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Abstract

Tribology focuses on the study and application of friction, wear and lubrication of
interacting surfaces. In the present work, three areas of tribological applications are
studied: (a) elastomer friction, (b) mixed and boundary lubrication, and (c) fretting wear.
In analyzing above problems, we make use of the Method of Dimensionality Reduction
(MDR), which enables to essentially simplify the theoretical and numerical analysis of
tribological problems by mapping three-dimensional problems to one-dimensional ones.

(a) Elastomer friction. The friction between an elastomer and a hard rough substrate can
be attributed to energy dissipation in the elastomer due to internal friction in the material.
In the present work, the elastomer is modeled as a simple Kelvin body and the rigid
surface as a plane or curved surface with a superimposed self-affine fractal roughness
having a Hurst exponent in the range from 0 to 1. The resulting frictional force as a
function of velocity always shows a typical structure: it first increases linearly, achieves a
plateau and finally drops to another constant level. The coefficient of friction on the
plateau depends only weakly on the normal force. At lower velocities, the coefficient of
friction depends on two dimensionless combinations of normal force, sliding velocity,
shear modulus, viscosity, rms roughness, rms surface gradient, the linear size of the
system and its shape, as well as the Hurst exponent of roughness. The physical nature of
different regions of the law of friction is discussed and an analytical relation is suggested
to describe the coefficient of friction in a wide range of loading conditions. Based on the
obtained analytical relations, a master curve procedure is suggested, allowing to
“construct” the complete dependence of the coefficient of friction on velocity and normal
force on the basis of partial empirical data. Furthermore, a study of the kinetics of the
coefficient of friction of an elastomer due to abrupt changes of sliding velocity is
presented. Numerical simulations reveal the same qualitative behavior which has been
observed experimentally on different classes of materials: the coefficient of friction first
jumps and then relaxes to a new stationary value. Parameters of the jump of the
coefficient of friction and the relaxation time are determined as functions of material and
loading parameters. Depending on velocity and the Hurst exponent, relaxation of friction
with characteristic length or characteristic time is observed.

(b) Mixed lubrication. A new model of mixed and boundary lubrication is proposed in the
framework of the MDR. The dynamic lubricated rolling contact with creep between
rough surfaces is simulated based on the equations of elastohydrodynamic lubrication
(EHL). In order to account for the breakthrough of the boundary layer in micro contacts,
an additional criterion is imposed. For comparison, a twin-disc test rig is set up to
measure the electrical resistance between two lubricated rolling surfaces under different
normal forces, rotation speeds and temperatures. We investigate the probability of
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boundary layer breakthrough for both experiment and simulation and find good
agreement.

(c) Fretting wear. We investigate fretting wear of rotationally symmetric profiles.
Proceeding from the recently suggested exact method to simulate wear within the MDR
([1] Dimaki et. al., Int. J. of Solids and Structures, 2014), we suggest an even faster
numerical method which speeds up the calculation of wear by further several orders of
magnitude.



Zusammenfassung

Die Tribologie befasst sich mit der wissenschaftlichen Beschreibung und Anwendung
von Reibung, Schmierung und Verschleil zwischen kontaktierenden Oberfldchen. In der
vorliegenden Arbeit werden drei verschiedene tribologische Anwendungen untersucht: (a)
Elastomerreibung, (b) Misch- und Grenzschmierung, und (c) Verschleil durch Fretting.
Bei der Analyse der oben genannten Probleme verwenden wir die Methode der
Dimensionsreduktion (MDR), die eine wesentliche Vereinfachung der theoretischen und
numerischen Analyse tribologischer Probleme ermdoglicht, indem dreidimensionale
Probleme auf eindimensionale abgebildet werden.

(a) Elastomerreibung. Die Reibung zwischen einem Elastomer und einem rauen starren
Korper kann auf die Energiedissipation in dem FElastomer durch innere Reibung
zuriickgefiihrt werden. In der vorliegenden Arbeit ist das Elastomer als Kelvin-K&rper
modelliert und die starre Oberflache als eine ebene oder gekriimmte Fliche mit einer
iiberlagerten, selbstaffinen, fraktalen Rauheit mit einem Hurst Exponent im Bereich von
0 bis 1. Die Reibungskraft als Funktion der Geschwindigkeit zeigt immer einen typischen
Verlauf: Sie steigt zundchst linear an, erreicht dann ein Plateau und féllt schlieBlich auf
einen anderen, konstanten Wert ab. Auf dem Plateau hingt der Reibungskoeffizient nur
schwach von der Normalkraft ab. Bei niedrigen Geschwindigkeiten ist er als Funktion
von zwei dimensionslosen Groflen darstellbar, die Kombinationen von Normalkraft,
Geschwindigkeit, Schubmodul, Viskositdt, mittlerer Rauheit, Oberflachengradienten,
Systemgrofle, Systemform und Hurst Exponent sind. Die physikalische Natur des
Reibungsgesetzes in den verschiedenen Bereichen wird diskutiert und eine analytische
Beziehung gegeben, die den Reibungskoeffizient in einem breiten Intervall von
Eingangsgroflen beschreiben kann. Auf der Grundlage einer so erhaltenen analytischen
Formel wird ein Master-Kurven-Verfahren vorgestellt, mit dem die vollstindige
Abhéngigkeit des Reibungskoeffizienten von Geschwindigkeit und Normalkraft
konstruiert werden kann auf der Grundlage von wenigen empirischen Daten. Untersucht
wird aullerdem die Kinetik des Reibungskoeffizienten von Elastomeren unter Einwirkung
einer abrupten Anderung der Gleitgeschwindigkeit. Numerische Simulationen zeigen das
gleiche qualitative Verhalten, das experimentell bei verschiedensten Materialien
beobachtet wurde: der Reibungskoeffizient steigt kurz an und ndhert sich dann einem
neuen stationdren Wert. Die EingangsgroBen des Sprungs des Reibungskoeffizienten und
der Relaxationszeit werden als Funktion von Material und Belastungsparametern
bestimmt. Je nach Geschwindigkeit und Hurst Exponent kann eine Relaxation der
Reibung mit charakteristischer Lange oder charakteristischer Zeit beobachtet werden.
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(b) Mischreibung. Ein neues Modell fiir Mischreibung und Grenzschmierung im Rahmen
der MDR wird vorgestellt. Der dynamische, geschmierte Rollkontakt mit Gleiten
zwischen rauen Oberflichen wird simuliert auf der Grundlage von Rechnungen der
elastohydrodynamischen Schmierung (EHL). Um dem Durchbruch einer Grenzschicht im
lokalen Mikrokontakt Rechnung zu tragen, wird ein zusitzliches Kriterium eingefiihrt.
Zum Abgleich dient ein Zweischeiben-Priifstand, bei dem der elektrische Widerstand
zwischen zwei geschmierten Rollflichen unter verschiedenen Normalkriften, Drehzahlen
und Temperaturen bestimmt werden kann. Die relative Hiufigkeit eines Grenzschicht-
Durchbruchs wird in Experiment und Simulation untersucht, wobei sich eine gute

Ubereinstimmung zeigt.

(c) Verschleil durch Fretting. Wir untersuchen den Verschlei3 durch Fretting von
rotationssymmetrischen Profilen. Ausgehend von der vor Kurzem vorgeschlagenen,
exakten Methode, um den Verschlei3 mittels MDR zu simulieren ([1] Dimaki et. al., Int.
J. of Solids and Structures, 2014), prasentieren wir eine noch schnellere numerische
Methode, die VerschleiBberechnungen um mehrere GroBenordnungen beschleunigen
kann.
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Chapter 1 Introduction

1.1 Contact mechanics and tribology

As defined by Johnson [2], “the theory of contact mechanics is concerned with the
stresses and deformation which arise when the surfaces of two solid bodies are brought
into contact.” One of the most prominent contributions to contact mechanics is the classic
work of Heinrich Hertz “Uber die Beriihrung fester elastischer Kérper” in 1882 [3]. Hertz
solved the contact problem for two elastic solids with curved surfaces. Using an analogy
with known solutions in potential theory of electrostatic problems, he developed a theory
to calculate the contact area and stress between two surfaces pressed against each other.
This theory still remains one of the bases of engineering design, for example, of the
coupling parts in mechanical engineering such as bearings and gears. The Hertz theory
did not consider Van der Waals interactions of contacting bodies; thus the effects of
adhesion were not taken into account. In 1771, almost one hundred years later, Johnson,
Kendall and Roberts extended the Hertz theory by including the adhesive interactions [4].
Almost at the same time a similar theory, known as DMT (Derjaguin, Muller and
Toporov) theory was proposed [5] where Van der Waals interactions are taken into
account outside the elastic contact region. After fierce discussion, both theories were
proved correct but for very special limits [6][7].

This work deals with different aspects of tribology. The term “tribology” was introduced
by Perter Jost in 1966 and is defined usually as “the science and technology of interacting
surfaces in relative motion and of related subjects and practices” [8]. It covers and
connects a large range of knowledge from theory of elasticity and plasticity,
viscoelasticity, material science, fluid mechanics and so on. This very broad scope
embraces the study and application of friction, wear and lubrication. Tribological
phenomena occur everywhere in our daily life. A simple example is walking: the friction
between our feet (or shoes) and road pushes us to move forward. Without friction we
cannot move on, write, drive and have a meal. Other than the name “tribology”, the
tribological praxis is very old, as humans surely dealt with friction long before the
recorded history. Thousands years before Christ our ancestors have known the creation of
fire through the friction of wooden sticks. The Egyptians used liquid as a lubricant to
reduce the friction for the transportation of colossus. A prehistoric rock carving found in
Rodoy Island, Norway showed a skiing man about 4000 years ago (Fig. 1.1). In
mechanical engineering, tribology plays an essential role, especially for structure safety
and energy saving. Its application can be widely observed, such as rail-wheel contacts,
bearings, clutches, gaskets, brake pads and so on.
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Fig. 1.1 A stamp with ski symbol of prehistoric rock carving, c. 2000 BC.

Many examples show how early the human being dealt with tribology. However, the
scientific study of tribology is thought to begin with Leonardo da Vinci in the 15™
century, even if he did not publish his findings. In his diaries, he describes the law of
friction which could be formulated as two statements: (a) the frictional force is
proportional to the weight and (b) it is independent of contact area. Later many scientists
and mathematicians formalized the knowledge in tribology, including the often quoted
Amontons, Euler and Coulomb. Tribology includes a great variety of applications from
industrial applications to bionics, it considers processes an object from the nano- and
micro meter scale to the scale of technical plates. It is impossible to list all scientists and
their main works and the history of tribology, which can be read in detail in Dowson [9]
and Popov’s book [10]. Some more details to the history of tribology will be mentioned
in the following in connection with particular research areas of this work.

(a) Friction of elastomers

In description of history of elastomer friction, I follow partly the work [11] (Li, et. al.
Phys. Rev. Lett. 111, 034301, 2013) and [12] (..., Li et. al. Sci. Rep. 4, 3750, 2014). As
already have been mentioned above, friction is a phenomenon that people have been
interested in for thousands of years but its physical reasons are not clarified completely
yet. Not only is it still not possible to predict the frictional force theoretically, there are
also no reliable empirical laws of friction which would satisfy the needs of modern
technology. In practice, the simplest Amontons’ law of dry friction is usually used,
stating that the force of friction is proportional to the normal force. According to
Amontons, the coefficient of friction does not depend on the normal force and the contact
area. Amontons did not differentiate between the static and the sliding coefficients of
friction, nor even between different materials (he states that the ratio of the frictional
force to the normal force is “roughly” one third of the normal force, independently of the
contacting materials as long as they are not lubricated [13]). However, already Coulomb
knew that the coefficient of friction, even between the same material pairing, can change
by a factor of about four depending on the contact size and on the normal force [14]. As a
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matter of fact, there are no obvious reasons for the validity of Amontons’ law. On the
contrary, much effort has been made in the 1940’s to 60’s years to understand why
Amontons’ law is approximately valid [17][18]. In a more general context, the strong
violations of Amontons’ law were studied experimentally and theoretically in recent
papers [17][18]. Deviations from Amontons’ law can be due to macroscopic interfacial
dynamics [21]-[21] or they can be connected with the contact mechanics of rough
surfaces.

It is generally accepted that the surface roughness plays a central role in friction
processes since classical works by Bowden and Tabor . Greenwood and Tabor [22] have
shown that the friction of elastomers can be attributed to deformation losses in the
elastomer. In 1963, Grosch supported this idea by a series of experiments of friction
between rubber and hard surfaces with controlled roughness [23]. In the following years,
the basic understanding of the role of rheology [26] and of surface roughness [25][26] in
elastomer friction has been achieved. The load dependence of the elastomer friction was
studied experimentally by Schallamach in 1952 [27]. However, the dependence of the
sliding coefficient of friction on normal force was not studied in detail yet. Therefore, we
study the sliding friction of elastomers and formulate rules for constructing generalized
laws of friction beyond the regions of validity of Amontons’ law.

(b) Mixed and boundary lubrication

Stribeck curve is well known to describe the lubrication condition for the lubricated
sliding surfaces. It reflects the influence of viscosity 77, rotation speed v and load P on

the coefficient of friction. According to it, friction regimes for contact between lubricated
surfaces were categorized into four parts: boundary lubrication, mixed lubrication (or
partial lubrication), elastohydrodynamic lubrication (EHL) and hydrodynamic lubrication.

The coefficient of friction between lubricated surfaces in different conditions has become
an important topic of research since the lubricant testing in 1879 from Thurston who gave
the value of the coefficients of friction at different loads, speeds and temperatures. The
results showed clearly the minimum now known as the transition between the full
hydrodynamic lubrication and the partial lubrication with asperities interaction [28].
Later in 1902, Stribeck studied this variation of friction systematically as function of
speed for different loads [29]. After about 10 years Giimbel firstly plotted the friction
coefficient against the dimensionless lubrication parameter 7v/P with Stribeck’s

experiment data and he divided the friction regimes into boundary, mixed and
hydrodynamic lubrication [30] With the development of investigation on EHL, Dowson
proposed a new categorization of lubrication regimes in Stribeck curve as seen in Fig. 1.2
(below) [31]. Nowadays the Stribeck curve is still being studied numerically and
experimentally for different rough surfaces [32].
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Fig. 1.2 Schematic Stribeck curve and partitioning into different frictional regimes according to
Gilimbel (top) and Dowson (bottom).

Comparing with the others, mixed lubrication is most complicated because it is necessary
to handle both hydrodynamic lubrication and asperity contacts. Here I describe the
historical research on mixed lubrication following the introduction of work [33] (Li et. al.
FACTA Univ. Ser. Mech. Eng. 11, 123-131, 2013). The earliest way of modeling mixed
lubrication was considering the influence of roughness in hydrodynamic systems where
the film thickness is considerably larger than the roughness [34]. In 1970s Tallian and
Johnson considered both asperity contact and hydrodynamic lubrication. Tallian studied
the cases where asperities deformed elastically and plastically while Johnson only
considered the elastic deformation based on the Greenwood and Williamson model
[35][36]. Later micro-EHL models and combined micro-EHL and asperity contact
models included the interaction of surface roughness, film thickness and pressure [37]. A
stochastic analysis was developed by Zhu and Cheng (1988) [38]. It combined Patir and
Cheng’s average flow model (1978) [39] for hydrodynamic lubrication and Greenwood
and Tripp’s load compliance relation (1970) [40] for asperity contacts. With the rapid
development of numerical simulation techniques and faster computers, researchers were
able to investigate more complicated lubrication problems. Therefore more realistic
transient, rough surface, thermal and non-Newtonian lubrication problems were studied
in the past decade. A deterministic model for mixed lubrication in point contacts was
developed by Jiang et al. (1999) and the contact between asperities was studied when
they moved through the EHL region [41] . Wang et al. (2004) developed a thermal model
for mixed lubrication in point contact [42]. In this thesis we try a simple model for the
mixed lubrication and compare its results with experiment.

(c) Fretting wear

Dry friction is always accompanied by wear. Wear is the loss of the material on the
surfaces caused by the relative motion of contacting bodies due to mechanical or
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chemical action. The study of wear started relatively late. It was probably the adhesive
model of friction by Bowden and Tabor which started intensive wear research. However,
already as early as 1860, Reye came to the physical conclusion that the wear volume of
material is proportional to the work done by frictional force [43]. Later, in 1953 Archard
also proposed a similar model used to describe wear based on the contact of asperities
[44]. The simple but today still broadly used wear equation, that wear volume is
proportional to load and sliding distance and inversely proportional to the hardness of the
weared material, was derived and experimentally justified by Khrushchov in 1960 for
abrasive wear [45] and by Archard in 1956 for adhesive wear [46].

According to different physical mechanisms, there are different types of wear mainly
including adhesive wear, abrasive wear, fretting wear, surface fatigue and erosive wear.
Fretting wear occurs when the surfaces are rubbed and materials at the edge of contact
area are removed due to an oscillatory motion with small amplitude of the contacting
surface under load. Fretting wear is said to be one of the most insidious causes for failure
of engineering components and has been studied intensively in connection with such
applications as fretting of tubes in steam generators [47]-[49], medical applications [50],
electrical contacts [51], fretting fatigue of dovetail blade roots [52][52][53] and many
others. Most theoretical results are provided by use of numerical modelling techniques,
such as finite element method or boundary element method which require very much
computing time. In this thesis we consider this problem of fretting wear in the framework
of the MDR.

1.2 Method of Dimensionality Reduction (MDR)

The method of dimensionality reduction is a method used for fast calculation and
simulation of contacts problems for elastic and viscoelastic bodies. It was firstly proposed
by Popov and Psakhie in 2007 for a reduced description of classical tribology system [54].
With this method some kinds of three dimensional contact problems are mapped onto
one-dimensional simple contacts with elastic or viscoelastic foundations. Later Geike,
HeBl and Popov applied this method to elastic and viscoelastic contact problems,
including normal and tangential contacts, with and without adhesion [55]-[57]. Even
more, it is also available for randomly rough fractal self-affine surfaces and for arbitrary
bodies of revolution [58][59]. This “mapping” is not an approximation, but exact. With
this method, all parameters that depend on the force-displacement relationship can be
easily calculated, such as contact stiffness and related electrical resistance and thermal
conductivity, and also dissipated energy and frictional force for elastomers. Recently this
method was applied to solve wear problems [60]. Besides the simplification and easy
understanding, an obvious advantage of usage of MDR is sharply reduced computing
time. Compared with other numerical methods, such as finite element method and
boundary element method, the computing time with MDR reduces by several orders of
magnitude. The details are presented in Chapter 2.



6 Chapter 1 Introduction

1.3

Outline of the thesis

Since the MDR was proposed, many problems in contact mechanics and tribology have
been studied. In this thesis we try to investigate some hot topics in these three fields of

tribology.
(Elastomer)
= Friction
o
e (Mixed)
e Lubrication
|: (Fretting)
Wear
Fig. 1.3 Structure of thesis.

The thesis is organized as followings (see Fig. 1.3). After a short introduction to
fundamentals of the MDR in chapter 2, the friction of elastomers is considered in chapter
3 and chapter 4 where chapter 3 presents a general law of friction between elastomer and
differently shaped rigid bodies with random roughness and chapter 4 presents a further
study of dynamic frictional behavior of elastomers. In chapter 5 the mixed boundary
lubrication is studied with MDR. In chapter 6 the study of fretting wear is described. All
of researches on these themes are in the frame of the MDR. Finally the conclusions and
possible future works are reported in chapter 7.

This thesis is partially based on the following publications:

1.

[11] Li, Q., Popov, M., Dimaki, A., Filippov, A. E., Kiirschner, S. & Popov, V. L.
Friction between a viscoelastic body and a rigid surface with random self-affine
roughness. Phys. Rev. Lett. 111, 034301 (2013).

[12] Popov, V. L., Lars, V., Li, Q., Chai, Y. S. & Popov, M. Generalized law of
friction between elastomers and differently shaped rough bodies. Sci. Rep. 4, 3750
(2014).

[61] Li, Q., Dimaki, A. V., Popov, M., Psakhie, S. G. & Popov, V. L. Kinetics of the
coefficient of friction of elastomers. Sci. Rep. 4, 5795 (2014).

[33] Li, Q. & Pohrt, R. Mixed and Boundary Lubrication in Rolling Contact:
Experiment and Simulation. FACTA Univ. Ser. Mech. Eng. 11, 123-131 (2013).

[62] Li, Q., Filippov, A. E., Dimaki, A. V., Chai, Y. S. & Popov, V. L. Simplified
simulation of fretting wear using the method of dimensionality reduction. Phys.
Mesomech. 17, 236241 (2014).



Chapter 2 Method of Dimensionality Reduction

This chapter briefly reviews the necessary fundamentals of method of dimensionality
reduction (MDR). According to rules of MDR, only two main steps are necessary for the
mapping of three-dimensional contact onto one-dimensional. Sequentially we firstly
introduce the elastic (or viscoelastic) foundations then come to the transformation of
three-dimensional profile to one-dimensional. The axially-symmetric profile and
randomly rough profile are presented separately.

2.1 Introduction to MDR

MDR has been developed by the group of Popov in recent few years. Compared with
other numerical methods, such as finite element method (FEM), boundary element
method (BEM), MDR is relative new, but increasing evidences show that it can be
applied well for a variety of contact and frictional problems. With this method three-
dimensional contacts are mapped onto one-dimensional ones with properly defined
elastic or viscoelastic foundations. MDR provides exact solutions for normal contact
problem of axially symmetric and self-affine fractal surfaces as well as exact solutions
for tangential contact problem with a constant coefficient of friction. All properties which
depend on the force-displacement relationship such as contact stiffness, electrical
resistance and thermal conductivity, as well as frictional force for elastomers can be
analyzed with this method. The very detailed principles, proofs and applications are
described in the books [63] [64]. In this chapter we only give short sketch of the
fundamentals of the method.

In this thesis we study the contact of both profiles (rough surfaces for viscoelastic contact
and mixed boundary lubrication, and axially-symmetric profiles for fretting wear).
Therefore, these rules are described separately in the following two sections.

2.2 Axially-symmetric profile

We consider a contact between two elastic bodies with moduli of elasticity of E, and E,,
Poison’s numbers of v, and v,, and shear moduli of G, and G, . According to

“handbook™ in [65], two steps have to be done to replace the complete three-dimensional
problem with a simple one-dimensional system.

2.2.1 One-dimensional foundations

At first, the three-dimensional elastic or viscoelastic bodies are replaced by one-
dimensional foundations. The foundation consists of an array of elements having
independent degrees of freedom and a sufficiently small distance Ax . For elastic contact,
the elements are linear springs having normal stiffness Ak_ and tangential stiffness Ak _:
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1 1—1/,2+1—v22

Ak, = E'Ax with — = , 2.1
EE B
L1 22— 2-
Ak, =G Ax with — =14 =12 2.2)
G 4G, 4G,

Here £ and G* are effective elastic and shear moduli. For viscous materials, the
elements are linear dampers with damping coefficients Ay :

Ay =4nAx . (2.3)

Here 7 is viscosity of material. It is known that elastomers can be modeled as different
combinations of springs and dampers. For example, the element in Kevin-Voigt model is
a combination of parallel connected spring and damper and in standard model a spring
and a Maxwell element in parallel. These rules are also valid for the contact between a
viscoelastic and a rigid body. These foundations are illustrated in Fig. 2.1.

iy
L=

(a) (b)

(©) (d)
Fig. 2.1 One-dimensional foundation of (a) elastic body, (b) viscous body, and (c¢) viscoelastic
body with Kelvin-Voigt model (d) viscoelastic body with standard model.

2.2.2 Transformation of three-dimensional profiles

The second step is a transformation of the three-dimensional profile to a one-dimensional

profile. We notate the three-dimensional profile z = f (r), r being the polar radius in
the contact plane, and the and the one-dimensional g(x). According to [65], the three-

dimensional profile is transformed into one-dimensional profile g(x) according to

equation
W)
= — 2 dr. 2.4
g(x)=[, s===dr 24)

The reverse transformation is given by
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_2p_s(x)
This transformation is illustrated schematically in the Fig. 2.2. For instance, the
2 2
transformed profile of a sphere formulated as f (r) =2r—R is expressed as g(x) 2% ,

and in the case of a cone f (r) =rtand, the corresponding one-dimensional profile is

given by g(x)= %|x|tan0 .

f(r) A 8(X)

» »
r
Fig. 2.2 Schematic of profile tranformation for axially-symmetric body.

2.2.3 Calculation procedures in the case of elastic contact

We consider an example of simple elastic contact between an axially-symmetric profile
and a half-space without adhesion. The profile can be parabolic, conical shape or an
arbitrary power function. Under the normal load F), the indenter is pressed into elastic

half-space (Fig. 2.3). The normal force of a spring on the foundation is proportional to the
displacement of this spring:

S2(x) =N, (x), (2.6)

and the linear force density is equal to

q (x):%:E*uZ (x). (2.7)

z

The contact radius a is determined by the condition
g(a)=d, (2.8)

where d is indentation depth. The sum of forces over all springs in contact must equal to
the normal load

Fy= Y A (i), (2.9)

i=contact
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In the limiting case of sufficiently small distance Ax — dx , it becomes the integral:

Fy=E | u (x)dv=2E"["[d-g(x)}r. (2.10)

If the linear force density (2.7) is known, the normal stress distribution in the initial three-
dimensional contact can be calculated by the following transformation [65]

p(r)=—%f%. @.11)

VX —V2

Fig. 2.3 One-dimensional contact between an indenter and an elastic foundation.

With the new simple one-dimensional system, further calculations, such as determination
of the dependence of force on indentation can be easily carried out. Such procedures
together with transformation and reverse transformation of profile allow the MDR to
quickly solve many contact problems, including the tangential and adhesive contact
problems. In the Chapter 6, the MDR for axially-symmetric profiles will be applied to the
problem of fretting wear.

2.3 Fractal profile

Almost all surfaces of materials in our everyday life are rough, even those of the well-
polished glasses. Since Bowden and Tabor’s classic work, roughness has played an
important role in study of contact mechanics. More and more sophisticated instruments
have been developed to measure surface topography. The statistical parameters, such as
root mean square (rms), skewness, amplitude probability distribution, structure function
and power spectral density and so on, are applied for description of surface characteristic.
In this section, we focus on the theoretical model of rough surfaces, and show the relation
between three-dimensional surface and corresponding one-dimensional “line” (Fig. 2.4).
Finally the generation of the fractal “surface” with random roughness is presented which
will be used for the study in latter Chapters, i.e. contact of rough surfaces for elastomers
and mixed boundary lubrication.
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m ' | ' S =>
Fig. 2.4 Schematic of three-dimensional surface and corresponding one-dimensional “line”.

2.3.1 Characterization of fractal surface

In the model of Greenwood and Williamson, it is assumed that all asperities on the
surface have the same radius of curvature and that their heights vary randomly following
a Gaussian distribution. If the contacting asperities are far enough away from each other,
their deformation can be considered to be independent on each other. Thus, only the
distribution of the heights of asperities and the radii of curvature are important [66]. So
the one-dimensional system should have the necessary statistical distributions of heights
and radii of curvature. For simplification, we assume that the topographies of three-
dimensional surface and of its one-dimensional mapping are unambiguously

characterized by their roughness power spectra C,, (¢q) and C,,(g), which are defined

Cp(q)= (2;)2 J.<h (x)h (0)>e"“’"‘d2x for a surface (2.12)
C,(q)= i (h(x)h(0))edx foraline (2.13)

where h(x)is the height profile measured from the average plane so that <h> =0, and

<> means averaging over the statistical ensemble. We assume that the statistical

properties of surface topography are homogeneous and isotropic, so that its power
spectrum C,,, (q) only depends on the magnitude of the wave vector ¢q .

A large number of real surfaces are composed of many length scales of roughness which
are superimposed on each other. Such a surface can be considered self-affine fractal and
its power spectrum often has the following power law behavior:

-2H-2
C,,(g) = const- (i] for a surface, (2.14)
4y
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-2H-1
C,»(g) = const- (iJ for a line, (2.15)

9

where H is the Hurst exponent directly related to the fractal dimension of an original
two-dimensional surface through D, =3—H . Fig. 2.5 shows a schematic of the power

spectral density of a fractal surface in a logarithmic diagram.

A

log(C)

qmin qmax

log(q)

Fig. 2.5 Schematic of the power spectral density of roughness.

The two-dimensional surface topography can be calculated with the help of power
spectrum according to

h(x)=>B,, (q)exp(i(q-x+¢(q))) (2.16)
with
Buy (4) =22\[Cop (4) = Bop (-0): .17)

In one-dimensional case the line is generated by

h(x)=)_B, (q)exp(i(qx+¢(q))) (2.18)
with
B, (Q)zzTﬂ- ClD(Q) :Em (_Q)- (2.19)

The phases above have ¢(q)=—¢(q)and are assumed to be distributed randomly' in the

interval [0,27).

' Such surfaces are called “randomly rough”.
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In the paper [55], it was suggested, that in order to produce a one-dimensional system
with the same contact properties as the three-dimensional system, the one-dimensional
power spectrum must be used according to the rule

Cy(q)=79C,p,(q)- (2.20)

12 ) . . .
The root mean square roughness <h2> for the two-dimensional and one-dimensional

cases, respectively, are determined by

(n),, =27["aCyy(a)a, 2.21)

(n),, =2[ Cw(a)q. (2.22)
They are the same when C,, (¢)=7¢gC,,(g). The corresponding root mean square of

the surface gradient <sz> and curvature <K2> also coincide in this case. The rms

gradients are related to the power spectral density through

(v2),, =27 a°C.p (a)dq, (2.23)

(vz*) = 2]0‘” 7°C,, (9)dq . (2.24)

2.3.2 Generation of randomly rough “surface”

With above Eq. (2.14) to (2.19), a fractal three-dimensional surface or one-dimensional
profile with random roughness can be generated. We consider only the one-dimensional

line having the power spectral density C,,, «c ¢~"~'. This one-dimensional power density
corresponds to the two-dimensional power density of the form (2.14) C,, oc ¢*"~*. The
spectral density was defined in the interval from [ g, , g,... ] With long distance roll-off
wave vector g, =27/, and short distance cut-off wave vector g, =27/ .

According to Eq. (2.22), the roughness amplitude of surface can be calculated as

const L,y

<h2>m _ L‘f const-¢ " "'dg = const - (g, — g, ) > TR (2.25)

if g, >>q,., . From Eq. (2.24) the root mean square of the surface gradient <VZZ>

follows the relation

(v'),, =] const-q""dg = ;fI;S; (g2 —aia"). (2.26)
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For a fractal rough profile with a short cut-off wave vector g, we have the following

estimation

t
7o S 227

< Z>1D 2_2[_[(]““" ( )
Thus, from Eq. (2.25) and (2.27) we see that surface topography is characterized by the
rms roughness, which is dominated by the long wavelength components of the power
spectrum and the rms gradient of the surface is dominated by the short wavelength part of
the spectrum.

Let us illustrate the above said with several numerical examples. In the following, we will

define the power spectral density C,, in the interval 277[<|q|<§, where L is the

system size and Ax discretization space which determines the upper cut-off wave vector.
The minimal and maximal values ¢, =27/L and g¢,, = 7/Ax mean that there is neither

roll-off nor cut-off at the lower and upper limit except for the natural cut-off due to the
finite size of system length and spacing. In Fig. 2.6, the lines are generated numerically
with the same phase and roughness for different Hurst exponents. The number of points
on the lines are 5000. It is clearly seen that higher values of Hurst exponent indicate a
smoother trend and less volatility.

Fig. 2.6 One-dimensional profiles with different Hurst exponents. These lines are generated
numerically with the same distribution of phase.
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2.4 Summary

We shortly reviewed the basics of method of dimensionality reduction. The rules for
contact of axially-symmetric bodies and rough surfaces introduced in two separate
sections will be used as a basis of studies in the following chapters.
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Chapter 3 Friction Law of Elastomers

In this and next chapter the frictional behaviors of elastomer contacting with a rigid
surface will be described using MDR. Chapter 3 presents the friction law for the contact
between an elastomer and differently shaped rigid surface (planar, parabolic and conical
profiles with random roughness). Firstly a brief introduction to elastomers and their
physical properties is given in Section 3.1. Then the models of viscoelasticity, focusing
on Kelvin model, are described in Section 3.2. Section 3.3 and 3.4 present very detailed
simulations and discussions for the friction law of elastomer. In the same way, a further
study concerning, kinetic coefficient of friction for elastomer contact is presented in
Chapter 4.

To achieve the basic understanding of this nonlinear frictional behavior, the following
simple model is proposed:

e the elastomer is modeled as a simple Kelvin body, which is completely
characterized by its static shear modulus and viscosity;

e the non-disturbed surface of the elastomer is plane and frictionless;

e the rigid counter body is assumed to have a randomly rough, self-affine fractal
surface without long wave cut-off;

e o adhesion or capillarity effects are taken into account;

e one-dimensional model is considered.

These simple assumptions still result in non-trivial and complicated frictional behavior.
Here, we avoid the well discussed subject of the temperature dependence and concentrate
our efforts completely on the force dependence.

The work in section 3.2 and 3.3 appears in paper [11] (Li, Q. ef al. Friction between a
viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett.
111, 034301 (2013)) and [12] (Popov, V. L., Lars, V., Li, Q., Chai, Y. S. & Popov, M.
Generalized law of friction between elastomers and differently shaped rough bodies. Sci.
Rep. 4, 3750 (2014)). My contributions to these papers are described at the beginning of
the two sections.

3.1 Elastomers and their applications

Elastomers are usually related to a group of polymers with some common properties,
such as high elasticity, viscoelasticity and glass transition temperature. The name
“elastomer”, driven from “elastic polymer”, is often used with the term “rubber”. As a
material, it plays an important role in many applications in industry and human life, such
as tires, seals, shoe soles as well as some dampening elements [67].
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The chemical structure of elastomers determines its properties. Rubber materials are
composed of long chainlike molecules. Normally the long polymer chains are irregularly
coiled to each other. If a stress is acted on the elastomer, the molecules start to stretch.
After the remove of load, they spontaneously return to the coiled state. This cross-linking
structure ensures that the elastomer will recover their original shape when the stress is
removed (Fig. 3.1).

stretched
released

Fig. 3.1 Polymer chains in original shape and under stress.

Compared with other solids, elastomers have the following characteristic properties:

(1) very small elastic modulus (ca. 1~10 MPa, about 10*to 10° times smaller than the
ordinary metals);

(2) very large elastic deformations;

(3) incompressibility: elastomers can be considered in a good approximation as
incompressible media. Correspondingly, their Poisson’s ratio is almost equal to
0.5;

(4) unlike ordinary metals, their elastic deformation is time-dependent, which is so-
called relaxation. The related phenomena, such as stress relaxation, creep and
hysteresis loss are due to the viscoelasticity of elastomer which essentially
determines the contact and frictional properties.

These properties enable rubber materials to be widely applied in mechanical engineering
and human life, such as vehicle tires, frictional components (sealing, bearings), and
gloves and so on. Since the 1950s, rubber products have developed fast and the demand
for a clear understanding of rubber tribology is correspondingly growing quickly. There
are a number of papers in the field considering elastomer friction in the framework of the
rheology paradigm. Many of them concentrate on the dependence of the coefficient of
friction on velocity. On the contrary, the dependency of the coefficient of friction on the
normal force was practically out of scope of all previous studies. In this chapter, we try to
overcome this shortage and to formulate generalized laws of friction including the
dependencies of both sliding velocity and normal force.

Kelvin model of linear viscoelasticity

The viscoelastic behavior of elastomer material can be modeled with linear combinations
of Hookean elastic springs and Newtonian dampers. For example, Maxwell model is a
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spring connected with a dashpot in series (Fig. 3.2a), and Kelvin model (also known as
Kelvin-Voigt model) (Fig. 3.2b) in parallel. Standard Linear Solid model combines a
Maxwell element and a linear spring (Fig. 3.2¢). In this dissertation we used the Kelvin
model for the viscoelastic material. This model can explain the creep behavior of rubber
material. If a constant stress is applied on the material, it will deform gradually to a
steady state due to the viscosity. When the stress is released, it relaxes slowly to the
original state.

() (b) (c)

Fig. 3.2 Models of linear viscoelasticity: (a) Maxwell Model; (b) Kelvin Model; (c) Standard
Linear Solid model.

The elastic component is modeled as spring with elastic modulus £, which follows
Hooke’s law:

oc=FE-¢. (3.1)

Here o is the stress and ¢ strain under the stress. The viscous component is modeled as
dashpot with viscosity 77, which is Newtonian fluid:

de
—pn.— 32
o =1 a (3.2)

From the Kelvin model, spring is connected with the damper in parallel so that the
relation between stress and strain is given as

O'(t)zE-g(t)+77-dZ—(tt). (3.3)

With the applied constant stress o, the above equation can be written as

G _ g 1148 (3.4)

E E dr

The solution of this equation is

£(1) =%[l—e;j. (3.5)
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Where 7 is relaxation time and generally defined as 7 = %

Eq. (3.5) describes the behavior of the time-dependent creep of rubber material as shown
in Fig. 3.3.

&/(o/E)

<
>

t/t
Fig. 3.3 Creep behavior of rubber with Kelvin model.

3.2 Contact between elastomer and a rigid body

We consider the contact between a viscoelastic half-space and a rigid profile. The
generation of the rigid profile is presented in section 2.3.2. For simplification, the
viscoelastic body, modeled with Kelvin element, is assumed to be flat. Under a normal
force the rigid body is pressed into the elastomer and then dragged to move horizontally
with a constant velocity (Fig. 3.5). What we are interested in is the frictional behavior and
the dependence of the friction coefficient on the load, sliding velocity, material and
system parameters.

The work in this section appears in paper [11] (Li, Q. et al. Friction between a
viscoelastic body and a rigid surface with random self-affine roughness. Phys. Rev. Lett.
111, 034301 (2013)). My contribution to [11] (in accordance with the content of this
section) is the following: Li Q carried out the numerical simulation. The details of the
numerical calculation are described in section 3.2.1 including Fig. 3.4 to Fig. 3.6 and Eq.
(3.6) to Eq. (3.10). Popov M and Filippov AE provided initial versions of the code.
Popov VL and Li Q analyzed the simulation results (section 3.3.2) and formulated them
in equations including Eq. (3.11) to Eq. (3.15). Li Q prepared the figures illustrated in Fig.
3.7 to Fig. 3.11. Popov VL, Filippov AE, Li Q and Kiirschner S discussed the results
(section 3.2.3) and gave an analytical support in Eq. (3.16) to Eq. (3.23). All the authors
contributed in preparing the manuscript of paper [11].
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3.2.1 Theoretical model

According to the principle of MDR, the elastomer is modeled as a row of independent
elements with a small spacing Ax, each element consisting of a spring with normal

stiffness Ak, =4GAx and a dashpot having the damping constant Ay =4nAx as shown in
section 2.2.1, where G is the shear modulus and 77, the viscosity of the elastomer (Fig.
3.4).
AU
| | | | | g

ASHI SH SIS S Sy

AX

Fig. 3.4 Viscoelastic foundation of elastomer.

The counter body is a rough line having the power spectral density C,, o ¢ >"~'. This

one-dimensional power density corresponds to the two-dimensional power density of the
form C,, oc g7"7. The spectral density was defined in the interval from ¢, =27/L,

where L is the system size, to the upper cut-off wave vector ¢, =7/Ax. The

spacing Ax determines the upper cut-off wave vector and is an essential physical
parameter of the model. The characterization and generation of the rigid surface
topography were described in detail in section 2.3.2. The periodic boundary conditions
were used. The elastomer was pressed against the rigid surface with a constant normal

force F),, and moved tangentially with a constant velocity v. A typical configuration of

the contact is shown in Fig. 3.5.
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Fig. 3.5 One-dimensional contact between a rough surface and a visco-elastic elastomer. Note the
difference in vertical and horizontal units.

If the rigid profile is given by z=1z(x—v¢), and the profile of the elastomer by
u=u(x,t) , then the normal force in each particular element of the viscoelastic

foundation is given by

f=—4Ax{Gu(x) +mu(x,1)} . (3.6)
For the elements in contact with the rigid surface, this means that

[ =4Ax{G[d - z(x,0) ]+ vz (x,0)}, (3.7)

where d is the indentation depth. For these elements, the condition of remaining in
contact, />0, was checked in each time step. Elements out of contact were relaxed

according to equation f =0: Gu(x)+nu(x,t)=0, and the non-contact condition u< z

was checked. The indentation depth d was determined to satisfy the condition of the
constant normal force

FN - 4 (real com)I:G (d - Z()C)) + UVZ'(X):Idx s (38)

where the integration is only over points in contact. The tangential force was calculated
by multiplying the local normal force in each single element with the local surface
gradient and subsequently summing over all elements in contact:

F =—4 Z(x)[ G(d - 2(x)) +nvz'(x) |dx. (3.9)

x (real cont)

Due to the independence of the degrees of freedom, the algorithm is not iterative and
there are no convergence problems.

The coefficient of friction is calculated as the ratio of tangential force (3.9) and normal
force (3.8)
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Fig. 3.6 Coefficient of friction changing with time.

Generally, the friction of coefficient changes with time: it gradually approaches a
constant value in a steady state as seen in Fig. 3.6. To obtain a general law of friction, we
consider only the value in the steady state. The details of dynamic contacts are shown in
Chapter 4.

3.2.2 Numerical results

The one-dimensional model is computationally efficient and allows carrying out
extensive parameter studies. The following ranges of parameters have been covered in
the present study. The length of the system was L =0.02 m and the number of elements
N =L/ Ax was typically 5000 with exception of cases where the dependence on Ax
was studied. Instead of viscosity, the relaxation time 7=7/G=10" s was used. 11

values of Hurst exponent ranging from O to 1 were studied. All values shown below
were obtained by averaging over 200 realizations of the rough surface for each set of

parameters. Parameter studies have been carried out for 20 different normal forces F),

ranging from 10~ to 10° N, 20 values of the G modulus from 10° to 10’ Pa, 20 values
of rms roughness 4 from 10~ to 10~ m, and 20 values of the spacing Ax from 10~ to
107" m, while in each simulation series only one parameter was varied. The presented

results are based on approximately 3.5-10° single simulations with the total net
computation time of about 50 h. It is well known that the maximum value of the
coefficient of friction x in the medium range of velocities is proportional to the rms

gradient of the surface profile [10]. We, therefore, present the normalized friction
coefficient 4/ Vz instead of x4 in this thesis.
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Fig. 3.7 A typical dependence of the normalized coefficient of friction on the velocity. In this
particular case, the results were obtained for the following set of parameters: F,, =1.5N,

G=10"Pa, h=5-10" m,and H =0.7.

A typical dependence of the coefficient of friction on the sliding velocity is shown in Fig.
3.7. At first, it increases linearly with velocity (region I), it then achieves a plateau
(region III) and decreases again to a new constact value (region IV). We also marked an
intermediate region (II) where transition from the linear velocity dependence to the
plateau takes place. This region covers one decade of velocities, and the coefficient of
friction increases here by a factor of two. Fig. 3.8 shows the velocity dependence in
double logarithmic scale for 6 different Hurst exponents. It is obvious that at small
velocities, the coefficient of friction increases linearly with velocity. The absence of the
decreasing region IV in Fig. 3.7 (and Fig. 3.8 at high loads) is only due the fact that for
high forces this region is outside the scope of practical velocities and is therefore not
shown in these figures.
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Fig. 3.8 Dependence of friction coefficient on velocity for different Hurst exponents and

F=10N,G=10" Pa, h=5-10" m. Solid lines correspond to the analytical approximation
(3.17).

Fig. 3.9 presents velocity dependencies of the coefficient of friction for 20 different
normal forces. One can see that the form of the dependence for different forces is
approximately the same, only shifted along the axis of the logarithmus of velocity. There
are two distinctly different regions: in zone 1 there is a partial contact of the rigid surface
and the elastomer, while in the zone 2 they are in complete contact. In both of the zones,
the shift factor increases linearly with the logarithm of force, the coefficient of friction,
thus, being a power function of the normal force. Simulations with different rms
gradients of the surface (which were varied by changing the spacing Ax ) show that the

coefficient of friction in this region is very accurately proportional to Vz* and depends
on the force and shear modulus only over the ratio F), /G . The only form of the

dependence which fits these empirical observations and meets the dimensional demands
is

H=p

2 a
vz (GhL] , G.11)

h | F,

where a and £ are dimensionless constants. Empirical values of these constants

extracted from numerical data are shown in Fig. 3.10.



26 Chapter 3 Friction Law of Elastomers

100 FNmin=10-3N
3S
/
107l I ,/ , // —— Zone 1
/ — — Zone 2
102 10° 10
Velocity, m/s

Fig. 3.9 Double logarithmic presentation of the dependence of the normalized friction coefficient
on velocity for 20 exponentially increasing normal forces ranging from 107 to 10° N, as
indicated by the arrow (G =10" Pa, #=5-10" m, and H =0.7). The dotted line (third from the

left) corresponds to the data shown in Fig. 3.7.
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Fig. 3.10 Dependence of & and B (see Eq. (3.11) on the Hurst exponent in zone 1 (see Fig. 3.9).
Analytical estimation of the exponent « according to (3.13) is shown with bold line. For

0.2

0.4

0.2 < H <0.8, it fits numerical data very well.

3.2.3 Theoretical analysis and discussions

Let us support this result with an analytical estimation. At low velocities, the values of z
in the border points of each partial contact region in the Eq. (3.9) are the same (z=4d ),

0.6

Hurst exponent

0.8




3.2 Contact between elastomer and a rigid body 27

thus, the integral _[

real cont

z'(x)[G (d - z(x))]dx vanishes identically. For the coefficient of

friction we get

2
— 4Lcontnvzcont V. (3 12)
FN
Here, L., is the total contact length, and Vz_, the rms slope in the region of real
contact. The rms slope is dominated by the short wavelength part of the spectrum. It can

be approximately replaced by the average rms slope of the entire surface Vz__ ~Vz. At

cont

the end of the section, we discuss the weak dependence of Vz__ on loading parameters

cont

in more detail.

For small forces, in zone 1, the contact length is a power function of the normal force
[68]: L HI(IH)

cont

oc F'*) " and the coefficient of friction will be given by uoc F~

Comparing this with Eq. (3.11) provides an analytical estimation for the exponent « :

H
o= . 3.13
1+H G.13)
For large normal forces, in zone 2, the contact length achieves a saturation value of
L. = L. The coefficient of friction becomes
2
_4LnVz v, (3.14)
FN

which is exactly confirmed by numerical simulations. Finally, in the plateau region, the
coefficient of friction shows only a weak dependence on the Hurst exponent (Fig. 3.11).
In the range of 0.2 < H < 0.8 and for not too small forces, it is almost constant and can be
approximated as

u=2-vz . (3.15)

This result has a simple physical meaning. In the plateau region, the elastomer behaves
practically as a viscous fluid: the elasticity does not play any role and all contacts are

“one-sided.” The normal and tangential forces reduce to F =4.[ nv(z’(x))zdx,

(real cont)

F, = 4j nv|z'(x)|dx . For the normalized coefficient of friction we get
(real cont)

172
— j(real cont) (Z’(X))z dx _ (J.(real cont) (Z’(x))2 dx) ) Llc/oznt

, dr - VZcont , de
v[(real cont) z (X)| I(real cont) z (X)|

(3.16)
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For an exponential probability distribution function of the gradient of the surface, the

1/2
(I(real Com)(zl(x))z dx) ,Llc/ozm
J.(real cont) Z’(X)|dx

and it depends only weakly on the form of the distribution function.

ratio of in (3.16) is equal to 2 , in accordance with (3.15),

1.6 ¢
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Fig. 3.11 Dependence of the normalized coefficient of friction in the region III (plateau). The
coefficient of friction decreases at very small forces. This effect is closely related to the decrease
of the coefficient of friction at high sliding velocities, Fig. 3.7, region V.

The results (3.11), (3.13), (3.14) and (3.15) can be combined in the following equation
providing an interpolation between the three regions I, 11, and III:
» T2

2
1 F, h Fy, i+
U= —+ — + > ( N j : (3.17)
2Vz 4Invz, v PiVz GhL

cont cont v

The quality of this interpolation can be seen in Fig. 3.8 where the numerical results for
six Hurst exponents are plotted together with analytical dependencies (3.17). This
equation can be rewritten in the dimensionless form

(3.18)
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with a normalized coefficient of friction i = u / (\/EVZCOm) , dimensionless velocity

TWVZeom (3.19)

N

and dimensionless force

V=

_FN
N GhL

(3.20)

Let us discuss the physical meaning of the quantities v and F, . The condition F, ~1

gives the order of magnitude of the force at which complete contact is achieved, while the
condition v ~ 1 determines the order of magnitude of velocity at which the elastomer is
detached from the rigid surface on the trailing side of any asperity and all the contacts
become “one-sided.” Indeed, according to (3.7), the condition of detachment f =0

means d —z(x)+nvz'(x) =0. Taking into account that d —z has the order of magnitude

of 2 and z' has the order of magnitude of Vz we come to the conclusion that the

cont ?

one-sided detachment of the elastomer will occur if (7/G)vVz,, >h or v > 1. Note that

cont
the same conditions are valid in the corresponding three-dimensional problem: for

achieving the plateau value of contact stiffness ( F, ~1, [68]) and for the one-sided
detachment of the elastomer (v = 1).
Let us discuss the decrease of the coefficient of friction beyond the region of validity of

approximation (3.18), at large velocities (region IV in Fig. 3.7). Such a decrease at large
velocities is typical for elastomer friction and is usually associated with a decrease in the

“rheological factor” ImG(w)/ |G(a))| at high frequencies [26], where G(w) is the
complex modulus of the elastomer and Im G(w), its imaginary part. For the case of the

Kelvin body, however, the rheological factor is equal to 7@/ /G + (7®)” ; it increases

monotonously and tends towards 1 at high frequencies. In this case, the decrease of the
coefficient of friction is not related to the rheology but rather to the dependence of the
rms slope on the size of the real contact. Indeed, for randomly rough surfaces, the rms
slope in the contact region can be estimated as

1/2
L
Vzwm=(2fq ClD(q)qzde) 0{[ ] : (3.21)

2(1- H)

where the lower integration limit g, =27 /L

cont

decreases with increasing size of the
real contact. For 0< H <1, the integral (3.21) depends only weakly on the lower
integration limit unless the contact length becomes extremely small so that g,
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approaches ¢, . Thus, the coefficient of friction in the region of plateau will decrease

with decreasing indentation depth. This happens either at extremely high sliding
velocities (Fig. 3.7, region IV) or at extremely low normal forces as illustrated in Fig.

3.11. The dependence of Vz

pronounced for small Hurst exponents, H ~ 0, and gets stronger for H ~1. Note that the
increase of rms slope with increasing indentation is closely associated with the
assumption of the "randomness" of roughness, as the estimation (3.21) is only valid if the
Fourier components of roughness with different wave vectors have uncorrelated phases.
One can say that randomly rough surfaces are always rougher on the slopes of waviness
than on the summits. Real surfaces, on the contrary, may have different kinds of
correlated roughness. One can easily imagine a surface, which is rougher on the summits
than on the slopes; for such surfaces, the rms slope of roughness would decrease with
indentation. The general and robust statement, which is independent of the kind of the
roughness correlation, is only that the rms slope in the contact region is a function of
indentation depth and, thus, a function of the non-dimensional force (3.20). This
statement even remains valid if the linear viscoelastic behavior of the material breaks
down at the micro-scale. Indeed, the statement that the frictional force will depend on the
indentation depth is correct for any kind of processes at the micro-scale. The indentation
depth, however, is governed by the contact stiffness which is dominated by the largest
wavelength in the power spectrum of the roughness. The general conclusion that the non-
dimensional force (3.20) is a governing parameter of the friction process will, therefore,
remain valid independently of the particular character of the microscopic processes. We
can summarize our results to the following general scaling relation:

u=Vz,.(F)-g(v/ f(F)). (3.22)

or, in explicit form,

_ Fy . TVVZ o Fy
v (o[ (5] -

This scaling relation means that the dependence of the coefficient of friction on velocity
in the double logarithmic presentation has the same form for different values of all

on the contact size and, thus, on velocity and force is less

cont

parameters appearing in this equation: force F), , size of the system L, and relaxation

time 7 . Changing of any of these parameters will only shift the curves horizontally by

the factor of ~ log(gz / f ( GF}]vaD and vertically by the factor of logVz,, (F, /GhL).

In particular, the curves will be shifted by changes of temperature (which influences the
relaxation time). The shifting procedure with regard to temperature is well known and
widely used in the physics of friction of elastomers for constructing “master curves”
describing the friction coefficient at any velocity and temperature (see, e.g., [69]). Eq.
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(3.23) means that the master curve procedure can be generalized to dependencies on other
loading and system parameters. While the particular form (3.17) of the law of friction is
limited by the assumptions of simple visco-elastic rheology, the general scaling relation
(3.23) should have a wider range of application and it should be possible to validate it
experimentally.

3.3 Contact between elastomer and rigid bodies having different
macroscopic shape

In section 3.2 we studied the friction law of elastomer contacting with a macroscopically
plane rough surface, now we consider other shapes of contacting body: rough parabolic
and conical profile. The model for elastomer is still same as in the previous Section, i.e.,
Kelvin body.

The work in this section appears in paper [12] (Popov, V. L., Lars, V., Li, Q., Chai, Y. S.
& Popov, M. Generalized law of friction between elastomers and differently shaped
rough bodies. Sci. Rep. 4, 3750 (2014). My contribution to [12] (in accordance with the
content of this section) is the following: Li Q carried out the numerical simulation. The
details of model is described in section 3.3.1 and the results are illustrated in Fig. 3.12,
Fig. 3.14 and Fig. 3.15 and formulated in Eq. (3.38) to Eq. (3.40) (section 3.3.2). Voll L
set up the experiment (Fig. 3.16) and carried out the measurement (section 3.3.4). Popov
VL, Voll L and Li Q analyzed the collected data (Fig. 3.17 to Fig. 3.19). Li Q prepared
the Fig. 3.12, Fig. 3.14, Fig. 3.15 and Fig. 3.17 to Fig. 3.19. Popov M provided initial
version of the simulation program. All authors of paper [12] discussed the results and
contributed in preparing the manuscript of [12].
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3.3.1 Theoretical model
L5
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Fig. 3.12 One-dimensional contact between a viscoelastic body and (a) a rough “cone”; (b) a
rough “sphere”. The configuration is shown for the following parameters defined in text:

F,=1N,G=10°Pa, v=0.1m/s, h=5-10"m, t=10"s, (a) #=10° and H=0.1; (b)

R=107 mand H =0.2. Note the difference in vertical and horizontal units.
Let us consider a rigid indenter having the form
z=g(x) = gy(x) +h(x) (3.24)

consisting of the macroscopic power-shaped profile

g,(x)=c, x|n (3.25)

and a superimposed roughness 4(x), as shown in Fig. 3.12. It can be said that g,(x)=0
for the rigid profile in last section 3.2.

Coordinates x and z are measured from the minimum of the macroscopic form, so that
g,(0)=0. The ensemble average of the rough profile is assumed to be zero: <h(x)> =0.

The roughness was assumed to be a self-affine fractal having the power spectral density
C,, <q """, and it is same as the rigid profile in the previous Section. We assume that

the indentation depth of the indenter, d , is much larger than the rms value of the
roughness, 7 <<d . This means that the large-scale configuration of the contact is
primarily determined by the macroscopic form of the indenter and does not depend on the
roughness (Fig. 3.13).
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The rigid indenter is pressed into a viscoelastic foundation to the depth d and is moved
in tangential direction with velocity v (Fig. 3.12), so that at time ¢ it is described by the
equation

z=g(x+vt)—d=g(x)—d. (3.26)

For convenience, we introduced the coordinate X =x+vt in the coordinate system
moving together with the rigid indenter.

AZ

A,
Y

'al a2 ’i

Fig. 3.13 A “large scale picture” of a contact of an elastomer and a rigid conical indenter moving
left with velocity V.

The normal force in each particular element of the viscoelastic foundation is given by
f=—4Ax[Gu(x) +mi(x,1)]. (3.27)

where u is the vertical displacement of the element of the viscoelastic foundation. For
elements in contact with the rigid surface, this means that

[=4M[G(d-g(%)-mg'(¥)]. (3.28)

The normal and the tangential force are determined through equations

Fy=4[[G(d-g(®)-ng'(®)]dt, (3.29)

—-a

F.=—4 j g(®H[G(d-g(®)-mvg'(¥)]dx. (3.30)

-a

3.3.2 Numerical results and discussions

(a) Friction at low sliding velocity

We first consider the force of friction at very low velocities. The contact configuration is
then approximately equal to the static contact. The uppermost left and uppermost right

points —a, and a, of the contact (see Fig. 3.13) are then both determined by the condition

g(-a,)-d=g(a,)—d =0 . Because of the relation g(—a,)=g(a,) , the integrals

J; nvg'(x)dx and I g'()"c)G(d - g(fc))dfc in (3.29) and (3.30) vanish. Therefore,

-4 4
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FN:4T G(d—g(i))dx~4afG(d—go(;Z))dx, (3.31)
F=dny [ [ e~ any [ | g (07 +4 () | (3.32)

We assume that the gradient of the macroscopic shape of the indenter is much smaller

than that of the roughness, < go'(x)2> << <h'(x)2> , so that

(3.33)

cont ?

F, x4y [ B (x) d¥ ~ 4V L

-a

where Vz is the rms value of the surface gradient and L

cont

=a, +a, the contact length.

For the coefficient of friction, we get

quéu‘co—nthzz :wvzz_ (3.34)

N N

This equation shows, that both the macroscopic shape of the indenter and the microscopic
properties of surface topography determine the coefficient of friction: the contact length
is primarily determined by the macroscopic properties (shape of the body and the normal
force) while the rms gradient is primarily determined by the roughness at the smallest
scale.

(b) Friction at high sliding velocity

Consider the opposite case of high sliding velocities. If the indentation depth is much
larger than the roughness of the profile, then we see from Eq. (3.28) that one-sided
detachment of the elastomer from the indenter will take place if

d /(TVVZ) ~1 (3.35)

where Vzis the characteristic value of the surface gradient. In that case, the friction
coefficient achieves an approximately constant value of

u~2Vz. (3.36)
For the macroscopic power law shape, the indentation depth and contact radius are given
by

1 n

. [Mj 4= (&] | .

8Ge,n 8Gn

Substituting the contact length L

cont

=2a into Eq. (3.34), we obtain the coefficient of

friction at low velocities:
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a=¢&, (3.38)
where we introduced dimensionless variables
o A
_ U vivVz ([ 8G "' n+1 |
_ ’ — i 3.39
# V2vz g 2 (F v c,n (3:39)

(c) Simulation results

Numerical simulations presented in Fig. 3.14 for the case of a rough cone show that all
data in the coordinates ( u,& ) collapse to one master curve with a slope equal to one. The
validity of Eq. (3.38) was numerically confirmed for the following ranges of parameters.
The reference length of the system was L=0.01m and the number of elements
N =L/ Ax was typically 5000. 11 values of Hurst exponent ranging from O to 1 were

studied. All values shown below were obtained by averaging over 200 realizations of the
rough surface for each set of parameters. Parameter studies have been carried out for 20

different normal forces F), ranging from 10~' to 10' N, 20 values of the G modulus

from 10° to 10’ Pa, 20 values of rms roughness % from 107° to 10™* m, and 20 values
of the spacing Ax from 107" to 10~ m, 20 values of angles @ ranging from 5 to 75°,

and 20 relaxation times 7 ranging from 10~ to 10~ s, while in each simulation series
only one parameter was varied.

0.2

0.15¢

= 0.1f

H=0
H=0.2

0.05r H=0.4
H=0.6
H=0.8
H=1

0 I 1 I
0 0.05 0.1 0.15 0.2

Fig. 3.14 Dependence of iz on & at low velocities. Different symbols correspond to different

sets of parameters H , v, F,, G, @, Tand Vz. All data collapse to one master curve described
by Eq. (3.38).



36 Chapter 3 Friction Law of Elastomers
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Fig. 3.15 Dependence of zz on & for the following set of parameters: F, =10 N, G=10° Pa,

h=510"m, r=10"s, H=04and #=10° (conical indenter) or R=10" m (parabolic
indenter). The solid line corresponds to the analytical approximation (3.40) with o =1.5.

It is easily seen that we can get both limits (3.34) and (3.36) by writing

U —a -la
=(1+¢& _ (3.40)
V2vz ( )

where « is a dimensionless fitting parameter. Numerical simulations (Fig. 3.15) show
that this dependence is valid for all parameter sets used in our simulations, while the best
fit i1s achieved with a =1.5. Interestingly, parameter & seems not to depend on the
macroscopic shape of the indenter.

3.3.3 Friction law for a general linear rheology and the “force master curves”

Now we discuss friction of elastomers with a more realistic rheology, which is
characterized by the frequency dependent complex shear  modulus
G(w)=G'(w)+iG"(w) , where G’ is the storage modulus, and G" the loss modulus

[10]. At low frequencies, the shear modulus tends towards its static value G, . For

simplicity, we will assume that the macroscopic contact mechanics of the indenter is

completely governed by the static shear modulus G, which is correct for sufficiently

small sliding velocities. On the other hand, the frictional force is almost completely
determined by the smallest wavelength components in the spectrum of roughness and
thus by high frequency rheology. The frictional force at low velocities can be therefore

estimated by using Eq. (3.33) and substituting 7 > G"(®,,.)/ @,,, , Where @, =vq, . :

ax ax ?
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N 4G"(w,,, )szchom 3 4G"(qmaxv)Vz2

a)max qmax

F

X

cont (3.41)

The contact length is completely determined by the macroscopic contact mechanics of the
indenter, Eq. (3.37), where we substitute the constant static shear modulus G,,. For the

friction coefficient, we therefore get

1

- 4G"<qmaxv>(FN (n+1)J”+l v

3.42
qmaxFN SGOCnn ( )

At high frequencies, the plateau value of J2Vz will be achieved. An interpolation
between (3.42) and this value is provided by

a —1a

e
n+l
VN B Tonax 'y [ 8Gye,n } (3.43)

V2vz 2N2G"(q,, V)Vz | Fy (n+1)

with ¢ =1.5. This Eq. shows that the coefficient of friction for rigid bodies having
macroscopic power-law shape has the general form

H=Q(Fy - p(v) (3.44)
where p(v) is a function of velocity, which depends on the rheological properties of the
elastomer. Since F) - p(v) = exp(log F, +log p(v)) , this means that the dependencies of

the coefficient of friction as a function of log F,, will have the same shape for arbitrary

velocities, only shifted along the log F}, -axis by a velocity-dependent shift factor. This

property gives the possibility to construct dependencies of the coefficient of friction on
the normal force and the sliding velocity using a “master curve procedure” similar to
those used for determining dependencies of the coefficient of friction on velocity from
measurements at different temperatures [23]: Experimental results for the friction

coefficient are presented as a function of logF), at various velocities in Fig. 3.17.

Following this hypothesis, we assume that at different velocities, the measured curves are
only shifted pieces of the same curve. Now, one attempts to shift the curves such that
they form a single “master curve” (Fig. 3.18). The resulting curve gives the dependence
of the coefficient of friction in a wider range of forces than the range used in the
experiment. At the same time, the shift factors at different velocities will provide the
dependence of the coefficient of friction on velocity. The result is a complete dependence
of the coefficient of friction in a wide range of velocities and forces. Repeated for
different temperatures and using the standard master curve procedure [23], this will lead
to restoring the complete law of friction as function of velocity, temperature and normal
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force. However, in the present thesis, we avoid the well discussed subject of the
temperature dependence and concentrate our efforts completely on the force dependence.

Note that the main logic of the result (3.44) is not dependent on the details of the model
and even on its dimensionality. The scaling relation (3.44) follows solely from the
assumption that the macroscopic form of the contact is determined by the macroscopic
properties of material and do not depend on microscopic details, and on the other hand,
that the microscopic properties are determined mainly by the indentation depth. These
general assumptions are equally valid for one-, two- and three dimensional models.
Below we explain this important point in more detail.

It is well known, that if a rigid body of an arbitrary shape is pressed against a
homogeneous elastic half-space then the resulting contact configuration is only a function
of the indentation depth d . At a given indentation depth, the contact configuration does
not depend on the elastic properties of the medium, and it will be the same even for
indentation of a viscous fluid or of any linearly viscoelastic material. This general
behavior was recognized by Lee and Radok [70] [71] and was verified numerically for
fractal rough surfaces [72]. Further, the contact configuration at a given depth remains
approximately invariant for media with thin coatings [73] or for multi-layered systems,
provided the difference of elastic properties of the different layers is not too large [74]. In
[75], it was argued that this is equally valid for media which are heterogeneous in the
lateral direction (along the contact plane). Along with the contact configuration, all
contact properties including the real contact area, the contact length, the contact stiffness,
as well as the rms value of the surface gradient in the contact area will be unambiguous
functions of the indentation depth. The indentation depth is thus a convenient und robust
"governing parameter" for contact and frictional properties of media with linear rheology.
Note, that this is equally valid for tangential contact. This can easily be illustrated with
the example of contact of a rigid body with an incompressible elastic half-space: For a

circular contact with an arbitrary radius a, the ratio of the normal stiffness k. and the
tangential stiffness k_is constant and given by the Cattaneo-Mindlin factor [76] [77], for
incompressible media k_/k_=1.5. From this follows that for a frictional contact with the
coefficient of friction z, the maximum tangential displacement to the onset of complete
=1.5ud . This
result does not depend on the form of the body and is valid for arbitrary bodies of
revolution [78] and even for randomly rough fractal surfaces [79]. This fact, that the
contact configuration is solely determined by the indentation depth is as a matter of fact
the only physical reason needed to get the simple scaling relations for the coefficient of

friction between rough rigid bodies and linearly viscoelastic elastomers described by Eq.
(3.44). While the particular form (3.43) can depend on the model used, the general

sliding is determined solely by the indentation depth and is equal to u

X,max
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functional form (3.44) is a universal one and is not connected with the method of
dimensionality reduction used in this thesis.

3.3.4 Experimental

The experiment described in the following was set up and carried out by Voll L [12]
(...Voll, Li etal. Sci. Rep. 4, 3750, 2014). For completeness of the description, I
introduce here his measurement results.

Our numerical and theoretical analysis shows that under some conditions the
dependencies of the coefficient of friction on the normal force, presented in double
logarithmic axes, is self-similar at different velocities and can be mapped onto each other
by a simple shifting along the force axis. To prove this hypothesis, we measured the
coefficient of friction between a band of polyurethane (PU) and a steel ball with radius
R =50 mm.

thermal
camera

force
sensor |

Fig. 3.16 Experimental set-up for measuring the coefficient of friction. (Set up by Voll. L [12])

The experimental set-up for measuring elastomer friction is shown in Fig. 3.16. The
rubber band with a size of 300 x50 x5 mm was glued to a moving stage using solvent-
free two-component epoxy glue. The maximum pressure in the contact area was, in all
experiments, at least one order of magnitude smaller than the latter, so that there was no
plastic deformation of rubber. The stage could be moved with the aid of a hydraulic
actuator with controlled velocity in the range of 5-10™ m/s to 0.58 m/s. The normal and
tangential forces were measured with a 3D force sensor, on which the steel ball was
mounted. The ambient temperature was 25.5 °C (£0.5) and the relative air humidity
30% (£5). Under these conditions the dynamic friction coefficient was measured at
constant normal force and horizontal velocity. A total of 1680 measurements were taken.
Data for any parameter set (normal force and temperature) was averaged over six
measurements. Every measurement series was started at the smallest normal force, and
increased in steps. At every level of normal force, the measurement was made with 28
horizontal velocities. Before proceeding to the next force level the material was examined
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for wear both visually and with a microscope, and cleaned with pressurized air. At low
normal forces wear was virtually non-existent, and remained weak even at higher forces.
Chemical cleaning agents were not used to treat the surface of the rubber.

Measurements were carried out in a smaller velocity range of 3-10~ m/s to 2-107 m/s
for normal forces in the range of 1 N to 100 N . The lower velocity bound was chosen
because the sliding at lower velocities was instationary. The maximum velocity was
chosen to avoid significant temperature changes in the contact. The local temperature rise

due to frictional heat can be estimated as AT ~2uG,dv/ A, where 1 ~20 Wm 'K 'is the

thermal conductivity of the steel ball [10], which almost completely controls the thermal
flow, and G, ~3-10° Pa the static shear modulus of the used rubber. For the largest force

of F, =10° N, we get an indentation depth of d = (3FN /16G,R"* )2/3 ~4-10° m. With

1 ~0.5 and v=10" m/s we can estimate the average temperature rise as AT =~ 0.06 K .

Maximum temperature changes in micro contacts can be estimated as AT ~2uG hyv/ A4,

where G, ~1.5-10° Pa is the glass modulus [80] of the used rubber and 4 ~10" m the
rms roughness of the ball, which was determined using a white light interferometric

microscope. For velocity v =107 m/s we get an estimation AT ~0.08 K which is of the
same order of magnitude as the average temperature rise. Due to repeated sliding, the
temperature change can get larger than the above estimation. The temperature changes of
the rubber surface were controlled in experiments by an infrared camera (see Fig. 3.16).
We found empirically that the temperature change does not exceed 1 K for the following

range of velocities: up to v~4-10> m/s for F, ~10° N, up to v~2-107 m/s for
F,~10N and up to v~10~ m/s for F,, ~100 N .

The measured coefficients of friction as a function of force are shown in Fig. 3.17.



3.3 Contact between elastomer and rigid bodies having different macroscopic shape 41

0.3
0.2
01
2
&8
<
ol
—0.1
v=9mm/s v=19mm/s
—b— v=10mm/s —— v=20mm/s .
-0.2 ; ; i ; i i
0 1 1.2 1.4 1.6 1.8 2
log,,(Fy, [N]

Fig. 3.17 Measured dependencies of log,, # on log,, F, at various velocities at the temperature
25.5+£0.5 °C . (Data from: Voll. L [12])
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Fig. 3.18 Horizontal shifting of the curves shown in Fig. 3.17 relative to the curve at the reference
velocity of 1 mm/s provides a “master curve”. It has two distinct linear parts. (Data from: Voll. L

[12])
If the shifting procedure formulated in section 3.3.3 is valid, all the curves shown in this
figure have to be considered as different parts of the same curve shifted along the log F), -

axis. Fig. 3.17 illustrates that it is indeed possible to shift all the curves to produce one
single “master curve”. It is interesting to note that the resulting master curve has two
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distinct linear regions, meaning a power dependence of the coefficient of friction on the
normal force. The crossover between different powers occurs at the force F,, 40 N

which coincides with the force F, ~(2/3)G,D’/R~40N , at which the contact
diameter 2a becomes equal to the thickness of the rubber layer D=5-10" m. At this

force the stiffness-force dependence changes from the Hertzian k oc F'” to k oc F'* [10],
and we expect a change of the scaling relation.
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Fig. 3.19 Shifting factors as a function of the sliding velocity.

Fig. 3.19 shows the dependence of the shifting factor on the sliding velocity. Roughly
speaking, the shifting factor is a linear function of the logarithm of velocity with the slope
—0.15. This result can be interpreted as follows. In the intermediate frequency range, the
loss modulus G” often is a power function of frequency:

G'(0)=G-(o/ a)o)ﬁ (3.45)

where @, is a reference frequency and f a power typically in the range of 0.1 to 0.5
(see e.g. [69]). In this case Eq. (3.43) can be rewritten as (here for a sphere with radius R
,n=2,c, =1/R):

a —1a

1 1
- > 2\3
H q 166G, T Fy )
~<1+ s —_— 3.46
VzA/2 22GVz ( 3R V¥ ( )

In this case, the shift factor is a linear function of logv with the slope -35/2 .

Comparing this with the experimental value of —0.15 gives £ = 0.1. This is compatible
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both with the rheological data for the used rubber compound and with data from
literature.

3.4 Summary

In this Chapter we firstly gave a brief introduction of one-dimensional contacting bodies:
rough profile of the “rigid surface” and Kelvin body of elastomer, then analyzed the
friction behavior of elastomers in detail.

In Section 3.2, we have shown that the law of friction between a linear viscoelastic body
and a rigid fractal surface can be formulated in terms of two dimensionless variables
(3.19) and (3.20) which are proportional to the sliding velocity and the normal force,
correspondingly. Over these variables, the force of friction generally depends on all
material, loading, and roughness parameters: sliding velocity, normal force, shear
modulus, viscosity, rms roughness, rms slope, and even the size of the system. Generally,
the force of friction is not proportional to the normal force, thus, Amonton’s law is
violated. However, in the plateau region, where the coefficient of friction achieves its
maximum, it is proportional to the rms slope of the roughness in the contact region and
depends only weakly on the normal force or any other system parameter. We provided
physical interpretation of the dimensionless variables and a simple interpolation equation
summarizing all numerical and analytical data for a surface with self-affine roughness
having Hurst exponents in the rage from 0 to 1. One of the implications of the obtained
analytical results is the genaralization of the “master curve procedure” to further variables
such as the normal force and the size of the system. We argued that the main physics of
the frictional process are dimension-invariant. In particular, the general scaling relations
should retain their validity for three-dimensional systems.

In Section 3.3, we analyzed the frictional behavior of elastomers contacting with other
shaped profiles under the following simplifying assumptions: (a) the rigid counter body
has a power law shape (e.g. parabolic or conical), (b) the macroscopic contact mechanics
of the indenter is governed mainly by the low frequency shear modulus, which can be
assumed to be approximately constant, (c) the friction is governed by the corrugations
with the smallest wavelength in the spectrum of the surface roughness. Under these
assumptions, we have shown that the coefficient of friction is a function of a
dimensionless argument, which is a multiplicative function of powers of velocity and
force. The exact form of this argument depends both on the rheology and the
macroscopic form of the indenter. But independently of the exact form, the dependence
of the coefficient of friction in the range from very small velocities to the plateau occurs
to be a universal function of this argument, suggesting a generalization of the known
“master curve procedure”: if the dependence of x on the normal force is presented in

double logarithmic coordinates, it will have the same shape for arbitrary velocities, only
shifted along the velocity axis. We have proven this procedure with experimental results
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obtained on polyurethane rubber. In combination with the widely used shifting procedure
for varying temperature [23], it allows to determine generalized laws of friction as
functions of velocity, temperature and normal force. The results of the present study
generalize and validate the results of the pioneering work by Schallamach [27].



Chapter 4 Kinetics of the Coefficient of Friction of Elastomers

In the previous Chapter, we have studied the friction law of elastomers where the
dragging velocity of rigid profile in a certain contact condition keeps always constant and
the friction is considered only at steady-state. With the same basic model we will analyze
the kinetics of the coefficient of friction of an elastomer due to abrupt changes of sliding
velocity in this Chapter.

The work in this chapter appears in paper [61] (Li, Q., Dimaki, A. V., Popov, M., Psakhie,
S. G. & Popov, V. L. Kinetics of the coefficient of friction of elastomers. Sci. Reports
(2014)). My contribution (in accordance with the content of this chapter) is the following:
Li Q carried out the numerical simulation. The details of the numerical calculation are
described in section 4.2. Popov M and Dimaki AV provided initial program code. Popov
VL and Li Q analyzed the simulation results and formulated them in equations including
Eq. (4.5) to Eq. (4.12) (section 4.3). Li Q prepared Fig. 4.1 to Fig. 4.7. Popov VL and Li
Q discussed the results including Eq. (4.13) to Eq. (4.15) (section 4.4) and contributed in
preparing the manuscript of [61]. All authors of [61] reviewed the manuscript [61].

4.1 Introduction

Already Coulomb [14] knew that the coefficient of sliding friction depends on sliding
velocity and normal force and that static friction depends approximately logarithmically
on time [81]. The explicit dependence of the coefficient of friction on time became a hot
topic in the 1970s in the context of earthquake dynamics. Based on the experimental
work on rocks by Dieterich [82] [83], Rice and Ruina [84] have formulated a kinetic
equation for friction, which became one of the most influential generalized "rate-state
models". Similar kinetic behavior of the coefficient of friction was observed on a variety
of different materials including metals, paper and polymers [85][89]. Most physical
interpretations of rate-state friction are based on the concept by Bowden and Tabor [15]
emphasizing the influence of the interaction of rough surfaces; they include direct
observations of the contacting surfaces [90] as well as theoretical analysis [91][92]. Other
models for the kinetics of the friction coefficient were proposed based on the
development of surface topography due to wear (Ostermeyer [93] [94]) or shear melting
of thin surface layers [95]. Heslot et. al. [96] provided a very detailed experimental
analysis of the dynamics of systems obeying the rate-state law of friction. The kinetics of
the coefficient of friction is an essential factor for the stability of systems with friction
[97][99], the break-out instabilities [100] as well as for the design of feedback control
systems [101][103] and remains a topic of high scientific and technological interest. Most
rate-state formulations of frictional laws contain a characteristic length scale, at which a
transition from sticking to sliding occurs. The existence of this length is typically
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associated with a characteristic size of asperities or with other structural peculiarities at
the micro scale [104] [105].

In spite of the intensive research in the field of generalized laws of friction, both the form
of the rate-state friction equations and their parameters can still only be determined
empirically. In the present chapter, we provide a theoretical analysis of the kinetics of the
friction coefficient for elastomers. For these materials, parameters of the kinetic law of
the coefficient of friction are connected with material, loading and surface parameters.
We simulate the standard type of loading used to experimentally determine the
parameters of the rate-state laws: One of the bodies in contact first slides with a constant
velocity; at some moment of time, the sliding velocity changes abruptly, and the jump of
friction as well as the subsequent relaxation is observed. From these simulations we
derive closed-form relations for the jump of friction and the characteristic time of the
following relaxation.

The one-dimensional model of elastomers and rigid body is exactly same as described in
Chapter 3.

4.2 Theoretical model

The two contacting bodies and their models are exactly same as described in Chapter 3,
i.e. viscoelastic foundation with Kelvin body for elastomer and rigid profile with
randomly rough roughness.

The model is described in detail in Chapter 3. Here we reproduce for convenience only
the basic equations. If the rigid profile is given by z = z(x —v¢), and the profile of the
elastomer by u =u(x,t), then the normal force in each particular element of the

viscoelastic foundation is given by
f=—4Ax(Gu(x) + mi(x,1)) . 4.1)
For the elements in contact with the rigid surface, this means that

[ =4Ax(G(d - z(x)) +mvz'(x)), (4.2)

where d is the indentation depth, and z'(x) denotes a derivative with respect to x . For
these elements, the condition of remaining in contact, f > 0, is checked in each time step.
Elements out of contact are relaxed according to the Eq. /' =0: Gu(x)+nu(x,t)=0, and

the non-contact condition u < z is checked. The indentation depth d is determined to
satisfy the condition of the constant normal force

Fo=4 ,  [6(d==0) sz Jar, +3)
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where the integration is only over points in contact. A typical configuration of the contact
is shown in Fig. 3.5. The tangential force is calculated by multiplying the local normal
force in each single element with the local surface gradient and subsequently summing
over all elements in contact:

F = _4.[“631 - Z'(x) [G (d-z(x))+ nvz'(x)]dx . (4.4)

The coefficient of friction # was calculated as the ratio of the tangential and normal
force.

Due to the independence of the degrees of freedom, the algorithm is not iterative and
there are no convergence problems. The length of the system was L=0.01 mand the
number of elements N = L/Ax was typically 5000. The shear modulus was G =10’ Pa.
Instead of viscosity, the relaxation time 7 =7/G =107 s was used. The following ranges
of parameters were covered in the present study: 11 values of the Hurst exponent ranging
from O to 1; Normal forces r, ranging from 10~ to 10> N ; Ax ranging from 107 m
to 10~ m; roughness ranging from 10° m to 10 m; velocities v, from 10*to 10" m/s;
velocity jumps Av from —0.2v, to 0.3v,. All values shown below were obtained by

averaging over 200 realizations of the rough surface for each set of parameters.

4.3 Numerical results
The following numerical experiments were carried out: The rigid surface was pressed
against the elastomer with a normal force /), and moved tangentially with a constant

velocity v, .At the time moment ¢, the velocity was abruptly changed to a new value v,

which could be larger or smaller than the initial value. A typical behavior of the
coefficient of friction before, during and after the velocity jump is shown in Fig. 4.1.
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Fig. 4.1 The kinetics of the coefficient of friction after a positive (a)v, =1.2-v, and negative (b)
v, =0.8-v, velocity jumps for the parameters: F =0.1N,v, =0.1m/s,L=0.01m, h= 10° m,
G=10"Pa, 7=10"s and H =0.7.

The initial value of the coefficient of friction before jump and the final value after
relaxation are of course just the values of the dependence of the coefficient of friction on
velocity at stationary sliding which have been studied in previous Chapter and are
reproduced for one set of material and loading parameters in Fig. 4.2a. With the same
parameters, Fig. 4.2b shows the kinetic coefficients of friction changing with time for all
the velocities in the whole range in Fig. 4.2a where the sliding velocity is increased by
20% at the moment #/7 =10. In the present chapter, we studied the complete range of

velocities from the region I where the friction coefficient increases approximately
linearly with velocity over the transition region II up to the plateau III (Fig. 4.2a).
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Fig. 4.2 (a) Dependence of the coefficient of friction on the sliding velocity during stationary
sliding; (b) kinetic coefficient of friction for the 30 velocities in Fig. 4.2(a) with Av=0.2v,.

Other parameters: L =0.01 m, h=10"m, G=10" Pa, r=10"s,H =0.7 ,Fy=0.1N.

The relaxation of the coefficient of friction after the jump can be accurately fitted by an
exponential function of the form

u()=p" e’ +p, (4.5)
where

T=(t—t,)/7. (4.6)
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Fig. 4.3 Fitting with an exponential function Eq. (4.5) (b =2.4) for the data set: L=0.01 m,
h=10"m, G=10"Pa, r=10"s,H=0.7 ,F, =1.2 N, Av=0.2v, and v, =0.05 m/s.

An example of fitting is shown in Fig. 4.3. .According to Eq.(4.5), the coefficient of
friction at the moment # =17, is equal to x(z,) = " + 1, = g4, + Ay, , therefore

o= =+ Ay = (v)- Av+ Ag, . 4.7)

The kinetic behavior is therefore completely determined by the value Ay, of the jump of

the coefficient of friction and its relaxation time.

4.3.1 Jump of the coefficient of friction

We firstly consider the value Az, at the time of jump # =, . From the numerical results

it is shown that for very small velocity jumps, both the immediate increase of the
coefficient of friction, Az, , and the difference between the asymptotic values u, — 4,

are proportional to the velocity change:

My A g A

2

) (4.8)
H Vi H Vi

In the limit of small velocities, (region I, corresponding to the linear dependence of the
coefficient of friction on velocity), both { and & are close to “1”. It means that u

Jumps directly to the value z¢,, so that there is practically no subsequent relaxation. This

behavior can be clearly observed in Fig. 4.2b.
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forces F, from 10 to 10> N . Other parameters: Av=02v,, L=0.0lm , h=10"m ,
G=10"Pa, 7=10"s and H=0.7.

Fig. 4.4 shows that the velocity dependence of Ay, is similar to that of the coefficient of
friction g, which is studied in previous Chapter. In particular, Ay, first increases

linearly with velocity and then approaches a plateau. The results from simulations with
different Av and different Hurst exponents prove that the linear part of this dependency
can be universally described by

A A
B _ K AV (4.9)
Vz  Vz vy
while at the plateau the relation
Aty _ Hr 4 (4.10)
Vz Vz
is valid. These equations can be combined to the following interpolation equation
a1 "
A
Afly =—| —+ : 4.11
A2 [ﬁf 0.42} (1D

where we introduced normalized quantities Az, = Ay, / Vz and z, = g,/ Vz. The quality

of this approximation is illustrated in Fig. 4.5 by comparison with numerical results for
11 Hurst exponents.
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Fig. 4.5 Approximation of Eq. (4.11) with « =2 for 11 Hurst exponents from 0 to 1. Other
parameters: Av=0.2v,, L=0.01m, F, =12N, h= 10°m, G=10"Pa, 7=10"s.

4.3.2 Relaxation of the coefficient of friction

Let us now consider the relaxation behavior after the jump. We found that the simulation
results for the coefficient 4 in Eq. (4.5) can be described accurately by the empirical Eq.

b= (V74 (4.12)

where « is a coefficient which depends only on the Hurst exponent.
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Fig. 4.6 Dependence of the coefficient b on v,zq,  for different Hurst exponents with the data
set: L=0.01m, h=10"m, G=10" Pa, 20 normal forces F, ranging from 10~ to 10> N, 20
velocities v, ranging from 10~ m/s to 10" m/s, 20 Ax ranging from 107 mto 10~ m.
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Fig. 4.6 shows the dependence of the coefficient » on the combination v,rq,  for
different Hurst exponents. For vrg <1 (left part in Fig. 4.6), the coefficient « is

practically constant: =1, while for vrgq,, >1it can be approximated asa ~1-H
(Fig. 4.7).
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Fig. 4.7 Dependence of the power « in Eq. (4.12) on Hurst exponent for vrg,_ >1.

4.4 Discussions

We investigated the kinetics of the coefficient of friction after a jump of sliding velocity
for a model elastomer. We found a simple general structure of the kinetics: the coefficient
of friction first experiences a jump, followed by relaxation according to an exponential
law to the new stationary value. The jump Ay, of the coefficient of friction and the

relaxation time are thus the only quantities which describe completely the kinetics of the
coefficient of friction. For the model elastomer studied, we found closed form relations

for both Az, and the relaxation time as functions of material and loading parameters.
The character of the relaxation is governed by the quantity vrq ., which can be
considered as ratio of two characteristic times of the system: the relaxation time 7 of the
elastomer and the typical time of contact of micro asperities 1/(vg,,, ). For vzq,, <1,
the coefficient b in Eq. (4.5) is approximately equal to b=v,zq,  , so the relaxation of
the coefficient of friction is given by the Eq.

,u(vl +Av,t—t0) =

12

1(v) + v () 4] ! ()| (4.13)
| Cowlet(v)  (04vz) !
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Note that in this region relaxation of the coefficient of friction occurs at a characteristic
length D, =1/gq,, , which has the same order of magnitude as the size of micro contacts

between the bodies, in accordance with the initial concept of Dieterich et. al. [90]. For
v,7q,.... > 1, the relaxation of the coefficient of friction is described as

u(v, +Av,t—t,) =

()& () | ] O
+ . +| — + _ . relax
L i 12 ,uz(vl) (0.4VZ)2 s

with the characteristic relaxation time

H-1

trelax =7 " (vqmax ) . (4 1 5)

Eq. (4.14) covers the limiting cases of relaxation at a characteristic length 1/g__ (in the

limit H =0) and of relaxation at a characteristic time z (in the limit # =1).



Chapter S Mixed Boundary Lubrication

In this chapter we come to another important topic in the area of tribology — lubrication.
As described in Chapter 1, mixed lubrication is the most difficult problem due to
coexistence of both asperity contact and lubricated contact. We firstly give a short review
on elastohydrodynamic lubrication (EHL). Based on the results from EHL, a new model
of mixed lubrication is proposed in the framework of the MDR. In this model the
dynamic lubricated rolling contact between rough surfaces is simulated. In order to
account for the break-through of the additional boundary layer on a local micro contact
area, an additional criterion is imposed. For comparison, a twin-disc test rig is set up to
measure the electrical resistance between two lubricated rolling surfaces under different
normal forces, rotation speeds and temperatures. We investigate the probability of
boundary layer breakthrough for both experiment and simulation and find good
agreement.

Part of the work in this chapter appears in the paper [33] (Li, Q. & Pohrt, R. Mixed and
Boundary Lubrication in Rolling Contact: Experiment and Simulation. FACTA Uniyv. Ser.
Mech. Eng. 11, 123-131 (2013)). My contribution to [33] (in accordance with the content
of this chapter) is the following: both authors proposed the numerical model (section 5.2)
and contributed to analysis from EHL contact (section 5.2.1) to breakthrough of boundary
layer (section 5.2.2). Li Q carried out the numerical calculation and prepared the figures.
The simulation results are illustrated in Fig. 5.5 and Fig. 5.7a. Pohrt R set up experiment
(Fig. 5.8) and both authors carried out measurement and collected data (Fig. 5.7b). Both
authors discussed the results from numerical calculation and experiment measurement
(Fig. 5.9 and Fig. 5.10). Both authors contributed in preparing the manuscript of [33].

5.1 Introduction

Countless examples in mechanical engineering require lubrication between components
that are in relative motion. It is known from experience that practically no wear at all
occurs when these components operate under conditions, where the surfaces and their
roughness features are completely separated by a fluid film. On the other hand, current
trends in engineering are at a disadvantage to the creation of a fluid film:

e Downsizing mechanical components demand for higher pressures
e Low-viscosity oil increases efficiency but decreases film thickness
e Start/stop cycles force the system through low-speed relative motion
As a consequence, it is common practice for mechanical components such as gears,

bearings and cams to operate in mixed lubrication mode. Typically the surface roughness
of contacting bodies is of the same order as the lubricant film thickness, so that the top
micro roughness features (asperities) will enter into contact and part of the load and
shearing will be carried by these asperity contacts. Under this regime, various wear and
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damage types can occur. In experiments the contact condition for a lubricated system can
be observed by measurement of the electrical contact resistance R, (Fig. 5.1) which is

expressed as [106]

Lzzzai :ﬂ
R p p

(5.1)

where p is the resistivity of contacting materials and a, is the radius of each single

contact spot. L

cont

is the total resulting contact length and defined as the sum of contact

diameters.

Current Flow
Surface A

Surface B

Fig. 5.1 Electrical contact for a single spot between two surfaces.

In the case of full hydrodynamic lubrication, the rough surfaces are completely separated
by the lubricant film, so the resistance measured will be very high. In contrast, when the
asperity contacts carry a major part of the load, a large number of contact spots are
formed, thereby decreasing the electrical resistance dramatically.

5.2 Numerical Model

We deal with the lubricated rolling contact between rough surfaces of cylinders where a
boundary layer is present on the two surfaces. Most non-conforming lubricated contacts
such as roller bearings, journal bearings, cam and followers or gear teeth can be viewed
as such systems. Therefore, we impose a new model for the micromechanical contact
between asperities including the physically or chemically absorbed boundary layer (Fig.
5.2) and apply it to the conditions found in lubricated rolling contacts.
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Surface

Boundary la< \ Lubricant

Fig. 5.2 Schematic contact between two cylinders and its view of contact area in micro scale.
Surfaces may either have a positive gap width, be separated by a boundary layer or be in intimate
contact. The contact conductance only has a considerable value, when there is intimate contact, or
the boundary layer has decreased to molecular scale.

The basic idea is following. From the EHL analysis the oil film thickness between an
elastic cylinder and a rigid plane is obtained for some load, rotation speed and materials
parameters, the latter being dependent on temperature. Based on that, the simulation with
the reduction method focuses on the micro contacts within the Hertzian contact zone and
assumes the average distance between the rough surfaces to be the same as the oil film
thickness resulting from EHL. During the rotation at each moment the number of micro
contacts was calculated including the consideration of boundary layer break-through and
each local contact length was obtained. The total contact length with rotation angle (or
time) is compared with experiment by measuring electrical resistance. Research scheme
is in Fig. 5.3.

{ Lubricated Rolling Contact J

g L)
N X
§ %,
& >
MDR+EHL

+Criterion for Boundary
layer Break-up

l Electrical l

Contact

[ Contact Length J<—>[ Constricted Risistance }

Fig. 5.3 Research scheme.

Measurement

Electrical Resistance

5.2.1 EHL contact

The contact between two elastic cylinders is known for having an equivalent in the
contact between a rigid plane and an elastic cylinder with the equivalent modulus of
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-v; 1-0; I 1 1
1* =1—Ul+1—u2 and radius — =—+—, where E| and £, are moduli of
E, E, R R R,

elasticity, v,and v, are Poisson’s ratios, R, and R, are radii of both cylinders. According

elasticity

to Hertzian contact theory, the contact width 2a under load F), is equal to

*

a= 4Fy R* (5.2)
7L'E

where L'is length of cylinder. For elastohydrodynamic lubricated rolling contact the
bodies are separated by an oil film and its thickness over the whole contact area2a is
almost uniform, except for the trailing edge where a small decrease in the film thickness
occurs (the numerical solution is in Appendix B). A common formula of central film
thickness was given by Hamrock from numerical studies [107]

. 2.9920[0.470 (770‘})0-692 R*0.474
(FN /L,)0.166 (2E*)0'056

(5.3)

where v is mean surface velocity v:(vl+v2)/2 . The values of 7, (viscosity at

atmosphere pressure) and « (pressure-viscosity coefficient) are properties of the
lubricating medium and are usually temperature-dependent. Thus in a case of a known
operation scenario, the film thickness excluding roughness can be calculated.

V2 .
Fig. 5.4 Reduced model for lubricated contact. The original 3D problem consists of two rough
opposing bodies with a clearance stemming from the lubricant film. Surfaces constantly move
tangentially, so new asperity contacts may form. The problem is transformed with the MDR onto
two one-dimensional rough lines.

The lubricated contact area in three dimensional (Fig. 5.4), consists of two moving
rectangles with width and length L that are separated by an oil film with average distance
h, where some asperity contacts may happen.
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5.2.2 Reduced model

We treat the contact problem in this zone using the MDR. Coordinates x and z are seen in
Fig. 5.5. The average of the rough rigid profile is assumed to be zero and the rough roller
is a superposition of a parabolic line and roughness. The roughness has the power

-2H-1

spectral density C,, o« ¢ , where ¢ is the wave vector and H is the Hurst exponent.

In this case, the lines are generated with 10° points, corresponding to the perimeter of the
roller used in experiments. The spectral density is defined from ¢, =27/2a,, to

G = 27/10Ax , where a,_is half the contact width and H =0.7.

max

Elastic “roller”

2| Rigid “surface”

0
AN
_2 1 1 1
-1 —0.5 0 0.5 1
X, m x10°

Fig. 5.5 One-dimensional contact between an elastic “roller” and a rigid body. The mean gap

width between both is obtained by EHL theory, the resulting micro contacts are analyzed by

means of the MDR.

From the results of EHL, the macroscopic shape of the “parabolic line” in the interval

[—a,a] is assumed to be flattened out and the average distance between the elastic “roller”

and rigid profile is equal to the thickness of oil film 4,. With the applied normal force F
and rotation speed v, and v, (and also temperature), the value of contact width 2a and
film thickness 4, can be calculated according to Eq. (5.2) and Eq. (5.3). Therefore, the

initial contacting profiles at ¢ =0 are determined. Then, the points on the lines enter and
transit through the contact width with different velocities v, and v, . At each time step we

check the contact condition. It can be easily observed that some points are in geometrical
contact (Fig. 5.6), but in this thesis we consider the boundary layer between two
contacting bodies, therefore based on this geometrical contact, the failure of boundary
layer must be calculated.
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2h
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>y

o LI TR

AX Llac

Fig. 5.6 One-dimensional model for the deformation of an elastic body. The 3D surface
topography is transformed to give an equivalent line.

For the break-through of the boundary layer, we consider the model of a perfectly plastic
material. It is known [10] that if two plates with radius R are pressed together under
normal force F and separated by a layer of material with low limiting shear stressz,, a

film remains with thickness

_2zn Rk
3 F

(5.4)

According to the rules of MDR [108], the elastic body is modeled as a series of parallel

springs with the normal stiffness Ac = E Ax, where Ax is the discrete step (Fig. 5.6). The
force on each spring is defined as

f(x)=EAx-Az(x,). (5.5)
Here Azis the displacement of indentation. In the reduced model Eq. (5.4) is written as

3
_7rt, D

. 5.6
Ty (5.6)

Here D, is the local contact length and equal to Ax times the number of contacting points
and F,is the normal force on this local area and equal to F, = E *sz Az, from Eq. (5.5).
For each "geometrical contact" if the value 4, calculated according to Eq. (5.6) is smaller

than a critical thickness of a boundary layer #_, it is defined that the layer is broken up

and asperities are in intimate contact. The thickness of boundary layer due to adsorption
and chemical reactions is about 1...10 nm [109]. In the simulation we considered

h,=5nm and 7, =10° Pa.

In a single operation case, the change of total contact length on time is recorded as Fig.
5.7(a). It is seen that at some moments there is no asperity in contact at all. Based on it a
general contact condition in this operation case can be obtained from it, which is named
the probability of boundary layer breakthrough in the thesis and calculated as time
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percentage when real contact occurs. In a well lubricated condition, the probability is
close to zero.

x10° x10°
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Fig. 5.7 (a) Contact length over time, data extracted from MDR simulation; (b) electrical
resistance over time from experiment data. Parameters: 800 N, 100 r/min and 40 °C.

5.3 Measurement

We used a twin-disc test rig (Fig. 5.8) to validate the results obtained from simulation.
Two identical cylinders (radius R =0.05 m, widthZ'=0.01 m, roughness 0.2 um) are
pressed together and rotated at identical speeds, such that pure rolling occurs. Synthetic
lubricant is constantly fed into the contact zone. We used Mobilgear SHC XMP 320,
because it widely used in highly loaded wind turbine gear boxes. Its properties can be
seen in Appendix A. The whole test setup can be heated to give stationary temperature
for the rollers and the injected oil.

We measured the electrical resistance between the two rollers for a range of operating
parameters: The normal force was varied from 100 to 1600 N, rotation speeds from 86

to 200 r/min and temperatures from 40 to 80 °C.
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':::::',;;; ' '
w :eam. :

Fig. 5.8 Experimental setup. The left hand side shows the overall test rig. Inside the aluminum
block, there are two rollers, driven by external drive shafts. The lower block can be lifted
pneumatically to exert a normal force. The right hand side shows a picture of the two rollers in
contact without lubricant.

Fig. 5.7(b) shows a typical sample of the time-dependent resistance measurement. It can
be seen that the contact condition rapidly changes from states of good conductivity to
very high resistance.

In order to compare results quantitatively, we used the classical approach of contact
probability [110]. We calculated the percentage of time, for which the electrical
resistance was measured to be below 100 Q. Whenever this is the case, we consider the
surfaces to be in contact and the electrical current can flow through the contact spots,
otherwise they are separated by a lubricant film. We compare this probability of contact
to the simulated probability of boundary layer breakthrough from the 1D model.

5.4 Results

There are totally 125 operation cases in both simulation and measurement. Fig. 5.9 (a)
shows the simulated breakthrough probability as a function of the temperature. In Fig. 5.9
(b) the experimental contact time probability for the same scenarios are shown. For
reason of clarity, not all cases are included. It can be seen that the contact probability
increases with temperature and load but decreases with rotation speed in both
investigations. Fig. 5.10 gives a direct comparison for the probability of boundary layer
breakthrough between simulation and measurement. Good agreement can be found
qualitavely and quantitatively in most cases.
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Fig. 5.9 Comparison of boundary layer breakthrough between (a) simulation and (b) experiment.
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Fig. 5.10 Comparison of boundary layer breakthrough with all data.

5.5 Summary

The MDR was used to simulate the process of lubricated rolling contact between rough
surfaces. A novel criterion for the breakthrough of the chemical or physical boundary
layer was introduced, based on the assumption of perfectly plastic material behavior.
Using this criterion, the breakthrough probability under different working conditions was
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predicted and compared to experimental findings. The results obtained show good
agreement.



Chapter 6 Fretting Wear

This chapter presents the study of another tribological problem, fretting wear in the
framework of the MDR. We deal with rotationally symmetric profiles. Due to oscillations
with small amplitude, sliding occurs at the boundary of the contact area while the inner
parts of the contact area may still stick. In a recent paper, Dimaki et. al. [1] proposed a
numerically exact simulation procedure based on the method of dimensionality reduction
(MDR). This drastically reduced the simulation time compared with conventional finite
element simulations. The proposed simulation procedure requires carrying out the direct
and the inverse MDR transformations in each time step. This is the main time consuming
operation in the proposed method. However, solutions obtained with this method showed
a remarkable simplicity of the development of wear profiles in the MDR-space.

Now we utilize these results to formulate an approximate model, in which the wear is
simulated directly in the one-dimensional space without using integral transformations.
This speeds up the simulations of wear by further several orders of magnitude.

The work in this chapter appears in the paper [62] (Li, Q., Filippov, A. E., Dimaki, A. V.,
Chai, Y. S. & Popov, V. L. Simplified simulation of fretting wear using the method of
dimensionality reduction. Phys. Mesomech. 17 (2014)). My contribution to [62] (in
accordance with the content of this chapter) is the following: Popov VL, Filippov AE and
Li Q proposed the simulation procedure in section 6.4 including Eq. (6.11) to Eq. (6.15).
Dimaki AV and Li Q designed the initial program code. Li Q carried out the numerical
calculation and prepared figures including Fig. 6.1 to Fig. 6.3. Popov VL and Li Q
contributed in preparing the manuscript [62]. All authors of [62] reviewed the manuscript
[62].

6.1 Introduction

Fretting wear occurs in contacts subjected to oscillations with small amplitude. It is one
of the causes for malfunctioning of engineering components, for example, coupled
flanges, gears or bearings on a shaft. In theoretical modeling of wear, very often an
equation is used which states that the wear volume AV is proportional to the normal
force F), , the relative tangential displacement u_ of the contacting bodies and inversely

proportional to the hardness o :

Ay =i Eat (6.1)
00

This wear equation was suggested already in 1860 by Reye [43], and was later derived
and experimentally justified for abrasive [45] and adhesive wear [46] (derivations see
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also in [10]). To describe the detailed changes of form due to wear, the wear law (6.1) is
often formulated as local relation

Ah(x y) =k p(x’y)ux(x’ y)

0y

(6.2)

where A/ is the linear wear, p(x,y) the local pressure and u (x,y) the local relative

displacement.

Application of the local rule (6.2) requires solving the contact problem for any current
configuration. The main part of the literature on theoretical modeling of fretting wear is
devoted to numerical solution of the contact problem using finite element or boundary
element programs (see e.g. [49]) and implementation of the Reye-Archard-Khrushchov
law in them. In the case of rotationally symmetric profiles, the simulation can be
substantially speeded up by solving the contact problem with the MDR [108] as it was
done in [1]. In the paper [1], the iterative procedure for the simulation of wear based on
the exact MDR-based solution of the three-dimensional contact has been presented. In
this procedure, the contact problem is solved for the one-dimensional equivalent system,
which is then transformed back to three-dimensions to calculate wear. This requires
applying the direct and inverse MDR-transformation in each step of simulation. The
resulting procedure is orders of magnitude faster than the corresponding boundary-
element programs, but still too slow to be used as an interface in larger dynamical
programs. In the present study we suggest an even simpler approximate method in which
the solution of the contact problem and the calculation of wear are both carried out in the
one-dimensional space.

We first briefly recapitulate the main steps of the method of dimensionality reduction,
then analyze the numerically exact solutions obtained in [1] and suggest an empirical
procedure for imitating them directly in the one-dimensional MDR-space. Finally, the
resulting wear profiles obtained by the numerically exact method of [1] and the
simplified method proposed are compared.

6.2 MDR for rotationally symmetric profile

The main steps of the MDR are described in Chapter 1. Given a rotationally symmetric
three-dimensional profile z = f(r), the equivalent one-dimensional profile g(x) can be

determined by Eq. (2.4). The inverse transformation is given by Eq. (2.5).

The profile g(x) is pressed to a given indentation depth d into an elastic foundation
consisting of independent springs with spacing Ax whose normal and tangential stiffness
is given by

k.=E'Ax, k =G Ax, (6.3)
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We assume that the contacting materials satisfy the condition of “elastic similarity”
(1-2v,)/G,=(1-2v,)/G, which guarantees the decoupling of the normal and

tangential contact problems [2]. The resulting vertical displacements of springs are given
by u_(x)=d — g(x). The contact radius a is given by the condition u_(a)=0 or

gla)=d. (6.4)
If the normal displacement of a single spring is equal to u_(x) and tangential

displacement to u_(x), then the normal and tangential spring forces are equal to
AF. = E'u(x)Ax and AF, =G u (x)Ax (6.5)

correspondingly. The total normal load F,, can be calculated as

F, = j E'u_(x)dx = 2:‘[E*[d — g(x)]dx. (6.6)

—a 0

(0)

X

If the profile is moved tangentially by u. ", the springs will be stressed both in the normal
and tangential direction, and the radius ¢ of the stick region will be given by the

condition that the tangential force AF, =k u'” is equal to the coefficient of friction

multiplied with the normal force: AF,(c) =k u_ (c) which results in the relation
Gu'" = uE’ (d —g(c)). (6.7)

As shown in [63], this result reproduces correctly the relations in the corresponding three-
dimensional contact.

6.3 Limiting shape of wear profile and development of intermediate
shapes

If profile is subjected to oscillations with a small amplitude, then the inner part of the
contact area with the radius ¢ given by Eq. (6.7) will sticking while the outer regions will
slip [76][77][111]. In these outer regions of the contact area, wear will occur. If
oscillations continue very long time, the wear profile will be tending towards a limiting
shape [112]. This shape was calculated in the recent paper [60]. In particular, it was
shown that the limiting form of the one-dimensional MDR-image has the form

gy(x), forO<x<c

g.(x) = { (6.8)

d, forc<x<a

and the correspondent shape of the three-dimensional profile the form
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Jo(1), forO<r<c
r)=42% f . 6.9
LOZ21 80 4 200 L 4 frecrea ©)
o —x° A
Here the subscript © and 0 indicate the limiting and initial form of profile.
The contact radius in the limiting state, a (c), is determined by the condition
2¢ g,(x) 2 ¢ 1
— | ==—=dx+—d| ——==dx=f,(a). 6.10
Aol i@ (6.10)

Development of the profiles between the initial and the limiting states calculated using
the method proposed in [1], is illustrated with one example in Fig. 6.1.
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Fig. 6.1 Development of the three-dimensional profile (a) and the corresponding one-dimensional
MDR-image (b) due to fretting wear under conditions of constant approach of bodies (that is the
indenter is pressed into the elastic half space by the indentation depth d,, and then oscillates
horizontally at this constant height). The amplitude of oscillations was chosen such that
¢ =0.55a,-The dimensionless number of cycles (as defined by Eq.(6.15)) was N=4,10, 20,
36 and 70 as indicated by arrow.

6.4 Approximate rule for the worn shape

The development of the shape of one-dimensional images as shown in Fig. 6.1b looks
simpler than that of true three-dimensional profile. It is easy to "mimic" this development
if we note that the main tendency of the profile in Fig. 6.1b is just tending to the constant
value of "d" everywhere in the interval c<x<a . We can try to simulate this
development by the equation
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_dg(x):_ﬁE*(g(x)—d), for c<x<a(c), (6.11)
dou, ao,

where ou (x) is the relative displacement of the bodies in contact, a(c) is solution of Eq.
(6.10) and & is a dimensionless fitting parameter of the order of unity. As E (g(x)—d)

is the linear force density, and £ (g(x)—d)/a has the order of magnitude of pressure,
this Eq. can be interpreted as a one-dimensional modification of the wear law (6.2).
However, we would like to stress, that this equation should not be over interpreted as a
real “wear equation”, as we have to do with the formal one-dimensional MDR-image and
not with the actual three-dimensional profile. For example, according to (6.11), the “wear
rate” outside the contact radius (but inside the radius &) is non-zero, and even negative!

The procedure for the determination of the relative displacement du_(x) in Eq. (6.11) is
described in the following. Assume that the upper body oscillates periodically with a

frequency @ and an amplitude U”:
ul” =U" cos(at). (6.12)

As long as the tangential elastic force AF, =k u_(x) of a spring is smaller than the local
maximum friction force pAF, (x), the indenter sticks to the substrate; therefore, the

spring displacement coincides with the displacement of the oscillating indenter. After
achieving the maximum value of yAF,(x), the tangential force does not increase further,

so that the condition Ak u _(x)= pAF,(x) is fulfilled, and the bodies slide against each

other. These conditions can be written in the form:

[l = A (0] < uf ()

U (x) = i%, when sliding

Au (x)=Au'”, if

(6.13)

This equation determines unambiguously the tangential displacement u _(x) of any spring
and thus the incremental change Au (x) of this displacement at any time. The difference
Su,(x) = Au'” — Au_(x) is then the relative displacement of the indenter and substrate
which has to be used in the one-dimensional “wear equation” Eq. (6.11). Outside the
contact, Su_(x)=Au'".

For presentation of results, we will use the following dimensionless variables. Let us
denote the indentation depth of the initial profile with d, and the corresponding initial
contact radius with g,. All vertical coordinates will be normalized by d, and the

horizontal coordinates by a,. Thus, we will use the following dimensionless variables:
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f=fld,, d=dld,
r=rla,, Xx=x/a, . (6.14)

c=cla,

The dimensionless number of cycles is defined as
=00 (6.15)

For illustration of the procedure described by Eq. (6.11), (6.13) let us consider the cases
of a parabolic and a conical indenter.

6.4.1 Case of parabolic indenter

For the case of parabolic indenter, the initial three dimensional profile is
fo(r)=7r"/(2R), where R is the curvature radius. We consider the situation when this

profile is indented in an elastic half-space by the indentation depth d, and then oscillates
at this constant height. The MDR-transformed one-dimensional profile, according to (2.4),
is given by g,(x)=x" / R . The initial contact radius is given by the condition g(a,)=d,.

During the oscillation the stick region is determined by Eq. (6.7) and the contact radius is
calculated as [60]

—\2 —

o c c

a(c)= (J +2 > (6.16)
Now the change of the one-dimensional profile due to wear is calculated according to Eq.
(6.11) for different number of cycles and the corresponding three-dimensional profiles
are calculated by the inverse MDR-transformation (2.5) . The resulted profiles are shown
in Fig. 6.2 (b) and (a) by solid lines. In the same figure, the results produced by the
numerically exact procedure described in [1] are shown for comparison. The best fitting
with exact results is achieved for £ =0.8. One can see, that the approximate procedure
reproduces very accurately results for the three-dimensional profile for any number of
wear cycles — in any case with a better precision as the typical accuracy of wear
experiments and of the used Reye-Archard-Khrushchov wear law.
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Fig. 6.2 Comparison for parzobolic indenter: (a) three-dimensional profile obt:fned with Eq. (6.11)
and subsequent inverse transformation, Eq. (2.5) (solid lines) and (b) one-dimensional profile
g(x) calculated according to Eq. (6.11) (solid lines) for different number of oscillation cycles
with & =0.8. The amplitude of tangential oscillation was chosen so that ¢ =0.455q,. (c) Three-
dimensional profile obtained with Eq. (6.11) with smaller amplitude of tangential oscillation
U =0.80" (¢=0.652qa,) and (d) larger amplitude U =1.20" (c=0.4la,), where U is
the amplitude for the case in Fig. 6.2(a). Dashed lines are three- and one-dimensional profiles
calculated with the numerically exact procedure described in [1]. The number of oscillation
cycles N=2, 8,18, 32, 72 as indicated by arrow, and the last line (N = 72) in Fig. 6.2(a) (c)
(d) almost coincides with the limiting profile from analytical solution (dot line) [60].

6.4.2 Case of conical indenter

For the case of conical indenter, the initial three-dimensional profile is f,(r)=rtan@.

The corresponding MDR-transformed one-dimensional profile is g, (x) = %|x|tan0. The
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initial contact radius is given by the condition g(a,) = d,, . During the oscillation the stick

region is determined by Eq. (6.7) and the outer wear radius a (E) is calculated by solving

equation [60]

% _ arcsin (é) N (6.17)

2 a
The one- and three-dimensional profiles obtained by solving Eq. (6.11) are shown in Fig.
6.3a and Fig. 6.3b by solid lines. In the same figure, the results of numerically exact
procedure of paper [1] are also shown for comparison (dash lines). As for the parabolic
profile, the three-dimensional shapes obtained by the present approximate procedure
reproduce with good accuracy the results obtained by the numerically exact procedure of
paper [1]. However, the calculating time is reduced by the factor of 600.
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Fig. 6.3 Comparison for conical indenter: (a) three-dimensional profile obtained from g(x)by the
inverse transformation, Eq. (2.5) (solid lines) and (b) one-dimensional profile g(x) calculated
according to Eq. (6.11) (solid lines) for different number of oscillation cycles with & =0.8. The
amplitude of tangential oscillation was chosen so that ¢ =0.21a,. (c) Three-dimensional profile
obtained with Eq. (6.11) with the amplitude of tangential oscillation U © = 080" (c¢=0.368q,)
and (d) U =0.60" (¢=0.522a, ), where U is the amplitude for the case in Fig. 6.3 (a).
Dashed lines are three- and one-dimensional profiles according to [1]. The number of oscillation

cycles is N=2,8,18, 32, 72 as indicated by arrow, and the last line (]\_] =72) in Fig. 6.3(a)
(c) (d) almost coincides with the limiting profile from analytical solution (dot line) [60].

6.5 Summary

In this Chapter, we suggested a simplified numerical procedure for simulation of wear of
rotationally symmetric profiles, which is approximately 600 times faster than the fast
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MDR-based, numerically exact procedure described in [1]. Taking into account the low
precision of the laws of wear, we conclude that this simplified procedure will by more
than adequate for any practical simulation. Because of extreme fastness of the procedure,
it can be used as a “contact and wear interface” in larger dynamic simulations.



Chapter 7 Conclusions and Outlook

7.1 Conclusions

In spite of being a relative new computational tool, method of dimensionality reduction
has been developed fast and was validated for different contact problems in various
analytical and numerical ways. Because of the simplicity and sharply reduced computing
time, this method has been primly extended to various fields of contact mechanics and
tribology. On the basis of this method, the studies of three hot topics in tribology have
been presented in the thesis after a short review on fundamentals of the MDR.

We first studied the friction of elastomer in contact with a rigid rough “surface”. To
achieve a general law, the planar rough profile was initially considered. We have found a
general law of friction giving the coefficient of friction as function of all material,
loading, and roughness parameters: sliding velocity, normal load, shear modulus,
viscosity, rms roughness, rms gradient and system size and form. The coefficient of
friction could be formulated in a closed analytical form.

Apart from the analytical solution, a master curve procedure for the dependence on the
normal force was suggested and also confirmed by the measurements in the tribological
laboratory of the Department of System Dynamics and the Physics of Friction.

Further, the kinetics of the coefficient of friction of elastoemrs has been studied. The
typical behavior which appears also frequently in experiments of other materials was
observed: due to abrupt changes of sliding velocity, the coefficient of friction jumps at
the moment of velocity changing and then relaxes to a new stationary value. Finally the
dependence of jump of the friction and the relaxation time are formulated from the
numerical results.

Mixed lubrication is more complicated because of both presence of both dry asperity
contacts and lubricated contact in the other contact areas. We built a reduced simple
model of mixed boundary lubrication which combines results from EHL and elastic
rough contact of MDR. The experimental results showed good agreement with numerical
solution.

At last we presented the study on fretting wear of a rotationally symmetric profile. On the
basis of the results from Dimaki et. al [1] who give exact numerical procedures allowing
fast simulation using the MDR, we put forward an even much faster approximate model.

7.2 Future work

The contribution to study and application of MDR in contact mechanics is growing, for
example recently published research on partial-slip friction of rough surface, shakedown
limits for elastic rolling contact [114] etc. There are still lots of possibilities in the frame
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of the MDR, but we address here only some that are directly related to the topics in this
thesis.

In the thesis, the elastomer was modeled with Kelvin body which has only one single
relaxation time. In real elastomers, the relaxation occurs over several orders of magnitude
of time. A better model of viscoelasticity is so-called Prony series which consists of a
spring and a series of Maxwell elements assembled in parallel.

One more factor of effect on friction of elastomer can be also considered — temperature.
In the book of Popov and HeB3 [63], the method is described how the local heating in
contacts can be taken into account in the framework of the MDR. During the contact
between elastomer and rigid body, the energy loss by normal force on the elements
(dashpots) of foundation must balance the heat energy flow which can be calculated with
the formulation presented in the book.

With the help of analysis of fretting wear in the previous chapter, the problem of wear
under gross slip can be also studied. In this case, tangential slip differently occurs at the
whole contact area. During the sliding on rigid substrate the wear shape of elastic body
can be calculated with the same principles of the MDR.



Appendix A Property of Oil Used in Experiment

The oil type in experiment is SHC XMP 320 [115]. It is widely used in wind turbine
especially high load unit. The property is detailed in Table A.1.

Table A.1 Property of oil used in experiment

ISO Viscosity Grade 320
cSt @ 40° C 335
cSt @ 100° C 38.3
Viscosity Index, ASTM D 2270 164
Pour Point, °C, ASTM D 97 -38
Flash Point, °C, ASTM D 92 242
Specific Gravity @15.6° C kg/l, ASTM D 4052 0.860
Fail Stage 10
GFT-Class High
FZG Scuffing, DIN 51345 (mod) A/16.6/90,

: 14+
Fail Stage
4-Ball Wear test, ASTM D 4172, mm (Mod 025
1,800 RPM, 20kg, 54° C, 60 Minutes) )
Rust protection, ASTM D665, Sea Water Pass
Water Seperability, ASTM D 1401,Time to 10
40/37/3 at 82° C, minutes
Foaming Characteristics, ASTM D 892,Seq. II, 0/0
Tendency/Stability, ml/ml
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Appendix B Solution of EHL for Line Contact

During the study of mixed lubrication in Chapter 5, we tried also to numerically solve the
EHL contact. In this Appendix we present the short fundamentals. Ertel was the first one
who combined the Reynolds Equation and Hertzian Contact theory and predicted the
EHL oil film thickness between two rollers in1939 [116] [117]. In his approximate theory
the surfaces are assumed to be parallel and a reduced pressure was employed so that the
one-dimensional Reynolds equation is independent on the viscosity of lubricant. Later
other researchers, Dowson and Higginson (1959, 1966) [118] [119], Houpert and
Hamrock (1986) [120] and so on, developed other approaches to solve the complex EHL
problem and found a more accurate solution.

B.1 Basic equations

Reynolds equation describes the relation between pressure distribution and film thickness
as a function of lubricant viscosity, density and velocity in the regime of hydrodynamic
lubrication. The standard form of Reynolds equation for line contact is expressed as

3
d(ph dp zlzu_d(ph), (B.1)
del 7 dr dx

with x coordinate, / film thickness, p pressure, # the sum velocity of both surfaces in
x directions, p lubricant density, 77 absolute viscosity of lubricant. In order to solve

Reynolds equation, the following two boundary condition and load balance must be met:
firstly, pressure and pressure derivative are zero at the edges of contact area

op
:—:0
P ox

(B.2)

=X; 2
X=X > Xous

secondly, the integration of pressure over the whole contact area is equal to external
normal force

F={ pdx. (B.3)

It is not easy to obtaine an analytical solution of Eq. (B.1), while two further characters,
elastic deformation of contacting surfaces and pressure-viscosity effect, play an important
role to high pressure on the contact area. We list these equations of

pressure - viscosity 77 = 7,e”; (B.4)

viscosity - temperature 7 =17, exp[—ﬁ (T - TO)] ; (B.5)
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. 0.6x107° p
density - pressure p = l+— |, B.6
1Y T prEsstE p p"[ 1+1.7x109pj (B6)

where 7, is viscosity at atmosphere pressure and temperature 7;, @ pressure-viscosity

coefficient, S viscosity-pressure coefficient, p, density at atmosphere pressure.

The surfaces of an elastic cylinder and a rigid plane are separated by the lubricant film
and the distance between them compose of the geometrical separation and the elastic
deformation of cylinder as seen in Fig. B.1.

Under the assumption that the contact area is much smaller than the radius of cylinder,
the geometrical gap can be simplified as

2
X

h(x) = h, +E . (B.7)
A :
R P
io h(x)
E R :
i ol""x i

(a) (b)

Fig. B.1 (a) Geometrical distance and (b) elastic deformation between a cylinder and a plane.

According to Hertz contact theory, the elastic deformation at point x is calculated as

2 52 2
o(x)=—"— In(x—s) ds. B.8
(5) === ] p(s)im(—s)'ds ®8)
Together with (B.7) and(B.8), the oil film thickness between an elastic cylinder and an
rigid plane is

x2 2 52 2
hix)=h+——-— s)n(x—s) ds. B.9
() =h+ 2 [ p(s)in(x—s) B
Considering all the effects (B.4) - (B.6) and (B.9), with the boundary condition (B.2) and

(B.3), the Reynolds equation can be solved numerically.

B.2 Numerical solution

For the simplification of analysis, the following dimensionless parameters are often
proposed:
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Load parameter: W = 2 (B.10)
ERL

Speed parameter: U = L/ (B.11)
ER

Material parameter: G =aF (B.12)

Film thickness: H = h—lf . (B.13)

a

Thus the dimensionless film thickness can thus be written as a function of the three
parameters

H=f(W.,U,G). (B.14)

. . . I
With definitions of the other dimensionless parameters P=-—, X ==, n=—, p=—
Po a o Po

the basic equations in dimensionless form are written as following.

a. Reynolds equation (B.1)

d pH’dP_ 37°Ud(pH)
— (=)= (B.15)
dX n dX° 4w dX
) . oP

with boundary condition: P = o O| XeX, X, °
b. Load balance (B.3)

JPdX:%. (B.16)
c. Lubricant viscosity (B.4)

n=e"", (B.17)
d. Lubricant density

-9
p=l+ 0.6x10 _;,?OP ' (B.13)
1+1.7x107 p,P

e. Film thickness (B.9)

H(X)=Hy+= X" ———["P(S)in(X 5)"ds. (B.19)

2 2 IS

The elastic deformation & (X ) in discrete form can be calculated numerically as
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N

5=-2>K,P (B.20)

5T

Jj=1

With matrix

l l

K, = (X'+0,5 _Xj)(ln|X'+045 _Xj|_1)_(Xi—045 _Xj)(ln|Xi—0.5 _Xj|_l)
=AX {(i- j+0.5)[In(|i— j+0.5/- AX )~ 1]~ (i= j—0.5)[In(ji = j - 0.5]-AX) -1]}

Observe from Reynolds equation that p , 7 and /4 have an influence on pressure.

Normally the lubricant density changes not much with pressure, maximum by 33%, in
some simulations its influence was neglected. But viscosity varies by several orders of

magnitude as lubricant through the contact area, and %’ in equation lets the pressure be
very sensitive to variation of film thickness. For these reasons it is difficult to get
convergence of solution and more and more accurate numerical methods were developed,
for example Forward Iterative method [121], Inverse Solution method [122], Newton-
Raphson method, Multigrid method [123] and Effective Influence Newton method [124]
[125]. The main procedures of numerical simulation with these methods are shown in Fig.
B.2.

INPUT:
W,U,G,R,L,E-a!no

Calculate pressure distribution P
and initial film thickness H,

v

Calculate film shape H
and p,nwith P, H,

[ Iterate Reynolds Equation |

| Modify P I *
Calculate Pressure

distribution P by iteration

No

l Modify H, I

Calculate new film shape H
and new p,n

No

Fig. B.2 Flow chart of program.
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Using Newton-Raphson method we programmed EHL line contact in Matlab. Fig. B.3 is
the result for one case. From that It is found that oil film thickness /4, over the Hertzian

area is not constant, it is almost uniform but at the outlet edge has a decrease, the minimal
thickness #_,, is about 75% of central thickness 4,, where the pressure rises abruptly.

These two EHL typical characters, thickness decrease and pressure spike at the outlet,
were also proved by many experiment.

4 x107 ' ' ' __x10% ¢
3.5¢ Pressure 14.5
14
31 Film thickness
q 1352
g 25 13 ¢
8 2
3 2 ¢ 12:5 8
By
ﬁa 1.5} 12
E ) 1.5
I {1
0.5 {10.5
0 - - - 0
-4 -3 -2 -1 0 1 ta

Fig. B.3 Film thickness and pressure distribution for EHL line contact.

(a) Formulas of film thickness

From curve fitting of many groups of numerical results, the formula of dimensionless
film thickness as a function of dimensionless load, speed and material parameter was
proposed by many researchers, such as Dowson-Higginson, Wymer and Hamrock-
Jacobson etc. A widely used one set from Pan and Hamrock (1989) [107] is formulated as
following:

Minimum film thickness in

dimensionless form H,, = hLR““ =1.714W 12y G=>® (B.21)

1.806%568 (770“)0'694 RO+

dimensional form 4, = TR (B.22)
(w/L)"
Central film thickness in
dimensionless form H, = % =2.929p eyt (B.23)

2992 470 (77071)0'692 RO474
(W/L)O'lﬁé 0056

dimensional form 4, = (B.24)
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From these relations above it can be seen noted that the film thickness is significantly
affected by rotation speed and viscosity of lubricant, but slightly by load, and the
elasticity effect is very weak. The film thickness is almost uniform over the Hertzian
contact area. The area of decrease of thickness is very small and so that it was neglected
in our simulation.
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