
BACHELOR’S THESIS

Characterizing PneuFlex Actuator

Deformations Using Liquid Metal

Strain Sensors

Gabriel Donald Zöller
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Zusammenfassung

Weiche Roboterhände passen ihre Form ohne Zutun an Gegenstände und Ober-

flächen an und eignen sich deshalb besonders zum Greifen. Aber ihre Form kann

auch Informationen über den Greiferfolg, Eigenschaften von Gegenständen und der

Umgebung liefern. Diese Form zu messen erschwert sich eben durch diese Fle-

xibilität, denn das weiche Material zeigt sehr komplexe Verformungen. Das Ziel

dieser Arbeit ist, eine vereinfachte Formerkennung für den PneuFlex Aktuator der

RBO Hand 2 zu ermöglichen. Dazu werden komplexe Verformungen als Kombina-

tion einfacherer Verformungen identifiziert, die wiederum durch Regressionsana-

lyse aus Dehnungssensordaten vorhergesagt werden können. Eine Anordnung von

Dehnungssensoren wird mithilfe von Verformungsabschätzungen auf den Aktua-

tor aufgebracht und durch ein Optimierungsverfahren auf die aussagekräftigsten

Sensoren reduziert. Mit dieser optimierten Anordnung lassen sich diese elementa-

ren Verformungen immer noch präzise vorhersagen, wodurch Aussagen über die

tatsächliche Form des PneuFlex getroffen werden können.



Abstract

Soft, compliant robot hands passively adapt their shape to excel in grasping tasks.

But their shape can also give insight into grasp quality, object properties and their

environment. Recovering this shape is difficult because their soft material exhibits

complex deformations when subjected to external force. This thesis aims to en-

able limited shape sensing of the PneuFlex actuator used for the soft RBO Hand 2.

Complex actuator shapes are identified as combinations of simple deformations that

are shown to be predictable from strain sensor readings using machine learning. A

layout of strain sensors is created from strain estimations during these deformations

and optimized to produce a reduced layout of sensors. This optimized layout is then

shown to still accurately predict these deformations, giving insight into the shape of

the PneuFlex actuator.
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1 Introduction

The flexible shape of compliant actuators that form soft, pneumatic robot hands

like the RBO Hand 2, is integral to their ability to reliably grasp objects and safely

interface with their environment. Their soft material and pneumatic actuation allow

passively adapting their shape to maximize contact area while grasping, as well as

enduring impacts with little to no damage done to both the manipulater and the

impactor.

But shape can also give information about object properties [1], grasp quality and

the surroundings of the actuator [2]. Integrating proprioceptive shape sensors into

the PneuFlex actuators that make up the RBO Hand 2 could enable these benefits.

Shape sensing of soft pneumatic actuators made from silicone rubber is impeded

by two aspects: First, the high flexibility leads to highly complex deformations with

very high, near infinite degrees of freedom, which are difficult to model and sense in

all their degrees of freedom. Second, parts of the actuator stretch to up to 170 % of

their original size and may bend in very sharp angles, requiring sensors as flexible

as the actuator itself.

Strain sensor designs based on changing the resistance of a liquid metal conduc-

tor inside a strip of silicone rubber [3, 2] fit the PneuFlex actuator well. Being

made from the same material, they exhibit the properties described in the second

aspect above. Farrow and Correll [2] have used an actuator based on the same de-

sign as the PneuFlex actuator, equipped with a pressure sensor and a single liquid

metal strain sensor (LMSS) to discern grasped objects and recognize contact with

the environment.

The contribution of this thesis is a method to equip PneuFlex actuators with an

optimized layout of multiple strain sensors able to measure simplified, task-oriented

deformations, giving insight into the actuator’s shape. These task-oriented defor-

mations are derived by observing the RBO Hand 2 while grasping and exploiting
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environmental constraints (3). The most common deformations occurring are di-

vided into these constituting parts, called deformation modes. Sensor placement on

the actuator is then motivated by estimating the strain induced by these deformation

modes (4.1.2). A motion capturing system quantifies the deformation modes (4.1.5),

allowing them to be predicted from strain sensor readings with a machine learning

algorithm (4.1.6). The layout of sensors is then reduced to an optimized version that

simplifies repeatable manufacturing (4.1.3) while retaining the accuracy of the full

number of sensors.

While I apply this method to the PneuFlex actuator, it could be applied to other

soft actuators operating with high amounts of stretch.

I first give an overview on related research regarding soft manipulators, appro-

priate sensing strategies and other work on sensorizing manipulators in 2. I further

introduce the PneuFlex actuator, the RBO Hand 2 and deformation modes in 3. Af-

terwards, I explain the setup and execution of the experiment I conduct to test my

method of finding an optimized layout of LMSSs on the PneuFlex actuator to predict

deformation modes in 4. This experiment is evaluated, showing my method to work

(5) and explaining its limitations and inspired future work (6).
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2 Related Work

In this section, I give an overview on soft, compliant robot hands, research regarding

shape sensing of soft manipulators, suitable sensor technologies and simulation of

soft, pneumatic actuators.

Soft Manipulators Soft, underactuated manipulators have shown to provide ro-

bust grasping capabilities, inherent safety and lower manufacturing costs compared

to mechanically more complex rigid or actively compliant robot hands.

In this work, I focus on the RBO Hand 2, a dexterous, soft robotic hand that

uses PneuFlex actuators, pneumatic continuum actuators made from flexible sili-

cone rubber [4].

Benefits of Sensors on Soft Robotics Sensing in soft manipulators can

give insight into their surroundings, assess grasp quality and discern properties of

grasped objects. This can improve grasping performance and make soft manipula-

tors even safer.

Farrow and Correll [2] demonstrate the use of a liquid metal strain sensor (LMSS)

and a pressure sensor on pneumatic actuator to distinguish objects and contact with

the environment. Homberg et al. [1] show how to recognize objects with bend

sensors inside soft actuators, forming a soft hand with three fingers with each con-

taining one sensor. Each of these soft pneumatic actuators has at most one bend or

strain sensor and may have a pressure sensor.

Kazemi et al. [5] use finger strain gauges to help their environmental constraints

exploiting grasping by registering contact of the actuator tips with a surface.

There is research to use soft, compliant manipulators in minimally invasive surgery

aiming to provide flexible manipulators that can navigate inside the body of a pa-

tient without injuring surrounding tissue by enabling tactile sensing [6] or the need
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to move the point of entrance of the manipulators by enabling shape sensing with 3

conductive yarn sensors [7].

White et al. [8] describe triangular patches of silicone with 3 integrated LMSSs

that allow sensing deformations of these patches with the intent to combine multiple

patches to a thoroughly sensorized bigger patch of soft skin. This could enable

shape sensing on arbitrary soft objects, although with an edge length of 10 cm they

are too big to be applied to actuators roughly the size of human hands and the high

amount of sensors might complicate the measuring setup, with each sensor requiring

a measuring circuit.

The RBO Hand 2 is currently limited to a single pressure sensor. Equipping

it with multiple proprioceptive sensors to gain insight into its shape could further

improve its grasping capabilities.

Choice of Sensors for Soft Robotics After introducing the advantages of

sensors in soft manipulators, I discuss the type of sensors used in soft robotics and

evaluate why LMSSs are a suitable candidate for sensors on the PneuFlex actuator.

There are lots of sensors with possible application in/on soft robotics: Homberg

et al. [1] use bend sensors embedded into the silicone rubber of the actuator. These

bend sensors are of a fixed length and embedded into the non-stretching layer of the

actuator.

Optical fiber Bragg grating sensors are used by Park et al. [9] on a compliant

manipulator to measure forces occurring during grasping. While fiber Bragg grating

sensors can measure multiple angles and have a small bending radius, they can not

be stretched. On the PneuFlex actuator, this would confine them to the sides or

insides of the actuator directly atop the fabric layer.

Apart from sensors integrated into the actuator, external means of shape sensing

can also be used, like camera-based systems Oikonomidis et al. [10] or electromag-

netic tracking systems Sun et al. [11] These systems need to be in line of sight or in

close range to the actuators, so (self-)occlusion or a low range of action can impair

the usefulness of these systems. These systems can also be enhanced by additionally

using proprioceptive sensors like in Hsiao et al. [12].

There are also several designs of strain sensors that can match the flexibility of

soft, pneumatic actuators.
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3 conductive yarn sensors are used by Wurdemann et al. [7] to sense the shape of

a small, soft continuum actuator and are stretched to up to 156 % of their original

length.

Conductive Thermoplastic Material (CTPE) strain sensors can be extruded to

form various shapes of and can stretch to up to 200 % of their original length [13].

Specialized mixing and extruding hardware is needed to produce them, though.

LMSSs are made from the same flexible silicone rubber as the PneuFlex actuator

and a single sensor is by Farrow and Correll [2] on an actuator based on the same

design as the PneuFlex. They do not require specialized hardware for manufacturing

and match the design of the PneuFlex very well and are therefore a suitable choice

of sensors for the PneuFlex actuator.

Strain Simulation In this work, I estimate strain from deformation modes and

attach multiple promising sensors to sense deformations, even if the sensors might

turn out redundant.

Research on simulating soft, pneumatic actuators is ongoing, but no existing sys-

tem simulates dynamic use cases like grasps, yet. Polygerinos et al. [14] conduct

finite element simulation of similar actuator, but only under inflation, deformations

from external force are not (yet) simulated. Deimel and Brock [4, A] describe a

model to calculate PneuFlex manufacturing parameters according to specific needs

like a specific actuation range or pressure response, but also do not (yet) simulate

deformations from external forces.

Research on automatically routing strain sensors according to strain simulations

of dynamic deformations in simpler soft bodies made of a single material exists,

like Culha et al. [13] use on 2 dimensional shapes and Bäecher et al. [15] use in

a 2 dimensional plane in an action figure. This can not directly be applied to the

PneuFlex actuator because it is more complicated, employing 3 different materials

and a hollow body filled with air.

11



3 Deformation Complexity

Reduction With Deformation

Modes

In this chapter I give an overview on the PneuFlex actuator used for the RBO Hand

2 and argue why shape sensing could improve its performance. To enable shape

sensing, I divide its complex deformations into 4 simpler deformations. I then es-

timate where these deformation modes induce high strain in the PneuFlex actuator

to find candidate areas for possible strain sensor placement. When combined, the

measured deformation modes can give insight into the actuators shape.

3.1 The PneuFlex Actuator and the Need for

Shape Sensing

The PneuFlex actuator, as described by Deimel and Brock [16, 4] is a soft, pneu-

matic continuum actuator. Its soft, hollow shell is molded from flexible silicone

rubber, then bonded to a bendable, but not stretchable layer of PET fabric and re-

inforced with a helical wrapping of thread [4, p.4]. This layer of fabric causes the

PneuFlex to bend when inflated with air, while the thread helps to keep its expan-

sion to the amount needed for bending [4, p. 4], as seen in figure 3.1. It is inflated

and deflated by electric high-speed valves and monitored with a pressure sensor to

prevent damaging the actuator from high internal pressure.

PneuFlex actuators allow the construction of the dexterous and passively com-

pliant RBO Hand 2 [4], seen in figure 3.2. This soft robot hand can grasp in a

wide variety of ways [4, p. 12] and achieves a firm grip on objects by passively
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Figure 3.1: A PneuFlex actuator bending on inflation. The actuator’s passive layer

made of non-stretchable fabric keeps its length while the silicone shell

extends. The thread-wrapping constrains the expansion of the actua-

tor to the necessary amount to achieve bending. Anatomical terms of

location are overlayed.[17]

adapting its shape. Its passive compliance also enables it to exploit environmental

constraints like a wall or the edge of a table to improve its grasping performance

[20, pp. 12-14].

But as I established in chapter 2, grasping performance of compliant manipulators

can be improved with proprioceptive sensing [21]. Also, information about grasped

objects [1] and grasp success [2, p. 2322] can be inferred from the actuator’s shape.

With parts of the PneuFlex actuators bending very sharply or stretching up to 170 %

of their original length, sensor technologies just as flexible are needed.

In the following section, I propose a way to enable proprioceptive shape sensing

in PneuFlex actuators.

3.2 Deformation Modes: Dividing Deformations

to Enable Shape Sensing

The high flexibility of the PneuFlex actuator allows it to deform in complex ways

with very high, near infinite degrees of freedom. While this is a prerequisite for the
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Figure 3.2: The RBO Hand 2, comprising 7 PneuFlex actuators: 4 as fingers, 1 as

the thumb and 2 as the palm. Overlayed are the anatomical terms of

location [18].[19]

passively compliant grasping abilities of the RBO Hand 2, it complicates sensing

the shape of the actuators. Because each degree of freedom needs one independent

sensor, a thorough sensorization of a PneuFlex actuator would need as many sensors

as there are degrees of freedom.

A reduced amount of deformation degrees of freedom might sufficiently describe

sensor shape to enable the benefits of sensing described in chapter 2. While reen-

acting grasps from the grasp taxonomy described by Feix et al. [22] and constraint

exploitation by Eppner et al. [20, pp. 12-14] I observed that the most prominent de-

formations of the PneuFlex actuators are combinations of 4 simpler deformations. I
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show a set of grasps executed with the RBO Hand 2 and how the occurring defor-

mations can be divided. I then define the 4 deformation modes gathered from the

division. Combining these deformation modes again should thus give insight into

the shape of the actuator.

3.2.1 Grasps and Composite Deformation Modes

In this subsection, I divide PneuFlex actuator deformations into visible deformation

modes.

Slide-to-Wall Grasp In the slide-to-wall grasp as described by Eppner et al.

[20, p. 18] contact with the wall leads to lateral deformations, as seen in figure 3.3

Figure 3.3: A slide to wall grasp leads to lateral deformations on contact with the

wall. [17]

Medium Wrap Lifting Heavier Objects While a medium wrap grasp [22,

No. 3] shows visible dorsal deflection, lifting the grasped object leads to lateral

deflection combined with axial rotation, as seen in figure 3.4.

In general, lifting objects with the ulnar/radial axis parallel to the direction of

gravity shows lateral deflection and/or axial rotation.
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Power Disk Grasp With the power disk grasp as described by Feix et al. [22,

Grasp No. 10], the actuators of the RBO Hand 2 show a very slight proximal/distal

contact point, together with dorsal deflection, as seen in figure 3.5

3.2.2 Deformation Modes

Deformation modes are simple deformations of the PneuFlex actuator that have 1

degree of freedom. Their naming refers to the anatomical terms of location [18] as

visualized in figure 3.2.

Palmar and Dorsal Deflection refers to deflection with (palmar) or against

(dorsal) the direction of actuation of the PneuFlex actuator as seen in figure 3.6.

Lateral Deflection is a deflection perpendicular to the direction of actuation,

as seen in figure 3.7. In an RBO Hand 2, this deformation mode would be named

radial (towards the thumb) and ulnar (away from the thumb) deflection.

Axial Rotation is a rotational deformation around the proximal/distal axis of the

actuator, as seen in figure 3.8.

Palmar Contact describes where contact occurs on the palmar PET fabric layer

along the distal/proximal axis, as seen in figure 3.9.

3.3 Strain Estimation on the PneuFlex Actuator

As established in chapter 2, I use liquid metal strain sensors (LMSSs) to measure the

extent of deformation modes of PneuFlex actuators. Strain sensors are obviously

the most useful in areas where high strain occurs, so I need to find areas where

deformation modes lead to strain in the PneuFlex actuator. But because simulat-

ing soft actuators in dynamic cases like external deformation is difficult [4, p. 8],

computer aided strain estimation is not available and I visually estimate the strain

induced by deformation modes.
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In this section I explain how I found promising configurations of strain sensors

on the PneuFlex actuator by estimating the strain induced during deformation.

Strain from Inflation According to the principle of function of the PneuFlex ac-

tuator, its soft silicone shell stretches while its fabric layer stays at the same length.

This leads to strain in the whole silicone shell, but most prominently in the dorsal

side of the actuator, opposite from the non-stretching fabric layer.

Strain from Deflection Deflection leads to strain from compression in the di-

rection of deflection and to strain from stretching on the opposite side.

For palmar and dorsal deflection, most strain occurs on the dorsal and palmar

side respectively, as seen in figure 3.6. The fabric layer on the palmar side does

not compress like silicone parts do, but rather crumples slightly. But because the

fabric layer is in direct contact with objects, LMSS can not be applied to it, because

grasping would pinch off sensors and lead to invalid measurements. This leaves the

dorsal side of the actuator to place a strain sensor that measures strain from palmar

deflection and compression from dorsal deflection.

For lateral deflection, the opposite sides are both made from silicone, so stretch

and compression occur on both sides, as seen in figure 3.7. So both lateral sides of

the PneuFlex are promising areas for sensor application.

Strain from Axial Rotation Axial rotation twists PneuFlex actuator, leading

to strain wrapping helically around the actuator in the direction of the rotation, as

visualized in figure 3.8. Likewise, strain sensors wrapped around the PneuFlex

helically in both directions should be able to measure this deformation mode.

Strain from Contact on the Palmar Fabric Layer A sharp contact on the

fabric layer leads to the parts of the actuator before and after the contact point to

stretch differently, as seen in figure 3.9.

This motivates multiple sensors of different length along the dorsal side of the

actuator. Because this deformation was actually visible only in a few cases (see

subsection 3.2.1), I decided to integrate sensors of only two lengths.
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3.4 Conclusion

I introduced the PneuFlex actuator as the constituting parts of the soft RBO Hand 2.

I described divisions of prominent PneuFlex deformations resulting from grasping

tasks into 4 simpler deformations called deformation modes. To allow measuring

of deformation modes with strain sensors, I estimated where deformations would

induce high strain on the actuator.
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Figure 3.4: Grasping a heavy object with a medium wrap induces dorsal deflection.

Trying to lift it induces axial rotation and lateral deflection. [17]
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Figure 3.5: A power disc grasp shows obvious dorsal deflection and a proxi-

mal/distal contact point. [17]
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Figure 3.6: Palmar and dorsal deflection respectively occur with or against the di-

rection of actuation of the PneuFlex actuator. Palmar deflection leads

to stretching on the dorsal side (2) and to crumpling in the fabric layer.

Dorsal deflection leads to compression on the dorsal side (3). The fabric

layer does not stretch. High strain occurs thus on the dorsal side. This

deformation is parametrized by the angle (1).
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Figure 3.7: Lateral deflection occurs perpendicular to the direction of actuation of

the PneuFlex actuator. The lateral sides of the PneuFlex stretch and

compress on lateral deflection. Compression occurs in the side in the

direction of the deflection (3) and stretching in the opposite side (2).

This deformation is parametrized by the distance (1).

Figure 3.8: Axial rotation refers to the rotation around the proximal/distal axis of

the PneuFlex actuator. Strain occurs in a spiral around the actuator as

indicated by (2). This deformation is parametrized by the angle (1).
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Figure 3.9: Palmar contact refers to where on the fabric layer of the PneuFlex a

sharp contact occurs. Sharp contact on the fabric layer (1) sections the

PneuFlex into two parts bending with different angles (2 and 3). Differ-

ent amounts of strain occur before and after the point.
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4 Experimental Setup and

Execution

After introducing deformation modes and estimations where they induce high strain

in chapter 3, I describe the experiment I conduct to test if deformation modes can be

predicted from liquid metal strain sensor (LMSS) data. In this experiment I manu-

ally bend the PneuFlex actuator into singular or combined deformation modes (4.2)

while recording sensor data (4.1.4) and positional information about the actuator.

The positional information is then converted into the extent of deformation modes

(4.1.5). I expect to be able to quantitatively predict deformation modes from strain

sensor readings and find a reduced set of sensors that allows this prediction with

similar accuracy. For the prediction, I train a machine learning algorithm on the

gathered data and gradually reduce the amount of sensors used as the prediction

input to find a suitable reduced set of sensors (4.1.6). I analyze and determine the

success of the experiment on the basis of error metrics in chapter 5.

4.1 Setup

This section describes the hardware and software setup of the experiment. I first

introduce LMSSs, explaining their properties and the manufacturing process in sub-

section 4.1.1. In subsection 4.1.2, I compile a set of sensors that is tested in the

experiment, based on the strain estimations from section 3.3. Strain and pressure

sensor data acquisition, cleaning and scaling is described in subsection 4.1.4 and the

setup to gather positional data and to convert it into deformation modes in subsec-

tion 4.1.5. The machine learning setup to predict deformation modes from sensor

data and to find a reduced set of sensors is explained in subsection 4.1.6. In 4.1.3 I

describe the reasoning behind and the manufacturing of a sensor layout arranged in
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a single sheet of silicone. This reduced layout is then tested in a new round of the

experiment to test the results of the previous one.

4.1.1 Liquid Metal Strain Sensors

The liquid metal strain sensors (LMSSs) I use on the PneuFlex are a design of re-

sistive strain sensors described by Farrow and Correll [2, pp. 2319-2320]. They

consist of a silicone tube with a diameter of 0.12 mm encased in a thin layer of

silicone and filled with a eutectic gallium-indium-tin alloy that is liquid down to

−19 ◦C [23] and is electrically conductive. When the sensor is stretched, the tube

elongates and its diameter decreases, which both raise the electrical resistance of the

liquid metal. The resistance of a single sensor is about 0.9 Ω unstretched and 1.4 Ω

fully stretched. But when the sensor is pinched and the tube closes off, the electric

conductivity is interrupted. For this reason, LMSSs can not be used on the palmar

side of PneuFlex actuators because grasping objects would lead to pinch-off.

Manufacturing A piece of silicone tube with an inner diameter of 0.12 mm is

stretched out in a U-shape at the bottom of a mold with its ends fastened at the

edges of the mold. A 1 mm layer of silicone is filled into the mold, encasing, but

not filling the tube. After being lifted from the mold and roughly cut to shape, the

liquid metal is injected into one end of the silicone tube. Insulated copper wire with

a diameter of 0.25 mm is stripped and inserted into the metal-filled tube. Pieces of

mesh are attached to both ends of the U. “On the distal end the mesh prevents the

tube from stretching at the tip, keeping the active area of the sensor confined to the

straight part.” ([2, p. 2320]) On the proximal end, the mesh overhangs the sheet of

silicone by about 2 cm. While the mesh on the silicone relieves strain [2, p. 2320]

and hinders the inserted wire from piercing the silicone, the overhanging mesh is

attached to the wire to prevent it from being pulled out.

4.1.2 Strain Sensor Placement

In chapter 3 I introduce deformation modes and the corresponding areas of high

strain on the PneuFlex. I use these strain estimations to motivate the placement of

strain sensors and attach them to the actuator with a silicone adhesive.
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Palmar and Dorsal Deflection lead to high strain in the dorsal side of the

actuator. Because the palmar side of the finger contains the fabric layer, doesn’t

stretch and in direct contact with objects, it is an unsuitable area for a LMSS. I thus

attach a LMSS across the full length of the dorsal side of the actuator.

Lateral Deflection leads to high strain on the lateral sides of the actuator. I

attach a full length sensor on each side of the actuator. This might prove to be re-

dundant because one sensor could be sufficient to measure deflection in both direc-

tions. But because the lateral sides also stretch and compress on palmar and dorsal

deflection, albeit less than the dorsal side, two sensors might prove advantageous in

distinguishing the two deformation modes.

Axial Rotation leads to strain helically wrapping around the actuator. I decide

to attach 5 sensors to the actuator to measure this deformation, as seen in figure ??,

based on 2 different arguments:

1. I attach 2 strain sensors reaching from one side of the proximal end to the

opposite side on the distal end, because axial rotation can have two directions,

see sensors 6 and 7 in figure 4.2. Again, as with lateral deflection, this might

prove redundant.

2. I wrap 3 sensors in a row fully around the PneuFlex, see sensors 8, 9 and

10 in figure 4.2. While this goes against not sensorizing the fabric layer, the

sensors might be more informative when they fully wrap around the actuator.

Should these sensors prove to be more useful than the other set, a similar

sensor design might be found that does not cross the fabric layer, but still

provides more than one loop.

Palmar Contact Sharp contact on the fabric layer splits the actuator into 2 sec-

tions bending differently. Each section needs its own LMSS. The longer sections

are already sensorized laterally and dorsally. To measure the shorter sections, sen-

sors of half the length of the other sensors are applied laterally and dorsally. While

this also means half-length sensors will be under strain from palmar/dorsal and lat-
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eral deflection, the combination of half-length and full-length sensor should enable

measuring palmar contact.

Final Layout As seen in figures 4.1 and 4.2, the actuator used in the experiment

has 10 LMSSs applied:

1. 1 sensor along the full length of the dorsal side.

2. 2 sensors along the full length of the lateral sides.

3. 1 sensor along half the length of the dorsal side.

4. 1 sensor along half the length of a lateral side.

5. 2 full-length sensors in an X-shape atop the actuator.

6. 3 sensors in a row, each wrapping around the actuator once.

Figure 4.1: 1 sensor along the full length of the dorsal side (4). 2 sensors along the

full length of the lateral sides (1, 2). 1 sensor along half the length of

the dorsal side (5). 1 sensor along half the length of a lateral side (3).

[17]

4.1.3 Arranging Sensors in One Sheet of Silicone

This section describes why and how I arrange the set of sensors resulting from the

reduction in one sheet of silicone. On the actuator used for the experiment, the

sensors are attached on top of each other and reduced the flexibility of the actuator.

To keep this loss of flexibility to a minimum, the set of sensors derived from the

experiment is arranged in a single layer of silicone. This also helps to attach the
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Figure 4.2: 2 full-length sensors in an X-shape atop the actuator (6, 7). 3 sensors in

a row, each wrapping around the actuator once (8, 9, 10). [17]

sensors to the finger in a repeatable manner, because sensor positions vary less than

when attaching sensors one after another. On the other hand, arranging a higher

amount of sensors in a single sheet of silicone renders the manufacturing process

more error prone, so finding a reduced but informative set of sensors is desirable.

To design this layout, I flatten an unused PneuFlex shell and align the 4 sensors

resulting from the sensor reduction on it, as seen in figure 4.3.

4.1.4 Gathering and Cleaning Sensor Data

Here I describe how I measure the strain and pressure sensors attached to the Pneu-

Flex actuator and the post-processing I apply to these measurements.

Measuring Sensors I measure the strain sensors and pressure sensor for the

PneuFlex with a LabJack U6 USB data acquisition (DAQ) device.

The NXP MPX4250 pressure sensor is an integrated device and measured ac-

cording to its specification [24].

The LMSSs on the PneuFlex are measured using a simple voltage divider circuit

with a resistor of 156 Ω to set their voltage at roughly 30 mV. The LabJack DAQ

samples at a rate of 20 Hz, a resolution of 16 bit and an amplification factor of 1000.

Zeroing and Scaling Because LMSSs have a very small resistance in the range

of 0.8 Ω to 1.4 Ω, they carry a few disadvantages. Sensors are subject to offsetting
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while the relative amplitude stays the same. This might be due to changing contact

resistance when the sensor wires are touched or otherwise disturbed. To mitigate

offsetting, sensor readings have to be zeroed while the actuator is in a neutral posi-

tion before use and future designs should use more robust electrical terminals like

wider pin headers.

While not strictly necessary for the regression algorithms used in 4.1.6, sensor

data is also rescaled. This is intended to mitigate sensor drift, which I suspect to

also occur in addition to the offsetting described above, but this suspicion will turn

out to be false. For this, a calibration movement is executed at the beginning of a

new recording and sensor readings are rescaled to an interval of [0,1], as seen in

figure ??. Later sensor readings are scaled with the same parameters, but might be

greater than 1 or less than 0. They are then offset so their undisturbed values sit at

0.

Another problem stemming from the low resistance is quantization noise, as seen

in figure 4.4. To reduce this noise, the readings are filtered with a second order

Butterworth lowpass filter with a cutoff frequency of 2 Hz.

4.1.5 Recording and Extracting Deformation Modes from

Motion Capture

A quantitative description of deformation modes is needed to allow their prediction

from LMSS-data. Deformation modes can be quantified on a 1-dimensional scale

because they have 1 degree of freedom. I calculate quantified deformation modes

from the positions of motion capturing markers attached to the PneuFlex actuator. I

succeed in calculating the palmar, dorsal and lateral deflection and the axial rotation

of the PneuFlex, but fail to calculate the contact point on the fabric layer.

Motion Capturing System The motion capturing system consists of a set of

10 cameras and infrared light (IR) emitters observing and illuminating a volume

from different viewpoints. By determining their relative positions, it is possible

to localize IR-reflective markers within the observed volume very accurately, with

precision of below 1 mm and a sampling rate of 100 Hz.
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The resulting localization data consists of timestamped X-, Y- and Z-coordinates

of each marker.

The system can continuously identify sets of markers on rigid structures, though

this identification is not always correct. Wrongly identified markers are manually

corrected and jitter is reduced by smoothing with a Butterworth low pass filter with

a cutoff frequency of 15 Hz.

Markers missing due to occlusion during the experiment are rare and of short

duration because the volume is thoroughly covered by the cameras. If markers are

lost during a static part of the experiment, like the actuator being held in a position,

they are estimated between the last and next known positions. If markers are lost

during a movement of the actuator, the experiment is aborted and repeated.

Motion Capturing Marker Placement To quantify deformation modes, I need

to localize different parts of the actuator.

The 3 markers at the base on which the actuator is mounted are used as reference

in calculations.

Deflection and axial rotation can be inferred from the position and orientation of

the tip. For this, a rigid, L-shaped piece of plastic is attached to the tip and populated

with spherical motion capturing markers at the ends and at the corner, as seen in red

in figure 4.5

I plan to infer the palmar contact point position from a set of 8 markers applied

on sticks at the lateral side of the actuator, as seen in purple in figure 4.5

Because the other deformation modes can be calculated with a single transfor-

mation and the goal of the experiment – that deformation modes can be predicted

from LMSS data and an accurate, reduced set of sensors can be found – can already

be achieved with the other 3 deformation modes, I continue the evaluation without

the palmar contact point.

Calculating Deflection and Rotation Palmar, dorsal and lateral deflection

and axial rotation are calculated from the position and orientation of the markers on

the tip of the actuator using the following transformation:
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In the beginning, all marker coordinates are in a coordinate system defined within

the volume observed by the motion capturing system. The markers at the mount

form an orthonormal base B with the following axes:

• The X-axis pointing from the mount-corner marker to the mount-side marker

• The Y-axis pointing from the mount-corner marker to the mount-bottom marker

• The Z-axis perpendicular to X- and Y-axis

Each position of the L-markers is then converted into base B.

1. Lateral deflection is parametrized by the X-coordinate of the L-origin.

2. Because palmar/dorsal deflection and axial rotation are parametrized as rota-

tions of the L-frame relative to a reference, the L is angled and needs to be

corrected to allow calculation of the palmar/dorsal deflection and axial rota-

tion. For this, a correct base C is created from the unit vectors of the mount

base. A transformation matrix from the angled L base into the correct base is

calculated and used to transform all L coordinates.

3. At a neutral position of the actuator, a position of the L-markers is used as a

reference to which the deformations are calculated.

4. A transformation matrix from the current corrected L to the reference L is

calculated. This matrix contains the rotational transformations used to quan-

tify 2 of the 3 deformation modes: Palmar and dorsal deflection and axial

rotation. It is first transformed into a homogeneous transformation and then

into rotations around ZYX-axes. Palmar/dorsal is the rotation around Z-axis,

as seen in figure 3.6. Axial rotation is the rotation around X-axis, as seen in

figure 3.8. Lateral deflection is X-axis of uncorrected L in base coordinates,

as seen in figure 3.7.

4.1.6 Deformation Mode Estimation and Layout Reduction

This section describes the machine learning setup I use to predict deformation

modes from sensor data and find a reduced set of sensors.
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Regression I use linear and polynomial regression from the scikit-learn library

[25] with leave-one-out cross-validation to get a prediction model. The 11 sensor

readings described in subsection 4.1.4 are used as training data and the 3 deforma-

tion modes are used as target data for a regression algorithm. As described in 4.1.5,

contact on the fabric layer is not successfully parametrized and is not used in the

regression. Of the 5 recorded runs of the experiment, I randomly choose 1 run as

a test set. 11 different models are trained on the 4 remaining runs in a leave-one-

out cross-validation scheme. These 11 models are linear regression and 2-6 degree

polynomial regression, once including all terms and once including only interaction

terms. The average of the 4 validation mean squared errors (MSEs) is used as a

metric to rank each regression algorithm.

Sensor Selection by Recursive Feature Elimination Reducing the amount

of sensors used on a PneuFlex allows faster and more consistent manufacturing, as

argued in section 4.1.3. It also reduces the amount of DAC-inputs needed, slightly

simplifying the measuring setup. I determine a reduced layout of sensors by using

the following elimination scheme: I use a leave-one-out-scheme on the n train-

ing vectors with n ∈ [11,2]. The n resulting sets of n−1 training vectors are trained

with the different regression algorithms. For each algorithm, the set of n−1 sensors

with the lowest average validation error is used in the next round of the elimination

scheme with n−1 sets of n−2 training vectors, thereby removing the least signifi-

cant sensor in each round. Afterwards, the combination of regression algorithm and

set of sensors with the lowest validation error is selected.

4.2 Execution

In this section I describe how I carry out the experiment to test if PneuFlex defor-

mation modes can be predicted from LMSS readings. The PneuFlex actuator with

attached strain and pressure sensors is placed inside the volume of the motion cap-

turing system and attached to a compressor. The actuator is then inflated to 1 of

5 pressure levels, called steps, the order of which is chosen at random. 5 steps of

different pressure levels are combined to a run and 5 runs are recorded. During

each step, after recording is started, a calibration movement is executed and I be-
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gin applying deformation modes. The actuator is then deflated and the recording

stopped.

Pressure Steps The inflation valve is opened for fixed amounts of time to reach

1 of 5 pressure levels. Because the supply pressure for the actuator is fixed to 2 bar,

a fixed inflation time leads to the same pressure within the actuator. To cover the

range of actuation of the PneuFlex, I choose the following 5 pressure steps to which

the actuator is inflated: 1 step with the actuator deflated, 1 step at the maximum

pressure before damaging the actuator, and 3 steps in between.

For the actuator with 10 LMSS attached (see 4.1.2), this results in 0 bar, 0 bar,

0 bar, 0 bar, 0 bar and 0 bar.

For the actuator with the reduced single-plane LMSS layout (see 4.1.3, this results

in 0 bar, 0 bar, 0 bar, 0 bar, 0 bar and 0 bar.

Step and Run Randomization I opt to conduct 5 runs, because this allows for

a 4-1 split for 4-fold cross-validation with 1 test set, as discussed in 4.1.6. I record

each of the 5 pressure steps 5 times in a randomly assigned order and combine them

to 5 runs, with each run containing every pressure step once. This randomization

mitigates progressive changes that might occur in the setup, like slight decalibration

of the motion capturing setup, or how I apply deformation modes.

Calibration Movement Before each step, the actuator is inflated to the highest

pressure step and deflated again before inflating to the current pressure step. This

is called a calibration movement, because it allows consistent scaling as described

in section 4.1.4 and is visible in both the sensor recording and the motion capture,

thereby simplifying identification and correction of temporal misalignment.

Applying Deformation Modes The experiment is directly derived from the

deformation mode observations as described in chapter 3. I manually apply defor-

mations at the tip of the actuator and at different pressure levels to cover most of the

deformation space. After inflating the actuator, I manually bend the PneuFlex into

deformation modes.

• I deflect the actuator in palmar, dorsal and both lateral directions.
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• I rotate the actuator axially.

• I describe circles of different radius, thereby combining palmar/dorsal and

lateral deflection.

• I deflect the actuator laterally in a way that leads to both lateral deflection

and axial rotation, as it was observed when lifting heavier objects, and then

deflect the actuator in palmar/dorsal direction, combining all 3 deformation

modes.

I furthermore apply contact at 2 different points on the fabric layer in another set

of runs, but as described in section 4.1.5, I do not successfully evaluate these runs.

4.3 Summary

In this section, I described the setup and execution for my experiment to test if

PneuFlex deformation modes can be inferred from liquid metal strain sensor (LMSS)

readings. I introduced liquid metal strain sensor (LMSS) as soft, resistive strain sen-

sors that fit the design of the PneuFlex actuator well. Multiple sensors are placed on

the actuator to cover the strain induced by deformation mode application. They are

measured using a LabJack USB data acquisition (DAQ) and post-processed to mit-

igate averse effects from contact resistance. Motion capturing markers are applied

to the actuator to acquire location and orientation of its tip, from which quantified

deformation modes are calculated. Inside the motion capturing volume, I manually

apply deformation modes at different pressure levels to the actuator to cover most of

the deformation space of the modes. With the resulting data, regression algorithms

are trained and evaluated on their ability to predict deformation modes from sensor

data. A reduced set of sensors is found through a recursive elimination scheme and

manufactured in a single sheet of silicone. The experiment is repeated with this new

layout to validate the results of the reduction phase.
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Figure 4.3: Schematic of reduced layout arranged in single plane.
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Figure 4.4: Quantization noise unfiltered and filtered.
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Figure 4.5: The PneuFlex actuator with attached motion capturing markers. The

L-shaped markerset, highlighted in red, enables calculation of deflec-

tion and axial rotation. The markerset highlighted in purple should have

enabled calculation of the contact point on the fabric layer, but this de-

formation mode was dropped for the experiment, as described in 4.1.5.
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5 Evaluation

In this chapter, I evaluate the experiment described in chapter 4. I show that strain

sensors placement motivated by strain estimations on the PneuFlex actuator allows

prediction of PneuFlex deformation modes, even with a reduced set of sensors.

I first give a short overview over the methods and metrics used to generate and

score the results, and the layouts under test.

Then I present how well PneuFlex deformation modes can be predicted and show

results of the sensor reduction.

Afterwards, I discuss the prediction and reduction results.

5.1 Methods and Metrics

I evaluate the prediction of the following 3 layouts of liquid metal strain sensors

(LMSSs): The full set of 10 LMSSs and the reduced set of 4 LMSSs on the PneuFlex

used in the initial experiment, and the set of 4 LMSSs manufactured in a single plane

after the reduced layout was determined.

As introduced in section 4.1.6, I train linear and 2-6 degree polynomial regression

on LMSS readings to predict PneuFlex deformation modes. Of the 5 runs gathered

in the experiment, 1 run is randomly chosen as a test set and only used in the final

evaluation. The other 4 runs are fit using a leave-one-out cross-validation scheme.

I compare the mean squared error (MSE) of linear and 2-6 degree polynomial

regression to find the most suitable algorithm.

For the best faring algorithm, I present MSE and coefficient of determination (R
2)

scores over training, validation and test sets.

For the full and reduced layouts of the actuator used for the initial experiment,

I compare real and predicted deformation modes from the test set run. I explain
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and discuss different parts of this prediction to give a better overview over how well

deformation modes are predicted.

For the sensor elimination, I show the development of the MSE during reduction

as a heatmap.

MSE penalizes prediction errors quadratically, so larger errors more heavily im-

pact the score than smaller errors. It is used as a metric to score different sensor

selections against each other in the reduction phase.

R
2 is the relation between the variance correctly predicted and the total variance.

A high R
2 implies a small error-range compared to the overall range of actuation.

R
2 is also a comparison of a predictor to the naı̈ve constant predictor, which has an

R
2 of 0. So each predictor with R

2> 0 is better, each with an R
2< 0 is worse than a

constant predictor.

5.2 Presentation

In this section, I present how well the full and reduced layouts of LMSSs allow

the prediction of deformation modes of the PneuFlex actuator and how sensors are

eliminated to find an informative, but reduced sensor layout.

5.2.1 Predicting PneuFlex Deformation Modes

In this section, I show the results of deformation mode prediction with 3 different

layouts: The full set of 10 LMSSs and the reduced set of 4 LMSSs on the actuator

from the experiment, and the single-plane-layout of 4 LMSSs. For each layout, a

validation curve is generated, showing the training and validation errors over differ-

ent degrees of linear and polynomial regression. Overall training-, validation- and

test-scores of the optimal regression algorithm for each layout are presented. The

deformation modes of 1 step of the test set are compared with predictions from the

full and reduced layouts.

Validation Curves and Overall Scores Figure 5.1 shows the training and

validation errors over the different regression algorithms for each of the layouts.
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Figure 5.1a for 10 sensors, figure 5.1b for 4 sensors on the actuator used in the first

experiment and 5.1c for the actuator with the single-plane-layout applied.

Figure 5.1a has its minimum validation error of 17.64 at degree 2 with interaction

terms only, 5.1b an error of 12.16 at degree 3 with all terms and 5.1c an error of

17.38 at degree 4 with interaction terms only. The training error falls with higher

degrees of regression, while the validation error rises slightly.

Prediction Comparison Figure 5.2 shows 1 step of the test set run, with defor-

mation modes applied during the experiment in blue, deformation modes predicted

from 10 LMSSs in green and from 4 LMSSs in red. In the subfigures, sections of

interest are marked: It shows the calibration movement, palmar/dorsal and lateral

deflection, axial rotation, a circle motion, inflation, deflation and the movement

combining all 3 deformation modes.

The small difference between the predictions and the test data shows that the

deformation modes are predicted very well in this step.

?? shows the whole test set, with one step suffering from bad prediction, probably

due to a change in sensor contact resistance.

5.2.2 Finding a Reduced Set of Sensors

The elimination scheme, as described in 4.1.6, removes the sensors with the least

significance. In this section, I first present a heatmap of sensor significance.

Figure 5.4 shows the effect of sensors removed from the current layout on the

MSE. Each combination of regression algorithm (X-axis) and removed sensor (Y-

axis) is assigned a square on the heatmap. The heatmap signifies a lower MSE with

blue, a higher MSE with red. The sensor whose removal leads to the lowest MSE is

marked with ”best” and removed for the next step. Removal of sensors like dorsal

half-length significantly raises the MSE and is considered very important throughout

the reduction.

Figure 5.5 shows the training (blue) and validation (green) errors over the layout

produced by each reduction step. The minimum overall validation error occurs at

the layout with 4 sensors: Lateral right half-length, dorsal half-length, lateral left

full-length and left proximal to right distal.
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5.3 Discussion

Through my experiment I want to test if strain estimations can motivate placement

of sensors to characterize PneuFlex deformation modes.

The results presented in 5.2.1 show that this is possible.

As seen in 5.2 and corroborated by the R
2 value of 0.92 − 0.99, deformation

modes are predicted within a margin of error that is small compared to the full

range of the deformation mode. Reduced layouts with an R
2 value of 0.95− 0.98

are also able to predict deformation modes within a similar margin.

In section 4.1.2, I motivated the placement of sensors according to the strain es-

timates from section 3.3. For each deformation mode, I described multiple possible

placements of sensors, arguing that other deformation modes also induce strain in

these positions.

The final layout of 4 sensors – lateral right half-length, dorsal half-length, lat-

eral left full-length and left proximal to right distal – contains sensors motivated by

each of the deformation modes, including the palmar contact point: While the sen-

sors of half-length are motivated by the palmar contact point, they are similar to the

full-length sensors motivated by the deflection deformations. The full-length sensor

on the left side is motivated by lateral deflection and the sensor placed across the

actuator from left to right by axial rotation. This shows that strain estimation and

placing sensors accordingly, produces informative sensor placements to predict de-

formation modes. This is corroborated further by the heatmap showing the sensor’s

importance for the respective deformations.
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(a) Full set, 10 sensors plus pressure. Some models are overfitting and

lead to very high MSEs.

(b) Reduced set, 4 sensors plus pressure
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(c) Single-plane-layout, 4 sensors plus pressure. Some models are over-

fitting and lead to very high MSEs

Figure 5.1: Training and validation errors for all layouts over prediction algorithms.

The optimal algorithm is marked with an arrow at the minimum valida-

tion error.
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(a) Prediction of palmar/dorsal deflection.

(b) Prediction of lateral deflection.
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(c) Prediction of axial rotation.

Figure 5.2: Predictions of 3 deformation modes in a single step of the experiment

from the full layout and the reduced layout.
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(a) Prediction of palmar/dorsal deflection.

(b) Prediction of lateral deflection.

(c) Prediction of axial rotation.

Figure 5.3: Predictions of 3 deformation modes in a whole run of the experiment

from the full layout and the reduced layout. The first step, until sample

2000 is predicted badly in all deformation modes, most probably due to

a change of sensor contact resistance during recording.
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(a) Removing the proximal wrap-around twist sensor from the full layout.

(b) Removing the middle wrap-around twist sensor.
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(c) Removing the lateral right full length sensor, arriving at the final lay-

out.

(d) Removing the lateral right half length sensor, but as seen in figure 5.5,

this does not improve prediction.

Figure 5.4: sensor heatmaps
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Figure 5.5: The optimal combination of sensors and prediction model is selected

using the lowest validation error.
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6 Limitations and Future Work

After showing that deformation modes of PneuFlex actuators can be predicted by a

layout of LMSSs, I describe limitations of my method, and the produced layout and

model, and give an overview on possible future work.

6.1 Limitations

As said in chapter 3, PneuFlex have a very high degree of deformation. With my

layout and prediction model, detection is limited to 3 deformation modes and future

experiments might show the need for additional modes. Should the need for addi-

tional modes arise, an adapted layout can be found with the method described in

this thesis. Additional modes need new strain estimations, their own quantification

and need to be applied, recorded and learned. Examples of additional deformation

modes are the palmar contact point I did not parametrize, and the actuator buckling

under very high force, which might be detectable with similar sensors.

For strain inference from very subtle deformations, strain estimations as de-

scribed in this thesis might not be possible and a strain simulation might be nec-

essary after all.

An inherent limitation of LMSSs is their loss of conductivity when pinched off,

leading to invalid predictions. Although this could also be used to recognize error

states like the actuator being trapped in some way. Also, while the manufacturing

process of the LMSSs described by Farrow and Correll [2] does not need specialized

equipment, their low resistance complicates the measuring setup.

Sadly, palmar contact was not included in the learning and reduction phases, be-

cause I did not create a parametrization of this deformation mode from the motion

capturing data. Because a single conversion was able to calculate the 3 other defor-

mation modes, I created it frist and went ahead with trying to get results showing
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the method to work at all. After getting promising results, I had run out of time

to work on integrating this last deformation mode and had to go ahead with the re-

duction phase. But as this thesis showed, it is possible to find an accurate layout of

strain sensors from strain estimations. So should the need for palmar contact or new

deformation modes resulting from new use cases arise, a suitable layout of strain

sensors can be found based on this work.

6.2 Future Work

Future work needs to test if the benefits of shape sensing can be achieved with

a PneuFlex able to predict deformation modes, like supporting grasps exploiting

environmental constraints, inferring properties of grasped objects or assessing grasp

quality. For this, a manipulator with sensorized PneuFlex actuators is built and used

in experiments where the deformation modes were derived from. The error state

recognition from pinched-off sensors proposed in the previous section could further

improve this.

Other production methods of LMSSs like described by Hirsch et al. [26] could

simplify production of complex sensor layouts and, by producing sensors with

higher resistance, simplify the measuring setup. Their disadvantage is the need

for specialized equipment.
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7 Conclusion

In this thesis I introduced a method to enable sensing of prominent deformations of

the PneuFlex actuator.

The PneuFlex actuator used in the RBO Hand 2 is not equipped to sense its own

shape during manipulation. And while the RBO Hand 2 is already very adept in

grasping, I presented research showing that by introducing shape sensing to soft ac-

tuators, their grasping performance can be improved and they are enabled to gather

insight into grasped objects and their surroundings.

Observing the RBO Hand 2 at grasping tasks, I identified 4 simpler deformations,

called deformation modes, of its PneuFlex actuators that, combined, describe the

shape of the actuator. To motivate placement of liquid metal strain sensors (LMSSs)

on the actuator, I estimated the strain induced by these deformation modes and at-

tached sensors accordingly. To show that sensor readings can predict 3 of these

deformation modes, I applied singular and combined deformation modes while

recording sensor data and positional data from parts of the actuator. Regression

algorithms were fit to predict deformation modes, quantified from this positional

data, from sensor readings. I showed that this prediction is accurate, even after re-

ducing the amount of LMSSs on the actuator to find an optimized layout that is easier

to manufacture. Thereby, I showed that by dividing complex deformations of soft,

pneumatic actuators into simpler deformation modes, strain estimations can be used

to motivate informative sensor placement that allow prediction of these deformation

modes, thereby giving insight into the shape of the actuator.

Should new tasks for the actuator exhibit new deformation modes or should the

design of the PneuFlex actuator change, as it already did at least once [16, 4], this

method can be applied again to find an informative layout of sensors to enable

deformation mode prediction.
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[15] M. Bäecher, B. Hepp, F. Pece, P. G. Kry, B. Bickel, B. Thomaszewski, and

O. Hilliges, “DefSense: Computational Design of Customized Deformable

54

http://www.mdpi.com/1424-8220/14/7/12748
http://www.mdpi.com/1424-8220/14/7/12748


Input Devices,” in SIGCHI Conference on Human Factors in Computing Sys-

tems, ser. CHI ’16. New York, NY, USA: ACM, 2016.

[16] R. Deimel and O. Brock, “A compliant hand based on a novel pneumatic

actuator,” in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 05 2013, pp. 01–07, http://www.robotics.tu-

berlin.de/fileadmin/fg170/Publikationen pdf/2013-icra13 Deimel Brock.pdf.

[Online]. Available: http://www.robotics.tu-berlin.de/fileadmin/fg170/

Publikationen pdf/2013-icra13 Deimel Brock.pdf

[17] V. Wall, RBO Lab, 2016.
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