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Abstract

Passively mode-locked semiconductor lasers produce short optical pulses at very
high repetition rates. In this thesis we investigate the influence of time-delayed
optical feedback on the dynamics and timing jitter of such a laser.

Using a delay differential equation model we investigate the dynamics and bi-
furcations of a passively mode-locked laser. When the laser is operated in the
fundamental mode-locking regime it produces a pulsed output with a repetition
rate which is determined by the length of the laser cavity. Adding optical feedback
to the laser in this regime, the dynamics depend on resonances between the period
and the feedback delay times. Feedback conditions can be selected to tune the
repetition rate of the mode-locked pulse train, to induce harmonic mode-locking
or to destabilise the periodic mode-locked dynamics, resulting in quasi-periodic or
chaotic dynamics. Surrounding each resonantly chosen delay time there is a lock-
ing range in which fundamental mode-locking is exhibited. This locking regions
becomes wider as the delay times are increased, which can lead to a large degree
of multistability between solutions locked to different resonances. With feedback
from two external cavities the same dynamics can be exhibited as with single cavity
feedback, but the multistability of the fundamentally mode-locked solutions can be
lifted if the two external cavities are of different lengths.

In the presence of noise, the regularity of the mode-locked dynamics is signifi-
cantly reduced, since due to the absence of a restoring force the pulse positions can
drift over time. By adding resonant optical feedback correlations between tempo-
ral pulse positions are introduced, which can lead to a significant reduction in the
timing jitter. We derive an expression for the timing jitter that shows that this re-
duction increases with the feedback delay time. However, for long feedback cavities
noise-induced modulations of the dynamics also play a role, leading to fluctuations
in the pulse positions on time scales of the feedback delay time.

The noise-induced modulations that arise for long feedback delay times can be
suppressed by adding a second feedback cavity. We show that a linear stability
analysis of the mode-locked laser system allows predictions to made for the optimal
feedback conditions for this effect. This is done by first studying the suppression
of noise-induced modulations in a simple oscillatory system, the Stuart-Landau
oscillator, and relating the results for this system to the mode-locked laser system.
For the Stuart-Landau oscillator a simple characteristic equation, which provides
the dominant Floquet exponents, can be analytically derived. By comparison with
numerical results, we show that the dominant Floquet exponents of the mode-
locked laser system can be described by a simple characteristic equation of the
same form as that derived for the Stuart-Landau oscillator.

Using this characteristic equation, feedback delay times are found which effec-
tively suppress the noise-induced modulations of the mode-locked pulse train. We
show that this leads to a significant improvement in the regularity of the mode-
locked laser output, as the suppression of noise-induced modulations reduces fluc-
tuations in the pulse positions on time scales of the feedback delay times, as well
as decreasing the variance of the temporal pulse positions on much longer time
scales.



Zusammenfassung

Passiv-modengekoppelte Halbleiterlaser erzeugen kurze optische Pulse bei sehr ho-
hen Wiederholungsraten. In dieser Arbeit wird der Einfluss von zeitverzögerter op-
tischer Rückkopplung auf die Dynamik und und den Zeitjitter eines solchen Lasers
untersucht.

Durch die Verwendung eines Differentialgleichungsmodells mit Zeitverzögerung
untersuchen wir die Dynamik und Bifurkationen von passiv-modengekoppelten Hal-
bleiterlasern. Diese Laser erzeugen im fundamentalen Modenkopplungsregime ein
gepulstes Ausgangssignal mit einer Wiederholungsrate die durch die Länge des
Lasers bestimmt ist. Wird nun zusätzlich ein Teil der optischen Ausgangsleistung
zeitverzögert in den Laser zurückgekoppelt, lässt sich die Dynamik durch Reso-
nanzeffekte zwischen der Periode des freilaufenden Lasers und der Zeitverzögerung
der Rückkopplung beeinflussen. Durch geeignete Wahl der Rückkopplungsparam-
eter kann die Wiederholungsrate der Pulsfolge geändert, harmonische Modenkop-
plung induziert oder sogar die periodische modengekoppelte Dynamik vollständig
destabilisiert werden, was zu einer quasiperiodischen oder chaotischen Dynamik
führt. Solange jedoch die Verzögerungszeit etwa einem Vielfachen der Wiederhol-
ungsrate des freilaufenden Lasers entspricht, ist die fundamentale Modenkopplung
stabil. Diese Resonanzbereiche wachsen dabei mit steigender Rückkopplungszeit.
Durch Überlapp verschiedener Resonanzbereiche mit fundamentaler Modenkop-
plung entstehen Bereiche mit hoher Multistabilität. Mit Hilfe einer weiteren optis-
chen Rückkopplung über eine zweite externe Kavität lässt sich die Dynamik in gle-
icher Weise wie mit einer einzelnen externen Kavität beeinflussen. Dabei kann die
Multistabilität der fundamentalen modengekoppelten Lösung jedoch aufgehoben
werden.

Die Regelmäßigkeit der modengekoppelten Dynamik ist unter Rauscheinfluss er-
heblich verschlechtert, da aufgrund der Abwesenheit von einer externen Referen-
zfrequenz die Pulspositionen in der Zeit stochastisch variieren. Mit Hilfe von reso-
nanter optischer Rückkopplung werden Korrelationen zwischen den Pulszeiten auf
langen Zeitskalen induziert, die zu einer deutlichen Verringerung des Zeitjitters
führen. In dieser Arbeit wird ein Ausdruck für den Zeitjitter hergeleitet, der zeigt,
dass die Regularität der Pulse sich mit längerer Rückkopplungszeit verbessert.
Für lange Rückkopplungszeiten jedoch spielen rauschinduzierte Modulationen eine
zunehmend stärkere Rolle, was zu Fluktuationen der Pulspositionen auf Zeitskalen
der externen Rückkopplung führt.

Diese rauschinduzierten Modulationen können durch Hinzufügen einer zweiten
Rückkopplungsstrecke unterdrückt werden. In dieser Arbeit wird gezeigt, dass mit
Hilfe der linearen Stabilitätsanalyse des modengekoppelten Lasersystems Vorher-
sagen für die optimalen Rückkopplungsparameter gemacht werden können. Zunächst
wird dazu die Unterdrückung rauschinduzierter Modulationen in dem einfachen
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Stuart-Landau-System untersucht und die Ergebnisse dieses Systems mit dem mod-
engekoppelten Laser verglichen. Für das Stuart-Landau-System kann eine ein-
fache charakteristische Gleichung für die dominanten Floquet-Exponenten ana-
lytisch hergeleitet werden und es hat sich empirisch gezeigt, dass die dabei hergeleit-
ete Formel auch auf die Ergebnisse für das Lasersystem übertragbar ist.

Mit dieser charakteristischen Gleichung können optimale Verzögerungszeiten für
die Unterdrückung der rauschinduzierten Modulationen bestimmt werden. Wir
zeigen dabei auch, dass dies dann insgesamt zu einer signifikanten Verbesserung in
der Regelmäßigkeit des modengekoppelten Laserlichts führt, da die Unterdrückung
von rauschinduzierten Modulationen Fluktuationen der Pulspositionen auf kurzen
Zeitskalen reduziert, sowie auch die Varianz der Pulspositionen auf langen Zeit-
skalen.
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Chapter 1
Introduction

Mode-locking is a technique of producing short, high-intensity optical pulses at
high repetition rates [SMI70]. Four years after the invention of the laser in 1960
[MAI60] the first clear demonstrations of mode-locking were achieved in a loss-
modulated He-Ne laser [HAR64]. Since then the mode-locking of lasers has been a
very active field of research [SMI70, HAU00, KEL03] and nowadays mode-locked
lasers are used or envisaged as sources of short optical pulses for a wide range
of applications including optical data communication, optical clocking, metrology,
medical imaging and surgery [TUC88, DEL91, LOE96, HOL00, AVR00, UDE02,
KEL03, SPU03, LUE11b]. Semiconductor mode-locked lasers are of particular
interest, especially for telecommunications applications [BIM06, KUN07a, RAF07,
SCH10g], as they are relatively easy to manufacture, have a small footprint, are
integrable and can be electrically pumped. The techniques for achieving mode-
locking in such devices can be classed into two groups; active mode-locking and
passive mode-locking. Active mode-locking is achieved by externally modulating
some parameter of the laser, for example the losses or the pump current, with a
driving frequency which is resonant with the modes of laser cavity [KUI70, DER92,
HAU00]. The advantage of active mode-locking is that very regular pulse trains can
be produced, however the repetition rates and the pulse widths that can be achieved
are limited by the speed of the external modulator. For passive mode-locking no
external modulation is applied. Typically, a saturable absorber is included in the
laser cavity and it is through the interplay between the dynamics in the saturable
absorber section and the amplifying section of the laser that pulses are produced. In
passively mode-locked lasers very short pulses can be generated at repetition rates
of tenths to hundreds of Gigahertz [HAU00, AVR00]. However, passively mode-
locked semiconductor lasers also have a major drawback. Due to the absence of an
external reference clock the pulse trains can be relatively irregular [SOL93], which
is detrimental for most applications. A third variant of achieving mode-locking,
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1. Introduction

referred to as hybrid mode-locking, combines active and passive techniques. Hybrid
mode-locked lasers have a saturable absorber section, which provides the dominant
mechanism for mode-locking, and a section which is electrically modulated, which
improves the regularity of the pulse train [DER92, FIO10, HAB14].

The absence of an external modulation source means that passively mode-locked
semiconductor lasers are substantially less expensive to manufacture than active
or hybrid mode-locked lasers, which makes them very attractive for applications.
Therefore a lot of research has gone into finding methods of improving the regularity
of the pulse trains produced by such devices [SOL93, AHM96, AVR09, GRI09,
LIN10e, BRE10, REB10, DRZ13a]. One approach is to optically inject the passively
mode-locked laser with emission from a second laser [AHM96, REB10, REB11].
However, like hybrid mode-locking, this method requires additional active elements.
Another method, which requires no additional active elements, is to subject the
passively mode-locked laser to optical self-feedback. Already in the 90’s it was
shown experimentally that under certain conditions optical feedback can lead to a
reduction in the timing jitter [SOL93]. The timing jitter being a measure of the
temporal regularity of the pulse train, which can be calculated from the power
spectrum of the laser output [LIN86].

Passively mode-locked semiconductor lasers subject to optical feedback are also
interesting from a non-linear dynamics point of view. The dynamics of single
mode semiconductor lasers subject to feedback have been extensively studied both
theoretically and experimentally [LAN80b, MOR88, MOR92, ALS96, KRA00a,
ERN10b, OTT12, KIM14]. Through the addition of time-delayed feedback these
devices are found to exhibit rich dynamics ranging from continuous wave emission
to low frequency fluctuations to chaos. Passively mode-locked lasers without feed-
back already exhibit complex periodic dynamics. As such, they are an ideal test
bed for the influence of time-delayed feedback on periodic dynamical systems.

In the following sections we will give brief introductions to semiconductor lasers,
mode-locking and time-delayed feedback. Then, in Section 1.4 an outline of this
thesis is given.

1.1. Semiconductor lasers

A laser1 is a source of coherent light which is generated via stimulated emission.
The stimulated emission of photons is a quantum mechanical process in which an
incident photon, of the appropriate energy, interacts with an electron in an excited
state and causes it to relax to a lower energy state (ground state) by emitting a
photon [EIN17]. The emitted photon has the same frequency, polarisation, phase
and direction of travel as the incident photon. For this to occur the difference in

1The word "laser" is an acronym for "light amplification by stimulated emission of radiation".
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Energy
Before After

Gain medium

Mirrors

Figure 1.1.: Left: Sketch of the stimulated emission of a photon. Right: Sketch of a standing wave
in a laser cavity.

Electrodes
p-doped

n-doped

p-n junction

Figure 1.2.: Sketch of a semiconductor laser.

the electronic energy levels must be equal to the energy of the incident photon,
E2 − E1 = hν. This is illustrated in Fig. 1.1. If the medium (gain medium) in
which the stimulated emission is occurring is confined to a cavity, for example by
the placement of two mirrors, then large numbers of photons can build as they
pass back and forth through the gain medium. Each time a stimulated emission
event occurs, an electron drops from the excited state to the ground state, thereby
reducing the gain of the amplifying medium. For lasing to be sustained the gain
medium must remain inverted, i.e. there must be more electrons in the excited
state than in the ground state. One of the advantages of semiconductor lasers
is that this can be achieved by electrical pumping. The alternative method is to
optically excite electrons using an external light source.

In the simplest form of a semiconductor laser the optical transitions occur at
a p-n junction and the charge carrier inversion is achieved by electrical pumping.
Figure 1.2 shows a simplified sketch of such a semiconductor laser. The active region
is indicated by the grey shading near the p-n junction. The first semiconductor
lasers were of this type [HAL62, HOL62, NAT62]. However, they required very
high pump currents and they had to be operated at very low temperatures. To
overcome these issues the spatial confinement of the charge carriers is crucial. Over
the years many confinement structures have been developed. One of the earliest
examples that enabled room temperature operation used a thin layer of GaAs
between two bulk layers of AlGaAs, which has a larger band-gap, thereby forming a
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Figure 1.3.: Sketch of the density of states for 3D, 2D, 1D and 0D structures.

quantum well [ALF68]. A quantum well is a quasi-two dimensional structure which
confines charge carriers, in one spatial direction, to a region narrower than their
de-Broglie wavelength, but allows them to move freely transverse to this direction.
This confinement causes a discretisation of the energy levels the charge carriers
can occupy and leads to a lower threshold current density and lasing at higher
temperatures. Confinement in two and three spatial dimensions is also possible,
leading to quantum wires and quantum dots, respectively. Figure 1.3 shows a
sketch of the density of states for different degrees of confinement. In recent years
devices based on semiconductor quantum dots have received a lot of attention owing
to their discrete states, which can lead to lower threshold currents and increased
temperature stability compared with quantum-well structures [SUG05, RAF07,
LUE11b, OTT14, LIN15].

The modelling of a semiconductor laser can be done to varying degrees of com-
plexity and depending on the structure of the gain medium different processes need
to be included to accurately describe the charge-carrier dynamics. In a minimalis-
tic approach, a single mode semiconductor laser can be modelled using two coupled
rate equations,

dS

dt
= GN (N − Ntr) S − S

Tph
(1.1)

and
dN

dt
= J − N

T1
− GN (N − Ntr) S, (1.2)

where dynamical variables are the number of photons S and the number of charge
carriers N in the active medium. The interaction between the charge carriers and
photons is taken into account with the gain function GN (N − Ntr), where Ntr is
the charge-carrier number at transparency. The photon lifetime Tph accounts for
the optical losses. When the number of charge carriers is large enough that the
gain can compensate for these losses, then the light can be amplified. The number
charge carriers depends on the pumping rate J and on the non-resonant carrier
losses, which are taken into account by the charge-carrier lifetime T1.
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Figure 1.4.: Frequency and time domain sketches of a mode-locked electric field.

In depth introductions to general laser theory, and specifically to semiconductor
lasers, can be found in [HAK86, HAK86a] and [CHO99], respectively.

1.2. Mode-locking

The frequencies of lasing modes are determined by the gain spectrum of the am-
plifying medium and by the boundary conditions imposed by the laser cavity. The
frequencies which are resonant with the laser cavity form standing waves which
are referred to as longitudinal modes. These modes have a fixed frequency spacing
which is dependent on the length of the cavity. Of these modes, only those which
fall within the bandwidth of the gain medium can be amplified. This is sketched
in Fig. 1.4. If, in addition to the mode spacing νc, the relative phases of the las-
ing modes are equal, then pulses will be formed as the lasing modes periodically
undergo constructive interference. The time between pulses, i.e. the period of the
mode-locked dynamics, will be determined by the reciprocal of the mode spacing
1/νc, and the width of the pulses will be given approximately by the reciprocal of
the width of the optical spectrum 1/Δν. Mode-locking can also occurs between
modes which are separated by multiples of the fundamental frequency of the laser
cavity νc. This is referred to as harmonic mode-locking and results periodic dy-
namics in which multiple pulses circulate in the laser cavity.

To demonstrate more clearly why pulses are formed under equal phase conditions
we consider the superposition of a set of N longitudinal modes at some fixed point
in the laser cavity. The total field is given by

ET (t, z) =
N∑

n=1
Enei(2πνnt+φn), (1.3)

where En is the amplitude of the nth mode, νn is the frequency and φn is the
relative phase [SMI70]. The frequencies are all offset from one another by integer
multiples of the mode spacing νc, i.e. νn = ν0 + nνc where ν0 is a fast optical
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Figure 1.5.: Sinusoidal waveforms with frequencies of nνc for n = 1, 2, 3, 4. In the top diagram the
phases φn are equal and the waveforms interfere constructively every 1/νc, resulting in pulses.
In the bottom diagram the phase are randomly chosen, consequently the waveforms are never
all in phase at the peaks.

frequency. Factoring out the fast optical component, ET = ETei2πν0t, the slowly
varying electric field envelope is given by

ET (t, z) =
N∑

n=1
Enei(2πnνct+φn), (1.4)

which is periodic in 1/νc. If the relative phases are all equal, for simplicity let
φn = 0, then all modes will interfere constructively for all t = m/νc, where m is
an integer. If the relative phases are not all equal, then at no point in time will
all modes interfere completely constructively. This is illustrated in Fig. 1.5 which
shows four sinusoidal waveforms with equal relative phases on the top and with
different relative phases on the bottom. In the top diagram all four waveforms are
completely in phase at each time marked by the red circles, whereas on the bottom
they are never simultaneous in phase. When there is a large number of modes
which all have the same relative phases, then the total electric field amplitude will
be large when they are all in phase and between these points in time the modes
will interfere destructively resulting in close to zero intensity between the pulses.

1.2.1. Passive mode-locking

Passively mode-locked lasers typically consist of a saturable absorber section and
a gain section.2 For semiconductor passively mode-locked lasers these two sections

2Passive mode-locking techniques that do not involve a saturable absorber also exist. For example
in Kerr lens mode-locking Kerr lensing in the gain medium leads to mode-locking [BRA92], or
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saturable absorber gain section

Figure 1.6.: Sketch of the pulse shaping that occurs in the saturable absorber and gain sections of
a passively mode-locked laser.

Time
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Figure 1.7.: Sketch of a perfectly regularity pulse train (blue) and an irregular pulse train in which
noise causes the time interval between the pules to vary (red).

can be made of the same material and the behaviour is characterised by the pump
conditions. The gain section is electrically pumped, thereby generating an inversion
of charge carriers, and the absorber section has a reverse bias applied to it [DER92].
To understand how mode-locking is achieved via the addition of the saturable
absorber it is helpful to consider the electric field in the time domain. Consider
a pulse travelling in the laser cavity. As the pulse enters the saturable absorber
the front of the pulse is absorbed, which excites charge carries, until the absorber
saturates, at which point it is transparent to the rest of the pulse. In the gain section
the front of the pulse will be amplified, leaving the charge carriers depleted for the
trailing edge for the pulse, meaning that non-resonant losses are not compensated
for the trailing edge. A sketch of the pulse shaping in the absorber and gain
sections is shown in Fig. 1.6. If the absorber saturates at a lower energy than the
gain section, then this results in a narrow positive net gain window for the center
of the pulse and stable mode-locking can be achieved.

1.2.2. Timing jitter

In the ideal case a passively mode-locked laser would produce a perfectly regular
pulse train. However, due to inevitable noise sources the temporal positions of

in [JAV06] a mode-locking technique that utilises the polarisation degrees of freedom of light
is discussed.
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1. Introduction

pulses can fluctuate. This is illustrated in Fig. 1.7. For actively mode-locked lasers
the pulse is pulled back towards its ideal position each round trip due to the external
modulation. However, for passively mode-locked lasers there is no restoring force,
which means the pulse position can drift randomly over time. In semiconductor
passively mode-locked lasers the dominant noise source is spontaneous emission,
which leads to comparatively large timing fluctuations [HAU93a, SOL93]. The
temporal fluctuations of the pulse positions are referred to as the timing jitter.

1.3. Time-delayed feedback

The control of dynamical systems via time-delayed feedback is an extensively stud-
ied topic that is of relevance to a wide range of fields. Examples of feedback con-
trol are found in electronics [JUS00], quantum mechanics [BRA10a], neuroscience
[ROS04] and optics [SOL93, LAN80b, ERZ07, SLO15], among many others. Rele-
vant to passively mode-locked lasers, time-delayed feedback can be used to improve
the regularity of noisy oscillatory dynamics [SOL93, OTT12a, OTT14]. Time-
delayed feedback can also be used to induce and control chaos [PYR92, SCH07],
stabilise unstable steady states or periodic orbits [HOE05, MIC14a], or generate
complex temporal patterns [YAN14].

The introduction of time-delayed variables into a dynamical system causes the
system to be infinitely dimensional as the initial conditions must be defined on
the entire interval [−τ, 0], where τ is the delay time [HAL93]. This can generally
lead to a system exhibiting more complex dynamics than the same system without
the time-delayed feedback term, and can also lead to multistability, especially for
long delay times. For periodic systems subject to feedback a general result is that
solutions reappear at all delay times that are increased by integer multiples of the
period of the solution [YAN09]. The influence of varying the feedback delay time
between these discrete values is that the stability of the solutions is affected; the
general trend being that solutions become less stable for longer delay times.

For systems in the presence of noise, feedback can be used to suppress or enhance
noise induced effects [GOL03, BAL04, FLU07]. This is of relevance for the passively
mode-locked laser subject to feedback as experimental studies have shown that
noise can excite modes which are resonant to the feedback cavity [DRZ13, ARS13].
Analogous to the suppression of noise-induced oscillations in single mode lasers
[FLU07], an additional feedback cavity can be used to suppress these modes in the
mode-locked laser system subject to feedback [HAJ12, JAU16].
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1.4. Outline

1.4. Outline

In this thesis we study the dynamics and timing jitter of a passively mode-locked
laser subject to optical feedback and the suppression of noise-induced modulations
in periodic systems with feedback. The thesis is structured as follows.

In Chapter 2 the model for a passively mode-locked semiconductor laser is pre-
sented. The model is a delay differential equation system for a ring cavity laser
[VLA04, VLA05]. In Section 2.2 the model is derived. Then in Section 2.3 this
model is discussed, particularly the comparison with travelling-wave models used
for linear laser cavity geometries.

In Chapter 3 we investigate the feedback induced dynamics of passively mode-
locked semiconductor lasers. First, a recap of the parameter dependence of the
solitary mode-locked laser is given in Section 3.2.3. Then we investigate the influ-
ence on the dynamics of optical feedback from one external cavity in Section 3.3.
In this section the dynamics are investigated in the regimes of short, intermedi-
ate and long feedback delay times. The dynamics are investigated by both direct
numerical simulations and by using path continuation techniques. In Section 3.4
the influence of a second external feedback cavity is studied. A summary of this
chapter is presented in Section 3.5.

Chapter 4 is concerned with the timing jitter of the mode-locked solutions. First,
the various methods of calculating the timing jitter are defined in Section 4.2. One
of these methods is a semi-analytic approach which allows us to analytically derive
the feedback dependence of the timing jitter under certain conditions. In Section 4.3
we investigate the timing jitter of the solitary laser, then in Sections 4.4 and 4.5
the influence of one and two external feedback cavities is examined. For the dual
feedback cavity case we present a comparison with experimental results.

The results of Chapter 4 will show that for long feedback delay times noise excites
weakly stable eigenmodes, which causes a modulation of the oscillatory dynamics.
In Chapter 5 the suppression of these noise-induced modulations, using the second
feedback cavity, is studied. First, we investigate the suppression of noise-induced
modulations in a simple oscillatory system in Subsection 5.2.1. Then, these results
are used to study the suppression of noise-induced modulations in the mode-locked
laser system in Subsection 5.2.2. Following this, the influence of the modulation
suppression on the timing jitter is examined in Section 5.3. Finally, in Section 5.4
the results of this chapter are summarised.

A summary of this thesis is presented in Chapter 6, along with a discussion of
open questions and possible directions for future work.
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Chapter 2
Mode-locked laser model

2.1. Introduction

Various models exist for passively mode-locked lasers, each with their own ad-
vantages and restrictions. One of the earliest models was a master equation ap-
proach developed by Haus which allows the mode-locked pulses to be described
analytically under the assumption of only small changes in the gain and losses per
cavity round trip [HAU75a]. This approach works well for solid state lasers, how-
ever the assumption of small changes in the gain and losses per round trip is not
applicable to semiconductor lasers. For accurate modelling of semiconductor pas-
sively mode-locked lasers, finite-difference travelling-wave models are typically used
[MUL06, AVR09, JAV10, JAV11, ROS11c, ROS11d, RAD11a, SIM12a, MOS14].
However the numerical integration of such models is computationally very expen-
sive and this makes it infeasible to use such an approach to study the influence
of feedback over a wide range of feedback delay times. In [MUL06], [AVR09] and
[SIM12a] the impact of feedback is studied, but in each case only in the regime of
short feedback cavities. An alternative modelling approach is to use a delay dif-
ferential equation (DDE) model. This was first proposed in [VLA04, VLA05] and
extended to include optical feedback in [OTT12a]. This approach assumes a ring
cavity with unidirectional propagation and uses a lumped element method to in-
clude non-resonant losses and spectral filtering. Using this model the computation-
ally cost is greatly reduced and feedback can easily be incorporated. However, the
simplifying assumptions mean that this model is strictly only applicable to ring cav-
ities, whereas linear cavity geometries are commonly used for monolithic passively
mode-locked semiconductor lasers. Despite this limitation most of the qualitative
trends, especially in dependence of feedback parameters, are very similar to ex-
perimental results for linear cavities [SAN90, BAN06, ARS13, MAR14c, OTT14b].
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2. Mode-locked laser model

Due to its suitability to studying optical feedback, we will use the DDE model in
this thesis.

The modelling of the charge carriers is dependent on the choice of semiconduc-
tor material and can be done to varying degrees of complexity [CHO99, VLA05,
ROS11c, LIN13, LIN14, LIN15a]. We will use a simple model for a quantum-well
gain medium. Despite this, in subsequent chapters we will compare our results with
experiments using quantum-dot lasers and show that the qualitative dependence
on the feedback parameters is captured by the DDE model.

This chapter is structured as follows. In Section 2.2 we present the derivation of
the DDE model. Then in Section 2.3 we discuss the assumptions that underlie this
model. We also discuss key differences that arise compared with travelling wave
models, as well as extensions that have been made to this model.

2.2. Derivation of the DDE model

In this section we present the derivation of the DDE model for a passively mode-
locked semiconductor laser which is introduced in [VLA04a, VLA05]. In [OTT12a]
the model is extended to include optical feedback from one external cavity. Here
we present extension to multiple feedback cavities. The derivation follows those of
[VLA11] and [OTT12a].

The light-matter interaction needed for lasing to occur can be described using a
semi-classical theory [HAK83a, CHO99]. In this approach the light field is described
classically, but the motion of the charge carriers is described quantum-mechanically.
Although the quantum-mechanical treatment of the carriers is necessary for lasing
to be described, the classical treatment of the light field is sufficient when consider-
ing devices that involve macroscopic numbers of charge carriers and photons. The
results of the semi-classical theory are the Maxwell-Bloch equations, which describe
the evolution of the electric field, the charge carrier inversion and the microscopic
polarisation. The derivation for a simple two-level system is given in [HAK83a].
For a semiconductor gain medium the derivation is somewhat more complicated
due to inhomogeneous broadening (distribution of charge carrier kinetic energies),
many-body Coulomb interactions and carrier-phonon interactions. A comprehen-
sive derivation of the semiconductor Bloch equations is given in [CHO99].

We will start the derivation of the DDE model directly from the standard travel-
ling wave model for semiconductor quantum-well lasers [TRO94, TAR98a, SCH88j]:

± ∂E±
r (t, z)
∂z

+
1
v

∂E±
r (t, z)
∂t

=
grΓr

2
(1 − iαr)

[
nr (t, z) − ntr

r

]
E±

r (t, z) (2.1)

∂nr (t, z)
∂t

= η
jr (t, z)

ed
− γrnr (t, z) − vgrΓr

[
nr (t, z) − ntr

r

] ∑
±

|E±
r (t, z) |2. (2.2)
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gain

carrier density
0

Figure 2.1.: Sketch of the carrier dependence of the gain for a semiconductor quantum-well mate-
rial.

The dynamical variables are the left (+) and right (-) propagating slowly varying
complex electric field amplitudes E±

r and the carrier density nr. In this model the
slowly varying envelope approximation has been made, hence the total electric field
is given by

E (t, z) ≡
(
E+

r (t, z) e−ikz + E−
r (t, z) e+ikz

)
e−iΩ0t, (2.3)

where k is the reference wavenumber which is related to the optical frequency Ω0
via the linear dispersion relation k ≡ Ω0/v, with group velocity v. To arrive at
Eqs. (2.1)-(2.2) the polarisation has been adiabatically eliminated. This simplifica-
tion is possible because semiconductor quantum-well lasers are generally of class B
[ARE84], meaning that the polarisation dephasing time is much faster than other
time scales of the system.

The carrier-field interaction is described by the complex gain function

grΓr (1 − iαr)
[
nr (t, z) − n0

r

]
, (2.4)

which is the gain linearised about the carrier density at some operation point and
written in terms of the effective transparency carrier density of this linearised func-
tion, n0

r . The differential gain is given by gr and transverse modal confinement
is accounted for by the factor Γr. Carrier-induced refractive index changes are
modelled by the amplitude-phase coupling factors αr (linewidth enhancement fac-
tors). The factor of 1/2 in Eq. (2.1) is included because expression (2.4) describes
the intensity gain. In Fig. 2.1 a sketch of the carrier dependence of the gain is
shown for a semiconductor quantum-well material [ASA84, LAU87a, CHO99]. If
the same material is used for the gain (r = g) and absorber (r = q) sections then
the difference in the gain comes from the difference in the carrier densities of the
two sections. Due to the reverse bias the absorber section will always be below
transparency. The operation range of the gain section will be at some higher car-
rier density due to the pump current. Therefore, for the gain and absorber section
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T

mirror
coupler

laser cavity

spectral filtering element

gain section

passive section

saturable absorber section

feedback cavities

Figure 2.2.: Schematic diagram of a ring-cavity laser subject to optical feedback from multiple
external cavities.

the gain function is linearised about different point, leading to different values for
the differential gain gr.

In Eq. (2.2) the injection of charge carriers is described by the pump current
density jr. Included in the pump term are the injection efficiency factor η, the
electron charge e and the thickness of the active region d. The lifetime of charge
carriers in the quantum-well states is limited by non-radiative scattering processes,
which are included via the carrier decay rate γr. Inspection of the carrier-field
interaction term in Eq. (2.2) shows that the electric field is scaled to the dimensions
(length)−3/2 such that |E±

r |2 gives the photon density.
A two section passively mode-locked laser consists of two active sections, a gain

section which is electrically pumped and an absorber section which is negatively
biased. Depending on the geometry of the laser, passive sections could also be
included. For the derivation of the DDE model a ring cavity geometry must be
assumed. A schematic of such a cavity is shown in Fig. 2.2. Equations (2.1) and
(2.2) are applied in each section of the laser cavity. The index r ∈ {g, q, p} is
used to denote the gain, absorber and passive sections, respectively. In the passive
section there are no carriers, hence the evolution of the electric field envelope is
described solely by Eq. (2.1) with the right-hand side equal to zero. In the absorber
section jq = 0 holds, and the influence of the applied reverse bias is manifested in
the carrier decay rate γq and the gain of this section (Eq. (2.4)). A lumped-element
approach is used to include non-resonant losses at the facets between each of the
sections (κ1 and κ2 in Fig. 2.2). Mirror losses as well as coupling to and from the
feedback cavities is included between the gain and passive sections. Also using a
lumped-element approach, a filtering element f̂ (ω) is included between the passive
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2.2. Derivation of the DDE model

and absorber sections (red bar in Fig. 2.2). The purpose of this filter is to account
for the finite width of the gain spectrum. The z-direction is chosen along the axis
of the cavity and is the propagation direction of longitudinal modes of the laser.
Along with the ring cavity geometry, the second main assumption of the DDE
model is unidirectional propagation of the light field. Here clockwise propagation
is chosen, i.e. E−

r = 0 and E+
r = E . The validity and implications of these two

assumptions will be discussed in Section 2.3.
Including the losses and feedback contributions as described above, the boundary

conditions between each of the sections are

Eg (t, z2) =
√

κ2Eq (t, z2) , (2.5)

Ep (t, z3) =
√

rEg (t, z3) + (1 − r)
N∑

n=1

( ∞∑
l=1

r(l−1)/2kl
nrl/2

ec,nEg (t − lτn, z3) eilCn

)

+(1 − r)
N∑

n=1

∑
n′ �=n

( ∞∑
l=1

rl/2kl
nrl/2

ec,nkn′r
1/2
ec,n′Eg (t − τn′ − lτn, z3) ei(Cn′ +lCn)

)

+(1 − r)
N∑

n=1

∑
n′ �=n

( ∞∑
l=1

r(l+1)/2kl
nrl/2

ec,nk2
n′rec,n′Eg (t − 2τn′ − lτn, z3) ei(2Cn′ +lCn)

)

+ · · · (2.6)

and
Êq (ω, z1 + L) =

√
κ1f̂ (ω) Êp (ω, z1 + L) =

√
κ1f̂ (ω) Êp (ω, z4) . (2.7)

In Eqs. (2.5) and (2.7) κ1 and κ2 account for the internal non-resonant loss. These
depend on the length of the active sections according to κx = e−aLx , where a is a
loss rate per unit length and Lx is the length of the active section for which the
losses are being accounted for.

In Eq. (2.6) feedback contributions from an arbitrary number N of external
feedback cavities has been included. To experimentally implement such a feedback
scheme there are several options. These include using beam-splitters or optical cou-
plers to distribute the light among the feedback cavities [HAJ12, ARS13, NIK16].
Here we do not choose a particular scheme, but rather account for this with
the factor kn which gives the percentage of the light coupled into feedback cav-
ity n ∈ {1, 2, .., N}, with

∑N
n=1 kn = 1. The sum over l accounts for feedback

contributions after multiple roundtrips in the feedback cavities. Also included
are contributions from light that has made roundtrips in different feedback cav-
ities. The reflectivity of the end facets of each of the feedback cavities is given
by rec,n. This factor primarily determines the feedback strength. The fast oscil-
lating reference frequency Ω0 also plays a role in the feedback terms, as due to
these fast oscillations a phase shift can accumulate with respect to the light in
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2. Mode-locked laser model

the laser cavity. This can be understood by considering the delayed electric field
E (t − τ, z3) = E+

r (t − τ, z3) e−ikz3e−iΩ0(t−τ) at the out-coupling facet (position z3).
Over the delay time τ a phase shift of Ω0τ accumulates. For each of the feedback
cavities the phase shift per roundtrip is then given by Cn ≡ Ω0τn. Since the optical
frequency Ω0τ is very large (THz) very small changes in the delay times τn results
in variations in the phase that are greater then 2π. Due to this we can essentially
treat the feedback phase independently from the delay time. In Eqs. (2.5)-(2.7)
the non-resonant losses and reflectivities are all given with respect to the intensity,
hence the respective electric field losses are given by the square root of these terms.

In the limit of weak feedback, i.e. small external cavity reflectivities rec,n, the
feedback terms in Eq. (2.6) can be simplified by making the approximation that con-
tributions after multiple roundtrips in the feedback cavities are negligible. Includ-
ing only the terms that correspond to one roundtrip in a feedback cavity Eq. (2.6)
becomes

Ep (t, z3) =
√

rEg (t, z3) +
√

r
N∑

n=1
KnEg (t − τn, z3) eiCn , (2.8)

where
Kn ≡ (1 − r)kn (rec,n/r)1/2 . (2.9)

In the boundary condition Eq. (2.7), Êr is the Fourier transformed electric field
and ω is the angular frequency. In this boundary condition several assumptions
are made. Firstly, the filtering element is assumed to be infinitely thin, meaning
that z1 = z4. Secondly, since z1 +L = z4 in the ring cavity geometry, the boundary
conditions are periodic, i.e.

Er (t, z) = Er (t, z + L) , (2.10)

where L is the length of the laser cavity. The laser cavity modes are therefore
restricted to

ΩL = n
2πv

L
(2.11)

for n = 1, 2, 3, .... All modes fulfilling this condition can exist in the laser cavity.
This is shown schematically in Fig. 2.3. The grey lines in this diagram indicate
modes with a spacing of Δν = T ′−1 = v

L , where T ′ is the cold cavity roundtrip time.
Without a spectral filter, according to Eqs. (2.1) and (2.2), all of these modes are
equally amplified and would have the same output power. However in real devices
only a finite number of modes will have positive net gain [HOH93, UKH04]. The
spectral filter (blue curve) is added to account for this by increasing the losses for
modes away from the maximum gain mode. In the derivation of the DDE model a
Lorentzian shaped filter is chosen;

f̂ (ω) ≡ γ

γ + i (ω − ΔΩ)
. (2.12)
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Figure 2.3.: Schematic diagram of the optical spectrum of a semiconductor mode-locked laser. The

grey lines indicate the cavity modes and the red lines indicate the modes that can lase. The
blue curve represents the spectral filter that is applied to account for the frequency dependence
of the gain.

This expression is written in the frame of the slowly varying amplitude, i.e. the
optical frequencies are given by ω′ = Ω0 + ω. ΔΩ ≡ Ω0 − Ωmax is the detuning
between the frequency of the maximum of the filter Ωmax and the reference optical
frequency. The full-width at half maximum of the filter is given by γ. This param-
eter determines the number of modes that participate in the mode-locking, which
is roughly given by γT ′ [VLA05]. The Lorentzian filter shape is chosen as it allows
the derivation of a system of delay differential equations.

Before applying the boundary conditions it is useful to make a change of coordi-
nates to a frame co-moving with the electric field: (t, z) �→ (t′, z′) with t′ = t − z/v

and z′ = z/v. In this coordinate system Eqs. (2.1)-(2.2), applied to each section of
the laser, are given by

∂Ar

∂z′ =
1
2

(1 − iαr) Nr
(
t′, z′) Ar

(
t′, z′) , (2.13)

∂Ng

∂t′ = Jg
(
t′, z′) − γgNg

(
t′, z′) − Ng

(
t′, z′) |Ag

(
t′, z′) |2 (2.14)

and
∂Nq

∂t′ = −Jq
(
t′, z′) − γqNq

(
t′, z′) − r̃sNq

(
t′, z′) |Aq

(
t′, z′) |2, (2.15)

with Np (t′, z′) ≡ 0. Here the dynamical variables have been rescaled such that Ar ≡√
vggΓgEr and Nr ≡ vgrΓr[nr − n0

r ]. Accordingly, the rescaled pump parameters
are Jg ≡ vggΓg

(
jg − γgn0

g

)
and Jq ≡ vgqΓqγqn0

q , and the saturation energy ratio
r̃s ≡ gqΓq/ggΓg has been introduced [HAU00, OTT14]. The saturation energies
describe how much energy must be absorbed or emitted for the absorber and gain
sections to become transparency. The ratio of these energies is a crucial parameter;
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2. Mode-locked laser model

for mode-locking to occur the absorber must have a smaller saturation energy than
the gain section, i.e. r̃s > 1 as the saturation energies are proportional to (grΓr)−1.

In this co-moving frame the evolution of the electric field amplitude along the
sections of the laser is now described by ordinary differential equations (Eq. (2.13)).
Integrating these equations over each section yields

Aq
(
t′, z′

2
)

= e− 1
2 (1−iαq)Q(t′)Aq

(
t′, z′

1
)

, (2.16)

Ag
(
t′, z′

3
)

= e
1
2 (1−iαg)G(t′)Ag

(
t′, z′

2
)

(2.17)

and
Ap

(
t′, z′

3
)

= Ap
(
t′, z′

4
)

, (2.18)

where

Q
(
t′) ≡ −

∫ z′
2

z′
1

Nq
(
t′, z′) dz′ and G

(
t′) ≡

∫ z′
3

z′
2

Ng
(
t′, z′) dz′

are the dimensionless carrier densities integrated over the absorber and gain sec-
tions, which we shall refer to as the gain and losses, respectively. Next, the bound-
ary conditions can be applied to obtain the evolution of the electric field amplitude
over one roundtrip in the laser cavity. Using Eqs. (2.5) and (2.8), transformed to
the co-moving frame, the evolution from Aq (t′, z′

1) to Ap (t′, z′
4) is given by

Ap
(
t′, z′

4
)

=
√

rκ2e
1
2 (1−iαg)G(t′)− 1

2 (1−iαq)Q(t′)Aq
(
t′, z′

1
)

+
√

rκ2

N∑
n=1

KneiCne
1
2 (1−iαg)G(t′−τn)− 1

2 (1−iαq)Q(t′−τn)Aq
(
t′ − τn, z′

1
)

. (2.19)

In order to apply Eq. (2.7), it must first be transformed to the time domain and
the co-moving frame. The transformation to the time domain is done using the
convolution theorem which states

F [g ∗ h (t)] = F [g (t)]F [h (t)], (2.20)

where g and h are functions of t, F is the Fourier transform and (∗) denotes a
convolution product. In the co-moving frame, and in terms of the rescaled field,
Eq. (2.7) can now be rewritten as

Aq
(
t′ − T ′, z′

1 + T ′) =
√

κ1
(
f

(
t′ − T ′) ∗ Ap

(
t′ − T ′, z′

4
) )

=
√

κ1

∫ t′−T ′

−∞
f

(
t′ − T ′ − θ

)
Ap

(
θ, z′

4
)

dθ, (2.21)

once again T ′ is the cold cavity roundtrip time given by L/v. The upper limit of
the integral has been set to t′ −T ′, instead of infinity, in order to preserve causality.
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2.2. Derivation of the DDE model

This is done under the assumption that Aq (θ, z′
4) = 0 for θ > t′ − T ′. Substituting

Eq. (2.19) into Eq. (2.21) yields

Aq
(
t′, z′

1
)

=
∫ t′−T ′

−∞
f

(
t′ − T ′ − θ

)
R (θ) Aq

(
θ, z′

1
)

dθ

+
N∑

n=1
KneiCn

∫ t′−T ′

−∞
f

(
t′ − T ′ − θ

)
R (θ − τn) Aq

(
θ − τn, z′

1
)

dθ, (2.22)

where we have defined

R (θ) ≡ √
κe

1
2 (1−iαg)G(θ)− 1

2 (1−iαq)Q(θ) (2.23)

which describes the gain and losses accumulated over one roundtrip in the laser
cavity. Here we also define κ ≡ κ1κ2r. This parameter accounts for all the non-
resonant and mirror losses per roundtrip. To obtain the left hand side of Eq. (2.22)
the periodic boundary condition has been applied, which in the co-moving coordi-
nates is expressed as

Aq
(
t′, z′

1
)

= Aq
(
t′ − T ′, z′

1 + T ′) . (2.24)

The form of which can be derived by substituting z +L for z in the transformation,
i.e. (t, z + L) �→

(
t − (z+L)

v , (z+L)
v

)
= (t′ − T ′, z′ + T ′).

The evolution of the field over one roundtrip is now expressed entirely in terms of
the electric field amplitude in the saturable absorber section at position z′

1, which
we relabel A (t′) ≡ Aq (t′, z′

1). In order to obtain a differential equation for the time
evolution of A (t′) Eq. (2.22) is differentiated with respect to t′. To do this we first
substitute in the filtering function, which in the time domain is written as

f
(
t′) ≡ γe(−γ+iΔΩ)t′

. (2.25)

With some slight rearrangement this yields

A
(
t′) e(γ−iΔΩ)t′

=
∫ t′−T ′

−∞
γe(γ−iΔΩ)(T +θ)R (θ) A (θ) dθ

+
N∑

n=1
KneiCn

∫ t′−T ′

−∞
γe(γ−iΔΩ)(T +θ)R (θ − τn) A (θ − τn) dθ, (2.26)

Differentiating Eq. (2.26) then results in a DDE for the time evolution of A (t′);

dA

dt′ + (γ − iΔΩ) A
(
t′) = γR

(
t′ − T ′) A

(
t′ − T ′)

+γ
N∑

n=1
KneiCnR

(
t′ − T ′ − τn

)
A

(
t′ − T ′ − τn

)
. (2.27)
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To obtain differential equations for the time evolution of the integrated carrier
densities G (t′) and Q (t′), we integrate Eqs. (2.14) and (2.15) over the gain and
absorber sections, respectively:

∂G

∂t′ = Jg
(
t′) − γgG

(
t′) −

∫ z3

z2

Ng
(
t′, z′) |Ag

(
t′, z′) |2dz′, (2.28)

∂Q

∂t′ = Jq
(
t′) − γqQ

(
t′) + r̃s

∫ z2

z1

Nq
(
t′, z′) |Aq

(
t′, z′) |2dz′. (2.29)

Here we have introduced the unsaturated gain and absorption parameters

Jg
(
t′) ≡

∫ z3

z2

Jg
(
t′, z′) dz′ (2.30)

and
Jq

(
t′) ≡

∫ z2

z1

Jq
(
t′, z′) dz′, (2.31)

respectively. To express the integrals in Eqs. (2.28) and (2.29) in terms of G (t′),
Q (t′) and A (t′) we must make use of the equations describing the evolution of
the field along the gain and absorber sections (Eqs. (2.13), (2.16) and (2.17), and
boundary condition Eq. (2.5)). From Eq. (2.13) we obtain

A∗
r

∂Ar

∂z′ + Ar
∂A∗

r

∂z′ =
1
2

(1 − iαr) NrA∗
rAr +

1
2

(1 + iαr) NrArA∗
r (2.32)

by multiplying by the complex conjugate of the field amplitude A∗
r and adding the

complex conjugate of Eq. (2.13) multiplied by Ar. This expression gives

∂|Ar|2
∂z′ = Nr

(
t′, z′) |Ar

(
t′, z′) |2. (2.33)

Integrating over the gain and absorber sections then gives

|Ag,q

(
t′, z′

3,2

)
|2 − |Ag,q

(
t′, z′

2,1

)
|2 =

∫ z′
3,2

z′
2,1

Ng,q
(
t′, z′) |Ag,q

(
t′, z′) |2dz′. (2.34)

Using Eqs.(2.16), (2.17) and (2.5) the left hand side can be expressed in terms
of G (t′), Q (t′) and A (t′), which we then substitute into Eqs. (2.28) and (2.29) to
obtain

∂G

∂t′ = Jg
(
t′) − γgG

(
t′) − κ2e−Q(t′)

(
eG(t′) − 1

)
|A (

t′) |2 (2.35)

and
∂Q

∂t′ = Jq
(
t′) − γqQ

(
t′) − r̃se−Q(t′)

(
eQ(t′) − 1

)
|A (

t′) |2. (2.36)

Equations (2.27), (2.35) and (2.36) now describe the evolution of the electric
field amplitude at position z1 and the gain and absorption per roundtrip in the
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2.2. Derivation of the DDE model

laser cavity. As of yet the influence of spontaneous emission is not included. We
treat this effect in a phenomenological manner by adding a complex Gaussian white
noise term to the electric field equation (Eq. (2.27)). Adding this noise term and
making the transformation A (t′) ≡ 1√

κ2
A (t′) eiΔΩt′ we obtain the final system of

coupled DDEs;

dA
dt′ = −γA (

t′) + γR
(
t′ − T ′) e−iΔΩT ′A (

t′ − T ′) +
√

Rspξ
(
t′)

+γ
N∑

n=1
KneiCnR

(
t′ − T ′ − τn

)
e−iΔΩ(T ′+τn)A (

t′ − T ′ − τn
)

, (2.37)

∂G

∂t′ = Jg
(
t′) − γgG

(
t′) − e−Q(t′)

(
eG(t′) − 1

)
|A (

t′) |2 (2.38)

and
∂Q

∂t′ = Jq
(
t′) − γqQ

(
t′) − rse−Q(t′)

(
eQ(t′) − 1

)
|A (

t′) |2. (2.39)

Here the ratio of excitation energies has been rescaled, rs ≡ r̃s/κ2. The noise
strength is given by Rsp and ξ (t′) = ξR + iξI has the properties

〈ξi
(
t′)〉 = 0 (2.40)

and
〈ξi

(
t′) ξj

(
t′′)〉 = δi,jδ

(
t′ − t′′) , (2.41)

for i, j ∈ {R, I}.

2.2.1. Dimensionless formulation of the DDE system

For numerical simulations it is convenient to rescale the DDE system such that the
parameters are all dimensionless. In [VLA05] the authors do this by rescaling by
the absorber recovery rate γq. We shall take the same approach as in [OTT12a]
and use the cold cavity roundtrip time T ′. This is a convenient time scale of the
system to use when studying the system with feedback as features in the feedback
delay time dependence vary on this time scale, as will be shown in the next chapter.

We write the dimensionless form of Eqs. (2.37)-(2.39) as

dE
dt

= −γE (t) + γR (t − T ) e−iΔΩT E (t − T ) +
√

Rspξ (t)

+γ
N∑

n=1
KneiCnR (t − T − τn) e−iΔΩ(T +τn)E (t − T − τn) , (2.42)

∂G

∂t
= Jg (t) − γgG (t) − e−Q(t)

(
eG(t) − 1

)
|E (t) |2 (2.43)
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2. Mode-locked laser model

and
∂Q

∂t
= Jq (t) − γqQ (t) − rse−Q(t)

(
eQ(t) − 1

)
|E (t) |2, (2.44)

where time has been rescaled as t = t′/T ′, the cold cavity roundtrip time is now
T = T ′/T ′ = 1 and E =

√
T ′A. For the other parameters we use the same symbols

as in Eqs. (2.37)-(2.37), but they now represent the rescaled quantities. All times
are rescaled by dividing by T ′ and all rates are rescaled by multiplying by T ′. R (t)
is as defined in Eq. (2.23).

For all the numerical simulations we use the dimensionless form of the DDE
system and all for results that will be presented in the subsequent chapters, we will
refer to the dimensionless parameter values.

2.2.2. Parameter values

In this subsection we will briefly discuss some of the final parameters of the DDE
model (Eqs. (2.42)-(2.44)) and the values that will be used.

In an experiment the tunable parameters that determine the light output of a
passively mode-locked laser are the pump current that is injected into the gain
section and the reverse bias which is applied to the absorber section. In our final
system of equations these control parameters are related to Jg in Eq. (2.43) and
Jq and γq in Eq. (2.44). Jg is related to the pump current, but not directly as it
referenced to the current needed to achieve transparency in the gain section, i.e. it
is proportional to the excess pump current. In the absorber section the applied bias
modifies the energy barrier which needs to be overcome for carriers to escape the
quantum-well [MAL06d]. This influences the carrier recovery rate γq and hence the
carrier density about which the gain should be linearised. The carrier recovery rate
γq, the differential gain gq and the effective transparency carrier density n0

q all enter
into the unsaturated absorption parameter Jq, meaning that the bias dependence
is manifested in Jq and γq.

In the subsequent chapters will we see that the amplitude-phase coupling factors,
αg and αq, can strongly influence the dynamics. These parameters are included
to account for carrier-induced refractive index changes and are proportional to
∂(δn)/∂N

∂g/∂N , where δn is the carrier-induced refractive index change and ∂g/∂N is the
differential gain [CHO99]. For quantum-well based gain media δn and g depend
non-linearly on the carrier densities leading to carrier dependent α-factors. In the
model presented here these factors are assumed to be constant. We will partially
account for the carrier dependence of the α-factors by investigating scenarios where
the values are different in the gain and absorber sections. However, our default
values for αg and αq will be zero.

For the charge-carrier recovery rates we will use values that are typical for semi-
conductor quantum-well materials. In the gain section the carrier lifetimes can
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2.3. Discussion of the DDE model

typically range from 0.1-1 ns [GOE83, HAD04, JON95b]. In the absorber section
the carrier lifetimes are lower due to the reverse bias which sweeps out the carri-
ers. Typical values which can be found in the literature are in the range 5-50 ps
[KAR94]. However, in both cases the recovery times strongly depend on the struc-
ture of the gain material.

The parameter values that we will use throughout this thesis, unless stated oth-
erwise, are those given in Table 2.1. We choose a cold-cavity roundtrip time of
25 ps, which results in a repetition rate of about 40 GHz in the fundamental mode-
locking regime. For a linear cavity, this roundtrip time corresponds to a length of
about 1 mm, which is a typical length for a passively mode-locked semiconductor
laser [FIO11, FIO11a, ARS13].

parameter value dimensionless parameter value dimensionless

T 25 ps 1 γ 2.66 ps−1 66.5
γg 1 ns−1 0.025 γq 75 ns−1 1.875
Jg 0.12 ps−1 3.0 Jq 0.3 ps−1 7.5
rs 25.0 25.0 Cm 0 0
κ 0.1 0.1 ΔΩ 0 0
αg 0 0 αq 0 0

Table 2.1.: Parameter values used in numerical simulations, unless stated otherwise.

2.3. Discussion of the DDE model

The main assumptions made to be able to derive the DDE system (Eqs. (2.37)-
(2.39)) are that the laser has a ring cavity geometry and that the propagation
of light is unidirectional. This approach has been widely, and successfully, em-
ployed to study the dynamics of various laser systems. These include hybrid mode-
locked lasers [FIO10, ARK13], passively mode-locked lasers with optical injection
[REB11, PIM14, HAB14] or optical feedback [OTT12a, OTT14b, SIM14, JAU16]
and Fourier domain mode-locking [SLE13]. In many of these cases experimental
comparison is made with devices that have a linear cavity geometry and bidirec-
tional propagation. Despite this difference the DDE models have been shown to
reproduce the qualitative behaviour of the dynamics very well [PIM14, ARS13,
FIO10, NIK16]. There are however still some qualitative differences that will be
discussed in this section.

In [VLA09] the authors numerically study a travelling-wave model for a monolithic-
semiconductor passively mode-locked laser with a linear cavity geometry. The car-
rier and field equations are the same as those used in the DDE model and spectral
filtering is also included in a lumped element approach, i.e. the essential difference
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2. Mode-locked laser model

between the DDE system of [VLA05] and the travelling-wave system of [VLA09] is
the laser-cavity geometry and hence that in the latter case there are two counter-
propagating fields. The bifurcation diagrams for these two systems are qualitatively
very similar. The main difference that arises is in the 2nd harmonic mode-locking
regime. In this regime there are two pulses travelling in the laser cavity. In the
linear-cavity model these two pulses collide, which leads to faster saturation of the
medium at the point of the collision. For the cavity model used in [VLA09], this
collision takes place in the gain section. This is unfavourable for mode-locking and
consequently leads to a break-up of the symmetry of the pulses (period doubling
bifurcation). The heights and separation of the pulses change such that the colli-
sion only occurs in the gain section every second roundtrip, thereby reducing the
saturation of the gain section. This is not observed in the DDE model as the two
pulses cannot interact.

In a linear cavity pulse interaction can also occur in the fundamental mode-
locking regime. As the pulse is reflected at the end facets there is an interaction
between the forward and backward moving parts of the pulse, this again leads to
faster saturation of the medium at the point of interaction. This effect is utilised
in the so-called self-colliding-pulse mode-locking, where the saturable absorber is
placed near the high reflectivity facet to increase its modulation [JON95b]. Such
interaction effects in the fundamental mode-locking regime are also not present in
the DDE model. There are however other factors related to the geometry of the
cavity, which have been shown to have a greater influence on the modulation of the
absorber section, that can be observed in the DDE model. In [JAV11] the effect
of the positioning of the saturable absorber in a two section laser, i.e. whether or
not the absorber is located at the end of the cavity with the anti-reflection coated
facet, is studied using a travelling-wave model. Here the authors predict that the
output power of the pulses is increased, the pulse widths are decreased and the
amplitude and timing jitter is reduced, when the absorber is placed in front of
the anti-reflection coated facet. The reasoning for this is that despite a reduction
in the interaction of the counter-propagating fields due to the reduced reflectivity,
the power of the pulse impinging on the absorber from the gain section is now
much greater since there are less mirror losses at the end of the gain section. This
leads to faster saturation of the absorber [SIM13], which is known to improve the
mode-locking properties [HAU75a]. This dependence on the absorber position has
subsequently been demonstrated experimentally [MOS15, ZHU15a]. In the DDE
model similar effects can be observed by placing the out-coupling losses before or
after the absorber section [ROS11d].

Depending on the heterostructure of the laser under investigation, refinements
can be made to the DDE model by choosing more sophisticated models for the
carriers. In [VLA10], [ROS11d] and [SIM14] the respective authors have used
the DDE approach with charge-carrier equations tailored to quantum-dot lasers.
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2.3. Discussion of the DDE model

However, comparisons between the results that will be presented in the subsequent
sections, and those present in [SIM14], show that the qualitative trends of the
feedback dependence are the same for the simple DDE we use (Eqs. (2.42)-(2.44))
and the more complicated quantum-dot based DDE models.

Aside from the ring-cavity geometry and the unidirectional propagation, there
are other simplifying assumptions that mean that the DDE model can only be
used to make qualitative not quantitative predicts for experiments. One of these
is the lumped-element approach to including the internal non-resonant losses. By
including the internal losses only at the ends of the gain and absorber sections the
electric field is larger than it should be as it propagates through these sections,
which affects the dynamics of the charge carriers. This can be improved upon by
dividing the gain and absorber in to multiple sections and including internal losses
between each section. The authors of [ROS11d] have done this for a quantum-dot
mode-locked laser and have shown that by adding more sections to the ring cavity
they obtained better agreement with a travelling-wave model for an equivalent
linear cavity. This is however at the expense of a greater computational cost, as
each added section requires an additional carrier equation.
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Chapter 3
Mode-locked laser dynamics

3.1. Introduction

In this chapter the dynamics of a passively mode-locked semiconductor laser will
be studied using the model presented in Chapter 2. The dynamics are stud-
ied via direct numerical simulations and by performing numerical path continu-
ation to analyse the bifurcations and stability of the solutions of the DDE model
(Eqs. (2.42)-(2.44)). The path continuation is carried out using the software pack-
age DDE-BIFTOOL [ENG01]. Throughout this chapter we will be considering the
underlying deterministic dynamics of the DDE system, i.e. Rsp = 0.

This chapter is structured as follows. First a brief introduction to the types of
bifurcations that will be encountered will be given in Subsection 3.1.1. Then the
dynamics of the solitary laser will be reviewed in Section 3.2. In Sections 3.3 and
3.4 the dynamics arising due to optical feedback from one and two external cavities,
respectively, will be investigated.

3.1.1. Bifurcations

A bifurcation occurs when there is a sudden qualitative change in the behaviour of
a dynamical system, which is brought on by the smooth change of some parameter
of that system. There are two classes of bifurcations, local bifurcations and global
bifurcations. In the following analysis of the mode-locked laser system (Eqs. (2.42)-
(2.44) we will only encounter local bifurcations. These can be characterised by
investigating the stability of solutions near the bifurcation point. The stability of
a solution is in turn characterised by the eigenvalues of the linearised system1, or

1A DDE system is linearised as demonstrated for the following two dimensional example with
one delay time. Let us consider a system of the form

ẋ (t) = F (x (t) , x (t − τ)) ,
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3. Mode-locked laser dynamics
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Figure 3.1.: Hopf bifurcation: (a) Complex conjugate eigenvalues λ passing through the real
axis in a Hopf bifurcation of a steady state solution. Bifurcation diagram of a supercritical (b)
and subcritical (c) Hopf bifurcation in dependence of some bifurcation parameter k.

in case of periodic systems by the Floquet multiplers or Floquet exponents (see
Appendix A).

Here we give a brief overview of the bifurcations that will be encountered in the
DDE model (Eqs. (2.42)-(2.44)). For a rigorous introduction to bifurcation theory
see, for example, [KUZ95, GUC86].

Hopf and torus bifurcations

In a Hopf (Andronov-Hopf) bifurcation a limit cycle (periodic solution) is generated
out of a steady state (equilibrium) solution of a dynamical system. At the bifurca-
tion point the equilibrium changes stability via a pair of purely imaginary complex
conjugate eigenvalues (Fig. 3.1a). The limit cycle that is created can be either
stable or unstable depending on the criticality of the bifurcation. In a supercritical
Hopf bifurcation a stable equilibrium becomes unstable and a stable limit cycle is
generated (Fig. 3.1b). In a subcritical Hopf bifurcation an unstable equilibrium
stabilises and an unstable limit cycle is generated (Fig. 3.1c). The frequency of the
limit cycle generated in the Hopf bifurcation is given by the imaginary eigenvalues
at the bifurcation point.

where x = (x1, x2)T are the dynamical variables and F = (F1, F2)T are functions of the
dynamical variables x at time t and at the delayed time t − τ . Then the linearised system,
about a fixed point x0, is given by

˙δx (t) = Aδx (t) + Bδx (t − τ) ,

where δx = x − x0 and the Jacobi matrices are defined as Aij = ∂Fi
∂xj (t) and Bij = ∂Fi

∂xj (t−τ)

evaluated at x0, for i, j = {1, 2}.
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(a) (b)

Figure 3.2.: Torus bifurcation: (a) Complex conjugate characteristic multipliers μ passing
through the unit circle (|μ| = 1) in a torus bifurcation of a limit cycle. (b) Motion on a
two-dimensional invariant torus.

A torus bifurcation, also referred to as a secondary Hopf bifurcation, is the
bifurcation of a limit cycle in which a two-dimensional invariant torus is created.
At the bifurcation point the limit cycle changes stability via two complex conjugate
characteristic (Floquet) multipliers passing through the unit circle (Fig. 3.2a). Like
the Hopf bifurcation, the torus bifurcation can be supercritical or subcritical. The
periodicity of the motion on the torus depends on the frequency of the original
limit cycle (ω1) and the frequency that is introduced in the torus bifurcation (ω2)
(Fig. 3.2b). If the ratio of these two frequency is rational then the motion on
the torus will be periodic. However, if the frequencies are incommensurable the
motion can be quasi-periodic, which means that the trajectory completely fills in
the surface of the torus.

Saddle-node bifurcation

In a saddle-node bifurcation two equilibria (or limit cycles) of a dynamical system
collide and disappear. The bifurcation is characterised by one real eigenvalue pass-
ing through zero, or in the case of a saddle-node bifurcation of limit cycles, one
real characteristic multiplier passing through unity (Fig. 3.3). A typical scenario
involving a saddle-node bifurcation is depicted in Fig. 3.4. Here an unstable limit
cycle is first created in a subcritical Hopf bifurcation. Following the limit cycle
solution from the Hopf bifurcation point, the bifurcation parameter k decreases
until the solution becomes stable in a saddle-node bifurcation and folds back in k

to continue to exist for larger k values. Due to this folding of the solution as a
function of the bifurcation parameter, saddle-node bifurcations are also referred to
as fold bifurcations.
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(a)(b)

Figure 3.3.: Saddle-node bifurcation: (a) One real eigenvalue λ passing through zero in a
saddle-node bifurcation of equilibria. (b) One real characteristic multiplier μ passing through
unity (Re μ = 1) in a saddle-node bifurcation of limit cycles.
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Figure 3.4.: Bifurcation diagram showing a subcritical Hopf bifurcation followed by a saddle-node
bifurcation of limit cycles.

Period-doubling bifurcation

A period-doubling bifurcation of a limit cycle involves the creation of a second limit
cycle which has approximately twice the period of the original limit cycle. This
occurs by a change in the height of the maxima of the limit cycle, as illustrated in
Fig. 3.5. This bifurcation can be characterised by one real characteristic multiplier
passing though the negative side of the unit circle, i.e. μ = −1 (see Fig. 3.6a).
Period-doubling bifurcations also come in subcritical and supercritical variants.
In a supercritical period-doubling bifurcation a stable limit becomes unstable and
a second stable limit cycle is born. This scenario is depicted in Fig. 3.6b. In
the subcritical period-doubling bifurcation an unstable limit cycle becomes stable
and a second unstable limit cycle is created, as depicted in Fig. 3.6c. When the
bifurcation point is approached from the side of limit cycle with twice the period,
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amplitude

time time
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Figure 3.5.: Illustration of a limit cycle before and after a period-doubling bifurcation.
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Figure 3.6.: Period-doubling bifurcation: (a) One real characteristic multipliers passing
through Re μ = −1 in a period-doubling bifurcation. Bifurcation diagram of a supercritical
(b) and subcritical (c) period-doubling bifurcation in dependence of some bifurcation parameter
k.

which then disappears at the bifurcation point, then this bifurcation is also referred
to as a period-halving bifurcation.

Pitchfork bifurcation

In a pitchfork bifurcation one steady state solutions changes stability and two
additional solutions are created. A pitchfork bifurcation can be subcritical or su-
percritical and the bifurcation diagram has the same form as those depicted in
Fig. 3.6b-c. The difference being that in this case the two bifurcating branches
belong to different steady state solutions instead of one limit cycle solution.
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3. Mode-locked laser dynamics

3.2. Solitary mode-locked laser dynamics

In this section we will explore the dynamics of the passively mode-locked laser
in the absence of feedback. We will largely be recapping the results of [VLA05,
VLA11] which are necessary for understanding the dynamics of the system with
feedback in the subsequent sections. We will be addressing the bifurcations of the
continuous wave solutions of Eqs. (2.42)-(2.44) (with Kn = 0 and Rsp = 0), as well
as the bifurcations of the mode-locked solutions. Further, we will investigate the
dependence of the mode-locked solutions on several key parameters by numerical
integration of the DDE system.2

3.2.1. Lasing threshold

For a semiconductor mode-locked laser to start lasing, a sufficiently large pump
current must be applied such that all losses can be overcome. Below this threshold
pump current, the laser is in the off state. The off state is a steady state solution
of Eqs. (2.42)-(2.44) and is given by

E = 0, G = Jg/γg and Q = Jq/γq, (3.1)

where the solutions for G and Q are obtained by setting the derivatives in Eqs. (2.43)-
(2.44) to zero. At the threshold pump current the off state becomes unstable and
lasing begins. The simplest lasing states are continuous wave solutions of the form
E (t) = E0eiωt, where ω is referenced to the optical frequency Ω0. Substituting this
continuous wave solution into Eq. (2.42) yields

ω2 + γ2 = γ2κeG−Q (3.2)

and
ω

γ
= − tan

(1
2

(αgG − αqQ) + (ΔΩ + ω) T

)
(3.3)

[VLA05]. Here G and Q are steady state solutions of Eqs. (2.43) and (2.44), and
are given by the equations

0 = Jg − γgG − e−Q
(
eG − 1

)
|E0|2 (3.4)

and
0 = Jq − γqQ − rse−Q

(
eQ − 1

)
|E0|2. (3.5)

This set of transcendental equations has multiple solutions for the frequency ω

and the intensity |E0|2, which correspond to different lasing modes. Modes with
2In certain limits the DDE model can also be analysed analytically, this was done in [VLA05,

VLA11]. Also present in these works are comparisons with the models of Haus [HAU75a] and
New [NEW74].
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3.2. Solitary mode-locked laser dynamics

increasing detuning from the center of the spectral filter, i.e. the gain maximum of
the lasing medium, have a smaller effective gain and hence the threshold current
is mode dependent. At the lasing threshold of each mode, Eqs. (3.2)-(3.5) must
be fulfilled with E0 = 0. From Eqs. (3.2), (3.5) and (3.4) the mode dependent
threshold current is

J th
g (ω) = γg

(
Jq

γq
− ln (κ) + ln

(
1 +

ω2

γ2

))
(3.6)

where ω must still fulfil Eq. (3.3).
The mode with the smallest absolute detuning from the center of the spectral

filter, ωmin, has the lowest threshold current, and it is at this threshold current that
the off state becomes unstable. All other modes bifurcate from the off state when it
is already unstable, and are themselves also unstable. For the bifurcation analysis
that follows we choose ΔΩ, αg and αq equal to zero. In this case the maximum
gain continuous wave solution has ω = ωmin = 0. The mode-locked solutions that
are of interest bifurcate from this continuous wave solution.

3.2.2. Continuous wave solutions

Using the path continuation software package DDE-BIFTOOL [ENG01] we in-
vestigate the pump current dependence of the continuous wave solution that is
generated at the lasing threshold (Eq. (3.6) with ω = ωmin). Figure 3.7 shows the
results for this solution. In Fig. 3.7a the electric field amplitude E0 (red line), the
gain G (green line) and the losses Q (blue line) are plotted. The electric field in-
tensity I = |E0|2 depends linearly on the pump current, hence E0 has a square-root
dependence. The stability of the solutions is indicated by the thickness of the lines
in Fig. 3.7a; stable solutions are plotted with thick lines. A close-up of the current
region near threshold, which is J th

g = 0.153 for the parameters used here, is shown
Fig. 3.7b. The grey region indicates the current range for which the off state is sta-
ble. Here we see that the continuous wave solution is initially stable (as it is born
in a supercritical Hopf bifurcation), but loses stability slightly above the threshold
current. At relatively large currents (Jg > 60J th

g ) the continuous wave solution
restabilises. Within the current range where the solution is unstable, the number
of unstable eigenmodes varies. In Fig. 3.7c-d the real parts of eigenvalues are plot-
ted. Since this is a DDE system there are infinitely many eigenmodes, however
only a finite number of these can have eigenvalues above any given finite threshold
value. Here we only depicted those with Re[λ] close to zero. Those above zero are
plotted in red to indicate that these correspond to unstable eigenmodes. In this
case each line that crosses Re[λ] = 0 corresponds to a Hopf bifurcation, meaning
that a pair of complex conjugate eigenvalues crosses the real axis. In Fig. 3.8 this
is shown for the Hopf bifurcation (H1) between the vertical dashed blue lines in
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Figure 3.7.: (a) Electric amplitude E0 (red line), gain G (green line) and losses Q (blue line) of
the maximum gain continuous wave solution in dependence of the pump current Jg. A close-up
of the current region near threshold is shown in (b). Thick lines indicate where the continuous
wave solution is stable and the vertical black lines indicate the pump current values where the
solution changes stability. In the grey region the off state (Eq. (3.1)) is stable. (c) Real parts
of the eigenvalues λ corresponding to the solutions plotted in (a). Eigenvalues with Re[λ] > 0
are plotted in red. In (d) a close-up of the eigenvalues near threshold is shown. Parameters:
κ = 0.121, ω = ωmin = 0, all other parameters as in Table 2.1.
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Figure 3.8.: Eigenvalues of the maximum gain continuous wave solution for the pump current
values indicated by the left (a) and right (b) vertical dashed blue lines in Fig.3.7c. Parameters:
ω = ωmin = 0, (a) Jg = 5.9, (b) Jg = 6.1, κ = 0.121, all other parameters as in Table 2.1.

Fig. 3.7c. Plotted in Fig. 3.8a-b are the real and imaginary parts of the eigenvalues
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Figure 3.9.: (a) Hopf bifurcation curves in the Jg-Jq plane. A close-up of the region near the
threshold pump current is shown in (b). In the light grey regions the continuous wave (cw)
solution is stable and in the dark grey region the off state (Eq. (3.1)) is stable. Parameters:
ω = ωmin = 0, κ = 0.121, all other parameters as in Table 2.1.

before and after the Hopf bifurcation. Comparing subplots (a) and (b) of Fig. 3.8
it can be seen that one pair of eigenvalues changes stability (stable eigenvalues are
plotted in green and unstable ones in red).

Post fabrication, the tunable parameters of a passively mode-locked semicon-
ductor laser are the pump current and the bias voltage. As discussed in Subsec-
tion 2.2.2, the influence of the bias voltage is largely manifested in the unsaturated
absorption Jq. Hence Jq crucially influences the operation of the laser. In Fig. 3.9
the stability and bifurcations of the maximum gain continuous wave solution are
shown in the Jg-Jq plane. In the light grey areas the continuous wave solution is
stable and in the dark grey area the off state is stable. The blue curves indicate the
Hopf bifurcations. The solutions presented in Fig. 3.7 correspond to the position
of the horizontal dashed line in Fig. 3.9a. The period of the limit cycle that is
generated in each of the Hopf bifurcations is determined by the purely imaginary
eigenvalues at the bifurcation point. The Hopf curve labelled H1 generates a limit
cycle with a frequency approximately equal to the fundamental frequency of the
laser cavity Ωf = 2π/T (frequency separation of the cavity modes, i.e. Ωf = 2πΔν

in Fig. 2.3). This can be seen in Fig. 3.8, which shows eigenvalues for solutions be-
fore and after the H1 Hopf bifurcation. Comparing subplots (a) and (b) of Fig. 3.8,
it can be seen that Im[λ] ≈ 2π/T for the eigenvalues that cross the real axis. It
is out of H1 Hopf bifurcation that the fundamental mode-locked solution develops.
The Hopf curves labeled Hn, for n = 2, 3, 4, generate limit cycles with frequencies
given approximately by nΩf . These limit cycles evolve into harmonically mode-
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3. Mode-locked laser dynamics

locked solutions. Lastly, the Hopf curve labeled HQ has a much lower frequency,
approximately an order of magnitude lower than Ωf for the chosen parameters.
This bifurcation is related to the Q-switching found in single-mode lasers with a
saturable absorber [YAM93, DUB99a, LUE11b].

The general trends shown in Fig. 3.9 are: For increasing unsaturated absorption
Jq the stability range of the continuous wave solution decreases and the number
of Hopf bifurcations the system goes through increases. The additional Hopf bi-
furcations that are introduced at higher Jq values produce higher frequency limit
cycles. The stability of the limit cycles that are produced in the Hopf bifurcations
depend on the criticality of the bifurcation and on the stability of the solution it
is bifurcating from. The Hopf curves in Fig. 3.9 do not contain information about
the criticality, however this can be obtained by investigating the stability and bi-
furcations of the emerging limit cycles. For the fundamental Hopf curve H1 this is
done in the next section.

3.2.3. Mode-locked solutions

As indicated by the multitude of Hopf bifurcations depicted in Fig. 3.9, the DDE
system for the mode-locked laser has several periodic solutions. In this section we
will focus on the fundamental mode-locked solution. The stability and bifurcations
of this solution in the Jg-Jq plane are depicted in Fig. 3.10. Torus and saddle-node
bifurcations of the fundamental periodic solution are indicated by blue and green
lines, respectively. The H1 Hopf curve out of which the fundamental mode-locked
solution emerges is plotted in black. This is the same curve that is shown in Fig. 3.9,
however now the criticality is also shown. In the dashed regions the H1 bifurcation
is subcritical and in the solid range it is supercritical. The change in criticality
of the H1 curve occurs at the point where the H1 and saddle-node branches meet
(green circle). The supercritical part of H1 and the saddle-node branch enclose the
parameter region where the fundamental periodic solution exists, and the green
shaded part of this region is where this solution is stable. The Hopf curves HQ

and H2-H4 are depicted by the thin grey lines. The points where these branches
intersect the H1 curve are Hopf-Hopf points and are indicated by the red circles.
A Hopf-Hopf point is where two branches of Hopf bifurcations intersect. Generally
two branches of torus bifurcations emanate from a Hopf-Hopf point. Here we only
show the torus bifurcations of the periodic solution generated in the H1 bifurcation.
Hence there are four branches of torus bifurcations depicted in Fig. 3.10, which
emanate from the Hopf-Hopf points marked by the red circles.

To better understand this bifurcation diagram it is helpful to consider cuts along
Jg. Starting at the low current part of the H1 curve, the fundamental periodic
solution is generated in a supercritical Hopf bifurcation. If Jq is below the Hopf-
Hopf point where the HQ curve intersects H1, then the solution that is generated is
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Figure 3.10.: Bifurcations of the fundamental mode-locked solution in the Jg-Jq plane. Blue lines
is indicate Torus bifurcations (T1-T4) and the green line is a saddle-node bifurcation (SN). The
black line is the fundamental Hopf bifurcation curve of the continuous wave solution (H1),
with the solid segment being supercritical and the dashed segment subcritical. The green circle
marks the point where the H1 curve changes criticality. The thin grey lines show the remaining
Hopf bifurcations of the continuous wave solution (compare with Fig. 3.9). Hopf-Hopf points
involving the H1 curve are indicated by red circles. Shaded in green is the stability region of
the fundamental mode-locked (FML) solution. In the light grey regions the continuous wave
solution is stable and in the dark grey region the off state (Eq. (3.1)) is stable. The black cross
indicates the position of the parameters corresponding to Table 2.1. Parameters: κ = 0.121,
ω = ωmin = 0, all other parameters as in Table 2.1.

stable. However if Jq is above this point then the solution is unstable, even though
the bifurcation is supercritical, because the continuous wave solution is already
unstable when the H1 bifurcation occurs (see Fig. 3.9 (b)). In the latter case, if
Jg is increased, the solution first becomes stable after the torus bifurcation T4.
Increasing the pump current further, the solution remains stable until the saddle-
node bifurcation. At this point the solution coalesces with the unstable periodic
solution that is generated in the subcritical part of the H1 curve. This is depicted in
Fig. 3.11 for the unsaturated absorption Jq value indicated by the horizontal dotted
black line in Fig. 3.10. In Fig. 3.11a the electric field maxima are plotted and in
Fig. 3.11b the period of the solutions is shown. Stable solutions are indicated by
the green symbols in Fig. 3.11a and by the solid line in Fig. 3.11b. Also indicated
in Fig. 3.11b are the positions of the bifurcations, which have the same labelling
as in Fig. 3.10. The solution generated in the subcritical H1 bifurcation can have
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Figure 3.11.: Branch of periodic solutions continued from the H1 curve, corresponding to the
dotted black line in Fig.3.10. Electric field maxima |Emax| are plotted in (a) and the period T0 is
plotted in (b). Stable section of the branch are plotted in green (solid lines) and unstable in red
(dotted lines). In (b) the positions of the Hopf, torus and saddle-node bifurcations are indicated
by the black, blue and green circles, respectively. The red crosses correspond to Fig. 3.12a-c.
Parameters: Jq = 9.58, κ = 0.121, all other parameters as in Table 2.1.

multiple unstable directions, the number of which depend on Jq. These added
unstable directions are related to the stability of the continuous wave solution at
the point of the H1 bifurcation (e.g. see Fig. 3.8). Starting from the subcritical H1
bifurcation at about Jg = 6.9 in Fig. 3.11, the solution is unstable and has relatively
small maxima. First there are three pairs of complex conjugate multipliers with
|μ| > 0, because the continuous wave solution has an additional three pairs of
unstable eigenvalues at the bifurcation point. This is shown in Fig. 3.12a. As
the periodic solution is continued one real multiplier, which was equal to one at
the bifurcation, becomes larger than one (Fig. 3.12b). Then, as Jg is increased
further the height of the maxima increases and the solution goes through a series
of torus bifurcations (T1-T3) in which unstable pairs of multipliers enter the unit
circle. Figure 3.12c shows the multipliers for a solution between T2 and T3 at
Jg = 8.45 and compared with Fig. 3.12b two pairs of multipliers have entered the
unit circle. After the T3 bifurcation there is only one real characteristic multiplier
with |μ| > 1. Following the three torus bifurcations, as the solution is continued
further this branch folds over in Jg and the solutions becomes stable after the
saddle-node bifurcation. As the branch is continued further, Jg decreases and
eventually the solutions lose stability after the torus bifurcation T4. Finally, the
solution disappears in the H1 bifurcation near Jg = 0.2.

Near the H1 bifurcations, in which the fundamental periodic solution is gener-
ated, the oscillations are initially sinusoidal with a very small amplitude. As the
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Figure 3.12.: Characteristic multipliers of the fundamental periodic solution bifurcating from the
subcritical part of H1 at Jq = 9.58. The solutions correspond to the red crosses in Fig. 3.11b.
Parameters: (a) Jg = 6.9, (b) Jg = 7.47, (c) Jg = 8.45, κ = 0.121, all other parameters as in
Table 2.1.
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Figure 3.13.: Electric field profiles for the stable mode-locked solutions of the branch depicted in
Fig. 3.11. The time axis spans one period T0 of the solutions. Parameters: Jq = 9.58, κ = 0.121,
all other parameters as in Table 2.1.

solution is continued it then evolves into the mode-locked solution. The pulse pro-
files, for the stable section of the branch depicted in Fig. 3.11, are shown in Fig. 3.13.
As the current is increased the pulse amplitude increases (also see Fig. 3.11a), the
pulses become wider and the period T0 decreases (Fig. 3.11b). Between pulses
the electric field amplitude drops to zero. Physically these pulsed solutions, and
their dependence on the pump current, can be understood by considering the gain
and absorber dynamics. Figure 3.14 shows an example of the dynamics of the
gain, losses and electric field amplitude in the mode-locked regime. Shown here
are time traces of the electric field amplitude (blue), the gain (green) and the total
losses Qtot = Q − ln (κ) (red), which are the sum of the absorber losses and the
non-resonant internal and mirror losses. Also shown is the net gain G = G − Qtot
(black). From this time trace it is evident that the dynamics evolve in two stages;
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Figure 3.14.: (a) Time trace of the electric field amplitude |E| (blue), gain G (green), total losses
Qtot = Q−ln (κ) (red) and the net gain G = G−Qtot (black). (b) Close-up of the region enclosed
in the grey box in (a). This solution corresponds to the black cross in Fig. 3.10. Parameters:
κ = 0.121, all other parameters as in Table 2.1.
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Figure 3.15.: (a) Period T0 and (b) pulse profiles of the fundamental mode-locked solution as a
function of the Lorentzian spectral filter width. The pulse profiles are plotted over one period.
Parameters: Jg = 5.01, Jq = 9.58, κ = 0.121, all other parameters as in Table 2.1.

a slow stage and a fast stage. The fast stage occurs when the pulse enters the
gain and absorber media. As the leading edge of the pulse enters the gain section
the inverted charge carriers are depleted, this causes G to decrease. In the ab-
sorber section the leading edge of the pulse is absorbed which causes the creation
of electron-hole pairs and drives the absorber towards transparency, meaning that
the losses Qtot decrease. The rates at which the gain and absorber sections saturate
is determined by the linear gain coefficients gg and gq, respectively. Since gq > gg,
the absorber saturates faster than the gain section, which leads to a window of
positive net gain (shaded region in Fig. 3.14b). This net gain window allows the
center of the pulse to be amplified. After the pulse has passed, G and Q recover
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Figure 3.16.: (a) Time trace of the electric field amplitude |E| (blue), gain G (green), total losses
Qtot = Q − ln (κ) (red) and the net gain G = G − Qtot (black). (b) Close-up of the region
enclosed in the grey box in (a). Parameters: Jq = 3, κ = 0.121, all other parameters as in
Table 2.1.

in the slow stage, at time scales given by γg and γq. The absorber recovery rate
is faster than that of the gain section, which leads to the losses dominating during
the slow stage and hence to the electric field amplitude being close to zero between
pulses. The slow and fast stages can, under certain approximations, be described
analytically due to the separation of the dominating time scales [VLA05].

The pulse repetition period is slightly longer than the cold cavity roundtrip
time; in the example depicted in Fig. 3.14 the period is T0 = 1.014T . This is a
consequence of the response time of the spectral filter, and the time it takes for
the absorber to saturate, i.e. the leading edge of the pulse is absorbed causing
the effective pulse group velocity to be smaller than v. If the leading edge of the
pulse has a higher intensity then the absorber takes less time to saturate, causing a
decrease in T0. The intensity of the leading edge of the pulse is determined by the
pulse energy and the pulse width. As the pump current is increased the pulse energy
increases and hence the period decreases (stable section of Fig. 3.11b). The pulse
width is dependent on the number of modes participating in the mode-locking,
which is determined by the width of the spectral filter. The laser cavity mode
spacing is T −1, therefore the number of lasing modes can be estimated as γT −1.
If γT −1 is large the pulse width is given approximately by γ−1 [VLA05, VLA11].
Therefore, for increasing γ, the period decreases due to the decreased filter response
time and due to the increased peak intensity. The dependence of the pulse profile
and the period T0 on the spectral filter width is illustrated in Fig. 3.15.

In the example depicted in Fig. 3.14 the net gain is negative during the entire
slow stage. According to New’s stability criterion, this is a necessary condition for
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Figure 3.17.: Numerical bifurcation diagram showing the pump current dependence of the mode-
locked laser output. Plotted in blue (red) are electric field maxima |E|max for an up-sweep
(down-sweep) in the initial conditions. The dotted white line indicates the stable fundamental
mode-locked (FML) solution. The dotted grey and black lines indicated 2nd and 3rd order
harmonic mode-locking (HML), respectively. Parameters: κ = 0.121, all other parameters as in
Table 2.1.

the background to be stable against perturbations [NEW74].3 There are however
other mode-locked solutions for which New’s criterion is not fulfilled. Figure 3.16
shows such an example for Jq = 3. Here the positive net gain window is open before
the arrival of the pulse. In this case, this behaviour is caused by the relatively low
unsaturated absorption Jq. Because Jq is small the absorber is fully recovered
before the pulse returns, whereas the gain is still recovering. Within this region
of positive net gain the system can be very sensitive to perturbations as these
can be amplified. However, the authors of [VLA11] have shown that mode-locked
solutions are not necessarily unstable against noise perturbations if New’s criterion
is violated. The relative group velocities of the pulse and the perturbations also
play a role in determining the stability of the background. Background stability
will be important for the investigation of the DDE system subject to noise, which
is presented in Chapter 4.

Outside the current range where the fundamental mode-locked solution is sta-
ble, a mode-locked laser can display various dynamics. We investigate these via
direct numerical integration of Eqs. (2.43)-(2.44).4 Figure 3.17 shows a numer-
ical bifurcation diagram of the pump current dependence. Plotted are maxima

3What we mean by "stable against perturbations" is whether the solutions still exist in the
presence of noise, or if the dynamics are significantly changed when a small noise term is
added.

4For the numerical simulation of the DDE system (Eqs. (2.42)-(2.44)) we use the Euler inte-
gration method with a time step of h = 10−4. For the initial conditions we generally use
(ER, EI , G, Q) = (0.4, 0, 4, 1) over the entire time interval [−τ ′, 0], where ER and EI are the real
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Figure 3.18.: Time traces of the mode-locked laser output for various pump currents. Parameters:
(a) Jg = 1, (b) Jg = 3, (c) Jg = 6, (d) Jg = 7.5, (e) Jg = 8, (f) Jg = 9, κ = 0.121, all other
parameters as in Table 2.1.

of the electric field amplitude which are collected over a time span of one hun-
dred cold-cavity roundtrip times. The results plotted in blue were obtained by
performing an up-sweep in the initial conditions. This means that the history of
the previous current step was used as the initial conditions for the next, as the
current was incrementally increased. In the down-sweep (red symbols) the cur-
rent was incrementally decreased. The idea behind such an approach is to stay on
one solution branch as long as possible in regions of multistability. In regions of
Fig. 3.17 where the red and blue symbols do not overlap the system has landed on
different solutions for the up- and down-sweeps, i.e. these are regions of bistability
or multistability. For the current values where only one maxima is plotted the
system is exhibiting mode-locked dynamics. The regions of fundamental, 2nd and
3rd order harmonic mode-locking are indicated by the white, grey and black dotted
lines, respectively. At low currents, and at high currents, there are solutions with
varying pulse heights. Examples of the electric field amplitude dynamics in each of
the qualitatively different regions of Fig. 3.17 are shown in Fig. 3.18. Starting at
low pump currents the system is in a regime of Q-switched mode-locking. These
dynamics arise out of the T4 torus bifurcation of the fundamentally mode-locked
solution (see Fi.g 3.10). In this regime the amplitude of the mode-locked pulses is

and imaginary components of the complex electric field amplitude E and τ ′ is the longest total
delay time.
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strongly modulated on time scales of the Q-switching frequency (frequency of the
HQ Hopf bifurcation) and the pulses appear in bunches, with a near zero electric
field amplitude for several laser cavity roundtrips between the pulse bunches (see
Fig. 3.18a). Such Q-switched solutions arise at low currents because they are en-
ergetically favourable. As the current is increase past the torus bifurcation (near
Jg = 2), fundamental mode-locking becomes stable (Fig. 3.18b). In agreement with
these results, Q-switched mode-locking and the transition to fundamental mode-
locking has been observed experimentally in both quantum well and quantum dot
semiconductor passively mode-locked lasers [PAL91, BAN06, KUN07a, VLA10].
As the current is increased further, 2nd and 3rd harmonic mode-locking also be-
come stable. These are mode-locked regimes with repetition frequencies that are
integer multiples of the fundamental repetition rate, i.e. in the 2nd and 3rd har-
monic cases there are two (see Fig. 3.18c) and three (see Fig. 3.18d) peaks per
laser cavity roundtrip, respectively. Multistability between different orders of har-
monic mode-locking has also been observed experimentally, particularly in devices
with relatively long passive sections [SAN90, MAR14c]. An example of harmonic
mode-locking in a semiconductor ring-cavity laser was demonstrated in [HOH93].
At relatively high currents the harmonic mode-locked solutions break-up and the
system exhibits chaotic oscillations of the peak intensity. The break-up of harmonic
mode-locking occurs at high currents because the gain and absorber do not have
time to recover between pulses, causing an interaction between subsequent pulses
[NIZ06, VLA11].

Experimentally it is typically the power spectrum of the laser output that is
measured. For easier comparison with experimental results, the power spectra
corresponding to the time traces of Fig. 3.18 are shown in Fig. 3.19. The funda-
mental repetition frequency of the simulated laser is approximately νf = 40GHz
((T0 · 25ps)−1), accordingly for fundamental mode-locking there is a peak in the
power spectra near 40 GHz and at higher harmonics (Fig. 3.19b). For Q-switched
mode-locking additional peaks are present with a frequency separation correspond-
ing to the modulation frequency (Fig. 3.19a). The power spectra of the harmoni-
cally mode-locked solutions show only peaks at multiples of nνf , where n = 2, 3 is
the harmonic order (see Fig. 3.19c-d).

Influence of amplitude-phase coupling

So far we have investigated the dynamics in the absence of amplitude-phase cou-
pling. However in semiconductor quantum-well materials α-factor values are typi-
cally in the range 2-6 [HAR83, OSI87, FOR07]. Furthermore, it is know from other
laser systems in which the phase of the light plays a role, that the amplitude-phase
coupling can strongly influence the behaviour, generally leading to more complex
dynamics. For example in optically injected lasers the α-factor affects the extent
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Figure 3.19.: Power spectra of the electric field amplitude, S|E|2 , of the mode-locked laser output
corresponding to the dynamics depicted in Fig. 3.18. Parameters: (a) Jg = 1, (b) Jg = 3, (c)
Jg = 6, (d) Jg = 7.5, (e) Jg = 8, (f) Jg = 9, κ = 0.121, all other parameters as in Table 2.1.
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Figure 3.20.: (a) Time trace of the real (Re[E ]) and imaginary (Im[E ]) parts of the complex electric
field amplitude for αg = 2 and αq = 1.5. (b) Corresponding time trace of electric field amplitude
|E|. (c) Pulse profile (blue) and electric field phase φ (black) for αg = 2 and αq = 1.5, pulse
profile for αg = αq = 0 (green). Parameters: κ = 0.121, all other parameters as in Table 2.1.

of the locking cone and in semiconductor lasers with feedback the α-factor is re-
lated the stability range of continuous wave solutions [MOR92, ROT07, ERN10b,
OTT12, LIN15]. Therefore, in this section the influence of amplitude-phase cou-
pling on the mode-locked laser dynamics will be addressed.
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From Eqs. (3.3) and (3.6) it is known that the lasing threshold is dependent
on the amplitude-phase coupling. For non-zero α-factors the lasing modes are
detuned from the center of the spectral filter. Hence the gain of the central mode
is reduced and therefore the lasing threshold is increased. The shift of the lasing
modes with respect to the spectral filter also means that the modes are detuned
from the reference rotating frame (Ω0). In the simulations this leads to an added
rotation of the complex electric field amplitude, as shown in Fig. 3.20a which
depicts a time trace of the real (Re[E ]) and imaginary (Im[E ]) parts of the complex
electric field amplitude for αg = 2 and αq = 1.5. In this example the rotation
frequency of the complex electric field is incommensurable with the pulse repetition
frequency, meaning the Re[E ] and Im[E ] are quasi-periodic, but |E| is periodic. The
quasi-periodic dynamics of the electric field components can be compensated for
by shifting the rotating frame of the system. However, in addition to the shift of
the modes, non-zero amplitude-phase coupling also causes the pulses to become
chirped. Meaning that the instantaneous frequency dφ

dt varies within the pulse,
where φ is the phase of the electric field. Figure 3.20c shows an example of the non-
linear variation of the phase for αg = 2 and αq = 1.5 (black line), the corresponding
electric field amplitude is depicted in blue. For comparison the pulse profile for
zero amplitude-phase coupling is also plotted (green line). In this case the addition
of amplitude-phase coupling leads to narrower pulses. Experimental studies have
shown that the self-phase modulation caused by the amplitude-phase coupling leads
to a wider optical spectrum [DER92], however this does not necessarily mean that
the pulses become narrower in the time domain. If the lasing modes are not all
phase-locked then, despite the wider optical spectrum, the pulse can also become
wider [KUI70, JON95b].

In the fundamental mode-locked regime the pulse repetition frequency, i.e 1/T0,
varies only slightly with the amplitude-phase coupling, however the shift of the
optical frequencies is relatively pronounced. This can be seen in Fig. 3.21 in which
optical spectra are shown for various values of αg = αq. The frequency is given in
reference to the center of the spectral filter Ω0. Due to the shift of the lasing modes
a phase-shift accumulates as a pulse travels around the ring cavity, i.e. there is
a phase difference between the electric field at time t and delayed field from time
t − T . This will be important for understanding the dependence of the dynamics
under the influence of optical feedback, which will be presented in the next section.

In Fig. 3.22 the impact of non-zero amplitude-phase coupling on the pump cur-
rent dependence of the mode-locked laser output is shown. In real devices the
α-factor in the gain and absorber sections should be different due to the differ-
ence in the charge-carrier densities, however, here we start our analysis with case
that αg = αq. Plotted in Fig. 3.22 are the maxima in the electric field ampli-
tude for up- and down-sweeps in the initial conditions for α-factor values of 1-5.
The results were obtained in the same manner as Fig. 3.17. For low values of the
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Figure 3.21.: Optical spectra |SE | of the mode-locked laser output for various α-factor values.
Parameters: κ = 0.121, all other parameters as in Table 2.1.

amplitude-phase coupling the current dependence is very similar to that present
in Fig. 3.17 for αg = αq = 0. At low currents there is a regime of Q-switched
mode-locking, which can be identified in Fig. 3.22 by the low current ranges with
many maxima of varying heights. Past the regime of Q-switched mode-locking,
fundamental mode-locking becomes stable. As the pump current is increased fur-
ther there are ranges of 2nd and 3rd order harmonic mode-locked. For increasing
values of the amplitude-phase coupling the ranges of fundamental and harmonic
mode-locking decrease and the onset of fundamental mode-locking is pushed to
higher pump currents. These results are qualitatively similar to those presented in
[VLA05, VLA11], where αg = αq was used as the bifurcation parameter for a fixed
pump current and it was found that for increasing amplitude-phase coupling there
is a sudden transition from fundamental mode-locking to chaotic dynamics.

The type of dynamics exhibited for large amplitude-phase coupling can vary
slightly from those presented previously for the case where amplitude-phase cou-
pling is absent (Fig. 3.18). Examples of the electric field dynamics are shown
for αg = αq = 4 in Fig. 3.23. The Q-switched mode-locking regime develops
into a mode-locked regime with modulated pulse heights, as shown for Jg = 3
in Fig. 3.23a. The harmonic mode-locked solutions can also exhibit pulse height
modulation, as depicted in Fig. 3.23b for Jg = 4.5. In this case there are two pulse
height envelopes corresponding to the two pulses in the laser cavity. In Fig. 3.23c
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Figure 3.22.: Numerical bifurcation diagram showing the pump current dependence of the mode-
locked laser output for various α-factor values. Plotted in blue (red) are electric field maxima
|E|max for an up-sweep (down-sweep) in the initial conditions. Parameters: κ = 0.121, all other
parameters as in Table 2.1.
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Figure 3.23.: Time trace of the electric field amplitude |E| for αg = αq = 4 and (a) Jg = 3, (b)
Jg = 4.5, (c) Jg = 6.5. Parameters: κ = 0.121, all other parameters as in Table 2.1.

(Jg = 6.5) the dynamics are similar to 4th order harmonic mode-locked, however
the pulse heights vary non-periodically, as does the electric field amplitude between
pulses.

As was discussed in Section 2.2.2 the carrier dependence of the α-factor means
that the values should be different in the gain and absorber sections. To investigate
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Figure 3.24.: Numerical bifurcation diagram showing the pump current dependence of the mode-
locked laser output for various α-factor values. Plotted in blue (red) are electric field maxima
|E|max for an up-sweep (down-sweep) in the initial conditions. Parameters: κ = 0.121, all other
parameters as in Table 2.1.

the impact of detuning αg and αq, the pump current dependence is shown in
Fig. 3.24 for various αq values with αg = 2 fixed. The general trend displayed in
these numerical bifurcation diagrams is that the dynamics are most regular if αq is
equal to, or slightly larger than αg. This can be understood by considering how the
α-factors enter Eq. (2.42). The α-factors enter the exponent in Eq. (2.23) in the
form αgG−αqQ. Therefore the contributions compensate each other if αgG ≈ αqQ,
which occurs best when αq � αg [VLA05].

Overall, similar dynamics can be exhibited when amplitude-phase coupling is
included and, at least for low α-factor values, the pump current dependence dis-
plays the same qualitative trends as in the absence of amplitude-phase coupling.
However, amplitude-phase coupling causes the pulses to become chirped, and can
lead to a non-periodic modulation of the pulsed dynamics.
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3. Mode-locked laser dynamics

3.3. Dynamics induced by feedback from a single
external cavity

Adding optical feedback to the mode-locked laser greatly influences the dynam-
ics that can be exhibited. This has previously been demonstrated by the theo-
retical studies presented in [AVR09, OTT12a, OTT14, SIM14]. In [AVR09] the
authors used a finite-difference travelling-wave model for a linear cavity to study
the influence of feedback from a short external cavity (feedback delay times up to
≈ 3T0), whereas in [SIM14] the DDE-model approach is used to study the influ-
ence of long feedback delay times on a laser with a quantum-dot gain medium.
In [OTT12a, OTT14] the same model is used as in this thesis and the dynamics
are investigated in the regimes of short and intermediate feedback delay times.
Also using the DDE-modelling approach, the dynamics arising from coupling to
an external passive cavity, with a roundtrip time lower than that of the laser cav-
ity, were studied in [ARK15a]. In this study the focus was on inducing harmonic
mode-locking via the coupling to the external cavity. We add to the knowledge
provided by these previous studies by presenting an analysis of the dynamics over
a wide range of feedback delay times, and establishing how the dynamics in differ-
ent feedback delay regimes are related. Furthermore, we analyse the bifurcations
of the mode-locked solutions in dependence of the feedback parameters in order to
gain a deeper understanding of the mechanisms leading to various feedback induced
dynamics.

With feedback from one external cavity there are three additional parameters;
the feedback delay time τ = τ1, the feedback strength K = K1 and the feedback
phase C = C1 (Eqs.(2.42)-(2.44) with N = 1). In this section the dynamics arising
in dependence of these feedback parameters will be investigated. We shall consider
the dynamics in three regimes, short (τ ≈ 1), intermediate (τ ≈ 10) and long
(τ ≈ 100) delay times.

3.3.1. Short delay

We are primarily interested in the influence of feedback on the fundamentally mode-
locked solution. Since the mode-locked solution is periodic, the dynamics that can
arise with feedback are strongly dependent on the ratio of the period of the mode-
locked solution and the delay time that is introduced by the feedback. The equation
for the electric field amplitude, in the single feedback cavity case, is

dE
dt

= −γE (t) + γR (t − T ) e−iΔΩT E (t − T )

+γKeiCR (t − T − τ) e−iΔΩ(T +τ)E (t − T − τ) . (3.7)
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3.3. Dynamics induced by feedback from a single external cavity

laser cavity feedback cavity laser cavity feedback cavity

coupling facet coupling facet

Figure 3.25.: Schematic diagrams of the laser cavity coupled to one external feedback cavity, for
external cavity delay times of τ = T0,K (left) and τ = 1

2 T0,K (right), and sketches of the resulting
pulse trains. The blue line represents the electric field and the black line represents the net gain.

If one considers the system with instantaneous feedback, i.e. τ = 0 and C = 0,
then the system is equivalent to that without feedback, but with modified internal
losses κ′ = κ (1 + K)2, i.e.

dE
dt

= −γE (t) + (1 + K) γR (t − T ) e−iΔΩT E (t − T ) . (3.8)

If E0 (t) is a mode-locked solution of Eq. (3.8), with period T0,K ,5 then E0 (t) is also
a solution of Eq. (3.7) for all τ = nT0,K , where n is an integer. This means that for
all feedback delay times that are integer multiples of T0,K , which will be referred
to as resonant feedback delay times, the dynamics are unchanged. For delay times
between these resonant values various dynamics are exhibited. More generally it is
also true that if one considers a solution to Eq. (3.7) with τ between 0 and T0,K ,
and if that solution is periodic, with period T0, then this is also a solution to the
system with the feedback delay time τ + nT0, for integer n [YAN09]. This means
that all periodic solutions that arise for τ ∈ [0, T0,K ], repeat for larger delay times.6

Therefore, to characterise the type of dynamics that can emerge with feedback, we
first study the feedback delay range from zero to T0,K .

τ − K dependence

In this section the influence on the dynamics of the feedback strength and feedback
delay time are investigated. Here we consider the influence of these parameters
separately from phase effects, i.e. for C = 0 and αg = αq = 0 (the influence of
these parameters is discussed later in this section).

5The subscript K is included to indicate that the resonant period is K dependent. From now on
we will refer to the period of the solitary laser (K = 0) as T0,S .

6The stability of the solutions can vary with n. This will be discussed in Section 3.3.4.
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Figure 3.26.: Path continuation: Period of the mode-locked solution (black line) as a function
of the feedback delay time τ , which is given in units of T0,K = 1.013. The background colour
indicates the number of pulses in the laser cavity. The green striped regions indicate various
main and higher order resonance locking regions. Parameters: K = 0.1, all other parameters as
in Table 2.1.

When τ = nT0,K for integer n, the feedback delay time is resonant with the
dynamics, meaning that pulses from the feedback and laser cavities are coincident
at the coupling facet. This is shown schematically on the left of Fig. 3.25 for
τ = T0,K . Synchronisation effects can also occur for non-integer multiples of T0,K .
For example when τ = 1

2T0,K the pulse from the feedback cavity is coupled into the
laser cavity when the main pulse is on the opposite side of the cavity. This induces
a second pulse which is shifted from the main pulse by a time of 1

2T0,K . Feedback
from this second pulse is then synchronised with the main pulse. This scenario
is also depicted in Fig. 3.25. Synchronisation can also occur for other fractional
multiples of T0,K , i.e. when

τ =
q

p
T0,K for p, q ∈ N (3.9)

[OTT12a]. The integer p gives the number of pulses within one T0,K interval, or in
other words the number of pulses in the laser cavity.7 This includes the main pulse
and p − 1 feedback induced pulses. We shall refer to τ values which are fractional
multiples of T0,K as higher order resonances, where the order is given by p.

Synchronisation cannot occur for an arbitrarily large number of pulses in the
laser cavity. The number of feedback induced pulses is restricted by the width of
the pulses and length of the laser cavity. The finite width of the pulses also means

7The exact value of T0,K is dependent on the feedback strength, however we remind the reader
that T0 ≈ T = 1.
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Figure 3.27.: Inside resonances: Time traces and phase space portraits of the feedback induced
dynamics for (a)-(b) τ = 0.25, (c)-(d) τ = 0.35 and (e)-(f) τ = 0.5. The time traces (a),(c) and
(d) show the electric field amplitude |E| (blue), gain G (green), total losses Qtot = Q − ln (κ)
(red) and the net gain G = G − Qtot (black). The phase space portraits (b), (d) and (f) show
the dynamics in the G − |E| plane. Parameters: (a)-(b) K = 0.12, (c)-(f) K = 0.15, all other
parameters as in Table 2.1.

that synchronisation does not only occur exactly at the resonances, but rather
extends over a range of τ values. We will define the locking ranges of the main
and higher order resonances as the τ ranges in which the period of the solutions
changes monotonically with τ , the number of pulses in the laser cavity remains
constant and the solutions remain stable. This is illustrated in Fig. 3.26, where
the period of the mode-locked solutions are plotted as a function of the feedback
delay time for K = 0.1. The number of pulses in the laser cavity is indicated by
the background colour and the striped green lines indicate the locking regions for
various resonances. In this case the solutions are stable for the entire τ range that
is depicted. As the feedback delay time is changed, the system adapts such that the
pulses in the laser cavity are synchronised with the pulses in the feedback cavity.
However if the delay time is tuned too far from one of the resonances the system
cannot adapt sufficiently and the pulses become deformed. The locking range for
each resonance, main and higher order, depends on the order of n and p, and on
the feedback strength. The parameter dependence of the main resonance locking
regions, and the change in the period in these regions, will be discussed in more
detail in Section 3.3.4.
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Examples of the dynamics within the q
p = 1

4 , q
p = 1

3 and q
p = 1

2 locking ranges
are shown in Fig. 3.27. Depicted are time traces of the electric field amplitude, the
gain, the total losses and the net gain, where the total losses and net gain are as
defined previously; Qtot = Q − ln (κ) and G = G − Qtot.8 Also shown are phase
portraits of the dynamics projected on the G − |E| plane. Figure 3.27a-b shows
the dynamics arising for τ in the q

p = 1
4 locking region. In this example there are

four pulses within one T0,K interval (≈ 25ps since T0,K ≈ T ). The largest pulse
is the main pulse that is generated due to the gain and absorber dynamics. The
three satellite pulses are induced by the feedback and since they do not coincide
with positive net gain windows they are sustained by continual rejection of pulses
from the feedback cavity rather than by amplification within the laser cavity. The
amplitude of the satellite pulses decreases within one T0,K interval as each pulse
is the seed for the next. Similar results are seen for τ = 0.35 and τ = 0.5 in
Fig. 3.27c-f, which exhibit dynamics with three and two pulses within one period,
respectively, corresponding to the q

p = 1
3 and q

p = 1
2 locking regions. Examples of

the dynamics outside the resonance locking regions are shown in Fig. 3.28. In these
regions pulses are deformed or not well separated. Figure 3.28a is near the edge of
the zeroth-order main resonance (see Fig. 3.26). For this delay time the pulses from
the feedback cavity are coupled into the laser just after the main pulse has passed
the coupling facet, causing a long trailing edge. This influences the recovery of the
absorber, meaning that the positive net gain window decays more slowly. Although
New’s stability criterion is still fulfilled [NEW74], as shall be discussed further in
Chapter 4, this makes the dynamics less robust against noise perturbations. In
Fig. 3.28b τ is chosen to the left of the first main resonance locking region. In this
case pulses are coupled into the laser cavity just before the main pulse passes the
coupling facet, leading to a higher net gain before the pulse.

The feedback delay time determines the number of pulses within the feedback
cavity, but the type of dynamics that are exhibited by the system also depends
on the feedback strength. The periodic dynamics with additional feedback in-
duced pulses (Fig. 3.27) occur for low feedback strenghs. For slightly higher feed-
back strengths the system can exhibit dynamics with periodically modulated pulse
heights. Examples of such dynamics are shown in Fig. 3.29. Figure 3.29a shows a
time trace of the electric field amplitude for τ = 0.25 and K = 0.2. A close up of
the dynamics is shown in Fig. 3.29b, where the net gain has also been plotted (black
line). Here it can be seen that there are four pulses in the laser cavity (i.e. within
a time interval of ≈ 25ps) and that between these pulses there is a competition
for the gain. Within the time interval that is depicted here the net gain window
is transferred from one pulse to the next, and accordingly the pulse amplitudes
change. Physically the situation in this parameter regime is that the pulses that

8The net gain does not include the feedback contributions.
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Figure 3.28.: Outside resonances: Time traces and phase space portraits of the feedback induced
dynamics for (a)-(b) τ = 0.12 and (c)-(d) τ = 0.85. The time traces (a) and (c) show the electric
field amplitude |E| (blue), gain G (green), total losses Qtot = Q − ln (κ) (red) and the net gain
G = G − Qtot (black). The phase space portraits (b) and (d) show the dynamics in the G − |E|
plane. Parameters: K = 0.1, all other parameters as in Table 2.1.
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Figure 3.29.: Quasi-periodic dynamics: Time traces and phase space portraits of the feedback
induced dynamics for (a)-(c) τ = 0.25 and (d)-(f) τ = 0.35. The time traces (a) and (d) show
the electric field amplitude |E| (blue). In (b) and (e) at shorter time interval is depicted and the
net gain G = G − Qtot (black) is also plotted. The phase space portraits (c) and (f) show the
dynamics in the G − |E| plane. Parameters: K = 0.2, all other parameters as in Table 2.1.

get coupled back into the laser cavity are large enough to significantly influence the
net gain window, but there is not enough energy in the system to sustain all four
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pulses. This leads to competition for the gain between the four pulses in the laser.
The dynamics exhibited for τ = 0.35, with K = 0.2, are shown in Fig. 3.29d-f.
In this case there are three competing pulses in the laser cavity. In both cases,
τ = 0.25 and τ = 0.35, the slow modulation period of the pulse amplitudes is
approximately 45 laser cavity roundtrips. This coincides approximately with the
recovery time of the gain section, 1/γg = 40, indicating that the transfer of energy
between the pulses in the laser cavity is mediated by the relatively slow recovery of
the gain section. This slow modulation period is incommensurable with the much
faster pulse repetition period. Consequently the dynamics are quasi-periodic. This
can be seen by looking at the trajectories of the system in its phase space. Projec-
tions on to the G − |E| plane, for τ = 0.25 and τ = 0.35, are shown in Fig. 3.29c
and Fig. 3.29f, respectively. The projections shown here depict the trajectories for
the time interval shown in subplots (a) and (d) of Fig. 3.29. As the dynamics are
not quite periodic the trajectories fill in more and more of the phase space over
longer time intervals. If the feedback strength is increased further, eventually there
is a transition to harmonic mode-locking for τ values near the higher-order reso-
nances. This occurs because for higher feedback strengths the losses are reduced
and therefore multiple pulses can be sustained.

The type of dynamics arising for delay times that do not correspond to main res-
onances, i.e. periodic dynamics with satellite pulses and quasi-periodic dynamics at
higher feedback strengths, are in agreement with the findings presented in [AVR09].
In this work the dynamics of a Fabry-Perot passively mode-locking laser subject to
optical feedback was numerically investigated using a travelling-wave model. The
destabilisation of periodic mode-locked dynamics via optical feedback has also been
observed experimentally [GRI09, NIK16]. In [NIK16] feedback induced harmonic
mode-locking was also observed.

A more complete picture of the dependence of the dynamics on τ and K is
shown in Fig. 3.30. Depicted are maps of the dynamics in the τ − K parameter
plane which are obtained by numerically integrating the DDE system and colour
coding the regions according to the dynamics that are exhibited. White indicates
fundamental mode-locking with only one pulse in the laser cavity, blues indicate
various orders of harmonic mode-locking and grey indicates continuous wave lasing.
In the purple regions the dynamics have the fundamental periodicity but there are
additional feedback induced pulses (see Fig. 3.27) and in the green regions the
dynamics are quasi-periodic (see Fig. 3.29).9 To obtain the number of pulses we
only look for maxima in the electric field amplitude. This means that no distinction
is made between pulses which are well separated and pulses which have multiple
maxima. Therefore the boundaries of the various dynamical regimes are not the

9The green regions are labelled CD, for complex dynamics, as in later figures the colour code
does not distinguish between quasi-periodic and chaotic dynamics. However, for the parameters
used here all green regions correspond to quasi-periodic dynamics.

56



3.3. Dynamics induced by feedback from a single external cavity

Figure 3.30.: Maps of the dynamics in dependence of τ and K obtained for (a) up- and (b) down-
sweeps in K. The feedback delay time is plotted in units of the period for K = 0, T0,S = 1.014.
The colour code indicates the number of pulses in the laser cavity and the type of dynamics that
are exhibited. White indicates fundamental mode-locking (FML), purples indicate fundamental
mode-locking with feedback induced pulses, greens indicate complex dynamics (in this case
quasi-periodic) with 2-5 pulses in the laser cavity (CD2-CD5) and blues indicate harmonic
mode-locking (HML). The grey regions indicate continuous-wave solutions. Hatching indicates
regions in which different results are obtained in the up- and down-sweeps. Parameters: all
other parameters as in Table 2.1.

same as the resonance locking regions. As shown in Fig. 3.26, the locking ranges
are narrower than the regions exhibiting dynamics with the same number of electric
field maxima. Figure 3.30a is obtained by preforming an up-sweep in K, meaning
that for each K value the history of the solution for the previous K value is used
for the initial conditions. Results obtained for the down-sweep in K are shown in
Fig. 3.30b. The hatching indicates the regions where different results are obtained
for the up- and down-sweeps. The K range depicted here is relatively large and
past a certain value more light is being coupled back into the laser cavity than what
is coupled out. Physically this would require the light in the feedback cavity to be
amplified before it is coupled back into the laser.10 Furthermore, for large feedback
10For single cavity feedback, from Eq. (2.9), the feedback strength is given by

K = (1 − r) (rec/r)1/2 . (3.10)

In this definition of the feedback strength a factor of
√

1 − r is included to account for how
much light is coupled from the laser cavity into the feedback cavity and the term is scaled
by 1/

√
r. The fraction of the out-coupled light that is coupled back into the laser is given

by K
√

r/ (1 − r). This value is limited by the transmittance of the coupling facet
√

1 − r. If
the light is not amplified in the feedback cavity the maximal feedback strength is given for
rec = 1, which, if we assume an end facet reflectivity (or transmittance in the ring cavity case)
of 30%, gives K ≈ 1.3. In experimental studies the feedback strength is typically given in
terms of the percentage of the out-coupled light that is coupled back, therefore to compare
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3. Mode-locked laser dynamics

strengths it is no longer valid to neglect contributions from light that has made
multiple roundtrips in the feedback cavity.11 However, we look at such a large range
to gain an understanding of the mathematical boundaries of the dynamics that can
be exhibited by the system under investigation (Eq. (3.7) and Eqs.(2.43)-(2.44)).
The feedback delay time is plotted in units of the period for K = 0, T0,S = 1.014.
Although the resonant periods T0,K are dependent on K, the variation is small and
the positions of the resonances do not deviate much from the K = 0 case.

For τ ≈ 0 and τ ≈ T0,S there are large regions of fundamental mode-locking.
Within these regions locking to the zeroth and first-order main resonances occurs
(τ = nT0,K for n = 0, 1). At large K values these regions are bounded by continuous
wave lasing. The transition to continuous wave lasing at large K values is similar
to what is observed for large pump currents in the solitary laser case. The electric
field becomes so large that the gain and absorber sections are continually saturated
leading to continuous wave emission. Between the main resonances, at low feedback
strengths, there is locking to the higher-order resonances, i.e. τ = 1

5T0,K , 1
4T0,K , ...

(purple regions in Fig. 3.30). Around each of these higher-order resonances dy-
namics with p pulses are exhibited, where p is the order of the resonance. The
width of the regions with p pulses decreases for increasing p. As can be seen from
Fig. 3.26 the locking regions show the same trend. Furthermore, these regions can
be ordered into a Farey sequence, as was shown in [OTT12a]. At large feedback
strengths, harmonic mode-locking is observed near the higher-order resonances.
The order of the harmonic mode-locking is given by p and the number of harmonic
mode-locked regions of each order is given by p − 1. For example, between τ = 0
and τ = T0,S there are two p = 3 locking regions corresponding to τ = 1

3T0,K

and τ = 2
3T0,K , and hence two regions of 3rd order harmonic mode-locking. Sta-

ble regions of harmonic mode-locking are also found at the main resonances. For
the τ = 1

2T0,K locking region there is a direct transition to 2nd order harmonic
mode-locking from the satellite pulse dynamics (2 pulses). For the locking regions
corresponding to larger p’s the transition is mediated by regions of quasi-periodic
dynamics with the same number of pulses in the laser cavity as the harmonic order.
Also, the onset of harmonic mode-locking occurs at larger K values for larger p’s.
This is because the available net gain has to be distributed over more pulses.

The sequence of dynamics displayed in dependence of the feedback strength in
Fig. 3.30, for the feedback delay time τ = 1

2T0,S , is the same as what is reported

with experiments K should be scaled by
√

r/ (1 − r). It is also important to note that we are
simulating the dynamics in the laser cavity, whereas in experiments the electric field that is
coupled out is observed. Therefore the simulation results will show increased intensities for
larger feedback strengths, whereas experimentally decreased intensities will be observed as less
light is coupled out of the system.

11For example, if K = 0.5 then, assuming an end facet reflectivity of 30%, the feedback strength
after two roundtrips in the feedback cavity would be K2 = 0.1.
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3.3. Dynamics induced by feedback from a single external cavity

Figure 3.31.: Numerical bifurcation diagrams showing the K dependence of the mode-locked laser
output for (a) τ = 0.004 and (b) τ = 0.7. Plotted in blue (red) are electric field maxima |E|max for
an up-sweep (down-sweep) in the initial conditions. Labelled are regions of fundamental mode-
locking (FML), harmonic mode-locking (HML) and continuous wave (CW) lasing. Parameters:
all other parameters as in Table 2.1.

in [ARK15a]. In this work the authors use the DDE model to study the influence
of coupling the laser cavity to a short external cavity. However, in contrast to our
modelling approach for the feedback contribution, in [ARK15a] feedback from the
external cavity is incorporated by including a differential equation for the electric
field in the feedback cavity, which is coupled to the equation for the electric field
in the laser cavity. In doing so, feedback contributions from light that has made
multiple roundtrips in the feedback cavity are included. The qualitative agreement
between our results and those of [ARK15a] indicates that, even if contributions to
the feedback from light that has made multiple roundtrips in the external cavity
are neglected, the qualitative trends observed for high feedback strengths are still
the same.

In the main resonant regions (τ ≈ 0 and τ ≈ T0,S), at large feedback strengths,
there is multistability between the fundamentally mode-locked solution and har-
monically mode-locked solutions (hatched regions in Fig. 3.30). Similar results were
obtained for the pump current dependence of the solitary laser (see Fig. 3.17). This
can be understood by considering that the feedback reduces the non-resonant losses
and hence reduces the lasing threshold and the threshold for the onset of mode-
locked dynamics. There are also regions of multistability between mode-locking
and the continuous wave lasing state.

Within the various dynamical regions depicted in Fig. 3.30 the pulse heights
change with τ and K. This is illustrated in the one-parameter numerical bifurcation
diagrams in Figs. 3.31 and 3.32. Plotted are maxima in the electric field amplitude,
counted over a time span of one hundred cold-cavity roundtrip times, for up- (blue)
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Figure 3.32.: Numerical bifurcation diagrams showing the τ dependence of the mode-locked laser
output for (a) K = 0.1 and (b) K = 0.3. Plotted in blue (red) are electric field maxima |E|max

for an up-sweep (down-sweep) in the initial conditions. The feedback delay time is plotted in
units of the period for K = 0, T0,S = 1.014. Parameters: all other parameters as in Table 2.1.

and down-sweeps (red) in the initial conditions. In Fig. 3.31 the results are show
in dependence of the feedback strength for (a) τ = 0.004 and (b) τ = 0.7. For τ =
0.004 the system is within the locking region of the zeroth-order main resonance.
The pulse heights of the fundamentally and harmonically mode-locked solutions
increase with K, and as already shown in Fig. 3.30 there are regions of multistability
between these solutions. For τ = 0.7 the system is in the locking region of the τ =
2
3T0,K higher-order resonance. Accordingly, for low feedback strengths there are
three maxima with different heights. The quasi-periodic region has maxima of many
different heights. Near K = 0.5 there is a small range of multistability between the
quasi-periodic and 3rd order harmonically mode-locked solutions. Figure 3.32 shows
the τ dependence for (a) K = 0.1 and (b) K = 0.7. The main-resonance locking
regions can be identified in these plots as the regions near τ = 0 and τ = T0,K where
there is only one maximum. Within these regions the pulse heights are largest at
the exact main resonances, τ = 0 and τ = T0,K . Comparing Figs. 3.32a-b it can
be seen that the maximum in the pulse height is shifted slightly closer to τ = 1
for K = 0.7. This is because the period T0,K decreases with K. The reasoning
for this is the same as for the pump current dependence of the period (see Section
3.2.3). The pulse heights decrease as τ is tuned away from the main resonances
because pulses from the feedback cavity are coupled in at the flanks of the pulse
in the laser cavity, rather than at the center. This also causes the pulse to become
wider. Changes in the pulses shape within the main-resonance locking regions will
be discussed further in Section 3.3.4 (see Figs. 3.63 and 3.66).
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Figure 3.33.: Influence of the spectral filter width: Maps of the dynamics in dependence of τ

and K obtained for up-sweeps in K for γ = 30 and γ = 100. The feedback delay time is plotted
in units of the period for K = 0, (a) T0,S = 1.031 and (b) T0,S = 1.009. The colour code indicates
the number of pulses in the laser cavity and the type of dynamics that are exhibited. White
indicates fundamental mode-locking (FML), purples indicate fundamental mode-locking with
feedback induced pulses, greens indicate complex dynamics (in this case quasiperiodic) with
2-7 pulses in the laser cavity (CD2-CD6) and blues indicate harmonic mode-locking (HML).
The grey regions indicate continuous-wave solutions. Parameters: all other parameters as in
Table 2.1.

Influence of the pulse width

As mentioned briefly near the beginning of this section, the number of pulses that
can exist in the laser cavity, and hence number of feedback induced pulses which
can be created, is limited by the pulse widths. This is illustrated in Fig. 3.33,
where τ -K maps of the dynamics are shown for filter widths (a) γ = 30 and (b)
γ = 100 (see Fig. 3.15 for the influence of spectral filter width on the pulse width).
With decreased pulse widths (Fig. 3.33b) the maximum order of harmonic mode-
locking is increased (blue regions), as well as the maximum number of feedback
induced satellite pulses (purple regions), and the widths of the multi-pulse regions
are decreased. Otherwise, all features of the map are qualitatively similar to the
γ = 66.5 case shown in Fig. 3.30. For very wide pulses (Fig. 3.33a) parameter
regions exhibiting quasi-periodic dynamics are greatly reduced.

The asymmetry of the mode-locked pulses also has an influence on the feedback
parameter dependence. In the solitary laser case the pulses have a longer trailing
edge compared with the leading edge and the net gain decreases more slowly than
it rises during the fast stage (see Fig. 3.14). As a consequence of this, the system
behaves differently if pulses are coupled into the laser cavity before or after the
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Figure 3.34.: Path continuation: (a) Hopf bifurcations of the maximum-gain continuous-wave
solution in the τ − K parameter space. In black is the H1 Hopf curve. The H2, H3 and H4

Hopf curves are depicted in light blue, purple and pink, respectively. (b) Bifurcations of the
fundamental mode-locked solution. Blue lines indicate torus bifurcations and green lines are
saddle-node bifurcations and the red line is a period-halving bifurcation. The black line is
the fundamental Hopf bifurcation curve of the continuous wave solution (H1), with the solid
segment being supercritical and the dashed segments subcritical. The thin grey lines show the
remaining Hopf bifurcations of the continuous-wave solution (compare with (a)). Shaded in
green is the stability region of the fundamental mode-locked solution. In the grey regions the
continuous-wave solution is stable. Parameters: all other parameters as in Table 2.1.

main pulse has passed the coupling facet, leading to asymmetries in the dynamics
for delay times that are tuned from the resonances. This can be clearly seen in
Figs. 3.30 and 3.33, which all show a large region of two pulse dynamics on the
right border of the first main resonance region, but not on the left. When the delay
time is larger than the resonant value, then the pulses from the feedback cavity are
coupled in after the main pulse. As the net gain is high on this side of the pulse, the
fed-back pulses experience lower losses, leading to two pulse dynamics at smaller
positives detuning from the main resonance compared with negative detuning.

Path continuation

By numerically integrating the DDE system only the stable solutions can be found.
However, a deeper understanding of the dynamics can be gained through knowl-
edge of the underlying bifurcation structure. As with the solitary laser, the mode-

62



3.3. Dynamics induced by feedback from a single external cavity

locked solutions that arise with feedback bifurcate from the continuous-wave so-
lution which has the maximum gain (see Section 3.2.1). In Fig. 3.34a Hopf bi-
furcations of the continuous-wave solution are depicted in the τ − K parameter
space (here we again use our standard value for the spectral filter width, γ = 66.5).
These bifurcation curves were obtained using DDE-BIFTOOL [ENG01]. The H1
Hopf bifurcation which gives rise to the periodic solution with the fundamental
frequency of the laser cavity Ωf = 2π/T , i.e. the solution out of which the fun-
damentally mode-locked solution evolves, is plotted in black. The H2, H3 and H4
Hopf curves are plotted in light blue, purple and pink, respectively. In the grey
region the continuous-wave solution is stable. The τ range that is depicted includes
negative delay times. The negative τ values are unphysical, however mathemati-
cally nothing significantly changes here since the total delay time in the feedback
term, T + τ , is still positive (Eq. (3.7)). The τ dependence of the Hopf curves is
related to their frequency. At τ values that are integer multiples of 2π/Ωn there
are peaks in the K dependence of the Hn Hopf bifurcations, where Ωn = nΩf for
n = 1, 2, 3, 4. In the H4 case, the curves form closed ellipses at integer multiples of
2π/Ω4.

In Fig. 3.34b the bifurcations of the fundamentally mode-locked solution, which is
generated in the H1 Hopf bifurcation, are shown (these are shown again in Fig. 3.35
with labels). Torus bifurcations are depicted in blue, saddle-node bifurcations in
green and period-halving in red. The regions of stable fundamental mode-locking
are indicated by the green shading. The positions of the Hopf bifurcations are
indicated by the grey lines and the criticality of the H1 curve is indicated by
the dashed (subcritical) and solid (supercritical) segments. The bifurcations of
the fundamental mode-locked solution extend into negative K regions. Physically
negative feedback strengths mean that the fed-back light has a phase shift of π,
i.e. −K is equivalent to Keiπ. The box near τ = 0.5, K = −0.2 marks a region
where the bifurcations of the fundamental solution could not be continued using
DDE-BIFTOOL.

In order to understand how the periodic solutions evolve out of the H1 bifurcation
we consider line scans along K at various positions in the bifurcation diagram. The
positions of the line scans are indicated by the dotted black lines (1)-(4) in Fig. 3.35
and the results are shown in Fig. 3.36. Plotted in Fig. 3.36 is the period of the
solutions. The stability is indicated by the solid (stable) and dotted (unstable)
segments. In line scan (1) the periodic solution is born in a subcritical section
of the H1 curve; the start of the line scan is indicated by the point labelled H1
in Fig. 3.36 (1). As the solution is continued in K the period increases and the
system goes through a series of three torus bifurcations (T1, T2 and T1). These
torus bifurcations emanate from the Hopf-Hopf points where the H1 Hopf branch
crosses the H2, H3 and H4 branches (see Figs. 3.34 and 3.35). In each of these
torus bifurcations one pair of characteristic exponents enter the unit circle, i.e.
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Figure 3.35.: Path continuation: Bifurcations of the fundamental mode-locked solution. Blue
lines indicate torus bifurcations (T ) and green lines are saddle-node bifurcations (SN) and the
red line is a period-halving bifurcation (P H). The black line is the fundamental Hopf bifurcation
curve of the continuous wave solution (H1), with the solid segment being supercritical and the
dashed segments subcritical. The thin grey lines show the remaining Hopf bifurcations of the
continuous-wave solution (compare with Fig. 3.34 (a)). Shaded in green is the stability region
of the fundamental mode-locked solution. In the grey regions the continuous-wave solution is
stable. The dotted black lines numbered (1)-(6) indicate the positions of the line scans that are
shown in Figs. 3.36 and 3.37. Parameters: all other parameters as in Table 2.1.

the number of unstable directions decreases. The solution then becomes stable
after a saddle-node bifurcation (SN1). After this fold in the line scan, the solution
continues to be stable until the second saddle-node bifurcation (SN2) near K =
−0.4. How the solution continues after the SN2 bifurcation is not depicted in
Fig. 3.36 (1), as the remaining section of this solution branch remains unstable after
this point. In the section of the line scan between the two saddle-node bifurcations
the solution for the electric amplitude has the typical mode-locked pulse profile
(see Fig. 3.14) and within this range the period decreases with increasing K. Line
scan (2) (Fig. 3.36 (2)) starts in a supercritical part of H1, however the solution
is initially unstable. The additional unstable directions are related to H3. Line
scan (2) becomes stable after two saddle-node bifurcations (SN3) and then loses
stability again in the third saddle-node bifurcation (SN4). At the τ position of
line scan (3) the H1 bifurcation is also supercritical, but there are four additional
unstable multipliers which are related to H2 and H3. This branch also goes through
a series of three saddle-node bifurcations, however the solutions remain unstable
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Figure 3.36.: Path continuation: Line scans along K corresponding to the vertical dotted lines
(1)-(4) plotted in Fig. 3.35. Plotted is the period of the solutions. Solid lines indicate stable
solutions and dotted lines indicate unstable solutions. The bifurcations that occur along the line
scans are labelled in accordance with the labelling in Fig. 3.35. Parameters: (1) τ = −0.008,
(2) τ = 0.285, (3) τ = 0.390, (4) τ = 0.737, all other parameters as in Table 2.1.

(Fig. 3.36 (3)). The line scan terminates in the lower part of the period halving
bifurcation shown in Fig. 3.35 (and Figs. 3.34b). Finally, line scan (4) starts in the
second subcritical region of H1. The solution branch first becomes stable after the
saddle-node bifurcation SN6 (Fig. 3.36 (4)). Then there is an unstable section of
the line which is bordered by the torus bifurcation branch T4. After the second T4
bifurcation the solution is stable until the saddle-node bifurcation SN7.

In Fig. 3.37 line scans in τ are shown. These are started from points on line
(1) and their positions in the bifurcation diagram are indicated by the horizontal
dotted lines (5)-(6) in Fig. 3.35. Line scan (5) starts from a stable part of line
(1). Near τ = 0.2 the solutions becomes unstable after the torus bifurcation T5.
The unstable solution continues past the period-halving bifurcations depicted in
Fig. 3.35, as these are not bifurcations of this section of the solution branch. Near
τ = 0.55 the branch then turns around in a saddle-node bifurcation (SN8) and
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Figure 3.37.: Path continuation: Line scans along τ corresponding to the horizontal dotted lines
(5)-(6) plotted in Fig. 3.35. Plotted is the period of the solutions. Solid lines indicate stable
solutions and dotted lines indicate unstable solutions. The bifurcations that occur along the
line scans are labelled in accordance with the labelling in Fig. 3.35. Parameters: (5) K = 0.112,
(6) K = 0.054, all other parameters as in Table 2.1.

then terminates on the right side of the period-halving curve. Line scan (6) is at
a slightly low K level. This branch of solutions does not undergo any bifurcations
in the depicted τ range (see Fig. 3.37 (6)), i.e. the SN3 and PH curves that line
(6) cuts across in Fig. 3.35 are not bifurcations of these solutions. We have shown
line scans that terminate on the lower (line scan (3)) and right (line scan (5)) parts
of the period-halving curve. If a solution were continued upward in K from line
(6), near τ = 0.5, then this solution would remain stable until it terminates in
the upper part of the PH curve. Likewise, solutions continued from line (4), for
K ≈ 0.1 − 0.15, would remain stable until they terminate in the left part of the
PH curve.

We now compare the path continuation results with the maps of the dynamics
obtained by direct numerical integration. To aid with this comparison the bifurca-
tion curves have been plotted with the numerically obtained maps in Figs. 3.38 and
3.39. Looking first at Fig. 3.38a, within the main resonance regions (white), the
upper boundaries of fundamental mode-locking are given by the saddle-node bifur-
cations (labelled SN1 and SN6 in Fig. 3.35). The down-sweep results (Fig. 3.38b)
show that the continuous wave stability boundaries are given by the Hopf curves.12

There are no features in the numerical maps related to the three torus bifurcation

12At the boundaries with harmonic mode-locking there is a slight discrepancy between the Hopf
curves and the numerically obtained boundaries for stable continuous wave lasing. This could
be due the inaccuracies in the path continuation, since the accuracy of the stability calculations
depends on the delay times and for the higher-order Hopf curves the time scale separation
between the delay times and the frequencies of the Hopf bifurcations is greater.
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Figure 3.38.: Comparison of numerics and path continuation: Maps of the dynamics in
dependence of τ and K obtained for (a) up- and (b) down-sweeps in K and the bifurcations of the
continuous wave and fundamental mode-locked solutions. The feedback delay time is plotted in
units of the period for K = 0, T0,S = 1.014. Blue lines indicate torus bifurcations and green lines
are saddle-node bifurcations and the red line is a period-halving bifurcation. The black line is the
fundamental Hopf bifurcation curve of the continuous wave solution. The thin grey lines show
the remaining Hopf bifurcations of the continuous-wave solution (compare with Fig. 3.34 (a)).
The colour code indicates the number of pulses in the laser cavity and the type of dynamics that
are exhibited. White indicates fundamental mode-locking (FML), purples indicate fundamental
mode-locking with feedback induced pulses, greens indicate complex dynamics (in this case
quasi-periodic) with 2-5 pulses in the laser cavity (CD2-CD5) and blues indicate harmonic
mode-locking (HML). The grey regions indicate continuous-wave solutions. Parameters: all
other parameters as in Table 2.1.

branches in the main resonance regions. This is because these are bifurcations of un-
stable solutions (see Fig. 3.36 (1)). For comparisons in the low K regions a smaller
τ -K range is plotted in Fig. 3.39. Here it can be seen that the boundaries between
the fundamental mode-locked regions (both with (purple) and without (white)
additional feedback induced pulses) are given by torus and saddle-node bifurca-
tions. The torus bifurcations add an extra incommensurable frequency, leading to
the quasi-periodic dynamics. In the τ = 1

2T0,K resonance region, the boundary
between the two pulse dynamics (purple) and 2nd order harmonic mode-locking
(blue) is given by the period-halving bifurcation. In this region, starting from low
feedback strengths, the amplitude of the second feedback induced pulse increases
with K, until it has the same amplitude as the main pulse. At this point the
solution is identical to the 2nd order harmonic mode-locked solution and the funda-
mental mode-locked solution ceases to exist. In the low K regions (K < 0.1), the
results of the path continuation show that the stable solutions do not undergo any
bifurcations (Fig. 3.37 (6)). This means that the profile of the solutions changes
continuously between the higher-order resonance regions. Based on these results
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Figure 3.39.: Comparison of numerics and path continuation: Maps of the dynamics in
dependence of τ and K obtained for (a) up- and (b) down-sweeps in K and the bifurcations of the
continuous wave and fundamental mode-locked solutions. The feedback delay time is plotted in
units of the period for K = 0, T0,S = 1.014. Blue lines indicate torus bifurcations and green lines
are saddle-node bifurcations and the red line is a period-halving bifurcation. The black line is the
fundamental Hopf bifurcation curve of the continuous wave solution. The thin grey lines show
the remaining Hopf bifurcations of the continuous-wave solution (compare with Fig. 3.34 (a)).
The colour code indicates the number of pulses in the laser cavity and the type of dynamics that
are exhibited. White indicates fundamental mode-locking (FML), purples indicate fundamental
mode-locking with feedback induced pulses, greens indicate complex dynamics (in this case
quasi-periodic) with 2-5 pulses in the laser cavity (CD2-CD5) and blues indicate harmonic
mode-locking (HML) Parameters: all other parameters as in Table 2.1.

we will classify the feedback strength into three regimes; low, intermediate and
high. Low feedback strengths are values for which the fed-back pulses are not large
enough to cause gain competition, i.e. values up to the onset of quasi-periodic
dynamics caused by the torus bifurcations. For the laser parameters used here
this regime corresponds to K < 0.15. The intermediate feedback strength regime
we shall classify up to the onset of harmonic mode-locking in the main resonances,
which in this case is up to approximately K = 0.6 and also coincides approximately
with the upper boundary of the torus bifurcations which lead to the quasi-periodic
dynamics (T4 and T5). High feedback strengths are K > 0.6.

Path continuation has only been carried out for the continuous wave and fun-
damentally mode-locked solutions. This is because increased calculation times are
required for the stability analysis of the harmonically mode-locked solutions due
to the larger time-scale separation between the period of these solutions and the
feedback delay time. However, the bifurcations of the harmonically mode-locked
solutions would need to be continued in order to determine how the quasi-periodic
regions (green regions) are related to the harmonically mode-locked solutions, i.e.
whether or not the upper boundaries of the quasi-periodic regions (green regions)
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3.3. Dynamics induced by feedback from a single external cavity

Figure 3.40.: Maps of the dynamics in dependence of C and K obtained for (a) up- and (b)
down-sweeps in K. The colour code indicates the number of pulses in the laser cavity and the
type of dynamics that are exhibited. White indicates fundamental mode-locking (FML), pur-
ples indicate fundamental mode-locking with feedback induced pulses, greens indicate complex
dynamics (in this case quasiperiodic) with 2-5 pulses in the laser cavity (CD2-CD5) and blues
indicate harmonic mode-locking (HML). The grey regions indicate continuous-wave solutions.
Hatching indicates regions in which different results are obtained in the up- and down-sweeps.
Parameters: τ = 0, all other parameters as in Table 2.1.

are given by torus bifurcations of the harmonically mode-locked solutions emanat-
ing form the Hopf-Hopf points from which the torus bifurcations of the fundamen-
tally mode-locked solution start.

Feedback phase dependence

In this section the dependence of the solutions on the feedback phase C is investi-
gated in the short feedback delay regime.

In Fig. 3.40 maps of the dynamics in the C-K parameter plane are shown for
zeroth-order resonant feedback, τ = 0. These maps are obtained in a similar
fashion to Fig. 3.30, i.e. by performing (a) up- and (b) down-sweeps in K. Due
to the 2π phase-shift symmetry of Eq. (3.7), solutions repeat when C is varied
by multiples of 2π. At low feedback strengths there is no qualitative dependence
on C. For K > 0.5 there are regions of multistability between fundamental and
harmonic mode-locking near C = 0 and C = 2π. Note that not all regions of
multistability have been captured in these sweeps. For instance the parabolic lower
bound for the onset of harmonic mode-locking actually continues past K = 0.2.
In accordance with the results shown in the τ -K plane (eg. Fig. 3.38), at high
feedback strengths continuous wave lasing restabilises. Near the center of the C-K
maps there is also a region of continuous wave lasing. Previously the authors of
[AVR09] and [OTT12a, OTT14] have discussed that there are parallels between
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3. Mode-locked laser dynamics

Figure 3.41.: Numerical bifurcation diagrams showing the C dependence of the mode-locked laser
output for (a) K = 0.4 and (b) K = 0.7. Plotted in blue (red) are electric field maxima |E|max

for an up-sweep (down-sweep) in the initial conditions. The horizontal dashed line indicates the
mode-locked pulse amplitude in the solitary laser case. Parameters: τ = 0, all other parameters
as in Table 2.1.

a mode-locked laser with resonant feedback and a single-mode laser subject to
feedback. The re-stabilisation of continuous wave lasing for intermediate to high
feedback strengths near C = π is another example of such a parallel. In the
single-mode laser case, for short feedback delay times, a similar region is found,
however in this case it is the off state that restabilises [ROT07]. For single-mode
lasers, including devices with quantum dot gain materials, it is also found that for
low feedback strengths there is no qualitative dependence on the feedback phase
[LEV95, TAR95a, TAR98a, ROT07, OTT10].

To understand why there is a region of stable continuous wave lasing for a range of
intermediate to high K values it is helpful to consider the influence of the feedback
phase on the effective non-resonant losses. For instantaneous feedback (τ = 0)
pulses are coupled back directly and interfere with themselves. If C = n2π, for
integer n, they interfere constructively and the influence of the feedback term is
essentially a reduction in the non-resonant losses, i.e. Eq. (3.7) is reduced to
Eq. (3.8) with internal losses given by κ (1 + K)2. This reduction in the losses
leads to an increase in the pulse amplitude compared with the solitary laser. This
is illustrated in Fig. 3.41, where the electric field maxima are plotted for up- and
down-sweeps in C. For C = 0 and C = 2π there are maxima in the pulse amplitude
and the pulse amplitude is increased compared with the solitary laser case (dashed
grey line). As C is increased from zero, pulses are coupled into the laser cavity
with a phase shift, leading to partial destructive interference and a decrease in the
pulse amplitude. For C = π all the light is coupled back destructively. In this case
Eq. (3.7) can also be reduced to Eq. (3.8), however with the internal losses now given

70
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Figure 3.42.: Time traces of the feedback induced dynamics for C = π with feedback strengths
(a)-(b) K = 0.2. (c)-(d) K = 0.4 and (e)-(f) K = 1.8. The time traces (a), (c) and (e) show the
electric field amplitude |E| (blue), gain G (green), total losses Qtot = Q − ln

(
κ (1 − K)2)

(red)
and the net gain G = G − Qtot (black). The time traces (b), (d) and (f) show the real (purple)
and imaginary (orange) parts of the complex electric field amplitude E . Parameters: τ = 0, all
other parameters as in Table 2.1.

by κ (1 − K)2, since Keiπ = −K. If K is small the increased internal losses just
lead to a reduction in the pulse height, as is the case in Fig. 3.41a. However, above
a critical value, Kcrit, the losses are too high for mode-locking to occur. Effectively
the threshold current for the onset of mode-locking is increased and if this threshold
is pushed passed our operation current, Jg = 3, mode-locking ceases and continuous
wave lasing becomes stable. From the effective losses, κ (1 − K)2, it can be seen
that if the feedback strength is increased past K = 1 the internal losses are again
reduced, and at K = 2 − Kcrit mode-locking restarts. Examples of time traces for
C = π are shown for various feedback strengths in Fig. 3.42. In (a), (c) and (d) of
Fig. 3.42 the electric field amplitude (blue), the gain (green), the total losses (red)
and the net gain (black) are depicted. Here the term for the total losses is modified
to include the influence of the feedback strength, Qtot = Q − ln

(
κ (1 − K)2

)
. In

(b), (d) and (f) of Fig. 3.42 the real (purple) and imaginary (orange) parts of the
complex electric amplitude E are shown. Comparing Fig. 3.42a and Fig. 3.42c it
can be seen that as K is increased towards Kcrit (Kcrit ≈ 0.5) the solutions develop
a leading edge instability [NEW74], i.e. the net gain is positive before the pulse
arrives. This is because small pulses cannot saturate the gain and absorber sections
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3. Mode-locked laser dynamics

Figure 3.43.: Path continuation: (a) Hopf bifurcations of the continuous-wave solution in the C-
K parameter space. In black is the H1 Hopf curve. The H2, H3 and H4 Hopf curves are depicted
in light blue, purple and pink, respectively. (b) Bifurcations of the fundamental mode-locked
solution. Blue lines indicate torus bifurcations and green lines are saddle-node bifurcations and
the red line is a period-halving bifurcation. The black line is the fundamental Hopf bifurcation
curve of the continuous wave solution (H1), with the solid segment being supercritical and the
dashed segments subcritical. The thin grey lines show the remaining Hopf bifurcations of the
continuous-wave solution (compare with (a)). Shaded in green is the stability region of the
fundamental mode-locked solution. Shown in (c) is a close-up of the region enclosed in the black
rectangle in (b). In the grey regions the continuous-wave solution is stable. Parameters: τ = 0,
all other parameters as in Table 2.1.

as fast. For the feedback strengths used in Fig. 3.42a and Fig. 3.42e the effective
internal losses are the same (κ (1 − K)2 = κ · 0.82 for K = 0.2 and K = 1.8), and
hence the pulse, gain, and loss profiles are identical. However for K = 1.8 the cavity
modes are shifted by a frequency of νrep/2, where νrep = 1/T0 is the repetition rate
of the mode-locked solution. This can be seen in Fig. 3.42f as Re[E ] and Im[E ] have
twice the period of the amplitude (i.e. 2T0) due to the added rotation with respect
to the optical reference frequency Ω0.

Path continuation

In Fig. 3.43 the results of path continuation in the C-K plane are presented. Fig-
ure 3.43a shows Hopf bifurcations of the maximum-gain continuous-wave solution,
where the H1 bifurcation is again plotted in black. The bifurcations show the ex-
pected symmetry, i.e. that the bifurcations in the negative K half-plane are the
same as those in the positive half-plane with a phase shift of π. In Fig. 3.43b
the bifurcations of the fundamental mode-locked solution are shown, as well as
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Figure 3.44.: Comparison of numerics and path continuation: Maps of the dynamics in
dependence of C and K obtained for (a) up- and (b) down-sweeps in K and the bifurcations of the
continuous wave and fundamental mode-locked solutions. Blue lines indicate torus bifurcations
and green lines are saddle-node bifurcations. The black line is the fundamental Hopf bifurcation
curve of the continuous wave solution. The thin grey lines show the remaining Hopf bifurcations
of the continuous-wave solution (compare with Fig. 3.34 (a)). The colour code indicates the
number of pulses in the laser cavity and the type of dynamics that are exhibited. White indicates
fundamental mode-locking (FML), purples indicate fundamental mode-locking with feedback
induced pulses, greens indicate complex dynamics (in this case quasiperiodic) with 2-5 pulses in
the laser cavity (CD2-CD5) and blues indicate harmonic mode-locking (HML). The grey regions
indicate continuous-wave solutions. Parameters: τ = 0, all other parameters as in Table 2.1.

the criticality of the H1 curves (here we focus only on the positive K half-plane
due the symmetry of the system). The green shading indicates the regions where
the fundamentally mode-locked solution is stable. Solutions that are generated
on the subcritical H1 branch (dashed black line) are initially unstable. Similar
to the case depicted in Fig. 3.36 (1), as the solution branch is continued in K it
goes through three torus bifurcations and then becomes stable after a saddle-node
bifurcation (the second two torus bifurcations and the saddle-node bifurcation are
very close together, see Fig. 3.43c). Depending on the value of C the stable solution
branch either continues to exist as it is continued into the negative K half-plane,
where it then goes through the same sequence of bifurcations and terminates on
the subcritical H1 curve that must exist in the negative K half-plane, or if C is
sufficiently close to π the solution branch terminates in the supercritical H1 curve
(solid black line). Within the area enclosed by the supercritical H1 curve no fun-
damental mode-locked solution exists. Comparing the path continuation results
with the numerically obtained maps (see Fig. 3.44) shows that this is the area
where continuous wave lasing was found numerically. The bounds for fundamental
mode-locking that were obtained by direct numerical simulation are given by the
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3. Mode-locked laser dynamics

Figure 3.45.: Maps of the dynamics in dependence of C and K obtained for (a) up- and (b) down-
sweeps in K for third order main resonant feedback. The colour code indicates the number
of pulses in the laser cavity and the type of dynamics that are exhibited. White indicates
fundamental mode-locking (FML), purples indicate fundamental mode-locking with feedback
induced pulses, greens indicate complex dynamics (quasi-periodic and chaotic) with 2-5 pulses in
the laser cavity (CD2-CD5), blues indicate harmonic mode-locking (HML) and black indicates
non-periodic (NP) dynamics that do not fall into the previous categories. The grey regions
indicate continuous-wave solutions. Hatching indicates regions in which different results are
obtained in the up- and down-sweeps. Parameters: τ = 3T0,S , all other parameters as in
Table 2.1.

supercritical H1 bifurcation and the saddle-node bifurcation of the fundamentally
mode-locked solution (see Fig. 3.44a).

Feedback phase dependence for τ = 3T0,S

The authors of [AVR09] have numerically studied the feedback phase dependence
of a Fabry-Perot passively mode-locked laser with a main-resonant feedback de-
lay time of τ = 3T0,S . For C = π13 they found a feedback strength dependence
that they likened to coherence collapse in single-mode lasers subject to feedback
[LEN85]. For low feedback strengths they found mode-locked dynamics with peri-
odically modulated pulse heights, then as the feedback strength was increased the
pulse shapes became increasingly irregular, until after a critical feedback strength,
fundamental mode-locking was recovered. Similar results are exhibited by the DDE
model. Here we elaborate on the findings presented in [OTT12a, OTT14] for the
DDE model with τ = 3T0,S . Maps of the dynamics in the C-K plane, for up-
and down-sweeps in K, are shown in Fig. 3.45. The region of continuous wave

13In the model used in [AVR09] a transmittance phase of π/2 is included for the facet of the
laser that couples to the external cavity. Therefore an external mirror phase shift of zero is
equivalent to C = π for the DDE system.
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Figure 3.46.: Time traces of the electric field amplitude for C = π and τ = 3T0,S with (a) K = 0.15,
(b) K = 0.18, (c) K = 0.3. Parameters: all other parameters as in Table 2.1.

lasing near C = π is no longer present for this feedback delay time. Instead, at
lower K values, there is a region of quasi-periodic and chaotic dynamics (green
and black regions). The regions plotted in black exhibit non-periodic (NP in the
colour code) dynamics that do not fall into any of the other categories. Examples
of the dynamics in this parameter regime are shown in Fig. 3.46. First, at the
edge of the low feedback strength regime, there are mode-locked dynamics with a
modulated pulse height (shown in Fig. 3.46a). The modulation frequency is similar
to the Q-switching frequency in the solitary laser case (compare with Fig. 3.18a),
we therefore speculate that these dynamics arise out of the T4 torus bifurcation
that is also seen for low currents in the solitary laser case (see Fig. 3.10). Then,
as the feedback strength is increased the pulses become deformed (Fig. 3.46b)
and eventually the dynamics are chaotic (Fig. 3.46c). Below and above this tear-
drop shaped region in Fig. 3.45, fundamental mode-locking is exhibited. At high
feedback strengths there are again regions of multistability between fundamental
mode-locking, harmonic mode-locking and continuous wave lasing. Compared with
the τ = 0 case (Fig. 3.40) regions of harmonic mode-locking are wider.

The disappearance of the continuous wave region near C = π in Fig. 3.45, and
the increased width of the regions of harmonic mode-locking, can be attributed
to the fact that τ is non-zero. In the τ = 0 case the period of the mode-locked
solutions, and hence the frequency of the lasing modes, vary with the feedback
phase. An example of the phase dependence of T0 is shown in Fig. 3.47 for K = 0.4.
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Figure 3.47.: (a) Period of the fundamentally mode-locked solution as a function of C for zeroth-
order main resonant feedback and K = 0.4. (b) Frequency of the of the central lasing mode with
respect to the reference frequency Ω0. Parameters: τ = 0, all other parameters as in Table 2.1.

In Fig. 3.47b the frequency of the lasing mode which is closest to the center of
the spectral filter is shown (given with respect to the reference frequency Ω0).
Despite this change in the period of the solutions the pulses that are coupled back
still overlap perfectly with the main pulses and interfere destructively because the
feedback delay time is zero. If the delay time is non-zero, then the phase induced
changes in the frequency of the lasing modes reduces the destructive interference,
since due to the shift of the modes a phase difference of ωτ accumulates between
the light in the laser and feedback cavities, and this phase shift can compensate
for the phase feedback. Due to this reduction in the destructive interference, the
mode-locked solutions can remain stable over larger C ranges.

Feedback phase dependence for τ = 1
2T0,S

When the feedback delay time is shifted from the main resonances the phase de-
pendence is qualitatively very similar. An example of the dynamics in the C-K
plane is displayed in Fig. 3.48 for τ = 1

2T0,S . For low feedback strengths the system
exhibits fundamental mode-locking with one satellite pulse, since p = 2. As the
feedback phase is increased from zero the electric field intensity varies only slightly,
but a phase difference develops between the main pulse and the satellite pulse. For
C = π the phase difference is π. In this case the intensity profile is identical to that
for C = 0 because it is the satellite pulse that gets coupled with the main pulse
after one round trip in the feedback cavity, and the additional feedback phase shift
of π results in constructive interference. Due to this the features in Fig. 3.48 have
a π periodicity in C. As the feedback strength is increased there is a transition

76



3.3. Dynamics induced by feedback from a single external cavity

Figure 3.48.: Maps of the dynamics in dependence of C and K obtained for (a) up- and (b) down-
sweeps in K for p = 2 higher order resonant feedback. The colour code indicates the number
of pulses in the laser cavity and the type of dynamics that are exhibited. White indicates
fundamental mode-locking (FML), purples indicate fundamental mode-locking with feedback
induced pulses, greens indicate complex dynamics (quasi-periodic and chaotic) with 2-5 pulses in
the laser cavity (CD2-CD5), blues indicate harmonic mode-locking (HML) and black indicates
non-periodic (NP) dynamics that do not fall into the previous categories. The grey regions
indicate continuous-wave solutions. Hatching indicates regions in which different results are
obtained in the up- and down-sweeps. Parameters: τ = 1

2 T0,S , all other parameters as in
Table 2.1.

to 2nd harmonic mode-locking, except for C ranges near C = π/2 and C = 3π/2
where the dynamics become quasi-periodic. For C = π/2 and C = 3π/2 the pulses
interfere destructively, thereby increasing the effective non-resonant losses, which
leads to the gain being insufficient to sustain harmonic mode-locking. For other
feedback delay times the dynamics show the similar trends.

Influence of amplitude-phase coupling

In this section the feedback induced dynamics in the presence of amplitude-phase
coupling will be studied. The results for the solitary laser showed that amplitude-
phase coupling leads to more complex dynamics and smaller parameter ranges
in which clean mode-locking is exhibited (see Section 3.2.3). This becomes more
pronounced when αg and αq, or the difference between these values, are large. For
this section we choose one set of representative values, αg = 2 and αq = 1.5, for
which the solitary laser still exhibits fundamental mode-locking at our standard
pump current (Jg = 3).

Maps of the dynamics in the τ -K plane are shown in Fig. 3.49 for (a) up- and
(b) down-sweeps in K. The overall structure of these maps is the same as in
the zero α-factor case shown in Fig. 3.30. The most obvious differences are that
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Figure 3.49.: Influence of amplitude-phase coupling: Maps of the dynamics in dependence of
τ and K obtained for (a) up- and (b) down-sweeps in K with αg = 2 and αq = 1.5. The feedback
delay time is plotted in units of the period for K = 0, T0,S = 1.0102. The colour code indicates
the number of pulses in the laser cavity and the type of dynamics that are exhibited. White
indicates fundamental mode-locking (FML), purples indicate fundamental mode-locking with
feedback induced pulses, greens indicate complex dynamics (quasi-periodic and chaotic) with 2-
5 pulses in the laser cavity (CD2-CD5), blues indicate harmonic mode-locking (HML) and black
indicates non-periodic (NP) dynamics that do not fall into the previous categories. The grey
regions indicate continuous-wave solutions. Hatching indicates regions in which different results
are obtained in the up- and down-sweeps. Parameters: all other parameters as in Table 2.1.

the boundaries between the various dynamical regimes are very distorted, quasi-
periodic and chaotic dynamics are found in the first main resonance region and
there are larger regions of bistability between solutions obtained in the up- and
down-sweeps in K. This increased complexity of the dynamics is due to the carrier
induced shift of the lasing modes (see Fig. 3.50) and the increased phase sensitivity
in the presence of amplitude-phase coupling. The influence of the carrier induced
shift of the lasing modes can be understood as follows. The detuning between
the lasing modes and the reference rotating frame causes a phase difference to
accumulate between the pulses in the laser and feedback cavities. This occurs
because the light in the laser cavity continues to rotate, while the light in the
feedback cavity is coupled back unchanged after time τ . The accumulated phase
difference is given by Δφ = ωτ , where ω is the frequency offset of the central mode
from the reference frequency Ω0. This means that although the feedback phase
was set to zero for the calculation of the results presented in Fig. 3.49, the phase
difference is non-zero and, more importantly, it is τ and K dependent.14 Therefore,
in Fig. 3.49 the structure is influenced by phase effects as well as K and τ , whereas
in Fig. 3.30 purely the K and τ dependence of the dynamics are shown. In order

14The K dependence arises implicitly via the K dependence of ω.
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Figure 3.50.: Optical spectrum |SE | of the mode-locked laser output for αg = 2 and αq = 1.5.
Parameters: all other parameters as in Table 2.1.
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Figure 3.51.: Influence of amplitude-phase coupling: Maps of the dynamics in dependence
of (a) C and K, and (b) τ and K, with αg = 2 and αq = 1.5. The results are obtained by
performing up-sweeps in K. The feedback delay time is plotted in units of the period for K = 0,
T0,S = 1.0102. The colour code indicates the number of pulses in the laser cavity and the type of
dynamics that are exhibited. White indicates fundamental mode-locking (FML), purples indi-
cate fundamental mode-locking with feedback induced pulses, greens indicate complex dynamics
(quasi-periodic and chaotic) with 2-5 pulses in the laser cavity (CD2-CD5), blues indicate har-
monic mode-locking (HML) and black indicates non-periodic (NP) dynamics that do not fall
into the previous categories. The grey regions indicate continuous-wave solutions. Parameters:
(a) τ = 0, (b) C = π, all other parameters as in Table 2.1.

to separate the influence of the phase difference from affects that may purely arise
due to the chirp of the pulses, C would need to be selected in such a way that it
compensates for Δφ. However, since ω is dependent on the dynamical variables it
is not known in advance, which makes it very difficult to obtain a map over which
Δφ − C is constant.

To investigate the increased phase sensitivity with non-zero amplitude-phase cou-
pling, the dynamics in the C-K plane are shown for τ = 0 in Fig. 3.51a. Comparing
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this map with the equivalent map for zero amplitude-phase coupling, Fig. 3.40a, it
can be seen that there is now a large region of quasi-periodic or chaotic dynamics
(green regions) surrounding the oval shaped region of stable continuous wave las-
ing near C = π. This plot shows that, even for low feedback strengths, a π phase
shift between the light in the feedback and laser cavities can lead to complex, non-
periodic dynamics, which was not the case for zero amplitude-phase coupling (for
τ = 0). It is this sensitivity to the phase difference that causes the regions of quasi-
periodic and chaotic dynamics at first-order main resonance (τ = T0,S) in Fig. 3.49.
This can be understood as follows. For αg = 2 and αq = 1.5 the shift of the central
lasing modes from the reference frequency Ω0 is approximately 20 GHz, i.e. half
of the fundamental repetition rate ((T0 · 25ps)−1 /2), as can be seen in Fig. 3.50.
Therefore, in a time interval of T0,S a phase shift of approximately π accumulates
between the laser and feedback cavities, leading to destructive interference for
τ = T0,S . If we compensate for this phase difference by setting C = π, then regular
mode-locked dynamics are recovered at τ = T0,S . This is shown in Fig. 3.51b. Here,
the non-periodic dynamics now occur at the zeroth-main resonance. Non-periodic
dynamics occurring for main resonant feedback was also investigated in [OTT14]
(also using the DDE model). The author showed that the dynamics transition from
periodic to quasi-periodic to chaotic, similar to the quasi-periodic route to chaos
shown in Fig. 3.46 for C = π with zero amplitude-phase coupling.

3.3.2. Intermediate delay

In the previous section the feedback induced dynamics in the regime of very short
delay times was discussed. As mentioned at the beginning of Section 3.3.1, all of
the periodic solutions that were found for the system in this short delay regime, are
also solutions of the system for larger delay times fulfilling τ = τS +nT0, for integer
n, where τS is a small delay offset (i.e. within the range [0, T0,K ]) and T0 is the
period of the solution for τ = τS . Since T0 is dependent on K and τS (see Figs. 3.36
and 3.37) the shape of the various dynamical regions changes for increasing delay
times. And, although the same solutions exist for larger delay times, their stability
can change [YAN09]. Furthermore, different non-periodic solutions can arise when
the delay time is changed. Therefore, in this section the stable dynamics arising in
the intermediate τ regime (τ ∼ 10) are investigated.

τ − K dependence

Figure 3.52 depicts maps of the dynamics in the τ -K plane between the 10th and
11th main resonances. As in the short delay case (compare with Fig. 3.30), there
are regions of fundamental mode-locking around the main resonances, however the
τ range of these dynamics is wider, especially for large feedback strengths (note
that the K range in Fig. 3.52 is smaller than in Fig. 3.30, but as in the short
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Figure 3.52.: Maps of the dynamics in dependence of τ and K obtained for (a) up- and (b) down-
sweeps in K and (c) up- and (d) down-sweeps in τ . The feedback delay time is plotted in
units of the period for K = 0, T0,S = 1.014. The colour code indicates the number of pulses
in the laser cavity and the type of dynamics that are exhibited. White indicates fundamental
mode-locking (FML), purples indicate fundamental mode-locking with feedback induced pulses,
greens indicate complex dynamics (in this case quasi-periodic) with 2-5 pulses in the laser
cavity (CD2-CD5) and blues indicate harmonic mode-locking (HML). The grey regions indicate
continuous-wave solutions. Hatching indicates regions in which different results are obtained in
the up- and down-sweeps. Parameters: all other parameters as in Table 2.1.

delay case, above K ≈ 1.7 the system only exhibits continuous wave lasing). Due
to the increased width of the fundamental mode-locking regions, there are now
large regions of multistability between fundamental and harmonic mode-locking.
The feedback delay time does not affect the critical K values at which harmonic
mode-locking starts for resonant feedback. Therefore the onset of 2nd and 3rd order
harmonic mode-locking at the main resonances, τ = 10T0,K and τ = 11T0,K , hap-
pens at the same feedback strengths as at the zeroth (τ = 0) and first (τ = T0,K)
main resonances. At low feedback strengths the multi-pulse regions (purples) have
the same structure as in the short delay case. However, the region of quasi-periodic
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dynamics (greens) has changed and extends to larger feedback strengths. A notable
difference is also that in the intermediate delay case there is no direct transition
from two pulse dynamics to 2nd order harmonic mode-locking. Instead, this tran-
sition is now mediated by quasi-periodic dynamics with two pulses in the laser
cavity. Such dynamics were not observed in the short delay case. There are now
also regions of multistability between fundamental mode-locking and quasi-periodic
dynamics. This is seen most clearly in Fig. 3.52c-d which shows maps obtained for
(c) up- and (d) down-sweeps in τ for low to intermediate feedback strengths. These
multistability regions suggest that the torus bifurcations bordering the fundamen-
tal mode-locking regions (white) are subcritical,15 whereas in the short delay case
they appeared to be supercritical (see Figs. 3.38 and 3.39).

The increased width of the fundamental mode-locking regions is due to the change
in the period within the main resonance locking range (see Fig. 3.26). This will be
discussed further in Section 3.3.4. In the multi-pulse regions the solutions all have
very similar periods (see Figs. 3.26 and 3.37 (6)), which is why these regions have
not changed much compared with the short delay case.

Feedback phase dependence

In the short delay regime it was shown that the regions of harmonic mode-locking
become wider when τ is increased from the zeroth to the third main resonance (see
Figs. 3.40 and 3.45). At the tenth resonance these regions are again wider, causing
multistability between solutions with the same order of harmonic mode-locking.
This can be seen by the hatched regions centered on C = π in Fig. 3.53, which
shows maps of the dynamics in the C-K plane for (a) up- and (b) down-sweeps in C.
There are also regions of bistability between fundamentally mode-locked solutions.
These regions develop for increasing feedback delay times because smaller shifts in
the frequency of the lasing modes are needed to reduce the feedback phase induced
destructive interference when the feedback delay time is longer. This is because
the phase difference that accumulates between the laser and feedback cavities is
proportional to τ (Δφ = ωτ). The reduced destructive interference leads to a
reduction in the influence of C on the period of the solutions. The difference in the
influence of C on the period, and frequency shift of the lasing modes, for τ = 0 and
τ = 10T0,S , can be seen by comparing Figs. 3.47 and 3.54. The results presented
in Fig. 3.54 are obtain by path continuation. Due to the substantially increased
computation time needed for τ ≈ 10 we have not calculated a complete bifurcation
diagram. However, the stability of the solutions continued in C, for K = 0.4,

15From the numerical integration results we cannot know whether the boundaries are still given
by torus bifurcations. However, path continuation results for selected feedback strengths show
that this is indeed the case (see Fig. 3.64).
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3.3. Dynamics induced by feedback from a single external cavity

Figure 3.53.: Maps of the dynamics in dependence of C and K obtained for (a) up- and (b)
down-sweeps in C for 10th order main resonant feedback. The colour code indicates the number
of pulses in the laser cavity and the type of dynamics that are exhibited. White indicates
fundamental mode-locking (FML), purples indicate fundamental mode-locking with feedback
induced pulses, greens indicate complex dynamics (in this case quasiperiodic or chaotic) with
2-5 pulses in the laser cavity (CD2-CD5) and blues indicate harmonic mode-locking (HML). The
grey regions indicate continuous-wave solutions. Hatching indicates regions in which different
results are obtained in the up- and down-sweeps. Parameters: τ = 10T0,S , all other parameters
as in Table 2.1.
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Figure 3.54.: Path continuation: (a) Period of the fundamental mode-locked solution as a func-
tion of C for 10th order main resonant feedback and K = 0.4. (b) Frequency of the central lasing
mode with respect to the reference frequency Ω0. The stability of the solutions is indicated by
the solid (stable) and dashed (unstable) lines. The blue circle indicates a torus (T ) bifurcation.
Parameters: τ = 10T0,S , all other parameters as in Table 2.1.

show that the bistable regions of fundamental mode-locking are bounded by torus
bifurcations.
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3. Mode-locked laser dynamics

Figure 3.55.: Numerical bifurcation diagrams showing the C dependence of the mode-locked laser
output for (a) K = 0.2 and (b) K = 0.7 for 10th order main resonant feedback. Plotted in blue
(red) are electric field maxima |E|max for an up-sweep (down-sweep) in the initial conditions.
The horizontal dashed line indicates the mode-locked pulse amplitude in the solitary laser case.
Parameters: τ = 10T0,S , all other parameters as in Table 2.1.

In Fig. 3.55 cuts through the maps of the dynamics (Fig. 3.53) are shown for
K = 0.2 and K = 0.7. Here the pulse amplitudes show the most variation near the
boundaries of the stable regions, i.e. near the torus bifurcations (the boundaries of
the stable regions are indicated by abrupt jumps in the electric field maxima). In
these plots the regions of bistability between solutions of the same mode-locking
order can clearly be seen. For K = 0.2 there are overlapping fundamentally mode-
locked solutions near C = π and for K = 0.7 overlapping 2nd harmonic mode-locked
solutions can be seen, although the difference in the amplitude of these solutions
is small. Figure 3.55b also clearly shows the bistability between fundamental and
2nd harmonic mode-locking.

3.3.3. Long delay

In this section the dynamics in the regime of long feedback delay times (τ ∼
100) is investigated. For such long delay times the transients of the system are
substantially increased, which leads to significantly longer integration times. Due
to this increased computational cost, in this section we shall focus only the feedback
strength range which is relevant for experiments, i.e. low to intermediate feedback
strengths.

τ − K dependence

In the long feedback delay regime the trends observed for intermediate delays are
continued. The width of the fundamentally mode-locked regions is increased. At
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3.3. Dynamics induced by feedback from a single external cavity

Figure 3.56.: Maps of the dynamics in dependence of τ and K obtained for (a) up- and (b) down-
sweeps in K and (c) up- and (d) down-sweeps in τ . The feedback delay time is plotted in
units of the period for K = 0, T0,S = 1.014. The colour code indicates the number of pulses
in the laser cavity and the type of dynamics that are exhibited. White indicates fundamental
mode-locking (FML), purples indicate fundamental mode-locking with feedback induced pulses,
greens indicate complex dynamics (in this case quasi-periodic) with 2-5 pulses in the laser
cavity (CD2-CD5) and blues indicate harmonic mode-locking (HML). The grey regions indicate
continuous-wave solutions. Hatching indicates regions in which different results are obtained in
the up- and down-sweeps. Parameters: all other parameters as in Table 2.1.

intermediate feedback strengths (K ≈ 0.15 − 0.5) this leads to regions of multi-
stability between solutions that are locked to neighbouring resonances. At low
feedback strengths there are now regions of bistability between the fundamentally
mode-locked dynamics and multi-pulse dynamics. This information is summarised
in Fig. 3.56 which shows maps of the dynamics in the τ -K plane for (a) up- and
(b) down-sweeps in K and (c) up- and (d) down-sweeps in τ . Due to the over-
lap of neighbouring main resonance, only small regions of quasi-periodic dynamics
are found near the borders of the main resonance locking regions for intermediate
feedback strengths (Fig. 3.56c-d). Larger regions of stable quasi-periodic dynam-
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Figure 3.57.: Numerical bifurcation diagrams showing the τ dependence of the mode-locked laser
output for (a) K = 0.1 and (b) K = 0.4. Plotted in blue (red) are electric field maxima |E|max

for an up-sweep (down-sweep) in the initial conditions. The feedback delay time is plotted in
units of the period for K = 0, T0,S = 1.014. Parameters: all other parameters as in Table 2.1.

ics could still exist, however none were found for the initial condition sweeps that
were performed. In the low feedback strength regime, the regions of bistability are
larger on the right of the main resonances than on the left. This is due to the pulse
asymmetry and will be discussed further in Section 3.3.4 (pulse profiles are shown
in Fig. 3.63).

Figure 3.57 shows examples of the pulse height variation for up- and down-sweeps
in τ . These plots correspond to cuts through Fig. 3.56c-d at K = 0.1 and K = 0.4.
In the K = 0.4 case (Fig. 3.57b) the multistability between fundamentally mode-
locked solutions can clearly been seen. Here the up-sweep solution is locked to the
100th main resonance and the down-sweep solution is locked to the 102nd main
resonance (not the 101st main resonance). Solutions corresponding to the 101st

main resonance also exist in this τ range, and are stable , they were merely not
found in this sweep because the up- and down-sweeps both start outside the locking
region of 101st main resonance. At each main resonance the solution locked to that
particular resonance has the largest, and narrowest, pulses. As shall be seen in
Chapter 4, these solutions are generally those that are most stable against noise
perturbations.

Feedback phase dependence

For long feedback delay times the feedback phase dependence of the system is
greatly reduced. Within the low to intermediate feedback strength regimes there
is no qualitative dependence of the dynamics on C. The only influence of varying
the feedback phase is small changes in the pulse heights and period. In Fig. 3.58
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Figure 3.58.: Numerical bifurcation diagrams showing the C dependence of the mode-locked laser
output for (a)-(b) K = 0.1, (c)-(d) K = 0.2 and (e)-(f) K = 0.2. Plotted in blue (red) are
electric field maxima |E|max for an up-sweep (down-sweep) in the initial conditions. In (b), (d)
and (f) the phases are shifted into the range −π to π. Parameters: τ = 100T0,S , all other
parameters as in Table 2.1.

the results of C sweeps are shown for main resonant feedback with τ = 100T0,S . In
order to find all fundamentally mode-locked solutions, C was swept up and down
from zero. As the solution is swept away from C = 0 the pulse amplitude gradually
decreases until there is an abrupt jump to higher pulse amplitudes. After such a
jump no new solutions are found, previous solutions are merely repeated at phases
shifted by integer multiples of 2π. The solutions are swept over C ranges that
are greater than 2π, which means that there is multistability. To illustrate the
degree of multistability, in subplots (b), (d) and (f) of Fig. 3.58 the solutions are
plotted from −π to π. These plots are obtained by shifting solutions for |C| > π

by multiples of 2π. Here, for example, it can be seen that for K = 0.1 there
are three stable solutions for C = 0. One solution (the maximum pulse amplitude
solution) for which the central cavity mode has zero detuning from the center of the
spectral filter, and two solutions that correspond to positive (blue) and negative
(red) detuning from the center of the spectral filter. As the feedback strength
is increased the number of stable solutions also increases. This is similar to the
behaviour found in single mode lasing with optical feedback [ERN10b].
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Figure 3.59.: Influence of amplitude-phase coupling: Numerical bifurcation diagrams showing
the C dependence of the mode-locked laser output for (a) K = 0.1, (b) K = 0.2 and (c) K = 0.3,
with αg = 2 and αq = 1.5. Plotted in blue (red) are electric field maxima |E|max for an up-sweep
(down-sweep) in the initial conditions. Parameters: τ = 100T0,K , all other parameters as in
Table 2.1.

Influence of amplitude-phase coupling

In Subsection 3.3.1 we showed that in the presence of amplitude-phase coupling
the mode-locked laser system is more sensitive to the phase difference between the
light in the laser and feedback cavities. Here we will address whether the phase
sensitivity is also reduced for longer feedback delay times when the amplitude-phase
coupling is non-zero.

In Fig. 3.59 maxima of |E| are plotted for sweeps of the feedback phase, with τ =
100T0,K . In contrast to the zero amplitude-phase coupling case (Fig. 3.58) there are
solutions which exhibit quasi-periodic or chaotic dynamics (these can be identified
in Fig. 3.59 by C values with many maxima of different heights). However, Fig. 3.59
also shows that there are large spans of C with fundamentally mode-locked solutions
(C values with one |E|max value). The influence of the feedback phase is therefore
reduced, as in the zero α-factor case, however the multistability between solutions
exhibiting qualitatively different dynamics means that choice of initial conditions
is more important.
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Figure 3.60.: Low feedback strength regime: Period of the mode-locked solutions as a function
of the feedback delay time in the regime of low feedback strengths. Blue circles indicate the
main resonances, and the red and green circles indicate the extent of the main resonance locking
regions. The dotted lines indicate the period change necessary for perfect synchronisation in
each of the main resonance locking regions. In (c) the filled green circles indicate saddle-node
bifurcations and the unstable sections of solutions are plotted in red. Parameters: K = 0.1, all
other parameters as in Table 2.1.

3.3.4. Frequency pulling and delay-induced multistability

In the previous sections we have investigated in depth the range of dynamics that
are exhibited in dependence of the feedback parameters. However, for most prac-
tical applications it is only the periodic mode-locked solutions that are of interest.
In this section we will investigate more closely the solutions in the main resonance
locking regions. Particularly, we will investigate how the feedback delay time in-
fluences the pulse repetition rate and the pulse shape, as well as the degree of
multistability between different fundamentally mode-locked solutions.

In the previous sections it was already shown that the period (or equivalently,
the pulse repetition rate) of the fundamentally mode-locked solutions is dependent
on the feedback delay time (see Figs. 3.26 and 3.37). This has also been observed
experimentally and is refered to as frequency pulling [SOL93, MER09, GRI09,
BRE10, LIN10e, FIO11, LIN11d, ARS13]. This effect occurs because for feedback
delay times which are detuned from the main resonances, the system needs to
adapt its periodicity for synchronisation to occur between the pulses in the laser
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Figure 3.61.: Illustration of the period of solutions near the nth main resonance.

and feedback cavities. Examples of the delay induced period change are shown in
Fig. 3.60 for various main resonances. The main resonances are indicated by the
blue circles at integer multiples of T0,K . In Subsection 3.3.1 we had defined the
locking regions of the resonances as the τ ranges in which

• the period of the solutions changes monotonically with τ ,

• the number of pulses in the laser cavity remains constant

• and the solutions are stable.

As per this definition, the extent of the locking regions of the main resonances
is from the red to the open green circle on either side of each main resonances
depicted in Fig. 3.60 (the locking ranges are also indicated by the green striped
regions).

Comparing the 100th resonance (c) with the zeroth (a) in Fig. 3.60, it is evident
that for a small delay offset Δτ from the main resonances the resulting change in the
period is smaller when the feedback delay time is longer. This can be understood
by considering the condition that is necessary for the arrival times of pulses to be
synchronised at the coupling facet between the laser and feedback cavities. Pulses
are perfectly synchronised if

τ = nT0 (3.11)

for integer n, where T0 is the τ dependent period of the adapted system [OTT12a,
OTT14]. Expressed in terms of the resonant delay time and period, the relation is
given by

nT0,K + Δτ = n (T0,K + ΔT0) , (3.12)

where Δτ is a small delay offset from the nth main resonance and ΔT0 is the
delay induced change in the period, as illustrated in Fig. 3.61. Rearranging this
expression, the change in the period which is needed for synchronisation to occur
is

ΔT0 =
Δτ

n
(3.13)
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3.3. Dynamics induced by feedback from a single external cavity

for n > 0. For n = 0 the necessary change in the period is given by ΔT0 = Δτ .
Equation (3.13) is the condition for perfect synchronisation, meaning that the
fed-back pulses align perfectly with the pulse in the laser cavity. For each main
resonance shown in Fig. 3.60 the period given by Eq. (3.13) is indicated by the
dotted line. The actual change in the period within the locking regions is smaller
than what is predicted by Eq. (3.13). This is because perfect synchronisation is not
achieved within the locking ranges as the delay offset is also partially compensated
for by changes in the pulse shape (see Figs. 3.63 and 3.66). However, for large n

Eq. (3.13) gives a good approximation of the period change for small |Δτ |, and
shows that the change in the period is reduced for larger n. This is essentially be-
cause the change in the pulses arrival time, caused by the delay offset, is distributed
over more laser-cavity roundtrips.

To understand why the discrepancy, between the period change predicted by
Eq. (3.13) and the actual period change in the locking ranges, is reduced for in-
creasing n, it is useful to consider the relationship between solutions in each of a
resonance regions. As previously stated, all periodic solutions are also solutions of
the system for feedback delay times that are increased by integer multiples of the
period [YAN09]. This means that the solutions in all the main resonance locking
regions can be expressed in terms of the solutions at the zeroth main resonance.
Let τ0 be a delay time within the locking range of the zeroth main resonance,16

i.e. between the red and green circles near the zeroth main resonance in Fig. 3.60a.
Then, for all τ0 the same solutions reappear at feedback delay times given by

τ = τ0 + nT0 (3.14)

for integer n, where T0 is the τ0 dependent period. Inserting τ = nT0,K + Δτ and
T0 = T0,K + ΔT0 to this expression we obtain

nΔT0 = Δτ − τ0. (3.15)

For large n the contribution from τ0 is negligible, since the values are limited to the
narrow locking region of the zeroth main resonance. Hence, for large n the period
change in dependence of the delay offset from the main resonance is given by

ΔT0 ≈ Δτ

n
. (3.16)

This means that for large n and small |Δτ |, changes in the pulse shape are negli-
gible.

16We remind the reader that physically the feedback delay time cannot be negative, however
mathematically this is fine and the total delay time, T + τ , is still positive. We use this delay
range as it is useful to characterise the solutions in terms of the zeroth main resonance.
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Figure 3.62.: Low feedback strength regime: (a) Period of the mode-locked solutions as a
function of the feedback delay time for feedback strengths from K = 0.01 to K = 0.1. (b)
Points defining the main resonance locking region, obtained from minima and maxima in the
period plotted in (a). (c)-(d) Maps of the dynamics in the τ -K plane near the 10th and 100th

main resonances. The colour code of the map is the same as in Fig. 3.56. The black lines
indicate the main resonance locking regions obtained from Eqs. (3.17)-(3.18). The hatching in
(c) indicates regions of bistability between single-pulse and multi-pulse solutions. Parameters:
all other parameters as in Table 2.1.

Low feedback strength regime

Figure 3.60 shows results for K = 0.1, which is in the low feedback strength regime.
In this regime all solutions in the range from τ = 0 to τ = T0,K are periodic. This
means that not only the solutions in the main resonance locking regions repeat at
larger feedback delay times, but all solutions that are found in this delay range.
Hence, all solution shown in Fig. 3.60a can be mapped on to Fig. 3.60b-c by added
10T0 and 100T0, respectively, to the delay times given in (a). Comparing (a),
(b) and (c), the shape of the line that is plotted becomes distorted due to the
difference in the period of the solutions. This is illustrated clearly by the open
coloured circles. Each circle of the same colour corresponds to the same solution
repeated for different n. Because the period of the solution marked by the red
circles is smaller than the period marked by the green circles, these solutions move
further apart in τ space as n is increased. Hence, the locking regions become wider.

All of the solutions for the delay range shown in Fig. 3.60a are stable. However
as n is increased saddle-node bifurcations develop at solutions which correspond to
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local minima and maxima in the period, for example at the edges of the main res-
onance locking regions (open red and green circles). In Fig. 3.60c the saddle-node
bifurcations bordering the main resonance regions are indicated by the large filled
green circles. Within the locking regions, main and higher-order, the solutions re-
main stable. But between locking regions there are unstable solutions where the
branch has folded over. These folds in the branch of solutions lead to regions of
bistability between fundamentally mode-locked solutions and solutions with mul-
tiple feedback induced pulses, as was previously shown in Fig. 3.56. These stable
solutions are connected by sections of unstable solutions, which are indicated in
Fig. 3.60c by the red parts of the curve.

For the low feedback strength regime, because the solutions in the locking regions
remain stable, the main resonance locking range is characterised by the solutions
with the minimum (open red circles) and maximum (open green circles) periods.
In Fig. 3.62a the period of solutions near the zeroth main resonance is plotted for
low feedback strengths ranging from K = 0.01 to K = 0.1. The coloured circles
are plotted at the minima and maxima in the period and define the locking ranges
for the various feedback strengths. The resulting locking cone is plotted in the
τ -K plane in Fig. 3.62b. These results show that the width of the locking region
increases with K, as does the feedback delay induced change in the period. The
width of the locking cone does not converge to zero as K tends to zero. This is due
to the finite width of the pulses. For higher main resonances the locking regions
can be obtained from the information in Fig. 3.62a-b. Let T min

0 and T max
0 be the

K dependent minimum and maximum periods in Fig. 3.62a, and τmin
0 and τmax

0
the K dependent feedback delay times of these solutions. Then, the edges of the
locking regions for all other main resonance are given by

τmin = τmin
0 + nT min

0 (3.17)

and
τmax = τmax

0 + nT max
0 . (3.18)

The black lines in Fig. 3.62c-d show the resulting locking cones for the 10th and
100th main resonance, respectively. In Fig. 3.62d the hatched region indicates the
region of bistability with the multi-pulse dynamics.

The locking ranges extend to further positive offsets from the main resonances
than they do to negative offsets, i.e. |τmax − T0,K | > |τmin − T0,K |, as can be seen
in Fig. 3.62. This is due to the asymmetry of the pulses and the net gain window.
The pulse shape change within the locking regions, for K = 0.1, is illustrated in
Fig. 3.63. Near the edges of the locking region the pulses become highly asymmetric
and develop plateaus in the amplitude to one side of the pulse. For positive offsets
from the main resonance the side plateau has a higher amplitude, this is due to
the higher net gain at the trailing edge of the pulse compared with the leading
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Figure 3.63.: Low feedback strength regime: Pulse amplitude profiles for feedback delay
times spanning the main resonance locking regions for K = 0.1. In (a) the period is shown
in dependence of the delay offset τ0 from the zeroth main resonance. In (b) pulse profiles,
corresponding to the τ0 values of the coloured circles in (a), are shown. The profiles each span
over one period. The black circles in (a) mark the edges of the locking region. Parameters: all
other parameters as in Table 2.1.

edge (see Fig. 3.14). The higher net gain at the trailing edge is also why the pulses
can adapt better to positive delay offset and hence why the locking regions extend
further in this direction. Near the edges of the locking regions the pulses become
more deformed, this is because the system cannot sufficiently adapt the period of
the solutions to compensate for the delay offset. As will be discussed further in
Chapter 4 the shape of the pulses is related to the timing jitter; the narrower pulses
near the exact main resonances have a lower timing jitter than the wider pulses
towards to edge of the locking regions.

Intermediate feedback strength regime

Examples of the feedback delay induced period change, in the intermediate feedback
strength regime, are shown in Figs. 3.64-3.65. This regime is qualitatively different
to the low feedback strength regime because for sufficiently large offsets from the
main resonances the mode-locked solutions can lose their stability in torus bifurca-
tions. For K = 0.2 the period of the mode-locked solutions is shown as a function
of the feedback delay time in Fig. 3.64. In the short (a) and intermediate (b) delay
regimes the stability of the solutions has been calculated using DDE-BIFTOOL
[ENG01]. Stable solution segments are plotted with a solid line and unstable seg-
ments with a dashed line. The stable section of the solutions is bounded by torus
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Figure 3.64.: Intermediate feedback strength regime: Period of the mode-locked solutions
as a function of the feedback delay time in the regime of intermediate feedback strengths. In (a)
and (b) the solid (stable) and dashed (unstable) segment indicate the stability of the solutions
and the large filled blue circles indicate torus bifurcations (T ). The open blue circles indicate
the main resonances in (a), (b) and (c). The purple (orange) circles are the same solutions
repeated for q = 0, 10, 100. The thick green lines in (b) and (c) indicate the period obtained for
stable sections of the solution branch via direct numerical simulation. Parameters: K = 0.2, all
other parameters as in Table 2.1.

bifurcations, which are indicated by the filled blue circles. For the 100th resonance
(c) the stability has not been calculated due to the high computational cost. In
all three subplots the open blue circles indicate the main resonance and the pur-
ple (orange) circles indicate repeats of the same solution. The locking ranges are
indicated by the green horizontal lines. For 100th resonance (c) the locking range
was determined by direct numerical integration by sweeping the initial conditions
up and down from the main resonance, the results of which are plotted in the solid
green line. Comparing the positions of the purple and orange circles relative to
the locking ranges in the short (a), intermediate (b) and long (c) feedback delay
regimes, it is evident that for increasing delay lengths the torus bifurcations shift
to solutions with a smaller change in the period. This means that the range over
which the period can be tuned (i.e. the frequency pulling range) is reduced. Sim-
ilar results are seen for higher feedback strengths. In Fig. 3.65 results are shown
for K = 0.4. In this example the upper limit of the locking regions remains at
the same solution, but the shift of the the lower bound is more pronounced. The
fact that the upper bound does shift in these examples is related to the K depen-
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Figure 3.65.: Intermediate feedback strength regime: Period of the mode-locked solutions
as a function of the feedback delay time in the regime of intermediate feedback strengths. In
(a) the solid (stable) and dashed (unstable) segment indicate the stability of the solutions and
the large filled blue circles indicate torus bifurcations. The open blue circles indicate the main
resonances in (a), (b) and (c). The purple (orange) circles are the same solutions repeated
for q = 0, 10, 100. The thick green lines in (b) and (c) indicate the period obtained for stable
sections of the solution branch via direct numerical simulation. Parameters: K = 0.4, all other
parameters as in Table 2.1.

dence of this torus bifurcation. For the zeroth main resonance, this is the torus
bifurcation labelled T5 in Fig. 3.35. For larger K values this bifurcation occurs at
greater offsets from the main resonance and is separated from the locking region
by a parameter range where two-pulse dynamics are exhibited (also see Fig. 3.39).
Because the stability of solutions changes in dependence of n, in the intermediate
feedback strength regime the locking region cannot be defined as it was for the low
feedback strength regime.

For intermediate feedback strengths the pulses become more deformed near the
edges of the locking regions compared with low feedback strengths. An example of
the pulse shape variation is shown for K = 0.4 in Fig. 3.66. These pulse profiles
correspond to points on the solution branch in Fig. 3.65a. The yellow to red pulses
are not within the locking regions as these pulses have two peaks. In the maps of
the dynamics shown earlier, this pulses correspond to the two-pulse region to the
right of the main resonances (for example, see Figs. 3.30, 3.52 and 3.56).
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Figure 3.66.: Intermediate feedback strength regime: Pulse amplitude profiles for feedback
delay times spanning the main resonance locking regions for K = 0.4. In (a) the period is
shown in dependence of the delay offset τ0 from the zeroth main resonance. In (b) pulse profiles,
corresponding to the τ0 values of the coloured circles in (a), are shown. The profiles each span
over one period. Parameters: all other parameters as in Table 2.1.
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Figure 3.67.: H1 Hopf bifurcation in the τ -K parameter plane. Parameters: all other parameters
as in Table 2.1.

Feedback delay induced multistability

The locking ranges in subplot (c) of Figs. 3.64-3.65 span over more than one main
resonance, and the results in the low feedback strength regime (Fig. 3.62) indicate
that for longer delay times the locking regions will also span over multiple main
resonances. This means that there are feedback regimes where there is multista-
bility between solutions that are locked to neighbouring resonances. Figure 3.67
shows the H1 Hopf-bifurcations curve in the τ -K plane. As τ is increased the curve
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3. Mode-locked laser dynamics

forms loops, which leads to a coexistence between solutions generated at different
points on the curve. Form this curve the degree of multistability cannot be es-
timated without further information about the stability of the periodic solutions
that are generated. However, in the low feedback strength regime the degree of
multistability can be worked out directly from the locking cone that is defined by
Eqs. (3.17)-(3.18). It can be estimated by

M ≈
(
τmax − τmin

)
mod T0,K ≈

(
n

(
T max

0 − T min
0

))
mod T0,K , (3.19)

where M is the degree of multistability and mod stands for the modulus. Since
the locking regions become wider for increasing feedback strength, this also gives a
lower bound for the degree of multistability in the intermediate feedback strength
regime. In addition to this source of multistability, for long feedback delay times
there is also multistability with solutions for which the lasing modes are detuned
from the center of the spectral filter. This was shown in Subsection 3.3.3.

For experimental studies the large degree of multistability for long delay times
can be problematic, since it can be difficult to ensure that the system exhibits the
desired dynamics. Furthermore, in case where solutions are close together in the
state space of the system, noise can induce switching between solutions. In [SOL93]
the feedback delay time dependence of a passively mode-locked laser as studied
experimentally. In this study abrupt jumps in the repetition rate of the mode-
locked solutions were observed when the delay time (i.e. the length of the external
cavity) was varied over one period of the mode-locked dynamics, corresponding to
jumps between solutions which are locked to different main resonances.

98



3.4. Dynamics induced by feedback from two external cavities

3.4. Dynamics induced by feedback from two external
cavities

As mentioned in the introduction, one motivation for adding a second feedback
cavity is that it can be used to suppress undesired noise effects. This will be
investigated in Chapter 5. A second motivation has to do with the frequency
pulling effects that were discussed in the previous section. The repetition rate of
a monolithic passively mode-locked semiconductor laser is primarily determined
by the length of the laser, however small variations between devices limits the
reproducibility of precise repetition rates. For example, cleaving tolerances can
lead to repetition rate variations of the order of 100 MHz [HAB14]. The results of
the previous section, as well as experimental results for semiconductor quantum-
well and quantum-dot based devices [SOL93, MER09, GRI09, BRE10, LIN10e,
FIO11, LIN11d, ARS13], show that with feedback from one external cavity the
period (or repetition frequency) of the mode-locked solutions can be tuned by
varying the feedback delay time within the locking regions. However, when the
delay times are long the variation in the period is small and there is a large degree
of multistability between different fundamentally mode-locked solutions. By adding
a second feedback cavity, one has an additional control parameter. This can have
positive or negative effects, as will be shown in this section. We will first investigate
the dynamics that can arise for the system coupled to two external feedback cavities.
Then we will study the frequency pulling in the main resonance regions.

Parts of this section are published in [JAU15a], [JAU16] and [NIK16].

3.4.1. Feedback induced dynamics

Feedback delay and feedback strength dependence

With feedback from two external cavities the equation for the slowly varying electric
field amplitude (Eq.(2.42)) becomes

dE
dt

= −γE (t) + γR (t − T ) e−iΔΩT E (t − T )

+γK1eiC1R (t − T − τ1) e−iΔΩ(T +τ1)E (t − T − τ1)

+γK2eiC2R (t − T − τ2) e−iΔΩ(T +τ2)E (t − T − τ2) . (3.20)

The second external cavity adds an extra delay time, τ2, to the system, which
is subject to the same resonance conditions as the first (Eq.(3.9)). For resonant
feedback both feedback delay times must fulfil the resonance condition, meaning
that

τ1 =
q1

p1
T0 and τ2 =

q2

p2
T0 for p1, p2, q1, q2 ∈ N. (3.21)
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Figure 3.68.: (a) Map of the dynamics in dependence of τ1 and τ2 for K1 = 0.05 and K2 = 0.05.
The feedback delay times are plotted in units of the period for K = 0, T0,S = 1.014. The
colour code indicates the number of pulses in the laser cavity and the type of dynamics that
are exhibited. White indicates fundamental mode-locking (FML), purples indicate fundamental
mode-locking with feedback induced pulses. The grey lines correspond to the resonance lines
defined by Eq. (3.25). (b) Resonances lines, defined by Eq. (3.25), along which features can be
identified in (a). Parameters: all other parameters as in Table 2.1.

In this case the number of pulses in the laser cavity is determined by a combi-
nation of p1 and p2. If p1 = p2 = 1 then main resonant feedback conditions are
met and there is one pulse in the laser cavity that is perfectly synchronised at
the out-coupling facet with pulses from both feedback cavities. For higher order
resonant feedback, i.e. p1 > 1 or p2 > 1, the number of pulses in the laser cavity is
determined by the lowest common multiple of p1 and p2. However, the maximum
number of pulses is again restricted by the ratio of the pulse width to the cold
cavity roundtrip time.

In Fig. 3.68a a map of the dynamics in the τ1-τ2 plane is shown. These results
are obtained via direct numerical integration of the DDE system (Eq. (3.20) and
Eqs. (2.43)-(2.44)) and regions are colour-coded according to the number of pulses
(or electric field maxima) in the laser cavity. The feedback parameters are chosen
in the short delay and low feedback strength regimes (K1 = 0.05 and K2 = 0.05).
Regions of fundamental mode-locking, with one pulse in the laser cavity, are found
near main resonances which are located at (0,0), (0,1), (1,0) and (1,1), in the
coordinates of this map.17 As in the single feedback cavity case, between the main
resonance regions dynamics with multiple feedback induced pulses are exhibited
(compare with Fig. 3.30). However, compared with single cavity feedback, different

17The exact positions of the main resonances is actually slightly shifted from the integer values
in the map shown in Fig. 3.68a. This because in this map the delay times are given in units of
T0,S = 1.01405, not T0,K = 1.01318.
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Figure 3.69.: Time traces and phase space portraits of the feedback induced dynamics for (a)-(b)
τ1 = 0.85, τ2 = 0.7 and (c)-(d) τ1 = 0.32, τ2 = 0.16. The time traces (a) and (c) show the
electric field amplitude |E| (blue), gain G (green), total losses Qtot = Q − ln (κ) (red) and the
net gain G = G − Qtot (black). The phase space portraits (b) and (d) show the dynamics in
the G − |E| plane. The feedback delay times correspond to the positions of the green crosses in
Fig. 3.68a. Parameters: K1 = 0.05, K2 = 0.05, all other parameters as in Table 2.1.

multi-pulse dynamics can be exhibited. Examples of time traces for two delay
configurations, corresponding to the positions of the green crosses in Fig. 3.68a, are
shown in Fig. 3.69. In both examples there are multiple feedback induced pulses.
Because the two delay times are not synchronised with each other, feedback from
the two cavities induces pairs of satellite pulses which approximately have the same
amplitude. In the dual feedback cavity case two satellite pulses can have similar
heights, because they can both be seeded by the main pulse, which cannot happen
for single cavity feedback. For single cavity feedback with the same total feedback
strength, and for the same laser parameters, the maximum number of feedback
induced pulses was p − 1 = 4. In the dual feedback case more pulses can be
induced because the system cannot adapt as easily to achieve locking to low-order
resonances when there are two external delay times which are not equal.

The main and higher order resonances in Fig. 3.68a form a resonance structure
which is emphasised by the grey lines. These lines connect various main and higher
order resonances and are determined by the three characteristic times of this sys-
tem; T0, τ1 and τ2. A similar resonance pattern has been found in systems of two
coupled oscillators with self-feedback [ZIG09, PAN12]. In these systems the cou-
pling delay time and the two feedback delay times define the resonance structure.
Following the analysis presented in [PAN12], the relation between T0, τ1 and τ2,
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3. Mode-locked laser dynamics

which defines the resonance lines can be derived. If a pulse is coupled into feed-
back cavity one at time t, and the period is T0, then at time t + ñτ1 this pulse will
coincide with the laser-cavity pulse if

l1T0 = ñτ1, (3.22)

for integer ñ and l1. The same is true for the second feedback cavity, i.e.

l2T0 = m̃τ2, (3.23)

for integer m̃ and l2. For resonant feedback, main or higher order, both of these
conditions must be fulfilled simultaneously. Therefore

(l1 + l2) T0 = ñτ1 + m̃τ2, (3.24)

must hold. This equation is obtained by adding Eqs. (3.22) and (3.23), however the
resonance conditions could also have been combined by subtracting these expres-
sions. Taking both of these combinations of the individual resonance conditions
into account, the relation

lT0 = nτ1 + mτ2, (3.25)

is obtained, where l, n and m are now positive or negative integers. This is the
same relation that is obtained in the case of coupled oscillators, however with T0
replacing the coupling delay time. In both cases it is the presence of three delay
times that leads to this resonance behaviour.

In Fig. 3.68b the resonance lines defined by Eq. 3.25 are labelled according to
(l, n, m). The lines for which resonance features can be identified correspond to
|n|, |m| = 0, 1, 2, i.e. values for which the out-coupled pulses meet the main pulse
in the laser cavity after at most two roundtrips. The line (0, −1, 1) is the delay
configuration in which τ1 = τ2. Along this line the dual feedback cavity system
reduces to the single feedback cavity case. This resonance line is prominent as
the pulses in the two feedback cavities are synchronised. The (1, 1, 1) line is also
very prominent. This is because along this line the sum of the two delay times is
always equal to T0, which means that out-coupled pulses only have to travel once
around each feedback cavity before meeting the main pulse again at the coupling
facet. The resonance lines for (l, 1, 0) and (l, 0, 1) are the most pronounced, as
along these lines either τ1 or τ2 is exactly resonant with T0. We will see in the next
chapter that it is along the prominent resonance lines that the best timing jitter
reduction is achieved (see Fig. 4.21).

In [PAN12] resonance features where observed in the period of the coupled os-
cillators. In the mode-locked laser system features along the resonance lines can
also be observed in the period. This is shown in Fig. 3.70. Along the (0, −1, 1)
line (τ1 = τ2) the period varies as shown in Fig. 3.60. Whereas along the (1, 1, 1)
line the period is nearly constant. When one of the two feedback delay times is
resonant, then the second has only a small affect on the period.
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Figure 3.70.: The period of mode-locked solutions in dependence of τ1 and τ2 for K1 = 0.05 and
K2 = 0.05. The feedback delay time is plotted in units of the period for K = 0, T0,S = 1.014.
Parameters: all other parameters as in Table 2.1.
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Figure 3.71.: Influence of the spectral filter width: (a) Map of the dynamics in dependence
of τ1 and τ2 for K1 = 0.05 and K2 = 0.05 with γ = 100. The feedback delay times are plotted
in units of the period for K = 0, T0,S = 1.014. The colour code indicates the number of pulses
in the laser cavity and the type of dynamics that are exhibited. White indicates fundamental
mode-locking (FML), purples indicate fundamental mode-locking with feedback induced pulses.
The grey lines correspond to the resonance lines defined by Eq. (3.25). (b) Resonances lines,
defined by Eq. (3.25), along which features can be identified in (a). Parameters: all other
parameters as in Table 2.1.

Influence of the pulse width

As in the single feedback cavity case, the width of the resonances and the maximum
number of feedback induced pulses is related to the width of the main pulse. This
can be seen by comparing Figs. 3.68 and 3.71. In Fig. 3.71 the spectral filter width
has been increased to γ = 100, hence the pulses are narrower (see Fig. 3.15 for the
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Figure 3.72.: Influence of the feedback strength ratio: (a) Map of the dynamics in dependence
of τ1 and τ2 for K1 = 0.02 and K2 = 0.08. The feedback delay times are plotted in units of the
period for K = 0, T0,S = 1.014. The colour code indicates the number of pulses in the laser
cavity and the type of dynamics that are exhibited. White indicates fundamental mode-locking
(FML), purples indicate fundamental mode-locking with feedback induced pulses. The grey
lines correspond to the resonance lines defined by Eq. (3.25). (b) Resonances lines, defined by
Eq. (3.25), along which features can be identified in (a). Parameters: all other parameters as in
Table 2.1.

influence of the filter width on the pulses). In this case features along resonance
lines that were not present in Fig. 3.68 can be identified. For example along the
line (1, 2, 1), for which 2τ1 + τ2 = T0. The line with the opposite slope, (1, 2, −1)
is more pronounced and was also present in Fig. 3.68.

Influence of the feedback strength ratio

The relative feedback strengths also influence the resonance patterns. In Fig. 3.68
the feedback contributions from the two external cavities is equal, therefore the res-
onance patterns are symmetric about (0, −1, 1). If the relative feedback strengths
are varied, but the total KTOT = K1+K2 is kept the same, then the solutions along
(0, −1, 1) remain unchanged, but are changed for other delay configurations. The
invariance of the solutions along (0, −1, 1), with respect to the ratio of K1 and K2,
is due to the pulses from the two feedback cavities being perfectly synchronised,
which means that the contributions are indistinguishable from the single feedback
cavity case with K = KTOT. Figure 3.72 shows an example of the dynamics for
K1 = 0.02 and K2 = 0.08. Because the feedback strength from cavity two is much
greater than from cavity one, resonance features for n = 2 are no longer present,
but m = 2 resonance lines are more pronounced than in Fig. 3.68.
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Figure 3.73.: Influence of the total feedback strength: Maps of the dynamics in dependence
of τ1 and τ2 for (a) K1 = K2 = 0.025 and (b) K1 = K2 = 0.1. The feedback delay times are
plotted in units of the period for K = 0, T0,S = 1.014. The colour code indicates the number
of pulses in the laser cavity and the type of dynamics that are exhibited. White indicates
fundamental mode-locking (FML), purples indicate fundamental mode-locking with feedback
induced pulses, greens indicate complex dynamics (in this case quasi-periodic) with 2-5 pulses
in the laser cavity (CD2-CD5) and blues indicate harmonic mode-locking (HML). Parameters:
all other parameters as in Table 2.1.

Influence of the total feedback strength

The dependence of the solutions on the total feedback strength is similar to the
single feedback cavity case. For low feedback strengths the system exhibits only
periodic dynamics with the fundamental periodicity of the laser cavity and, de-
pending on the delay times, feedback induced satellite pulses can be present. If
the feedback strengths are increased the system can exhibit quasi-periodic dynam-
ics or harmonic mode-locking. Figure 3.73a-b shows maps of the dynamics for
K1 = K2 = 0.025 and K1 = K2 = 0.1, respectively. In Fig. 3.73b quasi-periodic
dynamics and harmonic mode-locking occur along τ1 = τ2, but no where else in
the map. This can be understood by considering that the onset of such dynamics
occurs when the fed-back pulses are large enough to cause gain competition with
the main pulse in the laser cavity. When the pulses from the two feedback cavities
are synchronised then the pulses which are fed-back into the laser cavity are larger
than if they enter individually. Therefore, with dual cavity feedback the onset of
quasi-periodic dynamics and harmonic mode-locking depends strongly on the com-
bination of the delay times. If the total feedback strength is increased further then
quasi-periodic dynamics appear first at resonant delay values where p1 and p2 have
a low common multiple.

The presence of a second feedback cavity can also have a stabilising effect on
the dynamics. In Fig. 3.74a-b a time trace and a phase-space portrait projected
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Figure 3.74.: (a)-(b) Time traces and phase space portraits of the electric field amplitude |E|
for single cavity feedback, with τ = 0.325T0,S and K = 0.2. (c)-(d) Time traces and phase
space portraits of the electric field amplitude |E| for dual cavity feedback, with τ1 = T0,S ,
τ2 = 0.325T0,S and K1 = K2 = 0.2. The phase space portraits, (b) and (d), show the dynamics
projected on to the G − |E| plane. Parameters: all other parameters as in Table 2.1.

onto the |E|-G plane are shown for feedback from a single external cavity with
K = 0.2 and τ = 0.325T0,S . Under these feedback conditions the system exhibits
quasi-periodic dynamics with three competing pulse trains. If a second feedback
cavity is added, with the same feedback strength, but with the delay time chosen
resonant with T0,S , then periodic dynamics can be stabilised. Figure 3.74c-d shows
the corresponding results for this feedback scenario. Due to the added resonant
feedback, the main pulse effectively has reduced losses, meaning that the pulse
which is coupled in non-resonantly is no longer large enough to cause gain compe-
tition. Instead, because the losses are reduced, the gain is now sufficient to sustain
multiple pulses, but these have unequal heights.

Long delay regime

So far we have concentrated on the short delay regime. For increasing feedback
delay times there are again similarities with the single feedback cavity case; the
main and higher-order locking regions become wider and regions of multi-stability
between single and multi-pulse dynamics develop. This can be seen in Fig. 3.75a-b,
in which maps of the dynamics are shown for τ1 ≈ 100, τ2 ≈ 100 and K1 = K2 =
0.05. These maps are obtain for (a) up- and (b) down-sweeps in τ2. The regions
where different solutions are found for the two sweep directions are indicated by
the hatching. The grey lines are resonance lines defined by Eq. (3.25). The lines
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3.4. Dynamics induced by feedback from two external cavities

Figure 3.75.: Long delay regime: Map of the dynamics in dependence of τ1 and τ2 obtained for
(a,c) up- and (b,d) down-sweeps in τ2. For (c)-(d) τ1 is in the intermediate delay regime. The
feedback delay times are plotted in units of the period for K = 0, T0,S = 1.014. The colour code
indicates the number of pulses in the laser cavity and the type of dynamics that are exhibited.
White indicates fundamental mode-locking (FML), purples indicate fundamental mode-locking
with feedback induced pulses. Parameters: all other parameters as in Table 2.1.

for which resonance features are present are the same as those in Fig. 3.68, but
for higher values of l. The main resonance locking regions (white regions) have a
long ((l, ±1, ∓1) lines) and a short axis ((l, 1, 1) lines). The width along the long
axis is greater because in this direction pulses from both feedback cavities either
arrive too early or too late and the system can adapt its period in the appropriate
direction for locking to occur. However, along the short axis the pulses from one
cavity arrive too early and from the other too late, meaning that synchronisation
cannot occur when the delays deviate much in this direction [JAU16].

Over small feedback delay ranges the dynamics appear to have a T0,K periodicity
in τ1 and τ2. However comparing the maps in Figs. 3.68 and 3.75 it is evident that
the dynamics change over larger delay ranges. This is a consequence of the variation
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Figure 3.76.: Period of the mode-locked laser output in dependence of the feedback phases C1 and
C2. Parameters: τ1 = τ2 = 0, K1 = K2 = 0.05, all other parameters as in Table 2.1.

in the period of the solutions between main resonances. As was described for the
single feedback case in Section 3.3.4, periodic solutions repeat for feedback delay
times which are increased by integer multiples of the period. Due to the difference
in the period of different solutions, they can move further apart in τ1-τ2 space as
the delays are increased. For example, if two solutions have periods differing by
ΔT̃0 then their separation in τ1-τ2 space grows as nΔT̃0 for integer n. This leads
to a deformation of the locking regions when the two feedback delay times are very
different, as is shown in Fig. 3.75c-d, where τ1 ≈ 10 and τ2 ≈ 100.

Aspects of the delay dependence of dynamics which have been predicted in this
section have been observed experimentally. This is shown in Subsection 4.5.3, where
a comparison between simulation results and experimental results for a passively
mode-locked laser subject to dual-cavity feedback is presented.

Feedback phase dependence

The results on dual cavity feedback, which have been presented thus far, have been
obtained for C1 = C2 = 0. For single cavity feedback we know that as C is varied
the lasing modes shift with respect to the center of the spectral filter such that
destructive interference between the pulses in the laser and feedback cavities is
minimised (see Section 3.3.1). With dual cavity feedback a stronger dependence
on the feedback phases can be expected, since the lasing modes must be resonant
with both external cavities if destructive interference is to be minimised.

In Fig. 3.76 the phase dependence is shown for τ1 = τ2 = 0 and K1 = K2 = 0.05.
Depicted is the variation of the period that arises due to the change in the non-
resonant losses as the phases are varied. In this example the trends are the same
as in the single feedback cavity case, i.e. the feedback phases only influence the
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Figure 3.77.: Numerical bifurcation diagrams showing the C1 dependence of the mode-locked laser
output for C2 = 0. Plotted in blue (red) are electric field maxima |E|max for an up-sweep (down-
sweep) in the initial conditions. In (b), (d) and (f) the phases are shifted into the range −π to π.
Parameters: K1 = K2 = 0.05, (a)-(b) τ1 = τ2 = 10T0,K , (c)-(d) τ1 = 100T0,K and τ2 = 10T0,K ,
(e)-(f) τ1 = τ2 = 100T0,K , all other parameters as in Table 2.1.

total non-resonant losses because the delay times are zero. Because the feedback
strengths are low, there is no qualitative dependence on the feedback phases in this
example and the fundamentally mode-locked solution remains stable for all C1 and
C2 values.

For dual cavity feedback, in contrast to the single feedback cavity case, the
influence of the feedback phases is not always reduced when the feedback delay
times are long. The behaviour is dependent on whether the feedback phases and
feedback delay times are equal. If τ1 = τ2 and C1 = C2, then the system reduces to
the single feedback cavity case and the influence of the feedback phases is reduced
for longer delay times. However, if τ1 = τ2 but C1 
= C2, then the phase dependence
does not decrease as the delay lengths are increased. This can be seen by comparing
subplots (a) and (e) in Fig. 3.77, which shows results of sweeps in C1 for C2 = 0.
For Fig. 3.77a τ1 = τ2 = 10T0,K and for Fig. 3.77e τ1 = τ2 = 100T0,K . Despite the
difference in the delay lengths, the pulse heights show the same degree of variation
over a 2π window in C1. The reason that the influence of the feedback phases is not
reduced for longer feedback delay times when τ1 and τ2 are equal is that, although
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Figure 3.78.: Numerical bifurcation diagrams showing the C1 dependence of the mode-locked laser
output for C2 = π. Plotted in blue (red) are electric field maxima |E|max for an up-sweep
(down-sweep) in the initial conditions. In (b), (d) and (f) the phases are shifted into the range
−π to π. Parameters: K1 = K2 = 0.05, (a)-(b) τ1 = τ2 = 10T0,K , (c)-(d) τ1 = 100T0,K and
τ2 = 10T0,K , (e)-(f) τ1 = τ2 = 100T0,K , all other parameters as in Table 2.1.

shifts in the frequency of the lasing modes can partially compensate for the phase
shift introduced by C1 and C2, the phase difference between the feedback cavities
is fixed. This means that no matter what the shift of the lasing modes is, the phase
difference between the laser cavity and one of the feedback cavities will always be
at least |C1 − C2|, independent of the length of τ1 = τ2. The same trend can be
seen in Fig. 3.78 which shows results of sweeps in C1 for C2 = π.

When τ1 
= τ2, then the phase difference that arises due to shifts in the lasing
modes is different for the two feedback cavities, i.e. Δφ1 = ωτ1 and Δφ2 = ωτ2.
Therefore, depending on the delay and feedback phase configurations, the system
can adapt to effectively reduce the destructive interference between the pulses in
the laser and feedback cavities. Examples of this are depicted in Fig. 3.77c and
Fig. 3.78c, for which τ1 = 100T0,K and τ2 = 10T0,K . In both of these examples
tuning C1 has a smaller influence on the amplitude of the pulses than for the
τ1 = τ2 = 10T0,K and τ1 = τ2 = 100T0,K cases.

For the experimental implementation of a dual cavity feedback setup, the sen-
sitivity of the system to the feedback phases is problematic, since to is difficult
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Figure 3.79.: Influence of amplitude-phase coupling: Maps of the dynamics in dependence
of τ1 and τ2 with αg = 2 and αq = 1.5. The feedback delay time is plotted in units of the
period for K = 0, T0,S = 1.0102. The colour code indicates the number of pulses in the laser
cavity and the type of dynamics that are exhibited. White indicates fundamental mode-locking
(FML), purples indicate fundamental mode-locking with feedback induced pulses, greens indicate
complex dynamics (quasi-periodic and chaotic) with 2-5 pulses in the laser cavity (CD2-CD5),
blues indicate harmonic mode-locking (HML) and black indicates non-periodic (NP) dynamics
that do not fall into the previous categories. The grey lines correspond to the resonance lines
defined by Eq. (3.25). Parameters: all other parameters as in Table 2.1.

to set the feedback phases. There have however been experimental realisations
of such setups [HAJ12, JAU16, NIK16]. The comparison with experimental re-
sults in Subsection 4.5.3, shows that despite the phase sensitivity, it is possible to
experimentally obtain mode-locked dynamics over a range of feedback delay times.

Influence of amplitude-phase coupling

As for single cavity feedback, there are two factors that influence the feedback-
induced dynamics when amplitude-phase coupling is non-zero. The first is the
feedback delay and feedback strength dependent phase difference between the laser
and feedback cavities, which was discussed in Subsection 3.3.1. The second is the
increased phase sensitivity due to the chirp of the pulses. Figure 3.79 shows an
example of the τ1-τ2 dependent dynamics for αg = 2 and αq = 1.5. Comparing this
figure with Fig. 3.68, the resonance structure is qualitatively the same as in the
zero α-factor case. The delay times for which quasi-periodic or chaotic dynamics
are exhibited coincide with the single feedback cavity case (see Fig. 3.49).

111



3. Mode-locked laser dynamics

Figure 3.80.: Period of the fundamentally mode-locked single-pulse solutions in the τ1-τ2 plane for
K1 = K2 = 0.05. The feedback delay time is plotted in units of the period for K = 0, T0,S =
1.014. For the regions exhibiting multi-pulse dynamics, the colour code is as in Fig. 3.75. The
dashed black and white curve indicates the solutions that are defined by Eq. (3.26). Parameters:
all other parameters as in Table 2.1.

3.4.2. Frequency pulling

In this section we shall focus on the main-resonance regions and compare the fre-
quency pulling in the dual feedback case with the single feedback cavity case. The
results presented here are for the case C1 = C2 = 0.

Within the main-resonance locking regions there is a set of solutions that are
identical to the solutions for single cavity feedback with the same total feedback
strength. This set of solutions can be defined by the solutions in the zeroth-main-
resonance locking range for single cavity feedback. As previously defined, we let τ0
be a delay offset from zero, within the locking range of the zeroth main resonance,
and T0 the period of the corresponding solution (see Section 3.3.4). Then, in the
dual feedback case the same solutions are found for

τ1 = τ0 + n1T0 and τ2 = τ0 + n2T0, (3.26)

for integer n1 and n2, if K = K1 + K2. These solutions are the same in the single
and dual feedback cases because regardless of the path taken, the same pulse is
coupled into the laser cavity each period.

Low feedback strength regime

In Fig. 3.80 the main resonance region for τ1 = 10T0,K and τ1 = 100T0,K is shown.
The single-pulse region is colour coded according to the period of the solutions.
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3.4. Dynamics induced by feedback from two external cavities

Outside the single-pulse region the colour code indicates the number of feedback-
induced satellite pulses, as in Fig. 3.75. The black and white dashed line is defined
by Eq. (3.26), i.e. this is the set of solutions that are identical to those in the main-
resonance locking regions of the system with feedback from a single external cavity.
In the low feedback strength regime the solutions along this line remain stable as
n1 and n2 are increased and the maximum frequency pulling range is given by the
solutions at either end of this line, i.e. the solutions corresponding to T min

0 and
T max

0 as defined for Eqs. (3.17)-(3.18). This is also shown in Fig. 3.81, where the
second delay time has been increased to n2 = 300. In Fig. 3.81 results are shown for
up- and down-sweeps in τ2 and for various feedback strength combinations. In each
case the total feedback strength is kept the same but the contribution from the two
cavities is varied. Despite the change in the relative feedback strengths from the two
cavities the locked solutions defined by Eq. (3.26) are the same. This is because
the contributions from the feedback cavities are perfectly synchronised, making
them indistinguishable from the single-cavity feedback case with K = K1 + K2.
Therefore, in the low feedback strength regime the maximum frequency pulling
range is not influence by diverting some of the out-coupled light into a second
feedback cavity. However, the addition of a second feedback cavity can lift the
multistability between fundamentally mode-locked solutions which are locked to
neighbouring main resonances. This can be seen in Fig. 3.81. Projected onto the
τ2 axis the locked solutions defined by the white and black dashed line overlapped,
i.e. if K2 = K and K1 = 0 there would be regions of multistability between these
solutions. However, with part of the light also coupled into the second feedback
cavity, the requirement that τ1 = τ0 + n1T0 and τ2 = τ0 + n2T0 are both fulfilled
means that there is no longer multistability between these solutions when n1 
= n2.
This can be advantageous for experiments as it reduces the possibility of jumping
between different solutions. There are however still regions of bistability with
multi-pulse solutions, as indicated by the hatched regions in Fig. 3.81.

Intermediate feedback strength regime

In the intermediate feedback strength regime solutions also repeat according to
Eq. (3.26). However, in this case the stability of the solutions changes in depen-
dence of n1 and n2. This is because the locking regions are bounded by torus
bifurcations, as was shown for single cavity feedback, and as n increases the torus
bifurcations occur at smaller |τ0| values (see Section 3.3.4). If the total feedback
strength is kept the same then the addition of a second shorter feedback cavity can
increase the range of stable locked solutions. This is demonstrated in Fig. 3.82,
where the locking range is shown as a function of τ0 for various ratios of the feed-
back strength with τ1 = 300T0,K and τ2 = T0,K . The feedback strength ratio
is given by k, which is defined as k = K1/ (K1 + K2), i.e. K1 = kKTOT and
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3. Mode-locked laser dynamics

Figure 3.81.: Period of the fundamentally mode-locked single-pulse solutions in the τ1-τ2 plane for
up- (a,c,e) and down-sweeps (b,d,f) in τ2, with feedback strengths as indicated in the figure. The
feedback delay time is plotted in units of the period for K = 0, T0,S = 1.014. For the regions
exhibiting multi-pulse dynamics, the colour code is as in Fig. 3.75 and the hatching indicates
regions where different solutions were obtained in the up- and down-sweeps. The dashed black
and white curve indicates the solutions that are defined by Eq. (3.26). Parameters: all other
parameters as in Table 2.1.

K2 = (1 − k) KTOT with KTOT = K1 + K2. The results are obtained by numeri-
cally integrating the DDE system (Eq. (3.20) and Eqs. (2.43)-(2.44)), starting with
initial conditions given by the solutions in the locking range for τ1 = τ2 = T0,K and
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Figure 3.82.: Intermediate feedback strength regime: Locking ranges for various feedback
strength ratios k, with K1 = 0.2k, K2 = 0.2 (1 − k), τ1 = 300T0,K and τ2 = T0,K . Plotted in
black is the locking range for τ1 = τ2 = T0,K . Parameters: all other parameters as in Table 2.1.

then slightly perturbing these solutions. Figure 3.82 shows that even for relatively
weak feedback from a second short cavity (for example k = 0.75) the locking range
can be significantly increased. Since the locking ranges (in terms of τ0) appear
to get increasingly smaller for longer delay times, the influence of adding a sec-
ond feedback cavity which is relatively short, should have an increasingly greater
influence on the stability of solutions as the length of the first feedback cavity is
increased.
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3.5. Summary

In this chapter we have investigated the dynamics of a passively mode-locked semi-
conductor laser. We have first performed an analysis of the bifurcations of the
solitary laser, then we have studied the influence on the dynamics of optical feed-
back from one and two external cavities.

A passively mode-locked semiconductor laser can exhibit a range of dynamics
depending on the operating conditions. At low pump currents there is a regime
of Q-switched mode-locking in which the amplitude of pulses is modulated by a
slow frequency. This regime is followed by fundamental mode-locking. In the
fundamentally mode-locked regime a periodic pulse train is produced, the period
of which is determined primarily by the laser cavity roundtrip time. The pulses are
sustained due to a positive net gain window which arises due to the difference in
saturation energies of the gain and absorber sections. At higher pump currents the
increased unsaturated gain can cause harmonic mode-locking to become stable. The
parameter ranges for which periodic dynamics are exhibited, are strongly influenced
by the amplitude-phase coupling. This is due to the chirp which is introduced to
the pulses by the presence of amplitude-phase coupling and leads to a decrease in
the current range for stable mode-locking.

Following the analysis of the dynamics of the solitary laser, we have studied
the influence of adding time-delayed optical feedback from one external cavity.
Here we have concentrated on pump currents at which the solitary mode-locked
laser exhibits fundamental mode-locking. Since the dynamics are periodic in this
current regime the influence of the feedback depends strongly on the ratio of the
feedback delay time to the period. When choosing feedback delay times which are
resonant to the period of the fundamentally mode-locked solution, the feedback
term mainly influences the non-resonant losses. Whether these are increased or
decreased depends on the phase with which the light is coupled back into the laser
cavity. If the feedback phase is zero then the losses are reduced which leads to
an increase in the pulse energy in the laser cavity. On the other hand, if the
light is coupled back destructively then the losses are increased, which, depending
on the feedback strength, can lead to the periodic mode-locked dynamics being
destroyed. When the feedback delay time is not an integer multiple of the mode-
locking period then various dynamics can be induced. At low feedback strengths
the feedback can induce satellite pulses, which in contrast to the main pulse, are
sustained by the continual re-injection of pulses from the feedback cavity. For
intermediate feedback strengths, pulses which are coupled in from the feedback
cavity can cause competition for the gain in the laser cavity, leading to quasi-
periodic dynamics in which multiple pulse exist in the laser cavity, the heights of
which vary as the net gain window is transferred between them. When the feedback
strength is sufficiently large, then the gain competition ceases and multiple pulses
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can be sustained. Such feedback induced harmonic mode-locking has been observed
experimentally and is of interest as a means of achieving higher repetition rates.

Due to the periodic nature of the mode-locked solutions, solutions reappear at
feedback delay times which are increased by integer multiples of the period. This
means that the same dynamics are exhibited for all main resonant feedback delay
times. Surrounding each of the main resonances, there is a locking range in which
the period of the system adapts to changes in the feedback delay times such that
fundamentally mode-locked single-pulse dynamics are exhibited. This means that
the repetition rate can be externally controlled. However, this is also accompa-
nied by a broadening of the pulses. Since the solutions in the locking regions are
also periodic, these also repeat at all delay times which are increased by integer
multiples of their respective periods. Due to the difference in the periods within
the locking regions, these regions become wider for higher main resonances. For
sufficiently long delay times, this leads to regions of multistability between funda-
mentally mode-locked solutions which are locked to different main resonances. Via
an analysis of the bifurcations of the mode-locked solutions we were able to identify
two distinct locking regimes. For low feedback strengths the locking regions of the
main resonances are bounded by solutions corresponding to minima and maxima
in the periods and all solutions within the locking regions remain stable as they are
repeated at higher main resonances. Whereas for intermediate feedback strengths
the locking regions are bounded by torus bifurcations, which shift to solutions with
smaller changes in the period as the delay time is increased. This means that
the frequency pulling range decreases for longer delay times in the intermediate
feedback strength regime.

The influence of the feedback phase is very important since this parameter cannot
be easily set to a particular value in an experiment. As with single-mode lasers
subject to feedback, for short delay lengths the dynamics can be strongly influenced
by the feedback phase, but as the delay times are increased the impact of this
parameter on the dynamics reduces. This is because smaller shifts in the frequency
of the lasing modes are required to compensate for the feedback phase when the
delay time is longer. For long delay times, this is another source of multistability.

After studying the dynamics induced by one feedback cavity we have investigated
the influence of adding a second cavity. For the second feedback cavity the same
resonance conditions apply as for the first. Therefore, for fundamentally mode-
locked dynamics to be exhibited both delay times must be close to integer multiples
of the period and outside the main resonance locking regions multi-pulse dynamics
are exhibited. When both feedback delays are integer multiples of the period, plus
the same offset from the zeroth main resonances, then the dynamics are the same
as in the single feedback cavity case with the same total feedback strength. The
difference compared with the single feedback case is that the multistability between
solutions locked to different main resonances, which arises for longer delay times,
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can be lifted due to the added control parameter, i.e. the second delay time. For
the intermediate feedback strength regime, the second feedback cavity can also
affect the stability of the solutions. Meaning that, by diverting a portion of the
out-coupled light into a shorter feedback cavity, solutions that would otherwise be
unstable with one long feedback cavity can be stabilised. One disadvantage of dual
cavity feedback is that the dynamics are more sensitive to the feedback phases,
since if these are different for the two external cavities, shifts in the lasing modes
cannot generally compensate for both.

For both single and dual-cavity feedback, the dependence on the feedback pa-
rameters is qualitatively the same if amplitude-phase coupling is included, i.e. the
same sort of resonance conditions apply. However, with amplitude-phase coupling
the system is more sensitive to the feedback phases and there are large parameter
regions of quasi-periodic and chaotic dynamics.

To conclude, time-delayed optical feedback can be used to tailor the dynamics
exhibited by a passively mode-locked laser. This includes tuning the repetition rate
of fundamentally mode-locked solutions, inducing satellite pulses and generating
quasi-periodic or chaotic dynamics. For long delay times there is a large degree
of multistability between different solutions. This multistability can partially be
reduced by adding a second feedback cavity. Furthermore, the second feedback
cavity can be used to influence the stability of solutions within the main resonance
locking regions.
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Chapter 4
Timing jitter of the mode-locked laser

4.1. Introduction

The timing jitter is a measure of temporal fluctuations of the laser output which
arises due to noise sources which are intrinsic to the laser. For passively mode-
locked lasers these fluctuations can lead to significant drifts in the pulse positions
due to the absence to an external reference clock, as was discussed in the intro-
ductory chapter. Since most applications of mode-locked lasers require very steady
pulse streams it is important to understand how the operating conditions of the
laser influence the timing jitter and to find methods of reducing it. In this chap-
ter we therefore investigate the timing jitter of the solitary passively mode-locked
laser, as well as its behaviour under the influence of optical feedback.

Via comparison of experimentally measured power spectra with theoretically ex-
pected frequency dependencies for different noise sources, the authors of [HAU93a]
have shown that contributions to the timing jitter are dominated by spontaneous
emission noise. In this chapter we therefore include a Gaussian white noise term in
the equation for the electric field (Eq. (2.42) with Rsp 
= 0) to model spontaneous
emission noise. The influence of spontaneous emission on the carrier density is not
included, as this is negligible in comparison to the total carrier density. In addi-
tion to fluctuations in the pulse positions, the inclusion of spontaneous emission
noise also results in fluctuations in the pulse amplitudes, the phase of the electric
field and the optical frequencies. We focus on the timing fluctuations, as for many
applications it is the relative pulse positions which are of importance and not the
absolute frequencies [ELI97].

There have been a number of experimental studies on the influence of optical
feedback on the timing jitter of passively mode-locked semiconductor lasers [SOL93,
BRE10, LIN10e, ARS13]. These have demonstrated that optical feedback can lead
to a reduction in the timing jitter, and that longer feedback cavities generally lead
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to a greater improvement. There have also been previous theoretical studies on this
topic, which have shown that longer feedback cavities lead to a greater reduction in
the timing jitter [OTT14, SIM14]. However this has so far only been demonstrated
for isolated feedback delay regimes and the mechanism for the reduction in the
timing jitter has not been clearly elucidated. We address these issues in this chapter
by presenting systematic study for the feedback dependence over a large range of
feedback delay times.

This chapter will be structured as follows. In the next section methods of cal-
culating the timing jitter will be introduced. We will firstly introduce two time-
domain methods in Subsections 4.2.1 and 4.2.2 which allow the timing jitter to be
calculated directly. The first method is purely numerical and involves the integra-
tion of the stochastic DDE system (Eqs. (2.42)-(2.44) with Rsp 
= 0) in order to
perform statistics on the pulse positions, while the second method is semi-analytic
and allows the timing jitter to be determined from the dynamics of the unper-
turbed DDE system (Eqs. (2.42)-(2.44) with Rsp = 0). In Subsection 4.2.3 we
shall then discuss various measures of the timing jitter which are commonly used
experimentally and are based on extracting information on the timing jitter from
the power spectral density. Under certain limits the two time domain methods can
be directly related to the frequency domain timing jitter measures. In Section 4.3
the time domain methods will then be employed to study the influence of various
key parameters on the timing jitter of the solitary laser. The influence of optical
feedback, from one and two external cavities, will be presented in Sections 4.4 and
4.5.

Parts of this chapter have been published in [OTT14b, JAU15, NIK16].

4.2. Calculating the timing jitter

4.2.1. Long-term timing jitter

The timing jitter is a measure of how much the temporal positions of pulses deviate
from an ideal jitter-free pulse train. Numerically this can be calculated directly
from the pulse positions in the time domain. From the numerically obtained time
traces the pulse positions can be defined in several ways. One approach is to use
the time at which the pulse reaches its maximum value. However, this definition
of the pulse position can be susceptible to fluctuations in the pulse amplitude.
A more robust method is to use the "center of mass" positions of the pulses. In
[PAS04, MUL06] this is done by weighting the time with the pulse intensity. We
shall use the positive net gain window instead of the pulse intensity. The reason
for this is, as discussed in previous chapter, in the presence of feedback the mode-
locked laser can exhibit periodic dynamics with multiple feedback induced pulses
of varying heights. If one were to use the pulse intensity to define the positions
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then the pulse detection algorithm would need to be able to distinguish between
the various pulses within one period. However, since the feedback induced satellite
pulses do not coincide with a positive net gain window, such a complication does
not arise if the positive net gain window is used to define the positions of the main
pulses.1

The timing positions of the pulses are defined as follows [OTT14, OTT14b].
For the time interval within the mth pulse, in which the net gain G = G − Q −
| ln

(
κ (1 + K)2

)
| exceeds a threshold value Gthres, we define a probability density

ρm (t) ≡ G2 (t)
Gm

, with Gm ≡
∫ tm,e

tm,b

G2 (t) dt, (4.1)

where tm,b (tm,e) is the time point at which the leading (trailing) edge of the mth

pulse first exceeds (falls below) Gthres, i.e. G (tm,b) > Gthres (G (tm,e) < Gthres). The
timing position of the mth main pulse is then given by

tm ≡
∫ tm,e

tm,b

ρm (t) tdt. (4.2)

For symmetric pulses, apart from noise fluctuations, tm would coincide with the
peak of the pulse.

An example of a time trace of the electric field amplitude |E| (blue) and the net
gain G (black) is shown in Fig. 4.1. The level for Gthres is indicated by the dashed
black line and the positive net-gain windows above this line, which are used to
define the pulse positions, are shaded in grey. The time trace of |E| is much noisier
than that of G. This is because the noise term is only added to the equation for the
electric field and therefore fluctuations only enter the gain and absorber equations
via |E|.

The timing deviation of the mth pulse position from the ideal jitter-free case is
defined as

Δtm ≡ tm − mTC , (4.3)

where TC is the interspike-interval time for the ideal pulse train. In the case
of active or hybrid mode-locking TC is given by the external modulation period,

1Using this approach to define the pulse positions we neglect how the satellite pulses may deviate
from their ideal positions. However, since the positions of the satellite pulses are coupled to the
positions of the main pulses they cannot drift with respect to the main pulses. The distance
to the main pulse could vary slightly between roundtrips, however this will mostly be due to
the difference in the deviation of the main pulse, from the ideal case, at time t compared with
time t − τ , rather than due to spontaneous emission noise emitted near the satellite pulses.
This is because the satellite pulses are sustained by continual re-injection of pulses from the
feedback cavity rather than by gain within the laser. The satellite pulses should therefore not
have a large influence on the overall timing jitter. This is confirmed by the excellent agreement
we find with the semi-analytic method which uses the entire profile of the solution over one
period.
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Figure 4.1.: Time traces of the electric field amplitude |E| (blue) and the net gain G = G − Q −
| ln

(
κ (1 + K)2)

| (black) in the presence of noise. Positive net gain windows are shaded in grey.
Parameters: τ = 0.5, K = 0.15, Rsp = 0.63, all other parameters as in Table 2.1.

however since a passively mode-locked laser has no external reference clock we use
the average interspike-interval time to define TC . The interspike-interval times
(between main pulses) are given by

TISI,m = tm − tm−1. (4.4)

These are averaged over M laser cavity roundtrips and N noise realisations to give

TC ≡
〈 1

M
(tM − t0)

〉
N

, (4.5)

where 〈 · 〉N denotes the average over the noise realisations. For each noise realisa-
tion we now have a set of timing fluctuations {Δtm}M

m=1 for the first to the M th

main pulse. In Fig. 4.2 (a) examples of the timing fluctuations in dependence of the
number of laser cavity roundtrips m is depicted for a number of noise realisations.
The mean 〈Δtm〉N for N = 200 noise realisations is indicated by the dashed black
line. Figure. 4.2 (b) shows the variance,

Var (Δtm) =
〈
Δt2

m

〉
N

− 〈
Δtm

〉2
N

, (4.6)

calculated for 200 noise realisations. Here it is evident that the timing fluctua-
tions behave similar to a random walk, i.e. the mean is zero and the variance
grows linearly with the roundtrip number [GAR02]. However, a true random walk
is composed of statistically independent increments, which is not the case for the
mode-locked laser. Due to the finite recovery times of the gain and absorber dy-
namics, and due to the internal delay time T , the interspike-interval times TISI,m

are correlated from one roundtrip to the next. Therefore the timing fluctuations
can only be modelled by a random walk for roundtrip numbers that are much
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Figure 4.2.: (a) Timing fluctuations Δtm as a function of the number of roundtrips m for various
noise realisations (coloured lines). The dashed black line shows the mean 〈Δtm〉N calculated for
N = 200 noise realisations. (After [OTT14]) (b) Variance of the timing fluctuations calculated
for 200 noise realisations. Parameters: Rsp = 0.44, all other parameters as in Table 2.1.
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Figure 4.3.: σΔt (m) (defined in Eq. (4.7)) plotted as a function of the number of laser cavity
roundtrips for the solitary mode-locked laser (MLL) (blue) and the mode-locked laser with
resonant feedback delay times of τ = 100T0,S (green) and τ = 1000T0,S (red) where K = 0.1.
N = 100 noise realisations were used for these calculations. Parameters: Rsp = 0.44, all other
parameters as in Table 2.1.

larger than any correlation times within the system. When the laser is subject to
feedback, then the positions are correlated on time scales given by the feedback
delay times, meaning that large roundtrip numbers are required for the statistics
to resemble that of a random walk. This is illustrated in Fig. 4.3 which shows how
the variance scales with the roundtrip number for the solitary laser (blue) and for
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Figure 4.4.: Timing fluctuations Δtm as a function of the number of roundtrips n for (a) τ = 100T0

and (b) τ = 1000T0. Parameters: K = 0.1, Rsp = 0.44, all other parameters as in Table 2.1

the laser subject to resonant feedback with delay times of τ = 100T0,S (green) and
τ = 1000T0,S (red). The quantity

σΔt (m) =

√
Var (Δtm)

m
(4.7)

is plotted, which for a statistical process behaving like a random walk should be
constant in m. For the solitary laser case (blue) this quantity converges to a
constant value, apart from statistical fluctuations, after only a few roundtrips.
For τ = 100T0,S (green) a constant value is only reached after approximately 2000
roundtrips. In the τ = 1000T0,S (red) case the long correlation times introduced by
the feedback lead to periodic variations in the variance, and σΔt (m) only converges
to a constant value after a roundtrip number on the order of 106 (not depicted
here). This behaviour for long feedback delay times is caused by noise-induced
modulations of the timing fluctuations that arise due to the excitation of weakly
damped eigenmodes of the system. Figure 4.4 shows examples of such modulations
of Δtm. For τ = 100T0 (Fig. 4.4a) the oscillations are not pronounced, however, for
τ = 1000T0 (Fig. 4.4b) the oscillations in Δtm are very defined. The noise-induced
modulation of the dynamics will be discussed further in Chapter 5.

In this chapter we will mainly restrict our analysis to feedback delay times for
which the noise-induced modulations are sufficiently small that the variance of the
timing fluctuations grows linearly with the roundtrip number for m of the order of
104. For such cases we define the long-term timing jitter [LEE02c] as

σlt ≡
√

Var (Δtm)
m

(4.8)
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4.2. Calculating the timing jitter

for large m, i.e. the value that σΔt (m) converges to for large m. This quantity
is a measure of the fluctuation of pulse arrival times on long time scales. Any
fluctuations on short times scales cannot be described by this quantity, i.e. the
statistics on long time scales are equivalent to those of a true random walk with a
diffusion constant of σ2

lt/2, but not on short time scales.
Using Eq. (4.7) another measure of the timing jitter can also be defined. For

m = 1 Eq. (4.7) becomes

σpj ≡
√

Var (Δt1), (4.9)

which gives the standard deviation of the interspike interval times and is referred
to as the period jitter [LEE02c] or the pulse-to-pulse jitter [KEF08]. For a
true random walk σlt and σpj are equivalent.

4.2.2. Semi-analytic timing jitter

Fully numerical calculations of the timing jitter, such as the long-term timing jitter
calculation which was introduced in the previous subsection, require the simula-
tion of many noise realisations and can therefore be computationally very expensive.
Additionally, only limited insight into the physical mechanisms influencing the tim-
ing jitter can be gained. In this section we will introduce a semi-analytic method of
calculating the timing jitter, which has the advantages that it is based on the dy-
namics of the unperturbed system and that it provides information of the influence
of feedback on the timing jitter. The main idea of the semi-analytic method is to
treat the spontaneous emission noise as a perturbation to the linearised system and
to project the perturbation on to the neutral Floquet mode which corresponds to
the time-shift invariance of the unperturbed system. One can then derive an expres-
sion for the timing jitter which is equivalent to Eq. (4.8) under certain conditions.
This semi-analytic method was first proposed in [PIM14b]. We have generalised
this method to the mode-locked laser system with optical feedback in [JAU15].

There have been earlier theoretical studies on the influence of noise on the propa-
gation of mode-locked pulses which have also used a perturbation theory approach.
Such an analysis was first carried out by Haus, who used a master equation with
secant-shaped solutions to describe the mode-locked pulses [HAU93a]. By linearis-
ing about the mode-locked solution, small perturbations to the secant-shaped pulses
are described by perturbation of the pulse amplitude, timing, phase and frequency.
This master equation approach was used to extensively study the spectral prop-
erties attributed to timing jitter [HAU93a, ELI96, ELI97]. Although the master
equation approach was extended to take carrier dynamics into account [JIA01], its
applicability to semiconductor lasers is still restricted due to the multitude of sim-
plifying assumptions. Furthermore, it cannot be used to describe coupled cavities.
For these reasons, previous theoretical studies of the timing jitter in mode-locked
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4. Timing jitter of the mode-locked laser

semiconductor lasers have been performed by calculating the long-term timing jit-
ter (Eq. (4.8)) or the root-mean-square timing jitter (defined in Eq. (4.37) in the
next section) from direct numerical simulations of travelling wave [ZHU97, MUL06]
and DDE [OTT12a, OTT14b, SIM14] models.

Derivation of the semi-analytic timing jitter

The following derivation has been published in [JAU15] and closely follows the text
therein.

To derive the timing jitter we require the mode-locked solutions to be periodic in
all variables. We therefore modify Eq. (2.42) to include a frequency shift ω, which
accounts for possible offsets between the reference frequency and the nearest lasing
mode, i.e. we make the transformation E → Eeiωt to obtain

dE
dt

= − (γ + iω) E (t) + γR (t − T ) e−i(ΔΩ+ω)T E (t − T ) + Dξ (t)

+γ
N∑

n=1
KneiCnR (t − T − τn) e−i(ΔΩ+ω)(T +τn)E (t − T − τn) , (4.10)

∂G

∂t
= Jg (t) − γgG (t) − e−Q(t)

(
eG(t) − 1

)
|E (t) |2 (4.11)

and
∂Q

∂t
= Jq (t) − γqQ (t) − rse−Q(t)

(
eQ(t) − 1

)
|E (t) |2. (4.12)

The dynamical equations for the gain and losses are unchanged by the transfor-
mation. For convenience we have relabeled D ≡ √

Rsp. R (t) is as defined in
Eq. (2.23).

Let ψ0 (t) = (Re E0 (t) , Im E0 (t) , G0 (t) , Q= (t))T be a stable T0 periodic mode-
locked solution to Eqs. (4.10)-(4.12) for D = 0, where Re E is the real part of
the electric field and Im E the imaginary part. The trajectory of this solution is
represented by the solid black line in the state-space sketch shown in Fig. 4.5. Due
to the symmetries of this system this trajectory also represents all phase-shifted
(here we are referring to the electric field phase) and time-shifted versions of this
solution

ΓϕΠθψ0 (t) =
(
Re(eiϕE0) (t + θ) , Im(eiϕE0) (t + θ) , G0 (t + θ) , Q0 (t + θ)

)T
,

where Γϕ is the matrix of rotation of the E0 plane and Πθ is a time-shift operator,
i.e. Πθψ0 (t) = ψ0 (t + θ). Now let ψ (t) = (Re E (t) , Im E (t) , G (t) , Q (t))T be
a solution to the perturbed system, i.e. Eqs. (4.10)-(4.12) for D 
= 0. If the
perturbation is small, D � 1, then the trajectory of ψ (t) will stay within a distance
of the order D from the trajectory of the family of unperturbed solutions ΓϕΠθψ0.2

2Here we are assuming that large fluctuations have a sufficiently small probability that they can
be neglected over typical observation time spans of the system.
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D
D

Figure 4.5.: Sketch of trajectories in the state-space of the mode-locked laser system. The bold
black line represent the trajectory of the unperturbed mode-locked solution ψ0 and all time and
phase shifts of this solution ΓϕΠθψ0. The blue line represents the trajectory of the perturbed
system for D � 1. The green lines represent codimension 2 surfaces of constant asymptotic
time shift θ and angular phase shift ϕ which are transverse to the trajectory of ψ0. The dashed
black lines are the codimension 2 surfaces defined by Eq. (4.22), which are tangential to the
surfaces of constant asymptotic time and angular phase shift, θ, ϕ = const, at the points where
ψ0 is intersected. Figure modified from [JAU15]. Copyright (2015) by the American Physical
Society.

The difference in the perturbed and unperturbed trajectories causes a time-shift
θ (t) and phase-shift ϕ (t) to accumulate between these solutions, and because the
timing fluctuations are a non-stationary process that can be described by a random
walk, as was shown in the previous section, the variance of θ (t) and ϕ (t) should
grow linearly with time. Here we point out that it is due to the timing fluctuations
being non-stationary that the typical perturbation theory Ansatz that ψ (t) =
ψ0 (t) + δψ (t) and δψ (t) is small does not hold, because δψ (t) can become large
when a sufficient time-shift has accumulated between ψ (t) and ψ0 (t).

The blue curve in Fig. 4.5 represents the trajectory of the perturbed solution and
the blue circle on the curve represents the position of the solution at time t. The
reference unperturbed solution ψ0 (t) is at the position indicated by the black circle
at time t. There are several ways in which one could define the time-shift between
these solutions, since, for example, the perturbed solution could be projected onto
the trajectory of the unperturbed solution in various ways. Here we will make use
of the fact that any solution ψ′ (t) to the unperturbed system (Eqs. (4.10)-(4.12)
with D = 0), which starts in the vicinity of the trajectory of ψ0 (t), will converge to
ΓϕΠθψ0 (t) in the limit t → ∞, where θ and ϕ are constant time- and phase-shifts
with respect to the reference solution. These θ and ϕ values are referred to as
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4. Timing jitter of the mode-locked laser

the asymptotic time- and phase-shifts and their values are dependent on the initial
state of ψ′ (t).3 In the state-space of the system there are surfaces along which
the asymptotic time- and phase-shifts are constant. These are represented by the
green curves in Fig. 4.5. Any solutions to the unperturbed system whose initial
states lie on the same codimension 2 surfaces of constant asymptotic θ and ϕ will
have the same asymptotic θ and ϕ values for all time. However, the asymptotic θ

and ϕ values for the perturbed system will evolve in time and will be defined by
the surfaces of constant asymptotic θ and ϕ that the solution happens to be on
at each point in time, i.e. at each point in time θ (t) and ϕ (t) of the perturbed
solution are given by the asymptotic values the system would converge to if the
perturbation were removed at that time.

The surfaces of constant asymptotic θ and ϕ are highly non-trivial to compute.
However, since the perturbed solution is restricted to a small neighbourhood of
ψ0 (t), the asymptotic time- and phase-shift, and the evolution thereof, can be
approximated using solutions to Eqs. (4.10)-(4.12) linearised about ψ0 (t). The
linearised system is given by

d

dt
δψ (t) = A (t) δψ (t) +

N∑
n=0

Bn
(
t − τ ′

n

)
δψ

(
t − τ ′

n

)
+ Dw(t), (4.13)

where δψ (t) = (Re δE (t) , Im δE (t) , δG (t) , δQ (t))T, w(t) = (ξ1(t), ξ2(t), 0, 0)T, A

and Bn are T0-periodic Jacobi matrices of the linearisation and the delay times are
defined as τ ′

0 = T and τ ′
n = T + τn for n ≥ 1. The Jacobi matrices are given in

Appendix B.
The unperturbed linearised system (Eq. (4.13) with D = 0) has two neutral

modes which correspond to the time-shift and phase-shift invariance of the original
unperturbed system (Eqs. (4.10)-(4.12) with D = 0). These are given by

δψ1(t) =
(
Re Ė0(t), Im Ė0(t), Ġ0(t), Q̇0(t)

)T
(4.14)

and

δψ2(t) =
(

− Im E0(t), Re E0(t), 0, 0
)T

, (4.15)

respectively. At the point of intersection with trajectory of ψ0 (t), these neutral
modes are transverse to the surfaces of constant asymptotic θ and ϕ. Therefore,
assuming that all other Floquet modes are sufficiently damped the asymptotic θ

and ϕ can be approximated by projections onto these neutral modes. The noise
then results in a slow diffusion of θ (t) and ϕ (t) along the neutral modes.

3The state of the system is defined on an interval [−τmax, 0], where τmax is the largest delay time,
i.e. τmax = T + τ for the single feedback cavity system.
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In order to explicitly write out projections of the perturbed solutions onto the
neutral modes, we must first define the bilinear form [HAL66, HAL77]:

[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

M∑
n=1

∫ 0

−τ ′
n

δψ†(t + r + τ ′
n)Bn(t + r)δψ(t + r)dr, (4.16)

where δψ† are solutions to the unperturbed adjoint linear system.
The linear system adjoint to Eq. (4.13), for D = 0, is given by

d

dt
δψ†(t) + δψ†(t)A(t) +

N∑
n=0

δψ†(t + τ ′
n)Bn(t) = 0, (4.17)

where δψ†(t) = (δψ†
1, δψ†

2, δψ†
3, δψ†

4) is a row vector. The derivation of the adjoint
system is shown in Appendix B. Using the bilinear form (Eq. (4.16)), the properly
normalised neutral modes of the unperturbed linear system Eq. (4.13) and the
adjoint linear system Eq. (4.17) fulfill the biorthogonality property

[δψ†
j , δψk] (t) = δj,k. (4.18)

Furthermore, for every solution δψ (t) to the perturbed linear system Eq. (4.13),

d[δψ†, δψ](t)
dt

= Dδψ†(t)w(t). (4.19)

holds at all times, where δ†ψ (t) are solutions to the adjoint system Eq. (4.17) which
is unperturbed. That this relation holds can be seen by substituting the bilinear
form Eq. (4.16) into the left-hand side of Eq. (4.19):

d

dt
[δψ†, δψ](t) =

d

dt

(
δψ†(t)δψ(t) +

∑
n

∫ 0

−τ ′
n

δψ†(s + t + τ ′
n)Bn(s + t)δψ(s + t)ds

)

=
dδψ†(t)

dt
δψ(t) + δψ†(t)

dδψ(t)
dt

+
d

dt

∑
n

∫ t

t−τ ′
n

δψ†(s + τ ′
n)Bn(s)δψ(s)ds

= −
(

δψ†(t)A(t) +
∑

n

δψ†(t + τ ′
n)Bn(t)

)
δψ(t)

+δψ†(t)
(

A(t)δψ(t) +
∑

n

Bn(t − τ ′
n)δψ(t − τ ′

n) + w(t)
)

+
∑

n

(δψ†(t + τ ′
n)Bn(t)δψ(t) − δψ†(t)Bn(t − τ ′

n)δψ(t − τ ′
n))

= D δψ†(t)w(t).

This relation describes the evolution of the noise along different eigendirections
of the unperturbed system. Using this relation one can see, as follows, that the

129



4. Timing jitter of the mode-locked laser

noise has the greatest effect along the neutral modes. We denote the eigenmodes
of Eq. (4.17) as δψ†

λ(t), then the projection of δψ (t) onto δψ†
λ(t) can be written as

[δψ†
λ, δψ](t) = e−λtyλ (t) , (4.20)

where we have used the fact that the characteristic solutions of Eq. (4.13) and
Eq. (4.17) have the form δψλ(t) = eλtpλ(t) and δψ†

λ(t) = e−λtp†
λ(t), respectively,

where pλ(t) and p†
λ(t) are T0-periodic functions and λ is a Floquet exponent of

Eq. (4.13). The noise driven evolution along the eigenmode δψλ(t) is now described
by the function yλ (t). Substituting Eq. (4.20) into Eq. (4.19), the equation of
motion for yλ (t) is

dyλ(t)
dt

= λyλ(t) + Dp†
λ(t)w(t). (4.21)

For the neutral modes λ = 0 and Eq. (4.21) describes a process similar to Brownian
motion, for which the variance grows as D2t, i.e. linearly with time. However, for
all other eigenmodes Re λ < 0, since we are only considering stable solutions to
Eqs. (4.10)-(4.12), in which case Eq. (4.21) describes an Ornstein-Uhlenbeck-type
process which has a bounded variance of the order D2 [GAR02].

We now use the bilinear form (Eq. (4.16)) and the solutions to the adjoint system
(Eq. (4.17)) to define θ (t) and ϕ (t) implicitly for any given state ψ(t + r) (r ∈
[−τ ′

N , 0]) by the formulas

[
δψ†

1, Γ−ϕΠ−θψ − ψ0
]

(t + θ) = 0 (4.22)

and [
δψ†

2, Γ−ϕΠ−θψ − ψ0
]

(t + θ) = 0, (4.23)

where δψ†
i are neutral modes of the unperturbed adjoint linear system. These

equations define a surface, represented by the dashed black lines in Fig. 4.5, which is
tangential to the surface of constant asymptotic θ and ϕ at the point of intersection
with ΓϕΠθψ0 in the state space of the system.

Using the normalised neutral modes of the adjoint system, δψ†
1 (t) and δψ†

2 (t),
and Eqs. (4.22)-(4.23), we can now obtain equations of motion for the time-shift
θ (t) and the phase-shift ϕ (t). To do this the partial derivatives of Eqs. (4.22)-
(4.23), with respect to t, θ, ϕ, must be calculated. The partial derivative with
respect to t is given by

∂

∂t

[
δψ†

i , Γ−ϕΠ−θψ − ψ0
]

(t + θ) = D δψ†
i (t + θ)Γ−ϕw(t) (4.24)
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for i = 1, 2. This expression can be obtained from Eq. (4.19) by considering that
ψ (t) = Γϕψ0 (t + θ) + δψ (t). The partial derivative with respect to θ is calculated
as follows.

∂

∂θ

[
δψ†

i , Γ−ϕΠ−θψ − ψ0
]

(t + θ) =
∂

∂θ

[
δψ†

i (t + θ), Γ−ϕψ(t) − ψ0(t + θ)
]

=
[

∂

∂θ
δψ†

i (t + θ), Γ−ϕψ(t) − ψ0(t + θ)
]

+
[
δψ†

i (t + θ), Γ−ϕ
∂

∂θ
ψ(t) − ∂

∂θ
ψ0(t + θ)

]
.

Now, ∂
∂θ ψ(t) = 0 and from Eq. (4.14) we see ∂

∂θ ψ0(t + θ) = δψ1 (t + θ). Therefore,
neglecting the terms that are proportional to ψ − ΓϕΠθψ0, since they are of the
order of D in the vicinity of the trajectory of ΓϕΠθψ0 (t), the partial derivative of
Eqs. (4.22)-(4.23) with respect to θ is given by

∂

∂θ

[
δψ†

i , Γ−ϕΠ−θψ − ψ0
]

(t + θ) = −
[
δψ†

i , δψ1
]

(t + θ). (4.25)

Similarly one obtains

∂

∂ϕ

[
δψ†

i , Γ−ϕΠ−θψ − ψ0
]

(t + θ) = −
[
δψ†

i , δψ2
]

(t + θ) (4.26)

for the partial derivative with respect to ϕ. The total derivative of Eqs. (4.22)-
(4.23) with respect to time,

( ∂

∂t
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ

) [
δψ†

i , Γ−ϕΠ−θψ − ψ0
]

(t + θ) = 0, (4.27)

can now be expressed in terms of the partial derivatives, Eqs. (4.24), (4.25) and
(4.26). Using this, and the biorthogonality condition Eq. (4.18), the equations for
the evolution of θ (t) and ϕ (t) are obtained. For i = 1 we have

( ∂

∂t
+ θ̇

∂

∂θ
+ ϕ̇

∂

∂ϕ

) [
δψ†

1, Γ−ϕΠ−θψ − ψ0
]

(t + θ)

= D δψ†
1(t + θ)Γ−ϕw(t) − θ̇

[
δψ†

1, δψ1
]

(t + θ) − ϕ̇
[
δψ†

1, δψ2
]

(t + θ)

= D δψ†
1(t + θ)Γ−ϕw(t) − θ̇ = 0,

yielding
θ̇ = D δψ†

1(t + θ)Γ−ϕw(t). (4.28)

Similarly, for i = 2 we obtain

ϕ̇ = D δψ†
2(t + θ)Γ−ϕw(t). (4.29)

The Fokker-Planck equation for the joint probability density p(t, θ, ϕ) of the
stochastic process described by Eqs. (4.28)-(4.29) is given by [GAR02]

∂p

∂t
=

(
1
2

∂2

∂θ2 (d11 p) +
∂2

∂θ∂ϕ
(d12 p) +

1
2

∂2

∂ϕ2 (d22 p)
)

, (4.30)
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with time dependent diffusion coefficients;

d11 = D2((
δψ†

1,1
)2 +

(
δψ†

1,2
)2)

(t + θ), (4.31)

d22 = D2((
δψ†

2,1
)2 +

(
δψ†

2,2
)2)

(t + θ), (4.32)

and
d12 = D2(

δψ†
1,1δψ†

2,1 + δψ†
1,2δψ†

2,2
)
(t + θ), (4.33)

where δψ†
i,k are the components of the 4-dimensional vector-functions δψ†

i . These
diffusion coefficients are periodic with respect to time, however, since the proba-
bility density function p(t, θ, ϕ) changes slowly for D � 1, Eqs. (4.28)-(4.29) and
the corresponding Fokker-Planck equation (Eq. (4.30)) can be averaged over the
period T0 of the functions δψ†

i (t + θ) [KRO91]. The resulting constant diffusion
coefficient of the time averaged Fokker-Planck equation,

d̄11 =
D2

T0

∫ T0

0

(
δψ†

1,1(s)
)2 +

(
δψ†

1,2(s)
)2

ds, (4.34)

can be used to approximate the rate of diffusion of the time-shift θ (t). Using this
diffusion coefficient the variance of the time-shift θ (m), where m is the number of
roundtrips, can be estimated as

Var (θ) = d̄11mT0, (4.35)

where we have assumed that the average period, TC , is approximately equal to
T0. Normalising this by the number of roundtrips, we obtain the semi-analytical
estimate of the timing jitter4:

σlt,s =
√

d̄11T0 = D

√∫ T0

0

(
δψ†

1,1(s)
)2 +

(
δψ†

1,2(s)
)2

ds. (4.36)

As long as other stable eigendirections do not play a significant role, this semi-
analytic timing jitter is equivalent to the long-term timing jitter which was intro-
duced in the previous section.

Comparison with the numerical long-term timing jitter

The semi-analytic timing jitter given by Eq. (4.36) is equivalent to the long-term
jitter defined in Eq. (4.8), as long as all stable Floquet modes are sufficiently
damped. Figure 4.6 shows a comparison between the two methods. In Fig. 4.6a
the numerically calculated quantity σΔt (m) (defined in Eq. (4.7)) is plotted as a

4The solutions to the adjoint system must be found numerically. This can be done by numerically
integrating Eq. (4.17) backward in time.
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Figure 4.6.: Semi-analytic and full numeric timing jitter: (a) Numerically calculated
σΔt (m) =

√
Var (Δtm) /m plotted as a function of the number of laser cavity roundtrips for

τ = 100T0,S (green). N = 100 noise realisations were used for these calculations. The red dashed
line indicates the values of the semi-analytically calculated long-term timing jitter. (b) Long-
term jitter in dependence of the noise strength D, calculated semi-analytically from Eq. (4.36)
(red) and numerically using Eq. (4.8) (green). For the full numerical calculation N = 300 noise
realisations and M = 4 · 104 roundtrips were used. Parameters: (a) K = 0.1 and Rsp = 0.44
(D = 0.2), (b) τ = 70T0,S and K = 0.1, all other parameters as in Table 2.1.

function of the number of roundtrips (green). The long-term jitter is the value
that this quantity converges to for large m. In this plot it can be seen that σΔt (m)
converges to the semi-analytically obtain long-term timing jitter, the value of which
is indicated by the dashed red line. In Fig. 4.6b the numerically (green circles) and
semi-analytically (red line) calculated values for the long-term jitter are depicted
in dependence of the noise strength, showing excellent agreement between the two
methods.

In the following sections we will make further comparisons between the semi-
analytic and full numeric timing jitter calculations in order to demonstrate the
limits in which these results are valid.

4.2.3. Experimental methods of measuring the timing jitter

For many applications of mode-locked lasers very high repetition rates are desir-
able. However at such high repetition rates (typically 5-80GHz [SOL93, BRE10,
DRZ13, ARS14]) it is experimentally very difficult, or not practically possible due
to technical limitations, to perform time domain measurements of the laser output.
Therefore, information on the timing jitter is usually extracted from measurements
of the power spectrum, which can be performed accurately using a fast photodiode
with an electrical spectrum analyzer [KOL86, BRE10, ARS13]. The power spec-
trum contains contributions from both the timing fluctuations and the amplitude
fluctuations, therefore it is necessary to know how these separate contributions
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4. Timing jitter of the mode-locked laser

manifest themselves. To this end there have been a multitude of theoretical and
experimental works pertaining to the spectral properties of timing and amplitude
fluctuations [LIN86, HAU93a, ELI97, JIA01, PAS04, PAS04a, PAS06, KEF08].
Von der Linde showed that for uncorrelated timing and amplitude fluctuations the
power spectrum at the hth harmonic of the repetition frequency is composed of
three contributions; a δ-function corresponding to the noise-free system, the power
spectrum of the amplitude fluctuations and h2 times the power spectrum of the
timing fluctuations [LIN86]. Since the contribution from the amplitude fluctua-
tions is independent of h, whereas the timing fluctuation contribution scales as h2,
the individual contributions can be resolved by measuring the power spectrum at
the zeroth frequency component and at some higher harmonic of the repetition
frequency. However, typically, it is assumed that the contribution of the amplitude
fluctuations is small compared with the timing fluctuations and the timing jitter is
estimated from the power spectrum at a single harmonic [KEF08, BRE10, ARS13].
Using this approach the so-called root-mean-square (rms) timing jitter is
given by

σrms (flow, fhigh) ≡ 1
2πhfrep

√∫ fhigh

flow

2Sϕ (f, h) df, (4.37)

where Sϕ (f, h) is the phase noise spectrum5 and frep = 1/TC (with TC as defined in
Eq. (4.5)) is the fundamental pulse repetition frequency. The phase noise spectrum
is calculated from the power spectrum of electric field amplitude S|E| (f),

Sϕ (f, h) ≡ S|E| (f, N)
P (h, N)

, (4.38)

where P (h, N) is the power at the hth harmonic [KOL86], i.e. it is the power
spectrum normalised to the power at the hth harmonic. Here N is the total number
of integration steps. This is included to indciated that for non-stationary processes
S|E| (f, N) and P (h, N) are dependent on the integration time Ti = ΔtN , where
Δt is the time step. The integral in Eq. (4.37) is over a single sideband of the hth

harmonic and runs from some low offset frequency flow from hfrep, to some high
offset frequency fhigh.

The Von der Linde method was developed for actively mode-locked lasers, for
which the timing fluctuations are a stationary process. When applying the method
to passively mode-locked lasers, for which the timing fluctuations are a non-stationary
process, care must be taken because the h2 scaling of the contribution to the power
spectrum from the timing fluctuations is only true past some offset frequency f0
from the peak of the hth harmonic [KEF08, OTT14]. In [LIN11f] it was shown
experimentally for a quantum-dot passively mode-locked laser that an offset of

5The phase noise spectrum refers to the timing phase and is not related to the phase of the
optical field, as discussed in [PAS04].
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4.2. Calculating the timing jitter

1-2 MHz was required for the hth scaling to hold. Below the offset f0 there is a
plateau in the peaks of phase noise spectra which arises due to the slow drift of
the central frequency. Although the Von der Linde method is not valid at these
low frequencies, excluding these can lead to an underestimate of the timing jitter
[OTT14]. The choice of the integration limits flow and fhigh is therefore very im-
portant for passively mode-locked lasers. Since σrms (flow, fhigh) is dependent on
the integration limits it is also important that these are stated with the value for
the rms timing jitter.

In [OTT14, OTT14b] it was shown that, under certain conditions, the rms timing
jitter is directly proportional to the long-term timing jitter which was introduced in
Section 4.2.1 (Eq. (4.8)). Assuming that the timing fluctuations can be modelled by
a random walk and that the integration time is long, i.e. the number of roundtrips
m is large, then

σrms (flow, fhigh, Ti) ≈ σlt

π
√

TC

1√
flow

. (4.39)

The derivation of this relation can be found in [OTT14].
Another measure of the timing jitter that is commonly used experimentally is

the pulse-to-pulse timing jitter, which is given by

σpp = TC

√
ΔfmTC

2π
, (4.40)

where TC is the mean period of the pulse train (Eq. (4.5)), m is the number
of periods between the pulses being compared and Δf is the full width at half
maximum of the first harmonic phase noise spectrum [KEF08]. This measure is
based on the assumption that the phase noise spectrum has a Lorentzian line shape.
Although the period-jitter which was introduction in Section 4.2.1 (Eq. (4.9)) is
also referred to as the pulse-to-pulse jitter, these measures are different because
σpp scales with

√
m which is only correct for a true random walk, whereas the

period-jitter depends on short-term correlations.
From Section 4.2.1 we know that for long resonant-feedback delay times the

timing fluctuations can exhibit oscillations (Fig. 4.4). When these oscillations are
pronounced, then the timing fluctuations cannot be modelled by a random walk,
in which case σlt is ill defined and Eq. (4.39) does not hold. In the power spectra
of the laser output this noise-induced modulation of the dynamics is manifested
as sidepeaks offset from the main peaks (hfrep) at multiples of approximately one
over the feedback delay time, 1/τ . This is shown in Fig. 4.7 for (a) τ = 100T0 and
(b) τ = 1000T0. In experimental studies of passively mode-locked lasers subject
to feedback, in which such noise-induced sidepeaks are present, typically only the
rms timing jitter is estimated [ARS13, DRZ13a]. However this gives only infor-
mation of the long-term behaviour and not on the short-term fluctuations, which
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Figure 4.7.: Power spectra of the electric field amplitude S|E|2 for (a) τ = 100T0 and (b) τ = 1000T0

averaged over N = 100 noise realisations. Parameters: Rsp = 0.44, K = 0.1, all other parameters
as in Table 2.1.

can be significant for long feedback delay times. This will be discussed further in
Section 5.3.
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Figure 4.8.: (a) Long-term timing jitter in dependence of the pump current Jg calculated semi-
analytically from Eq. (4.36) (red) and numerically using Eq. (4.8) (green). For the numerically
calculated timing jitter N = 200 noise realisations were used. (b) Magnitude of the dominant
Floquet multipliers |μ| of the solutions for Rsp = 0, in dependence of Jg. The vertical blue
lines in (a) and (b) indicate the position of the T4 torus bifurcation. (c)-(f) Time traces of the
electric field amplitude |E| (blue), gain G (green), total losses Qtot = Q − ln (κ) (red) and the
net gain G = G − Qtot (black) for Jg values indicated in the plots. Parameters: (a) Rsp = 0.44
(D = 0.2), all other parameters as in Table 2.1.

4.3. Timing jitter of the solitary mode-locked laser

In this section we shall investigate the influence of key laser parameters on the tim-
ing jitter. We will concentrate on the pump current Jg, the unsaturated absorption
Jq, the spectral filter width γ and the amplitude-phase coupling αg and αq.

In Section 3.2 it was shown that various dynamics are exhibited by the soli-
tary mode-locked laser in dependence of the pump current parameter Jg. Con-
centrating on the pump current range in which the laser exhibits fundamental
mode-locking, the long-term timing jitter is shown in Fig. 4.8a, calculated both nu-
merically (green) using Eq. (4.8) and semi-semi-analytically (red) using Eq. (4.36).
First, we note that there is excellent agreement between the values obtained using
these two methods, even near the torus bifurcation (vertical blue line) past which
the fundamental mode-locked solution is stable. The onset of stable mode-locking
occurs at approximately Jg = 2.1 for the parameters used in these calculations,
this coincides with the position of the steep drop in the timing jitter.6 As the

6In fact, below this point both the numerical and the semi-analytic methods of calculating the
timing jitter are not applicable. For the numerical method this is because the timing fluctua-
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4. Timing jitter of the mode-locked laser

pump current is increased from this point the timing jitter first decreases and then
increases rapidly near Jg = 4.5.

In the derivation of the semi-analytic method it was assumed that only per-
turbations in the direction of the neutral mode, corresponding to the time-shift
invariance of the deterministic system, contribute to the long-term timing jitter.
To confirm that other eigendirections do not influence the timing jitter, the mag-
nitude of the dominant Floquet multipliers |μ| of the solutions to the deterministic
system (Rsp = 0) are shown in Fig. 4.8b. Below Jg ≈ 2.1 the mode-locked solution
is unstable, which is indicated by the |μ| > 1 section plotted in red. Just past the
torus bifurcation the excellent agreement between the semi-analytic and numeri-
cal methods indicates that the weakly damped modes do not influence the timing
jitter. For all higher currents depicted in this figure the mode-locked solution re-
mains stable, and where the timing jitter increases rapidly near Jg = 4.5, the stable
modes are still highly damped and have no impact on the timing jitter.

In order to gain some insights into the mechanisms leading to variations in the
timing jitter, time traces of the deterministic dynamics are shown for various pump
currents in Fig. 4.8 (c)-(f). Comparing the dynamics depicted in these plots several
trends can be identified. Firstly, in the current range from Jg ≈ 2.1 to Jg ≈ 4.0, in
which the timing jitter decreases, the pulses becomes narrower. Secondly, in this
current range the net gain (black) on the trailing side of the pulse decreases, while
on the leading flank of the pulse it increases. Furthermore, the rapid increase in
the timing jitter near Jg = 4.5 coincides with the pump current range where the
net gain becomes positive before the leading edge of the pulse. All together these
results indicate that narrower, more energetic pulses have a lower timing jitter,
however, only as long as there is no leading edge instability, in the sense of New’s
stability criterion [NEW74]. Further evidence of the relation of the pulse width
to the timing jitter is shown in Fig. 4.9, where the timing jitter is depicted in
dependence of the pump current and the spectral filter width γ. From the results
presented in Section 3.2 it is known that the pulses become narrower and have a
higher peak intensity as γ is increased (see Fig. 3.15), and Fig. 4.9 shows that this
coincides with a decrease in the timing jitter.

The pump current at which the timing jitter increases in Figs. 4.8 and 4.9
(Jg ≈ 4.5) corresponds to the onset of bistability between the fundamental and
2nd harmonic mode-locked solutions (see Fig. 3.17 in the previous chapter). The
appearance of this second stable solution has no direct influence on the timing jitter
of the fundamentally mode-locked solution, however, for large noise strengths there
is the potential for noise-induced switching between bistable solutions. Indirectly
the onset of stable 2nd harmonic mode-locking is related to the increase in the tim-

tions, as they have been defined in Subsection 4.2.1, do not behave like a random walk, and for
the semi-analytic method it is because the underlying deterministic dynamics are not periodic.
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width γ calculated semi-analytically using Eq. (4.36). The grey regions indicate timing jitter
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Figure 4.10.: (a) Map of the dynamics of solutions in the Jg-Jq parameter plane. Fundamental
mode-locking is indicated by the white regions and the blues indicate harmonic mode-locking.
In the light grey regions the laser is either in the off or cw states. Blacks indicates non-periodic
dynamics. The grey, blue and green lines indicate the positions of the Hopf, torus and saddle-
node bifurcations depicted in Fig. 3.10. (b) Semi-analytically calculated long-term timing jitter
corresponding to the mode-locked solutions depicted in (a). The dark grey regions indicate
timing jitter values above 20 fs. Parameters: κ = 0.121, Rsp = 0.44 (D = 0.2), all other
parameters as in Table 2.1.

ing jitter of the fundamentally mode-locked solution since these are both caused by
the net gain becoming too large for stable (in the sense of New’s stability criterion
[NEW74]) single pulse emission.

In Fig. 4.10 the timing jitter of fundamentally and harmonically mode-locked
solutions is shown in the Jg-Jq parameter plane. Subplot (b) shows the timing
jitter and the corresponding dynamics are indicated in subplot (a). No timing
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jitter is indicated in the black and light grey regions because in these regions the
dynamics are either non-periodic or the system is in a steady state. The parameters
used here are the same as those used in the bifurcation diagram depicted in Fig. 3.10
and as a reference the positions of the Hopf bifurcations, saddle-node bifurcations
and some of the torus bifurcations are indicated in Fig. 4.10a by the grey, green and
blue lines, respectively. The general trends shown in Fig. 4.10b are that the timing
jitter is lower for higher unsaturated absorption values and that the harmonically
mode-locked solutions have a slightly lower timing jitter than the fundamentally
mode-locked solution. The latter can be understood by considering that at higher
pump currents there is more energy in the system and therefore the noise has a
smaller influence. The result that lower timing jitter values are obtained for larger
Jq values cannot be directly related to the bias dependence in real devices. This is
because the reverse bias applied to the saturable absorber section also influences
other parameters in the DDE model, as discussed in Subsection 2.2.2. However, the
trend that higher pump currents are required when the reverse bias of the absorber
section is increased still holds, meaning that if the timing jitter can be improved
by increasing the reverse bias, this will be limited by device heating at high pump
currents.

4.3.1. Influence of the amplitude-phase coupling on the timing
jitter

For the dynamics of the mode-locked laser the amplitude-phase coupling was also
found to be an important parameter. The results of Subsection 3.2.3 showed that
with non-zero amplitude-phase coupling the dynamics generally become more com-
plex and the regions of stable mode-locking become smaller. In light of these results,
the influence of the amplitude-phase coupling on the timing jitter is at first slightly
counter intuitive. Figure 4.11a depicts the timing jitter in dependence of the pump
current for various α-factor values. These results show that the timing jitter is
smaller for non-zero amplitude-phase coupling, despite the dynamics being more
complex, i.e. the pulses also being chirped. The cause of this reduction in the
timing jitter is not entirely clear. In Fig. 4.11b the pulse shapes are shown for
αg = αq = 0 (red) and αg = αq = 3 (green) at a pump current of Jg = 3.5. This
plot shows that for αg = αq = 3 the pulse is narrower than in the αg = αq = 0
case, which we earlier found to be a factor leading to lower timing jitter values.
In order to ascertain whether the chirp also has an influence on the timing jitter,
we have found parameters (γ = 112 and Jg = 2.4) for the zero α-factor case for
which the pulse shape is identical to that for αg = αq = 3 with Jg = 3.5 (shown in
Fig. 4.11c). Despite the identical pulse shapes, the timing jitter is still lower for the
αg = αq = 3 case (σlt = 2.87 fs for αg = αq = 3 with Jg = 3.5 versus σlt = 3.76 fs
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Figure 4.11.: (a) Semi-analytically calculated long-term timing jitter in dependence of the pump
current Jg for various amplitude-phase coupling values. (b) The pulse shapes for αg = αq = 0
(red) and αg = αq = 3 (green), with Jg = 3.5. (c) The pulse shapes for αg = αq = 3 (green),
with Jg = 3.5 and αg = αq = 0 (red dashed), with γ = 112 and Jg = 2.4. Parameters: κ = 0.1,
Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

for αg = αq = 0 with Jg = 2.4 and γ = 112). The chirp therefore seems to lead to
a reduction in the timing jitter.

141



4. Timing jitter of the mode-locked laser

0 1
4

1
3

1
2

2
3

3
4 1

τ (T0,S)

0.0

0.1

0.2

0.3

0.4

K

(a) semi-analytic

0 1
4

1
3

1
2

2
3

3
4 1

τ (T0,S)

(b) numeric

0

2

4

σlt,0

8

10

2σlt,0

14

16

18

20

σ
lt

(fs
)

Figure 4.12.: (a) Semi-analytically calculated long-term timing jitter in the τ -K parameter plane.
The black regions indicate parameter values where the dynamics are non-periodic and the semi-
analytically method is not applicable. (b) Numerically calculated long-term timing jitter in the
τ -K parameter plane. N = 100 noise realisations were used for these calculations. The value of
the timing jitter is indicated by the colour code, where σlt,0 is the timing jitter of the solitary
laser. Parameters: Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

4.4. Timing jitter under the influence of feedback from
a single external cavity

In this section the impact of feedback, from one external cavity, on the timing
jitter will be discussed. We will show that for resonant feedback delay times the
timing jitter is reduced. Furthermore, we will derive an analytic expression for the
dependence on resonant delay times which shows that the timing jitter reduction
increases for longer feedback delay times.

4.4.1. Feedback delay time and feedback strength dependence of
the timing jitter

In the short feedback delay regime (τ ≈ 1) the influence of single-cavity feedback
on the timing jitter can largely be inferred from the dynamics discussed in Subsec-
tion 3.3.1 and the pulse shapes shown in Subsection 3.3.4. In parameter regions
where the feedback causes the main pulses to become wide or not well separated
from satellite pulses, the timing jitter will be increased. For resonant feedback, in-
creasing the feedback strength lowers the losses which leads to peaks with a higher
amplitude. These peaks are less influenced by the noise and hence, the timing jitter
is decreased. These trends are confirmed by the timing jitter results depicted in
Fig. 4.12. Here results are shown for both the semi-analytic (a) and the numeric
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(b) timing jitter calculations (Eq. (4.36) and Eq. (4.8), respectively) to confirm
that also in these parameter regions there is excellent agreement between the two
methods. The magnitude of the timing jitter is given by the colour code, where
blues indicate a reduction with respect to the solitary laser timing jitter σlt,0 and
reds an increase. White regions indicate a timing jitter greater than 20 fs. The
black regions in Fig. 4.12a are parameter ranges where the semi-analytic calcula-
tion is not applicable because the dynamics are non-periodic. Accordingly, the fully
numerical calculations of the timing jitter yield very large values in these regions.
The dynamics corresponding to these jitter calculations are depicted in Fig. 3.30
in the previous chapter. Figure 4.12 shows that the timing jitter is only reduced in
a small range near the main resonances. For larger offsets the changes in the pulse
shape cause the timing jitter to increase. This is shown more clearly in Fig. 4.13,
which shows the timing jitter in the first main resonance region (a), as well as the
pulse shape and net gain at selected delay times (b) (also see Fig. 3.66 for examples
of the pulse shapes in the main resonance regions). At lower feedback strengths
the timing jitter shows very little dependence on higher order resonant delay times
(fractional resonances). This is because the timing jitter is mainly determined by
the main pulse. When the satellite pulses are well separated from the main pulse,
their exact position within the limit cycle has no significant influence on the timing
jitter.

To study the feedback delay time dependence of the timing jitter over larger
delay ranges, we concentrate on the low feedback strength regime. In Fig. 4.14a-b
the timing jitter is shown as a function of τ for τ ≈ 10 and τ ≈ 150, respectively.
The horizontal dashed line indicates the timing jitter of the solitary laser. Here
it can be seen that near the main resonances the timing jitter is decreased and
that a greater improvement in the timing jitter is achieved in the main resonances
for longer delay times. To highlight the change in the timing jitter for long delay
times, green has been introduced into the colour code, indicating a reduction in
the timing jitter of a factor of 10 or greater. Figure 4.14a-b also shows that there
is very little change in the timing jitter from one resonances to the next, but a
drastic change over longer τ ranges. In order to see this change over longer τ

ranges more clearly, in Fig. 4.14c the timing jitter is depicted in a pseudo space-
time-like plot for the range τ = [0.5T0,K , 200.5T0,K ], where the delay time is split
into two components; τ = τs + nT0,K . Changes on small scales are given by
variations along the τs axis and large scale changes can be seen along the n axis.
The exact main resonances are the solutions along τs = 0 (dashed white line). The
dashed black line indicates the extent of the main resonance locking regions as
defined by Eqs. (3.17)-(3.18). For n > 50 these dashed lines intersect high timing
jitter solutions which correspond to solutions with multi-pulse dynamics. This is
because for large delay times there is bistability between the fundamentally mode-
locked solution and solutions with feedback induced satellite pulses (for example
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Figure 4.13.: Influence of pulse shape on the timing jitter: (a) Semi-analytically calculated
long-term timing jitter in dependence of τ , near the first main resonance. The black circles
indicate the extent of the locking region defined by Eqs. (3.17)-(3.18). (a) Electric field pulse
profiles corresponding to the feedback delay times indicated by the coloured circles in (a). The
net gain is depicted in black. Parameters: K = 0.1, Rsp = 0.44 (D = 0.2), all other parameters
as in Table 2.1.

see Fig. 3.57). For the initial conditions used to obtain these results the system
happens to converge to the multi-pulse solutions in these regions. The general
trends shown in this plot are that the timing jitter decreases with increasing n

and is smallest towards the center on the locking regions. However, the solution
within each main resonance locking region with the minimum timing jitter is not
the solution exactly at the main resonances, but rather is shifted to slightly larger
delay times (dash-dotted white line). A possible reason for this is that the feedback
delay time is slightly longer, while the pulse is not appreciably widened so close to
the main resonance.

Analytic dependence of the timing jitter on the resonance number

To obtain the results present in Fig. 4.14 the semi-analytic method was applied
at each feedback delay time value. However, provided that the phase difference
between the light in the laser and feedback cavities is zero, and that the solutions
are stable, if the timing jitter is known for the feedback delay times in the range
τ = [0, T0,K ] then for all τ > T0,K the feedback delay time dependence of the timing
jitter can be described analytically. This can be done by making use of the fact
that solutions repeat at delay times that are increased by integer multiples of the
period (as discussed in Subsection 3.3.4). If τ = τ0 is a delay time between zero and
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Figure 4.14.: (a)-(b) Semi-analytically calculated long-term timing jitter as a function of τ . (c)
Semi-analytically calculated long-term timing jitter as a function of τs and q, where τ = τs +
qTISI,K and TISI,K is the period of the solution for τ = 0. The dashed black lines indicated the
extent of the main resonance locking regions. The dashed and dash-dotted white lines indicate
the position of the exact main resonances and the minimum jitter in each main resonance region,
respectively. Parameters: K = 0.1, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.
Figure modified from [JAU15]. Copyright (2015) by the American Physical Society.

T0,K , and the corresponding solution is periodic, with period T0, then the solution
reappears at all

τ = τ0 + nT0 (4.41)

for integer n. Following the analysis presented in [JAU15], the bilinear form
(Eq. (4.16)) can be rewritten as

[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

∫ 0

−T
δψ† (t + r + T ) B0 (t + r) δψ (t + r) dr

+
∫ 0

−T −τ0

δψ† (t + r + T ) B1 (t + r) δψ (t + r) dr

+
∫ −T −τ0

−T −τ0−nT0

δψ† (t + r + T ) B1 (t + r) δψ (t + r) dr (4.42)

for the single cavity feedback case. Due to the time shift invariance and periodicity
of the integrand, the last term on the right-hand side can be further simplified,
giving

[
δψ†, δψ

]
=

[
δψ†, δψ

]τ=τ0
+ n

∫ 0

−T0

(
δψ† (t + r + T )

)T
B1 (t + r) δψ (t + r) dr,

(4.43)
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4. Timing jitter of the mode-locked laser

where the first three terms on the rhs of Eq. (4.42) are now expressed as
[
δψ†, δψ

]τ=τ0
,

which is the bilinear form for the K dependent solution with τ = τ0. Equa-
tion (4.36) can now be expressed as

σlt = D

( ∫ T0

0

⎛
⎝ δψ†∗

1,1 (t)[
δψ†∗

1 , δψ∗
1

]τ=τ0
+ KnF ′ (K, τ0)

⎞
⎠

2

+

⎛
⎝ δψ†∗

1,2 (t)[
δψ†∗

1 , δψ∗
1

]τ=τ0
+ KnF ′ (K, τ0)

⎞
⎠

2

dt

)1/2

, (4.44)

where δψ
(†)∗
1[

δψ†∗
1 ,δψ∗

1

] = δψ
(†)
1 and

F ′ (K, τ0) =
1
K

∫ 0

−T0

δψ†∗
1 (t + r + T ) B1 (t + r) δψ∗

1 (t + r) dr,

which is a function of K and τ0 but not of n. The explicit K dependence has
been removed from F ′ (K, τ0) by dividing by K, but it still implicitly depends on
K via the influence of the feedback strength on the dynamics of the unperturbed
solution which enters in the Jacobian B1 (see Appendix B). Equation (4.44) can
be simplified to

σlt =
1

1 + KnF ′ (K, τ0)

√
D2

∫ T0

0

(
δψ†τ=τ0

1,1 (t)
)2

+
(
δψ†τ=τ0

1,2 (t)
)2

dt, (4.45)

where δψ†τ=τ0
1 =

(
δψ†τ=τ0

1,1 , δψ†τ=τ0
1,2 , δψ†τ=τ0

1,3 , δψ†τ=τ0
1,4

)T
is the solution fulfilling the

biorthogonality condition (Eq. (4.18)) for τ = τ0, and F (K, τ0) = F ′(K,τ0)[
δψ†∗

1 ,δψ∗
1

]τ=τ0 .

Finally, the timing jitter is given by

σlt (τ0, n, K) =
σlt (K, τ0)

1 + KnF (K, τ0)
, (4.46)

where σlt (K, τ0) is the K dependent timing jitter for τ = τ0. This means that
if σlt (K, τ0) and F (K, τ0) are calculated for any periodic solutions in the delay
range τ = [0, TISI,K ] the timing jitter for all reappearances of that solution at
longer delay times is given analytically by Eq. (4.46). This holds up to delay times
where the semi-analytic method is valid.

For timing jitter reduction it is mainly the main resonant delay times (τ = nT0,K

with integer n) which are of interest, since the dynamics are not qualitatively
changed under such feedback conditions. In Fig. 4.15 the timing jitter (a) and
F (K, τ0) (b) are shown as a function of K for τ = 0. The dashed black lines show
fits of the semi-analytic results, where the fit functions are

στ=0
lt (K) =

σlt,0

1 + 2.6K + 0.2K2 (4.47)
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Figure 4.15.: (a) Semi-analytically calculated long-term timing jitter as a function of K for τ = 0.
(b) Semi-analytically calculated F (K, τ0) for τ = τ0 = 0. The dashed black lines are the fit
functions given in (a) and (b), where σlt,0 = 5.593 fs is the timing jitter of the solitary laser.
Parameters: τ = 0, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.
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K = 0.1 The red line shows the minimum timing jitter within each main resonance region and
corresponds to the τ along the dsah-dotted white line in Fig. 4.14 (c). The dash-dotted black is
the fit of Eq. (4.49) to the minimum timing jitter. Parameters: K = 0.1, Rsp = 0.44 (D = 0.2),
all other parameters as in Table 2.1. Figure modified from [JAU15]. Copyright (2015) by the
American Physical Society.

and
F (K) =

0.99
1 + 0.995K

, (4.48)

where σlt,0 = 5.593 fs is timing jitter of the solitary laser. Using these fitted func-
tions and Eq. (4.46) the timing jitter at the main resonances can be determined.
For K = 0.1, i.e. corresponding to the results along the dashed white line in
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4. Timing jitter of the mode-locked laser

Fig. 4.14c, the n dependence of the timing jitter is depicted in Fig. 4.16 (blue line).
Also shown in this plot is the semi-analytically obtained minimum timing jitter
(red line), which corresponds to the dash-dotted white line in Fig. 4.14c. For the
solutions along this line the n dependence cannot be analytically derived because
the dynamics of the solutions vary. However, fitting these solutions shows that the
minimum jitter can be described by

σmin
lt =

στ=0
lt (K)
1 + Kn

. (4.49)

Although this is only shown in Fig. 4.16 for K = 0.1, this n dependence of the
minimum timing jitter was also found to hold for other K values. A similar de-
pendence on τ and K is found for the linewidth of a single-mode laser subject to
feedback. The authors of [KIK82] and [AGR84] found that the variance of phase-
fluctuations, which are related to the linewidth of the lasing mode, decrease by a
factor (1 + τKX)2 where X is some function of the system parameters.

From the derivation of Eq. (4.46) the reduction of the timing jitter with in-
creasing n can be directly attributed to the increased history of the solutions. A
physically intuitive explanation is that the feedback term causes the current pulse
to be correlated with the position of the pulse at time t − τ , i.e. it gets pulled to-
wards this position. This continual pulling back of the pulse positions means that
the timing fluctuations cannot deviate as far from the mean, hence the variance is
smaller so the timing jitter is reduced.

Very long feedback delay times - failure of the semi-analytic method

We have previously mentioned that the semi-analytic method is only valid if all
eigenmodes apart from the neutral modes are sufficiently damped. For the solitary
laser, despite this condition, excellent agreement was found between the fully nu-
merical and semi-analytic calculations even when the system was very close to a
bifurcation (see Fig. 4.8). However, with feedback, if the delay time is long, this
is no longer the case. For longer delay times some eigenmodes of the system are
only weakly damped and these can be excited by the noise term, which leads to
a modulation of the dynamics with frequency components given by the imaginary
part of the weakly damped Floquet exponents. This will be discussed in detail in
the next chapter.

For the laser parameters used in this section (see Table 2.1) the semi-analytic
method is valid up to feedback delay times of approximately τ = 200T0,K . For
larger delay times, the noise-induced modulations lead to the numerical estimates
of the long-term timing jitter being larger than the semi-analytic value. This is
shown in Fig. 4.17, where the red line shows the analytic n dependence given by
Eq. (4.46) and the green circles show the fully numerical results estimated from
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Figure 4.17.: Long-term timing jitter in dependence of resonant feedback delay times τ = nT0,K .
The red line shows the analytically derived n dependence (Eq. (4.46)) and the green circles show
results of numerical estimations of the long-term timing jitter. Parameters: K = 0.1, Rsp = 0.44
(D = 0.2), all other parameters as in Table 2.1.
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Var (Δtm) /m plotted as a function of the number of laser cavity
roundtrips for τ = 1000T0,K . N = 100 noise realisations were used for these calculations. The
dashed black line indicates the value of the semi-analytically calculated long-term timing jitter.
The dotted green line indicates the value of the long-term timing jitter estimated from σΔt (m).
Parameters: K = 0.1, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

the roundtrip number dependence of σΔt (m) (defined in Eq. (4.7)). Due to the
noise-induced modulation of the dynamics for large delay times (see Fig. 4.4 for
examples of the noise-induced modulation of the timing fluctuations), the variance
of the timing fluctuations oscillates with a periodicity given by τ , as shown in
Fig. 4.18 for τ = 1000T0,K (also see Fig. 4.3). Thus, there is no clear value that
σΔt (m) converges to, in such case. Therefore, for the large τ values in Fig. 4.17, we
have estimated the long-term timing jitter as the value that the minima of σΔt (m)
converge to for large m. In Fig. 4.18 this estimate corresponds to the dotted green
line. The horizontal dashed line indicates the semi-analytically obtained value.
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Figure 4.19.: Numerically calculated long-term timing jitter in dependence of the feedback phase
C. N = 100 noise realisations were used for these calculations. The red cross markers timing
jitter value obtained from Eq. (4.47) for K = −0.1, which is equivalent to KeiC with C = π.
Parameters: K = 0.1, τ = 0, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

4.4.2. Feedback phase dependence of the timing jitter

So far we have not considered the influence of the feedback phase on the timing
jitter. We have addressed the influence of the feedback strength and feedback delay
time, and have shown that there are two main factors contributing to the timing
jitter. Firstly, the timing jitter depends on the feedback induced dynamics of the
unperturbed system and secondly, for all periodic solutions the timing jitter de-
creases for increasing resonance number n. The influence of the feedback phase is
entirely encompassed in the first factor, i.e. the phase only influences the timing
jitter insofar that it influences the dynamics. As discussed in depth in Subsec-
tions 3.3.1, 3.3.2 and 3.3.3 the feedback phase changes the effective non-resonant
losses and can cause the frequency of the lasing modes to shift with respect to
the center of the spectral filter in order to minimise destructive interference. For
mode-locked solutions this just means that the timing jitter can increase slightly
when C 
= 2πn for n = 0, 1, 2..., since the pulse heights are reduced (see Fig. 3.41),
meaning that the comparative influence of the noise is increased. In Fig. 4.19 an
example of the feedback phase dependence of the timing jitter is shown for τ = 0
and K = 0.1. These results are obtained using the numerical method, i.e. using
Eq. (4.8). For C = π the fed-back light interferes entirely destructively with the
light in the laser cavity and the feedback conditions are equivalent to K = −0.1
with C = 0, since eiπ = −1. Using the fitted equation for the semi-analytically
calculated K dependence at τ = 0 (Eq. (4.47)) the timing jitter value marked by
the red cross in Fig. 4.19 is obtained for K = −0.1, which is in excellent agreement
with the numerical results.
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Figure 4.20.: Influence of amplitude-phase coupling: Numerically calculated long-term timing
jitter in dependence of the feedback delay time τ and the feedback strength K for (a) αg = αq =
0, (b) αg = αq = 2 and (c) αg = 2 and αq = 1.5. N = 50 noise realisations were used for these
calculations. Parameters: Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

4.4.3. Influence of amplitude-phase coupling on the timing jitter

Including non-zero amplitude phase coupling does not qualitatively change the
trends found for the dependence of the timing jitter on the feedback parameters.
As discussed in Subsection 3.3.1, as the feedback delay time is varied the phase dif-
ference between the field in the laser and feedback cavities also changes. Therefore
if only τ is varied then the timing jitter can change non-monotonically between
main resonances regions. However, if the feedback phase is varied simultaneously
to achieved constructive interference, then the same trends are found as in the
zero α-factor case. However, the system is still more phase sensitive with non-zero
amplitude-phase coupling. But the influence of this is again manifested through
the underlying deterministic dynamics.

In Fig. 4.20 examples of τ -K dependence of the timing jitter are shown for (a)
αg = αq = 0, (b) αg = αq = 2 and (c) αg = 2 and αq = 1.5.7 in all three cases
a cone shaped region can be identified near the main resonances, in which the
timing jitter is reduced. However, in the αg = 2 and αq = 1.5 case there are τ -K
parameters for which the timing jitter is very high. These high timing jitter values
are due to the underlying dynamics being non-periodic due to the phase difference

7Figure 4.20 was obtain by numerically calculating the long term jitter using Eq. (4.8). For the
stochastic method care needs to be taken when the delay times are long because when the noise
term is switched on the system can converge to different solutions, i.e. apart from statistical de-
viations the system can converge to solutions with distinctly different mean interspike-interval
times. This was also found by the authors of [SIM14] who studied the influence of feedback on
a quantum-dot passively mode-locked laser. This leads to erroneously large timing jitter val-
ues and is different from situations in which there is noise-induced switching between different
solutions.
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4. Timing jitter of the mode-locked laser

between the field in the laser and feedback cavities. The speckled appearance of
these regions is related to the fact that the same initial conditions were used for
each τ -K point in Fig. 4.20.

The results shown in Fig. 4.20 are qualitatively very similar to the experimental
results presented in [ARS13]. In [ARS13] the results of timing jitter measurements
for a quantum-dot passively mode-locked laser subject to optical feedback are pre-
sented. These measurements show a cone shaped region of low timing jitter. At
low feedback strengths, between the cones of low timing jitter, there are regions
where the timing jitter is approximately the same as in the solitary laser case,
which corresponds to the multi-pulse regions in the numerical simulations where
the timing jitter is also close to σlt,0.
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Figure 4.21.: Numerically calculated long-term timing jitter in dependence of the feedback delay
times τ1 and τ2 for K1 = K2 = 0.05. N = 100 noise realisations were used for these calcula-
tions. The grey lines correspond to the resonance lines defined by Eq. (3.25). The value of the
timing jitter is indicated by the colour code, where σlt,0 is the timing jitter of the solitary laser.
Parameters: Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

4.5. Timing jitter under the influence of feedback from
two external cavities

For feedback from a single external cavity we have shown that the timing jitter is
largely determined by the underlying deterministic dynamics of the mode-locked
laser system and by the resonance number of the feedback delay time. With a
second feedback cavity added to the system the results are qualitatively the same,
as will be shown in this section. In this section we will also present a comparison
with experimental results for a passively mode-locked quantum-dot semiconductor
laser subject to feedback from two external cavities.

4.5.1. Feedback delay time and feedback strength dependence of
the timing jitter

The timing jitter is shown in dependence of the two delay times in Fig. 4.21. In
Fig. 4.21a the delay times are in the short delay regime and the corresponding
dynamics are indicted in Fig. 3.68. This figure shows that as in the single feedback
cavity case, the timing jitter is increased for delay times at the edges of the main
resonance regions, i.e. where the pulses are wide and deformed. Towards the center
of Fig. 4.21a the timing jitter is nearly unchanged compared with the solitary laser
case. Again, this is because the positions of the satellite pulses do not have a
significant influence on the timing jitter when they are well separated from the
main pulse. The resonance lines defined by Eq. (3.25) are also plotted in Fig. 4.21a.
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4. Timing jitter of the mode-locked laser

Along the lines (l, 1, 0) and (l, 0, 1) the timing jitter is reduced. This is because
along these lines one of the feedback cavities is always resonant. Features along
other resonance lines become more evident for long feedback delay times. This can
be seen in Fig. 4.21b, where τ1 ≈ 30 and τ2 ≈ 60. Due to the increase of the delay
times the timing jitter is decreased along the prominent resonance lines compared
with the τ1 ≈ 1 and τ2 ≈ 1 case (Fig. 4.21a).

Analytic dependence of the timing jitter on the feedback strength ratio
and resonance numbers

The lowest timing jitter values are found in the main resonance locking regions for
the delay times that are defined by Eqs. (3.26):

τ1 = τ0 + n1T0 and τ2 = τ0 + n2T0. (4.50)

These are the solutions that are identical to those in the main resonance locking
regions for single cavity feedback (see Subsection 3.4.2). For delay times satisfying
Eqs. (3.26) the impact of varying n1 and n2, as well as the influence of varying the
ratio of K1 and K2, when KTOT = K1 + K2 is kept constant, can be described
analytically. The derivation of the analytic expression is as follows.

In the dual feedback case the bilinear form (Eq. (4.16)) is given by

[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

∫ 0

−T
δψ† (t + r + T ) B0 (t + r) δψ (t + r) dr

+
∫ 0

−T −τ1

δψ† (t + r + T ) B1 (t + r) δψ (t + r) dr

+
∫ 0

−T −τ2

δψ† (t + r + T ) B2 (t + r) δψ (t + r) dr. (4.51)

This can be rewritten as

[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

∫ 0

−T
δψ† (t + r + T ) B0 (t + r) δψ (t + r) dr

+K1

∫ 0

−T −τ0

δψ† (t + r + T ) B̃1 (t + r) δψ (t + r) dr

+K1

∫ −T −τ0

−T −τ0−n1T0

δψ† (t + r + T ) B̃1 (t + r) δψ (t + r) dr

+K2

∫ 0

−T −τ0

δψ† (t + r + T ) B̃2 (t + r) δψ (t + r) dr

+K2

∫ −T −τ0

−T −τ0−n2T0

δψ† (t + r + T ) B̃2 (t + r) δψ (t + r) dr, (4.52)
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Figure 4.22.: Dependence on feedback ratio and resonance number: (a) Long-term timing
jitter in dependence of the feedback ratio k for τ1 = 100T0,K and τ2 = 10T0,K . (b) Long-
term timing jitter in dependence of the resonance number of the second feedback cavity n2 for
n1 = 100 (τ1 = 100T0,K), with k = 0.5. The results were calculated analytically using Eq. (4.54)
(red) and numerically using Eq. (4.8) (green). N = 100 noise realisations and 4 · 104 roundtrips
were used for the numerical calculations. Parameters: KTOT = 0.1, Rsp = 0.44 (D = 0.2), all
other parameters as in Table 2.1.

where KnB̃n = Bn. With the K dependence removed from B̃n, B̃ = B̃1 = B̃2,
giving

[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

∫ 0

−T
δψ† (t + r + T ) B0 (t + r) δψ (t + r) dr

+KTOT

∫ 0

−T −τ0

δψ† (t + r + T ) B̃ (t + r) δψ (t + r) dr

+KTOT (kn1 + (1 − k) n2)
∫ 0

−T0

δψ† (t + r + T ) B̃ (t + r) δψ (t + r) dr, (4.53)

where we have introduced the feedback ratio k, i.e. K1 = kKTOT and K2 =
(1 − k) KTOT. Following the analysis presented in the previous section this then
gives

σlt (τ0, n1, n2, KTOT, k) =
σlt (KTOT, τ0)

1 + KTOT (kn1 + (1 − k) n2) F (KTOT, τ0)
, (4.54)

where σlt (KTOT, τ0) and F (KTOT, τ0) only depend on the total feedback strength
KTOT and the delay offset τ0. This equation describes analytically how the timing
jitter depends on the ratio of feedback strengths k and the resonance numbers, n1
and n2, of the feedback delay times.

Figure 4.22a shows the k dependence predicted by Eq. 4.54 (red line) for τ1 =
100T0,K and τ2 = 10T0,K . Also shown are numerically obtained results (green),
which show excellent agreement with the analytic results. As k is increased, the
contribution from the longer feedback cavity becomes greater, which leads to a
reduction in the timing jitter. The same trend is shown in Fig. 4.22b, where n2 is
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4. Timing jitter of the mode-locked laser

increased up to n1 = 100. In this case increasing the length of the second feedback
cavity leads to a reduction in the timing jitter. In both examples, Fig. 4.22a-b,
the total feedback strength is the same. Therefore the timing jitter is the same for
k = 1 in Fig. 4.22a, as it is for n2 = 100 in Fig. 4.22b.

Equation (4.54) shows that, for comparable dynamics, the timing jitter reduction
that can be achieved with two external feedback cavities is at most the same as
for single cavity feedback (assuming K = KTOT), i.e. setting n1 = n2 Eq. (4.54)
reduces to Eq. (4.46). However, a requirement for Eqs. (4.46) and (4.54) to hold,
is of course that the solutions are stable. And, as discussed in Subsection 3.4.2, in
the intermediate feedback strength regime the addition of a second short feedback
cavity can increase the range of stable solutions. In addition to this requirement, it
is also necessary that all stable eigenmodes of the system are sufficiently damped
that they do not influence the long-term timing jitter. For single cavity feedback,
for the parameters used, we found that for delay times greater than τ ≈ 200 noise-
induced modulations are large enough that the semi-analytic method is not valid.
In this very long delay limit the timing jitter can be reduced more effectively with
dual cavity feedback than with feedback from a single cavity. This is because the
second feedback cavity can be used to suppress the noise-induced modulations,
which leads to a reduction in the long-term timing jitter. This will be addressed
in detail in Chapter 5.

4.5.2. Feedback phase dependence of the timing jitter

As discussed in Subsection 4.4.2, the influence of the feedback phases on the timing
jitter is related to how the feedback phases influence the dynamics. If changes in
the feedback phases cause the pulses to become wider or deformed, or the pulse
height to be reduced, then the timing jitter will increase. This also holds for dual
cavity feedback. See Subsection 4.4.2 for more details.

4.5.3. Comparison with experimental results

In this section we present a comparison between numerical results and experimen-
tally obtained results for a passively mode-locked quantum-dot semiconductor laser
subject to feedback from two external cavities.8

In the experiment a linear-cavity monolithic quantum-dot mode-locked laser was
used. The device consisted of two sections; a 0.3 mm long saturable absorber section
and a 2.7 mm long gain section. The laser was coupled to two external cavities with
lengths of approximately 3.18 m and 1.84 m, corresponding to feedback delay times
of approximately τ1 = 143T0 and τ2 = 83T0 with T0 = 75 ps. The lengths of
the feedback cavities were finely tuned in order to measure the repetition rate,

8The results presented in this section have been published in [NIK16].

156



4.5. Timing jitter under the influence of feedback from two external cavities

the pulse height ratio and the timing jitter, in dependence of the delay lengths.
In the absence of feedback the pulse repetition rate was approximately 13.5 GHz.
Further details on the structure of the laser and experimental setup can be found
in [NIK16].

parameter value dimensionless parameter value dimensionless

T 75 ps 1 γ 0.97 ps−1 70
γg 1 ns−1 0.075 γq 75 ns−1 5.625
Jg 0.013 ps−1 1.0 Jq 0.1 ps−1 7.5
rs 25.0 25.0 Rsp 0 0
κ 0.1 0.1 ΔΩ 0 0
αg 0 0 αq 0 0
K1 0.05 0.05 K2 0.05 0.05
C1 0 0 C2 0 0

Table 4.1.: Parameter values used for numerical simulation results presented in Fig. 4.23.

For the numerical simulations the parameters of the DDE model (Eq. (3.20) and
Eqs. (2.43)-(2.44)) were adjusted such that the repetition rate of the fundamentally
mode-locked solution was approximately the same as for the experiment. For this
the cold cavity roundtrip time was chosen as T = 75 ps. All other parameters
are as given in Table 4.1. In choosing these parameters we did not attempt to
fit the experimental results. The parameters were selected such that the DDE
model produced fundamentally mode-locked solutions with repetition rates and
pulse widths similar to those observed in the experiment. The model was not
modified in order to take into account the sophisticated quantum-dot charge carrier
scattering dynamics, nor were modifications made to take into account the linear-
cavity geometry of the laser used in the experiment.

The results of the experiment and simulations are shown in Fig. 4.23. Fig-
ure 4.23a-b shows the repetition rate of the mode-locked solutions as a function of
the two feedback delay times. The delay times are given as offsets from reference
delay values. For the simulation results (Fig. 4.23a) τ1 = 142.01T0,S + δτ1 and
τ2 = 81.72T0,S + δτ2, with T0,S = 1.0267, which corresponds to a period of 77 ps.
For the experimental results the reference delay times are not accurately deter-
mined, they are τ ref

1 = (143.5 ± 3.5) T0 and τ ref
2 = (83 ± 3) T0. In Fig. 4.23d the

type of dynamics obtained in the simulations is indicated by the colour code. In the
blue regions the laser exhibits fundamental mode-locking without feedback-induced
satellite pulses. In the purple, green and yellow regions fundamental mode-locking
with one, two and three satellite pulses is exhibited, respectively. The white re-
gions indicate non-periodic dynamics. For parameter ranges where the system
exhibits non-periodic dynamics, the value plotted in Fig. 4.23b is the dominant

157



4. Timing jitter of the mode-locked laser
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Figure 4.23.: Comparison of experiment and simulations: (a) Experimentally measured
pulse repetition rate as function of the delay offsets from the reference delay times τ ref

1 =
(143.5 ± 3.5) T0 and τ ref

2 = (83 ± 3) T0. (b) Numerically simulated repetition rates as a function
of the delay offsets from τ1 = 142.01T0,S and τ2 = 81.72T0,S . (c) Experimental results showing
the ratio of the auto-correlation signal at zero delay and at a delay of T0/2 = 37.5 ps. (d) Map
of the dynamics of the simulated solutions. The colour code indicates the number of pulses in
the laser cavity and regions in white indicate non-periodic (NP) dynamics. (e) Experimentally
measured timing jitter. (f) Numerically calculated timing jitter. Simulation parameters: (f)
Rsp = 0.45, all other parameters as in Table 4.23. Reproduced from [NIK16].

frequency component. Experimental results equivalent to Fig. 4.23d were not ob-
tained, however in Fig. 4.23c results of auto-correlation measures are shown, which
indicate regions where one satellite pulse is present. Plotted is the ratio of the auto-
correlation signal at zero delay and at a delay of T0/2 = 37.5 ps. An amplitude
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ratio of one indicates 2nd harmonic mode-locking. For the regions plotted in white,
no meaningful results were obtained. For the experimental results the repetition
rates plotted in Fig. 4.23a were determined from the position of the peak in the
power spectrum near the fundamental frequency of the laser cavity (≈ 13.5 GHz).
For feedback parameters where Fig. 4.23c indicates harmonic mode-locking the
repetition rate shown in Fig. 4.23a is not actually the dominant frequency. Finally,
in Fig. 4.23e-f the timing jitter is shown for the experiment (e) and for the simula-
tions (f). These results show that there is very good qualitative agreement between
the experimental results and the simulation results, despite the DDE model being
relative simple in terms of the modelling of the gain medium and the model assum-
ing a ring cavity geometry. The results show regions of fundamental mode-locking
within main resonance locking regions, in which the repetition rate can be tuned
by varying the two feedback delay times and in which the timing jitter is reduced
with respect to the solitary laser case. The experimental results also show that, as
predicted by the DDE model, dynamics with feedback induced satellite pulses can
be exhibited.

The experimental auto-correlation results (Fig. 4.23c) show that there are feed-
back conditions in which harmonic mode-locking is exhibited. This is not observed
in the simulation results presented in Fig. 4.23. However, the results from Sec-
tion 3.3 predict that optical feedback can induce harmonic mode-locking if the
feedback strength is sufficiently high. Therefore, by adjusting the simulation pa-
rameters it could be possible to reproduce the feedback-induced harmonic mode-
locking.

4.6. Summary

This chapter was dedicated to the timing jitter of the mode-locked laser in the
presence of spontaneous emission noise. We first introduced various methods of
calculating the timing jitter, then we investigated its parameter dependence for
the solitary laser. Following this we studied the impact of optical feedback on the
timing jitter.

There are various methods of calculating the timing jitter. Experimentally the
rms timing jitter is determined from the power spectrum of the laser output. Nu-
merically the timing jitter can be calculated directly from time-domain results. We
have introduced two methods of doing this. The first is a fully numerical method
that involves integrating the stochastic DDE system in order to determine the
fluctuation of the pulse positions. The second method is semi-analytic and allows
the timing jitter to be determined from deterministic solutions to the linearised
unperturbed system.
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4. Timing jitter of the mode-locked laser

For the solitary laser we use the semi-analytic and numerical methods to deter-
mine what factors influence the timing jitter of the mode-locked solutions. The
two key factors are the pulse width and the net gain window. For narrower pulses
the timing jitter is smaller, and if a positive net gain window opens before or after
the pulse, the timing jitter can be increased, which is in agreement with previous
studies. For the pump current dependence this means that the timing jitter first
decreases as the pulses become narrower and higher with increasing current. Then
as the unsaturated gain becomes larger, eventually a leading edge instability devel-
ops, i.e. a positive net gain window before the pulse, and the timing jitter increases
again. This means that there should be an optimal current where the timing jitter
is lowest. We have also found that amplitude-phase coupling decreases the timing
jitter when comparing pulses with the same amplitude profile. This indicates that
the chirp leads to a reduction in the timing jitter. However, the mechanism for this
is not yet understood and requires further investigation.

We have found that with optical feedback added to the mode-locked laser system
there are two aspects which determine the long-term timing jitter. The first is the
dynamics induced by the feedback, i.e. how the feedback influences the pulse
shape and the net gain window. Here the same trends apply as for the solitary
laser, meaning that the lowest timing jitter values are achieved close to the main
resonances where the pulses have not been significantly broadened. The second
factor that determines the timing jitter is the feedback delay time. Using the semi-
analytic method we were able to derive an analytic dependence of the long-term
timing jitter on the delay time for resonant feedback. This analytic dependence
shows that the timing jitter decreases for increasing resonant delay lengths. For
long delay times it scales as approximately one over the delay time. However, this
is only applicable as long as noise-induced modulations do not influence the long-
term timing jitter. For very long feedback delay times, noise can excite weakly
stable eigenmodes of the system which leads to a modulation of the dynamics. If
these modulations are large then the semi-analytic method is no longer valid.

For dual-cavity feedback a similar formula can be derived for the dependence of
the timing jitter on the resonance numbers. This formula also describes analytically
the dependence on the ratio of the feedback strengths. From this expression one can
see that in the limit that noise-induced modulations do not play a role, with dual
cavity feedback the timing jitter is at best the same as for single cavity feedback.
We will see in the next chapter that an improvement only comes in the regime of
very long feedback delay times, where the second feedback cavity can be used to
suppress noise-induced modulations.

Finally, we wish to remark that the semi-analytic method is not specific to the
mode-locked laser model. The method can be applied to other autonomous systems
exhibiting periodic dynamics, which have time-delayed variables and are subject
to additive Gaussian white noise. Furthermore, the same form of the analytic
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dependencies on the resonant feedback delay times, and the feedback strength
ratios, will also apply to other systems that have a similar form.
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Chapter 5
Noise-induced modulations

5.1. Introduction

In the previous chapter we found that the regularity of the mode-locked laser out-
put can be improved by subjecting the system to resonant time-delayed optical
feedback. Considering only the influence of the noise in the direction of the neutral
mode corresponding to the time shift invariance of the mode-locked laser system,
the timing jitter scales approximately as 1/τ due to the pulse positions being corre-
lated over longer times as the feedback delay time τ is increased to larger resonant
values. However, as the feedback delay time becomes large, the influence of noise
on other eigenmodes of the system plays an increasingly important role. Eigen-
modes associated with the feedback terms become more weakly damped, which
leads to pronounced noise-induced excitations of these modes. The excitation of
these weakly damped modes causes a modulation of the timing fluctuations on a
time scale of approximately τ , and for strong modulations this leads to an increase
in the long-term timing jitter. In this chapter we will investigate how a second
feedback loop can be used to suppress these noise-induced modulations and what
the impact of this is on the long-term timing jitter.

Noise-induced excitation of eigenmodes is a topic which is of relevance to any
physical system which has weakly damped eigenmodes and some form of noise
source. Physical systems in which such an effect has been observed include fiber
ring-cavity lasers [POT02a], passively mode-locked semiconductor lasers subject to
optical feedback [ARS13, DRZ13], delay-coupled lasers [SOR13], neural networks
[VIC08] and gene regulatory networks [CHE05d]. There have also been extensive
theoretical works on this topic. However, these have mostly been in the context of
systems in a deterministically stable steady state which are close to a bifurcation
leading to oscillatory dynamics [SIG89, JAN03, GOL03, BAL04, SCH04b, POM05],
or which have weakly damped eigenmodes [STE04b, FLU07]. For example, in
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[BAL04] a Van-der-Pol oscillator close to a Hopf bifurcation is investigated. Below
a Hopf bifurcation a system has one pair of complex conjugate eigenvalues, of
which the real part is approaching zero. This means that noise-induced oscillations,
with a frequency given by the imaginary part of the eigenmode, decay slowly as
the eigenmodes are only weakly damped. Note that we refer to noise-induced
oscillations when the deterministic system is in a stable steady state and noise-
induced modulations when the deterministic system is already oscillatory.

Several works have been published on the control of noise-induced oscillations
using time-delayed feedback, either with the aim of suppressing [FLU07] or stabil-
ising [MAS02, JAN03, BAL04, POM05a] the oscillations. In [FLU07] a damped
harmonic oscillator is studied and it is shown that the noise-induced oscillations
can be optimally suppressed when feedback is added with a delay length equal to
half the period of the induced oscillations. Intuitively this makes sense, as oscilla-
tions would interfere destructively in the feedback loop. In the damped harmonic
oscillator case this works well because the original system has only one complex
conjugate pair of eigenvalues. However, if one considers a system already subject
to time-delayed feedback then there will be infinitely many Floquet exponents and
a finite number of these can be weakly damped. The most prevalent frequency of
the noise-induced modulations will correspond to the Floquet exponent with the
smallest modulus of the real part, which, for sufficiently strong feedback or suf-
ficiently long delay times, is given by approximately 1/τ1. In this scenario, due
to the multitude of Floquet exponents, the noise-induced modulations cannot be
optimally suppressed by simply choosing the second feedback delay-time equal to
half the modulation period, as this delay-time will be resonant with the second
harmonic of the first feedback term and would therefore enhance modulations at a
frequency of ≈ 2/τ1. Some work has already been carried out on the suppression
of noise-induced dynamics in systems involving time delay, especially in the fiber
laser community [WU00, YUH98, POT02a, YAN07a, ZHU15]. However, many of
these works are experimental and those containing theory either only take into ac-
count rudimentary considerations of cavities resonances or present only numerical
results for a specific system that does not allow for a general understanding of this
topic. For example, in [POT02a] the theoretical considerations for the choice of
the feedback conditions were based on the Vernier principle1, which is not sufficient
for determining conditions for optimal modulation suppression. Although not op-
timised, experimental studies do show that an additional feedback cavity can be
used to suppress modulations of the dynamics. For example, in [HAJ12] a passively
mode-locked laser is subjected to feedback from two external cavities in order to
suppress the modulations that arise with feedback from just one cavity. In this
chapter we address the theoretical understanding needed to optimise such a setup.

1The free spectral range is limited to cavity modes which can exist in both cavities [POT02a].
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This chapter is structured as follows. In Section 5.2 the suppression of noise-
induced modulations will be investigated in dependence of the parameters of the
second feedback term. This will first be done for a simple oscillatory system, the
Stuart-Landau oscillator, and then the results will be compared with our system
of interest, the mode-locked laser. For the Stuart-Landau oscillator we will derive
a simple characteristic equation for the dominant Floquet exponents and for the
mode-locked laser, by comparison with numerical results, we will show that the
dominant Floquet exponents can be described by a characteristic equation of the
same form. Then in Section 5.3 we will look at how the noise-induced modulations,
and the suppression thereof, influence the long-term timing jitter.

Parts of this chapter have been published in [JAU16a].

5.2. Suppression of noise-induced modulations

Due to the complexity of the mode-locked laser system we shall first study the
suppression of noise-induced modulations in a very simple oscillatory system, the
Stuart-Landau oscillator. The idea behind this is that if we to restrict the analy-
sis to feedback delay times that are integer multiples of the oscillation period, it
could be expected that the suppression of noise-induced modulations in different
dynamical systems will show the same trends with respect to the resonant delay
time dependence, and to a certain extent the feedback strength dependence. This
is because when the delay times are restricted to resonant values, then the dynam-
ics of the particular system do not change as the delay times are varied, only the
stability of the solutions is affected. Indeed, we will show that this is true for three
examples of dynamical systems exhibiting oscillatory dynamics; the Stuart-Landau
oscillator, the mode-locked laser system and the FitzHugh-Nagumo oscillator (see
Appendix C for the FitzHugh-Nagumo example). Additionally, restricting the feed-
back delay times to integer multiples of the period is motivated by experimental
and theoretical results for passively mode-locked semiconductor lasers which show
that the timing jitter reduction is best close to the main resonances, as shown in
the previous chapter [OTT14b, JAU15, NIK16].

The noise-induced modulations are excitations along eigendirections of the pe-
riodic system, i.e. they are related to the Floquet modes of the underlying de-
terministic system. The imaginary part of the Floquet exponents determines the
modulation frequency and the real part gives the damping rate of the perturba-
tions. More weakly damped modes correspond to more pronounced modulations
[JAN03]. Therefore, to determine the influence of the second feedback term on
the noise-induced modulations we will study how this term effects the dominant
Floquet modes of the unperturbed system. Assuming that the noise perturbations
are small, we will first perform an analytic linear stability analysis for the Stuart-

165



5. Noise-induced modulations

Landau oscillator. Due to the complexity of the mode-locked laser system, we use
DDE-BIFTOOL [ENG01] to numerically calculate the Floquet multipliers for this
system.

5.2.1. Stuart-Landau oscillator

The Stuart-Landau oscillator is a generic oscillatory system which is widely used to
study the dynamics, feedback control and synchronisation of delay-coupled oscilla-
tors [NAK05, DHU10, CHO11, DAH11b, WU12a, SCH13b, LEH15b]. The appeal
of this system is that the oscillatory solution can be found analytically.

The dynamics of a solitary Stuart-Landau oscillator is described by

ż =
(
λ0 + iω0 − (1 + iγ) |z|2

)
z, (5.1)

where z (t) = r (t) eiφ(t) is a complex variable which can be split into an amplitude
r (t) and a phase φ (t) component. Substituting z (t) = r (t) eiφ(t) into Eq. (5.1) the
evolution of the amplitude and the phase are given by

ṙ (t) =
(
λ0 − r (t)2

)
r (t) , and φ̇ (t) = ω0 − γr (t)2 . (5.2)

For λ0 < 0 these equations have only one fixed point solution, which is a stable
focus. At λ0 = 0 the system undergoes a supercritical Hopf bifurcation and a
stable limit cycle is born with r (t) =

√
λ0 and φ (t) = Ωt, where Ω = ω0 −γλ0. We

are interested in the effect of feedback on the stability of the oscillatory solution,
therefore, in the following we will exclusively consider λ0 > 0.

Adding time-delayed feedback to the Stuart-Landau system we have

ż =
(
λ0 + iω0 − (1 + iγ) |z|2

)
z +

∑
n=1,2

Kneiθnz (t − τn) , (5.3)

where K1 and K2 are the feedback strengths, θ1 and θ2 are the feedback phases,
and τ1 and τ2 are the feedback delay times. Here we have added two feedback
terms. One represents the feedback term present in the original system and the
second is the term that is added to suppress the noise-induced modulations that
arise due to the first feedback term. Entering the solution ansatz z (t) = reiΩt into
Eq. (5.3) the amplitude and the frequency are determined by

r2 = λ0 + K1cos (θ1 − Ωτ1) + K2cos (θ2 − Ωτ2) (5.4)

and
Ω = ω − γλ0 +

∑
n=1,2

Kn

√
1 + γ2sin (θn − Ωτn − arctan (γ)) . (5.5)
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To analyse the stability of the solutions, we linearise the system about the peri-
odic solution z (t) = reiΩt. To do this we use the system written in the coordinates
of r (t) and φ (t). The linearised system is given by

δẋ (t) = Aδx (t) +
∑

n=1,2
Bnδx (t − τn) , (5.6)

where δx = (δr, δφ)T and the Jacobi matrices2 are given by

A =
(

λ0 − 3r2 Knr sin (θn − Ωτn)
−2γr − Kn sin(θn−Ωτn)

r −Kn cos (θn − Ωτn)

)
(5.8)

and

Bn =
(

Kn cos (θn − Ωτn) −Knr sin (θn − Ωτn)
Kn sin(θn−Ωτn)

r Kn cos (θn − Ωτn)

)
. (5.9)

What sets the Stuart-Landau system apart from other systems exhibiting oscil-
latory dynamics is that these Jacobi matrices have no time dependence, which
makes the stability analysis similar to that of a steady state solution. Accordingly,
we insert the ansatz δx = peλt, where p is time-independent, into Eq. (5.6) to
obtain

λp = Ap +
∑

n=1,2
Bnpe−λτn . (5.10)

For this linear system to have a solution for p

Det
[
A +

∑
n=1,2

Bne−λτn − λI
]

= 0 (5.11)

must hold, where I is the identity matrix. From this we obtain the characteristic
equation for the Floquet exponents, λ:

(
r2 + λ +

∑
n=1,2 Kncos (θn − Ωτn)

(
1 − e−λτn

))2
(5.12)

= r4 − 2γr2 ∑
n=1,2 Knsin (θn − Ωτn)

(
1 − e−λτn

)
− ∑

n=1,2 K2
nsin2 (θn − Ωτn)

(
1 − e−λτn

)2
.

In the case of only one feedback term, i.e. K2 = 0, this characteristic equation can
be solved analytically by expanding λ in orders of τ−1 [DHU10]. However, since
the order of magnitude of the second delay time can vary compared with the first,

2The entries of the Jacobi matrices are defined as

Ai,j = ∂ẋi

∂xj (t)
and Bn,i,j = ∂ẋi

∂xj (t − τn)
, (5.7)

where x = (r, φ)T.
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Figure 5.1.: Real versus imaginary parts of the dominant Floquet exponents of the Stuart-Landau
system (Eq. (5.15)) with one feedback term. Parameters: K1 = 0.2, τ1 = 500T0, K2 = 0, λ0 = 2,
ω0 = 5 and γ = −5.

the same approach cannot be applied to the dual feedback case. We can however
simplify Eq. (5.12) by making use of the fact that we are interested only in resonant
feedback conditions.

If we restrict ourselves to resonant feedback the delay-times are integer multiples
n of the period T0 = 2π/Ω of the oscillator, i.e., τ1,2 = nT0, and we restrict
the feedback phases by considering that the feedback phase for perfectly resonant
feedback is zero, then Eqs. (5.4) and (5.5) can be simplified to

r2 = λ0 + K1 + K2 and Ω = ω0 − γr2, (5.13)

where Ω no longer depends on the feedback delay times. The characteristic equation
then reduces to

r2 = ±
⎛
⎝r2 + λ +

∑
n=1,2

Kn

(
1 − e−λτn

)⎞
⎠ . (5.14)

For λ0 > 0 and sufficiently large delay times, the dominant Floquet exponents are
given by the plus sign in Eq. (5.14)3;

λ = −(K1 + K2) + K1e−λτ1 + K2e−λτ2 . (5.15)

This expression only implicitly depends on the parameters of the Stuart-Landau
system via the constraints that have been put on the delay times (i.e. τ1,2 = nT0).
Here we also note that the same characteristic equation is obtained for a Pyragas
type feedback scheme, i.e. K[z(t−τ)−z(t)], [PYR92]. Now, to find delay conditions
for optimal modulation suppression we solve Eq. (5.15) numerically and find the
Floquet exponents in dependence of the delay times and the feedback strengths.

With only one feedback term (i.e. K2 = 0) the dominant Floquet exponents
have imaginary parts which are given approximately by 2πn/τ1, for integer n. An

3The Floquet exponents given by Eq. (5.14) with the minus sign are of the order of −2r2.
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Figure 5.2.: Real (a,c) and imaginary (b,d) parts of the three dominant Floquet exponent of the
Stuart-Landau system (Eq. (5.15)) with two feedback terms in dependence of τ2 for τ1 = 500T0

and with K1 = K2 = 0.05 in (a,b) and K1 = K2 = 0.2 in (c,d). The vertical black lines indicate
the τ2 values used in Figs. 5.6 and 5.7. Parameters: λ0 = 2, ω0 = 5 and γ = −5.

example of this is shown for τ1 = 500T0 in Fig. 5.1. Here it can be seen that the
damping rates of the stable Floquet modes increase with n, i.e. Re[λ] becomes
more negative. The mode with λ = 0 is the neutral mode, which is not relevant
for the following analysis where we will only consider the stable modes.

Adding the second feedback term (K2 
= 0) modes will be enhanced or suppressed
depending on whether τ2 is resonant with the Floquet modes of the single feedback
case or not. This is illustrated in Fig. 5.2 where the (a) real and (b) imaginary part
of the three dominant Floquet exponents (neglecting the neutral modes) is plotted
as a function of τ2 for K1 = K2 = 0.05, with τ1 = 500 T0 and τ2 ranging from zero
to τ1. When the second feedback delay time is τ2 = 500T0 the feedback terms are
equal and the situation is identical to the case with only one feedback term. The
frequencies of the dominant Floquet exponents are again given by approximately
2πn/τ1 and the damping rates increases with n. If τ2 = 250T0 then the mode
with the fundamental frequency of the first feedback term, i.e. Im[λ] ≈ 2π/τ1,
is strongly suppressed. This can be seen in Fig. 5.2 by the fact that there is no
Im[λ] ≈ 2π/τ1 mode plotted at τ2 = 250T0 in subplot (b). In this case the dominant
mode corresponds to n = 2, as τ2 is resonant with the second harmonic of the first
feedback term. Similarly, there are peaks in Re[λ], i.e. minima in the damping
rate, at other τ2 values where τ1 and τ2 have low common multiples.

The frequencies of the most dominant Floquet modes (Im[λ]) all correspond to
harmonics of the fundamental frequency of the first feedback cavity, i.e. Im[λ] ≈
2πn/τ1, for integer n. In Fig. 5.2 the most dominant Floquet exponent is plotted in
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Figure 5.3.: Real (a) and imaginary (b) parts of the dominant Floquet exponent of the Stuart-
Landau system (Eq. (5.15)) with two feedback terms in dependence of K1 = K2 and τ2, with
τ1 = 500T0. In (b) the integer labels indicate multiples of 2π/τ1. Parameters: λ0 = 2, ω0 = 5
and γ = −5.

red. Concentrating only on the red symbols in Fig. 5.2b, the frequency components
of the dominant Floquet exponent form a Farey-tree-like structure [COB03], as is
common for systems with two competing characteristic times. The extent of the
various frequency plateaus decreases as n increases and the number of plateaus is
related to the feedback strength. This can be seen by comparison with Fig. 5.2d,
where the feedback strengths are increased to K1 = K2 = 0.2. At the center of the
frequency plateaus the modes are most weakly damped as τ1 and τ2 are resonant
with one another. As τ2 is varied the frequency of the dominant mode is no longer
resonant with τ2 and becomes more strongly damped. At the same time τ2 becomes
resonant with some other modes, which then become more weakly damped. This
can be seen in Fig. 5.2a,c. As Re[λ] of the dominant mode (red) decreases, it
increases for other modes (green and blue).

The dominant frequency of noise-induced modulations is determined by the dom-
inant Floquet mode. From Fig. 5.2 it can therefore be deduced that this modulation
frequency and amplitude can be varied by adjusting τ2. The greatest suppression
of these modulations will occur when the dominant modes are most damped. Com-
paring Fig. 5.2a with Fig. 5.2b it can be seen that the τ2 value for which the modes
are most damped is not given by a fixed ratio of the feedback delay times, but rather
is dependent on the feedback strength. For the dominant mode (red symbols in
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Figure 5.4.: Real (a,c) and imaginary (b,d) parts of the three dominant Floquet exponent of the
Stuart-Landau system (Eq. (5.15)) with two feedback terms for K1 = K2 = 0.2, τ1 = 100T0 in
(a,b) and τ1 = 1000T0 in (c,d). Parameters: λ0 = 2, ω0 = 5 and γ = −5.

Fig. 5.2) the dependence on the feedback strength is shown more clearly in Fig. 5.3.
Here the real (a) and imaginary (b) parts of the dominant Floquet exponent are
depicted as a function of τ2 and K1 = K2, the magnitudes given by the colour
code. Again, the Farey-tree-like structure can be seen in the frequency component,
with the number of frequency plateaus increasing with the feedback strength. As
the feedback strengths are increased, overall the damping rates decrease and the
τ2 value for which the damping rate is greatest shifts to lower multiples of T0. The
same trends are found in dependence of τ1. This is demonstrated in Fig. 5.4, where
the three dominant Floquet modes are shown for τ1 = 100T0 (a,b) and τ1 = 1000T0
(c,d).

So far we have only addressed situations where K1 = K2. If K2 < K1 then
varying τ2 still has a similar effect on the dominant Floquet modes. This can be
seen by comparing Fig. 5.2c-d with Fig. 5.5a-b. In these figures the total feedback
K1 + K2 is keep constant, however in Fig. 5.5a,b the contribution from the second
feedback term is decreased. The overall structure is the same but the increased
contribution from the long feedback term (τ1) means that the maximum damping
rate of the dominant mode is reduced. For K2 > K1 the Farey-tree-like structure of
the frequency plateaus becomes skewed, an example of this is shown in Fig. 5.5c-d.

The relative magnitude of the real part of the dominant Floquet exponents gives
an indication of which frequency components will be more or less present in the
noise-induced modulations. We shall now look at some explicit examples. To do
this we add a Gaussian white noise term to Eq. (5.3) and numerically calculate
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Figure 5.5.: Real (a,c) and imaginary (b,d) parts of the three dominant Floquet exponent of the
Stuart-Landau system (Eq. (5.15)) with two feedback terms for τ1 = 500T0, K1 = 0.3 and
K2 = 0.05 in (a,b), and K1 = 0.1 and K2 = 0.3 in (c,d). Parameters: λ0 = 2, ω0 = 5 and
γ = −5.

power spectra of |z (t) | for various feedback configurations. The system with noise
is given by

ż =
(
λ0 + iω0 − (1 + iγ) |z|2

)
z +

∑
n=1,2

Kneiθnz (t − τn) + Dξ (t) , (5.16)

where D is the noise strength and ξ (t′) = ξR + iξI has the properties

〈ξi (t)〉 = 0 and 〈ξi (t) ξj
(
t′)〉 = δi,jδ

(
t − t′)

for i, j ∈ {R, I}. Figure 5.6 shows power spectra for parameters corresponding
to Fig. 5.2c,d. Shown in grey is the power spectrum for τ1 = τ2 = 500T0, i.e.
equivalent to the single feedback case with K1 = 0.4. The peaks in the power
spectrum are caused by the noise-induced modulations and are found at multiples
of 2π/τ1, corresponding to the frequencies of the dominant Floquet modes. The
spectra for τ2 = 57T0 and τ2 = 124T0 are shown in green in Fig.5.6a-b, respectively.
For τ2 = 57T0, in accordance with Fig. 5.2c-d, the noise-induced modulations are
significantly suppressed. For τ2 = 124T0, modulation at certain frequencies is
significantly suppressed, however not at multiples of 4 · 2π/τ1, since τ2 ≈ τ1/4.

Considering the damping rate of the dominant Floquet exponent gives a good
indication of the τ2 values for which the modulations are suppressed. However,
to find feedback conditions for optimal suppression it is not sufficient to only con-
sider the dominant Floquet exponent. This is because, as discussed earlier, as
the damping rate of the dominant exponent increases, the damping rates of other
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Figure 5.6.: Power spectra of |z| for the Stuart-Landau system with two feedback terms for K1 =
K2 = 0.2, τ1 = 500T0 and τ2 as indicated in (a) and (b). Depicted in grey is the power spectrum
for τ1 = τ2 = 500T0. The τ2 values used here correspond to the positions of the vertical black
lines in Fig. 5.2 (c,d). The results are averaged over 50 noise realisations. Parameters: D = 0.1,
β = 2, ω = 5 and γ = −5.
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Figure 5.7.: Power spectra of |z| for the Stuart-Landau system with two feedback terms for K1 =
K2 = 0.05, τ1 = 500T0 and τ2 as indicated in (a)-(f). Depicted in grey is the power spectrum
for τ1 = τ2 = 500T0. The τ2 values used here correspond to the positions of the vertical black
lines in Fig. 5.2 (a,b). The results are averaged over 50 noise realisations. Parameters: D = 0.1,
β = 2, ω = 5 and γ = −5.

modes decrease. The impact of this on the noise-induced modulations is shown in
Fig. 5.7, where power spectra are plotted for the parameter values corresponding
to the vertical black lines in Fig. 5.2a,b. Starting at τ2 = 20T0 in Fig.5.7a τ2 is
increased in steps of 10T0 in subplots (b)-(f). In all cases the modulations are
reduced with respect to the single feedback case (grey spectra), however the fre-
quency components change. As τ2 is increased the ω ≈ 2π/τ1 component decreases
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5. Noise-induced modulations

but the power at higher frequencies increases. In this example the suppression is
best for τ2 ≈ 40T0, which is before the damping rates of higher frequency modes
have significantly increased (see Fig. 5.2a-b).

For the Stuart-Landau oscillator we can conclude that the suppression of the
noise-induced modulations depends on τ2 in a non-trivial way. Delay conditions
for optimal modulation suppression depend on both the feedback strengths and
on τ1, with the general trend that τ2 should be an increasingly smaller fraction
of τ1 as either τ1 or the feedback strengths are increased. In the next section we
will compare these results with those for the mode-locked laser and show that the
qualitative trends are the same.

5.2.2. Mode-locked laser

The mode-locked laser system with feedback from two external cavities (Eqs. (2.43)-
(2.44) and (3.20)) is vastly more complicated than the Stuart-Landau oscillator.
Due to the delay times and the time dependence of the Jacobi matrices (see
Eqs. (B.2) and (B.3) in Appendix B), although the existence of some character-
istic equation is mathematically proven for the linearised system [SZA06, SIE11a,
HAL93], it cannot easily be derived. Therefore, it is necessary to use software
packages such as DDE-BIFTOOL [ENG01] to numerically calculate the Floquet
exponents. However, the noise-induced modulations become prominent when the
feedback delay times are relatively long and for long delay times using software
packages such as DDE-BIFTOOL very quickly becomes problematic due to mem-
ory requirements and long computation times. In this section we will show that
under certain conditions this problem can be circumvented, because it turns out
that despite the mode-locked laser system having vastly more complicated dynam-
ics, the dominant Floquet exponents can be described with a simple characteris-
tic equation of the same form as that obtained for the Stuart-Landau oscillator
(Eq. (5.15)). We will then use this equation to find optimal feedback delay lengths
for the second cavity when τ1 is very long.

In the following analysis we will only consider the case of zero feedback phases,
C1 = C2 = 0. This is because we are mainly interested in determining the influence
of the second feedback delay time on the suppression of noise-induced modulations,
while keeping the dynamics exhibited by the system the same. As was shown in
Chapter 3, introducing non-zero feedback phases causes a shift of the cavity modes
and this shift is also dependent on the feedback delay times. This means that if
the feedback phases are non-zero the dynamics change even if the feedback delay
times are varied by integer multiples of the pulse repetition period. The influence
of the feedback phases on the dynamics, and hence on the timing jitter, has been
addressed in Section 3.4 and Chapter 4.
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Figure 5.8.: Real (a,c) and imaginary (b,d) parts of the three dominant Floquet exponents of a
passively mode-locked laser subject to feedback from two external cavities for (a,b) K1 = K2 =
0.05 and (c,d) K1 = K2 = 0.1. The white symbols indicate the numerically calculated values
and the coloured symbols indicate the results of the fitted characteristic equation (Eq. (5.17)).
Parameters: τ1 = 100T0,K and, Keff

1 = Keff
2 = 0.0465 for (a,b) and Keff

1 = Keff
2 = 0.089 for

(c,d), all other parameters as in Table 2.1.

Feedback strength and feedback delay time dependence

We shall first concentrate on feedback delay times which are integer multiples of
the period of the mode-locked solutions, i.e. τm = nmT0,K for integer nm and
m = 1, 2. In Fig. 5.8a-b the real and imaginary parts of the three dominant
Floquet exponents, calculated using DDE-BIFTOOL, are depicted by the white
symbols for τ1 = 100T0,K and K1 = K2 = 0.05.4 The τ2 dependence of these
Floquet exponents is very similar to the Stuart-Landau case. In fact, despite the
more complex dynamics, with time-varying amplitudes, fitting of the numerically
obtained results shows that the dominant Floquet exponents can be described with
a simple characteristic equation of the same form as Eq. (5.15),

λ = −(Keff
1 + Keff

2 ) + Keff
1 e−λτ ′

1 + Keff
2 e−λτ ′

2 , (5.17)

the difference being that the feedback strengths in Eq. (5.15) are now replaced with
effective feedback strengths Keff

n that depend on the dynamics of the mode-locked
laser. Here τ ′

m are the total delay times in the feedback terms, i.e. τ ′
m = T + τm.

The fit of Eq. (5.17) is depicted by the coloured symbols in Fig. 5.8a-b. The only fit
4For τ1 = 100T0,K the DDE-BIFTOOL calculations already require a significant amount of

memory and computation time. And, because these scale non-linearly with the delay time,
τ1 = 100T0,K is already close to limit for which stability calculations are in practice possible
using DDE-BIFTOOL.
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parameters are Keff
1 and Keff

2 , which in this case are Keff
1 = Keff

2 = 0.0465. Results
for K1 = K2 = 0.1 are shown in Fig. 5.8c-d. In this case Keff

1 = Keff
2 = 0.089.

That the dominant Floquet exponents can be described by Eq. (5.17) is a non-
trivial result since the monodromy matrix (see Appendix A) depends on the de-
lay times of the system in the form M (t0) = M

(
t0, eλT , eλ(T +τ1), eλ(T +τ2)

)
and

a characteristic equation would involve terms of the form eλ(T +τm)eλ(T +τm′ ) for
m, m′ = {1, 2}, as well as higher order terms. To understand what conditions are
required such that fitting Eq. (5.17) to the dominant Floquet exponents works, it
is helpful to remember that for the Stuart-Landau system the dominant Floquet
exponents are only given by Eq. (5.15) as long as the λ0 > 0 and for sufficiently
large feedback delay times. Otherwise dominant Floquet exponents can also come
from the component of Eq. (5.14) with the minus sign, which explicitly depends
on a parameter of the Stuart-Landau oscillator, λ0. This suggests that in the
mode-locked laser case Eq. (5.17) may also only describe the dominant Floquet ex-
ponents if at least one of the feedback delay times is sufficiently large. Intuitively,
this makes sense, since for large feedback delay times terms of the form eλ(T +τm)

will dominant over higher order terms and T will become negligible compare with
τm. Indeed, by comparison with results obtained using DDE-BIFTOOL we find
that for smaller τ1 values there are additional dominant Floquet exponents which
cannot be described by Eq. (5.17). This is shown for τ1 = 50T0 in Fig. 5.9c-d,
where K1 = KTOTk = 0.05 and K2 = KTOT (1 − k) = 0.05. Here some of the
Floquet exponents can be fitted well by Eq. (5.17), but there are also some which
show a nearly linear dependence on τ2 and have a zero frequency component.

The feedback strengths used in Fig. 5.9c-d are the same as those used in Fig. 5.8a-
b, therefore the fitted values for the effective feedback strengths are also the same,
i.e. Keff

1 = Keff
2 = 0.0465 also for Fig. 5.9c-d. In fact, for sufficiently large feedback

delay times it is to be expected that Keff
1 and Keff

2 are independent of the feedback
delay times since we have restricted τ1 and τ2 to integer multiples of the period
which means that the Jacobians of the linearised system are independent of τ1
and τ2. Furthermore, the feedback strength dependence of the Jacobi matrices Bn

(Eq. (B.3) in Appendix B) can be split into two contributions. We can write

Bn = KnB̃n, (5.18)

where B̃n now only depends on KTOT = K1 +K2 and not individually on Kn. This
is because B̃n is a function of the periodic solution of the full system (Eqs. (2.43)-
(2.44) and (3.20)), which depends only on KTOT when τ1 and τ2 are integer multi-
ples of the period, since under these delay conditions the contributions from the two
cavities are indistinguishable from the single feedback cavity case with K = KTOT.
This means that if we write K1 = KTOTk and K2 = KTOT (1 − k), it should also
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Figure 5.9.: Real (a,c,e) and imaginary (b,d,f) parts of the three dominant Floquet exponents of
a passively mode-locked laser subject to feedback from two external cavities for (a,b) k = 0.25,
(c,d) k = 0.5 and (e,f) k = 0.75. The white symbols indicate the numerically calculated values
and the coloured symbols indicate the results of the fitted characteristic equation (Eq. (5.19)).
Parameters: τ1 = 50T0,K , KTOT = 0.1 and Keff

TOT = 0.093, all other parameters as in Table 2.1.

hold that Keff
1 = Keff

TOTk and Keff
2 = Keff

TOT (1 − k), where Keff
TOT = Keff

1 + Keff
2 .

Equation (5.17) can then be written as

λ = −Keff
TOT

(
1 − ke−λτ ′

1 − (1 − k) e−λτ ′
2
)

, (5.19)

where the only fit parameter is Keff
TOT. Examples of the fit of Eq. (5.19) for k = 0.25,

k = 0.5 and k = 0.75 are shown in Fig. 5.9, where in each case Keff
TOT = 0.094.

Off resonant feedback delay times

In terms of timing jitter reduction, feedback delay times that are close to τn =
nmT0, but not necessarily exact integer multiples, are of interest (see Section 4.4).
It is therefore also of interest to investigate the dependence of the Floquet exponents
on delay times that are slightly detuned from τm = nmT0, i.e. for τm = τ0 + nmT0
where τ0 is some small delay offset. Here the question arises if Eq. (5.19) can also
be used to describe the dominant Floquet exponents when τ0 is non-zero.

In Fig. 5.10 results for the four dominant Floquet exponents, calculated using
DDE-BIFTOOL, are plotted in the white symbols for delay offsets of τ0 = 0.006T

(a,b), τ0 = 0.02T (c,d) and τ0 = 0.07T (e,f). The coloured symbols again show
the fit of Eq. (5.19). For the delay offsets τ0 = 0.006T and τ0 = 0.02T , Eq. (5.19)
describes the dominant Floquet exponents very well with effective total feedback
strengths of Keff

TOT = 0.101 and Keff
TOT = 0.097, respectively. However, for τ0 =

0.07T Eq. (5.19) fails to fit the τ2 dependence of any of the exponents. These
results suggest that another requirement, for Eq. (5.19) to hold for the dominant
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Figure 5.10.: Real (a,c,e) and imaginary (b,d,f) parts of the three dominant Floquet exponents of a
passively mode-locked laser subject to feedback from two external cavities for (a,b) τ0 = 0.006T ,
(c,d) τ0 = 0.02T and (e,f) τ0 = 0.07T . The white symbols indicate the numerically calcu-
lated values and the coloured symbols indicate the results of the fitted characteristic equation
(Eq. (5.19)). Parameters: n1 = 50, KTOT = 0.1, k = 0.5 and Keff

TOT = 0.101 for (a,b),
Keff

TOT = 0.097 for (c,d) and Keff
TOT = 0.052 for (e,f), all other parameters as in Table 2.1.

Floquet exponents, is that the total delay time τ ′
m is close to an integer multiple

of the period of the mode-locked solution. In the earlier examples, where we had
τm = nmT0, the total delay time τ ′

m was nearly an integer multiple of T0, apart
from a small offset due to T being slightly smaller than the period T0. For example,
for KTOT = 0.1 the period is T0 = 1.01318 compared with T = 1. As the delay
offset τ0 is increased from zero, the total delay time τ ′

m initially becomes closer
to an integer multiple of the period T0. This is because the increase in T0 is less
than linear as τ0 is increased, as can be seen in Fig. 3.60. For example, in the
τ0 = 0.02T case the period is T0 = 1.01507, therefore the total delay time τ ′

m is
only offset from an integer multiple of T0 by about 0.005 (T + τ0 − T0 ≈ 0.005),
compared with 0.01 in the τ0 = 0 (KTOT = 0.1) case. However, as τ0 is increased
further, eventually τ ′

m becomes more offset from an integer multiple of T0, which
coincides with the fit of Eq. (5.19) becoming poorer. For τ0 = 0.07T the solution
has a period of T0 = 1.01747 and the offset of the total delay time τ ′

m from an
integer multiple of T0 is about 0.05. Apart from providing information on the
applicability of Eq. (5.19), Fig. 5.10 also shows that overall the damping rates are
much higher for τ0 = 0.07T . However, for τ0 = 0.07T the solutions are already
shifted far enough from the main resonances that the pulse shape is deformed (see
Fig. 3.63) and hence timing jitter is relatively large (see Fig. 4.14).
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Figure 5.11.: (a) Real and (b) imaginary parts of the largest Floquet exponents of a passively mode-
locked laser subject to feedback from two external cavities predicted from the fitted characteristic
equation Eq. (5.19). Vertical black lines indicate parameters for power spectra shown in (c)-
(f). (c)-(f) Power spectra S|E|2 of the mode-locked laser output for the τ2 indicated in each
subplot (green). In grey is the spectrum for τ2 = τ1 = 1000T0. Parameters:Keff

TOT = 0.093
K1 = K2 = 0.05, τ1 = 1000 T0, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

Modulation suppression for long feedback delay times

By using the Keff
TOT values which are fitted to the DDE-BIFTOOL results for

shorter delay times, we can now use Eq. (5.19) to investigate the τ2 dependence
of the dominant Floquet exponents for very long τ1 values. We demonstrate this
in Fig. 5.11 for KTOT = 0.1 and τ1 = 1000T0,K . For resonant delay lengths, i.e.
τm = nmT0,K , and a total feedback strength of KTOT = 0.1, we have Keff

TOT =
0.093 from the fits for τ1 = 50T0,K and τ1 = 100T0,K (Fig. 5.8a-b and Fig. 5.9c-
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d, respectively). Using Eq. (5.19), with Keff
TOT = 0.093, the dominant Floquet

exponents for τ1 = 1000T0,K are shown in Fig. 5.11a-b. To check this prediction
of the dominant Floquet exponents, Fig. 5.11c-f shows power spectra of electric
field amplitude |E| for the mode-locked laser system with noise ((Eqs. (4.10)-(4.12)
with D = 0.2 and N = 2) for τ2 values corresponding to the vertical black lines
in Fig. 5.11a-b. The central peak in the power spectra corresponds to the third
harmonic of the pulse repetition frequency and the side peaks arise due to the
noise-induced modulations. As a reference, plotted in grey is the power spectrum
for τ2 = 1000T0,K , which is equivalent to single cavity feedback with K = KTOT.
The side peaks are offset from the main peak by the frequency components of the
noise-induced modulations. For the τ2 = 1000T0,K case (grey) these frequency
components are multiples of 1/1000T0,K . For τ2 = 90T0,K Fig. 5.11a-b predicts
that the fundamental frequency of feedback cavity one (1/1000T0,K) should be
significantly suppressed, but that the modes corresponding to the 9th, 10th and
11th harmonic of this frequency are only weakly damped. In accordance with this
the power spectrum for τ2 = 90T0,K , depicted in green in Fig. 5.11c, shows that the
side peaks close to the central peak are suppressed but that the suppression of 9th,
10th and 11th side peaks is weak. In Fig. 5.11d the power spectrum is shown for
τ2 = 325T0, which corresponds to a maximum in Re[λ] for modes with frequencies
which are multiples of the 3rd harmonic of feedback cavity one, i.e. Im[λ] ≈ 2πn/τ1
for n = 3, 6, 9.... Accordingly, every third side peak is not suppressed. Similar
comparisons with Fig. 5.11a-b also show agreement for τ2 = 425T0,K and τ2 =
710T0,K , for which power spectra are shown in Fig. 5.11e-f. The conditions for
optimal suppression of the noise-induced modulations (lowest power in the side
peaks), for K1 = K2 = 0.05 and τ1 = 1000T0,K , are found for τ2 approximately 85-
90T0,K , as predicted from Fig. 5.11a which shows the largest damping rate of the
dominant Floquet exponents in this range. Also in agreement with Fig. 5.11a, very
good suppression of the side peaks in the power spectra is obtained for τ2 ≈ 210T0,K

and τ2 ≈ 435T0,K , as well as at other positions near maxima in the damping rate
of the dominant Floquet exponent (minima in the red curve in Fig. 5.11a). The
power spectrum for the τ2 = 435T0,K example is shown in Fig. 5.16a.

The results of this subsection show that, as for the Stuart-Landau oscillator, the
optimal feedback delay lengths for the suppression of noise-induced modulations is
not given by a fixed ratio of τ1 and τ2, but rather depends on the feedback strengths
and τ1. The general trends are that poor suppression is achieved if τ1 and τ2 have
a low common multiple, and for increasing τ1 optimal suppression is achieved for
τ2 values which are an increasingly smaller fraction of τ1. Furthermore, we have
shown that for delay times close to the main resonances, Eq. (5.19) can be used to
calculate the dominant Floquet exponents for the mode-locked laser system.
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Figure 5.12.: Single external-cavity feedback: σΔt (m) =
√

Var (Δtm) /m plotted as a func-
tion of the number of laser cavity roundtrips for various feedback delay times (as indicated
in each plot). N = 100 noise realisations were used for these calculations. The dashed red
line indicates the value of the semi-analytically calculated long-term timing jitter. Parameters:
K = 0.1, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

5.3. Impact of noise-induced modulations on the
timing jitter

In this section we will address how the noise-induced modulations, and the sup-
pression thereof, influences the timing jitter of the mode-locked laser output.

5.3.1. Timing jitter with noise-induced modulations

In Section 4.4 we investigated the dependence of the timing jitter on resonant
feedback delay times from a single feedback cavity. There we found that past a
certain feedback delay time, noise-induced modulations play a significant role and
can no longer be neglected. When the noise-induced modulations are negligible,

σΔt (m) =

√
Var (Δtm)

m

converges to the semi-analytically calculated long-term timing jitter for large m.
However, as the noise-induced modulations become large, this is no longer the case.
This is illustrated in Fig. 5.12, where σΔt (m) (blue line) is plotted as a function of
the number of roundtrips for various feedback delay times. In each case the semi-
analytically calculated timing jitter is indicated by the dashed red line. In Fig. 5.12a
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the delay times is chosen to be τ = 200T0,K . For this delay time σΔt (m) still
converges to the semi-analytic value. However, in Fig. 5.12b-d increasingly larger
feedback delay times are used and it can be seen that, for large m, σΔt (m) becomes
increasingly offset from the semi-analytic value (see Fig. 4.18 for the τ = 1000T0,K

example). This means that, as well as there being significant fluctuations in the
pulse positions on time scales of τ (for examples of the modulation of the timing
fluctuations see Fig. 4.4), the variance of the timing fluctuations on long time
scales is also increased due to the short time-scale fluctuations. The semi-analytic
results give the lower limit of the timing jitter in the absence of the noise-induced
modulations.

To understand how the noise-induced modulations affect the variance of the
timing fluctuations, it is helpful to consider a simple iterative map describing a
random process with an added oscillatory term. We consider

Tn+1 = Tn + T0 + Dξ(n + 1) + aH, (5.20)

where T0 is a constant, ξ(n) is a Gaussian white noise term with the properties

〈ξ (n)〉 = 0 and 〈ξ (n) ξ
(
n′)〉 = δ

(
n − n′) ,

D is the noise strength and H is a sinusoidal function of either n, or Tn, i.e. H (n) =
sin

(
2πn
τs

)
or H (Tn) = sin

(
2πTn

τs

)
, with amplitude a. For H (n) the oscillations are

periodic, but for H (Tn) this term oscillates with an irregular period since Tn is a
stochastic variable. If a = 0 then

Tn = nT0 + D
n∑

i=1
ξ (i) (5.21)

and the set of fluctuations {ΔTn} = {Tn − nT0} behaves like a random walk. In
this case, apart from statistical fluctuations, the quantity

σΔTn (n) =

√
VarΔTn

n
(5.22)

is constant in n. This is shown by the black line in Fig. 5.13. If a is non-zero and
the periodic term H (n) is used, the sinusoidal term adds regular oscillations onto
the variance. For n equal to integer multiples of the period of H (n), which is given
by τs, the contribution from the oscillations is zero and σΔTn (n) is the same as
in the a = 0 case. This can be seen by comparing the red line and the black line
in Fig. 5.13. If H (Tn) is used instead of H (n), the contribution to Tn from the
added irregular oscillations does not periodically cancel out, since the Tn values
which enter H (Tn) vary stochastically. This means that the contributions from
H (Tn) accumulate, which leads to an overall increase in the variance (Fig. 5.13
blue line). The mode-locked laser with feedback is comparable to the latter case
as the noise-induced modulations are not perfectly periodic.
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VarΔTn/n of the timing fluctuations produced by the iterative map
Eq. (5.20) for a = 0 (black), H = H (n) (red) and H = H (Tn) (blue). N = 50 noise realisations
were used. Parameters: T0 = 1, a = 0.4, τs = 100, D = 0.1.
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Figure 5.14.: Dual external-cavity feedback: σΔt (m) =
√

Var (Δtm) /m plotted as a function
of the number of laser cavity roundtrips for various τ2 values (as indicated in each plot), with
τ1 = 1000T0,K . N = 100 noise realisations were used for these calculations. The dashed red
line indicates the value of the semi-analytically calculated long-term timing jitter. Parameters:
K = 0.1, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.
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Figure 5.15.: Dual external-cavity feedback: (a) σΔt (m) =
√

Var (Δtm) /m plotted as a
function of the number of laser cavity roundtrips for various τ2 values (as indicated in the
legend), with τ1 = 1000T0,K . N = 100 noise realisations were used for these calculations. (b)
Semi-analytic prediction of the long-term timing jitter in dependence of the resonance number
of the second feedback cavity. The colour circles correspond to the τ2 values used in (b).
Parameters: K = 0.1, Rsp = 0.44 (D = 0.2), all other parameters as in Table 2.1.

5.3.2. Reduction of the timing jitter via the suppression of
noise-induced modulations

We will now look at the influence of suppressing the noise-induced modulations
on the timing jitter. For this we will use the τ1 = 1000T0,K and KTOT = 0.1
example for which the prediction of the dominant Floquet exponents is shown in
Fig. 5.11a-b. From Fig. 5.11a-b we concluded that the best suppression of the noise-
induced modulations should occur for τ2 ≈ 90T0,K as here the damping rate of the
dominant Floquet exponent is greatest. However, from the analytic expression for
the dependence of the timing jitter on the resonance numbers,

σlt (τ0, n1, n2, KTOT, k) =
σlt (KTOT, τ0)

1 + KTOT (kn1 + (1 − k) n2) F (KTOT, τ0)

with σlt (KTOT, τ0) and F (KTOT, τ0) as defined in Subsection 4.4.1, we know that
the minimal long-term timing jitter, that can be achieved when the modulations are
suppressed, is also dependent on the length of the second feedback cavity. Hence,
there is a trade off between modulation suppression and reduced minimal long-term
timing jitter. To investigate the influence of these two factors, the behaviour of the
timing fluctuations is shown in Fig. 5.14 for various τ2 values. Plotted in blue is
σΔt (m) as a function of the number of laser cavity roundtrips and indicated by the
dashed red line is the semi-analytically predicted long-term timing jitter. For τ2 =
90T0,K (Fig. 5.14a) the suppression of the modulations is very effective and σΔt (m)
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Figure 5.16.: Power spectra S|E|2 of the mode-locked laser output for the τ2 = 435T0,K (a) and
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converges to the semi-analytic value. Meaning that the variance of fluctuations in
the pulse positions is not influenced by any residual noise-induced modulations
when the roundtrip number is large (of the order of 105). In Fig. 5.14b the second
delay time is τ2 = 435T0,K . In this case the suppression of the modulations is not
quite as pronounced (compare Fig. 5.11c with Fig. 5.16a) but due to the longer
second feedback cavity σΔt (m) is lower, for large m, than in the τ2 = 90T0,K

case. Examples for τ2 = 710T0,K and τ2 = 900T0,K are shown in Fig. 5.14c-d.
For a better comparison between these cases, σΔt (m) is plotted for only large
roundtrip numbers in Fig. 5.15a. A comparison of the semi-analytic prediction for
these feedback delay times is shown in Fig. 5.15b. In all four cases the variance
of the timing fluctuations, and hence the estimate of the long-term timing jitter,
is lower than in the single feedback cavity case (grey curve in Fig. 5.15a). For
the selected τ2 values the best results are obtained for τ2 = 710T0,K . For this
delay time the long-term timing jitter is low (orange curve in Fig. 5.15a) and good
suppression of the noise-induced modulations is achieved. The long-term timing
jitter for τ2 = 900T0,K is approximately the same (blue curve in Fig. 5.15a) but
due to the lower damping rates the modulations are more pronounced. This can
be seen by comparing the power spectra in Fig. 5.16b and Fig. 5.11f.

For τ2 = 710T0,K the long-term timing jitter is reduced by about 40% compared
with the estimate for single cavity feedback case (for the single cavity feedback
case the long-term timing jitter is estimated from the minima in σΔt (m), i.e. the
level of the minima in the grey curve in Fig. 5.15a). Although the change in the
long-term jitter is not very large, the reduction in the modulation amplitude of
the timing fluctuations leads to a significant improvement in the regularity of the
pulse train. For single cavity feedback, with τ = 1000T0,K and K = 0.1, the noise-
induced modulations cause fluctuations in the pulse arrival times of the order of
100 fs (see Fig. 4.4). With a long-term timing jitter of σlt ≈ 0.1 fs, comparable
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deviations due to the random-walk-like behaviour are only reached for roundtrip
numbers of the order of 105. This means that depending on the intended application
of the passively mode-locked laser, the short time scale fluctuations in the pulse
positions can be just as important to take into account as the drift on long times
and suppressing these effects can lead to vastly improved device performance.

Experimentally dual feedback configurations have been implemented and, al-
though the delay lengths were not optimised, these studies showed a significant
improvement in the rms timing jitter [JAU16, DRZ13a, HAJ12]. In these works
the reduction in the rms timing jitter was larger than the reduction in the long-term
jitter demonstrated numerical here. This is expected due to the delay lengths used
in these experimental studies. In [JAU16] the delay length of the longer feedback
cavity is about 3000 times the interspike-interval time. For longer delay times the
damping rates are reduced, therefore the noise-induced modulations are expected
to play a larger role. Hence, the suppression of noise-induced modulations becomes
more important.

5.4. Summary

In this chapter we have studied how a second feedback term can be used to suppress
noise-induced modulations that arise in periodic systems with feedback. We first
looked at the Stuart-Landau oscillator and then the mode-locked laser system.
For the mode-locked laser we also addressed how the noise-induced modulations
influence the timing jitter.

As long as the noise source is sufficiently small the noise-induced modulations
are related to the stability of the linearised system. For the Stuart-Landau oscil-
lator subject to two feedback terms we have therefore performed a linear stability
analysis to determine how the second feedback term affects the damping rates of
the dominant Floquet exponents. To do this we restricted our analysis to reso-
nant feedback conditions, i.e. feedback delay times that are integer multiples of
the period and zero feedback phases. Under these conditions the dynamics remain
the same for different delay times and one can ascertain how the delay lengths
influence the dominant Floquet exponents, which are given by a simple character-
istic equation that can be analytically derived. The results for the delay time and
feedback strength dependence of the dominant Floquet exponents have shown that
conditions for optimal suppression of the noise induced modulations, i.e. strongest
damping of the Floquet modes, are not given by a fixed ratio of the feedback de-
lay times. The general trends are that suppression is poor when the delay times
have a low common multiple and for increasing delay times for the first feedback
term, or for increasing feedback strengths, the second feedback delay time should
be an increasingly smaller fraction of the long delay time for the suppression to be
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optimised. Furthermore, the frequency of the dominant Floquet exponent follows
a Farey-tree-like structure in dependence of the delay times. This means that the
dominant frequency of the noise-induced modulations can be changed depending
on the resonance between the two delay times.

The mode-locked laser system is vastly more complicated than the Stuart-Landau
oscillator. We were therefore not able to derive a characteristic equation for this
system. However, by fitting numerically calculated Floquet exponents we were able
to show that for resonant feedback delay times the dominant Floquet exponents
can be described by a simple characteristic equation which has the same form as
the equation that was analytically derived for the Stuart-Landau oscillator, with
the only fit parameter being an effective total feedback strength. By showing that
this is also applicable for small offsets from the main resonances we can deduce
that a condition for a good fit of the characteristic equation to hold is that the
total delay times are close to integer multiples of the period. A further condition
is that at least one of the delay times is sufficiently long, otherwise there are also
other system-dependent dominant Floquet exponents that cannot be described by
the simplified characteristic equation. Since the characteristic equation for the
mode-locked laser has the same form as for the Stuart-Landau oscillator, the same
trends hold for the conditions for optimal suppression of the modulations in the
mode-locked laser.

The fitted characteristic equation depends analytically on the feedback delay
times, meaning that it can be used to make predictions about optimal delay times
for the second feedback cavity, when the first feedback cavity is very long. This
is useful because for long delay times fully numerical methods of determining the
Floquet exponents require very long computation times and large amounts of mem-
ory. By comparison with numerically calculated power spectra for the system with
noise, we demonstrated that there was very good agreement between the frequency
components predicted from the dominant Floquet exponents which are given by
the characteristic equation and those present in the power spectra. And, for op-
timally chosen delay times, i.e. delay times for which the damping rates of the
dominant Floquet exponents are large, very good suppression of the noise-induced
modulations can be achieved.

The noise-induced modulations cause the pulse positions to fluctuate on short
time scales, which we have shown to also lead to an increase in the variance of the
timing fluctuations on long time scales. Therefore, suppressing the noise-induced
modulations is very important as this improves the regularity of the pulse train on
short time scales, as well as reducing the long-term timing jitter. The optimal delay
time conditions for this are not quite the same as those for optimal suppression
of the noise-induced modulations because there is a trade-off between improved
modulation suppression for shorter delay times and a lower minimum long-term
timing jitter for longer delay times. The minimum long-term timing jitter that
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can be achieved for any feedback delay configuration is given by the semi-analytic
method, as this method provides the long-term timing jitter in the absence of noise-
induced modulations. If the second delay time is chosen appropriately, dual cavity
feedback can be an effective means of generating low timing jitter pulse trains.
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Chapter 6
Summary and outlook

In this thesis we have investigated the dynamics and stochastic properties of a pas-
sively mode-locked semiconductor laser subject to time-delayed optical feedback.

A passively mode-locked semiconductor laser can produce ultra-short optical
pulses at very high repetitions. By subjecting such a laser to optical feedback
the mode-locked dynamics can be influenced in several ways. Firstly, time-delayed
feedback can be used to alter the repetition rate of the pulsed laser output. There
are two manifestations of this effect. One is a fine tuning of the repetition rate
that occurs if the system is forced to adapt to slightly off-resonant feedback delay
times. The other is a multiplication of the repetition rate that occurs via feedback
induced harmonic mode-locking. These are effects that can be of use for appli-
cations which require precise, or very high, repetition rates. However, feedback
can also have detrimental effects on the mode-locked dynamics. For example, non-
resonantly chosen delay conditions can lead to a widening of the pulses or destabil-
isation of the periodic mode-locked dynamics, resulting in quasi-periodic or chaotic
pulse trains. When the feedback delay time is chosen resonantly the dynamics are
unchanged compared with solitary laser with the same total non-resonant losses.
These resonances occur at delay times which are integer multiples of the period.
Surrounding each of the resonant feedback delay time, there is a locking range in
which fundamental mode-locking is exhibited. These locking ranges become wider
as the delay times are increased, eventually leading to multistability between solu-
tions locked to different resonances. This multistability can be lifted by adding a
second feedback cavity which has a different delay time.

The unavoidable presence of spontaneous emission noise leads to a large tim-
ing jitter in passively mode-locked semiconductor lasers in comparison to actively
modulated devices. This is a result of the time-shift invariance of passively mode-
locked lasers, or in other words, due to the lack of a restoring force. Resonantly
chosen feedback can be an effective passive means of combating this detrimental
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effect. Using a semi-analytic method of calculating the timing jitter we have de-
rived an expression for the resonant delay time dependence of the timing jitter.
This semi-analytic method takes into account the influence of noise along the neu-
tral mode of the linearised system which is related to the time-shift invariance of
the mode-locked laser system. In the absence of noise-induced effects along other
eigendirections of the system, our derived expression predicts that the timing jitter
decreases monotonically as the feedback time delay is increased. This reduction in
the timing jitter is a result of correlations between current and past pulse positions
that are introduced via the delayed feedback. However, as the feedback delay times
become long, noise can excite other weakly stable eigenmodes of the system, which
leads to a modulation of the pulse positions and an increased variance of the timing
fluctuations compared with the semi-analytic prediction. In experimental studies
such noise-induced modulations are manifested as side-peaks in the power spectra
of the laser output. These noise-induced modulations can cause fluctuations in the
pulse arrival times that are significant for long feedback cavities, and depending on
the desired application, should not be ignored.

The noise-induced modulations that arise for long feedback delay times can be
suppressed by adding a second feedback cavity of the appropriate length. To study
the suppression of noise-induced modulations we have first investigated this effect
in a simple oscillatory system, the Stuart-Landau oscillator. For this system one
can derive a simple characteristic equation for the dominant Floquet exponents.
The damping rates and frequencies of these exponents are related to the amplitude
and frequency of the noise-induced modulations. We have shown that, for resonant
feedback, by selecting the delay length of the second cavity such that the damping
rates are high, the noise-induced modulations can be effectively suppressed. Fur-
thermore, for the mode-locked laser system, despite the complexity of this system,
we have shown that, under certain conditions, the dominant Floquet exponents
can be described by a simple characteristic equation which has the same form as
the equation which can be analytically derived for the Stuart-Landau oscillator.
Using this characteristic equation one can make predictions for delay configura-
tions resulting in the optimal suppression of noise-induced modulations. For both
the Stuart-Landau and the mode-locked laser systems, the optimal suppression of
the noise-induced modulations is not given by a fixed ratio of the feedback delay
times, but rather depends on the delay time of the longer feedback cavity and on
the feedback strengths.

By suppressing the noise-induced modulations in the mode-locked laser system,
the timing regularity can be significantly improved. On the one hand the regularity
on short time scales is improved because the fluctuations on time scales of the
feedback delay time are reduced. On the other hand the long-term timing jitter
is also reduced. This is because the contribution to the variance of the timing
fluctuations, from the irregular short-term oscillations of the pulse positions, is
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removed. A dual feedback cavity configurations therefore has the potential to
vastly improve the performance of passively mode-locked lasers. However, the
implementation of such a setup is more difficult, compared with a single feedback
cavity, due to the increased sensitivity of the dynamics to the feedback phases.

The mode-locked laser system with feedback is one example of a dynamical
system where the suppression of noise-induced modulations is important. However,
such effects can also arise in other periodic physical system that involve long delay
times. In future studies, it would therefore be interesting to extend our work on the
simple characteristic equation that we found to accurately describe the dominant
Floquet exponents for the mode-locked laser. We have shown that this equation
also applies to a FitzHugh-Nagumo oscillator subject to feedback. This raises the
question, what conditions must a system fulfil such that the characteristic equation
can be reduced to such a simple form for the dominant Floquet exponents? And,
is it possible to derive this characteristic equation for a general oscillatory system
subject to feedback? If so, this could be very useful, as then one could gain a better
understanding of how the effective feedback strengths in the characteristic equation
depend on the dynamics of the particular system, and hence how feedback impacts
the stability of different systems.

We have extensively studied the feedback induced dynamics of a passively mode-
locked laser using the now commonly applied delay differential equation model.
This modelling approach includes various simplifying assumptions and we have
used a relatively simple model for the charge carriers in the active medium. Nev-
ertheless, a lot of the qualitative trends that are observed in more complicated
modelling approaches, and in experiments, can be reproduced. Via comparison
with experimental results for a quantum-dot passively mode-locked laser we have
shown that the feedback induced trends agree well with those predicted using the
DDE model. However, there are still some aspects that warrant investigation with
a refined model. For example, how are the feedback induced dynamics affected if
one uses a quantum-dot based model with dynamical amplitude-phase coupling?
Or, how do the dynamics of a quantum-dot based gain medium influence the timing
jitter reduction that can be achieved with optical feedback? Our semi-analytically
derived expression for the timing jitter reduction has shown that if the delay is
long, but noise-induced modulations are neglected, the timing jitter scales as one
over the resonant delay time, however, with a proportionality factor that depends
on the dynamics, which would be different for a quantum-dot based model. In
terms of the timing jitter and the noise-induced modulations, a further point to
investigate is the impact of coloured noise.

Another direction for future work is related to the feedback schemes. We have
investigated the influence coupling to one and two passive external cavities. How-
ever, it is also of interest to investigate coupling to active cavities. For example,
coupling two or more passively mode-locked lasers. Such a setup has the promise
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6. Summary and outlook

of producing synchronised pulse trains, which could be used generated more ener-
getic pulses, or higher repetition rates. From a non-linear dynamics point of view
such a system is also interesting as a test bed for the dynamics arising in coupled
pulsating systems.

To conclude, time-delayed feedback can induce a rich range of dynamics in pas-
sively mode-locked lasers and is a promising means of improving the performance
of such devices without the need to introduce active elements.

192



Appendix A
Floquet theory

The stability of solutions to linear periodic differential systems can be studied using
Floquet theory. Consider a linear first-order system

ẋ (t) = A (t) x (t) , (A.1)

where A (t) is a n × n periodic matrix,

A (t + T ) = A (t) , (A.2)

with period T .
The principle matrix solution of Eq. (A.1), Φ (t, t0), is a matrix whose columns

are linearly independent solutions of Eq. (A.1) and at some time t0 Φ (t0, t0) = I,
where I is the identity matrix. This matrix satisfies

Φ̇ (t, t0) = A (t) Φ (t, t0) (A.3)

and
Φ (t + T, t0 + T ) = Φ (t, t0) (A.4)

and can be written as

Φ (t, t0) = P (t, t0) e(t−t0)Q(t0), (A.5)

where Q (t0) is an n × n matrix and P (t + T, t0) = P (t, t0) is T -periodic. The
principle matrix describes the evolution of solutions to Eq. (A.1), i.e. if x (t + t0)
is a solution to Eq. (A.1) then the evolution from time t0 is given by

x (t + t0) = Φ (t, t0) x (t0) . (A.6)

The stability of the solution x (t + t0) is then given by the eigenvalues of the so
called monodromy matrix which is defined as

M (t0) = Φ (t0 + T, t0) (A.7)

193



A. Floquet theory

and describes the evolution over one period T . The monodromy matrix can be
written in the form

M (t0) = eT Q(t0). (A.8)

The eigenvalues μj of M (t0) are referred to as the Floquet multipliers (or charac-
teristic multipliers) of the solution to Eq. (A.1) and the eigenvalues λj of Q (t0) are
the Floquet exponents (or characteristic exponents). A solution is stable if |μj | ≤ 1
(Re[λj ] ≤ 0) for all j. For a more detailed introduction to Floquet theory see, for
example, [TES12].

For linear delay differential equations, a complete Floquet theory does not exist
[HAL93], however the characteristic multipliers and exponents can be defined in
similar way. Consider a linear delay differential equation

ẋ (t) = A (t) x (t) − B (t − τ) x (t − τ) , (A.9)

with periodic matrices A (t + T ) = A (t) and B (t + T ) = B (t). Let U (t, t0) be an
operator that describes the time evolution of a solution x (t + t0) to Eq. (A.9), i.e

x (t + t0) = U (t, t0) x (t0) . (A.10)

Then the monodromy operator in defined as

M (t0) = U (t0 + T, t0) (A.11)

and the characteristic multipliers μj are the eigenvalues of M (t0). Details on the
stability analysis of periodic linear delay differential can be found in [HAL93].

Note that in both the linear ordinary and delay differential equations case the
characteristic multipliers are independent of the choice of t0 and both systems
(Eqs. (A.1) and (A.9)) have solutions of the form

x (t) = p (t) eλjt, (A.12)

where p (t + T ) = p (t) is T -periodic.
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Appendix B
Linearised mode-locked laser system

B.1. Linearised DDE model

The DDE system for the mode-locked laser (Eqs. (4.10)-(4.12)), linearised about a
periodic solution ψ0 (t), is given by

d

dt
δψ (t) = A (t) δψ (t) +

N∑
n=0

Bn
(
t − τ ′

n

)
δψ

(
t − τ ′

n

)
+ Dw(t), (B.1)

where δψ (t) = (Re δE (t) , Im δE (t) , δG (t) , δQ (t))T, w(t) = (ξ1(t), ξ2(t), 0, 0)T, A

and Bn are T0-periodic Jacobi matrices of the linearisation and the delay times are
defined as τ ′

0 = T and τ ′
n = T + τn for n ≥ 1. The Jacobi matrices are given by
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B.2. Adjoint system

These matrices are obtained by calculating the partial derivatives of the right-
hand side of Eqs. (4.10,2.43,2.44) with respect to the dynamical variables, whereby
delayed variables are treated separately.

B.2. Adjoint system

The linearised system Eq. (4.13) (Eq. (B.1)) can be expressed as

˙δψ (t) = Lδψ (t) , (B.4)

for the appropriate operation L. The adjoint problem to the homogeneous (D = 0)
version of Eq. (4.13) is defined as the function

˙δψ† (t) = L†δψ† (t) , (B.5)

that fulfils
[Lδψ (t) , δψ† (t)] = [δψ (t) , L†δψ† (t)], (B.6)

where the square brackets represent the bilinear form (Eq. (4.16)). Substituting
Eq. (4.13) into the left-hand side this Eq. (B.6) and writing out the bilinear form
for this side, and comparing this with the bilinear form written out for the right-
hand side of Eq. (B.6), one can see that the linear system adjoint to Eq. 4.13, for
D = 0, is given by

d

dt
δψ†(t) + δψ†(t)A(t) +

N∑
n=0

δψ†(t + τ ′
n)Bn(t) = 0, (B.7)

where δψ†(t) = (δψ†
1, δψ†

2, δψ†
3, δψ†

4) is a row vector.
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Appendix C
Suppression of noise-induced
modulations

C.1. FitzHugh-Nagumo oscillator

In this section we show that the characteristic equation Eq. (5.19) accurately de-
scribes the dominant Floquet exponents of a FitzHugh-Nagumo oscillator subject
to resonant feedback from two non-invasive feedback terms.1

The FitzHugh-Nagumo oscillator subject to two non-invasive feedback terms is
given by

u̇ =
1
ε

(
u − u3

3
− v + K1 (u (t − τ1) − u) + K2 (u (t − τ2) − u)

)
(C.1)

and
v̇ = u + a, (C.2)

where u is the fast activator variable, v is the slow inhibitor variable, ε is the
time separation parameter and a is the excitability parameter. We choose a = 0.8
(oscillatory regime) and ε = 0.01.

In Fig. C.1 the white symbols indicate the three dominant Floquet exponents
obtained from the DDE-BIFTOOL calculations, plotted behind these are the re-
sults of the fitted characteristic equation Eq. (5.19) with the red circles indicating
the most dominant Floquet exponent. The only fit parameter is the effective total
feedback strength, which is Keff

TOT = 0.101. Figure C.1 shows excellent agreement
between the Floquet exponents given by Eq. (5.19) and those calculated using
DDE-BIFTOOL.

1For examples of the dynamics and parameter dependence of the FitzHugh-Nagumo oscillator
see [HOE09b].
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Figure C.1.: Real (a) and imaginary (b) parts of the four dominant Floquet exponents of a
FitzHugh-Nagumo oscillator (FHN) with two feedback terms. The white markers indicate the
numerically calculated values and the coloured markers indicate the results of the fitted char-
acteristic equation. Parameters: K1 = K2 = 0.005, Keff

TOT = 0.101, τ1 = 25T0, a = 0.8 and
ε = 0.01.
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