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Abstract. The H∞ control problem is studied for linear constant coefficient descriptor systems.
Necessary and sufficient optimality conditions are derived in terms of deflating subspaces of even
matrix pencils for index one systems as well as for higher index problems. It is shown that this
approach leads to a more robust method in computing the optimal value γ in contrast to other
methods such as the widely used Riccati based approach. The results are illustrated by a numerical
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1. Introduction. The optimal infinite-horizon output (or measurement) feed-
back H∞ control problem is one of the central tasks in robust control, see, e.g.,
[12, 13, 24, 36, 37]. For standard state space systems, where the dynamics of the sys-
tem are modeled by a linear constant coefficient ordinary differential equation, the
analysis of this problem is well studied and numerical methods have been developed
and integrated in control software packages such as [1,4,14,25]. These methods work
well for a wide range of problems in computing close to optimal (suboptimal) con-
trollers but the exact computation of the optimal value γ in H∞ control is considered
a challenge [7]. In order to avoid some of the numerical difficulties that arise when
approaching the optimum, in [2, 3] several improvements of the previously known
methods were presented. These are based on the solution of structured eigenvalue
problems with structured methods.

In this paper we study the more general case that the dynamics is constrained, i.e.
described by a differential-algebraic equation (DAE) or descriptor system. Descriptor
systems arise in the control of constrained mechanical systems, see e.g. [10,26,31,33,
34], in electrical circuit simulation, see e.g. [15,16], and in particular in heterogeneous
systems, where different models are coupled [23].

Robust control for descriptor systems has been studied in [27–29] using linear
matrix inequalities (LMIs) and in [35] via generalized Riccati equations and J-spectral
factorization. In contrast to these approaches, we extend the analysis and the robust
numerical methods that were derived via deflating subspaces in [2, 3]. We discuss
descriptor systems of the form

P :

Eẋ(t) = Ax(t) + B1w(t) + B2u(t), x(t0) = x0,

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t),

(1.1)

where E, A ∈ Rn,n, Bi ∈ Rn,mi , Ci ∈ Rpi,n, and Dij ∈ Rpi,mj for i, j = 1, 2. (Here,
by R

k,l we denote the set of real k × l matrices.)
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In this system, x(t) ∈ Rn is the state vector, u(t) ∈ Rm2 is the control input
vector, and w(t) ∈ Rm1 is an exogenous input that may include noise, linearization
errors and un-modelled dynamics. The vector y(t) ∈ R

p2 contains measured outputs,
while z(t) ∈ Rp1 is a regulated output or an estimation error. Our approach can
also be extended to rectangular systems and systems in behavior formulation, using
a remodelling as it was suggested in [17,19], see also [18], but here we only study the
formulation in (1.1).

The optimal H∞ control problem is typically formulated in frequency domain.
For this we need the following notation. The space Hp,m

∞ consists of all Cp,m-valued
functions that are analytic and bounded in the complex half plane C+ = {s ∈ C :
Re(s) > 0}. For F ∈ Hp,m

∞ the H∞-norm is given by

‖F‖∞ = sup
s∈C+

σmax(F (s)),

where σmax(F (s)) denotes the maximal singular value of the matrix F (s).
In robust control, ‖F‖∞ is used as a measure of the worst case influence of the

disturbances w on the output z, where in this case F is the transfer function mapping
noise or disturbance inputs to error signals [37].

The optimal H∞ control problem is the task of designing a dynamic controller
as presented in Fig. 1.1 that minimizes (or at least approximately minimizes) this
measure.

u(t) y(t)

w(t) z(t)

P

K

Fig. 1.1. Interconnection with controller

Put more rigorously, the optimal H∞ control problem is the following.
Definition 1.1 (The Optimal H∞ control problem). For the descriptor system

(1.1), determine a controller (dynamic compensator)

K :
Ê ˙̂x(t) = Âx̂(t) + B̂y(t),

u(t) = Ĉx̂(t) + D̂y(t)
(1.2)

with Ê, Â ∈ RN,N , B̂ ∈ RN,p2 , Ĉ ∈ Rm2,N , D̂ ∈ Rm2,p2 , and transfer function K(s) =
Ĉ(sÊ − Â)−1B̂ + D̂ such that the closed-loop system resulting from the combination
of (1.1) and (1.2), that is given by

Eẋ(t) = (A + B2D̂Z1C2)x(t) + (B2Z2Ĉ)x̂(t) + (B1 + B2D̂Z1D21)w(t),

Ê ˙̂x(t) = B̂Z1C2x(t) + (Â + B̂Z1D22Ĉ)x̂(t) + B̂Z1D21w(t),

z(t) = (C1 + D12Z2D̂C2)x(t) + D12Z2Ĉx̂(t) + (D11 + D12D̂Z1D21)w(t)

(1.3)
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with Z1 = (Ip2
− D22D̂)−1 and Z2 = (Im2

− D̂D22)
−1, has the following properties.

1.) System (1.3) is internally stable, that is, the solution

[

x(t)
x̂(t)

]

of the system with

w ≡ 0 is asymptotically stable, i.e. lim
t→∞

[

x(t)
x̂(t)

]

= 0.

2.) The closed-loop transfer function Tzw(s) from w to z satisfies Tzw ∈ Hp1,m1
∞ and

is minimized in the H∞-norm.
In principle, there is no restriction on the dimension N of the auxiliary state x̂ in

(1.2), although, smaller dimensions N are preferred for practical implementation and
computation.

As in the case of the optimal H∞ control problems for ordinary state space systems
it is also necessary to study two closely related optimization problems, the modified
optimal H∞ control problem and the suboptimal H∞ control problem.

Definition 1.2 (The modified optimal H∞ control problem.). For the descriptor
system (1.1) let Γ be the set of positive real numbers γ for which there exists an
internally stabilizing dynamic controller of the form (1.2) so that the transfer function
Tzw(s) of the closed loop system (1.3) satisfies Tzw ∈ Hp1,m1

∞ with ‖Tzw‖∞ < γ.
Determine γmo = inf Γ If no internally stabilizing dynamic controller exits, we set
Γ = ∅ and γmo = ∞.

Note that it is possible that there is no internally stabilizing dynamic controller
with the property ‖Tzw‖∞ = γmo. In this case one solves the suboptimal H∞ control
problem.

Definition 1.3 (The suboptimal H∞ control problem.). For the descriptor sys-
tem (1.1) and γ ∈ Γ with γ > γmo, determine an internally stabilizing dynamic con-
troller of the form (1.2) such that the closed loop transfer function satisfies Tzw ∈ Hp1,m1

∞

with ‖Tzw‖∞ < γ. We call such a controller γ-suboptimal controller or simply sub-
optimal controller.

The outline of the paper is as follows: In the forthcoming section we present
the notation and some definitions that are used throughout the paper. Section 3
contains the main result of the paper and states conditions for the existence of an
appropriate controller in terms of deflating subspaces of matrix pencils. The proof
is given in three parts. First we briefly discuss the standard state space case. The
results are then generalized to descriptor systems of index 1 and, thereafter, to systems
with arbitrary index. In Section 4 we present the algorithmic framework for the γ-
iteration to compute the optimal Γ and we illustrate the presented theory by means
of a numerical example.

2. Preliminaries. In this section we introduce some notation and definitions.
For symmetric matrices A and B, by A ≥ B and A > B we denote that A − B
is positive semi-definite and positive definite, respectively. The spectral radius of a
matrix A ∈ Rn,n is denoted by ρ(A). The set of complex numbers with positive real
part is denoted by C

+ and the set of positive real numbers by R
+.

Let λE − A be a matrix pencil with E, A ∈ Rn,n. Then λE − A is called regular
if det(λE − A) 6= 0 for some λ ∈ C.

A pencil P (λ) = λE − A is called even if P (−λ)T = P (λ), i.e. if E = −ET and
A = AT .

For regular pencils, generalized eigenvalues are the pairs (α, β) ∈ C2 \ {(0, 0)}
for which det(αE − βA) = 0. If β 6= 0, then the pair represents the finite eigenvalue
λ = α/β. If β = 0, then (α, β) represent the eigenvalue infinity. In the following we
use the notation with λ.
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The solution and many properties of the free descriptor system (with u, w = 0)
can be characterized in terms of the Weierstraß canonical form (WCF).

Theorem 2.1. [11] For a regular matrix pencil λE − A, there exist matrices
Wf , Vf ∈ Rn,nf , W∞, V∞ ∈ Rn,n∞ with the property that W =

[

Wf W∞

]

,

V =
[

Vf V∞

]

are square and invertible, with

WT EV =

[

WT
f

WT
∞

]

E
[

Vf V∞

]

=

[

Inf
0

0 N

]

, (2.1a)

WT AV =

[

WT
f

WT
∞

]

A
[

Vf V∞

]

=

[

Af 0
0 In∞

]

, (2.1b)

Af ∈ R
nf ,nf is in real Jordan canonical form and N ∈ R

n∞,n∞ is a nilpotent ma-
trix, also in Jordan canonical form. We call nf , n∞ the number of finite or infinite
eigenvalues, respectively.

The index of nilpotency of the nilpotent matrix N in (2.1a) is called the index of
the system and if E is nonsingular, then the pencil is said to have index zero.

Definition 2.2. A subspace L ⊂ Rn is called deflating subspace for the pencil
λE − A if for a matrix XL ∈ Rn,k with full column rank and im XL = L there exists
matrices YL ∈ Rn,k, RL ∈ Rk,k, and UL ∈ Rk,k such that

EXL = YLRL, AXL = YLUL. (2.2)

A deflating subspace L of λE −A is called stable (semi-stable) if all finite eigen-
values of λRL − UL are in the open (closed) left half plane.

Let J =
[

0

−In

In
0

]

, where In is the n × n identity matrix. A subspace L ⊂ R
2n is

called isotropic if xTJ y = 0 for all x, y ∈ L. An isotropic subspace with dimL = n
is called Lagrangian.

In the notation of (2.1a)–(2.1b) with

Bi,f = WT
f Bi, Bi,∞ = WT

∞Bi,

Ci,f = CiVf , Ci,∞ = CiV∞, i = 1, 2
(2.3)

classical solutions of (1.2) take the form x(t) = Vfxf (t)+V∞x∞(t), where xf and x∞

satisfy

ẋf (t) = Afxf (t) + B1,f w(t) + B2,fu(t), (2.4a)

Nẋ∞(t) = x∞(t) + B1,∞w(t) + B2,∞u(t). (2.4b)

If the pencil λE − A has index ν, then this system has the explicit solution

xf (t) = eAf (t−t0)xf (t0) +

∫ t

t0

eAf (t−τ) (B1,fw(τ ) + B2,fu(τ )) dτ, (2.5a)

x∞(t) = −
ν−1
∑

i=0

di

dti N
i (B1,∞w(t) + B2,∞u(t)) . (2.5b)

In contrast to standard state space systems, this shows that the initial condition
x∞(t0) is restricted by (2.5b). Moreover, if ν > 1, then the solution will depend on
derivatives of the input u and the disturbance w.

Note further that for the closed loop system (1.3) to be internally stable, the
controller has to be designed so that both xf and x∞ are asymptotically stable.
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While for the finite part this can be guaranteed if the spectrum of the matrix Af lies
in the open left half plane, for the infinite part this has to be explicitly achieved by
the construction of the controller.

As in the case of standard state space systems, certain conditions will be needed
to guarantee the existence of optimal H∞ controls. First of all these are stabilizability
and detectability conditions, which for descriptor systems are the following, see [5,8].

Definition 2.3. Let E, A ∈ Rn,n, B ∈ Rn,m and C ∈ Rp,n. Further, let T∞, S∞

be matrices with imT∞ = kerET and imS∞ = ker E.
i) The triple (E, A, B) is called finite dynamics stabilizable if rank[λE−A, B] =

n for all λ ∈ C
+;

ii) (E, A, B) is impulse controllable if rank[E, AS∞, B] = n;
iii) (E, A, B) is strongly stabilizable if it is both finite dynamics stabilizable and

impulse controllable;
iv) The triple (E, A, C) is finite dynamics detectable if rank[λET −AT , CT ] = n

for all λ ∈ C+;
v) (E, A, C) is impulse observable if rank[ET , AT T∞, CT ] = n;
vi) (λE −A, C) is strongly detectable if it is both finite dynamics detectable and

impulse observable.
After introducing our notation and giving some preliminary results, we derive the

theoretical basis for the optimal H∞ control problem for descriptor systems in the
next section.

3. The Modified optimal H∞ control problem. In this section we approach
the problem of determining γmo for a given system (1.1). As in the case of standard
state space systems, see [12, 13, 24, 37], we need several assumptions on the system
matrices. In the following we set r = rank E.

Assumptions:

A1) The triple (E, A, B2) is strongly stabilizable and the triple (E, A, C2) is strongly
detectable, see Definition 2.3.

A2) rank

[

A − iωE B2

C1 D12

]

= n + m2 for all ω ∈ R.

A3) rank

[

A − iωE B1

C2 D21

]

= n + p2 for all ω ∈ R.

A4) For matrices T∞, S∞ ∈ Rn,n−r with imS∞ = kerE and im T∞ = kerET the
rank conditions

rank

[

TT
∞AS∞ TT

∞B2

C1S∞ D12

]

= n + m2 − r,

rank

[

TT
∞AS∞ TT

∞B1

C2S∞ D21

]

= n + p1 − r

hold.

It is well known for standard state space systems that Assumption A1) is essential for
the existence of a controller that internally stabilizes the system. We will see that a
similar result holds for the descriptor case. Assumptions A2) and A3) correspond to
the typical claim that the system does not have transmission zeros on the imaginary
axis. This is assumed in many works about H∞-control of standard state space
systems, since eigenvalues on the imaginary axis of the Hamiltonian matrices that
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are used in the computation of an optimal controller usually lead to problems in the
computation of a semi-stable subspace, see [21, 30].

Further typical assumptions in the H∞-control of standard state space systems
are that D12, D

T
21 have full column rank, see [13,24,37]. The conditions in A4) reduce

to these rank conditions if E is invertible.
For the construction of optimal or suboptimal controllers we will make use of the

following two even matrix pencils, which generalize the pencils constructed in [2, 3].
Let

λNH + MH(γ) =

λ













0 −ET 0 0 0
E 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













+













0 −AT 0 0 −CT
1

−A 0 −B1 −B2 0
0 −BT

1 −γ2Im1
0 −DT

11

0 −BT
2 0 0 −DT

12

−C1 0 −D11 −D12 −Ip1













(3.1)

and

λNJ + MJ (γ) =

λ













0 −E 0 0 0
ET 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













+













0 −A 0 0 −B1

−AT 0 −CT
1 −CT

2 0
0 −C1 −γ2Ip1

0 −D11

0 −C2 0 0 −D21

−BT
1 0 −DT

11 −DT
21 −Im1













. (3.2)

Our approach is based on considering deflating subspaces of the matrix pencils (3.1)
and (3.2), where the subspaces are spanned by the columns of the matrices XH and
XJ that are partitioned conformably with the pencils, i.e.

XH(γ) =













XH,1(γ)
XH,2(γ)
XH,3(γ)
XH,4(γ)
XH,5(γ)













, XJ(γ) =













XJ,1(γ)
XJ,2(γ)
XJ,3(γ)
XJ,4(γ)
XJ,5(γ)













, (3.3)

with

XH,1(γ), XH,2(γ), XJ,1(γ), XJ,2(γ) ∈ R
n,r, XH,4(γ) ∈ R

m2,r,

XJ,4(γ) ∈ R
p2,r, XH,3(γ), XJ,5(γ) ∈ R

m1,r, XH,5(γ), XJ,3(γ) ∈ R
p1,r.

We extend the results in [2, 3] to general descriptor systems and use deflating sub-
spaces of the even pencils (3.1) and (3.2) to characterize the elements of the set Γ in
Definition 1.1. For this we introduce the following conditions which will be shown to
be necessary for the existence of a controller with the desired properties associated
with a parameter γ ∈ Γ.

C1) The index of both pencils (3.1) and (3.2) is at most one.
C2) There exists a matrix XH(γ) as in (3.3) such that

C2.a) the space im XH(γ) is a semi-stable deflating subspace of λNH + MH(γ)

and im
[

EXH,1
XH,2

]

is an r-dimensional isotropic subspace of R2n;

C2.b) rank EXH,1(γ) = r.
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C3) There exists a matrix XJ(γ) as in (3.3) such that
C3.a) the space im XJ(γ) is a semi-stable deflating subspace of λNJ + MJ (γ)

and im
[

ET XJ,1
XJ,2

]

is an r-dimensional isotropic subspace of R2n;

C3.b) rank ET XJ,1(γ) = r.
Based on these conditions on the pencils, we introduce the following sets.

Definition 3.1. Consider system (1.1) and the associated even pencils λNH +
MH(γ) in (3.1) and λNJ + MJ (γ) in (3.2). Define the sets

ΓH = {γ ∈ R
+ | the index of λNH + MH(γ) is greater than one},

ΓJ = {γ ∈ R
+ | the index of λNJ + MJ(γ) is greater than one },

and set γ̂H = sup ΓH , γ̂J = sup ΓJ and γ̂ = max{γ̂H , γ̂J}.
Note that in general the sets ΓH and ΓJ may be all of R+, but as we will show

later it follows from the assumptions A1) – A4) that γ̂H and γ̂J and therefore also γ̂
are finite. If γ > γ̂ then, since both λNH + MH(γ) and λNJ + MJ(γ) have index at
most one, it follows that these pencils have 2r finite eigenvalues, where r = rank E.
Due to the fact that the pencils are even, and thus the eigenvalues occur in pairs
λ,−λ, see [20], it follows that there exist at least r eigenvalues in the closed left half
complex plane and at most r eigenvalues in the open left half plane.

The next group of sets are related to the conditions C2.a) and C2.b).
Definition 3.2. Consider (1.1) and the associated even pencils λNH + MH(γ)

in (3.1) and λNJ + MJ (γ) in (3.2). Define the sets

ΓL
H = {γ ≥ γ̂ | the pencil λNH + MH(γ) satisfies C2.a)} ,

ΓL
J = {γ ≥ γ̂ | the pencil λNJ + MJ (γ) satisfies C3.a)} ,

ΓL = ΓL
J ∩ ΓL

H ,

ΓR
H = {γ ≥ γ̂ | the pencil λNH + MH(γ) satisfies condition C2)} ,

ΓR
J = {γ ≥ γ̂ | the pencil λNJ + MJ (γ) satisfies condition C3)} ,

ΓR = ΓR
J ∩ ΓR

H

and set

γ̂L
H = inf ΓL

H , γ̂L
J = inf ΓL

J , γ̂L = inf ΓL,

γ̂R
H = inf ΓR

H , γ̂R
J = inf ΓR

J , γ̂R = inf ΓR.

For the numerical method to compute the optimal or suboptimal H∞ it will turn out
to be essential to figure out these extremal values. Finally we discuss the situation of
finite purely imaginary eigenvalues.

Definition 3.3. Consider (1.1) and the associated even pencils λNH + MH(γ)
in (3.1) and λNJ + MJ (γ) in (3.2). Define the sets

ΓI
H =

{

γ ≥ γ̂
∣

∣

∣

the pencil λNH + MH(γ) has at least one finite
eigenvalue on the imaginary axis

}

,

ΓI
J =

{

γ ≥ γ̂
∣

∣

∣

the pencil λNJ + MJ(γ) has at least one finite
eigenvalue on the imaginary axis

}

,

ΓI = ΓI
J ∩ ΓI

H .

and set

γ̂I
H = inf ΓI

H , γ̂I
J = inf ΓI

J , γ̂I = inf ΓI .
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In the case where ΓI
H , ΓI

J or ΓI are empty, we set γ̂I
H = ∞, γ̂I

J = ∞ or γ̂I = ∞,
respectively.

As in classical H∞ control problem for state space systems, see [3], we also need
some further rank conditions which are characterized in the following theorem that is
proven in full generality in Subsection 3.3.

Theorem 3.4. Consider a system of the form (1.1) satisfying assumptions A1)
– A4). Let XH(γ) and XJ(γ) be deflating subspace matrices of the form (3.3) that
satisfy conditions C2) and C3)), respectively. Then there exist parameters γ̂k

H ≥ γ̂L
H ,

γ̂k
J ≥ γ̂L

J and k̂H , k̂J ∈ N with the property that for all γH,1, γH,2 > γ̂k
H , γJ,1, γJ,2 > γ̂k

J

the rank conditions

rank ET XH,2(γH,1) = rank ET XH,2(γH,2) = k̂H ,

rank EXJ,2(γJ,1) = rank EXJ,2(γJ,2) = k̂J

(3.4)

hold.
This rank property will be the fundament for the formulation of a further condition
on the pencils in (3.1), (3.2) and on the blocks of the deflating subspace matrices
XH(γ) ∈ R2n+m1+m2+p1,r, XJ(γ) ∈ R2n+p1+p2+m1,r satisfying C2) (resp. C3)).

C4) The matrix

Y(γ) =

[

−γXT
H,2(γ)EXH,1(γ) XT

H,2(γ)EXJ,2(γ)

XT
J,2(γ)ET XH,2(γ) −γXJ,2(γ)T ET XJ,1(γ)

]

(3.5)

is symmetric, positive semi-definite and satisfies rankY(γ) = k̂H + k̂J .
Since XH(γ) and XJ(γ) are unique up to a multiplication from the right with in-
vertible matrices, Y(γ) is unique up to a block-diagonal congruence transformation.
Therefore, the value rankY(γ) is well-defined.

Note that if we consider Y(γ) in the standard case E = In, then it slightly differs
from the matrix Y(γ) used in [3]. This is due to the fact that the pencils (3.1) and (3.2)
are expressed in a slightly different form in the generalization to descriptor systems.

Condition C4) then leads to another set that has to be considered.
Definition 3.5. Consider a system of the form (1.1) that satisfies assumptions

A1) – A4). Then we define

Γρ =

{

γ ≥ γ̂

∣

∣

∣

∣

the matrix Y(γ) is positive semi-definite

with rankY(γ) = k̂H + k̂J

}

and we set γ̂ρ := inf Γρ.
In this section we have introduced several assumptions and conditions as well as

sets of γ-parameters that will be used in the next section to derive conditions for the
optimal and suboptimal γ-parameters.

We proceed in three steps, first recalling the standard state space case in Subsec-
tion 3.1, then considering the index one case in Subsection 3.2 and finally the general
case in Subsection 3.3.

3.1. The standard state space case. In the first step, we briefly review the
results from [3, 9] for the standard state space, that is E = In. The relation between
the values introduced in Definitions 3.1–3.3 is given by the following proposition.

Proposition 3.6 ( [3]). Consider a system of the form (1.1) with E = In. Then
the following inequality holds:

0 ≤ γ̂ ≤ γ̂L ≤ γ̂R. (3.6)
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If γ̂I < ∞, then γ̂I = γ̂L > γ̂. If γ̂ρ exists, then γ̂ρ ≥ γ̂R.
Furthermore it was shown in [3] that Theorem 3.4 holds if E = In. Therefore, C4)
represents a well-defined condition and we can present the main result for the modified
optimal H∞ control problem of standard systems.

Proposition 3.7. Consider system (1.1) with E = In and the even pencils
λNH + MH(γ) and λNJ + MJ (γ) as in (3.1) and (3.2), respectively. Suppose that
assumptions A1) – A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satisfies Tzw ∈ Hp1,m1

∞ with ‖Tzw‖∞ < γ if and only if γ is such that the
conditions C1) – C4) hold.

Furthermore, the set of γ satisfying the conditions C1) – C4) is non-empty.
Proof. In the standard state space case, see [3, 9], the assumptions A1) – A4)

reduce to
• stabilizability of the pair (A, B2),

• detectability of the pair (A, C2),

• rank

[

A − iωIn B2

C1 D12

]

= n + m2 for all ω ∈ R,

• rank

[

A − iωIn B1

C2 D21

]

= n + p2 for all ω ∈ R,

• rank D12 = m2,

• rank D21 = p1.
Under these assumptions, it is shown in [9, 37] that the set of internally stabilizing
controllers is non-empty and there exists an internally stabilizing controller such that
the transfer function from w to z satisfies Tzw ∈ Hp1,m1

∞ with ‖Tzw‖∞ < γ if and only
if γ is such that the following four conditions hold.
Cst1) The matrices

RH(γ) =

[

DT
11D11−γ2Ip1

DT
11D12

DT
12D11 DT

12D12

]

,

RJ (γ) =

[

D11D
T
11−γ2Im1

D11D
T
21

D21D
T
11 D21D

T
21

]

are invertible.
Cst2) There exists a matrix XH(γ) =

[

XH,1
XH,2

]

with XH,1, XH,2 ∈ Rn,n such that

Cst2.a) for BH =
[

B1

−CT
1

D11

B2

−CT
1

D12

]

, the matrix

H(γ) =

[

A 0
−CT

1 C1 −AT

]

− BHR−1
H (γ)BT

HJ

has a semi-stable Lagrangian invariant subspace imXH(γ).
Cst2.b) rank XH,1(γ) = n.

Cst3) There exists a matrix XJ(γ) =
[

XJ,1
XJ,2

]

with XJ,1, XJ,2 ∈ Rn,n such that

Cst3.a) for CJ =
[

D11BT
1

−D11BT
1

C1
C2

]

, the matrix

J(γ) =

[

AT 0
−B1B

T
1 −A

]

− CT
HR−1

J (γ)CHJ

has a semi-stable Lagrangian invariant subspace imXJ .
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Cst3.b) rank XJ,1(γ) = n.
Cst4) The inequality ρ(XH,2X

−1
H,1XJ,2X

−1
J,1) < γ2 holds.

For E = In, it was shown in [3] that for every i ∈ {1, 2.a, 2.b, 3, 4}, the property
Csti) is equivalent to the corresponding Ci) for the pencils in (3.1) and (3.2).

3.2. The Index One Case. To extend Proposition 3.7 to the case that the
index of λE − A is ν = 1, we will make use of the Weierstraß canonical form in
Theorem 2.1. Transforming system (1.1) and using the notation introduced in (2.3),
the explicit solution (2.5b) reduces to x∞(t) = −B1,∞w(t)−B2,∞u(t). Inserting this
into the transformed out equations, we obtain the standard state space system (often
called the slow or finite dynamics subsystem)

ẋf (t) = Afxf (t) + B1,fw(t) + B2,fu(t),

z(t) = C1,fxf (t) + (D11 − C1,∞B1,∞)w(t) + (D12 − C1,∞B2,∞)u(t),

y(t) = C2,fxf (t) + (D21 − C2,∞B1,∞)w(t) + (D22 − C2,∞B2,∞)u(t).

(3.7)

Lemma 3.8. Consider system (1.1) and suppose that the index of λE − A is at
most one. Then for i ∈ {1, 2, 3, 4}, system (1.1) satisfies Ai) if and only if the slow
subsystem (3.7) satisfies Ai).

Proof. Any system of index at most one is both impulse controllable and ob-
servable, see [8, 21] and, furthermore, finite dynamics stabilizability (detectability) is
equivalent to stabilizability (detectability) of the slow subsystem obtained from the
Weierstraß canonical form. Then from Theorem 2.1, see also [8, 21], the equivalence
of the corresponding conditions A1) is immediate.

The equivalence for the corresponding conditions A2) is obtained by using the
transformation matrices to Weierstraß canonical form, since





WT
f 0

−C1,∞WT
∞ Ip1

WT
∞ 0





[

A − iωE B2

C1 D12

] [

Vf −V∞B2,∞ V∞

0 Im2
0

]

=





Af − iωInf
B2,f 0

C1,f D12 − C2,∞B2,∞ 0
0 0 In∞



 .

The proof for the equivalence of the corresponding conditions A3) is analogous.
We now consider condition A4). By definition, the columns of the matrices

T∞, S∞ span the left and right nullspace of E. Thus there exist invertible matrices
Ml, Mr ∈ Rn∞,n∞ such that W∞ = T∞Ml, V∞ = S∞Mr. The assertion then follows
from

[

MT
l 0

−C1,∞MT
l Ip1

] [

TT
∞AS∞ TT

∞B2

C1S∞ D12

] [

Mr −MrB2,∞

0 Im2

]

=

[

In∞
0

0 D12−C1,∞B2,∞

]

,

[

MT
l 0

−C2,∞MT
l Ip2

] [

TT
∞AS∞ TT

∞B1

C2S∞ D21

] [

Mr −MrB1,∞

0 Im1

]

=

[

In∞
0

0 D21−C2,∞B1,∞

]

.

After proving the equivalence of the conditions Ai), we now show that the Γ sets and γ
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parameters introduced in Definitions 3.1–3.3 and 3.5 are those of the slow subsystem.
We denote by λNH,st + MH,st(γ) and λNJ,st + MJ,st(γ) the even pencils (3.1) and
(3.2) constructed from the data of system (3.7).

Lemma 3.9. Consider the system (1.1) and assume that the index of λE−A is at
most one. Let λNH + MH(γ) and λNJ + MJ(γ) be the even pencils constructed from
the data of (1.1) and let λNH,st + MH,st(γ), λNJ,st + MJ,st(γ) be the corresponding
pencils constructed from the data of (3.7).

Let ΓH , ΓJ , ΓL
H , ΓL

J , ΓR
H , ΓR

J , ΓI
H and ΓI

J be the sets introduced in Definitions 3.1–
3.3 and 3.5 and let Y(γ) be the matrix introduced in (3.5).

Let analogously ΓH,st, ΓJ,st, ΓL
H,st, ΓL

J,st, ΓR
H,st, ΓR

J,st, ΓI
H,st, ΓI

J,st and Yst(γ) be
correspondingly defined for the slow subsystem (3.7). Then,

ΓJ,st = ΓH , ΓL
H,st = ΓL

H , ΓR
H,st = ΓR

H , ΓI
H,st = ΓI

H ,

ΓJ,st = ΓJ , ΓL
J,st = ΓL

J , ΓL
J,st = ΓL

J , ΓI
J,st = ΓI

H ,

and

rankY(γ) = rankYst(γ).

Proof. First we consider the pencil λNH + MH(γ) and introduce the transforma-
tion matrix

PH =





















V T
f 0 0 0 0

0 WT
f 0 0 0

BT
1,∞V T

∞ 0 Im1
0 0

BT
2,∞V T

∞ 0 0 Im2
0

0 −C1,∞WT
∞ 0 0 Ip2

V T
∞ 0 0 0 0
0 WT

∞ 0 0 0





















T

. (3.8)

We obtain that

λPT
HNHPH − PT

HMH(γ)PH =





λNH,st + MH,st(γ) 0 0
0 In∞

0
0 0 In∞



 . (3.9)

This directly implies ΓH,st = ΓH and ΓI
H,st = ΓI

H . Analogously, we can show that

ΓJ,st = ΓJ and ΓI
H,st = ΓI

H . Furthermore, it can be concluded from (3.9) that the
columns of a matrix

XH,st =
[

XT
H,st,1 XT

H,st,2 XT
H,st,3 XT

H,st,4 XT
H,st,5

]T

partitioned conformably to the block structure of λNH,st+MH,st(γ) span a semi-stable
deflating subspace if and only if the columns of













XH,1

XH,2

XH,3

XH,4

XH,5













=













VfXH,st,1 + V∞B1,∞XH,st,3 + V∞B2,∞XH,st,4 + V∞XH,st,6

WfXH,st,2 − W∞CT
1,∞XH,st,5 + W∞XH,st,7

XH,st,3

XH,st,4

XH,st,5













(3.10)
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span the semi-stable deflating subspace of λNH + MH(γ).
Analogously, we can show that matrices spanning the semi-stable deflating subspace
of λNJ + MJ (γ) and λNJ,st + MJ,st(γ) are related by













XJ,1

XJ,2

XJ,3

XJ,4

XJ,5













=













WfXJ,st,1+W∞CT
1,∞XJ,st,3+W∞CT

2,∞XJ,st,4+W∞XJ,st,6

VfXJ,st,2−V∞B1,∞XJ,st,5+V∞XJ,st,7

XJ,st,3

XJ,st,4

XJ,st,5













. (3.11)

Using the fact that EV∞ = 0, WT
∞E = 0 and WT

f ETf = Inf
, it follows that

rank EXH,1(γ) = rank XH,st,1(γ), (3.12a)

rankET XJ,1(γ) = rank XJ,st,1(γ), (3.12b)

rank ET XH,2(γ) = rank XH,st,2(γ), (3.12c)

rank EXJ,2(γ) = rank XJ,st,2(γ), (3.12d)

XH,2(γ)T EXH,1(γ) = XH,st,2(γ)T XH,st,1(γ), (3.12e)

XH,2(γ)T EXJ,2(γ) = XH,st,2(γ)T XJ,st,2(γ), (3.12f)

XJ,2(γ)T ET XJ,1(γ) = XJ,st,2(γ)T XJ,st,1(γ). (3.12g)

The relations (3.11), (3.12e) and (3.12g) imply that ΓL
H,st = ΓL

H and ΓL
J,st = ΓL

J .

Additionally, from (3.12a), (3.12b), we obtain ΓR
H,st = ΓR

H and ΓR
J,st = ΓR

J .
By using (3.12e)-(3.12g) we then obtain that the matrices Y(γ) and Yst(γ) coincide,
in particular, we have rankY(γ) = rankYst(γ).
An immediate consequence is that Proposition 3.6 holds for systems of index at most
one. Furthermore, from (3.12c) and (3.12b) and the corresponding fact for standard
systems, we can conclude that Theorem 3.4 holds for systems of index at most one.

With these preparations we can formulate the following extension of Proposi-
tion 3.7 for systems of index at most one.

Proposition 3.10. Consider system (1.1) such that the index of the pencil
λE − A is at most one, and the even pencils λNH + MH(γ) and λNJ + MJ(γ) as in
(3.1) and (3.2), respectively. Suppose that assumptions A1) – A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satisfies Tzw ∈ Hp1,m1

∞ with ‖Tzw‖∞ < γ if and only if γ is such that the
conditions C1) – C4) hold.

Furthermore, the set of γ satisfying the conditions C1) – C4) is nonempty.

Proof. The closed-loop transfer function Tzw(s) of the system (3.7) with a con-
troller of the form (1.2) is equal to the closed-loop transfer function of the system
(1.1) with the same controller.

Since (1.1) is strongly stabilizable (strongly detectable), if and only if system (3.7)
is stabilizable (detectable), a controller that internally stabilizes (3.7) also stabilizes
the finite dynamics of (1.1).

Therefore, the existence of a controller with desired properties for (1.1) is equiv-
alent to the existence of such a controller for (3.7). Since by Lemma 3.8 the validity
of assumptions A1) – A4) for (3.7) is equivalent to those of (1.1) and, furthermore,
also by Lemma 3.9 the corresponding conditions C1) – C4) of these two systems are
equivalent, the assertion follows.
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We have seen so far that the standard state space case and the index one case
follow after some simple transformation. In the next subsection we now study the
general case.

3.3. The General Case. In this section we formulate the results for the modi-
fied optimal H∞-control problem for descriptor systems of arbitrary index. A key tool
in the proof will be an a priori static output feedback u(t) = Ky(t) + ū(t) resulting
in a system

Eẋ(t) = (A + B2KC2)x(t) + (B1 + B2KD21)w(t) + B2ū(t), x(t0) = x0,

z(t) = (C1 + D12KC2)x(t) + (D11 + D12KD21)w(t) + D12ū(t),

y(t) = C2x(t) + D21w(t).
(3.13)

The feedback matrix K will be constructed in a way that system (3.13) has index one.
Then we are able to apply the results of the previous section. If (1.2) is a controller
for (3.13) then a controller for the system (1.1) is given by

Ê ˙̂x(t) = Âx̂(t) + B̂y(t),

u(t) = Ĉx̂(t) + (D̂ − K)y(t).
(3.14)

To proceed, we need the following results about the existence of a static output
feedback K that leads to a system of index at most one.

Lemma 3.11. [6,8] Consider matrices C ∈ Rp,n, B ∈ Rn,m and a regular matrix
pencil λE − A. Then there exists K ∈ Rp,m such that the pencil λE − (A + BKC)
is regular and has index at most one if and only if the triple (E, A, B) is impulse
controllable and the triple (E, A, C) is impulse observable, see Definition 2.3.

To make use of this result, we show that a static output feedback does not change
the assumptions A1) – A4).

Lemma 3.12. Consider system (1.1) and let K ∈ Rm2,p2 such that the pencil
λE−(A+B2KC2) is regular. Then for every i ∈ {1,2,3,4} the system (1.1) satisfies
Ai) if and only if the system (3.13) satisfies Ai).

Proof. The invariance of strong stabilizability and strong detectability under out-
put feedback is trivial. The proof for the equivalence of the corresponding assumptions
A2) follows from the identity

[

A − iωE B2

C1 D12

] [

In 0
KC2 Im2

]

=

[

A + B2KC2 − iωE B2

C1 + D12KC2 D12

]

,

while the equivalence statement for A3) can be shown analogously. The fact that
(3.13) satisfies A4) if and only if (1.1) satisfies A4) is a consequence of

[

TT
∞AS∞ TT

∞B2

C1S∞ D12

] [

In−r 0
KC2S∞ Im2

]

=

[

TT
∞(A + B2KC2)S∞ TT

∞B2

(C1 + D12KC2)S∞ D12

]

,

[

In−r TT
∞B2K

0 Ip2

] [

TT
∞AS∞ TT

∞B1

C2S∞ D21

]

=

[

TT
∞(A + B2KC2)S∞ TT

∞(B1 + B2KD21)
C2S∞ D21

]

.

In the following Lemma we show that the sets introduced in Definitions 3.1–3.3
and 3.5 are invariant under output feedback as well.
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Lemma 3.13. Consider the system (1.1) and let K ∈ Rm2,p2 be such that the
pencil λE − (A + BKC) is regular. Let ΓH , ΓJ , ΓL

H , ΓL
J , ΓR

H , ΓR
J , ΓI

H and ΓI
J be the

sets introduced in Definitions 3.1–3.3 and 3.5 and let Y(γ) be the matrix introduced
in (3.5). Furthermore, let ΓH,K , ΓJ,K , ΓL

H,K , ΓL
J,K , ΓR

H,K , ΓR
J,K , ΓI

H,K , ΓI
J,K and

YK(γ) be the corresponding quantities for the system (3.13). Then,

ΓJ,K = ΓH , ΓL
H,K = ΓL

H , ΓR
H,K = ΓR

H , ΓI
H,K = ΓI

H ,

ΓJ,K = ΓJ ΓL
J,K = ΓL

J , ΓL
J,K = ΓL

J , ΓI
J,K = ΓI

H ,

and

rankY(γ) = rankYK(γ).

Proof. Let λNH,K + MH,K(γ) be the even pencil associated to the system (3.13).
Then, with the transformation matrices

TH,K =













In 0 0 0 0
0 In 0 0 0
0 0 Im1

0 0
KC2 0 KD21 Im2

0
0 0 0 0 Ip1













, TJ,K =













In 0 0 0 0
0 In 0 0 0
0 0 Ip1

0 0
KT BT

2 0 KT DT
12 Ip2

0
0 0 0 0 Im1













,

we have the identities

λTT
H,KNHTH,K + TT

H,KMH(γ)TH,K = λNH,K + MH,K(γ),

λTT
J,KNJTJ,K + TT

J,KMJ (γ)TJ,K = λNJ,K + MJ,K(γ).

Thus, we have that the pencils λNH + MH(γ) and λNH,K + MH,K(γ) have the same
index and eigenvalues. Similarly, this holds for λNJ + MJ (γ) and λNJ,K + MJ,K(γ).
Therefore we have ΓH,K = ΓH , ΓJ,K = ΓJ , ΓI

H,K = ΓI
H , ΓI

J,K = ΓI
J . The relations

ΓR
H,K , ΓR

J,K , ΓL
H,K , ΓL

J,K follow from the facts that

im
[

XT
H,1 XT

H,2 XT
H,3 XT

H,4 XT
H,5

]T
,

im
[

XT
J,1 XT

J,2 XT
J,3 XT

J,4 XT
J,5

]T

are semi-stable deflating subspaces of λNH,K + MH,K(γ) and λNJ,K + MJ,K(γ), re-
spectively, if and only if

im
[

XT
H,1 XT

H,2 XT
H,3 (XH,4 − KC2XH,1 + KD21XH,3)

T XT
H,5

]T
,

im
[

XT
J,1 XT

J,2 XT
J,3 (XJ,4 − KT BT

2 XJ,1 + KT DT
12XH,3)

T XT
H,5

]T
(3.15)

are semi-stable deflating subspace of λNH + MH(γ) and λNJ + MJ (γ). From (3.15),
we further obtain that Y(γ) = YK(γ) and thus, their ranks coincide.

With these auxiliary results, we are now in a position to prove Theorem 3.4.
Proof of Theorem 3.4. First we apply an priori feedback K ∈ Rm2,p2 to (1.1) such

that the resulting system (3.13) has index at most one. Then we know from (3.15)
that for the corresponding matrices XH,1, XH,2, XJ,1, XJ,2 of (1.1) and (3.13) are
equal. Since Theorem 3.4 holds for systems of index one, the assertion follows.
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Lemma 3.13 also implies that the assertion of Proposition 3.6 still holds for the
general case, i.e., for (1.1), the inequality

0 ≤ γ̂ ≤ γ̂L ≤ γ̂R.

is valid. In the case where γ̂I < ∞, we have γ̂I = γ̂L > γ̂ and if γ̂ρ exists, then
γ̂ρ ≥ γ̂R.

With the described framework, we can now formulate the main result for the
modified H∞ control problem for descriptor systems.

Theorem 3.14. Consider system (1.1) and the even pencils λNH + MH(γ) and
λNJ + MJ(γ) as in (3.1) and (3.2), respectively. Suppose that assumptions A1) –
A4) hold.

Then there exists an internally stabilizing controller such that the transfer function
from w to z satisfies Tzw ∈ Hp1,m1

∞ with ‖Tzw‖∞ < γ if and only if γ is such that the
conditions C1) – C4) hold.

Furthermore, the set of γ satisfying the conditions C1) – C4) is nonempty.
Proof. Due to Lemma 3.11, there exists a matrix K ∈ Rm2,p2 such that the system

(3.13) has index at most one. Lemma 3.12 implies that (3.13) satisfies A1) – A4) as
well. Furthermore, by Lemma 3.13, the validity of the conditions C1) – C4) for the
system (1.1) are equivalent to the respective conditions for system (3.13).

Proposition 3.10 then implies that conditions C1) – C4) for (3.13) are fulfilled if
and only if there exists a desired controller for (3.13).

Since an application of the controller (1.2) to (3.13) results in the same closed
loop system as controlling (3.13) with (3.14), the desired result follows immediately.

Theorem 3.15. Consider system (1.1) and suppose that assumptions A1) –
A4) hold. Then the set Γρ is non-empty and optimal γ for the modified optimal H∞

control problem is given by

γmo = γ̂ρ. (3.16)

Proof. Let Γ be the set of γ > 0 for which an internally stabilizing controller
exists such that the transfer function from w to z satisfies ‖Tzw‖∞ < γ.

We know from Theorem 3.14 that Γ is non-empty and for some γ > 0, we have
γ ∈ Γ if and only if the conditions C1) – C4) are fulfilled. By the definition of
ΓH , ΓJ , ΓR and Γρ, the existence of a controller with desired properties is therefore
equivalent to

γ ∈ ΓH ∩ ΓJ , γ ∈ ΓR, γ ∈ Γρ. (3.17)

Especially, we have that Γρ is non-empty. By the definition of γ̂, γ̂R and γ̂ρ, condition
(3.17) is the same as

γ > γ̂, γ > γ̂R, γ ∈ γ̂ρ. (3.18)

Hence, γ ∈ Γ is equivalent to

γ > max{γ̂, γ̂R, γ̂ρ}. (3.19)

However, since by Lemma 3.13 we have that Proposition 3.6 still holds for arbitrary
descriptor systems, the equation γ̂ρ = max{γ̂, γ̂R, γ̂ρ} holds. Thus we have that
γ̂mo = inf Γ = γ̂ρ.
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4. Computation of γmo. In this section we give a numerical method for the
computation of γmo that is similar to the procedure proposed in [3] and uses a bisec-
tion method.

Procedure 1: (Classification of γ)
Input: Data of system (1.1), value γ ≥ 0.
Output: Decision whether γ < γmo or γ ≥ γmo.

1. Form the pencils λNH + MH(γ) and λNJ + MJ (γ).
2. Compute the deflating subspace matrices XH and XJ associated with the

eigenvalues in the closed left half plane.
3. IF the dimension of one/both of these subspaces is less than r, then γ < γmo,

ELSE
IF the rank of EXH,1 and/or ET XJ,1 is less than r, then γ < γmo,
ELSE

Form the matrix Ŷ .
IF Ŷ is not positive semi-definite and/or rank Ŷ < k̂H + k̂J , then
γ < γmo,
ELSE γ ≥ γmo.

To determine γmo we use the following bisection method.

Procedure 2: (Bisection method)
Input: upper and lower bounds γup and γlo for γmo, tolerance Tol.

Output: Approximation to γmo.
1. IF γup − γlo < Tol, then set γmo = γup,

ELSE
IF γ < γmo, then set γlo = γ, γ = (γmo + γup)/2 and test whether
γ < γmo or γ ≥ γmo with Procedure 1.
IF γ > γmo, then set γup = γ, γ = (γmo + γup)/2 and test whether
γ < γmo or γ ≥ γmo with Procedure 1.

2. GOTO Step 1.
To illustrate the functionality of our approach, consider the following example

from [35] which is also discussed in [27]. The descriptor system is given by (1.1) with

E =





1 0 0
0 1 0
0 0 0



 , A =





−1 0 1
0 0 1
0 −1 0



 , B1 =





0
1
1



 , B2 =





1
0
1



 ,

C1 =

[

1 1 0
0 1 1

]

, C2 =
[

1 0 1
]

,

D12 =

[

0
1

]

, D21 = 1, D11 = D22 = 0.

This system is of index 2 and the associated pencils λNH +MH(γ) and λNJ +MJ (γ)
have index 1 for γ 6= 0. The goal is to find the minimum value γ that satisfies
the conditions C1) – C4). Using the QZ-Algorithm in Matlab to calculate the
eigenvalues of the pencils and the deflating subspaces associated with eigenvalues in
the closed left half plane and, using the Procedure 2 to determine the optimal value
for gamma, we computed γopt given by γρ = 0.7397, which is smaller than the sub-
optimal value obtained in [27, 35].
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The QZ-Algorithm does not make use of the special even structure of the matrix
pencils λNH +MH(γ) and λNJ +MJ (γ) and thus the decision whether eigenvalues are
purely imaginary is sometimes difficult. As the perturbation theory for the standard
state space case indicates, see [22], it can be expected that even better results can
be obtained with a structure preserving method that takes the even structure of
the pencil into account. A production code for this is currently under development,
see [32].

In this paper we have developed conditions for optimal and suboptimal H∞-
control for descriptor systems of arbitrary index. We have expressed criteria for the
existence of an internally stabilizing controller in terms of even pencils. Furthermore
we have presented the framework for the γ-iteration applied to general descriptor
systems. We have illustrated the theoretical results with a numerical example.
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