
Local Evaluation of Policies

for Discounted Markov Decision Problems

vorgelegt von

Dipl.-Math. oec. Andreas Tuchscherer

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Berichter: Prof. Dr. Dr. h.c. mult. Martin Grötschel
Prof. Dr. Jörg Rambau

Vorsitzender: Prof. Dr. Fredi Tröltzsch

Tag der wissenschaftlichen Aussprache: 8. Dezember 2010

Berlin 2010
D 83

Zusammenfassung

Das Bestimmen realistischer Indikatoren für die Güte von Online-Algorith-
men für gegebene Online-Optimierungsprobleme ist eine schwierige Aufga-
be. Bisher übliche Ansätze, wie die kompetitive Analyse, weisen erhebliche
Nachteile auf. Sofern stochastische Informationen über zukünftige Anfragen
zur Verfügung stehen, könnten Markov-Entscheidungs-Probleme (MPDs) ei-
ne geeignete Alternative darstellen. Da jedoch die Anzahl an Zuständen in
MDPs, die aus praktischen Anwendungen hervorgehen, üblicherweise expo-
nentiell in den ursprünglichen Eingabeparametern ist, sind Standardverfah-
ren zur Analyse von Strategien bzw. Online-Algorithmen nicht anwendbar.

In dieser Arbeit wird ein neues algorithmisches Verfahren zur lokalen
Evaluierung der Güte von Strategien für diskontierte MDPs vorgestellt. Der
Ansatz basiert auf einem Spaltengenerierungsalgorithums zur Approximati-
on der gesamten erwarteten diskontierten Kosten einer unbekannten optima-
len Strategie, einer gegebenen Strategie oder einer einzelnen Entscheidung.
Der Algorithmus bestimmt eine ε-Approximation, indem lediglich ein relativ
kleiner lokaler Teil des gesamten Zustandsraumes untersucht wird. Es wird
gezeigt, dass die Anzahl der zur Approximation erforderlichen Zustände un-
abhängig von der Gesamtzahl an Zuständen ist. Die berechneten Approxi-
mationen sind normalerweise deutlich besser als die theoretische Schranken,
die andere Ansätze liefern.

Neben dem Pricing-Problem wird die Struktur der linearen Programme
untersucht, die in der Spaltengenerierung auftreten. Darüber hinaus werden
verschiedene Erweiterungen des Algorithmus vorgeschlagen und analysiert.
Diese zielen darauf ab, gute Approximationen schnell berechnen zu können.

Das Potential des Verfahrens wird beispielhaft anhand von diskontier-
ten MDPs untersucht, die aus Online-Optimierungsproblemen hervorgehen.
Bei diesen handelt es sich um das Bin-Coloring-Problem, ein Terminvergabe-
Problem und ein Aufzugssteuerungs-Problem. Das Verfahren ist zumeist in
der Lage, Indikatoren für die Güte von Online-Algorithmen zu bestimmen, die
Beobachtungen aus Simulationen deutlich besser widerspiegeln als die kompe-
titive Analyse. Außerdem lassen sich Schwachstellen der betrachteten Online-
Algorithmen aufdecken. Dadurch konnte ein neuer Online-Algorithmus für
das Bin-Coloring-Problem entwickelt werden, der auch in Simulationen bes-
ser abschneidet als bisher existierende Algorithmen.

iii

Abstract

Providing realistic performance indicators of online algorithms for a given
online optimization problem is a difficult task in general. Due to signifi-
cant drawbacks of other concepts like competitive analysis, Markov decision
problems (MDPs) may yield an attractive alternative whenever reasonable
stochastic information about future requests is available. However, the num-
ber of states in MDPs emerging from real applications is usually exponential
in the original input parameters. Therefore, the standard methods for ana-
lyzing policies, i. e., online algorithms in our context, are infeasible.

In this thesis we propose a new computational tool to evaluate the behav-
ior of policies for discounted MDPs locally, i. e., depending on a particular
initial state. The method is based on a column generation algorithm for
approximating the total expected discounted cost of an unknown optimal
policy, a concrete policy, or a single action (which assumes actions at other
states to be made according to an optimal policy). The algorithm determines
an ε-approximation by inspecting only relatively small local parts of the total
state space. We prove that the number of states required for providing the
approximation is independent of the total number of states, which underlines
the practicability of the algorithm. The approximations obtained by our al-
gorithm are typically much better than the theoretical bounds obtained by
other approaches.

We investigate the pricing problem and the structure of the linear pro-
grams encountered in the column generation. Moreover, we propose and
analyze different extensions of the basic algorithm in order to achieve good
approximations fast.

The potential of our analysis tool is exemplified for discounted MDPs
emerging from different online optimization problems, namely online bin col-
oring, online target date assignment, and online elevator control. The results
of the experiments are quite encouraging: our method is mostly capable to
provide performance indicators for online algorithms that much better reflect
observations made in simulations than competitive analysis does. Moreover,
the analysis allows to reveal weaknesses of the considered online algorithms.
This way, we developed a new online algorithm for the online bin coloring
problem that outperforms existing ones in our analyses and simulations.

v

Acknowledgments

This thesis emerged from the projects“Combinatorial aspects of logistics”and
“Stability, sensitivity, and robustness in combinatorial online-optimization”
of the DFG Research Center Matheon. Firstly, I want to thank Martin
Grötschel for giving me the opportunity to collaborate in these projects, for
his support, and for the freedom he gave me concerning the main focus of
my research. My thanks also go to Ralf Borndörfer for providing the general
conditions for me at the Zuse Institute Berlin to finish my thesis.

Related to the considered subject, I especially thank Jörg Rambau for
coming up with this exciting topic, his valuable advice, his encouragement,
and much support with regard to contents. The cooperation with him was
very pleasant, unfortunately it was intensive only for a short time since he
moved to Bayreuth (and I was not willing to do so). First studies concerning
the local evaluation of policies for discounted Markov decision problems have
been done in collaboration with Jörg Rambau, Stefan Heinz, Volker Kaibel,
and Matthias Peinhardt. I am grateful for the nice and fruitful joint research.
Particularly, I thank Benjamin Hiller for many inspiring discussions, valuable
feedback to my preliminary results, and some support concerning the use of
LATEX. I also thank Siarhei Makarevich who was a great help by implementing
parts of the code for the proposed method and by providing many of the
computational results and associated illustrations.

Moreover, I am indebted to my proofreaders Benjamin Hiller, Siarhei
Makarevich, and Cornelia Tuchscherer. In particular, Benjamin’s feedback
and suggestions were very fruitful and helped me a lot to improve the pre-
sentation.

I thank my parents Cornelia and Wolfgang and my parents-in-law Brigitte
and Karl-Heinz for all their support in the last months by often taking care
of my son Rafael. At last, I have to mention two very important persons.
Special thanks go to my wife Susanne for her patience and bearing the stress-
ful time we recently had. And, I exceedingly thank Jesus Christ for making
all of this possible.

vii

Contents

Zusammenfassung iii

Abstract v

Acknowledgments vii

1 Introduction 1

2 Markov Decision Problems (MDPs) 9
2.1 Problem Definition . 9

2.1.1 Policies . 12
2.1.2 Markov Decision Problems 14

2.2 Results and Computational Methods for Discounted MDPs . . 15
2.2.1 Optimality Equations 15
2.2.2 Value Iteration . 17
2.2.3 Policy Iteration . 18
2.2.4 Linear Programming 20
2.2.5 Directed Hypergraph Model Formulation 25
2.2.6 Complexity . 27
2.2.7 Alternative Methods 27

2.3 Further Objective Criteria . 30

3 LP-Based Local Approximation for Discounted MDPs 35
3.1 Approach . 35

3.1.1 Lower Bounds . 41
3.1.2 Upper Bounds . 44

3.2 Structural Approximation Result 51
3.3 Algorithm . 57

3.3.1 Approach . 58
3.3.2 Column Generation . 59

3.4 Applications . 65
3.4.1 Approximation for Policies 65
3.4.2 Approximation for Actions 66

ix

x Contents

3.5 Details of the Column Generation Method 68
3.5.1 Dual Problem Interpretation 69
3.5.2 Dual Basic Solutions 71
3.5.3 Pricing . 83
3.5.4 Approximation Heuristics 96
3.5.5 Column Generation Implementation 102
3.5.6 Approximation Without Linear Programming 105

4 Computational Results 107
4.1 Modeling Markov Decision Processes for Online Problems . . . 107

4.1.1 General Modeling Approach 108
4.1.2 Issues for Analyzing Associated Discounted MDPs . . . 110
4.1.3 Bin Coloring . 111
4.1.4 Target Date Assignment 116
4.1.5 Elevator Control . 120

4.2 Analysis of the Approximation Algorithm 135
4.2.1 Neighborhood Construction versus Column Generation 136
4.2.2 Linear Programming Solving 138
4.2.3 Pricing Strategies . 140
4.2.4 Approximation Heuristics 146

4.3 Analysis for Exemplary MDPs 148
4.3.1 Subjects of Evaluation 149
4.3.2 Bin Coloring MDPs . 150
4.3.3 Target Date Assignment MDPs 161
4.3.4 Elevator Control MDPs 166

5 Conclusions 187

Bibliography 193

Chapter 1

Introduction

Classical optimization assumes that all input data of the problem to be solved
are at hand. In many real-life problems, however, some data may naturally
not be available at the moments when decisions have to be made, but become
known stepwise over time. This observation has prompted the research in
online optimization.

In an online optimization problem, data arrive in a sequence called request
sequence. Each time a new request appears, an irrevocable decision has to
be made by an online algorithm based on the data of the past, but precise
information about the future is unavailable. The goal is to make “good” deci-
sions, where the quality of the decision depends on the information available
so far, but also on data arriving in the future.

We focus on combinatorial online optimization problems which arise in
many different settings, e. g., logistics and transportation, and are of high
practical importance. Each decision comes along with a cost and we would
like to design an online algorithm whose decisions lead to an overall cost
which is as small as possible. Frequently, so-called reoptimization algorithms
are employed: whenever a new request becomes known, an auxiliary offline
optimization problem is solved, based on the data currently available. The
solution that may be obtained by an exact or heuristic method is then used
to control the system.

Often online algorithms, e. g., reoptimization algorithms, seem to perform
well in practice or simulations and one would like to have a tool that pro-
vides theoretical evidence for these observations. A variety of performance
measures for analyzing the quality of online algorithms has been proposed
and applied in the literature. In the following, we will briefly sketch the most
important ones.

Competitive Analysis The most popular concept called competitive anal-
ysis [ST85, BEY98, FW98] compares the considered online algorithm ALG
with a hypothetical optimal offline algorithm OPT that knows the request
sequence in advance and can process it at a minimum cost. For each request
sequence σ, denote by ALG(σ) and OPT(σ) the cost of ALG and OPT, re-

1

2 Introduction

spectively. An online algorithm ALG is called c-competitive for c ≥ 1 if we
have:

ALG(σ) ≤ c · OPT(σ) + b (1.0.1)

for each request sequence σ and some b ≥ 0. The competitive ratio of an
online algorithm ALG is defined as the infimum of all c ≥ 1 such that ALG is
c-competitive. Moreover, ALG is called competitive if it is c-competitive for
some c ≥ 1 that is independent of the considered request sequence σ. One
often considers the case b = 0 only.

Competitive analysis investigates how much the quality of an online algo-
rithm degrades compared to an optimal offline algorithm in the worst-case,
due to the lack of information about the future. Consequently, the com-
petitive ratio is a very pessimistic measure for the performance of an online
algorithm.

Due to the worst-case nature of competitive analysis different undesirable
phenomena occur in the analysis for various online optimization problems,
especially for such that are of practical relevance:

1. There does not exist a competitive online algorithm at all.

2. Many online algorithms that are apparently of different quality have
the same competitive ratio.

3. A reasonable online algorithm that performs well in simulation experi-
ments has a worse competitive ratio than an algorithm that obviously
performs badly.

These issues show that competitive analysis can be very inappropriate to
evaluate the typical performance of online algorithms.

Other Performance Measures Competitive analysis can be seen as a
game between an online player and a malicious adversary. The online player
applies a particular online algorithm in order to achieve a good competitive
ratio, whereas the adversary aims to construct a request sequence to be
processed by the online player such that the resulting competitive ratio is
bad. In other words, the mentioned disadvantages of competitive analysis
are due to the fact that the malicious adversary is too powerful.

Many concepts to reduce the power of the adversary have been pro-
posed in the literature. The most direct approach is to somehow restrict
the request sequences the adversary can produce, e. g., see [BIRS95, AFG05,
Tor98]. Another possibility is to consider randomized online algorithms that
are allowed to use random decisions for processing requests, proposed by
Borodin et al. [BLS92]. The cost of a randomized algorithm for a given

3

sequence is a random variable, and we are interested in its expectation. Nor-
mally, the adversary knows the probability distribution used by the online
player but cannot observe the actual outcome of the random experiments.
As a consequence, he must choose the complete input sequence in advance.
This type of adversary is called oblivious adversary, see [BEY98] for differ-
ent types of adversaries. Replacing ALG(σ) by the expectation E[ALG(σ)] in
Equation (1.0.1) defines the competitive ratio of a randomized online algo-
rithm ALG. Analyzing randomized online algorithms is typically more com-
plicated than deterministic ones.

Another alternative is to consider request sequences generated randomly
according to some probability distribution and to analyze the expected per-
formance of an online algorithm. Obviously, such an average-case analysis
requires some probabilistic assumptions on how the inputs look like. Typi-
cally, requests are chosen independently and identically distributed. In this
context, the optimal cost OPTn for a request sequence of length n ∈ N is a
random variable, just as the cost ALGn obtained by an online algorithm ALG.
The expected performance of ALG can be evaluated by each of the ratios:

E
[

ALGn

OPTn

]
or

E[ALGn]

E[OPTn]
.

See [SSS06, SS06] for discussions on the difference between the two measures.

Moreover, there are a lot of different approaches in this area, e. g., analyz-
ing the asymptotic expected performance [CSHY80] and smoothed compet-
itive analysis [BLMS+06] that represents a compromise between worst-case
and average-case performance. For more details on performance measures
for online algorithms we refer to [Alb03, DLO05, BF07].

To summarize, there are many methods that allow to provide more realis-
tic performance indicators for online algorithms than obtained by competitive
analysis. On the negative side, these approaches are usually more compli-
cated to apply and each type of average-case analysis requires probabilistic
assumptions concerning future requests. That is, such methods are more re-
strictive concerning their application, which again justifies using competitive
analysis. Generally, it is reasonable to claim that the theory developed for
online optimization rarely provides good guidelines for the choice of online al-
gorithms to be employed in practice. In order to realistically evaluate how an
algorithm performs in practice it is often necessary to resort to a simulation
of the system.

Markov Decision Processes In the presence of a probability distribution
for future requests Markov decision processes [Put05, FS02, Ber01] can be

4 Introduction

used as a model for online optimization problems (see Section 4.1 for different
examples). A Markov decision process, also referred to as stochastic dynamic
program or discrete-time stochastic control problem, is a model for sequential
decision making when outcomes are uncertain but obey given probabilities.
Such a system consists of states, actions, stage costs, and transition probabil-
ities. At some point in time, a specific state of a system is observed. Based
on this state, a decision must be made by choosing an action. This causes
the system to randomly move into another state according to given transition
probabilities and an associated stage cost is incurred.

Markov decision processes are theoretically well understood and for many
suitable objective criteria1 e. g., the total expected discounted cost or the av-
erage expected cost for an infinite horizon, an optimal policy can in principle
be computed. However, Markov decision processes arising from real appli-
cations are usually of astronomic size, which in turn makes the standard
computational methods infeasible.

Powell [Pow07] introduces the three curses of dimensionality that give
rise to these intractable sizes. The first curse is as follows. A state i in a
Markov decision process is usually represented by a vector of different state
parameters, i. e., i = (s1, . . . , sn) for some n ∈ N. If each component sk for
k ∈ {1, . . . , n} can take L ∈ N possible values, then we can have up to Ln

states, which is exponential in n. Thus, the state space grows very quickly
with growing number of state parameters. A similar behavior is often the
case for the set of actions at a state and the set of possible states the system
can move to due to using an action at some state. We will refer to these as
the second and third curse of dimensionality, respectively. In Section 2.2.7,
we will describe some approaches from the literature to cope with the curses
of dimensionality.

Following the notation of Puterman [Put05], we will call a Markov de-
cision process together with an objective criterion Markov decision problem
(MDP). We will only consider discounted MDPs where the objective criterion
is to minimize the total expected α-discounted cost for some α ∈ [0, 1) over
an infinite horizon, properly introduced in the next chapter.

1Most publications related to Markov decision processes speak of optimality criteria,
whereas this term is used in mathematical programming to characterize optimal solutions
w. r. t. a given objective function. Since we favor the latter notion but do necessarily
consider functions, we will speak of objective criteria.

5

Contribution

In this thesis we propose a new computational tool for analyzing the expected
quality of online algorithms based on discounted MDPs. The method aims
at providing evidence for the performance of algorithms that brings theory
more in line with the behavior observed in practice or simulation.

Note that the analysis concepts mentioned above indicate the quality of
an online algorithm only by a single value. In contrast, our method computes
an evaluation depending on a particular situation of the considered system.
Translated into the language of discounted MDPs, we evaluate a concrete
policy or a single action w. r. t. a given initial state by estimating how much
the associated total expected discounted cost degrades compared to that
caused by an optimal policy. By restricting to this local evaluation of policies
our method is able to cope with an arbitrarily large or even infinite state
space, eluding the first curse of dimensionality. As the approach is unable
to properly deal with the other curses, we assume the number of actions at
each state and the number of possible successor states to be small.

The backbone of our analysis tool is an approximation algorithm that
determines continuously improving lower and upper bounds for the total ex-
pected discounted cost of an unknown optimal policy, a concrete policy, or a
single action (which assumes actions at other states to be made according to
an optimal policy). The algorithm is based on the classical linear program-
ming formulation for computing the optimal value vector and an optimal
policy for a discounted MDP. We modify the formulation by taking into ac-
count only a small local part S of the total state space S. Our algorithm
dynamically extends the considered subset of states S by means of a column
generation procedure in order to improve the achieved approximation guar-
antee. The main reason for the practical efficiency of the algorithm seems to
be the feature that the dynamic extension of the subset S is guided by the
reduced profit structure of the current reduced linear program. We point out
that the approximation algorithm fully relies on evaluating a discounted cost
function: for analyzing other objective criteria, e. g., the average expected
cost per stage, considering only local parts of the state space is completely
useless.

On the theoretical side, we prove that for a given ε > 0 and an initial
state i0 ∈ S there always exists some subset of states S ⊆ S such that the
associated restricted linear programs yield an ε-approximation of the optimal
value vector at the state i0, while the size of S is independent of the total
number of states2. Instead, the size of S depends only on the local structure

2We already published a first version of this result in [HKP+06].

6 Introduction

of the discounted MDP at state i0. This result provides a kind of evidence
for the practicability of our approximation algorithm. We give an involved
example proving that the algorithm may generate more states than required
by the mentioned theoretical construction. In practice, however, the opposite
is true: the approximation algorithm typically inspects substantially fewer
states.

Besides a thorough investigation of the structure of the linear programs
encountered in the column generation algorithm, we propose different pricing
strategies, approximation heuristics, and a method for constructing initial
bases, that may be employed in the algorithm. The practicability of the
approximation algorithm strongly depends on these techniques. Among other
things, we also derive a combinatorial interpretation and formula for the
pricing problem and prove another upper bound construction based on the
reduced profits.

The functionality offered by our approximation algorithm allows to

• provide computationally based approximations depending on the con-
sidered discounted MDP that tend to be much better than theoretical
and thus worst-case bounds,

• assess the relative cost increase caused by using a concrete policy or
action instead of an optimal policy for a given initial state,

• compute near-optimal actions,

• identify non-optimal actions and possibly an optimal one by excluding
the former, and

• utilize the evidence about the impact of single decisions / actions in the
design of online algorithm, e. g., a reoptimization algorithm.

The introduced analysis tool may be seen as a first step towards a method
that can be incorporated in a simulation or real system in order to evaluate
online each decision made. If a decision can be shown to be bad, an approach
like ours might even propose a better one to the user. Taking into account
the complex structures of practical environments and the typical real-time
requirements, our approximation algorithm allows such an application so far
only for very simple online optimization problems.

We apply our method to three online optimization problems, namely
the online bin coloring problem [KdPSR08], an online elevator control prob-
lem [GHKR99], and an online target date assignment problem [HKM+05]. In
each case, the analysis tool provides performance indicators for particular on-
line algorithms that reflect much better the behavior observed in simulation

7

than competitive analysis does. Our results for the three online optimization
problems include the following:

1. For the online bin coloring problem, we prove that the reasonable
online algorithm GreedyFit clearly outperforms the totally stupid al-
gorithm OneBin, whereas competitive analysis suggests the opposite.
Based on the analysis for GreedyFit, we were able to develop the new
online algorithm SafeBin that improves over GreedyFit. This could also
be observed in simulations.

2. We mainly focus on scheduling a single elevator in the considered on-
line elevator control problem. Although our tool is unable to assess
the long-term behavior of online algorithms, we obtain some enlighten-
ing performance results for the simple online algorithms NearestNeigh-
bor (NN) and FirstInFirstOut (FIFO) as well as different versions of the
reoptimization-based algorithms Replan and Ignore. In particular, it
turns out that NN performs very well concerning the average waiting
time, while Ignore and FIFO give good results w. r. t. the maximum
waiting time. Replan based on minimizing the sum of squared waiting
times seems to be a good compromise to achieve a suitable behavior
for both objectives simultaneously. The insight gained by our analysis
allowed to design improved versions of NN that include a provably op-
timal strategy to position an idle elevator. Moreover, we provide some
results for the case of a group of two elevators.

In order to provide appropriate approximations for this problem, we
had to develop involved theoretical bounds to estimate the impact of
states not yet contained in the considered local subset.

3. For an online target date assignment problem we evaluate a slightly
different cost function assuming a more reasonable date-wise discount-
ing. Also in this case the reasonable online algorithm PFD which seems
to be hard to analyze outperforms the 2-competitive algorithm PTD.
For the standard version of the method using a discounted MDP this
has already been shown in the diploma thesis of Heinz [Hei05] based
on joint work.

Outline

This thesis is arranged as follows. Chapter 2 introduces the precise definition
of a Markov decision process and Markov decision problem (MDP) together
with related notations. For discounted MDPs, we highlight the main theo-
retical results and computational methods and describe the state-of-the-art

8 Introduction

approaches to deal with the three curses of dimensionality. Moreover, we
briefly sketch other objective criteria different from minimizing the total ex-
pected discounted cost and discuss their assets and drawbacks.

Chapter 3 is devoted to our approach for approximating the total expected
discounted cost of an unknown optimal policy, a concrete policy, or a single
action for a given initial state in a discounted MDP. The chapter develops the
approximation algorithm and the mentioned local approximation theorem.
Furthermore, we give various theoretical insights that are closely related to
our method.

We describe in Chapter 4 how to generically formulate a Markov deci-
sion process model for a given online optimization problem in order to apply
the approximation algorithm to evaluate online algorithms. Then we intro-
duce the particular online optimization problems to be studied together with
known results focusing on competitive analysis and the used Markov decision
process models. After a computational analysis of the approximation algo-
rithm and its possible components, we present our results for the considered
online optimization problems. Finally, Chapter 5 is devoted to conclusions
and an outlook.

Chapter 2

Markov Decision Problems

In this chapter, we give the formal definition of a Markov decision problem,
for short MDP, and describe parts of the basic theory and computational
methods that are relevant for the approximation algorithm we propose in
this thesis. Section 2.1 defines Markov decision processes and Markov de-
cision problems and introduces most of the notation used in the sequel. In
Section 2.2 we present important theoretical results including the so-called
optimality equations and describe the standard computational methods for
discounted MDPs. Moreover, we give an overview about approaches for deal-
ing with problems of large scale, due to suffering from the curses of dimen-
sionality. Finally, Section 2.3 summarizes other objective criteria for MDPs,
discusses briefly their advantages and disadvantages, and points out why our
approach works only for the total expected discounted cost criterion.

For details about MDPs, we recommend the books of Puterman [Put05],
Feinberg and Shwartz [FS02], and Bertsekas [Ber01].

2.1 Problem Definition

A Markov decision process describes a discrete-time stochastic system of the
following type. At each point in time the system is situated in some specific
state. Each state defines a non-empty set of actions that represents the
different possibilities to control or affect the process. Applying a particular
action moves the system into another state according to a given probability
distribution. Each state transition comes along with an immediately incurred
cost.

As already mentioned in Chapter 1, we will use the term Markov decision
problem for a Markov decision process together with an objective criterion.
By this differentiation we follow the conception used by Puterman [Put05].
The notation in this thesis leans on the book of Feinberg and Shwartz [FS02].
Formally, a Markov decision process is defined as follows.

Definition 2.1.1 (Markov decision process) A Markov decision process
is a tuple (S,A, p, c), where the components are defined as follows:

9

10 Markov Decision Problems (MDPs)

• S is a finite set of states.

• A is a mapping specifying for each state i ∈ S a non-empty and finite
set A(i) of possible actions at state i.

• For all states i, j ∈ S, the mapping pij : A(i)→ [0, 1] gives the transition
probability pij(a) that the system moves from state i to state j when
using action a ∈ A(i). For each state i ∈ S and each action a ∈ A(i),
we have

∑
j∈S pij(a) = 1.

• For all i ∈ S, the mapping ci : A(i) × S → R+ specifies the stage
cost ci(a, j) when action a ∈ A(i) is chosen and the system moves
to state j ∈ S. The expected stage cost of using action a ∈ A(i) at
state i ∈ S is denoted by ci(a) :=

∑
j∈S pij(a)ci(a, j). 4

The above definition of a Markov decision process reflects all the features
relevant for this thesis. In the literature, often a more general definition is
given. For instance, the possible actions, transition probabilities, and stage
costs may depend on the decision time point t also called stage index. In our
case, when these structures are independent of the stage index, the Markov
decision process is often called stationary.

We mention that Puterman as well as Feinberg and Shwartz consider
Markov decision processes with stage rewards instead of costs. Generally,
both rewards and costs can be considered simultaneously by allowing negative
values for the stage costs or rewards, respectively. In our context, however, it
will be crucial that all expected stage costs are non-negative. Moreover, it is
possible to generalize Definition 2.1.1 to infinite state spaces S. The classical
computational methods (described in Section 2.2 for the objective criterion
of minimizing the total expected discounted cost), however, are infeasible
for infinite state spaces. In contrast, the approximation method proposed in
this thesis can cope with an infinite number of states. We will consider one
Markov decision process with infinite state space in Sections 4.1.5 and 4.3.4.

Let us consider one of the classical examples for a Markov decision process,
cf. [Ber01, volume 1, chapter 1].

Example 2.1.2 (Inventory control) This problem deals with managing
the inventory of a certain item. At the start of each period the inventory
manager observes the current stock and decides how many units to order.
Orders are assumed to be delivered immediately, and there is a finite in-
ventory capacity of C units. We also assume that the demands for each
period are independent and identically distributed random variables with
non-negative integer values. For each period, let p(d) be the probability that

2.1 Problem Definition 11

the demand has an amount of d units. We assume a maximum demand of D,
i. e., p(d) = 0 for each demand d > D. If the demand exceeds the current
inventory, then the shortage is backlogged in the next period and must be
satisfied in that period also.

Let i be the inventory at the start of the current period, and let j be the
inventory at the end of the period which equals the inventory at the start
of the next period. If j is positive, then an inventory cost of cinv(j) > 0 is
incurred. If j is negative, then we have a backlogging cost of cback(j) > 0.
The cost for ordering a units equals cord(a) ≥ 0.

The inventory control can be modeled by a Markov decision process as
follows:

S = {i ∈ Z | −D ≤ i ≤ C} ,
A(i) = {a ∈ N | max {−i, 0} ≤ a ≤ C − i} ∀i ∈ S,

pij(a) =

{
p(i+ a− j), if j ≤ i+ a

0, if j > i+ a
∀i, j ∈ S ∀a ∈ A(i),

ci(a, j) = cord(a) +


cinv(j), if j > 0

cback(j), if j < 0

0, if j = 0

∀i, j ∈ S ∀a ∈ A(i). 4

Further examples for Markov decision processes studied in this thesis are
described in Section 4.1.

The following definition of a path is unusual in the literature but will
come in handy later.

Definition 2.1.3 (Path) Given a Markov decision process M = (S,A, p, c),
a sequence P = (i1, a1, i2, a2, . . . , an−1, in) for n ∈ N of states i1, . . . , in ∈ S
and actions with ak ∈ A(ik) and pikik+1

(ak) > 0 for k ∈ {1, . . . , n − 1} is
called (i1, in)-path or path from i1 to in in M . The length |P | of path P is
defined as the number of state transitions in P , i. e., |P | = n− 1. Moreover,
for states i, j ∈ S, we say that

• j is reachable or can be reached from i if there exists an (i, j)-path
in M , and

• j is a successor (state) of i and i is a predecessor (state) of j if j is
reachable from i by a path of length 1.

For a particular state i ∈ S, we will refer to the minimum length of a path
from i to a state j ∈ S as the depth of j w. r. t. state i. 4

12 Markov Decision Problems (MDPs)

2.1.1 Policies

Controlling a Markov decision process is considered over a certain planning
horizon which may be finite, infinite, or of random length. The method de-
veloped in this thesis assumes an infinite planning horizon. However, taking
into account a finite planning horizon can easily be reduced to the case of
an infinite horizon: the idea is to add a state with only one possible action
leading to itself again with probability 1 at zero cost.

The goal is to determine a policy that achieves a best possible perfor-
mance of the system w. r. t. some objective to be defined. To give the general
definition of a policy, we need the notion of the history which incorporates
all the traversed states and used actions up to some stage index.

Definition 2.1.4 (History) Given a Markov decision process (S,A, p, c)
and a stage index t ∈ N, the set of histories Ht of the system up to stage
index t is given by:

Ht := {(i1, a1, . . . , it−1, at−1, it) | (ik, ak) ∈ S× A(ik), 1 ≤ k ≤ t− 1, it ∈ S}.

We will also refer to each element of Ht as a history. 4

Note that in the definition of a history (i1, a1, . . . , it−1, at−1, it) it is not as-
sumed that the sequence is a path. That is, the states in the sequence are
not required to be reachable from their predecessors using the corresponding
action, i. e., for each k ∈ {1, . . . , t− 1}, we may have pikik+1

(ak) = 0.
A randomized policy is given by a collection of probability distributions

for the actions to be used.

Definition 2.1.5 (Policy) Let M = (S,A, p, c) be a Markov decision pro-
cess. A (randomized) policy for M is a sequence (π1, π2, . . . , πt, . . .) with the
following properties for each stage index t ∈ N:

1. πthtat ≥ 0 for each ht ∈ Ht and each at ∈ A(it).

2.
∑

at∈A(it)
πthtat = 1 for each ht ∈ Ht.

πthtat gives the probability that action at is chosen at stage index t when the
history is ht. We denote the set of policies for M by PM . 4

By definition a randomized policy is a decision rule that may depend on the
current stage index as well as the complete history up to that stage. In the
sequel we will mostly consider policies with special properties. A memoryless
policy does not depend on the history except for the current state and the
stage index. Moreover, a memoryless policy is called stationary if it only

2.1 Problem Definition 13

depends on the current state, but is independent of the stage index. Finally,
a stationary policy that is not randomized is called deterministic, i. e., it
assigns to each state exactly one possible action.

Definition 2.1.6 Let M = (S,A, p, c) be a Markov decision process, and let
Π = (π1, π2, . . . , πt, . . .) be a policy for M .

1. Π is called memoryless if πt is independent of (i1, a1, . . . , it−1, at−1) for
each stage index t ∈ N and each history (i1, a1, . . . , it−1, at−1, it) ∈ Ht.

2. Π is called stationary if Π is memoryless and independent of the stage
index t, i. e., πt1 = πt2 for all t1, t2 ∈ N. We denote a stationary policy
(π, π, . . .) simply by π and use the notation πia instead of πthtat .

3. A stationary policy π for M is called deterministic if for each i ∈ S
there exists an action ai ∈ A(i) with πiai = 1. That is, we have πia = 0
for each a ∈ A(i) \ {ai}. We will use the notation π(i) = ai. 4

Note that since the sets S and A(i) for each i ∈ S of a given Markov decision
process (S,A, p, c) are finite by definition, the set of deterministic policies is
always finite, too.

The performance of a policy is measured using a so-called value vector
function that assigns to each policy a value, given the initial state of the
process. Based on the value vector function an associated objective criterion
can be defined. Naturally, there are various reasonable objective criteria
that can be used to evaluate the performance of a given policy. Some of the
these criteria featuring an infinite planning horizon, e. g., the total discounted
expect cost, the total (undiscounted) expected cost, the expected average cost
per stage, and Blackwell optimality will be introduced later in this chapter.

Definition 2.1.7 (Value vector) Let M = (S,A, p, c) be a Markov deci-
sion process. A value vector function for M is a mapping V : PM → RS with
Π 7→ v(Π) that maps a policy Π to a vector v(Π) ∈ RS which is called value
vector of policy Π. The optimal value vector v ∈ RS w. r. t. V is defined by:

vi := inf
Π∈PM

vi(Π), for each i ∈ S.

Any policy Π with v(Π) = v is called optimal for V . 4

For each state i ∈ S, the number vi(Π) defines a valuation for the policy Π,
given that the initial state is i. Of course, it is not clear under which condi-
tions an optimal policy exists: the infimum has to be attained simultaneously
for all initial states.

14 Markov Decision Problems (MDPs)

2.1.2 Markov Decision Problems

Having a value vector function at hand, we are now ready to define a Markov
decision problem.

Definition 2.1.8 (Markov decision problem) Let M = (S,A, p, c) be a
Markov decision process and let V : PM → RS be a value vector function
for M . Then the pair (M,V) is called Markov decision problem, MDP for
short. We will also denote the corresponding MDP by (S,A, p, c, V). 4

In our context, we will only look at so-called discounted MDPs, where the
value vector of a policy is defined in terms of the total expected discounted
cost. To define this value, we use the following notation. For each t ∈ N,
let the random variables Xt and Yt denote the current state and the action
used at stage t. Moreover, for all states i, j ∈ S and each action a ∈ A(j),
let PiΠ[Xt = j, Yt = a] denote the probability that at stage t the state is j
and the action is a, given that policy Π is used and the initial state is i. The
expectation operator w. r. t. this probability measure is denoted by EiΠ.

Definition 2.1.9 (Discounted MDP) Let M = (S,A, p, c) be a Markov
decision process and let α ∈ [0, 1). The total expected α-discounted cost of a
policy Π for M for an initial state i ∈ S is defined by

vαi (Π) :=
∞∑
t=0

EiΠ[αt · cXt(Yt)] (2.1.1)

=
∞∑
t=0

αt
∑
j∈S

∑
a∈A(j)

PiΠ[Xt = j, Yt = a] · cj(a).

Let V α be the value vector function defined for each policy Π ∈ PM by the
value vector vα(Π) with elements vαi (Π) for each i ∈ S as given above. The
MDP (M,α) := (M,V α) is called discounted MDP with discount factor α
or α-discounted MDP. To prevent ambiguity when we consider several dis-
counted MDPs at the same time, we will sometimes denote the value vector
of a policy Π ∈ PM also by vαM(Π). 4

For the total expected α-discounted cost of a policy, the incurred stage cost
after t steps are accounted with factor αt only. Thus, the discount factor α
adjusts to what extend possible future costs are taken into account. One
could also say that α determines the tradeoff between now and later. On the
one hand, a discount factor of α = 0 only takes into account the expected
stage cost of the first transition and completely ignores any cost incurred by

2.2 Results and Computational Methods for Discounted MDPs 15

later transitions. On the other hand, a discount factor close to one substan-
tially considers possible costs in the remote future, too.

Puterman [Put05, chapter 5.3] mentions another way to interpret dis-
counting. Consider a deterministic policy π and some initial state i ∈ S.
One can show that the component vαi (π) of the value vector of π equals the
total (undiscounted) expected cost of policy π for the initial state i w. r. t.
a planning horizon of random length that is geometrically distributed with
parameter α. For a short survey on objective criteria different from the total
expected discounted cost see Section 2.3.

2.2 Results and Computational Methods for
Discounted MDPs

In this section we summarize some of the most important results for dis-
counted MDPs and present the classical computational algorithms for their
solution. All of these are highly relevant in our context. With a few excep-
tions we refrain from giving proofs, but provide references to the literature.

First let us argue that the total expected α-discounted cost of a policy
equals the expected total α-discounted cost. Let cmax := maxi∈S,a∈A(i) ci(a) be
the maximum stage cost. Obviously, we have:∣∣∣∣∣

∞∑
t=0

αt · cXt(Yt)

∣∣∣∣∣ ≤
∞∑
t=0

αt · cmax =
cmax

1− α
.

Hence, the theorem of dominated convergence, e. g., see [Bau01, chapter 2],
implies:

EiΠ

[
∞∑
t=0

αt · cXt(Yt)

]
=
∞∑
t=0

EiΠ[αt · cXt(Yt)] = vαi (Π),

i. e., the total expected α-discounted cost criterion and the expected total
α-discounted cost criterion are equivalent.

2.2.1 Optimality Equations

For discounted MDPs we have the nice property that there always exists
an optimal deterministic policy. Recall that this implies optimality for each
possible initial state.

Theorem 2.2.1 ([Ber01, volume 1, chapter 7.3]) Let M = (S,A, p, c, α)
be an α-discounted MDP with α ∈ [0, 1). Then, we have the following:

16 Markov Decision Problems (MDPs)

1. Let π be a deterministic policy for M . Then the value vector vα(π)
equals the unique solution of the system of linear equations:

xi = ci(π(i)) + α
∑
j∈S

pij(π(i))xj, i ∈ S. (2.2.1)

2. The optimal value vector vα equals the unique solution of the system of
equations:

xi = min
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)xj

}
, i ∈ S. (2.2.2)

3. There exists an optimal deterministic policy for M , and a deterministic
policy π is optimal if and only if:

π(i) ∈ argmin
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)vαj

}
, i ∈ S. (2.2.3)

The existence of an optimal deterministic policy motivates the following op-
timization problem.

Problem 2.2.2 (Discounted MDP) Given a discounted Markov decision
problem (S,A, p, c, α), find an optimal deterministic policy. 4

The practical impact of Theorem 2.2.1 can be summarized as follows. The
value vector of a deterministic policy can be computed by solving a system of
linear equations. Moreover, the optimal value vector equals the unique solu-
tion of a system of equations incorporating a minimum term. One typically
refers to the system of equations (2.2.2) as the optimality equations or Bell-
man equations. Once the optimal value vector is at hand, an optimal deter-
ministic policy can easily be determined by computing ci(a)+α

∑
j∈S pij(a)vαj

for each state i ∈ S and each action a ∈ A(i). Basically, all methods for
computing an optimal deterministic policy first provide the optimal value
vector vα, and then use Equation (2.2.3) to obtain the policy itself. Thus,
the remaining task is to determine vα.

Because of the reasons mentioned above, we will particularly deal with
deterministic policies in the sequel. Moreover, the following definition of
optimal actions will be used.

Definition 2.2.3 (Optimal actions) Let M = (S,A, p, c, α) be an α-dis-
counted MDP with α ∈ (0, 1). Each possible action a ∈ A(i) at a state i ∈ S
is called optimal if there exists an optimal deterministic policy π for M such
that π(i) = a. 4

2.2 Results and Computational Methods for Discounted MDPs 17

In the following, we will briefly outline the classical methods for com-
puting the optimal value vector vα of a discounted MDP including value
iteration, policy iteration, and linear programming. For details and possible
variants and extensions of the methods, see [Put05, chapter 6], [FS02, chap-
ter 2.3], or [Ber01, volume 2, chapter 1.3]. We will also look at the question
concerning the complexity of Problem 2.2.2. Since we will only deal with de-
terministic policies in the following, we will simply speak of policies, meaning
deterministic ones implicitly.

2.2.2 Value Iteration

The value iteration method successively approximates the optimal value
vector vα of a discounted MDP (S,A, p, c, α) by a sequence vk ∈ RS for
k = 1, 2, . . . that converges to vα. In doing so, the vector v1 ∈ RS can be
chosen arbitrarily. The sequence is constructed by applying the following
mapping T : RS → RS with x 7→ Tx defined by:

(Tx)i = min
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)xj

}
, for each i ∈ S.

Note that the optimality equations (2.2.2) which characterize the optimal
value vector vα given in Theorem 2.2.1 can be rewritten as follows:

x = Tx, x ∈ RS. (2.2.4)

Thus, the optimal value vector vα is the unique solution of Equation (2.2.4).
In other words, vα is the unique fixing point of the mapping T . Moreover, it
can be shown that applying T onto an arbitrary start vector repeatingly, the
resulting sequence converges to the optimal value vector vα (T is a so-called
contraction mapping).

Theorem 2.2.4 ([FS02, chapter 2.3]) Given a discounted Markov deci-
sion problem (S,A, p, c, α) and any vector x ∈ RS, we have limk→∞ T

kx = vα.

Given an arbitrary vector v1 ∈ RS, the value iteration methods computes
the sequence of vectors vk ∈ RS for k = 2, 3, . . . as follows:

vk+1 = Tvk, for k = 1, 2,

At the same time a sequence of policies converging to an optimal policy is
constructed. Since this procedure is not finite in general, the value iteration
method only guarantees for each ε > 0, the computation of an ε-optimal

18 Markov Decision Problems (MDPs)

Algorithm 1 Value iteration

1: Input: a discounted MDP M = (S,A, p, c, α), x ∈ RS, ε > 0
2: Output: an ε-optimal policy π for M , i. e., ‖vα − vα(π)‖∞ ≤ ε, an
ε/2-approximation y for vα, i. e., ‖vα − y‖∞ ≤ ε/2

3: compute vector y ∈ RS and policy π for each i ∈ S by:

yi = min
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)xj

}

π(i) = argmin
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)xj

}

4: if ‖y − x‖∞ ≤ (1−α)ε
2α

then
5: return π, y
6: else
7: x← y and go to step 3
8: end if

policy π, i. e., ‖vα − vα(π)‖∞ ≤ ε, and an ε/2-approximation y for vα, i. e.,
‖vα−y‖∞ ≤ ε/2. The value iteration method is given in detail in Algorithm 1.
By Theorem 2.2.4 it is clear that the value iteration method terminates after a
finite number of iterations. We will not prove the correctness of the threshold
value to terminate the algorithm in Step 4, which is a bit technical.

Theorem 2.2.5 ([FS02, chapter 2.3]) The value iteration method given
in Algorithm 1 is finite and correct.

There are different types of improvements for the basic version of the
value iteration method described above. For instance, suboptimality tests for
excluding non-optimal actions can be incorporated. Moreover, there are vari-
ants of the standard value iteration method that are based on slightly modi-
fied contraction mappings called Pre-Gauss-Seidel and Gauss-Seidel method.
These variants may be considered as an acceleration of the basic algorithm.
For details, we refer to the mentioned books.

2.2.3 Policy Iteration

The policy iteration method constructs a finite sequence of deterministic
policies π1, π2, . . . , πn, for some n ∈ N, such that

vα(πk+1) < vα(πk), for k = 1, 2, . . . , n− 1,

2.2 Results and Computational Methods for Discounted MDPs 19

where x < y for vectors x, y ∈ Rm means xi ≤ yi for each i ∈ {1, . . . ,m} and
xi < yi for at least one i ∈ {1, . . . ,m}. Moreover, πn is optimal. Thus, the
generated policies improve step by step, finally reaching an optimal policy.

The way policies are constructed by the policy iteration algorithm is based
on the following observation. For each state i ∈ S and each policy π, we define
a subset of actions A(i, π) ⊆ A(i) by

A(i, π) =

{
a ∈ A(i) | vαi (π) > ci(a) + α

∑
j∈S

pij(a)vαj (π)

}
. (2.2.5)

It follows from Theorem 2.2.1, part 1 and 2, that π is optimal if and only if
A(i, π) = ∅ for all states i ∈ S. The idea of the policy iteration algorithm is to
replace action π(i) by some action a ∈ A(i, π) to obtain an improved policy.
Notice that again by Theorem 2.2.1, part 1, we always have π(i) /∈ A(i, π)
for each state i ∈ S. The following theorem shows the correctness of this
approach.

Theorem 2.2.6 ([FS02, chapter 2.3]) Let M = (S,A, p, c, α) be a dis-
counted MDP and let π be a policy for M . Then, the following statements
hold true.

(i) If A(i, π) = ∅ for each state i ∈ S, then π is optimal.

(ii) If A(i, π) 6= ∅ for some state i ∈ S, let µ be any deterministic policy
with µ 6= π such that

• for each i ∈ S with A(i, π) = ∅, we have µ(i) = π(i) and

• for each i ∈ S with A(i, π) 6= ∅, we have either µ(i) = π(i) or
µ(i) ∈ A(i, π).

Then, we have vα(µ) < vα(π).

The policy iteration algorithm consists mainly of two steps. First, in
the policy evaluation step the value vector vα(π) for the current policy π is
computed by solving the associated system of linear equations (2.2.1). Note
that vα(π) is required to determine the sets A(i, π) for each state i ∈ S.
Then, an improved policy is constructed, or it is observed that the current
policy is optimal. This operation is usually called policy improvement step.
The policy iteration method in detail is given in Algorithm 2.

Note that Algorithm 2 terminates after a finite number of steps since by
the second part of Theorem 2.2.6 the constructed policies improve in each
iteration and the number of deterministic policies is finite. Moreover, the
first part of Theorem 2.2.6 implies that the returned policy is optimal, which
proves the correctness of the policy iteration method.

20 Markov Decision Problems (MDPs)

Algorithm 2 Policy iteration

1: Input: a discounted MDP M = (S,A, p, c, α), a policy π for M
2: Output: an optimal policy π for M
3: compute vα(π) as the unique solution of the system of linear equations:

xi = ci(π(i)) + α
∑
j∈S

pij(π(i))xj, i ∈ S

4: compute A(i, π) = {a ∈ A(i) | vαi (π) > ci(a) + α
∑

j∈S pij(a)vαj (π)}
5: if A(i, π) = ∅ for each i ∈ S then
6: return π
7: else
8: take any policy µ 6= π with µ(i) ∈ A(i, π) for all i ∈ S with µ(i) 6= π(i)
9: end if

10: π ← µ and go to step 3

Theorem 2.2.7 The policy iteration method, given in Algorithm 2, is finite
and correct.

Similar to the value iteration method, one can also include a suboptimality
test to get rid of some non-optimal actions in the policy iteration method.
Moreover, there is a modified version of the standard algorithm that features
a faster rate of convergence. For details we refer particularly to the book of
Puterman [Put05, chapter 6].

2.2.4 Linear Programming

Since the approximation approach proposed in this thesis is based on the
classical linear programming formulation for computing the optimal value
vector, we will look at this method in more detail.

The definition of the mapping T in Section 2.2.2 implies that T is mono-
tone: for given vectors x, y ∈ RS satisfying x ≤ y, i. e., xi ≤ yi for each
index i ∈ {1, . . . , |S|}, we have Tx ≤ Ty. Let v ∈ RS be an arbitrary vector
with the property v ≤ Tv, i. e.,

vi ≤ min
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)vj

}
∀i ∈ S.

This property is particularly satisfied for the zero vector (0, . . . , 0)T since we
have ci(a) ≥ 0 for each i ∈ S and each a ∈ A(i). The monotonicity of T
implies Tv ≤ T 2v, which itself implies T 2v ≤ T 3v, and so on. Combining

2.2 Results and Computational Methods for Discounted MDPs 21

these inequalities we obtain:

v ≤ Tv ≤ T 2v ≤ T 3v ≤

Since limk→∞ T
kx = vα for each x ∈ RS by Theorem 2.2.4, altogether we

have shown for any vector v ∈ RS:

v ≤ Tv =⇒ v ≤ lim
k→∞

T kv = vα.

Due to vα = Tvα, this gives the following result.

Lemma 2.2.8 Let (S,A, p, c, α) be an α-discounted MDP. Then, for each
vector v ∈ RS with v ≤ Tv, we have v ≤ vα. Thus, the optimal value
vector vα is the componentwise largest vector satisfying the inequality v ≤ Tv.

Of course, v ≤ Tv is equivalent to the system of inequalities:

vi ≤ ci(a) + α
∑
j∈S

pij(a)vj ∀i ∈ S ∀a ∈ A(i).

This leads to the central theorem concerning the linear programming method
for computing the optimal value vector of a discounted MDP.

Theorem 2.2.9 The optimal value vector vα ∈ RS of a discounted MDP
(S,A, p, c, α) equals the unique optimal solution of the following linear pro-
gram:

max
∑
j∈S

vj (P)

subject to vi − α
∑
j∈S

pij(a)vj ≤ ci(a) ∀i ∈ S ∀a ∈ A(i)

vj ∈ R ∀j ∈ S.

Proof. It is clear that the optimal value vector vα is a feasible solution for
the linear program (P). Moreover, by Lemma 2.2.8 we have vα ≥ v for each
feasible solution v ∈ RS. Thus, vα is the unique optimal solution of (P). �

Therefore, one can obtain the optimal value vector by solving the linear
program (P). This linear programming formulation was firstly proposed by
d’Epenoux [d’E63] and has been the starting point for several approaches,
e. g., see [SS85, dFV03, dFV04].

Although it is not relevant in this thesis, we mention that the unique
optimal solution of the linear program (P) is in some sense independent of
the objective function: Theorem 2.2.9 can obviously be generalized as follows.

22 Markov Decision Problems (MDPs)

Corollary 2.2.10 Given a discounted MDP (S,A, p, c, α), the optimal value
vector vα equals the unique optimal solution of the linear program:

max
∑
j∈S

βjvj

subject to vi − α
∑
j∈S

pij(a)vj ≤ ci(a) ∀i ∈ S ∀a ∈ A(i)

vj ∈ R ∀j ∈ S,

for any positive numbers βj > 0, j ∈ S.

Moreover, an optimal policy can be obtained from the optimal solution
of the dual linear program to (P). Having introduced a dual price of uia for
each constraint in the linear program (P), the associated dual linear program
reads:

min
∑
i∈S

∑
a∈A(i)

ci(a)uia (D)

subject to
∑
a∈A(j)

uja − α
∑
i∈S

∑
a∈A(i)

pij(a)uia = 1 ∀j ∈ S

uia ≥ 0 ∀i ∈ S ∀a ∈ A(i).

It is quite easy to prove the following properties of the linear program (D).

Theorem 2.2.11 ([FS02, chapter 2.3]) Let M = (S,A, p, c, α) be an α-
discounted MDP. Then, we have:

1. Any feasible solution u of (D) satisfies:∑
a∈A(i)

uia ≥ 1 for each i ∈ S.

2. The linear program (D) is bounded and feasible.

3. Let u∗ be an optimal solution of (D), then any deterministic policy π
for M with u∗iπ(i) > 0 for each i ∈ S is optimal and there exists at least
one such policy.

By the Theorems 2.2.9 and 2.2.11 the optimal value vector and an optimal
policy for a discounted MDP can be computed using any linear programming
solver (see Algorithm 3).

Moreover, it can also be shown that there is a one-to-one correspondence
between the set of feasible solutions of the dual linear program (D) and the

2.2 Results and Computational Methods for Discounted MDPs 23

Algorithm 3 Linear programming

1: Input: a discounted MDP M = (S,A, p, c, α)
2: Output: the optimal value vector vα and an optimal policy π for M
3: compute optimal solutions v∗ and u∗ of the linear programs (P) and (D)

using a linear programming solver
4: determine any deterministic policy π with the property u∗iπ(i) > 0 for each
i ∈ S

5: return v∗ and π

set of (randomized) stationary policies for the discounted MDP. This result
is due to de Ghellinck and Eppen [dGE67]. In particular, each feasible basic
solution of (D) corresponds to a deterministic policy and vice versa. This
second part can be shown as follows. By Theorem 2.2.11 we know that each
feasible solution u of (D) satisfies

∑
a∈A(i) uia ≥ 1 for each i ∈ S, i. e., for each

state at least one dual variable must be positive. Since each feasible basic
solution of (D) consists of at most |S| non-zero values, there cannot exist two
distinct actions a1, a2 ∈ A(i) such that uia1 , uia2 > 0 for some state i ∈ S.
Thus, for each i ∈ S, there exists exactly one action ai ∈ A(i) such that
uia = 0 for every a ∈ A(i)\{ai}. This shows that each feasible basic solution
corresponds to a deterministic policy.

The mapping now is as follows. On the one hand, given a feasible ba-
sic solution, the corresponding deterministic policy π is uniquely defined by
uiπ(i) > 0. On the other hand, for a given deterministic policy the associated
basic solution is defined analogously by the basis {(i, π(i)) | i ∈ S}. These
columns define indeed a basis of (D) for the following reason. The matrix of
the resulting system of linear equations is strictly column diagonally domi-
nant, i. e., the absolute value of each diagonal entry is greater than the sum
of the absolute values of the other entries in the associated column. It is well
known that such a matrix is nonsingular, e. g., see [Pla06]. The feasibility of
the basic solution follows from the fact that all entries of the inverse of this
matrix are non-negative (this general result is not shown here, see the proof
of Theorem 3.5.3 for a similar argumentation). We summarize the results
mentioned above in the following theorem.

Theorem 2.2.12 ([FS02, chapter 2.3]) Let M = (S,A, p, c, α) be an α-
discounted MDP. Then, there is a one-to-one correspondence between the
set of feasible solution of the dual linear program (D) and the set of (ran-
domized) stationary policies. Particularly, the set of feasible basic solutions
of (D) corresponds to the set of deterministic policies where the mapping is

24 Markov Decision Problems (MDPs)

as follows:

u feasible basic solution 7→ deterministic policy πu with uiπ(i) > 0.

π deterministic policy 7→ basic solution uπ with basis {(i, π(i)) | i ∈ S}.

Note that if there is only one optimal deterministic policy for a discounted
MDP, then there exists also a unique optimal solution to (D) and vice versa.
Moreover, it is clear from the observations above that there do not exist
degenerate basic solutions of the dual linear program.

Corollary 2.2.13 Given a discounted MDP (S,A, p, c, α), each feasible ba-
sic solution u of the associated dual linear program (D) has the following
property: for each state i ∈ S, there exists an action ai ∈ A(i) such that
uiai > 0 and uia = 0 for each a ∈ A(i) \ {ai}. That is, each feasible basic
solution is non-degenerate.

Another interesting point in this context is that the linear programming
method using the simplex algorithm is in some way equivalent to the policy
iteration method, which was first mentioned by de Ghellinck [dG60]. This can
be seen as follows. Let us assume that we solve the dual linear program (D) by
the simplex method and that we are given a feasible basic solution u for (D).
Let πu be the policy corresponding to solution u according to the mapping
defined in Theorem 2.2.12 and let v be the associated primal solution to u.
Note that we have vj = vαj (πu) for each j ∈ S since uia = 0 for each i ∈ S
and each a ∈ A(i) \ {πu(i)} implies by the complementary slackness theorem
that v satisfies the system of linear equations (2.2.1). Therefore, the reduced
cost c̄ia of uia equals:

c̄ia = ci(a)− vαi (πu) + α
∑
j∈S

pij(a)vαj (πu) for each i ∈ S, a ∈ A(i).

Thus, a variable uia has a negative reduced cost if and only if a is contained in
the set A(i, πu) defined by (2.2.5). This observation implies the equivalence
between both methods.

On the one hand, consider one iteration of the standard simplex method
where exactly one pivot step is executed. Let πu be the associated policy
before the pivot step. Making a non-basic variable ui′a′ with c̄i′a′ < 0 en-
tering the basis, corresponds to changing the policy πu into policy µ with
µ(i′) = a′ and µ(i) = πu(i) for every i ∈ S \ {i′}. This policy update is of
course also possible in the policy iteration algorithm as we have a′ ∈ A(i′, πu)
since the reduced cost of ui′a′ is negative. The observations above show that
this specific version of the policy iteration algorithm resembles some kind of
network simplex method.

2.2 Results and Computational Methods for Discounted MDPs 25

On the other hand, in the update step of the policy iteration algorithm
the action at several states may be changed. This corresponds to a linear
programming algorithm where more than one pivot step is done in each
iteration, which is called block-pivoting simplex algorithm, e. g., see [Pad99].

2.2.5 Directed Hypergraph Model Formulation

In this section, we give a graph theoretic interpretation of the problem to
determine an optimal deterministic policy for a discounted MDP (Prob-
lem 2.2.2). The task of computing an optimal policy is formulated as a
minimum cost flow problem in a directed hypergraph. Using a directed hyper-
graph model for a Markov decision process was firstly proposed by Nielsen
and Kristensen [NK06] in the case of a finite planning horizon.

Definition 2.2.14 (Directed hypergraph) A (directed) hypergraph is a
pair H = (V , E), where V = {v1, v2, . . . , vn} for some n ∈ N is the set of
nodes, and E = {e1, e2, . . . , em} for some m ∈ N is the set of hyperarcs. A
hyperarc e ∈ E is a pair e = (te, He), where te ∈ V is the tail of e and He ⊆ V
is the head set of e. 4
We mention that the directed hypergraphs considered here present a special
case of the general definition, where the tail of a hyperarc is also given by a
set of nodes, e. g., see [GLNP93].

It is quite obvious that a Markov decision process can be represented
by a weighted hypergraph. The following table shows the relations between
the components of a Markov decision process and the components of the
corresponding hypergraph:

Markov decision process hypergraph

state node
action hyperarc

expected stage cost hyperarc weight at tail node
transition probability hyperarc weight at head node

In the sequel we will often use this hypergraph representation of a Markov
decision process. For instance, consider the following simple Markov decision
process (S,A, p, c), where:

S = {i1, i2},
A(i1) = {a1, a2}, A(i2) = {a3},
ci1(a1) = 1, ci1(a2) = 2, ci2(a3) = 0,

pi1i1(a1) = 1, pi1i1(a2) = 1
2
, pi1i2(a2) = 1

2
, pi2i2(a3) = 1.

26 Markov Decision Problems (MDPs)

i1a1

1

1

a2
2

1
2

i2

1
2 a3

0

1

Figure 2.1: Directed hypergraph model of a simple Markov decision process. The states i1
and i2 are represented by nodes and the actions a1, a2, and a3 are represented by hyperarcs
also indicating expected stage costs and possible state transitions.

The corresponding weighted hypergraph is shown in Figure 2.1. Each hyper-
arc is depicted having a solid part leaving the tail node and a dashed part
entering the head set. The former shows the expected stage cost of the asso-
ciated action, while the latter represents the possible state transitions with
corresponding probabilities.

Next we give the graph theoretic formulation of Problem 2.2.2 via a hyper-
graph minimum cost flow problem, which is generally defined as follows.

Problem 2.2.15 (Hypergraph minimum cost flow problem) Given a
directed hypergraph H = (V , E), a positive flow multiplier µv(e) ∈ R+ as-
sociated with each node v ∈ He for each hyperarc e ∈ E , and a real de-
mand / supply b(v) ∈ R for each node v ∈ V , a flow in H is a function
f : E → R that satisfies the following flow conservation constraints :∑

e∈E :
v=te

f(e)−
∑
e∈E :
v∈He

µv(e)f(e) = b(v) for each v ∈ V . (2.2.6)

A flow is called feasible if f(e) ≥ 0 for each hyperarc e ∈ E . Let κ(e)
be a hyperarc cost associated with e for each e ∈ E . Then the hypergraph
minimum cost flow problem is to find a feasible flow in H that minimizes the
function

∑
e∈E κ(e)f(e). 4

It is straightforward to check that the linear program (D) describes the
following hypergraph minimum cost flow problem.

Theorem 2.2.16 Given a discounted MDP (S,A, p, c, α), the linear pro-
gram (D) describes the following instance of the hypergraph minimum cost
flow problem with hypergraph H = (V , E) and parameters µ, b, and κ:

• V = S,

• E = {(i, Ni(a)) ∈ S × 2V | i ∈ S, a ∈ A(i)}, where we define the
set Ni(a) = {j ∈ S | pij(a) > 0} for each i ∈ S and each a ∈ A(i),

2.2 Results and Computational Methods for Discounted MDPs 27

• µj(i, Ni(a)) = αpij(a) for each (i, Ni(a)) ∈ E and each j ∈ Ni(a),

• b(i) = 1 for each i ∈ V,

• κ(i, Ni(a)) = ci(a) for each hyperarc (i, Ni(a)) ∈ E.

Thus, an optimal policy can also be computed by solving the hypergraph
minimum cost flow problem constructed in Theorem 2.2.16. To the best of
our knowledge, no combinatorial algorithms for solving Problem 2.2.15 have
yet been proposed. In contrast to our situation, most publications in the
literature consider the case where the head of each hyperarc consists of a
single node only, whereas the tail may be an arbitrary set of nodes, e. g.,
see [CGS97, JMRW92].

2.2.6 Complexity

For an overview of the running times of the classical methods, i. e., value
iteration, policy iteration, and linear programming, we refer to Ye [Ye05]
(recall that value iteration determines only an ε-optimal policy). Moreover,
this paper proposed the first strongly polynomial-time algorithm for com-
puting an optimal policy in a discounted MDP (S,A, p, c, α). It requires at
most O(|S|1.5(log 1/(1−α) + log|S|)) iterations of the classical interior-point
method and at most O(|S|4(log 1/(1− α) + log|S|)) arithmetic operations.

What is most important in our context is the following. Independently
of the used method, the complexity for computing an optimal policy always
depends at least linearly on the number of states. However, by the first curse
of dimensionality the size of the state space S is typically exponential in the
common input parameters. Therefore, it is mostly infeasible in practice to
determine the optimal value vector and an optimal policy, respectively, for
all states in the discounted MDP.

This observation motivates the development of alternative approaches
that in a certain way concentrate on reduced state spaces. The new approx-
imation algorithm proposed in this thesis falls in this category, too.

2.2.7 Alternative Methods

In order to deal with the three curses of dimensionality arising in discounted
and other MDPs, several approaches have been studied in the literature.
A broad field of methods targeting large-scale MDPs (and generalizations)
where exact methods become infeasible is approximate dynamic program-
ming [Pow07, SB98, BT96], which evolved in the computer science com-
munity under the name reinforcement learning. Contrary to the classical

28 Markov Decision Problems (MDPs)

computational methods described above, an advantage of many techniques
in this area is that an explicit model of the environment, i. e., a precise speci-
fication of the MDP, is often not required. Instead, a simulator of the system
can be employed. Similar to simulation, there is virtually no limit on the
complexity of the state and transition structure.

The main goal is to determine an effective (non-optimal) policy for, e. g.,
a discounted MDP (S,A, p, c, α) with huge state space S. This policy is typ-
ically obtained via an approximation of the optimal value vector vα. Often
the following regression model is utilized. For approximating vα, one con-
siders a parameterized class of vectors ṽα : Rk → RS for some k � |S| and
aims to compute a parameter vector r ∈ Rk to fit vα, i. e., ṽα(r) ≈ vα. In
doing so, the dimension is reduced from |S| down to k. Having determined
the vector r, the greedy policy π w. r. t. ṽα(r) is defined by:

π(i) ∈ argmin
a∈A(i)

{
ci(a) + α

∑
j∈S

pij(a)ṽαj (r)

}
for each i ∈ S.

The hope is that policy π performs well. In some special cases, bounds on
the quality of π can be established [dFV03].

Most approximate dynamic programming methods are based on two ele-
ments. The first one is an approximation architecture that aims to be simple
and to represent the optimal value vector well at the same time. For the
described regression model the architecture is given by the definition of the
function ṽα. A typical example is to fit the optimal value vector by a linear
combination

ṽα(r) =
k∑
i=1

riφi

of k so-called base vectors1 φ1, . . . , φk ∈ RS. We refer to the book of Bertsekas
and Tsitsiklis [BT96, chapter 3] for an overview of common architectures.

The second element is a training algorithm also referred to as “opti-
mizing simulator” to obtain a good or even optimal approximation within
the underlying architecture. This algorithm is mostly similar to a classical
simulation extended by some regression, adaption, or other learning mecha-
nism. For instance, in the described regression model the training algorithm
is used to update the parameter vector r. Most training algorithms are
based on massive sampling of possible realizations and estimating the ex-
pectation (Monte Carlo simulation). Moreover, adapted versions of classical

1Contrary to our notation, value functions instead of value vectors are usually consid-
ered in approximate dynamic programming. Consequently, base functions are used in the
mentioned architecture.

2.2 Results and Computational Methods for Discounted MDPs 29

dynamic programming methods [SS85] and techniques including temporal-
difference learning and Q-learning are employed. For instance, de Farias and
Van Roy [dFV03, dFV04] employ a modification of the standard linear pro-
gramming method to compute ṽα(r) using the approximation architecture
introduced above.

Additionally to the sketched approach, state aggregation [Van06, BC89]
and decomposition techniques [MHK+98] are often very useful. We refer to
the books [Pow07, SB98, BT96] for details concerning approximate dynamic
programming.

Note that the described approximate dynamic programming approach
suffers from two types of errors even if a best possible approximation for vα

offered by the architecture can be computed. On the one hand, an approxi-
mation like ṽα(r) may often be far away from the optimal value vector vα due
to the architecture applied. For instance, in the case of the described regres-
sion model, one generally cannot hope that vα is contained in the span of the
considered base vectors. We believe that for MDPs arising from combinato-
rial online optimization problems this error should often be significant as the
structure of vα will typically be quite unclear. On the other hand, taking the
greedy policy w. r. t. the approximation causes another error. De Farias and
Van Roy [dFV03] and Singh and Yee [SY94] show that a close approximation
of vα implies that the value vector of the associated greedy policy is also in
some sense close to vα, i. e., the policy performs close to an optimal one.

The main disadvantage we see in approximate dynamic programming is
that very few methods provide performance guarantees and those that do,
e. g., [dFV03], only give worst-case and thus typically weak bounds. There-
fore, these techniques seem to be inappropriate for analyzing the quality of
online algorithms.

Other methods slightly related to approximate dynamic programming
that are more interesting in our context are the following. The approach de-
scribed in the literature that yields results closest to ours is a sparse sampling
algorithm proposed by Kearns et al. [KMN99]. The authors also give theoret-
ical bounds on the necessary size of a subset of the state space that is needed
by their approach in order to obtain an ε-approximation, see Remark 3.2.7
on page 57. However, for the applications we aim at their bounds are weaker
than ours. Furthermore, and maybe more importantly, their method does
not seem to allow a modification that in practice visits substantially fewer
states than guaranteed by the theoretical analysis, yet maintaining the ap-
proximation guarantee. In our view, this is a main advantage of the method
that we propose (see the results in Section 4.2.1).

Other approaches to locally explore the state space have been proposed by
Dean et al. [DKKN93] and Barto et al. [BBS95]. The former employs policy

30 Markov Decision Problems (MDPs)

iteration with a concept of locality similar to ours. This way, their method
comes closest to our approach concerning the algorithm used. However, the
method does not provide any approximation guarantees.

2.3 Further Objective Criteria

In this section, we shortly outline further objective criteria featuring an in-
finite planning horizon that are different from the total expected discounted
cost. Three important ones are the following:

1. the total (undiscounted) expected cost,

2. the average expected cost per stage, and

3. the Blackwell optimality.

In the following, let (S,A, p, c) be a Markov decision process. We will
again use the notation of Section 2.1.2: PiΠ[Xt = j, Yt = a] denotes the
probability that at stage t the state is j and the action is a, given that
a (randomized) policy Π is used and the initial state is i. Moreover, the
expectation operator w. r. t. this probability measure is denoted by EiΠ.

Total Expected Cost

The total expected cost of a policy Π for an initial state i ∈ S is denoted by
v1
i (Π) and given by Equation (2.1.1) for α = 1, i. e.,

v1
i (Π) := lim

T→∞

T∑
t=0

EiΠ[cXt(Yt)]. (2.3.1)

That is, the value v1
i (Π) may be seen as the total expected 1-discounted

cost. However, it is clear that without further assumptions the limit in
Equation (2.3.1) may be infinite or the upper limit may be different from
the lower limit. The conditions to guarantee that the limit exists at least
for one policy are quite restrictive. For instance, with one exception the
total expected costs are not well-defined for the Markov decision processes
considered in Chapter 4. For details on the required assumptions to apply
the total expect cost criterion, we recommend the book of Puterman [Put05,
chapter 7].

2.3 Further Objective Criteria 31

Average Expected Cost

In the average expected cost criterion, the limiting behavior of the term
1/T

∑T−1
t=0 EiΠ[cXt(Yt)] for T → ∞ is considered for an initial state i ∈ S

and a policy Π. In general, however, limT→∞ 1/T
∑T−1

t=0 EiΠ[cXt(Yt)] may not
exist and interchanging limit and expectation may not be allowed. Therefore,
four different evaluation measures can be considered:

• The lower limit of the average expected cost per stage:

φi(Π) = lim inf
T→∞

1

T

T−1∑
t=0

EiΠ[cXt(Yt)].

• The upper limit of the average expected cost per stage:

Φi(Π) = lim sup
T→∞

1

T

T−1∑
t=0

EiΠ[cXt(Yt)].

• The expectation of the lower limit of the average cost per stage:

ψi(Π) = EiΠ

[
lim inf
T→∞

1

T

T−1∑
t=0

cXt(Yt)

]
.

• The expectation of the upper limit of the average cost per stage:

Ψi(Π) = EiΠ

[
lim sup
T→∞

1

T

T−1∑
t=0

cXt(Yt)

]
.

For each of these criteria, the associated value vector and the concept
of an optimal policy are defined in the same way as for the total expected
discounted cost. It can be shown that for each of the four criteria, there
exists an optimal deterministic policy. Interestingly, Bierth [Bie87] proved
that all criteria are equivalent for stationary policies:

φ(π) = Φ(π) = ψ(π) = Ψ(π) for each stationary policy π.

The major disadvantage of the average cost criteria is that all costs in-
curred in a finite number of stages are completely ignored. For instance, the
two sequences of stage costs 0, 0, 0, . . . and 100, 0, 0, . . . both give an average
expected cost of 0 and are thus measured the same although the first one
should be preferred. Thus, high stage costs for a finite number of steps do
not disqualify a policy of being optimal. Consequently, more sensitive criteria
should be considered. One example is given in the next paragraph.

32 Markov Decision Problems (MDPs)

Blackwell Optimality

A policy Π is called Blackwell optimal if

vα(Π) = vα for each α ∈ [α0, 1) for some 0 < α0 < 1.

That is, Π is Blackwell optimal if it is optimal w. r. t. the total expected
discounted cost criterion for each α sufficiently close to 1. Blackwell [Bla62]
proved the existence of a Blackwell optimal policy. Moreover, it can be
shown that each Blackwell optimal policy is also optimal w. r. t. the average
expected cost criteria. For more details concerning the different objective
criteria related to the average expected cost, we refer to the books [Put05,
chapter 8] and [FS02, chapter 2].

Practicability of Different Objective Criteria

In this thesis we concentrate on the total expected discounted cost criterion
only. This is due to the following reasons.

Firstly, most of the alternative objective criteria have practical disadvan-
tages. The total expected cost criterion is often simply not well-defined and
thus cannot be used. Furthermore, the average expected cost criterion is
unselective in the sense that there are usually a lot of optimal policies, which
may differ substantially from the practical point of view. For instance, in the
Markov decision process model we consider for the online bin coloring prob-
lem, see Section 4.1.3, the totally stupid online algorithm / policy OneBin is
optimal w. r. t. the average expected cost. This drawback can be overcome
by using more sensitive criteria like the concept of Blackwell optimality. Of
course, the total expected discounted cost criterion may not completely sat-
isfy the goals users have, either. However, this objective criterion offers a
significant degree of flexibility due to the choice of the discount factor. For
instance, by using a discount factor very close to 1, one approaches the Black-
well optimality criterion. In most practical cases one will usually be interested
in a large discount factor, which accounts for decisions in later stages of the
process, too. For most computational methods, however, the required run-
ning time increases with increasing discount factor. This in especially true
for the approximation algorithm proposed in this thesis.

Secondly, the computational methods to determine an optimal policy
w. r. t. the total expected discounted cost criterion are usually simpler and
more efficient than those for alternative objective criteria. In particular, it
is much harder to compute a Blackwell optimal policy. We do not go into
details here.

2.3 Further Objective Criteria 33

Finally, we already mentioned that the approximation algorithm proposed
in this thesis is essentially based on exploring smaller local parts of the to-
tal state space. For all presented objective criteria different from the total
expected discounted cost, considering small subsets of states is in general
completely useless since possible costs in the far future are just as relevant
as those incurred very soon. Consequently, our approach is inappropriate for
analyzing one of these objective criteria.

Chapter 3

LP-Based Local Approximation for

Discounted Markov Decision Problems

In this chapter, we propose a new method for approximating the optimal
value vector of a discounted MDP at single states. As we will only focus on
discounted MDPs in the sequel, the term discounted will be omitted from
now on, speaking simply of MDPs. Moreover, since we deal exclusively with
deterministic policies in this thesis, we will only speak of policies in the
following, always meaning deterministic ones. All results presented in this
chapter are new.

The outline of the chapter is as follows. The construction of lower and
upper bounds on one component of the optimal value vector is described in
Section 3.1. In Section 3.2 we present our approximation theorem showing
that an ε-approximation for the component can be obtained by taking into
account only a local part of the state space whose size is independent of the
total number of states in the MDP. Section 3.3 introduces the foundation of
our approximation algorithm based on column generation, which is the main
contribution of this thesis. In Section 3.4 we describe how the algorithm can
be utilized to obtain also approximations for a concrete policy or a single
action. Finally, Section 3.5 is devoted to several theoretical and practical is-
sues related to the column generation algorithm. In particular, we investigate
the structure of the encountered dual linear programs, derive a combinato-
rial formula for the reduced profits, and propose various pricing strategies
and approximation heuristics. Moreover, we develop an equivalent variant
of the approximation algorithm that refrains from using linear programming
techniques, but employs the policy iteration method instead.

3.1 Approach

Our approximation approach for MDPs is based on the classical linear pro-
gramming formulation as described in detail in Section 2.2.4. It has been
shown that the optimal value vector vα of an MDP (S,A, p, c, α) can be

35

36 LP-Based Local Approximation for Discounted MDPs

i1 a1
2

1
2

i2

1
2

a2

3

a3

2

i3

1
1

a4

0

1

a5
1

i4
1

a6

3

1

Figure 3.1: A Markov decision process represented by the directed hypergraph model as
introduced in Section 2.2.5.

computed as the optimal solution of the linear program:

max
∑
j∈S

vj (PΣ)

subject to vi − α
∑
j∈S

pij(a)vj ≤ ci(a) ∀i ∈ S ∀a ∈ A(i)

vj ∈ R ∀j ∈ S.

To achieve a consistent notation in this chapter, this linear program and its
dual will be denoted by (PΣ) and (DΣ) from now on.

Example 3.1.1 As an example, consider the MDP given by the Markov
decision process shown in Figure 3.1 and some discount factor α ∈ [0, 1). The
corresponding linear program to compute the optimal value vector reads:

max vi1 + vi2 + vi3 + vi4
subject to (1− α

2
)vi1 − α

2
vi2 ≤ 2 (i1, a1)

vi1 − αvi3 ≤ 3 (i1, a2)

vi2 − αvi3 ≤ 2 (i2, a3)

(1− α)vi3 ≤ 0 (i3, a4)

vi3 − αvi4 ≤ 1 (i3, a5)

(1− α)vi4 ≤ 3 (i4, a6)

vi1 , vi2 , vi3 , vi4 ∈ R.

3.1 Approach 37

The unique optimal solution of this linear program is given by:

vi1 =

{
3, if α > 2/5,
2(2+α)

2−α , if α ≤ 2/5,

vi2 = 2,

vi3 = 0,

vi4 = 3
1−α . 4

In the sequel we will deal with many linear programs similar to (PΣ). To
emphasize their specific distinctions, we will use a matrix-vector notation.
Let (S,A, p, c, α) be an MDP. Contrary to the usual Cartesian product, we
define S × A for any subset of states S ⊆ S as:

S × A := {(i, a) | i ∈ S, a ∈ A(i)}.

That is, S × A equals the set of all pairs of states in S and possible actions.
Next we define the matrix Q ∈ R(S×A)×S for each (i, a) ∈ S × A and each
state j ∈ S by:

Q(i,a),j =

{
1− αpij(a), if i = j,

−αpij(a), if i 6= j.

Moreover, we make sloppy use of the symbol c and also denote by c ∈ RS×A

the vector of the expected stage costs, i. e., the components of c are given by:

cia = ci(a)

for each (i, a) ∈ S× A. Now the linear program (PΣ) can be written as:

max 1
tv (PΣ)

subject to Qv ≤ c

v ∈ RS,

where 1t = (1, 1, . . . , 1) denotes the all-ones vector.
The approximation algorithm to be proposed is motivated by the fact

that for the huge state spaces arising in MDPs modeling practical problems,
it is impossible to solve the associated linear program (PΣ). Our idea is
to evaluate the value vector at one particular state i0 ∈ S alone. Since we
are only interested in vαi0 , we can restrict the objective function of (PΣ) by
maximizing the value vi0 only:

max vi0 (Pi0)

subject to Qv ≤ c

v ∈ RS

38 LP-Based Local Approximation for Discounted MDPs

In contrast to (PΣ), there does not exist a unique solution for the linear
program (Pi0) in general for the following reasons. On the one hand, there
may be states in S that cannot be reached from i0. On the other hand, there
are typically some actions that are not optimal. Such a state j ∈ S, that
is either not reached at all or only reached via non-optimal actions, is not
required to have a maximized value vj in order to maximize vi0 , i. e., the
objective function of (Pi0). The value vj may even be negative in an optimal
solution.

Example 3.1.2 As example, consider again the MDP given by the Markov
decision process in Figure 3.1 and some α ∈ [0, 1). For the choice i0 = i2, the
set of optimal solutions for the associated linear program (Pi0) reads:{

(vi1 , vi2 , vi3 , vi4) ∈ R4 | −∞ ≤ vi1 ≤

{
3, if α > 2/5,
2(2+α)

2−α , if α ≤ 2/5,

vi2 = 2,

vi3 = 0,

− 1
α
≤ vi4 ≤ 3

1−α

}
.

In this example, the optimal solution values for vi1 and vi4 are not unique
since state i1 cannot be reached from i2, while state i4 can only be reached
from i2 via i3 using action a5 which is not optimal. 4

Moreover, notice that for the MDP considered in the examples above, the
optimal solution of the linear program (PΣ) is optimal and feasible for (Pi0),
too. We show that this fact is true in general by proving the following lemma
which covers results about generic linear programs of the type (PΣ) and (Pi0).
These issues are handled in detail as they will be applied to different cases
later. To see the analogy between the linear programs above and those con-
sidered in Lemma 3.1.3, the values λija and dia are to be interpreted as
λija = pij(a) and dia = ci(a).

Lemma 3.1.3 Let n ∈ N and let ai ∈ N and A(i) := {1, . . . , ai} for each
integer i ∈ [n] := {1, . . . , n}. Moreover, for all i, j ∈ [n] and each a ∈ A(i),
let λija ≥ 0 with the property:

n∑
j=1

λija ≤ 1 for each i ∈ [n] and a ∈ A(i).

3.1 Approach 39

Let m = |{(i, a) | i ∈ [n], a ∈ A(i)}| be the number of possible pairs (i, a) and
let α ∈ [0, 1). Define the matrix B ∈ Rm×n by:

B(i,a),j =

{
1− αλija, if i = j,

−αλija, if i 6= j,

For a given vector d ∈ Rm
≥0 with components dia for i ∈ [n], a ∈ A(i) and any

integer i0 ∈ [n], consider the following linear programs:

max 1
tx (LPΣ)

subject to Bx ≤ d

x ∈ Rn

and

max xi0 (LPi0)

subject to Bx ≤ d

x ∈ Rn

that only differ in the objective function. Then, the following hold true:

1. Both linear programs are feasible and bounded.

2. The optimal solution of (LPΣ) is unique and also optimal for (LPi0).

3. If ai = 1 for each i ∈ [n], the optimal solution of (LPΣ) can be computed
as the unique solution of the system of linear equations:

Bx = d. (3.1.1)

Proof. Both linear programs are feasible since the right hand side of the linear
programs is non-negative, i. e., dia ≥ 0 for each i ∈ [n] and each a ∈ A(i).
Hence, the zero vector is always a feasible solution. To prove that they are
bounded, let x ∈ Rn be any feasible solution of the linear programs and let
R := max{xj | j ∈ [n]} be the maximum component of x. Moreover, denote
the maximum of all values dia by dmax := max{dia | i ∈ [n], a ∈ A(i)}. For
each i ∈ [n] and each a ∈ A(i), the constraints imply:

xi ≤ dia + α

n∑
j=1

λijaxj ≤ dmax + α

n∑
j=1

λijaR ≤ dmax + αR,

40 LP-Based Local Approximation for Discounted MDPs

since λija ≥ 0 and
∑n

j=1 λija ≤ 1 for all i, j ∈ [n] and each a ∈ A(i).
Therefore, we obtain:

R ≤ dmax + αR =⇒ R ≤ dmax

1− α
,

i. e., each component of x is bounded by dmax/(1−α). Since x is an arbitrary
feasible solution, this implies that both linear programs are bounded.

For the rest of the proof we need following claim.

Claim Given two feasible solutions x′, x′′ ∈ Rn of (LPΣ) or (LPi0), respec-
tively, their componentwise maximum x ∈ Rn, i. e., xj = max{x′j, x′′j} for
each j ∈ [n], is a feasible solution for both linear programs as well.

The claim can be shown as follows. For each i ∈ [n] and each a ∈ A(i), we
have:

xi = max{x′i, x′′i }

≤ max

{
dia + α

n∑
j=1

λijax
′
j, dia + α

n∑
j=1

λijax
′′
j

}

= dia + max

{
α

n∑
j=1

λijax
′
j︸ ︷︷ ︸

≤α
∑n
j=1 λijaxj

, α
n∑
j=1

λijax
′′
j︸ ︷︷ ︸

≤α
∑n
j=1 λijaxj

}

≤ dia + α
n∑
j=1

λijaxj,

which proves the claim. Now it is easy to show that there exists a unique
optimal solution for the linear program (LPΣ). Assume that there exist two
different optimal solutions x∗, y∗ ∈ Rn for (LPΣ). Then, their componentwise
maximum is a better solution that is also feasible due to the claim, which
yields a contradiction.

Next assume that the optimal solution x∗ for (LPΣ) is not optimal for
the linear program (LPi0), and let y∗ ∈ Rn be an optimal solution for (LPi0).
Thus, we have y∗i0 > x∗i0 . Then again, the componentwise maximum of x∗

and y∗ has a better objective value than x∗ w. r. t. (LPΣ) and is feasible, too.
This contradiction shows that the optimal solution for (LPΣ) is also optimal
for (LPi0).

Finally, consider the case ai = 1 for each i ∈ [n]. On the one hand,
the constraint matrix B is strictly row diagonally dominant and therefore
nonsingular, e. g., see [Pla06]. Thus, the system of linear equations (3.1.1) has

3.1 Approach 41

exactly one solution. On the other hand, note that the optimal solution for
the linear program (LPΣ) satisfies all constraints with equality since otherwise
the solution can be improved. Hence, both solutions are identical. �

Clearly, Lemma 3.1.3 implies that the above observation concerning the
linear programs (PΣ) and (Pi0) is true in general.

Corollary 3.1.4 Given an MDP (S,A, p, c, α) and a state i0 ∈ S, the op-
timal solution for (PΣ) is also an optimal solution for (Pi0). That is, the
optimal value of (Pi0) equals vαi0.

For a study concerning the structure of the feasible basic solutions of the
dual linear program to (Pi0), see Section 3.5.2. In the following we describe
our approach to compute lower bounds on the value vαi0 .

3.1.1 Lower Bounds

Similar to the original linear programming formulation, solving the linear
program:

max vi0 (Pi0)

subject to Qv ≤ c

v ∈ RS

is still infeasible considering the huge state spaces for practical applications.
In order to obtain a linear program that is tractable independently of the size
of the state space S, we reduce the set of variables and constraints in the linear
program (Pi0) by taking into account only a restricted state space. Given a
subset of states S ⊆ S with i0 ∈ S, consider the submatrix QS ∈ R(S×A)×S

of the constraint matrix Q consisting of all rows (i, a) with i ∈ S and all
columns j with j ∈ S. Moreover, let cS ∈ RS×A be the subvector of vector c
consisting of all the components with indices (i, a) satisfying i ∈ S. Now let
us look at the following linear program:

max vi0 (Li0S)

subject to QSv ≤ cS

v ∈ RS.

Sometimes we will also be interested in an optimal solution of this reduced
linear program where the objective function is

∑
j∈S vj:

max 1
tv (LΣ

S)

subject to QSv ≤ cS

v ∈ RS,

42 LP-Based Local Approximation for Discounted MDPs

where again 1
t = (1, 1, . . . , 1) denotes the all-ones vector. Similar as before,

Lemma 3.1.3 implies the following results.

Corollary 3.1.5 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, then both linear programs (Li0S) and (LΣ

S) are
feasible and bounded. Moreover, the optimal solution of (LΣ

S) is unique and
also an optimal solution to (Li0S).

The more important observation, however, is as follows. Any feasible
solution v ∈ RS of the linear program (LΣ

S) and (Li0S) can be extended to
a feasible solution vext ∈ RS of the linear program (PΣ) and (Pi0) with the
same objective value, respectively, where

vext
j =

{
vj, if j ∈ S,

0, if j ∈ S \ S.
(3.1.2)

Recall that by Lemma 2.2.8 the optimal value vector vα is the componentwise
largest vector satisfying the constraints of (PΣ) and (Pi0). Thus, each feasible
solution of the linear programs (LΣ

S) and (Li0S) provides a lower bound on the
optimal value vector vα at all states in S.

Lemma 3.1.6 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, let v be any feasible solution of the linear
programs (LΣ

S) and (Li0S), respectively. Then, for each state i ∈ S, the com-
ponent vαi of the optimal value vector is a least vi, i. e.,

vi ≤ vαi for each i ∈ S.

Particularly, the optimal value of the linear program (Li0S) is a lower bound
on vαi0.

Although lower bounds on the optimal value vector are obtained for all states
in the subset of states S, the approximation method proposed in this thesis
mainly aims at computing bounds on the component vαi0 . The lower bounds

on vαi0 are obtained as the optimal values of the linear programs (Li0S) for
some S ⊆ S with i0 ∈ S. Obviously, by Corollary 3.1.5 these values can be
obtained from the optimal solution of (LΣ

S), too.
In the following we show that each subset S ⊆ S defines again an MDP.

The idea is to add one additional state that models all transitions to states
that are not included in S.

Definition 3.1.7 (Lower-bound induced MDP) Let M = (S,A, p, c, α)
be an MDP and let S ⊆ S be any subset of states. Then, the (lower-bound)
S-induced MDP M(S) = (S′,A′, p′, c′, α) is defined as follows:

3.1 Approach 43

• If for all states i ∈ S and all actions a ∈ A(i) we have
∑

j∈S pij(a) = 1,
then the state space of M(S) equals S′ = S. The mappings A′, p′,
and c′ are the corresponding restrictions of A, p, and c to the possibly
reduced state space S′.

• Otherwise, the state space of the induced MDP equals S′ = S ∪ {iend}
with the following properties of state iend. For each state i ∈ S and
each action a ∈ A(i) with

∑
j∈S pij(a) < 1, we set:

p′iiend
(a) :=

∑
j∈S\S

pij(a) = 1−
∑
j∈S

pij(a)

and

c′i(a, iend) :=
1

p′iiend
(a)

∑
j∈S\S

pij(a)ci(a, j).

That is, c′i(a, iend) equals the expected stage cost for using action a at
state i, given that the successor state is not contained in S.

Furthermore, there is only one feasible action at the state iend, i. e., we
have A′(iend) = {aend}. Using action aend the system always stays in
state iend, i. e., p′iendiend

(aend) = 1, with a stage cost of c′iend
(a, iend) = 0.

Except for the special cases described above, A′, p′, and c′ are again
the restrictions of A, p, and c w. r. t. S′. 4

In the literature a state with the properties of iend is often called absorbing
terminal state. A picture illustrating the Markov decision process of the
induced MDP M(S) for some proper subset of states S ⊂ S is given in
Figure 3.2. Induced MDPs have the following properties.

Theorem 3.1.8 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a
subset of states S ⊆ S with i0 ∈ S, we have for the lower-bound S-induced
MDP M(S) = (S′,A′, p′, c′, α):

1. M(S) = M if and only if S = S.

2. The expected stage cost at state i ∈ S for using action a ∈ A′(i) = A(i)
is the same for both MDPs M and M(S), i. e., c′i(a) = ci(a).

3. The optimal value vector of M(S) is given by the unique optimal solu-
tion of the linear program (LΣ

S) and vαiend
= 0.

Proof. The first property is trivial. To prove the second one, let i ∈ S
and a ∈ A(i). If all possible successor states reached by using action a at

44 LP-Based Local Approximation for Discounted MDPs

S

j1

i

j2

a
ci(a)

pij1(a)

pij2(a)

iend∑
j∈S\S pij(a)

aend

0

1

Figure 3.2: Illustration of the Markov decision process of the induced MDP M(S) for
some S ⊂ S. Transitions within the reduced state space S are as in the original MDP M ,
e. g., (i, a, j1) and (i, a, j2); transitions from S to S \ S in M are modeled via aggregated
transitions to the absorbing terminal state iend. The expected stage costs do not change,
cf. Theorem 3.1.8.

state i are contained in S, i. e.,
∑

j∈S pij(a) = 1, the statement is clear.
Assume

∑
j∈S pij(a) < 1. Since c′i(a, j) = ci(a, j) for each j ∈ S, we obtain

by the definition of c′i(a, iend):

ci(a) =
∑
j∈S

pij(a)ci(a, j)

=
∑
j∈S

pij(a)ci(a, j) +
∑
j∈S\S

pij(a)ci(a, j)

=
∑
j∈S

pij(a)c′i(a, j) + p′iiend
(a)c′i(a, iend)

= c′i(a).

Now the third property follows from the general linear programming result
(see Theorem 2.2.9) and the observation that the optimal value vector of the
MDP M(S) is always zero at state iend. �

Induced MDPs will play an important role in various parts of this chapter.

3.1.2 Upper Bounds

Similarly to the reduced linear program (Li0S) providing a lower bound for
the value vαi0 of an MDP, we propose the following approach to establish a

3.1 Approach 45

linear program to obtain an upper bound on vαi0 . Since there is only a finite
number of states and actions, the maximum expected stage cost is attained,
let cmax := maxi∈S,a∈A(i) ci(a). This implies an upper bound on the value
vector of any policy: from (2.1.1) we easily get vαi (π) ≤ cmax/(1 − α), for
each policy π and each state i ∈ S.

Now given a particular state i0 ∈ S and a subset of states S ⊆ S such that
i0 ∈ S, we compute an upper bound on the value vαi0 as follows. Instead of just
dropping the optimal value vector outside S, i. e., setting it to zero, we can set
the corresponding variables to the general upper bound vαmax := cmax/(1−α).
Therefore, the reduced linear program providing an upper bound reads:

max vi0 (Ui0
S)

subject to QSv ≤ cS + rS

v ∈ RS,

where the vector rS ∈ RS×A is defined by:

rSia = α · vαmax

∑
j∈S\S

pij(a), (3.1.3)

for each (i, a) ∈ S × A. Obviously, by Lemma 3.1.3 this linear problem is
feasible and bounded.

Similar to the reduced linear program (Li0S) for computing the lower
bound, also (Ui0

S) provides the optimal value vector at state i0 for some
adapted MDP. Here, the MDP is a slight modification of the lower-bound
induced MDP introduced in Definition 3.1.7: the stage cost for the only
transition at state iend now equals the maximum expected stage cost cmax

instead of the minimum stage cost 0.

Definition 3.1.9 (Upper-bound induced MDP) LetM = (S,A, p, c, α)
be an MDP and let S ⊆ S be any subset of states. Then, the upper-bound
S-induced MDP M ′(S) is defined as the modified lower-bound S-induced
MDP, where the stage cost at state iend for using action aend equals:

c′iend
(aend, iend) = cmax := max

i∈S,a∈A(i)
ci(a).

4

Notice that the optimal value vector vα restricted to the state subset S
gives a feasible solution for the linear program (Ui0

S). Therefore, the optimal
value of (Ui0

S) is indeed an upper bound on vαi0 .

Lemma 3.1.10 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, the optimal value of the linear program (Ui0

S) is
an upper bound on vαi0.

46 LP-Based Local Approximation for Discounted MDPs

Remark 3.1.11 Similar to the lower bound case, one can also show the
following. Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a subset of
states S ⊆ S with i0 ∈ S, let v be the unique optimal solution of the linear
program (Ui0

S) with objective function max
∑

j∈S vj. Then, we have for the
optimal value vector vαM ′(S) of the upper-bound S-induced MDP M ′(S):

vαM ′(S),i =

{
vi, if i ∈ S,

vαmax, if i = iend.

Particularly, the component vαM ′(S),i0
equals the optimal value of (Ui0

S).
Furthermore, the solution v provides an upper bound on each compo-

nent vαM,i of the optimal value vector of the original MDP M for i ∈ S, i. e.,
we have vαM,i ≤ vi. 4

The next results shows that by solving the linear program (Ui0
S) one can

also construct a policy for the original MDP whose value vector at state i0
is bounded from above by the optimal value of (Ui0

S). The policy is obtained
by extending an optimal policy for the upper-bound S-induced MDP M ′(S)
arbitrarily w. r. t. the states in S \ S.

Theorem 3.1.12 Consider an MDP M = (S,A, p, c, α), a state i0 ∈ S, a
subset of states S ⊆ S with i0 ∈ S, and an optimal solution v for the linear
program (Ui0

S). For each state i ∈ S, let ai ∈ A(i) be any action that satisfies
the corresponding inequality in (Ui0

S) with equality. Then, any policy π for M
with π(i) = ai for each i ∈ S satisfies:

vi0 ≤ vαi0 ≤ vαi0(π) ≤ vi0 ,

where vi0 is the optimal value of (Li0S).

Proof. The first inequality holds true due to Lemma 3.1.6 and the second
one is clear anyway.

Since the value vector of policy π equals the solution of the system of
linear equations (2.2.1) by Theorem 2.2.1, it follows from Lemma 3.1.3 that
the value vαi0(π) can also be computed as the optimal value of the following
linear program:

max vi0

subject to vi − α
∑
j∈S

pij(π(i))vj ≤ ci(π(i)) ∀i ∈ S

vj ∈ R ∀j ∈ S.

3.1 Approach 47

Next this linear program is modified as follows. Firstly, constraints vi ≤ vαmax

for each i ∈ S \ S are added to the linear program. Since these constraints
are redundant, this does not change the optimal value. Secondly, all original
constraints for states in S \ S are removed. Thus, we obtain the following
relaxation of the linear program above:

max vi0

subject to vi − α
∑
j∈S

pij(π(i))vj ≤ ci(π(i)) ∀i ∈ S

vi ≤ vαmax ∀i ∈ S
vj ∈ R ∀j ∈ S.

Note that this relaxation is equivalent to the linear program (Ui0
S) restricted

to the constraints defined by π, which itself has by definition of π the same
objective value as (Ui0

S), i. e., vi0 . Since we constructed a relaxation of the
linear program for computing vαi0(π), we obtain vαi0(π) ≤ vi0 . �

Furthermore, there is a second way to obtain an upper bound on the com-
ponent vαi0 of the optimal value vector by using directly the unique optimal
solution of the linear program (LΣ

S) for computing the lower bound. The
construction of this upper bound on vαi0 is as follows. For a given subset of
states S ⊆ S and a particular state i0 ∈ S, let π be an optimal policy for the
S-induced MDP M(S) as obtained from the optimal solution of the linear
program (LΣ

S). Let QS,π ∈ RS×S be the submatrix of QS consisting of all the
rows (i, a) with a = π(i), and let cS,π, rS,π ∈ RS be corresponding subvectors
of cS and rS, respectively, i. e.,

cS,πiπ(i) = ci(π(i)) and rS,πiπ(i) = α · vαmax

∑
j∈S\S

pij(π(i)),

for each state i ∈ S. Consider the following system of linear equations:

QS,πv = cS,π + rS,π (3.1.4)

Note that the matrix QS,π is strictly row diagonally dominant and therefore
nonsingular. Thus, the system (3.1.4) has a unique solution vπ ∈ RS. The
next result shows that the value vπi0 is an upper bound on vαi0 , too.

Theorem 3.1.13 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, a subset
of states S ⊆ S with i0 ∈ S, and an optimal policy π for the S-induced
MDP M(S), let vπ be the unique solution of system (3.1.4), and let vi0 be
the optimal value of the linear program (Ui0

S). Then, we have:

vαi0 ≤ vi0 ≤ vπi0 .

48 LP-Based Local Approximation for Discounted MDPs

That is, vπi0 is an upper bound on the optimal value vector at state i0, but a
weaker one than vi0. Moreover, the value vπi0 equals the optimal value of the
following linear program:

max vi0 (Ui0
S,π)

subject to QS,πv ≤ cS,π + rS,π

v ∈ RS.

Proof. It follows directly from Lemma 3.1.3, part 3, that the value vπi0 equals

the optimal value of the linear program (Ui0
S,π). Since (Ui0

S,π) is a relaxation

of the linear program (Ui0
S), we have vi0 ≤ vπi0 . �

Thus, by computing an optimal solution of the linear program (LΣ
S), which

also yields an optimal policy π for the S-induced MDP M(S), and by solving
the corresponding system of linear equations (3.1.4) one can provide lower
and upper bounds on vαi0 .

Remark 3.1.14 The unique solution vπ ∈ RS of system (3.1.4) gives the
value vector of a policy π for the upper-bound S-induced MDP M ′(S):

vαM ′(S),i(π) =

{
vπi , if i ∈ S,

vαmax, if i = iend.

Recall that (3.1.4) is computed for policies that are optimal for M(S). If
such a policy π is optimal for M ′(S) as well, the two upper bounds on vαM,i0

compared in Theorem 3.1.13 coincide, i. e., we have vπi0 = vi0 .
Under the assumptions of Theorem 3.1.13 one can show, similar to The-

orem 3.1.12, that each policy π′ for the original MDP M with π′(i) = π(i)
for each state i ∈ S satisfies vαM,i0

(π′) ≤ vπi0 . 4

Obviously, several optimal policies may exist for an MDP in general.
The following example shows that the upper bound vπi0 obtained by solving
system (3.1.4) really depends on the chosen policy π. That is, different
optimal policies may lead to different upper bounds.

Example 3.1.15 Let S = {i0, i1} and consider the deterministic S-induced
MDP M(S) given by the Markov decision process shown in Figure 3.3 for
n = 1. We assume that the maximum expected stage cost w. r. t. all states
in S is positive, i. e., cmax = maxi∈S,a∈A(i) ci(a) > 0. Since all stage costs for
states in S equal 0, every policy for M(S) is optimal. Note that there is only
a choice to be made at state i0. Consider the policies π0 with π0(i0) = a0 and

3.1 Approach 49

i0

a0

0

a1
0

i1
1

a2
0

i2
1

in

an+1

0

iend

1 1

aend

01

Figure 3.3: Markov decision process of an induced MDP M(S) that yields different upper
bounds vπ0 and vπ1 for the optimal policies π0 and π1 for M(S) with π0(i0) = a0 and
π1(i0) = a1.

π1 with π1(i0) = a1. Then, the solutions vπ0 and vπ1 of the corresponding
systems (3.1.4) satisfy:

vπ0
i0

= 0 + αvαmax,

vπ0
i1

= 0 + αvαmax,

and

vπ1
i0
− αvπ1

i1
= 0,

vπ1
i1

= 0 + αvαmax,

where again vαmax = cmax/(1 − α) equals the general upper bound for each
component of the value vector of any policy. Thus, we obtain:

vπ0
i0

= αvαmax and vπ1
i0

= α2vαmax.

Obviously, the policy π1 provides a better upper bound than policy π0.
The example can easily be extended such that the ratio between the

two upper bounds becomes arbitrarily large. To this end, consider the S-
induced MDP M(S) shown in Figure 3.3 for an arbitrary integer n ∈ N.
Now there exists a sequence of states i1, . . . , in and actions a2, . . . , an+1 with
A(ik) = {ak+1} and pikik+1

(ak+1) = 1 for k ∈ {1, . . . , n − 1}. Moreover, we
have piniend

(an+1) = 1. Again all stage costs equal zero. Then, the optimal
policy π1 for M(S) with π1(i0) = a1 yields an upper bound of vπ1

i0
= αn+1vαmax,

while we still have vπ0
i0

= αvαmax for the other optimal policy π0 using action a0

at state i0. This results in a ratio of vπ0
i0
/vπ1

i0
= 1/αn, which goes to infinity

for n→∞ since α < 1. 4

50 LP-Based Local Approximation for Discounted MDPs

Note that in the example the upper bound provided by policy π1 equals
the bound vi0 obtained as the optimal value of the linear program (Ui0

S), i. e.,
vi0 = vπ1

i0
. In general, however, the upper bound vi0 may be better than the

bound vπi0 for each optimal policy π for M(S). In other words, no optimal
policy for M(S) is optimal for M ′(S) as well.

Example 3.1.16 For instance, consider again the example above for n = 1
except that we now have a small stage cost for action a1 of ci0(a1, i1) = ε,
where 0 < ε < αcmax. On the one hand, the policy π1 is no longer optimal
for M(S), which leaves π0 being the only optimal policy. On the other hand,
the upper bound vi0 equals:

vi0 = min
{
αvαmax, ε+ α2vαmax

}
= ε+ α2vαmax,

since ε < αcmax. Therefore, we obtain:

vi0 = ε+ α2vαmax < αvαmax = vπ0
i0
,

which shows that the upper bound vi0 is predominant here. 4

Our approximation algorithm presented in Section 3.3 is derived from the
theory of this section. It generally employs the construction of upper bounds
via solving the linear programs (Ui0

S) for subsets S ⊆ S. However, it is also
possible to incorporate the second type of upper bounds, especially since
these bounds are more or less computed by the algorithm anyway, as we will
see later from the results of Theorem 3.5.12 and Corollary 3.5.14.

Remark 3.1.17 The construction of lower and upper bounds for the com-
ponent vαi0 of the optimal value vector can often be improved as follows.
Let S ⊂ S be some restricted state space with i0 ∈ S. Recall that for com-
puting the bounds on vαi0 w. r. t. subset S our approach assumes for each
component vαi of the optimal value vector with state i ∈ S \ S a lower and
upper bound of 0 and vαmax, respectively. However, often better bounds on
individual components of vα are known or can be determined.

It is easy to see that the upper bound constructions for vαi0 described in this
section remain feasible if any available upper bounds vαmax(j) ≥ vαj for j ∈ S
are used. That is, instead of the vector rS ∈ RS defined by Equation (3.1.3),
we apply the vector rub,S ∈ RS where:

rub,S
ia = α

∑
j∈S\S

pij(a)vαmax(j),

for each (i, a) ∈ S×A. In doing so, both described ways to determine upper
bounds on vαi0 can be improved.

3.2 Structural Approximation Result 51

Similarly, for given lower bounds 0 ≤ vαmin(j) ≤ vαj for j ∈ S on the
components of the optimal value vector, a possibly improved lower bound
on vαi0 can be obtained as the optimal value of the linear program:

max vi0

subject to QSv ≤ cS + rlb,S

v ∈ RS,

where the vector rlb,S ∈ RS is defined by:

rlb,S
ia = α

∑
j∈S\S

pij(a)vαmin(j),

for each (i, a) ∈ S × A. 4

By incorporating such improved bounds in our algorithm the run-times can
often be reduced significantly. We will make use of this technique in the
computations in Chapter 4, e. g., for the considered elevator control MDPs,
it is crucial to employ involved lower and upper bounds in order to obtain
reasonable results at all.

3.2 Structural Approximation Result

In the following we present our structural approximation theorem which
shows that an ε-approximation of one component of the optimal value vector
can be obtained by taking into account only a small local part of the entire
state space. We need the following definition.

Definition 3.2.1 (r–neighborhood) For an MDP (S,A, p, c, α), a partic-
ular state i0 ∈ S, and a number r ∈ N, the r–neighborhood S(i0, r) of i0 is
the subset of states that can be reached from i0 within at most r transitions.
That is, S(i0, 0) := {i0} and for r > 0 we define:

S(i0, r) := S(i0, r − 1) ∪ {j ∈ S | ∃i ∈ S(i0, r − 1)∃a ∈ A(i) : pij(a) > 0} .

We will also call the set S(i0, r) neighborhood of i0 with radius r. 4

Our approximation theorem is as follows (we already published a weaker
version of this result in [HKP+06]).

Theorem 3.2.2 Let M = (S,A, p, c, α) be an MDP and b, d ∈ N such that:

• For each i ∈ S, the number of possible actions |A(i)| at state i is bounded
by b ∈ N.

52 LP-Based Local Approximation for Discounted MDPs

• For each i ∈ S and a ∈ A(i), the number of states j ∈ S with positive
transition probabilities pij(a) is bounded by d ∈ N.

Let cmax := maxi∈S,a∈A(i) ci(a) and vαmax := cmax/(1 − α). Then, for each
state i0 ∈ S and for each ε > 0, the subset of states S = S(i0, r) ⊆ S with

r = max

{
0,

⌈
log

(
ε

vαmax

)
/ logα

⌉
− 1

}
satisfies the following properties:

(i) |S| ≤ max {(bd)r+1, r + 1}, in particular, the number of states in S does
not depend on |S|.

(ii) For state i0, the unique optimal solution v of the linear program (LΣ
S)

(or any optimal solution v of (Li0S), respectively) and the unique solu-
tion vπ of system (3.1.4) w. r. t. any optimal policy π for the S-induced
MDP M(S) satisfy:

vπi0 − vi0 ≤ ε.

In particular, vi0 and vπi0 themselves are ε-close lower and upper bounds
on the optimal value vector vα at state i0, i. e.,

0 ≤ vαi0 − vi0 ≤ ε,

0 ≤ vπi0 − v
α
i0
≤ ε.

Proof. Let i0 ∈ S and ε > 0. Since the number of possible actions at each
state and the number of successor states for any action are bounded by b
and d, respectively, Property (i) follows directly from the construction of the
set S = S(i0, r):

|S| ≤
r∑

k=0

(bd)k =
(bd)r+1 − 1

bd− 1
≤ (bd)r+1,

if bd ≥ 2. In the trivial case bd = 1 we obviously have |S| = r + 1.
The proof of Property (ii) is as follows. Consider the extension vext ∈ RS

of the solution v of the linear program (LΣ
S) as defined in Equation (3.1.2):

vext
j =

{
vj, if j ∈ S,

0, if j ∈ S \ S.

3.2 Structural Approximation Result 53

Moreover, let π be an optimal policy for M(S) and construct an exten-
sion vext ∈ RS of the solution vπ of system (3.1.4) w. r. t. policy π as follows:

vext
j =

{
vπj , if j ∈ S,

vαmax, if j ∈ S \ S.

Note that vext is in general not a feasible solution of the linear program (PΣ).
By Theorem 3.1.8 the solution v of (LΣ

S) equals the optimal value vector
of the MDP M(S). Since π is optimal for M(S), Theorem 2.2.1 implies that
the corresponding constraints in the linear program (LΣ

S) are satisfied with
equality by v, i. e.,

vi = ci(π(i)) + α
∑
j∈S

pij(π(i))vj ∀i ∈ S,

which implies for the extension vext:

vext
i = ci(π(i)) + α

∑
j∈S

pij(π(i))vext
j ∀i ∈ S. (3.2.1)

Note that in (3.2.1) we sum over the whole state space, which is feasible due
to vext

j = 0 for each j ∈ S \ S.
On the other hand, since vπ satisfies the system of equations (3.1.4) we

have the following relation for the extension vext:

vext
i = ci(π(i)) + α

∑
j∈S

pij(π(i))vext
j ∀i ∈ S. (3.2.2)

From the Equations (3.2.1) and (3.2.2) we obtain:

vext
i − vext

i = α
∑
j∈S

pij(π(i))(vext
j − vext

j) ∀i ∈ S. (3.2.3)

In the following, we show by reverse induction on k = r, . . . , 0 for each
state i ∈ S(i0, k):

vext
i − vext

i ≤ αr+1−kvαmax. (3.2.4)

Note that all i to which (3.2.4) refers are contained in S because of k ≤ r.
For k = r and for each state i ∈ S(i0, k), Inequality (3.2.4) follows

from (3.2.3) due to vext
j ≤ vαmax and vext

j ≥ 0 for each j ∈ S:

vext
i − vext

i ≤ α
∑
j∈S

pij(π(i))
(
vαmax − 0

)
= αvαmax.

54 LP-Based Local Approximation for Discounted MDPs

Here, the equality follows from the fact that
∑

j∈S pij(π(i)) = 1 for each
state i ∈ S.

Now assume that Inequality (3.2.4) holds for each state j ∈ S(i0, k) with
0 < k ≤ r. For each i ∈ S(i0, k − 1), we again apply Equality (3.2.3):

vext
i − vext

i = α
∑
j∈S

pij(π(i))(vext
j − vext

j)

= α
∑

j∈S(i0,k)

pij(π(i))(vext
j − vext

j),

where the second identity is due to the fact that each state j ∈ S with
pij(π(i)) > 0 is contained in S(i0, k) since i ∈ S(i0, k− 1). We can apply the
induction hypothesis for each state j ∈ S(i0, k):

vext
i − vext

i ≤ α
∑

j∈S(i0,k)

pij(π(i))αr+1−kvαmax

= αr+1−(k−1)vαmax,

which completes the inductive proof of (3.2.4).
For i = i0 and k = 0, Inequality (3.2.4) implies:

vπi0 − vi0 = vext
i0
− vext

i0
≤ αr+1vαmax.

Finally, we distinguish two cases to show Property (ii). If ε ≥ αvαmax, we have
r = 0, and thus vπi0 − vi0 ≤ αvαmax ≤ ε. Otherwise, if ε < αvαmax, it follows
that log(ε/vαmax) < logα < 0 and r = dlog(ε/vαmax)/ logαe − 1 which implies:

vπi0 − vi0 ≤ αdlog(ε/vαmax)/ logαevαmax

≤ αlog(ε/vαmax)/ logαvαmax

= ε.

It remains to be proven that vi0 and vπi0 are ε-close lower and upper bounds
for the component vαi0 . From Lemmas 3.1.6 and 3.1.10 it is already known
that vαi0 ≥ vi0 and vαi0 ≤ vπi0 . By these inequalities we obtain:

vπi0 − v
α
i0
≤ vπi0 − vi0 ≤ ε,

vαi0 − vi0 ≤ vπi0 − vi0 ≤ ε. �

We mention that the construction of Theorem 3.2.2 does not only provide
an approximation for the component vαi0 of the optimal value vector, but a
larger local approximation of vα regarding all states in the subset S = S(i0, r):
Inequality (3.2.4) in the proof of Theorem 3.2.2 gives the following bounds
for the states in S.

3.2 Structural Approximation Result 55

Corollary 3.2.3 Under the same assumptions as used in Theorem 3.2.2 with
the restriction that v is necessarily the optimal solution of the linear pro-
gram (LΣ

S), let π be any optimal policy for the induced MDP M(S). Then,
for each k ∈ {1, . . . , r} and each state i ∈ S(i0, k), we have vi ≤ vαi ≤ vπi
with the approximation guarantee:

vπi − vi ≤ αr+1−kvαmax.

By Corollary 3.2.3 it is justified to speak of local approximations of the
optimal value vector around state i0. Note that the approximation guarantee
for a state in S is the better, the fewer the number of transitions is, needed
to reach the state from i0.

Although this is not important in our context, we mention that Theo-
rem 3.2.2 is still true in the case of an infinite state space S if there exists a
finite upper bound for the expected stage costs, i. e., supi∈S,a∈A(i) ci(a) <∞.

Since the optimal value of the linear program (Ui0
S) is a stronger upper bound

on vαi0 than vπi0 (see Theorem 3.1.13), we also have the following result.

Corollary 3.2.4 Under the same assumptions as used in Theorem 3.2.2,
let vi0 be the optimal value of the linear program (Ui0

S) for the subset of
states S = S(i0, r). Then, we have:

vi0 − vi0 ≤ ε.

Particularly, vi0 is also an ε-close upper bound on vαi0, i. e., vi0 − vαi0 ≤ ε.

The following example shows that the construction of the state space
used in Theorem 3.2.2 and Corollary 3.2.4 is optimal in the sense that for
an arbitrary MDP, the state space cannot be reduced in order to achieve the
desired approximation guarantee. However, this may be possible if additional
assumptions on the structure of the MDP are made.

Example 3.2.5 Let 0 < ε ≤ α/(1 − α). By Corollary 3.2.4 the r–neigh-
borhood of a state i0 for r = dlog(ε/vαmax)/ logαe − 1 suffices to obtain an
approximation guarantee of vi0 − vi0 ≤ ε for optimal solutions v and v of the

linear programs (LΣ
S) and (Ui0

S), respectively.
In the following, we construct for arbitrary integer numbers b, d ∈ N an

MDP (S,A, p, c, α) such that for the (r − 1)–neighborhood S(i0, r − 1) the
corresponding solutions v and v yield vi0 − vi0 > ε. The MDP has a tree-like

structure rooted at state i0 = i
(0)
1 ∈ S. The state space S is given by:

Sn =
{
i
(n)
k | 1 ≤ k ≤ (bd)n

}
for each n ∈ {0, . . . , r},

56 LP-Based Local Approximation for Discounted MDPs

S =
r⋃

n=0

Sn.

Moreover, we have identical sets of actions A(i) = {a1, . . . , ab} for every
state i ∈ S. For each state in Sn with n ∈ {0, . . . , r−1}, applying any action
moves the system with uniform transition probabilities to one of exactly d
“new states” in Sn+1 that can be reached only via this action. That is, for
any m ∈ {1, . . . , b}, n ∈ {0, . . . , r − 1}, and k ∈ {1, . . . , (bd)n}, we have:

p
i
(n)
k i

(n+1)
l

(am) =
1

d

for every l ∈ {(k−1)bd+(m−1)d+1, . . . , (k−1)bd+md}. The expected stage
costs are ci(a) = 0 for every state i ∈ S\Sr and each possible action a ∈ A(i).
At each state i ∈ Sr the systems remains in that state with an additional
stage cost of 1 in each transition, i. e., for each action a ∈ A(i), we have
pii(a) = 1 and ci(a) = 1.

Now let us consider the solution v of the linear program (LΣ
S) for the

subset of states S = S(i0, r − 1) = S \ Sr. On the one hand, since the
expected stage costs for all states in S are zero, we have v ≡ 0. On the other
hand, since the stage cost for each transition always equals 1 as soon as a
state in Sr has been reached, the value of the solution v of (Ui0

S) at state i0
equals:

vi0 =
∞∑
k=r

αk =
αr

1− α
,

which gives vi0 − vi0 = αr/(1 − α). Note that due to vαmax = 1/(1 − α) we
have r = dlog(ε(1− α))/ logαe − 1. This implies:

αr = αdlog(ε(1−α))/ logαe−1 > αlog(ε(1−α))/ logα = ε(1− α),

Thus we obtain vi0 − vi0 > ε. 4

The following remark generalizes the situation considered in the example.

Remark 3.2.6 Assume that the MDP M = (S,A, p, c, α) does not contain
cycles in S = S(i0, r), i. e., for each state i ∈ S, there does not exist an
(i, i)-path P with length |P | > 0. Then, each optimal policy for the lower-
bound S-induced MDP M(S) is also optimal for the upper-bound S-induced
MDP M ′(S). Hence, for each optimal policy π for M(S), Remark 3.1.14 im-
plies vπi0 = vi0 for the optimal value vi0 of (Ui0

S). Moreover, the approximation
guarantee of Corollary 3.2.3 is satisfied with equality for policy π:

vπi − vi = αr+1−kvαmax,

for each i ∈ S(i0, k) and k ∈ {0, . . . , r}. 4

3.3 Algorithm 57

Remark 3.2.7 Of all the approaches from the literature the random sam-
pling algorithm of Kearns et al. [KMN99] gives the results most comparable
to Theorem 3.2.2. However, the size of the restricted state space in our
construction is significantly smaller than that for random sampling. This
algorithm samples states within the neighborhood of the considered state i0
up to a radius rs with:

rs =

⌈
log x

logα

⌉
, where x :=

ε(1− α)3

4cmax

.

Obviously, this gives a considerably larger subset of states since rs is greater
than the radius r = dlog(ε(1 − α)/cmax)/ logαe − 1 used in Theorem 3.2.2.
For instance, if cmax = 1, α = 0.7, and ε = 0.1, the radius rs equals rs = 21,
while the radius in our construction equals r = 10.

However, the setting considered in [KMN99] is quite different as the au-
thors assume the maximum number of successor states d for an action to be
very large or even infinite. Indeed, the number of states sampled by their
algorithm is independent of d. This way, their approach deals with the third
curse of dimensionality also, i. e., a huge number of possible successors. They
sample for each considered state in radius smaller than rs, at most

T = x−2

[
ln

(
1− α
x

)
+ 2r ln

(
x−2br ln

(
1− α
x

))]
.

consecutive states if T < d. Note that this restriction only makes a difference
when d is really large: even fairly simple situations imply huge values for T ,
e. g., if cmax = 1, b = 4, α = 0.7, and ε = 0.1, we obtain for T a value greater
than 1.9 billion. 4

3.3 Algorithm

In order to compute local approximations of the optimal value vector vα

around a particular state of a given MDP, it is usually inappropriate to
apply the construction of Theorem 3.2.2 directly (see Section 4.2.1 for com-
putational results). In this section, we propose our algorithmic approach to
approximate vα locally which is based on the theory developed so far. Fur-
ther applications of our algorithm include the approximation for a concrete
policy or a specific action at a single state. Details are given in Section 3.4.
The algorithmic approach presented below is the basis of our computational
tool that is applied for various MDPs in Chapter 4.

58 LP-Based Local Approximation for Discounted MDPs

Algorithm 4 Generic approximation algorithm

1: Input: an MDP (S,A, p, c, α) (given implicitly), a state i0 ∈ S, a subset
of states S ⊆ S with i0 ∈ S, ε > 0

2: Output: lower and upper bounds vi0 , vi0 on vαi0 with (vi0 − vi0)/vi0 ≤ ε

3: compute vi0 and vi0 as the optimal values of the linear programs (Li0S)

and (Ui0
S)

4: if (vi0 − vi0)/vi0 ≤ ε then
5: return vi0 , vi0
6: else
7: S ← S ∪ Snew for some Snew ⊆ S \ S
8: go to step 3
9: end if

3.3.1 Approach

The general idea of our approximation algorithm is to start with a small
subset of states S1 ⊂ S containing the considered state i0 ∈ S. The state
space S1 provides initial lower and upper bounds on vαi0 via the solution of the

corresponding linear programs (Li0S1
) and (Ui0

S1
). Then, in order to improve

the approximation on vαi0 , the state space S1 is successively extended by
adding new states. Note that each newly added state i ∈ S \ S1 results
in one additional variable and |A(i)| additional constraints in both linear
programs (Li0S1∪{i}) and (Ui0

S1∪{i}). This way, the algorithm constructs a finite
sequence of subsets S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊆ S for some n ∈ N together
with a sequence of improving lower and upper bounds on vi0 obtained as the
optimal values of the corresponding linear programs. Using policy iteration
instead of linear programming a similar algorithmic approach has already
been proposed by Dean et al. [DKKN93]. However, our approach has several
advantages as we will see later.

Recall that the theoretical approximation results given in Theorem 3.2.2
and Corollary 3.2.4 provide an approximation in terms of the absolute dif-
ference between upper and lower bounds. In practice, however, a relative
guarantee is typically more suitable. Therefore, the usual goal of our al-
gorithm is to obtain an approximation on vαi0 , where the relative difference
between the upper and lower bounds is less than a desired guarantee ε > 0,
i. e.,

vi0 − vi0
vi0

≤ ε.

Once this approximation guarantee is obtained, the algorithm terminates.
This generic approximation algorithm is summarized in Algorithm 4. Clearly,

3.3 Algorithm 59

Algorithm 4 terminates after a finite number of iterations since the state
space S is finite and we have vi0 = vi0 = vαi0 for the optimal values of the

linear programs (Li0S) and (Ui0
S).

Remark 3.3.1 It has been shown in Theorem 3.1.12 that by solving the
linear program (Ui0

S) for some state space S ⊆ S with i0 ∈ S, one can
easily derive a policy π for the original MDP with the property vαi0(π) ≤ vi0 .
Consequently, our approximation algorithm also determines a near-optimal
action a0 at state i0 in the sense that there exists a policy π with π(i0) = a0

such that (vαi0(π)− vαi0)/vαi0 ≤ ε. 4

3.3.2 Column Generation

Our implementation of Algorithm 4 is based on the idea to extend the con-
sidered state space dynamically by means of column generation which is a
standard technique for solving large-scale linear programs. We refer to the
book of Desaulniers et al. [DDS05] for details about column generation. The
original problem we aim to solve (approximately) here is (Li0S) that equals
the linear program (Pi0). Consequently, the master problem that is to be
solved in each iteration of the column generation is (Li0S) for some subset
of states S ⊆ S with i0 ∈ S. Thus, for computing the sequence of state
spaces S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊆ S we solely consider the linear programs pro-
viding the lower bounds on vαi0 , and totally neglect the linear programs (Ui0

S)
for S ⊆ S. These contribute only in terms of the computed upper bounds.
We mention that it is impossible to apply column generation w. r. t. some
linear program (Ui0

S) with S ⊂ S since an associated feasible solution can-
not be extended to one for (Li0S). Using our column generation algorithm
good approximations on vαi0 can be provided by proper subsets of S that are
substantially smaller than the original state space S as we will see later.

In order to specify our column generation method in detail, consider the
dual linear program of (Li0S), which reads as follows without using matrix-
vector notation:

min
∑
i∈S

∑
a∈A(i)

ci(a)uia (DLi0S)

subject to
∑

a∈A(i0)

ui0a − α
∑
i∈S

∑
a∈A(i)

pii0(a)uia = 1

∑
a∈A(j)

uja − α
∑
i∈S

∑
a∈A(i)

pij(a)uia = 0 ∀j ∈ S \ {i0}

uia ≥ 0 ∀i ∈ S ∀a ∈ A(i).

60 LP-Based Local Approximation for Discounted MDPs

Given an optimal solution u of the dual linear program (DLi0S) for some
subset S ⊂ S, the reduced profit p̄j of a state j ∈ S \ S equals:

p̄j = α
∑
i∈S

∑
a∈A(i)

pij(a)uia. (3.3.1)

The theory of linear programming implies the following result.

Theorem 3.3.2 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, let u be an optimal solution of the linear
program (DLi0S). If we have p̄j = 0 for all states j ∈ S\S, the lower bound vi0
computed by (Li0S) satisfies vi0 = vαi0.

Depending on the structure of the MDP it can happen that a possibly small
and proper subset of states S suffices to compute vαi0 exactly. This is the case
in situations where many states are not reachable from i0 or only via actions
that can be classified by the algorithm to be non-optimal. Such a situation
is shown in the following example.

Example 3.3.3 Consider the following machine replacement problem, e. g.,
see [Ber01, volume 1, chapter 1]. A single machine is to be operated in an
efficient way for a given number of periods. In the course of time, the machine
may fall off in quality. That is, at the beginning of each period the machine
is in any of n ∈ N states, denoted by i0, i1, . . . , in, where states become worse
with increasing index. State i0 corresponds to a machine in perfect condition.
Operating the machine for one period may cause the current state to degrade
or to stay unchanged. Consider a state ik for some k ∈ {0, . . . , n}. Then there
exist two possible actions:

• au: use the machine as it is for one period at a cost of ck ∈ R+ which
brings the machine to state il with probability pikil for l ∈ {k, . . . , n}.

• ar: repair the machine at a cost of cr ∈ R+ which brings it to the
perfect state i0 and allows for operating the machine for one period at
zero cost without a possible degeneration of the machine.

Assuming to operate the machine for an infinite number of periods, a dis-
counted MDP (S,A, p, c, α) for the machine replacement problem is naturally

3.3 Algorithm 61

i0

ar

51

au
0

1/2

i1
1/2

ar

5
1

au
5

1/2

i2
1/2

ar

5

1

au
10

1/2

i3
1/2

Figure 3.4: Part of the Markov decision process for the machine replacement problem.

given by:

S = {i0, . . . , in} ,
A(ik) = {au, ar} ∀k ∈ {0, . . . , n},

pikil(au) = pikil ∀k, l ∈ {0, . . . , n},

pikil(ar) =

{
1, if l = 0

0, if l 6= 0
∀k, l ∈ {0, . . . , n},

cik(au) = ck ∀k ∈ {0, . . . , n},
cik(ar) = cr ∀k ∈ {0, . . . , n},

α ∈ [0, 1).

In the example we consider 10 possible machine states, i. e., n = 9, and
make the quite unrealistic assumption that ck = 5k for each k ∈ {0, . . . , n}
and cr = 5. The transition probabilities equal pikik(au) = pikik+1

(au) = 1/2
for k ∈ {0, . . . , n − 1} and pinin(au) = 1. The associate Markov decision
process is partially illustrated in Figure 3.4. It is easy to see that using the
machine as it is at state i0 and repairing the machine in each other state
defines an optimal policy for the MDP independently of the used discount
factor α.

Let S1 = {i0} be the initial subset of states. The associated dual linear
program (DLi0S1

) reads:

min 0ui0au + 5ui0ar
subject to (1− α

2
)ui0au+ (1− α)ui0ar = 1

ui0au , ui0ar ≥ 0.

The optimal solution is unique and given by ui0au = 2/(2−α) and ui0ar = 0.

62 LP-Based Local Approximation for Discounted MDPs

Consequently, the reduced profit of state i1 equals:

p̄i1 =
α

2
ui0au =

α

2− α
> 0,

while each other state in S \ S1 has reduced profit 0. Adding state i1, we
obtain the subset of states S2 = {i0, i1} and the associated dual linear pro-
gram (DLi0S2

):

min 0ui0au + 5ui0ar + 5ui1au + 5ui1ar
subject to (1− α

2
)ui0au+ (1− α)ui0ar − αui1ar = 1

−α
2
ui0au + (1− α

2
)ui1au + ui1ar = 0

ui0au , ui0ar , ui1au , ui1ar ≥ 0.

One can show that for α ≤ 2/3 the optimal dual solution is given by:

ui0au = 2/(2− α− α2),

ui1ar = α/(2− α− α2),

ui0ar = ui1au = 0.

Therefore, the reduced profit of each state in S \ S2 equals zero and the
column generation terminates having computed the component vαi0 of the
optimal value vector exactly. Due to linear programming duality, we have
vαi0 = 5α/(2− α− α2).

On the other hand, if we have α > 2/3, the unique optimal solution
of (DLi0S2

) satisfies ui1au > 0 and ui1ar = 0. Thus, the column generation
continues: the greater α, the more states are generated until the algorithms
terminates. For instance, computational results showed that the algorithm
generates all states in the case α = 0.99. 4

We see that the column generation algorithm is sometimes able to detect
non-optimal actions. This way, it may compute exactly a local part of the
optimal value vector and an optimal policy restricted to the states reached by
the policy from i0. Moreover, the example points out that the non-optimality
of actions will be proven by the algorithm more likely and already for smaller
state spaces S ⊂ S when the discount factor is small. For discount factors
close to 1, this seems only to be possible for states where the process more or
less “ends”, i. e., the system can be controlled in such a way that the sum of
all future stage costs is very small. For instance, this situation occurs in the
bin coloring MDP introduced in Section 4.1.3. Consider a state where the
maximum colorfulness χ is such that it cannot be increased more than once
in all subsequent stages. If for such a state there exists an action that causes

3.3 Algorithm 63

an increase of χ although this not necessary, i. e., there exits an action that
does not increase χ also, the former action is non-optimal.

Next we consider the pricing problem arising in the column generation
algorithm. The goal of the pricing problem is to find a state with maximum
reduced profit. Note that by Equation (3.3.1) the reduced profit p̄j of a
state j ∈ S \ S can only be positive if there exists a state i ∈ S and an
action a ∈ A(i) such that pij(a) > 0. Thus, only successors of states in S are
candidates to be added to the state space S in one pricing step. We denote
this set of candidate states by Scand, i. e.,

Scand := {j ∈ S \ S | ∃i ∈ S ∃a ∈ A(i) : pij(a) > 0}. (3.3.2)

In order to determine a state with maximum reduced profit, one can simply
compute the reduced profit for each state in Scand by Equation (3.3.1). Thus,
the pricing problem is in some sense trivial. The total number of arithmetic
operations for this straight approach equals Θ(|Scand||S × A|) in general since
each state in Scand may be a successor of all states in S via all possible actions.

The pricing problem can be seen as the problem of finding a star with
maximum weight in the following weighted digraph D = (V1 ∪ V2, E), where

V1 = S,

V2 = S \ S.

The set of arcs is defined by the possible transitions between states in V1

and V2, and the arc weights are defined suitably:

E = {(i, j) ∈ V1 × V2 | ∃a ∈ A(i) : pij(a) > 0},

cij = α
∑
a∈A(i)

pij(a)uia ∀(i, j) ∈ E.

The graph theoretic interpretation of the pricing problem is as follows.

Theorem 3.3.4 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, let u be an optimal solution of the linear
program (DLi0S) and let D = (V1 ∪ V2, E) be the corresponding digraph as
defined above. Then, for each state j ∈ S \ S, its reduced profit p̄j equals
the weight w(j) of the maximal star in D that includes j. Particularly,
the maximum weight of a star containing exactly one node in V2 equals the
maximum reduced profit.

Proof. For a state j ∈ S \ S, let S(j) := {i ∈ S | ∃a ∈ A(i) : pij(a) > 0}
be the set of the predecessor states of j that are in S. The maximal star

64 LP-Based Local Approximation for Discounted MDPs

S S \ S

i

j

α
∑
a∈A(i) pij(a)uia

Figure 3.5: Illustration that the reduced profit of a state j ∈ S \ S can be computed as
the weight of a maximal star that includes j.

that includes j also contains all the nodes in S(j). Therefore, its weight w(j)
equals:

w(j) =
∑
i∈S(j)

cij =
∑
i∈S(j)

α
∑
a∈A(i)

pij(a)uia = α
∑
i∈S

∑
a∈A(i)

pij(a)uia = p̄j.

�

An illustration of Theorem 3.3.4 is given in Figure 3.5. Of course it is possible
to formulate the pricing problem as an equivalent optimization problem in a
directed hypergraph, too.

We give a short overview about details of our approximation algorithms
that are considered later on. In each iteration of the column generation
algorithm usually several states with positive reduced profit are added to
the previous state space S. We will study different pricing strategies for the
algorithm to fast compute suitable subsets of states to be added. Moreover,
we will look at approximation heuristics that aim to determine a good initial
state space S1 ⊆ S. These ingredients of our algorithm are described later in
the Sections 3.5.3 and 3.5.4 after their theoretical basis has been established.

To achieve a given approximation guarantee, the column generation algo-
rithm usually requires substantially fewer states compared to the neighbor-
hood construction of Theorem 3.2.2 and Corollary 3.2.4. See Section 4.2.1
for computational results that give evidence for this behavior. An example
where the opposite is the case independently of the used pricing strategy is
presented in Section 3.5.3.

3.4 Applications 65

3.4 Applications

We showed in Theorem 3.2.2 and Corollary 3.2.4 that an ε-approximation
of the optimal value vector vα at a particular state can be computed by
considering only a local subset of states whose size does not depend on the
total number of states. Moreover, we proposed a column generation algorithm
that is more suitable in practice to approximate vα locally. In the following
we highlight different applications for both the approximation theorem and
the approximation algorithm. The applications are obtained by considering
appropriate restrictions of the original MDP. Since we will consider different
MDPs, the value vector of an MDP M will be denoted by vαM in this section.

3.4.1 Approximation for Policies

Recall that the value vector vαM(π) of a concrete policy π for a given MDP
M = (S,A, p, c, α) can be computed by solving the system of linear equa-
tions (2.2.1). However, the usual methods to solve a system in |S| variables
and linear equations does not work for us because of the huge state spaces
we face in our context.

In this section, we address the local approximation of the value vec-
tor vαM(π). The following observation shows that this goal can be accom-
plished by the same method as before, used for the local approximation of
the optimal value vector.

Theorem 3.4.1 Given an MDP M = (S,A, p, c, α) and a policy π, define
the MDP M(π) = (S,A′, p′, c′, α) by A′(i) = {π(i)} for each state i ∈ S and
suitable restrictions p′ and c′ of the transition probabilities and stage costs.
Then, we have vαM(π) = vαM(π).

Proof. vαM(π) = vαM(π) follows from Theorem 2.2.1 on page 15 since the

equations (2.2.1) for policy π to compute vαM(π) and the optimality equa-
tions (2.2.2) for M(π) are identical. �

By Theorem 3.4.1 we can approximate the value vector of a concrete
policy π at a given state in the same way as we did for the optimal value vec-
tor but using a different MDP. The linear programs providing lower bounds
on vαM,i0

(π) that are to be solved here are of the following type, where S ⊆ S:

max vi0 (Li0S,π)

subject to QS,πv ≤ cS,π

v ∈ RS.

66 LP-Based Local Approximation for Discounted MDPs

The linear program (Li0S,π) as well as the associated linear program (Ui0
S,π)

providing an upper bound on vαM,i0
(π) already introduced in Theorem 3.1.13,

both have as many variables as constraints. Adding one state in the column
generation method only results in one new variable and one new constraint.
Since it is not necessary to explore the state space for several actions at
one state, approximating vαM,i0

(π) is usually easier than approximating vαM,i0
.

Therefore, the required state space for the former will often contain fewer
states than needed for the latter, especially if the number of possible actions
at the states is large. Of course, this difference applies for the neighborhood
construction with fixed radius as used in Corollary 3.2.4 and the approxima-
tion algorithm as well.

By Lemma 3.1.3, part 3, an optimal solution for the linear program (Li0S,π)
can obviously be obtained by solving the corresponding system of linear equa-
tions.

Corollary 3.4.2 Given an MDP (S,A, p, c, α), a policy π, a state i0 ∈ S,
and a subset of states S ⊆ S with i0 ∈ S, an optimal solution to the linear
program (Li0S,π) is given by the unique solution of the following system of
linear equations:

QS,πv = cS,π. (3.4.1)

Solving systems of linear equations instead of linear programs is another
advantage in the approximation of vαM,i0

(π) compared to that of vαM,i0
.

3.4.2 Approximation for Actions

Note that for a given policy π and a state i0 ∈ S, the component vαi0(π) of the
value vector of policy π does not only depend on the action π(i0), but on many
further decisions made by the policy as well. Thus, by comparing vαi0(π) and
the component of the optimal value vector vαi0 , the entire policy π is evaluated
when the initial state is i0.

Often it is more desirable to evaluate only a single action at a particular
state (not an entire policy), given that the decisions at other states are made
w. r. t. an optimal policy. To the best of our knowledge, this type of evalu-
ation has not been proposed in the context of MDPs before. Using another
restriction of the original MDP, our method can be applied for this purpose,
too. We define the optimal total expected α-discounted cost w. r. t. a fixed
action as follows.

Definition 3.4.3 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and
an action a0 ∈ A(i0), let M(i0, a0) = (S,A′, p′, c′, α) be the MDP with
A′(i0) = {a0} and A′(i) = A(i) for each state i ∈ S \ {i0} and suitable

3.4 Applications 67

restrictions p′ and c′ of p and c, respectively. The optimal total expected
α-discounted cost vαM,i0

(a0) w. r. t. action a0 is defined by:

vαM,i0
(a0) = vαM(i0,a0),i0

. 4

The value vαM,i0
(a0) can be seen as the value vector at state i0 of a policy that

is optimal among all policies that apply action a0 at state i0. Therefore, the
difference between the values vαM,i0

(a0) and vαM,i0
reflects the impact of using

action a0 at state i0 instead of an optimal action.

Theorem 3.4.4 Given an MDP M = (S,A, p, c, α) and a state i0 ∈ S, an
action a0 ∈ A(i0) is optimal (as defined in Definition 2.2.3 on page 16) if
and only if we have vαM,i0

(a0) = vαM,i0
.

Proof. Let action a0 be optimal, i. e., there exists an optimal policy π for M
with π(i0) = a0. Since π is also a policy for the MDP M(i0, a0), we obtain:

vαM = vαM(π) = vαM(i0,a0)(π) ≥ vαM(i0,a0).

Therefore, vαM = vαM(i0,a0) since vαM ≤ vαM(i,a) holds for each state i ∈ S and

each action a ∈ A(i). In particular, we have vαM,i0
(a0) = vαM(i0,a0),i0

= vαM,i0
.

Now assume control a0 is not optimal. Hence, each policy π for M
with π(i0) = a0 is not optimal either, which gives:

vαM < min
π:π(i0)=a0

vαM(π) = vαM(i0,a0),

where again x < y for vectors x, y ∈ Rm means xi ≤ yi for each i ∈ {1, . . . ,m}
and xi < yi for at least one i ∈ {1, . . . ,m}.

Since the optimality equations (2.2.1) for computing vαM and vαM(i0,a0) only
differ for state i0:

vαM,i0
= min

a∈A(i0)

{
ci(a) + α

∑
j∈S

pi0j(a)vαM,j

}
,

vαM(i0,a0),i0
= ci0(a0) + α

∑
j∈S

pi0j(a0)vαM(i0,a0),j,

vαM,i0
= vαM(i0,a0),i0

would imply vαM = vαM(i0,a0), which is a contradiction. Thus,

we also have vαM,i0
< vαM(i0,a0),i0

= vαM,i0
(a0). �

For an arbitrary subset of states S ⊆ S with i0 ∈ S, let QS,i0,a0 be the
submatrix of QS, where exactly the rows (i0, a) with a 6= a0 are removed.

68 LP-Based Local Approximation for Discounted MDPs

Similarly, let cS,i0,a0 be the subvector obtained from cS by removing the com-
ponents with index (i0, a) for a 6= a0. Now consider the following linear
program providing a lower bound on vαM,i0

(a0):

max vi0 (Li0S,a0
)

subject to QS,i0,a0v ≤ cS,i0,a0

v ∈ RS.

It is clear how the corresponding linear programs for computing upper bounds
for vαM,i0

(a0) would look like. It follows from the definition that vαM,i0
(a0)

equals the optimal value of the linear program for S = S. Since this linear
program equals (Pi0) except for the constraints for state i0, the computational
effort for approximating vαM,i0

(a0) via our column generation algorithm is
expected to be similar to that required for the component vαM,i0

of the optimal
value vector. In the approximation process linear programs of the type (Li0S,a0

)
restricted to some subset of states S ⊆ S are to be solved.

Obviously, Theorem 3.4.4 directly implies the following result.

Corollary 3.4.5 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and
an action a0 ∈ A(i0), assume that we have vαM,i0

(a) ≥ vαM,i0
(a0) for each

action a ∈ A(i0). Then, the action a0 is optimal.

The corollary implies that our approximation algorithm may be employed
to determine an optimal action at a particular state i0. Assume that the
algorithm has computed an upper bound vM,i0(a0) on vαM,i0

(a0) for some
action a0 ∈ A(i0) and lower bounds vM,i0

(a) ≤ vαM,i0
(a) for each different

action a ∈ A(i0)\{a0}. Then, if vM,i0(a0) ≤ vM,i0
(a) for each a ∈ A(i0)\{a0},

the action a0 is optimal. In Chapter 4 we will exploit this observation in the
analysis of policies for MDPs emerging from online optimization problems.
Particularly, we will determine an optimal parking policy for the considered
elevator control MDP in Section 4.3.4.

3.5 Details of the Column Generation Method

In this section, we give further theoretical results relating to our approxima-
tion algorithm via column generation. These results give additional insight in
the structure of the encountered linear programs and are used to derive valu-
able components for the approximation algorithm. The outline is as follows.
In Section 3.5.1 we develop a hypergraph minimum cost flow interpretation
of the reduced dual linear programs, similar to that for the standard problem
introduced in Section 2.2.5. Then, in Section 3.5.2 we analyze the structure

3.5 Details of the Column Generation Method 69

of the basic solutions of the restricted dual linear programs, prove an ex-
plicit formula for computing the dual prices for a given basis, and propose
a method to construct initial bases for solving the linear programs encoun-
tered in the column generation. A formula to determine the reduced profit
of a candidate state is derived in Section 3.5.3. Moreover, we establish an
upper bound construction based on the reduced profits and propose differ-
ent pricing strategies. In Section 3.5.4 we develop practical approximation
heuristics that can be incorporated within the column generation algorithm.
Finally, we derive an algorithm based on policy iteration that is equivalent
to our approximation method but does not feature any technique from linear
programming, see 3.5.6.

3.5.1 Dual Problem Interpretation

It has been shown in Section 2.2.5 that the standard dual linear program:

min
∑
i∈S

∑
a∈A(i)

ci(a)uia (DΣ)

subject to
∑
a∈A(j)

uja − α
∑
i∈S

∑
a∈A(i)

pij(a)uia = 1 ∀j ∈ S

uia ≥ 0 ∀i ∈ S ∀a ∈ A(i)

can be interpreted as a hypergraph minimum cost flow problem. In this para-
graph, we establish a similar result for the reduced dual linear program (DLi0S)
for any i0 ∈ S and any subset of states S ⊆ S with i0 ∈ S:

min
∑
i∈S

∑
a∈A(i)

ci(a)uia (DLi0S)

subject to
∑

a∈A(i0)

ui0a − α
∑
i∈S

∑
a∈A(i)

pii0(a)uia = 1

∑
a∈A(j)

uja − α
∑
i∈S

∑
a∈A(i)

pij(a)uia = 0 ∀j ∈ S \ {i0}

uia ≥ 0 ∀i ∈ S ∀a ∈ A(i).

The differences between both linear programs are as follows. On the one
hand, only the variables and constraints for the reduced state space S are
considered in (DLi0S). On the other hand, in the reduced linear program the
right hand side equals 1 only for the constraint w. r. t. state i0 and equals 0,
otherwise. In order to construct an instance of the hypergraph minimum cost
flow problem, we rely on the S-induced MDP for the following reason. Since

70 LP-Based Local Approximation for Discounted MDPs

there may exist states in S whose successors are contained in S\S, flow may
“leave” the set S. Thus, the additional state iend is of particular significance
here: the corresponding node in the hypergraph absorbs all flow to states
in S \ S. The construction in detail is as follows.

Theorem 3.5.1 Given an MDP (S,A, p, c, α), a subset of states S ⊆ S,
and a state i0 ∈ S, let M(S) = (S′,A′, p′, c′, α) be the S-induced MDP. The
dual linear program (DLi0S) describes the following instance of the hypergraph
minimum cost flow problem with hypergraph H = (V , E) and parameters µ, b,
and κ:

• V = S′,

• E = {(i, Ni(a)) ∈ S′ × 2V | i ∈ S′, a ∈ A′(i)}, where we define the
set Ni(a) = {j ∈ S′ | p′ij(a) > 0} for each i ∈ S′ and each a ∈ A′(i),

• µj(i, Ni(a)) = αp′ij(a) for each (i, Ni(a)) ∈ E and each j ∈ Ni(a),

• b(i0) = 1 and b(i) = 0 for each i ∈ V \ {i0},

• κ(i, Ni(a)) = c′i(a) for each hyperarc (i, Ni(a)) ∈ E.

Proof. In the case S′ = S, i. e., the induced MDP M(S) does not contain an
additional state iend, we have A′ = A, p′ = p, and c′ = c. Thus, the linear
program (DLi0S) can be rewritten as:

min
∑
i∈S′

∑
a∈A′(i)

c′i(a)uia (3.5.1)

subject to
∑

a∈A′(i0)

ui0a − α
∑
i∈S′

∑
a∈A′(i)

p′ii0(a)uia = 1

∑
a∈A′(j)

uja − α
∑
i∈S′

∑
a∈A′(i)

p′ij(a)uia = 0 ∀j ∈ S′ \ {i0}

uia ≥ 0 ∀i ∈ S′ ∀a ∈ A′(i).

Obviously, the linear program (3.5.1) describes the instance of the hypergraph
minimum cost flow specified above, proving the theorem for S′ = S.

3.5 Details of the Column Generation Method 71

In the case S′ = S ∪ {iend}, the linear program (DLi0S) is equivalent to:

min
∑
i∈S

∑
a∈A(i)

ci(a)uia

subject to
∑

a∈A(i0)

ui0a − α
∑
i∈S

∑
a∈A(i)

pii0(a)uia = 1

∑
a∈A(j)

uja − α
∑
i∈S

∑
a∈A(i)

pij(a)uia = 0 ∀j ∈ S \ {i0}

(1− α)uiendaend
− α

∑
i∈S

∑
a∈A(i)

p′iiend
(a)uia = 0

uia ≥ 0 ∀i ∈ S ∀a ∈ A(i)

uiendaend
≥ 0.

Recall that by Theorem 3.1.8 and by the construction of the induced MDP
we have A′(iend) = {aend}, c′iend

(aend) = 0, and p′iendiend
(aend) = 1. Moreover,

for all states i, j ∈ S and each a ∈ A(i), the components of M(S) satisfy
A′(i) = A(i), p′ij(a) = pij(a), p′iendj

(aend) = 0, and c′i(a) = ci(a). Thus, the
linear program above again equals (3.5.1), which completes the proof. �

Thus, the hypergraph minimum cost flow problem encountered here is a
single-source percolation problem, where one unit of flow leaves i0 and the
task is to trickle this flow away such that the resulting cost is minimum.
In doing so, traversing each hyperarc reduces the amount of flow since the
discount factor satisfies α < 1. To make a flow vanish completely, it must
be send along cycles. For instance, once flow has entered iend, it is consumed
without any further incurred cost.

Incorporating a parametric search method Oldham [Old01] proposed a
combinatorial algorithm for solving the deterministic version of this perco-
lation problem in O(mn2 log n). Note that in the deterministic case, the
hypergraph reduces to a usual graph.

3.5.2 Dual Basic Solutions

In this section we address the structure of the basic solutions for the re-
duced dual linear program (DLi0S) for some S ⊆ S and i0 ∈ S. Clearly,
this linear program equals the dual of the linear program (Pi0) defined on
page 37 in the case S = S. Note further that the dual of the reduced linear
program (Ui0

S), that provides an upper bound on vαi0 , has exactly the same

constraints as (DLi0S). Therefore, all results concerning the basic solutions
for (DLi0S) also apply for the dual linear programs to (Pi0) and (Ui0

S).

72 LP-Based Local Approximation for Discounted MDPs

Recall that by Theorem 2.2.12 and Corollary 2.2.13, all feasible basic
solutions of the standard dual program (DΣ) correspond one-to-one to de-
terministic policies and are non-degenerate. As we will see, these properties
do not hold true in general for the feasible basic solutions of the linear pro-
gram (DLi0S).

In the sequel, we will refer to a basic solution that corresponds to a policy
as a policy basic solution.

Definition 3.5.2 (Policy basic solution) Given an MDP (S,A, p, c, α), a
state i0 ∈ S, a subset of states S ⊆ S with i0 ∈ S, and a policy π for the
S-induced MDP M(S), the basic solution uπ for the linear program (DLi0S)
with basis {(i, π(i)) | i ∈ S} is called policy basic solution of π. 4

The policy basic solution of a policy π is well-defined for the following reason.
The matrix consisting of the columns of the constraint matrix of (DLi0S)
with indices (i, π(i)) for each i ∈ S is strictly column diagonally dominant,
and thus nonsingular. Therefore, uπ is indeed a basic solution of the linear
program (DLi0S).

First we show that each policy basic solution of the linear program (DLi0S)
is feasible and that its objective value equals the value vector of the policy
in the MDP M(S) at state i0.

Theorem 3.5.3 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, the policy basic solution uπ of any policy π
for M(S) satisfies the following properties:

1. uπ is feasible for the linear program (DLi0S).

2. The objective value of uπ in (DLi0S) equals the component vαM(S),i0
(π)

of the value vector of π, in particular the policy basic solution of an
optimal policy for M(S) is optimal for (DLi0S).

Proof. Let π be a policy for M(S). Define the matrix P (π) ∈ RS×S as
follows:

P (π)ij = pij(π(i)) for each i, j ∈ S.

By definition the policy basic solution uπ in the dual linear program (DLi0S) is
given by uπia = 0 for each i ∈ S and a ∈ A(i)\{π(i)} and the unique solution
of the following system of linear equations:

ujπ(j) − α
∑
i∈S

pij(π(i))uiπ(i) =

{
1, if j = i0,

0, if j 6= i0.

3.5 Details of the Column Generation Method 73

Denoting the column vector of variables by u := (ujπ(j))j∈S ∈ RS, the system
of equations can be rewritten in matrix-vector notation as:

(I − αP (π))tu = (1, 0, . . . , 0)t, (3.5.2)

where I ∈ RS×S is the identity matrix. It is well known that the inverse of
the matrix in (3.5.2) equals (I − αP (π))−1 =

∑∞
k=0(αP (π))k since:

(I − αP (π)) · (I + αP (π) + · · ·+ (αP (π))k−1) = I − (αP (π))k

for each k ∈ N and (αP (π))k → 0 for k →∞. In particular, all entries of the
matrix (I − αP (π))−1 are non-negative. Together with Equation (3.5.2) this
implies uπjπ(j) ≥ 0 for each state j ∈ S, i. e., the basic solution uπ is feasible

for the linear program (DLi0S).
For the second part, consider the corresponding primal solution vπ for

the dual basis {(i, π(i)) | i ∈ S}. By definition vπ is given as the unique
solution of the system of linear equations (2.2.1) on page 16 for M = M(S).
Therefore, the solution vπ equals the value vector of π in the S-induced MDP,
in particular, we have vπi0 = vαM(S),i0

(π). By linear programming duality

the objective value of vπ in (Li0S), i. e., vπi0 = vαM(S),i0
(π), equals that of uπ

in (DLi0S), which completes the proof. �

In contrast to the standard dual program (DΣ), the basic solutions that
correspond to policies, i. e., policy basic solutions, may be degenerate for the
linear program (DLi0S).

Example 3.5.4 Consider once more the MDP shown in Figure 3.1, and let
i0 = i2. The associated dual linear program (DLi0S) for S = S reads:

min 2ui1a1 +3ui1a2 +2ui2a3 +ui3a5 +3ui4a6

s. t. (1− α
2
)ui1a1 +ui1a2 = 0

−α
2
ui1a1 +ui2a3 = 1

−αui1a2−αui2a3+(1− α)ui3a4 +ui3a5 = 0

−αui3a5+(1− α)ui4a6 = 0

ui1a1 , ui1a2 , ui2a3 , ui3a4 , ui3a5 , ui4a6 ≥ 0.

Consider the policy π with

π(i1) = a2, π(i2) = a3, π(i3) = a4, π(i4) = a6.

One can show that π is optimal if α ≥ 2/5. The policy basic solution of π
reads:

ui1a1 = 0, ui1a2 = 0, ui2a3 = 1, ui3a4 = α
1−α , ui3a5 = 0, ui4a6 = 0.

Thus, the basic solution is degenerate. 4

74 LP-Based Local Approximation for Discounted MDPs

It should also be mentioned that different policies π1 and π2 do not necessarily
define different policy basic solutions. In the example above, the policy µ with
µ(i1) = a1 and µ(i) = π(i) for each i ∈ S \ {i1} gives the same policy basic
solution as π.

Moreover, there may exist additional feasible bases for the dual pro-
gram (DLi0S) that do not correspond to policies. In Example 3.5.4, the four
columns (i1, a2), (i2, a3), (i3, a4), (i3, a5) apparently define a basis but do not
correspond to a policy since there are two columns covering state i3 and no
column covering state i4. This basis again gives the same basic solution as
in the example.

Despite the fact that feasible bases not corresponding to policies may
exist, one can show that each feasible basic solution for (DLi0S) has at least
one associated basis that corresponds to a policy, i. e., each basic solution is
a policy basic solution. In order to show this property, we will exploit the
following lemma.

Lemma 3.5.5 Given an MDP (S,A, p, c, α), a state i0 ∈ S, a subset of
states S ⊆ S with i0 ∈ S, let u be any feasible solution of the linear pro-
gram (DLi0S). Assume there exists a partition of S into sets S1, S2 ⊂ S, i. e.,
S1 ∪ S2 = S and S1 ∩ S2 = ∅, with the following properties:

1. i0 ∈ S1.

2. For each j ∈ S2, we have uia = 0 for each i ∈ S1 and each a ∈ A(i)
such that pij(a) > 0. That is, for each possible transition from S1 to S2,
the associated dual variable equals zero.

Then, the solution u satisfies uja = 0 for each j ∈ S2 and each a ∈ A(j).

Using the hypergraph flow interpretation of the linear program (DLi0S) given
in Section 3.5.1, the statement of Lemma 3.5.5 is quite clear. Note that the
partition of the state space S into S1 and S2 defines a cut in the associated
hypergraph. Moreover, due to the assumptions made, there does not exist
flow crossing the cut. Therefore, the flow vanishes completely in S2 since
there exists only a single source node in the hypergraph which is i0 ∈ S1. A
rigorous proof of the lemma is given below.

Proof (Lemma 3.5.5). For each state j ∈ S2, we have:∑
a∈A(j)

uja = α
∑
i∈S

∑
a∈A(i)

pij(a)uia = α
∑
i∈S2

∑
a∈A(i)

pij(a)uia,

3.5 Details of the Column Generation Method 75

where the last equality is valid since pij(a)uia > 0 implies i ∈ S2. Adding the
equations above for each j ∈ S2 gives:∑

j∈S2

∑
a∈A(j)

uja = α
∑
j∈S2

∑
i∈S2

∑
a∈A(i)

pij(a)uia

= α
∑
i∈S2

∑
a∈A(i)

uia
∑
j∈S2

pij(a)

Note that
∑

j∈S2
pij(a) ≤

∑
j∈S pij(a) = 1 for each i ∈ S2. Therefore, we

obtain: ∑
j∈S2

∑
a∈A(j)

uja ≤ α
∑
i∈S2

∑
a∈A(i)

uia,

which implies: ∑
j∈S2

∑
a∈A(j)

uja ≤ 0.

This proves the lemma since the solution u is non-negative. �

Theorem 3.5.6 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a
subset of states S ⊆ S with i0 ∈ S, each feasible basic solution of the dual
linear program (DLi0S) is a policy basic solution for some policy π for M(S).

Proof. First we prove that each feasible basic solution u of (DLi0S) that has
at most one positive variable for each state, i. e.,

|{(i, a) ∈ S × A | uia > 0}| ≤ 1 for each i ∈ S, (3.5.3)

is a policy basic solution. Let u′ be such a feasible basic solution and let
S1 ⊆ S be the set of states i ∈ S that satisfy Property (3.5.3) with equality
for u′. Moreover, for each state i ∈ S1, define ai ∈ A(i) to be the unique
action at state i such that u′iai > 0. Now consider any policy π for M(S)
with π(i) = ai for each i ∈ S1, and let uπ be the policy basic solution of π.
We will show that uπ = u′.

By definition of S1 the basic solution u′ is uniquely determined by the
system:

ujaj − α
∑
i∈S1

pij(ai)uiai =

{
1, if j = i0,

0, if j 6= i0,
(3.5.4)

uja = 0 for each a ∈ A(j) \ {aj}, (3.5.5)

for each j ∈ S1. Obviously, by definition the policy basic solution uπ also
satisfies the Equations (3.5.4) and (3.5.5) for each j ∈ S1, implying that uπ

76 LP-Based Local Approximation for Discounted MDPs

equals u′ for all states in S1. It remains to show that uπia = 0 for each
state i ∈ S2 := S \ S1 and each a ∈ A(i).

Because of the first constraint of (DLi0S), we have i0 ∈ S1. Due to the re-
maining constraints of the linear program, the basic solution u′ also satisfies:∑

a∈A(j)

u′ja − α
∑
i∈S

∑
a∈A(i)

pij(a)u′ia = 0,

for each j ∈ S2. Thus, we obtain:∑
i∈S1

∑
a∈A(i)

pij(a)u′ia ≤
∑
i∈S

∑
a∈A(i)

pij(a)u′ia = 0,

since u′ja = 0 for each a ∈ A(j). Particularly, for each i ∈ S1 and a ∈ A(i),
we have u′ia = 0 if pij(a) > 0. Since u′ equals uπ for each state in S1, this
property is also true for uπ. As the assumptions of Lemma 3.5.5 are satisfied
for the policy basic solution uπ and the partition of S into S1 and S2, we
conclude uπia = 0 for each i ∈ S2 and each a ∈ A(i). This completes the first
part of the proof.

It remains to be proven that each feasible basic solution u of the linear
program (DLi0S) satisfies Property (3.5.3). Assume that there exists a basis
B ⊆ S × A such that the associated basic solution uB has the following
property:

∃i′ ∈ S ∃a1, a2 ∈ A(i′) : a1 6= a2, (i
′, a1), (i′, a2) ∈ B, uBi′a1

, uBi′a2
> 0. (3.5.6)

Since B is a basis, there cannot exist a row of zeros in the matrix B. That
is, for each state j ∈ S, at least one of the following conditions is true:

1. There exists an action a(j) ∈ A(j) such that (j, a(j)) ∈ B.

2. There exists i(j) ∈ S and a(j) ∈ A(i(j)) with pi(j)j(a(j)) > 0 such that
(i(j), a(j)) ∈ B.

We will also say that the basic columns cover all states in S by Condition 1
or Condition 2.

Due to Property (3.5.6), two basic columns cover state i′ by the first
condition. Therefore, it is impossible that for each state j ∈ S, there exists a
basic column covering j by Condition 1 since |B| = |S|. Consequently, there
exists a state j′ ∈ S that satisfies Condition 2, but not Condition 1.

Now consider the system of linear equations defining the vector of basic
variables ûB of the basic solution uB:

BûB = (1, 0, . . . , 0)t.

3.5 Details of the Column Generation Method 77

Note that j′ 6= i0, since otherwise the first equation of the system would
imply uBi(j′)a(j′) < 0. Therefore, the equation for state j′ in the system implies

uBi(j′)a(j′) = 0 for each basic column (i(j′), a(j′)) that covers j′ by Condi-

tion 2. Consequently, the system of linear equations defining ûB can be
reduced as follows. For each basic column (i(j′), a(j′)) covering state j′ by
Condition 2, the corresponding basic variable is fixed to uBi(j′)a(j′) = 0 and

column (i(j′), a(j′)) is removed from B.
In doing so, all non-zero entries in the row representing state j′ vanish,

creating at least one zero row. Let k ≥ 1 be the number of removed columns,
and let B′ ∈ RS×n with n = |S| − k be the obtained submatrix. Since B
is nonsingular, the matrix B′ has full column rank and the number of zero
rows in matrix B′ is at most k. Thus, by removing all zero rows from B′,
we obtain a matrix B1 ∈ Rm×n with n ≤ m < |S|. Let S1 ⊂ S be the set of
states represented by the rows of B1. Due to j′ 6= i0 and Property (3.5.6),
we have i0, i

′ ∈ S1.
Then, for each state j ∈ S1 one of the Conditions 1 and 2 w. r. t. S1 and B1

instead of S and B are again satisfied. Due to i′ ∈ S1, Property (3.5.6), and
the fact that the matrix B1 has at least the same number of rows as columns,
the construction above can be repeated. This can be done arbitrarily often,
which contradicts the fact that the state space S is finite, completing the
proof. �

Theorem 3.5.6 implies that similar as described in Section 2.2.4 for the orig-
inal linear programming formulation, each basic solution of (DLi0S) corres-
ponds to (at least) one policy for the S-induced MDP M(S).

Next we derive an explicit formula to compute the policy basic solution uπ

of a given policy π for M(S) for the linear program (DLi0S), given any sub-
set S ⊆ S and state i0 ∈ S. The formula is given in terms of so-called
π-induced paths as introduced in the following definition together with fur-
ther types of paths that are used later.

Definition 3.5.7 (Induced path) Given an MDP M = (S,A, p, c, α), a
subset of states S ⊆ S, a policy π for M(S), and an integer n ∈ N, let
P = (i1, a1, i2, a2, . . . , an−1, in) be an (i1, in)-path in M (cf. Definition 2.1.3).
The weight of path P is defined by:

w(P) = αn−1

n−1∏
k=1

pikik+1
(ak).

1. If i1, i2, . . . , in ∈ S and ak = π(ik) for k ∈ {1, . . . , n− 1}, the path P is
called π-induced w. r. t. S.

78 LP-Based Local Approximation for Discounted MDPs

2. If i1, i2, . . . , in−1 ∈ S, in ∈ S \ S, and ak = π(ik) for k ∈ {1, . . . , n− 1},
the path P is called extended π-induced w. r. t. S.

3. If i1, i2, . . . , in−1 ∈ S, in ∈ S, and u is an optimal solution of the dual
linear program (DLi0S) with uikak > 0 for k ∈ {1, . . . , n − 1}, then the
path P is called u-induced w. r. t. S. 4

Note that the weight of a path (i1, a1, . . . , an−1, in) equals αn−1 times the
probability of the path, i. e., the probability that for each k ∈ {1, . . . , n},
the state ik is reached after k − 1 steps starting from i1, when the actions
a1, . . . , an−1 are used at the state i1, . . . , in−1, respectively. Moreover, by
Definition 2.1.3 this weight is always positive.

The explicit formula to determine a policy basic solution is as follows.

Theorem 3.5.8 Consider an MDP (S,A, p, c, α), a state i0 ∈ S, a subset of
states S ⊆ S with i0 ∈ S, and a policy π for M(S). Then, the policy basic
solution uπ of π for the linear program (DLi0S) equals:

uπia =

{
ūπi , if a = π(i),

0, if a 6= π(i),
(3.5.7)

for each i ∈ S and each a ∈ A(i), where

ūπj =
∑

π-induced
(i0, j)-path P

w(P) ∀j ∈ S. (3.5.8)

Proof. Since uπ is the basic solution of (DLi0S) with the basic columns (i, π(i))
for each i ∈ S, it is clear that uπ must satisfy the Equation (3.5.7) for each
i ∈ S and each a ∈ A(i), where ūπ is the unique solution of the following
system of linear equations:

ūj − α
∑
i∈S

pij(π(i))ūi =

{
1, if j = i0,

0, if j 6= i0,
∀j ∈ S. (3.5.9)

Denote the right hand side of the Equation (3.5.8) by xj for each state j ∈ S.
To prove the theorem, it is sufficient to show that (xj)j∈S satisfies the system
of linear equations (3.5.9). Let j ∈ S be an arbitrary state. We distinguish
two cases.

3.5 Details of the Column Generation Method 79

First consider the case j 6= i0. Then, all π-induced paths from i0 to j
consist of at least two states. Thus, we have:

xj =
∑

π-induced
(i0, j)-path P

w(P)

=
∑
i∈S

(∑
π-induced (i0, j)-path
P=(i0,...,i,π(i),j)

w(P)

)
,

where the states i0 and i of P = (i0, . . . , i, π(i), j) may coincide with each
other. Obviously, the weight of path P equals w(P) = αpij(π(i)) · w(P ′),
where P ′ = (i0, . . . , i). Thus, we obtain:

xj =
∑
i∈S

(
αpij(π(i))

∑
π-induced

(i0, i)-path P ′

w(P ′)

︸ ︷︷ ︸
xi

)

= α
∑
i∈S

pij(π(i))xi.

It remains to prove that (xj)j∈S satisfies the system of equations (3.5.9)
for j = i0. In this case we have to distinguish between the trivial π-induced
path (i0) and longer paths. For the latter we can use the same construction
as in the first case:

xi0 =
∑

π-induced
(i0, i0)-path P

w(P)

= 1 +
∑

π-induced (i0, i0)-path P
P 6=(i0)

w(P)

= 1 +
∑
i∈S

(
αpii0(π(i))

∑
π-induced

(i0, i)-path P ′

w(P ′)

︸ ︷︷ ︸
xi

)

= 1 + α
∑
i∈S

pii0(π(i))xi.

This completes the proof since the solution of the system (3.5.9) is unique
and (xj)j∈S is a solution. �

We will use Theorem 3.5.8 in the next section, in order to prove an alternative
formula for computing the reduced profits, which itself is employed in one

80 LP-Based Local Approximation for Discounted MDPs

of the approximation heuristics and required for the proof of an alternative
approach to obtain upper bounds for a component of the optimal value vector.

In the following, we look at general upper bounds on the variables of the
dual linear program DLi0S for any S ⊆ S. The next theorem should be seen as
a pure theoretical result as the bounds are not used in the column generation
algorithm or otherwise.

Theorem 3.5.9 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a
subset of states S ⊆ S with i0 ∈ S, let S0 := S and define Sr ⊆ S for r ∈ N
to be set of all states in S that cannot be reached from i0 by at most r − 1
transitions:

Sr := S \ S(i0, r − 1) for r ∈ N,

where S(i0, r) denotes the r–neighborhood of i0 (cf. Definition 3.2.1). Then,
for each feasible solution u of the dual linear program (DLi0S) and each r ∈ N0,
we have: ∑

j∈Sr

∑
a∈A(j)

uja ≤
αr

1− α
. (3.5.10)

Proof. The proof goes by induction on r. By adding all the constraints of
the linear program (DLi0S) we obtain:∑

j∈S

∑
a∈A(j)

uja = 1 +
∑
j∈S

α
∑
i∈S

∑
a∈A(i)

pij(a)uia

= 1 + α
∑
i∈S

∑
a∈A(i)

uia
∑
j∈S

pij(a)

≤ 1 + α
∑
i∈S

∑
a∈A(i)

uia.

Due to S0 = S this implies:∑
j∈S0

∑
a∈A(j)

uja ≤
1

1− α
.

Now assume r > 0. Note that i0 /∈ Sr. Thus, similar as before, the
constraints of (DLi0S) imply:∑

j∈Sr

∑
a∈A(j)

uja =
∑
j∈Sr

α
∑
i∈S

∑
a∈A(i)

pij(a)uia

= α
∑
j∈Sr

∑
i∈Sr−1

∑
a∈A(i)

pij(a)uia,

3.5 Details of the Column Generation Method 81

i0 a0
ci0(a0)

i1
1

a1
ci1(a1)

i2
1

in an

cin(an)

1

Figure 3.6: Markov decision process where the bounds for the dual variables of Theo-
rem 3.5.9 are tight.

where the last equality is valid since for each j ∈ Sr, we have pij(a) = 0 for
each i ∈ S \ Sr−1 and each a ∈ A(i). This implies by induction:∑

j∈Sr

∑
a∈A(j)

uja = α
∑
i∈Sr−1

∑
a∈A(i)

uia
∑
j∈Sr

pij(a)

≤ α
∑
i∈Sr−1

∑
a∈A(i)

uia

≤ α
αr−1

1− α

=
αr

1− α
,

which completes the proof. �

It is easy to see that the bounds for the dual variables given in Theorem 3.5.9
cannot be improved in general. Consider the MDP (S,A, p, c, α) given by the
Markov decision process shown in Figure 3.6 for some integer n ∈ N0 and
any discount factor α ∈ [0, 1). The unique solution u of the dual linear
program (DLi0S) for S = S satisfies: uikak = αk for k ∈ {0, . . . , n − 1} and
uinan = αuin−1an−1 + αuinan , which gives uinan = αn/(1 − α). Therefore, we
obtain:∑

j∈Sm

∑
a∈A(j)

uja =
n∑

k=m

uikak =
αm

1− α
for each m ∈ {0, . . . , n− 1}.

Construction of Initial Bases

Recall that several linear programs have to be solved during the column
generation process. Providing the solver with a good initial basis for each
encountered linear program can obviously help to speed up the solution pro-
cess.

We propose the following way to construct suitable initial bases. We only
describe the approach for the linear programs (Li0S) with S ⊆ S providing the

82 LP-Based Local Approximation for Discounted MDPs

lower bounds on vαi0 . Constructing initial bases for the linear programs (Ui0
S)

for S ⊆ S is done analogously. Firstly, having solved a linear program (Li0S′)
for some subset S ′ ⊂ S in the previous iteration of the column generation, we
maintain the obtained optimal basis B′. That is, a basis status value is stored
for each variable and each constraint, i. e., the associated slack variables. Note
that the size of the basis is |S ′ × A|. Now for solving the linear program (Li0S)
for subset S ⊆ S with S ′ ⊂ S in the next iteration, the stored optimal basis B′

for (Li0S′) is extended as follows. For each state i ∈ S \ S ′, the variable vi is
set to basic and we determine an action ai ∈ A(i) such that:

ai ∈ argmin
a∈A(i)

{
ci(a) + α

∑
j∈S′ pij(a)vj

1− αpii(a)

}
,

where v is the computed optimal solution of (Li0S′). Then, all constraints
with indices (i, a) ∈ (S \ S ′)×A for a 6= ai are set to basic. The idea of this
construction is to guess for each state i ∈ S \ S ′, one constraint (i, a) with
a ∈ A(i) that is satisfied with equality in some optimal solution for (Li0S).
Based on the obtained optimal solution v of (Li0S′), it is reasonable to choose
the constraint (i, ai) for each i ∈ S \ S ′.

Note that the resulting number of variables and constraints set to basic
equals:

|S ′ × A|︸ ︷︷ ︸
old basis

+ |S \ S ′|︸ ︷︷ ︸
added variables

+ |(S \ S ′)× A| − |S \ S ′|︸ ︷︷ ︸
added constraints

= |S × A|.

Moreover, the construction above indeed defines a basis B of the linear pro-
gram (Li0S) for the following reason. Let QB ∈ R(S×A)×(S×A) be the associated
submatrix of QS. For each slack variable with index (i, a) with i ∈ S \ S ′
that was set to basic, one can perform column operations to remove all other
non-zero entries of B in row (i, a) without affecting the remaining matrix.
Moreover, after suitably exchanging rows and columns, respectively, we ob-
tain a matrix Q′B with the following structure:

Q′B =

[
A 0
0 I

]
,

where the submatrix A is strictly row diagonally dominant and I is the
identity matrix. Therefore, the matrices Q′B and also QB are non-singular.

We mention that the constructed basis B for the linear program (Li0S)
is usually primal infeasible and may also be dual infeasible in general. In
our context, however, the basis B is almost always dual feasible, and if not,
a dual feasible basic solution is usually obtained after very few iterations

3.5 Details of the Column Generation Method 83

of the dual simplex method. This is due to the following reason. Having
solved (Li0S′), we obtained a corresponding optimal basis N ′ for the associ-
ated dual linear program (DLi0S′) (defined by the non-basic primal variables
and constraints). Recall that by Theorem 3.5.6 each optimal basic solution
for (DLi0S′) corresponds to at least one policy for the induced MDP M(S ′),
i. e., for each state i ∈ S ′, there exists exactly one action a ∈ A(i) such that
the dual variable uia is basic. Even though the basis N ′ for (DLi0S′) may not
correspond to a policy, it is usually quite close to a policy in the sense that
this property is only violated for very few states. In the way we extend B′,
the associated dual basis to B is then very close to a policy for M(S), too.
Since a policy basic solution is feasible for the dual linear program by Theo-
rem 3.5.3, the basic solution for B is never far away from being dual feasible
in practice. Consequently, the dual simplex method should be applied when
using the described construction for an initial basis. See Section 4.2.2 for
associated computational experiments.

3.5.3 Pricing

In this section we address details of the pricing problem encountered in the
column generation process for approximating the optimal value vector at
the considered state i0. The first part covers structural results related to
the reduced profits including the construction of upper bounds on vαi0 within
the column generation algorithm, while the second part introduces possible
pricing strategies.

Structural Results

In the following, we derive a combinatorial formula for computing the reduced
profit of a state not contained in the set S ⊂ S during the column genera-
tion, given an optimal basic solution of the current linear program (DLi0S).
This formula, similar to that for the policy basic solution of a given policy
for M(S), is given in terms of extended induced paths.

Theorem 3.5.10 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a
subset of states S ⊆ S with i0 ∈ S, let u be an optimal basic solution of the
dual linear program (DLi0S) and let π be a policy for M(S) such that for the
policy basic solution uπ, we have uπ = u. Then the reduced profit p̄j of a
state j ∈ S \ S w. r. t. solution u equals:

p̄j =
∑

extended π-induced
(i0, j)-path P

w(P). (3.5.11)

84 LP-Based Local Approximation for Discounted MDPs

Particularly, a state j ∈ S\S has a positive reduced profit if and only if there
exists an extended π-induced (i0, j)-path, i. e., using policy π the state j can
be reached from i0.

Proof. By Equation (3.3.1) the reduced profit of a state j ∈ S \ S equals:

p̄j = α
∑
i∈S

∑
a∈A(i)

pij(a)uia

= α
∑
i∈S

∑
a∈A(i)

pij(a)uπia

By using the formula for computing the policy basic solution uπ given in the
Equations (3.5.7) and (3.5.8) in Theorem 3.5.8, we obtain:

p̄j = α
∑
i∈S

∑
a∈A(i)

pij(a)uπia

= α
∑
i∈S

pij(π(i))ūπi

= α
∑
i∈S

pij(π(i))
∑

π-induced
(i0, i)-path P

w(P)

=
∑
i∈S

∑
π-induced

(i0, i)-path P

αpij(π(i))w(P)

=
∑

extended π-induced
(i0, j)-path P

w(P). �

Obviously, it is inappropriate in general to use Equation (3.5.11) for com-
puting the reduced profits since an infinite series has to evaluated. In Sec-
tion 3.5.4 we will propose approximation heuristics that aim to determine a
good subset of states before the actual column generation algorithm based
on linear programming is applied. One of the approaches is based on the
idea to approximate the infinite series in Equation (3.5.11) by a finite sum.
Moreover, the formula is used in the construction of alternative upper bounds
for a component of the optimal value vector.

The following theorem establishes the basis for a combinatorial pricing
method that is described in the second part of this section.

Theorem 3.5.11 Given an MDP (S,A, p, c, α), a state i0 ∈ S, and a subset
of states S ⊆ S with i0 ∈ S, let u be any (possibly non-basic) optimal solution
of the dual linear program (DLi0S). Then, a state j ∈ S \ S has a positive
reduced profit p̄j > 0 if and only if there exists a u-induced path from i0 to j.

3.5 Details of the Column Generation Method 85

Proof. Obviously, the existence of a u-induced path (i0, a0, . . . , an−1, in = j)
from i0 to j for some n ∈ N implies a positive reduced profit p̄j since by
Equation (3.3.1) and pin−1j(an−1), uin−1j

> 0 we have:

p̄j = α
∑
i∈S

∑
a∈A(i)

pij(a)uia ≥ αpin−1j(an−1)uin−1j
> 0.

Now let p̄j > 0 and assume that there does not exist a u-induced path
from i0 to j. Define S2 ⊂ S to be the set of all states i ∈ S such that
there exists a u-induced path from i to j, i. e., i0 /∈ S2. Let S1 := S \ S2.
Particularly, we have uia = 0 for each i ∈ S1 and each a ∈ A(i) such that
pij(a) > 0, which implies:

p̄j = α
∑
i∈S

∑
a∈A(i)

pij(a)uia = α
∑
i∈S2

∑
a∈A(i)

pij(a)uia. (3.5.12)

Moreover, for each j′ ∈ S2, we have uia = 0 also for each i ∈ S1 and each
a ∈ A(i) such that pij′(a) > 0. Thus, Lemma 3.5.5 implies uia = 0 for each
i ∈ S2 and each a ∈ A(i). Therefore, by Equation (3.5.12) we have for the
reduced profit p̄j = 0, which is a contradiction. �

Next we describe a way to obtain an upper bound on the component vαi0
of the optimal value vector within the column generation process that is
different from solving the linear program (Ui0

S) for the current subset S.
Using this bound is quite cheap since it can be determined very easily while
solving the pricing problem. The bound is related to the upper bound vπi0
for an optimal policy π for the S-induced MDP M(S) that is computed by
solving the system of linear equations (3.1.4) on page 47. First we prove
that vπi0 can also be computed in terms of the reduced profits of all states
contained in S \ S, providing an alternative way to obtain this bound.

Theorem 3.5.12 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, a subset
of states S ⊆ S with i0 ∈ S, and an optimal policy π for M(S), let uπ be the
optimal policy basic solution of π for (DLi0S). Moreover, let p̄j be the reduced
profit of state j for each j ∈ S \ S w. r. t. solution uπ. Then, the solution vπ

of the system (3.1.4) at state i0 equals the optimal value vi0 of (Li0S) plus a
weighted sum of the reduced profits:

vπi0 = vi0 + vαmax

∑
j∈S\S

p̄j, (3.5.13)

where again vαmax := maxi∈S,a∈A(i) ci(a)/(1− α).

86 LP-Based Local Approximation for Discounted MDPs

Proof. Recall that vπ is computed as the unique solution of the system of
linear equations (3.1.4):

vi − α
∑
j∈S

pij(π(i))vj = ci(π(i)) + αvαmax

∑
j∈S\S

pij(π(i)), i ∈ S.

Consider the decomposition of this system into:

v′i − α
∑
j∈S

pij(π(i))v′j = ci(π(i)), i ∈ S. (3.5.14)

and

v′′i − α
∑
j∈S

pij(π(i))v′′j = αvαmax

∑
j∈S\S

pij(π(i)), i ∈ S. (3.5.15)

Note that by Theorem 2.2.1 the system of linear equations (3.5.14) computes
the value vector of π for the MDP M(S) (except for state iend that will
also be ignored in the following). Thus, we have v′ = vαM(S)(π). Since π is

optimal for M(S), its value vector is even optimal, which implies v′ = vαM(S).
By Theorem 3.1.8 the optimal value vector vαM(S) equals the unique optimal

solution v of the linear program (LΣ
S), which is by Corollary 3.1.5 optimal

for (Li0S), too. Therefore, the solution to (3.5.14) satisfies v′i0 = vi0 .
Obviously, there exists a unique solution to (3.5.15), too. Next we state

the following claim:

Claim 3.1 The solution to (3.5.15) gives v′′i0 = vαmax

∑
j∈S\S p̄j.

Since v′ + v′′ defines the solution to the system (3.1.4), the claim implies:

vπi0 = vi0 + vαmax

∑
j∈S\S

p̄j,

which proves the theorem.
It remains to prove Claim 3.1. Let us define a further decomposition of

system (3.5.15) indexed by the set S \S. For each j′ ∈ S \S, we consider the
following system of linear equations:

v
(j′)
i − α

∑
j∈S

pij(π(i))v
(j′)
j = αvαmaxpij′(π(i)), i ∈ S. (3.5.16)

Note that in the system (3.5.16) we only assume the upper bound of vαmax for
state j′, while all other states from S \ S are ignored. It is clear that adding
the unique solutions of these systems gives the solution for (3.5.15), i. e., we
have v′′ =

∑
j′∈S\S v

(j′).
Next we look at the structure of the solution to the system (3.5.16).

3.5 Details of the Column Generation Method 87

Claim 3.2 For each state j′ ∈ S \ S, the solution to (3.5.16) is given by:

v
(j′)
i = vαmax

∑
extended π-induced

(i, j′)-path P

w(P), i ∈ S. (3.5.17)

Particularly, the claim implies together with Theorem 3.5.10 that the solution

value v
(j′)
i0

for the state i0 equals v
(j′)
i0

= vαmaxp̄j′ . Since v′′ =
∑

j′∈S\S v
(j′)

defines the solution to the system (3.5.15), we obtain v′′i0 = vαmax

∑
j′∈S\S p̄j′

once the solution formula of Equation (3.5.17) has been established. This
will prove Claim 3.1.

So it remains to prove Claim 3.2. For a path P , denote again by |P | its
length, i. e., the number of state transitions in P . It can easily be verified
that (3.5.17) defines the solution to (3.5.16) by checking the corresponding
equations for each state i ∈ S:

v
(j′)
i = vαmax

∑
extended π-induced

(i, j′)-path P

w(P)

= αvαmaxpij′(π(i)) + vαmax

∑
extended π-induced

(i, j′)-path P : |P | ≥ 2

w(P)

= αvαmaxpij′(π(i)) + vαmax

∑
j∈S

(
αpij(π(i))

∑
extended π-induced

(j, j′)-path P

w(P)

)

= αvαmaxpij′(π(i)) + α
∑
j∈S

(
pij(π(i)) vαmax

∑
extended π-induced

(j, j′)-path P

w(P)

︸ ︷︷ ︸
v

(j′)
j

)

= αvαmaxpij′(π(i)) + α
∑
j∈S

pij(π(i))v
(j′)
j .

Note that the two cases pij′(π(i)) = 0 and pij′(π(i)) > 0 are both included
in the considerations above. This proves Claim 3.2, which completes the
proof. �

Recall that the column generation algorithm constructs a sequence of
subsets of states S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊆ S for some n ∈ N. However,
since we do not solve the linear programs of type (LΣ

S) but (Li0S), we do
not necessarily obtain associated policies π1, π2, . . . , πn that are optimal for
the corresponding induced MDPs and no corresponding optimal policy basic
solutions for (DLi0S), either (note that solving the linear program (Li0S) for

88 LP-Based Local Approximation for Discounted MDPs

some subset S ⊆ S only determines optimal actions in the MDP M(S) for
those states that are reachable from i0 via these actions). Therefore, the
construction of Theorem 3.5.12 cannot be used directly to obtain an upper
bound on vαi0 .

Nevertheless, the value vi0 + vαmax

∑
j∈S\S p̄j can obviously also be com-

puted if p̄j is the reduced profit w. r. t. an arbitrary optimal solution of (DLi0S).
For this case we obtain the following corollary of Theorem 3.5.12.

Corollary 3.5.13 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a
subset of states S ⊆ S with i0 ∈ S, let u be any (possibly non-basic) optimal
solution for (DLi0S) and let p̄j be the reduced profit of state j for each j ∈ S\S
w. r. t. solution u. Then, we have:

min
optimal policy
π for M(S)

vπi0 ≤ vi0 + vαmax

∑
j∈S\S

p̄j, (3.5.18)

where vi0 is the optimal value of (Li0S) and vπ is defined as the solution of
the system (3.1.4).

Proof. By Theorem 3.5.6 the optimal solution u of (DLi0S) is a finite convex
combination of optimal policy basic solutions uπ1 , . . . , uπn of optimal policies
π1, . . . , πn for M(S) for some n ∈ N:

u =
n∑
k=1

λku
πk ,

where λ1, . . . , λn ≥ 0 and
∑n

k=1 λk = 1. Therefore, we obtain for the sum of
the reduced profits w. r. t. solution u:∑

j∈S\S

p̄j =
∑
j∈S\S

α
∑
i∈S

∑
a∈A(i)

pij(a)uia

=
∑
j∈S\S

α
∑
i∈S

∑
a∈A(i)

pij(a)
n∑
k=1

λku
πk
ia

=
n∑
k=1

λk
∑
j∈S\S

α
∑
i∈S

∑
a∈A(i)

pij(a)uπkia

=
n∑
k=1

λk
∑
j∈S\S

p̄kj ,

where p̄kj denotes the reduced profit of state j ∈ S \S w. r. t. the policy basic
solution uπk for k ∈ {1, . . . , n}. Let k∗ be any index such that the sum of

3.5 Details of the Column Generation Method 89

the reduced profits associated with the policy basic solution uπk∗ is smallest,
i. e.,

k∗ ∈
n

argmin
k=1

∑
j∈S\S

p̄kj

 .

Now we obtain: ∑
j∈S\S

p̄j ≥
n∑
k=1

λk
∑
j∈S\S

p̄k
∗

j =
∑
j∈S\S

p̄k
∗

j .

By Theorem 3.5.12 this implies:

min
optimal policy
π for M(S)

vπi0 ≤ vπk∗i0
= vi0 + vαmax

∑
j∈S\S

p̄k
∗

j ≤ vi0 + vαmax

∑
j∈S\S

p̄j,

which completes the proof. �

Since vπi0 is by Theorem 3.1.13 an upper bound on vαi0 for each optimal
policy π for M(S), Corollary 3.5.13 implies the following result.

Corollary 3.5.14 Given an MDP M = (S,A, p, c, α), a state i0 ∈ S, and a
subset of states S ⊆ S with i0 ∈ S, let u be any optimal solution for (DLi0S)
and let p̄j be the reduced profit of state j for each j ∈ S \S w. r. t. solution u.
Then, we have:

vi0 ≤ vαi0 ≤ vi0 + vαmax

∑
j∈S\S

p̄j, (3.5.19)

where vi0 is the optimal value of (Li0S).

Thus, by computing all reduced profits in one step of the column generation
process it is possible to determine an upper bound on the value vector at
state i0 without solving the linear program (Ui0

S). However, as mentioned
before, these bounds are typically weaker than the ones provided by the
linear programs.

Pricing Strategies

In this paragraph we address details of the pricing operation in the column
generation algorithm. Again, let S ⊆ S be any subset of states with i0 ∈ S,
and assume that optimal solutions v and u of the linear programs (Li0S) and
(DLi0S) are at hand. The task of the pricing operation is to determine one or
several states in S \S with positive reduced profit to be added to S, yielding

90 LP-Based Local Approximation for Discounted MDPs

new variables and constraints in the considered linear programs. In doing so,
the questions arise which states should be added to S and how they can be
determined algorithmically. We will refer to the answers of both questions
as pricing strategies.

To simplify notation, the following descriptions of possible pricing strate-
gies assume that only one state is to be added to S in each pricing step.
Adding several states per step is conceptually equivalent to adding several
times one state without recomputing the reduced profits in between.

Recall that the reduced profit of a state j ∈ S \S w. r. t. the optimal dual
solution u is given by Equation (3.3.1):

p̄j = α
∑
i∈S

∑
a∈A(i)

pij(a)uia.

Moreover, recall that the set of candidate states Scand ⊆ S \ S which may
have a positive reduced profit is given by:

Scand = {j ∈ S \ S | ∃i ∈ S ∃a ∈ A(i) : pij(a) > 0}.

In the following, we propose four different pricing strategies for adding a
state j∗ ∈ Scand with positive reduced profit (details are described below):

• direct: For all states in Scand the reduced profit is computed sequentially.
The reduced profit p̄j∗ of the returned state j∗ is maximum.

• combinatorial: Starting from i0 and recursively following actions such
that the corresponding dual variable values are positive, one reaches
all states in Scand with positive reduced profit (Theorem 3.5.11). See
Algorithm 5 for details. Again, the reduced profit p̄j∗ of the returned
state j∗ is maximum.

• min-depth: For each state j ∈ Scand, define its depth dj ∈ N0 w. r. t. the
reduced state space S and state i0 as the minimum length of a path
from i0 to j, where all states in the path except for j are contained in S.
The state j∗ is an arbitrary state in Scand with positive reduced profit
such that dj∗ is minimum, i. e., dj∗ = min{dj | j ∈ Scand : p̄j > 0}. The
method to obtain j∗ is similar to that for combinatorial.

• improving: For all states j ∈ Scand, compute the reduced profit p̄j and
a weight wj defined by:

wj = min
a∈A(j)

{
cj(a) + α

∑
i∈S pji(a)vi

1− αpjj(a)

}
. (3.5.20)

3.5 Details of the Column Generation Method 91

Algorithm 5 Pricing strategy combinatorial

1: Input: an MDP M = (S,A, p, c, α) (given implicitly), a state i0 ∈ S, a
subset S ⊆ S with i0 ∈ S, an optimal solution u of (DLi0S)

2: Output: a state j∗ ∈ Scand with p̄j∗ > 0 and p̄j∗ ≥ p̄j for each j ∈ Scand,
or the message that no such state exists

3: Svis ← ∅
4: (j∗, p̄j∗)← Explore(i0, Svis)
5: if p̄j∗ > 0 then
6: return j∗

7: else
8: return “no state with positive reduced profit”
9: end if

10: procedure Explore(i, Svis)
11: Svis ← Svis ∪ {i}
12: if i ∈ S then . explore recursively for a ∈ A(i) with uia > 0
13: j∗ ← nil, p̄j∗ ← 0
14: for each a ∈ A(i) with uia > 0 do
15: for each j ∈ S \ Svis with pij(a) > 0 do
16: (j′, p̄j′)← Explore(j, Svis)
17: if p̄j′ > p̄j∗ then
18: j∗ ← j′, p̄j∗ ← p̄j′ . update best candidate
19: end if
20: end for
21: end for
22: return (j∗, p̄j∗)
23: else . candidate state found
24: compute p̄i = α

∑
j∈S
∑

a∈A(j) pji(a)uja
25: return (i, p̄i)
26: end if
27: end procedure

As we will see below, the weight wj is a feasible value for the vari-
able vj in the linear program (Li0S∪{j}). If there exists a state j ∈ Scand

with p̄jwj > 0, the returned state j∗ has a maximum value p̄j∗wj∗ .
Otherwise, the state j∗ has a maximum reduced profit p̄j∗ .

Note that the pricing strategies direct and combinatorial are conceptually
equivalent as both strategies aim to find a state with a maximum reduced
profit. They only differ in the way to determine such a state algorithmically.
The pricing strategy combinatorial makes use of the fact that each state with

92 LP-Based Local Approximation for Discounted MDPs

positive reduced profit is reachable from i0 via a u-induced path, as has be
shown in Theorem 3.5.11. Moreover, if u is a basic solution, we have by
Theorem 3.5.6 that there exists for each state i ∈ S at most one action
a ∈ A(i) such that the associated dual variable uia is positive. That is, in
this case the loop in Step 14 of Algorithm 5 consists of one iteration only.

The strategy min-depth is very simple. Among all states with positive
reduced profits any one with minimum depth w. r. t. the current state space S
and i0 is added. Thus, this pricing strategy completely ignores the actual
amounts of the positive reduced profits.

There are two issues to be considered in finding states that help to improve
the lower bound for vαi0 . On the one hand, it is easy to see that there are
situations such that for each j ∈ Scand, adding only the single state j to S does
not increase the optimal value of the linear program (Li0S) (neither adding all
states with positive reduced profits may do so), see Example 3.5.15. On the
other hand, the three pricing strategies direct, combinatorial, and min-depth
do not take into account the feasible range of the new variable. That is, even
though a state j ∈ Scand has a large reduced profit, the constraints of the
linear program (Li0S∪{j}) may imply a very small feasible upper bound on vj
that may even be zero, which results in a very little increase in the objective
function.

The idea of the strategy improving is to overcome this second problem.
It aims to find a state with significant reduced profit that also guarantees
that the new variable can be set to a certain positive value. Recall that the
constraints w. r. t. a state j ∈ Scand in the linear program (Li0S∪{j}) read:

(1− αpjj)vj − α
∑
i∈S

pji(a)vi ≤ cj(a) ∀a ∈ A(j),

which implies:

vj ≤
cj(a) + α

∑
i∈S pji(a)vi

1− αpjj
∀a ∈ A(j),

Thus, by adding state j ∈ Scand the associated variable vj can be set to any
value within the interval [0, wj]. The theory of linear programming implies
that the optimal value may potentially increase by p̄jwj. The strategy im-
proving computes a state that maximizes this product. This way, the strategy
seems to offer a better chance to increase the optimal value of (Li0S) for each
state when being added to S. If there do not exist other restricting con-
straints, the increase p̄jwj is guaranteed. In general, however, the bottleneck
in the linear program may change, forcing other inequalities to equality. This
obviously restricts the possible increase of the optimal value. These issues
are illustrated by the following example.

3.5 Details of the Column Generation Method 93

i0

a1

0

a2

ci0(a2)

i1
2/3

i2

1/3

i3
1

a3
3

a4
9

Figure 3.7: Part of a Markov decision process to illustrate the pricing strategy improving.

Example 3.5.15 Consider an MDP with the substructure shown in Fig-
ure 3.7, where the expected stage cost ci0(a2) will be used as a parameter.
Moreover, assume that we have:

pi1i0(a3) = pi1i1(a3) = 0 and pi2i0(a4) = pi2i2(a4) = 0.

Let S := {i0}, then the primal linear program (Li0S) simply reads:

max vi0
subject to vi0 ≤ 0 (i0, a1)

vi0 ≤ ci0(a2) (i0, a2)

vi0 ∈ R,

and the optimal value equals 0. The associated dual linear program (DLi0S)
looks as follows:

min 0ui0a1+ ci0(a2)ui0a2

subject to ui0a1 + ui0a2 = 1

ui0a1 , ui0a2 ≥ 0.

Independently of the actual value of ci0(a2), an optimal solution for (DLi0S)
is obviously given by ui0a1

= 1 and ui0a2
= 0. Consequently, we have by

Equation (3.3.1) for the reduced profits:

p̄i1 = 2α
3
,

p̄i2 = α
3
,

p̄i3 = 0.

94 LP-Based Local Approximation for Discounted MDPs

Moreover, the weights of the states i1 and i2 as defined by Equation (3.5.20)
equal wi1 = 3 and wi2 = 9, which gives p̄i1wi1 = 2α and p̄i2wi2 = 3α.
Therefore, the strategy improving adds state i2 to the state space S. We
obtain the following linear program (Li0S∪{i2}):

max vi0
subject to vi0− α

3
vi2 ≤ 0 (i0, a1)

vi0 ≤ ci0(a2) (i0, a2)

vi2 ≤ 9 (i2, a4)

vi0 , vi2 ∈ R,

which has an optimal value of vi0 = min{ci0(a2), 3α} = min{ci0(a2), p̄i2wi2}.
Thus in the case ci0(a2) = 0, adding state i2 did not improve the optimal

value of the linear program providing a lower bound on vαi0 . Note that in
this situation it is impossible to increase the optimal value even by adding
all states with positive reduced profits to S.

Now consider the case that the stage cost satisfies ci0(a2) ≥ 3α. Then the
full potential p̄i2wi2 = 3α for increasing the optimal value will be exploited.
Notice that the pricing strategies direct and combinatorial select state i1 in-
stead of i2, which only increases the optimal value by p̄i1wi1 = 2α. Hence,
the strategy improving increases the lower bound for the component vαi0 of the
optimal value vector to a greater extend. 4

We study the computational practicability of the proposed pricing strategies
in Section 4.2.3 by presenting numerical results for different MDPs.

By Corollary 3.2.4 we know that for a given guarantee ε > 0, the con-
struction of the r–neighborhood S(i0, r) of i0 for a suitable radius r ∈ N
provides an ε-approximation on vαi0 by the optimal values vi0 and vi0 of the

linear programs (Li0S(i0,r)
) and (Ui0

S(i0,r)
), respectively, i. e., vi0 − vi0 ≤ ε. In

the following we show that for every pricing strategies except min-depth, the
associated column generation algorithm may require more states to achieve
guarantee ε than the neighborhood construction of Corollary 3.2.4.

Example 3.5.16 Consider an MDP (S,A, p, c, α) with the partial structure
shown in Figure 3.8 that satisfies cmax = maxi∈S,a∈A(i) ci(a) = 1, i. e., vαmax =
1/(1− α). Moreover, for the transition probabilities p and q, we assume:

p = 1
1+α

+ β

q = α
1+α
− β,

3.5 Details of the Column Generation Method 95

i0

a1

0

a2

δ

i1
p

i2

q

1

a3
0

a4
0

i3
1 a5

1

Figure 3.8: Part of a Markov decision process with the following property: in order to
achieve a given approximation guarantee, the column generation algorithm requires more
states than needed by the theoretical construction due to Corollary 3.2.4.

for any value 0 < β < α/(1 + α). Notice that the choice of β implies
0 < p, q < 1 and p + q = 1. Moreover, let 0 < δ < αq. We consider an
approximation guarantee of ε = α2/(1− α).

On the one hand, by Corollary 3.2.4 we obtain:

r =

⌈
log

(
ε

vαmax

)
/ logα

⌉
− 1 =

⌈
log
(
α2
)
/ logα

⌉
− 1 = 1

for the radius of the required neighborhood to obtain the ε-approximation
for the value vαi0 . The associated 1–neighborhood equals S ′ := S(i0, 1) =
{i0, i1, i2} and yields the bounds vi0 = 0 and vi0 = α2/(1−α) for the optimal

values of the linear programs (Li0S′) and (Ui0
S′). Thus, we indeed have for the

approximation vi0 − vi0 = ε.

On the other hand, let us consider the column generation algorithm where
the initial subset of states equals S = {i0}, only one state is added to S per
pricing step, and the pricing strategy is different from min-depth. In the first
iteration the only optimal solution of the dual linear program (DLi0S) equals
ui0a1

= 1 and ui0a2
= 0 which gives p̄i1 = αp and p̄i2 = αq. Since we have

p > q, all considered pricing strategies add state i1 to S. In the second
iteration we obtain for the dual prices ui0a1

= 1, ui0a2
= 0, and ui1a3

= αp,
which implies p̄i2 = αq and p̄i3 = α2p. By αp > q each of the pricing
strategies now add state i3 to S.

Let us evaluate the approximation guarantee achieved by the resulting
subset of states S = {i0, i1, i3}. Note that δ < α2p since δ < αq and q < αp.
Thus, for the optimal value vi0 of (Li0S) we obtain vi0 = min{δ, α2p} = δ.

Furthermore, the optimal value vi0 of (Ui0
S) equals:

vi0 = min
{
δ + α

1−α , α
2p+ α3

1−αp+ α
1−αq

}
.

96 LP-Based Local Approximation for Discounted MDPs

Since we have:

α2p+ α3

1−αp+ α
1−αq = α

1−α

(
αp− α2p+ α2p+ q

)
= α

1−α (αp+ q)

< α
1−α (p+ q)

= α
1−α

< δ + α
1−α ,

the minimum is attained for the second term and we obtain:

vi0 = α2p+ α3

1−αp+ α
1−αq.

Therefore, the approximation guarantee obtained by the subset S satisfies:

vi0 − vi0 = α2p+ α3

1−αp+ α
1−αq − δ

> α2p+ α3

1−αp+ α
1−αq − αq

=
(
α2−α3+α3

1−α

)
p+ q

(
α−α+α2

1−α

)
= α2

1−αp+ α2

1−αq

= α2

1−α

= ε.

That is, the subset S consisting of three states does not suffice to obtain an ε-
approximation on vαi0 , whereas the 1–neighborhood S(i0, 1) does so. Thus, in
the described situation the column generation algorithm has to generate more
states than the neighborhood construction in order to achieve the desired
approximation guarantee. 4

We mention that the Example 3.5.16 can easily be extended for the case
ε = αn/(1 − α) with n ∈ N and n > 2, still giving the same outcome.
Although the approximation via the neighborhood construction may be ad-
vantageous compared to that using the column generation algorithm in cer-
tain situations, usually the latter outperforms the former significantly. See
Section 4.2.1 for computational results.

3.5.4 Approximation Heuristics

Similar to other applications of column generation, it is also convenient in
our context to apply heuristics. Here the aim of an approximation heuristic

3.5 Details of the Column Generation Method 97

is to accelerate the overall approximation process by (quickly) constructing a
good estimate of the required state space before the main column generation
algorithm is employed.

The approach for using approximation heuristics in our context is the
following. Once an initial subset of states S1 ⊂ S with i0 ∈ S1 has been
constructed by some heuristic, one can obtain lower and upper bounds vi0
and vi0 on the value vαi0 by solving the associated linear programs (Li0S1

) and

(Ui0
S1

). That is, the approximation guarantee achieved by the heuristic can be
evaluated. Depending on this information it may be beneficial to continue
applying the heuristic. In doing so, the heuristic should be parameterized
in terms of the known bounds vi0 and vi0 . This procedure may be iterated
until the heuristic has constructed a state space that yields some predefined
approximation guarantee, which may even be the desired guarantee for the
overall process. Thus, an approximation heuristic may be used in the spirit of
a start heuristic as well as an improving heuristic. Obviously, it will depend
on the considered MDP and the approximation heuristic itself to what ex-
tend employing the heuristic is advantageous. In designing an approximation
heuristic it is crucial to find a suitable criterion to switch from the heuristic
to the column generation algorithm. We will speak of a heuristic stopping
criterion.

The simplest idea for an approximation heuristic is to initially construct
a subset of states S1 ⊆ S consisting of all states that can be reached from
the state i0 ∈ S with at most r transitions for some r ∈ N. The resulting
state space equals the r–neighborhood S(i0, r) as specified in Definition 3.2.1.
Obviously, one can continue this heuristic when the approximation on vαi0 ob-
tained by S(i0, r) does not satisfy the heuristic stopping criterion by gener-
ating S(i0, r

′) for some radius r′ > r. We will call this generic approximation
heuristic breadth-first-exploration.

Obviously, the main drawback of the heuristic breadth-first-exploration
is that all states in the same depth w. r. t. state i0 (cf. Definition 2.1.3 on
page 11) are considered equally relevant for approximating vαi0 , which is usu-
ally not the case. One possibility to partially overcome this disadvantage
is to restrict breadth-first-exploration according to a particular policy, which
leads to a so-called policy-based approximation heuristic.

Policy-Based Approximation Heuristics

Let ε > 0 be the desired approximation guarantee, and let π be a particular
policy for the considered MDP. The goal of a policy-based approximation
heuristic is to determine an initial subset of states S1 ⊆ S with i0 ∈ S1 such

98 LP-Based Local Approximation for Discounted MDPs

Algorithm 6 Approximation using a policy-based heuristic

1: Input: an MDP M = (S,A, p, c, α) (given implicitly), a state i0 ∈ S, a
policy π for M , a generation heuristic heur, ε > 0

2: Output: lower and upper bounds vi0 , vi0 on vαi0 with (vi0 − vi0)/vi0 ≤ ε
3: let M(π) be the restriction of M for π according to Theorem 3.4.1
4: use heur in the MDP M(π) to obtain a subset of states S1 ⊆ S such that

the optimal values vi0(π) and vi0 of the linear programs (Li0S,π) and (Ui0
S),

respectively, satisfy:
vi0 − vi0(π)

vi0(π)
≤ ε

5: apply Algorithm 4 with initial subset of states S1

that we have:
vi0 − vi0(π)

vi0(π)
≤ ε, (3.5.21)

for the optimal value vi0(π) of the linear program (Li0S1,π
) described in Sec-

tion 3.4.1 and the optimal value vi0 of (Ui0
S1

). Recall that vi0(π) is a lower
bound for the component vαi0(π) of the value vector of policy π, while vi0 is an
upper bound on vαi0 . We will argue later why it is advantageous to consider
an upper bound on vαi0 instead of one for vαi0(π).

Any method to construct a subset S1 ⊆ S with i0 ∈ S1 satisfying Inequal-
ity (3.5.21) may be used. We refer to this method as a generation heuristic,
each of which leads to a different policy-based heuristic. Clearly, it will typ-
ically take several iterations of the employed generation heuristic until the
constructed state space S1 fulfills Inequality (3.5.21). Note that each itera-
tion requires two linear programs to be solved. Once the final state space S1

has been obtained, the main approximation is carried out by the column
generation algorithm. The concept for incorporating a policy-based heuristic
in the main approximation process is summarized in Algorithm 6.

In using a policy-based heuristic, we hope that

1. the generation heuristic quickly computes a subset S1 ⊆ S with i0 ∈ S1

such that Inequality (3.5.21) is satisfied,

2. the subset S1 only contains few states not needed by the pure column
generation algorithm to approximate vαi0 ,

3. and that the state space S1 is already close to a subset of states which
is required for the approximation of vαi0 .

3.5 Details of the Column Generation Method 99

It is quite clear that these three properties are desirable as they will lead
to a fast overall approximation process. In this context the following issues
are to be taken into account. Solving linear programs of the type (Li0S,π) for
some S ⊆ S with i0 ∈ S is easy since due to Corollary 3.4.2 an optimal
solution can also be obtained by solving a system of linear equations. This
obviously helps to achieve the first property. Nevertheless, solving the two
linear programs is still quite time-consuming, which makes it beneficial to do
so rarely by the policy-based heuristic.

Note further that for each subset S ⊆ S with i0 ∈ S, the linear pro-
gram (Ui0

S,π) is a relaxation of (Ui0
S). Therefore, we have for the associated

optimal values vi0(π) ≥ vi0 . The difference between vi0(π) and vi0 may be
significant, even if the policy π is optimal. This is the reason for using up-
per bounds on vαi0 instead of vαi0(π) in Inequality (3.5.21) since a policy-based
heuristic may generate too many states otherwise. Obviously, such a behavior
would be contrary to the second property above.

Usually, states that can be reached from i0 by using good policies tend to
be more important for the approximation of vαi0 than those reached by bad
policies. Therefore, the second and the third property depend on the quality
of the used policy π. Fortunately, for many MDPs, especially those arising
in our context, often a policy is known that performs quite well.

Now assume that the considered policy-based heuristic terminates having
constructed a state space S1 ⊆ S with i0 ∈ S1. Let vi0(π) and vi0 be the asso-
ciated final bounds satisfying Inequality (3.5.21). Obviously, the value vi0(π)
does not need to be a lower bound on vαi0 , unless policy π is optimal. Switch-
ing to the main approximation process means to initially compute the valid
lower bound on vαi0 w. r. t. subset S1 as the optimal value vi0 of the linear

program (Li0S). Since (Li0S,π) is a relaxation of (Li0S), we have vi0 ≤ vi0(π),
which implies:

vi0 − vi0
vi0

≥
vi0 − vi0(π)

vi0(π)
.

Thus, the main approximation goal, i. e., (vi0 − vi0)/vi0 ≤ ε, is usually not
reached yet. Even if the policy π is optimal, we mostly still have vi0 < vi0(π)
although vi0(π) is a valid lower bound on vαi0 . We propose the following
policy-based heuristics for a given policy π.

breadth-first-policy-exploration A simple policy-based heuristic can be de-
rived from the heuristic breadth-first-exploration by restricting the construc-
tion w. r. t. a given policy π. That is, breadth-first-exploration is applied to
the restricted MDP according to π as described in Section 3.4.1 to obtain
lower bounds on vαi0(π). We call this heuristic breadth-first-policy-exploration.

100 LP-Based Local Approximation for Discounted MDPs

Note that for given r ∈ N breadth-first-policy-exploration constructs a sub-
set S(i0, r, π) of the r–neighborhood S(i0, r), where S(i0, 0, π) := {i0} and:

S(i0, r, π) := S(i0, r − 1, π) ∪ {j ∈ S | ∃i ∈ S(i0, r − 1, π) : pij(π(i)) > 0} ,

for each r ∈ N. A precise implementation of breadth-first-policy-exploration is
given in Section 4.2.4 along with computational results.

However, the mentioned disadvantage of breadth-first-exploration is only
partially resolved by restricting to policy π as the heuristic does not take
into account transition probabilities, but solely the number of transitions for
reaching a state by π. This observation motivates the following heuristics.

pricing-policy-exploration As described in Section 3.4.1, the column gen-
eration algorithm can be applied to approximate from below the compo-
nent vαi0(π) of the value vector of policy π. We will refer to the policy-based
heuristic based on this generation heuristic as pricing-policy-exploration. The
motivation for using pricing-policy-exploration is to benefit from the easier ap-
proximation of vαi0(π) due to the possibility to faster solve the linear programs
providing the lower bounds. However, this heuristic may still be a bit slow
since new states are generated quite costly and usually many linear programs
are solved.

weighting-policy-exploration The next policy-based heuristic can be seen
as an approximation of pricing-policy-exploration. The idea is to generate
preferably the same states, but without having to compute the reduced profits
of the candidate states that could be added next to the reduced state space.
This way, one can refrain from solving many linear programs since their
solutions are only needed to check the heuristic stopping criterion given by
Inequality (3.5.21).

Let S ⊆ S be a subset of states with i0 ∈ S. Consider the policy basic
solution of the given policy π for the dual linear program to (Li0S,π). By
Theorem 3.5.10 the reduced profit p̄j of a state j ∈ S \ S w. r. t. this basic
solution equals:

p̄j =
∑

extended π-induced
(i0, j)-path P

w(P).

We call a π-induced path P = (i1, π(i1), i2, π(i2), . . . , in = j) for some n ∈ N
acyclic if ih 6= ik for each h, k ∈ {1, . . . , n} with h 6= k. Instead of using the
exact values for the reduced profits, the heuristic weighting-policy-exploration
approximates the formula above by taking into account solely the weight of
acyclic paths. Moreover, weighting-policy-exploration only considers a proper

3.5 Details of the Column Generation Method 101

subset of all acyclic paths, as we will see soon. This way, the heuristic
computes lower bounds on the reduced profits.

The heuristic weighting-policy-exploration maintains a weight wj for each
candidate state j ∈ S \ S1 that should approximate the reduced profit p̄j.
Initially, we start with the subset S1 = {i0}. Moreover, for each j ∈ S \ S1

that is a successor of i0, we set its weight to wj = αpi0j(π), which obvi-
ously equals the weight of the path (i0, π(i0), j). The weight of each other
state j ∈ S\S1 is initialized by wj = 0. Then, in each iteration of the heuris-
tic a state i with maximum weight wi is added to the subset S1 and the
weights of its successor states are updated as follows. The weight wj of each
successor j ∈ S \ S1 of state i is increased by αpij(π)wi, which reflects the
total weight of all (i0, i)-paths considered by wi extended by the transition
leading to state j. Note that this update operation ignores all acyclic (i0, j)-
paths that are given by concatenating an (i0, i)-path considered by wi and a
path (i, π(i), i1, π(i1), . . . , in, π(in), j) for n ∈ N such that i1, . . . , in ∈ S1.

A crucial aspect in making the heuristic weighting-policy-exploration run
fast is the question at which points the linear programs (Li0S1,π

) and (Ui0
S1

)
should be solved for the current subset S1 in order to check for Inequal-
ity (3.5.21). On the one hand, evaluating Inequality (3.5.21) too often will
usually result in bad running times since many linear programs are to be
solved. On the other hand, doing this check rarely may imply that the con-
structed states space becomes too large.

Note that by the Theorems 3.5.12 and 3.1.13 we have for each subset S ⊆
S with i0 ∈ S:

vi0(π) ≤ vi0(π) + vαmax

∑
j∈S\S

p̄j,

where vi0(π) and vi0(π) are the optimal values of (Li0S,π) and (Ui0
S,π), respec-

tively. That is, the absolute approximation guarantee dabs := vi0(π)− vi0(π)
w. r. t. policy π obtained by subset S1 is bounded by dabs ≤ vαmax

∑
j∈S\S1

p̄j.
The approach of the heuristic weighting-policy-exploration is to derive an es-
timate for the relative difference drel := (vi0 − vi0(π))/vi0(π). However, the
value drel is obviously hardly related to dabs for the following reasons:

1. The relative difference drel considers the upper bound vi0 for vαi0 , while
the value dabs uses a bound on vαi0(π).

2. Without taking into account a guess for vi0(π) the absolute differ-
ence dabs has nothing to do with the relative difference drel in general.

We use the term δvαmax

∑
j∈S\S1

wj as estimate for the relative approximation
guarantee drel for some value δ > 0. Here the factor δ is used to outweigh

102 LP-Based Local Approximation for Discounted MDPs

the estimation error due to the reasons above plus the fact that p̄j ≥ wj for
each state j ∈ S \ S1.

Note that the total weight
∑

j∈S\S1
wj decreases whenever a state i ∈ S\S1

is added to the subset S1: the sum decreases by wi and increases at most
by αwi. Once we obtain a subset S1 such that δvαmax

∑
j∈S\S1

wj ≤ ε, the
linear programs (Li0S,π) and (Ui0

S) are solved and the achieved guarantee drel is
evaluated. If Inequality (3.5.21) is not yet satisfied, the factor δ is updated
such that the new estimate fulfills:

δvαmax

∑
j∈S\S1

wj =
vi0 − vi0(π)

vi0(π)
.

This way the heuristic weighting-policy-exploration is continued until Inequal-
ity (3.5.21) is satisfied or there do not exist further states with positive
weights. Since it is possible to modify the error guess δ this way, its initial
value is not that important. However, it has to be ensured that the initial
value for δ is not too large as weighting-policy-exploration may construct too
many states otherwise. Algorithm 7 describes the heuristic weighting-policy-
exploration in detail. Note that after updating the error estimation factor δ
in Step 14, the inequality in Step 9 will not be satisfied until at least one
additional state has been added to S1.

3.5.5 Column Generation Implementation

In this section, we mention some details concerning the implementation of
our column generation algorithm for approximating the component vαi0 of the
optimal value vector of a given MDP (S,A, p, c, α) for some state i0 ∈ S.
Moreover, we present the complete version of our approximation algorithm
including all possible ingredients described earlier.

So far, we have not been dealing with the issue of solving the linear
programs themselves arising in the column generation process. Recall that
solving the linear programs (Ui0

S) for S ⊆ S to obtain upper bounds on the
value vαi0 is only required to assess the approximation guarantee achieved so
far. Apart from that, their solutions do not affect the approximation process
at all. Therefore, it might be reasonable to solve these linear programs only
once in a while. At each iteration of the column generation algorithm where
no upper bound on vαi0 is determined via a linear program, we can still make
use of the weaker upper bound computed by the reduced profits as described
in Corollary 3.5.14. Note that these bounds can be determined almost for
free by all proposed pricing strategies except for min-depth.

All linear programs encountered in the column generation algorithm are

3.5 Details of the Column Generation Method 103

Algorithm 7 Heuristic weighting-policy-exploration

1: Input: an MDP (S,A, p, c, α) (given implicitly), a state i0 ∈ S, a policy π
for M , an initial error estimation δ > 0, ε > 0

2: Output: a subset S1 ⊆ S with i0 ∈ S1 such that Inequality (3.5.21) is
satisfied for the associated bounds vi0(π) and vi0

3: S1 ← {i0}
4: wj ← 0 for each j ∈ S \ S1

5: for each j ∈ S \ S1 with pi0j(π) > 0 do
6: wj ← αpi0j(π) . initialize weights
7: end for
8: while there exists j ∈ S \ S1 with wj > 0 do
9: if δvαmax

∑
j∈S\S1

wj < ε then

10: determine the optimal values vi0(π) and vi0 of the linear pro-

grams (Li0S,π) and (Ui0
S), respectively

11: if vi0(π) and vi0 satisfy Inequality (3.5.21) then
12: return S1

13: else
14: update the error estimation δ by:

δ ←

vαmax

∑
j∈S\S1

wj

−1

vi0 − vi0(π)

vi0(π)

15: end if
16: end if
17: i← argmaxj∈S\S1

{wj} . get state to be added
18: S1 ← S1 ∪ {i}
19: for each j ∈ S \ S1 with pij(π) > 0 do
20: wj ← wj + αpij(π)wi . update weights
21: end for
22: end while
23: return S1 . vαi0(π) computed exactly

solved using the linear and mixed integer programming solver Cplex [ILO],
version 12.1. In Section 4.2.2 we will compare different possible solvers, i. e.,
the primal and dual simplex method and the barrier method.

We summarize the different ingredients of our approximation algorithm:

• a solver for the arising linear programs that may additionally feature
the construction of initial bases (see the end of Section 3.5.2),

104 LP-Based Local Approximation for Discounted MDPs

Algorithm 8 Column generation based approximation algorithm

1: Input: an MDP (S,A, p, c, α) (given implicitly), a state i0 ∈ S, ε > 0,
a linear programming solver solver, an approximation heuristic heur, a
pricing strategy pricer, n ∈ N, f ∈ N

2: Output: lower and upper bounds vi0 , vi0 on vαi0 with (vi0 − vi0)/vi0 ≤ ε
3: apply heur to construct an initial subset of states S ⊆ S with i0 ∈ S
4: i← 0 . iteration counter
5: solve (Li0S) by solver, and let vi0 be the optimal value
6: if i mod f = 0 then
7: solve (Ui0

S) by solver, and let vi0 be the optimal value

8: end if
9: if (vi0 − vi0)/vi0 ≤ ε then . check approximation goal

10: return vi0 , vi0
11: else
12: i← i+ 1
13: apply pricer to determine a subset of states Snew ⊆ S \ S with p̄j > 0

for each j ∈ Snew, |Snew| ≤ n, and |Snew| = n if possible, as well as an
upper bound vi0 on vαi0 . according to Corollary 3.5.14

14: if Snew = ∅ then
15: return vi0 , vi0 . vi0 = vαi0 due to Theorem 3.3.2
16: else
17: S ← S ∪ Snew

18: go to step 5
19: end if
20: end if

• a frequency for computing the current upper bound on vαi0 via the as-
sociated linear program,

• a pricing strategy (see Section 3.5.3),

• a number of states to be added in one pricing iteration, and

• an optional approximation heuristic (see Section 3.5.4).

Algorithm 8 gives an overview of our approximation algorithm including the
mentioned additional features. Note that Algorithm 8 is an implementation
of the generic Algorithm 4.

We should mention that in practice, Snew = ∅ in Step 14 does not neces-
sarily imply that the equation vi0 = vαi0 is fulfilled exactly due to numerical
problems. Since we have |S| <∞, it is clear that Algorithm 8 is finite.

3.5 Details of the Column Generation Method 105

Finally, we compare our approximation algorithm to the approach of
Dean et al. [DKKN93]. The aim of their method is to find an optimal policy
for a state space restricted to those states which are likely to be encoun-
tered within a smaller number of transitions. Similar to our approach, their
algorithm computes an optimal policy for the induced MDP in each itera-
tion and extends the restricted state space dynamically depending on the
obtained policy. Instead of linear programming, policy iteration is used to
compute the optimal policies. The main advantages of Algorithm 8 compared
to this method are the following. Firstly, in the approximation process we
are able to monitor the current approximation guarantee, while the approach
of Dean et al. only provides lower bounds on vαi0 . Thus, they cannot deter-
mine how good the current approximation really is. Secondly, we are able
to properly guide the expansion of the restricted state space as the reduced
profits of the candidate states are available. This way, our approximation
algorithm benefits substantially as we will see in Section 4.2.3. The method
of Dean et al. must use heuristic ideas to increase S, in particular, one strat-
egy aims to estimate the reduced profits. Probably, both algorithms have a
similar run-time per iteration since the policy iteration method and linear
programming method for computing the optimal value vector are equivalent
as described in Section 2.2.4. Our algorithm may be a bit slower per iteration
when a second linear program is solved.

3.5.6 Approximation Without Linear Programming

In this section, we show that our approximation method given in Algorithm 8
can be implemented equivalently without using any technique from linear
programming. Instead, we make use of the policy iteration method. Since
we will handle different MDPs below, the optimal value vector of an MDP M
will again be denoted by vαM to prevent ambiguity. Let M = (S,A, p, c, α)
be an MDP and let i0 ∈ S be a particular state. Given any initial subset
of states S ⊆ S with i0 ∈ S, the alternative method to approximate the
value vαM,i0

is as follows.

In a first step, we have to determine the lower and upper bounds vi0
and vi0 w. r. t. the subset S for the value vαM,i0

that are otherwise obtained

as the optimal values of the linear programs (Li0S) and (Ui0
S), respectively.

Using the policy iteration method as described in Algorithm 2 on page 20
we compute an optimal policy π for M(S) and the optimal value vector
vαM(S) = vαM(S)(π). By Theorem 3.1.8 the vector vαM(S) equals the optimal

solution of the linear program (LΣ
S) which is by Corollary 3.1.5 also optimal

for (Li0S). Thus, the lower bound vi0 is given by vi0 = vαM(S),i0
. As described

106 LP-Based Local Approximation for Discounted MDPs

Algorithm 9 Approximation algorithm without linear programming

1: Input: an MDP (S,A, p, c, α) (given implicitly), a state i0 ∈ S, ε > 0
2: Output: lower and upper bounds vi0 , vi0 on vαi0 with (vi0 − vi0)/vi0 ≤ ε
3: determine any initial subset of states S ⊆ S with i0 ∈ S, e. g., by using

one of the proposed approximation heuristics
4: use the policy iteration method to compute optimal policies π and µ for

the induced MDPs M(S) and M ′(S) as well as the value vectors vαM(S)(π)

and vαM ′(S)(µ)

5: vi0 ← vαM(S),i0
(π) and vi0 ← vαM ′(S),i0

(µ)

6: if (vi0 − vi0)/vi0 ≤ ε then
7: return vi0 , vi0
8: else
9: determine the policy basic solution uπ of π by solving the associated

system of linear equations

10: determine some subset of states Snew ⊆ S \ S with the property
p̄j := α

∑
i∈S
∑

a∈A(i) pij(a)uπia > 0 for each j ∈ Snew by using one
the proposed pricing methods

11: S ← S ∪ Snew

12: go to step 4
13: end if

in Section 3.1.2 the upper bound vi0 equals the component vαM ′(S),i0
of the

optimal value vector for the upper-bound S-induced MDP M ′(S), see Re-
mark 3.1.11. Therefore, the value vi0 can be obtained by the policy iteration
method in a similar way as the lower bound.

After the bounds on vαi0 have been obtained, we check whether the desired
approximation is achieved. If this is not the case, further states are to be
generated. To this end, we compute the policy basic solution uπ of (DLi0S)
for the policy π that is optimal for the induced MDP M(S) by solving the
associated system of linear equations. Recall that by Theorem 3.5.3 the
basic solution uπ is optimal for (DLi0S) since π is optimal for M(S). Having
an optimal dual solution at hand, the pricing problem can be handled as
described in Section 3.5.3 to added new states to S.

The described method is summarized in Algorithm 9. Typically, it will be
advantageous to appoint the obtained optimal policies for M(S) and M ′(S)
as initial policies for the policy iteration methods in the next iteration. We
will not compare the two equivalent versions of the approximation algorithm
numerically. However, we are convinced that due to today’s practical effi-
ciency of linear programming solvers Algorithm 9 will not be competitive
compared to the original column generation method given in Algorithm 8.

Chapter 4

Computational Results

In this chapter we apply our approximation algorithm to analyze various
policies for exemplary discounted MDPs. The Markov decision processes
we consider here emerge from academic and real-world online optimization
problems. Our results will demonstrate that the algorithm is capable to
provide realistic performance indicators for concrete policies. Additionally,
we study computational aspects of the approximation algorithm.

The chapter is arranged as follows. Section 4.1 describes how to model a
given online optimization problem as Markov decision process in general and
introduces the instances considered in the sequel. In Section 4.2, we numeri-
cally compare our approximation algorithm with the neighborhood construc-
tion according to Theorem 3.2.2. Moreover, we analyze the performance of
different solvers for the encountered linear programs and compare the pricing
strategies and approximation heuristics introduced in Section 3.5.3 and Sec-
tion 3.5.4, respectively. Finally, we apply the column generation algorithm
to evaluate different policies for the considered MDPs in Section 4.3.

4.1 Modeling Markov Decision Processes for Online
Optimization Problems

We already mentioned that we see the main motivation of our approximation
algorithm in the need to analyze online optimization problems and especially
online algorithms. The framework based on our approach is as follows. In
order to analyze a given online algorithm for a given online optimization prob-
lem, the first step is to define a Markov decision process modeling the online
problem. Usually, this construction is not completely straightforward since
there are often different alternatives for formulating an associated Markov
decision process and often restrictions have to be made as we will describe
below. Furthermore, it is required to translate the considered online algo-
rithm into a policy for the Markov decision process. This step is trivial as the
chosen action of the policy for a given state is simply given by the decision
made by the online algorithm. Then, we locally evaluate this policy using
our approximation algorithm applied to a discounted MDP that is given by

107

108 Computational Results

the Markov decision process and some expedient discount factor. This evalu-
ation is based on comparing the total expected discounted cost of the policy
to that of an unknown optimal policy or other concrete policies. Similarly,
the quality of a single action of the considered policy can be analyzed. This
way, we obtain for the considered situation also an evaluation of the online
algorithm or its current decision, respectively. It is important that the ob-
tained evaluation has to be interpreted carefully by taking into account the
possible restrictions and assumptions of the considered MDP model, e. g., the
used discount factor and used transition probabilities. In the following, we
will often use the notion of a policy as a synonym for online algorithm.

4.1.1 General Modeling Approach

In the following we describe in general how a given online optimization prob-
lem can be modeled as a Markov decision process. Most online optimization
problems studied in the literature can be formulated as a so called request-
answer game that was originally introduced by Ben-David et al. [BDBK+90].
For minimization problems, the definition is as follows.

Definition 4.1.1 (Request-answer game) A request-answer game is de-
fined as a triple (R,A, C) consisting of a request set R, an answer set A, and
a sequence C of cost functions C1, C2, . . . , where Cn : Rn ×An → R+ ∪ {∞}
for each n ∈ N. Here Cn(r1, . . . , rn, a1, . . . , an) is the total incurred cost by
giving answers a1, . . . , an ∈ A to requests r1, . . . , rn ∈ R. 4

Definition 4.1.2 (Online algorithm) Let the triple (R,A, C) be an online
optimization problem. An online algorithm for (R,A, C) is a sequence of
functions g1, g2, . . ., where gn : Rn → A for each n ∈ N. 4

Note that this definition points out that an online algorithm must make
decisions based only on the information obtained by previous requests. Ob-
viously, depending on the sequence of requests (r1, . . . , rn) and the previously
given answers (a1, . . . , an−1) some (or even all) answers an ∈ A may be in-
feasible. This is modeled by a cost of Cn(r1, . . . , rn, a1, . . . , an) = ∞. In the
following we assume that there always exists an answer an ∈ A such that the
total incurred cost up to request rn is finite.

One can distinguish two different classes of online optimization problems.
In the so-called sequence model the requests must be served irrevocably in
the order of their occurrence, i. e., only after rj has been served, the next
request rj+1 becomes known. In the time stamp model each request has an
additional release time at which it becomes known and available for service.

4.1 Modeling Markov Decision Processes for Online Problems 109

Here the requests arrive in order of non-decreasing release times. An online
algorithm must determine its behavior at a certain moment t in time de-
pending on the requests released up to time t and the current time t. The
difference to the sequence model is that the online algorithm is allowed to
wait and to revoke tentative decisions, and that requests need not be served
in the order of their occurrence. We mention that the request-answer game
covers both models.

Our approach to construct a Markov decision process model (S,A, p, c) of
a request-answer game (R,A, C) is as follows:

• The state space S is defined by:

S = {(r1, . . . , rn, a1, . . . , an−1) |
n ∈ N, r1, . . . , rn ∈ R, a1, . . . , an−1 ∈ A}.

• For each state i = (r1, . . . , rn, a1, . . . , an−1) ∈ S, the set of associated
actions is given as:

A(i) = {an ∈ A | Cn(r1, . . . , rn, a1, . . . , an) <∞}.

• For each state i = (r1, . . . , rn, a1, . . . , an−1) ∈ S and each possible ac-
tion an ∈ A(i), the stage cost for the transition to a state j ∈ S is
defined by:

ci(an, j) = Cn(r1, . . . , rn, a1, . . . , an)− Cn−1(r1, . . . , rn−1, a1, . . . , an−1).

• The transition probabilities pij(an) for i, j ∈ S and an ∈ A(i) such that
i = (r1, . . . , rn, a1, . . . , an−1) and j = (r1, . . . , rn+1, a1, . . . , an) may be
chosen arbitrarily.

Obviously, this construction will result in an infinite state space since each
state stores the complete history, which is required to obtain a stationary
system. Thus, in the sense of Definition 2.1.1 on page 9, the tuple (S,A, p, c)
is not a Markov decision process. Recall that an infinite state space is not
necessarily a problem for our approximation algorithm as the method only
considers a smaller local part of the total set of states.

Note that it is usually not required to maintain the complete history:
each state i only requires the information that is necessary

• to specify the possible actions A(i),

• to compute the expected stage cost ci(a, j) for each a ∈ A and each
successor state j of i, and

110 Computational Results

• to determine the transition probability pij(a) for each a ∈ A and each
state j.

Most online optimization problems that are considered in the literature or
arise from practical applications feature a structure that allows to reduced
the information maintained by each state. This may often result in a finite
state space.

Since competitive analysis captures the worst case behavior of online algo-
rithms only, models for online optimization problems typically lack stochastic
information. To formulate a Markov decision process, it is required to come
up with some suitable distribution for the transition probabilities. Some-
times it is reasonable to use the uniform distribution. Examples follow in the
Sections 4.1.3–4.1.5.

Recall that the performance of our approximation algorithm heavily de-
pends on the number of successors of a state that are reached with significant
probability. When this number is large, the local state spaces to obtain a
given approximation guarantee will be large also, making the method per-
form poorly. In modeling a Markov decision process for an online optimiza-
tion problem, this is the most serious issue. In order to construct a tractable
Markov decision process, often simplifying restrictions especially on the set
of possible requests R has to be made, as we will see in the models for the
considered online optimization problems described next.

The three problems under consideration are interesting to be analyzed
by our approach due to different reasons that are typical for online opti-
mization and competitive analysis. In the first case we face a weird result
from competitive analysis since a totally stupid online algorithm outperforms
an apparently appropriate algorithm, see [KdPSR08]. In the second prob-
lem [HKM+05] the situation is that it seems to be difficult to evaluate a
presumably improved variant of an online algorithm by means of competi-
tive analysis (at least we were not able to do so). The last problem [HKR00]
features the case that it is impossible to provide any performance distinctions
for different online algorithms.

4.1.2 Issues for Analyzing Associated Discounted MDPs

Recall that our approximation algorithm analyzes discounted MDPs, i. e.,
the objective criterion is to minimize the total expected α-discounted cost
for some discount factor α ∈ [0, 1). Unfortunately, the practical efficiency
of the algorithm crucially depends on α. The greater the discount factor,
the greater will usually be the size of the required state space to obtain a
given approximation. In our context it is usually not required to consider

4.1 Modeling Markov Decision Processes for Online Problems 111

a discount factor close to one, as needed by typical finances applications.
Instead, we should select a moderate discount factor that provides significant
results concerning the comparison of different policies.

Moreover, the effect of discounting incurred costs has to be taken into
account seriously in the analysis for a given Markov decision process. In the
models described in the following sections, the stage costs represent either the
increase of a maximum cost value or the increase of a total cost value. Due
to discounting, we only consider the discounted increase. This makes early
increases more costly than those occuring later. Thus, for a long (i, j)-path in
any of these MDPs the total expected discounted cost is quantitatively hardly
related to the originally modeled maximum or total cost value. Nonetheless,
the total expected discounted cost of a given policy may still reflect its quality
appropriately in comparison to other policies.

Using the trivial bounds 0 ≤ vαj ≤ vαmax for the components vαj , j ∈ S of
the optimal value vector in our approximation method typically gives weak
approximation results when these bounds are weak also. We described in
Remark 3.1.17 on page 50 that for each j ∈ S improved lower and upper
bounds 0 ≤ vαmin(j) ≤ vαj ≤ vαmax(j) ≤ vαmax can be incorporated in the
considered linear programs instead. Exploiting good state-specific bounds
is very advantageous or even crucial to apply our algorithm effectively. For
each considered MDP, we will also describe the employed lower and upper
bounds.

Note that these improved bounds are valid for the components of the
optimal value vector. The upper bound vαj ≤ vαmax(j) for a state j ∈ S,
however, may be infeasible for the value vector component of a given policy π
in general, i. e., vαj (π) > vαmax(j). On the other hand, each lower bound
vαmin(j) ≤ vαj for state j is also valid for vαj (π) since we have vαj ≤ vαj (π).

4.1.3 Bin Coloring

A simple online optimization problem that was motivated by a real-world
problem arising in an order picking problem is online bin coloring [KdPSR08].
We are given a set of colors C ⊆ N and a request sequence r1, r2, . . . , rn for
some n ∈ N consisting of unit size items, where each item rk for k ∈ {1, . . . , n}
has a color ck ∈ C. The items are to be packed into bins, all of the same
size b ∈ N, as soon as they arrive. Repacking an item later on is not allowed.
At each moment there are m ∈ N empty or partially filled bins. Whenever a
bin is full, it is closed and replaced by a new empty bin. The objective is to
pack the items in such a way that the maximum number of different colors
in a bin is as small as possible.

112 Computational Results

Known Results

A natural greedy-type algorithm would put an item with a color already
present in one of the bins into the same bin. If the color is currently not
present in one of the bins, one puts it into a bin which currently has the least
number of distinct colors. This algorithm is called GreedyFit. It has been
shown by Krumke et al. [KdPSR08] that the competitive ratio of GreedyFit
is at least 2m, i. e., twice the number of bins that are available simultaneously.
Furthermore, the totally stupid algorithm OneBin, which uses only one bin
until it is filled completely and puts all items into that bin, achieves a compet-
itive ratio of at most 2m− 1, making it superior to GreedyFit in terms of the
competitive ratio. Not surprisingly, the opposite behavior is observed in sim-
ulation experiments, where GreedyFit outperforms OneBin significantly. This
weird result from competitive analysis motivates to analyze the online bin
coloring problem and associated online algorithms w. r. t. a stochastic model,
e. g., a Markov decision process, which may capture the observed behavior
better. Using a new method based on the notion of stochastic dominance,
Hiller and Vredeveld [HV08] proved that the performance of GreedyFit is
stochastically better than that of OneBin for any number of items processed.

Markov Decision Process Model

Our Markov decision process model (S,A, p, c) for online bin coloring is as
follows. A state i ∈ S is of the form i = (c, χ, f1, C1, . . . , fm, Cm). It specifies
the color c ∈ C of the current request that is to be packed into a bin next.
Moreover, the state i needs to keep track of the maximum colorfulness χ ∈ N,
i. e., the maximum number of different colors attained by a bin so far. Note
that the maximum colorfulness may have been attained by a bin that was
closed already. Finally, the state i features the current configuration of each
bin k ∈ {1, . . . ,m} by the number of items fk ∈ N and the set of different
colors Ck ⊆ C contained in that bin. It is quite clear that all the necessary
information in a Markov decision process are available from this state struc-
ture. Due to the characteristics of the online bin coloring problem, the state
space S is as follows:

S = {(c, χ, f1, C1, . . . , fm, Cm) | c ∈ C,
max

1≤k≤m
{|Ck|} ≤ χ ≤ min{b, |C|},

|Ck| ≤ fk < b ∀k ∈ {1, . . . ,m}}.

We mention that it is not required to distinguish the different bins. Thus
in order to reduce the state space, one can consider an (unordered) multiset

4.1 Modeling Markov Decision Processes for Online Problems 113

of bin configurations instead of the sequence given above. We did so in our
implementation.

Since a new item can be packed into any one of the m bins, the set of
possible actions is A(i) = {1, . . . ,m} for each state i ∈ S. Assume that at a
given state i = (c, χ, f1, C1, . . . , fm, Cm) action a ∈ A(i) is used. Then, each
possible successor state j ∈ S is of the form j = (c′, χ′, f ′1, C

′
1, . . . , f

′
m, C

′
m),

where the data are as follows. For each k ∈ {1, . . . ,m}\{a}, we have f ′k = fk
and C ′k = Ck, and for the action a, we obtain:

f ′a =

{
fa + 1, if fa < b− 1,

0, if fa = b− 1,

and

C ′a =

{
Ca ∪ {c}, if fa < b− 1,

∅, if fa = b− 1.

The new maximum colorfulness χ′ is given by:

χ′ = max {χ, |Ca ∪ {c}|} .

Finally, the color c′ of the next item may be any color from C.
Note that the only random parameter in the Markov decision process is

the color of future items. That is, for each two states i, j ∈ S (with parameters
as denoted above) and each action a ∈ A(i), the transition probability pij(a)
only depends on the color c′(j) of the new item. We assume that this ran-
dom color is independent of the previous items and colors. One may choose
any probability distribution, e. g., the uniform distribution. The associated
stage cost ci(a, j) equals the increase of the maximum colorfulness due to the
action a:

ci(a, j) =

{
1, if |Ca| = χ and c /∈ Ca,
0, otherwise.

Notice that the stage cost ci(a, j) is independent of the successor state j ∈ S.
This way the total sum of stage costs for the transitions of an (i, j)-path
in the Markov decision process equals the total increase of the maximum
colorfulness from state i to state j.

Remark 4.1.3 When we are only interested in uniform transition proba-
bilities and in such online algorithms that always put an item with a color
already present in a bin into such a bin, one can formulate a simpler Markov

114 Computational Results

decision process model. This model can neglect the explicit colors of the
items. Concerning the colors, a state only specifies for each bin, the number
of different colors contained, and whether the color of the current item is
already present in a bin or not. The resulting states space is significantly
smaller than the state space for the general model described above. 4

We mention that the proposed model described above is very similar to
the Markov chain model used in [HV08]. The described Markov decision
process for bin coloring and policies associated with the mentioned online
algorithms are analyzed in Section 4.3.2.

Improved Bounds

For the bin coloring MDP we do not employ state-specific lower bounds,
but simply use the trivial bound vαmin(j) = 0 for each state j ∈ S. On the
other hand, the following improved upper bound vαmax(j) for a state j ∈ S
is incorporated. Clearly, the total expected α-discounted cost vαj (π) of any
policy π gives a feasible upper bound on vαj . Let us call a bin k ∈ {1, . . . ,m}
critical w. r. t. a color c ∈ C if the number of different colors |Ck| present
in that bin equals the maximum colorfulness χ and c /∈ Ck. That is, the
maximum colorfulness increases if color c is packed into a critical bin w. r. t.
color c. We consider the online algorithm ACB (AvoidCriticalBins) which is
as follows.

ACB If the color of the next item is already present in a bin, pack the item
into that bin. Otherwise, if there exists a bin that is not critical choose
such a bin, if all bins are critical pack the item into any bin.

Note that ACB generalizes GreedyFit.

Assume that there exist enough colors such that the maximum colorful-
ness χ = b is eventually attained by any policy for each initial state (one
can show that m(b − 1) + 1 colors suffice). Consider a state j where the
current color is c ∈ C. Obviously, a worst sequence of requests for the online
algorithm ACB is such that each color is not present in one of the m open
bins. Thus, we consider a sequence where each new color after the color c
is not contained in any bin. Let (f1, C1, . . . , fm, Cm) be the bin configura-
tion after the item with color c has been packed by ACB, and let χ be the
maximum colorfulness before that item was packed. In order to compute
the total α-discounted cost of ACB for this sequence, one has to determine
the stages k1, . . . , kb−χ, where the maximum colorfulness is increased. This

4.1 Modeling Markov Decision Processes for Online Problems 115

instance m b n p1, . . . , pn

bc-2-3-6-uni 2 3 6 uniformly distributed
bc-2-3-6-spe 2 3 6 0.30 0.30 0.20 0.10 0.07 0.03
bc-3-3-7-uni 3 3 7 uniformly distributed
bc-3-3-7-spe 3 3 7 0.30 0.27 0.15 0.10 0.09 0.06 0.03
bc-3-4-12-uni 3 4 12 uniformly distributed
bc-3-4-12-spe 3 4 12 0.30 0.15 0.10 0.09 0.07 0.07

0.06 0.05 0.04 0.03 0.02 0.02

Table 4.1: Considered instances of the bin coloring Markov decision process.

results in a total α-discounted cost of:

vαmax(j) :=

b−χ∑
l=1

αkl ,

which is the upper bound on vαj we will use for state j. It is straightforward
to develop an algorithm for computing the numbers k1, . . . , kb−χ and to show
that the these numbers are independent of different possible implementations
of ACB. We skip the details.

Studied Instances

In this section we introduce the instances of the described Markov decision
process modeling the online bin coloring problem to be studied in the sequel.
An instance is uniquely specified by the following parameters:

• a number of simultaneously available bins m ∈ N,

• a bin capacity b ∈ N,

• a number n ∈ N defining a set of different colors C = {1, . . . , n}, and

• color probabilities 0 ≤ p1, . . . , pn ≤ 1 with
∑n

k=1 pk = 1, where pk is the
probability that the next item has color k for each k ∈ {1, . . . , n}.

We denote each concrete Markov decision process by the corresponding
parameters m, b, n and the flag uni or spe, specifying whether the color
probabilities are uniformly distributed or not. Table 4.1 shows the instances
we will consider.

116 Computational Results

4.1.4 Target Date Assignment

The second online optimization problem we consider is a small online target
date assignment problem. This kind of problems arises, e. g., in the context
of dispatching service technicians. In [HKM+05] we introduced this type of
online optimization problems and analyzed associated online algorithms by
competitive analysis.

An instance of the online target date assignment problem is given by a
sequence of requests σ = r1, r2, . . . , rn for some n ∈ N and a downstream
problem Π, which is an offline optimization problem for which arbitrary sub-
sets of requests are feasible inputs. Each request rk for k ∈ {1, . . . , n} has an
integral release date tk and must be assigned immediately and irrevocably to
a target date in the time period tk + 1, . . . , tk + δk, where δk is the allowed
time for deferring the service of request rk, which is also revealed upon arrival
of the request. In the following we consider only the case of uniform deferral
times, that is, δk = δ for all requests rk and some δ ∈ N.

A solution of an online target date assignment problem w. r. t. a down-
stream problem Π is feasible if

• each request is assigned to a feasible target date, and

• for each single target date, the corresponding instance of Π is feasible,
too.

Let σd be the subset of requests assigned to date d by an online algorithm.
The optimal cost of Π for σd is called downstream cost at date d, and we
denote it by downcost(σd).

We consider here the online target date assignment problem with the
objective to minimize the total downstream cost summed up over all target
dates. The downstream problem we look at is bin packing. In bin packing
n items with sizes 0 < s1, . . . , sn ≤ 1 are to be packed into unit sized bins.
The objective is to find a packing such that the total size of the items packed
in one bin does not exceed the bin’s capacity and the total number of bins
needed to pack the items is minimized. In the online target date assignment
problem w. r. t. bin packing, a request r = (t(r)), s(r)) is given by its release
date t(r) and its size 0 < s(r) ≤ 1. Therefore, the downstream cost at a
date is the minimum number of bins required to pack all items assigned to
that date. That is, in a sense repacking is allowed here. We assume that
the number of available bins per date is not bounded because this would
prevent any deterministic online algorithm to guarantee a feasible solution.
The objective is to find an assignment of requests to feasible target dates
that minimizes the total sum of the bins required over all target dates.

4.1 Modeling Markov Decision Processes for Online Problems 117

Known Results

We proposed the following online algorithms for this target date assignment
problem in [HKM+05]. Let us say that a target date is used, if a request has
been assigned to it.

Algorithm PackTogetherOrDelay (PTD) Assign a request r to the ear-
liest date in the feasible range t(r) + 1, . . . , t(r) + δ which is already
used. If no used target date is feasible for request r, then assign it to
the latest feasible target date, that is, to t(r) + δ.

Algorithm PackFirstOrDelay (PFD) If there exists a used target date
to which the current request r can be assigned without increasing the
number of necessary bins, then the earliest of these dates is chosen.
Otherwise, assign the latest feasible date, t(r) + δ.

Note that at any moment in time at most one feasible target date is used
by the online algorithm PTD. We have proved that PTD is 2-competitive,
see [HKM+05]. Moreover, we conjectured that the online algorithm PFD
has a better performance guarantee than PTD although the analysis for the
general problem seems more difficult. In general, PFD is not dominated
by PTD, or vice versa: one can construct request sequences for which PFD
performs better and worse than PTD, respectively.

Markov Decision Process Model

We assume that at each date at least one request is released. A Markov
decision process model (S,A, p, c) for the considered target date assignment
problem can be formulated as follows. Since requests assigned to dates that
are not feasible anymore are irrelevant for the future evolution of the system,
it suffices to store in each state the requests assigned to the upcoming next
δ dates, denoted by 1, . . . , δ. Each state i ∈ S encodes the size 0 < s ≤ 1 of
the current item, the number of items n having been released at the current
date, and multisets of item sizes assigned to each future date k ∈ {1, . . . , δ}
given by functions Sk : (0, 1] → N0. That is, the state i is given by the
vector i = (s, n, S1, . . . , Sδ). We obtain the following state space:

S = {(s, n, S1, . . . , Sδ) | 0 < s ≤ 1, n ∈ N,
Sk : (0, 1]→ N0 ∀k ∈ {1, . . . , δ}}.

Note that in order to obtain a finite state space in the Markov decision
process, it is required to restrict the possible sizes an item can have.

118 Computational Results

Since a new request can be assigned to any one of the next δ dates, the
set of possible actions is A(i) = {1, . . . , δ} for each state i ∈ S. Assume that
at a given state i = (s, n, S1, . . . , Sδ) action a ∈ A(i) is used. Depending on
whether the next request arrives at the same date or the next one, there are
two types of possible successor states. If the next request is released at the
same date, a possible successor j1 ∈ S is of the form j1 = (s′, n+1, S ′1, . . . , S

′
δ),

where the new item has an arbitrary size 0 < s′ ≤ 1 and the assignments are
updated according to the selected action a:

S ′a(s) = Sa(s) + 1, (4.1.1)

S ′a(x) = Sa(x) for each x ∈ (0, 1] \ {s}, (4.1.2)

S ′k = Sk for each k ∈ {1, . . . , δ} \ {a}.

If the next request is released at the consecutive date (recall that we assume
that at least one request is released each date), a successor state j2 ∈ S has the
data j2 = (s′, 1, S ′′1 , . . . , S

′′
δ) for some 0 < s′ ≤ 1. For the bin configuration,

we now obtain:

S ′′k = Sk+1 for each k ∈ {1, . . . , δ − 1} \ {a− 1},
S ′′δ (x) = 0 for each x ∈ (0, 1],

and S ′′a−1 = S ′a if a > 1, where S ′a is defined by the Equations (4.1.1) and
(4.1.2).

In this Markov decision process we face two different random effects: the
size of the new request and its release date given by a possible change of the
current date. The stage cost ci(a, j) for states i, j ∈ S and an action a ∈ A(i)
equals the increase of the downstream cost, i. e., we have:

ci(a, j) = downcost(S ′a)− downcost(Sa)

=

{
1, if downcost(S ′a) 6= downcost(Sa),

0, otherwise,

where S ′a is again given by the Equations (4.1.1) and (4.1.2). That is, the
stage cost equals 1 if and only if packing all items given by S ′a optimally
requires one bin more than an optimal solution for the items in Sa. Therefore,
the total sum of stage costs for the transitions of a path in the Markov decision
process equals the total downstream cost incurred along the path, i. e., the
total number of new bins required. Computational results for the described
model are given in Section 4.3.3.

4.1 Modeling Markov Decision Processes for Online Problems 119

Improved Bounds

As for bin coloring, we will always use the trivial lower bound vαmin(j) = 0 for
each state j ∈ S in an MDP modeling the target date assignment problem
w. r. t. downstream bin packing. The idea for constructing a slightly improved
upper bound for a state j ∈ S is simply to check whether there exists an
action a ∈ A(i) such that the expected stage cost equals ci(a) = 0. In
this case, the upper bound is obtained by subtracting 1 from the trivial
bound vαmax = cmax/(1−α) = 1/(1−α). Otherwise, the upper bound vαmax is
used. Therefore, we obtain:

vαmax(j) =

{
α

1−α , if there exists a ∈ A(i) with ci(a) = 0,
1

1−α , otherwise.

Studied Instances

An instance of the Markov decision process for the online target date as-
signment problem with downstream bin packing is given by the following
data:

• a deferral time δ ∈ N,

• a number of possible item types n ∈ N having different sizes each,

• possible item sizes 0 < s1, . . . , sn ≤ 1,

• a probability distribution for the different items sizes: ps1, . . . , p
s
n ∈ (0, 1]

with
∑n

k=0 p
s
k = 1, and

• probabilities pd1, p
d
2, . . . , where 0 ≤ pdk ≤ 1 is the probability for a date

change (i. e., the next item will be given at the next date) when k re-
quests have already been issued at the current date.

The instances to be considered in this chapter are denoted by their deferral
time δ and the number of possible item sizes n. They are shown in Table 4.2.

Note that we restrict the possible requests to items of size 1/5 or 2/5.
Thus, using an action at some the number of possible successor states is at
most four. Moreover, our model assumes that the probability of changing the
date is non-decreasing in the number of requests yet released at the current
date.

120 Computational Results

instance δ n s1, . . . , sn ps1, . . . , p
s
n pd1, p

d
2, . . .

tda-3-2 3 2 1/5 2/5 0.5 0.5 0.2 0.3 0.5 0.7 0.9 1.0
tda-4-2 4 2 1/5 2/5 0.5 0.5 0.2 0.3 0.5 0.7 0.9 1.0

Table 4.2: Considered instances of the target date assignment Markov decision process.

4.1.5 Elevator Control

Controlling a group of elevators is one of the evident online optimization
problems arising in practice. One can distinguish between passenger and
cargo elevator systems. In both cases we face an online problem since future
transport requests concerning human passengers or tangible goods, respec-
tively, are unknown.

In controlling a group of elevators for serving human passengers the pre-
dominant goal is a good service (in recent years energy-saving issues came up
as well). That is, one aims to achieve small average and maximum waiting
and flow times for the passengers. The waiting time and the flow time is the
time span between the release of the transportation call and the arrival of
the serving elevator at the start floor and destination floor, respectively. A
few approaches related to MDPs have already been successfully applied to
elevator control. For instance, Crites and Barto [CB98] considered a detailed
model with a continuous state space for changing traffic patterns. Using
techniques from reinforcement learning the authors developed an algorithm
that outperforms common control algorithms in simulation.

Some years ago, the paradigm of destination call elevator control has
emerged [Clo70, Sch90]. In destination call systems, a passenger enters the
destination floor instead of the direction only, which provides more infor-
mation earlier. For such systems we developed control algorithms based on
heuristics and exact reoptimization and evaluated their performance by sim-
ulation [HT08, HKT09, HKT10].

Cargo elevator systems frequently arise in logistics applications, for in-
stance in high rack warehouses. As an example, consider an automated
warehouse used to store and retrieve goods, see [GHKR99] for details. Pal-
lets with goods have to be stored and are to be transported from the storage
to vehicles for further distribution. Such a transport system may include
conveyor belts, elevators, and other transportation devices. We concentrate
on the control of the elevators, which constitutes an important subsystem.
The important characteristics of such a system are the following:

• All pallets with the same start floor have to be served in order of their

4.1 Modeling Markov Decision Processes for Online Problems 121

arrival.

• The destination floors of all released pallets are known to the system.

• Each elevator has unit capacity, i. e., at any time it can serve at most
one pallet.

The overall goal of a good control is to ensure a constant flow of pallets
such that the vehicles do not have to wait too long, to avoid congestion, and
to coordinate the traffic. Obviously, this goal is quite similar to that for
passenger elevator systems.

In this section we develop a Markov decision process model for the prob-
lem of controlling cargo elevators.

Mathematical Formulation: The Online Dial-a-Ride Problem

A mathematical formulation for the problem of controlling a single cargo
elevator is the online dial-a-ride problem on graphs, which is as follows (a
generalized version of the online dial-a-ride problem [AKR00, Hau99] consid-
ers a metric space instead of a graph).

An instance of the online dial-a-ride problem on graphs consists of an
undirected connected graph G = (V,E) with edge weights d(e) for each
edge e ∈ E and a special node o ∈ V , called origin. Moreover, we are given
online a sequence of transportation requests r1, r2, . . . , rn for some n ∈ N. For
each k ∈ {1, . . . , n}, the request rk is a triple rk = (tk, ak, bk) that specifies
its release time tk and the source and target nodes ak, bk ∈ V between which
an object is to be transported. It is assumed that the release times are non-
decreasing in the sequence of requests. Another aspect of the problem is that
an online algorithm does not have information when the last request arrives
nor about the total number of requests.

The requests are to be handled by a single server that can move at con-
stant unit speed along the edges in G. The server is allowed to move contin-
uously from one end point of an edge uv ∈ E to the other one and possibly
change its direction while at some position on the edge uv. The server has
unit-capacity, i. e., it can transport at most one object at a time. At time 0
the server is located in the origin o and has to return to o after the end of
its service. An online algorithm has to move the server along the edges in
the graph G so as to fulfill all released transportation requests. Preemption
is not allowed: once the server has picked up an object, it is not allowed to
drop it at any other place than its destination.

In order to plan the work of the server, an online algorithm may maintain
a preliminary transportation schedule for all known requests, according to

122 Computational Results

which it moves the server. A posteriori, the moves of the server induce a
complete transportation schedule that may be compared to an offline schedule
that is optimal with respect to some objective function (competitive analysis).

The goal is to find a transportation schedule whose cost is as small as
possible, where the notion of cost depends on the objective function used.
The commonly used objective functions are:

• the total completion time also called makespan, which is the time
needed to serve all requests and to return to the origin o, and

• the average and maximum flow or waiting time.

We mentioned above that cargo elevator systems require to serve all pal-
lets waiting at the same floor in order of their arrival. The corresponding
version of the online dial-a-ride problem, where requests with the same source
node are to be served in order of non-decreasing release times, is called online
FIFO dial-a-ride problem.

Obviously, the online dial-a-ride problem models general transportation
problems. The problem of controlling a single elevator can be represented by
the special case when the graph G is a path.

Known Results

Various theoretical results for the general online dial-a-ride problem have
been established. For the makespan objective there is a 2-competitive al-
gorithm for the general online dial-a-ride problem which was proposed by
Ascheuer et al. [AKR00]. The authors show also that no algorithm can be
better than 2-competitive, proving that the presented algorithm is best pos-
sible w. r. t. competitive analysis. Moreover, they analyze two general online
algorithms, namely Replan and Ignore. Both algorithms are based on comput-
ing and using an optimal schedule w. r. t. a certain objective function at some
points in time, but differ in their frequency this schedule is updated. The
Replan strategy recomputes an optimal schedule each time a new request be-
comes known, which is often used in practice. The algorithm Ignore works in
phases. At the beginning of each phase, an optimal schedule for the currently
known requests is computed and will be realized. Only when the schedule
has been finished, a new schedule for the requests known at that time is
computed and a new phase starts. During execution of a schedule all new
requests are ignored, which gave the algorithm its name. Typically, the opti-
mal schedules for Replan and Ignore are determined w. r. t. the makespan as
objective function. In this case, both Replan and Ignore are 5/2-competitive.
If the graph G is restricted to be a path, which represents the situation of an

4.1 Modeling Markov Decision Processes for Online Problems 123

elevator system, the lower bound of 2 reduces to 5/3 ≈ 1.667, see [AKR98].
Both bounds are true for the online FIFO dial-a-ride problem as well. It has
been shown by Hauptmeier [Hau99] that for this problem Ignore achieves the
same performance as before, while Replan is only 3-competitive.

However, considering an objective function based on waiting or flow times
often seems to be more appropriate than using the makespan: for continu-
ously operating systems with continuously arriving requests the total com-
pletion time is meaningless. That is, the positive results above cannot be
applied. It is easy to see that for the task of minimizing the maximum or
average waiting time or maximum flow time, no online algorithm can be com-
petitive. Moreover, there does not exist an online algorithm with constant
competitive ratio when the objective is to minimize the average flow time.
Thus, it is impossible to distinguish any two online algorithms by classical
competitive analysis for these objective functions. This necessitates alterna-
tive evaluation methods. For instance, Hauptmeier et al. [HKR00] showed
that assuming a reasonably restricted class of request sequences, the algo-
rithm Ignore achieves bounded maximum and average flow times, which is
not true for Replan.

The cargo elevator control problem has also been studied in simulations,
e. g., see Grötschel et al. [GHKR99]. In the case of a single elevator, the
authors observed that algorithms producing good average flow times give
high maximum flow times and vice versa. Moreover, Replan achieved very
good average flow times, but also very high maximum waiting times. Ignore
gave worse but still acceptable average flow times, but good maximum flow
times as well. Furthermore, the online algorithm NN (NearestNeighbor) that
is described below achieves even better average flow times than Replan. More
recently, Friese and Rambau [FR06] studied a more involved algorithm based
on integer programming for multi-elevator systems. Among others, they com-
pared their new algorithm Reopt to the algorithms FIFO (FirstInFirstOut) and
NN, each representing a certain class of typical algorithms. The simple rule-
based algorithm FIFO assigns a new request in round-robin fashion to the
elevators, serving each request of an elevator in the order of arrival. NN
assigns a new request to the elevator giving the lowest waiting time for the
new request if it is inserted such that no other request is postponed. The re-
quests of each elevator are served such that the distance from the last to the
next request is minimized. Simple greedy heuristics like NN are frequently
used in practice. Finally, Reopt determines the schedule in an integrated way
(the assignment and scheduling decisions are taken into account simultane-
ously) such that the average waiting time of all the requests is minimized.
The simulation results reveal that for higher load intensity the algorithm NN
outperforms FIFO and that Reopt is superior to both other algorithms.

124 Computational Results

Markov Decision Process Model

In order to formulate a Markov decision process model, we deal with the
following situation. The system operates a set of elevators E = {1, . . . , nE}
in a building with a set of floors F = {1, . . . , nF}. At each floor there is a
waiting area that accommodates at most q ∈ N ∪ {∞} transport requests.
We limit our considerations to a discrete time model. At each time slot the
current situation is described by the following data:

• Each elevator e ∈ E is situated at one floor fe ∈ E and is either loaded
or empty.

• For each floor f ∈ F , there exists a sequence σf = r1, . . . , rnf of wait-
ing requests, where nf ∈ {0, . . . , q} is their number. Moreover, each
request rk for k ∈ {1, . . . , nf} is of the form rk = (f, fk, wk), where
fk ∈ F \ {f} is its destination floor and wk ∈ N0 is the waiting time of
request rk so far. Denote by wσf := w1 the maximum waiting time of
a request in sequence σf if it is non-empty, and let Σf be the set of all
possible sequences at floor f .

If elevator e ∈ E is loaded, let de ∈ F be the destination floor of the
request being transported, and let de = 0 otherwise. In one time unit an
elevator e ∈ E can execute exactly one of the following operations:

wait at its current floor fe,

move up one floor if fe < nF ,

move down one floor if fe > 1,

load the next request at the current floor fe if de = 0 and σfe 6= ∅, i. e., the
elevator is empty and there is at least one request waiting at floor fe,
or

drop the loaded request if fe = de, i. e., the elevator is loaded and its current
floor equals the destination floor of the loaded request.

A state i ∈ S in the Markov decision process model (S,A, p, c) is of the
following form:

i = (wmax, (σf)f∈F , (fe, de)e∈E),

where wmax ∈ N0 specifies the maximum waiting time of a request so far.
Moreover, a state captures all data concerning waiting requests and possibly

4.1 Modeling Markov Decision Processes for Online Problems 125

loaded requests as well as the positions of the elevators. We will also denote
the parameters of a state i by wmax(i), σf (i) for each f ∈ F , and fe(i), de(i)
for each e ∈ E. The resulting state space S is given by:

S = {(wmax, (σf)f∈F , ((fe, de)e∈E) | wmax ∈ N0, wmax ≥ wσf ∀f ∈ F : σf 6= ∅,
σf ∈ Σf ∀f ∈ F,
(fe, de) ∈ F × ({0} ∪ F) ∀e ∈ E}.

As the stored waiting times in a state may become arbitrarily large even if
the waiting queue length q is bounded, the state space S is infinite.

Remark 4.1.4 Similar to the bin coloring problem, it is not required to
distinguish different elevators here. Instead of maintaining a sequence of
elevators in a state, an unordered multiset is more appropriate to come up
with a small state space.

We will deal with two different objective functions, namely minimizing
the average or the maximum waiting time. As we will see below, the former
does not require to store any waiting times. Thus, the state space can be
reduced further and becomes finite for this objective. 4

Each action in A(i) for a state i ∈ S is composed of one control de-
cision a(e) for each elevator e ∈ E, i. e., an action a ∈ A(i) is of the
form a = (a(e1), . . . , a(enE)). The control decision of an elevator may be
any one of the operations mentioned above: wait, move up, move down, load,
drop. However, we assume that a loaded elevator e ∈ E immediately serves
the request being transported: if fe < de or fe > de, the elevator e will move
up or down, respectively, and if fe = de, the request will be dropped.

In our model each transition between two states is assumed to last exactly
one time step, moving from one time slot to the next one. Moreover, we
assume that at most one new request is released at each time slot. We
describe possible state transitions only for the case of a single elevator since
the general case is obtained by handling the control decisions of all elevators
consecutively. If no new request arrives, the deterministic successor j ∈ S of
a state i ∈ S when using action a = (a(e)) ∈ A(i) is given by:

• The maximum waiting time at state j equals:

wmax(j) = max{wmax(i), max
f∈F : σf (j)6=∅

wσf (j)}.

• For each floor f ∈ F \ {fe}, we have σf (j) = σf (i). If a(e) = load, the
update for the waiting queue at floor fe is σfe(j) = r2, . . . , rnfe , where
σfe(i) = r1, . . . , rnfe . Otherwise, we have σfe(j) = σfe(i).

126 Computational Results

• The current floor and loading of elevator e are updated by:

(fe(j), de(j)) =



(fe(i), de(i)), if a(e) = wait,

(fe(i) + 1, de(i)), if a(e) = move up,

(fe(i)− 1, de(i)), if a(e) = move down,

(fe(i), f1), if a(e) = load,

(fe(i), 0), if a(e) = drop,

where r1 = (fe, f1, w1) denotes the first request in the sequence σfe(i)
in the loading case.

In the case a new request r = (a, b, 0) is released at a start floor a ∈ F
and should be transported to the destination floor b ∈ F \{a}, we obtain the
successor (wmax(j), (σ′f)f∈F , (fe(j), de(j))) of state i. In this state, we have
σ′f = σf (j) for each floor f ∈ F \ {a} and

σ′a =

{
σa(j) + r, if |σa(j)| < q,

σa(j), if |σa(j)| = q,

where σa(j) + r denotes the sequence with request r added to σa(j).
The transition probabilities p are defined by a two step process. Firstly,

we have a fixed probability that a new request is released at a state transition
(Bernoulli distribution). If that is the case, the start and destination floor of
the new request are determined according to some probability distribution
in the second step.

Depending on the used objective function, the stage costs are given as
follows. If we focus on minimizing the maximum waiting time of a request,
it is always assumed that the waiting queues are unbounded, i. e., q =∞. In
this case, the stage cost ci(a, j) = cmax

i (a, j) associated with states i, j ∈ S
and action a ∈ A(i) equals the increase of the maximum waiting time due to
action a:

cmax
i (a, j) = wmax(j)− wmax(i).

Notice that the total sum of stage costs for the transitions of an (i, j)-path
equals the total increase of the maximum waiting time in this sequence of
states.

For minimizing the average waiting time, we assume the waiting queue
length to be bounded, i. e., q < ∞. Whenever a request is released at a
floor f ∈ F where the waiting queue is full, i. e., |σf | = q, the request is
rejected from the system at a penalty cost of cp ≥ 1. For each floor f ∈ F ,

4.1 Modeling Markov Decision Processes for Online Problems 127

let 0 ≤ pf ≤ 1 be the probability that a request is released at some time
slot at floor f . Given states i, j ∈ S and an action a ∈ A(i), let j′ ∈ S be
the successor of i using action a if no new request arrives. Then, the stage
cost ci(a, j) = cavg

i (a, j) is defined as the sum of all requests waiting at state i
that are not loaded by action a plus the expected penalty cost:

cavg
i (a, j) =

∑
f∈F

|σf (i)| − |{e ∈ E | a(e) = load}|

+

{
cp ·
∑

f∈F : |σf (j′)|=q pf if σf (j) = σf (j
′) for all f ∈ F ,

0 otherwise.

In the case the waiting queues of the states j and j′ differ, a new request has
been released at a floor where the waiting queue was not full w. r. t. state j′.
Thus, the transition does not involve a penalty cost.

Notice that cavg
i (a, j) equals the increase of the sum of all waiting times

plus the expected penalty cost. Thus the sum of the expected stage costs
for all transitions of an (i, j)-path equals the sum of all accumulated waiting
times and expected penalty costs during the associated time period. Minimiz-
ing this objective for a finite sequence of requests is equivalent to minimizing
the average waiting time.

We mention that the Markov decision process model we consider here has
not much in common with that used by Crites and Barto [CB98].

Improved Bounds

Recall that we consider two different elevator control MDPs, one for analyzing
the total or average waiting time and another for dealing with the maximum
waiting time.

Average waiting time The construction of state-specific bounds for the
MDP modeling the average waiting time is as follows. For each state j ∈ S,
we employ a lower bound vαmin(j) ≤ vαj consisting of two different parts, i. e.,

vαmin(j) = vα,1min(j) + vα,2min(j).
The first lower bound vα,1min(j) takes into account future requests arriving

in the system. It is based on a lower bound for the probability pno elevator that
a request arrives at a floor, where no elevator is located. Let again 0 ≤ pf ≤ 1
be the probability that a request with start floor f ∈ F is released at a time
slot. Consider a permutation f1, . . . , f|F | ∈ F of the floors such that the
probabilities are non-decreasing w. r. t. the permutation: pf1 ≤ · · · ≤ pf|F | .
Since in each state there exist at least |F | − |E| floors where no elevator is

128 Computational Results

located, the probability pno elevator is at least the sum of the |F |−|E| smallest
arrival probabilities pf1 , . . . , pf|F |−|E| , i. e., we have:

pno elevator ≥
|F |−|E|∑
k=1

pfk .

Since each request arriving at a floor where no elevator is located will have
a waiting time greater or equal 1 and such a request can arrive at each time
slot, we obtain:

vαj ≥
pno elevator

1− α
≥
∑|F |−|E|

k=1 pfk
1− α

=: vα,1min(j).

Note that the first inequality above is only valid since the penalty cost satisfies
by assumption cp ≥ 1 ≥ pno elevator. This gives the first part of the lower
bound.

The second part vα,2min(j) of the lower bound on vαj for a state j ∈ S captures
the total α-discounted cost resulting from the requests waiting in state j. To
this end, we consider a relaxation of the elevator control problem where each
elevator requires no time for moving empty and all requests waiting at the
same floor can be served in arbitrary order. Note that the resulting problem
is equivalent to a scheduling problem where the machines correspond to the
elevators and the jobs correspond to the waiting requests. In the following,
the current time slot at state j will be denoted by 0 and the consecutive
time slots by 1, 2, Algorithm 10 determines a feasible schedule under the
assumptions made and returns the associated number of waiting requests for
each future time slot. We claim that the obtained schedule is optimal w. r. t.
the resulting total α-discounted cost.

Theorem 4.1.5 Under the assumptions made, Algorithm 10 determines a
schedule that serves all waiting requests in state j at a minimum total α-
discounted cost for each 0 ≤ α < 1. This cost equals:

t∑
k=0

αknwait
k

Proof. We refrain from giving a rigorous proof here. The idea is to compare
an optimal schedule with the one obtained by Algorithm 10 and to use some
exchange argument. �

The result above implies the second lower bound for state j ∈ S:

vα,2min(j) :=
t∑

k=0

αknwait
k ≤ vαj .

4.1 Modeling Markov Decision Processes for Online Problems 129

Algorithm 10 Algorithm processing all waiting requests assuming that each
elevator requires no time for moving empty and that all requests at the same
floor can be served in arbitrary order.

1: Input: a state j = ((σf)f∈F , (fe, de)e∈E) in a Markov decision process
with elevator set E and floor set F

2: Output: a sequence of numbers nwait
0 , . . . , nwait

t ∈ N0 for some t ∈ N0,
where nwait

k is the number of requests still waiting at time slot k for each
k ∈ {0, . . . , t}

3: let n ← |
⋃
f∈F σf (j)| and let ∆1 ≤ · · · ≤ ∆n be the non-decreasing

sequence of distances |a− b| of all waiting requests (w, a, b) ∈
⋃
f∈F σf (j)

4: for each e ∈ E do . get minimum loading time slot for elevator e
5: if de = 0 then . elevator empty
6: f ← fe and te ← 0
7: else . elevator loaded
8: f ← de and te ← |fe − de|+ 1 . driving and dropping time
9: end if

10: te ← te + min(a,b,w)∈
⋃
f∈F σf (j) |f − a| . add time to reach request

11: end for
12: t← 0
13: nwait

t ← n . no request served yet
14: for k = 1 to n do
15: let e′ ∈ argmine∈E te
16: nwait

t+1 , . . . , n
wait
te′−1 ← nwait

t . no more requests loaded before time te′

17: nwait
te′
← nwait

t − 1 . one request loaded at time te′
18: t← te′
19: te′ ← te′ + ∆i + 2 . add driving and loading/dropping time
20: end for
21: return nwait

0 , . . . , nwait
t

Notice that vα,2min(j) takes into account the costs incurred from currently
waiting requests only, while vα,1min(j) solely considers costs due to future re-
quests. Therefore, their sum vαmin(j) := vα,1min(j) + vα,2min(j) is a valid lower
bound for the component vαj of the optimal value vector, too.

Obviously, the trivial upper bound vαmax = cmax/(1−α) is very weak in the
considered elevator control MDP for most states since the maximum expected
stage cost equals cmax = |F |q + cp

∑
f∈F pf . The approach to determine a

suitable upper bound vαmax(j) ≥ vαj for each state j ∈ S is to compute the
expected total number of waiting requests and the expected penalty for each
future time slot t up to some limit assuming that no requests are served.

Let Nwait
t ∈ N0 and Nwait

t,f denote the random variables for the total num-

130 Computational Results

ber of waiting requests and the number of requests waiting at floor f ∈ F for
time slot t ∈ N0, respectively. By the linearity of the expectation we have:

E[Nwait
t] = E[

∑
f∈F

Nwait
t,f] =

∑
f∈F

E[Nwait
t,f].

For each f ∈ F , the expected value E[Nwait
t,f] can be computed according to

the arrival probability pf at floor f by:

E[Nwait
t+1,f] = min{E[Nwait

t,f] + pf , q}.

Moreover, let Pt ≥ 0 denote the random penalty cost for a stage t ∈ N0.
In order to determine the expected penalty E[Pt], we compute the probabil-
ity pfull

t,f that the waiting queue at a floor f ∈ F is full at time slot t. Let
cf := q − |σf (j)| be the remaining capacity at each floor f ∈ F in state j.
Note that we always have pfull

t,f = 0 as long as t < cf since at most one request

is released each stage. Generally, pfull
t,f equals the probability that at least cf

new requests have arrived at floor f by time t. Therefore, we obtain for
each t ∈ N0:

pfull
t,f =

t∑
k=cf

(
t

k

)
pkf (1− pf)t−k.

Again by the linearity of the expectation, the expected penalty E[Pt] at
time t ∈ N0 equals:

E[Pt] = cp
∑
f∈F

pfull
t,f · pf .

Given the expected number of waiting requests E[Nwait
t] and the expected

penalty cost E[Pt] under the assumption that no requests are served, for each
time slot t ∈ N0, we have:

vαj ≤
∞∑
t=0

αt(E[Nwait
t] + E[Pt]).

Clearly, it is impossible to determine an infinite number of expectations. We
stop the expensive computation described above at a time slot tmax when
the maximum total α-discounted expected cost αtmaxvαmax after time tmax falls
below some threshold value (e. g., 0.1) and add αtmaxvαmax. Thus, we obtain
the upper bound:

vαj ≤ αtmaxvαmax +
tmax∑
t=0

αt(E[Nwait
t] + E[Pt]) =: vαmax(j).

4.1 Modeling Markov Decision Processes for Online Problems 131

Notice that the construction above assumes that none of the requests cur-
rently waiting in a state are ever served. We mention that for approximating
the component vαj of the optimal value vector for some j ∈ S, it is possible
to take into account the processing of the requests waiting in state j accord-
ing to any feasible schedule. In doing so, the expected stage costs E[Nwait

t]
and E[Pt] reduce for some time slots t due to serving requests in state j.
Consequently, we obtain an improved upper bound vαmax(j). Our implemen-
tation applies the feasible schedule obtained by the policy NN. Note that
this construction is generally infeasible when the goal is to approximate the
value vαi0(π) for a policy π since the schedule of π may change when addi-
tional requests arrive. Obviously, this is not the case for FIFO, i. e., we can
employ the improved bound according to the schedule obtained by FIFO. For
all other policies under consideration we have to assume that no requests are
served.

Maximum waiting time In the elevator control MDP modeling the max-
imum waiting time, a lower bound vαmin(j) ≤ vαj for a state j ∈ S is obtained
as follows. Let Fwait(j) ⊆ F be the subset of floors where at least one request
is waiting in state j, i. e., Fwait(j) = {f ∈ F | σf (j) 6= ∅}. Moreover, for each
floor f ∈ Fwait(j), let rf denote the first request in the waiting queue σf (j)
in state j.

The idea for constructing the lower bound on vαj is to determine for each
floor f ∈ Fwait(j) the smallest time tf by which an elevator can reach floor f ,
after possibly having served a loaded request. That is, each request rf for
a floor f ∈ Fwait(j) cannot be loaded before time tf . Consequently, the
smallest possible final waiting time of request rf equals wfinal

f := wf (j) + tf ,
where wf (j) denotes the present waiting time of request rf in state j. Note
that the current maximum waiting time wmax(j) will increase if we have
maxf∈Fwait(j) w

final
f > wmax(j). By considering all floors f ∈ Fwait(j) in order

of decreasing current waiting times wf (j), one can determine a subset of
time slots T ⊂ N0, where the maximum waiting time will increase, i. e.,
the associated stage cost equals 1. Algorithm 11 describes in detail how
to compute these time slots. It is easy to see that Algorithm 11 correctly
determines the set of time slots T at which the maximum waiting time will
increase. The set T implies the following lower bound on vαj :

vαj ≥
∑
t∈T

αt =: vαmin(j).

Clearly, an upper bound vαmax(j) for a state j ∈ S can be derived by ar-
bitrarily serving the requests waiting in state j and assuming that another

132 Computational Results

Algorithm 11 Algorithm for computing for a given state, a set of time slots,
where the maximum waiting time will increase.

1: Input: a set of non-empty floors Fwait(j), current waiting times wf (j)
and final waiting times wfinal

f for each f ∈ Fwait, the maximum current
waiting time wmax(j)

2: Output: a finite set of time slots T ⊂ N0, where the maximum waiting
time will increase

3: T ← ∅, Fwait ← Fwait(j), and wmax ← wmax(j)
4: while Fwait 6= ∅ do
5: let f ′ ∈ argmaxf∈Fwait

wf (j) . Get floor with oldest request
6: if wfinal

f ′ > wmax then

7: T ← T ∪ {wmax − wf ′(j), . . . , wfinal
f ′ − wf ′(j)− 1}

8: wmax ← wfinal
f ′

9: end if
10: Fwait ← Fwait \ {f ′}
11: end while
12: return T

request is released at time slot 1 and never served. Consider any policy to
compute a feasible schedule for all waiting requests. In our implementa-
tion we use FIFO. According to the schedule we obtain the subset of time
slots T ⊂ N0, where the maximum waiting time will increase (the method
to determine T is similar to Algorithm 11). For constructing the second
part of the bound let wmax be the maximum final waiting time of a request
in state j w. r. t. the used schedule. Note that the waiting time of a re-
quest released at time slot 1 will be bounded by wmax until time wmax + 1.
Therefore, never serving this request implies a stage cost of 1 for the time
slots wmax + 1, wmax + 2, Putting the two parts of the construction to-
gether, we obtain the following upper bound on vαj :

vαmax(j) :=
∑
t∈T

αt +
∞∑

t=wmax+1

αt =
∑
t∈T

αt +
αwmax+1

1− α
≥ vαj .

Similar as before, this upper bound is in general not valid if a compo-
nent vαi0(π) of the value vector of a given policy π is to be approximated,
although the bound is again valid for FIFO. For other policies, we use a sim-
ple upper bound for vαj (π) with j ∈ S obtained by computing the maximum
current waiting time w(j) of a request in state j. It is clear that the stage
cost will equal 0 for the time slots 0, . . . , wmax(j) − w(j) − 1. This implies

4.1 Modeling Markov Decision Processes for Online Problems 133

the upper bound:

vαmax(j) :=
αwmax(j)−w(j)

1− α
≥ vαj (π).

We mention that using improved bounds for the elevator control MDPs
is crucial in order to obtain acceptable approximation results. The results
obtained by the trivial bounds are very weak. We sketch this observation
briefly in Section 4.3.4.

Studied Instances

Finally, we introduce the instances of the two described Markov decision
processes for online elevator control that are studied in the sequel. Recall
that the two models differ only in the stage costs and in some data of the
state space. In each case we can specify an instance by the following data:

• a number of floors nF ∈ N defining the set of floors F := {1, . . . , nF},

• a number of elevators nE ∈ N defining the elevator setE := {1, . . . , nE},

• a waiting queue length q ∈ N ∪ {∞},

• a penalty cost cp ≥ 1,

• a probability 0 ≤ pr ≤ 1 that exactly one new request is released at a
time slot, and

• a probability distribution for the start and destination floor of a new
request given by a function psd : F × F → R with psd(f, f) = 0 for
each floor f ∈ F and

∑
f1∈F

∑
f2∈F p

sd(f1, f2) = 1, i. e., the probability
that a new request has start floor f1 ∈ F and destination floor f2 ∈ F
equals psd(s, d).

The instances we will consider are given in Table 4.3. All instances de-
noted by ela-* are Markov decision processes for the case of minimizing the
average waiting time, while those for minimizing the maximum waiting time
are called elm-*. We only look at problems featuring a single elevator or two
elevators. For more elevators the action space becomes quite large, which
results in bad approximations of the column generation algorithm. We focus
on two different distributions for the start and destination floors of new re-
quests. On the one hand, we look at combined up and down traffic, i. e., for
each transport request, the floor 1 is either its start floor or its destination

134 Computational Results

instance nF nE q cp pr psd

ela-1-2-100-02-ud 8 1 2 100 0.2 ub

ela-1-2-10-02-ud 8 1 2 10 0.2 ub

ela-1-4-10-02-ud 8 1 4 10 0.2 ub

ela-2-4-10-03-ud 8 2 4 10 0.3 ud

ela-1-4-10-02-sp 8 1 4 10 0.2 sp

elm-1-02-ud 8 1 ∞ - 0.2 ud

Table 4.3: Considered instances of the elevator control Markov decision processes. The
considered start-to-destination floor probability distributions, denoted by ud and sp are
given in Table 4.4 and Table 4.5, respectively.

start floor destination floor
1 f2

1 - 1/14
f1 1/14 -

Table 4.4: The start-to-destination floor probability distribution ud representing combined
up and down traffic of equal intensities. f1 and f2 denote arbitrary start and destination
floors with f1, f2 ∈ {2, . . . , 8}.

start floor destination floor
1 2 3 4 5 6 7 8

1 - - - 1/20 - 3/20 - 2/20
2 - - - - - - - -
3 - - - - - - - -
4 2/20 - - - - 1/20 - 1/20
5 - - - - - - - -
6 3/20 - - - - - 2/20 1/20
7 - - - - - - - -
8 2/20 - - - - 2/20 - -

Table 4.5: The start-to-destination floor probability distribution sp representing a special
situation.

4.2 Analysis of the Approximation Algorithm 135

instance |S| cmax b d
bc-2-3-6-* 5 424 1 2 6
bc-3-3-7-* 122 871 1 3 7

bc-3-4-12-* 172 635 060 1 3 12
tda-3-2 230 076 1 3 4
tda-4-2 16 421 870 1 4 4

ela-1-2-100-02-ud 6 357 609 36 4 15
ela-1-2-10-02-ud 6 357 609 18 4 15
ela-1-4-10-02-ud 11 160 234 375 34 4 15
ela-2-4-10-03-ud > 11 160 234 375 35 16 15
ela-1-4-10-02-sp 2 086 898 858 18 4 15

elm-1-02-ud ∞ 1 4 15

Table 4.6: Overview on the structure of the considered Markov decision processes. The
notation is taken from Theorem 3.2.2: cmax := maxi∈S,a∈A(i) ci(a), b := maxi∈S|A(i)|, and
d := maxi∈S,a∈A(i)|{j ∈ S | pij(a) > 0}|.

floor (see Table 4.4). This setting is natural for a cargo elevator system in
an automated warehouse, where goods are placed into storage and retrieved
over time. On the other hand, Table 4.5 shows a special traffic situation that
may be representative for some time in the course of a day. One can think of
this situation as follows. Still, there are some requests arriving at floor 1 to
be placed into storage and some requests are retrieved, but only a subset of
floors are currently utilized. Moreover, there is some interfloor traffic, i. e.,
requests have start and destination floors that are different from floor 1. This
may be due to production processes taking place or required relocations of
the stored goods.

4.2 Analysis of the Approximation Algorithm

In the Sections 4.1.3–4.1.5 Markov decision processes modeling the online
bin coloring problem, an online target date assignment problem, and two
online elevator control problems have been introduced. Table 4.6 gives an
overview on the structure of all instances to be considered in the sequel. In
the following we will refer to associated discounted MDPs as bin coloring,
target date assignment, average waiting time elevator control, and maximum
waiting time elevator control MDPs.

Before we turn to the analysis of policies for the considered MDPs, we will
study in this section the performance of the approximation algorithm. More-
over, we will compare different linear programming solver settings as well the

136 Computational Results

MDP Trivial state

bin coloring c = 1, χ = 0, fk = 0, Ck = ∅ ∀k ∈ {1, . . . ,m}
target date assignment s = 1/5, n = 1, Sk ≡ 0 ∀k ∈ {1, . . . , δ}
elevator control wmax = 0, σf = ∅ ∀f ∈ F, (fe, de) = (1, 0) ∀e ∈ E

Table 4.7: Trivial states for the considered MDPs.

pricing strategies and approximation heuristics introduced in Section 3.5.3
and Section 3.5.4.

For all computations presented in this section we use initial states that
can be seen as being trivial, reflecting a default situation. These states are
as follows for the considered MDPs. For the bin coloring MDP this state
is ibc = (c, χ, f1, C1, . . . , fm, Cm) with c = 1, χ = fk = 0, and Ck = ∅ for
each k ∈ {1, . . . ,m}. That is, all bins are empty and the current request
with color 1 is the first one to be considered. Very similar is the definition
of the trivial state itda for the target date assignment MDP. The state is of
the form itda = (s, n, S1, . . . , Sδ) with s = 1/5, n = 1, and Sk ≡ 0 for each
k ∈ {1, . . . , δ}, i. e., no request has been assigned to one of the feasible target
dates yet and the first request at the current date is an item of size 1/5. In
the elevator control MDPs we assume for the trivial state that the maximum
waiting time equals 0, no request is waiting, and all elevators are empty and
situated at floor 1: we have ielv = (wmax, (σf)f∈F , (fe, de)e∈E) with wmax = 0,
σf = ∅ for each f ∈ F , (fe, de) = (1, 0) for each e ∈ E. The trivial states are
summarized in Table 4.7.

4.2.1 Neighborhood Construction versus Column Generation

First we analyze the performance of our approximation algorithm compared
to the method that directly applies the construction of Theorem 3.2.2 on
page 51 for approximating the component vαi0 of the optimal value vector for
a particular state i0. As an example we look at the target date assignment
MDP (tda-4-2, 0.7), i. e., the underlying Markov decision process is given by
the instance tda-4-2 and the discount factor equals α = 0.7. The studied
initial state is the trivial state for the target date assignment MDP i0 = itda

with δ = 4, see Table 4.7.

Table 4.8 shows for different values for the radius r ∈ N0, the absolute
approximation guarantee ε(r) provided by the r–neighborhood S(i0, r) of i0 in
the worst-case, cf. Theorem 3.2.2. Moreover, the table specifies the size of the
r–neighborhood and the absolute guarantee ε(S(i0, r)) achieved practically

4.2 Analysis of the Approximation Algorithm 137

r ε1 := ε(r) |S(i0, r)| ε2 := ε(S(i0, r)) |Sε1| |Sε2|
|Sε2 |
|S(i0,r)|

0 2.33 1 2.33 1 1 100.0 %
1 1.63 16 1.63 8 9 56.3 %
2 1.14 154 1.09 45 49 31.8 %
3 0.80 824 0.68 99 142 17.2 %
4 0.56 3 224 0.39 238 437 13.6 %
5 0.39 10 286 0.25 447 1 091 10.6 %
6 0.27 25 086 0.15 955 2 125 8.5 %
7 0.19 53 490 0.09 1 528 3 880 7.3 %
8 0.13 103 678 0.06 2 422 5 946 5.7 %
9 0.09 187 264 0.03 3 736 9 349 5.0 %

10 0.07 319 694 0.02 5 291 14 230 4.5 %

Table 4.8: Required number of states: r–neighborhood vs. column generation algorithm.
The start state is i0 = itda defined in Table 4.7. The value vαi0 is about 1.42 which yields
an impression for the relative approximation quality.

by solving the associated linear programs (Li0S(i0,r)
) and (Ui0

S(i0,r)
). We compare

the size of r–neighborhood of i0 with the number of states required by our
column generation algorithm to obtain an approximation guarantee of ε(r)
and ε(S(i0, r)), respectively. It should be mentioned that all computations
in this sections are based on the trivial lower and upper bounds: vαmin = 0
and vαmax = 1/(1− α).

The first observation is that the values for ε2 := ε(S(i0, r)) are signifi-
cantly smaller than those for ε1 := ε(r) for larger values of r. That is, the
actual bounds achieved by the neighborhood S(i0, r) may be in fact much
better than guaranteed by Theorem 3.2.2. We know from Remark 3.2.6 that
this is due to cycles within the r–neighborhood. Secondly, we compare the
values of |S(i0, r)| and |Sε1| in Table 4.8. As expected, the column generation
algorithm requires substantially fewer states as in the theoretical worst-case
for non-trivial approximation guarantees. Even the number of states |Sε2| ex-
plored by our algorithm to obtain the guarantee ε2, that is actually achieved
by the neighborhood S(i0, r), is only a little fraction of the size of S(i0, r).

The observations above raise the question concerning the structure of the
reduced state spaces S ⊂ S determined by the approximation algorithm.
Considering the same MDP and state i0 as above, Table 4.9 shows for each
depth w. r. t. state i0, how many states exist and how many of them were
generated by the column generation algorithm. The considered approxima-
tion guarantee is 6 %. We see that the required subset of states can be far

138 Computational Results

r |Sr| |S ∩ Sr| |Sr ∩ S|/|Sr|

0 1 1 100.0 %
1 15 15 100.0 %
2 138 52 37.7 %
3 670 92 13.7 %
4 2 400 343 14.3 %
5 7 062 627 8.9 %
6 14 800 799 5.4 %
7 28 404 898 3.2 %
8 50 188 796 1.6 %
9 83 586 442 0.5 %

10 132 430 84 0.1 %

Table 4.9: Distribution of the state space S ⊂ S generated by the approximation algorithm
per depth. The subset of states in depth r w. r. t. state i0 is denoted by Sr := S(i0, r) \
S(i0, r − 1), where S(i0, r) is again the r–neighborhood.

away from being an r–neighborhood for some r ∈ N. This is typically the
case for practical MDPs.

In [HKP+06] we assessed the performance of the approximation algorithm
depending on different parameters, in particular the discount factor α. To
shorty summarize the results, the number of states required by the algorithm
to achieve a given approximation guarantee increases drastically for increas-
ing values of α. As mentioned earlier, if α is very close to 1, an optimal policy
w. r. t. the total expected α-discounted cost tends to be close to an optimal
policy w. r. t. the average expected cost per stage. This, however, implies
that it is insufficient to take into account only a local part of the state space
in order to provide reasonable approximations. That is, for large values of
the discount factor α our approach does not work unless the total state space
is very small itself.

4.2.2 Linear Programming Solving

In this section we analyze the performance of the different linear program-
ming solvers available in Cplex [ILO], version 12.1, in the context of our
column generation algorithm. Let again S ⊆ S with i0 ∈ S denote the cur-
rently considered subset of states. The last part of Section 3.5.2 described
a method to construct a start basis for the linear program (Li0S) and (Ui0

S),
respectively, from the optimal basis of the associated previously solved linear

4.2 Analysis of the Approximation Algorithm 139

MDP instance no. vars. no start basis use start basis
per it. primal dual primal dual

(bc-3-3-7-spe, 0.97) 10 4644 1599 15156 941
100 2919 406 14173 225

1000 4163 421 3121 248
(tda-4-2, 0.7) 10 1255 1030 1257 725

100 846 592 782 304
1000 832 533 498 241

(ela-1-2-10-02-ud, 0.8) 10 2346 1839 1192 1060
100 563 361 200 147

1000 476 248 60 48

Table 4.10: Required running times in seconds for solving the encountered linear programs
using different settings for the simplex algorithm, depending on the maximum number of
added variables in each pricing iteration. In each run 20 000 variables are generated by
the approximation algorithm.

program. This basis is usually dual feasible. Otherwise, the dual simplex
only requires very few pivot steps to obtain a dual feasible basis. Without
passing an initial basis, Cplex constructs an initial basis from the optimal
basis of the last iteration. This, however, usually causes some effort for the
used simplex method only to obtain a feasible basis in phase one. In the
following, we look at the performance of the primal and the dual simplex
method, both with and without using our construction of an initial basis.

We consider the three MDPs (bc-3-3-7-spe, 0.97), (tda-4-2, 0.7), and
(ela-1-2-10-02-ud, 0.8) and approximate the component vαi0 of the optimal
value vector for each MDP by generating 20 000 variables, where i0 is in each
case the associate trivial state given in Table 4.7. We analyze the performance
of the four solver settings depending on the number of generated variables
per pricing iteration. Table 4.10 shows the associated total required run-
times for solving the linear programs encountered in the column generation
algorithm for the three MDP instances. The results show that the dual
simplex is faster than the primal simplex when both methods use the same
way of setting the initial basis. Moreover, the dual simplex method combined
with the proposed way to construct a start basis achieves the fastest running
times in each approximation run. In the case that up to 1000 variables
are generated in each pricing iteration, which seems to be most suitable for
larger MDPs, the performance of this setting is significantly better than that
of all other solver settings. Solely for the MDP (ela-1-2-10-02-ud, 0.8), the
primal simplex method using the involved basis construction is only slightly

140 Computational Results

MDP instance number of added variables per iteration
10 100 1000

dir. com. dir. com. dir. com.

(bc-3-3-7-spe, 0.97) 833 391 77 44 8 5
(tda-4-2, 0.7) 2127 2377 202 198 21 21
(ela-1-2-10-02-ud, 0.8) 1706 4371 166 310 16 32
(elm-1-02-ud, 0.8) 8457 11628 954 1150 93 128

Table 4.11: Required running times for pricing new variables in seconds for the strategies
direct (dir.) and combinatorial (com.) to generate 20 000 in different MDPs, depending on
the maximum number of added variables in each pricing iteration.

slower.

We mention that the barrier method of Cplex is not competitive at all:
even a parallelized computation using four processors is much slower than
the simplex algorithms. The reason is that the barrier method lacks the
possibility of a warm start which could exploit information like suitable start
bases. In all the following computations we apply the dual simplex method
incorporating the proposed construction of an initial basis.

4.2.3 Pricing Strategies

In this section, the four pricing strategies introduced in Section 3.5.3 namely
direct, combinatorial, min-depth, and improving are compared by means of
numerical results. On the one hand, we aim to analyze the quality of these
strategies, i. e., their capability to provide a good approximation by taking
into account only a small subset of states. On the other hand, we assess the
running time of our approximation algorithm depending on the employed
pricing strategy.

Recall that direct and combinatorial are conceptually equivalent as both
pricing strategies determine a state with a maximum reduced profit and only
differ in their way to find such a state algorithmically. Since we intend to
consider only one of these two strategies when dealing with the mentioned
issues, we initially compare the run-times of direct and combinatorial.

Table 4.11 shows the required computing times for pricing new variables
in the approximation of the component vαi0 of the optimal value vector for
four MDPs. In each case, the state i0 is the associated trivial state defined
in Table 4.7 and 20 000 variables were generated in total. Apparently, the
pricing strategy combinatorial is superior to direct for the bin coloring MDP

4.2 Analysis of the Approximation Algorithm 141

(bc-3-3-7-spe, 0.97), while the opposite is the case for the elevator con-
trol MDPs (ela-1-2-10-02-ud, 0.8) and (elm-1-02-ud, 0.8). Both strate-
gies achieve similar run-times for the instance (tda-4-2, 0.7).

In the following we will argue how the structure of an MDP should affect
the computing time for the two pricing strategies. Consider some point in
the column generation process to approximate vαi0 with i0 ∈ S, and let S ⊂ S
be the current subset of states and Scand ⊆ S\S be the associated set of can-
didate states as defined by Equation (3.3.2) on page 63. Note that the com-
plexity of the pricing strategy direct scales with the total number of candidate
states |Scand| since the reduced profit of each state in Scand has to be com-
puted. In contrast, the complexity of the strategy combinatorial scales with
the number of visited states |Svis| in the recursive search for candidate states
with positive reduced profits, see Algorithm 5 on page 91. Recall that Svis

includes both states in S and states in Scand. Thus if the ratio |Scand|/|Svis| is
small, the pricing strategy direct should be more appropriate, and vice versa.

Unfortunately, this observation is only partially true for our implementa-
tion of the approximation algorithm especially since computing the reduced
profit of a candidate state by the strategy combinatorial is more expensive
than for direct. We maintain a data structure to store all candidate states to-
gether with the associated predecessors in S to determine the reduced profits.
While the strategy direct employs this data structure directly, combinatorial
requires an additional search operation whenever a candidate state is reached.
Therefore, the run-times in Table 4.11 do not relate to the above argumenta-
tion: after having generated 10 000 states, the ratio |Scand|/|Svis| is smallest
for the instance (tda-4-2, 0.7) and greatest for (ela-1-2-10-02-ud, 0.8).

Due to memory requirements it may be reasonable to refrain from main-
taining a data structure that stores the candidate states with their associated
predecessors or to store only the candidates alone. Note that the pricing
strategy direct cannot be used anymore in the first case, whereas combinato-
rial may still be applied. In the latter case, combinatorial will be advantageous
compared direct since fewer predecessor states have to be determined.

Since the pricing strategy direct seems to be advantageous for most of
the MDPs considered here, in particular for the more complex elevator con-
trol MDPs, we will refrain from analyzing the pricing strategy combinatorial
further, but solely look at direct.

Quality of Pricing Strategies

In order to analyze the quality of the pricing strategies, we use each strategy
to generate 4000 states for the studied MDPs. In doing so, exactly one state is

142 Computational Results

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500 3000 3500 4000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

direct pricing
improving pricing
min-depth pricing

Figure 4.1: Comparison of the quality of different pricing strategies for the elevator control
MDP (ela-1-2-10-02-ud, 0.8). Only one variable is added in each pricing iteration.

added in each pricing iteration. This ensures that only the state favored most
by the considered strategy is generated. Adding several states would distort
the actual difference between the strategies: the more states are generated
each step, the less differs the quality of the pricing strategies.

Let us look at the elevator control MDPs (ela-1-2-10-02-ud, 0.8) and
(elm-1-02-ud, 0.8). Figures 4.1 and 4.2 depict the progress in approximat-
ing vαielv

achieved by the pricing strategies direct, improving, and min-depth
when the associated involved state-specific bounds described in Section 4.1.5
are incorporated in the linear programs. Each picture shows the lower and
upper bounds on vαielv

obtained by the approximation algorithm depending
on the number of explored states / variables in the linear programs.

Figure 4.1 shows that for the MDP (ela-1-2-10-02-ud, 0.8) the strate-
gies direct and improving achieve a very similar approximation guarantee once
about 1000 variables have been generated. For fewer states, direct provides
much better bounds than improving. Moreover, the pricing strategy min-depth
performs very bad. Its final relative approximation guarantee equals 44.6 %,
whereas direct and improving yield a guarantee of 12.2 % and 12.4 %, respec-
tively.

The results for the MDP (elm-1-02-ud, 0.8) given in Figure 4.2 are much
different. Obviously, the bounds obtained by improving are disastrous. They
even do not seem to improve in the approximation process at all (which,
however, is only true for the upper bound, the lower bound improves very

4.2 Analysis of the Approximation Algorithm 143

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000 2500 3000 3500 4000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

direct pricing
improving pricing
min-depth pricing

Figure 4.2: Comparison of the quality of different pricing strategies for the elevator control
MDP (elm-1-02-ud, 0.8). Only one variable is added in each pricing iteration.

little). As before, the pricing strategy direct provides much better bounds
than min-depth. The achieved approximation guarantee equals 14.6 % for
direct, 84.2 % for min-depth, and 584.4 % for improving. The reason for the
bad performance of improving is as follows. Recall that this pricing strategy
always choose a state j ∈ Scand with positive weight wj as defined in Equa-
tion (3.5.20) on page 90 if possible. For the considered approximation run
improving can find such a state in each iteration. In particular, improving
always adds such states j ∈ S that satisfy mina∈A(j) cja > 0, which implies a
positive weight wj. However, these states tend to have really small reduced
profits, while states with great reduced profits are never generated. Adding
solely the state with maximum reduced profit in the first pricing iteration to
the initial subset {i0} results in a better lower bound than that achieved by
improving after having generated 4000 states.

We presented the results for the two elevator control MDPs as they reflect
extreme outcomes. We mention that additional results for the bin coloring
and target date assignment MDPs do not differ to that extend for the studied
pricing strategies. Altogether, we conclude that the pricing strategy direct,
which adds a state of maximum reduced profit, typically provides the best
bounds by far.

The results showed that incorporating the amounts of the reduced profits
pays off substantially: the simple min-depth strategy cannot cope with direct.
Moreover, it is a bit disappointing that the bounds of improving are often

144 Computational Results

MDP instance direct improving min-depth

(bc-3-3-7-spe, 0.97) 39 9 117
(tda-4-2, 0.7) 32 12 42
(ela-1-2-10-02-ud, 0.8) 9 3 11
(elm-1-02-ud, 0.8) 8 3 11

Table 4.12: Number of variables required to increase the initial lower bound obtained by

(Li0{i0}) for four MDPs.

worse than that of direct since improving was developed to improve the pure
reduced cost criterion of direct by taking into account additional information
namely the feasible range of new variables. Motivated by the bad results for
improving, we also analyzed how many states are required to be added to
the initial state space {i0} to reach the first increase of the computed lower
bound on vαi0 . Here we refrain from incorporating the involved lower bounds
for the candidate states, but use the trivial lower bound vαmin = 0 in the
linear programs. For the considered MDPs and each of the different pricing
strategies, Table 4.12 shows the size of the minimal subset of states S ⊆ S
that is required to be generated such that the lower bound provided by the
linear program (Li0S) is better than that due to (Li0{i0}).

The results clearly show that improving outperforms the other pricing
strategy when the goal is to increase the initial lower bound for vαi0 with a
minimum number of new states. In the long run, however, using the pricing
strategy improving seems to be disadvantageous for similar reasons as figured
out for the concrete situation described above. An approach to prevent the
observed drawbacks of the strategy improving would be to mainly focus on
the reduced profits and to take into account the used weights with lower
priority.

Performance of Pricing Strategies

Finally, we study the practical performance of the pricing strategies. Adding
only one variable to the explored state space in each iteration is inadequate
to achieve a good run-time of the approximation algorithm. Instead, gen-
erating up to about 1000 variables if possible per pricing iteration seems to
be reasonable for the considered applications. Figure 4.3 shows the associ-
ated bounds achieved by the considered pricing strategies for the bin coloring
MDP (bc-3-3-7-spe, 0.97) for approximating the value vαibc

. The computa-
tion terminates once a relative guarantee of 10 % has been obtained.

4.2 Analysis of the Approximation Algorithm 145

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 5000 10000 15000 20000 25000 30000 35000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

direct pricing
improving pricing
min-depth pricing

Figure 4.3: Comparison of the approximation progress of different pricing strategies for
the bin coloring MDP (bc-3-3-7-spe, 0.97) to achieve a guarantee of 10 %. Up to 1000
variables are added in each pricing iteration if possible.

MDP instance direct improving min-depth
time |S| time |S| time |S|

(bc-3-3-7-spe, 0.97) 13 7981 79 15981 345 31981
(tda-4-2, 0.7) 9 3568 10 3568 8 3568
(ela-1-2-10-02-ud, 0.8) 84 7332 99 8332 41419 481332
(elm-1-02-ud, 0.8) 211 23675 approx. failed approx. failed

Table 4.13: Required running times in seconds and number of explored states to achieve
a guarantee of 10 % for the considered pricing strategies. Up to 1000 variables are added
in each pricing iteration if possible.

The strategies direct, improving, and min-depth require 7981, 15 981, and
31 981 states, respectively. For this example direct again outperforms the
other strategies significantly w. r. t. the number of required states. The crucial
aspect, however, is the actual running time of the approximation algorithm
due to the used pricing strategy. Table 4.13 shows the run-times and the total
number of explored states to achieve an approximation guarantee of 10 % for
the four studied MDPs.

Obviously, using the pricing strategy direct results in the fastest ver-
sion of the approximation algorithm. Only for the target date assignment
MDP (tda-4-2, 0.7), the strategy min-depth yields a better running time

146 Computational Results

than direct. In this case, all pricing strategies generate the same restricted
state space since in each pricing iteration all candidate states having a pos-
itive reduced profit added, i. e., their number is at most 1000. Therefore, it
is clear that min-depth should be faster then the other more involved strate-
gies. For the elevator control MDP (elm-1-02-ud, 0.8), only the pricing
strategy direct is able to complete the approximation process. Using the
other strategies, the algorithm runs out of memory since our implementation
maintains all candidate states, which become extremely many for this MDP.

The results in this section revealed that the pricing strategy direct typi-
cally generates the least number of states and yields the best running times
to reach a given approximation guarantee. In the following, all computations
are based on the strategy direct.

4.2.4 Approximation Heuristics

In this section we computationally analyze the policy-based approximation
heuristics proposed in Section 3.5.4, namely breadth-first-policy-exploration,
pricing-policy-exploration, and weighting-policy-exploration. Their precise set-
ting for a given policy π is as follows.

breadth-first-policy-exploration Let S(i0, r, π) ⊆ S(i0, r) for r ∈ N denote
the subset of states in the r–neighborhood S(i0, r) that can be reached
from i0 by policy π using at most r transitions. Initially, the state
space S1 := S(i0, r, π) with r = 3 is constructed. As long as S1 does
not satisfy Inequality (3.5.21) on page 98, we increase the radius r by
one and extend S1 such that S1 = S(i0, r, π).

pricing-policy-exploration Recall that the heuristic pricing-policy-exploration
applies the standard approximation algorithm restricted to policy π.
We generate up to 1000 states in each pricing operation.

weighting-policy-exploration Recall that weighting-policy-exploration can be
seen as an approximate variant of pricing-policy-exploration which tries
to reduce the number of linear programs to be solved. We use the error
estimate δ = 1.

The policy-based heuristics employ the following policies: GreedyFit and PFD
are used for the MDPs (bc-3-3-7-spe, 0.97) and (tda-4-2, 0.7), respectively,
while NN is applied for the elevator control MDPs (ela-1-2-10-02-ud, 0.8)
and (elm-1-02-ud, 0.8).

We approximate the value vαi0 for the considered MDPs up to a guaran-
tee of 8 % using the mentioned heuristics, where i0 is the associated trivial

4.2 Analysis of the Approximation Algorithm 147

MDP instance bfpe ppe wpe no heuristic
time |S| time |S| time |S| time |S|

(bc-3-3-7-spe, 0.97) 188 23009 31 12072 16 11275 15 7981
(tda-4-2, 0.7) 19 5800 18 5652 11 4371 8 3568
(ela-1-2-10-02-ud, 0.8) 37685 532461 498 9204 548 8792 502 9332
(elm-1-02-ud, 0.8) approx. failed 1099 49225 1203 52442 1120 48675

Table 4.14: Required running times in seconds and number of explored states to achieve
a guarantee of 10 % for the considered pricing strategies. Up to 1000 variables are added
in each pricing iteration if possible.

state given in Table 4.7. In each pricing iteration up to 1000 variables are
generated. Table 4.14 shows the total run-times and the total number of
generated states for the column generation algorithm using any or none of
the approximation heuristics under consideration. As expected, the heuris-
tic breadth-first-policy-exploration gives the worst running-time and requires
the most states for all considered MDPs. Except for the target date assign-
ment MDP (tda-4-2, 0.7), the results of breadth-first-policy-exploration are
very bad. In the case of the MDP (elm-1-02-ud, 0.8) the heuristic breadth-
first-policy-exploration even runs out of memory. The results of the three
remaining settings are quite similar to each other. However, only for the ele-
vator control MDPs the heuristic pricing-policy-exploration achieves a slighty
better run-time than the column generation algorithm without incorporat-
ing an approximation heuristic. Thus, we conclude that incorporating the
considered approximation heuristics in the column generation algorithm does
seem to be advantageous.

Figure 4.4 illustrates in detail the performance of the approximation
heuristics for the bin coloring MDP (bc-3-3-7-spe, 0.97). Each bend in the
approximation curves shows the point where the heuristic terminates having
computed a subset of states S1 ⊆ S that fulfills Inequality (3.5.21). Up to
this point the figure depicts the obtained lower bounds for vαi0(π), afterwards
those for the component vαi0 of the optimal value vector.

It is especially disappointing that using the heuristic weighting-policy-
exploration does never pay off. We hoped that weighting-policy-exploration
would be really fast since only few linear programs are solved in the heuristic.
For two reasons we do not observe this behavior. On the one hand, the
heuristic weighting-policy-exploration is hard to be parameterized such that
only very few linear programs are solved. On the other hand, we observed in
Section 4.2.2 that the linear programs arising in the approximation process
can be solved really fast due to the construction of a suitable initial basis.

148 Computational Results

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 5000 10000 15000 20000 25000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

no heuristic
breadth-first-policy-e.

pricing-policy-e.
weighting-policy-e.

Figure 4.4: Approximation results depending on the used approximation heuristic for the
bin coloring MDP (bc-3-3-7-spe, 0.97) and the trivial initial state ibc defined in Table 4.7.

We believe that this second aspect significantly degrades the potential of
employing an approximation heuristic in general. Furthermore, the results
above substantiate that the standard approximation algorithm based on a
good setting for the linear programming solver and the pricing strategy runs
fast and is effective for generating such subsets of states that provide good
approximations.

We have to mention that it is crucial for the practicability of our approach
to employ the approximation algorithm based on the best arrangement for its
components and possible extensions and to incorporate strong state-specific
bounds in the linear programs. Otherwise, results like those provided in the
next section cannot be obtained, or only at an extremely high computational
effort.

4.3 Analysis for Exemplary MDPs

In this section our approximation algorithm is used to evaluate policies for
discounted MDPs emerging from the introduced Markov decision processes
modeling online optimization problems. In particular, we will consider the
online algorithms described in the Sections 4.1.3–4.1.5. For all considered
MDPs, no explicit optimal policy is known.

4.3 Analysis for Exemplary MDPs 149

4.3.1 Subjects of Evaluation

As mentioned before, we see the main use of our approximation method in
evaluating online algorithms / policies that possibly behave well in simulation
experiments or even in practice, although the classical analysis tools (e. g.,
based on the competitive ratio) do not indicate this. We thus aim at esti-
mating and reporting for each state i0 ∈ S, that is reached while running a
simulation or real-world system, online the quantity:

εαi0(π) :=
vαi0(π)− vαi0

vαi0
or εαi0(π(i0)) :=

vαi0(π(i0))− vαi0
vαi0

, (4.3.1)

where π is a particular policy for the considered MDP. The values εαi0(π) and
εαi0(π(i0)) give the relative increase of the total α-discounted expected cost
for the initial state i0 ∈ S when using policy π or action π(i0) instead of
an optimal policy. Since it is generally impossible to compute the quantities
defined in Equation (4.3.1) exactly, we aim at providing lower bounds. This
requires an upper bound on the component vαi0 of the optimal value vector
and a lower bound on vαi0(π) or vαi0(π(i0)), respectively, which are all obtained
by our approximation algorithm.

In the following, we will refrain to consider all states visited in a complete
simulation run since the evaluation results obtained that way are typically
quite boring for most situations. Instead, we look at a few specific states
that highlight interesting outcomes.

The evaluation figures given below are arranged as follows. One chart
may show for one particular state i0, the approximation progress of

• an optimal policy: vαi0 ,

• a concrete policy π: vαi0(π), and

• the action π(i0) of a given policy π: vαi0(π(i0)).

In the following we will refer to the values vαi0 , vαi0(π), and vαi0(π(i0)) simply as
the optimal cost, the cost of policy π, and the cost of action π(i0) at state i0,
respectively.

For each cost value reported, we depict the progress of lower and upper
bounds computed in the approximation process depending on the number of
explored states and generated variables, respectively. Additionally, we will
provide the best obtained lower bounds on the values εαi0(π) and εαi0(π(i0))
for each analyzed policy π or action π(i0).

150 Computational Results

1 2

1

→

Figure 4.5: State i1 in a bin coloring MDP with m = 2 bins of size b = 3. The state is of
the form i1 = (c, χ, f1, C1, f2, C2), where c = 1, χ = f1 = f2 = 0, and C1 = C2 = ∅.

4.3.2 Bin Coloring MDPs

We start by considering different bin coloring MDPs and aim at investigating
the following questions:

1. Is GreedyFit better than OneBin w. r. t. the total expected discounted
cost (recall that OneBin outperforms GreedyFit in terms of competitive
analysis)?

2. How close is GreedyFit to an optimal policy? And if GreedyFit is not
almost optimal, can we design a policy that outperforms GreedyFit?

In order to answer these questions, we will consider the instances of the
Markov decision process for bin coloring shown in Table 4.1 on page 115.

Instances bc-2-3-6-*

First we deal with the bin coloring MDPs Muni
2 := (bc-2-3-6-uni, 0.97) and

M spe
2 := (bc-2-3-6-spe, 0.97). Note that both MDPs have the same state

space S. Using such a large discount factor of α = 0.97 is possible since the
state space S is quite small here: the MDPs only consist of |S| = 5424 states.
Thus, it is even possible for these MDPs to generate their complete state
space S and to solve the associated linear programs (Li0S) = (Pi0) for some
state i0 ∈ S. The concrete value for the discount factor was chosen to obtain
significant approximation results. We again mention that for a discount
factor α′ very close to 1, the total expected α′-discounted cost almost equals
the total expected undiscounted cost. This implies that using the discount
factor α′ makes all policies perform similarly since each policy will eventually
reach the maximum colorfulness of b = 3 with probability 1.

Initially, we consider the trivial state i1 := ibc = (c, χ, f1, C1, f2, C2) ∈ S
shown in Figure 4.5. This illustration is to be interpreted as follows. The
new item with color c is depicted at the left, while the current configura-
tion (f1, C1, f2, C2) of bin 1 and bin 2 is shown at the right. The arrow
indicates the maximum colorfulness χ.

4.3 Analysis for Exemplary MDPs 151

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 500 1000 1500 2000 2500 3000 3500

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy OneBin

Figure 4.6: Approximation results for the bin coloring MDP Muni
2 and the trivial initial

state i1 defined in Figure 4.5. We have εαi1(GreedyFit) = 0.2 % and εαi1(OneBin) = 19.9 %.

To investigate the performance of the policies OneBin and GreedyFit, we
compare the approximation of vαi0(GreedyFit) and vαi0(OneBin) with that of
the optimal total expected α-discounted cost vαi0 for the start state i0 = i1.
The Figures 4.6 and 4.7 show the approximation results of these three val-
ues for the case of uniform (MDP Muni

2) and special (MDP M spe
2) transition

probabilities. Obviously, the performance of OneBin is very poor in both
cases: its value is greater than 2.8, while that of GreedyFit is below 2.4. In
particular, the performance of OneBin is far away from that of an optimal:
we have a relative cost increase of about 20 % for the MDP Muni

2 and more
than 32 % for M spe

2 , while the associated values for GreedyFit are very small.
This proves that OneBin reaches the maximum colorfulness of 3 significantly
faster in expectation than GreedyFit. A second observation is that GreedyFit
comes very close to the optimal value vαi0 for uniform transition probabilities,
but is slighty inferior compared to an optimal policy for the special distri-
bution for the transition probabilities where we have εαi1(GreedyFit) = 2.8 %.
Note further that GreedyFit and an optimal policy perform better in the case
of non-uniform transition probabilities. This behavior is what one would
expect.

The disadvantage of GreedyFit compared to an optimal policy for the
MDP M spe

2 shows that there must exist states, where the actions of GreedyFit
are not optimal. By analyzing GreedyFit using our approximation tool, we
were able to detect such states. One of them is the state i2 ∈ S, which is

152 Computational Results

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 500 1000 1500 2000 2500 3000 3500

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy OneBin

Figure 4.7: Approximation results for the bin coloring MDP M spe
2 and the trivial initial

state i1 defined in Figure 4.5. We have εαi1(GreedyFit) = 2.8 % and εαi1(OneBin) = 32.4 %.

1

1

1 2

1 →

Figure 4.8: State i2 in a bin coloring MDP with m = 2 bins of size b = 3. The state is
of the form i2 = (c, χ, f1, C1, f2, C2), where c = 1, χ = 2, f1 = 2, C1 = {1}, f2 = 0, and
C2 = ∅.

depicted in Figure 4.8.

We will refer to a bin k as being safe if the number of different colors
present in that bin plus its remaining capacity does not exceed the maximum
colorfulness, i. e., |Ck|+ b− fk ≤ χ. Since the number of different colors in a
safe bin cannot exceed χ independently of the colors of further items packed
into the bin, the maximum colorfulness will never be increased due to that
bin. Obviously, bin 1 in state i2 is safe. It seems to be a good idea to use safe
bins only in disadvantageous situations. For instance, consider state i2. If
the probability of items with color 1 is sufficiently high, the bin configuration
(f1, C1, f2, C2) with f1 = 2, f2 = 1, and C1 = C2 = {1} (obtained by using
bin 2) seems to be better than f1 = f2 = 0 and C1 = C2 = ∅ (reached by
GreedyFit) since the first configuration increases the chance to make bin 2
safe. Note further that both situations guarantee that four items can be

4.3 Analysis for Exemplary MDPs 153

packed without increasing the maximum colorfulness.
Based on the idea to avoid to use safe bins as long as possible while trying

to make other bins safe, we developed a new bin coloring policy called SafeBin.
Given a state (c, χ, f1, C1, . . . , fm, Cm), we refer to a bin k ∈ {1, . . . ,m} as
being critical w. r. t. color c if |Ck| = χ and c /∈ Ck. Bins that are not critical
are also called non-critical. That is, a bin is critical if and only if putting the
next item into that bin will increase the maximum colorfulness. Moreover,
we call a bin k color-suited w. r. t. color c if c ∈ Ck, i. e., color c is present
in that bin. Note that a color-suited bin is non-critical. Finally, a bin is
emptiest (fulltest) within a certain class of bins if it contains the smallest
(greatest) number of items. The policy SafeBin works as follows:

1. If there exists a non-critical bin:

(a) If there exists a color-suited bin that is not safe, put the item into
such a bin.

(b) Otherwise (all color-suited bins are safe), if there exists any non-
critical bin that is not safe, choose such a bin containing the small-
est number of different colors.

(c) Otherwise (all non-critical bins are safe), pack the item into a
fullest non-critical bin.

2. If all bins are critical, put the item in an emptiest bin.

The idea for choosing a bin with the smallest number of colors in Case 1b
is to distribute colors uniformly among the bins that are not safe at the
moment. This way, all of those bins have a similar chance to be color-suited
for future colors by which safe bins may be created. We prefer to use a fullest
non-critical bin if all non-critical bins are safe (Case 1c) since it seems to be
desirable if one of the safe bins is soon relaced by a new empty bin, keeping
the room in the other safe bins. Then, it is more likely that appropriate
future items can be combined to make the new bin safe also, while one can
get rid of unfavorable colors using the remaining safe bins. We mention that
if the bin capacity is b = 3 as considered here, a bin k ∈ {1, . . . ,m} can only
be safe if we have χ = 2, fk = 2, and |Ck| = 1. Thus, all safe bins have
the same number of items in Case 1c. In Case 2, when all bins are critical,
SafeBin puts the item in the emptiest bin since this may imply that other
bins containing more items will become safe.

Next we analyze the policy SafeBin and compare it to GreedyFit and an
optimal policy. Figure 4.9 and 4.10 show the associated approximations for
the MDPs Muni

2 and M spe
2 when the initial state is again the trivial one i1.

Except for SafeBin, these results have already been shown above.

154 Computational Results

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.9: Approximation results for the bin coloring MDP Muni
2 and the trivial initial

state i1 defined in Figure 4.5. We have εαi1(GreedyFit) = 0.2 % and εαi1(SafeBin) = 0 %.

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.10: Approximation results for the bin coloring MDP M spe
2 and the trivial initial

state i1 defined in Figure 4.5. We have εαi1(GreedyFit) = 2.8 % and εαi1(SafeBin) = 2.3 %.

4.3 Analysis for Exemplary MDPs 155

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0 500 1000 1500 2000 2500 3000 3500 4000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.11: Approximation results for the bin coloring MDP Muni
2 and the initial state i2

defined in Figure 4.8. We have εαi2(GreedyFit) = 4.8 % and εαi2(SafeBin) = 0 %.

In the case of uniform transition probabilities, the total expected α-
discounted costs of the two considered policies are very close to the optimal
one. GreedyFit performs a little worse, while SafeBin is optimal for the con-
sidered start state. The approximation results for the non-uniform transition
probabilities (Figure 4.10) look more interesting: here the two policies Greedy-
Fit and SafeBin are slightly inferior compared to an optimal policy. The dif-
ference between the two studied policy is small, but SafeBin performs better
than GreedyFit. It is quite clear that starting from the trivial state i1 makes
it unlikely to soon reach a somewhat difficult situation, where a reasonable
policy takes a bad decision. For this reason the cost values of the considered
policies only differ a little in the results above, apart from OneBin.

The approximations using the particular state i2 as starting point are
depicted in Figure 4.11 for uniform transition probabilities and in Figure 4.12
for the considered non-uniform distribution.

It is clear that the cost values of the considered policies are quite small for
the initial state i2 since the maximum colorfulness is already χ = 2 and with
high probability it will take a certain number of transitions until the final
increase will occur. For uniform transition probabilities GreedyFit performs
worse than SafeBin due to the reasons mentioned above that motivated devel-
oping SafeBin. The policy SafeBin itself is optimal for the initial state i2. This
changes in the case of the special distribution for the transition probabilities:
the performance of the policies GreedyFit and SafeBin is substantially inferior

156 Computational Results

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 500 1000 1500 2000 2500 3000 3500 4000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.12: Approximation results for the bin coloring MDP M spe
2 and the initial state i2

defined in Figure 4.8. We have εαi2(GreedyFit) = 49.4 % and εαi2(SafeBin) = 27.3 %.

to that of an optimal policy. As before SafeBin outperforms GreedyFit, but
now even to a larger extent. We believe that the high probability of 0.3 for an
item with color 1 is the reason that the two policies differ more significantly
as for the MDP Muni

2 : putting the item in bin 2 as done by SafeBin makes
it more likely that the bin may become safe soon since the probability of the
color is high.

Instances bc-3-3-7-*

Next we look at approximation results for the larger bin coloring MDPs
Muni

3 := (bc-3-3-7-uni, 0.97) and M spe
3 := (bc-3-3-7-spe, 0.97), where

m = 3 bins are available simulatenously. Notice that the number of different
colors equals 7, which is still enough that each policy will eventually reach a
maximum colorfulness of b = 3 with probability 1. The total number of states
in both MDPs equals 122 871. Considering a trivial state as starting point for
the MDPs Muni

3 and M spe
3 does not give further insight in the problem: still

OneBin performs badly, while the differences between GreedyFit, SafeBin, and
an optimal policy are even smaller than before. Instead, we will look at the
two initial states i3 and i4 shown in Figure 4.13. Again, our approximation
algorithm is able to compute the reported cost values exactly with reasonable
effort, even for the large discount factor.

First we look for both initial states i3 and i4 at the approximation results

4.3 Analysis for Exemplary MDPs 157

1

4 1

1 2 3

1 →

(a)

6 1

4 1

1 2 3

7 →

(b)

Figure 4.13: (a) State i3 in a bin coloring MDP with m = 3 bins of size b = 3. The state
is of the form i3 = (c, χ, f1, C1, f2, C2, f3, C3), where c = 1, χ = 2, f1 = 1, C1 = {4},
f2 = 2, C2 = {1}, f3 = 0, and C3 = ∅. (b) State i4 in the same MDP. The state is of the
form i4 = (c, χ, f1, C1, f2, C2, f3, C3), where c = 7, χ = 2, f1 = 2, C1 = {4, 6}, f2 = 2,
C2 = {1}, f3 = 0, and C3 = ∅.

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 10000 20000 30000 40000 50000 60000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.14: Approximation results for the bin coloring MDP Muni
3 and the initial state i3

defined in Figure 4.13(a). We have εαi3(GreedyFit) = 27.6,% and εαi3(SafeBin) = 0 %.

in the case of uniform transition probabilities, i. e., MDP Muni
3 , shown in the

Figures 4.14 and 4.15. For both initial states the observations are similar:
SafeBin is at least close to being optimal, while GreedyFit has a worse cost
value.

However, there are different reasons for the poor performance of GreedyFit.
In the case of the initial state i3, the policy chooses bin 2 since color 1 is
already present in that bin. Note that bin 2 is safe. Thus, the action of
GreedyFit is bad for the same reason as mentioned before. For state i4, we
have GreedyFit(i4) = 3 since color 7 is not present in any bin and bin 3

158 Computational Results

 0.035

 0.04

 0.045

 0.05

 0.055

 0 10000 20000 30000 40000 50000 60000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.15: Approximation results for the bin coloring MDP Muni
3 and the initial state i4

defined in Figure 4.13(b). We have εαi4(GreedyFit) = 18.0 % and εαi4(SafeBin) = 0 %.

contains the least number of distinct colors. This seems to be a good action,
which may help to make the bin safe. Indeed using the described approach
based on Corollary 3.4.5 on page 68 we proved this action to be optimal.
The reason for the bad performance of GreedyFit is due to decisions in later
stages.

The policy SafeBin chooses bin 3 for both states i3 and i4. Note that
SafeBin does not perform worse than an optimal policy in the case of uniform
transition probabilities for all considered MDPs and initial states. In fact,
we exhaustively tried to computationally find an initial state such that the
resulting cost value of SafeBin is actually larger than the optimal one w. r. t.
the considered MDPs Muni

2 and Muni
3 . Since no such state could be found,

we conclude that SafeBin is almost optimal in the case of uniform transition
probabilities independently of the considered start state.

Finally, let us consider the obtained approximations for the MDP M spe
3

with the non-uniform distribution for the transition probabilities. The results
for the initial states i3 and i4 are depicted in Figures 4.16 and 4.17.

In both situations the cost values of the policies GreedyFit and SafeBin
are far from being optimal, but still SafeBin outperforms GreedyFit. Note
that the total expected α-discounted cost is very small in all cases. We could
prove that the only optimal action at state i3 is to choose bin 3 = SafeBin(i3),
while GreedyFit puts the item into bin 2 = GreedyFit(i3). However, the bad
performance of SafeBin shows that there must exist states where the action of

4.3 Analysis for Exemplary MDPs 159

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 10000 20000 30000 40000 50000 60000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.16: Approximation results for the bin coloring MDP M spe
3 and the initial state i3

defined in Figure 4.13(a). We have εαi3(GreedyFit) = 439.7 % and εαi3(SafeBin) = 203.2 %.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10000 20000 30000 40000 50000 60000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy GreedyFit

policy SafeBin

Figure 4.17: Approximation results for the bin coloring MDP M spe
3 and the initial state i4

defined in Figure 4.13(b). We have εαi4(GreedyFit) = 374.9 % and εαi4(SafeBin) = 232.1 %.

160 Computational Results

SafeBin is not optimal. Such a state is i4. For this initial state, both policies
choose bin 3 for the item with color 7. This decision is disadvantageous as
the probability for another item with the same color equals 0.03, which is
very small. Therefore, a bin containing only one item with color 7 is very
hard to be made safe in the future. In the considered situation it is better
to pack the item into the safe bin 2 to get rid of the annoying color 7.

Summary

In this paragraph, we summarize the important results of this section and
make some further remarks. Concerning the comparision of GreedyFit and
the stupid policy OneBin, the computational results obtained by our approx-
imation algorithm give a more realistic picture than competitive analysis and
reflect the behavior observed in simulations.

We developed a new online algorithm called SafeBin for the bin coloring
problem that mostly outperforms GreedyFit and seems to be almost optimal
in the case of uniform transition probabilities independently of the used start
state. We mention that GreedyFit may be superior to SafeBin in the case of
other distributions for the transition probabilities. For instance, consider the
modified state i4 (see Figure 4.13(b)), where the color of the items in bin 2
is color 7 instead of 1. For the same argument as above, it is not a good idea
to put the new item having color 7 into bin 3, which SafeBin does. Similar
as for state i4, using bin 2 is an optimal action here. Due to their choises for
the action to be applied, the cost of GreedyFit is smaller than that of SafeBin
for the considered initial state. However, those situations seem quite unlikely
to occur. This example shows that stochastic information have to be taken
into account in order to come up with a policy that improves over SafeBin.
Our first attempts in this direction were not successful.

In order to figure out whether our analyses for GreedyFit and SafeBin pro-
vide realistic performance indicators, we assessed the behavior of these two
online algorithms by simulation also. In doing so, we simulated the exact set-
ting given by our Markov decision process model. In the considered instances
each online algorithm will eventually reach a maximum colorfulness that is
equal to the bin capacity b. We evaluated for each number k ∈ {2, . . . , b},
how many requests are required such that the maximum colorfulness be-
comes k. The simulation results reporting average values for 100 runs are
shown in Table 4.15. Since both online algorithms work identically as long
as the maximum colorfulness χ does not exceed 1, GreedyFit and SafeBin
reach χ = 2 at the same time for each request sequence. Thus, the associ-
ated average values are identical as well. For χ ∈ {3, 4}, however, SafeBin

4.3 Analysis for Exemplary MDPs 161

Markov maximum colorfulnes
decision 2 3 4
process GF SB GF SB GF SB

bc-2-3-6-spe 4.10 4.10 69.47 91.52 - -
bc-2-3-6-uni 3.98 3.98 35.54 39.95 - -
bc-3-3-7-spe 6.64 6.64 1635.31 2259.52 - -
bc-3-3-7-uni 5.91 5.91 693.34 771.55 - -
bc-3-4-12-spe 5.36 5.36 24.30 25.93 5257.12 23527.80
bc-3-4-12-uni 4.79 4.79 12.65 12.81 1349.44 2430.52

Table 4.15: Average number of requests required by the online algorithms GreedyFit (GF)
and SafeBin (SB) to reach a maximum colorfulness of 2, 3, and 4 according to 100 simu-
lation runs.

significantly outperforms GreedyFit. We conclude that our approximation re-
sults for these online algorithms are in line with their behavior observed in
simulation.

We make another remark concerning GreedyFit. In the case the color of
an item to be packed is not present in one of the m bins, GreedyFit puts it
into a bin having the least number of distinct colors. Often there may exist
several bins with this property. Additional approximation results revealed
that the used tie-breaking rule can slightly affect the policy’s performance:
choosing an emptiest bin in the described situation seems to be better than
the opposite. Our approximation method also showed that the use of different
tie-breaking rules for GreedyFit, depending on whether non-critical bins exist
or not, barely changes the performance.

4.3.3 Target Date Assignment MDPs

An extensive analysis comparing the policies PTD and PFD for the target
date assignment MDPs (tda-3-2, α) with discount factor α ∈ {0.5, 0.7} has
been carried out in the diploma thesis of Heinz [Hei05, chapter 5.4] that is
based on joint work. The results show that PFD selects an optimal action
for most of the considered initial states and seems close to an optimal policy,
while PTD uses worse actions than PFD in many situations. We mention
that the MDPs have 230 076 states in total.

In this section we will analyze our Markov decision process formulation
of the online target date assignment problem w. r. t. a modified objective cri-

162 Computational Results

terion. Instead of comparing the two policies in terms of the total expected
α-discounted cost for some α ∈ (0, 1], we will discount stage costs depending
on the date, not on the stage. Given a Markov decision process for the con-
sidered target date assignment problem with state space S and a state i ∈ S,
we denote the current date of state i by t = 0 and the consecutive dates
by t = 1, 2, Let ct ∈ N0 be the sum of all stage costs incurred at date t,
then the associated total date-wise α-discounted cost is defined by:

∞∑
t=0

αtct.

That is, each stage cost incurred at date t is being accounted by a factor
of αt. Obviously, using such an objective criterion is more natural for the
target date assignment problem due to the specific time model of the problem.

In order to formally introduce the total expected date-wise α-discounted
cost v′αi (π) of a policy π for initial state i, assume that the Markov decision
process additionally encodes for each state j ∈ S, the date t(j) ∈ N0 at which
the current request is released. For the considered initial state i0, we have
t(i0) = 0. Using the same notation as in Definition 2.1.9 on page 14, the cost
value v′αi (π) is defined as:

v′αi (π) :=
∞∑
k=0

Eiπ[αt(Xk) · cXk(Yk)]

=
∞∑
k=0

∑
j∈S

∑
a∈A(j)

Piπ[Xk = j, Yk = a] · αt(j)cj(a).

The following result shows that the objective criterion of minimizing the
total expected date-wise α-discounted cost is equivalent to minimize the total
expected α-discounted cost for a modified Markov decision process.

Theorem 4.3.1 Let M = (S,A, p, c) be a Markov decision process for the
considered target date assignment problem, where at least nmin ≥ 1 and at
most nmax ≥ nmin requests are released each date, and let α ∈ [0, 1). Then,
the total expected date-wise α-discounted cost of a policy π for M for an
initial state i0 ∈ S equals the total expected α-discounted cost of an associated
policy π′ for the Markov decision process M ′ = (S′,A′, p′, c′) with the following
components w. r. t. initial state (i0, 0, 1) ∈ S′.
• The state space S′ is given by:

S′ = {(s, n, S1, . . . , Sδ, t, nΣ) ∈ S× N2
0 | n+ nmint ≤ nΣ ≤ n+ nmaxt},

where t is a date index and nΣ is the total number of requests since
date t = 0.

4.3 Analysis for Exemplary MDPs 163

• The action space A′ is induced by A: for a state i′ = (i, t, nΣ) ∈ S′ with
i ∈ S, the set of possible actions is given by A′(i′) = A(i).

• Consider states i′ = (i, t(i′), nΣ(i′)) ∈ S′ and j′ = (j, t(j′), nΣ(j′)) ∈ S′,
and for all i, j ∈ S, let n(i) and n(j) denote the number of requests
released at the current date. Then, the transition probability p′i′j′(a) for
some action a ∈ A′(i′) equals:

p′i′j′(a) =


pij(a), if nΣ(j′) = nΣ(i′) + 1 and

[(t(j′) = t(i′) and n(j) = n(i) + 1) or

(t(j′) = t(i′) + 1 and n(j) = 1)],

0, otherwise.

• For each state i′ = (i, t(i′), nΣ(i′)) ∈ S′ and an action a ∈ A′(i′), the
stage cost c′i′(a, j

′) for each possible successor j′ = (j, t(j′), nΣ(j′)) ∈ S′
is defined as:

c′i′(a, j
′) =

ci(a, j)

αnΣ(i′)−t(i′)−1
.

Proof. Let π be any policy in the original Markov decision process M , and
let i0 ∈ S be any state in M . Note that each state i′ = (i, t, nΣ) in M ′, which
is reachable from i′0 = (i0, 0, 1) by the policy π′, is reached via exactly nΣ− 1
transitions. That is, the state parameter nΣ may be seen as a stage index,
where the initial index equals 1. Consequently, each stage cost c′i′(a, j

′) for
some j′ ∈ S′ and a ∈ A′(i′) at state i′ is being discounted by the factor αnΣ−1.
Thus, we have an accounted stage cost of:

αnΣ−1c′i′(a, j
′) = αtci(a, j),

which equals the corresponding date-wise α-discounted cost for date t. �

By Theorem 4.3.1 we can apply our column generation algorithm to approx-
imate also the total expected date-wise α-discounted cost of a concrete or
unknown optimal policy in the considered Markov decision process given an
initial state (note that

∑∞
k=0 nmaxα

k = nmax/(1−α) is a general upper bound
on v′αi (π) for any policy π and state i ∈ S). Moreover, we mention that the
approximation algorithm can easily be modified to handle this objective cri-
terion based on the original Markov decision process, i. e., the blow up of the
state space according to the theorem is not required.

In the following, we consider the Markov decision process tda-3-2 and a
discount factor of α = 0.7. We analyze the policies PTD and PFD w. r. t. the
total expected date-wise α-discounted cost. The initial states we consider

164 Computational Results

1 2 3

#4 1/5

1/5

1/5

1/5

1/5

1/5

(a)

1 2 3

#1
2/5

1/5

1/5

2/5

(b)

Figure 4.18: (a) State i1 in a Markov decision process for target date assignment with
deferral time δ = 3. The state is of the form i1 = (s, n, S1, S2, S3), where s = 1/5, n = 4,
S1(1/5) = 5, S1(x) = 0 for each x ∈ (0, 1] \ {1/5}, S2 ≡ 0, and S3 ≡ 0. (b) State i2 in the
same. The state is of the form i2 = (s, n, S1, S2, S3), where s = 2/5, n = 1, S2(1/5) = 2,
S2(2/5) = 1, S2(x) = 0 for each x ∈ (0, 1] \ {1/5, 2/5}, S1 ≡ 0, and S3 ≡ 0.

here have been chosen to unfold the disadvantages of the two considered
policies, see Figure 4.18. It is easy to see that each of the policies PTD
and PFD can reach these two states. We required a relative approximation
guarantee of ε = 0.5 % for these computations.

Figure 4.19 shows the approximation results for the initial state i1. Note
that already four request have been released at the current date. This implies
that the probability for a date change is quite high in this situation: we
have pd4 = 0.7. Thus, assigning the request to date 1 = PTD(i1) is not an
optimal action since it is unlikely that the new bin required at date 1 could
be filled reasonably before the date changes. That is, using this action will
badly exploit the capacity of the newly required bin with high probability.
Notice further that the action cost v′αi1 (PTD(i1)) is smaller than the policy
cost v′αi1 (PTD), which implies that PTD selects non-optimal actions for other
states, too.

On the other hand, choosing date 3 = PFD(i1) is optimal. This way, one
maximizes the chance for combining the current item of size 1/5 with further
items, which allows for exploiting the bin capacity as much as possible. Note
that the results from Figure 4.19 cannot prove a difference between the cost
of the policy PTD and the optimal cost.

Nevertheless, PFD is neither optimal as our results show for the second
initial state i2, see Figure 4.20. Here the cost of the policy PFD and its
action PFD(i2) = 3 are slightly worse than the optimal cost. Interestingly,
the action of PTD, which assigns date 2, is optimal now. The reason why
it is better to choose date 2 may be as follows. With high probability some

4.3 Analysis for Exemplary MDPs 165

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 5000 10000 15000 20000 25000 30000 35000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy PFD
policy PTD
action PFD
action PTD

Figure 4.19: Approximation results w. r. t. the total expected date-wise α-discounted cost
with α = 0.7 for the Markov decision process tda-3-2 and the initial state i1 defined
in Figure 4.18(a). We have εαi1(PTD) ≥ 22.3 %, εαi1(PTD(i1)) ≥ 17.4 %, εαi1(PFD) ≥ 0 %,
εαi1(PFD(i1)) ≥ 0 %.

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 5000 10000 15000 20000 25000 30000 35000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy PFD
policy PTD
action PFD
action PTD

Figure 4.20: Approximation results w. r. t. the total expected date-wise α-discounted cost
with α = 0.7 for the Markov decision process tda-3-2 and the initial state i2 defined
in Figure 4.18(b). We have εαi2(PTD) ≥ 7.5 %, εαi2(PTD(i2)) ≥ 0 %, εαi2(PFD) ≥ 0.6 %,
εαi2(PFD(i2)) ≥ 0.3 %.

166 Computational Results

Markov decision process Number of required bins
PFD PTD

tda-3-2 3060.07 3504.91
tda-4-2 3019.87 3377.23

Table 4.16: Average number of bins required by the online algorithms PFD and PTD
according to 100 simulation runs each of which consists of 10 000 requests.

more requests will be released before the current date will change twice: the
probability for at least three and four additional requests in that time span
is greater or equal than 0.86 and 0.69, respectively. That is, assigning date 2
offers a good chance that the remaining capacity of 4/5 given by the used
bins at that date can be exploited completely. Moreover, using two bins at
one date offers more flexibility for packing. The advantage of using date 2
is that one could add two items of size 2/5 without having to open another
bin. This is not the case if date 3 was chosen. We mention that for the
usually considered total expected α-discounted cost, the difference between
the action cost vαi2(PFD(i2)) and the optimal cost vαi2 is even larger.

Though there exist states like i2 where PFD selects an action that is not
optimal, the policy seems to be quite close to an optimal policy w. r. t. the
total expected date-wise discounted cost, too. Finally, we look at simula-
tion results for the policies PFD and PTD assuming the exact setting of the
Markov decision process model again. We investigate the total number of
bins required by the policies for 10 000 randomly generated requests. The
average values for 100 simulation runs are given in Table 4.16. As expected
and supposed by our approximation results, PFD outperforms PTD. We men-
tion that the advantage of PFD degrades for increasing deferral time δ.

4.3.4 Elevator Control MDPs

In this section, we analyze policies for the elevator control MDP w. r. t. the
average and maximum waiting time. In doing so, it is crucial to incorporate
the involved lower and upper bounds described in Section 4.1.5 in the linear
programs. Otherwise, the approximations for the optimal cost and the cost of
a given policy or single action at a given state i0 will be very weak, making
a comparison of different policies almost impossible. We will sketch this
observation very briefly below. Moreover, we should mention that computing
approximations for the considered elevator control MDPs by our algorithm
is quite expensive. The run-times for generating 100 000 variables are up to

4.3 Analysis for Exemplary MDPs 167

3 hours in the case of a single elevator. For the studied instance featuring
two elevators it takes even up to 12 hours for approximating a component of
the optimal value vector.

We start by giving an overview of the online algorithms / policies con-
sidered for scheduling a single elevator (some of them have already been
described in Section 4.1.5). Except for implementing FIFO and Ignore, a
state in the MDP is not required to encode a tentative schedule for serving
the waiting requests. Thus for each state, the associated action according
to a given policy has to be computed separately, although it follows directly
from the schedule determined for the predecessor state unless a new request
was released. Therefore, we can describe each policy by specifying either its
next action, the request to be served next unless another request appears, or
the complete schedule. Recall that no decision has to be made, whenever the
elevator is loaded since the elevator simply serves the loaded request. The
same is true if no request is waiting. In this case, all policies let the elevator
wait at the current floor. For the description of the online algorithms, we
thus assume that the elevator is empty and there exists at least one waiting
request. The considered policies work as follows:

FirstInFirstOut (FIFO) Serve the request with the smallest current waiting
time next (this request is unique by our assumption that at most one
request is released at each time slot). For the policy FIFO, we addition-
ally store in each state the order of arrival for the waiting requests.

NearestNeighbor (NN) Determine a waiting request whose start floor is
located nearest to the current floor of the elevator. If there exists a
unique request with this property, serve it next. Otherwise, such a
request exists in both directions. Then, serve the one with smaller
floor number next.

Replan Compute a schedule minimizing the makespan (without returning
to some origin), i. e., the time needed to serve all waiting requests,
and serve the requests according to this schedule. We implemented a
branch-and-bound method to compute these schedules.

ReplanS The same as Replan, but a schedule minimizing the sum of the final
waiting times of all requests is used.

ReplanSQ The same as Replan, but a schedule minimizing the sum of the
squared final waiting times of all requests is used.

Ignore As long as a schedule is available, serve the waiting requests accord-
ingly. If no schedule is available, do the same as the policy Replan and

168 Computational Results

store the schedule. The policy Ignore requires a modified MDP where
each state encodes a schedule containing a (possibly empty) subset of
the waiting requests. Moreover, if for some state this schedule is empty
and a request is waiting, each associated action has a second component
that sets the schedule for all waiting requests.

In the case of two elevators, we only consider FIFO and NN extended by some
strategy for assigning requests to elevators. The used assignment strategies
are described later. To prevent the approximation pictures to be presented
in the sequel from being overloaded, we will only display results for selected
policies. However, we provide the bounds εα for the relative cost increase for
all policies.

Average Waiting Time

We start by analyzing the behavior of the mentioned policies concerning their
average waiting time. Initially, the MDP Mud

1,2 := (ela-1-2-100-02-ud, 0.8)
will be considered that models combined up and down traffic and assumes a
large penalty cost of cp = 100 and a very small waiting queue length of q = 2.
The first initial state we look at is the state i1, where the elevator is located at
floor 1 and one request with start floor 8 and destination floor 1 is currently
waiting, see Figure 4.21(a). Note that this illustration renders all parameters
of the state. Specifying the waiting times of the requests in the model for the
average waiting time is only required for the policies FIFO and ReplanSQ. In
the following, we will use such diagrams to present states in elevator control
MDPs without specifying all of their parameters explicitly. Moreover, we
will denote each request as a triple of its start and destination floors and its
current waiting time, i. e., the request in state i1 is denoted by (8, 1, 0).

The approximation results for the policies NN, FIFO, Replan, ReplanS, and
Ignore w. r. t. the initial state i1 are given in Figure 4.21(b). The picture shows
that the performance of most of the considered policies differs substantially:
The policy NN seems to be slightly better than ReplanS which itself outper-
forms Replan. For ReplanSQ, we have vαi1(NN) < vαi1(ReplanSQ) < vαi1(Replan).
The policies FIFO and Ignore give the worst results and are proven to be more
than 30 % away from an optimal policy. Note that the latter two policies will
serve the present request r1 := (8, 1, 0) first, independently of possible future
requests. Therefore, one would also expect FIFO and Ignore to give bad re-
sults for the initial state i1 because serving the request r1 keeps the elevator
busy for a long time and prevents the service of possible other requests that
could be transported faster. Recall that all waiting requests in a given state
are of the same importance as we analyze the (discounted) average waiting

4.3 Analysis for Exemplary MDPs 169

8

7

6

5

4

3

2

1

1(0)

(a)

 7

 8

 9

 10

 11

 12

 13

 14

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan

policy ReplanS
policy Ignore

(b)

Figure 4.21: (a) State i1 in an elevator control MDP w. r. t. the average waiting time for a
single elevator e and a set F of eight floors. The state is of the form i1 = ((σf)f∈F , fe, de),
where σ8 = (8, 1, 0) and σf = ∅ for each f ∈ F \{8}, fe = 1, and de = 0. (b) Approximation
results for the elevator control MDPMud

1,2 and the initial state i1. We have εαi1(NN) ≥ 7.1 %,
εαi1(FIFO) ≥ 32.2 %, εαi1(Replan) ≥ 16.6 %, εαi1(ReplanS) ≥ 9.0 %, and εαi1(Ignore) ≥ 36.7 %.
Moreover, εαi1(ReplanSQ) ≥ 9.9 %.

time. Thus upon arrival of another request r2, the initial request r1 is just as
important to be served as r2, although it has been waiting for a longer time.

However, one has to mention that the analyzed policies are at a disad-
vantage for our Markov decision process formulation since they disregard the
very restricted length of the waiting queues, possibly incurred penalty costs,
and the probability distribution for the start and destination floors for future
requests. This is especially awkward for the considered instance ela-1-2-

100-02-ud: in expectation each second request has start floor 1, which makes
this floor crucial concerning penalty costs. In particular, one can show that
an optimal policy will not serve the request r1 until further requests arrive
(this is also the case for a penalty cost of pc = 10). This observation can
be interpreted twofold. On the one hand, it can indeed be reasonable for
certain traffic situations in some elevator system to let an elevator wait al-
though a request could be served. Such aspects will be taken into account in
a stochastic model for the future, which is impossible if it is assumed that no
information about the future is available, as done by competitive analysis.
On the other hand, one can look upon the MDP Mud

1,2 as being somehow
unrealistic, in particular it is not fair to compare the studied policies with an
optimal one for the considered setting.

170 Computational Results

8

7

6

5

4

3

2

1

1(0)

(a)

 6.5

 7

 7.5

 8

 8.5

 9

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.22: (a) State i1 in an elevator control MDP w. r. t. the average waiting time for a
single elevator and 8 floors. (b) Approximation results for the elevator control MDP M sp

1,4

and the initial state i1. We have εαi1(NN) ≥ 0 %, εαi1(FIFO) ≥ 8.7 %, εαi1(Replan) ≥ 0.5 %,
and εαi1(Ignore) ≥ 9.3 %. Moreover, εαi1(ReplanS) ≥ 0 % and εαi1(ReplanSQ) ≥ 0.4 %.

Nonetheless, the results give a reasonable comparison for the concrete
policies under consideration since all of them serve the request r1 immediately
unless further requests are released before the elevator loads r1. We mention
that the large penalty cost and the high probability for the occurrence of
penalties are the reasons that the policies differ significantly here. Thus, the
results in Figure 4.21(b) particularly show that NN and ReplanS are most
suitable among the analyzed policies to prevent penalty costs.

Remark 4.3.2 As mentioned before, it is important to estimate the opti-
mal or policy cost at candidate states using the involved lower and upper
bounds developed in Section 4.1.5. For instance, the approximation pro-
cess for the state i1 given in Figure 4.21(b) yields vαi1 ∈ [7.94, 8.08] and
vαi1(NN) ∈ [8.66, 8.88], which gives a relative guarantee of 1.9 % and 2.6 %, re-
spectively. On the other hand, estimating the cost at candidate states by the
trivial bounds gives vαi1 ∈ [7.84, 8.49] and vαi1(NN) ∈ [8.56, 9.39] after having
generated 100 000 states, which corresponds to gaps of 8.4 % and 9.7 %. Ob-
viously, the former approximations using the improved state-specific bounds
are much better. 4

Due to the mentioned drawbacks of the MDP Mud
1,2, we study next the ini-

tial state i1 in the setting of the MDP M sp
1,4 := (ela-1-4-10-02-sp, 0.8) for

4.3 Analysis for Exemplary MDPs 171

8

7

6

5

4

3

2

1

(a)

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.23: (a) Trivial state i2 in an elevator control MDP w. r. t. the average waiting
time for a single elevator and 8 floors. (b) Approximation results for the elevator con-
trol MDP M sp

1,4 and the initial state i2. We have εαi2(NN) ≥ 3.6 %, εαi2(FIFO) ≥ 7.9 %,
εαi2(Replan) ≥ 5.1 %, and εαi2(Ignore) ≥ 7.5 %. Moreover, εαi1(ReplanS) ≥ 4.1 % and
εαi1(ReplanSQ) ≥ 4.9 %.

the special traffic situation in the case of a waiting queue length of q = 4 and
a moderate penalty cost of pc = 10. In this case, the waiting times produced
by a policy instead of the incurred penalty cost dominates the total expected
discounted cost. See Figure 4.22(b) for the associated approximation results.
Obviously, the policies under consideration differ less than before: NN and
ReplanS seem to be close to an optimal policy for the state i1, while Re-
plan and ReplanSQ are only slightly worse than an optimal policy but also
outperformed a little by NN. Still, FIFO and Ignore are both clearly inferior
compared to the other policies. This is what one would expect.

Next we consider the trivial initial state i2 = ielv shown in Figure 4.23(a),
where no transport request is waiting and the elevator is situated at floor 1.
The associated approximation results for the MDP M sp

1,4 are depicted in Fig-
ure 4.23(b).

Obviously, none of the considered policy is really close to an optimal
policy for the initial state i2. Concerning the studied policies the results
show the same ranking as before. However, the most interesting observation
we made relating to these results is that an optimal action at state i2 is to
move the elevator upwards.

In the case no request is to be served by an elevator we face the task

172 Computational Results

8

7

6

5

4

3

2

1

(a)

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.24: (a) Modified trivial state i3 in an elevator control MDP w. r. t. the average
waiting time, where the elevator is located at floor 6. (b) Approximation results for the
elevator control MDP M sp

1,4 and the initial state i3. We have εαi3(NN) ≥ 0 %, εαi3(FIFO) ≥
2.9 %, εαi3(Replan) ≥ 1.6 %, and εαi3(Ignore) ≥ 2.3 %. Moreover, εαi1(ReplanS) ≥ 0.1 % and
εαi1(ReplanSQ) ≥ 1.1 %.

to position it such that future requests can be handled well. This issue is
often referred to as the parking policy in the literature. Obviously, all of the
considered policies do trivial parking, i. e., an elevator that is not dedicated to
serve a request simply waits at its current floor. Our approximation method
proves that this parking policy is not optimal for the state i2. This result
motivates to compare the actions wait, move down, and move up also for each
state, where no request is waiting and the elevator is located at an arbitrary
floor in F \ {1}. That is, for each state i = ((σf)f∈F , fe, de) with σf = ∅ for
each f ∈ F , de = 0, and arbitrary floor fe ∈ F , we evaluate the total expected
0.8-discounted costs of all feasible actions. This way, we could determine a
unique optimal action for each of these states according to the approach due
to Corollary 3.4.5 on page 68. It turned out that the action wait is only
optimal if the elevator is located at floor 6. Otherwise, moving the elevator
closer to floor 6 can be proven to be optimal. Thus, we obtained an optimal
parking policy for the MDP M sp

1,4.

Since all considered policies do trivial parking, using the modified trivial
state i3, where the elevator is situated at floor 6 (see Figure 4.24(a)) seems
to be a fair initial state. The approximations for state i3 are shown in Fig-
ure 4.24(b). In this situation the differences between the studied policies are

4.3 Analysis for Exemplary MDPs 173

8

7

6

5

4

3

2

1

6(11) 1(7) 1(0)

1(5) 7(4) 8(1)

6(9) 1(6) 8(3)

6(10) 8(8) 6(2)

(a)

 56

 58

 60

 62

 64

 66

 0 10000 20000 30000 40000 50000

v
a
lu

e
 v

e
c
to

r
a
t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.25: (a) State i4 in an elevator control MDP w. r. t. the average waiting time for a
single elevator and 8 floors. (b) Approximation results for the elevator control MDP M sp

1,4

and the initial state i4. We have εαi4(NN) ≥ 0 %, εαi4(FIFO) ≥ 7.5 %, εαi4(Replan) ≥ 1.2 %,
and εαi4(Ignore) ≥ 1.4 %. Moreover, εαi1(ReplanS), εαi1(ReplanSQ) ≥ 0 %.

little. NN seems to be close to optimal and provably outperforms the other
concrete policies except for ReplanS. Moreover, the results let us suppose that
Replan is better than Ignore, which itself might be superior to FIFO. However,
we do not have a proof for that. We mention that the computed bounds for
ReplanSQ are similar but slightly better than those of Replan.

Next we analyze the policies w. r. t. the initial state i4 shown in Fig-
ure 4.25(a) that captures a situation of a high system load, i. e., many re-
quests are waiting. The approximation progess for the initial state i4 in the
MDP M sp

1,4 is depicted in Figure 4.25(b). Note that FIFO serves the requests
in a quite inappropriate order, which results in a bad performance of this
policy: it is about 7.5 % away from an optimal policy. The costs of the poli-
cies NN, ReplanS, and ReplanSQ are almost optimal, while Replan and Ignore
give slightly worse results. Moreover, Replan and Ignore perform similarly.
This shows that possible future requests affect the cost of a policy only very
little here. We mention that in this situation one can directly determine the
costs of the considered policies quite accurately since possible future requests
barely affect them.

Except for a missing parking approach, the policy NN performs almost
optimally for the initial states considered above. In the following we study
the state i5 defined in Figure 4.26(a), which is designed to give a bad per-

174 Computational Results

8

7

6

5

4

3

2

1

1(1)

8(0)

(a)

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.26: (a) State i5 in an elevator control MDP w. r. t. the average waiting time for a

single elevator and 8 floors. (b) Approximation results for the elevator control MDP Mud
1,4

and the initial state i5. We have εαi5(NN) ≥ 16.2 % and εαi5(FIFO), εαi5(Replan), εαi5(Ignore) ≥
0 %. Moreover, εαi1(ReplanS), εαi1(ReplanSQ) ≥ 0 %.

formance for NN, and consider the MDP Mud
1,4 := (ela-1-4-10-02-ud, 0.8)

modeling combined up and down traffic in an elevator system with a wait-
ing queue length of q = 4 and a penalty cost of pc = 10. Recall that the
tie-breaking rule of NN is to move down if there does not exist a unique
request located nearest to the elevator. Figure 4.26(b) shows the approxi-
mation results of the policies under consideration for the initial state i5. As
expected, NN performs badly as we have εαi5(NN) ≥ 16.2 %. Serving the
request r1 := (1, 8, 1) before r2 := (3, 1, 2) makes r1 and r2 wait for 1 and 15
more time slots, respectively, while the opposite order is optimal and results
in additional waiting times of 6 and 1 time units. All of the remaining poli-
cies choose the latter order for serving the present requests and consequently
perform very similar to each other and much better than NN. These results
show that the different behavior of the policies after serving the requests r1

and r2, which takes at least 14 time units, has only a little impact on the
total expected 0.8-discounted costs of the policies. This observation points
out that our approximation approach seems to be inappropriate to investi-
gate the long-term behavior of the policies unless a greater discount factor is
considered.

Clearly, the reason for the bad performance of the policy NN w. r. t. initial
state i5 is its tie-breaking rule. Of course one can construct symmetric situ-

4.3 Analysis for Exemplary MDPs 175

ations using another elevator control MDP and another initial state, where
the opposite tie-breaking rule is bad also. Apart from taking advantage of
the tie-breaking rule, we were not able to detect “fair” initial states such that
the cost of the policy NN is actually greater than that of an optimal policy.
All further situations that feature a non-optimal performance of NN seem to
be due to the trivial parking policy of NN and possible penalty costs that are
ignored by all considered policies.

In the last part of this section we study a group of two elevators serving
combined up and down traffic of identical intensities. Let us consider the
MDP Mud

2,4 := (ela-2-4-10-03-ud, 0.8), where the probability that a new
request is released at a time slot equals 0.3. As mentioned before, we only
consider the policies FIFO and NN in the case of two elevators. Again, an
empty elevator waits at its current floor if it does not have an assigned re-
quest, which is especially the case if there are no further requests waiting at
all. Assuming that there exists at least one waiting request, the assignment
strategies are as follows:

FIFO Consider the request with smallest waiting time and let f be its start
floor. Then, both elevators compete for serving this request: the ele-
vator that can reach floor f first taking into account possibly loaded
requests, serves the request next. Then, the request with the next larger
waiting time is considered and assigned similarly, and so on. This is
done for all waiting requests until both elevators have been assigned
a request or there are no waiting requests left (at this point the next
actions for both elevators have been determined).

NN For both elevators e1 and e2, determine the smallest time tk by which
elevator ek can reach the start floor of any waiting request after serving
possibly loaded requests. Some elevator es with the smallest time is
assigned the corresponding request. It remains to find the next request
to be served by the other elevator eo ∈ {e1, e2} \ {es}. For the remain-
ing requests, this procedure is repeated until the elevator eo reaches
its nearest request earlier than es can pick up another request or no
requests are left. In the first case, the elevator eo is assigned the asso-
ciated request, while eo waits at its current floor otherwise.

These assignment strategies are used as they anticipate the future evolution
of the system due to the interaction of both elevators if no further requests are
released. This would be achieved easier if the state space encoded tentative
schedules.

Firstly, we analyze the performance of the policies NN and FIFO for the
initial state i6 defined in Figure 4.27(a). Note that state i6 captures the same

176 Computational Results

8

7

6

5

4

3

2

1

1(0)

(a)

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO

(b)

Figure 4.27: (a) State i6 in an elevator control MDP w. r. t. the average waiting time for

two elevators and 8 floors. (b) Approximation results for the elevator control MDP Mud
2,4

and the initial state i6. We have εαi6(NN) ≥ 0 % and εαi6(FIFO) ≥ 1.5 %.

8

7

6

5

4

3

2

1

1

1(0)

8(1)

(a)

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO

(b)

Figure 4.28: (a) State i7 in an elevator control MDP w. r. t. the average waiting time for

two elevators and 8 floors. (b) Approximation results for the elevator control MDP Mud
2,4

and the initial state i7. We have εαi7(NN) ≥ 2.2 % and εαi7(FIFO) ≥ 9.1 %.

4.3 Analysis for Exemplary MDPs 177

situation as state i1 (see Figure 4.21(a)) except for the number of available
elevators. Obviously, at state i6, the two policies NN and FIFO choose the
action to move one elevator one floor up, while the second elevator waits
at floor 1 (approximation results let us suppose that this action is optimal,
although we did not obtain a proof for that). Thus, their cost values will differ
only due to decisions made depending on possible future request. Using i6 as
initial state, we obtain the approximation results depicted in Figure 4.27(b).
On the one hand, the policy NN seems to be close to an optimal policy.
Nonetheless, the results suggest that NN does not perform optimally for the
initial state i6. On the other hand, we obtain a proof that the cost of FIFO
exceeds the optimal cost.

Next we study the initial state i7 defined in Figure 4.28(a). Denote by
e1 and e2 the loaded and the empty elevator, respectively, i. e., we have
for the destination floors de1 = 1 and de2 = 0. The state i7 represents a
situation where the assignment decision of the policies NN and FIFO seems
to be bad: both policies serve the request r1 := (1, 8, 1) by elevator e2 and
the request r2 := (4, 1, 0) by elevator e1. Note that this schedule results in
additional waiting times for the requests r1 and r2 of 1 and 5 time units,
respectively, whereas the opposite assignment gives an additional waiting
time of 2 time units for both requests. As expected, the two policies do
not perform optimally for the initial state i7, see Figure 4.28(b). Moreover,
the approximation results let us suppose that the policy NN is still better
than FIFO.

We mention that considering the special traffic situation as done in the
case of a single elevator instead of combined up and down traffic, yields similar
approximation results to those given in the Figures 4.27(b) and 4.28(b), but
separates the policies more clearly from each other.

Maximum Waiting Time

This section analyzes the performance of the policies NN, FIFO, Replan, Re-
planS, ReplanSQ, and Ignore when the objective is to minimize the maximum
waiting time of a request. That is, we study the proposed elevator con-
trol MDP w. r. t. the maximum waiting time. We start by considering the
MDP Mud

1 := (elm-1-02-ud, 0.8) and the state i1 defined in Figure 4.29(a).
Note that the illustrations of states in this section additionally specify the
current maximum waiting time wmax.

Figure 4.29(b) shows the associated results obtained by our approxima-
tion algorithm for the initial state i1. Obviously, the policy NN performs
badly, and is provably worse than FIFO and Ignore. Moreover, the cost of Re-

178 Computational Results

8

7

6

5

4

3

2

1

1(0)

wmax = 0

(a)

 4

 4.2

 4.4

 4.6

 4.8

 5

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.29: (a) State i1 in an elevator control MDP w. r. t. the maximum waiting time for

a single elevator and 8 floors. (b) Approximation results for the elevator control MDP Mud
1

and the initial state i1. We have εαi1(NN) ≥ 2.5 %, εαi1(FIFO) ≥ 0 %, εαi1(Replan) ≥ 0.6 %,
and εαi1(Ignore) ≥ 0 %. Moreover, εαi1(ReplanS) ≥ 2.2 % and εαi1(ReplanSQ) ≥ 0.3 %.

plan is shown to be greater than the cost of FIFO and the optimal cost. We
mention that ReplanSQ achieves similar but slightly better bounds than Re-
plan. The same is true for ReplanS and NN. It is clear that the behavior of
a policy like NN may be inappropriate in order to achieve a small maximum
waiting time: it lacks any stability in the service of the present requests as
it may postpone the service of single requests again and again due to serv-
ing others. For instance, the request (8, 1, 0) in state i1 may not be served
for a long time, while FIFO and Ignore guarantee this request to be served
next. Apparently, serving the request immediately is strongly rewarded by
considering the total expected discount cost as objective criterion.

Note that the state i2 specified in Figure 4.30(a) is similar to i1, but
now the only present request has already been waiting for 5 time units.
Obviously, this makes the request r1 := (8, 1, 5) even more important to
be served soon. Note that the final waiting time of request r1 will be 12,
which allows that each new request can wait at least 12 time units before it
may cause the maximum waiting time to increase. Thus we expect the same
ranking of the policies as before, but the costs to differ at a greater extent.
The approximation results in the case of the initial state i2 are depicted in
Figure 4.30(b) and show the expected behavior.

On the one hand, the policies NN and ReplanS are proved to perform worse

4.3 Analysis for Exemplary MDPs 179

8

7

6

5

4

3

2

1

1(5)

wmax = 5

(a)

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan

policy ReplanS
policy ReplanSQ

policy Ignore

(b)

Figure 4.30: (a) State i2 in an elevator control MDP w. r. t. the maximum waiting time for

a single elevator and 8 floors. (b) Approximation results for the elevator control MDP Mud
1

and the initial state i2. We have εαi2(NN) ≥ 8.9 %, εαi2(FIFO) ≥ 0 %, εαi2(Replan) ≥ 5.6 %,
εαi1(ReplanS) ≥ 8.5 %, εαi1(ReplanSQ) ≥ 3.5 %, and εαi2(Ignore) ≥ 0 %.

than ReplanSQ which seems to have also a better cost value than Replan. On
the other hand, FIFO is close to optimal and outperforms all policies except
for Ignore which may be close to optimal, too. Note that the approximation
of Ignore is typically worse than that of the other policies since modeling this
policy requires a special Markov decision process with a larger state space,
as described in the beginning of the section.

Next we consider three situations with the two requests r1 := (1, 8, w1)
and r2 := (2, 1, w2) for different waiting times w1, w2 ∈ N0. Note that the
state i3 in Figure 4.31(a) represents a very disadvantageous situation for the
policy NN since it will serve the request r1 with the small current waiting
time w1 = 0 first. Moreover, serving r1 keeps the elevator busy for a long
time. For these reasons scheduling the requests in the opposite order should
be much better. The results in Figure 4.31(b) show a very bad performance
of the policy NN, while the costs of all other policies seem to be near the
optimal optimal cost.

Let us now consider the case where the current waiting times of the re-
quests r1 and r2 are exchanged, i. e., we have w1 = 1 and w2 = 0. The
resulting state i4 is given in Figure 4.32(a). Note that, similar to NN, the
policy FIFO now also serves request r1 first, whereas Replan, all its variants,
and Ignore schedule the requests in the opposite order. See Figure 4.32(b) for

180 Computational Results

8

7

6

5

4

3

2

1

1(1)

8(0)

wmax = 1

(a)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.31: (a) State i3 in an elevator control MDP w. r. t. the maximum waiting time for

a single elevator and 8 floors. (b) Approximation results for the elevator control MDP Mud
1

and the initial state i3. We have εαi3(NN) ≥ 61.4 % and εαi3(FIFO), εαi3(Replan), εαi3(Ignore) ≥
0 %. Moreover, εαi1(ReplanS), εαi1(ReplanSQ) ≥ 0 %.

the approximation results w. r. t. start state i4. We see that the scheduling
order that serves r1 before r2 as used by NN and FIFO is still worse than
the opposite one. The costs of NN and FIFO are proven to be greater than
those of the other policies. Ignore is probably close to an optimal policy and
seems to outperform all variants of Replan, which may serve other requests
before r1. Altogether, we see that the advantage of postponing the service of
the request r1 requiring a very long trip, which implies the better makespan
here, outweighs the possible advantage of serving the requests in order of
their arrival.

This may change if the waiting time w1 of request r1 is greater than 1. In
state i5, see Figure 4.33(a), we assume this waiting time to be 6. Moreover,
we consider a maximum waiting time of wmax = 6, too. For the initial
state i5, we obtained the approximation results shown in Figure 4.33(b).
Now we observe the opposite behavior of the policies: request r1 is better
served before r2. However, we mention that serving r2 before r1 will be much
better in practice: the resulting final waiting times are 1 and 10, whereas
the opposite order produces waiting times of 15 and 6. This order is used
by Replan, ReplanS, ReplanSQ, and Ignore. Consequently, their performance
is bad, while that of FIFO and NN is close to optimal. Considering the
discounted cost is again responsible for these unrealistic results. Clearly, a

4.3 Analysis for Exemplary MDPs 181

8

7

6

5

4

3

2

1

1(0)

8(1)

wmax = 1

(a)

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.32: (a) State i4 in an elevator control MDP w. r. t. the maximum waiting time
for a single elevator and 8 floors. (b) Approximation results for the elevator control
MDP Mud

1 and the initial state i4. We have εαi4(NN) ≥ 6.1 %, εαi4(FIFO) ≥ 5.5 %, and
εαi4(Replan), εαi4(Ignore) ≥ 0 %. Moreover, εαi1(ReplanS), εαi1(ReplanSQ) ≥ 0 %.

8

7

6

5

4

3

2

1

1(0)

8(6)

wmax = 6

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.33: (a) State i5 in an elevator control MDP w. r. t. the maximum waiting time for a

single elevator and 8 floors. (b) Approximation results for the elevator control MDP Mud
1

and the initial state i5. We have εαi5(NN), εαi5(FIFO) ≥ 0, εαi5(Replan) ≥ 170.6 %, and
εαi5(Ignore) ≥ 160.8 %. Moreover, εαi1(ReplanS) ≥ 174.3 % and εαi1(ReplanSQ) ≥ 169.2 %.

182 Computational Results

8

7

6

5

4

3

2

1

1(0)

8(6)

wmax = 6

(a)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.34: (a) State i5 in an elevator control MDP w. r. t. the maximum waiting time
for a single elevator and 8 floors. (b) Approximation results for the elevator control
MDP (elm-1-02-ud, 0.85) and the initial state i5. We have εαi5(NN), εαi5(FIFO) ≥ 0,
εαi5(Replan) ≥ 72.6 %, and εαi5(Ignore) ≥ 65.5 %.

discount factor close to 1 would favor the opposite scheduling order.

To investigate whether our approximation algorithm is able to show this
behavior, we also looked at the initial state i5 in the Markov decision pro-
cess elm-1-02-ud assuming a discount factor of 0.85, 0.9, and 0.95. For
these situations we did not yet consider the policies ReplanS and ReplanSQ.
The associated results are given in the Figures 4.34–4.36. For the discount
factors 0.85 and 0.9, we obtain the same ranking of the considered policies
as before. However, the extent by which the costs of the policies differ re-
duces with increasing disount factor. Unfortunately, nothing can be shown
by generating 50 000 variables in the case of the discount factor 0.95. We
conclude that our algorithm is unable to even indicate for the considered
Markov decision process model that serving request r2 before r1 is better.

Summary

The results for the considered average and maximum waiting time elevator
control MDPs show the following. On the one hand, by analyzing several ini-
tial states we saw that the approximation results for the studied policies some-
times reflect observations made in simuation, e. g., see [GHKR99, Hau99].
This includes the good performance of NN w. r. t. the average waiting time

4.3 Analysis for Exemplary MDPs 183

8

7

6

5

4

3

2

1

1(0)

8(6)

wmax = 6

(a)

 3

 4

 5

 6

 7

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.35: (a) State i5 in an elevator control MDP w. r. t. the maximum waiting
time for a single elevator and 8 floors. (b) Approximation results for the elevator con-
trol MDP (elm-1-02-ud, 0.9) and the initial state i5. We have εαi5(NN), εαi5(FIFO) ≥ 0,
εαi5(Replan) ≥ 6.6 %, and εαi5(Ignore) ≥ 2.2 %.

8

7

6

5

4

3

2

1

1(0)

8(6)

wmax = 6

(a)

 4

 6

 8

 10

 12

 14

 16

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

Figure 4.36: (a) State i5 in an elevator control MDP w. r. t. the maximum waiting time
for a single elevator and 8 floors. (b) Approximation results for the elevator control
MDP (elm-1-02-ud, 0.95) and the initial state i5. We have εαi5(NN), εαi5(FIFO) ≥ 0 and
εαi5(Replan), εαi5(Ignore) ≥ 0 %.

184 Computational Results

and the insight that policies which achieve small average waiting times may
often produce high maximum waiting times, and vise versa.

On the other hand, we have seen that total expected discounted cost cri-
terion strongly favors greedy solutions which only focus on the costs incurred
for few stages, especially for small discount factors. Moreover, long-term
simulation runs often show very large performance differences for some poli-
cies, e. g., bad policies like FIFO cannot cope with the traffic load and the
number of waiting requests increases continuously. Note that it requires a
lot of stage transitions until a large system load, i. e., many waiting requests,
can emerge. Thus, it is impossible that two policies will reach substantially
different situations concerning the system load within few stages. Since our
analysis takes into account only a smaller local part of the total state space
and differences occuring after many transitions account only very little to
the total expected discounted cost, one cannot expect to prove large gaps
as observed in simulations. Instead, the total expected discounted cost is
mostly dominated by present requests.

We conclude that analyzing elevator control policies in our MDP model is
inadequate to really capture the long-term behavior observed in practice and
simulation unless a discount factor close to 1 is used. Unfortunately, for a
great discount factor, our approximation algorithm is not suitable to provide
good approximation guarantees.

Although the studies for average and maximum waiting time elevator con-
trol MDPs can only partitially reflect the behavior observed in simulations,
we want to point out that our analysis provided useful information to im-
prove existing online algorithms. For instance, let us consider the policy NN.
Our results revealed that NN has the following weaknesses:

• NN does not employ a parking policy,

• its tie-breaking rule may lead to bad decisions, and

• the maximum waiting times achieved by NN are quite bad.

Due to these observations, we define the policy NNPark-f as the following
modification of NN:

• If the elevator is empty and there does not exist a waiting request, move
the elevator towards floor f .

• If the elevator is empty and the nearest waiting request is not unique,
serve that request with the greater waiting time first.

4.3 Analysis for Exemplary MDPs 185

Markov decision NN NNPark-f NNMaxPark-f
process avg. max. avg. max. avg. max.

elm-1-01-sp 13.66 116.15 13.34 113.38 13.69 98.76
elm-1-01-ud 12.26 139.33 11.93 128.59 12.26 97.94

Table 4.17: Average value for the average and maximum waiting times achieved by the
online algorithms NN and its variants NNPark-f and NNMaxPark-f according to 100 sim-
ulation runs for 10 000 time steps. The parking floor is chosen to be f = 6 for the
instance elm-1-01-sp and f = 1 for elm-1-01-ud.

In order to focus even more on good maximum waiting times, we propose the
following extension of NNPark-f : if the elevator is empty and there exists a
waiting request whose current waiting time equals the maximum waiting so
far, this request is served next ignoring all other requests. We denote this
online algorithm by NNMaxPark-f .

We assess by simulation whether these modifications of NN are advanta-
geous for the long-term behavior of the policy. The system defined by the
Markov decision process modeling the maximum waiting time, i. e., the queue
length is infinite, is simulated for 10 000 time steps. We compute average val-
ues for the observed average and maximum waiting times for 100 simulation
runs. Table 4.17 shows simulation results for two Markov decision processes
featuring a probability of pr = 0.1 for the arrival of a new request at a time
slot. Obviously, NNPark-f improves over NN for both, average and the max-
imum waiting times. Moreover, the NNMaxPark-f achieves by far the best
maximum waiting times, while the average waiting times are similar to those
of the originial online algorithm NN, but inferior compared to NNPark-f . We
mention that an arrival probability of pr = 0.2 already yields a high traffic
intensity the system does not seem able to cope with in the long run. Thus,
we focused on a lower traffic intensity here.

Chapter 5

Conclusions

The contribution of this thesis is a new framework for analyzing the quality of
online algorithms or policies in a discounted MDP, respectively. The method
is based on a column generation algorithm we developed for approximating
the total expected discounted cost of an unknown optimal policy, a concrete
policy, or a single action at a given initial state. We proposed various ap-
proaches for designing and extending the standard approximation algorithm
in order to improve its practical efficiency. Computational results showed
that our method often works well: we obtained realistic performance indica-
tors for the quality of different online algorithms and were able to improve
existing algorithms due to the insight provided by our analysis.

In the following we will summarize the highlights of our work in detail. We
established a theorem which shows that the size of the total state space of an
MDP does not impose any barrier on the practicability of our approximation
algorithm. We developed an involved example proving that the approxima-
tion algorithm may generate more states than required by the construction
of the theorem. In practice, however, the opposite is true: the algorithm
typically inspects substantially fewer states.

Further theoretical issues related to our column generation algorithm were
investigated. We obtained insight in the structure of dual bases and the pric-
ing problem. For the latter, we gave a combinatorial interpretation and
proved a combinatorial formula for computing the reduced profit of a candi-
date state. We deduced an alternative way to determine upper bounds on the
considered value vector component based on the reduced profits. However,
these bounds are in practice clearly inferior to those provided by the linear
programs.

To figure out how to make our approximation algorithm most effective,
we proposed and analyzed different required and optional settings:

• It turned out that the proposed construction of initial (almost dual
feasible) bases for the linear programs combined with the dual simplex
method is most suitable for solving the encountered linear programs
fast.

187

188 Conclusions

• The probably most important issue in making the algorithm practi-
cally efficient is to guide the dynamic extension of the considered sub-
set of states by the reduced profit structure of the current reduced
linear program. Ignoring the amount of reduced profits as done by the
strategy min-depth seems to be substantially inferior to provide strong
bounds.

For the considered MDPs, employing the pricing strategy direct is most
appropriate for our implementation regarding both the quality of the
added states concerning good approximations and the running time.
The strategy combinatorial, which is derived from theoretical insight
in the pricing problem and is conceptually equivalent to direct, is only
slower than direct for the elevator control MDPs. However, the pricing
strategy combinatorial is more flexible in the sense that it may still be
employed if the candidate states are not maintained explicitly by the
column generation algorithm.

• The approximation heuristics we developed seem not to be advanta-
geous if the mentioned linear programming solver setting is used. Un-
fortunately, the promising heuristic weighting-policy-exploration, which
is based on the combinatorial formula for computing reduced profits,
lacks a mechanism to be properly parameterized in order to solve very
few linear programs. Otherwise, using this heuristic may be beneficial.

The fact that incorporating reasonable heuristics does not pay off substan-
tiates that the standard approximation algorithm is very effective if a good
setting for the linear programming solver and the pricing strategy is em-
ployed.

For different discounted MDPs emerging from online optimization prob-
lems, various online algorithms were analyzed by our method. In all cases
good approximations could be determined by inspecting only relatively small
subsets of states. Although there are methods based on MDPs for provid-
ing practical solutions, e. g., see [CB98], other approaches do not seem able
to give similarly good approximations for a component of the optimal value
vector. Our results, representing the first of their kind, provide quite realistic
performance indicators for the considered policies in the case of the online
bin coloring problem and the studied online target date assignment problem.
For online elevator control, the obtained results reflect observations from sim-
ulation only partially since our approach offers insight solely for short-term
considerations.

Moreover, our method revealed weaknesses of the considered policies.
Based on this valuable information, improved policies like SafeBin and NN-

189

MaxPark-f including a provably optimal parking strategy could be developed.
In particular, SafeBin seems to be the currently best known online algorithm
for the online bin coloring problem, which shows the potential of our method
concerning the design of state-of-the-art policies.

By having considered different examples we obtained a feeling whether
the column generation algorithm is suitable to provide good approximations
for a given MDP or not. First of all one should keep in mind that our method
represents a general framework that can be applied to an arbitrary discounted
MDP. Consequently, one cannot expect the method to work properly for each
MDP directly. For instance, the trivial lower and upper bounds on the com-
ponents of the optimal value vector may be too weak. The elevator control
MDPs are examples where involved problem-specific bounds are required in
order to make the approach work at all.

Nonetheless, there exist parameters of an MDP that affect the practical
performance of the approximation algorithm. Generally, our method will
provide good approximations if

• the discount factor is “considerably smaller” than 1,

• only few actions are possible at a given state,

• for each state and action, the associated transition probabilities are
concentrated on a small number of successor states, i. e., there exist
few successors that are reached with significant probability, and

• the difference between available lower and upper bounds on the com-
ponents of the optimal value vector is small, which follows, e. g., from
a small difference between the minimal and maximal expected stage
costs.

Typically, our method is unable to yield good approximations for large
discount factors. Sometimes, however, a large discount factor is necessary
to obtain significant results, as we have observed partially for the studied
elevator control MDPs. It depends on the structure of the considered Markov
decision process whether the total expected discounted cost of a policy reflects
its practical performance realistically already for smaller discount factors,
i. e., a local approximation method like ours may work properly.

On the one hand, we believe that computations based on smaller discount
factors may provide results of high practical relevance for Markov decision
processes that exhibit a strong local character in the sense that already few
transitions can make a significant difference. This is the case for the de-
scribed Markov decision process models for the online bin coloring problem

190 Conclusions

and the studied online target date assignment problem. For some states
in our model for online elevator control, however, many or even all policies
proceed identically for several transitions.

On the other hand, local approximation methods seem to be less appro-
priate if there exist many requests competing simultaneously for a common
resource, e. g., an elevator. Then smaller discount factors tend to favor more
greedy online algorithms that achieve low costs for the next few stages. For
instance, we observed such a behavior for the maximum waiting time elevator
control MDP and the initial state shown in Figure 4.33(a). Moreover, a local
approximation method cannot yield meaningful results if high stage costs are
only incurred in the long run.

Outlook We conclude this thesis with an outlook concerning possible im-
provements and applications of the proposed approximation method.

We believe that the second curse of dimensionality, i. e., many possible
actions at a state, can be handled by an extension of our algorithm. Similarly
to generating improving states, actions or constraints, respectively, could be
added dynamically to the current reduced linear program in the spirit of a
separation algorithm. For instance, such a method will be advantageous in
the elevator control MDPs for groups of multiple elevators: already in the
case of two elevators there can exist 16 different actions at a state.

Moreover, possible approaches to enhance our approximation algorithm
include a memory saving implementation that particular refrains from stor-
ing the candidate states. Another idea would be to adaptively aggregate
and disaggregate candidate states depending on the current solution of the
reduced linear program similar to an approach described by Bertsekas and
Castañon [BC89]. This way, more complicated problems suffering from the
third curse of dimensionality, i. e., many possible successor states, might by
tackled.

On the practical side, we are still interested in results for the online con-
trol of elevator groups that address the long-term performance of online al-
gorithms. Using our Markov decision process model for elevator control, this
requires computations for a greater discount factor. In order to obtain good
approximations in this case, better bounds on the optimal value vector for
estimating the impact of candidate states have to be constructed.

More promising may be considering a continuous-time model for elevator
control with very few possible interarrival times for the requests. Contrary to
the Markov decision process we studied in this thesis, in this model each state
contains a newly released request. The resulting discounted MDPs with in-
finite state space will probably be more difficult to handle computationally,

191

but offer the important advantage that discounting takes place w. r. t. re-
quests instead of time slots. Consequently, this model will be more suitable
to evaluate the behavior of policies for longer periods.

Generally, it will be very interesting to think about possibilities to ana-
lyze more involved online algorithms, e. g., reoptimization algorithms. The
challenge we face here is that such algorithms are typically computationally
expensive. Thus, our approach can most likely not be employed directly as
the online algorithm is required to solve many instances in the column gen-
eration algorithm. Exploiting warm-start techniques for the computations
may be beneficial in this context since consecutive states are usually very
similar. That is, in the case of a reoptimization algorithm, many auxiliary
offline optimization problems to be solved are almost identical.

Bibliography

[AFG05] Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with
locality of reference. J. Comput. System Sci., 70(2):145–175, 2005.

[2]

[AKR98] Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau. The online
transportation problem: Competitive scheduling of elevators. Report
98–34, ZIB, 1998. opus.kobv.de/zib/volltexte/1998/378/. [123]

[AKR00] Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau. Online dial-a-
ride problems: Minimizing the completion time. In Proceedings of the
17th International Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, pages 639–650. Springer,
2000. [121, 122]

[Alb03] Susanne Albers. Online algorithms: A survey. Math. Programming,
97:3–26, 2003. [3]

[Bau01] Heinz Bauer. Measure and Integration Theory. De Gruyter, 1st edi-
tion, 2001. [15]

[BBS95] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning
to act using real-time dynamic programming. Artificial Intelligence,
72:81–138, 1995. [29]

[BC89] Dimitri R. Bertsekas and David A. Castañon. Adaptive aggregation
for infinite horizon dynamic programming. IEEE Trans. Automat.
Control, 34(6):589–598, 1989. [29, 190]

[BDBK+90] Shai Ben-David, Allan Borodin, Richard M. Karp, Gabor Tardos, and
Avi Wigderson. On the power of randomization in online algorithms.
In Algorithmica, pages 379–386, 1990. [108]

[Ber01] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control,
volume 1 and 2. Athena Scientific, Belmont, 2nd edition, 2001.

[3, 9, 10, 15, 17, 60]

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Compet-
itive Analysis. Cambridge University Press, 1998. [1, 3]

193

194 Bibliography

[BF07] Joan Boyar and Lene M. Favrholdt. The relative worst order ratio
for online algorithms. ACM Trans. Algorithms, 3(2):Article 22, 2007.

[3]

[Bie87] K. J. Bierth. An expected average reward criterion. Stochastic Pro-
cess. Appl., 26, 1987. [31]

[BIRS95] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch
Schieber. Competitive paging with locality of reference. J. Comput.
System Sci., 50(2):244–258, 1995. [2]

[Bla62] David Blackwell. Discrete dynamic programming. Annals of Mathe-
matical Statistics, 33(2):719–726, 1962. [32]

[BLMS+06] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela,
Guido Schäfer, and Tjark Vredeveld. Average case and smoothed
competitive analysis for the multi-level feedback algorithm. Math.
Oper. Res., 31(1):85–108, 2006. [3]

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-
line algorithm for metrical task systems. J. ACM, 39(4):745–763,
1992. [2]

[BT96] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Pro-
gramming, volume 1. Athena Scientific, Belmont, 1st edition, 1996.

[27, 28, 29]

[CB98] Robert H. Crites and Andrew G. Barto. Elevator group control us-
ing multiple reinforcement learning agents. Machine Learning, 33(2–
3):235–262, 1998. [120, 127, 188]

[CGS97] Riccardo Cambini, Giorgio Gallo, and Maria Grazia Scutellà. Flows
on hypergraphs. Mathematical Programming, 78:195–217, 1997. [27]

[Clo70] Gordon David Closs. The computer control of passenger traffic in
large lift systems. PhD thesis, Victoria University of Manchester,
1970. [120]

[CSHY80] E. G. Coffman, Jr., K. So, M. Hofri, and A. C. Yao. A stochastic
model of bin-packing. Information and Control, 44:105–115, 1980.

[3]

[DDS05] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, edi-
tors. Column generation. GERAD 25th anniversary series. Springer,
2005. [59]

[d’E63] F. d’Epenoux. A probabilistic production and inventory problem.
Management Science, 10(1):98–108, 1963. [21]

Bibliography 195

[dFV03] Daniela P. de Farias and Benjamin Van Roy. The linear program-
ming approach to approximate dynamic programming. Operations
Research, 51(6):850–865, 2003. [21, 28, 29]

[dFV04] Daniela P. de Farias and Benjamin Van Roy. On constraint sam-
pling in the linear programming approach to approximate dynamic
programming. Mathematics of Operations Research, 29(3):462–478,
2004. [21, 29]

[dG60] Guy T. de Ghellinck. Les problèmes de décisions séquentielles.
Cahiers Centre d’Etudes Recherche Opérationnelle, 2:161–179, 1960.

[24]

[dGE67] Guy T. de Ghellinck and Gary D. Eppen. Linear programming so-
lutions for separable markovian decision problems. Management Sci-
ence, 13(5):371–394, January 1967. [23]

[DKKN93] Thomas L. Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann E.
Nicholson. Planning with deadlines in stochastic domains. In AAAI,
pages 574–579, 1993. [29, 58, 105]

[DLO05] Reza Dorrigiv and Alejandro López-Ortiz. A survey of performance
measures for on-line algorithms. SIGACT News, 36(3):67–81, 2005.

[3]

[FR06] Philipp Friese and Jörg Rambau. Online-optimization of a multi-
elevator transport system with reoptimization algorithms based on
set-partitioning models. Discrete Appl. Math., 154(13):1908–1931,
2006. Also available as ZIB Report 05-03. [123]

[FS02] Eugene A. Feinberg and Adam Shwartz, editors. Handbook of Markov
Decision Processes: Methods and Applications. Kluwer Academic
Publishers, 2002. [3, 9, 17, 18, 19, 22, 23, 32]

[FW98] Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms:
The State of the Art, volume 1442 of Lecture Notes in Computer
Science. Springer, 1998. [1]

[GHKR99] Martin Grötschel, Dietrich Hauptmeier, Sven O. Krumke, and Jörg
Rambau. Simulation studies for the online dial-a-ride problem. Re-
port 99–09, ZIB, 1999. opus.kobv.de/zib/volltexte/1999/398/.

[6, 120, 123, 182]

[GLNP93] Giorgio Gallo, Giustino Longo, Sang Nguyen, and Stefano Pallottino.
Directed hypergraphs and applications. Discrete Applied Mathemat-
ics, 42:177–201, 1993. [25]

196 Bibliography

[Hau99] Dietrich Hauptmeier. Online algorithms for transport systems. Mas-
ter’s thesis, Technische Universität Berlin, 1999. [121, 123, 182]

[Hei05] Stefan Heinz. Policies for online target date assignment problems:
Competitive analysis versus expected performance. Master’s thesis,
Technische Universität Berlin, 2005. [7, 161]

[HKM+05] Stefan Heinz, Sven O. Krumke, Nicole Megow, Jörg Rambau, Andreas
Tuchscherer, and Tjark Vredeveld. The online target date assign-
ment problem. In Thomas Erlebach and Giuseppe Persiano, editors,
Proceedings of the 3rd Workshop on Approximation and Online Al-
gorithms, volume 3879 of Lecture Notes in Computer Science, pages
230–243, 2005. [6, 110, 116, 117]

[HKP+06] Stefan Heinz, Volker Kaibel, Matthias Peinhardt, Jörg Rambau, and
Andreas Tuchscherer. LP-based local approximation for markov de-
cision problems. Report 06–20, ZIB, 2006. opus.kobv.de/zib/

volltexte/2006/914/. [5, 51, 138]

[HKR00] Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau. The online
Dial-a-Ride problem under reasonable load. In CIAC 2000, volume
1767 of Lecture Notes in Computer Science, pages 125–136. Springer,
2000. [110, 123]

[HKT09] Benjamin Hiller, Torsten Klug, and Andreas Tuchscherer. Improv-
ing the performance of elevator systems using exact reoptimization
algorithms. In Proceedings of MAPSP, 2009. [120]

[HKT10] Benjamin Hiller, Torsten Klug, and Andreas Tuchscherer. Improved
destination call elevator control algorithms for up peak traffic. In
Operations Research Proceedings 2011. Springer, 2010. to appear.

[120]

[HT08] Benjamin Hiller and Andreas Tuchscherer. Real-time destination-call
elevator group control on embedded microcontrollers. In Operations
Research Proceedings 2007. Springer, 2008. [120]

[HV08] Benjamin Hiller and Tjark Vredeveld. Probabilistic analysis of online
bin coloring algorithms via stochastic comparison. In Proceedings of
the 16th Annual European Symposium on Algorithms, volume 5193 of
Lecture Notes in Computer Science, pages 528–539, 2008. [112, 114]

[ILO] IBM ILOG. Cplex. http://www.ilog.com/products/cplex/.
[103, 138]

[JMRW92] Robert G. Jeroslow, Kipp Martin, Ronald L. Rardin, and Jinchang
Wang. Gainfree leontief substitution flow problems. Mathematical
Programming, 57:375–414, May 1992. [27]

Bibliography 197

[KdPSR08] Sven Oliver Krumke, Willem E. de Paepe, Leen Stougie, and Jörg
Rambau. Bincoloring. Theoret. Comput. Sci., 407(1-3):231–241, 2008.

[6, 110, 111, 112]

[KMN99] Michael J. Kearns, Yishay Mansour, and Andrew J. Ng. A sparse
sampling algorithm for near-optimal planning in large Markov deci-
sion processes. In International Joint Conferences on Artificial Intel-
ligence, pages 1324–1331, 1999. [29, 57]

[MHK+98] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin,
Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier. Solving
very large weakly coupled Markov decision processes. In In Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence,
pages 165–172, 1998. [29]

[NK06] Lars Relund Nielsen and Anders Ringgaard Kristensen. Finding the
k best policies in a finite-horizon Markov decision process. European
Journal of Operational Research, 175(2):1164–1179, December 2006.

[25]

[Old01] Jeffrey D. Oldham. Combinatorial approximation algorithms for gen-
eralized flow problems. J. Algorithms, 38(1):135–169, 2001. [71]

[Pad99] Manfred W. Padberg. Linear Optimization and Extensions: Algo-
rithms and Combinatorics. Springer, 2nd edition, 1999. [25]

[Pla06] Robert Plato. Numerische Mathematik kompakt. Vieweg, 3rd edition,
2006. [23, 40]

[Pow07] Warren B. Powell. Approximate Dynamic Programming: Solving the
Curses of Dimensionality. John Wiley and Sons, Inc., Hoboken, New
Jersey, 1st edition, 2007. [4, 27, 29]

[Put05] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley and Sons, Inc., Hoboken, New
Jersey, 2nd edition, 2005. [3, 4, 9, 15, 17, 20, 30, 32]

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, 1st edition, 1998. [27, 29]

[Sch90] Jordis Schröder. Advanced dispatching: Destination hall calls + in-
stant car-to-call assignments: M10. Elevator World, pages 40–46,
March 1990. [120]

[SS85] Paul J. Schweitzer and Abraham Seidmann. Generalized polynomial
approximations in markov decision processes. Journal of Mathemat-
ical Analysis and Applications, 110:568–582, 1985. [21, 29]

198 Bibliography

[SS06] Alexander Souza and Angelika Steger. The expected competitive
ratio for weighted completion time scheduling. Theory of Computing
Systems, 39:121–136, 2006. [3]

[SSS06] Mark Scharbrodt, Thomas Schickinger, and Angelika Steger. A new
average case analysis for completion time scheduling. J. ACM, pages
121–146, 2006. [3]

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized effi-
ciency of list update and paging rules. Communications of the ACM,
28(2):202–208, 1985. [1]

[SY94] Satinder P. Singh and Richard C. Yee. An upper bound on the
loss from approximate optimal-value functions. Machine Learning,
16(3):227–233, 1994. [29]

[Tor98] Eric Torng. A unified analysis of paging and caching. Algorithmica,
20(2):175–200, 1998. [2]

[Van06] Benjamin Van Roy. Performance loss bounds for approximate value
iteration with state aggregation. Mathematics of Operations Re-
search, 31(2):234–244, 2006. [29]

[Ye05] Yinyu Ye. A new complexity result on solving the markov decision
problem. Mathematics of Operations Research, 30(3):733–749, 2005.

[27]

