
On the Mechanism of Shear-Thinning in Viscous Oppositely Charged
Polyelectrolyte Surfactant Complexes (PESCs)
Giuseppe Rosario Del Sorbo, Sylvain Prev́ost, Emanuel Schneck, Michael Gradzielski,*
and Ingo Hoffmann*

Cite This: J. Phys. Chem. B 2020, 124, 909−913 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Semidilute mixtures of the cationically modified
cellulose-based polyelectrolyte JR 400 and the anionic surfactant
sodium dodecyl sulfate (SDS) form highly viscous solutions if a
slight excess of charges from the polyelectrolyte is present. The
reason for this is the formation of mixed rodlike aggregates in
which the surfactant cross-links several polyelectrolyte chains. The
same solutions also show shear-thinning behavior. In this paper, we
use rheoSANS to investigate the structural evolution of the rodlike
aggregates under steady shear and thereby elucidate the
mechanism of shear-thinning in these viscous oppositely charged polyelectrolyte surfactant complexes.

■ INTRODUCTION

Oppositely charged polyelectrolyte (PE) surfactant complexes
(PESCs) show an extremely rich self-aggregation behavior.1−4

While such systems have attracted the interest of researchers
for a few decades now,5 their behavior is still not fully
understood. Some recent reviews6−8 give an overview of our
current understanding of PESCs. Some of these systems do not
only show structural organization on the mesoscale but also
influence the macroscopically observed viscosity similar to
systems with hydrophobically modified PEs.9−11 The addition
of relatively small amounts of surfactant can be sufficient to
have a massive impact on the solution viscosity relative to the
pure polyelectrolyte solution. Depending on the system and
the exact composition, a decrease12−14 or an increase15−20 of
viscosity can be observed. It was found that in mixtures of the
cationically modified hydroxyethycellulose JR 400 and different
anionic surfactants, an increase in viscosity is related to the
formation of mixed aggregates,18,21 while in mixtures of
carboxymethyl cellulose (CMC) and different alkyltrimethy-
lammonium bromides, a decrease in viscosity due to the
shrinkage of the PE chain was observed,13 and the viscosity of
solutions with sodium hyaluronate is hardly affected by the
addition of a cationic surfactant14 even though small-angle
neutron scattering (SANS) shows the formation of large
aggregates.
RheoSANS allows to monitor structural changes using

SANS while samples are under shear. This method has been
used to great success for wormlike micelles and other colloidal
systems.22−29 Here, we used it to elucidate the mechanism
behind the shear-thinning behavior in oppositely charged
PESCs.

Aqueous mixtures of the cationically modified hydroxyethyl
cellulose JR 400 and SDS show a remarkable increase in
viscosity by several orders of magnitude relative to the pure PE
solution at the same PE concentration.5 Near charge
equilibrium, a 2-phase region consisting of a dilute phase
and a precipitated PE−surfactant complex phase is present,
while both with a surfactant or a PE excess, a clear
homogeneous phase is formed. The increase in viscosity is
observed in the PE excess phase near the phase boundary to
the 2-phase region above the overlap concentration, i.e., in the
semidilute concentration range. This is the case for the
solutions with 1 wt % JR 40030,31 (corresponding to 10 mM of
PE charges) studied here. A graph of the zero shear viscosity η0
as a function of the charge ratio Z, defined as Z = [PE
charges]/[surfactant charges] can be found in the Supporting
Information Figure S1. A noticeable increase of the viscosity is
observed for charge ratios of about Z = 10 (corresponding to 1
mM surfactant for a 1 wt % JR 400 solution) and less up to the
onset of the 2-phase region around Z = 2.5. Combining small-
angle neutron scattering (SANS) and neutron spin-echo
(NSE) spectroscopy, it was shown that this increase in
viscosity is due to the formation of rodlike aggregates with a
diameter similar to that of a surfactant micelle and a length of
about 50 nm.32 This is different from wormlike micellar
systems or stiff, strongly anisotropic colloids33,34 in that no
overlap between the aggregates themselves is needed to obtain
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viscous samples, as they only act as cross-links between PE
chains and therefore relatively small surfactant concentrations
of 3 mM and less are sufficient to obtain viscous samples, while
surfactant concentrations in viscous wormlike micellar
solutions are typically on the order of some 10 mM.35,36

These aggregates consist of both surfactant and PE and act as
cross-links for the PE as they contain several PE chains. While
the PE does not form a dense layer around the surfactant core
of the aggregates, careful analysis of the data from different
scattering contrasts shows that it is nevertheless found
predominantly on the outside of the aggregates.21 For this
increase in viscosity to take place, it is important that the PE
concentration is sufficiently high. While 1 wt % of JR 400 is
enough to observe a strong effect, reducing its concentration to
0.3 wt %, hardly any effect can be observed. Using SANS, it has
been shown that this is not because of the absence of the
rodlike aggregates but because of a subtle change in their
composition.21 Decreasing the PE concentration leads to a
decrease in the number of PE chains found in a single
aggregate, and as the number of PE chains per aggregate
approaches 1, they lose their ability to act as cross-links
between chains. Another important finding is the fact that the
PE chains are not frozen in the aggregates but retain a rather
high degree of freedom of movement even when incorporated
in them.
The same solutions display shear-thinning behavior beyond

a critical shear rate γ̇ crit (see Figure S2) and here we use
rheoSANS to investigate the underlying mechanism leading to
this behavior. This is not only an interesting question from
fundamental science but also highly relevant for applications,
as such mixtures are frequently employed in formulations from
detergency, cosmetics, shampoos, etc., where they are applied
under shearing conditions. In principle, two different scenarios
are thinkable. (I) Under shear, PE chains are torn out of the
aggregates, reducing their number per aggregate and
consequently reducing the aggregate’s efficiency as cross-
linker, which ultimately leads to a situation comparable to what
is observed at low PE concentrations. In this scenario, the
radially averaged scattering intensity would decrease noticeably
in the Q-range where the aggregates are observed (see the
Supporting Information Figures S3 and S4). (II) Knowing
from NSE that the PE chains are not frozen in the aggregates
and assuming that they can move mostly along the long axis of
the aggregates, it would be sufficient if the aggregates align
along the direction of shear. In this scenario, the radially
averaged intensity of the radial rheoSANS data (1−3 plane)
would remain identical, but the scattering pattern would
become anisotropic.

■ MATERIALS AND METHODS
Small-angle neutron scattering (SANS) measurements were
performed on the instrument D11 at the Institut Laue-
Langevin (ILL, Grenoble, France) using a neutron wavelength
of 5.0 Å and sample-to-detector distances of 1.4, 8, and 39 m,
covering a Q-range from 0.022 to 4 nm−1. The rheoSANS
setup consists of an Anton-Paar Physica MCR 501 rheometer
with a titanium Couette geometry of 30 mm diameter and 0.5
mm gap. SANS data were reduced using the software package
BerSANS,37 using the direct beam flux to obtain data on
absolute scale.
The anisotropy analysis of the data was performed using the

software SASET.38 Principal component analysis (PCA) was
used to quantify anisotropy and determine the maximum

scattering direction, by finding the vector onto which the
projected data, weighed by their intensity, have a maximum
variability. For the anisotropy analysis using PCA, only Q-
values covering 2π azimuthally of the 8 m measurements were
used. The resulting Q-range is 0.125−0.725 nm−1. Addition-
ally, 45° sector averages parallel (0°) and perpendicular (90°)
to the direction of shear were taken.
The radially averaged intensity of rodlike particles can be

modeled as a linear combination of the intensity from the
aggregates and the intensity from free PE chains. The
aggregates consist of all of the surfactant in the sample and a
fraction of the PE xpa, so that their volume fraction reads

xagg surf PE paϕ ϕ ϕ= + (1)

where ϕsurf and ϕPE are the volume fractions of the surfactant
and PE, respectively. Both the free PE and the aggregates were
modeled as cylinders.
Assuming a homogeneous structure of the aggregates along

their long axis, we can calculate the average number of PE
chains per aggregate Nc by relating the volume fractions of
surfactant and PE in the aggregates to the radii of the whole
aggregate and individual PE chains

N
x

x

R

Rc
pa PE

pa PE surf

agg
2

PE
2

ϕ
ϕ ϕ

=
+ (2)

where Ragg is the radius of the mixed aggregates and RPE is the
radius of an individual PE chain. At Nc < 2, no pronounced
increase in viscosity can be observed as the aggregates do not
act as efficient cross-links anymore. See the Supporting
Information for more details.
Complementary offline rheology measurements were

performed using an Anton-Paar MCR 501 rheometer in
cone/plate geometry with a 50 mm cone diameter and 1° cone
angle. All measurements were carried out at 25 °C.
Sodium dodecyl sulfate (SDS, 98.5%) was purchased from

Sigma-Aldrich and used without further purification.
The cationically modified hydroxyethyl cellulose JR 400

(Dow Chemical) has a molecular weight of about 500 kg/mol
(PDI = 1.85,39 27% of the glucose units are cationically
modified, resulting in 1000 g of PE per mol of positive
charges).10 See the Supporting Information Figure S8 for its
chemical structure. Its overlap concentration was found to be
between 0.831 and 0.25 wt %,30 so that samples with a PE
concentration of 1 wt % are well in the semidilute regime.
The concentration of surfactant is expressed as the charge

ratio Z, which is given by Z = [PE charges]/[surfactant
charges]. All samples had a JR 400 concentration of 1 wt %
corresponding to 10 mM of charges. All solutions were
prepared in D2O (Euriso-top, France).

■ RESULTS AND DISCUSSION
Performing rheoSANS measurements on viscous, shear-
thinning PESCs allows to differentiate between these two
scenarios. While a reduction of the cross-linking efficiency of
the rodlike aggregates by the reduction of the number of PE
chains in the aggregates would reduce the scattering intensity,
an alignment of the aggregates would only result in an
anisotropic scattering pattern, leaving the radially averaged
intensity unchanged.
As can be seen in Figures 1 and S5, the radially averaged

intensity is independent of the applied shear rate at shear rates
significantly above the critical shear rate (0.9 s−1 for Z = 3),

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.9b10467
J. Phys. Chem. B 2020, 124, 909−913

910

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.9b10467?ref=pdf


even though a small, yet noticeable, difference should be
observed if the number of chains per aggregate would be
reduced. Specifically, the intensity should be reduced in the
intermediate Q range and somewhat increased in the high Q
range because of the decrease of the volume fraction of mixed
aggregates and an increase of the volume fraction of free PE
chains (see Figures S3 and S4 for the theoretical curves in
which we varied the fraction of JR 400 in the mixed aggregates
xpa and Figure S5 for a magnification of the mid-Q range of
Figure 1). This allows us to exclude the first scenario, where
shear-thinning is caused by the disruption of the cross-linking
mixed aggregates.
At first glance, no anisotropy is visible in the two-

dimensional (2D) detector images (see Figure 2). Taking

45° sector averages on the other hand with different angles
relative to the direction of shear shows no difference at rest
(see Figure S6) and a small but significant difference under
shear (see Figure S7), which shows that we induce anisotropy
by shearing the sample. These anisotropic scattering patterns
were now analyzed in a quantitative fashion using principal
component analysis (PCA).38,40 PCA is an established method
from pattern recognition that consists in finding a succession of
orthogonal vectors accounting for the highest variability in a
data set. Applied to 2D intensity data, the main component
indicates the direction and breadth of maximum dispersion in
the intensities, i.e., the main axis of anisotropy and its
amplitude. It yields an anisotropy parameter A with A = 0 for a
completely isotropic scattering pattern and A = 1 for scattering
only along one direction. Performing PCA on the data at mid-
Q where the rodlike aggregates are seen shows that weak
anisotropy forms as the shear rate is increased. The effects are
negligible for pure JR 400 and the sample with Z = 10, which
have a rather low viscosity. It becomes far more pronounced

for the more viscous samples with Z = 5 and 3 (see Figure 3),
It can also be seen that the onset of the increase in anisotropy

is at significantly lower shear rates for Z = 3 than for Z = 5,
which is in agreement with the significantly lower γ̇crit at Z = 3
(0.9 vs 4 s−1). The onset of anisotropy and the critical shear
rate are in good agreement, which indicates that this structural
change is at the origin of the macroscopic change of the flow
behavior.

■ CONCLUSIONS
In summary, using rheoSANS, we were able to rule out that
shear-thinning in our oppositely charged polyelectrolyte

surfactant system is related to the rupture of the mixed rodlike
aggregates that were found to be responsible for the increase in
viscosity previously. In fact, it is observed that a slight
orientation of the rodlike aggregates is sufficient. This matches
our previous observation from NSE, where it was found that
the PE retains some of its freedom of movement even in the
aggregates. This motion might be mostly along the long axis of
the aggregates, and orienting them in the direction of shear
allows for easier relaxation of shear stress and this orientation
of aggregates makes the system shear-thinning. An interesting
detail can be seen when inspecting Figure 3 more carefully. For
Z = 3 at the two highest shear rates, a slight decrease in the
anisotropy can be seen. This might indicate that beyond a
certain shear rate, the decrease of viscosity is governed by an

Figure 1. SANS curves for the sample with Z = 3 at different shear
rates indicated in the graph. The SANS intensity remains unchanged,
while a reduction of the number of chains per aggregate should result
in a small but noticeable difference as shown in Figures S3 and S4.

Figure 2. Two-dimensional (2D) detector images for sample with Z =
3. (A) At rest and (B) at γ̇ = 500 s−1. No pronounced anisotropy can
be seen.

Figure 3. Anisotropy parameter A from PCA for samples indicated in
the graph using the mid-Q configuration (8 m sample-to-detector
distance). The more viscous samples with Z = 3 and 5 show an
increase of anisotropy with the shear rate. The critical shear rates γ̇crit
of the samples as determined from viscometry (see Figure S2) are
indicated in the graph as vertical lines. The onset of the increase of A
roughly corresponds to γ̇crit.

Figure 4. RheoSANS measurements support scenario (II): Applying
shear, the fraction of free PE chains does not increase. The reason for
the shear-thinning behavior of the solutions is an alignment of the
rodlike aggregates in the direction of flow, which allows the PE chains
to move along the flow direction more easily.
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increase of mobility of the PE chains in the aggregates. In
principle, rheoNSE measurements41 might be able to clarify
this point in the future (Figure 4).
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Antunes, F. E. Rheology of polyacrylate systems depends strongly on
architecture. Colloid Polym. Sci. 2015, 293, 3285−3293.
(20) Zhang, J.; Yu, W.; Zhang, R.; Yang, H. Rheological Study of
Interactions between Anionic Guar and Oppositely Charged
Surfactant. J. Dispersion Sci. Technology 2015, 36, 1290−1296.
(21) Hoffmann, I.; Farago, B.; Schweins, R.; Falus, P.; Sharp, M.;
Prev́ost, S.; Gradzielski, M. On the mesoscopic origins of high
viscosities in some polyelectrolyte-surfactant mixtures. J. Chem. Phys.
2015, 143, No. 074902.
(22) Stieger, M.; Richtering, W. Shear-induced phase separation in
aqueous polymer solutions: Temperature-sensitive microgels and
linear polymer chains. Macromolecules 2003, 36, 8811−8818.
(23) Förster, S.; Konrad, M.; Lindner, P. Shear thinning and
orientational ordering of wormlike micelles. Phys. Rev. Lett. 2005, 94,
No. 017803.
(24) Dreiss, C. A. Wormlike micelles: Where do we stand? Recent
developments, linear rheology and scattering techniques. Soft Matter
2007, 3, 956−970.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.9b10467
J. Phys. Chem. B 2020, 124, 909−913

912

https://pubs.acs.org/doi/10.1021/acs.jpcb.9b10467?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b10467/suppl_file/jp9b10467_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Gradzielski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7262-7115
http://orcid.org/0000-0002-7262-7115
mailto:michael.gradzielski@tu-berlin.de
mailto:michael.gradzielski@tu-berlin.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ingo+Hoffmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7178-6467
http://orcid.org/0000-0001-7178-6467
mailto:hoffmann@ill.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giuseppe+Rosario+Del+Sorbo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sylvain+Pre%CC%81vost"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-6008-1987
http://orcid.org/0000-0002-6008-1987
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Emanuel+Schneck"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9769-2194
https://pubs.acs.org/doi/10.1021/acs.jpcb.9b10467?ref=pdf
http://dx.doi.org/10.5291/ILL-DATA.9-11-1798
http://dx.doi.org/10.5291/ILL-DATA.9-11-1798
https://dx.doi.org/10.1016/0166-6622(86)80341-9
https://dx.doi.org/10.1016/0166-6622(86)80341-9
https://dx.doi.org/10.1039/c3sm27698h
https://dx.doi.org/10.1039/c3sm27698h
https://dx.doi.org/10.1039/c3sm27698h
https://dx.doi.org/10.1021/la404718e
https://dx.doi.org/10.1021/la404718e
https://dx.doi.org/10.1016/0021-9797(76)90010-2
https://dx.doi.org/10.1016/0021-9797(76)90010-2
https://dx.doi.org/10.1016/j.cocis.2017.08.003
https://dx.doi.org/10.1016/j.cocis.2017.08.003
https://dx.doi.org/10.3390/polym11010051
https://dx.doi.org/10.3390/polym11010051
https://dx.doi.org/10.1016/j.cocis.2018.01.017
https://dx.doi.org/10.1016/j.cocis.2018.01.017
https://dx.doi.org/10.1007/BF00263675
https://dx.doi.org/10.1007/BF00263675
https://dx.doi.org/10.1021/la941003q
https://dx.doi.org/10.1021/la941003q
https://dx.doi.org/10.1021/la941003q
https://dx.doi.org/10.1039/b817349d
https://dx.doi.org/10.1039/b817349d
https://dx.doi.org/10.1088/0953-8984/15/1/328
https://dx.doi.org/10.1021/la0489918
https://dx.doi.org/10.1021/la0489918
https://dx.doi.org/10.1039/C6SM02742C
https://dx.doi.org/10.1039/C6SM02742C
https://dx.doi.org/10.1039/C6SM02742C
https://dx.doi.org/10.1016/0927-7757(96)03557-1
https://dx.doi.org/10.1016/0927-7757(96)03557-1
https://dx.doi.org/10.1021/la990701d
https://dx.doi.org/10.1021/la990701d
https://dx.doi.org/10.1021/la990701d
https://dx.doi.org/10.1007/s00396-010-2239-1
https://dx.doi.org/10.1007/s00396-010-2239-1
https://dx.doi.org/10.1007/s00396-010-2239-1
https://dx.doi.org/10.1007/s00396-010-2239-1
https://dx.doi.org/10.1021/la104588b
https://dx.doi.org/10.1021/la104588b
https://dx.doi.org/10.1021/la104588b
https://dx.doi.org/10.1007/s00396-015-3715-4
https://dx.doi.org/10.1007/s00396-015-3715-4
https://dx.doi.org/10.1080/01932691.2014.973032
https://dx.doi.org/10.1080/01932691.2014.973032
https://dx.doi.org/10.1080/01932691.2014.973032
https://dx.doi.org/10.1063/1.4928583
https://dx.doi.org/10.1063/1.4928583
https://dx.doi.org/10.1021/ma034788s
https://dx.doi.org/10.1021/ma034788s
https://dx.doi.org/10.1021/ma034788s
https://dx.doi.org/10.1103/PhysRevLett.94.017803
https://dx.doi.org/10.1103/PhysRevLett.94.017803
https://dx.doi.org/10.1039/b705775j
https://dx.doi.org/10.1039/b705775j
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.9b10467?ref=pdf


(25) Reinicke, S.; Karg, M.; Lapp, A.; Heymann, L.; Hellweg, T.;
Schmalz, H. Flow-induced ordering in cubic gels formed by P2VP-b-
PEO-b-P(GME-co-EGE) triblock terpolymer micelles: A rheo-SANS
Study. Macromolecules 2010, 43, 10045−10054.
(26) Rogers, S.; Kohlbrecher, J.; Lettinga, M. P. The molecular
origin of stress generation in worm-like micelles, using a rheo-SANS
LAOS approach. Soft Matter 2012, 8, 7831−7839.
(27) Eberle, A. P.; Porcar, L. Flow-SANS and rheo-SANS applied to
soft matter. Curr. Opin. Colloid Interface Sci. 2012, 17, 33−43.
(28) Kundu, S. K.; Gupta, S.; Stellbrink, J.; Willner, L.; Richter, D.
Relating structure and flow of soft colloids. Eur. Phys. J.: Spec. Top.
2013, 222, 2757−2772.
(29) Calabrese, M. A.; Rogers, S. A.; Murphy, R. P.; Wagner, N. J.
The rheology and microstructure of branched micelles under shear. J.
Rheol. 2015, 59, 1299−1328.
(30) Donnelly, M. W.; Hailemichael, M.; Liberatore, M. W. Altering
the viscosity of cationically modified cellulose polymers by the
addition of salt. J. Appl. Polym. Sci. 2015, 132, No. 41616.
(31) Hoffmann, I.; Prev́ost, S.; Medebach, M.; Rogers, S. E.;
Wagner, N. J.; Gradzielski, M. Control of rheological behaviour with
oppositely charged polyelectrolyte surfactant mixtures. Tenside,
Surfactants, Deterg. 2011, 48, 488−494.
(32) Hoffmann, I.; Farago, B.; Schweins, R.; Falus, P.; Sharp, M.;
Gradzielski, M. Structure and dynamics of polyelectrolytes in viscous
polyelectrolyte-surfactant complexes at the mesoscale. Europhys. Lett.
2013, 104, No. 28001.
(33) Lang, C.; Kohlbrecher, J.; Porcar, L.; Lettinga, M. P. The
connection between biaxial orientation and shear thinning for quasi-
ideal rods. Polymers 2016, 8, No. 291.
(34) Lang, C.; Porcar, L.; Kriegs, H.; Lettinga, M. P. A quest for
shear banding in ideal and non ideal colloidal rods. J. Phys. D: Appl.
Phys. 2019, 52, No. 074003.
(35) Thareja, P.; Hoffmann, I. H.; Liberatore, M. W.; Helgeson, M.
E.; Hu, Y. T.; Gradzielski, M.; Wagner, N. J. Shear-induced phase
separation (SIPS) with shear banding in solutions of cationic
surfactant and salt. J. Rheol. 2011, 55, 1375−1397.
(36) Takeda, M.; Kusano, T.; Matsunaga, T.; Endo, H.; Shibayama,
M.; Shikata, T. Rheo-SANS studies on shear-thickening/thinning in
aqueous rodlike micellar solutions. Langmuir 2011, 27, 1731−1738.
(37) Keiderling, U. The new ‘BerSANS-PC’ software for reduction
and treatment of small angle neutron scattering data. Appl. Phys. A:
Mater. Sci. Process. 2002, 74, S1455−S1457.
(38) Muthig, M.; Prev́ost, S.; Orglmeister, R.; Gradzielski, M.
SASET: A program for series analysis of small-angle scattering data. J.
Appl. Crystallogr. 2013, 46, 1187−1195.
(39) Li, D.; Kelkar, M. S.; Wagner, N. J. Phase behavior and
molecular thermodynamics of coacervation in oppositely charged
polyelectrolyte/surfactant systems: A cationic polymer JR 400 and
anionic surfactant SDS mixture. Langmuir 2012, 28, 10348−10362.
(40) Bishop, C. M. Pattern Recognition and Machine Learning;
Springer, New York, 2006.
(41) Kawecki, M.; Adlmann, F.; Gutfreund, P.; Falus, P.; Uhrig, D.;
Gupta, S.; Farago, B.; Zolnierczuk, P.; Cochran, M.; Wolff, M. Direct
measurement of topological interactions in polymers under shear
using neutron spin echo spectroscopy. Sci. Rep. 2019, 9, No. 2823.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.9b10467
J. Phys. Chem. B 2020, 124, 909−913

913

https://dx.doi.org/10.1021/ma101768b
https://dx.doi.org/10.1021/ma101768b
https://dx.doi.org/10.1021/ma101768b
https://dx.doi.org/10.1039/c2sm25569c
https://dx.doi.org/10.1039/c2sm25569c
https://dx.doi.org/10.1039/c2sm25569c
https://dx.doi.org/10.1016/j.cocis.2011.12.001
https://dx.doi.org/10.1016/j.cocis.2011.12.001
https://dx.doi.org/10.1140/epjst/e2013-02056-1
https://dx.doi.org/10.1122/1.4929486
https://dx.doi.org/10.1002/app.41616
https://dx.doi.org/10.1002/app.41616
https://dx.doi.org/10.1002/app.41616
https://dx.doi.org/10.3139/113.110157
https://dx.doi.org/10.3139/113.110157
https://dx.doi.org/10.1209/0295-5075/104/28001
https://dx.doi.org/10.1209/0295-5075/104/28001
https://dx.doi.org/10.3390/polym8080291
https://dx.doi.org/10.3390/polym8080291
https://dx.doi.org/10.3390/polym8080291
https://dx.doi.org/10.1088/1361-6463/aaf40c
https://dx.doi.org/10.1088/1361-6463/aaf40c
https://dx.doi.org/10.1122/1.3641517
https://dx.doi.org/10.1122/1.3641517
https://dx.doi.org/10.1122/1.3641517
https://dx.doi.org/10.1021/la104647u
https://dx.doi.org/10.1021/la104647u
https://dx.doi.org/10.1007/s003390201561
https://dx.doi.org/10.1007/s003390201561
https://dx.doi.org/10.1107/S0021889813016658
https://dx.doi.org/10.1021/la301475s
https://dx.doi.org/10.1021/la301475s
https://dx.doi.org/10.1021/la301475s
https://dx.doi.org/10.1021/la301475s
https://dx.doi.org/10.1038/s41598-019-39437-2
https://dx.doi.org/10.1038/s41598-019-39437-2
https://dx.doi.org/10.1038/s41598-019-39437-2
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.9b10467?ref=pdf

