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Abstract 

Tribology focuses on the study and application of friction, wear and lubrication of 
interacting surfaces. In the present work, three areas of tribological applications are 
studied: (a) elastomer friction, (b) mixed and boundary lubrication, and (c) fretting wear. 
In analyzing above problems, we make use of the Method of Dimensionality Reduction 
(MDR), which enables to essentially simplify the theoretical and numerical analysis of 
tribological problems by mapping three-dimensional problems to one-dimensional ones. 

(a) Elastomer friction. The friction between an elastomer and a hard rough substrate can 
be attributed to energy dissipation in the elastomer due to internal friction in the material. 
In the present work, the elastomer is modeled as a simple Kelvin body and the rigid 
surface as a plane or curved surface with a superimposed self-affine fractal roughness 
having a Hurst exponent in the range from 0 to 1. The resulting frictional force as a 
function of velocity always shows a typical structure: it first increases linearly, achieves a 
plateau and finally drops to another constant level. The coefficient of friction on the 
plateau depends only weakly on the normal force. At lower velocities, the coefficient of 
friction depends on two dimensionless combinations of normal force, sliding velocity, 
shear modulus, viscosity, rms roughness, rms surface gradient, the linear size of the 
system and its shape, as well as the Hurst exponent of roughness. The physical nature of 
different regions of the law of friction is discussed and an analytical relation is suggested 
to describe the coefficient of friction in a wide range of loading conditions. Based on the 
obtained analytical relations, a master curve procedure is suggested, allowing to 
“construct” the complete dependence of the coefficient of friction on velocity and normal 
force on the basis of partial empirical data. Furthermore, a study of the kinetics of the 
coefficient of friction of an elastomer due to abrupt changes of sliding velocity is 
presented. Numerical simulations reveal the same qualitative behavior which has been 
observed experimentally on different classes of materials: the coefficient of friction first 
jumps and then relaxes to a new stationary value. Parameters of the jump of the 
coefficient of friction and the relaxation time are determined as functions of material and 
loading parameters. Depending on velocity and the Hurst exponent, relaxation of friction 
with characteristic length or characteristic time is observed. 

(b) Mixed lubrication. A new model of mixed and boundary lubrication is proposed in the 
framework of the MDR. The dynamic lubricated rolling contact with creep between 
rough surfaces is simulated based on the equations of elastohydrodynamic lubrication 
(EHL). In order to account for the breakthrough of the boundary layer in micro contacts, 
an additional criterion is imposed. For comparison, a twin-disc test rig is set up to 
measure the electrical resistance between two lubricated rolling surfaces under different 
normal forces, rotation speeds and temperatures. We investigate the probability of 
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boundary layer breakthrough for both experiment and simulation and find good 
agreement. 

(c) Fretting wear. We investigate fretting wear of rotationally symmetric profiles. 
Proceeding from the recently suggested exact method to simulate wear within the MDR 
([1] Dimaki et. al., Int. J. of Solids and Structures, 2014), we suggest an even faster 
numerical method which speeds up the calculation of wear by further several orders of 
magnitude. 

 



Zusammenfassung  

Die Tribologie befasst sich mit der wissenschaftlichen Beschreibung und Anwendung 
von Reibung, Schmierung und Verschleiß zwischen kontaktierenden Oberflächen. In der 
vorliegenden Arbeit werden drei verschiedene tribologische Anwendungen untersucht: (a) 
Elastomerreibung, (b) Misch- und Grenzschmierung, und (c) Verschleiß durch Fretting. 
Bei der Analyse der oben genannten Probleme verwenden wir die Methode der 
Dimensionsreduktion (MDR), die eine wesentliche Vereinfachung der theoretischen und 
numerischen Analyse tribologischer Probleme ermöglicht, indem dreidimensionale 
Probleme auf eindimensionale abgebildet werden.  

(a) Elastomerreibung. Die Reibung zwischen einem Elastomer und einem rauen starren 
Körper kann auf die Energiedissipation in dem Elastomer durch innere Reibung 
zurückgeführt werden. In der vorliegenden Arbeit ist das Elastomer als Kelvin-Körper 
modelliert und die starre Oberfläche als eine ebene oder gekrümmte Fläche mit einer 
überlagerten, selbstaffinen, fraktalen Rauheit mit einem Hurst Exponent im Bereich von 
0 bis 1. Die Reibungskraft als Funktion der Geschwindigkeit zeigt immer einen typischen 
Verlauf: Sie steigt zunächst linear an, erreicht dann ein Plateau und fällt schließlich auf 
einen anderen, konstanten Wert ab. Auf dem Plateau hängt der Reibungskoeffizient nur 
schwach von der Normalkraft ab. Bei niedrigen Geschwindigkeiten ist er als Funktion 
von zwei dimensionslosen Größen darstellbar, die Kombinationen von Normalkraft, 
Geschwindigkeit, Schubmodul, Viskosität, mittlerer Rauheit, Oberflächengradienten, 
Systemgröße, Systemform und Hurst Exponent sind. Die physikalische Natur des 
Reibungsgesetzes in den verschiedenen Bereichen wird diskutiert und eine analytische 
Beziehung gegeben, die den Reibungskoeffizient in einem breiten Intervall von 
Eingangsgrößen beschreiben kann. Auf der Grundlage einer so erhaltenen analytischen 
Formel wird ein Master-Kurven-Verfahren vorgestellt, mit dem die vollständige 
Abhängigkeit des Reibungskoeffizienten von Geschwindigkeit und Normalkraft 
konstruiert werden kann auf der Grundlage von wenigen empirischen Daten. Untersucht 
wird außerdem die Kinetik des Reibungskoeffizienten von Elastomeren unter Einwirkung 
einer abrupten Änderung der Gleitgeschwindigkeit. Numerische Simulationen zeigen das 
gleiche qualitative Verhalten, das experimentell bei verschiedensten Materialien 
beobachtet wurde: der Reibungskoeffizient steigt kurz an und nähert sich dann einem 
neuen stationären Wert. Die Eingangsgrößen des Sprungs des Reibungskoeffizienten und 
der Relaxationszeit werden als Funktion von Material und Belastungsparametern 
bestimmt. Je nach Geschwindigkeit und Hurst Exponent kann eine Relaxation der 
Reibung mit charakteristischer Länge oder charakteristischer Zeit beobachtet werden.  
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(b) Mischreibung. Ein neues Modell für Mischreibung und Grenzschmierung im Rahmen 
der MDR wird vorgestellt. Der dynamische, geschmierte Rollkontakt mit Gleiten 
zwischen rauen Oberflächen wird simuliert auf der Grundlage von Rechnungen der 
elastohydrodynamischen Schmierung (EHL). Um dem Durchbruch einer Grenzschicht im 
lokalen Mikrokontakt Rechnung zu tragen, wird ein zusätzliches Kriterium eingeführt.  
Zum Abgleich dient ein Zweischeiben-Prüfstand, bei dem der elektrische Widerstand 
zwischen zwei geschmierten Rollflächen unter verschiedenen Normalkräften, Drehzahlen 
und Temperaturen bestimmt werden kann. Die relative Häufigkeit eines Grenzschicht-
Durchbruchs wird in Experiment und Simulation untersucht, wobei sich eine gute 
Übereinstimmung zeigt.  

(c) Verschleiß durch Fretting. Wir untersuchen den Verschleiß durch Fretting von 
rotationssymmetrischen Profilen. Ausgehend von der vor Kurzem vorgeschlagenen, 
exakten Methode, um den Verschleiß mittels MDR zu simulieren ([1] Dimaki et. al., Int. 
J. of Solids and Structures, 2014), präsentieren wir eine noch schnellere numerische 
Methode, die Verschleißberechnungen um mehrere Größenordnungen beschleunigen 
kann. 

 

 



Contents 

Acknowledgement ............................................................................................................... I 

Abstract ............................................................................................................................. III 

Zusammenfassung.............................................................................................................. V 

Contents ........................................................................................................................... VII 

List of Figures and Tables................................................................................................. XI 

List of Symbols .............................................................................................................. XIII 

Chapter 1 Introduction ........................................................................................................ 1 

1.1 Contact mechanics and tribology ......................................................................... 1 

1.2 Method of Dimensionality Reduction (MDR) ..................................................... 5 

1.3 Outline of the thesis.............................................................................................. 6 

Chapter 2 Method of Dimensionality Reduction ................................................................ 7 

2.1 Introduction to MDR ............................................................................................ 7 

2.2 Axially-symmetric profile .................................................................................... 7 

2.2.1 One-dimensional foundations ....................................................................... 7 

2.2.2 Transformation of three-dimensional profiles .............................................. 8 

2.2.3 Calculation procedures in the case of elastic contact.................................... 9 

2.3 Fractal profile ..................................................................................................... 10 

2.3.1 Characterization of fractal surface .............................................................. 11 

2.3.2 Generation of randomly rough “surface” .................................................... 13 

2.4 Summary ............................................................................................................ 15 

Chapter 3 Friction Law of Elastomers .............................................................................. 17 

3.1 Elastomers and their applications ....................................................................... 17 

3.2 Contact between elastomer and a rigid body ..................................................... 20 

3.2.1 Theoretical model ....................................................................................... 21 

3.2.2 Numerical results ........................................................................................ 23 

3.2.3 Theoretical analysis and discussions .......................................................... 26 

3.3 Contact between elastomer and rigid bodies having different macroscopic shape
 31 

3.3.1 Theoretical model ....................................................................................... 32 



VIII   Contents 

3.3.2 Numerical results and discussions .............................................................. 33 

3.3.3 Friction law for a general linear rheology and the “force master curves” .. 36 

3.3.4 Experimental ............................................................................................... 39 

3.4 Summary ............................................................................................................ 43 

Chapter 4 Kinetics of the Coefficient of Friction of Elastomers ...................................... 45 

4.1 Introduction ........................................................................................................ 45 

4.2 Theoretical model ............................................................................................... 46 

4.3 Numerical results................................................................................................ 47 

4.3.1 Jump of the coefficient of friction .............................................................. 50 

4.3.2 Relaxation of the coefficient of friction ...................................................... 52 

4.4 Discussions ......................................................................................................... 53 

Chapter 5 Mixed Boundary Lubrication ........................................................................... 55 

5.1 Introduction ........................................................................................................ 55 

5.2 Numerical Model................................................................................................ 56 

5.2.1 EHL contact ................................................................................................ 57 

5.2.2 Reduced model............................................................................................ 59 

5.3 Measurement ...................................................................................................... 61 

5.4 Results ................................................................................................................ 62 

5.5 Summary ............................................................................................................ 63 

Chapter 6 Fretting Wear.................................................................................................... 65 

6.1 Introduction ........................................................................................................ 65 

6.2 MDR for rotationally symmetric profile ............................................................ 66 

6.3 Limiting shape of wear profile and development of intermediate shapes.......... 67 

6.4 Approximate rule for the worn shape ................................................................. 68 

6.4.1 Case of parabolic indenter .......................................................................... 70 

6.4.2 Case of conical indenter .............................................................................. 71 

6.5 Summary ............................................................................................................ 73 

Chapter 7 Conclusions and Outlook ................................................................................. 75 

7.1 Conclusions ........................................................................................................ 75 

7.2 Future work ........................................................................................................ 75 

Appendix A Property of Oil Used in Experiment ............................................................. 77 



Contents   IX 

Appendix B Solution of EHL for Line Contact ................................................................ 79 

B.1 Basic equations ................................................................................................... 79 

B.2 Numerical solution ............................................................................................. 80 

Reference .......................................................................................................................... 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X    Contents 

 

 

 

 



List of Figures and Tables 

Fig. 1.1 A stamp with ski symbol of prehistoric rock carving, c. 2000 BC........................ 2 
Fig. 1.2 Schematic Stribeck curve and partitioning into different frictional regimes......... 4 
Fig. 1.3 Structure of thesis. ................................................................................................. 6 
Fig. 2.1 One-dimensional foundation. ................................................................................ 8 
Fig. 2.2 Schematic of profile tranformation for axially-symmetric body. .......................... 9 
Fig. 2.3 One-dimensional contact between an indenter and an elastic foundation. .......... 10 
Fig. 2.4 Schematic of three-dimensional surface and one-dimensional “line”. ................ 11 
Fig. 2.5 Schematic of the power spectral density of roughness. ....................................... 12 
Fig. 2.6 One-dimensional profiles with different Hurst exponents.. ................................ 14 
Fig. 3.1 Polymer chains in original shape and under stress. ............................................. 18 
Fig. 3.2 Models of linear viscoelasticity ........................................................................... 19 
Fig. 3.3 Creep behavior of rubber with Kelvin model. ..................................................... 20 
Fig. 3.4 Viscoelastic foundation of elastomer. ................................................................. 21 
Fig. 3.5 One-dimensional contact between a rough surface and a visco-elastic elastomer.
........................................................................................................................................... 22 
Fig. 3.6 Coefficient of friction changing with time. ......................................................... 23 
Fig. 3.7 A typical dependence of the normalized coefficient of friction on the velocity.. 24 
Fig. 3.8 Dependence of friction coefficient on velocity for different Hurst exponents .... 25 
Fig. 3.9 Double logarithmic presentation of the dependence of the normalized friction of 
coefficient on velocity for 20 exponentially increasing normal forces. ............................ 26 
Fig. 3.10 Dependence of α  and β . .................................................................................. 26 

Fig. 3.11 Dependence of the normalized coefficient of friction in the region III ............. 28 
Fig. 3.12 One-dimensional contact between a viscoelastic body and (a) a rough “cone”; 
(b) a rough “sphere”.. ........................................................................................................ 32 
Fig. 3.13 A “large scale picture” of a contact of an elastomer and a rigid conical indenter 
moving left with velocity v . ............................................................................................. 33 
Fig. 3.14 Dependence of µ  on ξ  at low velocities.. ....................................................... 35 

Fig. 3.15 Dependence of µ  on ξ  .................................................................................... 36 

Fig. 3.16 Experimental set-up for measuring the coefficient of friction. ......................... 39 
Fig. 3.17 Measured dependencies of 10log µ  on 10log NF  at various velocities at the 
temperature 25.5 0.5 C± ° . ................................................................................................. 41 
Fig. 3.18 Horizontal shifting of the curves ....................................................................... 41 
Fig. 3.19 Shifting factors as a function of the sliding velocity. ........................................ 42 
Fig. 4.1 The kinetics of the coefficient of friction after a positive and negative velocity 
jumps. ................................................................................................................................ 48 
Fig. 4.2 (a) Dependence of the coefficient of friction on the sliding velocity during 
stationary sliding; (b) kinetic coefficient of friction for the 30 velocities ........................ 49 



XII   List of Figures and Tables 

Fig. 4.3  Fitting with an exponential function. .................................................................. 50 

Fig. 4.4 Dependence 1

z
µ
∇

 and 0

1

v
z v
µ∆ ∆
∇

 on velocity for 20 exponentially increasing normal 

forces NF . ......................................................................................................................... 51 

Fig. 4.5 Approximation of Eq. (4.11) with 2α =  for 11 Hurst exponents. ...................... 52 
Fig. 4.6 Dependence of the coefficient b  on 1 maxv qτ for different Hurst exponents. ........ 52 

Fig. 4.7 Dependence of the power α  on Hurst exponent for 1 max 1v qτ > . ......................... 53 

Fig. 5.1 Electrical contact for a single spot between two surfaces. .................................. 56 
Fig. 5.2 Schematic contact between two cylinders and its view of contact area in micro 
scale................................................................................................................................... 57 
Fig. 5.3 Research scheme. ................................................................................................. 57 
Fig. 5.4 Reduced model for lubricated contact.. ............................................................... 58 
Fig. 5.5 One-dimensional contact between an elastic “roller” and a rigid body.. ............ 59 
Fig. 5.6 One-dimensional model for the deformation of an elastic body. ........................ 60 
Fig. 5.7 (a) Contact length over time, data extracted from MDR simulation; (b) electrical 
resistance over time from experiment data.. ..................................................................... 61 
Fig. 5.8 Experimental setup.. ............................................................................................ 62 
Fig. 5.9 Comparison of boundary layer breakthrough between simulation and experiment.
........................................................................................................................................... 63 
Fig. 5.10 Comparison of boundary layer breakthrough with all data. .............................. 63 
Fig. 6.1 Development of the three-dimensional profile (a) and the corresponding one-
dimensional MDR-image (b) due to fretting wear. ........................................................... 68 
Fig. 6.2 Comparison for parabolic indenter. ..................................................................... 71 
Fig. 6.3 Comparison for conical indenter. ........................................................................ 73 
Fig. B.1 (a) Geometrical distance and (b) elastic deformation between a cylinder and a 
plane. ................................................................................................................................. 80 
Fig. B.2 Flow chart of program. ....................................................................................... 82 
Fig. B.3 Film thickness and pressure distribution for EHL line contact........................... 83 
 

Table A.1 Property of oil used in experiment ................................................................... 77 
 

 



List of Symbols  

 
 
Symbol unit Definition 

a  m Contact radius  

1DB  m 1D Amplitude spectrum  

2DB  m 3D Amplitude spectrum  

1DC  m3 1D Power spectrum  

2DC  m4 3D Power spectrum  

c  m Radius of stick region 

c  1 Dimensionless radius of stick region 

D  m Contact diameter 

fD  1 Fractal dimension 

lD  m Local contact length 

d  m Indentation depth 

d  1 Dimensionless indentation depth 

E  Pa Elastic modulus 

*E  Pa Effective elastic modulus 

xF , NF  N Tangential / Normal force  

NF  1 Dimensionless force 

f  m 3D profile 

f  1 Dimensionless 3D profile 

0f , f∞  m Initial / limiting 3D profile 

xf , zf  N Tangential / Normal force of a spring 

G  Pa Shear modulus 



XIV   List of Symbols 

*G  Pa Effective shear modulus 

G′  Pa Storage modulus 

G′′  Pa Loss modulus 

g  m 1D profile 

g  1 Dimensionless 1D profile 

0g , g∞  m Initial / limiting 1D profile 

H  1 Hurst exponent / dimensionless film thickness 

0H  1 Dimensionless central film thickness 

minH  1 Dimensionless minimum film thickness 

h  m rms roughness / film thickness 

h  m Surface topography 

0h  m Central film thickness 

ch  m Critical thickness of boundary layer 

minh  m Minimum film thickness 

h∆  m Linear wear 

,i jK  m3/N Stiffness matrix 

k  1 Wear coefficient 

xk∆ , zk∆  N/m Tangential / Normal stiffness of an element 

xk , zk  N/m Tangential / Normal stiffness 

L , contL  m System length (Contact length) 

L′  m Cylinder length 

N  1 Number of elements  

N  1 Number of cycles 

N  1 Dimensionless number of cycles 

q  1/m Wave number 



List of Symbols   XV 

minq , maxq  1/m Minimum / maximum Wave number 

zq  N/m Linear force density 

R  m Radius 

*R  m Equivalent radius 

cR  Ω  Electrical contact resistance 

r  m Coordinate 

T∆  K Change of temperature 

0T  K Room temperature 

t  s Time 

t  1 Dimensionless time 

U  1 Dimensionless rotation speed 

( )0U  m Amplitude of oscillation 

,  x zu u  m Displacement in horizontal / vertical direction 

v  m/s Velocity 

v  1 Dimensionless velocity 

W  1 Dimensionless load 

x , z  m Coordinates 

x∆  m Spacing distance 

z∇ , contz∇  1 rms gradient of the surface profile (real contact) 

α  1 Dimensionless constant 

β  1 Dimensionless constant 

γ∆  N s/m⋅  Damping coefficient 

δ  m Elastic deformation 

δ  1 Dimensionless elastic deformation 

ε  1 Strain 



XVI   List of Symbols 

ζ  1 Coefficient 

η , 0η  Pa s⋅  Viscosity (at atmosphere pressure) 

η  1 Dimensionless viscosity 

θ  1 Angle 

λ  W/K Thermal conductivity 

µ  1 Coefficient of friction 

1µ , 2µ  1 Coefficient of friction at velocity 1v  and 2v  

*µ  1 Difference of coefficient of friction 1µ - 2µ  

0µ∆ , 0µ∆  1 (Dimensionless) difference of 0 2( )tµ µ−  

µ  1 Normalized coefficient of friction  

ξ  1 Dimensionless variable / coefficient 

ρ  mΩ  Resistivity of contacting material 

ρ  Kg/m3 Lubricant density 

ρ  1 Dimensionless lubricant density 

σ  Pa Stress 

0σ  Pa Hardness 

τ  s Relaxation time 

0τ  Pa Limiting shear modulus 

ν  1 Poisson’s ratio 

φ  1 Phase angle 

ω  Hz Frequency 

 
  



Chapter 1  Introduction 

1.1 Contact mechanics and tribology 
As defined by Johnson [2], “the theory of contact mechanics is concerned with the 
stresses and deformation which arise when the surfaces of two solid bodies are brought 
into contact.” One of the most prominent contributions to contact mechanics is the classic 
work of Heinrich Hertz “Über die Berührung fester elastischer Körper” in 1882 [3]. Hertz 
solved the contact problem for two elastic solids with curved surfaces. Using an analogy 
with known solutions in potential theory of electrostatic problems, he developed a theory 
to calculate the contact area and stress between two surfaces pressed against each other. 
This theory still remains one of the bases of engineering design, for example, of the 
coupling parts in mechanical engineering such as bearings and gears. The Hertz theory 
did not consider Van der Waals interactions of contacting bodies; thus the effects of 
adhesion were not taken into account. In 1771, almost one hundred years later, Johnson, 
Kendall and Roberts extended the Hertz theory by including the adhesive interactions [4]. 
Almost at the same time a similar theory, known as DMT (Derjaguin, Muller and 
Toporov) theory was proposed [5] where Van der Waals interactions are taken into 
account outside the elastic contact region. After fierce discussion, both theories were 
proved correct but for very special limits [6][7].  

This work deals with different aspects of tribology. The term “tribology” was introduced 
by Perter Jost in 1966 and is defined usually as “the science and technology of interacting 
surfaces in relative motion and of related subjects and practices” [8]. It covers and 
connects a large range of knowledge from theory of elasticity and plasticity, 
viscoelasticity, material science, fluid mechanics and so on. This very broad scope 
embraces the study and application of friction, wear and lubrication. Tribological 
phenomena occur everywhere in our daily life. A simple example is walking: the friction 
between our feet (or shoes) and road pushes us to move forward. Without friction we 
cannot move on, write, drive and have a meal. Other than the name “tribology”, the 
tribological praxis is very old, as humans surely dealt with friction long before the 
recorded history. Thousands years before Christ our ancestors have known the creation of 
fire through the friction of wooden sticks. The Egyptians used liquid as a lubricant to 
reduce the friction for the transportation of colossus. A prehistoric rock carving found in 
Rodoy Island, Norway showed a skiing man about 4000 years ago (Fig. 1.1). In 
mechanical engineering, tribology plays an essential role, especially for structure safety 
and energy saving. Its application can be widely observed, such as rail-wheel contacts, 
bearings, clutches, gaskets, brake pads and so on.  
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Fig. 1.1 A stamp with ski symbol of prehistoric rock carving, c. 2000 BC. 

Many examples show how early the human being dealt with tribology. However, the 
scientific study of tribology is thought to begin with Leonardo da Vinci in the 15th 
century, even if he did not publish his findings. In his diaries, he describes the law of 
friction which could be formulated as two statements: (a) the frictional force is 
proportional to the weight and (b) it is independent of contact area. Later many scientists 
and mathematicians formalized the knowledge in tribology, including the often quoted 
Amontons, Euler and Coulomb. Tribology includes a great variety of applications from 
industrial applications to bionics, it considers processes an object from the nano- and 
micro meter scale to the scale of technical plates. It is impossible to list all scientists and 
their main works and the history of tribology, which can be read in detail in Dowson [9] 
and Popov’s book [10]. Some more details to the history of tribology will be mentioned 
in the following in connection with particular research areas of this work.  

(a) Friction of elastomers 

In description of history of elastomer friction, I follow partly the work [11] (Li, et. al. 
Phys. Rev. Lett. 111, 034301, 2013) and [12] (..., Li et. al. Sci. Rep. 4, 3750, 2014). As 
already have been mentioned above, friction is a phenomenon that people have been 
interested in for thousands of years but its physical reasons are not clarified completely 
yet. Not only is it still not possible to predict the frictional force theoretically, there are 
also no reliable empirical laws of friction which would satisfy the needs of modern 
technology. In practice, the simplest Amontons’ law of dry friction is usually used, 
stating that the force of friction is proportional to the normal force. According to 
Amontons, the coefficient of friction does not depend on the normal force and the contact 
area. Amontons did not differentiate between the static and the sliding coefficients of 
friction, nor even between different materials (he states that the ratio of the frictional 
force to the normal force is “roughly” one third of the normal force, independently of the 
contacting materials as long as they are not lubricated [13]). However, already Coulomb 
knew that the coefficient of friction, even between the same material pairing, can change 
by a factor of about four depending on the contact size and on the normal force [14]. As a 
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matter of fact, there are no obvious reasons for the validity of Amontons’ law. On the 
contrary, much effort has been made in the 1940’s to 60’s years to understand why 
Amontons’ law is approximately valid [17][18]. In a more general context, the strong 
violations of Amontons’ law were studied experimentally and theoretically in recent 
papers [17][18]. Deviations from Amontons’ law can be due to macroscopic interfacial 
dynamics [21]-[21] or they can be connected with the contact mechanics of rough 
surfaces.  

It is generally accepted that the surface roughness plays a central role in friction 
processes since classical works by Bowden and Tabor . Greenwood and Tabor [22] have 
shown that the friction of elastomers can be attributed to deformation losses in the 
elastomer. In 1963, Grosch supported this idea by a series of experiments of friction 
between rubber and hard surfaces with controlled roughness [23]. In the following years, 
the basic understanding of the role of rheology [26] and of surface roughness [25][26] in 
elastomer friction has been achieved. The load dependence of the elastomer friction was 
studied experimentally by Schallamach in 1952 [27]. However, the dependence of the 
sliding coefficient of friction on normal force was not studied in detail yet. Therefore, we 
study the sliding friction of elastomers and formulate rules for constructing generalized 
laws of friction beyond the regions of validity of Amontons’ law. 

(b) Mixed and boundary lubrication 

Stribeck curve is well known to describe the lubrication condition for the lubricated 
sliding surfaces. It reflects the influence of viscosity η , rotation speed v  and load P on 
the coefficient of friction. According to it, friction regimes for contact between lubricated 
surfaces were categorized into four parts: boundary lubrication, mixed lubrication (or 
partial lubrication), elastohydrodynamic lubrication (EHL) and hydrodynamic lubrication. 

The coefficient of friction between lubricated surfaces in different conditions has become 
an important topic of research since the lubricant testing in 1879 from Thurston who gave 
the value of the coefficients of friction at different loads, speeds and temperatures. The 
results showed clearly the minimum now known as the transition between the full 
hydrodynamic lubrication and the partial lubrication with asperities interaction [28]. 
Later in 1902, Stribeck studied this variation of friction systematically as function of 
speed for different loads [29]. After about 10 years Gümbel firstly plotted the friction 
coefficient against the dimensionless lubrication parameter v Pη with Stribeck’s 
experiment data and he divided the friction regimes into boundary, mixed and 
hydrodynamic lubrication [30] With the development of investigation on EHL, Dowson 
proposed a new categorization of lubrication regimes in Stribeck curve as seen in Fig. 1.2 
(below) [31]. Nowadays the Stribeck curve is still being studied numerically and 
experimentally for different rough surfaces [32]. 
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Fig. 1.2 Schematic Stribeck curve and partitioning into different frictional regimes according to 
Gümbel (top) and Dowson (bottom). 

Comparing with the others, mixed lubrication is most complicated because it is necessary 
to handle both hydrodynamic lubrication and asperity contacts. Here I describe the 
historical research on mixed lubrication following the introduction of work [33] (Li et. al. 
FACTA Univ. Ser. Mech. Eng. 11, 123–131, 2013). The earliest way of modeling mixed 
lubrication was considering the influence of roughness in hydrodynamic systems where 
the film thickness is considerably larger than the roughness [34]. In 1970s Tallian and 
Johnson considered both asperity contact and hydrodynamic lubrication. Tallian studied 
the cases where asperities deformed elastically and plastically while Johnson only 
considered the elastic deformation based on the Greenwood and Williamson model 
[35][36]. Later micro-EHL models and combined micro-EHL and asperity contact 
models included the interaction of surface roughness, film thickness and pressure [37]. A 
stochastic analysis was developed by Zhu and Cheng (1988) [38]. It combined Patir and 
Cheng’s average flow model (1978) [39] for hydrodynamic lubrication and Greenwood 
and Tripp’s load compliance relation (1970) [40] for asperity contacts. With the rapid 
development of numerical simulation techniques and faster computers, researchers were 
able to investigate more complicated lubrication problems. Therefore more realistic 
transient, rough surface, thermal and non-Newtonian lubrication problems were studied 
in the past decade. A deterministic model for mixed lubrication in point contacts was 
developed by Jiang et al. (1999) and the contact between asperities was studied when 
they moved through the EHL region [41] . Wang et al. (2004) developed a thermal model 
for mixed lubrication in point contact [42]. In this thesis we try a simple model for the 
mixed lubrication and compare its results with experiment. 

(c) Fretting wear  

Dry friction is always accompanied by wear. Wear is the loss of the material on the 
surfaces caused by the relative motion of contacting bodies due to mechanical or 
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chemical action. The study of wear started relatively late. It was probably the adhesive 
model of friction by Bowden and Tabor which started intensive wear research. However, 
already as early as 1860, Reye came to the physical conclusion that the wear volume of 
material is proportional to the work done by frictional force [43]. Later, in 1953 Archard 
also proposed a similar model used to describe wear based on the contact of asperities 
[44]. The simple but today still broadly used wear equation, that wear volume is 
proportional to load and sliding distance and inversely proportional to the hardness of the 
weared material, was derived and experimentally justified by Khrushchov in 1960 for 
abrasive wear [45] and by Archard in 1956  for adhesive wear [46].  

According to different physical mechanisms, there are different types of wear mainly 
including adhesive wear, abrasive wear, fretting wear, surface fatigue and erosive wear. 
Fretting wear occurs when the surfaces are rubbed and materials at the edge of contact 
area are removed due to an oscillatory motion with small amplitude of the contacting 
surface under load. Fretting wear is said to be one of the most insidious causes for failure 
of engineering components and has been studied intensively in connection with such 
applications as fretting of tubes in steam generators [47]-[49], medical applications [50], 
electrical contacts [51], fretting fatigue of dovetail blade roots [52][52][53] and many 
others. Most theoretical results are provided by use of numerical modelling techniques, 
such as finite element method or boundary element method which require very much 
computing time. In this thesis we consider this problem of fretting wear in the framework 
of the MDR. 

1.2 Method of Dimensionality Reduction (MDR)  
The method of dimensionality reduction is a method used for fast calculation and 
simulation of contacts problems for elastic and viscoelastic bodies. It was firstly proposed 
by Popov and Psakhie in 2007 for a reduced description of classical tribology system [54]. 
With this method some kinds of three dimensional contact problems are mapped onto 
one-dimensional simple contacts with elastic or viscoelastic foundations. Later Geike, 
Heß and Popov applied this method to elastic and viscoelastic contact problems, 
including normal and tangential contacts, with and without adhesion [55]-[57]. Even 
more, it is also available for randomly rough fractal self-affine surfaces and for arbitrary 
bodies of revolution [58][59]. This “mapping” is not an approximation, but exact. With 
this method, all parameters that depend on the force-displacement relationship can be 
easily calculated, such as contact stiffness and related electrical resistance and thermal 
conductivity, and also dissipated energy and frictional force for elastomers. Recently this 
method was applied to solve wear problems [60]. Besides the simplification and easy 
understanding, an obvious advantage of usage of MDR is sharply reduced computing 
time. Compared with other numerical methods, such as finite element method and 
boundary element method, the computing time with MDR reduces by several orders of 
magnitude. The details are presented in Chapter 2. 
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1.3 Outline of the thesis 
Since the MDR was proposed, many problems in contact mechanics and tribology have 
been studied. In this thesis we try to investigate some hot topics in these three fields of 
tribology.  

 
Fig. 1.3 Structure of thesis. 

The thesis is organized as followings (see Fig. 1.3). After a short introduction to 
fundamentals of the MDR in chapter 2, the friction of elastomers is considered in chapter 
3 and chapter 4 where chapter 3 presents a general law of friction between elastomer and 
differently shaped rigid bodies with random roughness and chapter 4 presents a further 
study of dynamic frictional behavior of elastomers. In chapter 5 the mixed boundary 
lubrication is studied with MDR. In chapter 6 the study of fretting wear is described. All 
of researches on these themes are in the frame of the MDR. Finally the conclusions and 
possible future works are reported in chapter 7. 

This thesis is partially based on the following publications: 

1. [11] Li, Q., Popov, M., Dimaki, A., Filippov, A. E., Kürschner, S. & Popov, V. L. 
Friction between a viscoelastic body and a rigid surface with random self-affine 
roughness. Phys. Rev. Lett. 111, 034301 (2013). 

2. [12] Popov, V. L., Lars, V., Li, Q., Chai, Y. S. & Popov, M. Generalized law of 
friction between elastomers and differently shaped rough bodies. Sci. Rep. 4, 3750 
(2014). 

3. [61] Li, Q., Dimaki, A. V., Popov, M., Psakhie, S. G. & Popov, V. L. Kinetics of the 
coefficient of friction of elastomers.  Sci. Rep. 4, 5795 (2014). 

4. [33] Li, Q. & Pohrt, R. Mixed and Boundary Lubrication in Rolling Contact: 
Experiment and Simulation. FACTA Univ. Ser. Mech. Eng. 11, 123–131 (2013). 

5. [62] Li, Q., Filippov, A. E., Dimaki, A. V., Chai, Y. S. & Popov, V. L. Simplified 
simulation of fretting wear using the method of dimensionality reduction. Phys. 
Mesomech. 17, 236–241 (2014). 
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This chapter briefly reviews the necessary fundamentals of method of dimensionality 
reduction (MDR). According to rules of MDR, only two main steps are necessary for the 
mapping of three-dimensional contact onto one-dimensional. Sequentially we firstly 
introduce the elastic (or viscoelastic) foundations then come to the transformation of 
three-dimensional profile to one-dimensional. The axially-symmetric profile and 
randomly rough profile are presented separately. 

2.1 Introduction to MDR 
MDR has been developed by the group of Popov in recent few years. Compared with 
other numerical methods, such as finite element method (FEM), boundary element 
method (BEM), MDR is relative new, but increasing evidences show that it can be 
applied well for a variety of contact and frictional problems. With this method three-
dimensional contacts are mapped onto one-dimensional ones with properly defined 
elastic or viscoelastic foundations. MDR provides exact solutions for normal contact 
problem of axially symmetric and self-affine fractal surfaces as well as exact solutions 
for tangential contact problem with a constant coefficient of friction. All properties which 
depend on the force-displacement relationship such as contact stiffness, electrical 
resistance and thermal conductivity, as well as frictional force for elastomers can be 
analyzed with this method. The very detailed principles, proofs and applications are 
described in the books [63] [64]. In this chapter we only give short sketch of the 
fundamentals of the method.  

In this thesis we study the contact of both profiles (rough surfaces for viscoelastic contact 
and mixed boundary lubrication, and axially-symmetric profiles for fretting wear). 
Therefore, these rules are described separately in the following two sections.  

2.2 Axially-symmetric profile 

We consider a contact between two elastic bodies with moduli of elasticity of 1E  and 2E , 

Poison’s numbers of 1ν  and 2ν , and shear moduli of 1G  and 2G . According to 
“handbook” in [65], two steps have to be done to replace the complete three-dimensional 
problem with a simple one-dimensional system.  

2.2.1 One-dimensional foundations 

At first, the three-dimensional elastic or viscoelastic bodies are replaced by one-
dimensional foundations. The foundation consists of an array of elements having 
independent degrees of freedom and a sufficiently small distance x∆ . For elastic contact, 
the elements are linear springs having normal stiffness zk∆  and tangential stiffness xk∆ : 
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 *
zk E x∆ = ∆  with 

2 2
1 2

*
1 2

1 1 1
E E E

ν ν− −
= + , (2.1) 

 *
xk G x∆ = ∆  with 1 2

*
1 2

1 2 2
4 4G G G
ν ν− −

= + . (2.2) 

Here *E  and *G  are effective elastic and shear moduli. For viscous materials, the 
elements are linear dampers with damping coefficients γ∆ : 

 4 xγ η∆ = ∆ . (2.3) 

Here η  is viscosity of material. It is known that elastomers can be modeled as different 
combinations of springs and dampers. For example, the element in Kevin-Voigt model is 
a combination of parallel connected spring and damper and in standard model a spring 
and a Maxwell element in parallel. These rules are also valid for the contact between a 
viscoelastic and a rigid body. These foundations are illustrated in Fig. 2.1. 

 

Fig. 2.1 One-dimensional foundation of (a) elastic body, (b) viscous body, and (c) viscoelastic 
body with Kelvin-Voigt model (d) viscoelastic body with standard model. 

2.2.2 Transformation of three-dimensional profiles 

The second step is a transformation of the three-dimensional profile to a one-dimensional 
profile. We notate the three-dimensional profile ( )z f r= , r  being the polar radius in 

the contact plane, and the and the one-dimensional ( )g x . According to [65], the three-

dimensional profile is transformed into one-dimensional profile ( )g x  according to 

equation 

 ( ) ( )
2 20

d
x f r

g x x r
x r

′
=

−∫ . (2.4) 

The reverse transformation is given by  
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 ( ) ( )
2 20

2 d
r g x

f r x
r xπ

=
−∫ . (2.5) 

This transformation is illustrated schematically in the Fig. 2.2. For instance, the 

transformed profile of a sphere formulated as ( )
2

2
rf r
R

=  is expressed as ( )
2xg x

R
= , 

and in the case of a cone ( ) tanf r r θ= , the corresponding one-dimensional profile is 

given by ( ) tan
2

g x xπ θ= . 

 
Fig. 2.2 Schematic of profile tranformation for axially-symmetric body. 

2.2.3 Calculation procedures in the case of elastic contact  

We consider an example of simple elastic contact between an axially-symmetric profile 
and a half-space without adhesion. The profile can be parabolic, conical shape or an 
arbitrary power function. Under the normal load NF  the indenter is pressed into elastic 
half-space (Fig. 2.3). The normal force of a spring on the foundation is proportional to the 
displacement of this spring: 

 ( ) ( )z z zf x k u x= ∆ , (2.6) 

and the linear force density is equal to 

 ( ) ( )*( )z
z z

f xq x E u x
x

= =
∆

. (2.7) 

The contact radius a  is determined by the condition 

 ( )g a d= , (2.8) 

where d  is indentation depth. The sum of forces over all springs in contact must equal to 
the normal load 

 ( )
contact

N z z
i

F k u i
=

= ∆∑ . (2.9) 
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In the limiting case of sufficiently small distance dx x∆ → , it becomes the integral: 

 ( ) ( )* *

0
d 2 d

a a

N za
F E u x x E d g x x

−
= = −  ∫ ∫ . (2.10) 

If the linear force density (2.7) is known, the normal stress distribution in the initial three-
dimensional contact can be calculated by the following transformation [65] 

 ( ) ( )
2 2

1 dz

r

q x
p r x

x rπ
∞ ′

= −
−∫ . (2.11) 

 

Fig. 2.3 One-dimensional contact between an indenter and an elastic foundation. 

With the new simple one-dimensional system, further calculations, such as determination 
of the dependence of force on indentation can be easily carried out. Such procedures 
together with transformation and reverse transformation of profile allow the MDR to 
quickly solve many contact problems, including the tangential and adhesive contact 
problems. In the Chapter 6, the MDR for axially-symmetric profiles will be applied to the 
problem of fretting wear.  

2.3 Fractal profile 
Almost all surfaces of materials in our everyday life are rough, even those of the well-
polished glasses. Since Bowden and Tabor’s classic work, roughness has played an 
important role in study of contact mechanics. More and more sophisticated instruments 
have been developed to measure surface topography. The statistical parameters, such as 
root mean square (rms), skewness, amplitude probability distribution, structure function 
and power spectral density and so on, are applied for description of surface characteristic. 
In this section, we focus on the theoretical model of rough surfaces, and show the relation 
between three-dimensional surface and corresponding one-dimensional “line” (Fig. 2.4). 
Finally the generation of the fractal “surface” with random roughness is presented which 
will be used for the study in latter Chapters, i.e. contact of rough surfaces for elastomers 
and mixed boundary lubrication.  
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Fig. 2.4 Schematic of three-dimensional surface and corresponding one-dimensional “line”.  

2.3.1 Characterization of fractal surface 

In the model of Greenwood and Williamson, it is assumed that all asperities on the 
surface have the same radius of curvature and that their heights vary randomly following 
a Gaussian distribution. If the contacting asperities are far enough away from each other, 
their deformation can be considered to be independent on each other. Thus, only the 
distribution of the heights of asperities and the radii of curvature are important [66]. So 
the one-dimensional system should have the necessary statistical distributions of heights 
and radii of curvature. For simplification, we assume that the topographies of three-
dimensional surface and of its one-dimensional mapping are unambiguously 
characterized by their roughness power spectra ( )2DC q  and ( )1DC q , which are defined 

by 

 ( )
( )

( ) ( ) 2
2 2

1 d
2

i
DC h h e x

π
− ⋅= ∫ 0 q xq x  for a surface (2.12) 

 ( ) ( ) ( )1
1 0 d

2
iqx

DC q h x h e x
π

−= ∫  for a line (2.13) 

where ( )h x is the height profile measured from the average plane so that 0h = , and

⋅ ⋅ ⋅  means averaging over the statistical ensemble. We assume that the statistical 

properties of surface topography are homogeneous and isotropic, so that its power 
spectrum ( )2DC q  only depends on the magnitude of the wave vector q . 

A large number of real surfaces are composed of many length scales of roughness which 
are superimposed on each other. Such a surface can be considered self-affine fractal and 
its power spectrum often has the following power law behavior: 

 ( )
2 2

2
0

const
H

D
qC q
q

− −
 

= ⋅  
 

 for a surface,  (2.14) 
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 ( )
2 1

1
0

const
H

D
qC q
q

− −
 

= ⋅  
 

 for a line, (2.15) 

where H is the Hurst exponent directly related to the fractal dimension of an original 
two-dimensional surface through 3fD H= − . Fig. 2.5 shows a schematic of the power 
spectral density of a fractal surface in a logarithmic diagram. 

 
Fig. 2.5 Schematic of the power spectral density of roughness. 

The two-dimensional surface topography can be calculated with the help of power 
spectrum according to  

 ( ) ( ) ( )( )( )2 expDh B i φ= ⋅ +∑
q

x q q x q  (2.16) 

with 

 ( ) ( ) ( )2 2 2
2

D D DB C B -
L
π

= =q q q . (2.17) 

In one-dimensional case the line is generated by 

 ( ) ( ) ( )( )( )1 expD
q

h x B q i qx qφ= +∑  (2.18) 

with 

 ( ) ( ) ( )1 1 1
2

D D DB q C q B q
L
π

= = − . (2.19) 

The phases above have ( ) ( )φ φ= −q q and are assumed to be distributed randomly1 in the 

interval [ )0,2π . 

                                                 
1 Such surfaces are called “randomly rough”. 
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In the paper [55], it was suggested, that in order to produce a one-dimensional system 
with the same contact properties as the three-dimensional system, the one-dimensional 
power spectrum must be used according to the rule  

 ( ) ( )1 2D DC q qC qπ= . (2.20) 

The root mean square roughness 
1 22h  for the two-dimensional and one-dimensional 

cases, respectively, are determined by  

 ( )2
22 0

2 dDD
h qC q qπ

∞
= ∫ , (2.21) 

 ( )2
11 0

2 dDD
h C q q

∞
= ∫ . (2.22) 

They are the same when ( ) ( )1 2D DC q qC qπ= . The corresponding root mean square of 

the surface gradient 2z∇  and curvature 2κ  also coincide in this case. The rms 

gradients are related to the power spectral density through 

 ( )2 3
22 0

2 dDD
z q C q qπ

∞
∇ = ∫ , (2.23) 

 ( )2 2
11 0

2 dDD
z q C q q

∞
∇ = ∫ . (2.24) 

2.3.2 Generation of randomly rough “surface” 

With above Eq. (2.14) to (2.19), a fractal three-dimensional surface or one-dimensional 
profile with random roughness can be generated. We consider only the one-dimensional 
line having the power spectral density 2 1

1
H

DC q− −∝ . This one-dimensional power density 

corresponds to the two-dimensional power density of the form (2.14) 2 2
2

H
DC q− −∝ . The 

spectral density was defined in the interval from [ minq , maxq ] with long distance roll-off 

wave vector min max2q π λ=  and short distance cut-off wave vector max min2q π λ= . 
According to Eq. (2.22), the roughness amplitude of surface can be calculated as  

 ( )max

min

2 2 1 2 2 2
max min min1

constconst d const
2

q H H H H

D q
h q q q q q

H
− − − − −= ⋅ = ⋅ − ≈ ⋅∫  (2.25) 

if max minq q>> . From Eq. (2.24) the root mean square of the surface gradient 2z∇  

follows the relation  

 ( )max

min

2 2 1 2 2 2 2
max min1

constconst d
2 2

q H H H

D q
z q q q q

H
− + − −∇ = ⋅ = −

−∫ . (2.26) 
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For a fractal rough profile with a short cut-off wave vector maxq we have the following 
estimation 

 2 2 2
max1

const
2 2

H

D
z q

H
−∇ ≈

−
. (2.27) 

Thus, from Eq. (2.25) and (2.27) we see that surface topography is characterized by the 
rms roughness, which is dominated by the long wavelength components of the power 
spectrum and the rms gradient of the surface is dominated by the short wavelength part of 
the spectrum.  

Let us illustrate the above said with several numerical examples. In the following, we will 

define the power spectral density 1DC  in the interval 2 q
L x
π π
< <

∆
, where L  is the 

system size and x∆  discretization space which determines the upper cut-off wave vector. 
The minimal and maximal values min 2q Lπ=  and maxq xπ= ∆ mean that there is neither 
roll-off nor cut-off at the lower and upper limit except for the natural cut-off due to the 
finite size of system length and spacing. In Fig. 2.6, the lines are generated numerically 
with the same phase and roughness for different Hurst exponents. The number of points 
on the lines are 5000. It is clearly seen that higher values of Hurst exponent indicate a 
smoother trend and less volatility. 

 
Fig. 2.6 One-dimensional profiles with different Hurst exponents. These lines are generated 
numerically with the same distribution of phase.  
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2.4 Summary 
We shortly reviewed the basics of method of dimensionality reduction. The rules for 
contact of axially-symmetric bodies and rough surfaces introduced in two separate 
sections will be used as a basis of studies in the following chapters. 
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Chapter 3  Friction Law of Elastomers  

In this and next chapter the frictional behaviors of elastomer contacting with a rigid 
surface will be described using MDR. Chapter 3 presents the friction law for the contact 
between an elastomer and differently shaped rigid surface (planar, parabolic and conical 
profiles with random roughness). Firstly a brief introduction to elastomers and their 
physical properties is given in Section 3.1. Then the models of viscoelasticity, focusing 
on Kelvin model, are described in Section 3.2. Section 3.3 and 3.4 present very detailed 
simulations and discussions for the friction law of elastomer. In the same way, a further 
study concerning, kinetic coefficient of friction for elastomer contact is presented in 
Chapter 4. 

To achieve the basic understanding of this nonlinear frictional behavior, the following 
simple model is proposed:  

• the elastomer is modeled as a simple Kelvin body, which is completely 
characterized by its static shear modulus and viscosity; 

• the non-disturbed surface of the elastomer is plane and frictionless; 
• the rigid counter body is assumed to have a randomly rough, self-affine fractal 

surface without long wave cut-off; 
• no adhesion or capillarity effects are taken into account; 
• one-dimensional model is considered.  

These simple assumptions still result in non-trivial and complicated frictional behavior. 
Here, we avoid the well discussed subject of the temperature dependence and concentrate 
our efforts completely on the force dependence. 

The work in section 3.2 and 3.3 appears in paper [11] (Li, Q. et al. Friction between a 
viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett. 
111, 034301 (2013)) and [12] (Popov, V. L., Lars, V., Li, Q., Chai, Y. S. & Popov, M. 
Generalized law of friction between elastomers and differently shaped rough bodies. Sci. 
Rep. 4, 3750 (2014)). My contributions to these papers are described at the beginning of 
the two sections. 

3.1 Elastomers and their applications 
Elastomers are usually related to a group of polymers with some common properties, 
such as high elasticity, viscoelasticity and glass transition temperature. The name 
“elastomer”, driven from “elastic polymer”, is often used with the term “rubber”. As a 
material, it plays an important role in many applications in industry and human life, such 
as tires, seals, shoe soles as well as some dampening elements [67].  
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The chemical structure of elastomers determines its properties. Rubber materials are 
composed of long chainlike molecules. Normally the long polymer chains are irregularly 
coiled to each other. If a stress is acted on the elastomer, the molecules start to stretch. 
After the remove of load, they spontaneously return to the coiled state. This cross-linking 
structure ensures that the elastomer will recover their original shape when the stress is 
removed (Fig. 3.1).  

 
Fig. 3.1 Polymer chains in original shape and under stress.  

Compared with other solids, elastomers have the following characteristic properties:  

(1) very small elastic modulus (ca. 1~10 MPa, about 104 to 105 times smaller than the 
ordinary metals); 

(2) very large elastic deformations; 
(3) incompressibility: elastomers can be considered in a good approximation as 

incompressible media. Correspondingly, their Poisson’s ratio is almost equal to 
0.5; 

(4) unlike ordinary metals, their elastic deformation is time-dependent, which is so-
called relaxation. The related phenomena, such as stress relaxation, creep and 
hysteresis loss are due to the viscoelasticity of elastomer which essentially 
determines the contact and frictional properties.  

These properties enable rubber materials to be widely applied in mechanical engineering 
and human life, such as vehicle tires, frictional components (sealing, bearings), and 
gloves and so on. Since the 1950s, rubber products have developed fast and the demand 
for a clear understanding of rubber tribology is correspondingly growing quickly. There 
are a number of papers in the field considering elastomer friction in the framework of the 
rheology paradigm. Many of them concentrate on the dependence of the coefficient of 
friction on velocity. On the contrary, the dependency of the coefficient of friction on the 
normal force was practically out of scope of all previous studies. In this chapter, we try to 
overcome this shortage and to formulate generalized laws of friction including the 
dependencies of both sliding velocity and normal force.   

Kelvin model of linear viscoelasticity 

The viscoelastic behavior of elastomer material can be modeled with linear combinations 
of Hookean elastic springs and Newtonian dampers. For example, Maxwell model is a 
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spring connected with a dashpot in series (Fig. 3.2a), and Kelvin model (also known as 
Kelvin-Voigt model) (Fig. 3.2b) in parallel. Standard Linear Solid model combines a 
Maxwell element and a linear spring (Fig. 3.2c). In this dissertation we used the Kelvin 
model for the viscoelastic material. This model can explain the creep behavior of rubber 
material. If a constant stress is applied on the material, it will deform gradually to a 
steady state due to the viscosity. When the stress is released, it relaxes slowly to the 
original state. 

 
Fig. 3.2 Models of linear viscoelasticity: (a) Maxwell Model; (b) Kelvin Model; (c) Standard 
Linear Solid model. 

The elastic component is modeled as spring with elastic modulus E , which follows 
Hooke’s law: 

 Eσ ε= ⋅ . (3.1) 

Here σ  is the stress and ε  strain under the stress. The viscous component is modeled as 
dashpot with viscosity η , which is Newtonian fluid: 

 d
dt
εσ η= ⋅ . (3.2) 

From the Kelvin model, spring is connected with the damper in parallel so that the 
relation between stress and strain is given as 

 ( ) ( ) ( )d
d

t
t E t

t
ε

σ ε η= ⋅ + ⋅ . (3.3) 

With the applied constant stress 0σ , the above equation can be written as  

 0 d
dE E t

σ η εε= + . (3.4) 

The solution of this equation is  

 ( ) 0 1
t

t e
E

τσε
− 

= − 
 

. (3.5) 
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Where τ is relaxation time and generally defined as 
E
ητ = .  

Eq. (3.5) describes the behavior of the time-dependent creep of rubber material as shown 
in Fig. 3.3. 

 
Fig. 3.3 Creep behavior of rubber with Kelvin model. 

3.2 Contact between elastomer and a rigid body 
We consider the contact between a viscoelastic half-space and a rigid profile. The 
generation of the rigid profile is presented in section 2.3.2. For simplification, the 
viscoelastic body, modeled with Kelvin element, is assumed to be flat. Under a normal 
force the rigid body is pressed into the elastomer and then dragged to move horizontally 
with a constant velocity (Fig. 3.5). What we are interested in is the frictional behavior and 
the dependence of the friction coefficient on the load, sliding velocity, material and 
system parameters.  

The work in this section appears in paper [11] (Li, Q. et al. Friction between a 
viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett. 
111, 034301 (2013)). My contribution to [11] (in accordance with the content of this 
section) is the following: Li Q carried out the numerical simulation. The details of the 
numerical calculation are described in section 3.2.1 including Fig. 3.4 to Fig. 3.6 and Eq. 
(3.6) to Eq. (3.10). Popov M and Filippov AE provided initial versions of the code. 
Popov VL and Li Q analyzed the simulation results (section 3.3.2) and formulated them 
in equations including Eq. (3.11) to Eq. (3.15). Li Q prepared the figures illustrated in Fig. 
3.7 to Fig. 3.11. Popov VL, Filippov AE, Li Q and Kürschner S discussed the results 
(section 3.2.3) and gave an analytical support in Eq. (3.16) to Eq. (3.23). All the authors 
contributed in preparing the manuscript of paper [11]. 
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3.2.1 Theoretical model 

According to the principle of MDR, the elastomer is modeled as a row of independent 
elements with a small spacing x∆ , each element consisting of a spring with normal 
stiffness 4zk G x∆ = ∆  and a dashpot having the damping constant 4 xγ η∆ = ∆  as shown in 
section 2.2.1, where G  is the shear modulus and η , the viscosity of the elastomer (Fig. 
3.4).  

 
Fig. 3.4 Viscoelastic foundation of elastomer. 

The counter body is a rough line having the power spectral density 2 1
1

H
DC q− −∝ . This 

one-dimensional power density corresponds to the two-dimensional power density of the 
form 2 2

2
H

DC q− −∝ . The spectral density was defined in the interval from min 2 /q Lπ= , 

where L  is the system size, to the upper cut-off wave vector  max /q xπ= ∆ . The 
spacing x∆  determines the upper cut-off wave vector and is an essential physical 
parameter of the model. The characterization and generation of the rigid surface 
topography were described in detail in section 2.3.2. The periodic boundary conditions 
were used. The elastomer was pressed against the rigid surface with a constant normal 
force NF  and moved tangentially with a constant velocity v . A typical configuration of 
the contact is shown in Fig. 3.5.   
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Fig. 3.5 One-dimensional contact between a rough surface and a visco-elastic elastomer. Note the 
difference in vertical and horizontal units. 

If the rigid profile is given by ( )z z x vt= − , and the profile of the elastomer by 
( , )u u x t= , then the normal force in each particular element of the viscoelastic 

foundation is given by 

 { }4 ( ) ( , )f x Gu x u x tη= − ∆ +  . (3.6) 

For the elements in contact with the rigid surface, this means that  

 [ ]{ }4 ( , ) ( , )f x G d z x t vz x tη ′= ∆ − + , (3.7) 

where d  is the indentation depth. For these elements, the condition of remaining in 
contact, 0f > , was checked in each time step. Elements out of contact were relaxed 
according to equation 0f = : ( ) ( , ) 0Gu x u x tη+ = , and the non-contact condition u z<  
was checked. The indentation depth d  was determined to satisfy the condition of the 
constant normal force 

 ( )
( real cont)

4 ( ) ( ) dNF G d z x vz x xη ′= − +  ∫ , (3.8) 

where the integration is only over points in contact. The tangential force was calculated 
by multiplying the local normal force in each single element with the local surface 
gradient and subsequently summing over all elements in contact:   

 ( )
( real cont)

4 ( ) ( ) ( ) dxF z x G d z x vz x xη′ ′= − − +  ∫ . (3.9) 

Due to the independence of the degrees of freedom, the algorithm is not iterative and 
there are no convergence problems. 

The coefficient of friction is calculated as the ratio of tangential force (3.9) and normal 
force (3.8)  
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 x

N

F
F

µ = . (3.10) 

 
Fig. 3.6 Coefficient of friction changing with time. 

Generally, the friction of coefficient changes with time: it gradually approaches a 
constant value in a steady state as seen in Fig. 3.6. To obtain a general law of friction, we 
consider only the value in the steady state. The details of dynamic contacts are shown in 
Chapter 4. 

3.2.2 Numerical results 

The one-dimensional model is computationally efficient and allows carrying out 
extensive parameter studies. The following ranges of parameters have been covered in 
the present study. The length of the system was 0.02 mL =  and the number of elements 

/N L x= ∆  was typically 5000  with exception of cases where the dependence on x∆  
was studied. Instead of viscosity, the relaxation time 3/ 10  sGτ η −= =  was used. 11 
values of Hurst exponent ranging from 0  to 1  were studied. All values shown below 
were obtained by averaging over 200 realizations of the rough surface for each set of 
parameters. Parameter studies have been carried out for 20 different normal forces NF  

ranging from 310−  to 210  N , 20 values of the G  modulus from 310  to 910  Pa , 20 values 
of rms roughness h  from 910−  to 510  m− , and 20 values of the spacing x∆  from 510−  to 

710  m− , while in each simulation series only one parameter was varied. The presented 
results are based on approximately 63.5 10⋅  single simulations with the total net 
computation time of about 50 h. It is well known that the maximum value of the 
coefficient of friction µ  in the medium range of velocities is proportional to the rms 
gradient of the surface profile [10]. We, therefore, present the normalized friction 
coefficient / zµ ∇  instead of µ  in this thesis. 
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Fig. 3.7 A typical dependence of the normalized coefficient of friction on the velocity. In this 
particular case, the results were obtained for the following set of parameters: 1.5 NNF = , 

710  PaG = , 75 10  mh −= ⋅ , and 0.7H = . 

A typical dependence of the coefficient of friction on the sliding velocity is shown in Fig. 
3.7. At first, it increases linearly with velocity (region I), it then achieves a plateau 
(region III) and decreases again to a new constact value (region IV). We also marked an 
intermediate region (II) where transition from the linear velocity dependence to the 
plateau takes place. This region covers one decade of velocities, and the coefficient of 
friction increases here by a factor of two. Fig. 3.8 shows the velocity dependence in 
double logarithmic scale for 6 different Hurst exponents. It is obvious that at small 
velocities, the coefficient of friction increases linearly with velocity. The absence of the 
decreasing region IV in Fig. 3.7 (and Fig. 3.8 at high loads) is only due the fact that for 
high forces this region is outside the scope of practical velocities and is therefore not 
shown in these figures. 



3.2 Contact between elastomer and a rigid body   25 

 
Fig. 3.8 Dependence of friction coefficient on velocity for different Hurst exponents and 

10 NF = , 710  PaG = , 75 10  mh −= ⋅ . Solid lines correspond to the analytical approximation 
(3.17). 

Fig. 3.9 presents velocity dependencies of the coefficient of friction for 20 different 
normal forces. One can see that the form of the dependence for different forces is 
approximately the same, only shifted along the axis of  the logarithmus of velocity. There 
are two distinctly different regions: in zone 1 there is a partial contact of the rigid surface 
and the elastomer, while in the zone 2 they are in complete contact. In both of the zones, 
the shift factor increases linearly with the logarithm of force, the coefficient of friction, 
thus, being a power function of the normal force. Simulations with different rms 
gradients of the surface (which were varied by changing the spacing x∆ ) show that the 
coefficient of friction in this region is very accurately proportional to 2z∇  and depends 
on the force and shear modulus only over the ratio /NF G . The only form of the 
dependence which fits these empirical observations and meets the dimensional demands 
is  

 
2

N

v z GhL
h F

α
τµ β

 ∇
=  

 
, (3.11) 

where α  and β  are dimensionless constants. Empirical values of these constants 
extracted from numerical data are shown in Fig. 3.10. 
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Fig. 3.9 Double logarithmic presentation of the dependence of the normalized friction coefficient 
on velocity for 20 exponentially increasing normal forces ranging from 310− to 210  N , as 
indicated by the arrow ( 710  PaG = , 75 10  mh −= ⋅ , and 0.7H = ). The dotted line (third from the 
left) corresponds to the data shown in Fig. 3.7. 

 
Fig. 3.10 Dependence of α  and β  (see Eq. (3.11) on the Hurst exponent in zone 1 (see Fig. 3.9). 
Analytical estimation of the exponent α  according to (3.13) is shown with bold line. For 
0.2 0.8H< < , it fits numerical data very well. 

3.2.3 Theoretical analysis and discussions 

Let us support this result with an analytical estimation. At low velocities, the values of z  
in the border points of each partial contact region in the Eq. (3.9) are the same ( z d= ), 
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thus, the integral ( )
real cont

( ) ( ) dz x G d z x x′ −  ∫  vanishes identically. For the coefficient of 

friction we get  

 
2

cont cont4

N

L z v
F
ηµ ∇

= ⋅ . (3.12) 

Here, contL  is the total contact length, and contz∇  the rms slope in the region of real 
contact. The rms slope is dominated by the short wavelength part of the spectrum. It can 
be approximately replaced by the average rms slope of the entire surface contz z∇ ≈ ∇ . At 

the end of the section, we discuss the weak dependence of contz∇  on loading parameters 
in more detail. 

For small forces, in zone 1, the contact length is a power function of the normal force 
[68]: 1/(1 )

cont
HL F +∝ , and the coefficient of friction will be given by /(1 )H HFµ − +∝ . 

Comparing this with Eq. (3.11) provides an analytical estimation for the exponent α : 

 
1

H
H

α =
+

. (3.13) 

For large normal forces, in zone 2, the contact length achieves a saturation value of 

contL L= . The coefficient of friction becomes  

 
24

N

L z v
F
ηµ ∇

= ⋅ , (3.14) 

which is exactly confirmed by numerical simulations. Finally, in the plateau region, the 
coefficient of friction shows only a weak dependence on the Hurst exponent (Fig. 3.11). 
In the range of 0.2 0.8H< <  and for not too small forces, it is almost constant and can be 
approximated as 

 cont2 zµ ≈ ⋅∇ . (3.15) 

This result has a simple physical meaning. In the plateau region, the elastomer behaves 
practically as a viscous fluid: the elasticity does not play any role and all contacts are 

“one-sided.” The normal and tangential forces reduce to ( )2

(real cont)
4 ( ) dxF v z x xη ′= ∫ , 

(real cont)
4 ( ) dNF v z x xη ′= ∫ . For the normalized coefficient of friction we get 

 
( ) ( )( )1/2

22 1/2
cont( real cont)( real cont)

cont

( real cont) ( real cont)

( ) d( ) d

( ) d ( ) d

z x x Lz x x
z

z x x z x x
µ

′ ⋅′
= = ∇

′ ′

∫∫
∫ ∫

. (3.16) 
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For an exponential probability distribution function of the gradient of the surface, the 

ratio of 
( )( )1/2

2 1/2
cont( real cont)

( real cont)

( ) d

( ) d

z x x L

z x x

′ ⋅

′

∫
∫

in (3.16) is equal to 2 , in accordance with (3.15), 

and it depends only weakly on the form of the distribution function. 

 
Fig. 3.11 Dependence of the normalized coefficient of friction in the region III (plateau). The 
coefficient of friction decreases at very small forces. This effect is closely related to the decrease 
of the coefficient of friction at high sliding velocities, Fig. 3.7, region IV. 

The results (3.11), (3.13), (3.14) and (3.15) can be combined in the following equation 
providing an interpolation between the three regions I, II, and III: 

 

1 22
2

1

2 2 2
cont cont cont

1
2 4

H
H

N NF h F
z L z v z v GhL

µ
η βτ

−

+
       = + +     ∇ ∇ ∇      

. (3.17) 

The quality of this interpolation can be seen in Fig. 3.8 where the numerical results for 
six Hurst exponents are plotted together with analytical dependencies (3.17). This 
equation can be rewritten in the dimensionless form  

 
( ) ( )

1 222
1

2

4
1

H
H

N NF F

v
µ

−

+
  +  

  = +
 
 
 

, (3.18) 
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with a normalized coefficient of friction ( )cont2 zµ µ= ∇ , dimensionless velocity 

 cont

2
v zv

h
τ ∇

= , (3.19) 

and dimensionless force 

 N
N

FF
GhL

= . (3.20) 

Let us discuss the physical meaning of the quantities v  and NF . The condition 1NF ≈  
gives the order of magnitude of the force at which complete contact is achieved, while the 
condition 1v ≈  determines the order of magnitude of velocity at which the elastomer is 
detached from the rigid surface on the trailing side of any asperity and all the contacts 
become “one-sided.” Indeed, according to (3.7), the condition of detachment 0f =  
means ( ) ( ) 0d z x vz xη ′− + = . Taking into account that d z−  has the order of magnitude 
of h  and z′  has the order of magnitude of contz∇ , we come to the conclusion that the 

one-sided detachment of the elastomer will occur if ( ) contG v z hη ∇ >  or 1v > . Note that 

the same conditions are valid in the corresponding three-dimensional problem: for 
achieving the plateau value of contact stiffness ( 1NF ≈ , [68]) and for the one-sided 
detachment of the elastomer ( 1v ≈ ).  

Let us discuss the decrease of the coefficient of friction beyond the region of validity of 
approximation (3.18), at large velocities (region IV in Fig. 3.7). Such a decrease at large 
velocities is typical for elastomer friction and is usually associated with a decrease in the 
“rheological factor” Im ( ) / ( )G Gω ω  at high frequencies [26], where ( )G ω  is the 

complex modulus of the elastomer and Im ( )G ω , its imaginary part. For the case of the 

Kelvin body, however, the rheological factor is equal to 2 2/ ( )Gηω ηω+ ; it increases 
monotonously and tends towards 1 at high frequencies. In this case, the decrease of the 
coefficient of friction is not related to the rheology but rather to the dependence of the 
rms slope on the size of the real contact. Indeed, for randomly rough surfaces, the rms 
slope in the contact region can be estimated as 

 ( )max

cont

1/22(1 ) 2(1 )1/2
max cont2

cont 12 ( ) d
2(1 )

H H
q

Dq

q q
z C q q q

H

− − − −  − ∇ = ∝  
 − 

∫ , (3.21) 

where the lower integration limit cont cont2 /q Lπ≈ decreases with increasing size of the 
real contact. For 0 1H< < , the integral (3.21) depends only weakly on the lower 
integration limit unless the contact length becomes extremely small so that contq  
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approaches maxq . Thus, the coefficient of friction in the region of plateau will decrease 
with decreasing indentation depth. This happens either at extremely high sliding 
velocities (Fig. 3.7, region IV) or at extremely low normal forces as illustrated in Fig. 
3.11. The dependence of contz∇  on the contact size and, thus, on velocity and force is less 
pronounced for small Hurst exponents, 0H ≈ , and gets stronger for 1H ≈ . Note that the 
increase of rms slope with increasing indentation is closely associated with the 
assumption of the "randomness" of roughness, as the estimation (3.21) is only valid if the 
Fourier components of roughness with different wave vectors have uncorrelated phases. 
One can say that randomly rough surfaces are always rougher on the slopes of waviness 
than on the summits. Real surfaces, on the contrary, may have different kinds of 
correlated roughness. One can easily imagine a surface, which is rougher on the summits 
than on the slopes; for such surfaces, the rms slope of roughness would decrease with 
indentation. The general and robust statement, which is independent of the kind of the 
roughness correlation, is only that the rms slope in the contact region is a function of 
indentation depth and, thus, a function of the non-dimensional force (3.20). This 
statement even remains valid if the linear viscoelastic behavior of the material breaks 
down at the micro-scale. Indeed, the statement that the frictional force will depend on the 
indentation depth is correct for any kind of processes at the micro-scale. The indentation 
depth, however, is governed by the contact stiffness which is dominated by the largest 
wavelength in the power spectrum of the roughness. The general conclusion that the non-
dimensional force (3.20) is a governing parameter of the friction process will, therefore, 
remain valid independently of the particular character of the microscopic processes. We 
can summarize our results to the following general scaling relation: 

 ( ) ( )( )cont /N Nz F g v f Fµ = ∇ ⋅ , (3.22) 

or, in explicit form, 

 cont
cont 2

N NF v z Fz g f
GhLGhL h

τµ ∇    = ∇ ⋅         
. (3.23) 

This scaling relation means that the dependence of the coefficient of friction on velocity 
in the double logarithmic presentation has the same form for different values of all 
parameters appearing in this equation: force NF , size of the system L , and relaxation 
time τ . Changing of any of these parameters will only shift the curves horizontally by 

the factor of log
2

Nz Ff
GhLh

τ∇  ≈     
 and vertically by the factor of ( )contlog Nz F GhL∇ .  

In particular, the curves will be shifted by changes of temperature (which influences the 
relaxation time). The shifting procedure with regard to temperature is well known and 
widely used in the physics of friction of elastomers for constructing “master curves” 
describing the friction coefficient at any velocity and temperature (see, e.g., [69]). Eq. 
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(3.23) means that the master curve procedure can be generalized to dependencies on other 
loading and system parameters. While the particular form (3.17) of the law of friction is 
limited by the assumptions of simple visco-elastic rheology, the general scaling relation 
(3.23) should have a wider range of application and it should be possible to validate it 
experimentally. 

3.3 Contact between elastomer and rigid bodies having different 
macroscopic shape 

In section 3.2 we studied the friction law of elastomer contacting with a macroscopically 
plane rough surface, now we consider other shapes of contacting body: rough parabolic 
and conical profile. The model for elastomer is still same as in the previous Section, i.e., 
Kelvin body.  

The work in this section appears in paper [12] (Popov, V. L., Lars, V., Li, Q., Chai, Y. S. 
& Popov, M. Generalized law of friction between elastomers and differently shaped 
rough bodies. Sci. Rep. 4, 3750 (2014). My contribution to [12] (in accordance with the 
content of this section) is the following: Li Q carried out the numerical simulation. The 
details of model is described in section 3.3.1 and the results are illustrated in Fig. 3.12, 
Fig. 3.14 and Fig. 3.15 and formulated in Eq. (3.38) to Eq. (3.40) (section 3.3.2). Voll L 
set up the experiment (Fig. 3.16) and carried out the measurement (section 3.3.4). Popov 
VL, Voll L and Li Q analyzed the collected data (Fig. 3.17 to Fig. 3.19). Li Q prepared 
the Fig. 3.12, Fig. 3.14, Fig. 3.15 and Fig. 3.17 to Fig. 3.19. Popov M provided initial 
version of the simulation program. All authors of paper [12] discussed the results and 
contributed in preparing the manuscript of [12]. 
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3.3.1 Theoretical model 

 
Fig. 3.12 One-dimensional contact between a viscoelastic body and (a) a rough “cone”; (b) a 
rough “sphere”. The configuration is shown for the following parameters defined in text: 

1 NNF = , 610  PaG = , 0.1 m/sv = , 55 10  mh −= ⋅ , 310  sτ −= , (a) 10θ = °  and 0.1H = ; (b) 
210  mR −= and 0.2H = . Note the difference in vertical and horizontal units. 

Let us consider a rigid indenter having the form  

 0( ) ( ) ( )z g x g x h x= = +  (3.24) 

consisting of the macroscopic power-shaped profile  

 0( ) n
ng x c x=  (3.25) 

and a superimposed roughness ( )h x , as shown in Fig. 3.12. It can be said that 0( ) 0g x =  
for the rigid profile in last section 3.2. 

Coordinates x  and z  are measured from the minimum of the macroscopic form, so that 
0(0) 0g = . The ensemble average of the rough profile is assumed to be zero: ( ) 0h x = . 

The roughness was assumed to be a self-affine fractal having the power spectral density 
2 1

1
H

DC q− −∝ , and it is same as the rigid profile in the previous Section. We assume that 
the indentation depth of the indenter, d , is much larger than the rms value of the 
roughness, h d<< . This means that the large-scale configuration of the contact is 
primarily determined by the macroscopic form of the indenter and does not depend on the 
roughness (Fig. 3.13).   
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The rigid indenter is pressed into a viscoelastic foundation to the depth d  and is moved 
in tangential direction with velocity v  (Fig. 3.12), so that at time t  it is described by the 
equation  

 ( ) ( )z g x vt d g x d= + − = − . (3.26) 

For convenience, we introduced the coordinate x x vt= +  in the coordinate system 
moving together with the rigid indenter.  

 
Fig. 3.13 A “large scale picture” of a contact of an elastomer and a rigid conical indenter moving 
left with velocity v .  

The normal force in each particular element of the viscoelastic foundation is given by 

 [ ]4 ( ) ( , )f x Gu x u x tη= − ∆ +  . (3.27) 

where u  is the vertical displacement of the element of the viscoelastic foundation. For 
elements in contact with the rigid surface, this means that  

 ( )4 ( ) ( )f x G d g x vg xη ′= ∆ − −    . (3.28) 

The normal and the tangential force are determined through equations  

 ( )
2

1

4 ( ) ( ) d
a

N
a

F G d g x vg x xη
−

′= − −  ∫    , (3.29) 

 ( )
2

1

4 ( ) ( ) ( ) d
a

x
a

F g x G d g x vg x xη
−

′ ′= − − −  ∫     . (3.30) 

3.3.2 Numerical results and discussions  

(a)  Friction at low sliding velocity 

We first consider the force of friction at very low velocities. The contact configuration is 
then approximately equal to the static contact. The uppermost left and uppermost right 
points 1a−  and 2a  of the contact (see Fig. 3.13) are then both determined by the condition 

1 2( ) ( ) 0g a d g a d− − ≈ − = . Because of the relation 1 2( ) ( )g a g a− = , the integrals 
2

1

( )d
a

a

vg x xη
−

′∫    and ( )
2

1

( ) ( ) d
a

a

g x G d g x x
−

′ −∫     in (3.29) and (3.30) vanish. Therefore, 
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 ( ) ( )
2 2

1 1

04 ( ) d 4 ( ) d
a a

N
a a

F G d g x x G d g x x
− −

= − ≈ −∫ ∫    , (3.31) 

 [ ]
2 2

1 1

2 2 2
04 ( ) d 4 ( ) ( ) d

a a

x
a a

F v g x x v g x h x xη η
− −

 ′ ′′= ≈ +
 ∫ ∫     . (3.32) 

We assume that the gradient of the macroscopic shape of the indenter is much smaller 

than that of the roughness, 2 2
0 ( ) ( )g x h x′ ′<< , so that 

 
2

1

2 2
cont4 ( ) d 4

a

x
a

F v h x x v z Lη η
−

′≈ ≈ ∇∫  , (3.33) 

where z∇  is the rms value of the surface gradient and cont 1 2L a a= +  the contact length. 
For the coefficient of friction, we get 

 2 2cont cont4 4

N N

L v GL vz z
F F

η τµ ≈ ∇ = ∇ . (3.34) 

This equation shows, that both the macroscopic shape of the indenter and the microscopic 
properties of surface topography determine the coefficient of friction: the contact length 
is primarily determined by the macroscopic properties (shape of the body and the normal 
force) while the rms gradient is primarily determined by the roughness at the smallest 
scale.  

(b)  Friction at high sliding velocity 

Consider the opposite case of high sliding velocities. If the indentation depth is much 
larger than the roughness of the profile, then we see from Eq. (3.28) that one-sided 
detachment of the elastomer from the indenter will take place if 

 ( )/ 1d v zτ ∇ ≈  (3.35) 

where z∇ is the characteristic value of the surface gradient. In that case, the friction 
coefficient achieves an approximately constant value of  

 2 zµ ≈ ∇ . (3.36) 

For the macroscopic power law shape, the indentation depth and contact radius are given 
by 

 
( )

1
11

8

n
N

n

F n
a

Gc n

++ 
=  
 

, 
( ) 1/ 11

8

n
n n

N nF n c
d

Gn

+ +
=  
 

. (3.37) 

Substituting the contact length cont 2L a=  into Eq. (3.34), we obtain the coefficient of 
friction at low velocities: 
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 µ ξ= , (3.38) 

where we introduced dimensionless variables  

 
2 z
µµ =
∇

,   

1
1 18 1

2

n
n n

N n

v z G n
F c n

τξ
+ +   ∇ +

=    
   

 (3.39) 

(c) Simulation results 

Numerical simulations presented in Fig. 3.14 for the case of a rough cone show that all 
data in the coordinates ( ),µ ξ  collapse to one master curve with a slope equal to one. The 

validity of Eq. (3.38) was numerically confirmed for the following ranges of parameters. 
The reference length of the system was 0.01 mL =  and the number of elements 

/N L x= ∆  was typically 5000. 11 values of Hurst exponent ranging from 0  to 1  were 
studied. All values shown below were obtained by averaging over 200 realizations of the 
rough surface for each set of parameters. Parameter studies have been carried out for 20 
different normal forces NF  ranging from 110−  to 110  N , 20 values of the G  modulus 

from 510  to 710  Pa , 20 values of rms roughness h  from 610−  to 410  m− , and 20 values 
of the spacing x∆  from 710−  to 510  m− , 20 values of angles θ  ranging from 5  to 75° , 
and 20 relaxation times τ  ranging from 410−  to 210  s− , while in each simulation series 
only one parameter was varied.  

 
Fig. 3.14 Dependence of µ  on ξ  at low velocities. Different symbols correspond to different 
sets of parameters H , v , NF , G , θ , τ and z∇ . All data collapse to one master curve described 
by Eq. (3.38). 
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Fig. 3.15 Dependence of µ  on ξ  for the following set of parameters: 10 NNF = , 610  PaG = , 
55 10  mh −= ⋅ , 3 10  sτ −= , 0.4H = and 10θ = ° (conical indenter) or 210  mR −=  (parabolic 

indenter). The solid line corresponds to the analytical approximation (3.40) with 1.5α = . 

It is easily seen that we can get both limits (3.34) and (3.36) by writing 

 ( ) 1/
1

2 z
ααµ ξ

−−= +
∇

. (3.40) 

where α  is a dimensionless fitting parameter. Numerical simulations (Fig. 3.15) show 
that this dependence is valid for all parameter sets used in our simulations, while the best 
fit is achieved with 1.5α = . Interestingly, parameter α  seems not to depend on the 
macroscopic shape of the indenter.  

3.3.3 Friction law for a general linear rheology and the “force master curves” 

Now we discuss friction of elastomers with a more realistic rheology, which is 
characterized by the frequency dependent complex shear modulus 

( ) ( ) ( )G G iGω ω ω′ ′′= + , where G′  is the storage modulus, and G′′  the loss modulus 
[10]. At low frequencies, the shear modulus tends towards its static value 0G . For 
simplicity, we will assume that the macroscopic contact mechanics of the indenter is 
completely governed by the static shear modulus 0G , which is correct for sufficiently 
small sliding velocities. On the other hand, the frictional force is almost completely 
determined by the smallest wavelength components in the spectrum of roughness and 
thus by high frequency rheology. The frictional force at low velocities can be therefore 
estimated by using Eq. (3.33) and substituting max max( ) /Gη ω ω′′→ , where max maxqω ν≈ : 
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The contact length is completely determined by the macroscopic contact mechanics of the 
indenter, Eq. (3.37), where we substitute the constant static shear modulus 0G . For the 
friction coefficient, we therefore get 
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At high frequencies, the plateau value of 2 z∇  will be achieved. An interpolation 
between (3.42) and this value is provided by  
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 (3.43) 

with 1.5α ≈ . This Eq. shows that the coefficient of friction for rigid bodies having 
macroscopic power-law shape has the general form  

 ( ( ))NQ F p vµ ≈ ⋅  (3.44) 

where ( )p v  is a function of velocity, which depends on the rheological properties of the 

elastomer. Since ( )( ) exp log log ( )N NF p v F p v⋅ = + , this means that the dependencies of 

the coefficient of friction as a function of log NF  will have the same shape for arbitrary 

velocities, only shifted along the log NF -axis by a velocity-dependent shift factor. This 
property gives the possibility to construct dependencies of the coefficient of friction on 
the normal force and the sliding velocity using a “master curve procedure” similar to 
those used for determining dependencies of the coefficient of friction on velocity from 
measurements at different temperatures [23]: Experimental results for the friction 
coefficient are presented as a function of log NF  at various velocities in Fig. 3.17. 
Following this hypothesis, we assume that at different velocities, the measured curves are 
only shifted pieces of the same curve. Now, one attempts to shift the curves such that 
they form a single “master curve” (Fig. 3.18). The resulting curve gives the dependence 
of the coefficient of friction in a wider range of forces than the range used in the 
experiment. At the same time, the shift factors at different velocities will provide the 
dependence of the coefficient of friction on velocity. The result is a complete dependence 
of the coefficient of friction in a wide range of velocities and forces. Repeated for 
different temperatures and using the standard master curve procedure [23], this will lead 
to restoring the complete law of friction as function of velocity, temperature and normal 
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force. However, in the present thesis, we avoid the well discussed subject of the 
temperature dependence and concentrate our efforts completely on the force dependence. 

Note that the main logic of the result (3.44) is not dependent on the details of the model 
and even on its dimensionality. The scaling relation (3.44) follows solely from the 
assumption that the macroscopic form of the contact is determined by the macroscopic 
properties of material and do not depend on microscopic details, and on the other hand, 
that the microscopic properties are determined mainly by the indentation depth. These 
general assumptions are equally valid for one-, two- and three dimensional models. 
Below we explain this important point in more detail. 

It is well known, that if a rigid body of an arbitrary shape is pressed against a 
homogeneous elastic half-space then the resulting contact configuration is only a function 
of the indentation depth d . At a given indentation depth, the contact configuration does 
not depend on the elastic properties of the medium, and it will be the same even for 
indentation of a viscous fluid or of any linearly viscoelastic material. This general 
behavior was recognized by Lee and Radok [70] [71] and was verified numerically for 
fractal rough surfaces [72]. Further, the contact configuration at a given depth remains 
approximately invariant for media with thin coatings [73] or for multi-layered systems, 
provided the difference of elastic properties of the different layers is not too large [74]. In 
[75], it was argued that this is equally valid for media which are heterogeneous in the 
lateral direction (along the contact plane). Along with the contact configuration, all 
contact properties including the real contact area, the contact length, the contact stiffness, 
as well as the rms value of the surface gradient in the contact area will be unambiguous 
functions of the indentation depth. The indentation depth is thus a convenient und robust 
"governing parameter" for contact and frictional properties of media with linear rheology. 
Note, that this is equally valid for tangential contact. This can easily be illustrated with 
the example of contact of a rigid body with an incompressible elastic half-space: For a 
circular contact with an arbitrary radius a , the ratio of the normal stiffness zk  and the 

tangential stiffness xk  is constant and given by the Cattaneo-Mindlin factor [76] [77], for 

incompressible media / 1.5z xk k = . From this follows that for a frictional contact with the 
coefficient of friction µ , the maximum tangential displacement to the onset of complete 
sliding is determined solely by the indentation depth and is equal to ,max 1.5xu dµ= . This 

result does not depend on the form of the body and is valid for arbitrary bodies of 
revolution [78] and even for randomly rough fractal surfaces [79]. This fact, that the 
contact configuration is solely determined by the indentation depth is as a matter of fact 
the only physical reason needed to get the simple scaling relations for the coefficient of 
friction between rough rigid bodies and linearly viscoelastic elastomers described by Eq. 
(3.44). While the particular form (3.43) can depend on the model used, the general 
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functional form (3.44) is a universal one and is not connected with the method of 
dimensionality reduction used in this thesis. 

3.3.4 Experimental  

The experiment described in the following was set up and carried out by Voll L [12] 
(…Voll, Li et.al. Sci. Rep. 4, 3750, 2014). For completeness of the description, I 
introduce here his measurement results.  

Our numerical and theoretical analysis shows that under some conditions the 
dependencies of the coefficient of friction on the normal force, presented in double 
logarithmic axes, is self-similar at different velocities and can be mapped onto each other 
by a simple shifting along the force axis. To prove this hypothesis, we measured the 
coefficient of friction between a band of polyurethane (PU) and a steel ball with radius 

50 mmR = .  

 
Fig. 3.16 Experimental set-up for measuring the coefficient of friction. (Set up by Voll. L [12]) 

The experimental set-up for measuring elastomer friction is shown in Fig. 3.16. The 
rubber band with a size of 300 50 5 mm× ×  was glued to a moving stage using solvent-
free two-component epoxy glue. The maximum pressure in the contact area was, in all 
experiments, at least one order of magnitude smaller than the latter, so that there was no 
plastic deformation of rubber. The stage could be moved with the aid of a hydraulic 
actuator with controlled velocity in the range of 45 10  m/s−⋅  to 0.58 m/s . The normal and 
tangential forces were measured with a 3D force sensor, on which the steel ball  was 
mounted. The ambient temperature was 25.5 C ( 0.5)° ±  and the relative air humidity 
30% ( 5)± . Under these conditions the dynamic friction coefficient was measured at 
constant normal force and horizontal velocity. A total of 1680 measurements were taken. 
Data for any parameter set (normal force and temperature) was averaged over six 
measurements. Every measurement series was started at the smallest normal force, and 
increased in steps. At every level of normal force, the measurement was made with 28 
horizontal velocities. Before proceeding to the next force level the material was examined 
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for wear both visually and with a microscope, and cleaned with pressurized air. At low 
normal forces wear was virtually non-existent, and remained weak even at higher forces. 
Chemical cleaning agents were not used to treat the surface of the rubber. 

Measurements were carried out in a smaller velocity range of 33 10  m/s−⋅  to 22 10  m/s−⋅  
for normal forces in the range of 1 N  to 100 N . The lower velocity bound was chosen 
because the sliding at lower velocities was instationary. The maximum velocity was 
chosen to avoid significant temperature changes in the contact. The local temperature rise 
due to frictional heat can be estimated as 02 /T G dvµ λ∆ ≈ , where 1 120 Wm Kλ − −≈ is the 
thermal conductivity of the steel ball [10], which almost completely controls the thermal 
flow, and 6

0 3 10  PaG ≈ ⋅  the static shear modulus of the used rubber. For the largest force 

of 210  NNF = , we get an indentation depth of ( )2/31/2 5
03 /16 4 10  mNd F G R −= ≈ ⋅ . With 

0.5µ ≈  and 210  m/sv −=  we can estimate the average temperature rise as 0.06 KT∆ ≈ . 
Maximum temperature changes in micro contacts can be estimated as 02 /T G h vµ λ∞∆ ≈ , 

where 91.5 10  PaG∞ ≈ ⋅  is the glass modulus [80] of the used rubber and 710  mh −≈  the 
rms roughness of the ball, which was determined using a white light interferometric 
microscope. For velocity 210  m/sv −=  we get an estimation 0.08 KT∆ ≈  which is of the 
same order of magnitude as the average temperature rise. Due to repeated sliding, the 
temperature change can get larger than the above estimation. The temperature changes of 
the rubber surface were controlled in experiments by an infrared camera (see Fig. 3.16). 
We found empirically that the temperature change does not exceed 1 K  for the following 
range of velocities: up to 24 10  m/sv −≈ ⋅  for 210  NNF ≈ , up to 22 10  m/sv −≈ ⋅  for 

10 NNF ≈  and up to 210  m/sv −≈ for 100 NNF ≈ .  

The measured coefficients of friction as a function of force are shown in Fig. 3.17.  
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Fig. 3.17 Measured dependencies of 10log µ  on 10log NF  at various velocities at the temperature 
25.5 0.5 C± ° . (Data from: Voll. L [12]) 

 

Fig. 3.18 Horizontal shifting of the curves shown in Fig. 3.17 relative to the curve at the reference 
velocity of 1 mm/s  provides a “master curve”. It has two distinct linear parts. (Data from: Voll. L 
[12]) 

If the shifting procedure formulated in section 3.3.3 is valid, all the curves shown in this 
figure have to be considered as different parts of the same curve shifted along the log NF -
axis. Fig. 3.17 illustrates that it is indeed possible to shift all the curves to produce one 
single “master curve”. It is interesting to note that the resulting master curve has two 
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distinct linear regions, meaning a power dependence of the coefficient of friction on the 
normal force. The crossover between different powers occurs at the force 40 NNF ≈  

which coincides with the force * 3
0(2 / 3) / 40 NNF G D R≈ ≈ , at which the contact 

diameter 2a  becomes equal to the thickness of the rubber layer 35 10  mD −= ⋅ . At this 
force the stiffness-force dependence changes from the Hertzian 1/3k F∝  to 1/2k F∝  [10], 
and we expect a change of the scaling relation. 

 
Fig. 3.19 Shifting factors as a function of the sliding velocity. 

Fig. 3.19 shows the dependence of the shifting factor on the sliding velocity. Roughly 
speaking, the shifting factor is a linear function of the logarithm of velocity with the slope 

0.15− . This result can be interpreted as follows. In the intermediate frequency range, the 
loss modulus G′′ often is a power function of frequency: 

 ( )0( ) /G G βω ω ω′′ = ⋅  (3.45) 

where 0ω  is a reference frequency and β  a power typically in the range of 0.1  to 0.5  
(see e.g. [69]). In this case Eq. (3.43) can be rewritten as (here for a sphere with radius R
, 2n = , 1 /nc R= ): 
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In this case, the shift factor is a linear function of log v  with the slope 3 / 2β− . 
Comparing this with the experimental value of 0.15−  gives 0.1β ≈ . This is compatible 
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both with the rheological data for the used rubber compound and with data from 
literature. 

3.4 Summary 
In this Chapter we firstly gave a brief introduction of one-dimensional contacting bodies: 
rough profile of the “rigid surface” and Kelvin body of elastomer, then analyzed the 
friction behavior of elastomers in detail.  

In Section 3.2, we have shown that the law of friction between a linear viscoelastic body 
and a rigid fractal surface can be formulated in terms of two dimensionless variables 
(3.19) and (3.20) which are proportional to the sliding velocity and the normal force, 
correspondingly. Over these variables, the force of friction generally depends on all 
material, loading, and roughness parameters: sliding velocity, normal force, shear 
modulus, viscosity, rms roughness, rms slope, and even the size of the system. Generally, 
the force of friction is not proportional to the normal force, thus, Amonton’s law is 
violated. However, in the plateau region, where the coefficient of friction achieves its 
maximum, it is proportional to the rms slope of the roughness in the contact region and 
depends only weakly on the normal force or any other system parameter. We provided 
physical interpretation of the dimensionless variables and a simple interpolation equation 
summarizing all numerical and analytical data for a surface with self-affine roughness 
having Hurst exponents in the rage from 0 to 1. One of the implications of the obtained 
analytical results is the genaralization of the “master curve procedure” to further variables 
such as the normal force and the size of the system. We argued that the main physics of 
the frictional process are dimension-invariant. In particular, the general scaling relations 
should retain their validity for three-dimensional systems. 

In Section 3.3, we analyzed the frictional behavior of elastomers contacting with other 
shaped profiles under the following simplifying assumptions: (a) the rigid counter body 
has a power law shape (e.g. parabolic or conical), (b) the macroscopic contact mechanics 
of the indenter is governed mainly by the low frequency shear modulus, which can be 
assumed to be approximately constant, (c) the friction is governed by the corrugations 
with the smallest wavelength in the spectrum of the surface roughness. Under these 
assumptions, we have shown that the coefficient of friction is a function of a 
dimensionless argument, which is a multiplicative function of powers of velocity and 
force. The exact form of this argument depends both on the rheology and the 
macroscopic form of the indenter. But independently of the exact form, the dependence 
of the coefficient of friction in the range from very small velocities to the plateau occurs 
to be a universal function of this argument, suggesting a generalization of the known 
“master curve procedure”: if the dependence of µ  on the normal force is presented in 
double logarithmic coordinates, it will have the same shape for arbitrary velocities, only 
shifted along the velocity axis. We have proven this procedure with experimental results 
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obtained on polyurethane rubber. In combination with the widely used shifting procedure 
for varying temperature [23], it allows to determine generalized laws of friction as 
functions of velocity, temperature and normal force. The results of the present study 
generalize and validate the results of the pioneering work by Schallamach [27]. 

 

 



Chapter 4  Kinetics of the Coefficient of Friction of Elastomers 

In the previous Chapter, we have studied the friction law of elastomers where the 
dragging velocity of rigid profile in a certain contact condition keeps always constant and 
the friction is considered only at steady-state. With the same basic model we will analyze 
the kinetics of the coefficient of friction of an elastomer due to abrupt changes of sliding 
velocity in this Chapter.  

The work in this chapter appears in paper [61] (Li, Q., Dimaki, A. V., Popov, M., Psakhie, 
S. G. & Popov, V. L. Kinetics of the coefficient of friction of elastomers. Sci. Reports 
(2014)). My contribution (in accordance with the content of this chapter) is the following: 
Li Q carried out the numerical simulation. The details of the numerical calculation are 
described in section 4.2. Popov M and Dimaki AV provided initial program code. Popov 
VL and Li Q analyzed the simulation results and formulated them in equations including 
Eq. (4.5) to Eq. (4.12) (section 4.3). Li Q prepared Fig. 4.1 to Fig. 4.7. Popov VL and Li 
Q discussed the results including Eq. (4.13) to Eq. (4.15) (section 4.4) and contributed in 
preparing the manuscript of [61]. All authors of [61] reviewed the manuscript [61]. 

4.1 Introduction 
Already Coulomb [14] knew that the coefficient of sliding friction depends on sliding 
velocity and normal force and that static friction depends approximately logarithmically 
on time [81]. The explicit dependence of the coefficient of friction on time became a hot 
topic in the 1970s in the context of earthquake dynamics. Based on the experimental 
work on rocks by Dieterich [82] [83], Rice and Ruina [84] have formulated a kinetic 
equation for friction, which became one of the most influential generalized "rate-state 
models". Similar kinetic behavior of the coefficient of friction was observed on a variety 
of different materials including metals, paper and polymers [85][89]. Most physical 
interpretations of rate-state friction are based on the concept by Bowden and Tabor [15] 
emphasizing the influence of the interaction of rough surfaces; they include direct 
observations of the contacting surfaces [90] as well as theoretical analysis [91][92]. Other 
models for the kinetics of the friction coefficient were proposed based on the 
development of surface topography due to wear (Ostermeyer [93] [94]) or shear melting 
of thin surface layers [95]. Heslot et. al. [96] provided a very detailed experimental 
analysis of the dynamics of systems obeying the rate-state law of friction. The kinetics of 
the coefficient of friction is an essential factor for the stability of systems with friction 
[97][99], the break-out instabilities [100] as well as for the design of feedback control 
systems [101][103] and remains a topic of high scientific and technological interest. Most 
rate-state formulations of frictional laws contain a characteristic length scale, at which a 
transition from sticking to sliding occurs. The existence of this length is typically 
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associated with a characteristic size of asperities or with other structural peculiarities at 
the micro scale [104] [105].  

In spite of the intensive research in the field of generalized laws of friction, both the form 
of the rate-state friction equations and their parameters can still only be determined 
empirically. In the present chapter, we provide a theoretical analysis of the kinetics of the 
friction coefficient for elastomers. For these materials, parameters of the kinetic law of 
the coefficient of friction are connected with material, loading and surface parameters. 
We simulate the standard type of loading used to experimentally determine the 
parameters of the rate-state laws: One of the bodies in contact first slides with a constant 
velocity; at some moment of time, the sliding velocity changes abruptly, and the jump of 
friction as well as the subsequent relaxation is observed. From these simulations we 
derive closed-form relations for the jump of friction and the characteristic time of the 
following relaxation.  

The one-dimensional model of elastomers and rigid body is exactly same as described in 
Chapter 3. 

4.2 Theoretical model 
The two contacting bodies and their models are exactly same as described in Chapter 3, 
i.e. viscoelastic foundation with Kelvin body for elastomer and rigid profile with 
randomly rough roughness.  

The model is described in detail in Chapter 3. Here we reproduce for convenience only 
the basic equations. If the rigid profile is given by ( )z z x vt= − , and the profile of the 
elastomer by ( , )u u x t= , then the normal force in each particular element of the 
viscoelastic foundation is given by 

 ( )4 ( ) ( , )f x Gu x u x tη= − ∆ +  . (4.1) 

For the elements in contact with the rigid surface, this means that  

 ( )( )4 ( ) ( )f x G d z x vz xη ′= ∆ − + , (4.2) 

where d  is the indentation depth, and ( )z x′ denotes a derivative with respect to x . For 
these elements, the condition of remaining in contact, 0f > , is checked in each time step. 
Elements out of contact are relaxed according to the Eq. 0f = : ( ) ( , ) 0Gu x u x tη+ = , and 
the non-contact condition u z<  is checked. The indentation depth d  is determined to 
satisfy the condition of the constant normal force 

 ( )
( real cont)

4 ( ) ( ) dNF G d z x vz x xη ′= − − +  ∫ , (4.3) 
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where the integration is only over points in contact. A typical configuration of the contact 
is shown in Fig. 3.5. The tangential force is calculated by multiplying the local normal 
force in each single element with the local surface gradient and subsequently summing 
over all elements in contact: 

 ( )
( real cont)

4 ( ) ( ) ( ) dxF z x G d z x vz x xη′ ′= − − +  ∫ . (4.4) 

The coefficient of friction µ  was calculated as the ratio of the tangential and normal 
force.  

Due to the independence of the degrees of freedom, the algorithm is not iterative and 
there are no convergence problems. The length of the system was 0.01 mL = and the 
number of elements N L x= ∆  was typically 5000. The shear modulus was 710  PaG = . 

Instead of viscosity, the relaxation time 310  sGτ η −= =  was used. The following ranges 
of parameters were covered in the present study: 11 values of the Hurst exponent ranging 
from 0  to 1 ; Normal forces  ranging from 210−  to 210  N ; x∆  ranging from 710  m−  

to 510  m− ; roughness ranging from 610  m−  to 410  m− ; velocities 1v  from 410− to 110  m/s ; 

velocity jumps v∆  from 10.2v−  to 10.3v . All values shown below were obtained by 
averaging over 200 realizations of the rough surface for each set of parameters. 

4.3 Numerical results 
The following numerical experiments were carried out: The rigid surface was pressed 
against the elastomer with a normal force NF  and moved tangentially with a constant 

velocity 1v .At the time moment 0t  the velocity was abruptly changed to a new value 2v  
which could be larger or smaller than the initial value. A typical behavior of the 
coefficient of friction before, during and after the velocity jump is shown in Fig. 4.1. 

NF
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Fig. 4.1 The kinetics of the coefficient of friction after a positive (a) 2 11.2v v= ⋅  and negative (b) 

2 10.8v v= ⋅  velocity jumps for the parameters: 0.1 NF = , 1 0.1 m/sv = , 0.01 mL = , 510  mh −= ,
710  PaG = , 310  sτ −=  and 0.7H = . 

The initial value of the coefficient of friction before jump and the final value after 
relaxation are of course just the values of the dependence of the coefficient of friction on 
velocity at stationary sliding which have been studied in previous Chapter and are 
reproduced for one set of material and loading parameters in Fig. 4.2a. With the same 
parameters, Fig. 4.2b shows the kinetic coefficients of friction changing with time for all 
the velocities in the whole range in Fig. 4.2a where the sliding velocity is increased by 
20%  at the moment 10t τ = . In the present chapter, we studied the complete range of 
velocities from the region I where the friction coefficient increases approximately 
linearly with velocity over the transition region II up to the plateau III (Fig. 4.2a). 
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Fig. 4.2 (a) Dependence of the coefficient of friction on the sliding velocity during stationary 
sliding; (b) kinetic coefficient of friction for the 30 velocities in Fig. 4.2(a) with 10.2v v∆ = . 
Other parameters: 0.01 mL = , 510  mh −= , 710  PaG = , 310  sτ −= , 0.7H =  , 0.1 NNF = .  

The relaxation of the coefficient of friction after the jump can be accurately fitted by an 
exponential function of the form 

 ( ) *
2

b tt eµ µ µ− ⋅= ⋅ + , (4.5) 

where  

 ( )0 /t t t τ= − . (4.6) 
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Fig. 4.3  Fitting with an exponential function Eq. (4.5)  ( 2.4b = ) for the data set: 0.01 mL = ,  

510  mh −= , 710  PaG = , 310  sτ −= , 0.7H =  , 1.2 NNF = , 10.2v v∆ =  and 1 0.05 m/sv = .  

An example of fitting is shown in Fig. 4.3. .According to Eq.(4.5), the coefficient of 
friction at the moment 0t t=  is equal to ( ) *

0 2 1 0tµ µ µ µ µ= + = + ∆ , therefore  

 ( )*
1 2 0 0µ µ µ µ µ µ′= − + ∆ = − ⋅∆ + ∆v v . (4.7) 

The kinetic behavior is therefore completely determined by the value 0µ∆  of the jump of 
the coefficient of friction and its relaxation time.  

4.3.1 Jump of the coefficient of friction 

We firstly consider the value 0µ∆ at the time of jump 0t t= . From the numerical results 
it is shown that for very small velocity jumps, both the immediate increase of the 
coefficient of friction, 0µ∆ , and the difference between the asymptotic values 2 1µ µ− , 
are proportional to the velocity change: 

 0

1 1

v
v

µ ζ
µ
∆ ∆

= ,  2 1

1 1

v
v

µ µ ξ
µ
− ∆

= . (4.8) 

In the limit of small velocities, (region I, corresponding to the linear dependence of the 
coefficient of friction on velocity), both ζ  and ξ  are close to “1”. It means that µ  
jumps directly to the value 2µ , so that there is practically no subsequent relaxation. This 
behavior can be clearly observed in Fig. 4.2b.  
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Fig. 4.4 Dependence 1

z
µ
∇

 and 0

1

µ∆ ∆
∇

v
z v

 on velocity for 20 exponentially increasing normal 

forces NF  from 210−  to 210  N . Other parameters: 10.2v v∆ = , 0.01 mL = , 510  mh −= , 
710  PaG = ,  310  sτ −=  and 0.7H = .  

Fig. 4.4 shows that the velocity dependence of 0µ∆  is similar to that of the coefficient of 

friction 1µ  which is studied in previous Chapter. In particular, 0µ∆  first increases 
linearly with velocity and then approaches a plateau. The results from simulations with 
different v∆ and different Hurst exponents prove that the linear part of this dependency 
can be universally described by 

 0 1

1

v
z z v
µ µ∆ ∆

= ⋅
∇ ∇

 (4.9) 

while at the plateau the relation  

 0 1 0.4
z z
µ µ∆

= ⋅
∇ ∇

 (4.10) 

is valid. These equations can be combined to the following interpolation equation  
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 

. (4.11) 

where we introduced normalized quantities 0 0 / zµ µ∆ = ∆ ∇  and 1 1 / zµ µ= ∇ . The quality 
of this approximation is illustrated in Fig. 4.5 by comparison with numerical results for 
11 Hurst exponents.  
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Fig. 4.5 Approximation of Eq. (4.11) with 2α =  for 11 Hurst exponents from 0 to 1. Other 
parameters: 10.2v v∆ = , 0.01 mL = , 1.2 NNF = , 510  mh −= , 710  PaG = , 310  sτ −= . 

4.3.2 Relaxation of the coefficient of friction 

Let us now consider the relaxation behavior after the jump. We found that the simulation 
results for the coefficient b  in Eq. (4.5) can be described accurately by the empirical Eq.  

 ( )1 max
αβ τ= ⋅b v q , (4.12) 

where α is a coefficient which depends only on the Hurst exponent.  

      
Fig. 4.6 Dependence of the coefficient b  on 1 maxv qτ for different Hurst exponents with the data 
set: 0.01 mL = , 510  mh −= , 710  PaG = , 20 normal forces  ranging from 210−  to 210  N , 20 
velocities 1v  ranging from 410  m/s−  to 110  m/s− , 20 x∆ ranging from 710  m− to 510  m− .  

NF
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Fig. 4.6 shows the dependence of the coefficient b  on the combination 1 maxv qτ  for 

different Hurst exponents. For  1 max 1v qτ <  (left part in Fig. 4.6), the coefficient α  is 

practically constant: 1α ≈ , while for  1 max 1v qτ > it can be approximated as 1 Hα ≈ −  
(Fig. 4.7).  

 
Fig. 4.7 Dependence of the power α  in Eq. (4.12) on Hurst exponent for 1 max 1v qτ > . 

4.4 Discussions 
We investigated the kinetics of the coefficient of friction after a jump of sliding velocity 
for a model elastomer. We found a simple general structure of the kinetics: the coefficient 
of friction first experiences a jump, followed by relaxation according to an exponential 
law to the new stationary value. The jump 0µ∆ of the coefficient of friction and the 
relaxation time are thus the only quantities which describe completely the kinetics of the 
coefficient of friction. For the model elastomer studied, we found closed form relations 
for both 0µ∆  and the relaxation time as functions of material and loading parameters. 

The character of the relaxation is governed by the quantity maxv qτ , which can be 
considered as ratio of two characteristic times of the system: the relaxation time τ of the 
elastomer and the typical time of contact of micro asperities ( )max1 / vq . For 1 max 1v qτ < , 

the coefficient b  in Eq. (4.5) is approximately equal to  1 maxb v qτ≈ , so the relaxation of 
the coefficient of friction is given by the Eq.   
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. (4.13) 
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Note that in this region relaxation of the coefficient of friction occurs at a characteristic 
length max1 /cD q= , which has the same order of magnitude as the size of micro contacts 
between the bodies, in accordance with the initial concept of Dieterich et. al. [90]. For 

1 max 1v qτ > , the relaxation of the coefficient of friction is described as 
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 (4.14) 

with the characteristic relaxation time  

 ( ) 1
max

HH
relaxt vqτ −= . (4.15) 

Eq. (4.14) covers the limiting cases of relaxation at a characteristic length max1 q  (in the 
limit 0H = ) and of relaxation at a characteristic time τ  (in the limit 1H = ). 

 

 

 



Chapter 5  Mixed Boundary Lubrication 

In this chapter we come to another important topic in the area of tribology – lubrication. 
As described in Chapter 1, mixed lubrication is the most difficult problem due to 
coexistence of both asperity contact and lubricated contact. We firstly give a short review 
on elastohydrodynamic lubrication (EHL). Based on the results from EHL, a new model 
of mixed lubrication is proposed in the framework of the MDR. In this model the 
dynamic lubricated rolling contact between rough surfaces is simulated. In order to 
account for the break-through of the additional boundary layer on a local micro contact 
area, an additional criterion is imposed. For comparison, a twin-disc test rig is set up to 
measure the electrical resistance between two lubricated rolling surfaces under different 
normal forces, rotation speeds and temperatures. We investigate the probability of 
boundary layer breakthrough for both experiment and simulation and find good 
agreement.  

Part of the work in this chapter appears in the paper [33] (Li, Q. & Pohrt, R. Mixed and 
Boundary Lubrication in Rolling Contact: Experiment and Simulation. FACTA Univ. Ser. 
Mech. Eng. 11, 123–131 (2013)). My contribution to [33] (in accordance with the content 
of this chapter) is the following: both authors proposed the numerical model (section 5.2) 
and contributed to analysis from EHL contact (section 5.2.1) to breakthrough of boundary 
layer (section 5.2.2). Li Q carried out the numerical calculation and prepared the figures. 
The simulation results are illustrated in Fig. 5.5 and Fig. 5.7a. Pohrt R set up experiment 
(Fig. 5.8) and both authors carried out measurement and collected data (Fig. 5.7b). Both 
authors discussed the results from numerical calculation and experiment measurement 
(Fig. 5.9 and Fig. 5.10). Both authors contributed in preparing the manuscript of [33]. 

5.1 Introduction 
Countless examples in mechanical engineering require lubrication between components 
that are in relative motion. It is known from experience that practically no wear at all 
occurs when these components operate under conditions, where the surfaces and their 
roughness features are completely separated by a fluid film. On the other hand, current 
trends in engineering are at a disadvantage to the creation of a fluid film: 

• Downsizing mechanical components demand for higher pressures 
• Low-viscosity oil increases efficiency but decreases film thickness 
• Start/stop cycles force the system through low-speed relative motion 

As a consequence, it is common practice for mechanical components such as gears, 
bearings and cams to operate in mixed lubrication mode. Typically the surface roughness 
of contacting bodies is of the same order as the lubricant film thickness, so that the top 
micro roughness features (asperities) will enter into contact and part of the load and 
shearing will be carried by these asperity contacts. Under this regime, various wear and 
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damage types can occur. In experiments the contact condition for a lubricated system can 
be observed by measurement of the electrical contact resistance cR  (Fig. 5.1) which is 
expressed as [106] 

 cont21 i

c

a L
R ρ ρ

= =∑ , (5.1) 

where ρ is the resistivity of contacting materials and ia  is the radius of each single 

contact spot. contL  is the total resulting contact length and defined as the sum of contact 
diameters.  

 
Fig. 5.1 Electrical contact for a single spot between two surfaces. 

In the case of full hydrodynamic lubrication, the rough surfaces are completely separated 
by the lubricant film, so the resistance measured will be very high. In contrast, when the 
asperity contacts carry a major part of the load, a large number of contact spots are 
formed, thereby decreasing the electrical resistance dramatically. 

5.2 Numerical Model 
We deal with the lubricated rolling contact between rough surfaces of cylinders where a 
boundary layer is present on the two surfaces. Most non-conforming lubricated contacts 
such as roller bearings, journal bearings, cam and followers or gear teeth can be viewed 
as such systems. Therefore, we impose a new model for the micromechanical contact 
between asperities including the physically or chemically absorbed boundary layer (Fig. 
5.2) and apply it to the conditions found in lubricated rolling contacts. 



5.2 Numerical Model   57 

 
Fig. 5.2 Schematic contact between two cylinders and its view of contact area in micro scale. 
Surfaces may either have a positive gap width, be separated by a boundary layer or be in intimate 
contact. The contact conductance only has a considerable value, when there is intimate contact, or 
the boundary layer has decreased to molecular scale. 

The basic idea is following. From the EHL analysis the oil film thickness between an 
elastic cylinder and a rigid plane is obtained for some load, rotation speed and materials 
parameters, the latter being dependent on temperature. Based on that, the simulation with 
the reduction method focuses on the micro contacts within the Hertzian contact zone and 
assumes the average distance between the rough surfaces to be the same as the oil film 
thickness resulting from EHL. During the rotation at each moment the number of micro 
contacts was calculated including the consideration of boundary layer break-through and 
each local contact length was obtained. The total contact length with rotation angle (or 
time) is compared with experiment by measuring electrical resistance. Research scheme 
is in Fig. 5.3. 

 
Fig. 5.3 Research scheme. 

5.2.1 EHL contact 

The contact between two elastic cylinders is known for having an equivalent in the 
contact between a rigid plane and an elastic cylinder with the equivalent modulus of 
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elasticity 
2 2
1 2

*
1 2

1 1 1
E E E

υ υ− −
= +  and radius *

1 2

1 1 1
R R R

= + , where 1E  and 2E  are moduli of 

elasticity, 1υ and 2υ  are Poisson’s ratios, 1R and 2R  are radii of both cylinders. According 

to Hertzian contact theory, the contact width 2a  under load NF is equal to  

 
*

*

4 NF Ra
L Eπ

=
′

 (5.2) 

where L′ is length of cylinder. For elastohydrodynamic lubricated rolling contact the 
bodies are separated by an oil film and its thickness over the whole contact area 2a  is 
almost uniform, except for the trailing edge where a small decrease in the film thickness 
occurs (the numerical solution is in Appendix B). A common formula of central film 
thickness was given by Hamrock from numerical studies [107]  
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where v is mean surface velocity ( )1 2 2v v v= + . The values of 0η (viscosity at 

atmosphere pressure) and α (pressure-viscosity coefficient) are properties of the 
lubricating medium and are usually temperature-dependent. Thus in a case of a known 
operation scenario, the film thickness excluding roughness can be calculated. 

 
Fig. 5.4 Reduced model for lubricated contact. The original 3D problem consists of two rough 
opposing bodies with a clearance stemming from the lubricant film. Surfaces constantly move 
tangentially, so new asperity contacts may form. The problem is transformed with the MDR onto 
two one-dimensional rough lines. 

The lubricated contact area in three dimensional (Fig. 5.4), consists of two moving 
rectangles with width and length L  that are separated by an oil film with average distance 

0h  where some asperity contacts may happen.  
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5.2.2 Reduced model  

We treat the contact problem in this zone using the MDR. Coordinates x and z are seen in 
Fig. 5.5. The average of the rough rigid profile is assumed to be zero and the rough roller 
is a superposition of a parabolic line and roughness. The roughness has the power 
spectral density 2 1

1
H

DC q− −∝ , where q  is the wave vector and H  is the Hurst exponent. 

In this case, the lines are generated with 610  points, corresponding to the perimeter of the 
roller used in experiments. The spectral density is defined from min max2 2q aπ=  to 

max 2 10q xπ= ∆ , where maxa is half the contact width and 0.7H = .  

 
Fig. 5.5 One-dimensional contact between an elastic “roller” and a rigid body. The mean gap 
width between both is obtained by EHL theory, the resulting micro contacts are analyzed by 
means of the MDR. 

From the results of EHL, the macroscopic shape of the “parabolic line” in the interval 
[ ],a a−  is assumed to be flattened out and the average distance between the elastic “roller” 

and rigid profile is equal to the thickness of oil film 0h . With the applied normal force F

and rotation speed 1v  and 2v  (and also temperature), the value of contact width 2a  and 

film thickness 0h  can be calculated according to Eq. (5.2) and Eq. (5.3). Therefore, the 
initial contacting profiles at 0t =  are determined. Then, the points on the lines enter and 
transit through the contact width with different velocities 1v  and 2v . At each time step we 
check the contact condition. It can be easily observed that some points are in geometrical 
contact (Fig. 5.6), but in this thesis we consider the boundary layer between two 
contacting bodies, therefore based on this geometrical contact, the failure of boundary 
layer must be calculated.  
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Fig. 5.6 One-dimensional model for the deformation of an elastic body. The 3D surface 
topography is transformed to give an equivalent line. 

For the break-through of the boundary layer, we consider the model of a perfectly plastic 
material. It is known [10] that if two plates with radius R are pressed together under 
normal force F and separated by a layer of material with low limiting shear stress 0τ , a 
film remains with thickness 

 
3

02
3

Rh
F

π τ
= . (5.4) 

According to the rules of MDR [108], the elastic body is modeled as a series of parallel 
springs with the normal stiffness *c E x∆ = ∆ , where x∆ is the discrete step (Fig. 5.6). The 
force on each spring is defined as  

 ( ) ( )*
i if x E x z x= ⋅∆ ⋅∆ . (5.5) 

Here z∆ is the displacement of indentation. In the reduced model Eq. (5.4) is written as  
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l
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Dh
F

πτ
= . (5.6) 

Here lD is the local contact length and equal to x∆ times the number of contacting points 

and lF is the normal force on this local area and equal to *
l iF E x z= ∆ ∆∑  from Eq. (5.5). 

For each "geometrical contact" if the value lh  calculated according to Eq. (5.6) is smaller 

than a critical thickness of a boundary layer ch , it is defined that the layer is broken up 
and asperities are in intimate contact. The thickness of boundary layer due to adsorption 
and chemical reactions is about 1 10 nm  [109]. In the simulation we considered 

5 nmch =  and 6
0 10  Paτ = .  

In a single operation case, the change of total contact length on time is recorded as Fig. 
5.7(a). It is seen that at some moments there is no asperity in contact at all. Based on it a 
general contact condition in this operation case can be obtained from it, which is named 
the probability of boundary layer breakthrough in the thesis and calculated as time 
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percentage when real contact occurs. In a well lubricated condition, the probability is 
close to zero.  

 
Fig. 5.7 (a) Contact length over time, data extracted from MDR simulation; (b) electrical 
resistance over time from experiment data. Parameters: 800 N , 100 r min and 40 C° . 

5.3 Measurement 
We used a twin-disc test rig (Fig. 5.8) to validate the results obtained from simulation. 
Two identical cylinders (radius 0.05 mR = , width 0.01 mL′ = , roughness 0.2 mµ ) are 
pressed together and rotated at identical speeds, such that pure rolling occurs. Synthetic 
lubricant is constantly fed into the contact zone. We used Mobilgear SHC XMP 320, 
because it widely used in highly loaded wind turbine gear boxes. Its properties can be 
seen in Appendix A. The whole test setup can be heated to give stationary temperature 
for the rollers and the injected oil. 

We measured the electrical resistance between the two rollers for a range of operating 
parameters: The normal force was varied from 100  to 1600 N , rotation speeds from 86  
to 200 r min and temperatures from 40  to 80 C° . 
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Fig. 5.8 Experimental setup. The left hand side shows the overall test rig. Inside the aluminum 
block, there are two rollers, driven by external drive shafts. The lower block can be lifted 
pneumatically to exert a normal force. The right hand side shows a picture of the two rollers in 
contact without lubricant. 

Fig. 5.7(b) shows a typical sample of the time-dependent resistance measurement. It can 
be seen that the contact condition rapidly changes from states of good conductivity to 
very high resistance.  

In order to compare results quantitatively, we used the classical approach of contact 
probability [110]. We calculated the percentage of time, for which the electrical 
resistance was measured to be below 100 Ω . Whenever this is the case, we consider the 
surfaces to be in contact and the electrical current can flow through the contact spots, 
otherwise they are separated by a lubricant film. We compare this probability of contact 
to the simulated probability of boundary layer breakthrough from the 1D model. 

5.4 Results 
There are totally 125 operation cases in both simulation and measurement. Fig. 5.9 (a) 
shows the simulated breakthrough probability as a function of the temperature. In Fig. 5.9 
(b) the experimental contact time probability for the same scenarios are shown. For 
reason of clarity, not all cases are included. It can be seen that the contact probability 
increases with temperature and load but decreases with rotation speed in both 
investigations. Fig. 5.10 gives a direct comparison for the probability of boundary layer 
breakthrough between simulation and measurement. Good agreement can be found 
qualitavely and quantitatively in most cases. 
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Fig. 5.9 Comparison of boundary layer breakthrough between (a) simulation and (b) experiment.  

 
Fig. 5.10 Comparison of boundary layer breakthrough with all data. 

5.5 Summary 
The MDR was used to simulate the process of lubricated rolling contact between rough 
surfaces. A novel criterion for the breakthrough of the chemical or physical boundary 
layer was introduced, based on the assumption of perfectly plastic material behavior. 
Using this criterion, the breakthrough probability under different working conditions was 
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predicted and compared to experimental findings. The results obtained show good 
agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6  Fretting Wear  

This chapter presents the study of another tribological problem, fretting wear in the 
framework of the MDR. We deal with rotationally symmetric profiles. Due to oscillations 
with small amplitude, sliding occurs at the boundary of the contact area while the inner 
parts of the contact area may still stick. In a recent paper, Dimaki et. al. [1] proposed a 
numerically exact simulation procedure based on the method of dimensionality reduction 
(MDR). This drastically reduced the simulation time compared with conventional finite 
element simulations. The proposed simulation procedure requires carrying out the direct 
and the inverse MDR transformations in each time step. This is the main time consuming 
operation in the proposed method. However, solutions obtained with this method showed 
a remarkable simplicity of the development of wear profiles in the MDR-space.  

Now we utilize these results to formulate an approximate model, in which the wear is 
simulated directly in the one-dimensional space without using integral transformations. 
This speeds up the simulations of wear by further several orders of magnitude.  

The work in this chapter appears in the paper [62] (Li, Q., Filippov, A. E., Dimaki, A. V., 
Chai, Y. S. & Popov, V. L. Simplified simulation of fretting wear using the method of 
dimensionality reduction. Phys. Mesomech. 17 (2014)). My contribution to [62] (in 
accordance with the content of this chapter) is the following: Popov VL, Filippov AE and 
Li Q proposed the simulation procedure in section 6.4 including Eq. (6.11) to Eq. (6.15). 
Dimaki AV and Li Q designed the initial program code. Li Q carried out the numerical 
calculation and prepared figures including Fig. 6.1 to Fig. 6.3. Popov VL and Li Q 
contributed in preparing the manuscript [62]. All authors of [62] reviewed the manuscript 
[62]. 

6.1 Introduction 
Fretting wear occurs in contacts subjected to oscillations with small amplitude. It is one 
of the causes for malfunctioning of engineering components, for example, coupled 
flanges, gears or bearings on a shaft. In theoretical modeling of wear, very often an 
equation is used which states that the wear volume V∆  is proportional to the normal 
force NF , the relative tangential displacement xu  of the contacting bodies and inversely 

proportional to the hardness 0σ : 

 
0

N xF uV k
σ

∆ = . (6.1) 

This wear equation was suggested already in 1860 by Reye [43], and was later derived 
and experimentally justified for abrasive [45] and adhesive wear [46] (derivations see 
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also in [10]). To describe the detailed changes of form due to wear, the wear law (6.1) is 
often formulated as local relation  

 
0

( , ) ( , )( , ) xp x y u x yh x y k
σ

∆ = , (6.2) 

where h∆  is the linear wear, ( , )p x y  the local pressure and ( , )xu x y  the local relative 
displacement.  

Application of the local rule (6.2) requires solving the contact problem for any current 
configuration. The main part of the literature on theoretical modeling of fretting wear is 
devoted to numerical solution of the contact problem using finite element or boundary 
element programs (see e.g. [49]) and implementation of the Reye-Archard-Khrushchov 
law in them. In the case of rotationally symmetric profiles, the simulation can be 
substantially speeded up by solving the contact problem with the MDR [108] as it was 
done in [1]. In the paper [1], the iterative procedure for the simulation of wear based on 
the exact MDR-based solution of the three-dimensional contact has been presented. In 
this procedure, the contact problem is solved for the one-dimensional equivalent system, 
which is then transformed back to three-dimensions to calculate wear. This requires 
applying the direct and inverse MDR-transformation in each step of simulation. The 
resulting procedure is orders of magnitude faster than the corresponding boundary-
element programs, but still too slow to be used as an interface in larger dynamical 
programs. In the present study we suggest an even simpler approximate method in which 
the solution of the contact problem and the calculation of wear are both carried out in the 
one-dimensional space.  

We first briefly recapitulate the main steps of the method of dimensionality reduction, 
then analyze the numerically exact solutions obtained in [1] and suggest an empirical 
procedure for imitating them directly in the one-dimensional MDR-space. Finally, the 
resulting wear profiles obtained by the numerically exact method of [1] and the 
simplified method proposed are compared. 

6.2 MDR for rotationally symmetric profile 
The main steps of the MDR are described in Chapter 1. Given a rotationally symmetric 
three-dimensional profile ( )z f r= , the equivalent one-dimensional profile ( )g x  can be 
determined by Eq. (2.4). The inverse transformation is given by Eq. (2.5). 

The profile ( )g x  is pressed to a given indentation depth d  into an elastic foundation 
consisting of independent springs with spacing x∆  whose normal and tangential stiffness 
is given by  
 * *,      z xk E x k G x= ∆ = ∆ , (6.3) 
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We assume that the contacting materials satisfy the condition of “elastic similarity” 

1 1 2 2(1 2 ) / (1 2 ) /G Gν ν− = −  which guarantees the decoupling of the normal and 
tangential contact problems [2]. The resulting vertical displacements of springs are given 
by ( ) ( )zu x d g x= − . The contact radius a  is given by the condition ( ) 0zu a =  or  

 ( )g a d= . (6.4) 

If the normal displacement of a single spring is equal to ( )zu x  and tangential 

displacement to ( )xu x , then the normal and tangential spring forces are equal to  

 * ( )z zF E u x x∆ = ∆    and  * ( )x xF G u x x∆ = ∆  (6.5) 

correspondingly. The total normal load NF  can be calculated as 

 * *

0

( ) 2 [ ( )]
a a

N z
a

F E u x dx E d g x dx
−

= = −∫ ∫ . (6.6) 

If the profile is moved tangentially by (0)
xu , the springs will be stressed both in the normal 

and tangential direction, and the radius c  of the stick region will be given by the 
condition that the tangential force  (0)

x x xF k u∆ =  is equal to the coefficient of friction µ  

multiplied with the normal force: ( ) ( )z z zF c k u c∆ =  which results in the relation 

 ( )* (0) * ( )xG u E d g cµ= − . (6.7) 

As shown in [63], this result reproduces correctly the relations in the corresponding three-
dimensional contact. 

6.3 Limiting shape of wear profile and development of intermediate 
shapes 

If profile is subjected to oscillations with a small amplitude, then the inner part of the 
contact area with the radius c  given by Eq. (6.7) will sticking while the outer regions will 
slip [76][77][111]. In these outer regions of the contact area, wear will occur. If 
oscillations continue very long time, the wear profile will be tending towards a limiting 
shape [112]. This shape was calculated in the recent paper [60]. In particular, it was 
shown that the limiting form of the one-dimensional MDR-image has the form 

 0( ),   for 0
( )

,        for  
g x x c

g x
d c x a∞

< <
=  < <

 (6.8) 

and the correspondent shape of the three-dimensional profile the form  
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Here the subscript ∞  and 0 indicate the limiting and initial form of profile.  
The contact radius in the limiting state, ( )a c , is determined by the condition 

 0
02 2 2 2

0

2 ( ) 2 1d d ( )
c a

c

g x x d x f a
r x r xπ π

+ =
− −∫ ∫ . (6.10) 

Development of the profiles between the initial and the limiting states calculated using 
the method proposed in [1], is illustrated with one example in Fig. 6.1. 

 
Fig. 6.1 Development of the three-dimensional profile (a) and the corresponding one-dimensional 
MDR-image (b) due to fretting wear under conditions of constant approach of bodies (that is the 
indenter is pressed into the elastic half space by the indentation depth 0d  and then oscillates 
horizontally at this constant height). The amplitude of oscillations was chosen such that 

00.55c a= -The dimensionless number of cycles (as defined by Eq.(6.15)) was 4N = , 10 , 20 , 
36  and 70  as indicated by arrow.  

6.4 Approximate rule for the worn shape 
The development of the shape of one-dimensional images as shown in Fig. 6.1b looks 
simpler than that of true three-dimensional profile. It is easy to "mimic" this development 
if we note that the main tendency of the profile in Fig. 6.1b is just tending to the constant 
value of " "d everywhere in the interval c x a< < . We can try to simulate this 
development by the equation 
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 *

0

d ( ) ( ( ) ),    for  ( )
d x

g x k E g x d c x a c
u a

ξ
δ σ

= − − < < , (6.11) 

where ( )xu xδ  is the relative displacement of the bodies in contact, ( )a c  is solution of Eq. 

(6.10) and ξ  is a dimensionless fitting parameter of the order of unity. As *( ( ) )E g x d−  

is the linear force density, and *( ( ) ) /E g x d a−  has the order of magnitude of pressure, 
this Eq. can be interpreted as a one-dimensional modification of the wear law (6.2). 
However, we would like to stress, that this equation should not be over interpreted as a 
real “wear equation”, as we have to do with the formal one-dimensional MDR-image and 
not with the actual three-dimensional profile. For example, according to (6.11), the “wear 
rate” outside the contact radius (but inside the radius a ) is non-zero, and even negative!  

The procedure for the determination of the relative displacement ( )xu xδ  in Eq. (6.11) is 
described in the following. Assume that the upper body oscillates periodically with a 
frequency ω  and an amplitude (0)U : 

 (0) (0) cos( )xu U tω= . (6.12) 

As long as the tangential elastic force ( )x x xF k u x∆ =  of a spring is smaller than the local 

maximum friction force ( )zF xµ∆ , the indenter sticks to the substrate; therefore, the 
spring displacement coincides with the displacement of the oscillating indenter. After 
achieving the maximum value of ( )zF xµ∆ , the tangential force does not increase further, 

so that the condition ( ) ( )x x zk u x F xµ∆ = ∆  is fulfilled, and the bodies slide against each 
other. These conditions can be written in the form: 

 

(0)( ) ,    if ( ) ( )
( )( ) , when sliding

x x x x x z

z
x

x

u x u f k u x f x
f xu x
k

µ
µ

∆ = ∆ = ∆ <

 = ± ∆

. (6.13) 

This equation determines unambiguously the tangential displacement ( )xu x  of any spring 

and thus the incremental change ( )xu x∆  of this displacement at any time. The difference 
(0)( ) ( )x x xu x u u xδ = ∆ − ∆  is then the relative displacement of the indenter and substrate 

which has to be used in the one-dimensional “wear equation” Eq. (6.11). Outside the 
contact, (0)( )x xu x uδ ≡ ∆ .  

For presentation of results, we will use the following dimensionless variables. Let us 
denote the indentation depth of the initial profile with 0d  and the corresponding initial 

contact radius with 0a . All vertical coordinates will be normalized by 0d  and the 

horizontal coordinates by 0a . Thus, we will use the following dimensionless variables: 
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0 0

0 0

0

/ ,     /
/ ,     /
/

f f d d d d
r r a x x a
c c a

= =
= =
=

. (6.14) 

The dimensionless number of cycles is defined as   

 
0

NN
N

=    with 0 0
0 (0) *4

aN
U kE

σ
= . (6.15) 

For illustration of the procedure described by Eq. (6.11), (6.13) let us consider the cases 
of a parabolic and a conical indenter.  

6.4.1 Case of parabolic indenter 

For the case of parabolic indenter, the initial three dimensional profile is 
2

0( ) / (2 )f r r R= , where R  is the curvature radius. We consider the situation when this 

profile is indented in an elastic half-space by the indentation depth 0d  and then oscillates 
at this constant height. The MDR-transformed one-dimensional profile, according to (2.4), 
is given by 2

0( )g x x R= . The initial contact radius is given by the condition 0 0( )g a d= . 
During the oscillation the stick region is determined by Eq. (6.7) and the contact radius is 
calculated as [60]  

 
2

( ) 2
2 2
c ca c  ≈ + − 

 
. (6.16) 

Now the change of the one-dimensional profile due to wear is calculated according to Eq. 
(6.11) for different number of cycles and the corresponding three-dimensional profiles 
are calculated by the inverse MDR-transformation (2.5) . The resulted profiles are shown 
in Fig. 6.2 (b) and (a) by solid lines. In the same figure, the results produced by the 
numerically exact procedure described in [1] are shown for comparison. The best fitting 
with exact results is achieved for 0.8ξ = . One can see, that the approximate procedure 
reproduces very accurately results for the three-dimensional profile for any number of 
wear cycles – in any case with a better precision as the typical accuracy of wear 
experiments and of the used Reye-Archard-Khrushchov wear law.  
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Fig. 6.2 Comparison for parabolic indenter: (a) three-dimensional profile obtained with Eq. (6.11) 
and subsequent inverse transformation, Eq. (2.5) (solid lines) and (b) one-dimensional profile 

( )g x  calculated according to Eq. (6.11) (solid lines) for different number of oscillation cycles 
with 0.8ξ = . The amplitude of tangential oscillation was chosen so that 00.455c a= . (c) Three-
dimensional profile obtained with Eq. (6.11) with smaller amplitude of tangential oscillation 

( ) ( )0 00.8U U′ =  ( 00.652c a= ) and (d) larger amplitude ( ) ( )0 01.2U U′ =  ( 00.41c a= ), where ( )0U  is 
the amplitude for the case in Fig. 6.2(a). Dashed lines are three- and one-dimensional profiles 
calculated with the numerically exact procedure described in [1]. The number of oscillation 
cycles 2N = , 8 , 18 , 32 , 72  as indicated by arrow, and the last line ( 72N = ) in Fig. 6.2(a) (c) 
(d) almost coincides with the limiting profile from analytical solution (dot line) [60]. 

6.4.2 Case of conical indenter 

For the case of conical indenter, the initial three-dimensional profile is 0( ) tanf r r θ= . 

The corresponding MDR-transformed one-dimensional profile is 0( ) tan
2

g x xπ θ= . The 
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initial contact radius is given by the condition 0 0( )g a d= . During the oscillation the stick 

region is determined by Eq. (6.7) and the outer wear radius ( )a c is calculated by solving 

equation [60] 

 2 2arcsin
2

c a c
a

π  − = − 
 

. (6.17) 

The one- and three-dimensional profiles obtained by solving Eq. (6.11) are shown in Fig. 
6.3a and Fig. 6.3b by solid lines. In the same figure, the results of numerically exact 
procedure of paper [1] are also shown for comparison (dash lines). As for the parabolic 
profile, the three-dimensional shapes obtained by the present approximate procedure 
reproduce with good accuracy the results obtained by the numerically exact procedure of 
paper [1]. However, the calculating time is reduced by the factor of 600.  
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Fig. 6.3 Comparison for conical indenter: (a) three-dimensional profile obtained from ( )g x by the 
inverse transformation, Eq. (2.5) (solid lines) and (b) one-dimensional profile ( )g x  calculated 
according to Eq. (6.11)  (solid lines) for different number of oscillation cycles with 0.8ξ = . The 
amplitude of tangential oscillation was chosen so that 00.21c a= . (c) Three-dimensional profile 
obtained with Eq. (6.11) with the amplitude of tangential oscillation ( ) ( )0 00.8U U′ =  ( 00.368c a= ) 
and (d) ( ) ( )0 00.6U U′ =  ( 00.522c a= ), where ( )0U  is the amplitude for the case in Fig. 6.3 (a). 
Dashed lines are three- and one-dimensional profiles according to [1]. The number of oscillation 
cycles is 2N = , 8 , 18 , 32 , 72  as indicated by arrow, and the last line ( 72N = ) in Fig. 6.3(a) 
(c) (d) almost coincides with the limiting profile from analytical solution (dot line) [60]. 

6.5 Summary 
In this Chapter, we suggested a simplified numerical procedure for simulation of wear of 
rotationally symmetric profiles, which is approximately 600 times faster than the fast 
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MDR-based, numerically exact procedure described in [1]. Taking into account the low 
precision of the laws of wear, we conclude that this simplified procedure will by more 
than adequate for any practical simulation. Because of extreme fastness of the procedure, 
it can be used as a “contact and wear interface” in larger dynamic simulations. 

 

 

 

 



Chapter 7  Conclusions and Outlook 

7.1 Conclusions 
In spite of being a relative new computational tool, method of dimensionality reduction 
has been developed fast and was validated for different contact problems in various 
analytical and numerical ways. Because of the simplicity and sharply reduced computing 
time, this method has been primly extended to various fields of contact mechanics and 
tribology. On the basis of this method, the studies of three hot topics in tribology have 
been presented in the thesis after a short review on fundamentals of the MDR.  

We first studied the friction of elastomer in contact with a rigid rough “surface”. To 
achieve a general law, the planar rough profile was initially considered. We have found a 
general law of friction giving the coefficient of friction as function of all material, 
loading, and roughness parameters: sliding velocity, normal load, shear modulus, 
viscosity, rms roughness, rms gradient and system size and form. The coefficient of 
friction could be formulated in a closed analytical form. 

Apart from the analytical solution, a master curve procedure for the dependence on the 
normal force was suggested and also confirmed by the measurements in the tribological 
laboratory of the Department of System Dynamics and the Physics of Friction.  

Further, the kinetics of the coefficient of friction of elastoemrs has been studied. The 
typical behavior which appears also frequently in experiments of other materials was 
observed: due to abrupt changes of sliding velocity, the coefficient of friction jumps at 
the moment of velocity changing and then relaxes to a new stationary value. Finally the 
dependence of jump of the friction and the relaxation time are formulated from the 
numerical results. 

Mixed lubrication is more complicated because of both presence of both dry asperity 
contacts and lubricated contact in the other contact areas. We built a reduced simple 
model of mixed boundary lubrication which combines results from EHL and elastic 
rough contact of MDR. The experimental results showed good agreement with numerical 
solution. 

At last we presented the study on fretting wear of a rotationally symmetric profile. On the 
basis of the results from Dimaki et. al [1] who give exact numerical procedures allowing 
fast simulation using the MDR, we put forward an even much faster approximate model. 

7.2 Future work 
The contribution to study and application of MDR in contact mechanics is growing, for 
example recently published research on partial-slip friction of rough surface, shakedown 
limits for elastic rolling contact [114] etc. There are still lots of possibilities in the frame 
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of the MDR, but we address here only some that are directly related to the topics in this 
thesis.  

In the thesis, the elastomer was modeled with Kelvin body which has only one single 
relaxation time. In real elastomers, the relaxation occurs over several orders of magnitude 
of time. A better model of viscoelasticity is so-called Prony series which consists of a 
spring and a series of Maxwell elements assembled in parallel.  

One more factor of effect on friction of elastomer can be also considered – temperature. 
In the book of Popov and Heß [63], the method is described how the local heating in 
contacts can be taken into account in the framework of the MDR. During the contact 
between elastomer and rigid body, the energy loss by normal force on the elements 
(dashpots) of foundation must balance the heat energy flow which can be calculated with 
the formulation presented in the book.  

With the help of analysis of fretting wear in the previous chapter, the problem of wear 
under gross slip can be also studied. In this case, tangential slip differently occurs at the 
whole contact area. During the sliding on rigid substrate the wear shape of elastic body 
can be calculated with the same principles of the MDR.  

 



Appendix A  Property of Oil Used in Experiment 

The oil type in experiment is SHC XMP 320 [115]. It is widely used in wind turbine 
especially high load unit. The property is detailed in Table A.1. 

Table A.1 Property of oil used in experiment 

ISO Viscosity Grade 320 

cSt @ 40º C 335 

cSt @ 100º C 38.3 

Viscosity Index, ASTM D 2270 164 

Pour Point, ºC, ASTM D 97 -38 

Flash Point, ºC, ASTM D 92 242 

Specific Gravity @15.6º C kg/l, ASTM D 4052 0.860 

Fail Stage 10 

GFT-Class High 

FZG Scuffing, DIN 51345 (mod) A/16.6/90, 
Fail Stage 14+ 

4-Ball Wear test, ASTM D 4172, mm (Mod 
1,800 RPM, 20kg, 54º C, 60 Minutes) 0.25 

Rust protection, ASTM D665, Sea Water Pass 

Water Seperability, ASTM D 1401,Time to 
40/37/3 at 82º C, minutes 10 

Foaming Characteristics, ASTM D 892,Seq. II, 
Tendency/Stability, ml/ml 0/0 
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Appendix B  Solution of EHL for Line Contact 

During the study of mixed lubrication in Chapter 5, we tried also to numerically solve the 
EHL contact. In this Appendix we present the short fundamentals. Ertel was the first one 
who combined the Reynolds Equation and Hertzian Contact theory and predicted the 
EHL oil film thickness between two rollers in1939 [116] [117]. In his approximate theory 
the surfaces are assumed to be parallel and a reduced pressure was employed so that the 
one-dimensional Reynolds equation is independent on the viscosity of lubricant. Later 
other researchers, Dowson and Higginson (1959, 1966) [118] [119], Houpert and 
Hamrock (1986) [120] and so on, developed other approaches to solve the complex EHL 
problem and found a more accurate solution.  

B.1 Basic equations 
Reynolds equation describes the relation between pressure distribution and film thickness 
as a function of lubricant viscosity, density and velocity in the regime of hydrodynamic 
lubrication. The standard form of Reynolds equation for line contact is expressed as 

 ( )3 dd d 12
d d d

hh p u
x x x

ρρ
η

 
= 

 
, (B.1) 

with x  coordinate, h  film thickness, p  pressure, u  the sum velocity of both surfaces in 
x  directions, ρ  lubricant density, η  absolute viscosity of lubricant. In order to solve 
Reynolds equation, the following two boundary condition and load balance must be met: 
firstly,  pressure and pressure derivative are zero at the edges of contact area  

 ,0
in outx x x

pp
x =
∂

= =
∂

; (B.2) 

secondly, the integration of pressure over the whole contact area is equal to external 
normal force 

 F pdx= ∫ . (B.3) 

It is not easy to obtaine an analytical solution of Eq. (B.1), while two further characters, 
elastic deformation of contacting surfaces and pressure-viscosity effect, play an important 
role to high pressure on the contact area. We list these equations of 

 pressure - viscosity 0
peαη η= ; (B.4) 

 viscosity - temperature ( )0 0exp T Tη η β= − −   ; (B.5) 
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 density - pressure 
9

0 9

0.6 101
1 1.7 10

p
p

ρ ρ
−

−

 ×
= + + × 

, (B.6) 

where 0η  is viscosity at atmosphere pressure and temperature 0T , α  pressure-viscosity 

coefficient, β  viscosity-pressure coefficient, 0ρ  density at atmosphere pressure. 

The surfaces of an elastic cylinder and a rigid plane are separated by the lubricant film 
and the distance between them compose of the geometrical separation and the elastic 
deformation of cylinder as seen in Fig. B.1. 

Under the assumption that the contact area is much smaller than the radius of cylinder, 
the geometrical gap can be simplified as 

 ( )
2

0 2
xh x h
R

≈ + . (B.7) 

 
Fig. B.1 (a) Geometrical distance and (b) elastic deformation between a cylinder and a plane. 

According to Hertz contact theory, the elastic deformation at point x  is calculated as 

 ( ) ( ) ( )2

1

22 s

s
x p s In x s ds

E
δ

π
= − −∫ . (B.8) 

Together with (B.7) and(B.8), the oil film thickness between an elastic cylinder and an 
rigid plane is  

 ( ) ( ) ( )2

1

2
2

0
2

2
s

s

xh x h p s In x s ds
R Eπ

= + − −∫ . (B.9) 

Considering all the effects (B.4) - (B.6) and (B.9), with the boundary condition (B.2) and 
(B.3), the Reynolds equation can be solved numerically.  

B.2 Numerical solution 
For the simplification of analysis, the following dimensionless parameters are often 
proposed: 
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 Load parameter :   wW
ERL

=  (B.10) 

 0Speed parameter :   uU
ER
η

=  (B.11) 

 Material parameter :   G Eα=  (B.12) 

 2Film thickness :   hRH
a

= . (B.13) 

Thus the dimensionless film thickness can thus be written as a function of the three 
parameters 

 ( ), ,H f W U G= . (B.14) 

With definitions of the other dimensionless parameters 
0

pP
p

= , xX
a

= , 
0

ηη
η

= , 
0

ρρ
ρ

= , 

the basic equations in dimensionless form are written as following.  

a. Reynolds equation (B.1) 

 ( )3 2

2

3( )
4

d Hd H dP U
dX dX W dX

ρρ π
η

=  (B.15) 

with boundary condition: ,0
in outX X X

PP
X =
∂

= =
∂

. 

b. Load balance (B.3) 

 
2

PdX π
=∫ . (B.16) 

c. Lubricant viscosity (B.4)   

 0p Peαη = , (B.17) 

d. Lubricant density  

 
9

0
9

0

0.6 101
1 1.7 10

p P
p P

ρ
−

−

×
= +

+ ×
. (B.18) 

e. Film thickness (B.9) 

 ( ) ( ) ( )2

1

22
0

1 1
2 2

S

S
H X H X P S In X S dS

π
= + − −∫ . (B.19) 

The elastic deformation ( )Xδ in discrete form can be calculated numerically as  
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1

2
N

i ij j
j

K Pδ
=

= − ∑ , (B.20) 

With matrix 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }

0.5 0.5 0.5 0.5ln 1 ln 1

0.5 ln 0.5 1 0.5 ln 0.5 1

ij i j i j i j i jK X X X X X X X X

X i j i j X i j i j X

+ + − −= − − − − − − −

   = ∆ ⋅ − + − + ⋅∆ − − − − − − ⋅∆ −   
. 

Observe from Reynolds equation that ρ ,η  and h have an influence on pressure. 
Normally the lubricant density changes not much with pressure, maximum by 33%, in 
some simulations its influence was neglected. But viscosity varies by several orders of 
magnitude as lubricant through the contact area, and 3h in equation lets the pressure be 
very sensitive to variation of film thickness. For these reasons it is difficult to get 
convergence of solution and more and more accurate numerical methods were developed, 
for example Forward Iterative method [121], Inverse Solution method [122], Newton-
Raphson method, Multigrid method [123] and Effective Influence Newton method [124] 
[125]. The main procedures of numerical simulation with these methods are shown in Fig. 
B.2. 

 
Fig. B.2 Flow chart of program. 
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Using Newton-Raphson method we programmed EHL line contact in Matlab. Fig. B.3 is 
the result for one case. From that It is found that oil film thickness 0h  over the Hertzian 
area is not constant, it is almost uniform but at the outlet edge has a decrease, the minimal 
thickness minh  is about 75% of central thickness 0h , where the pressure rises abruptly. 
These two EHL typical characters, thickness decrease and pressure spike at the outlet, 
were also proved by many experiment. 

 
Fig. B.3 Film thickness and pressure distribution for EHL line contact. 

(a) Formulas of film thickness 

From curve fitting of many groups of numerical results, the formula of dimensionless 
film thickness as a function of dimensionless load, speed and material parameter was 
proposed by many researchers, such as Dowson-Higginson, Wymer and Hamrock-
Jacobson etc. A widely used one set from Pan and Hamrock (1989) [107] is formulated as 
following: 

Minimum film thickness in  

 0.128 0.694 0.568min
mindimensionless form   1.714hH W U G

R
−= =  (B.21) 

 
( )

( )

0.6940.568 0.434
0

min 0.128

1.806
dimensional form  

u R
h

w L
α η

=  (B.22) 

Central film thickness in 

 0.166 0.692 0.4700
0dimensionless form  2.929hH W U G

R
−= =  (B.23) 

 
( )

( )

0.6920.470 0.474
0

0 0.166 0.056

2.992
dimensional form  

u R
h

w L E
α η

=  (B.24) 
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From these relations above it can be seen noted that the film thickness is significantly 
affected by rotation speed and viscosity of lubricant, but slightly by load, and the 
elasticity effect is very weak. The film thickness is almost uniform over the Hertzian 
contact area. The area of decrease of thickness is very small and so that it was neglected 
in our simulation. 
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