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Abstract

The long-standing paradigm of Maxwell’s demon is till nowadays a frequently investigated issue,
which still provides interesting insights into basic physical questions. Considering a single-electron
transistor, where we implement a Maxwell demon by a piecewise-constant feedback protocol, we
investigate quantum implications of the Maxwell demon. To this end, we harness a dynamical coarse-
graining method, which provides a convenient and accurate description of the system dynamics even
for high measurement rates. In doing so, we are able to investigate the Maxwell demon in a quantum-
Zeno regime leading to transport blockade. We argue that there is a measurement rate providing an
optimal performance. Moreover, we find that besides building up a chemical gradient, there can be
also aregime where the feedback loop additionally extracts energy, which results from the energy non-
conserving character of the projective measurement.

1. Introduction

Maxwell’s demon is the central character in along-standing gedankenexperiment suggested by Maxwell in 1871,
which challenges the validity of the second law of thermodynamics [1, 2]: a box containing an ensemble of
particles is divided in two compartments. The Maxwell demon observes the particles and has the ability to open
and close a door such that only fast particles can enter the ‘left’ compartment, while slow particles leave the ‘left’
compartment. In doing so, the demon can build up a thermal gradient, which can later be used to run a thermal
engine. However, as the opening and closing does not consume energy in the ideal case, this procedure would
violate the second law of thermodynamics saying that such a perpetuum mobile of the second kind is not
possible. This paradox was resolved by Landauer by recognizing that the Maxwell demon has to delete
information in order to perform its task. This is directly related to heat dissipation [3—6].

This article provides a quantum mechanical treatment of Maxwell’s demon. In quantum mechanics the
action of the Maxwell demon is more involved due to the special meaning of the observation or measurement of
the particles, namely the wave-function-collapse postulate. A quantum measurement thus does not leave the
system state unaffected so that the observation by the Maxwell demon necessarily affects the dynamics. Here we
investigate these quantum implications at the example of a single-electron transistor (SET). We implement the
Maxwell demon using a piecewise-constant feedback scheme, where the system state is observed after time
periods T and the system parameters are adjusted accordingly. This feedback scheme has been already
successfully implemented in experiment [7]. For other experimental and theoretical feedback-related
approaches in mesoscopic devices to extract work or to achieve similar objectives we refer to [8—-27].

In this article, we harness a dynamical coarse-graining (DCG) method [28]. This method provides
interesting properties which are perfectly suitable for the issues which we are interested in. The DCG is designed
in a way so that it becomes exact for short evolution times in contrast to a Born—-Markov master equation or
other coarse-graining approaches [29-31]. For this reason, it is favorable to use it to describe the piecewise-
constant feedback protocol for high measurement rates, as in this case the time-evolution is repeatedly restarted
after each measurement.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aaa38d
https://orcid.org/0000-0002-0791-3617
https://orcid.org/0000-0002-0791-3617
https://orcid.org/0000-0003-0062-9944
https://orcid.org/0000-0003-0062-9944
mailto:georg.engelhardt@csrc.ac.cn
mailto:georg.engelhardt@csrc.ac.cn
mailto:georg.engelhardt@csrc.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaa38d&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaa38d&domain=pdf&date_stamp=2018-02-05
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 20 (2018) 023011 G Engelhardt and G Schaller

In contrast to other methods as, e.g., the so-called Redfield equation, the DCG ensures complete positivity
for all times [28, 32, 33], so that thermodynamic quantities, e.g., the system entropy, are guaranteed to be well
defined for all time instants. Moreover, [34] shows that this technique even accounts for highly non-Markovian
effects observable in the coherence or the entanglement dynamics. Furthermore, this approach can be amended
for a full-counting statistics treatment in systems under non-equilibrium conditions [35].

The DCG thus provides a reliable accuracy for the parameter range which we are interested in. This article
goes beyond the treatment in [13], where the time dynamics has been approximated by a Born—-Markov master
equation.

While investigating short feedback times, we unavoidably run into another long-standing paradox of
physics, namely the quantum-Zeno effect. Strictly following the principles of quantum mechanics one finds that
the dynamics of a quantum system freezes when continuously measuring it with projective measurements
[36—38]. This paradigm is particularly interesting in the context of the classical Maxwell demon, who
continuously observes the system of its interest. Indeed, we find with the system and methods at hand that the
action of the Maxwell demon results in a blocking of the particle and heat currents between the reservoirs.

Moreover, due to the action of the demon in the quantum regime, we observe another side effect. Besides
building up a chemical potential gradient between the two reservoirs which could be used to charge a battery, we
argue that there can be also a net energy decrease of the system due to the feedback action. We explain that it is
most convenient to run the Maxwell demon in such a regime, as we do not have to invest external power in order
to make the demon work.

This article is organized as follows: in section 2, we explain the SET, which we describe by a Fano—Anderson
model. We give a compact introduction to the DCG method applied throughout the article and prove its validity.
In section 3, we explain the implementation of the Maxwell demon by a piecewise-constant feedback scheme
and show how to model this on the level of the equation of motion for the reduced density matrix. We show how
the DCG approach reveals the quantum-Zeno effect for a continuous measurement. In section 4, we discuss the
thermodynamic properties of the system like electric power, gain, heat flow and entropy production in the
quantum-Zeno regime and beyond. In section 5, we provide a concluding discussion of our results.
Supplemental information is given in the appendix.

2.Model and methods

We implement the Maxwell demon in a SET, which is a mesoscopic transport setup consisting of two electron
reservoirs coupled by a quantum dot. A sketch of the system is depicted in figure 1(a). We model the SET by a
two-terminal Fano—Anderson model, whose Hamiltonian reads [39—41]

H =Hy + H + H_,
I:Idiffgfd,

H; = E wk,aekl,aek,a = Z Hr,m

k,a=R,L a=R,L
AV AT A
H = Y t#.j&a+hc)= > H., (1)
k,a=R,L a=R,L

where ¢] and E,j;a are fermionic operators representing the central dot with on-site energy e and the reservoir
states with energies wy ,, respectively. Thereby, o = R, L (right, left) labels the reservoirs and k are their internal
states. The hopping amplitudes between dot and reservoir states are given by #;/ .

We have introduced the index v to implement a feedback protocol: the Hamiltonian (or more precisely the
hopping amplitudes) will be conditioned on the dot occupation v = E, F (empty, filled). We provide more
details in section 3.

The initial condition which we consider throughout the article is given by

p(0) = p] ® p(0) ® pr(0),
pa(o) = ZLefﬂa(ﬁr,nfﬂaﬁr,n)’ (2)

«

where pg is the initial density matrix of the dotand p, (0) are the initial density matrices of the reservoirs. Thus,
the reservoirs are considered to be locally in a thermal equilibrium state with inverse temperatures
B = 1/ (kg T,,) and chemical potentials 1. Here, Z,, denotes the partition function which ensures that
Tr([p,(0)] = land N, = P E,ja Cra 1s the particle number operator of the reservoir a.

In the following, we apply a DCG method [32] to calculate the dynamics of the reduced density matrix of the
quantum dot p;(t) = Tr[p(t)], where Tr[.] denotes the trace over the reservoir degrees of freedom. We
represent the reduced density matrix of the quantum dot in the local basis |0) = |vac)and |1) = &]|vac) and
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Figure 1. (a) Sketch of the SET under the action of the Maxwell demon. Two reservoirs, which are locally in thermal equilibrium, are
connected via a quantum dot with on-site energy e. The Maxwell demon monitors the occupation of the dot and adjusts the tunnel
barriers I'f,(¢) according to its observation. In doing so, one can generate a current against the chemical potential bias even at equal
temperatures. (b) As an implementation of the Maxwell demon, we consider a piecewise-constant feedback protocol. At times

t, = nt, we projectively measure the dot occupation » = E, F (empty, filled) using, e.g., a quantum-point contact. Subsequently, we
adjust the tunnel rates accordingly for the next feedback period (t,, t,,+1). On the level of equations we model this with the
propagators exp [ L] 7] as explained in equation (15). (c) Temporal sketch of the feedback action in detail. The times t,, t,, t,” denote
the times (infinitesimally) before the measurement, after the measurement and after switching the tunnel rates, respectively.

introduce the notation p;, A\ = (A| p|\'). In doing so, the diagonal elements ¢ = (g ¢9» 04,,) Of the reduced
density matrix of the system decouple from the coherences and approximately read as a function of time

o) =exp| > L, (Ot]e0), )

a=R,L

where the coarse-grained Liouvillian reads

—715"7(0) %’f"”(éa)eix“} (4)

Lo () = 4
I U (A e TR O

In equation (4) we additionally introduced the counting fields x, and {_, which allow for a determination of the
number of particles An, and the amount of energy AE,, entering the reservoir a during the time interval

t’ € (0, t). For brevity we thereby combine the counting fields in the (transposed) vector {7 = (X1, xg> > G)-
The matrix entries read -

=5 [ dwsiné[%(—e - W)]vf‘d”(w)ei%“,
6 = [ dusine] £ - o |y @ree, ©

where sinc(x) = sin(x) /x is the sinc function and we have used the abbreviations
718" (W) = Tg(—w)f, (—w), (6)
Yoi’ (w) = (W[l — f, (W), 7)

with the Fermi function f, (w) = 1 / (e’=H) 4+ 1) and the spectral coupling den-
SitY Ex(w) = Zk|tli/,ry|26(w - wk,a)-
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Figure 2. (a) Dot occupation ng4(¢) as a function of time. The results of the DCG approach, the exact solution and the BMS master
equation are depicted with a solid (green), dashed and dotted line, respectively. The parametersare I'j , = 0.5¢, €, = 5¢, g = —¢,
Oa = 5€, Wmax = +00, Wiin = —00, iy = 0, pt; = 10€ and Ty, = Tz = 10¢. (b) Time-averaged currents I, under the action of the
Maxwell demon in the stationary state as a function of the feedback time 7 investigated in section 3. Overall parameters are as in panel
(a)with I’y , = 0.5¢, except that we have changed the cut-off frequencies to Wmax = 20¢, Win = 0. The curves with feedback
parameter 6 = —1, 0, 1are depicted in blue, orange and black, respectively. The solid, dashed and dotted lines depict the solution
with the DCG method, the linear expansion for short times 7and the BMS master equation result, respectively.

In the numerical calculations throughout the article, we use

v 6(219(01 — Wmin) O (Wmax — W)

Pg(w) = 0,c (w _ 6(¥)2 + 62 (8)

This is a Lorentz function which is centered around ¢, and has a width 4,. The function ©(x) is the Heavyside
function which ensures a compact support of the spectral coupling density between wiin and wmax needed for

numerical calculations.
In figure 2(a), the accuracy of the DCG method is benchmarked against the exact solution of the Fano—

Anderson model in the absence of feedback action [40]. There, we depict the occupation of the dot, which is
givenby ng(t) = py,,(t). The DCG approach is optimized to resemble the exact dynamics for short times
[28, 32], see figure 2(a). By construction, in the long-time limit + — oo the DCG dynamics converges to the
dynamics of the Born—-Markov-secular (BMS) master equation, which resembles the exact solution for the
parameters under consideration. Consequently, the DCG method guarantees a good performance for short
times in all parameter regimes and for long times in the weak-coupling limit. Importantly, due to its
construction, the DCG method maintains a Lindblad form in equation (4) for all times ¢, which ensures
positivity of p; and consequently guarantees well-defined thermodynamic calculations.

Importantly, in the derivation of the DCG method it is assumed that the initial state is a product state of the
central system and the reservoirs, which are assumed to be locally in a thermal equilibrium state [32]. As we
explain below, this requirement is met for the feedback scheme which we apply here.

3. Feedback control

In order to implement the Maxwell demon we apply a projective measurement in combination with a piecewise-
constant feedback scheme. This is sketched in figure 1(b). At times f,, = n7 we conduct projective
measurements of the dot occupation. According to the outcome, we adjust the system parameters which then
remain constant for the following time interval ¢ € (¢, ¢, 1). In particular, here we vary the tunnel barriers
which are parameterized by I'},(w) with v = E, Fifthe dot occupation has been empty or filled at time ¢,,,
respectively.
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3.1. Action on the density matrix of the total system

The feedback interventions occur at times #,, = n7. Within the time intervals (¢,, ¢, ) the total system
(including the reservoirs) evolves under the Hamiltonian equation (1) conditioned on v = E, F and is therefore
conservative. The total energy can thus only change during the feedback interventions at times t,, = nr.

The intervention can be divided in two steps. To this end, we introduce the (virtual) times ¢, and t,, as
depicted in figure 1(c) for illustration. First, one has to measure the dot occupation. This measurement shall take
place during the time interval (¢, , £,). Is it know that a projective measurement can change the mean energy of
the system [42—44], which can even give rise to measurement induced extracted work in a Maxwell demon
setup [45].

Second, according to the measurement outcome, we adjust the tunnel barriers I', (w). This step shall take
place in the time interval (t,,, t,7). However, as we explain in section 4.2, for projective measurements the
switching work can be here neglected, such that only the first step changes the energy of the total system.

As the total Hamiltonian equation (1) is quadratic, the most important observables as the total system energy
can be determined by the single-particle density matrix

Py = Trlefe,pl, ©)

with x, y € {d, (k, a)}.
The projectors which project the system state to the empty and filled quantum dot are given by

Py = ¢qél, Py = &jéa. (10)
Their action on the total system density matrix is accordingly [46]
Bpt,)B
Tr[E p(t,)]

In consequence, it is easy to see that the single-particle density matrix elements become p; 4 — {0, 1}and

p(t,) — p“(ty) = €3))

Paa) — 0. The two distinct measurementresults v = E, F can be found with probabilities p, = Tr (B o),
so that the density matrix of the total system after the measurement irrespective of the measurement outcome
reads

pt) =Y pp’t) =Y. Bp(t,)D. (12)

v=E,F v=E,F

In the subsequent time interval (¢,, ¢, ;), the dynamics is determined by the Hamiltonian H" depending on the
measurement result v = E, F.Importantly, Pa k) 0 means that there are no system-reservoir coherences
after the measurement. This is essential for the application of the DCG method in the subsequent time evolution.

3.2. Time evolution of the reduced density matrix
In the following, we describe the dynamics on the level of the reduced density matrix of the quantum dot p,. For
its diagonal elements contained in the vector g, the projective measurement in equation (11) translates into

BpB, = P, (13)
where
_ (10 (0 0
Pi=(y o) 7= (5 9) (14)

are the measurement operators corresponding to the measurement results v = E, F.

The projective measurement is subsequently followed by a time evolution which is conditioned on the
measurement result. The conditioned time evolution can be described by the DCG approach in equation (3), so
that the feedback time-evolution propagator reads [47]

F(§) = Lt OTPy 4 LOTPy, (15)

where L7(§) = 3, £/, ,(§). The propagator F7() evolves the reduced density matrix by one feedback period
7. We emphasize that the repeated application of the propagator is in agreement with the derivation of the DCG
method, which assumed that the initial condition is given by a product state of system and reservoir density
matrices. This requirement is fulfilled, as the projective measurements result in a destruction of the system-
reservoir correlations as explained in section 3.1.

From the generalized propagator F7(§) we obtain the moment generation function (MGF)

M(7, O =1, DF (e, (16)

where ¢ denotes the stationary density matrix, as we are interested in the long-term dynamics. The stroboscopic
stationary state at times ,, = n7 is the eigenvector of F7(0) with eigenvalue ¢, = 1,

5



10P Publishing

NewJ. Phys. 20 (2018) 023011 G Engelhardt and G Schaller

FrO)g, = 0o

S (17)
which always exists and depends on the measurement rate 7. Furthermore, it can be shown that the second
eigenvalue fulfills 0 < ¢, < 1. It thus describes the relaxation dynamics towards the stationary state. In terms of

the MGF, the number of particles entering reservoir o within the time interval 7 is given by [29]

Ai’la = —iiM(T, §)|§=0' (18)
dyx,, :
In the same way we obtain the change of energy AE,, in reservoir a by deriving M (7, §) with respectto ¢,
instead.
In figure 2(b), we depict the time-averaged matter current I, = Ang /7 = —Any /7 asafunction of 7. In
doing so, we have chosen the parametrization of the spectral coupling density as in equation (8), but with the

proportional parameter adjusted to
v F()’Le+5 v=E
oL

I“O,Lff‘S v=F,

Tore® v=E
be—q . (19)
F0)R6+b v=F

The parameter 6 controls the feedback action. For 6 = 0, there is no feedback control. For 6 > 0, the feedback
control supports a matter current from the left to the right reservoir, while for 6 < 0 the feedback supports the
opposite direction.

We depict I, for three different feedback strengths § with solid lines. Here and in the following, we choose
equal temperatures T = Tz = T in order to exclude a thermoelectric effect [40]. For the chemical potentials we
consider p; < py. Consequently, the time-averaged current I, is negative in the absence of feedback, as can be
found for 6 = 0. For a positive feedback parameter § = 1, we can find a current against thebias V. = p; — up
and we generate a time-averaged electric power, which we define as

P.-7=—Ang-V. (20)

Using this definition, we generate electric power for P > 0 and waste power for P < 0.For § < 0, our
numerical calculations verify that the feedback protocol supports the current along the chemical potential bias.

For long feedback times 7 — 00 the time-averaged current is always directed along the chemical potential
bias irrespective of the feedback strength 6. This can be explained as follows. In the limit of long feedback times 7,
the dynamics of the propagators conditioned on » = E, Fin equation (15) converges to the ones of the BMS
master equation, respectively [28]. Regardless of the feedback time 7, the propagator in equation (15) describes
an average of two distinct time evolutions with no feedback. For the BMS master equation (in the absence of
feedback and at equal temperatures) it is known that the current always flows along the chemical potential bias in
the long-time limit. This is a consequence of the second law of thermodynamics which is respected by the BMS
master equation. Consequently, the measurement-averaged current becomes directed along the chemical
potential gradient.

3.3. Maxwell demon in the quantum-Zeno regime

In the limit of continuous feedback 7 — 0, the current vanishes independent of the feedback parameter ¢ as can
be observed in figure 2(b). This can be explained with the quantum-Zeno effect. For 7 = 0, the propagator
calculated using the DCG approach in equation (15) becomes

FOE) = (é (1’) @1

This means that now both eigenvalues are ¢, = 1. Asa consequence, the system is now bistable: Either the dot is
occupied or empty for all times. In addition, coherences are continuously projected to zero as discussed in
section 3.1. Due to the infinite measurement rate, the dot dynamics gets thus frozen, so that no particle can enter
or leave the reservoirs. Thus, the DCG method under consideration resembles the quantum-Zeno effect
[36-38].

Here, the Zeno suppression is solely induced by frequent projective measurements. By contrast, there is also
the possibility to generate a Zeno effect by increasing the decoherence rate by increasing the coupling to the
reservoirs as discussed in [48—50]. In the DCG approach applied here, this effect is absent, as we treat the
coupling to the reservoirs in lowest order (e.g., in the strong-coupling regime the treatment is only valid for very
short coarse-graining times).

In order to find a compact approximation and an intuitive explanation for the behavior in the quantum-
Zeno regime, we expand the MGF for short times up to the lowest non-vanishing order in 7 which still contains a
dependence on the counting field. In doing so, we find

6
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MO, 1) = (L, DA + LeQOT*Pe + LeOOT*Pr + .)(2, ) + ) (22)
where we have defined
7g16(§‘1/(0) g(;ll,l/(ga)eixﬂ
L6 = oo ) (23)
B azlg,L[glo’ (Co)e e —8&o1
and
856 = o fauTie e, @), 24)
&6 = o [deTi@eIn = @ (25)

We note that the spectral coupling density I',, (w) must ensure an appropriate frequency cut-off in order to avoid
that higher derivatives with respect to (,, diverge. The MGF in the short feedback time limit thus reads

m(& 1) =72 Y neoge (€,)e e

a=R,L
+ (1 — ng0)gy (€, e, (26)
where
1
ng — Ngg = ———— 27
YT L slorgTo @7
816" () + 557 (0

denotes the corresponding occupation of the dot. We emphasize that the first non-vanishing order of the MGF
is oc72. In consequence, the time-averaged current I, = Ang /7 and all higher cumulants vanish for 7 — 0.
This 72 behavior is a typical feature in the Zeno regime [37].

Generally, the BMS master equation results are not valid in the short-time regime. A short-time expansion as
before reveals why the BMS treatment provides an inaccurate result as can be seen in figure 2(b). Formally, the
time evolution of the BMS approach reads as in equation (3), but with the time-dependent matrices replaced by
time-independent ones, thus £, — L™ Performing the same expansion of the MGF, we find that
M (¢, T) « 7.Consequently, the Born—Markov treatment leads to a finite time-averaged current I, even for
vanishing feedback times.

Let us choose a positive feedback strength ¢ which implies a current against the bias for rather short 7, thus
L,(7) > 0. Aswe explained in section 3.2, for long feedback periods 7 the current flows always along the
chemical potential gradient, thus I, (1) < 0. Then there must be consequently a feedback time 7, at which the
time-averaged current vanishes, thus I, (1) = 0. As I,(0) = 0 due to the Zeno effect, it is also clear that there
must be a feedback time 7in the interval (0, 75) at which the current against the chemical potential reaches a
maximum value, as can be seen in figure 2(b).

4. Power, gain and heat flow

4.1. Power

In figure 3(a), we depict the power as a function of the bias V"= p; — pip and the feedback time 7. The dashed
lines depict levels of equal power. The solid lines show the set of P = 0. There are two ways to cross this
boundary. Attheline V = 0 the bias changes sign, while in the upper left region of the diagram there is a sign
change of P as the time-averaged current I, changes its direction. Overall, the power is close to zero in wide
parts of the diagram, but shows more structure for small 7. Here, we see that the feedback scheme generates most
power for large negative bias and intermediate feedback times e & 0.5. On the other hand, most power is
wasted for alarge positive power and an intermediate feedback time.

4.2. Gain
In order to estimate the performance of Maxwell’s demon, power is not the only decisive quantity. As the total
process is not conservative, the energy of the total system changes. In particular, we find that the total energy can
increase or even decrease on average. This amount of energy change is denoted with feedback energy AEg, in the
following. For AEg, > 0, the action of the Maxwell demon leads to an increase of the total system energy, while
for AEg, < 0, the total system energy decreases. We define the corresponding gain parameter

P.-r

AEg,

G= - O(P) - ©(AEg), (28)
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fb time 7 [1/€]

V=L — ur e V=pL—ur [¢
Figure 3. (a) Time-averaged power P asa function of the chemical potential bias Vand the feedback time 7. Dashed lines depict sets of
equal power. The solid lines mark the set with P = 0. Overall parameters are as in figure 2(b) with § = 1. (b) Depicts the
corresponding gain defined in equation (28). In the gray region we find P < 0 and the gain is not interesting as we waste power. In the
white region we find G > 40. The most efficient way to run the Maxwell demon is in the blue region, where AEg, < 0 so that one does
not have to invest power to run the feedback protocol. (c) Total amount of heat AQ defined in equation (36) which enters (AQ > 0)
orleaves (AQ < 0) the reservoirs. The solid lines mark the set with AQ = 0. The regions of AQ < 0 are strongly correlated to the
regionsof P > 0.

where we restrict the definition of the gain to positive power P > 0 and feedback energy AEg, > 0.The
feedback energy can be calculated by considering in detail the feedback process as sketched in figures 1(b), (¢)
and explained in section 3.1.

We first determine the change of the mean energy of the total system due to the measurement in the virtual
time interval t € (¢, t,). To this end, we have to determine the difference of the energies of the total system in
equation (1) before and after the measurement,

AEL [pt)] = Tr[H p(t)] — Tr[H p(t,)]. (29)

Thus, we compare the energy of the state shortly before the measurement p(#,) with the state after the
measurement p(t,) with regard to the total Hamiltonian before the measurement. As theses density matrices
differ only in the dot-reservoir coherences g, ), which vanish due to the measurement g 4 ,(£,) — 0, we
find

AEL [p(t)] = (H )y, (30)
where we have introduced the notation
(O); = Tr[Op®)]. (31)

This can be evaluated as follows

= AEY + AE/. (32)

From line one to line two we have used that the total system evolves under a conservative time evolution in the
interval (¢, , t,, ). Line two is equal to line three as there are no dot-reservoir coherences at time ¢, ;. Finally in
line four, we have defined the energy differences corresponding to the dot and reservoir subsystem, respectively,
thus AEY = (Hy), — (Ha ).+ »andaccordingly for AE,".

Equation (32) is an interesting result, as it relates the change of energy induced by the measurement at time
t = t, with the energy-conserving time evolution in the preceding time interval (¢, ;, t,, ). We emphasize that
this result is exact and holds even for more complicated Hamiltonians under the assumption that all system-
reservoir coherences vanish due to the projective measurement.

8
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If we consider a stationary state which is characterized by p; 4(t,—1) = py 4(t.), we find for the averaged
energy change
ABp = 3 p, AESGIP/E)), (33)
v=E,F
where p{(t,) is the density matrix if the measurement outcome at time ¢, has been v. The corresponding

probability is denoted by p, , . In the stationary state, the averaged dot energy is constant at times ,,, so that we
find

AEg = > p,, Tr{Hpl(t,) — pl(t DI} (34)
v=EF
This is the energy entering the reservoir during the interval (¢, ,, ¢, ) averaged over the measurement results /in
the stationary state. Using the DCG method, we can thus obtain the feedback energy AEg, by deriving the MGF

. d
ABp=—i ¥ M7, Oleo
a=L,R dca

= AEL + AER, (35)

where we have finally partitioned the total energy change into energies entering the left AE; and right AEg
reservoirs within the feedback period 7. We note, that this result is consistent with the first law of
thermodynamics.

In figure 3(b) we depict the gain G in the same regime as in (a) where we generate power, P > 0. For regions
where AEg, > 0 we use a color code. For a clear representation, we restrict the range to G € (0, 40). In the blue
regions, we find a negative feedback energy AEyg, < 0, thus, the total system energy decreases due to the
measurement and the demon does not perform work on the system but extracts work. It is thus most profitable
to operate the system in this region.

Close to the transition at AEg, = 0 the gain diverges. This line represents the original idea of the Maxwell
demon that due to a energy conserving action of the demon (measurement, opening and closing the door) one
can generate a thermal gradient or increase a chemical potential bias. However, we emphasize that even though
in the quantum regime the measurement does not change the energy balance, it changes the state of the system.
This is in contrast to the classical Maxwell demon, where the measurement leaves the system state unaffected.

In principle, one could argue that a negative feedback energy AEg, < 0 could be stored or used by a smart
demon for another application. However, a detailed discussion of this issue could become possible when
specifying the measurement apparatus [51-53].

4.3. Heat, entropy and information efficiency
Next we discuss the heat flow and the thermodynamic consistency. In the stationary state, the change of heat
entering the reservoirs within a feedback period 7 reads

AQ = AQL + A(2R>
AQa = AE(! - MQA”a‘ (36)

The heat is depicted in figure 3(c). The solid curves represent sets where the total heat change in the reservoirs
vanishes AQ = 0. These curves resemble roughly the zero power curves P = 0. A power generation is thus
correlated to an overall loss of heat in the reservoirs. The correlation of AQ = 0and P = 0 becomes clear when
considering the relation

AQ = AE; + AEg + Ang(p; — Hy)
=AEg — P - 7. (37)
As AEg, is small compared to P - 7 for a wide parameter range (compare with figure 3(b)), we find
AQ =~ —P - 7, which explains the correspondence of the curves AQ = 0and P = 0.

The second law of thermodynamics says that on average the total entropy increases in time in the absence of
feedback processes. In a stationary state, this relation reads

AS; = AS + AS, > 0, (38)

where AS; denotes the entropy production and AS, is the entropy change in the reservoirs within a time interval
7. The change of entropy in the system (i.e., quantum dot) is given by
AS=S(t+ 1) — S(1),
S(t) = —kg Tr[py(t)In py (1)]. (39)
In [54], Esposito and coworkers have derived a general relation for the entropy change which is valid for arbitrary

system-reservoir setups. Under the assumption of a product initial state as in equation (2) and a unitary time
evolution, the entropy change in the reservoirs reads
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Figure 4. (a) Information efficiency 7 as defined in equation (42). The parameters are as in figure 3.

ASe =Y BaAQu. (40)

Similar considerations can be found in [12, 55, 56]. It is straightforward to generalize this to the feedback
protocol considered here. To this end, we consider the change of entropy conditioned on the measurement
outcome at time t = t, within the subsequent feedback period t € (t,, t,, ;). For both measurement outcomes
the second law in equation (38) together with equation (40) is fulfilled separately, so that we find for the
measurement-averaged entropy change

AS+AS. = Y pASV 4+ 37 p ASY > 0. (41)
v=E,F v=E,F
The action of the measurement is to delete the entropy of the system by exactly the amount Z = — AS during

the virtual time interval (¢, , ,+1) [7]. For this reason, one can interpret equation (41) in the following way: the
amount of entropy reduced by the measurement is not completely transferred to the reservoirs [57]. Moreover,
itis not hard to prove that AS < kg In 2, so that we recover the Landauer principle [6].

Equation (41) allows to define a coefficient which measures how efficient the information is used to decrease
the entropy in the reservoir

AS.

<1, 42
i (42)

’]7:

which we denote as information efficiency in the following [16]. While Z < 0, the entropy change in the
reservoir AS. can be both, positive or negative, so that the information efficiency is not bounded from below.
For similar inequalities in other feedback systems we refer to [58, 59].

We depict nin figure 4. We observe that the information efficiency is bounded by nn < 1, which is a sanity
check for the applied DCG method. The information efficiency is rather similar to the heat AQ entering the
reservoirs. This is a consequence of the dot occupation, which is approximately n; = p, ~ 0.5 for the
considered parameters.

4.4. Feedback energy and gain in the Zeno regime

As the general expression for the matter and energy current is rather involved, it is hard to understand under
which circumstances the feedback energy is small or even negative. For this reason, we focus on the Zeno regime
in the following, where the expressions are simpler. In this regime, the feedback energy reads
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AEg =72 3 [n0gs" + (1 — ng0)g "1, (43)
a=R,L

where §%" = 0; g% |¢—o. In order to keep the analysis simple, we focus on an extremal feedback case where
Xy Ca Xy <

I'f (w) = 'k (w) = 0.In most cases we numerically find that the stationary dot occupation is close to 1, o & 0.5,
so that we find a small or negative current if gof}F < gng. This relation implies

A= f dwTR(@)w[l — fr@)] — TEw)wf, (w) < 0. (44)

This condition can be met if the temperatures in the reservoirs are rather high 3, ¢ < 1, so that the Fermi
functions are rather close to f, (w) ~ 0.5 around a broad range around w = . If additionally I'f (w) is large for
large wand I'k (w) is large for small w, the quantity A and consequently also the feedback energy AEg, can
become rather small or even negative.

This is exactly the parameter range which we use in figure 3, although we do not work in an extremal
feedback limit. There we have chosen a rather high temperature T, = 10¢. In the parametrization of the spectral
densities in equation (8), we use e, = 5¢ and eg = —le.

Furthermore, we can infer from equation (20) that a large bias V results in a large time-averaged power P .
Although this has a detrimental effect on the averaged matter current I ,,, the overall effect is indeed a large
power as we can see in figure 3(a).

5. Discussion and conclusions

We have harnessed a DCG approach in order to conveniently describe the dynamics of the SET under the action
of the Maxwell demon. We have implemented the demon by a piecewise-constant feedback scheme, where the
occupation of the quantum dot is projectively measured with frequency 1/7. The accuracy of the DCG has been
tested by benchmarking it with the exact solution in the absence of feedback. For vanishing feedback times 7,
which corresponds to a continuous observation of the system by the demon, we resembled the quantum-Zeno
effect by which the current between the reservoirs is blocked. Moreover, we found that the power and efficiency
are optimized for an intermediate feedback time 7 outside of the quantum-Zeno regime. The performance of the
system is also better for a large bias and higher temperatures. With the DCG method we could thus show that
there is an intermediate regime between a genuine quantum effect and a classical rate equation dynamics to
optimize the performance of a quantum device under dissipative conditions. This seems thus reminiscent to the
interplay of quantum and dissipative effects in other transport scenarios [60—63].

Furthermore, we have discovered a novel aspect appearing in the quantum treatment of Maxwell’s demon.
Due to the projective measurement of the system, there is a parameter regime where the total system energy
decreases. It is the regime where it is most profitable to run the setup. However, whether or not this work can be
stored or harnessed to run a third task lies outside the scope of our methods. To approach this question a
microscopic implementation of the measurement apparatus would be necessary in contrast to the bare effective
description of the projective measurement applied here. A possible and experimentally realistic way would be to
describe the measurement process by an adjacent quantum-point contact [64—66] or an autonomous feedback
setup as investigated in [8, 57, 67].

Acknowledgments

Financial support by the DFG (SFB 910, GRK 1558, SCHA 1646/3-1, BR 1928/9-1), the WE-Heraeus
foundation (WEH 640) and the Natural Science Foundation of China (under Grant No.:U1530401) is gratefully
acknowledged. We thank Philipp Strasberg and Javier Cerrillo for constructive discussions.

Appendix. Heat entering the reservoirs

In figure A1, we depict the amounts of heat transported to the single reservoirs « = R, L. Overall, the respective
heat amounts differ strongly from the total heat Q depicted in figure 3(c). In the region, where the transported
amount of heat is overall negative Q < 0, we find that the heat amounts into the reservoirs Q,, is rather small or
even negative. If the overall amount of heat is positive Q > 0, then only either reservoir experiences a strong
increase of heat. For V' < 0, the heat in the right reservoir strongly increases and for V' < 0, the heat in the left
reservoir strongly increases.
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Figure Al. (a) Amount of heat entering the left reservoir within one period. (b) Amount of heat entering the right reservoir within one
feedback period. The parameters are as in figure 3.
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