AnyMOD.jl that implements the graph-based formulation is used. Finally, section
3.5 concludes.

3.2 Literature review

Subsection 3.2.1 summarizes the technical challenges in modelling future energy systems
that previous research identified. The following subsection discusses how existing modelling
frameworks address these challenges.

3.2.1 Challenges in macro-energy system modeling

A key requirement when modeling energy systems with large shares of renewables is high
temporal granularity (Pfenninger, Hawkes, and Keirstead 2014). Former research shows that
the number of representative time-steps an entire year can be reduced to strongly depends
on the share of weather-dependant generation. At low resolutions utilization of wind and
solar is overestimated, since fluctuations of supply cannot be captured adequately (Poncelet
et al. 2016a; Nahmmacher et al. 2016; Haydt et al. 2011). Reinforced sector integration
may cause a similar effect on electricity demand, if heat supply is increasingly electrified by
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electrical heat pumps (Bloess 2019). Since all these temporal fluctuations are weather related
and thus subject to uncertainty, high temporal granularity is ideally combined with a stochastic
approach (Ringkjøb, Haugan, and Solbrekke 2018).

At the same time, spatial aspects gain in relevance too, when modeling high levels of
renewables, since their “economic potential and generation costs depend greatly on their location”
(Pfenninger, Hawkes, and Keirstead 2014). In addition, in a renewable system the capacity
of individual generation units is about a magnitude smaller than in a system characterized
by thermal plants. This creates the opportunity to match demand with local supply as an
alternative to transporting energy carriers over long distances (Bauknecht, Funcke, and Vogel
2020). However, modeling such solutions does not only require a consistent representation
of relevant technologies, for instance solar home systems with batteries, but a high spatial
granularity as well.

The need for temporal and spatial granularity when modeling high levels of intermittent
renewables and sector integration is directly related to the concept of flexibility. Flexibility
can be defined as an energy system’s capability to cope with variability and uncertainty in
demand and generation (Heggarty et al. 2019). The arising need for flexibility and how it can
be satisfied is widely recognized as a key question for future energy systems (Kondziella and
Bruckner 2016; P. Lund et al. 2015). To fully account for these flexibility needs within models
means to fully capture weather-driven fluctuations and consequently requires high temporal
and spatial granularity.

On the other hand, including all options to provide flexibility into models calls for a
detailed representation of sector integration. Many potential sources of flexibility involve
complex interaction of technologies and energy carriers to build synergies between sectors
(Orths et al. 2019). To give but one example, synthetic gas can be generated from electricity
via electrolysis and methanation, when supply from wind or solar exceeds demand, stored
and then used to provide heat or electricity at times of low intermittent supply. Models that
omit these cross-sectoral sources of flexibility might fail to identify cost-efficient solutions and
excessively invest into other storage and transport capacities instead (T. Brown et al. 2018).

Besides these challenges concerning granularity and detail, the way models are practically
applied creates additional challenges that concern their temporal and spatial scope. Ideally,
models can analyze how today’s energy system can be transformed to comply with the climate
objectives set for a certain year (Oberle and Elsland 2019). Therefore, their temporal scope
should include multiple subsequent periods that are simultaneously optimized, also referred
to as perfect foresight. If models are limited to single years, computing pathways has to
rely on consecutively solving each year separately. This approach has been termed myopic
foresight and found to cause suboptimal results due to stranded investments (Löffler et al. 2019;
Gerbaulet et al. 2019). A large spatial scope is valuable, because energy systems of different
regions are increasingly interlinked, be it through a common energy policy or interconnected
markets and networks, as for example in the European gas and electricity sector. The latter is
again relevant from a flexibility perspective as well: Especially exchange of electric between
regions, can even out local fluctuations of wind and solar generation (Thellufsen and Lund
2017).

3.2.2 How challenges are addressed

Former research already proposed several formulations for modelling energy systems. Typically,
these formulations are embedded into a corresponding software tool, also referred to as modelling
framework, that is used to generate specific models (Groissböck 2019; Wiese et al. 2018). In
the following, two modelling frameworks, OSeMOSYS and Calliope, are evaluated with regard
to the challenges outlined in section 3.2.1 (Howells et al. 2011; Pfenniger and Pickering 2018;
Pfenninger et al. 2020). The choice fell on these, because both are representative for a larger
group of frameworks and models. OSeMOSYS is closely related to many long-established tools
for energy system planning like PRIMES, MESSAGE or MARKAL. The Calliope framework
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draws parallels to more novel tools like Balmorel, PyPSA and DIETER that are more focused
on the power sector and high accuracy regarding intermittent renewables (Lopion et al. 2018;
Groissböck 2019).

These different contexts are reflected in the way OSeMOSYS and Calliope treat time,
which again affects temporal granularity. OSeMOSYS pursues an approach that aggregates an
entire year into a few representative periods, also referred to as time-slices (e.g. a summer
evening). Modeling these periods instead of the full year greatly decreases computational
effort, but also limits temporal granularity and thus the capability to capture fluctuations of
intermittent renewables. To avoid this, Calliope does not rely on representative periods, but
rather uses unaltered continuous time series.1 This comes at the cost of a steep increase in
size and solve time, if not only the electricity sector, but the entire energy system is modeled
(Lopion et al. 2018). Neither of the two frameworks can account for uncertainty of supply and
demand.

The use of representative periods within OSeMOSYS also implies a loss of chronology,
and thus restricts the modeling of storage, especially seasonal storage. If a time span, for
example the entire summer, is reduced to one representative period, say a week, storage
patterns determined for that period apply to the entire time span. Accordingly, storage levels
would show the same pattern for each summer week and could not continuously increase over
the course of the summer (Welsch et al. 2012). Since energy systems with high shares of
variable renewables can be expected to heavily rely on storage, without major adjustments the
approach is ill-suited to describe these systems (Kotzur et al. 2018b).

The temporal scope of OSeMOSYS may include multiple subsequent periods of capacity
expansion to compute long-term pathways for transforming the energy system. However,
properties of technologies cannot depend on their respective period of construction. As a result,
technological advances, like increasing efficiency of power-to-gas technologies for instance,
cannot be accounted for adequately. Calliope is limited to a single period of capacity expansion.

Besides these differences regarding temporal detail, both frameworks can achieve high
spatial granularity and a large regional scope, since the number of regions can be chosen
freely. In addition, Calliope also provides an option for discrete expansion and dispatch of
technologies, which renders it appropriate for applications as detailed as the building level.

To extend the representation of technologies, OSeMOSYS supports different modes of
operation, like either operating a cogeneration of heat and power (CHP) plant at a higher fuel
utilization rate, but a smaller CHP coefficient or the other way round. Calliope provides a
functionality to include technologies that can store a carrier for later use within a conversion,
for example concentrated solar power plants that store heat for later conversion into electricity.

3.3 Model formulation

The graph-based formulation introduced in this paper relies on continuous time series instead
of representative periods to achieve the temporal detail necessary for high shares of variable
renewables. To model the long-term transformation of the energy system, it supports
multiple periods of capacity expansion accounting for technological advance and endogenous
decommissioning of capacities. In addition, it extends Calliope’s functionality for technologies
that first store and later use a carrier by also allowing for technologies that first generate and
then store a carrier. This enables modeling decentralized storage systems, like a home battery
paired with a PV panel, within large-scale system models. Furthermore, different operational
modes for technologies are supported.

Beside these gradual improvements, the proposed formulation introduces two novel features
to facilitate modelling high levels of renewables and sector integration:

1. Using representative periods is possible as well but is not the default option.
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1. The level of temporal and spatial granularity can be varied by energy carrier. For
instance, electricity can be modeled with hourly resolution, while supply and demand
of gas is balanced daily. This achieves the temporal granularity required to capture
fluctuations in renewable electricity generation but avoids applying it to all other carriers
as well. Within spatially aggregated models, for many carriers, like gas for instance, a less
detailed resolution will better reflect physical properties and avoid inflating the model.
In Renaldi and Friedrich (2017), a similar method from process system engineering is
used to optimize a solar district heating system. However, the method is only applied to
the temporal granularity only and to technologies instead of carriers.

2. Substitution of energy carriers can be modeled in dependence of the respective context:
conversion, storage, transport or demand. For example, heat from residential heat pumps
and district heating plants might both satisfy heat demand, but only district heat can
be stored within large-scale storage systems.

Since the proposed formulation is specifically aimed at macro-energy systems, it does not
support discrete expansion and dispatch of technologies and therefore is not suited to be
applied at the urban or building level.

3.3.1 Sets and mappings

This section discusses the sets defined within the modelling framework, in particular time-steps,
regions, energy carriers, technologies, and modes, and how they are mapped to each other. To
facilitate comprehension, the whole introduction of the framework revolves around an example
model. Since the primary interest of that model is not its specific results, but its general
method, the choice of energy carriers and technologies considered is not exhaustive. For the
same reason, some modeling assumptions that could be argued to require an in-depth technical
discussion, are only treated briefly.

Since the framework organizes all sets within rooted trees, first some concepts of graph
theory and basic notations used throughout the paper have to be introduced. Any graph G
is defined by its vertices V and edges E. A tree can be defined as a graph, where any two
vertices are linked by a unique path along its vertices and edges. Distinguishing one vertex as
the graph’s root rtG creates a rooted tree. The length of a path from a vertex v to the root is
termed depth and provided by function d: V → N0. Consequently, the depth of the root is
always zero, which means that d(rtG) = 0. All vertices on the path between a vertex v and
the root are its ancestors and defined as set αv. The descendants of a vertex v, henceforth
given as δv, can be understood recursively: If a vertex u is an ancestor to v, v is a descendant
to u. To indicate the vertex v itself should be included in a set of ancestors or descendants,
we write α+

v or δ+
v , respectively. The set of all ancestors or descendants of vertex v with depth

z is denoted as αz
v and δz

v . A subgraph of a tree that only contains the vertex v and all its
descendants, is referred to as the subtree Gv. Lastly, all vertices without any descendants are
called leaves. For all leaves, which are descendants of vertex v, we write λv. (Diestel 2000;
Bondy and Murty 2008)

3.3.1.1 Regions

Fig. 3.1 shows the rooted tree R organizing all regions considered within the example problem.
r be an arbitrary vertex of the tree representing a region. Exemplifying the definitions and
notations introduced above, the descendants of vertex ’East’ are the vertices ’East South’ and
’East North’ or δEast = {’East South’, ’East North’}. Since both ’East South’ and ’East North’
do not have any descendants, they are leaves and λEast = δEast applies. Also, the ancestor of
vertex ’West North’ at depth 1 is the vertex ’West’, which means α1

W estNorth = {’West’}. The
subtree at vertex ’West’ would include the vertices ’West’, ’West North’ and ’West South’ or
V (TW est) = {’West’, ’West North’, ’West South’}.
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Figure 3.1: Rooted tree of regions in the example model

Figure 3.2: Rooted tree of time-steps in the example model

3.3.1.2 Time-steps

Analogously to regions, time-steps are organized in the rooted tree T with t representing an
arbitrary vertex. In a reduced form, for the example model this tree is drawn in Fig. 3.2.
Vertices with depth one each represent a decade, vertices with depth two correspond to all
years considered within the respective decade and each year is then further dissected into daily,
four-hour, and finally hourly steps.

3.3.1.3 Carriers

Fig. 3.3 displays the rooted tree C of all energy carriers defined within the model. While
the vertices ’coal’ and ’electricity’ do not have any descendants, ’heat’, which only refers
to low-temperature heat, has one descendant ’district heat’ and gases are subdivided into
’hydrogen’ and ’natural gas’, which again is split into ’synthetic gas’ and ’fossil gas’. This
arrangement is motivated by the fact that having carriers share a common ancestor is required
for modeling them as substitutes in a certain context, as we will elaborate in section 3.3.2.

To specify the temporal and spatial granularities carriers are modeled at, each are assigned
depths within the rooted trees of time-steps and regions. This is done separately for dispatch
and expansion and summarized for the example model in Tab. 3.1.

Consequently, a depth of five for temporal dispatch of ’electricity’ means dispatch of
the carrier is modeled for every time-step with depth five, which, going back to Fig. 3.2,
corresponds to an hourly granularity. Likewise, ’heat’ and ’district heat’ are modeled at
four-hour steps and all gases are balanced daily. Lastly, ’coal’ is only accounted for per year.
Deciding on the temporal granularity of dispatch for a carrier is a crucial assumption on its
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Figure 3.3: Rooted tree of energy carriers in the example model

Table 3.1: Depths assigned to energy carriers in the example model

carrier
with depth 1

carrier
with depth 2

carrier
with depth 3

temporal spatial
dispatch expansion dispatch expansion

electricity 5 2 1 1
heat district heat 4 2 2 2
gas natural gas synthetic gas 3 2 1 1
gas natural gas fossil gas 3 2 1 1
gas hydrogen 3 2 1 1
coal 2 2 1 1

inherent flexibility. For electricity an hourly resolution is often considered adequate when using
spatially aggregated models (T.W. Brown et al. 2018). As a result of its physical properties,
gas, in contrast to electricity, is traded daily. In accordance with dedicated literature, a daily
resolution is also applied here (Hauser 2019; Petrovic et al. 2017). For heat, a four-hour
resolution was assumed to account for the thermal inertia of buildings.

The uniform depth of two for all carriers’ temporal expansion granularity means decisions
on capacity expansion are made for each year. If the depth were set to one instead, a decision
on expansion would apply for an entire decade. Such a setup would be suited to mimic typical
polices for the expansion of wind and solar capacities.

Spatial dispatch and expansion granularity for all carriers corresponds to the regions with
depth 1, namely ’West’ and ’East’, except for ’heat’ and ’district heat’. Here a more detailed
resolution was chosen, since heat, unlike electricity or gas, cannot be transported over greater
distances to offset local imbalances between supply and demand.

Certain conditions can be defined that ensure the temporal and spatial granularities
assigned to each carrier are suited to create a logical consistent energy system model. AnyMOD
specifically checks compliance of these conditions and throws an error, if any of them is violated.
To formulate these rules, the depths mapped to a specific carrier c will be termed depc.

First, a carrier may not be modeled at a dispatch granularity more detailed than any of its
descendants, regardless if temporal or spatial. This means, the depth assigned to a specific
carrier cannot exceed the smallest depth assigned to any of its descendants, as denoted in Eqs.
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3.1a and 3.1b.2

depdis,tp
c ≤ min

ĉ∈δc

depdis,tp
ĉ ∀c ∈ V (C) (3.1a)

depdis,sp
c ≤ min

ĉ∈δc

depdis,sp
ĉ ∀c ∈ V (C) (3.1b)

The conditions originate from the way the framework models substitution of energy carriers.
As section 3.3.2 will explain in detail, this is achieved by aggregating variables of descendant
carriers with the ancestral carrier. However, such an aggregation is impossible, if for example
the ancestral carrier has an hourly resolution, but one of its descendants is modeled daily.

The second group of conditions addresses the relation between dispatch and expansion
granularity. As stated in Eq. 3.2, the spatial granularity of expansion may not be less detailed
than the spatial granularity of dispatch for any carrier or, in terms of depths, the depth of
dispatch cannot exceed the depth of expansion.

depexp,sp
c ≥ depdis,sp

c ∀c ∈ V (C) (3.2)

This condition is necessary to ensure each dispatch variable in the model can be mapped
to a corresponding capacity. If, for instance, expansion is modeled at the country level, but
dispatch considered separately for each state within the country, assigning a capacity to each
of these states would not be possible. The opposite case with dispatch on the country level but
regional expansion is supported and leads to an aggregation of regional capacities by country.

For the same reason a similar condition on temporal granularities is required. This condition
states that for any carrier the temporal granularity of expansion may not be more detailed
than the temporal granularity of dispatch. As formulated in Eq. 3.3, this implies the depth
assigned for expansion cannot exceed the depth of dispatch.

depexp,tp
c ≤ depdis,tp

c ∀c ∈ V (C) (3.3)

If, in violation of Eq. 3.3, capacity expansion had an daily resolution, but dispatch were only
modeled yearly, again a sensible assignment of capacity to dispatch variables would not be
possible.

Modeling several periods of capacity expansion requires to define superordinate dispatch
time-steps. Dispatch within each of these steps is self-contained, meaning dispatch decisions
within the period do not affect any of the other periods. For instance, cyclic conditions for
storage will enforce the same storage levels at the beginning and end of each of those periods.
This also implies that capacities cannot vary within these periods. Most existing models take a
yearly resolution for this purpose, but other granularities are conceivable as well.3 Since these
periods connect expansion and dispatch, their depth, denoted as depsup, must be within the
interval from the most detailed expansion resolution to the least detailed dispatch resolution.
This is expressed by Eq. 3.4:

depsup ∈ [ max
c∈V (C)

depexp,tp
c , min

c∈V (C)
depdis,tp

c ] (3.4)

Φ is defined as the set of all superordinate dispatch time-steps. Each subordinate dispatch
time-step t has exactly one ancestor within Φ, which is referred to as αsup

t . In the example
model depsup is two and consequently Φ corresponds to all years. For any hour or day t, αsup

t

assigns the year the respective day or hour is in.

2. The hat operator is used throughout the paper to indicate a vertex is a descendant to another vertex
within the same equation.

3. Even varying this resolution within the model is theoretically possible, but does not appear practical and
was not implemented.
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Figure 3.4: Rooted tree of technologies in the example model

3.3.1.4 Technologies

Technologies are organized in the rooted tree E, which is shown in Fig. 3.4 for the example
model. Only leaves of this tree correspond to actual technologies, while all other vertices serve
the sole purpose of organizing them. For instance, to reflect how PV and solar thermal rooftop
systems compete for a limited amount of rooftop area, their shared ancestor ’rooftop’ can be
used to enforce an upper limit on the sum of their capacities.

The function g(e) maps technologies to one of three groups: stock, mature and emerging.
Stock technologies cannot be expended and are limited to pre-existing capacities. Emerging
technologies differ from mature technologies in the sense that their capacities are differentiated
by time-step of construction. In the case of electrolyzers for example, substantial increases in
efficiency are expected by 2050. To account for such improvements, capacities build in different
years have to be considered separately. For mature technologies, no substantial advances are
expected, and such differentiation would only cause an unnecessary increase in model size.

Generated and used carriers are mapped to technologies by the sets γgen
e and γuse

e ,
respectively. Any used carrier c cannot be a descendant to another used carrier c′. The
condition applies to generated carriers analogously and both conditions are formalized by Eqs.
3.5a and 3.5b.

c /∈ δc′ ∀e ∈ V (E), (c, c′) ∈ {γuse
e × γuse

e | c ̸= c′} (3.5a)

c /∈ δc′ ∀e ∈ V (E), (c, c′) ∈ {γgen
e × γgen

e | c ̸= c′} (3.5b)

Considering the combined-cycle gas turbine (CCGT) with CHP from the example, ’natural
gas’ is converted to ’district heat’ and ’electricity’, hence γuse

CHP = {’natural gas’} and γgen
CHP =

{’district heat’, ’electricity’}. Additionally assigning ’fossil gas’ as a used carrier would pose a
logical contradiction since ’natural gas’ implicitly already includes its descendant ’fossil gas’
and consequently violate Eq. 3.5a.

Charged carriers are denoted as γstI
e ; discharged carriers are referred to as γstO

e . By default,
only carriers, which are leaves, can be explicitly stored. If a technology is defined to store
a non-leaf carrier c, actually stored are only its leaves λc. For instance, in the example gas
storage is defined to store gas which means the technology can equally store hydrogen, synthetic
gas and fossil gas. Deviating from this approach gives rise to unintended effects.4 To elucidate
this, assume gas storage would directly store the carrier gas instead. Since descendants are
included in the ancestors energy balance, hydrogen could still be charged. However, it would
be discharged as gas and could not be used wherever hydrogen is specifically required.

The representation of storage is not limited to charging and discharging carriers from
external sources but can also account for carriers generated or used by the same technology.
To clarify this, we assume a carrier c is an element of γstO

e , but not within γstI
e . This implies

it can be discharged, but not charged from an external source. However, if c is also an element
of γgen

e , it can be charged by the technologies own generation instead. For instance, the PV
battery system (PVB) in the example represents a PV panel combined with a home battery. In
line with other research, we assume home batteries cannot be charged from the grid, but can

4. It can be explicitly enforced though, but this a special case not discussed within the paper.
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provide electricity to the grid (Schopfer, Tiefenbeck, and Staake 2018). Therefore, ’electricity’
is an element of γgen

P V B and γstO
P V B, but γstI

P V B is empty. Nevertheless, the battery can still be
charged by the system’s own generation from the PV panel. Correspondingly, a charged carrier
can be discharged internally if within γuse

e . In this case, an industrial furnace provided with
gas by an on-site gas storage could serve as an example. If carriers are charged or discharged
internally, also non-leaf carriers can be stored.

Applying this, 3.6 and 3.7 define sets of stored carriers for a technology e. All carriers
charged and discharged externally are provided by γstEx

e . This set is unified with all carriers
charged externally and discharged internally as well as the other way around, to obtain all
carriers stored γst

e .

γstEx
e :=

external charging or discharging⏟ ⏞⏞ ⏟
{λc : c ∈ γstO

e ∪ γstI
e } (3.6)

γst
e := γstEx

e ∪ (γgen
e ∪ γstO

e )⏞ ⏟⏟ ⏞
internal charging

∩ (γuse
e ∩ γstI

e )⏞ ⏟⏟ ⏞
internal discharging

(3.7)

The sets γin
e and γout

e collect all external in- and output carriers of a technology e:

γin
e := γuse

e ∪ γstEx
e (3.8a)

γout
e := γgen

e ∪ γstEx
e (3.8b)

In addition, all technologies any conversion or storage carrier was assigned to are collected
within the respective sets Γcv and Γst, which are defined by the following equations:

Γcv := {V (E) | γgen
e ∪ γuse

e ̸= ∅} (3.9a)

Γst := {V (E) | γst
e ̸= ∅} (3.9b)

The directed graph in Fig. 3.5 summarizes how in- and output carriers are mapped to
technologies in the example model. In the graph all technologies are symbolized by grey
vertices. Their entering edges relate to inputs γin

e ; outgoing edges to outputs γout
e . Carriers are

symbolized by colored vertices that have outgoing edges directed towards their ancestors. The
graph demonstrates, how organizing carriers in rooted trees supports modeling the manifold
ways energy carriers can be substituted and interact with technologies in an integrated energy
system: Synthetic gas must be created from hydrogen, which again requires the use of electricity
via electrolysis, while natural gas cannot be created from other carriers. However, both energy
carriers can equally fuel gas boilers and power plants or be used for auto thermal reforming, a
gas-based process to create hydrogen. Also, any of these carriers can be stored in a gas storage
system, since gas is an ancestor to all of them.

Although the example model focuses on the interplay of gas-based fuels to demonstrate the
capabilities of the presented method, it can be applied beyond: For instance, processes in the
energy-intensive industry often require high-temperature heat at different levels, which makes
decarbonization challenging (Bataille et al. 2018). However, providing a process with heat on a
temperature level that exceeds its requirements is possible. Also, excess heat from one process
can serve as an input to another. The qualitative energy flow diagram in Fig. 3.6 outlines how
these aspects could be accounted for within energy system models by the introduced method.
Since the carrier ’heat, above 500°C’ is a descendant of ’heat, 100 to 500°C’ and ’heat, below
100°C’, in contrast to the other technologies ’gas furnace’ is able to satisfy demand on all
levels. Also, a process that requires heat at the highest temperature level and provides excess
heat again at a lower level, can be modeled.
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Figure 3.5: Qualitative energy flow graph for example model

Figure 3.6: Qualitative energy flow graph for alternative application
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3.3.1.5 Modes

The rooted tree M organizes the different operational modes m defined within the framework.
In contrast to the other graphs, the rooted tree of modes is trivial, meaning it only consists
out of the root and its direct descendants. The set µe maps its operational modes to each
technology or, if only one mode exists, just assigns the root rtM . In the example model,
distinct modes termed more heat and more electricity are only defined for CCGT plants with
CHP. The more Heat mode operates at a higher fuel utilization rate, but a smaller CHP
coefficient.

3.3.2 Equations of optimization problem

Building on these sets and mappings, the constraints of the model’s underlying optimization
can be formulated. We start with dispatch related constraints, followed by capacity constraints,
which connect dispatch and expansion and close with the equations to describe expansion.
Since the cost minimizing objective function does not substantially differ to pre-existing
formulations, it is provided in the appendix B.4. The same applies for constraints that impose
exogenous limits on variables.

3.3.2.1 Energy balance

The energy balance ensures demand for each carrier c equals or does not exceed its supply at
any time t or place r. To model this, all dispatch time-steps τc and regions ρc of a carrier c
are defined as follows:

τc := {V (T ) | d(t) = depdis,tp
c } (3.10a)

ρc := {V (R) | d(r) = depdis,sp
c } (3.10b)

Consequently, the cartesian product of τc and ρc gives the temporal and spatial granularity φc

that a carrier c is modeled at.

φc := τc × ρc (3.11)

Since demand for a carrier c can not only be met by the carrier itself, but also by its
descendants ĉ, these have to be included into the energy balance as well. However, according
to Eq. 3.1a and 3.1b, these descendants might be modeled at a granularity more detailed than
the carrier itself. Therefore, elements of these descendants must be aggregated to comply with
the resolution of the ancestral carrier. When balancing the time-step t, the dispatch time-steps
of a descendant carrier ĉ that require aggregation, correspond to the intersection of descendant
carriers time-steps τĉ with the descendants of the balanced time-step δ+

t . The same reasoning
is applied to regions and the set of pairs σĉ,r,t can be obtained. As defined by Eq. 3.12, this
set contains all time-steps and regions that have to be aggregated to account for dispatch of a
carrier ĉ at time-step t in region r.

σĉ,r,t := τĉ ∩ δ+
t × ρĉ ∩ δ+

r (3.12)

The equation applies as well, if t or r are already at the right granularity, because the set δ+
v

by definition also includes the vertex v itself.
To enable descendant carriers to satisfy demand, by default the energy balance is not an

equality constraint and supply might exceed demand. The carriers district heat and heat from
the example can be used to illustrate this. To let the model endogenously decide whether to
use district heating technologies or not, demand was only specified for the ancestral carrier
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heat.5 As a result, formulating the energy balance for district heat as an equality constraint,
would fix its generation to zero.

Building on this, the energy balance is formulated in eqn. 3.13. To facilitate the
understanding, optimization variables have capital initials, while parameters are written
in lowercase.

∑︂
ĉ∈δ+

c

∑︂
⟨t̂,r̂⟩∈σt,r,ĉ

Tecv
t̂,r̂,ĉ

+ Test
t̂,r̂,ĉ⏞ ⏟⏟ ⏞

supply and demand by technologies

+
exchange with other regions⏟ ⏞⏞ ⏟

Excnet
t̂,r̂,ĉ

+ Trdnet
t̂,r̂,ĉ⏞ ⏟⏟ ⏞

trade with exogenous markets

−
exogenous demand⏟ ⏞⏞ ⏟

dem
t̂,r̂,ĉ

≥ 0

∀c ∈ V (C), ⟨t, r⟩ ∈ φc (3.13)

Conversion related dispatch variables are summarized by Tecv and include Gen for
generation and Use for use. Analogously, Test is composed of StIext and StOext to account
for external in- and output of storage. Each of these variables is specified for five different
dimensions: time-step of dispatch t, region r, carrier c, mode m and lastly time-step of
construction t̃. The cartesian product of all dimensions is denoted as Ω.

For stock and mature technologies, which are not differentiated by time-step of construction,
t̃ always corresponds to the root of the time-step tree rtT . In case of an emerging technology,
all time-steps of construction that result in a lifespan, which includes the dispatch time-step t,
have to be considered separately. To elucidate this, consider the an emerging technology with
a constant lifetime lte,t̃ of 15 years. For any dispatch time-step t within the year 2020, only
capacities constructed in 2020 have to be considered. However, if t is within 2050 instead, the
construction time-steps 2040 and 2045 have to considered in addition to 2050. In conclusion,
Eq. 3.14 defines the set θdis

e,t that provides the construction time-steps to consider separately
for a technology e at dispatch time-step t.

θdis
e,t̃

:=

{rT } ,if g(e) = ‘mature’ ∨ g(e) = ‘stock’

{t̃′ ∈ Φ | t̃′ ∈ (αsup
t − lte,t̃

′ , αsup
t ]} ,if g(e) = ‘emerging’

(3.14)

Dispatch variables for all conversion and storage technologies are summed by time-step
of construction t̃ and modes m to define Tecv and Test as denoted in Eqs. 3.15a and 3.15b.
Iverson brackets are used to indicate that dispatch variables are only created, if the respective
carrier is actually assigned to the technology.

Tecv
t,r,c =

∑︂
e∈Γcv

∑︂
t̃∈θdis

e,t

∑︂
m∈µe

Gent,t̃,r,c,e,m[c ∈ γgen
e ] − Uset,t̃,r,c,e,m[c ∈ γuse

e ]

∀c ∈ V (C), ⟨t, r⟩ ∈ φc (3.15a)

Test
t,r,c =

∑︂
e∈Γst

∑︂
t̃∈θdis

e,t

∑︂
m∈µe

StOext
t,t̃,r,c,e,m[c ∈ γstEx

e ] − StIext
t,t̃,r,c,e,m[c ∈ γstEx

e ]

∀c ∈ V (C), ⟨t, r⟩ ∈ φc (3.15b)

In the energy balance, Excnet
t̂,r̂,ĉ

refers to net imports of region r̂ from other regions. The set
βc,r includes all regions with that region r can exchange carrier c. Exchange can be considered
similar to storage, since both shift energy, one in space and the other in time. Therefore,
exchange of carriers is limited to leaves, because otherwise the same effects as described for
storage earlier will occur. For instance, to represent the gas network in the example, βc,r is

5. In the example, an upper limit on the generation of district heat for each time-step reflects that only a
share of consumers can be connected to a district heating network.
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defined for gas. Consequently, only the carriers hydrogen, synthetic gas and fossil gas are
explicitly exchanged.

Applying this, Eq. 3.16 computes the net import based on the exchange variables Exc and
the efficiency of exchange eff exc that accounts for exchange losses. The first region in the
index always refers to the region energy is being transported to and the second to the region it
is being transported from.

Excnet
t,r,ĉ =

∑︂
r′∈βc,r

∑︂
r̂′∈ρĉ∩δ+

r′

Exct,r̂,r̂′,c

1/eff exc
t,r̂,r̂′,ĉ

− Exct,r̂′,r̂,ĉ

∀⟨c, r⟩ ∈ {V (C) × V (R) |βc,r}, ĉ ∈ λc, t ∈ τĉ, r̂ ∈ ρĉ ∩ δ+
r (3.16)

Just as explained at the beginning of the section, the region specified in βc,r might be less
detailed than the regions a descendant carrier ĉ is modeled for. Therefore, exchange variables
are aggregated by regions using the same formulation introduced earlier.

The net effect of trade is accounted for in the energy balance by Trdnet defined in Eq. 3.17.
In contrast to exchange, trade refers to buying or selling carriers to an exogenous market at a
fixed price. The quantity that can be bought or sold at a given price can be limited, which
can be used to create a stepped supply or demand curve. Each of these steps is denoted as
ζbuy or ζsell, respectively.

Trdnet
t,r,c =

∑︂
i∈ζbuy

Trdbuy
t,r,c,i −

∑︂
i∈ζsell

Trdsell
t,r,c,i ∀c ∈ V (C), ⟨t, r⟩ ∈ φc (3.17)

Potential applications of this functionality range from a representation of commodity markets
to accounting for price-elastic demand in the electricity sector. The last remaining element of
the energy balance dem is an exogenously set parameter and refers to inelastic demand.

3.3.2.2 Conversion balance

The conversion balance describes how technologies transform energy carriers into one another.
For this purpose, the in- and outputs to the conversion process are summarized by carrier as
Cvin and Cvout, which are defined in Eqs. 3.18a and 3.18b. As set out in section 3.3.1.4, these
in- and outputs are not limited to use and generation variables, but can also include internal
storage variables.

Cvin
t,t̃,r,c,e,m = Uset,t̃,r,c,e,m+StOint

t,t̃,r,c,e,m[c ∈ γstO
e ]

∀e ∈ V (E), c ∈ γuse
e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis

e,t , m ∈ µe (3.18a)

Cvout
t,t̃,r,c,e,m = Gent,t̃,r,c,e,m+StIint

t,t̃,r,c,e,m[c ∈ γstI
e ]

∀e ∈ V (E), c ∈ γgen
e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis

e,t , m ∈ µe (3.18b)

Only technologies that are assigned both, used and generated carriers, require a conversion
balance. Conversion is balanced at the least detailed granularity of all carriers involved.
Otherwise, a carrier with a less detailed granularity could not be accounted for. Applying this,
Eq. 3.19 defines the resolution of the energy balance for each technology e.

ϵe := {V (T ) | d(t) = min
c∈γgen

e ∪γuse
e

depdis,tp
c } × {V (R) | d(r) = min

c∈γgen
e ∪γuse

e

depdis,sp
c } (3.19)

The overall efficiency of a conversion process that determines the ratio between in- and output
quantities is denoted as eff cv. If a technology’s conversion efficiency differs by operational
mode, each of these modes must be considered by a separate equation. Therefore, ωcv provides
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all sets of modes that require an individual balance. On this basis, the conversion balance
given by Eq. 3.20 can be formed.

∑︂
m∈ξ

eff cv
t,t̃,r,e,m

∑︂
c∈γuse

e

∑︂
⟨t̂,r̂⟩∈σt,r,c

Cvin
t̂,t̃,r̂,c,e,m

=
∑︂
m∈ξ

∑︂
c∈γgen

e

∑︂
⟨t̂,r̂⟩∈σt,r,c

Cvout
t̂,t̃,r̂,c,e,m

∀e ∈ {V (E) | γuse
e ̸= ∅ ∧ γgen

e ̸= ∅}, ⟨t, r⟩ ∈ ϵe, t̃ ∈ θdis
e,t , ξ ∈ ωcv

t,t̃,r,e (3.20)

For the CCGT plant with CHP from the example, the conversion balance is created daily and
for each region of depth one, which corresponds to the granularity of its least detailed carrier
gas. In addition, separate balances are created for each operational mode, since these differ in
terms of efficiency, which means ωcv = {{’more heat’}, {’more electricity’}}.

3.3.2.3 Storage balance

The storage balance connects in- and output of a storage system to the storage level. The in-
and output to the storage are comprised of external and internal storage variables as defined
in Eq. 3.21.

Stint,t̃,r,c,e,m =StIext
t,t̃,r,c,e,m + StIint

t,t̃,r,c,e,m

∀e ∈ V (E), c ∈ γst
e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis

e,t , m ∈ µe (3.21a)

Stout
t,t̃,r,c,e,m =StOext

t,t̃,r,c,e,m + StOint
t,t̃,r,c,e,m

∀e ∈ V (E), c ∈ γst
e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis

e,t , m ∈ µe (3.21b)

In Eq. 3.22 the storage level StLvl at time-step t is computed by summing levels of the
previous time-step t − 1 with storage in- and outputs. To a enforce a cyclic condition, the
previous time-step to the first time-step is the last time-step within the same superordinate
dispatch time-step (i.e. for h0001 in 2020 the previous time-step is h8760 in 2020 ).

current level⏟ ⏞⏞ ⏟∑︂
m∈ξ

StLvlt,t̃,r,c,e,m =

loss adjusted previous level⏟ ⏞⏞ ⏟∑︂
m∈ξ

StLvlt−1,t̃,r,c,e,m

1 − dist,t̃,r,c,e,m

+

storage inputs⏟ ⏞⏞ ⏟
int,t̃,r,c,e,m +

Stin
t,t̃,r,c,e,m

1/eff stI
t,t̃,r,c,e,m

−

storage outputs⏟ ⏞⏞ ⏟
Stout

t,t̃,r,c,e,m

eff stO
t,t̃,r,c,e,m

∀e ∈ Γst, c ∈ γst
e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis

e,t , ξ ∈ ωst
t,t̃,r,e (3.22)

In the storage balance, dis refers to the self-discharge rate, while eff stI and eff stO account for
losses associated with charging and discharging. Similar to the conversion balance ωst provides
all sets of modes that require an individual balance. Lastly, the parameter in accounts for
external inputs into the storage system, for instance inflows into hydro reservoirs.

3.3.2.4 Ratio constraints

Ratios among in- and output carriers can be restricted by an equality, greater-than or less-than
constraint. Since all constraints on in- or output ratios are structured the same, only the
equality constraint on output carriers is formulated in Eq. 3.23.
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∑︂
⟨t̂,r̂⟩∈σt,r,c

Cvout
t̂,t̃,r̂,c,e,m⏞ ⏟⏟ ⏞

output of restricted carrier

= ratioout,eq
t,t̃,r,c,e,m

∑︂
c′∈γout

e

∑︂
⟨t̂,r̂⟩∈σt,r,c′

Cvout
t̂,t̃,r̂,c′,e,m

⏞ ⏟⏟ ⏞
output of all carriers

∀⟨t, t̃, r, c, e,m⟩ ∈ {Ω| ratioout,eq
t,t̃,r,c,e,m

} (3.23)

The parameter ratioout,eq specifies a carrier’s share of the total output. In the example, it
is defined for the share of electricity in total outputs of CCGT plants with CHP, coal plants
and fuel cells. Accordingly, only in these cases the corresponding constraints are created.

3.3.2.5 Capacity constraints

Dispatch variables are constrained to not exceed the operating capacities Capopr. To compare
dispatch expressed in energy units with capacities, which are expressed in power units, dispatch
variables are corrected for the length of the respective dispatch time-step. To this end we
define the function s that assigns a correction factor s(t) for each time-step t. As explained in
section 3.3.1.3, expansion can be modeled with greater spatial detail than dispatch and as a
result comparing expansion with dispatch requires aggregation. For this purpose, expansion
regions of technology e are termed ηsp

e and by default their resolution corresponds to the most
detailed resolution across all carriers assigned, as expressed in Eq. 3.24.

ηsp
e := {V (R) | d(r) = max

c∈γin
e ∪γout

e

(depexp,sp
c )} (3.24)

Since conversion capacities transform carriers modeled at different granularities, the question
arises at which resolution capacity constraints should be enforced. To answer this, part B.3 of
the appendix introduces an algorithm that determines the smallest set of constraints required
for dispatch variables to comply with the operated capacities Capopr,cv. For each technology e
this set is referred to as Ψe and can be split into in- and output. The corresponding constraints
are provided by Eqs. 3.25a and 3.25b.

s(t)
∑︂
c∈κ

∑︂
⟨t̂,r̂⟩∈σt,r,c

∑︂
m∈µe

Cvin
t̂,t̃,r̂,c,e,m

avacv
t̂,t̃,r̂,e,m

≤
∑︂

r̂∈ηsp
e ∩δ+

r

Capopr,cv
αsup

t ,t̃,r̂,e

∀e ∈ Γcv, ⟨κ, t, r⟩ ∈ Ψin
e , t̃ ∈ θdis

e,t (3.25a)

s(t)
∑︂
c∈κ

∑︂
⟨t̂,r̂⟩∈σt,r,c

∑︂
m∈µe

Cvout
t̂,t̃,r̂,c,e,m

avacv
t̂,t̃,r̂,e,m

eff cv
t̂,t̃,r̂,e,m

≤
∑︂

r̂∈ηsp
e ∩δ+

r

Capopr,cv
αsup

t ,t̃,r̂,e

∀e ∈ Γcv, ⟨κ, t, r⟩ ∈ Ψout
e , t̃ ∈ θdis

e,t (3.25b)

In the introduced formulation capacities of technologies generally refer to input capacities,
which is why the constraint on output capacity in Eq. 3.25b must be corrected for the respective
efficiency.

For storage, capacity constraints are separately enforced for storage input stI, storage
output stO and storage size stS. All storage carriers initially assigned to a technology are
denoted as γstCap

e and each of these carriers has individual storage capacities. Within a
constraint, storage capacities for a carrier c are compared with dispatch variables of all the
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carriers ĉ explicitly stored. The corresponding constraints are given by Eqs. 3.26a to 3.26c.

s(t)
∑︂

ĉ∈δ+
c ∩γst

e

∑︂
⟨t̂,r̂⟩∈σt,r,ĉ

∑︂
m∈µe

Stin
t̂,t̃,r̂,ĉ,e,m

avastI
t̂,t̃,r̂,ĉ,e,m

≤
∑︂

r̂∈ηsp
e ∩δ+

r

Capopr,stI
αsup

t ,t̃,r̂,e,c

∀e ∈ Γst
e , c ∈ γstCap

e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis
e,t (3.26a)

s(t)
∑︂

ĉ∈δ+
c ∩γst

e

∑︂
⟨t̂,r̂⟩∈σt,r,ĉ

∑︂
m∈µe

Stout
t̂,t̃,r̂,ĉ,e,m

avastO
t̂,t̃,r̂,ĉ,e,m

≤
∑︂

r̂∈ηsp
e ∩δ+

r

Capopr,stO
αsup

t ,t̃,r̂,e,c

∀e ∈ Γst
e , c ∈ γstCap

e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis
e,t (3.26b)∑︂

ĉ∈δ+
c ∩γst

e

∑︂
⟨t̂,r̂⟩∈σt,r,ĉ

∑︂
m∈µe

stLvlt̂,t̃,r̂,ĉ,e,m

avastL
t̂,t̃,r̂,ĉ,e,m

≤
∑︂

r̂∈ηsp
e ∩δ+

r

Capopr,stS
αsup

t ,t̃,r̂,e,c

∀e ∈ Γst
e , c ∈ γstCap

e , ⟨t, r⟩ ∈ φc, t̃ ∈ θdis
e,t (3.26c)

Unlike all other capacities, constraints on storage size do not include a scaling factor, because
storage size already is provided in energy units.

For exchange, capacities are created for all regions and carriers defined in βc,r and capacities
are then compared with dispatch variables ĉ explicitly exchanged. Exchange capacities can be
directed, meaning the energy transportable from r to r′ and from r′ to r can differ.

s(t)
∑︂

ĉ∈λ(c)

∑︂
⟨t̂,r̂⟩∈σt,r,ĉ

∑︂
r̂′∈ρĉ∩δ+

r′

Exct̂,r̂,r̂′,c ≤ Capopr,exc
αsup

t ,r,r′,c

∀⟨c, r⟩ ∈ {V (C) × V (R) |βc,r}, r′ ∈ βc,r, t ∈ τc (3.27)

3.3.2.6 Expansion

The operated capacities Capaopr for conversion, storage and exchange that restrict dispatch
variables do not necessarily match installed capacities Capaist. The framework can
endogenously decide to decommission installed capacities before the end of their technical
lifetime to mitigate operating costs. The following constraints achieve this for conversion
capacities and are equally applicable for storage and exchange:

Capopr,cv
t,t̃,r,e

≤ Capist,cv
t,t̃,r,e

∀e ∈ Γcv, t ∈ Φ, t̃ ∈ θdis
e,t , r ∈ ηsp

e (3.28)

Capopr,cv
t,t̃,r,e

≤ Capopr,cv
t−1,t̃,r,e

+ Expcv
t,r,e ∀e ∈ Γcv, t ∈ Φ, t̃ ∈ θdis

e,t , r ∈ ηsp
e (3.29)

Eq. 3.28 simply ensures operated capacities do not exceed installed capacities. To avoid that
decommissioned capacities are put into operation again, Eq. 3.29 demands that any rise in
operated capacity has to result from capacity expansion, which is denoted as Expcv

t,r,c,e.
Installed capacities are a result of pre-existing capacities and capacity expansion.

Analogously to expansion regions, time-steps of expansion are termed ηtp
e and their resolution

corresponds to the most detailed resolution across all carriers assigned as well:

ηtp
e := {V (R) | d(r) = max

c∈γin
e ∪γout

e

(depexp,tp
c )} (3.30)

As explained in section 3.3.1.4, certain technologies are differentiated by time-step of
construction, for others the time-step of construction is irrelevant or they cannot be expanded
at all. This affects how expansion variables have to be aggregated to obtain installed capacities
and is reflected by the set θexp

e,t̃,t
defined in Eq. 3.31. The set provides all expansion time-steps to
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3. A graph-based formulation for modeling macro-energy systems

be aggregated for obtaining capacities of technology e with construction period t̃ at time-step
t. Consequently, this set is empty for technologies that cannot be expanded. For mature
technologies it contains all time-steps of expansion that result in a lifespan including t. For
emerging technologies, capacities are not aggregated and accordingly only t̃ itself is assigned.

θexp
e,t,t̃

:=


∅ ,if g(e) = ‘stock’

{t̃′ ∈ ηtp
e | t̃′ ∈ (αsup

t − lte,t̃
′ , αsup

t ]} ,if g(e) = ‘mature’

{t̃} ,if g(e) = ‘emerging’

(3.31)

Building on this, in 3.32 the installed capacities are defined as the sum of expansion plus
pre-existing capacities capapre set exogenously.

Capist,cv
t,t̃,r,e

= cappre,cv
t,t̃,r,e

+
∑︂

t̃
′∈θexp

e,t̃,t

Expcv
t̃
′
,r,e

∀e ∈ Γcv, t ∈ Φ, t̃ ∈ θdis
e,t , r ∈ ηsp

e (3.32)

3.4 Application of the model formulation

To demonstrate feasibility of the presented formulation, the model its introduction was based
on is now created and solved. A particular focus is on how temporal granularity impacts model
size, solve time and final results.

For this application, the open-source modelling framework AnyMOD.jl that implements the
graph-based formulation is used. Code and documentation of AnyMOD.jl are freely available
on Github (Göke 2021a). The corresponding repository and a Zenodo upload with all the
other files to run the example model are provided in the Supplementary Material.

As introduced in the previous section, the example models the transformation of the power
and heating sector from a fossil and fissile to a renewable system over the course of 20 years in
5 years steps for two stylized regions, but could be freely extended and altered. This includes
the addition of energy carriers and technologies to cover more sectors or a different structure of
time-steps to achieve different temporal resolutions. Also, the temporal resolution of expansion
could be increased for certain technologies to model a constant expansion rate within each
decade.

3.4.1 Results of the example model

The example model was parameterized as follows: For location-dependent parameters, like
demand or availability of renewables, values were selected such that the regions East and
West resemble Germany and France. Costs and technological properties were based on recent
estimates. To actually achieve the levels of renewables and sector integration the framework
was developed for, the yearly emission limit linearly decreases from 350 million tons of CO2 in
2020 to zero in 2040.

The resulting development of operated conversion capacities is displayed in Fig. 3.7. It
should be noted that according to the framework’s convention, these are input capacities.
In the graph, the impact of moving from a small emissions limit in 2035 to no emissions in
2040 is very pronounced. Instead of switching to synthetic gas, gas boilers and OCGT power
plants are mostly decommissioned and replaced with solar heating and hydrogen turbines. The
resulting energy flow for 2040 is shown in Fig. 3.8, which is the quantitative counterpart to Fig.
3.5 from section 3.3.1.4. Again, colored vertices represent energy carriers and grey vertices
correspond to technologies. The graph visualizes several characteristics of the framework’s
graph-based approach. For example, the flow leaving district heat and entering heat reflects
that according to the energy balance in Eq. 3.13, descendant carriers are included in an
ancestors energy balance. As a result, district heat can equally satisfy final demand for heat
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Figure 3.7: Operated conversion capacities for the example model

Figure 3.8: Quantitative energy flow in example model for all regions in the year 20406
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Figure 3.9: Model size across scenarios

despite being produced by different technologies. Also, both hydrogen and synthetic gas flows
enter and leave the gas storage technology, which was defined to store their ancestor gas. This
corresponds to the storage implementation presented in sections 3.3.1.4 and 3.3.2.3.

3.4.2 Impact of temporal resolution

All these results were obtained solving the model with full foresight and the settings outlined
in section 3.3.1.3, which proposed an hourly resolution for electricity, four-hour steps for heat
and daily balancing of all gaseous carriers. To study the impact of impact temporal granularity,
two more detailed scenarios are considered in addition. One extends hourly granularity to heat
and district heat, while all other resolutions remain unchanged. In the other, all carriers are
modeled with hourly resolution.

In Fig. 3.9 the size and number of non-zero elements for the model’s underlying optimization
matrix are shown across all three scenarios. Even though three-quarters of technologies in
the model either use or generate electricity, reducing temporal granularity for all carriers but
electricity achieves a reduction of about 50% in matrix size and number of non-zero elements.
If resolution for heat and electricity is kept hourly and detail is only decreased for gaseous
carriers, the reduction still amounts to 25%. A reduced model size will decrease working
memory requirements and makes it possible to solve models that previously did not fit into
memory, but it does not necessarily reduce computation time. The time to solve a problem
also depends on the inner structure of the matrix and the applied solution algorithm.

To assess the scenarios in terms of computation time, they were solved using different
algorithms of the Gurobi solver. Using the simplex method did not provide any results in less
than a day; solve times when applying the Barrier algorithm with ’Approximate Minimum
Degree’ or ’Nested Dissection’ ordering are displayed in Fig. 3.10.7 Results indicate that solve
time decreases disproportionately to model size. When going from an hourly granularity for
all carriers to only modeling electricity hourly, model size was reduced by 50%, but solve time
decreased by 64% to 75% depending on the ordering method. The corresponding computations
were run on a high-performance computing cluster. If reproduced on a desktop computer with
less working memory and parallel processors, the model creation might take longer, because
the framework heavily utilizes multi-threading. Also, for ’Nested Dissection’ ordering, memory
limits are likely to be exceeded.

Lastly, final model results are compared for the three scenarios. To this end, Fig. 3.11
shows the difference in operated capacities for the two more detailed scenarios compared to the
reference case for 2040. Positive values indicate that capacities for the more detailed scenario
exceed results from the reference case. Only technologies where results differ are included. If
heat is modeled with hourly resolution, generation from CHP plants and solar heating is partly
replaced by more flexible gas boilers fueled by synthetic gas. To generate this gas, additional

6. Import and export flows are aggregated across all regions, and thus have the same value.
7. Reported times only refer to the barrier algorithm itself and omit crossover. In no case crossover improved

results by more than 0.000 007 percent, but typically increased computation time by a factor of four.
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capacities for electrolysis and methanation are required. CHP plants generating less leads
to smaller sized heat storage. Also, reduced solar thermal capacity allow the installation of
additional PVB systems, since both technologies compete for rooftop area. If the resolution of
gas is changed from daily to hourly as well, shifting gas within the day requires gas storage and
thus becomes subject to losses. Consequently, storing gas is avoided and instead methanation
capacities are increased to produce gas when required. For the reference case system costs
amount to 397.4 € billion and increase to 399.6 € billion when heat is additionally modeled at
an hourly resolution. Modeling all carriers hourly further increases costs to 400.1 € billion.

Deviations between the reference case and more detailed scenarios should not necessarily
be interpreted as inaccuracies. If a less detailed resolution can be justified from an engineering
perspective, it does not only reduce model size, but also allows the consideration of the
system’s inherent flexibility. Consequently, the decrease in system costs when reducing a
carrier’s granularity can be interpreted as the economic value of this flexibility. The effects that
changing the granularity of a single carrier has across the entire system also emphasizes what
was stated at the very beginning of the introduction: Analyzing energy systems characterized
by high shares of intermittent renewables requires a cross-sectoral perspective.

3.5 Conclusion and outlook

This paper introduced a novel formulation for modelling macro-energy systems. In contrast to
existing formulation, it pursues a novel approach based on graph theory. Organizing sets in
rooted trees enables two features that facilitate modeling systems with high shares of renewables
and sector integration. First, the method allows the level of temporal and spatial detail to be
varied by energy carrier. As a result, model size can be reduced without reducing the level of
detail applied to fluctuating renewables. In addition, flexibility inherent to the system, for
example in the gas network, can be accounted for. Second, substitution of energy carriers can
be modeled in dependence of the respective context: conversion, storage, transport, or demand.
This achieves a more comprehensive representation of how technologies and energy carriers can
interact in an integrated energy system. In addition, smaller features not found in previous
frameworks, namely an accurate representation of technological advancement, endogenous
decommissioning and internal storage of generated carriers, have been implemented.

To demonstrate its capabilities, the graph-based formulation was applied to a stylized
example that models the transformation of the power and heating sector from a fossil to a
renewable system over the course of 20 years in two regions loosely based on Germany and
France. The example shows in particular how varying the temporal resolution by carrier
reduces solve time by 64% to 75% without imposing a major bias on results.

So far, the introduced formulation cannot account for weather related uncertainties of
renewable generation, although this has been identified as a key requirement for modeling high
shares of renewables (Ringkjøb, Haugan, and Solbrekke 2018). Therefore, the focus of further
development is to enable stochastic capacity expansion to account for a range of weather years.
Since this implies a substantial increase in model size, a particular challenge lies in solving
such models. One approach could be to implement a distributed solution algorithm based on
Benders decomposition that can fully exploit the capabilities of high-performance computing
(Conejo et al. 2006).
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4
AnyMOD.jl: A Julia package for
creating energy system models

This chapter is based on a revised submission of Göke, L. 2021b. “AnyMOD.jl: A Julia
package for creating energy system models.” SoftwareX 16:100871. doi:
10.1016/j.softx.2021.100871.
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4. AnyMOD.jl: A Julia package for creating energy system models

4.1 Current code version

Nr. Code metadata description Please fill in this column

C1 Current code version v0.1.6

C2 Permanent link to code/repository used
for this code version

https://github.com/leonardgoeke/
AnyMOD.jl/releases/tag/v0.1.6

C3 Code Ocean compute capsule

C4 Legal Code License MIT license (MIT)

C5 Code versioning system used git

C6 Software code languages, tools, and
services used

Julia

C7 Compilation requirements, operating
environments & dependencies

Julia 1.3.1

C8 If available Link to developer documen-
tation/manual

https://leonardgoeke.github.io/
AnyMOD.jl/stable/

C9 Support email for questions lqo@wip.tu-berlin.de

Table 4.1: Code metadata

4.2 Motivation and significance

Since the production of energy accounts for three-quarters of global emissions, mitigating
climate change requires the decarbonization of the energy system (Edenhofer et al. 2014).
Cutting emissions requires to shift supply of primary energy to electricity from wind and solar
and extend its use to other sectors. As a result, the energy system has to undergo fundamental
change and evolve from largely independent sectors with little supply from renewables into an
integrated system characterized by fluctuating renewables.

Capacity expansion models investigate the long-term developments of macro-energy systems,
but existing methods were developed for systems still characterized by fossil fuels and struggle
to describe the transformation towards a renewable system (Levi et al. 2019). Models like
ReEDS, Message, or Switch, pursue a time-slice approach, that reduces the entire year to
a small number of independent periods (Cohen et al. 2019; Howells et al. 2011; Johnston
et al. 2019). This reduction limits the detail applied to fluctuating renewables and more
importantly prohibits to consider long-term storage, a key component of renewable energy
systems (Schill 2020). Other models, like PyPSA or Calliope, diverge from this approach and
consider a continuous and hourly time-series instead, which enables a detailed representation
of renewables and long-term storage (Pfenniger and Pickering 2018; Brown, Hörsch, and
Schlachtberger 2018). But in return these models are limited to a single year and, opposed to
models using time-slices, cannot analyze development pathways for today’s system.

Against this background, AnyMOD.jl provides a framework for modeling the long-term
transformation of the energy system with the level of detail necessary to represent fluctuating
renewables and long-term storage. The framework implements a novel graph-based method
introduced in Göke (2021a) that varies the level of temporal and spatial detail by energy
carrier to keep models with high resolution computationally tractable. The approach also
enables to model the substitution of energy carriers and, on the practical side, facilitates the
read-in of input data.
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4.3 Software description

Figure 4.1: UML class diagram of package components

AnyMOD.jl follows an easy to use, but difficult to master principle. Since individual
models are solely defined by CSV files and can be run with a few lines of standard code,
running an existing model, and performing sensitivity analysis requires little experience. More
advanced applications, like creating new models and individually modifying their formulation,
requires some programming skills and a deeper understanding of the framework’s structure.
Since models are defined from CSV files and short code scripts, the framework supports
version-controlled model development to promote collaboration and transparency.

The following section gives an overview of the framework’s structure and presents two
functionalities with greater detail, the read-in of parameter data (section 4.3.2.1) and the
re-scaling algorithm (section 4.3.2.2). The subsequent section describes an application that
models the transformation of the European power and gas sector. The final section paper
highlights the framework’s impact and concludes.

4.3 Software description

The package is implemented in Julia. Its key dependencies are JuMP.jl as a backend for linear
optimization and DataFrames.jl for data processing (Dunning, Huchette, and Lubin 2017;
Bezanson et al. 2017). The framework uses PyCall.jl to create an internal Python environment
and apply the Python packages NetworkX and Plotly for plotting. Gurobi is added as an
optional dependency, because its function to compute irreducible inconsistent subsystems is
utilized to debug infeasible models. Apart from that, the framework is compatible with any
open or commercial solver implemented in Julia. To increase performance the package heavily
utilizes Julia’s multi-threading capabilities. Since not supported by JuMP.jl, the mere creation
of constraints uses only one thread, but the computationally more intensive composition of
constraints from variables and parameters is multi-threaded.

4.3.1 Software Architecture

The class diagram in Figure 4.1 illustrates the architecture of AnyMOD.jl and how it revolves
around the AnyModel object. For the sake of clarity, the diagram is not exhaustive and only
covers the most relevant dependencies, objects and attributes. Listing 4.3.1 provides the
corresponding code to initialize, populate, solve and analyze the model object.
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4. AnyMOD.jl: A Julia package for creating energy system models

time-step region carrier technology variable
1 1 1 1 gen(1, 1, 1, 1)
2 1 1 1 gen(2, 1, 1, 1)
3 1 1 1 gen(3, 1, 1, 1)

Table 4.2: Exemplary data frame of generation variables

After loading AnyMOD.jl, the constructor initializes the AnyModel object based on two
mandatory arguments: an input directory and an output directory. The CSV files defining a
model consist of set and parameter files that have to be placed in the input directory. The set
files define all time-steps, regions, energy carriers and technologies considered in a model and
map how these are related, for example which carriers a technology can generate. Following
the graph-based approach, the elements of each set are organized as nodes of hierarchical trees.

us ing AnyMOD # load ing packages
model_object = anyModel ( " . . / demo " , " r e s u l t s " ) # cons t ruc t model ob j e c t

# c r e a t e opt imiza t i on problem and s e t an o b j e c t i v e
createOptModel ! ( model_object )
s e tOb j e c t i v e ! ( : cos t s , model_object )

# s o l v e model and repor t r e s u l t s
us ing Cbc
set_opt imizer ( model_object . optModel , Cbc . Optimizer )
opt imize ! ( model_object . optModel )
r epo r tRe su l t s ( : summary , model_object )

Listing 4.1: Script to initialize, create and run a model

Qualitative inputs on sets are complemented with quantitative data from the parameter
files, that for instance provide demand time-series or technology properties like investment
costs or efficiency. While the naming and format of set files is strictly defined, parameter data
can be freely structured and distributed across files. As a result, models can be composed
modularly, since different models can share the same input files. After reading in all parameter
data, the constructor creates a ParElement object for each parameter with data and meta
information and assigns it to a ModelPart object. The ModelPart objects partition the model
into different parts, for instance, the ParElement for demand time-series will be assigned to a
model part dedicated to the energy balance. Each technology got its own part object of the
subclass TechPart, that also stores technology specific attributes like assigned carriers.

After construction, the AnyModel object is passed to the createModel! function, which
creates all the variables and constraints of the underlying optimization problem optModel.
These variables and constraints are again assigned to model parts and stored as data frames.
For instance, Table 4.2 depicts a data frame of generation variables. The column on the right
stores the JuMP variable objects and the four other columns give the time-step, region, carrier,
and technology of each variable, which are provided as indexes of the Node objects created
during initialization. Such data frames for variables are combined with parameter data using
database operations to construct constraints. For instance, generation variables are aggregated
by technology and than joined with the demand parameter to create the energy balance in
Table 4.3.

After the optimization problem is created, its objective is set with the setObjective function.
At this point the user can also freely modify and extend the automatically generated problem by
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time-step region carrier constraint
1 1 1 dem(1, 1, 1) = ∑︁

t gen(1, 1, 1, t)
2 1 1 dem(2, 1, 1) = ∑︁

t gen(2, 1, 1, t)
3 1 1 dem(3, 1, 1) = ∑︁

t gen(3, 1, 1, t)

Table 4.3: Exemplary data frame of energy balance constraints

accessing the JuMP attributes of the AnyModel object and its parts. Finally, the optimization
problem optModel is passed to a solver and analyzed afterwards. All results are written to the
output directory, which was passed to the constructor in the beginning. A reporting file with
error messages and warnings is written to this directory as well.

4.3.2 Software Functionalities

As outlined above, AnyMOD.jl is a package for the creation of energy system models. Additional
features are aimed either at simplifying its application or enhancing the performance of creating
and solving models. In the following, two of these features are presented in greater detail.

4.3.2.1 Inheritance Algorithm

As explained above, model constraints are constructed from variables and parameters, which
are again defined by input data. Usually, models use a single parameter value in many
constraints. For example, the efficiency of a newly build gas power plant does typically not
vary by time-step or region and all constraints describing these plants will use the same
value. Consequently, it would be inefficient, if AnyMOD.jl required users to provide efficiency
data at a temporal and spatial resolution. On the other hand, efficiencies of heat-pumps are
highly dependant on region and time-step, because they depend on ambient temperature. So,
not permitting efficiencies to depend on time-step and region, would prevent to model these
technologies accurately. A similar problem occurs, if investment costs of emerging technologies,
like PV, are expected to decrease within the model horizon, but costs for other technologies
remain constant. Here, providing all costs at a yearly resolution leads to redundant inputs for
most technologies, but if costs cannot be varied by year at all, cost degression of PV cannot
be modelled. In conclusion a predefined resolution of input data either results in an highly
inefficient read-in of input data or restricts modelling capabilities.

To resolve this problem, AnyMOD.jl does not predefine the resolution of input data and
instead automatically infers how data should be used from the way it is specified. For example,
providing different efficiencies in dependence of time-step and region will result in temporally
and spatially resolved efficiencies in the model, but if instead a parameter is provided without
time-steps or regions, the model uses a uniform value. This concept is not limited to certain
parameters or dimensions, but applies comprehensively. The implementing algorithm builds on
the idea to "inherit" missing data for a specific node from its relatives in the hierarchical tree.1

Figure 4.2 illustrates the basic mechanism of the algorithm based on an exemplary
hierarchical tree organizing time-steps. The first level of the tree organizes different years with
days, 4-hours steps and hours following on the subsequent levels. Green numbers indicate
input data provided for a specific node. If input data is not specified in dependence of the
time-step, it is assigned to the root of the tree. The algorithm can obtain missing data at the
circled node in three different ways: either move up the tree and use ’8.3’, move down the tree
and sum the hourly values, or move down the tree and average the hourly values. How the
algorithm deploys these three methods for each dimension depends on the inheritance rules of

1. This idea of "inheritance" is not be confused with inheritance in the context of object orientated
programming.
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Figure 4.2: Basic mechanism of inheritance within hierarchical trees

the parameter. A detailed overview for each parameter is provided in the parameter list of the
documentation.

Figure 4.3 outlines how these rules then are deployed to obtain parameter data. The
described algorithm corresponds to the matchSetParameter function of ParElement in Figure
4.1 and takes the following inputs: a data frame to be filled with parameter data, a respective
parameter object and the hierarchical trees. First, the algorithm checks for direct matches
between the input data frame and the parameter data. Afterwards, it loops over the inheritance
rules to inherit new data for missing nodes as described above. If new data is obtained, the
algorithm checks again for matches with the input data frame. The loops ends when either
all rows are matched with data, or all inheritance rules have been applied. In the latter
case, unassigned rows are either dropped or assigned a default value, if one is defined for the
respective parameter.

Input: data frame requiring data, parameter object, hierarchical trees
Output: data frame with parameters assigned
find matches of data frame with parameter data;
for I do

try to inherit new data for missing nodes;
if new data obtained then

add newly obtained data to parameter object;
find new matches of data frame and parameter data;
if no unmatched rows in data frame anymore then

exit loop;
end

end
end

if parameter has default value then
use default for unmatched rows;

else
drop unmatched rows;

end

Figure 4.3: Inheritance algorithm
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4.3.2.2 Scaling

The formulation of an optimization problem can have a major impact on solver performance.
The barrier algorithm, the fastest method for solving large linear problems, is particularly
sensitive to a model’s numerical properties, and poor formulations will thus greatly increase
computation time. For this reason, AnyMOD.jl automatically applies a two-step scaling process
when creating optimization problems. The process aims to narrow the range of coefficients
and constants in a problem between 10−3 and 106, as recommended.2

As a demonstration of how this range is achieved, Eq. 4.1 constitutes the constraints of
an exemplary linear model. In the first and second row, the coefficients for x1 are currently
outside of the targeted interval. In addition, the maximum range of coefficients in the second
row amounts to 1011 (= 102

10−9 ), which exceeds the maximum range of the targeted interval
of 109 (= 106

10−3 ) and means the equation cannot be multiplied with a constant factor to shift
coefficients into the desired interval.

10−8 x1 + 103 x2 + x3 ≤ b1

10−9 x1 + 102 x2 + x3 ≤ b2

x1 + x2 + x3 ≤ b2

(4.1)

Therefore, in the first step the maximum range of coefficients is decreased by substituting
variables. In the example, x1 is substituted with 103 x′

1, which results in the system displayed
in Eq. 4.2.

10−5 x′
1 + 103 x2 + x3 ≤ b1

10−6 x′
1 + 102 x2 + x3 ≤ b2

103 x′
1 + x2 + x3 ≤ b2

(4.2)

Since the first step decreased the maximum range, in the second step coefficients can be
shifted into the interval between 10−3 and 106. For this purpose, each constraint (or row)
is scaled with a constant factor. In the example, the first row is multiplied by 102 and the
second row by 103 resulting in the system displayed in Eq. 4.3 that finally complies with the
recommended range.

10−3 x′
1 + 105 x2 + 102 x3 ≤ 102 b1

10−3 x′
1 + 105 x2 + 103 x3 ≤ 103 b2

103 x′
1 + x2 + x3 ≤ b2

(4.3)

AnyMOD.jl uses default factors for substitution that depend on the variable type and can be
adjusted if they fail to achieve the desired result. Factors for scaling can be automatically
computed based on the current coefficients in a constraint.

Figure 4.4 demonstrates the impact of automated scaling by comparing the solve times
of Gurobi’s barrier implementation for a test model.3 To ensure robustness of the results,
Barrier was run with both available ordering algorithms, “approximate minimum degree” and
“nested dissection.” With automated scaling disabled, a NumericFocus parameter of three is
necessary to avoid early termination or extremely long solve times due to numerical difficulties.
In conclusion, automated scaling decreases solve time of the test model roughly by a factor of
three.

2. See the Gurobi Guidelines for Numerical Issues for details.
3. The corresponding model files can be found in the following repository: https://github.com/leonardgoeke/

AnyMOD_example_model/tree/May2020
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Figure 4.4: Impact of scaling algorithm on solver run-time

4.4 Illustrative Example

Hainsch et al. (2020) applied AnyMOD.jl to the decarbonization of the European power and gas
sector on a pathway from 2030 to 2040 instead of a single year. The analysis with AnyMOD.jl
complements results from another energy system model with less spatiotemporal detail. The
application subdivides Europe on a country level and includes an aggregated representation of
transmission infrastructure to enable the exchange of energy carriers between countries.

Figure 4.5 was plotted with the plotEnergyFlow function and provides an overview of
the technologies and energy carriers considered. In the graph, carriers are symbolized by
colored vertices and technologies by gray vertices. Entering edges of technologies point towards
their input carriers; outgoing edges refer to outputs. Since the model includes both the
power and gas sector, it is not limited to short-term storage of power, like batteries, but also
considers creation and utilization of synthetic fuels for long-term storage. Since fluctuating
renewables are the main source of supply by 2040, power is modelled at an hourly resolution.
To reduce model size and account for the inherent flexibility of gaseous energy carriers, fossil
gas, hydrogen, and synthetic gas are balanced daily instead. All other energy carriers are
modelled yearly.

The energy flows for France in 2040 when solving the model are displayed in Figure 4.6.
The sankey diagram does not only show how hydrogen is used for long-term storage of power,
but also how final demand for hydrogen and synthetic gases, for example from the industry
sector, is covered. In addition, the substantial amount of imports and exports for all carriers
highlights the importance of large models that can account for several regions at once.

4.5 Impact and conclusions

AnyMOD.jl provides a framework for modeling the transformation towards a decarbonized
energy system at a high spatiotemporal resolution. For this purpose, it implements a graph-
based method introduced that enables to vary the level of detail by energy carrier. In addition,
the framework introduces a more flexible method to read-in input data and automatically
scales created optimization problems to increase solver performance. Lastly, the tool provides
advanced plotting features, like Sankey diagrams.

To facilitate access for users, AnyMOD.jl can be used without any proprietary software.
Using the framework does not require extensive programming skills but supports version-
controlled model development, since models are created from CSV files. To extend and modify
a created model, advanced users can easily access and manipulate its underlying JuMP objects.
The organization of input files is highly flexible and eases the creation of new models from
existing files.
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4.5 Impact and conclusions

Figure 4.5: Graph of technologies and energy in example

Figure 4.6: Sankey diagram for France in 2040 in example
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4. AnyMOD.jl: A Julia package for creating energy system models

In conclusion, AnyMOD.jl enables research to spend less time on coding and data
management and more time focusing on the scientific part of their work. Its high level
of accessibility also makes AnyMOD.jl suitable for use by companies, regulators, or non-
governmental organizations. Finally, AnyMOD.jl promotes openness and transparency in
various ways. Due to the relevance of these qualities for public policy, this is of particular
importance with energy system models (Pfenniger et al. 2017).

Additional features currently developed include a more detailed representation of
transmission infrastructure and the inclusion of more than one weather year in a single
model. The later also includes the development of a distributed solution algorithm to keep the
resulting increase in model size manageable.
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5
Accounting for spatiality of renewables

and storage in transmission planning

This chapter is based on joint work with Mario Kendziorski, Claudia Kemfert, and Christian
von Hirschhausen currently under review in Energy Economics under the title: "Accounting
for spatiality of renewables and storage in transmission planning".
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5.1 Introduction

To decarbonize the energy system, the primary supply of energy has to shift towards renewables
like wind and solar. As a result, also the topology of power generation shifts and new options
for grid planning arise.

First, cost and potential of wind or solar greatly depend on location and, compared to
fossil sources, capacities of individual plants are an order of magnitude smaller (Pfenninger,
Hawkes, and Keirstead 2014). This imposes a trade-off on their deployment: either place
plants where site conditions are best and rely on the grid to bring electricity to consumers or –
to reduce the need for transmission infrastructure – place plants close to demand.

Second, with increasing shares of wind and solar, matching intermittent generation with
demand increasingly requires storage systems (Schill 2020). If placed the right way, storage
systems can be charged while the grid is underutilized and discharged when the grid is under
stress to relieve congestion, making storage a substitute for grid expansion.

In Germany, planning transmission infrastructure is the responsibility of TSOs. In a
continuous process the four TSOs, under regulation of the Federal Network Agency, develop
scenarios for the next 15 years of power supply and use these scenarios to identify impending
congestion and outages. Since Germany, a single zonal market, pursues a "copper-plate",
meaning free flow of electricity within the country, it is the TSOs’ task to prevent any
congestion and enable market-based dispatch of all generators plus commercial exchanges with
neighboring markets. Therefore, planning is focused on optimizing operation or expanding
the transmission grid. Only in extreme situations or as a temporary measures to manage
congestion until other projects are completed, TSOs adjust the market-based dispatch ex-post,
referred to as redispatch (Weber 2017).

In addition, the outlined process does not account for the two options to substitute grid
infrastructure in renewable systems: placing renewables closer to demand and storage systems.
Investment into generation capacities is private and driven by a single zonal market and a
support scheme for renewables that is largely independent of location. Consequently, sites
selected for renewables do not reflect the spatiality of demand or bottlenecks of the transmission
grid. In the past this lead to a concentration of investment in the north contributing to
congestion within the German market zone. For storage systems the situation is similar, the
market design provides no incentive for regional investments and TSOs do not include them
in the planning process. Regulation in other European countries is similar, although smaller
market zones often provide better incentives for regional investments (Weber et al. 2013).

Grimm et al. (2016) and Kemfert, Kunz, and Rosellón (2016) investigate how including
redispatch in the planning framework and not just as a temporary measure impacts grid
expansion. Both papers base their analysis on the same TSO projections for 2035, but apply
different models (50Hertz and Amprion and TenneT and TransnetBW 2015). The multi-stage
equilibrium model in Grimm et al. relies on a stylized grid representation, but accounts for
the different objectives of TSOs, private investors and the central planner. The optimization
model in Kemfert, Kunz, and Rosellón on the other hand is limited to the central planner,
but represents the power grid with greater detail instead. Both papers find that deviating
from the zonal market dispatch increases social welfare and is able to substitute 57 percent
of planned transmission lines according to Grimm et al., or 48 percent according to Kemfert,
Kunz, and Rosellón, respectively. In addition, Grimm et al. point out that in a first-best case
where investment into generation considers grid constraints as well, the required transmission
lines are reduced by two thirds. Using a very disaggregated model, Drechsler et al. (2017) also
find that the location of renewable energies has a clear impact on transmission requirements.

Following up on these findings, this paper investigates how including redispatch and the
placement of generation and storage systems impacts system planning. In contrast to the
sources above, we do not base our analysis on current energy scenarios by the TSOs, but on
an own scenario that models a fully renewable energy system in Germany and Europe. This
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system is characterized by intermittent renewables, a consequent dependence on storage, and
new demands for electricity outside the power sector. Thus, it fundamentally differs from the
system analyzed in previous research.

The applied model is introduced in section 5.2, followed by comparative scenarios and the
underlying data assumptions in section 5.3. The results obtained on this basis are discussed
in section 5.4, before the a summary of key findings, policy implications and an outlook on
future work follows in section 5.5.

5.2 Applied modeling framework

Quantification of different planning processes follows a two-step procedure based on a techno-
economic optimization model of the German energy system using the AnyMOD framework
(Göke 2021b, 2021a). The model chooses from a range of technologies that generate, convert,
or store energy carriers to efficiently satisfy an exogenous demand.

Eqs. 5.1a to 5.1h provide a highly stylized version of the model formulation. To differentiate
them, variables are written in capital and parameters in lower-case letters. According to the
energy balance in Eq. 5.1b, the sum of generation Gent,i,c, storage input Stint,i,c and storage
output Stout

t,i,c over all technologies i has to match demand given by the parameter demt,i,c at
each time-step t and for each energy carrier c. The following storage balance connects storage
in- and output with the storage level Stsize

t,i at each time-step t for each storage technology.
Eqs. 5.1d to 5.1f enforce capacity constraints on storage in- and output, storage levels and
generation ensuring production does not exceed the capacity Capai. For generation, capacity
constraints include a capacity factor cft,i that specifies the share of capacity available for
generation at time-step t. Finally, the objective function Eq. 5.1a is composed of total
investment costs InvCost computed from capacities and specific investment costs invCosti
in Eq. 5.1g and total variable costs V arCost computed from generation Gent and specific
variable costs varCost in Eq. 5.1h. For a full description of the underlying optimization model,
that also includes the representation of different regions and how they can exchange energy
carriers, see Göke (2021b).

min InvCost+
∑︂
c∈C

V arCostc (5.1a)

s.t.
∑︂
i∈I

Gent,i,c + Stout
t,i,c − Stint,i,c = demt,i,c ∀t ∈ T, c ∈ C (5.1b)

Stsize
t−1,i +

∑︂
c∈C

Stint,i,c − Stout
t,i,c = Stsize

t,i ∀t ∈ T, i ∈ Ist (5.1c)

∑︂
c∈C

Gent,i,c ≤ cft,i · Capagen
i ∀t ∈ T, i ∈ I (5.1d)

∑︂
c∈C

Stout
t,i,c + Stint,i,c ≤ Capast

i ∀t ∈ T, i ∈ I (5.1e)

Stsize
t,i ≤ Capasize

i ∀t ∈ T (5.1f)∑︂
∀i∈I

Capai · invCosti = InvCost (5.1g)

∑︂
∀t∈T, i∈I

Gent,i,c · varCost = V arCost (5.1h)

In Figure 5.1 all considered technologies, depicted as gray circles, and their interaction
with energy carriers, depicted as colored squares, are visualized. Entering edges of technologies
refer to their input carriers; outgoing edges relate to outputs. For example, the biomass plant
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5. Accounting for spatiality of renewables and storage in transmission planning

Figure 5.1: Graph of model elements

uses biomass as an input to generate electricity. Storage technologies, like pumped hydro or
CAES, have an entering and an outgoing edge to represent charging and discharging.

Due to its pivotal role for renewable systems, the model’s focus is on electricity. For
long-term storage of electricity, the analysis includes hydrogen and synthetic methane. Setting
an exogenous demand for these carriers also captures the demand for synthetic fuels outside
of the power sector, for example in aviation. Beyond that, representation of other sectors is
limited to their electricity demand induced by sector integration. These demands are treated
separately using the carriers "residential heat" for hot water and space heat, "process heat"
for industrial heating, and "e-mobility" for electric vehicles. Demand from these sectors is
exogenous since the model does not include deployment of technologies outside the power
sector.

The demand for each carrier has to be met by the various technologies for each considered
time-step and region whereby time-steps and regions can vary by energy carrier.1 For electricity,
the model applies an hourly temporal resolution to capture the fluctuating nature of intermittent
renewables. Hydrogen and synthetic gas are balanced daily since they are less sensitive to
short-term imbalances. Electric mobility uses a daily resolution, too, assuming vehicle charging
is flexible. Lastly, residential and process heat apply a 4-hour resolution to account for the
thermal inertia of buildings and load shifting potentials in the industry.

The spatial resolution is uniform for all energy carriers but varies by scenario for reasons
that will be elaborated on in the following section. Figure 5.2 provides an overview of all
regions. These include 29 regions for European countries and 38 NUTS2 regions for Germany,
which are modelled separately since our research question focuses on spatial effects and requires
great regional detail.

Furthermore, the model allows for regular trading: Electricity, hydrogen and synthetic
gases can be exchanged between regions, given the required grid infrastructure. Investment
and dispatch for this infrastructure is, analogously to technologies, calculated by the model.
Since the paper focuses on Germany, other European countries are only included to account
for cross-border trade of energy. Therefore, technology and grid capacities for these countries
are exogenous and the model only decides on their dispatch.

The high-spatio temporal detail for Germany paired with a representation of the European
energy system and impact of sector integration on the system, is a unique feature of the model
enabled by the AnyMOD framework. For deciding on investment and dispatch of technology

1. For a detailed description of how this feature is achieved see Göke (2021b).
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Figure 5.2: Overview of regions including pre-existing electricity grid, Sources: Kunz et al. (2017)
and ENTSO-E (2020)

Figure 5.3: Overview of considered scenarios

and grid capacities, the model considers investment, operating, and dispatch costs to find the
least-cost solution to satisfy the given demand. So, mathematically our approach is a linear
minimization of system costs, which, since demand is exogenous and therefore assumed to be
inelastic, is equivalent to welfare maximization. The model is limited to a single year and omits
the transformation from today to a renewable system. Also, exchange of electricity neglects
loop flows and how line expansion affects transmission losses. These simplifying assumptions
are necessary to keep the computational complexity manageable.

5.3 Scenarios and data

5.3.1 Considered scenarios

Analysis of the different planning processes builds on several scenarios summarized by Figure
5.3. These scenarios differ regarding the sequence in which investment and dispatch decisions
are determined.

The first-best case on the very left only deploys the model once. Investment and dispatch
of generation, storage, and transmission are all determined simultaneously for each of the
38 German NUTS2 regions. As a result, the trade-offs between grid expansion and placing
generation differently, using storage systems, or deviating from a market-based dispatch are
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5. Accounting for spatiality of renewables and storage in transmission planning

all internalized by the model. The scenario thus corresponds to a social welfare optimum.
Note that this setting is currently not practiced, as it would require a major change to current
regulation. A policy frequently proposed in the dedicated literature to achieve this optimum
is nodal pricing (Harvey and Hogan 2000). To gain insight on the general importance of
transmission, analysis also includes a sensitivity of the first-best without any transmission
expansion at all.

In all other scenarios, investment and dispatch of generation, storage, and transmission
is not determined simultaneously but sequential. The first step computes investment in
generation and storage technologies, ignoring all grid constraints and assuming a free flow
of electricity within Germany. Accordingly, results correspond to a market-based dispatch
with a single German zone. The second step introduces the grid to determine investment
into transmission, but fixes technology investment depending on the scenario. Since in the
absence of grid constraints the model is indifferent where to place storage systems, these are
distributed proportionally to renewable generation across the 38 regions. This is plausible
given the assumed absence of regional prices, because investors have an incentive to place
renewables and storage at the same sights to decrease costs for construction and grid access. If
transmission losses incurred in the second step render the problem unsolvable, because demand
cannot be fully met, the entire process is repeated with a correspondingly increased demand
in the first step.

Since the sequential scenarios separate investment into generation and transmission, they
contrast from the first-best and represent today’s planning approach. In that case, the
implementation of corresponding policies likely requires less regulatory change.

The following lists all sequential scenarios detailing how they fix results from the first in
the second step and what kind of planning policy is simulated this way. The list follows the
order from left to right in Figure 5.3.

• All storage: In this scenario, dispatch decisions in the second step can deviate from
the market-based dispatch determined in the first. In addition, storage investment in
the first step is not binding, but serves as a lower limit instead. This means storage
is considered for grid relieve in the planning process, resulting in additional storage
capacities on top of market driven investments.

• Short-term storage: This scenario is equivalent to "All storage", but additional storage
investment is limited to short-term storage, namely battery and CAES.

• Long-term storage: The scenario is again equivalent to "All storage", but now
additional investment is limited to technologies for long-term storage of electricity,
which are electrolysis, methanation, hydrogen plants, and gas plants.

• None: In this scenario all technology investment, even storage is fixed in the second
step. However, dispatch in the second step can still deviate from the market-dispatch
computed in the first step.

In conclusion, only in the first-best scenario system planning considers all three substitutes
for grid expansion: placement of generation, storage systems, and deviating from the zonal
market dispatch. The following three scenarios consider storage and a deviating dispatch,
but do not consider a different placement of generation. The last scenario only considers
dispatching capacities differently.

5.3.2 Data

The following section summarizes the most important quantitative assumptions used in the
model. To ensure consistency, as much data as possible was based on the same underlying
scenario of a renewable European energy system, the "Societal Commitment" scenario developed
in the openENTRANCE project (Auer et al. 2020). For comprehensive information on all
inputs see the link in the supplementary material.
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5.3.2.1 Supply

For the German NUTS regions, generation and storage capacities are determined according to
the outlined scenarios based on investment and operating costs (Göke, Poli, and Weibezahn
2019; Auer et al. 2020; Kost et al. 2018). To account for cross-border trade, the other European
countries are included in these scenarios as well, but their generation and storage capacities
are fixed to not distort results. These capacities are instead computed in a preceding step
using the same input data, but reducing Germany to a single node. For the sensitivity of the
first-best case without grid expansion, this preceding step is carried out without any expansion
of the European transmission grid.

Capacity limits and factors of renewables for the other European countries are based on Auer
et al. Capacity factors from the German NUTS regions are extracted from renewables.ninja
(Pfenninger and Staffell 2016; Staffell and Pfenninger 2016). An input not provided anywhere
in the literature are capacity limits of wind and PV) broken down by German NUTS2 regions.
Therefore, these assumptions were derived based on publicly available sources specifically for
this study. To ensure consistency with the rest of input data, summed limits for Germany
corresponds to Auer et al. (2020).

First, highly resolved satellite data for land use provides the urban, sub-urban, agricultural,
and forested area in each NUTS2 region (Copernicus Programme 2020). Other literature gives
the share for those areas that are typically suited for wind an solar (Nahmmacher, Schmid,
and Knopf 2014; Bódisa et al. 2019). According to the product of area size and share suited
for renewables, the total limit is distributed across all urban, sub-urban, agricultural, and
forested areas.

Next, site quality for each of these area is extracted from geodata on average full-load
hours for wind and PV (Solargis 2020; Technical University of Denmark 2020). To derive
renewable limits graded by quality in each NUTS2 region, areas are clustered into different
groups based on site quality. Capacity factors for each group are derived by scaling the original
time-series according to site quality, but keeping the total energy potential of each NUTS
region unchanged.

Fig. 5.4 shows the resulting energy potential per area for onshore wind, openspace PV and
rooftop PV. Potential for onshore wind and openspace PV is based on agricultural and forested
areas and, thus, potential is highest in the least populated regions. Potential for roofop PV on
the contrary relates to urban and sub-urban areas, which means potential concentration in
densely populated NUTS regions, in particular cities.

To provide some context Fig. 5.5 compares potentials used in this paper to other literature.
The derived capacity limits are sorted by full-load hours, aggregated, and plotted against
energy quantities. Accordingly, the decreasing slope of these lines represents the declining
site quality when the share of exploited potential increases. Other sources are represented as
points. Wherever these only specified a capacity limit, plotting assumed the same full-load
hours as in our data. For onshore wind the assumed potential is at the lower end of values
found in the literature, whereas assumptions for PV are largely in the middle of the observed
range (Sterchele et al. 2020; Robinius et al. 2020; Bódisa et al. 2019; Mainzer et al. 2014; Lödl
et al. 2010; Bundesministerium für Verkehr und digitale Infrastruktur 2015; Masurowski 2016).

The set potential for offshore wind amounts to 70 GW with 5,100 full-load hours that
strongly decrease due to wake effects as soon as installed capacities exceed 50 GW (Agora
Energiewende, Agora Verkehrswende, Technical University of Denmark and Max-Planck-
Institute for Biogeochemistry 2020). The potential is distributed across NUTS regions currently
connected to offshore wind parks.

5.3.2.2 Demand

Given the importance of sector integration, analysis of renewable systems must consider all
sectors, but our model only covers synthetic fuels and electricity explicitly. Therefore, heating
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5. Accounting for spatiality of renewables and storage in transmission planning

Figure 5.4: Comparison of energy potential per area by technology, Source: own calculations

Figure 5.5: Renewable potentials for Germany compared to other sources (openspace cumulative
to rooftop)
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Figure 5.6: Demand for synthetic fuels and electricity in Germany, Source: Auer et al. (2020)

and transport are implicitly included by adding the demand for synthetic fuels and electricity
that decarbonization of these sectors requires (Auer et al. 2020). Fig. 5.6 provides the resulting
demand for Germany; magnitude and structure are similar for other countries.

The data distinguishes between two different synthetic fuels: synthetic methane and
hydrogen. According to Auer et al., synthetic methane is exclusively used to provide process
heat for industrial processes. Hydrogen is also used for industrial processes, but to a small
extent also for residential heating. The majority of hydrogen demand, namely 60 percent,
stems from freight transport. Also, a small share is used in aviation.

As has been explained in section 5.2, the model treats electricity demand from process
heat, residential heat, and electric mobility separately. Process heat, in particular steam
generation, constitutes the largest share of electricity demand. Shares for residential heat,
mostly heat-pumps, and electric mobility are considerably smaller. Finally, demand that does
not fit into any of these categories, for example household appliances, is labelled "conventional".

For Germany, national demand from Auer et al. has to be distributed across the 38
NUTS2 regions modelled. For this purpose, electricity demand from process heat is distributed
according to gross domestic product, residential heat according to reported heating demand,
and mobility according to population (eurostat 2020a, 2020b; Fleiter et al. 2017).

5.3.2.3 Transmission

For representation in the model, the physical transmission infrastructure is aggregated according
to the covered regions. Due to the long lifetime of transmission infrastructure, the current
electricity grid displayed in Fig. 5.2, is available in the model without additional investments.
For Europe, these pre-existing capacities built on TSO data on net transfer capacities and
include all projects to be completed by 2025 (ENTSO-E 2020). Capacities between German
NUTS2 regions are aggregated from a nodal dataset. Apart from electricity, the model also
includes a representation of today’s gas grid assuming future utilization for hydrogen (Kunz
et al. 2017). However, today’s capacities were found to already exceed future needs. For this
reason, transport restrictions for hydrogen are neglected within Germany.

The model represents transmission infrastructure as net transfer capacities and consequently
simplifies their dispatch to a transport problem neglecting technical constraints. Investment
costs and losses of transmission depend on the length of the aggregated lines as displayed in
Fig. 5.2 and amount to 2.29 million Euro per GWkm and 5 percent per 1000 km, respectively
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Figure 5.7: Energy flows in first-best scenario

(Joint Research Centre of the European Commission 2014; Neumann, Hagenmeyer, and Brown
2020).

5.4 Results

The results first focus on the first-best scenario and its sensitivity to create an understanding
for the modelled system in general and for the role of the transmission infrastructure in that
system in particular. This understanding is then necessary to comprehend the comparison of
the first-best to the sequential planning scenarios in the second part.

5.4.1 First-best scenario

Fig. 5.7, the quantitative counterpart to Fig. 5.1, shows the energy flows for Germany that
result from solving the model for the first-best scenario. Energy flows for the other scenarios
differ of course but show no fundamental differences. Total electricity demand amounts to
1350 TWh and is covered by 766 TWh of generation from wind onshore, 200 TWh from wind
offshore, 178 TWh from openspace PV, 74 TWh from rooftop PV and lastly 39 TWh from
hydro, which includes run-of-river and reservoirs. With regard to Fig. 5.7, this means all
renewables technologies except rooftop PV fully exploit their energy potential. Since sector
integration makes up most of the demand and is assumed to be flexible within certain limits,
storage systems only play a relatively minor role. Batteries provide 18 TWh of electricity and
16 TWh of electricity are generated from stored hydrogen, while the larger share of hydrogen
satisfies the exogenous hydrogen demand. In addition, 114 TWh of hydrogen are imported
from other European countries. Electricity is both imported and exported leading to an import
surplus of 13 TWh. The demand for synthetic methane is entirely met through biomass,
independent from the rest of the energy system.

If the first-best is solved without grid expansion, generation from rooftop PV increases
by 50 TWh, but plant capacities do not shift and just increase in regions with unexploited
potential. Instead, long- and short-term storage substitute for grid expansion; generation from
hydrogen turbines increases to 55 TWh, output from batteries to 27 TWh. This substitution
can also be observed when mapping grid and storage capacities as done in Fig. 5.8.2 If grid
expansion is disabled, less capacity is available to transport electricity from regions in the

2. For better illustration the figure shows technology capacities aggregated by NUTS1 regions. Small NUTS1
regions, like city states, were assigned to their nearest neighbor.
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Figure 5.8: Storage capacities and grid expansion for first-best

north with large potential to regions in the south and southwest with highest demand. In
return, capacities of hydrogen turbines and batteries increase substantially in these regions.

Since grid expansion occurs in the first-best solution, disabling it will rise system costs,
with higher investment costs for generation and storage overcompensating the decrease of
transmission costs. For Germany system costs for Germany rise by 2.5 percent, but the more
meaningful comparison of European system costs shows an increase of 4.5 percent. This seems
plausible given Neumann and Brown (2021) observe a 10 percent increase of system costs when
limiting capacities to today’s grid when modeling a renewable European power system, but
note that consideration of sector integration is likely to reduce this difference. Such reduction
could be explained by the added flexibility and high utilization of renewables potential from
sector integration.

5.4.2 Sequential scenarios compared to first-best

To compare the first-best with today’s planning framework, grid expansion and system costs in
Germany are compared for different scenarios in Table 5.1. For a sensible benchmark of grid
investment, expansion of each line is multiplied with its length and totalled. In comparison, the
pre-existing grid that is available without additional investments amounts to 39,653 GWkm.

As expected, system costs and grid expansion are smallest for the first-best scenario. If grid
expansion is determined after generation and storage, but considers all storage technologies as
a substitute, results only show a slight increase in grid expansion. However, in the scenarios
that only consider short-term storage or no storage at all, expansion increases substantially
doubling the capacity of the pre-existing grid. If the second planning step only allows for
additional long-term storage, viz. electrolyzers and hydrogen turbines, grid capacities increase
by 50 percent. Long-term storage presumably has a more pronounced effect than short-term
storage because strictly speaking it does not only allow for additional storage, but also to shift
demand to some extent since electrolyzers also have to satisfy an exogenous hydrogen demand
and hydrogen can be freely transported within Germany.

Difference in system costs are closely correlated with grid expansion. Overall, the largest
proportion of costs, about 77 percent in the first-best scenario, is incurred by generation. The
next factor is transmission costs, accounting for 12 percent of costs, followed by long- and
short-storage with 9 and 2 percent, respectively. Since transmission only makes up a relatively
small proportion of system costs, they are affected less severely by the different scenarios. Still,
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Figure 5.9: Storage capacities and grid expansion compared to first-best

system costs increase by up to 8 percent if grid expansion does not consider long-term storage,
which is higher than in the first-best case without grid expansion.

grid expansion [GWkm] system costs [Bil. e]
first-best 8,734 51.69
all storage 9,781 51.94
short-term storage 40,640 55.58
long-term storage 17,274 52.75
none 40,654 55.59

Table 5.1: Key benchmarks of scenarios compared

Again, the scenarios show little difference with regard to the placement of generation,
because capacity limits are almost fully exploited to satisfy demand. Difference are most
significant when comparing the first-best to the "none" scenario. To compensate for lower
capacity factors from placing renewables closer to demand, the first-best installs 13 GW more
rooftop PV and 5 GW more onshore wind.

The trade-off between grid and storage is again visualized in Fig. 5.9. Between the
first-best and the scenario with storage as a substitute ("all storage"), no differences are visible
with regard to transmission capacities. For storage investment on the other hand, there are
significant differences. In the first-best, hydrogen turbines and batteries are exclusively located
in importing regions with high demand. In the storage scenario, capacities are concentrated
in these regions too, but since here only the second step of investment considers the grid,
all regions have some capacity. The map on the right shows capacities, if no substitute
for grid expansion is considered. Here, storage capacities are evenly distributed and grid
capacities, especially from exporting regions in the North to importing regions in the South,
are considerably higher. Also, average utilization of transmission capacities decreases to 909
full-load hours, compared to 1,300 in the first-best.

5.5 Conclusions

In this paper we applied a capacity expansion model to investigate substitutes for transmission
infrastructure in renewable energy systems and how use of these substitutes depends on the
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underlying planning approach. The model is applied to the German power sector but takes
detailed account of sector integration and cross-border exchange.

Results show that consideration of storage, in particular long-term storage, for congestion
management greatly decreases grid investment and thus also system costs. If this option is
enabled by a first-best setting that optimizes investment and dispatch of generation, storage,
and transmission simultaneously, or, more similar to today’s planning process, independent
from generation investment in a subsequent step together with transmission investment, does
not make significant difference. Findings also suggest that grid expansion can be substituted
largely by storage placed in high-demand regions, causing a 4.5 percent increase in system
costs.

On the other hand, very small effects on welfare and grid expansion were observed from
considering grid constraints when placing renewables. These results are partly driven by the
characteristics of the underlying scenario for the entire energy system used in this study. As
section 5.3.2.1 shows, the assumed capacity limits for renewables, in particular for wind, are at
the lower end of literature values. Therefore, the available potential for renewables is almost
fully exploited to satisfy demand leaving little room to optimize their placement.

Similar to findings on redispatch in Grimm et al. (2016), results indicate that transmission
planning can substantially benefit from modifications to the current policy framework. The
first-best solution requiring invasive changes, like the introduction of nodal pricing, can be well
approximated, if planning considers storage as a substitute for grid expansion. Conceivable
instruments to this end are an obligation for TSOs to consider storage investments or a split of
the Germany market into a north-east and south-west price zone to create incentives for private
storage investment. In both cases, consumers in exporting regions benefit at the expense of
importing regions, either in the form of lower grid charges or smaller market prices. Apart
from that, the relatively small sensitivity of grid expansion on system costs suggests that an
exclusive focus on costs is too narrow. Given the public opposition transmission faced in the
past, a bearable increase in system costs might be preferable to high levels of grid expansion.

The applied capacity expansion framework AnyMOD captures all important features of
renewable energy systems: intermittent renewables, importance of storage, increased demand
and added flexibility from sector integration, as well as cross-border trade of electricity. In
return, some economic and technical aspects relevant for transmission planning had to be
neglected, which may limit the significance of our results. On the economic side, the approach
omits path dependencies by focusing on a single year and abstracts from the different agents
involved in the planning process, which hinders the recommendation of more specific policy
instruments. On the technical side, restrictions of operating power grids, like physical power
flows or n-1 security, were omitted. Also, although dividing Germany into 38 different regions
is comparatively detailed, it does not compare to the 500 nodes of the actual transmission grid
represented in power system models. To cover these aspects, future research needs to adapt
economic and technical models to the characteristics of renewable energy systems.
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A
Appendix to Chapter 2

A.1 Supplementary material

Three different open-source tools were applied for the research in this paper. These include
version 0.1.6 of the modeling framework AnyMOD.jl (https://github.com/leonardgoeke/
AnyMOD.jl), version 0.6.5 of of the modeling framework Calliope (https://github.com/
calliope-project/calliope) and an extension to version 0.5.3 of TimeSeriesClustering.jl (https:
//github.com/leonardgoeke/TimeSeriesClustering.jl/tree/dev) specifically created for this
paper.

All scripts and data files for creating the reduced time-series and evaluating them with a
capacity expansion model are available on Zenodo (https://doi.org/10.5281/zenodo.4992922).
The upload also includes additional information on the input parameters used.

103

https://github.com/leonardgoeke/AnyMOD.jl
https://github.com/leonardgoeke/AnyMOD.jl
https://github.com/calliope-project/calliope
https://github.com/calliope-project/calliope
https://github.com/leonardgoeke/TimeSeriesClustering.jl/tree/dev
https://github.com/leonardgoeke/TimeSeriesClustering.jl/tree/dev
https://doi.org/10.5281/zenodo.4992922




B
Appendix to Chapter 3

B.1 Supplementary material

Code and documentation of the AnyMOD.jl framework can found in the following GitHub
repository: https://github.com/leonardgoeke/AnyMOD.jl. All other scripts and data files
to run the example are available on Zenodo (https://doi.org/10.5281/zenodo.4699276). The
upload also includes additional information on the input parameters used. The example uses
version 0.1.0 of AnyMOD.jl.

B.2 Nomenclature

B.2.1 Basic definitions

rtG root of tree G

αv, α
+
v ancestors of vertex v, + includes v

αz
v ancestors of vertex v at depth z

δv, δ
+
v descendants of vertex v, + includes v

δz
v descendants of vertex v at depth z

λv leaves descendant to v
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B. Appendix to Chapter 3

B.2.2 Variables

Te
cv/st

t̂,r̂,ĉ
net-output of conversion/storage

Excnet
t̂,r̂,ĉ

net-exchange

Trdnet
t̂,r̂,ĉ

net-trade

Cv
in/out

t,t̃,r,c,e,m
aggregated conversion input/output

St
in/out

t,t̃,r,c,e,m
aggregated storage input/output

Gent,t̃,r,c,e,m generated energy

Uset,t̃,r,c,e,m used energy

StO
ext/int

t,t̃,r,c,e,m
externally/internally discharged energy

StI
ext/int

t,t̃,r,c,e,m
externally/internally charged energy

StLvlt,t̃,r,c,e,m storage level

Exct,r,r′,c energy exchange from region r to region r′

Trd
buy/sell
t,r,c,i bought/sold energy

Cap
opr/ist,cv

t,t̃,r,e
operated/installed conversion capacity

Cap
opr/ist,stI

t,t̃,r,e,c
operated/installed storage input capacity

Cap
opr/ist,stO

t,t̃,r,e,c
operated/installed output storage capacity

Cap
opr/ist,stS

t,t̃,r,e,c
operated/installed storage size

Cap
opr/ist,exc
t,r,r′,c operated/installed exchange capacity

Expcv
t,r,e expansion of conversion capacity

ExpstI
t,r,c,e expansion of storage input capacity

ExpstO
t,r,c,e expansion of storage output capacity

ExpstS
t,r,c,e expansion of storage size

Expexc
t,r,r′,c expansion of exchange capacity
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B.2 Nomenclature

B.2.3 Parameter

avacv
t,t̃,r,e,m

availability of conversion capacity

ava
stI/stO/stL

t,t̃,r,c,e,m
availability of storage capacity

eff cv
t,t̃,r,e,m

efficiency of conversion process

eff
stI/stO

t,t̃,r,c,e,m
efficiency of charging/discharging

eff exc
t,r,r′,c efficiency of energy exchange

ratioout,eq
t,t̃,r,c,e,m

fixed share of carrier c on total output

int,t̃,r,c,e,m inflows into storage system

dist,t̃,r,c,e,m self-discharge rate of storage

demt̂,r̂,ĉ energy demanded

cap
buy/sell
t,r,c,i capacity for buying/selling

B.2.4 Sets

Ω all possible indices for dispatch variables of technologies

Γcv/st technologies converting/storing carriers

Ψin/out
e pairs defining capacity constraints on conversion input/output

γ
use/gen
e carriers used/generated by technology e

γstEx
e carriers stored explicitly and externally

γstCap
e carriers assigned to storage capacity

γst
e all carriers stored explicitly

γ
in/out
e external input/output carriers

µe modes assigned to technology e

τc dispatch time-steps

ρc dispatch regions

φc pairs of dispatch time-steps and regions

σĉ,r,t
pairs of dispatch time-steps and regions aggregated to determine dispatch of ĉ
at time-step t in region r

ϵe pair of dispatch time-steps and regions the conversion balance is created for

θdis
e,t̃

time-steps of construction considered dispatched separately

θexp
e,t,t̃

time-steps of construction aggregated to obtain capacity

βc,r regions with that region r can exchange carrier c

ζ
buy/sell
t,r,c,i steps in supply/demand curve for trade

ω
cv/st

t,t̃,r,e
set of modes, each set requires an individual conversion/storage balance

η
tp/sp
e time-steps/regions of capacity expansion
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B.2.5 Functions and mappings

d(v) depth of vertex v

depc depth assigned to carrier c

depsup depth of superordinate dispatch time-steps

s(t) scaling factor for capacities at time-step t

g(e) type assigned to technology e

B.3 Set of required capacity constraints

The algorithm to obtain the smallest set of constraints required to correctly restrict the use
of conversion capacities is displayed below. The key part is of the algorithm is carried out
separately for input and output carriers and for the temporal and spatial domain. In the
first step, the respective input and output carriers are obtained and sorted according to their
temporal or spatial depth. In case the respective technology requires a conversion balance,
carriers that are inputs and have the same granularity as the conversion balance can be omitted
from further analysis. In these cases, the conversion balance itself already ensures correct use
of the installed capacities. The algorithm then iterates over the remaining carriers. Within
this iteration, κ is used to collect the current carrier c and all carriers of previous iterations.
For each iteration, the spatial or temporal depth of the current carrier c, the smallest depth
among all carriers in κ, and κ itself are written to the set ψe. When this has been done for
the temporal and spatial dimension, redundant entries are removed from ψe. An entry is
redundant, if it includes the same or less carriers then another entry, but is not more detailed,
neither in the temporal nor spatial domain.

For the output of CCGT plants with CHP for example, the resulting temporal and spatial
sets of ψ are provided by Eqs. B.1 and B.2.

ψout,tp
e ={{{′electricity′}, 5, 1},

{{′electricity′,′ districtheat′}, 4, 1}}}
(B.1)

ψout,sp
e ={{{′districtheat′}, 4, 2},

{{′districtheat′,′ electricity′}, 4, 1}}}
(B.2)

The second set of ψout,sp
e or ψout,tp

e is redundant and can be removed. The remaining entries of
ψout

e are then used to create the set Ψout
e replacing depths with actual time-steps and regions.

The only input carrier of CCGT plants is gas which is modeled at the same resolution as
the conversion balance. Therefore, it is removed within the algorithm, Ψin

e is empty and no
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capacity constraint on input variables must be enforced in this case.

for ’input’/’output’ do
for ’temporal’/’spatial’ do

if ’input’ then
υ = γuse

e ;
else if ’output’ then

υ = γgen
e ;

end
sort υ ascending by depdis,tp/sp

c ;
if ’input’ and γuse

e ̸= ∅ and γgen
e ̸= ∅ then

filter c with dep
dis,tp/sp
c = min

c∈γgen
e ∪γuse

e

dep
dis,tp/sp
c from υ;

end
κ = ∅;
for c ∈ υ do

κ = κ ∪ {c};
if ’temporal’ then

add ⟨κ, depdis,tp
c , min

c′∈κ
(depdis,sp

c )⟩ to ψe;

else if ’spatial’ then
add ⟨κ, min

c′∈κ
(depdis,tp

c ), depdis,tp
c ⟩ to ψe;

end
end

end
filter redundant entries of ψe;
Ψin/out

e = {⟨κ, ztp, zsp⟩ ∈ ψ | {κ} × {V (T ) | d(t) = ztp} × {V (R) | d(r) = zsp}};
end
Algorithm 1: Determine constraints on conversion capacity for technology e

B.4 Objective function and limiting constraints

The frameworks objective function given in Eq. B.3 minimizes costs. These are compromised
of expansion costs Costexp, operating costs Costopr, variable costs Costvar and trade costs
Costtrd.

minCosttrd +
∑︂
t∈Φ

Costexp
t + Costopr

t + Costvar
t (B.3)

Expansion costs includes costs for expanding conversion, exchange, storage-input and storage-
output capacities as well as costs related to storage size:

Costexp
t = Costexp,cv

t + Costexp,stI
t + Costexp,stO

t + Costexp,stS
t + Costexp,exc

t ∀t ∈ Φ (B.4)

Each of these cost components is computed by summing the product of the discount factor
disc, the annuity ann, and the expansion variable Exp for each time-step in a technologies
lifetime. Operating costs are obtained analogously, but instead of the annuity and expansion
variable, operating costs opr are multiplied with the installed capacities Capaopr. In Eqs. B.5
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and B.6 both equations are exemplary provided for conversion capacities.

Costexp,cv
t =

∑︂
e∈Γcv

∑︂
r∈ηsp

e

∑︂
t̃∈[t,t+lte,t̃)

disct,r ann
cv
t̃,r,e Exp

cv
t̃,r,e ∀t ∈ Φ (B.5)

Costopr,cv
t =

∑︂
e∈Γcv

∑︂
r∈ηsp

e

∑︂
t̃∈[t,t+lte,t̃)

disct,r opr
cv
t̃,r,e Capa

opr,cv
t,t̃,r,e

∀t ∈ Φ (B.6)

Variable cost can be imposed on all used, generated, charged, discharged or exchanged
quantities:

Costvar
t = Costvar,use

t + Costvar,gen
t + Costvar,stI

t + Costvar,stO
t + Costvar,exc

t ∀t ∈ Φ (B.7)

The corresponding constraints are only created where a corresponding cost parameter var
is defined. In Eq. B.8 this is expressed for used quantities. In the example model, this is
only the case for quantities used by the methanation technology to account for the carbon the
process requires.

Costvar,use
t =

∑︂
⟨t,t̃,r,c,e,m⟩∈{Ω | varuse

t,t̃,r,c,e,m
}
disct,r var

use
t,t̃,r,c,e,m Uset,t̃,r,c,e,m ∀t ∈ Φ (B.8)

Trade costs reflect the costs or revenues from trading energy with exogenous markets. Prices
on these markets are reflected by the parameter prc and the entire costs can be defined by
equation B.9.

Costtrd =
∑︂

c∈V (C)

∑︂
r∈ρc

∑︂
t∈τc

disct,r (
∑︂

i∈ζbuy

prcbuy
t,r,c,i Trd

buy
t,r,c,i −

∑︂
i∈ζsell

prcsell
t,r,c,i Trd

sell
t,r,c,i) (B.9)

Similar to constraints on input or output ratios in section 3.3.2.4, the creation of limiting
constraints depends on the dimension of the provided parameters. If limits are defined at a
resolution less detailed then the corresponding variables, constraints apply to the sum of all
descendant variables. For example, the limit on installed capacities in Eq. B.10 can be defined
for the vertex rooftop in the rooted trees of technology. As a result, an upper limit will be
enforced on the installed capacities of the descendant technologies PVB and solar thermal.

capaLinst,cv
t,r,e =

∑︂
t̂∈δ+

t

∑︂
r̂∈δ+

r

∑︂
ê∈δ+

e

∑︂
t̃
′∈θexp

e,t,t̃

Capainst,cv

t̂,t̃
′
,r̂,ê

∀⟨t, r, e⟩ ∈ {⟨t, r, e⟩| capaLinst,cv
t,r,e } (B.10)

A special case are emission constraints, because they are not applied to variables, but to the
product of the emission factor emF and used quantities Use as denoted in Eq. B.11.1

emLt,r =
∑︂
t̂∈δ+

t

∑︂
r̂∈δ+

r

∑︂
⟨t̂,t̃,r̂,c,e,m⟩∈{Ω | emF use

t̂,t̃,r̂,c,e,m
}

emFt̂,t̃,r̂,c,e,m Uset̂,t̃,r̂,c,e,m

∀⟨t, t̃, r, c, e,m⟩ ∈ {Ω| emLout,eq
t,t̃,r,c,e,m

} (B.11)

1. Optionally, the emission constraint can be extended to additionally account for storage and exchange
losses.
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Appendix to Chapter 5

C.1 Supplementary material

All computations in this paper were run with version 0.1.6 of the modelling framework
AnyMOD.jl (https://github.com/leonardgoeke/AnyMOD.jl). All scripts and data files to
replicate results are available on Zenodo (https://doi.org/10.5281/zenodo.4569880). The
upload also includes additional information on the input parameters used.
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