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Abstract
The long-standing paradigmofMaxwell’s demon is till nowadays a frequently investigated issue,
which still provides interesting insights into basic physical questions. Considering a single-electron
transistor, wherewe implement aMaxwell demon by a piecewise-constant feedback protocol, we
investigate quantum implications of theMaxwell demon. To this end, we harness a dynamical coarse-
grainingmethod, which provides a convenient and accurate description of the systemdynamics even
for highmeasurement rates. In doing so, we are able to investigate theMaxwell demon in a quantum-
Zeno regime leading to transport blockade.We argue that there is ameasurement rate providing an
optimal performance.Moreover, wefind that besides building up a chemical gradient, there can be
also a regimewhere the feedback loop additionally extracts energy, which results from the energy non-
conserving character of the projectivemeasurement.

1. Introduction

Maxwell’s demon is the central character in a long-standing gedankenexperiment suggested byMaxwell in 1871,
which challenges the validity of the second law of thermodynamics [1, 2]: a box containing an ensemble of
particles is divided in two compartments. TheMaxwell demon observes the particles and has the ability to open
and close a door such that only fast particles can enter the ‘left’ compartment, while slow particles leave the ‘left’
compartment. In doing so, the demon can build up a thermal gradient, which can later be used to run a thermal
engine.However, as the opening and closing does not consume energy in the ideal case, this procedure would
violate the second law of thermodynamics saying that such a perpetuummobile of the second kind is not
possible. This paradoxwas resolved by Landauer by recognizing that theMaxwell demonhas to delete
information in order to perform its task. This is directly related to heat dissipation [3–6].

This article provides a quantummechanical treatment ofMaxwell’s demon. In quantummechanics the
action of theMaxwell demon ismore involved due to the specialmeaning of the observation ormeasurement of
the particles, namely thewave-function-collapse postulate. A quantummeasurement thus does not leave the
system state unaffected so that the observation by theMaxwell demonnecessarily affects the dynamics. Herewe
investigate these quantum implications at the example of a single-electron transistor (SET).We implement the
Maxwell demonusing a piecewise-constant feedback scheme, where the system state is observed after time
periods τ and the systemparameters are adjusted accordingly. This feedback scheme has been already
successfully implemented in experiment [7]. For other experimental and theoretical feedback-related
approaches inmesoscopic devices to extract work or to achieve similar objectives we refer to [8–27].

In this article, we harness a dynamical coarse-graining (DCG)method [28]. Thismethod provides
interesting properties which are perfectly suitable for the issues whichwe are interested in. TheDCG is designed
in away so that it becomes exact for short evolution times in contrast to a Born–Markovmaster equation or
other coarse-graining approaches [29–31]. For this reason, it is favorable to use it to describe the piecewise-
constant feedback protocol for highmeasurement rates, as in this case the time-evolution is repeatedly restarted
after eachmeasurement.
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In contrast to othermethods as, e.g., the so-called Redfield equation, theDCGensures complete positivity
for all times [28, 32, 33], so that thermodynamic quantities, e.g., the system entropy, are guaranteed to bewell
defined for all time instants.Moreover, [34] shows that this technique even accounts for highly non-Markovian
effects observable in the coherence or the entanglement dynamics. Furthermore, this approach can be amended
for a full-counting statistics treatment in systems under non-equilibrium conditions [35].

TheDCG thus provides a reliable accuracy for the parameter rangewhichwe are interested in. This article
goes beyond the treatment in [13], where the time dynamics has been approximated by a Born–Markovmaster
equation.

While investigating short feedback times, we unavoidably run into another long-standing paradox of
physics, namely the quantum-Zeno effect. Strictly following the principles of quantummechanics onefinds that
the dynamics of a quantum system freezes when continuouslymeasuring it with projectivemeasurements
[36–38]. This paradigm is particularly interesting in the context of the classicalMaxwell demon, who
continuously observes the systemof its interest. Indeed, wefindwith the system andmethods at hand that the
action of theMaxwell demon results in a blocking of the particle and heat currents between the reservoirs.

Moreover, due to the action of the demon in the quantum regime, we observe another side effect. Besides
building up a chemical potential gradient between the two reservoirs which could be used to charge a battery, we
argue that there can be also a net energy decrease of the systemdue to the feedback action.We explain that it is
most convenient to run theMaxwell demon in such a regime, as we do not have to invest external power in order
tomake the demonwork.

This article is organized as follows: in section 2, we explain the SET, whichwe describe by a Fano–Anderson
model.We give a compact introduction to theDCGmethod applied throughout the article and prove its validity.
In section 3, we explain the implementation of theMaxwell demon by a piecewise-constant feedback scheme
and showhow tomodel this on the level of the equation ofmotion for the reduced densitymatrix.We showhow
theDCGapproach reveals the quantum-Zeno effect for a continuousmeasurement. In section 4, we discuss the
thermodynamic properties of the system like electric power, gain, heatflow and entropy production in the
quantum-Zeno regime and beyond. In section 5, we provide a concluding discussion of our results.
Supplemental information is given in the appendix.

2.Model andmethods

We implement theMaxwell demon in a SET,which is amesoscopic transport setup consisting of two electron
reservoirs coupled by a quantumdot. A sketch of the system is depicted infigure 1(a).Wemodel the SETby a
two-terminal Fano–Andersonmodel, whoseHamiltonian reads [39–41]
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where ˆ†cd and aˆ†ck, are fermionic operators representing the central dotwith on-site energy ò and the reservoir
states with energies w ak, , respectively. Thereby, a = R, L (right, left) labels the reservoirs and k are their internal
states. The hopping amplitudes between dot and reservoir states are given by a

ntk, .
We have introduced the index ν to implement a feedback protocol: theHamiltonian (ormore precisely the

hopping amplitudes)will be conditioned on the dot occupation n = E, F (empty,filled).We providemore
details in section 3.

The initial conditionwhichwe consider throughout the article is given by
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where rd
0 is the initial densitymatrix of the dot and ra ( )0 are the initial densitymatrices of the reservoirs. Thus,

the reservoirs are considered to be locally in a thermal equilibrium state with inverse temperatures
b =a a( )k T1 B and chemical potentials ma. Here,Zα denotes the partition functionwhich ensures that

r =a[ ( )]Tr 0 1and = åa a aˆ ˆ ˆ†N c ck k k is the particle number operator of the reservoirα.
In the following, we apply aDCGmethod [32] to calculate the dynamicsof the reduced densitymatrix of the

quantumdot r r=( ) [ ( )]t tTrd r , where [ ]Tr .r denotes the trace over the reservoir degrees of freedom.We
represent the reduced densitymatrix of the quantumdot in the local basis ñ = ñ∣ ∣0 vac and ñ = ñ∣ ˆ ∣†c1 vacd and
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introduce the notation r ll l r l¢ º á ¢ñ∣ ∣,d . In doing so, the diagonal elements  r r= ( ),d,00 d,11 of the reduced
densitymatrix of the systemdecouple from the coherences and approximately read as a function of time
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In equation (4)we additionally introduced the counting fields ca and za, which allow for a determination of the
number of particlesD an and the amount of energyD aE entering the reservoirα during the time interval
¢ Î ( )t t0, . For brevity we thereby combine the counting fields in the (transposed) vector x c c z z= ( ), , ,T

L R L R .
Thematrix entries read
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where º( ) ( )x x xsinc sin is the sinc function andwe have used the abbreviations
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Figure 1. (a) Sketch of the SETunder the action of theMaxwell demon. Two reservoirs, which are locally in thermal equilibrium, are
connected via a quantumdotwith on-site energy ò. TheMaxwell demonmonitors the occupation of the dot and adjusts the tunnel
barriers Ga

n ( )t according to its observation. In doing so, one can generate a current against the chemical potential bias even at equal
temperatures. (b)As an implementation of theMaxwell demon,we consider a piecewise-constant feedback protocol. At times

t=t nn , we projectivelymeasure the dot occupation n = E, F (empty, filled) using, e.g., a quantum-point contact. Subsequently, we
adjust the tunnel rates accordingly for the next feedback period +( )t t,n n 1 . On the level of equationswemodel this with the
propagators  tn

t[ ]exp as explained in equation (15). (c)Temporal sketch of the feedback action in detail. The times - +t t t, ,n n n denote
the times (infinitesimally) before themeasurement, after themeasurement and after switching the tunnel rates, respectively.
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In the numerical calculations throughout the article, we use
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This is a Lorentz functionwhich is centered around a and has awidth da. The functionQ( )x is theHeavyside
functionwhich ensures a compact support of the spectral coupling density between wmin and wmax needed for
numerical calculations.

Infigure 2(a), the accuracy of theDCGmethod is benchmarked against the exact solution of the Fano–
Andersonmodel in the absence of feedback action [40]. There, we depict the occupation of the dot, which is
given by r=( ) ( )n t td d,11 . TheDCGapproach is optimized to resemble the exact dynamics for short times t
[28, 32], see figure 2(a). By construction, in the long-time limit  ¥t theDCGdynamics converges to the
dynamics of the Born–Markov-secular (BMS)master equation, which resembles the exact solution for the
parameters under consideration. Consequently, theDCGmethod guarantees a good performance for short
times in all parameter regimes and for long times in theweak-coupling limit. Importantly, due to its
construction, theDCGmethodmaintains a Lindblad form in equation (4) for all times t, which ensures
positivity of rd and consequently guarantees well-defined thermodynamic calculations.

Importantly, in the derivation of theDCGmethod it is assumed that the initial state is a product state of the
central system and the reservoirs, which are assumed to be locally in a thermal equilibrium state [32]. Aswe
explain below, this requirement ismet for the feedback schemewhichwe apply here.

3. Feedback control

In order to implement theMaxwell demonwe apply a projectivemeasurement in combinationwith a piecewise-
constant feedback scheme. This is sketched infigure 1(b). At times t=t nn we conduct projective
measurements of the dot occupation. According to the outcome, we adjust the systemparameters which then
remain constant for the following time interval Î +( )t t t,n n 1 . In particular, herewe vary the tunnel barriers
which are parameterized by wGa

n ( )with n = E, F if the dot occupation has been empty orfilled at time tn,
respectively.

Figure 2. (a)Dot occupation ( )n td as a function of time. The results of theDCG approach, the exact solution and the BMSmaster
equation are depictedwith a solid (green), dashed and dotted line, respectively. The parameters are G =a

n 0.50, ,  = 5L ,  = -R ,
d =a 5 , w = +¥max , w = -¥min , m = 0L , m = 10L and = =T T 10L R . (b)Time-averaged currents Im under the action of the

Maxwell demon in the stationary state as a function of the feedback time τ investigated in section 3.Overall parameters are as in panel
(a)with G =a

n 0.50, , except that we have changed the cut-off frequencies to w = 20max , w = 0min . The curves with feedback
parameter d = -1, 0, 1 are depicted in blue, orange and black, respectively. The solid, dashed and dotted lines depict the solution
with theDCGmethod, the linear expansion for short times τ and the BMSmaster equation result, respectively.
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3.1. Action on the densitymatrix of the total system
The feedback interventions occur at times t=t nn .Within the time intervals +( )t t,n n 1 the total system
(including the reservoirs) evolves under theHamiltonian equation (1) conditioned on n = E, F and is therefore
conservative. The total energy can thus only change during the feedback interventions at times t=t nn .

The intervention can be divided in two steps. To this end, we introduce the (virtual) times +tn and -tn as
depicted infigure 1(c) for illustration. First, one has tomeasure the dot occupation. Thismeasurement shall take
place during the time interval -( )t t,n n . Is it know that a projectivemeasurement can change themean energy of
the system [42–44], which can even give rise tomeasurement induced extractedwork in aMaxwell demon
setup [45].

Second, according to themeasurement outcome, we adjust the tunnel barriers wGa
n ( ). This step shall take

place in the time interval +( )t t,n n . However, as we explain in section 4.2, for projectivemeasurements the
switchingwork can be here neglected, such that only the first step changes the energy of the total system.

As the totalHamiltonian equation (1) is quadratic, themost important observables as the total system energy
can be determined by the single-particle densitymatrix

r r= [ˆ ˆ ] ( )†c cTr , 9x y x y,

with aÎ { ( )}x y k, d, , .
The projectors which project the system state to the empty and filled quantumdot are given by

= =ˆ ˆ ˆ ˆ ˆ ˆ ( )† †P c c P c c, . 10E d d F d d

Their action on the total systemdensitymatrix is accordingly [46]
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In consequence, it is easy to see that the single-particle densitymatrix elements become r  { }0, 1d,d and

r a)( 0d, k, . The two distinctmeasurement results n = E, F can be foundwith probabilities r=n n
-[ ˆ ( )]p P tTr n ,

so that the densitymatrix of the total system after themeasurement irrespective of themeasurement outcome
reads
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In the subsequent time interval +
+
-( )t t,n n 1 , the dynamics is determined by theHamiltonian

n
Ĥ depending on the

measurement result n = E, F. Importantly, r a( ) 0d, k, means that there are no system-reservoir coherences
after themeasurement. This is essential for the application of theDCGmethod in the subsequent time evolution.

3.2. Time evolution of the reduced densitymatrix
In the following, we describe the dynamics on the level of the reduced densitymatrix of the quantumdot rd. For
its diagonal elements contained in the vector  , the projectivemeasurement in equation (11) translates into

r =n n nˆ ˆ ˆ ( )P P , 13

where

 = =( ) ( ) ( )1 0
0 0

, 0 0
0 1

, 14E F

are themeasurement operators corresponding to themeasurement results n = E, F.
The projectivemeasurement is subsequently followed by a time evolutionwhich is conditioned on the

measurement result. The conditioned time evolution can be described by theDCGapproach in equation (3), so
that the feedback time-evolution propagator reads [47]

   x = +t x t x tt t( ) ( )( ) ( )e e , 15E FE F

where x x= ån
t

a a n
t( ) ( ), . The propagator  xt( ) evolves the reduced densitymatrix by one feedback period

τ.We emphasize that the repeated application of the propagator is in agreementwith the derivation of theDCG
method, which assumed that the initial condition is given by a product state of system and reservoir density
matrices. This requirement is fulfilled, as the projectivemeasurements result in a destruction of the system-
reservoir correlations as explained in section 3.1.

From the generalized propagator xt( )we obtain themoment generation function (MGF)

t x x= t( ) ( ) ( ) ( )M , 1, 1 , 16
s

where  s denotes the stationary densitymatrix, as we are interested in the long-termdynamics. The stroboscopic
stationary state at times t=t nn is the eigenvector of t( )0 with eigenvaluej = 11 ,
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  =t( ) ( )0 , 17
s s

which always exists and depends on themeasurement rate τ. Furthermore, it can be shown that the second
eigenvalue fulfills  j0 12 . It thus describes the relaxation dynamics towards the stationary state. In terms of
theMGF, the number of particles entering reservoirαwithin the time interval τ is given by [29]

c
t xD = -a

a
x=( )∣ ( )n Mi

d

d
, . 180

In the samewaywe obtain the change of energyD aE in reservoirα by deriving t x( )M , with respect to za
instead.

Infigure 2(b), we depict the time-averagedmatter current t t= D = -DI n nm R L as a function of τ. In
doing so, we have chosen the parametrization of the spectral coupling density as in equation (8), but with the
proportional parameter adjusted to

n
n

n
n

G 
G =

G =

G 
G =

G =

n
d

d

n
d

d

+

-

-

+

⎧⎨⎩
⎧⎨⎩ ( )

e E

e F,

e E

e F
. 19

0,L
0,L

0,L

0,R
0,R

0,R

The parameter δ controls the feedback action. For d = 0, there is no feedback control. For d > 0, the feedback
control supports amatter current from the left to the right reservoir, while for d < 0 the feedback supports the
opposite direction.

We depict Im for three different feedback strengths δwith solid lines.Here and in the following, we choose
equal temperatures = =T T TL R in order to exclude a thermoelectric effect [40]. For the chemical potentials we
consider m m<L R. Consequently, the time-averaged current Im is negative in the absence of feedback, as can be
found for d = 0. For a positive feedback parameter d = 1, we canfind a current against the bias m m= -V L R

andwe generate a time-averaged electric power, whichwe define as

t = -D· · ( )P n V . 20R

Using this definition, we generate electric power for >P 0 andwaste power for <P 0. For d < 0, our
numerical calculations verify that the feedback protocol supports the current along the chemical potential bias.

For long feedback times t  ¥ the time-averaged current is always directed along the chemical potential
bias irrespective of the feedback strength δ. This can be explained as follows. In the limit of long feedback times τ,
the dynamics of the propagators conditioned on n = E, F in equation (15) converges to the ones of the BMS
master equation, respectively [28]. Regardless of the feedback time τ, the propagator in equation (15) describes
an average of two distinct time evolutionswith no feedback. For the BMSmaster equation (in the absence of
feedback and at equal temperatures) it is known that the current alwaysflows along the chemical potential bias in
the long-time limit. This is a consequence of the second law of thermodynamics which is respected by the BMS
master equation. Consequently, themeasurement-averaged current becomes directed along the chemical
potential gradient.

3.3.Maxwell demon in the quantum-Zeno regime
In the limit of continuous feedback t  0, the current vanishes independent of the feedback parameter δ as can
be observed infigure 2(b). This can be explainedwith the quantum-Zeno effect. For t = 0, the propagator
calculated using theDCGapproach in equation (15) becomes

 x = ( )( ) ( )1 0
0 1

. 210

Thismeans that nowboth eigenvalues arej =l 1. As a consequence, the system is nowbistable: Either the dot is
occupied or empty for all times. In addition, coherences are continuously projected to zero as discussed in
section 3.1. Due to the infinitemeasurement rate, the dot dynamics gets thus frozen, so that no particle can enter
or leave the reservoirs. Thus, theDCGmethod under consideration resembles the quantum-Zeno effect
[36–38].

Here, the Zeno suppression is solely induced by frequent projectivemeasurements. By contrast, there is also
the possibility to generate a Zeno effect by increasing the decoherence rate by increasing the coupling to the
reservoirs as discussed in [48–50]. In theDCGapproach applied here, this effect is absent, as we treat the
coupling to the reservoirs in lowest order (e.g., in the strong-coupling regime the treatment is only valid for very
short coarse-graining times).

In order tofind a compact approximation and an intuitive explanation for the behavior in the quantum-
Zeno regime, we expand theMGF for short times up to the lowest non-vanishing order in τwhich still contains a
dependence on the counting field. In doing so, wefind
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Wenote that the spectral coupling density wGa
n ( )must ensure an appropriate frequency cut-off in order to avoid

that higher derivatives with respect to za diverge. TheMGF in the short feedback time limit thus reads
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denotes the corresponding occupation of the dot.We emphasize that thefirst non-vanishing order of theMGF
is tµ 2. In consequence, the time-averaged current t= DI nm R and all higher cumulants vanish for t  0.
This t2 behavior is a typical feature in the Zeno regime [37].

Generally, the BMSmaster equation results are not valid in the short-time regime. A short-time expansion as
before reveals why the BMS treatment provides an inaccurate result as can be seen infigure 2(b). Formally, the
time evolution of the BMS approach reads as in equation (3), but with the time-dependentmatrices replaced by
time-independent ones, thus a

t
a
BMS. Performing the same expansion of theMGF,wefind that

z t tµ( )M , . Consequently, the Born–Markov treatment leads to afinite time-averaged current Im even for
vanishing feedback times.

Let us choose a positive feedback strength δwhich implies a current against the bias for rather short τ, thus
t >( )I 0m . Aswe explained in section 3.2 , for long feedback periods τ the current flows always along the

chemical potential gradient, thus t <( )I 0m . Then theremust be consequently a feedback time t0 at which the
time-averaged current vanishes, thus t =( )I 0m 0 . As =( )I 0 0m due to the Zeno effect, it is also clear that there
must be a feedback time τ in the interval t( )0, 0 at which the current against the chemical potential reaches a
maximumvalue, as can be seen infigure 2(b).

4. Power, gain andheatflow

4.1. Power
Infigure 3(a), we depict the power as a function of the bias m m= -V L R and the feedback time τ. The dashed
lines depict levels of equal power. The solid lines show the set of =P 0. There are twoways to cross this
boundary. At the lineV=0 the bias changes sign, while in the upper left region of the diagram there is a sign
change of P as the time-averaged current Im changes its direction.Overall, the power is close to zero inwide
parts of the diagram, but showsmore structure for small τ. Here, we see that the feedback scheme generatesmost
power for large negative bias and intermediate feedback times t » 0.5. On the other hand,most power is
wasted for a large positive power and an intermediate feedback time.

4.2. Gain
In order to estimate the performance ofMaxwell’s demon, power is not the only decisive quantity. As the total
process is not conservative, the energy of the total system changes. In particular, we find that the total energy can
increase or even decrease on average. This amount of energy change is denotedwith feedback energyDEfb in the
following. ForD >E 0fb , the action of theMaxwell demon leads to an increase of the total system energy, while
forD <E 0fb , the total system energy decreases.We define the corresponding gain parameter

t
=

D
Q Q D

· · ( ) · ( ) ( )G
P

E
P E , 28

fb
fb
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wherewe restrict the definition of the gain to positive power >P 0 and feedback energyD >E 0fb . The
feedback energy can be calculated by considering in detail the feedback process as sketched infigures 1(b), (c)
and explained in section 3.1.

Wefirst determine the change of themean energy of the total systemdue to themeasurement in the virtual
time interval Î -( )t t t,n n . To this end, we have to determine the difference of the energies of the total system in
equation (1) before and after themeasurement,

r r rD = -n n n- -[ ( )] [ ˆ ( )] [ ˆ ( )] ( )E t H t H tTr Tr . 29n n ntot

Thus, we compare the energy of the state shortly before themeasurement r -( )tn with the state after the
measurement r ( )tn with regard to the totalHamiltonian before themeasurement. As theses densitymatrices
differ only in the dot-reservoir coherences r a( )kd, , , which vanish due to themeasurement r a ( )( ) t 0k nd, , , we
find

rD = á ñn n- -[ ( )] ˆ ( )E t H , 30n ttot c n

wherewe have introduced the notation

rá ñ ºˆ [ ˆ ( )] ( )O O tTr . 31t

This can be evaluated as follows

rD =-á - - ñ

= -á ñ + á + ñ

= -á + ñ + á + ñ

º D + D

n n

n

n n

- -

-
+ -

-
+ -

[ ( )] ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

( )

E t H H H

H H H

H H H H

E E . 32

n t

t t

t t

tot d r

d r

d r d r

d r

n

n n

n n

1

1

From line one to line twowe have used that the total system evolves under a conservative time evolution in the
interval -

+ -( )t t,n n1 . Line two is equal to line three as there are no dot-reservoir coherences at time -
+tn 1. Finally in

line four, we have defined the energy differences corresponding to the dot and reservoir subsystem, respectively,
thusD º á ñ - á ñn -

-
+ˆ ˆE H Ht td d dn n 1
, and accordingly forD nEr .

Equation (32) is an interesting result, as it relates the change of energy induced by themeasurement at time
=t tn with the energy-conserving time evolution in the preceding time interval -

+ -( )t t,n n1 .We emphasize that
this result is exact and holds even formore complicatedHamiltonians under the assumption that all system-
reservoir coherences vanish due to the projectivemeasurement.

Figure 3. (a)Time-averaged power P as a function of the chemical potential biasV and the feedback time τ. Dashed lines depict sets of
equal power. The solid linesmark the set with =P 0. Overall parameters are as infigure 2(b)with d = 1. (b)Depicts the
corresponding gain defined in equation (28). In the gray regionwefind <P 0 and the gain is not interesting as wewaste power. In the
white regionwe find >G 40. Themost efficient way to run theMaxwell demon is in the blue region, whereD <E 0fb so that one does
not have to invest power to run the feedback protocol. (c)Total amount of heatDQ defined in equation (36)which enters (D >Q 0)
or leaves (D <Q 0) the reservoirs. The solid linesmark the set withD =Q 0. The regions ofD <Q 0 are strongly correlated to the
regions of >P 0.
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If we consider a stationary state which is characterized by r r=-( ) ( )t tn nd,d 1 d,d , we find for the averaged
energy change

å rD = D
n

n
n n

=

-[ ( )] ( )E p E t , 33nfb
E,F

s, tot s

where rn -( )tns is the densitymatrix if themeasurement outcome at time -tn 1has been ν. The corresponding
probability is denoted by nps, . In the stationary state, the averaged dot energy is constant at times tn, so thatwe
find

å r rD = -
n

n
n n

=

-
-
+{ ˆ [ ( ) ( )]} ( )E p H t tTr . 34n nfb

E,F
s, r s s 1

This is the energy entering the reservoir during the interval -
+ -( )t t,n n1 averaged over themeasurement results ν in

the stationary state. Using theDCGmethod, we can thus obtain the feedback energyDEfb by deriving theMGF

å z
t xD =-

º D + D
a a

x
=

=( )∣

( )

E M

E E

i
d

d
,

, 35

fb
L,R

0

L R

wherewe havefinally partitioned the total energy change into energies entering the leftDEL and rightDER

reservoirs within the feedback period τ.We note, that this result is consistent with the first law of
thermodynamics.

Infigure 3(b)we depict the gainG in the same regime as in (a)wherewe generate power, >P 0. For regions
whereD >E 0fb weuse a color code. For a clear representation, we restrict the range to Î ( )G 0, 40 . In the blue
regions, wefind a negative feedback energyD <E 0fb , thus, the total system energy decreases due to the
measurement and the demon does not performwork on the systembut extracts work. It is thusmost profitable
to operate the system in this region.

Close to the transition atD =E 0fb the gain diverges. This line represents the original idea of theMaxwell
demon that due to a energy conserving action of the demon (measurement, opening and closing the door) one
can generate a thermal gradient or increase a chemical potential bias. However, we emphasize that even though
in the quantum regime themeasurement does not change the energy balance, it changes the state of the system.
This is in contrast to the classicalMaxwell demon, where themeasurement leaves the system state unaffected.

In principle, one could argue that a negative feedback energyD <E 0fb could be stored or used by a smart
demon for another application.However, a detailed discussion of this issue could become possible when
specifying themeasurement apparatus [51–53].

4.3.Heat, entropy and information efficiency
Nextwe discuss the heatflow and the thermodynamic consistency. In the stationary state, the change of heat
entering the reservoirs within a feedback period τ reads

m
D = D + D
D = D - Da a a a ( )

Q Q Q

Q E n

,

. 36
L R

The heat is depicted infigure 3(c). The solid curves represent sets where the total heat change in the reservoirs
vanishesD =Q 0. These curves resemble roughly the zero power curves =P 0. A power generation is thus
correlated to an overall loss of heat in the reservoirs. The correlation ofD =Q 0 and =P 0 becomes clear when
considering the relation

m m
t

D = D + D + D -
= D -

( )
· ( )

Q E E n

E P . 37

L R R L R

fb

AsDEfb is small compared to t·P for awide parameter range (comparewithfigure 3(b)), we find
tD » - ·Q P , which explains the correspondence of the curvesD =Q 0 and =P 0.

The second law of thermodynamics says that on average the total entropy increases in time in the absence of
feedback processes. In a stationary state, this relation reads

D = D + D ( )S S S 0, 38i e

whereDSi denotes the entropy production andDSe is the entropy change in the reservoirs within a time interval
τ. The change of entropy in the system (i.e., quantumdot) is given by

t
r r

D = + -
=-

( ) ( )
( ) [ ( ) ( )] ( )

S S t S t

S t k t t

,

Tr ln . 39B d d

In [54], Esposito and coworkers have derived a general relation for the entropy changewhich is valid for arbitrary
system-reservoir setups. Under the assumption of a product initial state as in equation (2) and a unitary time
evolution, the entropy change in the reservoirs reads
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å bD = D
a

a a ( )S Q . 40e

Similar considerations can be found in [12, 55, 56]. It is straightforward to generalize this to the feedback
protocol considered here. To this end, we consider the change of entropy conditioned on themeasurement
outcome at time =t tn within the subsequent feedback period Î +

+
-( )t t t,n n 1 . For bothmeasurement outcomes

the second law in equation (38) together with equation (40) is fulfilled separately, so that wefind for the
measurement-averaged entropy change

å åD + D º D + D
n

n
n

n
n

n

= =

˜ ˜ ( )( ) ( )S S p S p S 0. 41e
E,F E,F

e

The action of themeasurement is to delete the entropy of the systemby exactly the amount  = -DS̃ during
the virtual time interval +

-
+( )t t,n n1 1 [7]. For this reason, one can interpret equation (41) in the followingway: the

amount of entropy reduced by themeasurement is not completely transferred to the reservoirs [57].Moreover,
it is not hard to prove that DS̃ k ln 2B , so that we recover the Landauer principle [6].

Equation (41) allows to define a coefficient whichmeasures how efficient the information is used to decrease
the entropy in the reservoir

h =
D ˜

( )S

I
1, 42e

whichwe denote as information efficiency in the following [16].While  < 0, the entropy change in the
reservoirDS̃e can be both, positive or negative, so that the information efficiency is not bounded frombelow.
For similar inequalities in other feedback systemswe refer to [58, 59].

We depict η infigure 4.We observe that the information efficiency is bounded by h 1, which is a sanity
check for the appliedDCGmethod. The information efficiency is rather similar to the heatDQ entering the
reservoirs. This is a consequence of the dot occupation, which is approximately = »n p 0.5s F for the
considered parameters.

4.4. Feedback energy and gain in the Zeno regime
As the general expression for thematter and energy current is rather involved, it is hard to understand under
which circumstances the feedback energy is small or even negative. For this reason, we focus on the Zeno regime
in the following, where the expressions are simpler. In this regime, the feedback energy reads

Figure 4. (a) Information efficiency η as defined in equation (42). The parameters are as in figure 3.
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åtD = + -
a

a a

=

[ ˜ ( ) ˜ ] ( )E n g n g1 , 43fb
2

R,L
s,0 01

,F
s,0 10

,E

where = ¶a n
z

a n
x=a

˜ ∣g g
xy xy

, ,
0. In order to keep the analysis simple, we focus on an extremal feedback case where

w wG = G =( ) ( ) 0L
F

R
E . Inmost cases we numerically find that the stationary dot occupation is close to »n 0.5s,0 ,

so thatwe find a small or negative current if <˜ ˜g g
01
R,F

10
L,E. This relation implies

ò w w w w w w wD º G - - G <˜ ( ) [ ( )] ( ) ( ) ( )f fd 1 0. 44R
F

R L
E

L

This condition can bemet if the temperatures in the reservoirs are rather high ba  1, so that the Fermi
functions are rather close to w »a ( )f 0.5 around a broad range around w m= a. If additionally wG ( )L

E is large for

largeω and wG ( )R
F is large for smallω, the quantity D̃ and consequently also the feedback energyDEfb can

become rather small or even negative.
This is exactly the parameter rangewhichwe use infigure 3, althoughwe do notwork in an extremal

feedback limit. There we have chosen a rather high temperature =aT 10 . In the parametrization of the spectral
densities in equation (8), we use  = 5L and  = -1R .

Furthermore, we can infer from equation (20) that a large biasV results in a large time-averaged power P .
Although this has a detrimental effect on the averagedmatter current I m, the overall effect is indeed a large
power as we can see infigure 3(a).

5.Discussion and conclusions

Wehave harnessed aDCGapproach in order to conveniently describe the dynamics of the SET under the action
of theMaxwell demon.Wehave implemented the demon by a piecewise-constant feedback scheme, where the
occupation of the quantumdot is projectivelymeasuredwith frequency t1 . The accuracy of theDCGhas been
tested by benchmarking it with the exact solution in the absence of feedback. For vanishing feedback times τ,
which corresponds to a continuous observation of the systemby the demon, we resembled the quantum-Zeno
effect bywhich the current between the reservoirs is blocked.Moreover, we found that the power and efficiency
are optimized for an intermediate feedback time τ outside of the quantum-Zeno regime. The performance of the
system is also better for a large bias and higher temperatures.With theDCGmethodwe could thus show that
there is an intermediate regime between a genuine quantum effect and a classical rate equation dynamics to
optimize the performance of a quantumdevice under dissipative conditions. This seems thus reminiscent to the
interplay of quantumand dissipative effects in other transport scenarios [60–63].

Furthermore, we have discovered a novel aspect appearing in the quantum treatment ofMaxwell’s demon.
Due to the projectivemeasurement of the system, there is a parameter regimewhere the total system energy
decreases. It is the regimewhere it ismost profitable to run the setup.However, whether or not this work can be
stored or harnessed to run a third task lies outside the scope of ourmethods. To approach this question a
microscopic implementation of themeasurement apparatus would be necessary in contrast to the bare effective
description of the projectivemeasurement applied here. A possible and experimentally realistic waywould be to
describe themeasurement process by an adjacent quantum-point contact [64–66] or an autonomous feedback
setup as investigated in [8, 57, 67].
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Appendix.Heat entering the reservoirs

Infigure A1, we depict the amounts of heat transported to the single reservoirs a = R, L. Overall, the respective
heat amounts differ strongly from the total heatQ depicted infigure 3(c). In the region, where the transported
amount of heat is overall negative <Q 0, wefind that the heat amounts into the reservoirsQα is rather small or
even negative. If the overall amount of heat is positive >Q 0, then only either reservoir experiences a strong
increase of heat. For <V 0, the heat in the right reservoir strongly increases and for <V 0, the heat in the left
reservoir strongly increases.
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