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Abstract. Software systems nowadays require continuous operation despite changes
both in user needs and in their operational environments. Self-adaptive systems
are typically instrumented with tools to autonomously perform adaptation to
these changes while maintaining some desired properties. In this paper we model
and analyze self-adaptive systems by means of typed, attributed graph grammars.
The interplay of different grammars representing the application and the adapta-
tion logic is realized by an adaption manager. Within this formal framework we
define consistency and operational properties that are maintained despite adap-
tations and we give static conditions for their verification. The overall approach
is supported by the AGG tool that offers the features for modeling, simulating,
and analyzing graph transformation systems. A case study modeling a business
process that adapts to changing environment conditions is used to demonstrate
and validate the formal framework.

Keywords: self-adaptive systems, formal analysis, verification, graph transforma-

tion, AGG

1 Introduction

Continuous operation is required for modern complex software systems (e-commerce, avion-
ics, logistic systems, etc.) despite changes both in user needs and in their operational en-
vironment. The high degree of variability that characterizes modern systems requires to



design them keeping runtime evolution in mind. Self-adaptive systems are systems that au-
tonomously decide (e.g., without or with minimal interference) how to adapt the system
at runtime to the internal reconfiguration and optimization requirements or to environment
(context) changes and threats [10]. To achieve this goal, a self-adaptive system should be able
to monitor itself and its context, to detect context changes that require system adaptations,
to decide how to react and act to execute such decisions [44].

On their common basis of self-awareness, self-monitoring and context-awareness, self-
adaptive systems are further classified by their characteristics, known as self-* proper-
ties [31J2]. The initial four self-* properties of self-adaptive systems are self-configuration,
self—healinéﬂ, self-optimization, and self-protection [31]. Self-configuration comprises compo-
nents installation and configuration based on some high-level policies. Self-healing deals with
automatic discovery of system failures, and with techniques to recover from them. Typically,
the runtime behavior of the system is monitored to determine whether a change is needed.
The main objectives of self-healing are to maximize the availability, maintainability, surviv-
ability, and reliability of the system [23]. Self-optimization monitors the system status and
adjusts parameters to increase performance when possible. Finally, self-protection aims to
detect external threats and to mitigate their effects [48].

Even with good reactions to both system and context changes a set of high-level goals
“should be maintained regardless of the environment conditions” [17]. In other words, the
joint ability of effectively reacting to changes without degrading the level of dependabil-
ity is a key factor for delivering successful systems that continuously satisfy evolving user
requirements. Consequently, a reliable support for the consistent evolution of systems at
runtime should be conceived through a well-defined formalization that provides a solid basis
for analysis.

In [13], the authors modeled and verified dynamic software architectures and self-healing
systems (called self-repairing systems in [I3]), by means of hypergraphs and graph gram-
mars. The work in [12] shows how to formally model self-healing systems by using algebraic
graph transformations [19] and to prove consistency and operational properties. Graph trans-
formation has been investigated as a fundamental concept for specification, concurrency,
distribution, visual modeling, simulation and model transformation [19J20].

In this paper we extend the work in [12] by formally modeling and analyzing self-adaptive
systems based on the framework of algebraic graph transformation. Since we aim at modeling
in a general way the concepts of self-awareness, context-awareness, self-monitoring and self-
adaptation, our modeling framework is in principle applicable to systems with different
kinds of self-* properties. The aim of our analysis is to show operational properties of self-
adaptive systems concerning overall conflicts and dependencies of normal system behavior
and adaptations. Hence, the analysis is not tailored to specific desired properties concerning
e.g., security aspects in self-protective systems or performance analysis of self-optimization.

Self-adaptive systems are modeled in our approach as a set of typed graph grammars
where three kinds of system rules are distinguished: normal, context, and adaptation rules.

* following [40] we consider self-healing and self-repair as synonyms.



Normal rules define the normal and ideal behavior of the system. States of self-adaptive sys-
tems fulfill consistency properties in the sense that all reachable states are system-consistent
and all normal rules preserve and reflect normal states. Context rules define context flags
(adaptation hooks) that trigger adaptation rules. Adaptation rules in different adaptation
grammars define the adaptation logic.

The formalization enables the specification, analysis and verification of operational prop-
erties of self-adaptive systems. Operational properties define (i) when a system in an adap-
tation state can be adapted in a system-enhancing way to be in a normal state again, (ii)
if the nature of the adaptation is corrective, i.e., the system state before adaptation can
be recovered. Operational properties can be checked statically for the given system rules in
an automatic way using the AGGP| modeling and analysis tool for typed attributed graph
transformation systems.

Summarizing, the contribution of this paper is twofold: (i) we propose a formal framework
to model, simulate and analyze self-adaptive systems, where the adaptation is triggered by
events monitored at the application layer and executed automatically; (ii) we provide a
methodology to employ static analysis techniques supported by the tool AGG for analyzing
self-adaptive system models. The theory is presented by use of a running example, a car
logistics scenario in a seaport terminal.

The paper is organized as follows. Section [2| presents our running example. Section
introduces the framework for modeling and analyzing self-adaptive systems. Section 4| models
the car logistics scenario by using the algebraic graph transformation framework. Section
describes how to formally verify desirable consistency and operational properties of self-
adaptive systems. Section [6] discusses aspects related to the automation of the approach.
Section [7| compares the approach proposed in this paper with related work. We conclude the
paper in Section [§] with a summary and an outlook on future work.

2 Running example

In this section we describe the Car Logistics System (CLS) scenario that will be used through-
out the paper to explain the approach. At the automobile terminal of the Bremerhaven sea
port [§], nearly 2 million of new vehicles are handled each year; the business goal is to deliver
them from the manufacturer to the dealer. To achieve that, several intermediate business
activities are involved. These include unload and store cars from a ship, apply to them
treatments to meet the customer’s requirements and distribute them to the retailers. The
company “Logistics IT Solutions” wants to develop a service-based application (the CLS)
to support the delivery of vehicles from the ship to the retailers. The CLS must implement
the business process depicted in by invoking and orchestrating the set of available
services in a proper way. Each business activity of the process is executed invoking a set of
available services (i.e., Car Check Service, Unloading Service, etc.) that can be atomic or composite

5 AGG (Attributed Graph Grammars): http://www.tfs.tu-berlin.de/agg|
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(i.e., Store Car Service). Additional services, i.e., services that are not directly attached to the
business process, are defined and they can be used during the application execution. For
example, the Wait For Treatment Service may be invoked when a vehicle that needs a treatment
has to wait some time because of a long queue in the treatment station.
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Fig. 1. Business Process and Services of the Car Logistics Scenario.

The CLS executes the business process presented before for each vehicle under the follow-
ing assumptions: (i) each business activity is executed in the defined order; (ii) the context
in which the business process is executed can evolve in time.

Assume now the following two cases that can happen at run-time:

— A wvehicle is severely damaged during its movement from the ship to the storage area: The
vehicle has been unloaded from the ship and has requested a ticket (using the Request Ticket
Service) to park in the storage area. It receives a precise ticket and starts to move to the
storage (using the Move To Storage Service). While moving, the vehicle is severely damaged
and then it stops. In this case the business process does not know how to proceed and
the booked ticket cannot be used.

— A vehicle arrives at a service point in the treatment area, but the required service is busy
and cannot be executed immediately: The vehicle is ready to undergo a service as ordered
by the customer (concerning e.g. painting or equipment), but there are already a number
of vehicles waiting for this service. In this case, the corresponding business service cannot
proceed in an expected way (such as treating the vehicles in order of their arrival).

As shown in the previous cases, there are situations in which the business process cannot
proceed according to the defined CLS execution. The main reasons for that are: (i) some
specific business process variants have not been specified at design time (e.g., due to some



error) and (ii) it is not possible to predict a priori which variants should be followed (due to
lack of information on the execution contexts). In order to be able to execute the CLS also
in case of unexpected situations we need to address the following problems:

— Context-awareness: In many applications the role of the context is fundamental in realiz-
ing the adaptation functionalities [I]. In order to relate the application execution to the
context the service-based application must be context-aware. This means that during the
execution it must be possible to obtain information on the underlying environment (e.g.,
relevant information on world entities involved, status of the business process execution,
human activities, etc.). To be adaptable, an application should provide adaptation hooks,
i.e., information to the environment on part of its structure and its behavior. This context
information provided by the adaptation hooks should be used to select the most suitable
adaptation strategy.

— Separation of Concerns: The adaptation logic should be developed separately from the
application logic by some adaptation engineer, for instance as a set of adaptation rules.
The adaptation logic can be created and/or changed after the application has been de-
ployed without modifying the running application. This coordination work is done by
an adaptation manager that requires human intervention for selecting the most suit-
able adaptation and for adding new adaption rules. At runtime, the adaptation manager
should check both context and user needs, control whether any adaptations have to be
applied to the application, and exploit the adaptation hooks provided by the application
to reconfigure it in the desired way.

3 Framework for Rule-Based Dynamic Adaptation

The framework manages the dynamic adaptation by means of rules specifying when and how
adaptation is triggered, how the choice among the possible adaptations is performed, and
finally how the nature of adaptations can be characterized.

Components of the adaptation framework Our adaptation framework is composed
of three fundamental components as shown by Figure [2} Context Monitor that describes
properties on the application operational environment and how they evolve (i.e., context
rules), Application Logic that describes how the application evolves (i.e., application rules).
Finally, Adaptation Manager that specifies how a system is adapted in case of adaptation
needs (i.e., adaptation rules).

According to the scenario presented in [section 2} the considered self-adaptive system is
the Car Logistics application. Its application logic describes what are the different activities
that can be executed (i.e., Ship Unloading, Storage, Technical Treatment, Consignment, and Truck Loading),
the set of available services that can be used to realize such activities (i.e., Store Car Service, Move
To Treatment Service, Cleaning Service, etc.) and the assumed behavior of the overall application.
The behavior describes the precise order of the activities that a car must execute plus a
precise set of business policies (in terms of activity preconditions) to respect.

>
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Fig. 2. Components of the Adaptation Framework.

The Context Monitor continuously monitors the context at fixed intervals. The context
monitor is defined as a set of small rules (called contexrt rules) which once applied, add
so-called adaptation hooks to the system to trigger the adaptation process. The system is
monitored at regular time intervals, and an adaptation problem is sent to the Adaptation
Manager if one or more adaptation hooks are found. In response, the Adaptation Manager
returns an adaptation solution to the application logic that aims to do its best to
so that the blocked activity can be executed and the main process can continue.

‘recover”,

Formalization of self-adaptive system behavior in the framework In our formaliza-
tion, the formal model of a self-adaptive system is a set of graph grammars typed over the
same type graph. A main system grammar consisting of system rules modeling normal be-
havior (the Application Logic) and contezt rules modeling changes that require adaptation by
generating adaptation hooks, can be enhanced by other grammars, each representing a spe-
cific adaptation. Such an adaptation grammar contains adaptation rules modeling reactions
to the detection of context changes. Context Monitoring is modeled by context constraints
in the main system grammar that are violated in the presence of adaptation hooks and trig-
ger the (semi-automatic) selection of a corresponding adaptation grammars (the Adaptation
Logic). The interplay of the different grammars representing the adaptation logic is realized
by the Adaptation Manager.

The adaptation is triggered on activity enter, i.e., whenever a vehicle enters a new service,
the vehicle and the service are monitored for change requirements.

Remark 1 (Context-aware and self-aware systems). Note that we do not distinguish between
context-aware and self-aware systems. In our approach, adaptation hooks are all issued



from context rules. It would be no problem in our approach to differentiate between two
types of adaptation hooks with respect to their origin (context or the system itself). For
this, we would need context rules and certain distinguished self-rules. But since we abstract
from the context and the actual origin of the adaptation hook, the effect would remain the
same, i.e., the adaptation hooks would lead to an adaptation of the system by applying an
adequate adaptation grammar. Since, technically, this is not a limitation, we prefer to keep
the modeling approach simple and to remain with context rules only.

Ordering adaptations Different adaptations may be applicable during the system execu-
tion. The choice of which adaptation to apply may influence the time required for performing
the adaptation, or even the final result. In our framework, we prefer controlled application
of adaptations, i.e. adaptations are selected by the adaptation manager or they may have
been associated with a priority; if many adaptations can be applied, the one with highest
priority may be applied first.

Nature of adaptations In order to be able to recover our applications at run-time, we
consider two classes of adaptations that can be applied and treated in different ways [16/34],
in particular:

— Corrective Adaptation: these adaptations take care of adapting the application when
the current implementation instance cannot proceed with the execution in the current
context (i.e., a car is damaged). The main objective of these adaptations is to recover the
application and hence focuses on the self-healing property. This is achieved through an
adaptation that, starting from the actual context state, performs the necessary changes
in the domain to bring the application and its context to the expected state where it can
be executed again. In our framework, an adaptation is corrective if each adaptation state
can be adapted in a corrective way (repaired), i.e., the normal state before the adaptation
became necessary is reestablished.

— Enhancing Adaptation: these adaptations enhance existing services of the application;
this may for instance change the non-functional properties of the service, or provide new
services with the same or enhanced functionalities. In our framework, an adaptation is
enhancing if each adaptation state can be adapted to become a normal state, possibly
by adding new functionalities and services. The normal state after the adaptation is not
necessarily identic with the normal state before the adaptation became necessary.

4 Modeling self-adaptive systems by using Algebraic Graph
Transformation and AGG

In this section, we show how to model self-adaptive systems in the formal framework of
algebraic graph transformation (AGT) [19]. Specifically, typed graphs, introduced in Def.
are used to model the static part of the system. Typed graphs are enriched with constraints
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that self-adaptive systems have to satisfy even during adaptation. Moreover, we model the
behavior and the adaptation of self-adaptive systems by means of graph grammars, intro-
duced in Def. 2| This section makes use of the Car Logistics System running example and of
the AGG tool to show how practitioners can model self-adaptive systems.

Definition 1 (Typed Graphs). A graph G = (N, E, s,t) consists of a set of nodes N, a
set of edges E and functions s,t : E — N assigning to each edge e € E the source s(e) € N
and target t(e) € N.

A graph morphism f : G — G’ is given by a pair of functions f = (fx : N — N’ fg :
E — E') which is compatible with source and target functions, i.e., fx os = s o fg, and
fynot=1to fg.

A type graph TG is a graph where nodes and edges are considered as node and edge
types, respectively. A TG-typed, or short typed graph G = (G, t) consists of a graph G and
a graph morphism t : G — TG, called typing morphism of G. Morphisms f : G — G’
of typed graphs are graph morphisms f : G — G’ which are compatible with the typing
morphisms t : G — TG andt' : G — TG, i.e., t'o f =t.

For simplicity, we abbreviate G = (G,t) by G in the following. Moreover, the approach
is also valid for attributed and typed attributed graphs where nodes and edges can have data
type attributes [19], as used in our running example.

Ezample 1 (Type Graph and Initial State for Car Logistics). shows the type graph
for the Car Logistics case study. Note that we have an integrated type graph which contains
types used for modeling the “normal” aspects of the car logistics scenario, as well as the
context types used for adaptation, e.g., the hooks (context flags) that trigger the adaptation
rules.

In the integrated type graph, we have the following types for normal behavior:

— Start, End and BusinessActivity are the main business activities (the colored nodes in [Figure 1)),
which are ordered (linked by directed arcs of type next).

— Service is a service station belonging (linked) to a BusinessActivity. A service may be a compos-
ite service. Then it contains other services which are ordered (linked by next arcs). Contain-
ment of sub-services in a composite service is modeled by ¢ edges from the sub-services
to its composite service. To keep things simple, we currently allow only one nesting level
(a sub-service cannot be a composite service).

— Vehicle is a car running through the business process. At the beginning it will be linked
(by a v link) to the Start activity and is ready to enter a service.

— A todo link between a vehicle and each service of each BusinessActivity is generated when
a Vehicle starts the business process. The successful processing of a service leads to the
deletion of the corresponding todo link. When all services belonging to the business process
have been processed (all todo links are removed), the Vehicle arrives at the End activity as
a completed product with a precise treatment executed and ready to be delivered to a
retailer.



TypeGraph of CarlLogisticsScenario
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[SlightlyDamaged " | [SeverelyDamaged " |

Fig. 3. Type Graph of the Car Logistics Case Study

For adaptation handling we have the following types:

— Context is the super-type for all possible context signals, including adaptation hooks. These
hooks are used for triggering the adaptation grammars. We specify two main context types
AdaptV and AdaptS.

— AdaptV with refinements Damage and Queue denoting that a car is damaged and needs to be
repaired (SlightlyDamaged) or disposed (SeverelyDamaged), or a car is in a queue.

— AdaptS with refinements NotAvailable and Wait denoting that a service station is not available
(our case study does not cover this case) or there is a queue at a service, respectively.
The refinement wait denotes that cars in the current business activity should queue up
and wait to be processed.

— AdService is an adaptation service not directly attached to a BusinessActivity. Adaptation
services are additional services used during the business process execution according to
an adaptation scenario.

— An edge of type extraSrvBy (extra service by) connects a Vehicle to an adaptation service.

— Edges of type queue connect the Vehicles in a queue at a service.

The graph modeling the initial state of the scenario with two vehicles waiting to be

processed is shown in [Figure 4,

In order to model consistency and adaptation constraints of a self-adaptive system, we use
(T'G-typed) graph constraints. A graph constraint is given by an injective graph morphism

9



Graph of CarlLogisticsScenario
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Fig. 4. Initial State Graph of the Car Logistics Case Study
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c¢: P — C (where P is called premise and C' conclusion). Constraint ¢ : P — C'is satisfied
by a graph G, written G |= ¢, if the existence of an injective graph morphism p : P — G
implies the existence of an injective graph morphism ¢ : C' — G, such that q o ¢ = p. Graph
constraints can be negated or combined by logical connectors (e.g., —¢). If P is empty, only
the existence of C' is required.

Ezample 2 (Graph constraints for the Car Logistics system). Here we define some system
constraints that have to be satisfied throughout the states of the scenario:

Cronsist = {noFalseServiceConnect, sameBAforComp, noEqualContextFlags},

C1a1dapt = {Damage},

— sameBAforComp = sameActivityOfCont N sameActivityOfNext N sameComposite: All
subservices belonging to the same composite service are linked to the same BusinessAc-
tivity and to the same composite service node (Figure 5]).

— noFalseServiceConnect = —( next-loop V c-c-loop V c-next V todo-c): There are no next or
containment loops, and a subservice cannot be a composite service, and a vehicle cannot

be served (todo edge) by a service which is a container of other services (Figure 6)).

Moreover, we have adaptation constraints, describing adaptation hooks that are required
to hold for certain adaptations to occur. Adaptation constraint Wait requires the existence
of a wait flag at a service, and adaptation constraint Damage requires a Damage flag at a

vehicle (Figure 7)).
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Fig. 7. Adaptation constraints Wait and Damage.

We model the behavior of the main scenario and the adaptations in different graph
grammars. Whenever an adaptation becomes necessary, the respective adaptation rules are
loaded into the main case study grammar.

Definition 2 (Typed Graph Grammar). A typed graph grammar GG = (TG, Gy, Rules)
consists of a type graph TG, a TG-typed initial graph G, and a set of graph transformation
rules (Rules). Each ruler € Rules is given by a span (LHS <— I — RHS ), where LHS, I and
RHS are TG-typed graphs, called left-hand side, interface and right-hand side, respectively.
Moreover, I — LHS, I — RHS are injective typed graph morphisms where in most cases
I can be considered as the intersection of LHS and RHS. A rule r € Rules is applied to a
TG-typed graph G by a match morphism m : LHS — G leading to a direct transformation
G =2 H via (r,m) in two steps: first, we delete the match m(LHS ) without m(I) from
G to obtain a context graph D, and then, we glue together D with RHS along I, i.e., we
construct a union of D and RHS with the intersection graph I, leading to a TG-typed graph
H. This gluing construction is represented in the diagram belouﬂ where diagram (1) (resp.

6 Formally, the squares (1) and (2) are called pushouts in the category Graphsrg of TG-typed graphs.
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(2)) corresponds to gluing G of LHS and D along I (resp. to gluing H of RHS and D along
I).

N <" HS <L — 1 —"~ RHS
\ql\ml (1) l (2) lm*
G D H

Note that diagram (1) in step 1 only exists if the match m satisfies a gluing condition with
respect to rule r which makes sure that the deletion in step 1 leads to a well-defined T'G-typed
graph D, leaving no dangling edges. Moreover, rules are allowed to have one or more Negative
Application Conditions (NACs). A NAC' is a negated graph constraint nac : L — N. A rule
r with a NAC can only be applied at match m : L — G if this match satisfies the negated
constraint, i.e., there is no injective morphism q : N — G with q o nac = m. This means
intuitively that v cannot be applied to G if graph N occurs in G. A transformation Gy = G,,
wa Rules in GG consists of n > 0 direct transformations G = G, = ... = G, via rules

r € Rules. For n > 1 we write Gy - G, for n > 0 we write Gy = G,.

The normal behavior and adaptations of our case study are modeled by typed graph gram-
mars as follows. In the main grammar CarLogisticsScenario , normal behavior is
modeled. Moreover, context flags (e.g., adaptation hooks) can be generated. The adaptation
hooks trigger the adaptation logic, modeled by adaptation grammars, e.g., Repair-Adaptation
(Example b)) and Wait-At-Queue-Adaptation . We may have different adapta-
tion grammars that are suitable for the same adaptation hook. For instance, if a damaged
car is in the midst of a composite service, first a rollback adaptation has to be performed,
and then a repair adaptation. The adaptation manager coordinates the different adaptation
grammars such that the rules of the most suitable adaptation grammars are imported into
the main grammar. These rules perform the necessary adaptations at the host graph so that
the “normal behavior rules” can proceed and maybe new adaptation hooks are set. Note
that in AGG the modeler plays the role of an adaptation manager and imports the neces-
sary adaptation rules into the main grammar. However, the verification is incremental, i.e.,
verifications previously performed are taken into account and only newly added rules are
required to be checked for conflicts with respect to the existing ones. After adaptation, the
adaptation rules are removed from the main grammar, and the application of the “normal
behavior rules” continues.

Ezample 3 (Rules modeling the Car Logistics scenario). Here, we model the rules for the
normal behavior of Vehicles running through BusinessActivities smoothly. To save space, we
depict only the left- and right-hand sides for each rule. The interface consists of those nodes
and edges that are present both in LHS and in RHS and mapped to each other by equal
numbers. For each rule, a unique rule name is depicted on top of the LHS, and the NAC's
are placed around the LHS. The normal behavior rules are shown in to [13]

The first step for each Vehicle is to enter the business process. Then, all services of the
Vehicle’s BusinessActivities are marked as to do by creating todo edges between the Vehicle
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and each service not yet marked (applying rule ServiceToDo in as long as possible).
Now rule EnterBP in moves the Vehicle to the first BusinessActivity. When a service
that is not composite is processed, the corresponding todo edge is removed by rule DoService

in [Figiire 10}

NoSubService ServiceNotDone ServiceToDo of ServicePlan of CarLogisticsScenario
4

u c todo ¥
(2:BusinessActivity}®{Senice H»{3:Senice) | | (3:5enice

NoService

NoAdaptV
P ——

todo
v Aahi — —
1:Vehicle 2:BusinessActivity
Adapty (emvice] @

Fig. 8. The normal behavior rule ServiceToDo.

NotinActivity EnterBP of CarlogisticsScenario

4
v
2:BusinessActivity

3:Senice

¥
NoAdaptV

raapt}—2

2:BusinessActivity

2:BusinessActivity

Fig. 9. The normal behavior rule EnterBP.

NotContained Service || NoSubService NoAdaptV

DoService of CarLogisticsScenario

cv 4

[ - [ - .

Service J4—{3:Senice| || (Semice 3:Senvice] | | [AdaptY @ b
u

u
[E:BusinessAciivity] [E:Businessﬁctivit\r] NotServicedBy
NoAdapt$
-
[Adapts I——P[B:Service] extraSnvBy

Fig. 10. The normal behavior rule DoService.

2:BusinessActivity

2:BusinessActivity

For processing a composite service consisting of ordered sub-services, the NAC of rule Do-
SubService in [Figure 11| ensures that a sub-service is processed only if its previous services
in the queue have already been processed.
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PreServiceNotDone NoAdapts DoSubService of CarlLogisticsScenario
q
cs
NotServicedBy r

5¢

NoAdaptV

: o 7 Iy .
2:BusinessActivity| 2:BusinessActivity

@
extraSvBY

Fig. 11. The normal behavior rule DoSubService.

A Vehicle can move to the next BusinessActivity when all services of the previous one are

done (rule NextBA in |Figure 12)). Finally, when there are no more services to do, the business
process for the Vehicle is finished (rule FinishBP in [Figure 13]).

NextBA of CarLogisticsScenario

4

Biu

NoPreServiceTodo

5todo

NoAdaptV

CV w

Bu

2:BusinessActivity
4:BusinessActivity

2:BusinessActivity

4:BusinessActivity

7:next
4:BusinessActivity

Fig. 12. The normal behavior rule NextBA.

FinishBP of CarlLogisticsScenario
NothingToDo 1
NoAdaptV k
todo @ 1:Vehicle
cv
Adaptv @
y
- — 4n
3:BusinessActivity ext
|3:BU$“"953AC““W| 3:BusinessActivity

Fig. 13. The normal behavior rule FinishBP.

In addition to the normal behavior rules, the main grammar contains context rules that
are applicable at any time and mark a Vehicle or Service with an adaptation hook, i.e., they
create a node of one of the context node types AdaptV or AdaptS, respectively. In case a car
is damaged, rules SlightlyDamage or SeverelyDamage mark it by an adaptation hook either
of kind “SlightlyDamaged” or “SeverelyDamaged” as shown in Note that it is
intended in our model, that a car that is slightly damaged can become severely damaged
later (or the other way round, e.g. by being part of a crash while waiting to be repaired or
disposed of). Of course, in this case it would make no sense that the slight damage of such
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a car would be repaired before it would be disposed of. This is an example for a situation
where the adaptation manager has to make the right choice between two possible adaptation

grammars, the repair-adaptation (Example 5 or the dispose-adaptation (Example 6)).

NoDamage : SlightlyDamage of CarlogisticsScenario NoDamage : SeverelyDamage of CarlLogisticsScenario
4 4
¥ - P ¥
SlightlyDamaged slightyDamaged SeverelyDamaged

Fig. 14. The context rules SlightlyDamage and SeverelyDamage.

The context rule Queue in marks a service of the technical treatment area and
a vehicle with context nodes of type wait and Queue, respectively, if a service station in the
technical treatment area is busy and the treatment cannot be executed immediately.

NoPreV NoNext Queue of CarlLogisticsScenario
4
queus queue [ 3
3Vehicle 2:BusinessActivity (2:BusinessActivity
R n="TechTreatment'| . n="TechTreatment'| g.
NoAdaptS NoAdaptV @
Adapts|_¢3 Adaptv]-

Fig. 15. The context rule Queue.

All above introduced adaptation hooks guide the adaptation manager to select a suitable
adaptation grammar realizing the adaptation.

Ezample 4 (Rollback-Adaptation,).

A rollback-adaptation becomes necessary when a damaged vehicle is in the midst of a
composite service as shown in In this case, the already finished sub-services are
“rolled back” by applying rule RollBack as long as possible before the vehicle is moved to the
treatment area to be repaired.

Ezample 5 (Repair-Adaptation).

A repair-adaptation becomes necessary when a vehicle is marked by a context flag as
being slightly damaged. We require that the vehicle to be repaired is not in the midst of
a composite service any more. (If it is, the rollback adaptation has to be selected by the
adaptation manager to be performed before the repair adaptation.)
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NoServiceTodo

-

RollBack(RB) of RollBackAdaptation
q

8:todo

¥

7y

[S:Sewice}mh[BJSewice]

10:¢ 6

Fig. 16. The rollback-adaptation rule RollBack.

When reparation is needed, two additional services (which are not normal services of the
usual business process) are evoked, i.e., the Vehicle is linked to them, one after the other.
Rule TakePullToTreatmentService in uses an extra service to pull up the damaged

Vehicle to the treatment area.

NotServicedBy TakePullToTreatmentService(RA) of RepairAdaptation

extraSan
2:AdSernvice

NotServicedByOther

extraSrvB

]
4

3:SlightyDamaged

3:SlightlyDamaged

4:cv

extraSvBy

2:AdSenvice
n="PullToTreatment"

Fig. 17. The repair-adaptation rule TakePullToTreatmentService.

Rule TakeRepairService in allocates an extra repair service for the slightly damaged

Vehicle.

NotServicedBy : TakeRepairService(RA) of RepairAdaptation

2:AdSenvice
n="Repair"

4
4:SlightyDamaged K

b.cv

extragrvBy

J:AdSenice
n="PullToTreatment"

raSrvBy

4:SlightyDamaged

6:cv
2:AdService
n="Repair"

3:AdSenvice

PullToTreatment’

Fig. 18. The repair-adaptation rule TakeRepairService.

A slightly damaged Vehicle is repaired (i.e., the adaptation hook is removed) by rule Re-

pairVehicle in
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RepairVehicle(RA) of RepairAdaptation

4
SlightlyDamaged

¥
extraSrvBy
3:AdService 3:AdService
n="Repair" n="Repair

Fig. 19. The repair-adaptation rule RepairVehicle.

1:Vehicle

After repair, the Vehicle should continue its normal behavior at the point where the
adaptation hook was set. The composite service it left before (and which has rolled back by
applying the rollback-adaptation) may now start again from the beginning. By the way, the
Vehicle does not forget which services have been done already and which are still to do.

Ezample 6 (Dispose-Adaptation).

A severely damaged vehicle that cannot be repaired, is disposed by the dispose-adaptation.
This adaptation grammar also contains rules TakePullToTreatmentService and TakeRepairSer-
vice that are analogous to the corresponding rules and in the repair-adaptation
in with the slight difference that the context flag is now always of kind Severely-
Damaged. Using rule TakeDisposingService in [Figure 20|, a severely damaged Vehicle is picked
up by the disposing service.

NotSenricedBL: TakeDisposingService(DA) of DisposingAdaptation
4
[

3:SeverelyDamaged 3:SeverelyDamaged

acv

extraSvBy

2:AdService
n="Disposing"”

4:AdService
n="Repair"

4:AdSenice
n="Repair"

Fig. 20. The dispose-adaptation rule TakeDisposingService.

Before the vehicle can be disposed of, its todo links are removed by applying rule RemoveToDo

in as long as possible.

Applying rule RemoveDamageFlag in as long as possible, all flags of kind Slightly-
Damaged OI' SeverelyDamaged are removed from the vehicle.

Finally, the vehicle is disposed of by rule DisposeVehicle in (in our model, a disposed
vehicle remains in the graph without any links to other objects).

Ezample 7 (Wait-At-Queue Adaptation).
The wait-at-queue adaptation becomes necessary when a service station in the technical
treatment area is busy and the treatment cannot be executed immediately. When a car
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arrives at the treatment area and discovers that there is a queue it should queue up and
wait. Rule Enqueue in enqueues all Vehicles waiting for this service. In doing so

RemoveTodo(DA) of DisposingAdaptation

o

4:AdService

l3:SEI‘ViCE|

n="Disposing"

Fig. 21. The dispose-adaptation rule RemoveToDo.

NoAnyTodo :

RemoveDamageFlag(DA) of DisposingAdaptation

todo

q
K

4:extraSrvBy

2:AdService
n="Disposing"

cv

4:extraSrvBy

2:AdSemvice

n="Disposing"

Fig. 22. The dispose-adaptation rule RemoveDamageFlag.

NoAnyTodo DisposeVehicle(DA) of AllAdaptations
4
todo |4
@
NoDamage extraSrvBy
v 2:AdSernvice
n="Disposing"

Fig. 23. The dispose-adaptation rule DisposeVehicle.

the Queue flag is shifted along the queue link.

v
@

q ueu

EIUEIJB

G:BusinessActivity

NoDamageV1 NoPreV NoNextV Enqueue(QA) of QueueAdaptation
4
o Queue, queus ¥
NoAdaptv2 isNothext isNotPrev

:BusinessActivity

Fig. 24. The wait-at-queue-adaptation rule Enqueue.




Vehicles in a queue are served in the order of their arrival by applying rule DoService in

NoPreV DoService(QA) of QueueAdaptation

queus,
NoDamage\V2 @

o
\ NoDamageV1
cv

Fig. 25. The wait-at-queue-adaptation rule DoService.

9:todp

11w

2:BusinessActivity

2:BusinessActivity

Finally, the wait flag at the busy service and the Queve flag at the last Vehicle are removed
by rule RemoveWait in after the queue has been processed completely.

NoPreOfV NoDamage RemoveWait(QA) of QueueAdaptation
queue @ o :
R
leodo todo
NoNextOfv NoMoreTodo
queu @ todo
83‘0"0 todo 1:8usinessActivity

Fig. 26. The wait-at-queue-adaptation rule RemoveWait.

Thereafter, the normal behavior of vehicles running through BusinessActivities may proceed.

5 Formal Analysis of Self-Adaptive Systems

In this section we define self-adaptive systems in the framework of algebraic graph trans-
formation (AGT) (subsection 5.1) and distinguish desirable operational properties of self-
adaptive systems (subsection 5.2)). In [subsection 5.3 we analyze the operational properties
introduced in [subsection 5.2| and give static sufficient conditions for their verification.

5.1 Classification of Self-Adaptive System States

An adaptive system is defined in by a typed graph grammar where system rules
can be partitioned into normal, context and adaptation rules. Moreover, we have two kinds of
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TG-typed graph constraints, namely consistency and adaptation constraints. Requirement
1 of ensures that context rules can be applied independently of the normal
system behavior occurring in different parts of the system, which is expressed by the notion
of sequential independence. Whenever the application of a normal rule is possible after
the application of a context rule, the order of rule applications may be swapped, but the
result after applying both rules remains the same. This requirement is important since we
model systems that are monitored at regular time intervals. Hence, if a context rule has
been applied first, and normal rules could be applied afterwards, they are applicable only
to those objects of the system that are currently not in need of urgent adaptation (modeled
by suitable NACs forbidding the presence of certain adaptation hooks). This models the
situation in real-life systems that, e.g., damaged vehicles will not proceed in the normal
business process (e.g., become painted) before they have been repaired. Even if the context
change requires an adaptation that involves the shutdown and reboot of the system, it is more
realistic to assume that some (restricted) normal behavior is possible after context changes
have occurred and before the need for adaptation is discovered by the context monitor.
In Requirement 2, we state that all reachable system states are consistent with respect to
our consistency constraints. Requirement 3 concerns the interplay of normal behavior and
adaptation behavior: normal rules must not create or insert adaptation hooks (i.e., only
context rules may generate adaptation states) to trigger adaptations. Requirement 4 ensures
that adaptation results are unique, i.e., the resulting state after applying adaptation rules
does not depend on the order or location of their application.

Definition 3 (Self-Adaptive System in AGT-Framework).
A Self-adaptive system (SA-system) is given by SAS = (GG, Cyys), where:

— GG = (TG, Ginit, Rsys) is a typed graph grammar with type graph TG, a TG-typed
initial graph Ginie, a set of TG-typed rules Rgys with NACs, called system rules, defined
by Rsys = Ruorm U Reont U Radapt, Where Ry o, (called normal rules), Repnt (called context
rules) and Rggap (called adaptation rules) are pairwise disjoint.

— Cyys s a set of T'G-typed graph constraints, called system constraints, with Cgys =
Coeonsist U Cadapt, where Ceonsist (called consistency constraints) and Cogqp (called adap-
tation constraints) are pairwise disjoint.

We distinguish reachable, consistent, adaptation and normal states, where reachable
states are partitioned into normal and adaptation states:

— Reach(SAS) = {G | Gy = G via Rgys }, the reachable states consisting of all states
reachable via system rules,

— Consist(SAS) = {G | G € Reach(SAS) ANVC € Cionsist : G E C}, the consistent states,
consisting of all reachable states satisfying the consistency constraints,

— Adapt(SAS) = {G | G € Reach(SAS) AN IC € Cogap : G E C}, the adaptation states,

consisting of all reachable states satisfying some adaptation constraints,
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— Norm(SAS) = {G | G € Reach(SAS) ANVC € Cogapt : G ¥ C}, the normal states,
consisting of all reachable states not satisfying any adaptation constraints.

For SA-systems, we require that

1. each pair of a context and a normal rule (p,r) € Reont X Ruporm 15 sequentially indepen-
dent,

2. SAS is system consistent: all reachable states are consistent, i.e., they fulfill the consis-
tency constraints: Reach(SAS) = Consist(SAS);

3. SAS is normal-state consistent: the initial state is normal and all normal rules preserve
and reflect normal states:
Ginit € Norm(SAS) and VGy == G via r € Ryorm
[Go € Norm(SAS) < Gy € Norm(SAS)]

4. The set of adaptation rules Rygap is confluent and terminating.

shows the Reach set, its partition into Norm and Adapt sets, and the relation-
ships of these two sets with the Consist set. Note that the sets Norm and Adapt exclude
each other.

Fig. 27. Relationships among the Reach, Norm, Adapt, and Consist sets.

Remark 2. - In all cases, the requirements of SA-systems can be concluded in a static way by
inspecting the corresponding rules. This means e.g. that we do not need to check all reachable
states to find whether they are consistent. Instead, we only check Gj,;; for consistency and
then check the (system or normal) rules whether they preserve consistent states. In particular,
we can check statically that different adaptations do not interfere with each other, i.e., they
are confluent and terminating (see requirement 4). This property is interesting, if more than
one set of adaptation rules have to be used to adapt a given state, which is a highly relevant
practical problem. Note that there are also general conditions ensuring the preservation of
graph constraints by rules, but this discussion is out of scope for this paper.

Ezample 8 (Car Logistics System as SA-system).
We define the Car Logistics SA-system CLS = (GG, Cy,s) by the type graph TG in

[Figure 3| the initial state Gy in [Figure 4] and the following sets of rules and constraints:
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— Ryuorm = {ServiceToDo, EnterBP, DoService, DoSub-Service, NextBA, FinishBP},
— Reont = {SlightlyDamage, SeverelyDamage, Queue},

- Radapt = Rédapt U R(deapt U deapt U R;ldapt with
— R} o = {Rollback},
— R, = {TakePullToTreatmentService, Take-RepairService, RepairVehicle}

— Ridapt = {TakePullToTreatmentService, Take-RepairService, TakeDisposingService, RemoveTodo,
RemoveDamageFlag, DisposeVehicle}

— Rg g, = {Enqueue, DoService, RemoveWait},

— Ceonsist = {noFalseServiceConnect, sameBAfor- Comp, noEqualContextFlags},

B Oadapt = C;dapt U Ogdapt with
- Oaldapt = {Damage},
— Cliup = { Wait}.

The normal rules in R,,., and the context rules in R..,; have been shown and explained
in [Example 3| The context rules add context flags to vehicles or services, i.e., nodes of a cer-
tain Context subtype. These context nodes serve as indicators whether an adaptation becomes
necessary or not (adaptation hooks). The adaptation rules in Ry, to Ray,, have been
introduced in [Example 4] to [Example 7|, respectively. The consistency constraints in Clygist
have been explained in [Example 2| and model desired structural properties. The adaptation
constraints in Cygqp; model properties that have to be valid only if the corresponding adap-
tation is running. The adaptation constraints Damage and Wait (see require the
existence of the corresponding adaptation hook.

Checking the requirements for SA-systems in [Definition 3, we find that:

1. we have sequential independence for each pair of context and normal rules (p,7) € Reont
X Ryorm, which is shown in the dependency matrix in computed by AGG.
Each pair (SlightlyDamage, r), (SeverelyDamage,r) and (Queue,r) with r normal rule is
sequentially independent (i.e., there are no dependencies for each rule pair, indicated by
number 0 in the corresponding field of the table).

@D Minimal Dependencies gl
Show

first | second 1 ServiceP...2 EnterBP 3 DoService 4 DoSubS... 5NextBA 6 FinishBP

1 SlightlyDamage 0 0 0 0 0 0

2 SeverelyDamage 0 0 0 0 0 0

3 Queue 0 0 0 0 0 0

Fig. 28. Dependency matrix of context and normal rules

2. CLS is system consistent, because for all C' € Ceonsist, Ginir = C and for all Gg —
Gy via r € Ry and Gy € Consist(SAS) we also have Gy € Consist(SAS). This can
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be concluded since no system rules manipulate the structure of services; moreover, if a
vehicle is linked to a service, it is checked by a NAC that this service is not a composite
one (see rule ServiceToDo in ).

. CLS is normal-state consistent, because Gi,;y € Norm(SAS) and for all G, = G, via
7 € Ryorm for all C € Cygap [Go = C < G [~ C]. This can be concluded since no normal
rule manipulates (inserts or deletes) any adaptation hooks (subtype of type Context), which
is required by the adaptation constraints to hold.

. With regard to confluence, we used AGG to check the sets of adaptation rules for critical
pairs [26] (minimal conflicts) and found that there are no critical pairs, and hence, no
conflicts for any rule pairs within the same adaptation rule set. shows exem-
plarily the critical pair table for the repair adaptation rule set, computed by AGG. We
have listed the repair adaptation rules in the rows and columns and see number 0 in each
field, denoting that there is no conflict for each rule pair.

@:’:‘ Minimal Conflicts =l . g < |
Show

first\ second 1 7i 3

1 TakePullToTreatmentService(RA) 0 0 0

2 TakeRepairService(RA) 0 o 0

3 RepairVehicle(RA) 0 0 0

Fig. 29. Critical Pair matrix of repair adaptation rules

AGG computed some conflicts between different adaptation rule sets: there is e.g. a con-
flict when adaptation rule Rollback would be applied after rule RepairVehicle. Note that this
conflict can be disregarded since the adaptation manager has to make sure to apply the
rollback adaptation (if necessary) before evoking the repair adaptation and not after-
wards. Similarly, conflicts between rules for repairing and rules for disposing vehicles can
be ignored since we expect that in presence of severely damaged cars, the adaptation
manager selects the Dispose adaptation first, and applies the Repair adaptation after-
wards, when all severely damaged cars have been disposed of. Under these restrictions
on the application order of adaptation rule sets, the union R4, of all adaptation rule
sets is confluent.

With regard to termination, we argue as follows: The rollback adaptation R}, termi-
nates as there are only a finite number of services to roll back within a composite service,
and a todo edge may be inserted only once between a vehicle and a service. The repair
adaptation R, , terminates due to a finite number of slightly damaged vehicles, and
due to the NACs of the repair rules ensuring that each rule is applicable only once for
each damaged vehicle. For the dispose-adaptation R}, ,, we have one rule, RemoveDam-
ageFlag that might be applicable at most twice, if a car has two Damage flags.
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No car has more than two flags, due to NACs of the corresponding context rules. For
the wait-at-queue adaptation R, we find that the NACs ensure that each vehicle is
enqueued only once by rule Enqueue . The remaining rules only delete todo
edges and are terminating due to the finite number of vehicles in the system. Hence, all

adaptation rule sets are confluent and terminating.

5.2 Operational Properties of Self-Adaptive Systems

In this section, we define desirable operational properties of SA-Systems. One of the main
ideas of SA-Systems is that they are monitored in regular time intervals and checked, whether
the current system state is an adaptation state. In this case one or more adaptation hooks
have been created in the last time interval by context rules. With the enhancing-adaptation
property below, we require that a system in an adaptation state is eventually adapted,
i.e., transformed again to a normal state, by adding new functionalities to the system and
using new services (see , where we discussed the Nature of adaptations on .
Moreover, corrective self-adaptation means that the state will be recovered, i.e., the normal
state after adaptation is the same as if no adaptation had occurred. In the following, we use
the notation G =' G’ to denote a transformation where the rules have been applied as long
as possible; we write G =* G’ to denote a transformation where the rules have been applied
arbitrarily often, and the transformation G =" G’ consists of at least one rule application.

Definition 4 (Self-Adaptation Classes).
An SA-System SAS is called

1. enhancing, if each adaptation state is adapted to become a normal state, possibly by adding
new functionalities and services. In more detail:
VGinit =* G via (Ruorm U Reont) with G € Adapt(SAS) 3 G =' G’ via Rugapr with
G’ € Norm(SAS) and ¥YG =' G via Rodapt, we get that [e=Xed

2. corrective, if each adaptation state is adapted in a corrective way (repaired). In more
detail:
VGinit =* G via (q1 ... qn) € (RuormUReont)* with G € Adapt(SAS) 3 G =' G’ via Rudapt
with G' € Norm(SAS) and 3 Gipye =* G’ via (r1...7n) € R, Where (11...7,,) S a

subsequence of all normal rules in (g1 .. .q,). Moreover, VG =' G via Ragap, we get that

GG,

Remark 3. - By definition, each corrective SAS is also enhancing, but not vice versa. The
additional requirement for corrective self-adaptation means that the system state G’ obtained
after adaptation is not only normal, but can also be generated by all normal rules in the given
mixed sequence (q; .. . q,) of normal and context rules, as if no context rule had been applied.
We will see that our SA-System CLS is corrective, considering only the Repair adaptation
for slightly damaged vehicles, but CLS together with the Wait-At-Queue adaptation would
only be enhancing, but not corrective.
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5.3 Analysis of Operational Properties

In this section, we analyze the operational properties introduced in [subsection 5.2 We define
direct, normal and rollback adaptation properties, which imply that the SAS is corrective /
enhancing under suitable conditions in [Theorem 1]

We want to ensure that for each context rule that adds an adaptation hook, there is a
suitable adaptation grammar containing one or more adaptation rules leading again to a state
without this adaptation hook, even if they are not applied immediately after its occurrence
but later when the context monitor reveals that the adaptation hook must be invoked.
This means that other normal and context rules may have been applied already, before the
occurrence of the adaptation hook is monitored. For this reason we require in [Theorem 1
that each pair (p,r) of context rules p and normal rules r is sequentially independent. By
the Local Church-Rosser theorem for algebraic graph transformation [19] (Theorem 5.12)
sequential independence of (p, ) allows one to switch the corresponding direct derivations in
order to prove [Theorem 1| For the case with nested application conditions including NACs
we refer to [21]. Moreover, the AGG tool can calculate all pairs of sequentially independent
rules with NACs in a static way.

Definition 5 (Self-Adaptation (SA) Properties).
Let Gy be a reachable state in the SA-system SAS. SAS has the

1. direct adaptation property, if the adaptation can be performed directly, i.e., VGy == G4
via p € Reonr 3 G1 =" Go via Radapt

2. normal adaptation property, if the necessary adaptation can be performed up to normal
transformations leading to a possibly different normal state that is reachable from the
state before the adaptation hook was set, i.e., VGy == G4 via p € Repny 3 G1 =1 G via
Rodapt s.t. 3 Go =" Gy via Ryorm,

3. rollback adaptation property, if the necessary adaptation can be performed up to normal
transformations leading to a possibly different normal state from which the state before
the adaptation hook was set is reachable, i.e., VGy = Gy via p € Reone 3 G1 = G via
Rodapt s.t. 3 Go =" G via Ryorm.-

Remark 4. Note that the normal and rollback adaptation property only differ in the di-
rection of Gy =* G5 and Gy =* G via R,,m,. For the normal and the rollback adaptation
properties, it is required that the adapted state G is related to the old state Gy by a normal
transformation. The direct adaptation property implies both the normal and the rollback
property using Gy = Gj.

Theorem 1 (Self-Adaptation Classes and their SA Properties).
An SA-System SAS is

L. corrective, if we have property 1 below
II. enhancing, if we have
a) property 2 or b) properties 8 and j below.
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1. SAS has the direct adaptation property

2. SAS has the normal adaptation property.

3. SAS has the rollback adaptation property,

4. each pair (r,q) € Rporm X Radapt i sequentially independent,

Proof.

I. Given Gy =" G via (q1,---qn) € (Ruorm U Reoe)® with G € Adapt(SAS) we have
n > 1, because Gy € Norm(SAS) since SAS is normal-state consistent. By sequential
independence we can switch the order of (q,...qy), s.t. first all normal rules r; € R,orm
and then all context rules p; € Re.n: are applied. As example let us consider Gy =1 G
via (r1,p1, 72, p2,r3) With 7, € Ryorm and p; € Reonr. Then sequential independence leads
by the Local Church-Rosser theorem to equivalent sequences in subdiagram (1), (2), (3)
respectively.

T3

T p1 T b2
Gz’m‘t =1> Gl - G2 k G3 G4 =G

}{+

adapt

By the direct adaptation property 1, we have Gy =* G and G =" G via R, ,. With
G' = Gy we have G =7 G' via Ry, , and Gy =* G’ via (11,79, 73) € Ry, where (r1,79,73)
is the subsequence (71, p1, 72, p2,73) which consists of only normal rules, and normal-state
consistency implies Gy, G' € Norm(SAS). Note that in the adaptation sequence G =1 G’
the (possible) adaptations due to the adaptation hooks caused by pi,ps € Reon: are per-
formed in opposite order. In general, the sequence (qi,...q,) (n > 1) contains at least one
rule in R, because otherwise G ¢ Adapt(SAS) (due to normal-state consistency), which
is a contradiction to the assumption G € Adapt(SAS). This implies that we have an adapta-
tion sequence G =7 G’ via Rygap. Since adaptation rules are confluent and terminating, all
possible adaptation transformations G =% G lead to the same result G = G’. Hence SAS is

corrective.

IT a) We can proceed as above up to the point that first all normal and then all context
rules are applied. As shown in our example, the normal adaptation property 2 leads first to
an adaptation transformation G =1 G5 via Rygep with G} =* G5 via Ryorm, then we can
switch rules in (4) according to sequential independence of context and normal rules. Finally
the normal adaptation property 2. leads to G5 =7 G via Rugep with Gi =* G via Ryorm.
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Altogether, we obtain for G’ = G4 an adaptation transformation G =1 G5 =1 Gg = G’
and a normal rule transformation Gy,;; =* G4 =* Gf =* G¢ = G’, which implies G’ €
Norm(SAS) by normal-state consistency. In general, G € Adapt(SAS) implies that we have
at least one context rule in the given sequence and hence an adaptation transformation
G =71 G’ of length n > 1. Since adaptation rules are confluent and terminating, all possible
adaptation transformations G =% G lead to the same result G = G’. Hence, SAS is enhanc-
ing.

IT b) Again, we proceed as above up to the point that first all normal and then all context
rules are applied. Due to property 3, we have the rollback adaptation property which leads in
our example to a normal transformation sequence G5 =* G via R, after an adaptation
transformation G =7 G5 via Ragqep and to a normal transformation sequence G5 =* G via
Ryorm after an adaptation transformation G =% G via Ragqep. Due to property 4, we can
switch rules in square (4), leading to G =% G¢ via Rugap and to Gg =* G4 via Ryorm.

szt=>G1=>G2éG3=>G4$G

NuZ N7, \

( no'f‘m

\ / \ adapt URadapt

norm 12

norm

Altogether, we obtain for G’ = G4 an adaptation transformation G =% G5 =1 G5 = G’
and normal rule transformations G, =* G5 <* G <* Gg = G'. Finally, since normal
rules preserve and reflect also adaptation states due to normal state consistency, we can
conclude that Gg = G’ € Norm(SAS): if G’ was an adaptation state, then also G% would
be an adaptation state since normal rules preserve adaptation states. Since adaptation rules
are confluent and terminating, all possible adaptation transformations G =% G lead to the
same result G = (. Hence, SAS is enhancing. a

Remark 5. Note that our sufficient conditions for are also necessary in case that
the context rules are sequentially independent. It is advisable to model the set of context
rules in this way because usually the need for adaptation may arise in any possible states
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from independent sources of disturbances issued by the environment. In our example, the
context rules are all independent, i.e. if they are applicable in a sequence, their order can be
swapped.

5.4 Verification of Operational Properties

In this section, we define static conditions for the self-adaptation properties defined in
(tion 5.3l By [T'heorem 1| these static conditions are also sufficient conditions for the nature of
our self-adaptive system. We then make use of these static conditions to verify the properties
of the different adaptations of our Car Logistics Systems case study.

In we give static conditions for the direct, normal and rollback adaptation
properties. In part 1 of we require that for each context rule p the inverse rule p=*
is SAS-equivalent to the concurrent rule ¢* constructed from an adaptation rule sequence

(qh QN 7Qn) € Radapt-
Let us explain shortly the notions SAS -equivalent rules, inverse rule and concurrent rule

before stating [Theorem 2|

SAS-equivalent rules model the same possible system changes:

Definition 6 (SAS-equivalent rules). Let SAS be an SA-system and 11,72 € Rgys be
two system rules of SAS. Rules r1 and ry are called SAS-equivalent (written r1 ~ ry) if
(3G == @) <= (3G =% G') with G € Reach(SAS).

Remark 6 (Sufficient conditions for SAS-equivalent rules). An obvious sufficient condition
for checking SAS-equivalence of two rules is that the rules are isomorphic (two rules are
isomorphic if they are componentwise isomorphic). Sometimes, this condition is too strong
(as for our example as we will see later). A weaker sufficient condition is that the two rules
are “isomorphic up to fixed objects”, i.e. one rule may contain more elements than the other
rule under the condition that these additional elements are 1) preserved by the rule and
2) available in all states reachable by rules of the corresponding grammar. Moreover, 3) all
NACs that are not isomorphic for both rules have to hold in all reachable states. Obviously, in
this case the rules are applicable at the same matches and result in the same transformation.
Note that conditions 1) to 3) can be checked statically by inspecting the initial state and the
rules: for condition 2), we need to ensure that the required additional elements are present
in the initial state, and are not removed by any system rule; analogously, for condition 3),
we check that the elements forbidden by non-isomorphic NACs are not present in the initial
state and are not added by any system rule.

For p = (L + I — R) with negative application condition nac : L — N it is possible
(see [19] Remark 7.21) to construct the inverse rule p~! = (R < I — L) with equivalent

-1
nac : R — N’, such that G =% G’ implies G’ £= G and vice versa.

A concurrent rule summarizes a given rule sequence in one equivalent rule [T9)33]. In a
nutshell, a concurrent rule p *g ¢ is constructed from two rules p = (L, < K, — R,) and
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q = (L, + K, — R,) that may be sequentially dependent via an overlapping graph E by
the following diagram, where (5) is pullback and all remaining squares are pushouts:

Lp<_Kp_>Rp Lq<_Kq_>Rq

l(n l @f\z j/ w>l () l
L—C, E C,—R
\\\\\\@/////7
K

The concurrent adaptation rule (py * ... * p,)gp with E = (Ey,..., E,_1) for a longer
sequence is constructed in an iterated way by (p1 * ... * pu)p = P1 *g, D2 *B, - - - *E,_, Pn-
For the construction and corresponding properties of inverse and concurrent rules, which are

needed in the proof of we refer to [19].

In{Theorem 2| we require as weaker conditions that each context rule p has a corresponding
adaptation sequence (g * ... * g,) € Radapt, Which is not necessarily inverse to p. Note that
we require that ¢ is applicable after p has been applied, which is not a real static condition,
but it can be argued from the context whether it is fulfilled. It is possible to define static
conditions for applicability, but this is out of the scope of this paper. In part 2 of [Theorem 2]it
is sufficient to require for the normal adaptation property that we can construct a concurrent

rule p xg, (q1,.-.,q,) g which is SAS-equivalent to a concurrent rule r constructed from a

normal rule sequence (r1,...,7,) € Ruorm. Analogously, for the rollback adaptation property

we require that p g, (¢1,...,¢,)E is SAS-equivalent to an inverse concurrent normal rule
-1

rT.

Theorem 2 (Verification of Self-Adaptation Properties).
Let SAS be an SA-system and G a reachable system state. SAS has

1. the direct adaptation property, if for each context rule p there is an adaptation rule
sequence that directly reverses the effect of the context rule i.e.,

Vp € Reote 3¢ = (n % ... % qu)p via E = (Ey,...,E,_1) and n > 1,¢; € Radapr with
q~p'.

2. the normal (resp. rollback) adaptation property, if for each context rule p there is an
adaptation rule sequence that reverses the effect of the context rule up to mnormal rule
applications, i.e.,:

Vp € Reont we have

(a) 3g= (q1*...%qy)p via E=(Ey,...,E,1) andn > 1,q¢; € Rugapt, and q is applicable
after p has been applied,

(b) ¥ overlappings Ey of p and q leading to a concurrent rule pxg,q 3Ir = (ry % ... %7y g
with m > 1 via E' = (E},...,El ) with r; € Ryorm such that p xg, g ~ r (resp.

) m—1
p*p, ¢ =17t in case of rollback).
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Proof.

1. Given context rule p = (L ALY "GN R) with NACs nac; r, : L — N; (i € I), the inverse
rule is given by p~! = (R +— K N L) with corresponding NACs nac; g : R — N;g.
Now, given p € Reont and Go € Reach(SAS) with Gy £ G,, we have by assumption
(1, -+ Gn) € Ripgepy With (q1 % ... % ¢,)p ~ p~', and by construction of p~" also G4 L2 Go

qi¥..kgn

and hence also G ( — e Gy by SAS-equivalence, which implies by Concurrency Theorem
G1 :*> Go via Radapt .

2. Given Gy € Reach(SAS) and Gy L5 G, with p € Reont, by (a) 3¢ = (q1 * . .. * q,) g With
n > 1 and ¢; € Raqep: and g is applicable after p has been applied. Since G £ G4 we also
have Gy == G5 for some G5 and hence Gy == G; == G5. According to Fact 5.29 in [19], 3
overlapping Eq of p and ¢ such that Gy == G; == G, are Ey-related and hence Gy ey G,
by Concurrency Theorem [19/33].

By (b), we have Jr = (r; * ... % 1,)p with m > 1 and r; € R,orm such that pxg, g >~ 7
in case of normal adaptation property (resp. p *xg, ¢ =~ r~! in case of rollback adaptation
property).

Hence, in case of normal adaptation property, Gg T G, implies Gy = G,. Now,
Gy = G, and G == G, via concurrent rules 7 and ¢ imply by Concurrency Theorem
sequences G = Go via R,0rm and Gy = G2 via Rggap leading to the normal adaptation
property.

Similarly, in case of rollback adaptation property, we have that Gy ! G5 implies
Gy 2= G, such that Gy = G,

Now, Gy = Gy and G; == G, via concurrent rules r and ¢ with n,m > 1 imply by
Concurrency Theorem sequences Gs = Gy via R,orm and Gy =+ Go via Rygep leading to
the rollback adaptation property. O

In the following examples [J to we verify the self-adaptation properties for differ-
ent variants of our Car Logistics System case study CLS considering different adapta-
tions. In we give a counterexample, where the self-adaptation properties do not
hold. In all four examples we have the same normal rules R,,., = {ServiceToDo, EnterBP,
DoService, DoSubService, NextBA, FinishBP} to and a subset of the context rules

Reont = {SlightlyDamage, SeverelyDamage, Queue} (Figure 14 and[15]) of CLS. Hence, we have

sequential independence of context rules and normal rules, and, since C'LS' is normal-state
consistent, also C'LSgepqir, C'LSRotiback AndRepairs C LSQueue; and C'LSpjspose are normal-state
consistent.

Example 9 (SA-System CLSpgepair is corrective).
In C'LSRepair, We analyze the Repair-adaptation of C'LS. This means, we have one context

rule Reon = {SlightlyDamage} (Figure 14)), and the following set of adaptation rules:
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Radapt = R gqp = {TakePullToTreatmentService, TakeRepairService, RepairVehicle}
to . Moreover, Cygape = {Damage} is the set of adaptation constraints.

According to [Theorem 1], we have to show that CLSgepqir has the direct adaptation
property (property 1). According to , C LS Repair has the direct adaptation property
if for p = SlightlyDamage we have (q1,...,¢n) € Radapt With ¢ = (q1 % ... % qn)p ~ p~ ', where

q is the concurrent rule of the adaptation rule sequence (g, ..., ).

This means, we have to find an adaptation rule sequence that results in a concurrent rule
q which is SAS-equivalent to the inverse context rule p = SlightlyDamage (i.e., it removes
the SlightlyDamaged ﬂag).

We consider the adaptation rule sequence s = {TakePullToTreatmentService, TakeRepairService,
RepairVehicle} together with suitable dependencies (overlapping) of the right-hand side of
¢; and the left-hand side of ¢;;1, and construct a concurrent rule from this sequence in
an iterated way. In AGG, the construction of concurrent rules from rule sequences can be
computed automatically. For our sequence, we get the concurrent adaptation rule shown in

ConcurrentRule(RA) of RepairAdaptation

q
— oV [orn — —
SlightlyDamaged
1?‘-”%9‘ ! G&hicle

»
2:AdSenice [4:AdSenice [2:AdSenice ) $:AdSenice)
n="PullToTreatment'| [n="Repair" (n="PullToTreatment'| |n="Repair" |

Fig. 30. Concurrent Adaptation Rule ¢ constructed from sequence s in C'LSgepqir

The concurrent adaptation rule ¢ is SAS-equivalent to the inverse context rule p =
SlightlyDamage due to the following argumentation: The additional elements in rule g wrt.
rule p (the PullToTreatment and Repair nodes) are preserved by rule ¢, and are always there in
all possible states, since no system rule ever adds or deletes PullToTreatment and Repair nodes.

Hence, C'LSRepair has the direct adaptation property, and due to [Theorem 1] we can
conclude that C'LSgepqir is corrective.

Example 10 (SA-System CLSgueue is enhancing).
In C'LSgueue, we consider the Wait-At-Queuve-adaptation. This means, we have one con-

text rule Repny = {Queue} , and the following set of adaptation rules: R4 =
{Enqueue, DoService, RemoveWait} (Figure 24] to [26)). Moreover, Coaupr = { Wait} is the set
of adaptation constraints.

According to [Theorem 1], we show that C'LSgueqe has the normal adaptation property

(property 2). According to [Theorem 2 C'LSgueue has the normal adaptation property if for
p = Queue we have
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(a) dJg=(q1*...%q,)p via E = (Ey,...,E,_1) and n > 1,¢; € Rugap and ¢ is applicable
after p has been applied,

(b) ¥ overlappings Ey of p and ¢ leading to a concurrent rule pxg, ¢ Ir = (r1 % ...%r,,)p via
E' = (Ey,...,E ) with r; € R such that p*p g >~ r.

» m—1

For the context rule p = Queue, we have a sequence of adaptation rules s = {Enqueue,
DoService, RemoveWait} that results in the concurrent rule ¢ shown in . Since the
right-hand side of p equals the left-hand side of ¢, we can conclude that ¢ is applicable after
p has been applied as required in (a).

ConcurrentWaitAtQueue(QA) of QueueAdaptation

Yﬁehlcle 3.\4":?19
N

0u /0y

=V

ﬁemcle

Queue
Queue| .,

5:BusinessActivity

5:BusinessActivity

Fig. 31. Concurrent Adaptation Rule ¢ constructed from sequence s in C'LSgueye

We then construct according to (b) the concurrent rule Queue % ¢ which equals rule
q in but does not contain the context nodes wait and Queve and their adjacent
edges. Obviously, this rule Queue g ¢ is isomorphic to a concurrent rule r constructed by the
sequence of normal rules (DoService * g DoService), which removes two todo edges from two
different vehicles to the same service in one step. Hence, Queuexgq and r are SAS-equivalent.

Thus, CLSqueue has the normal adaptation property, and due to [Theorem 1] we can
conclude that C'LSgyeye 1s enhancing.

Example 11 (CLSRoubackAndRepair 1S €nhancing).

In C'LSRoubackAndRepair, We consider the Rollback-And-Repair-adaptation. This means, we
have the same context rule as in C'LSgepqir, indicating that a vehicle becomes damaged. We
also have the same set of adaptation rules together with one additional adaptation rule Roll-
back which realizes the rollback actions of a composite service being currently
performed on the damaged vehicle. In this case, all todo edges to service nodes belonging
to the composite service are added again, and after the rollback-and-repair adaptation the
repaired car has to start the composite service again from its beginning.

Reont = {SlightlyDamage}, and we have the following set of adaptation rules: Rygepr =
{Rollback} U R2,, .. Moreover, Cyuu = {Damage} is the set of adaptation constraints.

apt*
According to[Theorem 1} we show that 3) C'LSgouback Andrepair has the rollback adaptation
property, and that 4) each pair (7,q) € Ruorm X Radapt 1 sequentially independent.
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ad. 3) According to [Theorem 2, C'LSgouback Andrepair has the rollback adaptation property if
for p = SlightlyDamage we have

(a) dJg=(q1*...%q)p via E = (Ey,...,E,_1) and n > 1,¢; € Ragp and ¢ is applicable
after p has been applied,
(b) ¥ overlappings Ej of p and ¢ leading to a concurrent rule pxg, g Ir = (11 *...%r,,)p via

E' = (E},...,E' ) with r; € Rpopm such that p*gq~r—'

For the context rule SlightlyDamage, that occurs when the damaged car is half-way
through a composite service, we have e.g., the sequence of adaptation rules s = {Roll-
back, Rollback, TakePullToTreatmentService, TakeRepairService, RepairVehicle} (see
to that results in the concurrent rule ¢ shown in . Note that if the composite
service contains more than two subservices that have to be rolled back, then we need more
Rollback rule instances in the beginning of our sequence s. Since the RHS of p is a subgraph
of the LHS of g where ¢ also requires that the damaged vehicle is in the midst of a composite
service, we can conclude that in this situation ¢ is applicable after p as required in (a).

ConcurrentRollbackRepair of RollbackRepairAdaptation

[B:AdService]

(7:AdSenice [a:adsenvice) [7:AdSenice
(n="Repai"

[n="PullToTreatment|  [n="Repair" | (n="PullToTreatment'

-~

Fig. 32. Concurrent rule ¢ for adaptation rule sequence s with rollback adaptation of two
subservices and subsequent repair adaptation in CLSRoipackAndRepair

For our case of two rollback steps, we get the concurrent rule SlightlyDamage *g ¢ which
equals rule ¢ in but does not contain the context node SlightlyDamage and its adjacent
edge. Let us compare this rule SlightlyDamage *z ¢ with the inverse rule r—! where r is the
concurrent rule shown in that is constructed from the sequence of two normal
rules (DoSubService *p DoSubService). Hence, 7! adds the two todo edges from the vehicle
to two subservices in one step. Note that for n subservices, we need n rollback steps in the
adaptation process and n applications of rule DoSubService in the concurrent rule 7.

We see that rules SlightlyDamage xz ¢ and the inverse normal rule r—! are SAS-equivalent
due to the following: both rules add two todo edges from the vehicle to two different sub-
services, but rule SlightlyDamage g ¢ additionally requires that there is at least one more
subservice to do by the vehicle (i.e., a todo edge exists from the vehicle to a third subservice
later in the composite service). Since this is exactly the situation to be expected for the adap-
tation Rollback-and-Repair and not changed by the rules, we get that SlightlyDamage *g ¢
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DoSubService+DoSubService of CarlLogisticsScenario.

2:BusinessActivity

Fig. 33. Concurrent rule r for the normal rule sequence (DoSubService %z DoSubService) in
CLSRollbackAndRepair

and the inverse normal rule r—! are SAS-equivalent.
Hence, C'LSRroupack Andrepair has the rollback adaptation property.

ad. 4) The dependency matrix in [Figure 34| computed by AGG shows that each pair (r,q) €
Ryorm X Radapt 18 sequentially independent.

@]’J Minimal Dependencies = o' @ M
Show
first\ second 1 RollBack(... 2 TakePulIT... 3 TakeRepai...4 RepairVeh...
1 ServicePlan.ServiceToDo 0 0 ] 0
2 EnterBP 0 0 0 0
3 DoService 0 0 0 0
4 DoSubService 0 0 0 0
5 NextBA 0 0 0 ‘ 0
6 FinishBP 0 0 0 0

Fig. 34. Dependency matrix of normal rules (rows) and adaptation rules (columns) in C'LS3

With [Theorem 1| we can conclude that C'LSgoupack AndRepair 15 €nhancing.

Example 12 (CLSpispose does not satisfy the sufficient conditions for SA properties).

In CLSDpispose; We present a counter-example where our sufficient conditions showing
that the SAS is enhancing are not satisfied. We consider the Dispose-Vehicle-adaptation,
where a vehicle is severely damaged and has to be disposed. This means, we have one
context rule (R = {SeverelyDamage}, see. We have the dispose adaptation rules
deapt = {TakePullToTreatmentService, TakeRepairService, TakeDisposingService, RemoveTodo,
RemoveDamageFlag, DisposeVehicle} (Figure 17]to[23). Moreover, Cygape = { Damage} is again
the set of adaptation constraints.

According to , for C'LSpispose to be enhancing, we should show that either 2)

CLSpispose has the normal adaptation property, or 3) C'LSp;sp0se has the rollback adaptation
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property, and 4) each pair (r,q) € Ruorm X Radapt 1S sequentially independent.

The dependency table in reveals that we do not have sequential independence

for each pair (7, q) € Rporm X Radapt, and hence condition 4) in for C'LSpispose to
be enhancing is violated.

@'f) Minimal Dependencies ;i i s DK = E
Show

first| second 1 TakePul... 2 TakeRe... 3 TakeDis...4 Remove... 5 Remove... 6 Disp

1 ServicePlan.ServiceToDo 0 0 0 1 0 0

2 EnterBP 0 0 (1] 0 0 0

3 DoService [} 0 0 0 0 0

4 DoSubService ] 0 0 0 0 0

5 NextBA 1] 0 0 0 0 0
FinishBP [1] 0 0 0 0 0

Fig. 35. Dependency matrix of normal rules (rows) and adaptation rules (columns) in

CL SDispose

The reason for the dependency is that the adaptation rule RemoveToDo removes a todo
edge that is inserted by normal rule ServiceToDo, as shown in the AGG detail view for the

dependency in

§07) rule1

ServiceToDo

6v
@ 1:BusinessActivity 1:BusinessActivity
QO D Rule2 i

RemoveTodo(DA)

Fig. 36. Dependency of rule ServiceToDo and rule RemoveTodo in C'LSp;spose

Alternatively, if we could show property 2), i.e., that C'LSp;spose has the normal adap-
tation property, C'LSpjspose Would be proved enhancing anyway. According to
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CLSpispose has the normal adaptation property if for p = SeverelyDamage (Figure 14)) we
have

(a) 3¢ = (g1 *... % qy)p via E = (Ey,...,E,—1) and n > 1,¢; € Ragapt, and ¢ is applicable
after p has been applied,
(b) ¥ overlappings Ey of p and ¢ leading to a concurrent rule p*g, ¢ Ir = (r1 % ...%r,,) g via

E' = (Ei,...,E/ ) with r; € Ryomm such that pxg g ~r.

For the context rule p = SeverelyDamage, we take the sequence of adaptation rules s, =
(TakePullToTreatmentService, TakeRepairService, TakeDisposingService, RemoveTodo, Remove-
DamageFlag, DisposeVehicle) that results in the concurrent rule ¢ shown in [Figure 37

Since the right-hand side of p is included in the left-hand side of ¢, and the additional
context (the vehicle is connected to an activity and has at least one more service to do) can
be assumed to be present in the situation we want to apply this adaptation, we can conclude
that ¢ is applicable after p has been applied, as required in (a).

ConcurrentDispose(DA) of DisposingAdaptation

b -

) - 4:AdService
- 7:Senice
n="Repalr

2:AdService [6:Adsenice ] 2:AdService | (6:adsenice |
n=" "| |n="Disposing’| n="PullToTreatment'| |n="Disposing"

Fig. 37. Concurrent Adaptation Rule ¢ for Dispose-adaptation constructed from sequence
S4 in CLSDispose

We then construct according to (b) the concurrent rule SeverelyDamage *z g which equals
rule ¢ in but does not contain the context node SeverelyDamage and its adjacent
edge. Obviously, this rule SeverelyDamage xg ¢ is not SAS-equivalent to any concurrent rules
constructed by the sequence of normal rules since we have no normal rules that delete an
edge from a Vehicle node to an Activity node.

Hence, C'LSpispose cannot be shown to be enhancing (in fact, due to our argumentation,
we can be sure that it is not enhancing since we definitely do not find a normal rule sequence
that generates the situation after the adaptation). By , we can conclude that

C'LSpispose 1s also not corrective.

6 Automating the approach

AGG [46l43] is a well-established tool environment for algebraic graph transformation sys-
tems. Applications of AGG include graph and rule-based modeling of software, validation
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of system properties by assigning an operational semantics to some system models, graph
transformation-based evolution of software, and the definition of visual languages by graph
grammars.

Graphs in AGG are defined by a type graph with node type inheritance and may be at-
tributed by any kinds of Java objects. Graph transformations can be equipped with arbitrary
computations on these Java objects described by Java expressions. The AGG environment
consists of a graphical user interface comprising several visual editors, an interpreter, and a
set of validation tools. The interpreter allows the stepwise transformation of graphs as well
as rule applications as long as possible. The selection of the next applicable rule, as well as
the selection of one possible match is implemented as being non-deterministic to adhere to
the theory of graph transformation [19]. AGG supports several kinds of validations which
comprise graph parsing, consistency checking of graphs, applicability checking of rule se-
quences, and conflict and dependency detection by critical pair analysis [26] of graph rules.
Furthermore, checking the applicability of rule sequences, and constructing concurrent rules
from rule sequences based on object flow is supported, as well. Object flow between rules
has been defined in [30] as partial rule dependencies relating nodes of the RHS of one rule
to (type-compatible) nodes of the LHS of a (not necessarily direct) subsequent rule in a
given rule sequence. Object flow thus enhances the expressiveness of graph transformation
systems and reduces the match finding effort. In AGG, object flow can be defined between
subsequent rules in a rule sequence, and the rule sequence can be applied to a given graph
respecting the object flow [43].

As shown in the previous sections, our framework for modeling and analyzing SA-systems
is supported by the AGG tool to model both the initial configuration of the system and also
the possible configurations that the system can reach in case of adaptations. A simulation
of adaptations is performed by applying adaptation rules within AGG so that practitioners
can easily and profitably get confidence on the system and on its evolutions.

From the modeling point of view, referring to the example, within AGG the engineer can
perform the system design in an easy and direct way: as can be seen, the business process
and services shown in can be directly mapped to elements of the initial state graph
shown in [Figure 4 Moreover, as can be seen in [section 4] even graph constraints can be
graphically represented. The behavior and the evolution of the system is also graphically
represented within AGG in an intuitive way.

From the analysis point of view, dependencies between rules and conflicts between rules in
a minimal context (critical pairs) can be computed fully automatically. The results support
our argumentation showing that the sufficient conditions for our two theorems are satisfied in
our examples. Moreover, the construction of concurrent rules from rule sequences is also fully
automatic. It is only required that the modeler defines a suitable object flow between the
rules of the sequence to define the overlapping graphs of rules and to get a unique resulting
concurrent rule.

In the following, we discuss some aspects to assess the applicability of the proposed
analysis techniques.
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— Practical relevance of assumptions: For the Car Logistics case study, we found the
assumptions for SA-systems very helpful for structuring the model (in particular by
distinguishing different sets of rules for normal behavior, context changes and different
adaptations). The sufficient conditions we had to check for applying our results did not
prove to be too strong. Instead, whenever we found that our model did not satisfy one
of the sufficient conditions, the changes we implemented in the model did not only result
in the satisfaction of the conditions but also in a more systematic and concise model.

— Achieved degree of automation: All our analysis techniques are static, i.e., they check
rule properties only. Yet, some of the techniques require manual effort, i.e., reasoning
about rule properties that are not supported by AGG in a fully automatic way. For
instance, although AGG implements checking sufficient conditions for termination of rule
sets, for our example these sufficient conditions turned out to be too strong. So we had
to argue about termination by inspecting the rules “manually”.

Similarly, since up to now there is no automatic check for SAS-equivalence of rules
implemented, we had to perform these checks by hand by inspecting the rules ourselves.
Critical-pair analysis is a powerful instrument assisting with checking confluence of rule
sets. A sufficient condition for the confluence of a system is (termination and) the absence
of critical pairs. But if critical pairs are found, indicating potential conflicts, manual effort
is needed to show whether these critical pairs could really lead to conflicts in a specific
system or not. Usually, these hints are very helpful for the modeler and show where
problems lie and the model should be adapted.

Currently, the adaptation manager selects an adaptation grammar manually that is the
most suitable for the present adaptation hooks. In the future, this decision making pro-
cess could be supported by defining e.g., priorities for adaptation grammars depending
on the severity of the disturbance (“treat worst case first”). This is currently not sup-
ported by AGG. Finding suitable adaptation sequences using an adaptation grammar
is realized in a semi-automatic way by simulation: by applying the adaptation rules
non-deterministically, the adaptation is performed automatically, and by keeping track
manually of the used rules and their matches, the rule sequence and its object flow is
determined. The object flow of the used rule sequence is then the input to AGG’s au-
tomatic construction of a concurrent adaptation rule. It would be desirable if for larger
grammars, AGG could automatically record the rule application order and their matches
when applying rules from the grammar. The recorded sequence and its object flow de-
rived from the match overlappings could then be used to construct a concurrent rule fully
automatically from a simulation run.

Modeling the case study presented in our paper, we found modeling errors with the help
of AGG which resulted in several improvement iterations on our model.
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— Time and memory consumption: shows the time consumption for the fully
automatic computation of dependency and conflict tables in our examplem, depending on
the number of rules in the corresponding grammar and the number of objects (nodes and
edges) in the rules. We see that time and memory use increase exponentially for large
rules. It is hence advisable to use more but smaller rules instead of describing the system
by less larger rules.

Matrix Rules Nb. Rules  Nb. Objs Time {ms) Memory (k)
Dependency (n,n) 6x6 5-9 5179 73453
Dependency (c,n) 3x6 1-9 390 315
Dependency (n,r) 6x3 5-6 795 8388
Dependency (n,d) 6Xx6 5-8 1576 19161
Conflicts (n, n) 6x6 5-9 4010 53737
Conflicts (r, r) 3x3 4-6 539 9327
Conflicts (d,d) 6x6 4-8 2343 33914
Conflicts (q.0a) 3x3 10-15 114768 44956

Fig. 38. Dependency and conflict analysis (n: normal, ¢: context, r: repair, d: dispose and
q: queue rules)

shows the time consumption for the fully automatic computation of concurrent
rules from rule sequences that were used in our example. For all concurrent rules, the
time is below one second.

Concurrent Rule Sequencesize Time (ms) Memory (k)
RepairAdaptation 3 127 1099
DisposeAdaptation 6 937 5050
QueueAdaptation 3 983 1589

Fig. 39. Concurrent rules constructed from sequences

— Scalability: Obviously, time and memory consumption grows when the modeled system
becomes larger. However, when the system becomes more complex w.r.t. the number of
rules and the size of the system graphs, we find that the size of rules (modeling only local
effects) remains nearly stable. It is in the hands of the modeler (adaptation manager) to
formulate a rule set that can remain small enough to be analyzed properly. The size of
the system graphs does not influence the performance of our static analyses. Up to now,
AGG can analyze rules with up to 20-30 elements in reasonable time.

— Addition of rules at run-time: Since our framework for modeling SA-systems is mod-
ular, i.e., based on different rule sets, it is feasible and practical to add new rule sets

7 measured on a standard notebook with Intel dual-core processor and 2 GB of memory
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(adaptation grammars) to the system at runtime. To add a new adaptation hook to the
system, the type graph must be updated by adding the new adaptation hook type. Ide-
ally, this type is a subtype of a more general adaptation hook type (e.g. by adding a new
AdaptV subtype Special, denoting that a car must undergo one more special service). In
this case, the existing rules need not to be updated at all, only a new context rule and
a new adaptation grammar specific to the new adaptation hook have to be added to the
system. The adaptation manager realizes the selection of available adaptation grammars
and this may include new grammars when needed.

7 Related Work

In this section, we compare our work with related approaches to adaptive system modeling
and analysis. The comparison focuses on the aspects context-awareness, self-adaptiveness,
formalization and tool support which we see as main aspects of self-adaptive system modeling.

Considering our own previous work, in [13] we proposed for the first time an approach
to model self-repairing system architectures as typed (hyper) graph grammars and veri-
fied them w.r.t. dependencies and conflicts of rules modeling the environment, the normal
system and repair actions. This approach was extended in [I2] to model self-healing (SH)
systems using algebraic graph transformation. SH systems are characterized by an automatic
discovery of system failures, and by techniques to recover from these situations. In [12], pre-
liminary sufficient conditions were formulated allowing for a static analysis of self-healing
system properties. In our current paper we build on these preliminary results and extend
the approach to the class of adaptive systems that is identified in [section 2]

In comparison to our current paper, the static conditions in [12] were much more re-
strictive (requiring, e.g., a repair rule inverse to the context rule to ensure the so-called
direct-healing property) Our current approach generalizes the approach in [12] with respect
to the following aspects: concerning self-healing systems, we now allow for more general
static conditions to ensure corrective behavior; for the direct adaptation property, we require
the existence of a sequence of adaptation rules that reverses the effect of the context rule
(up to normal rules) instead of a single inverse rule as in [12]. Furthermore, we do not re-
strict to self-healing systems anymore, but we now also consider systems that fall in the
category of enhancing adaptive systems, i.e., systems that enhance existing services of the
application, and whose adaptation states can be adapted to become normal again, but up to
new functionalities or services. For ensuring that a system is indeed enhancing, we now check
statically the normal (resp. rollback) adaptation property, requiring that there are adaptation
rule sequences leading back to normal states (instead of looking only for inverse adaptation
rules as in [12]).

The work in [I1] presents a conceptual framework for adaptation. Through an interesting
discussion on whether a system is adaptive or not, authors define adaptation as the run-
time modification of the control data; control and data are two conceptual ingredients that
compatibly with available resources determine the behavior of a component. It is important
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to note that the work focuses on the adaptivity of simple components without considering
adaptation that may emerge from the interactions among various components. Our approach
is compatible with this conceptual framework, in the sense that the control data can be
identified by the dividing of the set of rules in rules that correspond to ordinary computations
and in rules that implement adaptation mechanisms.

Looking at different approaches to model self-adaptive systems, we find that although
different software engineering techniques have been studied to deal with constantly changing
landscapes, these techniques are mainly confined to specific research areas: software archi-
tectures [7J1324], middleware [35l41], component-based development [37], service-oriented
systems [15], etc.

Designing the adaptation of systems on the architecture level [38] offers several potential
benefits, such as the appropriate abstraction level to describe dynamic changes in a system,
the potential for scalability to large-scale complex applications, and the generality that allows
one to design solutions for a wide range of application domains [32].

There is a wealth of Architecture Description Languages (ADLs) and architectural no-
tations which provide support for dynamic software architectures analysis [9]. Some ADLs
support the dynamic reconfiguration of the system Software Architecture (SA) taking ad-
vantage of Aspect-Oriented Software Development (AOSD) techniques [22].

Bencomo and Blair in [7] propose an approach called Genie that offers management of
structural variability of adaptive systems. Genie can be considered as an ADL with generative
capabilities to reconfigure from one system structure to another according to changes in the
environment and to decide what kind of structural reconfiguration has to be performed.
Genie uses domain specific languages for the construction of system models associated with
both the structural (architectural) and the environmental variability. Using models and a
middleware platform, each system can be dynamically reconfigured from one structure to
another according to changes in the context (or environment) and is able to decide what
kind of structural reconfiguration has to be performed. The main limit of this approach is
the absence of a way to guarantee desired properties of the systems after each adaptation
execution; in fact the language is not supported by any formal framework. From the modeling
point of view the approach proposed in [7] is specifically architectural; we propose a general
approach that can be used at different level of abstractions. For instance, our case study
presents the business process of a service-oriented scenario.

Garlan et al. [24] introduce an SA-based self-adaptation framework, called Rainbow,
which uses external mechanisms and an SA model to monitor a managed system, detect
problems, determine a course of action, and carry out the adaptation actions. Rainbow, by
making use of architectural styles, provides general and reusable infrastructures with explicit
customization points. The definition of these customization points limits the dynamicity of
the approach; in particular, the context is not considered as a part of the system model
that can evolve during the system life-cycle. In our approach we do not rely on pre-defined
customization points to manage the adaptation. Contrariwise, we monitor properties of the
context to understand where and how adapt the system. As mentioned in [25], in order to
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support services whose adaptive behavior can evolve over time, there is a need for higher
level adaptation policies that are architecture independent.

Some years ago, Le Métayer [36] described software architectures in terms of graphs;
an architecture style is seen as a set of architectures exhibiting a common shape. The dy-
namic adaptation of an architecture is defined by a coordinator who applies conditional
graph rewriting rules. These rules are statically checked to ensure that the coordinator does
not break the constraints of a given architecture style. Hirsch et al. [27] presented a similar
approach for the specification of software architecture styles using hyperedge replacement
systems. To model adaptation authors use graph rewriting combined with constraint solv-
ing; this allows to specify how components evolve and communicate. These papers posed
important bases for formal modeling and verifying self-adaptive systems but, with respect
to our approach, the limits are: (i) the way they check the system correctness, and (ii) the
tool support. Regarding system correctness, they need to inspect all the reachable system
states for each property that needs to be verified. Contrariwise, in our approach we define
a set of operational properties (corrective, enhancing, direct (normal) adaptation, etc.) that
we check in a static way by inspecting only the related rules without producing all reachable
states explicitly. Regarding tool support, [36l27] provide a formal framework without exist-
ing tool support, whereas our formal framework is supported by AGG that is used to model
and analyze self-adaptive systems.

Baresi et al. [4] present an approach to check whether an architecture is a refinement
of another one. This is obtained by defining refinement relationships between abstract and
concrete styles. The defined refinement criteria guarantee both semantic correctness and
platform consistency. Refinement involves the reachability analysis for a target configuration
from a given initial configuration. Reachability analysis is performed by using model checking
and simulation. Model checking requires to a priori restrict the systems to finite state systems:
this implies to fix an upper bound for the number of dynamic model elements that can be
created by the transformation rules. Static analysis techniques, as applied in our paper, do
not have this limitation. Moreover, we focus on modeling and verifying self-adaptive systems.
We identified the class of self-adaptive systems we are able to deal with, and we provide
a framework to verify consistency and operational properties of the self-adaptive systems
concerning conflicts and dependencies of both normal system behavior, and corrective and
enhancing adaptation.

Becker and Giese [6] present a graph transformation based approach to model correct
self-adaptive systems on a high level of abstraction. The approach considers different levels of
abstractions according to the reference architecture presented in [32]. The correctness of the
modeled self-adaptive systems is checked by using simulation and invariant checking tech-
niques. Invariant checking is mainly used to verify that a given set of graph transformations
will never reach a forbidden state. However, the verification is efficient and the complexity
is linear in the number of rules and properties to be checked [5]. The limitation of this ap-
proach is that they propose a unique model for both application and adaptation logics. This
means that any time they need to add a new adaptation case, they need to refine the overall
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model. In our approach the adaptation logic is developed separately from the application
logic in terms of adaptation rules. In this way the adaptation logic is independent from the
application, and then it can be modified without requiring changements on the application.

In the community of Service Oriented Computing, various approaches supporting self-
healing have been defined, e.g., triggering repairing strategies as a consequence of a require-
ment violation [45], and optimizing QoS of service-based applications [14J49], or for satis-
fying some application constraints [47]. Repairing strategies could be specified by means
of policies to manage the dynamism of the execution environment [3/I8] or of the context
of mobile service-based applications [42]. The goal of the strategies usually proposed by
the aforementioned approaches range from service selection to rebinding and application
reconfiguration [39]. All the previously mentioned techniques have interesting features, but
even those that enable the definition of various adaptation strategies lack a coherent design
approach to support designers in this complex task.

Summarizing, the approach that we propose in this paper abstracts from particular lan-
guages and notations. Moreover, our approach can be applied at different levels of granularity
and it is not confined within the software architecture or service oriented computing domains.
Instead, in this paper we provide a holistic and coherent design approach that allows software
engineers to model and analyze self-adaptive systems within the same framework. Once a
suitable level of abstraction being identified, the system can be modeled together with adap-
tation strategies and mechanisms. The system specification is then used to formally verify
operational properties.

8 Conclusion and Future Work

In this paper, we have modeled and analyzed self-adaptive systems using algebraic graph
transformation and graph constraints. We have defined consistency properties that include
system consistency, normal state consistency, and adaptation state consistency. Moreover we
defined operational properties that include self-adaptation, corrective self-adaptation and en-
hancing self-adaptation; we also defined direct, normal, and rollback adaptation properties
concerning the behavior of adaptations w.r.t. their influence on the normal system behavior.
Our analysis finds out in which class of self-adaptive systems a given system belongs (en-
hancing, corrective), and which properties we have with respect to the kind of adaptation
(direct, normal, rollback). The classification helps to reason about system behavior, where
e.g., systems with the rollback adaptation property may be more in danger of repeated fail-
ures than systems with normal adaptation property, since states that preceded failures are
reached again after the adaptation. Note that the operational properties concern all reach-
able system states, whereas they are checked in our approach in a static way by inspecting
only the rules without producing all reachable states explicitly.

The main results concerning operational properties are summarized in [Figure 40 where
most of the static conditions in [['heorem 1| and [['heorem 2| can be automatically checked by
the AGG tool. We needed manual effort to show the termination of properties and SAS-
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equivalence of rules, but it was always possible to perform the analysis statically. Although
static conditions lead to over-approximating systems, we found that the conditions we had to
check were reasonable to be expected to hold in SA-systems and did not restrict our intuitive
notion of SA-system properties.

| Static Conditions for SAS |

Thm. % ﬂThm. 2 Nm. 2

SAS has direct SAS has normal SAS has rollback
adaptation property adaptation property adaptation property
Thm. lﬂ Thm. 1\ \/Thm. 1
Remark 3

| SAS is corrective | ———==> | SAS s enhancing |

Fig. 40. Operational properties of self-adaptive systems

Exemplarily, the different properties are verified for different adaptations of our car lo-
gistics system in a seaport terminal.

In our approach, the selection of an adaptation grammar is done by a human adaptation
manager who selects the most suitable adaptation in the case that more than one adap-
tation are possible. A distinguished kind of control attributes (like e.g., failure counters or
timeout parameters) might be used in an extended approach to select automatically between
different variants of adaptations. Note that states with additional control attributes (typed
over control types) would still be normal states in our framework (not violating adaptation
constraints). Our results hence can be extended in a straightforward way by reformulating
the more flexible operational properties of enhancing and corrective systems to hold “up to
changed control attributes”. In this case, a corrective SA system would no more be charac-
terized by the fact that the adaptation returns to the normal state s before the failure, but
by the fact that the adaptation returns to a normal state that is related to state s in a way
that both states differ in the control elements only (formalized by a restriction of a system
state graph to a view that does not contain the control types). Obviously, all operational
properties and proofs have to be extended by checks for isomorphic restrictions of graphs.
In this paper, we refrained from this extension to keep proofs clear and simple.

Work is in progress to evaluate the usability of our approach by applying it to larger case
studies, and to further automate the checks currently needing manual effort with AGG. To
further enhance the practical usability of static analysis, a continuous optimization of the
performance of the critical pair analysis AGG is ongoing work. Moreover, the implementation
of a logging feature for recording the order and matches of applied rules in AGG would be
very helpful to automate the selection of rule sequences in our adaptation framework. As
future work, we will investigate how far the techniques in this paper can be used for dealing
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with general unpredictable adaptability. Another future research direction is to investigate
the use of the techniques presented in this paper to deal with systems that have various
operational modes [28]; modes are commonly used in embedded systems. Finally, we plan an
integration of our formal framework with a real process engine like JBoss jJBPM [29]. The
idea is to use our framework as an analysis tool to guarantee the system consistency when
each adaptation is executed.

References

1.

10.

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a
Better Understanding of Context and Context-Awareness. In: Proceedings of the 1st

international symposium on Handheld and Ubiquitous Computing (HUC 99). pp. 304—
307 (1999)

. Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.P.A.,

van Steen, M. (eds.): Self-star Properties in Complex Information Systems, Concep-
tual and Practical Foundations, Lecture Notes in Computer Science, vol. 3460. Springer
(2005)

Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: ESSPE’07. pp. 11-20. ACM (2007)

. Baresi, L., Heckel, R., Thone, S., Varré, D.: Style-based modeling and refinement of

service-oriented architectures. Journal of Software and Systems Modeling (SOSYM) 5(2),
187-207 (2005)

Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification
for systems with dynamic structural adaptation. In: Int. Conf. on Software Engineering
(ICSE). ACM Press (2006)

Becker, B., Giese, H.: Modeling of correct self-adaptive systems: A graph transformation
system based approach. In: Soft Computing as Transdisciplinary Science and Technology
(CSTST’08). pp. 508 — 516. ACM Press (2008)

Bencomo, N., Blair, G.S.: Using architecture models to support the generation and oper-
ation of component-based adaptive systems. In: Software Engineering for Self-Adaptive
Systems. pp. 183-200 (2009)

Bose, F., Piotrowski, J., Scholz-Reiter, B.: Autonomously controlled storage management
in vehicle logistics - applications of RFID and mobile computing systems. International
Journal of RT Technologies: Research an Application 1(1), 57-76 (2009)

Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management in
dynamic software architecture specifications. In: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems (WOSS ’'04). pp. 28-33. ACM (2004)

Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Miiller, H.,
Pezze, M., Shaw, M.: Engineering self-adaptive systems through feedback loops. Software
Engineering for Self-Adaptive Systems pp. 48-70 (2009)

45



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A conceptual
framework for adaptation. In: Fundamental Approaches to Software Engineering - 15th
International Conference, FASE 2012. pp. 240-254 (Tallinn, Estonia, March 24 - April
1, 2012)

Bucchiarone, A., Ehrig, H., Ermel, C., Runge, O., Pelliccione, P.: Formal analysis and
verification of self-healing systems. In: Fundamental Approaches to Software Engineering
(FASE’10). LNCS, vol. 6013. Springer (2010)

Bucchiarone, A., Pelliccione, P., Vattani, C., Runge, O.: Self-repairing systems model-
ing and verification using AGG. In: Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA’09). pp. 181-190. IEEE (2009)

Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for qos-aware service
composition based on genetic algorithms. In: Proceedings of the 2005 conference on
Genetic and evolutionary computation (GECCO ’05). pp. 1069-1075 (2005)

Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Qos-driven run-
time adaptation of service oriented architectures. In: Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM SIGSOFT sym-
posium on The foundations of software engineering (ESEC/FSE '09). pp. 131-140. ACM
(2009)

Chapin, N., Hale, J.E., Kham, K.M., Ramil, J.F., Tan, W.G.: Types of software evolution
and software maintenance. Journal of Software Maintenance 13, 3-30 (January 2001),
http://dl.acm.org/citation.cfm?id=371697.371701

Cheng, B.H.C., Giese, H., Inverardi, P., Magee, J., de Lemos et al., R.: Software Engi-
neering for Self-Adaptive Systems: A Research Road Map. In: Software Engineering for
Self-Adaptive Systems. Dagstuhl Seminar Proceedings (2008)

Colombo, M., Nitto, E.D., Mauri, M.: Scene: A service composition execution environ-
ment supporting dynamic changes disciplined through rules. In: SERVICE-ORIENTED
COMPUTING ICSOC 2006. pp. 191-202 (2006)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theor. Comp. Science (2006)

Ehrig, H., Engels, G., Kreowski, H.J.J., Rozenberg, G. (eds.): Handbook of Graph Gram-
mars and Computing by Graph Transformation, Volume 2: Applications, Languages and
Tools. World Scientific (1999)

Ehrig, H., Habel, A., Lambers, L.: Parallelism and Concurrency Theorems for Rules with
Nested Application Conditions. ECEASST 26 (2010)

Filman, R.E., Elrad, T., Clarke, S., Aksit, M. (eds.): Aspect-Oriented Software Devel-
opment. Addison-Wesley, Boston (2005)

Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Syst. J.
42, 5-18 (January 2003), http://dx.doi.org/10.1147/sj.421.0005

Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46-54
(2004)

46


http://dl.acm.org/citation.cfm?id=371697.371701
http://dx.doi.org/10.1147/sj.421.0005

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Gjorven, E., Eliassen, F., Lund, K., Eide, V.S.W., Staehli, R.: Self-adaptive systems:
A middleware managed approach. In: Alexander Keller, J.P.M.F. (ed.) 2nd IEEE In-
ternational Workshop on Self-Managed Networks, Systems & Services (SelfMan 2006).
Springer (2006)

Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional require-
ments in a use case-driven approach. In: ICSE 2002. pp. 105-115. ACM Press (2002)
Hirsch, D., Inverardi, P., Montanari, U.: Reconfiguration of software architecture styles
with name mobility. In: Proceedings of the 4th International Conference on Coordination
Languages and Models. pp. 148-163. COORDINATION ’00, Springer-Verlag, London,
UK (2000), http://dl.acm.org/citation.cfm?id=647016.713435

Jahanian, F., Mok, A.K.: Modechart: A specification language for real-time systems.
IEEE Trans. Softw. Eng. 20, 933-947 (December 1994), http://dx.doi.org/10.1109/32.
368134

JBoss: jJBPM Engine. http://www.jboss.org/jbpm

Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow
Definition for Refined Activity Diagrams . In: Chechik, M., Wirsing, M. (eds.)
Proc. Fundamental Approaches to Software Engineering (FASE’09). vol. 5503, pp.
49-63. Springer (2009), http://www.springerlink.com/content/bgmnx25w700j4767/7p=
83achbbfbce90462dbb453b2a95fed6e2& pi=3

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36, 41-50
(January 2003), http://dx.doi.org/10.1109/MC.2003.1160055

Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: 2007 Future
of Software Engineering. pp. 259-268. FOSE ’07, IEEE Computer Society, Washington,
DC, USA (2007), http://dx.doi.org/10.1109/FOSE.2007.19

Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D. thesis,
Technische Universitiat Berlin (2009)

Lanese, 1., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic adaptation.
In: Trustworthly Global Computing - 5th International Symposium, TGC 2010, Munich,
Germany, February 24-26, 2010, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6084, pp. 284-300. Springer (2010)

Liu, H., Parashar, M., Member, S.: Accord: A programming framework for autonomic
applications. IEEE Transactions on Systems, Man and Cybernetics 36, 341-352 (2005)
Métayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Software Eng. 24(7), 521-533 (1998)

Peper, C., Schneider, D.: Component engineering for adaptive ad-hoc systems. In: Pro-
ceedings of the 2008 international workshop on Software engineering for adaptive and
self-managing systems (SEAMS ’08). pp. 49-56. ACM (2008)

Perry, D., Wolf, A.: Foundations for the Study of Software Architecture. SIGSOFT Softw.
Eng. Notes 17(4), 40-52 (1992)

Pfeffer, H., Linner, D., Steglich, S.: Dynamic adaptation of workflow based service com-
positions. In: Proceedings of the 4th international conference on Intelligent Computing:

47


http://dl.acm.org/citation.cfm?id=647016.713435
http://dx.doi.org/10.1109/32.368134
http://dx.doi.org/10.1109/32.368134
http://www.springerlink.com/content/bgmnx25w700j4767/?p=83ac5bfbce90462dbb453b2a95fed6e2&pi=3
http://www.springerlink.com/content/bgmnx25w700j4767/?p=83ac5bfbce90462dbb453b2a95fed6e2&pi=3
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/FOSE.2007.19

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

Advanced Intelligent Computing Theories and Applications - with Aspects of Theoretical
and Methodological Issues (ICIC ’08). pp. 763-774. Springer-Verlag (2008)

Rodosek, G.D., Geihs, K., Schmeck, H., Burkhard, S.: Self-healing systems: Founda-
tions and challenges. In: Self-Healing and Self-Adaptive Systems. No. 09201 in Dagstuhl
Seminar Proceedings, Germany (2009)

Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S.O., Lorenzo, J., Mamelli,
A., Scholz, U.: Music: Middleware support for self-adaptation in ubiquitous and service-
oriented environments. In: Software Engineering for Self-Adaptive Systems. pp. 164-182
(2009)

Rukzio, E., Siorpaes, S., Falke, O., Hussmann, H.: Policy based adaptive services for
mobile commerce. In: WMCS’05. IEEE Computer Society (2005)

Runge, O., Ermel, C., Taentzer, G.: AGG 2.0 — New Features for Specifying and Ana-
lyzing Algebraic Graph Transformations. In: Schiirr, A., Varro, D. (eds.) Symposium on
Application of Graph Transformation with Industrial Relevance (AGTIVE’11). LNCS,
Springer (2012), to Appear

Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst. 4, 14:1-14:42 (May 2009), http://doi.acm.org/10.1145/
1516533.1516538

Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for service
centric systems. In: Proceedings of the 2005 IEEE International Conference on Services
Computing (SCC ’05). pp. 251-259 (2005)

TFS-Group, TU Berlin: AGG (2013), http://www.tfs.tu-berlin.de/agg

Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S approach
for configuring and executing dynamic web processes. Tech. rep., University of Georgia,
Athens (2005)

White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Segal, A., Kephart, J.O.: Autonomic
computing: Architectural approach and prototype. Integr. Comput.-Aided Eng. 13(2),
173-188 (2006)

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web
services composition. In: Proceedings of the 12th international conference on World Wide
Web (WWW ’03). pp. 411-421 (2003)

48


http://doi.acm.org/10.1145/1516533.1516538
http://doi.acm.org/10.1145/1516533.1516538
http://www.tfs.tu-berlin.de/agg

	Modeling and Analysis of Self-Adaptive Systems  Based on Graph Transformation 
	Antonio Bucchiarone, Hartmut Ehrig, Claudia Ermel, Patrizio Pellicione, Olga Runge 

