Synthesis and Coordination Chemistry of Triazacyclohexanes and Orthoamides

vorgelegt von
Diplom-Chemiker
Guido Seifert
Dem Fachbereich 5 - Chemie der Technischen Universität Berlin zu Erlangung des akademischen Grades
Doktor der Naturwissenschaften Dr. rer. nat.
genehmigte Dissertation

Promotionsausschuß:

Vorsitzender: Prof. Dr. rer. nat. G. Findenegg
Berichter: Dr. habil. rer. nat. Randolf Köhn
Berichter: Prof. Dr. rer. nat. H. Schumann

Tag der mündlichen Prüfung: 22. Dezember 1999

Berlin 1999
D 83

Abstract

This thesis describes the extension of the coordination chemistry of triazacyclohexanes to new copper complexes and to new ligands with similar coordination geometry, i.e. the orthoamides 13 -alkyl-1,5,9-triazatricyclo[7.3.1.0 ${ }^{5,13}$]-tridecanes (RTATC) and unsymmetrically substituted triazacyclohexanes. By treatment of the literature known $[\mathrm{TATC}]^{+}$cation with Li, Na, or K alkylating reagents several new RTATC ($\mathrm{R}=\mathrm{Ph}, \mathrm{Bz}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}, 4-^{\mathrm{t}} \mathrm{Bu}-\mathrm{PhCH}_{2}$) have been prepared and characterized. With these and the previously known ligands HTATC and MeTATC complexes of $\mathrm{Cr}(\mathrm{III}), \mathrm{Fe}(\mathrm{III}), \mathrm{Cu}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$ have been made and their properties have been compared with those of the analogous $1,3,5$-trialkyl-1,3,5-triazacyclohexane $\left(\mathrm{R}_{3} \mathrm{TAC}\right)$ complexes. It shows that the structural, chemical, and physical properties of the RTATC complexes are quite similar to those of the R_{3} TAC complexes. $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ complexes with $\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{Bz}, \mathrm{Cy}$, and $(\mathrm{S})-\mathrm{PhMeCH}$ have been prepared and characterized. The $\mathrm{Cu}(\mathrm{I})$ complexes are diamagnetic and therefore ideal for NMR spectroscopical analysis. The η^{3}-coordination of the ligand can be deduced from the discrimination of the endo- and exo-protons of the TACring, which are in fast exchange in the free ligand. From the form of the ring signals a more symmetrical η^{3}-coordination for the ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}$ complex and a slightly distorted η^{3}-coordination for the Bz_{3} TAC complex can be expected. This could be verified by x-ray crystal structures of both complexes.

A new $\mathrm{Cu}(\mathrm{II})$ complex was found when excess $\mathrm{Me}_{3} \mathrm{TAC}$ was reacted with CuCl_{2} : $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$. The unusual coordination geometry leads to a slow reduction to $\mathrm{Cu}(\mathrm{I})$. A crystal structure of the reduction product revealed an unusual $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]^{2-}$. It shows the first $\mathrm{Cu}-\mathrm{Cu}$ cuprophilic interaction in an anion which must be stronger than the electrostatic repulsion within the dianion.

Synthesis of triazacyclohexanes with a mixture of two amines in a suitable solvent such as ethanol or exploitation of equilibria between $R_{3} T A C$ and $R^{\prime} N H_{2}$ above $100{ }^{\circ} \mathrm{C}$ yields mixtures of unsymmetrically substituted $\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{TAC}$ which could be separated by various methods below $100^{\circ} \mathrm{C}$. The pure and dry unsymmetrical $\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{TAC}$ are stable at room temperature and even at higher temperatures for short periods and can best be identified by their very characteristic ${ }^{13} \mathrm{C}$ NMR signals for the ring carbon atoms. This way a couple of examples for basically three different types of unsymmetrically substituted $R_{2} R^{\prime} T A C$ could be prepared: simple $R_{2} R^{\prime} T A C$ with small hydrocarbon substituents ($\mathrm{Me}_{2} \mathrm{BzTAC}, \mathrm{Me}_{2} \mathrm{OctTAC}$), $\mathrm{R}_{2}\left(\mathrm{R}^{\prime} \mathrm{X}\right)$ TAC with a substituent bearing a functional group $\left(\mathrm{Me}_{2}(\mathrm{EtOH}) \mathrm{TAC}, \mathrm{Me}_{2}(\mathrm{EtCN}) \mathrm{TAC}\right)$, and two triazacyclohexanes linked by a short bridge $\mathrm{R}_{2} \mathrm{TAC}-\mathrm{R}$ ' $-\mathrm{R}_{2} \mathrm{TAC}\left(\mathrm{Me}_{2} \mathrm{TAC}-\mathrm{CH}_{2} \mathrm{PhCH}_{2}{ }^{-}\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{TAC}\right),{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TAC}-\mathrm{CH}_{2} \mathrm{PhCH}_{2}{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TAC}\right)$.

Abstract

Diese Arbeit beschreibt die Erweiterung der Koordinationschemie der Triazacyclohexane durch neuartige Kupferkomplexe sowie anderer Ligandensysteme mit ähnlicher Koordinationsgeometrie, wie z.B. den Orthoamiden (13-Alkyl-1,5,9-triazatricyclo[7.3.1.0 ${ }^{5,13}$]-tridecanen, RTATC). Bei der Umsetzung des literaturbekannten [TATC] ${ }^{+}$Kations mit Li, Na oder K-Alkylverbindungen konnten ein Reihe neuartiger RTATC ($\mathrm{R}=\mathrm{Ph}, \mathrm{Bz}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}, 4{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{PhCH}_{2}$) gewonnen und charakterisiert werden. Mit diesen neuen und den in der Literatur bereits bekannten Liganden HTATC und MeTATC wurden $\mathrm{Cr}(\mathrm{III})-$, Fe (III)-, $\mathrm{Cu}(\mathrm{II})$ - und $\mathrm{Zn}(\mathrm{II})-\mathrm{Komplexe}$ hergestellt und deren Eigenschaften mit den analogen Komplexen der 1,3,5-trialkyl-$1,3,5$-triazacyclohexane $\left(\mathrm{R}_{3} \mathrm{TAC}\right)$ verglichen. Es zeigte sich, daß sowohl die strukturellen als auch die physikalischen und chemischen Eigenschaften der RTATC Komplexe sehr ähnlich denen der R_{3} TAC Komplexes sind.

Es wurden $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ Komplexe mit $\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}$, Bz , Cy , und (S)PhMeCH hergestellt und charakterisiert. Diese Komplexe sind diamagnetisch und daher sehr geeignet, mit NMR-spektroskopischen Methoden untersucht zu werden. Die η^{3}-Koordination der Liganden kann aus der Aufspaltung der endo- und exoProtonen des TAC-Ringes geschlossen werden. Deren Signale fallen in den freien Liganden zusammen. Aus der Form der Signale kann auf eine etwas mehr symmetrische Koordination im Fall des ${ }^{i} \mathrm{Pr}_{3} \mathrm{TAC}$ Komplexes und auf eine leichte Verzerrung im Fall des Bz_{3} TAC Komplexes geschlossen werden. Das konnte durch eine Röntgenkristallstrukturanalyse bestätigt werden.

Ein neuartiger $\mathrm{Cu}(\mathrm{II})$-Komplex wurde gefunden, als CuCl_{2} mit einem Überschuß von $\mathrm{Me}_{3} \mathrm{TAC}$ umgesetzt wurde: $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$. Aus dessen ungewöhnlicher Struktur resultiert, daß das $\mathrm{Cu}(\mathrm{II})$ in diesem Komplex langsam durch $\mathrm{Me}_{3} \mathrm{TAC}$ zu $\mathrm{Cu}(\mathrm{I})$ reduziert wird. Eine Röntgenkristallstruktur des Reduktionsproduktes zeigte das sehr ungewöhnliche $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]^{2-}$ Anion. Es ist das erste Beispiel für eine $\mathrm{Cu}-\mathrm{Cu}$ cuprophilischen Wechselwirkung in einem Anion, die daher stärker sein muß, als die elektrostatische Abstoßung.

Die Synthese von Trizacyclohexanen in einer Mischung aus zwei Aminen in einem passenden Lösungsmittel, wie z.B. Ethanol, oder die Ausnutzung des Gleichgewichts zwischen R_{3} TAC und $\mathrm{R}^{\prime} \mathrm{NH}_{2}$ oberhalb von $100^{\circ} \mathrm{C}$, ergibt eine Mischung von unsymmetrisch substituierten Triazacyclohexane, die durch eine Reihe verschiedener Methoden unterhalb von $100^{\circ} \mathrm{C}$ getrennt werden konnten. Die reinen und trockenen unsymmetrisch substituierten TAC sind bei Raumtemperatur, für kurze Zeit auch bei höheren Temperaturen, stabil und können am besten durch die charakteristischen ${ }^{13} \mathrm{C}$-NMR Signale ihrer Ring-Kohlenstoffatome identifiziert werden. Auf diese Weise konnten drei verschiedene Klassen von unsymmetrisch substituierten Triazacyclohexanen hergestellt und charakterisiert werden: Einfache $R_{2} R^{\prime}$ TAC mit kleinen aliphatischen oder aromatischen Substituenten ($\mathrm{Me}_{2} \mathrm{BzTAC}, \mathrm{Me}_{2} \mathrm{OctTAC}$), $\mathrm{R}_{2}\left(\mathrm{R}^{\prime} \mathrm{X}\right)$ TAC mit einem funktionalisierten Substituenten $\left(\mathrm{Me}_{2}(\mathrm{EtOH}) \mathrm{TAC}, \mathrm{Me}_{2}(\mathrm{EtCN}) \mathrm{TAC}\right)$ und zwei über eine kurze Brücke verbundene Triazacyclohexane R_{2} TAC-R'- $\mathrm{R}_{2} \mathrm{TAC}\left(\mathrm{Me}_{2} \mathrm{TAC}-\mathrm{CH}_{2} \mathrm{PhCH}_{2}-\mathrm{Me}_{2} \mathrm{TAC}\right)$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TAC}-\mathrm{CH}_{2} \mathrm{PhCH}_{2}{ }^{-}{ }^{-} \mathrm{Bu}_{2} \mathrm{TAC}\right)$.

Acknowledgements

This thesis has been done at the Institut für Anorganische und Analytische Chemie und Lehrerbildung in der Chemie der Technischen Universität Berlin and of course, during this work I met several people who helped me in one or another situation, I want to thank now. First of all there is:

Dr. R. D. Köhn

He was not only a source for valuable informations. Working for such a long time with me is prove enough for his almost godly patience. Next there is:

Prof. Dr. H. Schumann

He gave me more than one good advice and allowed generously the use of the resources of his working group.

Special thanks to:

Dr. G. Kociok-Köhn

She invested much work in the not always perfect crystals I gave her. Her devotion to the x-ray crystallographical arts I owe the x-ray crystal structures in this work. Of course she could not have worked for me without the agreement of:

Prof. Dr. A. Filippou

Thanks for the usage of his x-ray crystallographical resources and time.

Special thank, too, for

Dr. Matthias Haufe

What can I say? Working with him was much fun (at least for me).
Of course, there are many more I have to thank: Dr. S. Mihan (BASF; Polymerization) M. Dettlaff, Dr. H.-J. Kroth, Dr. D. Zeigan (NMR); S. Imme (IR, Raman and Jokes); D. Bernhard, U. Kieper (CHN, AAS) and most of the other staff of the institute.

Contents

1 Introduction and Overview 11
2 Discussion and Results 19
2.1 Synthesis of 13-Alkyl-1,5,9-triazatricyclo[7.3.1.0 ${ }^{5,13}$]-trideca- nes RTATC 19
2.1.1 Characterization of RTATC 22
2.1.2 Chemical Properties of RTATC 25
2.1.3 Reaction of RTATC with Acid 26
2.1.4 Complexes of RTATC 29
2.2 Synthesis of 1,3,5-Trialkyl-1,3,5-triazacyclohexane Complexes R_{3} TAC 33
2.2.1 $\mathrm{Cu}(\mathrm{II})$-complexes of Symmetrically Substituted $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ 34
2.2.2 $\mathrm{Cu}(\mathrm{I})$-complexes of Symmetrically Substituted R_{3} TAC 42
2.3 Synthesis and Characterization of Unsymmetrically Substitut- ed Triazacyclohexanes $\mathbf{R}_{\mathbf{2}} \mathbf{R}^{\prime} \mathbf{T A C}$ 49
2.3.1 Synthesis of Unsymmetrically Substituted $\mathbf{R}_{\mathbf{2}} \mathbf{R}^{\prime} \mathbf{T A C}$ 49
2.3.2 Separation of Unsymmetrically Substituted $\mathbf{R}_{\mathbf{2}} \mathbf{R}^{\prime} \mathbf{T A C}$ 50
2.3.3 $\mathbf{R}^{\prime} \mathbf{R}_{\mathbf{2}} \mathbf{T A C}(\mathrm{R}$ ', $\mathrm{R}=$ aliphatic or aromatic) with no Functional Groups 52
2.3.4 $\quad \mathbf{R}^{\prime} \mathbf{R}_{\mathbf{2}} \mathbf{T A C}$ with one Functionalized Substituent 52
2.3.5 Preparation of $\left(\mathbf{R}^{\prime} \mathbf{O H}\right) \mathbf{R}_{\mathbf{2}} \mathbf{T A C}$ 54
2.3.6 Attempts to Prepare ($\mathbf{R C l}$) $\mathbf{R}_{\mathbf{2}}^{\prime} \mathbf{T A C}$ from ($\left.\mathbf{R O H}\right) \mathbf{R}_{\mathbf{2}}^{\prime} \mathbf{T A C} 57$
2.3.7 Preparation of $\left(\mathbf{R N H}_{\mathbf{2}}\right) \mathbf{R}_{\mathbf{2}}^{\prime} \mathbf{T A C}$ 58
2.3.8 Preparation of Bridged Triazacyclohexanes $\mathbf{R}_{\mathbf{2}} \mathbf{T A C}$ - R'- R_{2} TAC 58
2.3.9 Attempts to Prepare Unsymmetrically Bridged Triaza- cyclohexanes ($\left.\mathbf{R}_{\mathbf{2}}^{\prime} \mathbf{T A C}-\mathbf{R}-\mathbf{R}_{\mathbf{2}}^{\prime \prime} \mathbf{T A C}\right)$ 59
2.3.10 Summary of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Data of Unsymmetrically Sub- stituted $\mathbf{R}_{\mathbf{2}} \mathbf{R}^{\prime} \mathbf{T A C}$ 60
3 Some Possible Prospects for Future Research Based on the Results in this Work 62
3.1 13-alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{\mathbf{5}, \mathbf{1 3}}\right]$-tridecanes 62
3.2 Copper Complexes of Triazacyclohexanes 65
3.3 Unsymmetrically Substituted Triazacyclohexanes 66
4 Summary and Conclusions 70
4.1 13-alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{\mathbf{5}, \mathbf{1 3}}\right]$-tridecanes 70
4.2 Copper Complexes of Triazacyclohexanes 71
4.3 Unsymmetrically Substituted Triazacyclohexanes 71
5 Experimental Section 73
5.1 General Considerations 73
5.2 Ligands 74
5.2.1 13-Alkyl-1,5,9-triazatricyclo[7.3.1.0 ${ }^{5,13}$]-tridecanes 74
5.2.2 1,3,5-Trialkyl-1,3,5-triazacyclohexanes 85
5.2.3 1,3-Di-(1-methylene-3,5-dialkyl-1,3,5-triazacyclohexyl)- benzenes 106
5.3 Complexes 113
5.3.1 RTATC-Complexes 113
5.3.2 $\quad \mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ and $\mathbf{R}_{\mathbf{2}} \mathbf{R}^{\prime} \mathbf{T A C}$-Complexes 122
A X-ray data 133
A. 1 Parameters 133
A.1.1 PhTATC 20 133
A.1.2 (PhTATC)(HCl) 134
A.1.3 $[\mathbf{P h T A T C H}]^{+}[\mathbf{T F P B}]^{-}$ 135
A.1.4 BzTATC 21 136
A.1.5 $[\mathrm{TATC}]\left[\mathrm{Fe}_{\mathbf{2}} \mathrm{Cl}_{6} \mathrm{O}\right](\mathrm{THF})$ 137
A.1.6 $[\mathbf{T A T C}]_{2}\left[\mathrm{Fe}_{\mathbf{2}} \mathrm{Cl}_{6}\right]\left(\mathbf{E t}_{\mathbf{2}} \mathbf{O}\right)$ 138
A.1.7 [PhTATC $]\left[\mathrm{FeCl}_{3}-\mathrm{O}-\mathrm{FeCl}_{3}\right]$ 139
A.1.8 (PhTATC) CuCl_{2} 140
A.1.9 $\left[\left({ }^{i} \mathrm{Pr}_{3} \mathbf{T A C}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ 141
A.1.10 $\left[\left(\mathrm{Bz}_{3} \mathbf{T A C}\right) \mathrm{CuPPh}_{3}\right]\left[\mathrm{BF}_{4}\right] \cdot 0.5 \mathrm{Tol}$ 143
A.1.11 $\left(\mathrm{Me}_{\mathbf{3}} \mathbf{T A C}\right)_{\mathbf{2}} \mathrm{CuCl}_{\mathbf{2}} \cdot\left(\mathrm{C}_{\mathbf{7}} \mathrm{H}_{8}\right)_{0.5}$ 144
A.1.12 $\left(\mathrm{Me}_{3} \mathbf{T A C}\right)_{6}\left(\mathrm{CuCl}_{3}\right)_{2}\left(\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right)$ 145
A.1.13 ($\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TACCH}_{2}\right)-\mathrm{mC}_{6} \mathrm{H}_{4}-\left(\mathrm{CH}_{2} \mathrm{TAC}^{\mathrm{t}} \mathrm{Bu}_{2}\right)$ 146
A.1.14 $(\mathbf{H T A T C})_{2}($ TATC $)\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Cr}\left(\mathrm{CSiMe}_{3}\right)\right]_{2}$ 147
A. 2 Atomic coordinates 148
A.2.1 PhTATC 148
A.2.2 PhTATC. HCl 149
A.2.3 $[\mathbf{P h T A T C H}]^{+}[\text {TFPB }]^{-}$ 149
A.2.4 BzTATC 150
A.2.5 $\quad[\mathbf{T A T C}]\left[\mathrm{Fe}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{6}} \mathrm{O}\right](\mathbf{T H F})$ 151
A.2.6 $[\mathbf{T A T C}]_{\mathbf{2}}\left[\mathbf{F e}_{\mathbf{2}} \mathbf{C l}_{\mathbf{6}}\right]\left(\mathbf{E t}_{\mathbf{2}} \mathbf{O}\right)$ 151
A.2.7 [PhTATC] $\left[\mathrm{FeCl}_{3}-\mathrm{O}-\mathrm{FeCl}_{3}\right]$ 152
A.2.8 (PhTATC) $\mathbf{C u C l}_{\mathbf{2}}$ 153
A.2.9 $\left[\left({ }^{i} \mathrm{Pr}_{3} \mathbf{T A C}\right) \mathbf{C u}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ 153
A.2.10 $\left[\left(\mathrm{Bz}_{3} \mathbf{T A C}\right) \mathrm{CuPPh}_{3}\right]\left[\mathrm{BF}_{4}\right] \cdot 0.5 \mathrm{Tol}$. 154
A.2.11 $\left(\mathrm{Me}_{3} \mathbf{T A C}\right)_{2} \mathrm{CuCl}_{2} \cdot\left(\mathbf{C}_{7} \mathbf{H}_{8}\right)_{0.5}$ 155
A.2.12 $\left(\mathrm{Me}_{\mathbf{3}} \mathbf{T A C}\right)_{\mathbf{6}}\left(\mathrm{CuCl}_{\mathbf{3}}\right)_{\mathbf{2}}\left(\mathbf{C u}_{\mathbf{2}} \mathrm{Cl}_{4}\right)$ 155

A.2.13 $\left({ }^{\mathrm{t}} \mathrm{Bu}_{\mathbf{2}} \mathrm{TACCH}_{2}\right)-\mathrm{mC}_{6} \mathrm{H}_{4}-\left(\mathrm{CH}_{2} \mathrm{TAC}^{\mathrm{t}} \mathrm{Bu}_{2}\right)$
 156
 A.2.14 $(\mathbf{H T A T C})_{2}($ TATC $)\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathbf{C r}\left(\mathrm{CSiMe}_{3}\right)\right]_{2}$
 157

List of Figures

1 General route to symmetrical 1,3,5-trialkyl-1,3,5-triazacyclo- hexanes $\left(\mathbf{R}_{\mathbf{3}} \mathbf{T A C}\right)$ 11
2 Three examples of main group element complexes of $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$. 11
3 Examples of an η^{1}-, a μ^{2}-, and a η^{3}-transition group elemen- t complex of $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ and the quite new titanium $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ complexes 12
4 Some examples of in our group prepared and characterized transition group element complexes of ${ }^{\mathbf{i}} \mathbf{P r}_{\mathbf{3}} \mathbf{T A C}$ and $\mathbf{B z}_{3} \mathbf{T A C}$ 13
5 Some examples of compounds with similar N_{3}-core structures as in the $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ ligands 14
6 An oxygen activating $\mathrm{Cu}(\mathrm{I})$ complex by Karlin 16
7 An oxygen activating $\mathrm{Cu}(\mathrm{I})$-triazacyclononane complex by
Tolman et. al. 17
8 Examples of unsymmetrically hetero-substituted $\mathbf{R}_{\mathbf{2}} \mathbf{R}^{\prime} \mathbf{T A C}$ in literature 18
9 Literature known routes to RTATC 20
10 Alkylation of the guadinium cation TATC ${ }^{+}$ 21
11 Cleavage of $\left(\mathbf{C H}_{\mathbf{3}}\right)_{\mathbf{3}} \mathbf{S i C H}_{\mathbf{2}} \mathbf{T A T C}$ with $\mathrm{D}_{2} \mathrm{O}$ 22
12 Conformers of RTATC 23
13 X-ray structure of BzTATC with selected bond length and angles 23
X-ray structure of one of the three independent molecules Ph-
TATC with selected average bond length and angles 24
15 X-ray structure of $[\mathrm{HTATC}]_{2}^{+}\left[\mathrm{Fe}_{2}^{\mathrm{III}} \mathrm{OCl}_{6}\right]^{\mathbf{2 -}}(\mathbf{T H F})$ with se- lected bond length and angles 25
16 X-ray structure $[\mathbf{H T A T C}]_{2}^{+}\left[\mathrm{Fe}_{2}^{\mathrm{II}} \mathrm{Cl}_{6}\right]^{2-}\left(\mathbf{E t}_{\mathbf{2}} \mathbf{O}\right)$ with selected bond lengths and angles 26
17 Oxiation of the $\left[\mathrm{Fe}_{2}^{\mathrm{II}} \mathrm{Cl}_{6}\right]^{2-}$ anion 26
18 X-ray structure of the acid adduct of $\mathbf{P h T A T C F e C l} \mathbf{3}_{3}$ 27
19 Acid adducts of PhTATC 28
20 Acid adducts of HTATC 28
21
X-ray crystal structure of the HCl -adduct of PhTATC with selected bond lengths and angles 29
22ynthesis of $\mathbf{R}_{3} \mathbf{T A C C r C l} 3$ complexes30X-ray crystal structure of $\mathrm{PhTATCCuCl} \mathbf{2}_{2}$ with selectedbond length and angles32
25 [BzTATCZnEt] ${ }^{+}$ 33
26
X-ray crystal structures of ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathbf{T A C C u C l} \mathbf{2}_{2}$ and $\left(\mathrm{Me}_{3} \mathbf{T A C}\right.$ - $\left.\mathrm{CuCl}_{2}\right)_{2}$ 35
27 X-ray structure of $\left(\mathbf{M e}_{\mathbf{3}} \mathbf{T A C}\right)_{\mathbf{2}} \mathbf{C u C l}_{\mathbf{2}}$ with selected bond lengths and angles 35
28$\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$37
30 Changes of the orbitals by transition from coordination num- ber 4 to 6 38

A section of the x-ray structure of the product of the reduc
tion of $\left(\mathrm{Me}_{\mathbf{3}} \mathbf{T A C}\right)_{\mathbf{2}} \mathrm{CuCl}_{\mathbf{2}}$ with $\mathrm{Me}_{\mathbf{3}} \mathbf{T A C}$ with selected bond
lengths and angles 39rical triazacyclononane . 5555
47 Equlibrium between $(\mathbf{P r O H})_{\mathbf{3}} \mathbf{T A C}$ and tetrahydro-1,3-oxazine 56
Two TAC rings connected by a m-xylylene bridge 58
Oxidation of $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ 40
$\left[\mathrm{Cu}_{3}(2-(3(5)-\mathrm{pz}) \mathrm{py})_{3}\right]$ and dimer 41
Complex by Simeling 41
Synthesis of $\left[\left(\mathbf{R}_{\mathbf{3}} \mathbf{T A C}\right) \mathbf{C u L}\right] \mathbf{X}$ complexes 43
${ }^{1} \mathrm{H}$-NMR spectrum of ${ }^{\mathbf{i}} \mathrm{Pr}_{3} \mathbf{T A C}$ 44
${ }^{1} \mathrm{H}$-NMR spectrum of $\left[\left({ }^{\mathbf{i}} \mathrm{Pr}_{\mathbf{3}} \mathbf{T A C}\right) \mathbf{C u}\left(\mathbf{P P h}_{3}\right)\right] \mathrm{BF}_{4}$ 44
X-ray structure of one of two independent cations of$\left[{ }^{\mathbf{i}} \mathbf{P r}_{\mathbf{3}} \mathbf{T A C C u P P h}{ }_{\mathbf{3}}\right] \mathbf{B F}_{\mathbf{4}}$ with selected bond lengths andangles46
X-ray structure of $\left[\mathrm{Bz}_{\mathbf{3}} \mathbf{T A C C u P P h} \mathbf{3}_{\mathbf{3}}\right] \mathrm{BF}_{\mathbf{4}}$ with selectedbond lengths and angles47
Equilibria in $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ synthesis 50
Equilibria in $\mathbf{R}_{\mathbf{3}} \mathbf{T A C}$ synthesis 51
Me_{2} BzTAC 52
$\mathrm{Me}_{2}(\mathrm{EtOH}) \mathrm{TAC}$ 53
linked CpTi complex 53
A normal $\mathrm{CpCr}(\mathrm{III})$ complex and a linked $\mathrm{CpCr}(\mathrm{III})$ complex 54Examples of complexes of a donor functionalized unsymmet-Result of an alkylating attempt of $\mathbf{H T A T C C r C l} \mathbf{3}_{3}$ with$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2} \mathrm{Li}$63
Probable reaction of linked alkoxyTAC complexes with SOCl_{2} 67
51 Possible chromium complexes with a bridged TAC-ligand? 67
52 Probable structure of a $\mathrm{Cu}(\mathrm{I})$ complex with a bridged triaza- cyclohexane 68
53 Insufficient ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\left[\mathrm{PPh}_{3} \mathbf{C u}\left({ }^{\mathbf{i}} \mathbf{P r}_{2} \mathbf{T A C}\right) \mathbf{C H}_{2}\right.$ - $\left.\mathrm{PhCH}_{2}\left({ }^{\mathbf{i}} \mathrm{Pr}_{2} \mathbf{T A C}\right) \mathrm{CuPPh}_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$ 68

List of Tables

1 Bond angles between the short bonds to Cu in $\left(\mathrm{Me}_{3} \mathbf{T A C}\right)_{2} \mathbf{C u C l}_{\mathbf{2}}$ and their angle to one of the longer bonds Cu-N2 . 39
2 Perpendicular ring- Cu distances and $\mathrm{Cu}-\mathrm{P}$ distances (if applicable) of several TATC, TAC and Cp copper complexes . . . 48
$3 \quad{ }^{13} \mathrm{C}$-NMR signals of the ring carbon atoms of unsymmetrically substituted TAC61

1 Introduction and Overview

The formation of 1,3,5-triazacyclohexanes from primary amines and formaldehyde has been known for more than one hundred years. The first reliable descriptions for the preparation of 1,3,5-trimethyl-1,3,5triazacyclohexane ($\mathrm{Me}_{3} \mathrm{TAC}$) were reported in the mid 1890's [1]. At

Figure 1: General route to symmetrical 1,3,5-trialkyl-1,3,5-triazacyclohexanes $\left(\mathrm{R}_{3} \mathrm{TAC}\right)$.
the same time (1893-1895) the preparation and the chemistry of several other derivates of R_{3} TAC where described [2]. However, the coordination chemistry of the $1,3,5$-trialkyl-1,3,5-triazacyclohexanes $\left(\mathrm{R}_{3} \mathrm{TAC}\right)$ was surprisingly scarce, for such an old and easily available compound class. Figure 2. shows three examples of η^{3}-bonded R_{3} TAC complexes $[3,4,5]$. There

Figure 2: Three examples of main group element complexes of R_{3} TAC
were even less data available for transition metal complexes of R_{3} TAC. In publications from 1959 [6] and 1966 [7] the existence of η^{3}-complexes of chromium and molybdenum was postulated, based solely on IR-data. Better characterized were some η^{1}-complexes of zinc and cadmium with $\mathrm{R}_{3} \mathrm{TAC}$ [8] and a μ-complex of copper and cobalt [9]. However, the interest in R_{3} TAC as ligand seems to be growing rapidly lately as two new publications may indicate $[10,11]$ (see fig. 3 p. 12). This was the situation when our group

Figure 3: Examples of an η^{1}-, a μ^{2}-, and a η^{3}-transition group element complex of $\mathrm{R}_{3} \mathrm{TAC}$ and the quite new titanium $\mathrm{R}_{3} \mathrm{TAC}$ complexes $[10,11]$
began to take interest in this field in 1992. Our main goal was the development of a functional and structural model system for the Phillips catalyst. Therefore, chromium complexes of R_{3} TAC where the primary objective of our research. The three nitrogen atoms of these ligands standing in close proximity were supposed to mimic the hard donor atom environment of an active chromium center on a silicate surface of a Phillips catalyst. By variation of the alkyl substituents on the nitrogen atoms "fine tuning" of important properties of the complexes such as solubility, steric load, and bond strength were intended. Though some very promising results were observed with the polymerizations of ethylene, propylene, and styrene using these complexes as catalyst, one aspect of our work, however, was somewhat
dissatisfying. The strong paramagnetism of chromium(III) hindered analysis of the complexes by NMR-spectroscopy. The very low solubility of the R_{3} TAC complexes in all common solvents inhibited the growth of suitable crystals for x-ray crystallography. Those unfortunate properties did not allow to get sufficient structural data for the complexes.

So additionally to the chromium complexes and their catalytic use, several other questions arose during this work. First of all, several non-chromium complexes were prepared for their crystallizing or NMR-spectroscopical properties to gain further insight into the structures of η^{3}-TAC complexes. Figure

Figure 4: Some examples of in our group prepared and characterized transition group element complexes of ${ }^{i} \mathrm{Pr}_{3} \mathrm{TAC}$ and $\mathrm{Bz}_{3} \mathrm{TAC}$.

4 shows a small selection of the R_{3} TAC complexes made and characterized in our group $[12,13]$. Especially the Zn^{2+} complex, due to its diamagnetism, allowed a deeper understanding of η^{3}-bonded transition metal complexes of R_{3} TAC by NMR-spectroscopy [14].

Since all the considerations above about the task of R_{3} TAC in chromium complexes are mainly based on the geometrical arrangement of three nitrogen atoms therein, not only R_{3} TAC complexes were considered as possible candidates for modeling the characteristics of a Phillips catalyst. Figure 5
shows some other ligands with similar N_{3}-core structure like the $\mathrm{R}_{3} \mathrm{TAC}$.
Based on this, the first task in this work was to prepare and characterize some of these alternative ligands and their complexes for comparison with the in the mean time quite well elaborated chemistry of R_{3} TAC and its complexes. From the examples in figure 5, only with the first one (RTATC)

RTATC

Figure 5: Some examples of compounds with similar N_{3}-core structures as in the R_{3} TAC ligands.
comprehensive studies were made. Though the 1-pyrroline trimer (C5TAC) was readily available in a one step synthesis [15], its thermal and acid lability and the limited possibilities to vary the surrounding of the nitrogen atoms, make this sort of compounds considerably harder to handle and in terms of the desired ligand tuning less promising than the RTATC class. Therefore, after some unsuccessful attempts with C5TAC to make a $\mathrm{Cu}(\mathrm{I})$-complex analogous to the ones in figure 35 (p. 43) working on this compound class was given up early.

The RTATC ligands were expected to give much better results. Prior to this work, only RTATC with $\mathrm{R}=\mathrm{H}, \mathrm{R}=\mathrm{Me}$ and $\mathrm{R}=\mathrm{Et}$ has been known in literature and only two η^{3}-molybdenum complexes were reported [16]. This was a good base to start the work and resulted quickly in the successful preparation of chromium(III)chloride complexes of HTATC and MeTATC.

Unfortunately these complexes were even less soluble than the comparable $\mathrm{Me}_{3} \mathrm{TACCrCl} \mathrm{l}_{3}$ complex. Larger substituents R were supposed to improve the solubility of the $\mathrm{RTATCCrCl} \mathrm{C}_{3}$ complexes. But since the already known synthesis for HTATC and MeTATC were not applicable for larger R, a more general route to RTATC had to be developed.

Unfortunately the chromium complexes of the newly prepared RTATCligand $\left(\mathrm{R}=\mathrm{Bu}, \mathrm{Ph}, \mathrm{Bz}, \mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$ were not notably more soluble than the HTATC or MeTATC complexes. The solubility of the TATC-chromium complexes was in all cases worse than the solubility of analogous triazacyclohexane complexes with comparable substituents. Most of the characterization of RTATC complexes had to be done on complexes of copper or zinc.

Since it became more and more obvious that from none of the other ligands as favorable properties can be expected as from the triazacyclohexanes, at least not in consideration as a possible model system for the Phillips catalyst or as economical usable polymerization catalyst, the interest in these compounds gradually vanished.

At the same time, for the copper complexes another very interesting aspect became apparent. Though the primary task of copper, namely $\mathrm{Cu}(\mathrm{I})$ and zinc in R_{3} TAC and RTATC complexes was to provide structural information which were much harder to obtain from the chromium complexes, $\mathrm{R}_{3} \mathrm{TAC} / \mathrm{Cu}(\mathrm{I})$ complexes have a structural similarity to certain classes of oxygen activating bio-inorganic complex systems, too.

In these systems the reversible binding of CO and O_{2} to binuclear cop$\operatorname{per}(\mathrm{I})$ complexes is described, which mimics to a significant extent a number of properties of the copper-containing dioxygen protein hemocyanin. One of these complexes $\left[\mathrm{Cu}_{2}(\mathrm{~L}) \mathrm{O}_{2}\right]^{2+}$ where L is a dinucleating ligand containing hydrocarbon linkers which connect two tridentate donor bis[2-(2-

Figure 6: An oxygen activating $\mathrm{Cu}(\mathrm{I})$ complex Karlin [17] PY $=$ 2-pyridyl
pyridyl)ethyl]amine units (figure 6, p. 16) is described by Karlin et. al. [17]. At $-78{ }^{\circ} \mathrm{C}$ in dichlormethane this tricoordinated dicopper(I) complex $\left[\mathrm{Cu}_{2}(\mathrm{~L})\right]$ reacts reversibly with O_{2} to give complexes formulated as $\left[\mathrm{Cu}_{2}\left(\mathrm{~N}_{6}\right)\left(\mathrm{O}_{2}\right)\right]^{2+}$. The chemistry of copper complexes of triazacyclohexanes or orthoamides became after the preparation and characterization of $\mathrm{R}_{3} \mathrm{TAC}$ analogues the second main topic in this thesis.

The third one has been inspired by a study by Tolman and coworkers. In this study a system $\left[\mathrm{Cu}_{2}(\mathrm{~L}) \mathrm{O}_{2}\right]^{2+}$ with similar properties like in the above mentioned complex by Karlin is described. However, in this case the ligand L is a hydrocarbon bridged tridentate triazacyclononane (figure 7) [18]. The m-xylylene bridged bis[2-(2-pyridyl)ethyl]amine units in the Karlin complex and the linked triazacyclononane units in the Tolman complex kindled the interest in a combination of both ligands: m-xylylene bridged triazacyclohexanes. Finally the attempts to prepare these ligands lead to the preparation of unsymmetrically substituted triazacyclohexanes in general. This, however, proved to be much more difficult than expected. Though a great number of

Figure 7: Oxygen activating $\mathrm{Cu}(\mathrm{I})$-triazacyclononane complex by Tolman et. al. $\mathrm{X}=\mathrm{CH}_{3} \mathrm{CN}$
different triazacyclohexanes have been known for almost 100 years, virtually nothing can be found in literature about the synthesis of unsymmetrically substituted $R^{\prime} R_{2} T A C$ or $R^{\prime} R^{\prime \prime} R^{\prime \prime \prime} T A C$. The comparatively few exceptions where an unsymmetrically substituted triazacyclohexane is discussed in literature were about special cases of hetero substituted $\mathrm{R}^{\prime} \mathrm{R}_{2}$ TAC (figure 8) with synthetic routes working only for one specific compound. Generalization of these syntheses to obtain the desired alkyl substituted $R^{\prime} R_{2} T A C$ is not possible. During the work on the bridged triazacyclohexanes, apart from the possible bio-inorganic aspect, another application for a class of $R^{\prime} R_{2} T A C s$ became apparent. Triazacyclohexanes with one OH - or NR_{2}-functionalized substituent as ligands for chromium(III)-compounds could work as building blocks of a new variant of Phillips catalyst like TAC-complexes. Under consideration of the possible prospect compared with the very small amount of information available about them, the third part of this work mainly concentrates on the preparation and characterization of several classes of unsymmetrical substituted $\mathrm{R}^{\prime} \mathrm{R}_{2} \mathrm{TAC}$.

Figure 8: Examples of unsymmetrically hetero-substituted $R_{2} R^{\prime}$ TAC in literature [2]

Finally, the topics worked upon in this thesis can be summarized as follows:

- Preparation and characterization of $\mathrm{R}_{3} \mathrm{TAC}$ analogues and complexes with some selected transition metals.
- Preparation and characterization of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ complexes of $\mathrm{R}_{3} \mathrm{TAC}$.
- Preparation and characterization of unsymmetrically substituted triazacyclohexanes.

2 Discussion and Results

2.1 Synthesis of 13-Alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{5,13}\right]$ tridecanes RTATC

13-alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{\mathbf{5}, \mathbf{1 3}}\right]$-tridecanes (RTATC) with $\mathrm{R}=\mathrm{H}$ or $\mathrm{R}=\mathrm{Me}$ have been prepared for the first time by Weisman and Atkins [19, 20]. However, the route they used was not only tedious involving several steps, but also restricted to only small substituents like H , Me or Et. In a later work another, easier route to HTATC 1 and indirectly to MeTATC 2 and EtTATC was described [21] (see figure 9), but the restriction to only small substituents remained.

HTATC was prepared according to literature methods [21]. The preparation of MeTATC, though also possible according to the path outlined in figure 9 , was done with the method newly developed in this thesis.

This method had to be developed, because chromium chloride complexes of HTATC and MeTATC proved to be extremely insoluble in all common solvents. So the idea was to improve their solubility by using RTATC ligands substituted with larger organic substituents R. The easiest way to get those ligands seemed to be the alkylation of 1,5,9-triazatricyclo[7.3.1.0 ${ }^{5.13}$ tridecan13 -ylium cation 3 (see figure 10). Indeed, the alkylation of TATCBr with TMSLi $\left(\mathrm{LiCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$ or n-BuLi in THF went smoothly with a yield of up to 65%. However, the process of purifying the hygroscopic TATCBr was very difficult and for larger quantities hardly feasible. In deed, for 5 g of pure TATCBr more than 5 l of dry methylene chloride and 5 l of dry diethylether had to be used in a process of repeated dissolution and precipitation. Using a less pure TATCBr, though thoroughly dried in high vacuum for several days, gave a much lower yield with $\mathrm{LiCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ and no product at all with PhLi
and BzLi. Replacing the Br^{-}anion with BF_{4}^{-}[21], gives TATCBF 4 which can be easily purified by recrystallization and is not hygroscopic. Unfortunately, all attempts to use TATCBF_{4} instead of the bromide in the alkylation reactions revealed the TATC cation to be quite resistant to nucleophilic addition and BF_{4}^{-}is attacked earlier than TATC^{+}by the used lithium alkyls,

1. NaH
2. NaBF_{4}

LiAlH_{4}

$\mathrm{RC}\left(\mathrm{NMe}_{2}\right)_{2}(\mathrm{OMe})$
$\mathrm{R}=\mathrm{H}, \mathrm{Me}$, Et

Figure 9: Literature known routes to RTATC (Alder, Weisman [21])

Figure 10: Alkylation of the guadinium cation TATC ${ }^{+}$

Grignard- or copper alkylating reagents under the given conditions.
The replacement of the BF_{4}^{-}anion with BPh_{4}^{-}did prevent reactions with the anion, but the solubility of $3^{+} \mathrm{BPh}_{4}^{-}$is extremely low in solvents tolerant towards alkylating reagents. No reaction at all could be observed in experiments using the $3^{+} \mathrm{BPh}_{4}^{-}$as suspension with lithium alkyls in several solvents. The reaction worked only, when the lithium alkyls were replaced by potassium alkyls, but still with much lower yields than acceptable. A hint that now the solubility really was the limiting factor for the reaction is the fact, that a slightly better yield could be obtained by using alkyl sodium compounds. But not the increase in yield make sodium alkyls the better choice to use: in all reactions, regardless whether sodium or potassium alkyls have been used, up to 50% of $\mathrm{TATCBPh}_{4}$ remained unchanged. So the considerable advantage of using sodium alkyls is the higher solubility of the NaBPh_{4} compared to KBPh_{4}, which allows to remove the byproduct from the unchanged $\mathrm{TATCBPh}_{4}$ and to recycle the valuable educt.

In the special case of PhTATC 4 and MeTATC 17 a second route was found. $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ TATC 5 can be cleaved with water to give MeTATC. Of course, normally this method is too expensive and much more time consuming than the direct methylation of TATCBr with MeLi. But by cleaving with $\mathrm{D}_{2} \mathrm{O}$ it is possible to introduce exactly one deuterium atom into the methyl
group of MeTATC (fig. 11) which may become important for ${ }^{2} \mathrm{H}-\mathrm{NMR}$ studies. For PhTATC, diphenyl-mercury with sodium and $\mathrm{TATCBPh}_{4}$ in hexane

Figure 11: Cleavage of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2}$ TATC with $\mathrm{D}_{2} \mathrm{O}$
gave the highest yield in one experiment with almost 60% of PhTATC. However, the yield in the sodium alkyl as much as in the diphenyl-mercury reactions fluctuated very strongly depending on the solvent, temperature and/or reaction time from 0% up to 60% yield.

None of these methods are optimized yet and though the mercury-method once gave the highest yield, there still is much potential in varying the solvent, anion or alkali metal to improve the first route and to avoid the poisonous diphenyl-mercury and its waste products.

Nevertheless, no further attempts have been made to optimize the synthesis of RTATC, when from earlier experiments enough material was obtained to go on with the synthesis and characterization of several RTATC complexes.

2.1.1 Characterization of RTATC

PhTATC 20 and BzTATC 6 are colorless, air- and water- stable solids which can be sublimed at 1.3 Pa. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra are highly symmetrical due to a fast exchange between the two possible conformers at room temperature (figure 12). By slow evaporation of solutions of BzTATC and PhTATC

Figure 12: Conformers of RTATC
in hexane, colorless crystals could be obtained. 21 crystallizes with one independent molecule in the assymetrical unit (figure 13). 20 crystallizes with

Figure 13: X-ray structure of BzTATC with selected bond length and angles three independent molecules in the assymetrical unit, one of which is shown
in fig. 14. All of the three molecules are in the trans-trans-cis-conformation.

C1-C(Ph)	(5),
$\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{Ph})$ 138.1(10),	
all other C-C 150.5(11),	
C1-N3 148.8(4), all	
other C-N	146.6(5);
N3-C1-C(Ph))
N2-C1-C(Ph)	105.5(5),
N-C1-N	109.4(4),
C (trans-ring)-N-C1	
111.2(6), C(cis-ring)-N-	
C1 116.1(7), C1-C11-	
C12 116.8(3), C1-C11-	
C16 125.4(3).	

Figure 14: X-ray structure of one of the three independent molecules Ph TATC with selected average bond length and angles

The structures of $\mathbf{2 0}$ and $\mathbf{2 1}$ are very similar to MeTATC $\mathbf{1 7}$ in the trans-trans-cis-conformation. The C-C-bonds from the central carbon atoms to the substituent R are longer than all the other C-C-bonds (155.1(5) pm in 20, 155.9(3) pm in 21 and 154.0 pm in 17). The C-N-bond between the two trans-rings is by $2-3 \mathrm{pm}$ shorter than the other C-N-bonds. This is an indication for some strain in this bond. The substituent R is slightly bend away from this bond, so that the corresponding N-C-C(R) angle becomes slightly larger than the tetrahedral angle $\left(117.5(5)^{\circ}\right.$ in $\mathbf{2 0}, 112.0(2)^{\circ}$ in $\mathbf{2 1}$ and 113.5° in 17).

2.1.2 Chemical Properties of RTATC

The oxidation of the central C-H bond in 16 has been thoroughly investigated by Wuest [22, 23]. It was shown that the tricyclic orthoamide undergoes a remarkably easy oxidation by a proton; when the H^{+}-tetrafluoroborate salt of 16 was heated to only $110{ }^{\circ} \mathrm{C}$, the guanidinium salt was formed along with one mol equivalent of hydrogen gas. The central carbon-hydrogen bond of $\mathbf{1 6}$ must be extraordinarily reactive. So it was no surprise that in all attempts to make complexes of 16 with FeCl_{3}, which were successful with R_{3} TAC [12], only the oxidation products could be isolated. Fig. 15 and fig. 16 show structures of two of the crystals which could be isolated from these attempts. The carbocation is in both cases easily identified by the short CN bond length and the planarity of the $\mathrm{N}_{3} \mathrm{C}^{+}$-unit. The Fe containing anions are in comparison with similar structures identified as $\mathrm{Fe}^{\mathrm{III}}$ in fig. 15 and $\mathrm{Fe}^{\mathrm{II}}$ in fig. 16. The product in fig. 15 has been obtained by oxidation of the product in fig. 16 probably by accidental intrusion of oxygen (see fig. 17).

Figure 15: X-ray structure of $[\mathrm{HTATC}]_{2}^{+}\left[\mathrm{Fe}_{2}^{\mathrm{III}} \mathrm{OCl}_{6}\right]^{2-}(\mathrm{THF})$ with selected bond length and angles
$\mathrm{Fe}-\mathrm{Cl}_{\text {terminal }} \quad 223.6(3)$, Fe- $\mu-\mathrm{Cl} 238.2(3) . \mathrm{N}-\mathrm{C}^{+}$ 134.1(14), N-C-N 119.6

Figure 16: $[\mathrm{HTATC}]_{2}^{+}\left[\mathrm{Fe}_{2}^{\mathrm{II}} \mathrm{Cl}_{6}\right]^{2-}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ with selected bond lengths and angles

Figure 17: Oxiation of the $\left[\mathrm{Fe}_{2}^{\mathrm{II}} \mathrm{Cl}_{6}\right]^{2-}$ anion (fig. 16)

2.1.3 Reaction of RTATC with Acid

The alkyl substituted derivates of HTATC were expected to be more stable against oxidation. Therefore another attempt was to prepare an η^{3}-complex of PhTATC and FeCl_{3}. However, during a period of several months in which the $\mathrm{PhTATCFeCl}_{3}$ solution in ether was stored in a refrigerator to crystallize, water must have entered. A structure of the formed acid adducts can be seen in fig. 18. In another experiment a complexation of PhTATC with VCl_{3} was attempted. However, after a very long time in the refrigerator, again only the product of the reaction with water could be isolated and crystallized. But in contrast to the reaction with $\mathrm{Fe}(\mathrm{III})$ which formed the isolated $\left[\mathrm{Fe}_{2} \mathrm{OCl}_{6}\right]^{2-}$ anion, this time the well coordinating Cl^{-}as counter ion to the $[\mathrm{PhTATCH}]^{+}$

Structure of [PhTATC $\left.+\mathrm{H}^{+}\right]_{2}\left(\mathrm{Fe}_{2} \mathrm{OCl}_{6}^{2-}\right)$; selected bond lengths [pm] and angles [${ }^{\circ}$: C2-N10 269(1), C10-N1 133.3(8), N1-C10-N3 123.2(3), N1-C10C11 115.7(4)

Figure 18: X-ray structure of the acid adduct of $\mathrm{PhTATCFeCl}_{3}$
was hydrogen bridged to the cation. Figure 19 (p. 28) shows the differences in cations which result in the variation of the strength of the coordinating anion. This result is concurring with the results published by Wuest [22] about the reaction of HTATC with protons. By IR and NMR experiments it has been discovered, that the structure of the protonated HTATC depends strongly on the corresponding anion. With Cl^{-}as anion, HTATC as well as PhTATC are protonated at one nitrogen atom forming an ammonium ion. With BF_{4}^{-}instead of HTATC and $\mathrm{Fe}_{2} \mathrm{OCl}_{6}^{2-}$ as weakly coordinating anion in the case of PhTATC, one of the central carbon-carbon bonds is nearly cleaved. Only a weak interaction remains with the resulting formamidinium ion (fig. 20 and 21). Both forms of the cation are, except for the one C-N-bond structurally, almost identical. Therefore this system might be a model for a case of bondstretch isomerism, an effect postulated by Chatt et al. [24] based

Figure 19: Acid adducts of PhTATC
on x-ray crystal structures and by Hoffman [25] based on theoretical studies. Since the rather accidentally formed $\mathrm{Fe}_{2} \mathrm{OCl}_{6}^{2-}$ anion is not a convenient starting material for further studies, it has been replaced with the large noncoordinating anion $\left(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{4} \mathrm{~B}^{+}$with identical results [26]. Fig. 22 (p. 30) shows the corresponding x-ray crystal structure.

Figure 20: Acid adducts of HTATC

C11-N1 159.2(6), C1-N2 143.6(6)
N2-C1-N3 113.0(4), N1-C1-C11
112.5(4)

Figure 21: X-ray crystal structure of the HCl -adduct of PhTATC with selected bond lengths [pm] and angles [${ }^{\circ}$]

2.1.4 Complexes of RTATC

The first complexes of HTATC and MeTATC were molybdenum tricarbonyl complexes by Wong and Weisman [16]. The x-ray crystal structures and the carbonyl IR stretching frequencies of these complexes are consistent with the $f a c-\mathrm{M}(\mathrm{CO})_{3}$ structure, showing that the RTATC are indeed tridentate ligands.

Attempts to prepare analogous complexes using $\mathrm{CrCl}_{3} \cdot 3 \mathrm{THF}$ (fig. 23) gave quick results with correct elemental analyses and intact ligands indicated by IR spectra for RTATC with $\mathrm{R}=\left(\mathrm{H}, \mathrm{Me}, \mathrm{Bu}, \mathrm{Ph}, \mathrm{Bz}, \mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. One hint for an η^{3}-coordination of the RTATC-chromium complexes might

Figure 22: X-ray crystal structure of $[\mathrm{PhTATCH}]^{+}\left[\mathrm{B}\left(1,5-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{4}\right]^{-}$with cleaved C1-N1 bond.
be the observation that the $\mathrm{PhTATCCrCl}_{3}$ complexes can be converted analogous to the $\mathrm{R}_{3} \mathrm{TACCrCl}{ }_{3}$ complexes into $\operatorname{PhTATCCr}(\mathrm{OTf})_{3}$ complexes by stirring a suspension of the chloride in pure trifluoromethansulfonic acid.

$$
\mathrm{PhTATCCrCl}_{3}+3 \mathrm{TfOH} \longrightarrow \operatorname{PhTATCCr}(\mathrm{OTf})_{3}+3 \mathrm{HCl}
$$

A free nitrogen atom in a possible η^{2} - or η^{1}-complex under the given con-

Figure 23: Synthesis of $\mathrm{R}_{3} \mathrm{TACCrCl}_{3}$ complexes.
ditions should have been protonated. In that case it should have been impossible to remove the acid in vacuo or by washing with pentane. If the ligand had been freed, it should have decomposed quickly in the strong acetic environment. However, this might be at best circumstantial evidence, but a good elemental analysis for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and S and an IR spectrum could be obtained, too. The extremely low solubility in all but the most polar solvents, in which these complexes quickly decompose, and their strong paramagnetism did not allow a more precise determination of their structure.

Some more information about the RTATC as ligand could be gathered by preparing the $\mathrm{Cu}(\mathrm{II})$-complex of PhTATC from which an x-ray crystal structure could be obtained (fig. 24), and a zinc complex which provided information of the NMR-spectra of RTATC complexes (fig. 24, p. 32). The x-ray crystal structure of the Cu-complex shows a very interesting effect. With bond lengths of $206.9(2) \mathrm{pm}$ and $207.3(2) \mathrm{pm}$ between two of the nitrogen atoms and the copper atom, and with the copper atom located only 10 pm above the plane of the chlorine atoms and these two nitrogen atoms, the copper has a square planar coordination environment with an only η^{2} coordinated PhTATC. The η^{2}-coordination is best seen in fig. 24 on page 32 . The triangle shows the projection of the copper atom in the plane opened by the nitrogen atoms N1, N3, and N3 in correct scale. The distance of the copper atom from this plane is with 173.28 pm in the same range as the analogous distances in the triazacyclohexane copper complexes discussed later (see 2.2.1, p. 34). Though the third $\mathrm{Cu}-\mathrm{N}$ distance is with $275.4(3) \mathrm{pm}$ too long for a $\mathrm{Cu}-\mathrm{N}$ bond and the position of the Cu atom is doubtless η^{2}, the ligand already has the all-trans conformation necessary for an η^{3}-complex.

Possibly, an agostic attraction between the Cu and the hydrogen of the CH_{2}-group in the position opposite to the third nitrogen might be dis-

Cu-N2 275.4(3), Cu-N1 207.3(2),
Cu-N2 206.9(2), Cu-Cl1 220.98(12), Cu-Cl2 221.64(12), Cu-H9A 258(3), N1-Cu-N3 66.16(9), Cl1-Cu-Cl2 98.48(5)

Figure 24: X-ray crystal structure of $\mathrm{PhTATCCuCl}_{2}$ with selected bond length $[\mathrm{pm}]$ and angles $\left[^{\circ}\right]$ and the projection of the Cu atom in the $\mathrm{N} 1-\mathrm{N} 2-$ N3 triangle
cussed. The $\mathrm{Cu}-(\mathrm{C}-\mathrm{H})$ distance is with $\mathrm{Cu}-\mathrm{C} 9=285.6(4) \mathrm{pm}$ and $\mathrm{Cu}-\mathrm{H} 9 \mathrm{~A}=$ $258(3) \mathrm{pm}$ similar to the bonding situation in the complexes [(Norbornadien) $\mathrm{Cu}($ dien $)]^{+}(\mathrm{Cu}-\mathrm{C}=278 \mathrm{pm} ; \mathrm{Cu}-\mathrm{N}=208-225 \mathrm{pm}[27])$ and $[\mathrm{Co}(\mathrm{III})$ (dacoda) $\left.\left(\mathrm{SO}_{3}\right)\right](\mathrm{Co}-\mathrm{C}=252 \mathrm{pm} ; \mathrm{Co}-\mathrm{N}=193-196 \mathrm{pm}[28])$ with agostic $\mathrm{CH}-$ groups. In the IR-spectra, however, no indication for a weakened C-H bond can be found. Additionally the propylene bridge is slightly bend out of the N_{3}-plane, indicating a repulsive rather than an attractive interaction.

The preparation of Zn complexes of BzTATC was of great interest, because of their diamagnetism and therefore the possibility of analysis by NMRspectroscopy. The complexes were obtained according to the following equa-
tion:

$$
\mathrm{ZnEt}_{2}+\mathrm{BzTATC}+\left[\mathrm{Me}_{2} \mathrm{NHPh}^{2}\right] \mathrm{BF}_{4} \longrightarrow \mathbf{7}+\mathrm{Me}_{2} \mathrm{NPh}+\mathrm{C}_{2} \mathrm{H}_{6} \uparrow
$$

The complexes are difficult to han-

Figure 25: $[\text { BzTATCZnEt }]^{+}$in 7 dle and very sensitive against water and air. Unfortunately no suitable crystals for x -ray crystal analysis could be obtained from [BzTATCZnEt] ${ }^{+} \mathrm{BF}_{4}$, but the diamagnetism of the complex allowed for the first time to get good ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of coordinated RTATC. The spectra (p. 121) show signals for a highly symmetric BzTATC which is a sign for η^{3}-coordination.

2.2 Synthesis of 1,3,5-Trialkyl-1,3,5-triazacyclohexane Complexes R_{3} TAC

Parallel to the work on the $\mathrm{RTATCCrCl}{ }_{3}$ complexes, analogous work has been done using R_{3} TAC as ligand:

$$
\mathrm{R}_{3} \mathrm{TAC}+\mathrm{CrCl}_{3} \cdot 3 \mathrm{THF} \longrightarrow \mathrm{R}_{3} \mathrm{TACCrCl}_{3}+3 \mathrm{THF}
$$

The $\mathrm{Cr}(\mathrm{III})$ complexes of $\mathrm{R}_{3} \mathrm{TAC}$ with small substituents $\left(\mathrm{R}=\mathrm{Me},{ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{Bz}\right.$, cyclohexyl a. o.) are almost identical in melting point, color, solubility and stability to the $\mathrm{RTATCCrCl} \mathrm{l}_{3}$ complexes. In other words the same problems
(paramagnetism, insolubility, for x-ray crystal structure analysis not suitable wool like crystal fibers) which were discussed for the RTATC chromium complexes are also true for the $\mathrm{R}_{3} \mathrm{TAC}$ complexes.

For this reason and the formerly mentioned fact that hardly any information on R_{3} TAC complexes was available, some basic research had to be done for a better understanding of the coordination chemistry of $\mathrm{R}_{3} \mathrm{TAC}$. Therefore, and because of the similarity of RTATC and R_{3} TAC complexes, the same procedures used to examine the RTATC system were applied to the $\mathrm{R}_{3} \mathrm{TAC}$ system, namely preparation and characterization of $\mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$ complexes.

In this work only the $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ complexes of the triazacyclohexanes are discussed.

2.2.1 $\mathrm{Cu}(\mathrm{II})$-complexes of Symmetrically Substituted R_{3} TAC

During the work on R_{3} TAC complexes of $\mathrm{Cu}(\mathrm{II})$ x-ray crystals structures of ${ }^{i} \mathrm{Pr}_{3} \mathrm{TACCuCl}_{2}$ and " $\mathrm{Me}_{3} \mathrm{TACCuCl}_{2}$ " 8 could be obtained by R. Köhn [29] (for an analogous chiral $\mathrm{R}_{3} \mathrm{TACCu}(\mathrm{II})$ complex see [30]). The ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TACCuCl}_{2}$ is a monomer with a nearly η^{3}-coordinated ${ }^{i} \mathrm{Pr}_{3} \mathrm{TAC}(\mathrm{Cu}-\mathrm{N} 203.8(1)$, 206.3(4) and $224.6(4) \mathrm{pm})$). The structure of the $\mathrm{Me}_{3} \mathrm{TAC}$ complex is quite different (fig 26). Due to the smaller nitrogen substituents two complexes are associated by two chlorine bridges forming a dimer. The paramagnetism of this compound made it difficult to get useful ${ }^{1} \mathrm{H}-$ or ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra. The ${ }^{2} \mathrm{H}-$ spectra of ring deuterated 65 in MeNO_{2} is difficult to interpret due to the low solubility of $\mathbf{6 5}$, but shows two sets of signals at $\delta=2.8, \delta=7.8, \delta=71$ and 30. This may indicate a monomer-dimer equilibrium in MeNO_{2} [29]. To backup such interpretation several attempts were made to grow crystals of monomeric 65 which should allow to investigate the equilibrium. Unfortu-

Figure 26: X-ray crystal structures of ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TACCuCl}_{2}$ and $\left(\mathrm{Me}_{3} \mathrm{TACCuCl}_{2}\right)_{2}$ [29]
nately it was not yet possible to get a $\mathrm{Me}_{3} \mathrm{TACCuCl}_{2}$ structure analogous to ${ }^{i} \mathrm{Pr}_{3} \mathrm{TACCuCl}_{2}$. However, the attempt to prevent the dimerisation by a very quick precipitation of the formed complex by pouring a saturated solution of CuCl_{2} in ethanol into a large excess of $\mathrm{Me}_{3} \mathrm{TAC}$ under rapid stirring resulted in a bright yellow solid. This compound can be crystallized from toluene and gives the x-ray crystal structure in fig. 27.
$\mathrm{Cu}-\mathrm{N} 1 \quad 201.9(4), \quad \mathrm{Cu}-\mathrm{N} 2$ 251.0(4), Cu-N3 262.1(4),

Figure 27: X-ray structure of $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ with selected bond lengths [pm] and angles [${ }^{\circ}$]

Figure 28: Relative positions of the copper atom under the $\mathrm{N}(1)-\mathrm{N}(2)$ -$\mathrm{N}(3)$-nitrogen planes of $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ (a), ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TACCuCl}_{2}$ (b) and $\left(\mathrm{Me}_{3} \mathrm{TACCuCl}_{2}\right)_{2}(\mathbf{c})$

Now the $\mathrm{Cu}(\mathrm{II})$-atom is coordinated to two $\mathrm{Me}_{3} \mathrm{TAC}$ ligands. When the $\mathrm{Cu}-\mathrm{N}$ bond lengths of the dimer are compared with the corresponding $\mathrm{Cu}-$ N bond lengths of this monomer, it shows that two of the bonds are almost in the same range ($\mathrm{Cu}-\mathrm{N}$ monomer:dimer $=201.9(4): 206.4(8) \mathrm{pm}$ and 262.4(4):259.7(12) pm). The third " η^{3} "-distance increased by about 36 pm from $\mathrm{Cu}-\mathrm{N}=215.1(10) \mathrm{pm}$ to $\mathrm{Cu}-\mathrm{N}=251.0(4) \mathrm{pm}$. The $\mathrm{Cu}-\mathrm{N}$ bond length of the η^{1}-coordinated $\mathrm{Me}_{3} \mathrm{TAC}$ is 202.8 pm . Since two of the C-N bond lengths are quite long the question arises, whether this complex really is an η^{1} / η^{3}-complex or whether it is better described as η^{1} / η^{1}-complex. Figure 28 shows the projection of the Cu atom onto the plane opened by the nitrogen atoms $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$ in correct scale. The point is the position of the copper atom below this plane. The three nitrogen atoms form nearly a perfect isosceles triangle (angles: $60.05,60.44$ and 59.51°). A pure η^{3}-coordinated atom would lie in the center of the triangle. Since fig. 28 alone does not allow to decide what coordination type describes the structure better, another criterion had to be used.

The common coordination geometry for $\mathrm{Cu}(\mathrm{II})$ with $\mathrm{C}_{\mathrm{N}} 4\left(\eta^{1} / \eta^{1}\right)$ is square planar and with $\mathrm{C}_{\mathrm{N}} 6\left(\eta^{1} / \eta^{3}\right)$ distorted octahedral. Table 1 shows that the four short bonds do not form a square but are part of an octahedron with the two remaining nitrogen atoms occupying two cis positions (see fig 29). The two long $\mathrm{Cu}-\mathrm{N}$ bonds are stereochemically active, i. e. the short $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{Cl}$ bonds are bend away from the ideal quadratic-planar configuration to a more tetrahedral configuration.

In a square planar complex, there are three possible d-d transitions: $\mathrm{d}_{\mathrm{xy}}\left(\mathrm{d}_{\mathrm{yz}}\right)$ $\longrightarrow \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}\left(\nu_{1}\right) ; \mathrm{d}_{\mathrm{z}^{2}} \longrightarrow \mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}\left(\nu_{2}\right) ; \mathrm{d}_{\mathrm{xy}}$ $\longrightarrow \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}\left(\nu_{3}\right)$. Fig. 30 shows qualitatively the change of the orbitals during the transition from a complex with coordination number four (tetrahedral, square planar) to a complex with coordination number six (octahedral). On the right side of fig. 30 can be seen, that

Figure 29: $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ the more the square planar coordination changes to square bipyramidal coordination and finally to an octahedral complex through the approach to two more bonds, the more the value of ν_{1} should decrease and become equal to ν_{2}. The value of ν_{3} should also decrease, and finally vanish in an ideal octahedral complex, since then the e_{g} orbitals are all degenerated. This would also be true when the starting structure is not square planar, but tetrahedral and the intermediate is not square bipyramidal, but has a structure like the $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ in fig. 29. So the color change from deep green of the complexes in fig. 26 to bright yellow in case of $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ can be explained by deviation from the ideal square
planar or tetrahedral geometry of the complex in direction of an octahedral geometry.

Another result of this deviation is the ease the $\mathrm{Cu}(\mathrm{II})$ can be reduced to $\mathrm{Cu}(\mathrm{I})$ in this complex as it is observed later. It is the same principle, promotion of redox processes by strained configurations through appropriate ligands, which can be observed in several systems in nature [31, 32]. Re-

Figure 30: a tetrahedral field, b octahedral field, c square bipyramidal field. d square planar field
garding this observation it is surely valid to speak in case of $\mathbf{9}$ as of an η^{1} / η^{3} complex. The distance of the Cu atom from the plane opened by the nitrogen atoms $\mathrm{N}(1)-\mathrm{N}(3)$ is 188.5 pm . This distance is about 12 pm longer than the distance from the equivalent plane in the dimer (176.3 pm). $\mathbf{9}$ is in solution not only very air sensitive, but probably undergoes under certain conditions internal rearrangements. Several attempts to recrystallize $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ failed until pure $\mathrm{Me}_{3} \mathrm{TAC}$ was used as solvent. It was observed, that after

Figure 31: A section of the x-ray structure of the product of the reduction of $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$ with $\mathrm{Me}_{3} \mathrm{TAC}$ with selected bond lengths [pm] and angles $\left[{ }^{\circ}\right]$
the recrystallization the mother liquor, normally a water clear, colorless liquid, turned quickly green upon exposure to the slightest traces of oxygen. Under exclusion of free oxygen the green solution consumes the oxygen and turns colorless again within several days. This can be repeated several times. After several of these "oxidation-reduction" cycles colorless crystals start to grow in the mixture. Fig. 31 shows the x-ray crystal structure which could be obtained from these crystals. Obviously the $\mathrm{Me}_{3} \mathrm{TAC}$ was able to reduce

$\mathrm{Cl}(\mathbf{1})-\mathrm{Cu}-\mathrm{Cl}(\mathbf{2})$	$\mathbf{1 1 5 . 4 5}$	$\mathrm{Cl}(\mathbf{1})-\mathrm{Cu}-\mathrm{N}(\mathbf{1})$	$\mathbf{9 4 . 9 2}$
$\mathrm{Cl}(\mathbf{2})-\mathrm{Cu}-\mathrm{N}(\mathbf{1})$	$\mathbf{9 4 . 1 8}$	$\mathrm{Cl}(\mathbf{2})-\mathrm{Cu}-\mathrm{N}(4)$	$\mathbf{9 8 . 6 6}$
$\mathrm{Cl}(\mathbf{1})-\mathrm{Cu}-\mathrm{N}(\mathbf{4})$	$\mathbf{9 5 . 6 3}$	$\mathrm{N}(\mathbf{1})-\mathrm{Cu}-\mathrm{N}(4)$	$\mathbf{1 5 7 . 9 5}$
$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{N}(2)$	143.97	$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{N}(2)$	93.51
$\mathrm{~N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	60.27	$\mathrm{~N}(2)-\mathrm{Cu}-\mathrm{N}(4)$	100.91

Table 1: Bond angles $\left[^{\circ}\right.$] between the short bonds to Cu in 9 (bold) and their angle to one of the longer bonds $\mathrm{Cu}-\mathrm{N} 2$
the $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$. The mechanism of this reaction is not clear yet, but it is well known that triazacyclohexanes can be oxidized according to fig. 32 (see also [33]). Nevertheless, irrespective of the mechanism, the struc-

Figure 32: Oxidation of triazacyclohexanes
tures of the anions are very interesting. The crystals consist of six cations of the oxidized $\mathrm{Me}_{3} \mathrm{TAC}\left(\left[\mathrm{oxMe}_{3} \mathrm{TAC}\right]^{+}\right.$, see fig. 32) and two sorts of $\mathrm{Cu}(\mathrm{I})$ containing anions: $\left(\text { oxMe }{ }_{3} \mathrm{TAC}\right)_{6}\left(\mathrm{CuCl}_{3}\right)_{2}\left(\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right)$ 10. Though trigonal planar $\left[\mathrm{CuCl}_{3}\right]^{2-}$ seems to be quite rare, at least two more examples of this structure could be found [34, 35] in literature. Much more interesting is the structure of the $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]^{2-}$ anion. Attractive interactions between formally closed-shell metal centers (s^{2} or d^{10}) are well documented [36]. Especially for $\mathrm{Au}(\mathrm{I})$ many examples can be found, so that the special term aurophilicity has been coined to describe this special kind of metal-metal attractive interaction [37]. The question whether a similar metallophilicity [38] exists for copper or silver, is still a matter of controversy [39]. Metallophilic effects are easily blurred by effects exerted by a bridging ligand architecture, and hence examples of ligand-unsupported metal-metal interactions are of great importance in this discussion. They are, however, notoriously scarce for silver [40] and especially for copper [41]. One example is a trinuclear species $[\mathrm{CuL}]_{3}$ (HL=2-[3(5)-pyrazoyl]pyridine)(fig. 33). It crystallizes as a dimer showing

Figure 33: $\left[\mathrm{Cu}_{3}(2-(3(5)-\mathrm{pz}) \mathrm{py})_{3}\right]$ and dimer [41].
two close metal-metal contacts between the two associated trinuclear units in the absence of any supporting bridging ligation $[\mathrm{d}(\mathrm{Cu}-\mathrm{Cu})=290.5(3) \mathrm{pm}]$ [41]. Another example is reported by Siemeling [39].

In the $[\mathrm{CuL}]^{+}\left[\mathrm{CuCl}_{2}\right]^{-} \mathbf{1 1}(\mathrm{L}=$ 1,1'-bis(2-pyridyl)octamethylferrocene) the almost linear $\left[\mathrm{CuCl}_{2}\right]$ unit is approximately perpendicular to the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ unit (fig 34) with a $\mathrm{Cu}-\mathrm{Cu}$ distance of $281.0(2) \mathrm{pm}$ and the torsion angles are 85.5° and 89.4° [39]. Bénard and Poblet [42] did a theoretical analysis of the ligandunsupported $\mathrm{Cu}(\mathrm{I})-\mathrm{Cu}(\mathrm{I})$ inter-

Figure 34: Simeling complex [39] action in the complex in fig. 34.

According to them density functional theory calculations explain the short
$\mathrm{Cu}(\mathrm{I})-\mathrm{Cu}(\mathrm{I})$ contact in 11 by a strong electrostatic attraction between the two moieties and rule out the initially suggested metallophilic interaction. An electrostatic attraction is certainly ruled out in the $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]^{2-}$ anion. In this anion the $1,1^{\prime}$-bis(2-pyridyl)octamethylferrocene- Cu^{+}unit is replaced by a second $\left[\mathrm{CuCl}_{2}\right]^{-}$unit. The angles in both compounds are almost identical. The $\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(2)$ and the $\mathrm{Cl}(4)-\mathrm{Cu}(2)-\mathrm{Cl}(3)$ are $171.46(11)^{\circ}$ and $164.98(11)^{\circ}$. The $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cu}-\mathrm{Cl}$ dihedral angles are about 90°. The $\mathrm{Cu}-\mathrm{Cu}$ distance is with $292.17(17) \mathrm{pm}$ slightly longer, but in the range of known $\mathrm{Cu}(\mathrm{I})-\mathrm{Cu}(\mathrm{I})$ distances of comparable compounds. So with 10 a system might have been found on which possible cuprophilicity effects might be studied without disturbing influences of unsymmetrical ligand substitutions and which is even strong enough to overcome the electrostatic repulsion between the anions. However, nothing can be said about possible packing effects in the crystal since no effort has been taken yet to find the anion in solution.

2.2.2 $\mathrm{Cu}(\mathrm{I})$-complexes of Symmetrically Substituted R_{3} TAC

The $\mathrm{Cu}(\mathrm{I})$ complexes of R_{3} TAC are available by treatment of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}\right)$ with $\mathrm{R}_{3} \mathrm{TAC}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}\right.$, Bz , cyclohexyl $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:

$$
\mathrm{R}_{3} \mathrm{TAC}+\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4} \longrightarrow\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{BF}_{4}+3 \mathrm{CH}_{3} \mathrm{CN}
$$

These complexes are pure white and extremely air sensitive solids. By replacement of the acetonitrile ligand with PPh_{3} the much more stable $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right)-\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{X}$ can be obtained. All attempts to wash $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{X}$ with THF resulted in an exchange of the acetonitrile, giving $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}(\mathrm{THF})\right] \mathrm{X}$. These complexes are diamagnetic and therefore easily to examine by NMR-spectroscopy. Especially the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are very characteristic for coordinated R_{3} TAC ligands. While in the

Figure 35: Synthesis of $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{CuL}\right] \mathrm{X}$ complexes. $\mathrm{L}=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{PPh}_{3}$, THF; $\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}$
free ligand the ring protons are indistinguishable and show a broad signal near coalescence at about 3.2 ppm at room temperature, their signal is split in the $\mathrm{Cu}(\mathrm{I})$-complexes into two sharp doublets, indicating a η^{3}-coordinated and symmetrical environment, for the endo- and exo-protons. Figure 36 is an example of the ${ }^{1} \mathrm{H}$-NMR spectrum of ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}$ and in figure 37 the ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{Cu}(\mathrm{I})$ complex of the same ligand with the splitting of the ring protons. The signals of the benzyl substituted complex are slightly broader, possibly indicating a less symmetrical substitution. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra show a signal in the typical area between 9 and 12 ppm for $\mathrm{Cu}(\mathrm{I})-\mathrm{PPh}_{3}$ complexes $\left(\left[\left(\mathrm{HB}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right]: 11.87 \mathrm{ppm}[43]\right)$. The

Figure 36: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}$

Figure 37: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\left[\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$
${ }^{13} \mathrm{C}$-NMR spectra are also consistent with the data from other $\mathrm{Cu}(\mathrm{I})-\mathrm{PPh}_{3}$ complexes [44, 45]. In ${ }^{19}$ F-NMR spectra one signal for a free, symmetrical BF_{4}^{-}can be found.

The IR spectra of these complexes show the typical absorption bands for R_{3} TAC ligands. Though the area around $500 \mathrm{~cm}^{-1}$ is clearly dominated by the PPh_{3} signals, the signals typical for an η^{3}-coordination could be found by comparison of several spectra including one with in the ring positions deuterated Bz_{3} TAC. These characteristic bands were about $10 \mathrm{~cm}^{-1}$ shifted to lower wave number against the position of the equivalent bands of the Cr (III) complexes [46]. Therefore the bond of the $\mathrm{R}_{3} \mathrm{TAC}$ in the $\mathrm{Cu}(\mathrm{I})$-complexes must be weaker than in the $\operatorname{Cr}(\mathrm{III})$-complexes [12]. The IR-spectra, too, indicate, that unlike in the $\mathrm{Cy}_{3} \mathrm{TAC}\left(\mathrm{Cy}=\right.$ cyclohexyl) and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}$ complexes the $\mathrm{Bz}_{3} \mathrm{TAC}$ ligand is in the $\mathrm{Cu}(\mathrm{I})$-complex unsymmetrically bonded. The IR-spectrum of the $\left[\left(\mathrm{Bz}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ complex shows a signal at 504 and 479 cm (447 and 428 cm for the deuterated compound), while the other complexes show only one signal in this area.

By slow diffusion of toluene into a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ colorless crystals of $\left[\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} \cdot 0.5\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ and $\left[\left(\mathrm{Bz}_{3} \mathrm{TAC}\right)-\right.$ $\left.\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ could be obtained.

The structure of $\left[\left({ }_{(} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 12$ contains two independent cations. Figure 38 shows one of these. Both structures show approximately tetrahedral coordination. In one of the structures the ${ }^{i} \operatorname{Pr}_{3} \mathrm{TAC}$ is roughly η^{3}-coordinated ($\mathrm{Cu}-\mathrm{N}=217.6(5), 220.1(5)$ and $\left.220.2(4) \mathrm{pm}\right)$ while in the other cation one of the $\mathrm{Cu}-\mathrm{N}$ bond length with 215.0(4) is clearly shorter than the other two distances with $223.4(4)$ and $223.7(4) \mathrm{pm}$. One of the ring CH_{2}-groups is found to be closer to the Cu -atom (265.2(5) pm), but no further indication for an agostic effect could be found. The structure

Figure 38: X-ray structure of one of two independent cations of $\left[{ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TACCuPPh}_{3}\right] \mathrm{BF}_{4}$ with selected bond lengths [pm] and angles [${ }^{\circ}$] and a projection of the copper atom in the by the three nitrogen atoms $\mathrm{N} 1, \mathrm{~N} 2$, and N3 opened plane in correct scale
of the $\left[\left(\mathrm{Bz}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4} 13$ is quite different from the structures of the ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}$ complex. The $\mathrm{Cu}-\mathrm{N}$ distances range from $215.0(4) \mathrm{pm}$ and $221.0(2) \mathrm{pm}$ to $244.6(3) \mathrm{pm}$. All three benzyl groups are oriented to the metal. However, a bonding interaction with the Cu-atom can be ruled out. With the shortest $\mathrm{Cu}-\mathrm{C}$ distance of 349 pm it definitely is too long. However, again one of the ring CH_{2}-groups is quite close to the Cu -atom (260.0(3) pm). And unlike the other copper complexes with similarly short $\mathrm{Cu}-\mathrm{CH}_{2}$ distances, the IR-spectrum of 13 shows a strong C-H valence band at $2786 \mathrm{~cm}^{-1}$, indicating a noticeably weakened bond. This band shifts in the ring deuterated

Figure 39: X-ray structure of $\left[\mathrm{Bz}_{3} \mathrm{TACCuPPh}_{3}\right] \mathrm{BF}_{4}$ with selected bond lengths $[\mathrm{pm}]$ and angles $\left[^{\circ}\right]$ and the projection of the copper atom in the by the three nitrogen atoms N1, N2, and N3 opened plane in correct scale.
compound to $2026 \mathrm{~cm}^{-1}$. The strong difference in intensity in comparison to the "non-agostic" C-D bands at 2233, 2219 and $2075 \mathrm{~cm}^{-1}$ indicate, that in 13 an agostic attraction may actually exist.

The bond lengths to the phosphanes are in both $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}(\mathrm{I})\left(\mathrm{PPh}_{3}\right)\right]^{+}$ complexes almost equal (214.31(9) in 13, 212.4(2) and $213.7(2) \mathrm{pm}$ in 12). This is slightly shorter than in other $\mathrm{Cu}(\mathrm{I})-\mathrm{PPh}_{3}$ complexes $(215-230 \mathrm{pm})$. When the UV/Vis-spectra of $\mathrm{Bz}_{3} \mathrm{TACCrBz}_{3}$ and $\mathrm{Cy}_{3} \mathrm{TACCrBz}_{3}$ are compared with with the spectra of $\left[\mathrm{Cp}^{*} \mathrm{CrBz}_{3}\right]^{-}$, it shows that Cp^{*} and $\mathrm{R}_{3} \mathrm{TAC}$ have a similar ligand field strength (as far as this model is applicable with these sort of complexes). Comparison of x-ray crystal structures of both complex classes show that there are many structural similarities, too [12].

A thorough discussion of the analogous $\mathrm{Cp}-\mathrm{Cu}$ structures is difficult, since there are only three x-ray crystal structures of CpCu -complexes known, which are all $\mathrm{Cu}(\mathrm{I})$-complexes $[47,48,49]$. Nevertheless, table 2 (p. 48) shows, that

	Complex	Ring-Cu	Cu-P
TATC:	$\mathrm{PhTATCCuCl}_{2}$	173.28	
	${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TACCuCl}_{2}$	172.4	
$\mathrm{Cu}(\mathrm{II}):$	$\left(\mathrm{Me}_{3} \mathrm{TACCuCl}_{2}\right)_{2}$	176.3	
	$\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}$	188.5	
$\mathrm{Cu}(\mathrm{I}):$	$\left[\mathrm{Bz}_{3} \mathrm{TACCuPPh}_{3}\right] \mathrm{BF}_{4}$	179.0	$214.31(9)$
	$\left[\mathrm{Pr}_{3} \mathrm{TACCuPPh}_{3}\right] \mathrm{BF}_{4}$	177.2	$212.4(2)$
	$\mathrm{CpCuPPh}_{3}$	186.4	$213.5(2)$
	$\mathrm{CpCuPEt}_{3}$	190.5	$213.5(9)$

Table 2: Perpendicular ring- Cu distances and $\mathrm{Cu}-\mathrm{P}$ distances (if applicable) of several TATC, TAC and Cp copper complexes
the structural differences between CpCu - and R_{3} TAC/RTATCCu-complexes are not particularly large either. The hapticity of the $\mathrm{R}_{3} \mathrm{TACCu}$-complexes can steadily vary from η^{1} to η^{3} which reminds of the 'ring slippage' of the Cp-complexes. With NMR spectroscopic experiments (spin saturation transfer) Mountford could prove the rotation of the $\mathrm{Me}_{3} \mathrm{TAC}$ on titanium complexes and determine the activation energy of this process to $\Delta G^{\neq=}$ $62.9 \pm 0.5 \mathrm{kJmol}^{-1}$ at 292 K [11] and is even higher in complexes of $\mathrm{R}_{3} \mathrm{TAC}$ with sterical demanding substituents. Though the energy is much higher than in an analogous metallocene, it still shows that properties found in Cp-complexes can also be expected in $\mathrm{R}_{3} \mathrm{TAC}$ complexes.

2.3 Synthesis and Characterization of Unsymmetrically Substituted Triazacyclohexanes $\mathbf{R}_{2} \mathbf{R}^{\prime}$ TAC

Unsymmetrically substituted triazacyclohexanes are triazacyclohexanes with two or three different substituted nitrogen atoms. At the beginning of this work only very few examples for such TACs were available (see fig. 8 on p. 18). Since the synthetic routes for these TACs are not adaptable for a greater range of different unsymmetrically substituted TAC, new synthetic routes had to be developed.

2.3.1 Synthesis of Unsymmetrically Substituted $\mathrm{R}_{2} \mathrm{R}^{\prime}$ TAC

The first, most obvious attempt to prepare these compounds was simply to let a mixture of primary amines react with formaldehyde and hope for an at least statistical distribution of the possible products. Further, in case of satisfying results with this method, a manageable method to separate the products in this mixture should be found.

Unfortunately the rate of the reaction between a primary amine and formaldehyde depends more strongly on the amine than expected. In an NMR-experiment formaldehyde was added successively in small portions to a mixture of methylamine and benzylamine. The resulting ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra clearly showed that the benzylamine only began to react with the formaldehyde when all the methylamine was used up. This was conform to the observations made in several experiments with different amines and solvents where reproducible yields near 0% of $\mathrm{R}^{\prime} \mathrm{R}_{2} \mathrm{TAC}$ were observed.

Finally, after a long row of experiments with varying solvents, temperatures, concentrations and amine ratios, $\mathrm{R}^{\prime} \mathrm{R}_{2}$ TAC yields of up to 60% have been found. These results were obtained with ethanol as solvent. The ratio

Figure 40: Equilibria in R_{3} TAC synthesis
of the two amines in this mixture was about 100:1 and the concentration of the mixture in ethanol was between 0.5 and $1.2 \mathrm{moll}^{-1}$. Lower concentrations give even better results, but the absolute yields become unacceptable low.

For the special case of $R^{\prime} R_{2} T A C$ with $R=M e$ or $R=$ Et a second method was found by shifting the equilibrium in fig. 40 at $130^{\circ} \mathrm{C}$ through removal of the more volatile amines MeNH_{2} or EtNH_{2} :

$$
\mathrm{Me}_{3} \mathrm{TAC}+\mathrm{R}^{\prime} \mathrm{NH}_{2} \longrightarrow \mathrm{R}^{\prime} \mathrm{Me}_{2} \mathrm{TAC}+\mathrm{MeNH}_{2} \uparrow
$$

2.3.2 Separation of Unsymmetrically Substituted $R_{2} R^{\prime}$ TAC

With both methods, mixtures with a large excess of symmetrical TAC and only a few percent of the desired $R^{\prime} \mathrm{R}_{2} \mathrm{TAC}$ are obtained. Fortunately it proved that other combinations $\mathrm{R}_{3}^{\prime} \mathrm{TAC}$ and R_{2}^{\prime} RTAC are negligible. However, the equilibrium in fig. 40, is only one of a row of observed equilibria in the chemistry of triazacyclohexanes (fig. 41) [2]. These equilibria are of course of no consequence for symmetrical $\mathrm{R}_{3} \mathrm{TAC}$, but it could have meant that unsymmetrically substituted triazacyclohexanes are not stable and undergo internal rearrangements, making it impossible to isolate them. Luckily most $\mathrm{R}^{\prime} \mathrm{R}_{2} \mathrm{TAC}$ are meta stable at room temperature. In the absence of acids and water they even tolerate temperatures of about $80-90^{\circ} \mathrm{C}$. So after drying

$$
+\mathrm{CH}_{2} \mathrm{O}
$$

Figure 41: Equilibria in R_{3} TAC synthesis
with sodium some of the small $\mathrm{R}^{\prime} \mathrm{R}_{2} \mathrm{TAC}\left(\mathrm{R}=\mathrm{Me}\right.$, Et, $\mathrm{Bu},{ }^{\mathrm{i}} \operatorname{Pr} ; \mathrm{R}^{\prime}=\mathrm{Bz}$, $\left.{ }^{t} \mathrm{Bu}\right)$ can be distilled in vacuum. Larger $\mathrm{R}^{\prime} \mathrm{R}_{2} \mathrm{TAC}$, like $\left(\mathrm{C}_{8} \mathrm{H}_{17}\right) \mathrm{Et}_{2} \mathrm{TAC}$ can be purified with standard methods (column chromatography, recrystallization). The only exception where adapted methods had to be developed were triazacyclohexanes with an OH -functionalized substituent (see below).

2.3.3 $R^{\prime} R_{2}$ TAC ($R^{\prime}, R=$ aliphatic or aromatic) with no Functional Groups

Figure 42: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{BzTAC}$

Basically three different classes of unsymmetrically substituted triazacyclohexanes were of interest in this work. Figure 29 shows an example of the most basic class. All three substituents are aliphatic or aromatic. None of the substituents carries a functional group. But they allowed to investigate the differences between symmetrically and unsymmetrically substituted TACs, their stability against acids and higher temperatures, and their spectroscopical properties.

2.3.4 $\quad R^{\prime} R_{2}$ TAC with one Functionalized Substituent

Although the literature dealing with triazacyclohexanes is extensive and triazacyclohexanes bearing functional groups (e.g. hydroxyl, allyl, nitro, nitrile, esters, amides, pyridyl) [2], studies of coordination chemistry of this family of ligands has been limited to 1,3,5-triazacyclohexanes with simple substituents (e.g. $\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu},{ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{Bz}$). Recently, Baker and coworkers synthesized a number of chromium complexes of triazacyclohexanes bearing three hydroxy groups [50]. However, in most cases unsymmetrically substituted triazacyclohexanes
bearing only one functional group $\mathrm{X}\left(\mathrm{X}=-\mathrm{OH},-\mathrm{CN},-\mathrm{NH}_{2}\right.$; see fig. 43 are much more interesting.

There are several reasons to prepare

Figure 43: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{TACEtOH}$ functionalized TACs. η^{5}-cyclopentadienyl ligands with linked σ-heteroatom components have special reactivities [51]. In some examples linked amidocyclopentadienyl complexes of group 4 transitions metals show unique polymerization properties [52].
In other complexes the cyclopentadienyl group is linked by an alkoxy component [51, 53] (fig. 44). More directly connected to this work are the analogous cyclopentadienyl complexes of chromium(III). The complex in fig. 45a shows only a low activity towards

Figure 44: linked CpTi complex ethylene [54], whereas the complex fig. 45b gives activities of $8300 \mathrm{gmmol}^{-1} \mathrm{~h}^{-1} \mathrm{bar}^{-1}[55,56]$. Additionally to the higher activity, the link can be used to direct the reactivity of such complexes in polymerization reactions in a wide range. Since polymerization experiments with $\mathrm{R}_{3} \mathrm{TACCrCl}_{3}$ complexes showed some very interesting properties [57], it was obvious to make similar functionalized triazacyclohexanes in order to prepare constrained geometry complexes of triazacyclohexanes analogous to fig. 45b.

But this is not the only reason, functionalized unsymmetrically substituted triazacyclohexanes are highly interesting. In [58] the activation of
dioxygen by a copper(I) complex of 1-pyridylmethyl-4,7-diisoproyl-1,4,7- triazanonane and consecutive mechanistic studies are reported. Such reactions are of possible relevance in biological and catalytic hydrocarbon oxidations mediated by copper active sites. Another possible use for $R^{\prime} X R_{2} T A C$ is the preparation and characterization of heterobimetallic systems. Heterobimetallic systems like in fig. 46 [59] offer prospects for advantageous synergistic effects; for example, catalysis of olefin hydroformylation is markedly enhanced when a separate cobalt complex is added to a bis(phosphine)palladium catalyst [60].

2.3.5 Preparation of $\left(\mathrm{R}^{\prime} \mathrm{OH}\right) \mathrm{R}_{2} \mathrm{TAC}$

$\left(\mathrm{R}^{\prime} \mathrm{CN}\right) \mathrm{R}_{2}$ TAC and $\left(\mathrm{R}^{\prime} \mathrm{OH}\right) \mathrm{R}_{2}$ TAC can be prepared using the same methods described in 2.3.3.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{\mathrm{x}}-\mathrm{CN}+2 \mathrm{R}^{\prime} \mathrm{NH}_{2}+3 \mathrm{CH}_{2} \mathrm{O} \longrightarrow(\mathrm{RCN}) \mathrm{R}_{2}^{\prime} \mathrm{TAC} \\
& \mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{\mathrm{x}}-\mathrm{OH}+2 \mathrm{R}^{\prime} \mathrm{NH}_{2}+3 \mathrm{CH}_{2} \mathrm{O} \longrightarrow(\mathrm{ROH}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}
\end{aligned}
$$

a

b

Figure 45: A normal $\mathrm{Cp} * \mathrm{Cr}$ (III) complex and a linked $\mathrm{Cp}{ }^{*} \mathrm{Cr}$ (III) complex by Jolly

Figure 46: Examples of complexes of a donor functionalized unsymmetrical triazacyclononane [59]
$\left(\mathrm{R}^{\prime} \mathrm{CN}\right) \mathrm{R}_{2}$ TAC shows no sign of rearrangements below $80^{\circ} \mathrm{C}$. They can, after drying with sodium, easily be purified by distillation or column chromatography. The (ROH) $\mathrm{R}_{2}^{\prime} \mathrm{TAC}$, however, are much more prone for rearrangements. Figure 47 shows a literature known rearrangement of the related symmetrical compound $(\mathrm{ROH})_{3} \mathrm{TAC}[2]$. In case of the unsymmetrically substituted $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime}$ a probably similar rearrangement slowly happens already at room temperature and is for obvious reasons irreversible. Regardless of their thermo lability, some of the smaller $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Et) can be "pre-purified" by distillation when the heating time is kept short and the distillate is cooled at once with liquid nitrogen. In the distillate only TACs without or with only one -OH group can be found. $\left(\mathrm{R}^{\prime} \mathrm{OH}\right)_{2}$ RTAC and $\left(\mathrm{R}^{\prime} \mathrm{OH}\right)_{3} \mathrm{TAC}$ remain in the residum. Purification by column chromatography is possible, too, but with both methods it was only possible to remove the byproducts with two or three -OH substituents. In the distillate, as well as in all fractions of column chromatography, the $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}$ was always contaminated by $5-6 \%$ of $\mathrm{R}_{3}^{\prime} \mathrm{TAC}$. The found percentage of $\mathrm{R}_{3}^{\prime} \mathrm{TAC}$ in all fractions, may be a sign for constant rearrangements on the column material. This rearrangement happened regardless of the column material used (silica gel and neutral aluminum oxide) and despite of a strong basic eluens

Figure 47: Equlibrium between $(\mathrm{PrOH})_{3} \mathrm{TAC}$ and tetrahydro-1,3-oxazine
with up to 50% of triethylamine.
Therefore, alternative methods had to be developed to remove the remaining R_{3}^{\prime} TAC. By reaction with sodium the $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime}$ TAC can be turned into the correspondent alcoxide. The alcoxide is much more stable than the alcohol and can be heated to more than $100{ }^{\circ} \mathrm{C}$ without rearrangements. An even better method to get pure $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}$ is to add $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ to the mixture. The resulting $\left(\mathrm{R}_{2} \mathrm{TAC}-\left(\mathrm{CH}_{2}\right)_{\mathrm{x}}-\mathrm{O}\right)_{2} \mathrm{Si}(\mathrm{Me})_{2}$ are also very insensitive against heat.

$$
2 \mathrm{R}_{2}^{\prime} \mathrm{TACROH}+\mathrm{Cl}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \longrightarrow \mathrm{R}_{2}^{\prime} \mathrm{TACROSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{ORTACR}_{2}^{\prime}+2 \mathrm{HCl}
$$

After removal of the byproducts in vacuum or by recrystallization the siloxane can be cleaved cleanly with water giving highly pure $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}$.

$$
\mathrm{R}_{2}^{\prime} \mathrm{TACROSi}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{ORTACR}_{2}^{\prime}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{R}_{2}^{\prime} \mathrm{TACROH}+\mathrm{H}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}
$$

The product should be used at once or stored refrigerated.

2.3.6 Attempts to Prepare $(\mathrm{RCl}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}$ from $(\mathrm{ROH}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}$

Several attempts to convert the (ROH$)^{\prime} \mathrm{R}^{\prime} \mathrm{TAC}$ into the corresponding chlorides using SOCl_{2} failed. Regardless of solvents and temperatures, the reaction always lead to a black oil with a very complex ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum with no signs for intact triazacyclohexane rings. Another, very mild method to convert alcohols into chlorides is described in [61]:

$$
\mathrm{ROH}+\mathrm{Ph}_{3} \mathrm{P}+\mathrm{CCl}_{4} \longrightarrow \mathrm{RCl}+\mathrm{Ph}_{3} \mathrm{PO}+\mathrm{HCCl}_{3}
$$

The result, however, was the same undefined mixture found in the former attempts when SOCl_{2} was used. All observed facts indicate that $\mathrm{RClR}_{2}^{\prime} \mathrm{TAC}$ are, at least at temperatures above $0^{\circ} \mathrm{C}$, unstable and decompose quickly. This observation is conform to prior observations made in this group on symmetrical $\left(\mathrm{RCl}_{3}\right) \mathrm{TAC}$.

2.3.7 Preparation of $\left(\mathrm{RNH}_{2}\right) \mathbf{R}_{2}^{\prime} \mathrm{TAC}$

The preparation of unsymmetrically substituted triazacyclohexanes with one nitrile substituent is relatively easy when the needed aminonitrile is available. The nitrile group can be reduced to the amine by NaBH_{4} in alkaline solution: $2(\mathrm{RCN}) \mathrm{R}_{2}^{\prime} \mathrm{TAC}+\mathrm{NaBH}_{4} / \mathrm{Ni}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2\left(\mathrm{RNH}_{2}\right) \mathrm{R}_{2}^{\prime} \mathrm{TAC}+\mathrm{NaB}(\mathrm{OH})_{4}$ The presence of Raney nickel prevents the formation of undesired secondary amines [62].

2.3.8 Preparation of Bridged Triazacyclohexanes R_{2} TAC-R'R_{2} TAC

Figure 48: Two TAC rings connected by a m-xylylene bridge

For the preparation of bridged triazacyclohexanes (see fig. 48) the same methods as discussed earlier can be used. The bridged TACs are stable enough to remove volatile byproducts at $80-90^{\circ} \mathrm{C}$ in vacuo. So for the preparation of R_{2}^{\prime} TAC-R- R_{2}^{\prime} TAC with $R^{\prime}=\mathrm{Me}$ or Et the best method is to equilibrate a diamine $\mathrm{H}_{2} \mathrm{~N}-\mathrm{R}-\mathrm{NH}_{2}$ at $130^{\circ} \mathrm{C}$ with $\mathrm{Me}_{2} \mathrm{TAC}$ or $\mathrm{Et}_{3} \mathrm{TAC}$. Unfortunately, this method does not work for larger R_{3} TAC. Experiments with ${ }^{i} \mathrm{Pr}_{3} \mathrm{TAC}$ and Bz_{3} TAC resulted in uncharacterized decomposition products. Nevertheless, bridged TACs with $\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}$, ${ }^{\mathrm{t}} \mathrm{Bu}$ can be obtained using
ethanol as solvent and a very low concentration of the amines. The isolation and purification of the product, however, is somewhat tedious. Regardless of the concentration and the ratio of the amines in ethanol, the formation of polymeric or oligomeric byproducts could not be prevented totally. Fortunately the more TACs are linked together, the less soluble they become in pentane, so they can be almost quantitatively removed when the desired product is extracted with cooled pentane. However, the huge excess of the symmetrical byproduct $\mathrm{R}_{3}^{\prime} \mathrm{TAC}$ has to be removed first, since it tends to carry the oligomers into the pentane solution. The remnants of multiply bridged TACs can be removed by dissolving the mixture in diethylether and filtering it through a short column of neutral aluminum oxide. Again it had been observed that surface effects of the column material catalyse the rearrangement of unsymmetrically substituted TACs. The filtrate usually contained a few percent of the symmetrically substituted TAC again, which now in the absence of multiple bridged TACs can be easily removed in vacuo or by recrystallization.

2.3.9 Attempts to Prepare Unsymmetrically Bridged Triazacyclohexanes (R_{2}^{\prime} TAC-R- $\mathrm{R}_{2}^{\prime \prime} \mathrm{TAC}$)

The successful preparation of $\left(\mathrm{RNH}_{2}\right) \mathrm{R}_{2}^{\prime} \mathrm{TAC}$ (see 2.3.7, p. 58) led to the question, whether unsymmetrically bridged TACs, i.e. different substituted TACs on each side of the bridge, can be prepared. Using the 'ethanol method' $\mathrm{Et}_{2}\left(\mathrm{PrNH}_{2}\right)$ TAC was attempted to give with $\mathrm{MeNH}_{2} \mathrm{Et}_{2} \mathrm{TAC}$ -$\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{Me}_{2} \mathrm{TAC}$, however, the only (bridged) product which could be isolated was the symmetrical $\mathrm{Me}_{2} \mathrm{TAC}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{Me}_{2} \mathrm{TAC}$.

2.3.10 Summary of ${ }^{13}$ C-NMR Data of Unsymmetrically Substituted $\mathrm{R}_{2} \mathrm{R}^{\prime}$ TAC

Table 3 shows the ${ }^{13} \mathrm{C}$-NMR signals of the ring carbon atoms of some selected unsymmetrically substituted $\mathrm{R}_{2} \mathrm{R}^{\prime}$ TAC. A comparison of the shifts of the symmetrically substituted $\mathrm{R}_{3} \mathrm{TAC}$ and $\mathrm{R}_{3}^{\prime} \mathrm{TAC}$ with the shifts of the corresponding unsymmetrically substituted $R_{2} R^{\prime} T A C$ shows, that for the position of the ring signals mainly the two direct R-N/R'-N neighbors are responsible. The influence of the third R-N substituent in the opposite location of the ring can be neglected at first approximation. The fourth column of table 3 shows the arithmetic average of the signal positions of the corresponding symmetrically substituted $\mathrm{R}_{3} \mathrm{TAC}$, i.e. $\mathrm{Bz}_{3} \mathrm{TAC}$ and $\mathrm{Me}_{3} \mathrm{TAC}$ for $\mathrm{Me}_{2} \mathrm{BzTAC}$. Not in all cases the ${ }^{13} \mathrm{C}$-NMR data for the $\mathrm{R}_{3} \mathrm{TAC}$ was available. In those cases $\mathrm{R}_{3} \mathrm{TAC}$ with similar substituents have been used (${ }^{*} \mathrm{Bz}_{3} \mathrm{TAC},{ }^{* *} \mathrm{Et}_{3} \mathrm{TAC}$, $\left.{ }^{* * *} \mathrm{Pr}_{3} \mathrm{TAC}\right)$. The positions of the other ${ }^{13} \mathrm{C}$ ring signal lies, as expected, close to the position of the symmetrically substituted TAC. There might be a tendency to a slightly lower field shift of about $0.5-1.2 \mathrm{ppm}$.

The importance of the above results lies in the possibility to easily distinguish between an unsymmetrically substituted TAC and a mixture of the two corresponding symmetrically substituted R_{3} TAC by ${ }^{13} \mathrm{C}$-NMR spectroscopy.

$\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{TAC}$	$\mathrm{RCH}_{2} \mathrm{R}^{\prime}$	$\left(\mathrm{R}_{3} \mathrm{TAC}+\mathrm{R}_{3}^{\prime} \mathrm{TAC}\right) / 2$	$\mathrm{RCH}_{2} \mathrm{R}$
$\left(\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TAC}\right) \mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	68.53	68.43*	64.27
$\left(\left({ }^{\text {i }} \mathrm{Pr}_{2} \mathrm{TAC}\right) \mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	71.15	71.29*	68.34
$\left(\left(\mathrm{Et}_{2} \mathrm{TAC}\right) \mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	73.88	73.85*	73.37
$\left(\left(\mathrm{Me}_{2} \mathrm{TAC}\right) \mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	74.55	75.43*	76.86
$\left(\mathrm{Et}_{2}(\mathrm{EtO}) \mathrm{TAC}\right)_{2} \mathrm{SiMe}_{2}$	74.41	-	74.20
$\left(\mathrm{Me}_{2}(\mathrm{EtO}) \mathrm{TAC}\right)_{2} \mathrm{SiMe}_{2}$	75.42	$75.45{ }^{* *}$	78.41
$\mathrm{Et}_{2}\left(\mathrm{PrNH}_{2}\right) \mathrm{TAC}$	74.00	$73.78{ }^{* * *}$	73.63
$\mathrm{Me}_{2}\left(\mathrm{PrNH}_{2}\right) \mathrm{TAC}$	75.09	$75.368^{* * *}$	78.09
$\mathrm{Me}_{2}(\mathrm{PrOH}) \mathrm{TAC}$	74.92	75.368	77.41
${ }^{1} \mathrm{Pr}_{2}(\mathrm{EtOH}) \mathrm{TAC}$	69.51	71.41**	68.89
$\mathrm{Et}_{2}\left(\mathrm{EtOSiMe}_{3}\right) \mathrm{TAC}$	74.12	-	74.34
$\mathrm{Et}_{2}(\mathrm{EtCN}) \mathrm{TAC}$	73.07	-	74.48
$\mathrm{Et}_{2}(\mathrm{EtOH}) \mathrm{TAC}$	72.87	-	75.36
$\mathrm{Me}_{2}(\mathrm{EtCN}) \mathrm{TAC}$	74.30	75.54*	78.75
$\mathrm{Me}_{2}(\mathrm{EtOH}) \mathrm{TAC}$	73.71	75.54*	79.55
$\mathrm{Me}_{2} \mathrm{OctTAC}$	75.15	75.86	78.28
$\mathrm{Me}_{2} \mathrm{BzTAC}$	74.66	75.43	78.31

Table 3: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ signals of the ring carbon atoms of unsymmetrically substituted TAC. Values used to calculate averages [ppm]: Me_{3} TAC 77.12, $n^{n P r}{ }_{3}$ TAC 74.23, $(\mathrm{PrOH})_{3}$ TAC 73.6, iPr_{3} TAC 68.85, Oct_{3} TAC 74.6, $\mathrm{Et}_{3} \mathrm{TAC}$ 73.97, Bz_{2} TAC 73.73; Substitutes for missing R_{3} TAC data: ${ }^{*} \mathrm{Bz}_{3} \mathrm{TAC}$, ${ }^{* *} \mathrm{Et}_{3} \mathrm{TAC},{ }^{* * *} \mathrm{Pr}_{3} \mathrm{TAC}$

3 Some Possible Prospects for Future Research Based on the Results in this Work

This chapter subsumes borderline cases of this work which either do not fit in one of the previous chapters or which were only superficially dealt with in some overview experiments with no hard enough data for a proper discussion, but are nevertheless interesting enough for further research.

3.1 13-alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{5,13}\right]$-tridecanes

Compared with the good results of triazacyclohexanes in polymerization reactions, there appears to be no obvious advantage in using RTATC as ligand. The ligand is more difficult and more expensive to prepare and the catalytic activity of its chromium complexes is notably lower then those of comparable triazacyclohexane complexes.

However, the triazacyclohexane chromium complexes examined in this group do not solely catalyse the polymerization of ethylene, but show interesting and unexpected abilities in selectively trimerizing α-olefins. So before RTATC complexes are disregarded as catalysts in favor for the R_{3} TAC complexes, at least some overview experiments should be made, in case these complexes have other unexpected properties like the formation of unusual molecular weight distributions.

An interesting "byproduct" of the work on RTATC complexes is the chromium anion in fig. 49. An attempt to alkylate $\mathrm{HTATCCrCl}_{3}$ with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2} \mathrm{Li}$ according to:

$$
\mathrm{HTATCCrCl}_{3}+3\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Li} \longrightarrow \operatorname{HTATCr}\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)\right)_{3}+3 \mathrm{LiCl}
$$

The result was a deep purple liquid, at room temperature extremely air

Figure 49: Result of an alkylating attempt of $\mathrm{HTATCCrCl}_{3}$ with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2} \mathrm{Li}$
and water sensitive chromium complex, which can be distilled in high vacuum. However, according to the obtained x-ray crystal structure the complex actually is an alkyl chromium complex, but does not contain coordinated HTATC. Instead it contains two uncoordinated HTATC and one [TATC] ${ }^{+}$ cation. The chromium compound therefore must be mono anionic. The complex is bi-nuclear with two alkyl bridges and two terminal $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ and an inversion center between the two Cr -atoms. The terminal $\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ units have Cr-C distances of 203-204 pm and Cr-C-Si angles of $123-126^{\circ}$, which can be expected to be a regular Cr-C singular bond, and therefore can doubtless be formulated as $\left[\mathrm{CH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]^{-}$. The bridging " $\mathrm{CH}_{\mathrm{x}} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ " units have unusual Cr-C bond lengths (185 pm) and Cr-C-Cr resp. Cr-C-Si bond angles $\left(89^{\circ}\right.$ and $\left.131-139^{\circ}\right)$. The $\mathrm{Cr}_{2} \mathrm{C}_{2}$ unit is roughly square planar, the $\mathrm{Cr}-\mathrm{C}$ bonds are clearly stronger than singular bonds. There are many
publications with similar alkyl or amido bridged chromium complexes with a wide range of oxidation states $[63,64,65,66,67]$. Characteristic values for $\mathrm{Cr}-\mathrm{C} / \mathrm{N}$ bonds and $\mathrm{Cr}-\mathrm{C} / \mathrm{N}-\mathrm{Cr}$ angles are:

- $\mathrm{Cr}^{\mathrm{II}}\left(\mu-\mathrm{R}^{-}\right) \mathrm{Cr}^{\mathrm{II}}: 218 \mathrm{pm}, 62^{\circ}$ (not planar)
- $\mathrm{Cr}^{\mathrm{III}}\left(\mu-\mathrm{R}^{-}\right) \mathrm{Cr}^{\mathrm{III}}: 219 \mathrm{pm}, 73^{\circ}$ (planar)

The bridging units have considerably longer bonds and smaller angles, so alkylidene or alkylidine bridges rather than alkyl bridges should be considered.

- $\mathrm{Cr}^{\mathrm{III}}\left(\mu-\mathrm{CH}_{2}^{2-}\right) \mathrm{Cr}^{\mathrm{III}}: 204 \mathrm{pm}, 72^{\circ}$ (triple bridged)
- $\mathrm{Cr}^{\mathrm{IV}}\left(\mu-\mathrm{NR}^{2-}\right) \mathrm{Cr}^{\mathrm{IV}}: 182 \mathrm{pm}, 88^{\circ}$ (planar)
- $\mathrm{Cr}^{\mathrm{V}}\left(\mu-\mathrm{NR}^{2-}\right) \mathrm{Cr}^{\mathrm{V}}: 182 \mathrm{pm}, 87^{\circ}$ (planar)

The bond lengths and angles in this anion are similar to those in the imido bridged $\mathrm{Cr}^{\mathrm{IV}}$ or Cr^{V} dimers. This would be consistent with the following formula:

$$
\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Cr}^{\mathrm{IV}, \mathrm{~V}}\left(\mu-\mathrm{CSiMe}_{3}\right)_{2} \mathrm{Cr}^{\mathrm{IV}, \mathrm{~V}}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\right]^{(0-2)-}
$$

Actually, there is a similar $\left[\mathrm{Nb}_{2}^{\mathrm{V}}\left(\mu-\mathrm{CSiMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4}\right]$ complex which was formed by an alkylation of NbCl_{5} with $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{MgCl}$ [68]. Due to the slightly larger ionic radius of niobium the bond lengths are about 12 pm longer. The $\mathrm{Nb}_{2} \mathrm{C}_{2}$ unit is just like the $\mathrm{Cr}_{2} \mathrm{C}_{2}$ unit square planar. Because of the neutrality of charge the chromium complex has to carry a negative charge. Therefore the complex is formulated as:

$$
\left(\mathrm{TATC}^{+}\right)\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{Cr}^{\mathrm{V}}\left(\mu-\mathrm{CSiMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4}\right]^{-} \cdot(\mathrm{HTATC})_{2} \mathbf{1 4}
$$

The oxidative Alkylation of $\mathrm{Cr}^{\mathrm{III}} \mathrm{Cl}_{3}$ with LiR (R among others $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$) often resulted in volatile, purple $\mathrm{Cr}^{\mathrm{IV}} \mathrm{R}_{4}$ compounds [69]. The formation of Schrock carbenes and carbines by α-H elimination and cleavage of SiMe_{4} from high valent alkyl complexes is well known, too. Probably analogous to the niobium compound, the Cr^{V} compound $\mathrm{Cr}_{2}\left(\mathrm{CSiMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4}$ was formed which was distilled along with the HTATC. Finally, the chromium has been partially reduced by the HTATC giving $\mathbf{1 4}$.

The comparison of $\mathbf{1 4}$ with known similar structures surely allows to draw the conclusions above. Nevertheless, a backup by experimental data is to be favored. One, yet unrealized, but for future work still interesting idea was to decompose the compound with $\mathrm{D}_{2} \mathrm{O}$ and analyze the forming fragments by mass spectroscopy. This way it should be easy to decide what kind of $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ bridges there really are.

3.2 Copper Complexes of Triazacyclohexanes

Though the most interesting discovery during the work on R_{3} TAC copper complexes was made, and though the reaction which formed the crystals which contain the unusual $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]^{2-}$ anion is not fully understood yet (see section 2.2 .1 , p. 40), these structures are reproducible. Therefore this system should be accessible for a theoretical evaluation which could help resolve the controversity concerning the existence of cuprophilicity.

Other prospects for the work on R_{3} TAC copper complexes can be found in the work by Tolman and coworkers [70, 71, 72, 18, 58]. The studies on copper complexes of triazacyclononanes in these publications have all a very interesting bioinorganic aspect like catalytic oxygen activation or denitrification. Only a very small part of these experiments have yet been repeated using triazacyclohexanes (see section 2.2.2, 42). The foundation for further
comparisons of copper complexes analogous to the triazacyclononane complexes has been prepared by the development of unsymmetrically substituted triazacyclohexanes.

3.3 Unsymmetrically Substituted Triazacyclohexanes

 This leads to the question of future studies on unsymmetrically substituted triazacyclohexanes. Though the methods developed in this work allow a broad variation of unsymmetrical $R^{\prime} R_{2} T A C$, there will always be substituents which cannot be introduced by these methods (e.g. section 2.3.6, p. 57). So there is still room for further studies on $R^{\prime} R_{2} T A C$.Actually, no serious attempts to make complexes with these ligands had been done, yet. Some "quick and dirty" overview experiments have been made and may outline the path for future research, but for a more thorough discussion the available analytical data is insufficient. Therefore the following equations are best to be viewed as an advanced guess or a working hypothesis for further experiments.

Chromium complexes with the usual triazacyclohexanes are purple solids which are relatively inert against air and water. Reactions of $(\mathrm{THF})_{3} \mathrm{CrCl}_{3}$ with triazacyclohexanes with one OH-group gave light green solids which easily react with water. The resulting dark green products are highly soluble in water and other polar solvents, there are no hints that the ligand is cleaved. The following reaction might explain this observation:

$$
\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{OTACCrCl} 2+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{OTACCr}\left(\mathrm{OH}_{2}\right)_{2}\right] \mathrm{Cl}_{2}
$$

When $\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{OTACCrCl} 2$ is stirred in SOCl_{2} or $\mathrm{ClSi}\left(\mathrm{CH}_{3}\right)_{3}$ the color of the solid changes to a shade of purple found in complexes with symmetrical TAC. This effect would be easily explained by the reaction in figure 50 with
SOCl_{2}. This way it should be possible to prepare unsymmetrical functional-

Figure 50: Probable reaction of linked alkoxyTAC complexes with SOCl_{2}
ized $\mathrm{R}^{\prime} \mathrm{R}_{2}$ TAC which are not accessible by the methods described in section 2.3 .

A surprisingly similar observa-
tion can be made using bridged triazacyclohexanes. The green products of the reaction of $(\mathrm{THF})_{3} \mathrm{CrCl}_{3}$ with $\quad \mathrm{R}_{2}$ TAC- $\mathrm{CH}_{2}-\mathrm{m}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}-$ TACR_{2} are air and water sensitive. An experiment with two TAC rings bridged by a hexyl group indicate that this effect is independent of the bridging unit. Another experiment with simple non-functionalized unsymmetrically substituted $R_{2} R^{\prime}$ TAC shows

Figure 51: Possible chromium complexes with a bridged TAC-ligand? also, that this is not an effect of the dissymmetry of the ligand. The complexes with the $\mathrm{R}_{2} \mathrm{R}^{\prime} \mathrm{TAC}$ described in section 2.3.3 were not notably different from complexes with symmetrical triazacyclohexanes. Figure 51 shows one attempt to explain the similarity of this complex class with the
hydroxy-TAC chromium complexes.
 pexes in section 2.2.2, p. 42 gave a product with a very complex ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which could not be interpreted. However, the same product treated with PPh_{3} afterwards gave the spectrum in fig. 53. Though this spectrum is still insufficient to gain reliable information, it does show

Figure 53: Insufficient ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\left[\mathrm{PPh}_{3} \mathrm{Cu}\left({ }^{(} \mathrm{Pr}_{2} \mathrm{TAC}\right) \mathrm{CH}_{2} \mathrm{PhCH}_{2^{-}}\right.$ $\left.\left({ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{TAC}\right) \mathrm{CuPPh}_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$
roughly the expected signals for the complex in fig. 53. Which are mainly the doublets for the endo- and exo-protons of the ring hydrogen atoms at 4.08 and 3.39 ppm .

4 Summary and Conclusions

The motivation for this thesis was to expand the main field in the group of Randolf D. Köhn, i.e. the use of triazacyclohexane complexes as polymerization catalysts. With this intention three different, though related, aspects have been explored.

- The preparation and characterization of compounds structurally analogous to the triazacyclohexanes, namely the orthoamides (RTATC) and a selection of the chromium, iron, and copper and zinc complexes.
- The application of triazacyclohexanes in copper systems with bioinorganic interest.
- The preparation and characterization of new classes of unsymmetrically substituted triazacyclohexanes.

4.1 13-alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{5,13}\right]$-tridecanes

New and easier routes to a wide range of RTATC had been developed by alkylation of the [TATC]+ cation with lithium, sodium or potassium alkyl reagents. On the basis of several $\mathrm{Cr}(\mathrm{III}), \mathrm{Fe}(\mathrm{III}), \mathrm{Cu}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$ complexes it could be shown, that the chemistry of the RTATC ligands and their complexes is very similar to the chemistry of the R_{3} TAC systems. However, the preparation of the RTATC ligands is much more complicated and expensive than that of the R_{3} TAC ligands . Moreover, a polymerization experiment with ethylene indicated that the activity of RTATC chromium complexes as catalyst is much lower than of similar R_{3} TAC complexes. This is not surprising, since it is concurrent with the fact that RTATC chromium complexes are much less soluble than $\mathrm{R}_{3} \mathrm{TAC}$ chromium complexes and re-
sults gained by the BASF show that the activity of those complexes strongly correlates with their solubility.

4.2 Copper Complexes of Triazacyclohexanes

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]^{+}$reacts readily with $\mathrm{R}_{3} \mathrm{TAC}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, \mathrm{Bz}, \mathrm{Cy}\right)$ to cationic $\mathrm{Cu}(\mathrm{I})$ complexes $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}(\mathrm{MeCN})\right]^{+}$. The rather air sensitive $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}(\mathrm{MeCN})\right]^{+}$complexes can be stabilized by replacing the MeC N ligand with PPh_{3} or THF. Due to their diamagnetism and the ease the $\left[\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ form suitable crystals for x-ray crystal structure analysis, $\mathrm{Cu}(\mathrm{I})$ complexes belong to the best characterized R_{3} TAC complexes today.

A real surprise, however, was the chemistry of a $\mathrm{Cu}(\mathrm{II})$ complex with $\mathrm{Me}_{3} \mathrm{TAC}$. The " $\mathrm{Me}_{3} \mathrm{TACCuCl}_{2}$ " complex can coordinate another $\mathrm{Me}_{3} \mathrm{TAC}$, resulting in an unusual coordination geometry which allows slow reduction of the $\mathrm{Cu}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$ by $\mathrm{Me}_{3} \mathrm{TAC}$. The formed $\mathrm{Cu}(\mathrm{I})$ ion $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right]^{2-}$ shows the first cuprophilic $\mathrm{Cu}-\mathrm{Cu}$ interaction between two anions which must therefore be stronger than the electrostatic repulsion.

4.3 Unsymmetrically Substituted Triazacyclohexanes

Synthesis of triazacyclohexanes with a mixture of two amines in a suitable solvent such as ethanol or exploitation of the equilibria between R_{3} TAC and $\mathrm{R}^{\prime} \mathrm{NH}_{2}$ above $100{ }^{\circ} \mathrm{C}$ yields mixtures of unsymmetrically substituted $\mathrm{R}_{2} \mathrm{R}^{\prime}$ TAC which could be separated by various methods below $100^{\circ} \mathrm{C}$ The pure and dry unsymmetrically substituted $\mathrm{R}_{2} \mathrm{R}^{\prime}$ TAC are stable at room temperature and even at higher temperatures for short periods and can best be identified by their very characteristic ${ }^{13} \mathrm{C}$ NMR signals for the ring carbon atoms.

This way three different types of unsymmetrically substituted $R_{2} R^{\prime} T A C$ (simple $R_{2} R^{\prime}$ TAC, see 2.3.1, p. 49; functionalized $R_{2}(R X) T A C$, see 2.3.4m p. 52; bridged R_{2} TAC-R'- R_{2} TAC, see 2.3.8, p. 58) had been prepared and their basic properties had been studied on at least three examples.

5 Experimental Section

5.1 General Considerations

All syntheses, except were noted, were carried out under an atmosphere of deoxigenated and dried argon (passed through an activated column of molecular sieve and a column of BASF catalyst) using standard Schlenk, high vacuum line or glove box techniques. Moisture sensitive compounds were stored in a glove box (Braun). Hexane, pentane, diethylether, THF were dried and stored over sodium/benzophenone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 1,2-dichloroethane, acetone, acetonitrile and nitromethane were dried and stored over CaH_{2}. Usually the solvents were directly vacuum transferred into the reaction flasks. NMR spectra were obtained on either a Bruker ARX $200(200 \mathrm{MHz})$ or on a Bruker ARX 400 (400 MHz) spectrometer.

Elemental analyses were obtained on a Perkin-Elmer Series II CHNS/O Analyzer 2000 or using the analytical service of the Humboldt-University in Berlin.

Mass spectra were obtained on a Varian MAT 331 A by electron impact ionization at 70 eV .

Atomic absorption spectroscopy was performed on a Perkin-Elmer 2380 Atomic Absorption Spectrometer.

IR spectra were obtained on a Perkin Elmer 580 B infrared spectrometer, UV/VIS spectra were recorded on a Beckman DU 650 spectrophotometer.

5.2 Ligands

5.2.1 13-Alkyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{5,13}\right]$-tridecanes

$\underline{1,5,9-\text { Triazatridecylium bromide: } 3^{+} \mathrm{Br}^{-}}$
1,5,7-triazabicyclo[4.4.0]dec-5-ene $\mathbf{1 5}\left(15.0 \mathrm{~g}, M=139.2 \mathrm{gmol}^{-1}, 108 \mathrm{mmol}\right)$ was dissolved in THF (250 ml) and $\mathrm{NaH}\left(2.6 \mathrm{~g}, M=24.0 \mathrm{gmol}^{-1}, 108 \mathrm{mmol}\right)$ was added. 1,3-Dibromoprompane ($21.75 \mathrm{~g}, M=201.9 \mathrm{gmol}^{-1}, 108 \mathrm{mmol}$), dissolved in 25 ml of THF , was added dropwise at $-78^{\circ} \mathrm{C}$. After slow warming to ambient temperature and stirring for 24 h , the solution was decanted from the solids which were washed with $\mathrm{Et}_{2} \mathrm{O}$ (100 ml). Extraction with 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in several portions and removal of the solvent yielded 19 g of impure $3^{+} \mathrm{Br}^{-}$. To purify the bromide it was solved in about 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The bromide is precipitated again by pouring the solution into $200-400 \mathrm{ml}$ of diethylether. This procedure was repeated up to fifty times until the precipitate was pure white and the solution was colorless. Yield: $5 \mathrm{~g}(18 \%)$ of pure white $3^{+} \mathrm{Br}^{-}\left(M=260.2 \mathrm{gmol}^{-1}\right)$, m.p. $72^{\circ} \mathrm{C}$.

$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Br}$	C	H	N

Anal. Found: $45.51 \quad 6.9916 .15$
Calc: $\quad 46.16 \quad 6.97 \quad 16.15$
Infrared Spectrum (KBr; ν / cm^{-1})
$3940 \mathrm{~m}, 3554 \mathrm{~s}, 3464 \mathrm{~s}, 3402 \mathrm{~s}, 2942 \mathrm{~s}, 2922 \mathrm{~s}, 2866 \mathrm{~s}, 2806 \mathrm{~m}, 2702 \mathrm{~m}, 2363 \mathrm{w}$, 2214w, 2064w, 1816w, 1740w, 1590s, 1490w, 1457w, 1429w, 1380s, 1343w, $1327 \mathrm{~s}, 1307 \mathrm{w}, 1285 \mathrm{~m}, 1245 \mathrm{~m}, 1232 \mathrm{~m}, 1189 \mathrm{w}, 1136 \mathrm{w}, 1111 \mathrm{w}, 1069 \mathrm{~m}, 1040 \mathrm{~m}$, $981 \mathrm{w}, 908 \mathrm{w}, 890 \mathrm{w}, 840 \mathrm{w}, 689 \mathrm{~m}, 612 \mathrm{w}, 529 \mathrm{w}, 500 \mathrm{w}, 460 \mathrm{~m}, 446 \mathrm{~m}$
$\underline{\text { 1,5,9-Triazatridecylium Tetrafluoroborate: }} \mathbf{3}^{+} \mathrm{BF}_{4}^{-}$
$3^{+} \mathrm{BF}_{4}^{-}$was prepared according to [21].
$\underline{1,5,9-\text { Triazatridecylium Tetraphenylborate: } \mathbf{3}^{+} \mathrm{BPh}_{4}^{-}}$

19 g of impure $\mathbf{3}^{+} \mathrm{Br}^{-}\left(M=260.2 \mathrm{gmol}^{-1}\right)$ was dissolved in 150 ml of water. Addition of an aqueous solution of $25 \mathrm{~g}\left(M=342.2 \mathrm{gmol}^{-1}, 73 \mathrm{mmol}\right)$ of NaBPh_{4} precipitated $\mathbf{3}^{+} \mathrm{BPh}_{4}^{-}$which was dried in vacuo and Soxhletextracted with acetone. $20 \mathrm{~g}(37 \%$ relative to $\mathbf{1 5})$ of colorless $\mathbf{3}^{+} \mathrm{BPh}_{4}^{-}(M=$ $499.5 \mathrm{gmol}^{-1}$) was obtained, m.p. $269^{\circ} \mathrm{C}$.

$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{~B}$	C	H	N

Anal. Found: $81.25 \quad 7.75 \quad 8.44$
Calc: $\quad 81.75 \quad 7.67 \quad 8.41$
Infrared Spectrum (KBr; ν / cm^{-1})
$3051 \mathrm{~s}, 3039 \mathrm{~s}, 3026 \mathrm{~s}, 3001 \mathrm{~s}, 2996 \mathrm{~s}, 2982 \mathrm{~s}, 2969 \mathrm{~s}, 2939 \mathrm{~s}, 2877 \mathrm{~s}, 1942 \mathrm{w}, 1884 \mathrm{w}$, $1809 \mathrm{w}, 1606 \mathrm{~s}, 1598 \mathrm{~s}, 1581 \mathrm{~m}, 1477 \mathrm{~m}, 1471 \mathrm{~m}, 1455 \mathrm{w}, 1439 \mathrm{w}, 1427 \mathrm{~m}, 1382 \mathrm{~m}$, $1377 \mathrm{~m}, 1324 \mathrm{~m}, 1305 \mathrm{~m}, 1267 \mathrm{w}, 1243 \mathrm{w}, 1219 \mathrm{w}, 1151 \mathrm{w}, 1144 \mathrm{w}, 1068 \mathrm{w}, 1059 \mathrm{w}$, 1031w, 848w, 842w, 743m, 735m, 708s, 693m, 626w, 614m, 605s, 479w, 462w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			${ }^{13} \mathrm{C}-\mathrm{NMR}$ (50.29 MHz, CDCl_{3})	
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
1				149.56
2	3.29		12 t	47.54
3	2.00		6 tt	20.16
BPh ${ }_{4}$	7.7-7.0		20 m	145.6, 130.4, 127.0, 126.6

1,5,9-Triazatricyclo[7.3.1.0 $0^{5,13] \text {-tridecane : } 16 ~}$
HTATC was prepared according to literature methods [21].

$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{3}$	C	H	N
Anal. Found:	65.22	11.01	23.28
Calc:	66.26	10.56	23.18

Infrared Spectrum $\left(\mathrm{CCl}_{4} ; \nu / \mathrm{cm}^{-1}\right)$
2939s, 2919s, 2840w, 2800m, 2795m, 2740, 2700w, 2670m, 2600w, 2580w, 2495w, 2450w, 2430w, 2400w
${ }^{13}$ C-NMR Data ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
99.8, 53.4, 23.5

13-Methyl-1,5,9-triazatricyclo[7.3.1.0 $\left.0^{5,13}\right]$-tridecane : $\mathbf{1 7}$
5 g of $\mathrm{TATCBF}_{4}\left(M=267.1 \mathrm{gmol}^{-1}, 18.72 \mathrm{mmol}\right)$ were mixed with 0.42 g of $\operatorname{MeLi}\left(M=22.0 \mathrm{gmol}^{-1}, 19.11 \mathrm{mmol}\right) .50 \mathrm{ml}$ of THF were added via vacuum transfer. After stirring for 12 h the solid was filtered off and the solvent removed in vacuum. Yield: $2.1 \mathrm{~g}(57 \%)$ of $\mathbf{1 7}\left(M=195.3 \mathrm{gmol}^{-1}\right)$ as colorless, oily liquid.

Infrared Spectrum $\left(\mathrm{CCl}_{4} ; \nu / \mathrm{cm}^{-1}\right)$
2942s, 2920s, 2885m, 2835m, 2800s, 2780m, 2740s, 2695w, 2658w
${ }^{13} \mathrm{C}$-NMR Data (50 MHz; DMSO- d_{6})
85.3, 48.1, 23.1, -0.8

13-Butyl-1,5,9-triazatricyclo[7.3.1.0 $\left.0^{5,13}\right]$-tridecane : 18
$2.0 \mathrm{~g}\left(M=260.2 \mathrm{gmol}^{-1}, 7.7 \mathrm{mmol}\right)$ of thoroughly dried pure $\mathbf{3}^{+} \mathrm{Br}^{-}$were dissolved in 25 ml of THF. Under rapid stirring and water cooling 4 ml of butyl-lithium ($2.0 \mathrm{M}, 8 \mathrm{mmol}$) in cyclohexane were added. After 1 h stirring at roomtemperature the solid was filtered off and the solvent removed in vacuum. Yield: $1.5 \mathrm{~g}(83 \%)$ of pure $18\left(M=237.4 \mathrm{gmol}^{-1}\right)$ as colorless, oily liquid.

Infrared Spectrum (KBr/film; ν / cm^{-1})
2946s, 2885s, 2854s, 2819s, 2804s, 2758m, 2745m, 2697m, 2676m, 1467m, $1459 \mathrm{~s}, 1445 \mathrm{~m}, 1431 \mathrm{~m}, 1382 \mathrm{~m}, 1352 \mathrm{~m}, 1344 \mathrm{~s}, 1320 \mathrm{~s}, 1294 \mathrm{~m}, 1273 \mathrm{~m}, 1250 \mathrm{~m}$, $1226 \mathrm{~m}, 1216 \mathrm{~m}, 1199 \mathrm{~m}, 1184 \mathrm{~s}, 1175 \mathrm{~s}, 1124 \mathrm{~m}, 1110 \mathrm{~s}, 1093 \mathrm{~s}, 1075 \mathrm{~m}, 1019 \mathrm{~m}$, $988 \mathrm{~m}, ~ 957 \mathrm{~s}, ~ 947 \mathrm{~m}, ~ 905 \mathrm{~s}, 880 \mathrm{~m}, 833 \mathrm{~m}, 824 \mathrm{~m}, 609 \mathrm{w}, 572 \mathrm{w}, 524 \mathrm{w}, 513 \mathrm{w}, 494 \mathrm{w}$, 482w, 443w, 439w, 435w, 428w, 423w, 420w, 416w, 413w

Mass Spectrum (70 eV; $43{ }^{\circ} \mathrm{C}$)

m / z	$\mathrm{I}_{\text {relative }} \%$	fragment	m / z	$\mathrm{I}_{\text {relative }} \%$	fragment
236	(8)	$[\mathbf{1 8}]^{+}$	180	(100)	$[\mathbf{3}]^{+}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
3				86.43
$1 \mathrm{a}, \mathrm{e}$	2.79	-	12 m	48.35
$2 \mathrm{a}, 4$	1.93	-	5 m	$21.33,19.85$
$2 \mathrm{e}, 5,6$	1.28	-	7 m	$21.33,25.20,23.35$
7	0.89	7	3 t	14.27

13-Trimethyl-silyl-methyl-1,5,9-triazatricyclo[7.3.1.0 $\left.{ }^{5,13}\right]$-tridecane : 19
To a mixture of $2.1 \mathrm{~g}(8.1 \mathrm{mmol})$ carefully dried pure $\mathbf{3}^{+} \mathrm{Br}^{-}(M=$ $\left.260.2 \mathrm{gmol}^{-1}\right)$ and 0.76 g of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2} \mathrm{Li}\left(M=79.1 \mathrm{gmol}^{-1}, 8.1 \mathrm{mmol}\right)$ 25 ml of THF were added under rapid stirring and water cooling. After stirring at room temperature for 1 h the solid was filtered off and the solvent removed in vacuo. Yield: $1.97 \mathrm{~g}(91 \%)$ of pure white $19\left(M=267.5 \mathrm{gmol}^{-1}\right)$, m.p. $68{ }^{\circ} \mathrm{C}$

$\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{Si}$	C	H	N
Anal. Found:	62.68	10.82	15.83
Calc:	62.86	10.93	15.71

Infrared Spectrum (KBr; ν / cm^{-1})
2945s, 2927s, 2893m, 2837m, 2809m, 2756m, 2693w, 2674w, 1476w, 1466m, $1457 \mathrm{~m}, 1443 \mathrm{~m}, 1433 \mathrm{~m}, 1414 \mathrm{w}, 1394 \mathrm{~m}, 1380 \mathrm{~m}, 1350 \mathrm{~s}, 1343 \mathrm{~s}, 1319 \mathrm{~s}, 1291 \mathrm{~m}$, $1272 \mathrm{~s}, 1241 \mathrm{~m}, 1224 \mathrm{~m}, 1195 \mathrm{~s}, 1172 \mathrm{~m}, 1145 \mathrm{~m}, 1129 \mathrm{~m}, 1122 \mathrm{~m}, 1110 \mathrm{~s}, 1103 \mathrm{~s}$, $1094 \mathrm{~s}, 1077 \mathrm{~s}, 1063 \mathrm{~m}, 1020 \mathrm{w}, 955 \mathrm{~s}, 945 \mathrm{~m}, ~ 905 \mathrm{~m}, ~ 888 \mathrm{~s}, 862 \mathrm{~s}, 851 \mathrm{~s}, 821 \mathrm{~s}, 791 \mathrm{w}$, $770 \mathrm{~m}, 759 \mathrm{~m}, 727 \mathrm{w}, 684 \mathrm{~m}, 640 \mathrm{w}, 617 \mathrm{w}, 600 \mathrm{w}, 569 \mathrm{w}, 469 \mathrm{w}, 423 \mathrm{w}$

Mass Spectrum (70 eV; $49^{\circ} \mathrm{C}$)

m / z	$\mathrm{I}_{\text {relative }} \%$	fragment	m / z	$\mathrm{I}_{\text {relative }} \%$	fragment
267	(8)	$[\mathbf{1 9}]^{+}$	225	(9)	$\left[\mathbf{3}-\mathrm{CH}_{2} \mathrm{SiH}_{3}\right]^{+}$
252	(17)	$\left[\mathbf{3}-\mathrm{CH}_{2} \mathrm{Si}^{2}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}$	180	(100)	$[\mathbf{3}]^{+}$
239	(8)	$\left[\mathbf{3}-\mathrm{CH}_{2} \mathrm{SiH}_{2} \mathrm{CH}_{3}\right]^{+}$			

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$	
3				87.19	
1a,e	2.73	-	12 m	48.80	
2 a	1.92	-	3 m	21.60	
4	1.47	-	2 s	10.54	
2 e	1.30	-	3 m	21.60	
5	0.00	-	9 S	0.36	

13-Phenyl-1,5,9-triazatricyclo[7.3.1.0 $\left.0^{5,13}\right]$-tridecane : $\mathbf{2 0}$
$3^{+} \mathrm{BPh}_{4}^{-}\left(M=499.5 \mathrm{gmol}^{-1}, 4.0 \mathrm{~g}, 8.0 \mathrm{mmol}\right)$ and phenyl sodium $(M=$ $\left.100.1 \mathrm{gmol}^{-1}, 1.6 \mathrm{~g}, 16.0 \mathrm{mmol}\right)$ were refluxed in hexane for three days. The suspension became light brown during that time. The solids were filtered
off and extracted with hexane. The solvent of the combined hexane extracts was removed in vacuo. The remaining waxy solid was redissolved in ether and filtered through neutral alumina. The solvent was removed in vacuo and the remaining crude 20 sublimed at $90^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa} .0 .97 \mathrm{~g}(48 \%)$ of colorless crystalline $20\left(M=257.3\right.$ gmol $\left.^{-1}\right)$ were obtained, m.p. $97-98^{\circ} \mathrm{C}$.

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3}$	C	H	N
Anal. Found:	74.64	9.58	15.94
Calc:	74.67	9.01	16.33

Infrared Spectrum (KBr; ν / cm^{-1})
$3454 \mathrm{~m}, 3112 \mathrm{w}, 3092 \mathrm{w}, 3057 \mathrm{w}, 3050 \mathrm{w}$, 3029w, 3015w, 2997w, 1693w, 1669w, 1648w, 1628w, 1597w, 2935s, 2922s, 2895m, 2885m, 2865m, 2836s, 2813m, $2785 \mathrm{~m}, 2776 \mathrm{~m}, 2734 \mathrm{~m}, 2721 \mathrm{~m}, 2700 \mathrm{~m}, 2668 \mathrm{~m}, 2566 \mathrm{w}, 2008 \mathrm{w}, 1972 \mathrm{w}, 1953 \mathrm{w}$, 1935w, 1905w, 1881w, 1841w, 1820w, 1808w, 1765w, 1736w, 1581w, 1552w, $1488 \mathrm{~s}, 1476 \mathrm{~s}, 1465 \mathrm{~m}, 1454 \mathrm{~s}$, 1443 s , $1430 \mathrm{~m}, 1399 \mathrm{w}, 1383 \mathrm{w}, 1376 \mathrm{~m}, 1358 \mathrm{~s}$, $1343 \mathrm{~s}, 1323 \mathrm{~s}, 1314 \mathrm{~m}, 1308 \mathrm{~m}, 1294 \mathrm{~m}, 1277 \mathrm{~s}, 1267 \mathrm{~s}, 1238 \mathrm{~m}, 1223 \mathrm{~m}, 1221 \mathrm{~m}$, $1215 \mathrm{~m}, 1197 \mathrm{~s}, 1181 \mathrm{~s}, 1152 \mathrm{~s}, 1125 \mathrm{~m}, 1111 \mathrm{~s}, 1103 \mathrm{~s}, 1067 \mathrm{~s}, 1051 \mathrm{~m}, 1031 \mathrm{~m}, 999 \mathrm{~s}$, 975w, 969 w, 950 s, $931 \mathrm{~s}, ~ 922 \mathrm{~m}, ~ 915 \mathrm{~m}, ~ 904 \mathrm{~m}, ~ 890 \mathrm{~m}, ~ 882 \mathrm{~m}, 840 \mathrm{w}, 829 \mathrm{w}, 825 \mathrm{w}$, $813 \mathrm{w}, 752 \mathrm{~s}, 707 \mathrm{~m}, 701 \mathrm{~s}, 667 \mathrm{~m}, 621 \mathrm{~m}, 609 \mathrm{~m}, 583 \mathrm{~m}, 548 \mathrm{~m}, 525 \mathrm{~m}, 494 \mathrm{w}, 466 \mathrm{w}$, 434w, 421m

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$
3			
$5-8$	$7.8-7.2$		5 m
			$145.6,130.4$
$1 \mathrm{a}, \mathrm{e}$	2.96	-	12 m
2 a	2.11	-	3 m
2 e	1.48	-	3 m

$3^{+} \mathrm{BPh}_{4}^{-}\left(M=499.5 \mathrm{gmol}^{-1}, 10.0 \mathrm{~g}, 20.0 \mathrm{mmol}\right)$ and benzyl sodium $(M=$ $\left.114.1 \mathrm{gmol}^{-1}, 3.1 \mathrm{~g}, 19.9 \mathrm{mmol}\right)$ were refluxed in toluene for three days. The suspension became light brown during that time. Work-up analogous to 20 and sublimation at $100^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}$ yielded $2.51 \mathrm{~g}(46 \%)$ of colorless crystalline $21\left(M=271.4\right.$ gmol $\left.^{-1}\right)$, m.p. $117-119{ }^{\circ} \mathrm{C}$

$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{~N}_{3}$	C	H	N
Anal. Found:	75.03	9.66	15.34
Calc:	75.23	9.28	15.48

Infrared Spectrum (KBr; ν / cm^{-1})
$3475 \mathrm{w}, 3082 \mathrm{~m}, 3065 \mathrm{~m}, 3017 \mathrm{~m}, 2996 \mathrm{~m}$, 2948s, 2886s, 2839s, 2823s, 2793s, 2752s, 2731m, 2669w, 1946w, 1806w, 1605w, 1598w, 1493s, 1480w, 1467e, $1457 \mathrm{w}, 1443 \mathrm{w}, 1432 \mathrm{w}, 1394 \mathrm{w}, 1382 \mathrm{~m}, 1351 \mathrm{~s}, 1329 \mathrm{w}, 1319 \mathrm{~s}, 1308 \mathrm{w}, 1293 \mathrm{w}$, $1285 \mathrm{w}, 1269 \mathrm{~s}, 1231 \mathrm{w}, 1212 \mathrm{w}, 1189 \mathrm{~s}, 1172 \mathrm{w}, 1161 \mathrm{~s}, 1135 \mathrm{w}, 1120 \mathrm{w}, 1108 \mathrm{~s}$, $1082 \mathrm{~m}, 1047 \mathrm{w}, 1033 \mathrm{w}, 1002 \mathrm{w}, ~ 961 \mathrm{~s}, ~ 946 \mathrm{w}, ~ 924 \mathrm{w}, ~ 907 \mathrm{~m}, ~ 901 \mathrm{~m}, ~ 888 \mathrm{~m}, ~ 874 \mathrm{w}$, $865 \mathrm{w}, 842 \mathrm{w}, 833 \mathrm{w}, 812 \mathrm{w}, 803 \mathrm{w}, 787 \mathrm{~m}, 735 \mathrm{~s}, 698 \mathrm{~s}, 670 \mathrm{w}, 623 \mathrm{w}, 606 \mathrm{w}, 600 \mathrm{~m}$, 568w, 523w, 473w, 421w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
3				86.8
5-8	7.6-7.3		5 m	145.6, 130.4
				127.0, 126.6
4	3.43		2 s	25.84
1a,e	2.96	-	12 m	48.6
2 a	2.13	-	3 m	21.4
2 e	1.50	-	3 m	21.4

13-[4-tert-Butyl-benzyl]-1,5,9-triazatricyclo[7.3.1.0 $0^{5,13}$]-tridecane : 22
$3^{+} \mathrm{BPh}_{4}^{-}\left(M=499.5 \mathrm{gmol}^{-1}, 5.79 \mathrm{~g}, 11.6 \mathrm{mmol}\right)$ and $4{ }^{\mathrm{t}} \mathrm{Bu}$-benzyl potassium $\left(M=186.3 \mathrm{gmol}^{-1}, 2.55 \mathrm{~g}, 13.68 \mathrm{mmol}\right)$ were heated for 24 h in about 30 ml of $4-^{\mathrm{t}} \mathrm{Bu}$-toluene at $135^{\circ} \mathrm{C}$. During this time the red suspension turns slowly to light brown. The solid is filtered of and washed with $4-^{\mathrm{t}} \mathrm{Bu}$-toluene. The washing solutions are combined with the filtrate and filtered through neutral alumina. Afterwards the solvent is removed at $120^{\circ} \mathrm{C}$ under reduced pressure. The remaining light yellow solid is sublimed at $110^{\circ} \mathrm{C}$ in vacuum (1.3 Pa). Yield: $0.87 \mathrm{~g}\left(M=327.5 \mathrm{gmol}^{-1}, 2.66 \mathrm{mmol}, 23 \%\right)$ of white crystalline 22, m.p. $41-43^{\circ} \mathrm{C}$.

$\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3}$	C	H	N
Anal. Found:	76.55	10.01	11.68
Calc:	77.01	10.16	12.83

Infrared Spectrum (KBr; ν / cm^{-1})
$3092 \mathrm{w}, 3057 \mathrm{w}, 3029 \mathrm{w}, 2951 \mathrm{~s}, 2924 \mathrm{~s}$, 2887m, 2840m, 2813m, 2760m, 2745m, $2707 \mathrm{~m}, ~ 2675 \mathrm{~m}, ~ 1888 \mathrm{w}, 1772 \mathrm{~m}, 1700 \mathrm{~m}, 1696 \mathrm{~m}, 1685 \mathrm{~m}, 1653 \mathrm{~m}, 1635 \mathrm{~m}$, $1612 \mathrm{~m}, 1602 \mathrm{~m}, 1539 \mathrm{w}, 1514 \mathrm{~m}, 1482 \mathrm{~m}, 1461 \mathrm{~m}, 1445 \mathrm{~m}, 1436 \mathrm{w}, 1429 \mathrm{w}, 1411 \mathrm{w}$, $1394 \mathrm{w}, 1381 \mathrm{w}, 1352 \mathrm{~m}, 1346 \mathrm{~m}, 1322 \mathrm{~m}, 1311 \mathrm{~m}, 1292 \mathrm{~m}, 1274 \mathrm{~s}, 1230 \mathrm{~m}, 1212 \mathrm{w}$,

1191w, 1176m, 1158m, 1123m, 1111m, 1101m, 1079m, 1047w, 1019, 1004w, $963 \mathrm{~s}, ~ 948 \mathrm{~m}, ~ 907 \mathrm{w}, ~ 895 \mathrm{w}, 877 \mathrm{~m}, 870 \mathrm{~m}, 855 \mathrm{w}, 846 \mathrm{w}, 813 \mathrm{~s}, 792 \mathrm{w}, 783 \mathrm{w}, 739 \mathrm{w}$, $706 \mathrm{w}, 683 \mathrm{w}, 658 \mathrm{w}, 642 \mathrm{~m}, 607 \mathrm{~m}, 577 \mathrm{w}, 567 \mathrm{w}, 563 \mathrm{w}, 548 \mathrm{w}, 535 \mathrm{w}, 519 \mathrm{w}, 478 \mathrm{w}$, $461 \mathrm{w}, 440 \mathrm{w}, 418 \mathrm{w}, 414 \mathrm{w}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$
9			
3			34.19
$5-8$	$7.44-7.23$		5 m
			$147.43,135.83$
4	3.32		2 s
$129.62,124.44$			
1 e	2.90	-	12 m
2 a	2.01	-	3 m
2 e	1.40	-	3 m

5.2.2 1,3,5-Trialkyl-1,3,5-triazacyclohexanes

1,3,5-Trimethyl-1,3,5-triazacyclohexane: 23
23 was prepared according to literature procedures [2] or more often obtained as byproduct in the synthesis of $\mathbf{3 1}$ and $\mathbf{4 5}$. The crude $\mathbf{2 3}$ was after drying over sodium distilled in vacuo $\left(60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$ and stored under argon.

Infrared Spectrum (KBr; ν / cm^{-1})
2962s, 2938s, 2890s, 2841s, 2783s, 2769s, 2712s, 2662m, 2628m, 2596m, $2572 \mathrm{~m}, 1470 \mathrm{~m}, 1443 \mathrm{~m}, 1427 \mathrm{~m}, 1385 \mathrm{~s}, 1372 \mathrm{~m}, 1274 \mathrm{~m}, 1262 \mathrm{~s}, 1233 \mathrm{~s}, 1158 \mathrm{~m}$, 1114s, 1049m, 1025m, 1003m, 913s, 859m
${ }^{\mathbf{1}} \mathbf{H}$-NMR Data ($80 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3.17 br ($6 \mathrm{H}, \mathrm{CH}_{2}$), 2.28s ($9 \mathrm{H}, \mathrm{Me}$)
${ }^{13}$ C-NMR Data ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
$77.12\left(\mathrm{CH}_{2}\right), 40.19(\mathrm{Me})$
1,3,5-Triethyl-1,3,5-triazacyclohexane: $\mathbf{2 4}$
${ }^{1} \mathbf{H}$-NMR Data ($200 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3.17 br (s, 6H, NCH ${ }_{2} \mathrm{~N}$), 2.33 ($\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCHMe}$), 0.93 (t, J = 7.3
$\mathrm{Hz}, 9 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Me}$)
${ }^{1} \mathbf{H}$-NMR Data ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
$73.97\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 46,30\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 12.50\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$
1,3,5-Triisopropyl-1,3,5-triazacyclohexane: 25
24 and 25 were, except for the distillation temperature $\left(68-80^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right.$, prepared analogous to 23.
${ }^{1} \mathbf{H}$-NMR Data ($200 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3.48 br (s, $6 \mathrm{H}, \mathrm{CH}_{2}$), 2.81 (septett, $\mathrm{J}=6.59 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}_{2}, 1.02(\mathrm{~d}, \mathrm{~J}=$ 6.5 Hz, $18 \mathrm{H}, \mathrm{CHMe}_{2}$)
${ }^{13}$ C-NMR Data ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
$68.85\left(\mathrm{CH}_{2} \mathrm{~N}, 49.89\left(\mathrm{NCHMe}_{2}\right), 20.20\left(\mathrm{NCHMe}_{2}\right)\right.$
1,3,5-Tribenzyl-1,3,5-triazacyclohexane: $\mathbf{2 6}$
26 was prepared according to literature procedures [2].
${ }^{1} \mathbf{H}$-NMR Data ($270 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3.44 br $\left(6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N}\right), 3.69 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{PhCH}_{2}\right), 7.20-7.40 \mathrm{~m}\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PhCH}_{2}\right.$
${ }^{13}$ C-NMR Data ($67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
$57.01\left(\mathrm{PhCH}_{2}\right), 73.73\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 126.95\left(\mathrm{p}-\mathrm{PhCH}_{2}\right), 128.18\left(\mathrm{o}, \mathrm{m}-\mathrm{PhCH}_{2}\right)$,
$128.85\left(\mathrm{o}, \mathrm{m}-\mathrm{PhCH}_{2}\right), 128.42\left(\mathrm{ipso}-\mathrm{PhCH}_{2}\right)$
1,3,5-Tricyclohexyl-1,3,5-triazacyclohexane: $\mathbf{2 7}$
27 was prepared according to literature procedures [2].
${ }^{1} \mathbf{H}$-NMR Data ($200 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3.59br $\left(2 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{~N}\right), 2.98 \mathrm{br}\left(4 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{~N}\right), 2.67 \mathrm{~m}(2 \mathrm{H}, \mathrm{NCH}), 2.45 \mathrm{~m}(1 \mathrm{H}$, NCH), 1.59-1.93 (15H, Cy), 1.06-1.35 (15H, Cy)
${ }^{13}$ C-NMR Data ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
$68.23\left(\mathrm{~N}_{\mathrm{CH}}^{2} \mathrm{~N}\right), 58.38(\mathrm{NCH}), 29.88,26.12,25.64(\mathrm{Cy})$
1,3,5-S-1-Phenyl-ethyl-1,3,5-triazacyclohexane: $\mathbf{2 8}$
28 was prepared according to literature procedures [12].
Infrared Spectrum (KBr; ν / cm^{-1})
$3084 m, 3060 \mathrm{~s}, 3042 \mathrm{~m}, 3026 \mathrm{~s}, 3012 \mathrm{~s}, 2974 \mathrm{~s}, 2968 \mathrm{~s}, 2929 \mathrm{~s}, 2870 \mathrm{~s}, 2823 \mathrm{~s}, 2800 \mathrm{~s}$, $2784 \mathrm{~s}, 2772 \mathrm{~s}, 2754 \mathrm{~s}, 2726 \mathrm{~m}, 2710 \mathrm{~m}, 2690 \mathrm{~m}, 2672 \mathrm{~m}, 2621 \mathrm{~m}, 2555 \mathrm{~m}, 1966 \mathrm{~m}$, $1953 \mathrm{~m}, 1894 \mathrm{~m}, 1881 \mathrm{~m}, 1875 \mathrm{~m}, 1829 \mathrm{~m}, 1814 \mathrm{~m}, 1802 \mathrm{~m}, 1759 \mathrm{~m}, 1602 \mathrm{~m}$, $1583 \mathrm{~m}, 1491 \mathrm{~s}, 1462 \mathrm{~s}, 1452 \mathrm{~s}, 1413 \mathrm{~m}, 1393 \mathrm{~s}, 1371 \mathrm{~s}, 1361 \mathrm{~s}, 1358 \mathrm{~s}, 1348 \mathrm{~s}, 1328 \mathrm{~m}$, $1314 \mathrm{~s}, 1303 \mathrm{~s}, 1295 \mathrm{~s}, 1282 \mathrm{~s}, 1211 \mathrm{~s}, 1202 \mathrm{~s}, 1185 \mathrm{~s}, 1178 \mathrm{~s}, 1159 \mathrm{~m}, 1154 \mathrm{~s}, 1140 \mathrm{~s}$, $1114 \mathrm{~s}, 1103 \mathrm{~s}, 1093 \mathrm{~s}, 1080 \mathrm{~s}, 1065 \mathrm{~s}, 1062 \mathrm{~s}, 1056 \mathrm{~s}, 1037 \mathrm{~s}, 1026 \mathrm{~s}, 1008 \mathrm{~s}, 999 \mathrm{~s}$,

983m, $976 \mathrm{~s}, ~ 957 \mathrm{~s}, ~ 945 \mathrm{~s}, ~ 911 \mathrm{~s}, ~ 847 \mathrm{~m}, ~ 839 \mathrm{~m}, ~ 784 \mathrm{~m}, 778 \mathrm{~s}, 767 \mathrm{~s}, 763 \mathrm{~s}, 758 \mathrm{~s}$, $704 \mathrm{~s}, 700 \mathrm{~s}, 612 \mathrm{~m}, 601 \mathrm{~m}, 580 \mathrm{~s}, 550 \mathrm{~s}, 544 \mathrm{~s}, 528 \mathrm{~s}, 517 \mathrm{~m}$
${ }^{1} \mathbf{H}$-NMR Data ($200 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
7.17-7.29m (15H, Ph), 3.72q ($\mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \operatorname{PhMeCHN})$, 3.39br $\left(\Delta \nu_{1 / 2} \approx\right.$ $19 \mathrm{~Hz}, 6 \mathrm{H} . \mathrm{NCH}_{2} \mathrm{~N}, 1.29 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Me})$
${ }^{13} \mathrm{C}$-NMR Data ($50 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
144.28 (ipso-Ph), 128.06 (m,o-Ph), 127.31 (o,m-Ph), 126.68 (p-Ph), 69.98 ($\mathrm{NCH} \mathrm{H}_{2} \mathrm{~N}$), 59.37 (NCN), 20.08 (Me)

1-Benzyl-3,5-dimethyl-1,3,5-triazacyclohexane: 29

Benzylamine ($M=107.2$ gmol $\left.^{-1}, 9 \mathrm{ml}, \rho=0.981,82.4 \mathrm{mmol}\right)$ and methylamine ($M=31.1 \mathrm{gmol}^{-1}, 100 \mathrm{ml}, 40 \%$ in water, $\rho=0.902,1.2 \mathrm{~mol}$) are dissolved in about 500 ml of ethanol. Paraformaldehyde ($M=30.0 \mathrm{gmol}^{-1}$, $40 \mathrm{~g}, 1.33 \mathrm{~mol}$) is added under rapid stirring. The reaction is finished, when the solution hascooled down to room temperature. The water and the ethanol are removed by rotary evaporation. Afterwards the remaining oil is distilled in vacuum $\left(80-90^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. The distillate is dissolved in pentane and stirred with sodium in an argon atmosphere for 48 h . The suspension is filtered and the solvent is removed in vacuum. $5 \mathrm{~g}(30 \%)$ of pure $29(M=$ $205.3 \mathrm{gmol}^{-1}$) remain as a colorless, oily liquid.

Infrared Spectrum (KBr/film; ν / cm^{-1})
3061s, 3027s, 2965m, 2939w, 2852s, 2838s, 2790w, 2726s, 2684s, 2642s, 2627s, 2601s, 1682s, 1605s, 1585s, 1495s, 1469m, 1453w, 1427s, 1418s, 1396s, 1384m, $1361 \mathrm{~m}, 1311 \mathrm{w}, 1263 \mathrm{w}, 1234 \mathrm{~m}, 1195 \mathrm{~s}$, 1144m, 1114m, 1076s, 1062s, 1050s, $1028 \mathrm{~m}, 1009 \mathrm{~m}, 1003 \mathrm{~m}, ~ 982 \mathrm{~s}, 917 \mathrm{~m}, 862 \mathrm{~s}, 836 \mathrm{~s}, 743 \mathrm{~m}, 699 \mathrm{~m}, 481 \mathrm{~m}, 461 \mathrm{~m}$

Mass Spectrum (70 eV; $78{ }^{\circ} \mathrm{C}$)

m / z	$\mathrm{I}_{\text {relative }}$ \%	fragment	m / z	$\mathrm{I}_{\text {relative }}$ \%	fragment
205	(34)	$[\mathbf{2 9}]^{+}$	204	(23)	$\left[\mathbf{2 9 - \mathrm { H }] ^ { + }}\right.$
162	(58)	$[\mathbf{2 9}-\mathrm{CH} 2 \mathrm{~N}(\mathrm{CH} 3)]^{+}$	120	(31)	$\left[\mathrm{PhCH}_{2} \mathrm{NH}=\mathrm{CH}_{2}\right]^{+}$
91	(88)	$\left[\mathrm{PhCH}_{2}\right]^{+}$	44	(100)	$\left[\mathrm{CH}_{3} \mathrm{NCH}_{3}\right]^{+}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$5-8$	$7.33-7.16$		5 m	$139.58,128.44$
				$128.03,126.72$
$1+3$	3.21	-	br	$78.31,74.66$
4	3.70	-	2 s	56.56
2	2.17	-	6 s	39.86

1-Octyl-3,5-dimethyl-1,3,5-triazacyclohexane: $\mathbf{3 0}$

Octylamine ($\left.M=129.2 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=0.782,54.5 \mathrm{mmol}\right)$ and methylamine ($M=31.1 \mathrm{gmol}^{-1}$, $100 \mathrm{ml}, 40 \%$ in water, $\rho=0.902,1.2 \mathrm{~mol}$) are dissolved in about 500 ml of ethanol. Paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}, 40 \mathrm{~g}\right.$, $1.33 \mathrm{~mol})$ is added under rapid stirring. The reaction is finished, when the solution has cooled down to room temperature. The water and the ethanol are removed by rotary evaporation. Afterwards the remaining oil is distilled in vacuum $\left(90^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. The distillate is dissolved in pentane and stirred
with sodium under an argon atmosphere for 48 h . The suspension is filtered and the solvent is removed in vacuum. $8 \mathrm{~g}(65 \%)$ of pure $\mathbf{3 0}(M=$ $227.4 \mathrm{gmol}^{-1}$) remain as a colorless, oily liquid.

Infrared Spectrum (KBr/film; ν / cm^{-1})
2596m, 2626m, 2726m, 2786s, 2854s, 2927s, 2953s, 860m, 864m, 915m, 981s, $1003 \mathrm{~s}, 1026 \mathrm{~m}, 1049 \mathrm{~m}, 1116 \mathrm{~s}, 1147 \mathrm{~s}, 1234 \mathrm{~m}, 1262 \mathrm{~s}, 1370 \mathrm{~m}, 1385 \mathrm{~m}, 1426 \mathrm{w}$, $1444 \mathrm{w}, 1467 \mathrm{~m}, 724 \mathrm{~m}, 834 \mathrm{~m}$

Mass Spectrum (70 eV; $23{ }^{\circ} \mathrm{C}$)

m / z	$\mathrm{I}_{\text {relative }} \%$	fragment	m / z	$\mathrm{I}_{\text {relative }} \%$	fragment
226	(4)	$[\mathbf{3 0}-\mathrm{H}]^{+}$	184	(10)	$\left[\mathbf{3 0}-\mathrm{CH}_{3} \mathrm{NCH}_{2}\right]^{+}$
140	(58)	$\left[\mathbf{3 0 - H}\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)\right)_{2}\right]^{+}$	86	(26)	$\left[\mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)\right)_{2}\right]^{+}$
85	(18)	$\left[\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)\right)_{2}\right]^{+}$	44	(100)	$\left[\mathrm{CH}_{3} \mathrm{NCH}_{3}\right]^{+}$
${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR Data					

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$1+3$	3.17	-	br	$78.28,75.15$
4	2.49	7	2 t	52.52
2	2.16	-	6 s	39.99
$5-10$	$1.40-1.19$	-	12 m	$31.63,29.32,29.09$
				$27.75,27.18,22.45$
11	0.80	7	3 t	13.90

1-(1-Hydroxyethyl)-3,5-dimethyl-1,3,5-triazacyclohexane: $\mathbf{3 1}$

Method I:

In about 80 ml Me 3 TAC 231 ml ethanolamine $\left(M=61.1 \mathrm{gmol}^{-1}, \rho=1.012\right.$, $0.017 \mathrm{~mol})$ is dissolved. The mixture is heated for 12 h at $130^{\circ} \mathrm{C}$. After removal of the $\mathrm{Me}_{3} \mathrm{TAC}$ in vacuum $\left(60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right) 2 \mathrm{~g}$ crude $31(M=$ $159.2 \mathrm{gmol}^{-1}$) is obtained. For further purification $\mathbf{3 1}$ is dissolved in 10 ml methylamine (40% in water) and stirred for 12 h . The methylamine and the water are removed in vacuum. The remaining oil is transfered very quickly (Bunsen burner) in vacuum in a liquid nitrogen cooled flask. Yield 1.2 g (44\%).

Method II:

Ethanolamine $\left(M=61.1 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=1.012,0.15 \mathrm{~mol}\right)$ and methylamine ($M=107.2 \mathrm{gmol}^{-1}, 100 \mathrm{ml}, 40 \%$ in water, $\rho=0.902,1.2 \mathrm{~mol}$) are dissolved in about 200 ml of ethanol. Paraformaldehyde ($M=30.0 \mathrm{gmol}^{-1}$, $40 \mathrm{~g}, 1.33 \mathrm{~mol})$ is added under rapid stirring. The reaction is finished, when the solution has cooled down to room temperature. Water and ethanol are removed by rotary evaporation. 31 is, together with 23 , extracted from $\mathrm{Me}(\mathrm{EtOH})_{2} \mathrm{TAC}$ and $(\mathrm{EtOH})_{3} \mathrm{TAC}$ with pentane. The pentane is removed by rotary evaporation, the remaining $\mathbf{2 3}$ is removed in vacuo at $60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}$. The crude product can be purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{3} \mathrm{~N}=1: 1\right)$. Yield: $1.2 \mathrm{~g}(50 \%)$.

Using both methods the resulting 31 is contaminated by about 5 6% 23. Due to the equilibrium between $\mathrm{Me}(\mathrm{EtOH})_{2} \mathrm{TAC}, \mathrm{Me}_{3} \mathrm{TAC}$ and $\mathrm{Me}_{2}(\mathrm{EtOH}) \mathrm{TAC}$ it is difficult to obtain pure 31. It should be prepared directly prior use or stored refrigerated.

Infrared Spectrum (KBr/film; ν / cm^{-1})
$3226 \mathrm{w}, 2941 \mathrm{~s}, 2899 \mathrm{~s}, 2856 \mathrm{~s}, 2789 \mathrm{~s}, 2729 \mathrm{w}, 2687 \mathrm{w}, 2650 \mathrm{w}, 2604 \mathrm{w}, 1468 \mathrm{~m}$,
$1445 \mathrm{~m}, 1429 \mathrm{~m}, 1385 \mathrm{~s}, 1335 \mathrm{w}, 1258 \mathrm{~s}, 1234 \mathrm{~s}, 1203 \mathrm{w}, 1147 \mathrm{~s}, 1108 \mathrm{~s}, 1055 \mathrm{w}$, 1034w, 1003s, 983w, 961w, 944w, 917s, 899s, 862m, 837w, 795w, 655w, 616w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
OH	5.35	-	br	
$1+3$	3.14	-	br	$79.55,73.71$
5	3.61	5.16	2 t	59.77
4	2.89	5.16	2 t	57.27
2	2.06	-	6 s	39.02

1-(1-Sodiumethanolato)-3,5-dimethyl-1,3,5-triazacyclohexane: 32
6 g of $\mathbf{3 1}\left(M=159.2 \mathrm{gmol}^{-1}, 37.7 \mathrm{mmol}\right)$ is dissolved in 100 ml of pentane. Several small pieces of sodium are added and the mixture is stirred for 12 hour at room temperature. After cooling down to about $-30^{\circ} \mathrm{C}$, a dirty gray solid precipitates which is filtered off, along with the remaining sodium. After removal of the solvent 5 g of $\mathbf{3 2}\left(M=181.2 \mathrm{gmol}^{-1}, 73 \%\right)$ is obtained as a light yellow waxy solid.

The $\mathrm{Me}_{2}(\mathrm{EtONa}) \mathrm{TAC}$ can be heated to at least $70^{\circ} \mathrm{C}$ without signs of the equilibrium of the free alcohol.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
5	3.60	6.0	2 t	58.42
1,3	3.14	-	br	$76.03,72.49$
4	2.60	6.0	2 t	53.35
2	1.93	-	6 s	38.48

1-(1-Cyanoethyl)-3,5-dimethyl-1,3,5-triazacyclohexane: 33

Method I:

In about 80 ml of $\mathrm{Me}_{3} \mathrm{TAC} 231 \mathrm{ml} 3$-aminopropionitrile $\left(M=70.1 \mathrm{gmol}^{-1}\right.$, $\rho=0.988,14.4 \mathrm{mmol})$ is dissolved. The mixture is heated for 12 h at $130^{\circ} \mathrm{C}$. After removal of the $\mathrm{Me}_{3} \mathrm{TAC}$ in vacuum $\left(60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right) 2.4 \mathrm{~g}$ crude $\mathbf{3 3}$ is obtained. For further purification 33 is dissolved in 50 ml of ether and filtered through a short column filled with silica gel. The ether is removed in vacuo. 2.1 g of $\mathbf{3 3}\left(M=168.2 \mathrm{gmol}^{-1}\right)$ as a colorless, oily liquid is obtained. Yield: (87\%).

Method II:

3-Aminopropionitrile $\left(M=70.1 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=0.988,0.13 \mathrm{~mol}\right)$ and methylamine $\left(M=31.1 \mathrm{gmol}^{-1}, 100 \mathrm{ml}, 40 \%\right.$ in water, $\left.\rho=0.902,1.2 \mathrm{~mol}\right)$ are dissolved in about 200 ml of ethanol. Paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}\right.$, $40 \mathrm{~g}, 1.33 \mathrm{~mol}$) is added under rapid stirring. The reaction is finished, when
the solution has cooled down to room temperature. The solvents are removed by rotary evaporation. Purification analogous to method I. Yield: $20 \mathrm{~g}(91 \%)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Assignment

$\delta(\mathrm{ppm})$${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz}) \quad$| ${ }^{13} \mathrm{C}-\mathrm{NMR}$ |
| :---: |
| CN |

1-(1-Hydroxyethyl)-3,5-diethyl-1,3,5-triazacyclohexane: $\mathbf{3 4}$

Method I:

In about 80 ml of Et_{3} TAC 241 ml of ethanolamine $\left(M=61.1 \mathrm{gmol}^{-1}, \rho=\right.$ $1.012,16.6 \mathrm{mmol}$) is dissolved. The mixture is heated for 12 h at $130^{\circ} \mathrm{C}$. After removal of the $\mathrm{Et}_{3} \mathrm{TAC}$ in vacuum $\left(70^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right) 1.9 \mathrm{~g}$ of crude 34 is obtained. For further purification $\mathbf{3 4}$ is dissolved in ethylamine ($10 \mathrm{ml}, 70 \%$ in water) and stirred for 12 h . Ethylamine and water are removed in vacuum. The remaining oil is very quickly (Bunsen burner) distilled in vacuum. Yield $1.4 \mathrm{~g}\left(M=187.3 \mathrm{gmol}^{-1}, 45 \%\right)$.

Method II:

Ethanolamine $\left(M=61.1 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=1.012,14.9 \mathrm{mmol}\right)$ and aqueous ethylamine $\left(M=45.1 \mathrm{gmol}^{-1}, 100 \mathrm{ml}, 70 \%, \rho=0.796,1.2 \mathrm{~mol}\right)$ are dissolved in about 200 ml of ethanol. Paraformaldehyde ($M=30.0 \mathrm{gmol}^{-1}, 40 \mathrm{~g}$, $1.33 \mathrm{~mol})$ is added under rapid stirring. The reaction is finished, when the solution has cooled down to room temperature. The water and the ethanol are removed by rotary evaporation. The remaining oil is dissolved in 40 ml of methanol and 20 ml of pentane. While the solution cooles down to $-78{ }^{\circ} \mathrm{C}$ two phases form. The lighter pentane phase contains mainly 24 and the desired product 31. This procedure is repeated several times. After removal of the pentane 24 is removed in vacuo $\left(60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. Further purification can be achieved by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}=\right.$ 1:1). Yield 13 g (47%) of colorless, oily 34.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
OH	5.74	-	br	
6	3.62	4.7	2 t	60.22
$1+4$	3.29	-	br	$75.36,72.87$
5	2.85	4.7	2 t	58.03
2	2.24	7.3	4 q	46.27
3	0.99	7.3	6 t	12.24

1-(1-Sodiumethanolato)-3,5-diethyl-1,3,5-triazacyclohexane: 35
6 g of $\mathbf{3 4}\left(M=187.3 \mathrm{gmol}^{-1}, 32.0 \mathrm{mmol}\right)$ is dissolved in 100 ml of pentane. Several small pieces of sodium are added and the mixture is stirred for 12 hour at room temperature. After cooling down to about $-30^{\circ} \mathrm{C}$, a dirty gray solid precipitates which is filtered off along with the remaining sodium. After removal of the solvent 3 g of $\mathbf{3 5}\left(M=209.3 \mathrm{gmol}^{-1}, 45 \%\right)$ is obtained as a deep orange, waxy solid.

The $\mathrm{Et}_{2}(\mathrm{EtONa}) \mathrm{TAC}$ can be heated to at least $70^{\circ} \mathrm{C}$ without signs of the equilibrium of the free alcohol.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
6	3.49	5.6	2 t	58.52
1,4	3.24	-	br	$71.80,71.54$
5	2.54	5.6	2 t	53.78
2	2.33	7.3	49	45.92
3	0.87	7.3	6 t	10.61

1-(1-Cyanoethyl)-3,5-diethyl-1,3,5-triazacyclohexane: $\mathbf{3 6}$

Method I:

In about 80 ml of Et_{3} TAC 241 ml 3 -aminopropionitile $\left(M=70.1 \mathrm{gmol}^{-1}, \rho\right.$ $=0.988,14.1 \mathrm{mmol})$ is dissolved. The mixture is heated for 12 h at $130^{\circ} \mathrm{C}$. After removal of the $\mathrm{Et}_{3} \mathrm{TAC}$ in vacuum $\left(60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right) 2.4 \mathrm{~g}$ crude $\mathbf{3 6}$ is obtained. For further purification the $\mathbf{3 6}$ is dissolved in 50 ml of ether and filtered through a short column filled with silica gel. The ether is removed in vacuo. 2.1 g of $\mathbf{3 6}$ as a colorless oily liquid is obtained. Yield: ($M=$ $\left.196.3 \mathrm{gmol}^{-1}, 76 \%\right)$.

Method II:

3-Aminopropionitrile ($M=70.1 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=0.988,0.13 \mathrm{~mol}$) and ethylamine ($100 \mathrm{ml}, 40 \%$ in water, $\rho=0.902,1.2 \mathrm{~mol}$) are dissolved in about 200 ml of ethanol. Paraformaldehyde ($40 \mathrm{~g}, 1.33 \mathrm{~mol}$) is added under rapid stirring. The reaction is finished, when the solution hascooled down to room temperature. The water and the ethanol are removed by rotary evaporation. Purification analoguos to method I. Yield: 20 g (78\%).

Infrared Spectrum (KBr/film; ν / cm^{-1})
2969s, 2936s, $2874 \mathrm{~s}, 2806 \mathrm{~s}, 2790 \mathrm{~s}, 2642 \mathrm{~m}, ~ 2247 \mathrm{~m}, ~ 1470 \mathrm{~s}, 1454 \mathrm{~s}, 1379 \mathrm{~m}$, $1356 \mathrm{~m}, 1292 \mathrm{~s}, 1215 \mathrm{~m}, 1189 \mathrm{~m}, 1146 \mathrm{w}, 1122 \mathrm{~m}, 1104 \mathrm{~m}, 1045 \mathrm{~s}, 1008 \mathrm{~s}, 805 \mathrm{~m}$, 649m

Mass Spectrum (70 eV; $80^{\circ} \mathrm{C}$)

m / z	$\mathrm{I}_{\text {relative }} \%$	fragment
196	(8)	$[\mathbf{3 3}]^{+}$
139	(27)	$\left[\mathbf{3 3}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NCH}_{2}\right]^{+}$
114	(18)	$\left[\mathbf{3 3}-\mathrm{NCCH}_{2} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}_{2}\right]^{+}$
99	(27)	$\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)_{2}-\mathrm{H}\right]^{+}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

1-(1-Ethoxytrimethylsilyl)-3,5-diethyl-1,3,5-triazacyclohexane: $\mathbf{3 7}$
6 g of $\mathbf{3 4}\left(M=187.3 \mathrm{gmol}^{-1}, 32.0 \mathrm{mmol}\right)$ are dissolved in a mixture of 200 ml of pentane and 100 ml of triethylamine. Under rapid stirring $\mathrm{Me}_{3} \mathrm{SiCl}(M=$ $\left.108.6 \mathrm{gmol}^{-1}, \rho=0.856,4 \mathrm{ml}, 36.8 \mathrm{mmol}\right)$ is added. At once a heavy white precipitate of $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ forms. After stirring at room temperature for 2 h the $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ is filtered off and remaining product extracted with about 200 ml of pentane. The solvents are removed in vacuo yielding 7 g of crude yellow $37\left(M=259.5 \mathrm{gmol}^{-1}, 84 \%\right)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
6	3.70	6.4	2 t	61.34
$1+4$	3.40	-	br	$74.34,74.12$
5	2.70	6.4	2 t	54.78
3	2.46	7.3	4 q	46.32
2	1.09	7.3	6 t	12.43
7	0.13	-	9 s	-0.70

1-(1-Hydroxyethyl)-3,5-diisopropyl-1,3,5-triazacyclohexane: 38
Ethanolamine ($M=61.1 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=1.012,0.15 \mathrm{~mol}$) and isopropylamine ($M=59.1 \mathrm{gmol}^{-1}, 100 \mathrm{ml}, \rho=0.694,1.2 \mathrm{~mol}$) are dissolved in about 200 ml of ethanol. Paraformaldehyde ($M=30.0 \mathrm{gmol}^{-1}, 40 \mathrm{~g}, 1.33 \mathrm{~mol}$) is added under rapid stirring. The reaction is finished, when the solution has cooled down to room temperature. The water and the ethanol are removed by rotary evaporation. Purification analogous to 31 and 34 yields 11 g of 38 ($M=215.3 \mathrm{gmol}^{-1}, 35 \%$) as colorless oil.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	
OH	5.7	-	br
4	3.64	4.7	2 t
$5+6$	3.48	-	br
3	2.86	4.7	2 t
2	2.64	6.5	2 spm
1	1.00	6.5	12 d

1-(1-Sodiumethoxy)-3,5-diisopropyl-1,3,5-triazacyclohexane: 39
2 g of $\mathbf{3 8}\left(M=215.3 \mathrm{gmol}^{-1}, 9.3 \mathrm{mmol}\right)$ is dissolved in 100 ml of pentane. Several small pieces of sodium are added and the mixture is stirred for 12 hour at room temperature. After cooling down to about $-30^{\circ} \mathrm{C}$, a dirty gray solid precipitates which is filtered off along with the remaining sodium. After removal of the solvent in vacuum 1.4 g of $\mathbf{3 5}\left(M=237.3 \mathrm{gmol}^{-1}, 64 \%\right)$ are obtained as a yellow, waxy solid.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
4	3.79	4.7	2 t	58.89
$5+6$	3.74	-	br	$67.82,66.99$
3	3.11	4.7	2 t	57.23
2	2.59	6.5	2 sp	48.66
1	1.10	6.5	12 d	19.00

1-(1-Hydroxypropyl)-3,5-dimethyl-1,3,5-triazacyclohexane: 40

Method I:

In about 80 ml of $\mathrm{Me}_{3} \mathrm{TAC}$ propanolamine $\left(M=75.1 \mathrm{gmol}^{-1}, 1 \mathrm{ml}, \rho=\right.$ $0.982,0.013 \mathrm{~mol})$ is dissolved. The mixture is heated for 12 h at $130^{\circ} \mathrm{C}$. After removal of the $\mathrm{Me}_{3} \mathrm{TAC}$ in vacuum $\left(60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right) 1.3 \mathrm{~g}$ crude $\mathbf{4 0}$ is obtained. For further purification 40 is dissolved in 10 ml of methylamine (40% in water) and stirred for 12 h . The methylamine and the water are removed in vacuum. The remaining oil is transfered very quickly (Bunsen burner) in vacuum in a with liquid nitrogen cooled flask. Yield 1.0 g ($M=$ $\left.156.3 \mathrm{gmol}^{-1}, 49 \%\right)$.

Method II:

Propanolamine $\left(M=75.1 \mathrm{gmol}^{-1}, 9 \mathrm{ml}, \rho=0.982,0.12 \mathrm{~mol}\right)$ and methylamine $\left(M=31.1 \mathrm{gmol}^{-1}, 100 \mathrm{ml}, 40 \%\right.$ in water, $\left.\rho=0.902,1.2 \mathrm{~mol}\right)$ are
dissolved in about 500 ml of ethanol. Paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}\right.$, $40 \mathrm{~g}, 1.33 \mathrm{~mol}$) is added under rapid stirring. The reaction is finished, when the solution has cooled down to room temperature. The solvents are removed by rotary evaporation. 40 is, along with $\mathrm{Me}_{3} \mathrm{TAC}$, extracted from $\mathrm{Me}(\mathrm{PrOH})_{2} \mathrm{TAC}$ and $(\mathrm{PrOH})_{3} \mathrm{TAC}$ with cooled pentane. The pentane is removed by rotary evaporation, and the remaining $\mathrm{Me}_{3} \mathrm{TAC}$ is removed in vac$u o$ at $60^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}$. The crude product can be purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{3} \mathrm{~N}=1: 1\right)$. Yield: $10.2 \mathrm{~g}\left(M=156.3 \mathrm{gmol}^{-1}\right.$, $55 \%)$.

With both methods the resulting 40 is contaminated by about $5-6 \%$ Me_{3} TAC. Due to an equilibrium between $\mathrm{Me}(\mathrm{PrOH})_{2} \mathrm{TAC}, \mathrm{Me}_{3} \mathrm{TAC}$ and $\mathrm{Me}_{2} \mathrm{PrOHTAC}$ it is difficult to obtain pure $\mathbf{4 0}$. It should be prepared directly prior use or stored refrigerated.

Infrared Spectrum (KBr/film; ν / cm^{-1})
$3282 \mathrm{~s}, 2940 \mathrm{~s}, 2860 \mathrm{~s}, 2786 \mathrm{~s}, 2729 \mathrm{~m}, 2645 \mathrm{~m}, 2602 \mathrm{w}, 2512 \mathrm{w}, 2458 \mathrm{w}, 1675 \mathrm{w}$, $1465 \mathrm{~s}, 1447 \mathrm{~s}, 1428 \mathrm{~s}, 1385 \mathrm{~s}, 1371 \mathrm{~s}$, 1347m, 1316w, 1261s, 1233s, 1193m, 1147s, $1116 \mathrm{~s}, 1062 \mathrm{~s}, 1050 \mathrm{~s}, 1006 \mathrm{~s}, 982 \mathrm{~m}, ~ 946 \mathrm{w}, ~ 917 \mathrm{~s}, ~ 900 \mathrm{~m}, ~ 861 \mathrm{~m}, 770 \mathrm{w}, 652 \mathrm{w}$, $624 \mathrm{w}, 558 \mathrm{w}, 537 \mathrm{w}, 493 \mathrm{w}, 457 \mathrm{w}, 443 \mathrm{w}, 433 \mathrm{w}, 418 \mathrm{w}, 407 \mathrm{w}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
OH	4.51	-	br	
4	3.59	5.16	2 t	62.82
$1+3$	3.06	-	br	$77.41,74.92$
6	2.54	5.16	2 t	51.51
2	2.11	-	6 s	39.85
5	1.53	5.16	2 p	29.37

1-(1-Amio-propyl)-3,5-dimethyl-1,3,5-triazacyclohexane: 41
2 g of $\mathrm{Me}_{2}(\mathrm{EtCN})$ TAC $\left(M=168.2 \mathrm{gmol}^{-1}, 11.89 \mathrm{mmol}\right)$ are dissolved in about 10 ml of ethanol. 5 g of an aqueous (50\%) Raney nickel suspension is added. Under rapid stirring and water cooling 0.9 g of $\mathrm{NaBH}_{4}(M=$ $37.8 \mathrm{gmol}, 23.78 \mathrm{mmol}$) in 5 ml of an 8 normal NaOH solution is added dropwise to the mixture. After 5 minutes the reaction is finished. The Raney nickel is filtered off. After removal of the ethanol in vacuum, about 2 g of KOH are added to the mixture and the product is extracted with hexane. Yield: $1.13 \mathrm{~g}\left(M=172.2 \mathrm{gmol}^{-1}, 55 \%\right)$ of colorless, oily 41.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$1+3$	3.01	-	br	$78.09,75.09$
6	2.50	6.9	2 t	50.12
4	2.38	6.9	2 t	40.28
2	1.98	-	12 s	40.05
5	1.35	6.9	2 q	31.26

1-(1-Amio-propyl)-3,5-diethyl-1,3,5-triazacyclohexane: 42
42 was prepared analogous to 41. 2 g of $\mathrm{Et}_{2}(\mathrm{EtCN}) \mathrm{TAC}\left(M=196.3 \mathrm{gmol}^{-1}\right.$, $10.18 \mathrm{mmol}), 5 \mathrm{~g}$ of a Raney nickel suspension, 1.1 g of $\mathrm{NaBH}_{4}(M=$ $\left.37.8 \mathrm{gmol}^{-1}, 29.07 \mathrm{mmol}\right)$ were used. Yield: $1.10 \mathrm{~g}\left(M=200.3 \mathrm{gmol}^{-1}, 54 \%\right)$ of 42 .
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$3+4$	3.11	-	br	$73.63,74.00$
7	2.54	6.9	2 t	50.21
$2+5$	2.27	6.9	6 m	$46.30,40.32$
6	1.40	-	2 q	31.12
1	1.35	6.9	6 t	12.50

8 g of $\mathrm{Me}_{2}(\mathrm{EtOH}) \mathrm{TAC}\left(M=159.2 \mathrm{gmol}^{-1}, 50.24 \mathrm{mmol}\right)$ are dissolved in a mixture of 150 ml of pentane and 200 ml of $\mathrm{Et}_{3} \mathrm{~N}$. Under rapid stirring 3.5 ml of freshly distilled $\mathrm{Me}_{2} \mathrm{SiCl}_{2}\left(M=129.1 \mathrm{gmol}^{-1}, \rho=1.064,28.84 \mathrm{mmol}\right)$ are added. At once a voluminous precipitate forms. The suspension is stirred for 15 minutes at room temperature. Afterwards the solid is filtered off and the product extracted with pentane. After evaporation of the pentane the remaining colorless oil is heated for 30 minutes at $80^{\circ} \mathrm{C}$ in vacuum to remove volatile parts. Further purification is not necessary. Yield: 8.6 g (M $\left.=361.5 \mathrm{gmol}^{-1}, 95 \%\right)$ of pure colorless, oily 43 .

Mass Spectrum (70 eV; $43{ }^{\circ} \mathrm{C}$)

m / z	$\mathrm{I}_{\text {relative }} \%$	fragment
374	(0.8)	$[\mathbf{4 3}]^{+}$
331	(0.7)	$\left[\mathbf{4 3}-\mathrm{CH}_{3} \mathrm{NCH}_{2}\right]^{+}$
318	(0.4)	$\left[\mathbf{4 3}-\mathrm{CH}_{3} \mathrm{NCH}_{2} \mathrm{NH}\right]^{+}$
287	(2.3)	$\left[\mathbf{4 3}-\mathrm{CH}_{3} \mathrm{NCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}\right]^{+}$
244	(3.8)	$\left[\mathbf{4 3}-\mathrm{Me}_{3} \mathrm{TAC}\right] \mathrm{H}^{+}$
130	(66)	$\mathrm{Me}_{3} \mathrm{TAC}+\mathrm{H}^{+}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Assignment $\delta(\mathrm{ppm})$
${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$

Di-ethyl-di-(1-ethyl-3,5-dimethyl-1,3,5-triazacyclohexyl)-siloxane: 44
44 was prepared analogue to 43.6 g of $\mathrm{Et}_{2}(\mathrm{EtOH}) \mathrm{TAC}\left(M=187.3 \mathrm{gmol}^{-1}\right.$, $32.03 \mathrm{mmol}), 2 \mathrm{ml}$ of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}\left(\left(M=129.1 \mathrm{gmol}^{-1}, \rho=1.064,16.48 \mathrm{mmol}\right)\right.$ were used. Yield: $5.8 \mathrm{~g}\left(M=430.7 \mathrm{gmol}^{-1}, 84 \%\right)$ of pure colorless, oily 44.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
6	3.62	6.9	4 t	46.39
$1+4$	3.32	-	br	$74.20,74.41$
3	2.38	6.4	8 q	61.42
2	1.00	6.9	12 t	12.52
5	2.61	6.4	4 t	54.86
7	0.06	-	6 s	-0.63

5.2.3 1,3-Di-(1-methylene-3,5-dialkyl-1,3,5-triazacyclohexyl)benzenes

1,3-Di-(1-methylene-3,5-dimethyl-1,3,5-triazacyclohexyl)-benzene: 45
100 ml of methylamine $\left(M=31.1 \mathrm{gmol}^{-1}, 40 \%\right.$ in water, $\left.\rho=0.902,1.2 \mathrm{~mol}\right)$ and 9 ml of m -xylylamine $\left(M=136.2 \mathrm{gmol}^{-1}, \rho=1.032,68.2 \mathrm{mmol}\right)$ are dissolved in 150 ml of ethanol. Under vigorous stirring and water cooling 40 g of paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}, 1.33 \mathrm{~mol}\right)$ are added. The reaction is finished when all of the formaldehyde is dissolved and the mixture has cooled down to room temperature. The solvent and the also formed $\mathrm{Me}_{3} \mathrm{TAC}$ were evaporated in vacuum $\left(70^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. The remaining colorless oily liquid is heated with the flame of a Bunsen burner under vacuum until the oil starts to smoke. 18 g of crude yellow 45 is obtained and solved in about 50 ml of ether and filtered through a short column of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. For drying the solution is stirred with sodium over night. After filtering through alumina again and removal of the solvent $16.3 \mathrm{~g} 45\left(M=332.4 \mathrm{gmol}^{-1}, 0.05 \mathrm{~mol}\right.$, 72%) is yielded as a colorless highly viscose oil.

Mass Spectrum (70 eV; $\left.109{ }^{\circ} \mathrm{C}\right)$

m / z	$\mathrm{I}_{\text {relative }} \%$	fragment
332	(12)	$[\mathbf{4 5}]^{+}$
289	(7)	$\left[\mathbf{4 5}-\mathrm{CH}_{3} \mathrm{NCH}_{2}\right]^{+}$
274	(9)	$\left[\mathbf{4 5}-\mathrm{CH}_{2}=\mathrm{N}=\mathrm{CH}_{2} \mathrm{NH}_{2}\right]^{+}$
245	(65)	$\left[\mathbf{4 5}-2 \cdot \mathrm{CH}_{3} \mathrm{NCH}_{2}\right]^{+}$
217	(60)	$\left[\mathbf{4 5}-\mathrm{H}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{TAC}\right]^{+}$
203	(35)	$\left[\mathbf{4 5}-\mathrm{H}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{TACCH}_{2}\right]^{+}$
161	(53)	$\left[\mathrm{CH}_{2}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}=\mathrm{CH}_{2}\right]^{+}$
33	(28)	$\left[\mathrm{PhCH}_{2} \mathrm{NHCH}_{2}\right]^{+}$
105	(35)	$\left[\mathbf{4 5}-\mathrm{H}-2 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{TAC}\right]^{+}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$5,6,7,8$	$7.3-7.1$		-	4 m
			$143.28,128.28$	
4	3.83		4 s	$125.39,125.09$
1,3	3.18	-	3 br	46.09
2	1.49	-	12 s	$76.86,74.55$
			39.91	

1,3-Di-(1-methylene-3,5-diethyl-1,3,5-triazacyclohexyl)-benzene: 46
95 ml of ethylamine $\left(M=45.1 \mathrm{gmol}^{-1}, 70 \%\right.$ in water, $\left.\rho=0.796,1.13 \mathrm{~mol}\right)$ and 9 ml of m -xylylamine $\left(~ M=136.2 \mathrm{gmol}^{-1}, \rho=1.032,68.2 \mathrm{mmol}\right)$ are dissolved in 150 ml of ethanol. Under vigorous stirring and water cooling 39.3 g of paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}, 1.31 \mathrm{~mol}\right)$ is added. The reaction is finished when all of the formaldehyde is dissolved and the mixture has cooled down to room temperature. The solvent and the byproduct $\mathrm{Et}_{3} \mathrm{TAC}$ were evaporated in vacuum $\left(70^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. The remaining colorless oily liquid is heated with the flame of a Bunsen burner in vacuum until it begins to smoke. 25 g of crude yellow 46 is obtained, solved in about 50 ml of ether and filtered through a short column of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. For drying the solution is stirred with sodium over night. After filtering through alumina again and removal of the solvent 22 g of $\mathbf{4 6}\left(M=388.5 \mathrm{gmol}^{-1}, 0.06 \mathrm{~mol}, 83 \%\right)$ is yielded as a colorless highly viscose oil.

Infrared Spectrum (KBr/film; ν / cm^{-1})
$3201 \mathrm{w}, ~ 3101 \mathrm{w}, ~ 3057 \mathrm{w}, 3025 \mathrm{w}, ~ 2967 \mathrm{~s}, 2935 \mathrm{~s}, 2869 \mathrm{~s}, 2795 \mathrm{~s}$, 2645s, 2458w, $2253 \mathrm{w}, 1943 \mathrm{w}, 1877 \mathrm{w}, 1683 \mathrm{~s}, 1609 \mathrm{~m}, 1590 \mathrm{w}, 1486 \mathrm{~m}, 1471 \mathrm{~s}, 1452 \mathrm{~s}, 1397 \mathrm{~s}$, $1378 \mathrm{~s}, 1354 \mathrm{~s}, 1292 \mathrm{~s}, 1212 \mathrm{~s}, 1173 \mathrm{~s}, 1146 \mathrm{~s}, 1103 \mathrm{~s}, 1066 \mathrm{~s}, 1040 \mathrm{~m}, 1011 \mathrm{~m}, ~ 993 \mathrm{~s}$, 913s, 863s, 791m, 756m, 704m, 664m, 621w, 519w, 489w, 438w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$6,7,8,9$	$7.1-6.7$		4 m	$138.3,128.8,127.8,127.1$
5	3.60	-	4 s	56.58
1,4	3.29	-	br	$73.88,73.37$
3	0.99	7.3	12 t	12.30
2	2.42	7.3	8 q	46.20

1,3-Di-(1-methylene-3,5-diisopropyl-1,3,5-triazacyclohexyl)-benzene) : 47 100 ml of isopropylamine $\left(M=59.1 \mathrm{gmol}^{-1}, \rho=0.694,1.2 \mathrm{~mol}\right)$ and 9 ml of m-xylylamine $\left(M=136.2 \mathrm{gmol}^{-1}, \rho=1.032,68.2 \mathrm{mmol}\right)$ are dissolved in 200 ml of ethanol. Under vigorous stirring and water cooling paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}, 40 \mathrm{~g}, 1.33 \mathrm{~mol}\right)$ is added. The reaction is finished when all of the formaldehyde is dissolved and the mixture has cooled down to room temperature. The solvent and the mainly formed ${ }^{i} \operatorname{Pr}_{3} \mathrm{TAC}$ were evaporated in vacuum $\left(70^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. The remaining light yellow, oily liquid
is heated with the flame of a Bunsen burner in vacuum until it begins to smoke. 22 g of a crude yellow 47 is obtained and dissolved in about 50 ml of ether and filtered through a short column of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. For drying the solution is stirred with sodium over night. After filtering through alumina again and removal of the solvent 17 g of $47\left(M=444.7 \mathrm{gmol}^{-1}, 38.2 \mathrm{mmol}\right.$, 56%) is yielded as a colorless highly viscose oil.

Infrared Spectrum (KBr/film; ν / cm^{-1})
$3178 \mathrm{w}, 2965 \mathrm{~s}, 2929 \mathrm{~s}, 2872 \mathrm{~s}, 2814 \mathrm{~s}, 2647 \mathrm{~m}, 2455 \mathrm{w}, 1939 \mathrm{w}, 1876 \mathrm{w}, 1805 \mathrm{w}$, $1682 \mathrm{w}, 1650 \mathrm{w}, 1609 \mathrm{w}, 1590 \mathrm{w}, 1463 \mathrm{~m}, 1407 \mathrm{~m}, 1381 \mathrm{~s}, 1362 \mathrm{~s}, 1329 \mathrm{~s}, 1239 \mathrm{~s}$, $1212 \mathrm{~s}, 1187 \mathrm{~s}, 1166 \mathrm{~s}, 1143 \mathrm{~m}, 1116 \mathrm{~m}, 1071 \mathrm{~m}, 1007 \mathrm{~s}, 971 \mathrm{~m}, 915 \mathrm{~m}, 892 \mathrm{~m}, 853 \mathrm{w}$, $789 \mathrm{w}, 754 \mathrm{w}, 704 \mathrm{w}, 676 \mathrm{w}, 621 \mathrm{w}, 547 \mathrm{w}, 515 \mathrm{w}, 453 \mathrm{w}, 450 \mathrm{w}, 446 \mathrm{w}, 442 \mathrm{w}, 439 \mathrm{w}$, 435w, 414w
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
6,7	$7.4-7.2$		4 m	$135.4,129.3$
8,9				$127.9,127.4$
5			4 m	56.94
1	3.64	-	4 m	68.34
4	3.47	-	8 br	71.15
3	2.91	6.4	4 sp	49.80
2	1.07	6.4	24 d	19.72

1,3-Di-(1-methylene-3,5-tert-butyl-1,3,5-triazacyclohexyl)-benzene: 48
100 ml of ${ }^{\mathrm{t}}$ butyl-amine $\left(M=73.1 \mathrm{gmol}^{-1}, \rho=0.696,0.95 \mathrm{~mol}\right)$ and 9 ml of m-xylylamine $\left(M=136.2 \mathrm{gmol}^{-1}, \rho=1.032,68.2 \mathrm{mmol}\right)$ are dissolved in 500 ml of ethanol. Under vigorous stirring and water cooling paraformaldehyde $\left(M=30.0 \mathrm{gmol}^{-1}, 40 \mathrm{~g}, 1.33 \mathrm{~mol}\right)$ is added. The reaction is finished when all of the formaldehyde is dissolved and the mixture has cooled down to room temperature. The solvent and the mainly formed ${ }^{t} \mathrm{Bu}_{3} \mathrm{TAC}$ are evaporated in vacuum $\left(70^{\circ} \mathrm{C} / 1.3 \mathrm{~Pa}\right)$. Afterwards hexane (10 ml) is added and removed in vacuum. This procedure is repeated four or five times. Then the remaining yellowish oil is dissolved in pentane and filtered through a short column of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. The filtrate is dried over sodium over night. After filtering through alumina again and slow evaporation of the solvent colorless crystals start to grow. Yield: $1.1 \mathrm{~g}\left(M=500.8 \mathrm{gmol}^{-1}, 3 \%\right)$ of pure 48 , m.p. $30-33{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{~N}_{6}$	C	H	N
Anal. Found:	72.14	11.10	16.35
Calc:	71.85	11.27	16.78

Infrared Spectrum (KBr; ν / cm^{-1})

3031m, 2963s, 2924m, 2867m, 2814m, 2801m, 2767m, 2750m, 2670m, 2601w, $1686 \mathrm{w}, 1682 \mathrm{w}, 1608 \mathrm{w}, 1478 \mathrm{~m}, 1468 \mathrm{~m}, 1452 \mathrm{~m}, 1407 \mathrm{~m}, 1393 \mathrm{~m}, 1385 \mathrm{~m}, 1362 \mathrm{~s}$, $1355 \mathrm{~s}, 1305 \mathrm{~m}, 1271 \mathrm{~s}, 1254 \mathrm{~m}, 1243 \mathrm{~m}, 1218 \mathrm{~s}, 1202 \mathrm{~s}, 1187 \mathrm{~m}, 1169 \mathrm{~s}, 1155 \mathrm{~s}$, $1094 \mathrm{~m}, 1062 \mathrm{~m}, 1025 \mathrm{~m}, 1005 \mathrm{~s}, 984 \mathrm{~m}, ~ 971 \mathrm{~m}, ~ 938 \mathrm{w}, ~ 911 \mathrm{~m}, ~ 900 \mathrm{~m}, ~ 869 \mathrm{~m}, 837 \mathrm{w}$, $795 \mathrm{~m}, 783 \mathrm{~m}, 756 \mathrm{w}, 707 \mathrm{~m}, 644 \mathrm{w}, 524 \mathrm{w}, 505 \mathrm{w}, 502 \mathrm{w}, 498 \mathrm{w}, 495 \mathrm{w}, 476 \mathrm{w}, 469 \mathrm{w}$, 440w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$6,7,8,9$	$7.4-7.2$		4 m	$147.6,139.4,129.5,127.4$
5	3.72		-	4 s
4	-	-	-	56.71
1	3.60	-	4 br	52.46
2	3.47	-	8 br	68.53
3	1.07	-	36 s	64.27
			26.66	

5.3 Complexes

5.3.1 RTATC-Complexes

$\underline{\text { SiTATCCrCl }_{3}}: 49$
$0.2 \mathrm{~g}\left(M=267.5 \mathrm{gmol}^{-1}, 0.74 \mathrm{mmol}\right)$ of SiTATC are mixed with 0.26 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 0.69 \mathrm{mmol}\right)$. Diethylether $(20 \mathrm{ml})$ is added via vacuum transfer. After 30 min of stirring at room temperature the solvent is removed in vacuum. This procedure is repeated three times. Finally excess ligand is removed by washing with ether. Yield: $0.18 \mathrm{~g}\left(M=425.9 \mathrm{gmol}^{-1}\right.$, $61 \%)$ of 49 , m.p. $220-230^{\circ} \mathrm{C}$

$\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{SiCrCl}_{3}$	C	H	N
Anal. Found:	60.66	10.75	10.21
Calc:	62.86	10.93	15.71

Infrared Spectrum (KBr; ν / cm^{-1})

$3291 \mathrm{~s}, 2959 \mathrm{~s}, 1611 \mathrm{~s}, 1517 \mathrm{w}, 1475 \mathrm{w}, 1460 \mathrm{w}, 1440 \mathrm{w}, 1393 \mathrm{w}, 1324 \mathrm{w}, 1253 \mathrm{~m}$, $1175 \mathrm{w}, 1054 \mathrm{~m}, 1038 \mathrm{~m}, 1012 \mathrm{~m}, ~ 959 \mathrm{w}, 915 \mathrm{w}, 856 \mathrm{~s}, 757 \mathrm{w}, 719 \mathrm{w}, 687 \mathrm{~m}, 620 \mathrm{~m}$, $574 \mathrm{~m}, 523 \mathrm{~s}, 450 \mathrm{~m}, 446 \mathrm{~m}, 420 \mathrm{w}, 416 \mathrm{w}, 412 \mathrm{w}, 405 \mathrm{w}$
$\underline{\text { BuTATCCrCl }}{ }_{3}$: 50
$0.2 \mathrm{~g}\left(M=237.4 \mathrm{gmol}^{-1}, 0.84 \mathrm{mmol}\right)$ of $\operatorname{BuTATC}(\mathbf{1 8})$ are mixed with 0.32 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 0.85 \mathrm{mmol}\right)$. Diethylether $(25 \mathrm{ml})$ is added via vacuum transfer. After 30 min of stirring at room temperature the solvent is removed in vacuum. This procedure is repeated three times. Finally excess ligand is removed by washing with ether. Yield: 0.21 g ($M=$ $395.8 \mathrm{gmol}^{-1}, 63 \%$) of $\mathbf{5 0}$, m.p. $90-100^{\circ} \mathrm{C}$

$\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	68.81	11.42	14.21
Calc:	70.83	11.46	17.70

Infrared Spectrum (KBr; ν / cm^{-1})
$3279 \mathrm{~s}, 2959 \mathrm{~s}, 2933 \mathrm{~s}, 2872 \mathrm{~m}, 1601 \mathrm{~s}, 1511 \mathrm{~m}, 1459 \mathrm{~m}, 1428 \mathrm{~m}, 1385 \mathrm{w}, 1342 \mathrm{w}$, $1322 \mathrm{~m}, 1301 \mathrm{w}, 1203 \mathrm{w}, 1096 \mathrm{w}, 1036 \mathrm{~m}, 1012 \mathrm{~m}, ~ 963 \mathrm{~m}, ~ 919 \mathrm{~m}, ~ 859 \mathrm{~s}, 727 \mathrm{~m}$, 691m, 594m, 515s
$\mathrm{HTATCCrCl}_{3}$: 51
0.5 g of $16\left(M=181.3 \mathrm{gmol}^{-1}, 2.76 \mathrm{mmol}\right)$ are stirred with 1.06 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 2.82 \mathrm{mmol}\right)$ in THF for 3 d . The solvent is removed in vacuum and the remaining deep purple solid washed with hexane. Yield: $0.82 \mathrm{~g}\left(M=339.6 \mathrm{gmol}^{-1}, 88 \%\right)$ of 51 , m.p. $164-165{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	35.41	5.87	10.02
Calc:	35.36	5.64	12.37

Infrared Spectrum (KBr; ν / cm^{-1})
$3366 \mathrm{~s}, 3299 \mathrm{~s}, 3004 \mathrm{~s}, 2950 \mathrm{~s}, 2869 \mathrm{~s}, 1690 \mathrm{~m}, ~ 1595 \mathrm{~s}$, 1467 s , $1441 \mathrm{~m}, 1422 \mathrm{w}$, $1380 \mathrm{w}, 1372 \mathrm{w}, 1359 \mathrm{w}, 1344 \mathrm{w}, 1322 \mathrm{~m}, 1285 \mathrm{~s}, 1271 \mathrm{~m}, 1150 \mathrm{~s}, 1131 \mathrm{w}, 1107 \mathrm{w}$, 1088s, 1051w, 1035w, 993w, 947m, 898w, 881w, 817w, 731w, 695w, 582 m , $530 \mathrm{~m}, 517 \mathrm{~m}, 459 \mathrm{w}, 403 \mathrm{~m}$
$\underline{\mathrm{MeTATCCrCl}_{3}}$: 52
1.22 g of $\mathbf{1 7}\left(M=195.3 \mathrm{gmol}^{-1}, 6.24 \mathrm{mmol}\right)$ are stirred with 2.20 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 5.87 \mathrm{mmol}\right)$ in THF for 5 d . The solvent is removed in vacuum and the remaining deep purple solid washed with THF and hexane. Yield: $1.05 \mathrm{~g}\left(M=353.7 \mathrm{gmol}^{-1}, 51 \%\right)$ of 52 , m.p. $222-225^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	36.60	5.84	8.67
Calc:	37.36	5.99	11.88

Infrared Spectrum (KBr; ν / cm^{-1})
$3300 \mathrm{~s}, 2999 \mathrm{~s}, 2959 \mathrm{~s}, 2885 \mathrm{~s}, 1611 \mathrm{w}, 1471 \mathrm{~m}, 1438 \mathrm{w}, 1388 \mathrm{~m}, 1355 \mathrm{w}, 1334 \mathrm{w}$, $1297 \mathrm{~m}, 1274 \mathrm{~m}, 1256 \mathrm{w}, 1170 \mathrm{~m}, 1151 \mathrm{~m}, 1126 \mathrm{~m}, 1111 \mathrm{~m}, 1103 \mathrm{w}, 1064 \mathrm{~m}, 1039 \mathrm{~s}$, 904w, 698w, 569m, 529w, 431w, 401m
$\underline{\operatorname{MeTATCCr}(\mathrm{OTf})_{3}}: 53$
0.4 g of $52\left(M=353.7 \mathrm{gmol}^{-1}, 1.13 \mathrm{mmol}\right)$ is stirred in pure $\mathrm{HSO}_{3} \mathrm{CF}_{3}(\sim$ $5 \mathrm{ml}, \rho=1.696)$ for 2 h at room temperature. Afterwards the excess acid is removed in vacuum. The remaining light blue-green solid is washed three times with diethylether and one time with pentane. Yield: 0.76 g ($M=$ $694.5 \mathrm{gmol}^{-1}, 97 \%$) of blue-green 53, m.p. $215-215^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{CrS}_{3} \mathrm{O}_{9} \mathrm{~F}_{9}$	C	H	N	S
Anal. Found:	24.09	3.02	5.84	14.22
Calc:	24.64	3.10	6.16	14.09

$\underline{\text { MeTATCCrI }_{3}}: \mathbf{5 4}$

0.76 g of $53\left(M=694.5 \mathrm{gmol}^{-1}, 1.11 \mathrm{mmol}\right)$ are stirred with $0.5 \mathrm{~g}(M=$ $140.9 \mathrm{gmol}^{-1}, 3.54 \mathrm{mmol}$) of NaI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 d . Afterwards the dark solution is filtered. After adding of about 20 ml of diethylether the formed precipitate is filtered off again and the solvent is removed in vacuum. Yield: $0.14 \mathrm{~g}\left(M=628.0 \mathrm{gmol}^{-1}, 21 \%\right)$ of brown 54, m.p. $219-229^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{CrI}_{3}$	C	H	N
Anal. Found:	20.28	3.44	6.11
Calc:	21.45	3.44	6.82

Infrared Spectrum (KBr; ν / cm^{-1})
$3679 \mathrm{~m}, 3479 \mathrm{~m}, 3391 \mathrm{~m}, 2927 \mathrm{~m}, 1615 \mathrm{~m}, 1524 \mathrm{w}, 1439 \mathrm{w}, 1327 \mathrm{~s}, 1296 \mathrm{~s}, 1271 \mathrm{~s}$, $1253 \mathrm{~s}, 1231 \mathrm{~s}, 1223 \mathrm{~s}, 1188 \mathrm{~s}, 1149 \mathrm{~m}, 1052 \mathrm{~s}, 900 \mathrm{w}, 771 \mathrm{~s}, 765 \mathrm{w}, 746 \mathrm{w}, 658 \mathrm{~m}$, $642 \mathrm{~m}, 583 \mathrm{~m}, 550 \mathrm{w}, 521 \mathrm{~m}, 514 \mathrm{~m}, 462 \mathrm{w}, 430 \mathrm{w}, 416 \mathrm{w}$

$\underline{\mathrm{BzTATCCrCl}_{3}}: 55$

1.2 g of $21\left(M=271.4 \mathrm{gmol}^{-1}, 4.42 \mathrm{mmol}\right)$ are stirred with 1.65 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 4.40 \mathrm{mmol}\right)$ in THF for 3 d . The solvent is removed in vacuum and the remaining purple solid washed with hexane. Yield: $1.74 \mathrm{~g}\left(M=429.8 \mathrm{gmol}^{-1}, 92 \%\right)$ of 55 , m.p. $215-218{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N	Cl
Anal. Found:	44.86	5.54	9.01	23.52
Calc:	47.51	5.86	9.78	24.75

Infrared Spectrum (KBr; ν / cm^{-1})
$3384 \mathrm{~m}, 3058 \mathrm{~m}, 3049 \mathrm{~m}, 3005 \mathrm{~m}, 2957 \mathrm{~s}, 2949 \mathrm{~s}$, 2931s, 2883s, 2856m, 1602m, $1584 \mathrm{~m}, 1494 \mathrm{~m}, 1471 \mathrm{~m}, 1454 \mathrm{~m}, 1445 \mathrm{w}, 1436 \mathrm{~m}, 1363 \mathrm{w}, 1332 \mathrm{~m}, 1303 \mathrm{~m}, 1275 \mathrm{~m}$, 1184w, 1143s, 1112s, 1093s, 1048m, 1035w, 1006w, 986w, 940w, 879w, 779m, $715 \mathrm{~s}, 675 \mathrm{~m}, 617 \mathrm{w}, 582 \mathrm{~m}, 547 \mathrm{w}, 535 \mathrm{w}, 507 \mathrm{~m}, 490 \mathrm{~m}, 405 \mathrm{~s}$

$\mathrm{PhTATCCrCl}_{3}: 56$

1.0 g of $20\left(M=257.4 \mathrm{gmol}^{-1}, 3.88 \mathrm{mmol}\right)$ are stirred with 1.42 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 3.80 \mathrm{mmol}\right)$ in THF for 3 d . The solvent is removed in vacuum and the remaining purple solid washed with hexane. Yield: $1.49 \mathrm{~g}\left(M=415.7 \mathrm{gmol}^{-1}, 94 \%\right)$ of 56 , m.p. $222-224^{\circ} \mathrm{C}$.

$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	44.86	5.54	9.01
Calc:	46.23	5.57	10.11

Infrared Spectrum (KBr; ν / cm^{-1})
3288 s, 2111w, 1590s, 1573s, 1508m, 1489m, 1458m, 1382m, 1363w, 1343w, $1320 \mathrm{~m}, 1302 \mathrm{w}, 1244 \mathrm{w}, 1217 \mathrm{w}, 1161 \mathrm{w}, 1113 \mathrm{w}, 1086 \mathrm{w}, 1037 \mathrm{~m}, 1011 \mathrm{~m}, ~ 956 \mathrm{w}$, $924 \mathrm{~m}, ~ 915 \mathrm{~m}, 861 \mathrm{~s}, 813 \mathrm{w}, 765 \mathrm{~m}, 703 \mathrm{~m}, 664 \mathrm{~m}, 594 \mathrm{~m}, 507 \mathrm{~m}, 446 \mathrm{~s}$
$\underline{4^{\mathrm{t}} \text { Butyl-toluyl-TATCCrCl }} \mathbf{3}$: 57
1.5 g of $22\left(M=327.5 \mathrm{gmol}^{-1}, 4.57 \mathrm{mmol}\right)$ are stirred with 1.01 g $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 4.38 \mathrm{mmol}\right)$ in THF for 3 d . The solvent is removed in vacuum and the remaining purple solid washed with hexane. Yield: $1.92 \mathrm{~g}\left(M=485.9 \mathrm{gmol}^{-1}, 90 \%\right)$ of 57 , m.p. $143-144{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	48.29	6.77	7.42
Calc:	51.91	6.85	8.65

Infrared Spectrum (KBr; ν / cm^{-1})

$3293 \mathrm{~m}, ~ 3092 \mathrm{~m}, 3059 \mathrm{~s}, 2952 \mathrm{~s}$, 2894s, 2814s, 2760m, 2746m, 1888w, 1772w, $1601 \mathrm{~m}, 1515 \mathrm{~m}, 1482 \mathrm{~m}, 1460 \mathrm{~m}, 1446 \mathrm{~m}, 1429 \mathrm{~m}, 1411 \mathrm{~m}, 1381 \mathrm{~m}, 1352 \mathrm{~m}$, $1346 \mathrm{~m}, 1322 \mathrm{~m}, 1311 \mathrm{~m}, 1293 \mathrm{~m}, 1274 \mathrm{~s}, 1244 \mathrm{w}, 1230 \mathrm{~m}, 1213 \mathrm{w}, 1191 \mathrm{~m}, 1176 \mathrm{~m}$, $1158 \mathrm{~m}, 1144 \mathrm{w}, 1123 \mathrm{~m}, 1111 \mathrm{~m}, 1101 \mathrm{~m}, 1080 \mathrm{~m}, 1046 \mathrm{~m}, 1012 \mathrm{~m}, 979 \mathrm{w}, 963 \mathrm{~m}$, $948 \mathrm{~m}, ~ 920 \mathrm{~m}, ~ 907 \mathrm{~m}, ~ 894 \mathrm{~m}, ~ 855 \mathrm{~s}, 813 \mathrm{~m}, 785 \mathrm{w}, 752 \mathrm{w}, 740 \mathrm{w}, 709 \mathrm{w}, 683 \mathrm{w}, 660 \mathrm{w}$, 610w, 606w, 597w, 577w, 549w, 535w, 478w, 462w, 441w, 420w, 411w $\underline{4-\mathrm{E}}{ }^{\mathrm{t}}$ Butyl-toluyl-TATCCr$(\mathrm{OTf})_{3}: 58$
1.1 g of $57\left(M=485.9 \mathrm{gmol}^{-1}, 2.26 \mathrm{mmol}\right)$ is stirred in pure $\mathrm{HSO}_{3} \mathrm{CF}_{3}(\sim$ $8 \mathrm{ml}, \rho=1.696$) for 2 h at room temperature. Afterwards the excess acid is removed in vacuum. The remaining light blue-green solid is washed three times with diethylether and one time with pentane. Yield: 1.49 g ($M=$ $826.7 \mathrm{gmol}^{-1}, 80 \%$) of blue-green 58, m.p. $101-103^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N	S
Anal. Found:	34.55	3.91	4.87	11.46
Calc:	34.87	4.02	5.08	11.64

Infrared Spectrum (KBr; ν / cm^{-1})
$3399 \mathrm{~m}, ~ 2967 \mathrm{~m}, ~ 2921 \mathrm{~m}, ~ 2852 \mathrm{w}, 1608 \mathrm{~m}, 1514 \mathrm{~m}, 1343 \mathrm{~s}, 1238 \mathrm{~s}, 1202 \mathrm{~s}, 1006 \mathrm{~s}$, $889 \mathrm{w}, 860 \mathrm{w}, 840 \mathrm{w}, 814 \mathrm{w}, 769 \mathrm{w}, 727 \mathrm{w}, 710 \mathrm{w}, 637 \mathrm{~m}, 573 \mathrm{~m}, ~ 557 \mathrm{~m}, ~ 512 \mathrm{~m}$,

428m

$\underline{\text { PhTATCCuCl }}{ }_{2}$: 59:

20 ($520 \mathrm{mg}, 2.02 \mathrm{mmol}$) and anhydrous CuCl_{2} ($540 \mathrm{mg}, 4.01 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ for 12 hrs . The green solution was filtered and the solvent removed in vacuum. Yield: 430 mg (54\%) of green crystalline 59, m.p. $123-124^{\circ} \mathrm{C}$.

$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	49.51	5.37	11.11
Calc:	49.05	5.92	10.72

Infrared Spectrum (KBr; ν / cm^{-1})
$3436 \mathrm{~s}, 3298 \mathrm{~m}, 3124 \mathrm{~m}, 3057 \mathrm{~m}, 2957 \mathrm{~s}$, 2931s, 2854s, 1986w, 1696w, 1646w, $1592 \mathrm{~m}, 1576 \mathrm{w}, 1500 \mathrm{w}, 1495 \mathrm{w}, 1470 \mathrm{~m}, 1442 \mathrm{~m}, 1407 \mathrm{w}, 1384 \mathrm{~m}, 1352 \mathrm{~m}, 1324 \mathrm{w}$, $1313 \mathrm{~m}, 1284 \mathrm{~m}, 1266 \mathrm{~m}, 1226 \mathrm{w}, 1204 \mathrm{~m}, 1171 \mathrm{~s}, 1153 \mathrm{~m}, 1131 \mathrm{~s}, 1104 \mathrm{~m}, 1095 \mathrm{~m}$, 1080s, $1051 \mathrm{w}, 1038 \mathrm{w}, 1008 \mathrm{w}, 1001 \mathrm{w}, 967 \mathrm{~m}, ~ 937 \mathrm{~s}, 902 \mathrm{w}, 874 \mathrm{w}, 822 \mathrm{w}, 759 \mathrm{~m}$, $736 \mathrm{w}, 704,680 \mathrm{~m}, 650 \mathrm{~m}, 595 \mathrm{w}, 576 \mathrm{w}, 567 \mathrm{w}, 590 \mathrm{w}, 521 \mathrm{w}, 510 \mathrm{w}, 467 \mathrm{w}, 442 \mathrm{~m}$
$\underline{\text { HTATCFeCl }_{3}:} \mathbf{6 0}$
$0.2 \mathrm{~g}\left(M=181.3 \mathrm{gmol}^{-1}, 1.10 \mathrm{mmol}\right)$ of $\operatorname{HTATC}(\mathbf{1 6})$ are mixed with 0.18 g $\left(M=162.2 \mathrm{gmol}^{-1}, 1.10 \mathrm{mmol}\right)$ of anhydrous FeCl_{3}. Diethylether $(20 \mathrm{ml})$ is added via vacuum transfer. After 30 minutes of stirring at room temperature the solvent is removed in vacuum. This procedure is repeated three times. Finally excess ligand is removed by washing with ether. Yield: 0.23 g ($M=$ $343.5 \mathrm{gmol}^{-1}, 61 \%$) of $\mathrm{HTATCFeCl}_{3}$, m.p. $95-96{ }^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{FeCl}_{3}$	C	H	N
Anal. Found:	31.65	5.62	10.53
Calc:	34.97	5.58	12.23

Infrared Spectrum (KBr; ν / cm^{-1})
$3420 \mathrm{~s}, 2943 \mathrm{~s}, 2867 \mathrm{~s}, 1689 \mathrm{~s}, 1593 \mathrm{~s}, 1504 \mathrm{w}, 1456 \mathrm{~m}, 1440 \mathrm{~m}, 1382 \mathrm{~m}, 1325 \mathrm{~s}$, $1305 \mathrm{~m}, 1291 \mathrm{~m}, 1235 \mathrm{~m}, 1132 \mathrm{w}, 1111 \mathrm{w}, 1067 \mathrm{~m}, 1038 \mathrm{~m}, 1015 \mathrm{w}, 877 \mathrm{~m}, 836 \mathrm{w}$, 694w, 609w, 601w, 527w, 497w, 458m, 446m, 424w

BzTATCCuCl $_{2}$: 61:

Analogous to $\mathbf{5 9}, 21\left(740 \mathrm{mg}, M=271.4 \mathrm{gmol}^{-1}, 2.54 \mathrm{mmol}\right)$ and anhydrous $\mathrm{CuCl}_{2}\left(390 \mathrm{mg}, M=134.5 \mathrm{gmol}^{-1}, 2.71 \mathrm{mmol}\right)$ yielded $720 \mathrm{mg}(M=$ $405.9 \mathrm{gmol}^{-1}, 70 \%$) of green crystalline 61, m.p. $100^{\circ} \mathrm{C}$.

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	50.43	5.73	10.79
Calc:	50.31	6.21	10.35

Infrared Spectrum (KBr; ν / cm^{-1})
3481 w, 3292 w, 3057 w, 2999w, 2957s, 2932s, 2857s, 1812m, 1717m, 1653m, $1628 \mathrm{~m}, 1598 \mathrm{~m}, 1580 \mathrm{~m}, 1493 \mathrm{~m}, 1474 \mathrm{~m}, 1468 \mathrm{~m}, 1459 \mathrm{~m}, 1452 \mathrm{~m}, 1437 \mathrm{~m}$, $1407 \mathrm{~m}, 1391 \mathrm{~m}, 1365 \mathrm{~m}, 1354 \mathrm{~m}, 1326 \mathrm{~m}, 1318 \mathrm{~m}, 1292 \mathrm{~s}, 1271 \mathrm{~m}, 1242 \mathrm{~m}, 1233 \mathrm{~m}$, $1202 \mathrm{~m}, 1177 \mathrm{~m}, 1157 \mathrm{~m}, 1136 \mathrm{~m}, 1112 \mathrm{~m}, 1096 \mathrm{~m}, 1088 \mathrm{~m}, 1076 \mathrm{~m}, 1052 \mathrm{~m}$, $1039 \mathrm{~m}, 1012 \mathrm{~m}, ~ 997 \mathrm{~m}, ~ 959 \mathrm{~m}, ~ 934 \mathrm{~m}, ~ 920 \mathrm{~m}, ~ 911 \mathrm{~m}, ~ 898 \mathrm{~m}, ~ 890 \mathrm{~m}, ~ 876 \mathrm{~m}, ~ 842 \mathrm{w}$, $833 \mathrm{w}, ~ 812 \mathrm{~m}, 780 \mathrm{~m}, 752 \mathrm{w}, 717 \mathrm{~m}, 671 \mathrm{~m}, 613 \mathrm{w}, 597 \mathrm{w}, 578 \mathrm{w}, 548 \mathrm{~m}, ~ 514 \mathrm{w}$, 495w, 490w, 459w, 410m, 409m
$\underline{\text { PhTATCFeCl }_{3}}: ~ 62:$
$20\left(1.2 \mathrm{~g}, M=257.4 \mathrm{gmol}^{-1}, 4.66 \mathrm{mmol}\right)$ and anhydrous $\mathrm{FeCl}_{3}(0.75 \mathrm{~g}, M=$ $162.2 \mathrm{gmol}^{-1}, 4.63 \mathrm{mmol}$) were stirred in diethylether $(30 \mathrm{ml})$ for 3 d . The brown solution was filtered and the solvent removed in vacuum. Yield: 1.80 g ($M=419.6 \mathrm{gmol}^{-1}, 93 \%$) of brown crystalline 62, m.p. $85^{\circ} \mathrm{C}$.

$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N
Anal. Found:	39.89	4.80	10.78
Calc:	45.80	5.53	10.01

Infrared Spectrum (KBr; ν / cm^{-1})
$3336 \mathrm{~m}, 3059 \mathrm{~m}, 3029 \mathrm{~m}, 2941 \mathrm{~s}, 2866 \mathrm{~s}, 2836 \mathrm{~s}, 1685 \mathrm{~m}, 1650 \mathrm{~m}, 1629 \mathrm{~m}, 1595 \mathrm{~s}$, $1575 \mathrm{~m}, 1510 \mathrm{w}, 1488 \mathrm{~m}, 1472 \mathrm{w}, 1441 \mathrm{~s}, 1383 \mathrm{~m}, 1352 \mathrm{w}, 1325 \mathrm{~s}, 1285 \mathrm{w}, 1248 \mathrm{~m}$, $1227 \mathrm{~m}, 1208 \mathrm{~m}, ~ 1128 \mathrm{w}, 1038 \mathrm{w}, ~ 942 \mathrm{w}, ~ 857 \mathrm{~m}, 759 \mathrm{~m}, 701 \mathrm{~m}, ~ 595 \mathrm{~s}, 523 \mathrm{~s}, 510 \mathrm{~s}$, 461m
$\underline{[(B z T A T C)} \mathrm{Zn}(\mathrm{Et})]\left[\mathrm{BF}_{4}\right]: \mathbf{6 3}$
In a solution of 0.59 g of diethylzinc $\left(M=123.5 \mathrm{gmol}^{-1}, 0.81 \mathrm{mmol}\right)$ in hexane a solution 0.22 g of BzTATC $\left(M=271.4 \mathrm{gmol}^{-1}, 0.81 \mathrm{mmol}\right)$ and 0.17 g of N,N-dimethylaniliniumtetrafluoroborat $\left(M=209.0 \mathrm{gmol}^{-1}, 0.81 \mathrm{mmol}\right)$ in diethylether (20 ml) were added at $0^{\circ} \mathrm{C}$. After stirring for 15 min all volatile compounds are removed in vacuum. The oily product is washed three times with hexane resulting in $0.33 \mathrm{~g}\left(M=452.7 \mathrm{gmol}^{-1}, 89.6 \%\right)$ of pure white crystalline 63, m.p.: $152{ }^{\circ} \mathrm{C}$

$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{BF}_{4} \mathrm{Zn}$	C	H	N
Anal. Found:	49.70	6.66	9.06
Calc:	50.41	6.68	9.28

Infrared Spectrum ($\mathrm{KBr} ; \nu / \mathrm{cm}^{-1} 1$)
$3589 \mathrm{w}, 3472 \mathrm{w}, 3342 \mathrm{~m}, 3187 \mathrm{w}, 3104 \mathrm{w}, 3087 \mathrm{w}, 3062 \mathrm{w}, 3045 \mathrm{w}, 3030 \mathrm{w}, 2007 \mathrm{w}$, $2935 \mathrm{~m}, 2925 \mathrm{~m}, 2864 \mathrm{~m}, 2829 \mathrm{~s}, 1578 \mathrm{~s}, 1496 \mathrm{~m}, 1485 \mathrm{~m}, 1466 \mathrm{~m}, 1455 \mathrm{~m}, 1441 \mathrm{~m}$, $1429 \mathrm{~m}, 1389 \mathrm{~m}, 1379 \mathrm{~m}, 1357 \mathrm{~m}, 1333 \mathrm{~m}, 1327 \mathrm{~m}, 1294 \mathrm{~m}, 1284 \mathrm{~m}, 1273 \mathrm{~m}$, $1254 \mathrm{w}, 1230 \mathrm{~m}, 1214 \mathrm{~m}, 1201 \mathrm{~m}, 1184 \mathrm{~m}, 1177 \mathrm{~m}, 1163 \mathrm{~m}, 1144 \mathrm{~s}, 1075 \mathrm{~s}, 1056 \mathrm{~s}$, 1027s, 1003s, 998s, 964m, 931w, 898w, 860w, 827w, 768m, 711s, $670 \mathrm{w}, 647 \mathrm{~m}$, $547 \mathrm{~m}, 536 \mathrm{~m}, 520 \mathrm{~m}, 494 \mathrm{~m}, 478 \mathrm{~m}, 462 \mathrm{~m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
1 a	3.3	-	6 m	48.7
1b	2.9	-	6 m	48.80
2	1.96	-	5 m	26.3
3	3.63	-	2 s	90.9
4,5,6	7.15-7.6	-	5 m	128.9, 132.5, 128.9
7	0.59	8.0	2 q	1.7
8	1.20	8.0	3 t	11.5
9				133.8

$\underline{(\mathrm{HTATC})_{2}(\mathrm{TATC})\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Cr}\left(\mathrm{CSiMe}_{3}\right)\right]_{2}: \mathbf{6 4}}$

2 g of $\mathrm{HTATCCrCl} 3(5.88 \mathrm{mmol})$ and 1.66 g of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2} \mathrm{Li}(17.63 \mathrm{mmol})$ are thoroughly mixed. To the mixture about 30 ml of toluene are added via vacuum transfer. After warming to about $-78{ }^{\circ} \mathrm{C}$ the mixture is stirred for

4 h . During this time it turns deep blue. The toluene is removed in vacuum and the remaining deep purple oil is distilled in vacuum. The product is soluble in pentane from which suitable crystals for a x-ray crystal analysis could be grown.

5.3.2 $\quad R_{3}$ TAC and $R_{2} R^{\prime}$ TAC-Complexes

$\underline{\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2}}: \mathbf{6 5}$
About 10 ml of a saturated solution of CuCl_{2} in ethanol is poured under rapid stirring in about 40 ml of $\mathrm{Me}_{3} \mathrm{TAC}$. At once a bright yellow solid precipitates. The solid is filtered of and washed with pentane and stored under argon. Yield: $\sim 15 \mathrm{~g}$, m.p. $98-100^{\circ} \mathrm{C}$ d. For an x-ray structure analysis suitable crystals of $\mathbf{6 5}$ could be obtained from toluene (see fig. 27, p. 35 and A.1.11, p. 144).

Attempts to recrystallize this product from $\mathrm{Me}_{3} \mathrm{TAC}$ resulted in a reduction of the copper (see fig. 31, p. 39 and A.1.12, p. 145)

$\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{CuCl}_{2}$	C	H	N
Anal. Found:	31.67	7.51	18.31
Calc:	36.69	7.70	21.39

Infrared Spectrum (KBr; ν / cm^{-1})
$3520 \mathrm{~m}, 3430 \mathrm{~s}, 3005 \mathrm{~m}, 2978 \mathrm{~m}, 2967 \mathrm{~m}, 2941 \mathrm{~s}, 2922 \mathrm{~m}, 2862 \mathrm{~m}, 2805 \mathrm{~s}, 2748 \mathrm{~m}$, $2665 \mathrm{~m}, 2618 \mathrm{~m}, ~ 2532 \mathrm{w}, 2499 \mathrm{w}, 1689 \mathrm{w}, 1634 \mathrm{w}, 1486 \mathrm{~m}, 1472 \mathrm{~s}, 1460 \mathrm{~s}, 1449 \mathrm{~s}$, $1428 \mathrm{~m}, 1416 \mathrm{w}, 1405 \mathrm{w}, 1388 \mathrm{~m}, 1276 \mathrm{~s}, 1269 \mathrm{~s}, 1258 \mathrm{~m}, 1241 \mathrm{~m}, 1228 \mathrm{w}, 1168 \mathrm{~m}$, $1134 \mathrm{~m}, 1120 \mathrm{~s}, 1111 \mathrm{~s}, 1108 \mathrm{~s}, 1085 \mathrm{~m}, 1074 \mathrm{~m}, 1060 \mathrm{w}, 1053 \mathrm{w}, 1028 \mathrm{~m}, 1022 \mathrm{~m}$, $1016 \mathrm{~m}, ~ 996 \mathrm{~m}, ~ 991 \mathrm{~m}, ~ 935 \mathrm{~s}, ~ 931 \mathrm{~s}, ~ 892 \mathrm{~m}, ~ 861 \mathrm{w}, ~ 833 \mathrm{w}, ~ 830 \mathrm{w}, 809 \mathrm{~m}, 785 \mathrm{w}, 686 \mathrm{w}$, $608 \mathrm{w}, 564 \mathrm{~m}, 546 \mathrm{w}, 515 \mathrm{w}, 500 \mathrm{w}, 492 \mathrm{w}, 488 \mathrm{w}, 484 \mathrm{w}, 480 \mathrm{w}, 472 \mathrm{w}, 461 \mathrm{w}, 450 \mathrm{w}$, $443 \mathrm{w}, 435 \mathrm{w}, 431 \mathrm{w}, 427 \mathrm{w}, 423 \mathrm{w}, 419 \mathrm{w}, 416 \mathrm{w}, 408 \mathrm{w}, 404 \mathrm{w}$
$\underline{\left[{ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TACCu}^{2}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}: 66}$
4.98 g of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}$ and $\left(M=314.6 \mathrm{gmol}^{-1}, 15.83 \mathrm{mmol}\right), 4.15 \mathrm{~g}$ of $\mathrm{PPh}_{3}\left(M=262.3 \mathrm{gmol}^{-1}, 15.82 \mathrm{mmol}\right)$ were suspended in about 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then a large excess of $\mathbf{2 5}\left(\sim 6 \mathrm{~g}, M=174.3 \mathrm{gmol}^{-1}, 28.12 \mathrm{mmol}\right)$ was added to the suspension. After 12 h of stirring at room temperature, the solvent was removed in vacuo and the residue was washed with THF until the solution remained colorless. The remaining slightly yellowish solid was dried in vacuo to yield: 6.54 g of light yellow $\mathbf{6 6}\left(M=587.0 \mathrm{gmol}^{-1}, 70 \%\right)$, m.p. $133-135^{\circ} \mathrm{C}$.

$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{CuPBF}_{4}$	C	H	N
Anal. Found:	57.21	6.86	6.53
Calc:	57.56	6.76	6.71

Infrared Spectrum (KBr; ν / cm^{-1})
$3442 \mathrm{~m}, 3141 \mathrm{w}, 3074 \mathrm{w}, 3056 \mathrm{w}, 3043 \mathrm{w}$, 3006w, 2968s, 2931m, 2875m, 2855m, 2827w, 2764w, 2681w, 2579w, 1983w, 1899w, 1837w, 1820w, 1778w, 1684w, $1675 \mathrm{w}, 1653 \mathrm{w}, 1646 \mathrm{w}, 1635 \mathrm{w}, 1617 \mathrm{w}, 1587 \mathrm{w}, 1572 \mathrm{w}, 1521 \mathrm{w}, 1506 \mathrm{w}, 1484 \mathrm{~s}$, $1480 \mathrm{~s}, 1466 \mathrm{~m}, 1436 \mathrm{~s}, 1388 \mathrm{~s}, 1380 \mathrm{w}, 1369 \mathrm{~s}, 1335 \mathrm{w}, 1321 \mathrm{w}, 1309 \mathrm{w}, 1297 \mathrm{w}$, $1282 \mathrm{w}, 1261 \mathrm{w}, 1214 \mathrm{~s}$, 1168s, 1139s, 1099s, 1056s, 1036s, 1002s, 948w, 929s, $889 \mathrm{w}, 870 \mathrm{w}, 860 \mathrm{w}, 851 \mathrm{w}, 762 \mathrm{~m}, 753 \mathrm{~s}, 708 \mathrm{~m}, 698 \mathrm{~s}, 542 \mathrm{~m}, 532 \mathrm{~s}, 506 \mathrm{~s}, 493 \mathrm{~s}$, 454w, 429w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
PPh_{3}	$7.48-7.27$		15 m	$133.47-129.13$
3 a	4.35	8.73	3 d	71.06
3 e	3.69	8.73	3 d	71.06
2	3.13	6.63	3 q	52.43
1	1.06	6.63	18 d	19.44

${ }^{19}$ F-NMR Data; $\left(\mathrm{CDCl}_{3}\right)$
$\delta=-76.14$
${ }^{31}$ P-NMR Data; $\left(\mathrm{CDCl}_{3}\right)$
$\delta=11.66$
$\underline{\left[\mathrm{Bz}_{3} \mathrm{TACCu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}}: \mathbf{6 7}$
5.07 g of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}\left(M=314.6 \mathrm{gmol}^{-1}, 16.1 \mathrm{mmol}\right)$ and 4.2 g of $\mathrm{PPh}_{3}\left(M=262.3 \mathrm{gmol}^{-1}, 16.0 \mathrm{mmol}\right)$ and 5.78 g of $26\left(M=357.5 \mathrm{gmol}^{-1}\right.$, 16.2 mmol) were stirred in about 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 12 h of stirring at room temperature, the solvent was removed in vacuo and the residue was washed with THF until the solution remained colorless. The remaining colorless solid was dried in it vacuum to yield: 10.6 g of $\mathbf{6 7}\left(M=770.1 \mathrm{gmol}^{-1}\right.$, 86%), m.p. $146-149{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{CuPBF}_{4}$	C	H	N
Anal. Found:	64.59	5.52	5.49
Calc:	65.50	5.49	5.46

Infrared Spectrum (KBr; ν / cm^{-1})

3496w, 3141m, 3084m, 3058m, 3030m, 2988m, 2918m, 2949m, 2823m, 2786m, 1963w, 1908w, 1891w, 1820w, 1772w, 1675w, 1602w, 1586w, 1521w, $1495 \mathrm{~m}, 1481 \mathrm{~m}, 1471 \mathrm{~m}, 1455 \mathrm{~m}, 1435 \mathrm{~s}, 1397 \mathrm{w}, 1355 \mathrm{~m}, 1345 \mathrm{w}, 1330 \mathrm{w}, 1294 \mathrm{w}$, $1285 \mathrm{w}, 1265 \mathrm{w}, 1254 \mathrm{w}, 1234 \mathrm{w}, 1209 \mathrm{w}, 1184 \mathrm{~m}, 1158 \mathrm{~s}, 1095 \mathrm{~s}, 1081 \mathrm{~s}, 1063 \mathrm{~s}$, 1037s, 1026s, 996m, 974m, 932m, 921m, 884w, 857w, 850w, 833w, 824w, 813w, 769w, 765w, 753s, 748s, 702s, 796s, 645w, 619w, 604w, 536m, 521m, 509m, 493m, 470w, 459w, 449w, 428w

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$			${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
$\mathrm{CH}_{2} \mathrm{Ph}$,				
PPh_{3}	7.52-6.87		30 m	135.03-128.06
2 a	4.22	-	3 br	75.39
2 e	3.67	-	3 br	75.39
1	3.67		1 s	55.98

${ }^{19}$ F-NMR Data; $\left(\mathrm{CDCl}_{3}\right)$

$\delta=-74.66$
${ }^{31}$ P-NMR Data; $\left(\mathrm{CDCl}_{3}\right)$
$\delta=9.79$
$\underline{\left.\mathrm{d}_{6}-\left[\mathrm{Bz}_{3} \mathrm{TACCu}^{(} \mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}}: \mathbf{6 8}$
68 was prepared analogously to 67 .
Infrared Spectrum (KBr; ν / cm^{-1})
3087 w, 3059 m, 3031 m , 3006w, 2918w, 2850m, 2233w, 2219w, 2075w, 2026w, $1963 \mathrm{w}, 1890 \mathrm{w}, 1821 \mathrm{w}, 1602 \mathrm{w}, 1586 \mathrm{w}, 1495 \mathrm{~m}, 1481 \mathrm{~m}, 1456 \mathrm{~s}, 1435 \mathrm{~s}, 1372 \mathrm{~m}$, $1309 \mathrm{w}, 1286 \mathrm{w}, 1262 \mathrm{~m}, 1250 \mathrm{~m}, 1214 \mathrm{~m}, 1205 \mathrm{~m}, 1184 \mathrm{~m}, 1157 \mathrm{~m}, 1149 \mathrm{~m}, 1095 \mathrm{~s}$, 1084s, 1068s, 1054s, 1036s, 1027s, 1005m, 974m, 936w, 915m, 912m, 875m, $850 \mathrm{w}, 793 \mathrm{~m}, 767 \mathrm{~m}, 748 \mathrm{~s}, 702 \mathrm{~s}, 696 \mathrm{~s}, 636 \mathrm{w}, 599 \mathrm{w}, 535 \mathrm{~m}, 522 \mathrm{~m}, 509 \mathrm{~m}, 493 \mathrm{~m}$, $447 \mathrm{~m}, 427 \mathrm{~m}$
$\underline{\left[\mathrm{Cy}_{3} \mathrm{TACCu}(\mathrm{PPh} 3)\right] \mathrm{BF}_{4}}: \mathbf{6 9}$
0.47 g of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}\left(M=314.6 \mathrm{gmol}^{-1}, 1.5 \mathrm{mmol}\right)$ and 0.40 g of $\mathrm{PPh}_{3}\left(M=262.3 \mathrm{gmol}^{-1}, 1.5 \mathrm{mmol}\right)$ and 0.50 g of $27\left(M=333.6 \mathrm{gmol}^{-1}\right.$, 1.5 mmol) were s tirred in about 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 12 h of stirring at room temperature, the solvent was removed in vacuo and the residue was washed with THF until the solution remained colorless. The remaining colorless solid was dried in vacuo to yield: 1.05 g of $69\left(M=746.2 \mathrm{gmol}^{-1}\right.$, 94%), m.p. $133-135{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{CuPBF}_{4}$	C	H	N
Anal. Found:	62.05	7.41	5.39
Calc:	62.77	7.29	5.63

Infrared Spectrum (KBr; ν / cm^{-1})

$3076 \mathrm{~m}, 3053 \mathrm{~m}, 3035 \mathrm{w}$, 3008w, 2927s, 2853m, 2673w, 1886w, 1822w, 1811w,
$1675 \mathrm{w}, 1653 \mathrm{w}, 1648 \mathrm{w}, 1617 \mathrm{w}, 1603 \mathrm{w}, 1587 \mathrm{w}, 1573 \mathrm{w}, 1481 \mathrm{w}, 1462 \mathrm{w}, 1449 \mathrm{~m}$, $1437 \mathrm{~m}, 1376 \mathrm{~m}, 1255 \mathrm{w}, 1197 \mathrm{~m}, 1174 \mathrm{~m}, 1167 \mathrm{~m}, 1157 \mathrm{~m}, 1127 \mathrm{~s}, 1095 \mathrm{~s}, 1074 \mathrm{~s}$, 1050s, 1038s, $997 \mathrm{~m}, ~ 947 \mathrm{~m}, ~ 927 \mathrm{~m}, ~ 916 \mathrm{~m}, ~ 892 \mathrm{~m}, 756 \mathrm{~m}, 749 \mathrm{~m}, 746 \mathrm{~m}, 705 \mathrm{~m}$, $696 \mathrm{~s}, 537 \mathrm{~m}, 528 \mathrm{~m}, 520 \mathrm{~m}, 505 \mathrm{~m}, 490 \mathrm{~m}, 450 \mathrm{~m}, 447 \mathrm{~m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

	5 Σ			
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (20	MHz, CD			R (50.29 MHz,
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
PPh_{3}	7.55-7.30		15 m	133.29-129.12
2 a	4.33	8.6	3 d	71.70
2 e	3.81	8.6	3d	71.70
1	2.64	-	3 m	60,63
3,4,5	1.28-1.53	-	30 m	29.96, 25.23
	1.28-0.99	-		

${ }^{19}$ F-NMR Data; $\left(\mathrm{CDCl}_{3}\right)$
$\delta=-74.66$
${ }^{31}$ P-NMR Data; $\left(\mathrm{CDCl}_{3}\right)$
$\delta=9.79$
$\underline{\left[((\mathrm{S})-\mathrm{PhMeCH})_{3} \mathrm{TACCu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}: 70}$
1.43 g of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}\left(M=314.6 \mathrm{gmol}^{-1}, 4.54 \mathrm{mmol}\right)$ and 1.2 g of
$\mathrm{PPh}_{3}\left(M=262.3 \mathrm{gmol}^{-1}, 4.57 \mathrm{mmol}\right)$ and 1.81 g of $28\left(M=399.6 \mathrm{gmol}^{-1}\right.$,
4.52 mmol) were stirred in about 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 12 h of stirring at room temperature, the solvent was removed in vacuo and the residue was washed with THF until the solution remained colorless. The remaining colorless solid was dried in vacuum to yield: 3.15 g of $70\left(M=812.2 \mathrm{gmol}^{-1}\right.$, 86%), m.p. $151-153{ }^{\circ} \mathrm{C}$.

$\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{CuPBF}_{4}$	C	H	N
Anal. Found:	6606	5.90	4.66
Calc:	66.55	5.96	5.17

Infrared Spectrum (KBr; ν / cm^{-1})
$3712 \mathrm{w}, 3450 \mathrm{w}, 3168 \mathrm{w}, 3142 \mathrm{w}, 3082 \mathrm{w}, 3061 \mathrm{w}, 3041 \mathrm{w}, 3028 \mathrm{~m}, 3007 \mathrm{w}, 2973 \mathrm{~m}$, 2933w, 2897w, 2880m, 2829w, 2793w, 2763w, 2684w, 2125w, 1976w, 1953w, $1915 \mathrm{w}, 1896 \mathrm{w}, 1848 \mathrm{w}, 1817 \mathrm{w}, 1774 \mathrm{w}, 1692 \mathrm{w}, 1678 \mathrm{w}, 1613 \mathrm{w}, 1602 \mathrm{w}, 1585 \mathrm{w}$, $1572 \mathrm{w}, 1494 \mathrm{w}, 1482 \mathrm{w}, 1471 \mathrm{w}, 1467 \mathrm{w}, 1455 \mathrm{~m}, 1437 \mathrm{~m}, 1435 \mathrm{~m}, 1401 \mathrm{w}, 1378 \mathrm{~m}$, $1360 \mathrm{w}, 1345 \mathrm{w}, 1330 \mathrm{w}, 1324 \mathrm{w}, 1308 \mathrm{w}, 1284 \mathrm{w}, 1237 \mathrm{w}, 1211 \mathrm{~m}, 1181 \mathrm{~m}, 1161 \mathrm{~m}$, $1157 \mathrm{~m}, 1098 \mathrm{~s}, 1085 \mathrm{~s}, 1060 \mathrm{~s}, 1037 \mathrm{~s}, 1028 \mathrm{~s}, 1012 \mathrm{~m}, 1000 \mathrm{~m}, ~ 988 \mathrm{~m}, ~ 978 \mathrm{w}, ~ 971 \mathrm{w}$, $964 \mathrm{w}, ~ 955 \mathrm{w}, ~ 938 \mathrm{~m}, ~ 924 \mathrm{w}, ~ 918 \mathrm{w}, 788 \mathrm{w}, 783 \mathrm{w}, 775 \mathrm{~m}, 762 \mathrm{~s}, 755 \mathrm{~s}, 751 \mathrm{~s}, 706 \mathrm{~s}$, 700s, $656 \mathrm{w}, 565 \mathrm{w}, 536 \mathrm{~s}, 521 \mathrm{w}, 508 \mathrm{~m}, 494 \mathrm{~m}, 447 \mathrm{w}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$		$\delta(\mathrm{ppm})$
CHMePh,				
PPh_{3}	$7.43-6.97$		30 m	$140.2-127.5$
2 a	4.43	8.6	3 d	66.72
2 e	8.83	6.4	3 q	66.72
1	3.48	8.6	3 d	59.57
3	1.16	6.4	9 d	18.25

Bz_{3} TACCuOTf : 71:

To a mixture of 0.74 g of $\mathbf{2 6}\left(M=357.5 \mathrm{gmol}^{-1}, 2.06 \mathrm{mmol}\right)$ and 0.47 g of $\mathrm{Cu}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}\left(M=252.7 \mathrm{gmol}^{-1}, 1.86 \mathrm{mmol}\right) 30 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are added via vacuum transfer. The suspension is stirred for 8 h at room temperature. Then the solvent is removed in vacuo and first washed with hexane, afterwards with THF. Yield: $0.89 \mathrm{~g}\left(M=570.1 \mathrm{gmol}^{-1}, 84 \%\right)$ of light green 71, m.p. $122-123^{\circ} \mathrm{C}$.

$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{CuSO}_{3} \mathrm{~F}_{3}$	C	H	N	S
Anal. Found:	52.32	4.79	6.68	5.41
Calc:	52.67	4.77	7.37	5.62

Infrared Spectrum (KBr; ν / cm^{-1})
$3553 \mathrm{~m}, 3491 \mathrm{w}, 3087 \mathrm{w}, 3062 \mathrm{w}, 3027 \mathrm{w}$, 3007w, 2964w, 2935w, 2852w, 2806w, $1966 \mathrm{w}, 1917 \mathrm{w}, 1896 \mathrm{w}, 1822 \mathrm{w}, 1773 \mathrm{w}, 1684 \mathrm{w}, 1675 \mathrm{w}, 1671 \mathrm{w}, 1663 \mathrm{w}, 1653 \mathrm{w}$, $1645 \mathrm{w}, 1636 \mathrm{w}, 1622 \mathrm{w}, 1617 \mathrm{w}, 1602 \mathrm{w}, 1584 \mathrm{w}, 1576 \mathrm{w}, 1569 \mathrm{w}, 1565 \mathrm{w}, 1558 \mathrm{w}$, $1554 \mathrm{w}, 1539 \mathrm{w}, 1496 \mathrm{~m}, 1469 \mathrm{~m}, 1456 \mathrm{~m}, 1362 \mathrm{~m}, 1357 \mathrm{~m}, 1346 \mathrm{~m}, 1338 \mathrm{~m}, 1287 \mathrm{~s}$, $1264 \mathrm{~s}, 1224 \mathrm{~m}, 1199 \mathrm{~m}, 1153 \mathrm{~s}, 1140 \mathrm{~s}, 1100 \mathrm{~m}, 1081 \mathrm{~m}, 1074 \mathrm{~m}, 1049 \mathrm{~m}, 1032 \mathrm{~s}$, $1002 \mathrm{~m}, ~ 997 \mathrm{~m}, ~ 972 \mathrm{~m}, ~ 927 \mathrm{~m}, ~ 915 \mathrm{~m}, ~ 768 \mathrm{~m}, 756 \mathrm{~s}, 705 \mathrm{~s}, 655 \mathrm{~m}, 637 \mathrm{~s}, 620 \mathrm{~m}$, $606 \mathrm{~m}, 572 \mathrm{~m}, 550 \mathrm{~m}, 517 \mathrm{~m}, 454 \mathrm{~m}, 451 \mathrm{~m}, 447 \mathrm{~m}, 443 \mathrm{~m}, 436 \mathrm{~m}, 432 \mathrm{~m}, 428 \mathrm{~m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50.29 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$		
Assignment	$\delta(\mathrm{ppm})$	${ }^{1} \mathrm{~J}_{\mathrm{HH}}(\mathrm{Hz})$	$\delta(\mathrm{ppm})$	
$\mathrm{CH}_{2} \mathrm{Ph}$,	$7.34-7.24$	-	15 m	$131.65-129.17$
2 a	4.99	9.0	3 d	74.2
1	4.31	-	6 s	59.6
2 e	2.56	9.0	3 d	74.2

$\underline{\mathrm{Me}_{2} \mathrm{OctTACCrCl}} 3 \mathbf{3}: 72$

$1.5 \mathrm{~g}\left(M=227.4 \mathrm{gmol}^{-1}, 6.59 \mathrm{mmol}\right)$ of $\mathrm{Me}_{2} \mathrm{OctTAC}$ are mixed with 2.4 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 6.40 \mathrm{mmol}\right)$. Diethylether $(20 \mathrm{ml})$ is added via vacuum transfer. After 30 minute of stirring at room temperature the solvent is removed in vacuum. This procedure is repeated three times. Finally excess ligand is removed by washing with ether. Yield: 2.08 g ($M=$ $385.8 \mathrm{gmol}^{-1}, 84 \%$) of dark purple 72, m.p. $187^{\circ} \mathrm{C}$

$\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N	Cl
Anal. Found:	41.29	7.74	10.67	25.52
Calc:	40.48	7.58	10.89	27.57

Infrared Spectrum (KBr; ν / cm^{-1})
$2956 \mathrm{~s}, 2927 \mathrm{~m}, 2855 \mathrm{~s}, 1687 \mathrm{~s}, 1642 \mathrm{~s}, 1469 \mathrm{~m}, 1418 \mathrm{~s}, 1378 \mathrm{~s}, 1321 \mathrm{~s}, 1281 \mathrm{~s}, 1257 \mathrm{~m}$,
$1236 \mathrm{~s}, 1168 \mathrm{~m}, 1116 \mathrm{w}, 1083 \mathrm{w} .1006 \mathrm{w} .925 \mathrm{w}, 724 \mathrm{~s}, ~ 543 \mathrm{~s}, ~ 539 \mathrm{~s}, ~ 535 \mathrm{~s}, 531 \mathrm{~s}$, $512 \mathrm{w}, 420 \mathrm{~m}$
$\mathrm{Me}_{2} \mathrm{BzTACCrCl}_{3}: 73$
$1.0 \mathrm{~g}\left(M=205.3 \mathrm{gmol}^{-1}, 4.87 \mathrm{mmol}\right)$ of $\mathrm{Me}_{2} \mathrm{BzTAC}$ are mixed with 1.8 g of $\mathrm{CrCl}_{3} \cdot 3$ THF $\left(M=374.7 \mathrm{gmol}^{-1}, 4.80 \mathrm{mmol}\right)$. Diethylether $(20 \mathrm{ml})$ is added via vacuum transfer. After 30 min of stirring at room temperature the solvent is removed in vacuum. This procedure is repeated three times. Finally excess ligand is removed by washing with ether. Yield: 1.20 g ($M=$ $363.7 \mathrm{gmol}^{-1}, 69 \%$) of purple 73, m.p. $244-246^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$	C	H	N	Cl
Anal. Found:	38.79	5.67	10.85	28.66
Calc:	39.63	5.27	11.55	29.25

Infrared Spectrum (KBr; ν / cm^{-1})
$3106 \mathrm{~m}, 3086 \mathrm{~m}, 3061 \mathrm{~m}, ~ 3029 \mathrm{~s}, ~ 3005 \mathrm{~s}, 2980 \mathrm{~s}, 2929 \mathrm{~s}, 2876 \mathrm{~m}, ~ 2795 \mathrm{~m}, 1685 \mathrm{~s}$, $1640 \mathrm{~s}, 1584 \mathrm{~s}, 1496 \mathrm{~s}, 1480 \mathrm{~s}, 1465 \mathrm{w}, 1453 \mathrm{~m}, 1424 \mathrm{~m}, 1384 \mathrm{~s}, 1366 \mathrm{~s}, 1341 \mathrm{~m}$, $1304 \mathrm{~m}, 1278 \mathrm{w}, 1259 \mathrm{w}, 1205 \mathrm{~m}, 1186 \mathrm{~m}, 1164 \mathrm{w}, 1139 \mathrm{~m}, 1118 \mathrm{w}, 1103 \mathrm{w}, 1070 \mathrm{~m}$, $1028 \mathrm{~m}, ~ 1009 \mathrm{w}, ~ 971 \mathrm{~m}, ~ 962 \mathrm{~m}, ~ 944 \mathrm{w}, ~ 924 \mathrm{w}, ~ 897 \mathrm{~m}, ~ 892 \mathrm{~m}, ~ 888 \mathrm{~m}, ~ 884 \mathrm{~m}, 769 \mathrm{~m}$, $708 \mathrm{~m}, 660 \mathrm{~m}, 558 \mathrm{~m}, 512 \mathrm{~s}, 470 \mathrm{~m}, 422 \mathrm{~m}, 413 \mathrm{~m}$
$\underline{\mathrm{Et}_{2}(\mathrm{EtCN}) \mathrm{TACCrCl}}{ }_{3}: 74$
$2.2 \mathrm{~g}\left(M=196.3 \mathrm{gmol}^{-1}, 11.20 \mathrm{mmol}\right)$ of Et_{2} EtCNTAC are mixed with 4.0 g of $\mathrm{CrCl}_{3} \cdot 3 \mathrm{THF}\left(M=374.7 \mathrm{gmol}^{-1}, 10.67 \mathrm{mmol}\right)$. THF (40 ml) is added via vacuum transfer. After 1 h of stirring at room temperature the solvent is removed in vacuum. This procedure is repeated two times. Finally excess ligand is removed by washing with ether. Yield: $1.93 \mathrm{~g}\left(M=354.6 \mathrm{gmol}^{-1}\right.$, 51%) of dark purple $\mathbf{7 4}$, m.p. $246-248^{\circ} \mathrm{C}$ d.

$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{CrCl}_{3}$	C	H	N	Cl
Anal. Found:	33.95	5.98	15.03	26.41
Calc:	33.87	5.68	15.80	29.99

Infrared Spectrum (KBr; ν / cm^{-1})
3390s, 2983s, 2953s, 2887s, 2254m, 1639s, 1486s, 1462m, 1414m, 1391s, 1377s, $1348 \mathrm{~s}, 1331 \mathrm{~s}, 1323 \mathrm{~s}, 1303 \mathrm{~s}, 1292 \mathrm{~s}, 1270 \mathrm{~s}, 1245 \mathrm{~s}, 1202 \mathrm{~m}, 1170 \mathrm{~s}, 1141 \mathrm{~s}, 1121 \mathrm{w}$, $1097 \mathrm{~m}, 1086 \mathrm{~m}, ~ 1020 \mathrm{~s}, 1006 \mathrm{~s}, ~ 983 \mathrm{~s}, ~ 964 \mathrm{~m}, ~ 924 \mathrm{w}, 793 \mathrm{~m}, 763 \mathrm{~m}, 602 \mathrm{~m}, 547 \mathrm{~m}$, $531 \mathrm{w}, 516 \mathrm{~m}, 508 \mathrm{~m}, 504 \mathrm{~m}, 431 \mathrm{~m}, 423 \mathrm{~m}$

A X-ray data

A. 1 Parameters

Crystal and Intensity Data Collection for:

A.1.1 PhTATC 20

Identification code	PhTATC
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3}$
Formula weight	257.37
Temperature	293(2) K
Wavelength	0.71069 A
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$\mathrm{a}=14.116(4) \quad \AA$ alpha $=90.00(2)^{\circ}$
	$\mathrm{b}=7.7234(13) \AA$ beta $=96.64(2)^{\circ}$
	$\mathrm{c}=19.599(4) \quad \AA$ gamma $=90.00(2)^{\circ}$
Volume	2122.4(8) \AA^{3}
Z	6
Density (calculated)	$1.208 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.073 \mathrm{~mm}^{-1}$
F(000)	840
Crystal size	$0.7 \times 0.45 \times 1.1 \mathrm{~mm}$
Theta range for data collection	$1.05{ }^{\circ}$ to 23.46°
Index ranges	$0<=\mathrm{h}<=15,0<=\mathrm{k}<=8,-21<=\mathrm{l}<=21$
Reflections collected	3260
Independent reflections	$3117[\mathrm{R}(\mathrm{int})=0.0185]$

Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3112 / 0 / 513$
Goodness-of-fit on F^{2}	1.034
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0341, \mathrm{wR} 2=0.0851$
R indices (all data)	$\mathrm{R} 1=0.0344, \mathrm{wR} 2=0.0888$
Absolute structure parameter	$0(2)$
Largest diff. peak and hole	$0.105 \mathrm{e}^{-3}$ and $-0155 \mathrm{e} \AA^{-3}$

A.1.2 (PhTATC)(HCl)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection

PhTATC $\cdot \mathrm{HCl}$
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{ClN}_{3}$
293.83

163(2) K
$0.71069 \AA$
trigonal
R $\overline{3}$ (No.148)
$\mathrm{a}=15.549(4) \AA$ alpha $=113.66(2)^{\circ}$
$\mathrm{b}=15.549(3) \AA$ beta $=113.66(2)^{\circ}$
$\mathrm{c}=15.549(4) ~ \AA$ gamma $=113.66(2)^{\circ}$
2340.4(9) \AA^{3}

6
$1.251 \mathrm{Mg} / \mathrm{m}^{3}$
$0.240 \mathrm{~mm}^{-1}$
948
$0.8 \times 0.8 \times 0.5 \mathrm{~mm}$
1.56° to 24.93°

Index ranges
Reflections collected
Independent reflections
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}<2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$-18<=\mathrm{h}<=12,-8<=\mathrm{k}<=11,-11<=\mathrm{l}<=15$
1848
$1287[R($ int $)=0.0192]$
Full-matrix least-squares on F^{2}
1256 / $0 / 185$
1.079
$\mathrm{R} 1=0.0637, \mathrm{wR} 2=0.1765$
$\mathrm{R} 1=0.0829, \mathrm{wR} 2=0.2423$
$0.706 \mathrm{e} \AA^{-3}$ and $-0.744 \mathrm{e} \AA^{-3}$

A.1.3 $[\mathrm{PhTATCH}]^{+}[\text {TFPB }]^{-}$

Identification code

PhTATCTFPB

Empirical formula
$\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{BF}_{24} \mathrm{~N}_{3}$
Formula weight
1121.61

Temperature
180(2) K
Wavelength
$0.71073 \AA$
Crystal system
Space group
Unit cell dimensions
triclinic
P $\overline{1}$
$\mathrm{a}=12.244(3) \AA$ alpha $=110.28(2)^{\circ}$
$\mathrm{b}=12.882(3) \AA$ beta $=94.82(2)^{\circ}$
$\mathrm{c}=16.511(4) \quad \AA$ gamma $=103.35(2)^{\circ}$
Volume
$2338.1(11) \AA^{3}$
Z
Density (calculated)
Absorption coefficient
F(000)
2
$1.593 \mathrm{Mg} / \mathrm{m}^{3}$
$0.160 \mathrm{~mm}^{-1}$
1132

Crystal size	$0.76 \times 0.76 \times 0.38 \mathrm{~mm}$
Theta range for data collection	1.99° to 25.27°
Index ranges	$-14<=\mathrm{h}<=14,-15<=\mathrm{k}<=14,0<=\mathrm{l}<=19$
Reflections collected	18188
Independent reflections	$7810[\mathrm{R}(\mathrm{int})=0.0617]$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$7780 / 0 / 718$
Goodness-of-fit on F^{2}	1.101
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0735, \mathrm{wR} 2=0.2018$
R indices (all data)	$\mathrm{R} 1=0.0923, \mathrm{wR} 2=0.2299$
Extinction coefficient	$0.023(3)$
Largest diff. peak and hole	$0.766 \mathrm{e} \AA^{-3}$ and $-0.506 \mathrm{e} \AA^{-3}$

A.1.4 BzTATC 21

Identification code

BzTATC

Empirical formula
Formula weight
$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3}$

Temperature
271.40

Wavelength
293(2) K

Crystal system
$0.71069 \AA$

Space group
Unit cell dimensions

Volume

Z
monoclinic
P $21 / \mathrm{a}$ (No.14)
$\mathrm{a}=7.996(2) \AA$ alpha $=90.000(13)^{\circ}$
$\mathrm{b}=17.708(2) \AA$ beta $=104.92(2)^{\circ}$
$\mathrm{c}=11.027(3) \AA$ gamma $=90.00(2)^{\circ}$
1508.8(6) \AA^{3}

4

Density (calculated)	$1.195 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.072 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	592
Crystal size	$0.5 \times 0.25 \times 0.7 \mathrm{~mm}$
Theta range for data collection	1.91° to 25.94°
Index ranges	$0<=\mathrm{h}<=9,0<=\mathrm{k}<=21,-13<=\mathrm{l}<=13$
Reflections collected	3333
Independent reflections	$1924[\mathrm{R}(\mathrm{int})=0.0100]$
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$1903 / 0 / 181$
Goodness-of-fit on F^{2}	1.094
Final R indices [I<2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0483, \mathrm{wR} 2=0.1259$
R indices (all data)	$\mathrm{R} 1=0.0500, \mathrm{wR} 2=0.1346$
Largest diff. peak and hole	$0.176 \mathrm{e} \AA^{-3}$ and $-0.160 \mathrm{e} \AA^{-3}$

A.1.5 $[\mathrm{TATC}]\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right](\mathrm{THF})$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
[TATC][Fe2Cl6O]
$\mathrm{C}_{11} \mathrm{H}_{9.50} \mathrm{C}_{13} \mathrm{FeN}_{4} \mathrm{O}$
375.93

163(2) K
$0.71069 \AA$
orthorhrombic
P n m a (No.62)
$\mathrm{a}=20.769(3) \AA$ alpha $=90.00(2)^{\circ}$
$\mathrm{b}=12.148(4) \AA$ beta $=90.00(2)^{\circ}$
$\mathrm{c}=13.588(3) \AA$ gamma $=90.00(2)^{\circ}$

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}<2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$3428.1(14) \AA^{3}$
8
$1.457 \mathrm{Mg} / \mathrm{m}^{3}$
$1.346 \mathrm{~mm}^{-1}$
1508
$0.75 \times 0.55 \times 0.6 \mathrm{~mm}$
1.79° to 24.96°
$0<=\mathrm{h}<=24,0<=\mathrm{k}<=14,0<=\mathrm{l}<=15$
3409
$1425[\mathrm{R}($ int $)=0.0000]$
Full-matrix least-squares on F^{2}
1400 / $0 / 193$
1.113
$\mathrm{R} 1=0.0747, \mathrm{wR} 2=0.1814$
$\mathrm{R} 1=0.0808, \mathrm{wR} 2=0.2044$
$0.608 \mathrm{e} \AA^{-3}$ and $-0.414 \mathrm{e} \AA^{-3}$

A.1.6 $[\mathrm{TATC}]_{2}\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6}\right]\left(\mathrm{Et}_{2} \mathrm{O}\right)$

Identification code	$[\mathrm{C} 10 \mathrm{H} 18 \mathrm{~N} 3] 2[\mathrm{Fe} 2 \mathrm{Cl} 6](\mathrm{Et} 2 \mathrm{O})$
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{C}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}$
Formula weight	748.99
Temperature	$163(2) \mathrm{K}$
Wavelength	$0.71069 \AA$
Crystal system	monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}(\mathrm{No.15})$
Unit cell dimensions	$\mathrm{a}=20.614(6) \quad \AA$ alpha $=90.00(3)^{\circ}$

	$\mathrm{b}=11.371(3) \AA$ beta $=99.60(3)^{\circ}$
	$\mathrm{c}=14.487(6) \AA$ gamma $=90.00(2)^{\circ}$
Volume	$3348(2) \AA^{3}$
Z	4
Density (calculated)	$1.486 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.348 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1536
Crystal size	0.2 x 0.4 x 0.6 mm
Theta range for data collection	$2.00{ }^{\circ}$ to 23.97°
Index ranges	$-23<=\mathrm{h}<=23,0<=\mathrm{k}<=12,0<=\mathrm{l}<=16$
Reflections collected	3364
Independent reflections	$1978[\mathrm{R}($ int $)=0.0510]$
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints $/$ parameters	$1937 / 6 / 167$
Goodness-of-fit on F^{2}	1.108
Final R indices $[\mathrm{I}<2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.1064, \mathrm{wR} 2=0.2799$
R indices (all data)	$\mathrm{R} 1=0.1144, \mathrm{wR} 2=0.3186$
Largest diff. peak and hole	$2.521 \mathrm{e} \AA{ }^{-3}$ and $-1.038 \mathrm{e} \AA \AA^{-3}$

A.1.7 [PhTATC $]\left[\mathrm{FeCl}_{3}-\mathrm{O}-\mathrm{FeCl}_{3}\right]$

Identification code	$[\mathrm{PhTATC}][\mathrm{FeCl3}-\mathrm{O}-\mathrm{FeCl} 3]$
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{C}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}$
Formula weight	857.16
Temperature	$166(2) \mathrm{K}$
Wavelength	$0.71069 \AA$
Crystal system	monoclinic

Space group	P $21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=14.910(6) \quad \AA$ alpha $=90.00(4)^{\circ}$
	$\mathrm{b}=16.747(93) \AA$ beta $=100.12(4)^{\circ}$
	$\mathrm{c}=15.512(7) \quad \AA$ gamma $=90.00(4)^{\circ}$
Volume	$3813.2(213) \AA^{3}$
Z	4
Density (calculated)	$1.490 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.194 \mathrm{~mm}^{-1}$
F(000)	1768
Crystal size	$1.0 \times 0.7 \times 0.4 \mathrm{~mm}$
Theta range for data collection	1.39° to $22.96{ }^{\circ}$
Index ranges	$-16<=\mathrm{h}<=16,0<=\mathrm{k}<=18,0<=\mathrm{l}<=16$
Reflections collected	5989
Independent reflections	4406 [R (int) $=0.0942$]
Absorption correction	Empirical (DIFABS)
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4392 / 0 / 428
Goodness-of-fit on F^{2}	1.027
Final R indices [$\mathrm{I}<2 \sigma$ (I]	$\mathrm{R} 1=0.0412, \mathrm{wR} 2=0.1067$
R indices (all data)	$\mathrm{R} 1=0.0417, \mathrm{wR} 2=0.1101$
Largest diff. peak and hole	$0.651 \mathrm{e} \AA^{-3}$ and -0.389 e \AA^{-3}

A.1.8 (PhTATC) CuCl_{2}

Identification code
Empirical formula
Formula weight

PhTATCCuCl2
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{C}_{12} \mathrm{CuN}_{3}$
391.82

Temperature	163(2) K
Wavelength	0.71069 A
Crystal system	monoclinic
Space group	P $2_{1} / \mathrm{c}$ (No.14)
Unit cell dimensions	$\mathrm{a}=8.896(4) \AA$ alpha $=90.00(3)^{\circ}$
	$\mathrm{b}=12.082(4) \AA$ beta $=103.03(4)^{\circ}$
	$\mathrm{c}=16.087(8) \AA$ gamma $=90.00(4)^{\circ}$
Volume	1684.5(13) \AA^{3}
Z	4
Density (calculated)	$1.545 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coeffcient	$1.586 \mathrm{~mm}^{-1}$
F(000)	812
Crystal size	$0.35 \times 0.45 \times 1.1 \mathrm{~mm}$
Theta range for data collection	$2.13{ }^{\circ}$ to $23.97{ }^{\circ}$
Index ranges	$-8<=\mathrm{h}<=8,0<=\mathrm{k}<=13,0<=\mathrm{l}<=18$
Reflections collected	2638
Independent reflections	$2120[\mathrm{R}$ (int) $=0.0647]$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2106 / 0 / 207
Goodness-of-fit on F^{2}	1.056
Final R indices $[\mathrm{I}<2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0276, \mathrm{wR} 2=0.0714$
R indices (all data)	$\mathrm{R} 1=0.0284, \mathrm{wR} 2=0.0759$
Largest diff. peak and hole	$0.319 \mathrm{e} \AA^{-3}$ and -0.260 e \AA^{-3}

A.1.9 $\left.\left[{ }^{(}{ }^{\mathrm{P}} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{BCuF}_{4} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	626.00
Temperature	190(2) K
Wavelength	0.71073 A
Crystal system	orthorhombic
Space group	P n a 21 (no.33)
Unit cell dimensions	$\mathrm{a}=20.359(2) \AA$ alpha $=90^{\circ}$
	$\mathrm{b}=10.198(2) \AA$ beta $=90^{\circ}$
	$\mathrm{c}=30.121(2) \AA$ gamma $=90^{\circ}$
Volume	$6253.9(11) \AA^{3}$
Z	8
Density (calculated)	$1.330 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.783 \mathrm{~mm}^{-1}$
F(000)	2624
Crystal size	$0.46 \times 0.34 \times 0.23 \mathrm{~mm}$
Theta range for data collection	2.00° to $25.01{ }^{\circ}$
Index ranges	$0<=\mathrm{h}<=24,0<=\mathrm{k}<=12,-35<=\mathrm{l}<=0$
Reflections collected	6154
Independent reflections	$5625[\mathrm{R}$ (int) $=0.0000]$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5608 / 1 / 721
Goodness-of-fit on F^{2}	1.025
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0391, \mathrm{wR} 2=0.0890$
R indices (all data)	$\mathrm{R} 1=0.0603, \mathrm{wR} 2=0.1011$
Absolute structure parameter	-0.004(14)
Largest diff. peak and hole	$0.447 \mathrm{e} \AA^{-3}$ and -0.346 e \AA^{-3}

A.1.10 $\left[\left(\mathrm{Bz}_{3} \mathrm{TAC}\right) \mathrm{CuPPh}_{3}\right]\left[\mathrm{BF}_{4}\right] \cdot 0.5 \mathrm{Tol}$

Identification code	Bz3TACCuPPh3BF4
Empirical formula	$\mathrm{C}_{45.50} \mathrm{H}_{42} \mathrm{BCuF}_{4} \mathrm{~N}_{3} \mathrm{P}$
Formula weight	812.15
Temperature	160(2) K
Wavelength	0.71069 A
Crystal system	triclinic
Space group	P $\overline{1}$
Unit cell dimensions	$\mathrm{a}=8.904(2) \AA$ alpha $=84.87(2)^{\circ}$
	$\mathrm{b}=11.743(2) \AA$ beta $=83.83(2)^{\circ}$
	$\mathrm{c}=20.452(4) \AA$ gamma $=75.08(2)^{\circ}$
Volume	2050.1(7) \AA^{3}
Z	2
Density (calculated)	$1.316 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.614 \mathrm{~mm}^{-1}$
F(000)	842
Crystal size	$0.2 \times 0.25 \times 0.8 \mathrm{~mm}$
Theta range for data collection	1.00° to $25.95{ }^{\circ}$
Index ranges	$0<=\mathrm{h}<=10,-13<=\mathrm{k}<=14,-25<=\mathrm{l}<=25$
Reflections collected	8544
Independent reflections	$7995[\mathrm{R}$ (int) $=0.0215]$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7978 / 0 / 538
Goodness-of-fit on F^{2}	1.026
Final R indices [$\mathrm{I}>4 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0478, \mathrm{wR} 2=0.1214$
R indices (all data)	$\mathrm{R} 1=0.0762, \mathrm{wR} 2=0.1420$
Largest diff. peak and hole	$1.727 \mathrm{e} \AA^{-3}$ and -0.474 $\mathrm{e}^{\AA^{-3}}$

A.1.11 $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2} \cdot\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)_{0.5}$

Identification code	DiMe3TACCuCl2
Empirical formula	$\mathrm{C}_{15.50} \mathrm{H}_{30} \mathrm{C}_{12} \mathrm{CuN}_{6}$
Formula weight	434.90
Temperature	180(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group	P $21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=8.7484(10) \AA$ alpha $=90^{\circ}$
	$\mathrm{b}=13.315(2) \quad \AA$ beta $=95.538(10)^{\circ}$
	$\mathrm{c}=18.634(2) \quad \AA$ gamma $=90^{\circ}$
Volume	2160.5(4) \AA^{3}
Z	4
Density (calculated)	$1.337 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.247 \mathrm{~mm}^{-1}$
F(000)	912
Crystal size	$10.15 \times 0.15 \times 0.08 \mathrm{~mm}$
Theta range for data collection	$1.88{ }^{\circ}$ to 24.46°
Index ranges	$-10<=\mathrm{h}<=10,0<=\mathrm{k}<=15,0<=\mathrm{l}<=21$
Reflections collected	14033
Independent reflections	3519 [R(int) $=0.0422$]
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3511 / 0 / 236
Goodness-of-fit on F^{2}	0.918
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0520, \mathrm{wR} 2=0.1202$
R indices (all data)	$\mathrm{R} 1=0.0827, \mathrm{wR} 2=0.1384$
Extinction coefficient	0.0073(9)

Largest diff. peak and hole
$0.462 \mathrm{e} \AA^{-3}$ and $-0.734 \mathrm{e} \AA^{-3}$

A.1.12 $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{6}\left(\mathrm{CuCl}_{3}\right)_{2}\left(\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right)$

Identification code	Me3TAC6CuClx
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{84} \mathrm{Cl}_{10} \mathrm{Cu}_{4} \mathrm{~N}_{18}$
Formula weight	1377.91
Temperature	170(2) K
Wavelength	0.71073 A
Crystal system	orthorhombic
Space group	P n a 21 (no.33)
Unit cell dimensions	$\mathrm{a}=43.680(10) \AA$ alpha $=90^{\circ}$
	$\mathrm{b}=16.730(4) \AA$ beta $=90^{\circ}$
	$\mathrm{c}=8.335(3) \quad \AA$ gamma $=90^{\circ}$
Volume	6091(3) \AA^{3}
Z	4
Density (calculated)	$1.503 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.829 \mathrm{~mm}^{-1}$
F(000)	2848
Crystal size	$0.38 \times 0.11 \times 0.08 \mathrm{~mm}$
Theta range for data collection	$2.23{ }^{\circ}$ to 26.13°
Index ranges	$-53<=\mathrm{h}<=53,-20<=\mathrm{k}<=20,-10<=\mathrm{l}<=10$
Reflections collected	71501
Independent reflections	12039 [R(int) $=0.1584]$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	12039 / 1 / 613
Goodness-of-fit on F^{2}	1.027

Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
$\mathrm{R} 1=0.0649, \mathrm{wR} 2=0.1503$
R indices (all data) $\quad \mathrm{R} 1=0.1123, \mathrm{wR} 2=0.1750$
Absolute structure parameter
-0.02(2)
Largest diff. peak and hole
$0.545 e \AA^{-3}$ and $-0.583 e^{-3} \AA^{-3}$

A.1.13 ($\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TACCH}_{2}\right)-\mathrm{mC}_{6} \mathrm{H}_{4}-\left(\mathrm{CH}_{2} \mathrm{TAC}^{\mathrm{t}} \mathrm{Bu}_{2}\right)$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
tBumXTAC
$\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{~N}_{6}$
500.81

180(2) K
$0.71073 \AA$
monoclinic
P $21 / \mathrm{c}$
$\mathrm{a}=10.919(4) \AA$ alpha $=102.29(4)^{\circ}$
$\mathrm{b}=11.439(4) \AA$ beta $=92.26(4)^{\circ}$
$\mathrm{c}=14.026(5) \AA$ gamma $=113.26(4)^{\circ}$
1557.8(9) \AA^{3}

2
$1.068 \mathrm{Mg} / \mathrm{m}^{3}$
$0.064 \mathrm{~mm}^{-1}$
556
$0.50 \times 0.40 \times 0.20 \mathrm{~mm}$
2.00° to 25.32°
$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-16<=\mathrm{l}<=15$
9930
$8674[\mathrm{R}($ int $)=0.2900]$

Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$8674 / 3 / 650$
Goodness-of-fit on F^{2}	0.885
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.1063$, wR2 $=0.2602$
R indices (all data)	$\mathrm{R} 1=0.2528, \mathrm{wR} 2=0.3243$
Absolute structure parameter	$4(10)$
Extinction coefficient	$0.026(4)$
Largest diff. peak and hole	$0.456 \mathrm{e}^{-3}$ and $-0.301 \mathrm{e}^{\mathrm{A}^{-3}}$

A.1.14 (HTATC) $)_{2}($ TATC $)\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Cr}\left(\mathrm{CSiMe}_{3}\right)\right]_{2}$

Identification code	TMSCr	
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{58} \mathrm{CrN}_{4.50} \mathrm{Si}_{3}$	
Formula weight	582.05	
Temperature	160(2) K	
Wavelength	0.71069 A	
Crystal system	monoclinic	
Space group	P $21 / \mathrm{n}$ (No.13)	
Unit cell dimensions	$\mathrm{a}=12.033(4)$	$=90^{\circ}$
	$\mathrm{b}=13.26(3)$	$=96.98(3)^{\circ}$
	$\mathrm{c}=21.952(7) \AA$	$=90^{\circ}$
Volume	3476(7) \AA^{3}	
Z	4	
Density (calculated)	$1.112 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.444 \mathrm{~mm}^{-1}$	
F(000)	1270	
Crystal size	$0.9 \times 0.9 \times 0.8 \mathrm{~mm}$	

Theta range for data collection 1.54° to 23.48°

Index ranges	$0<=\mathrm{h}<=13,0<=\mathrm{k}<=14,-24<=\mathrm{l}<=24$
Reflections collected	5406
Independent reflections	$5128[\mathrm{R}($ int $)=0.0256]$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$5093 / 0 / 335$
Goodness-of-fit on F^{2}	1.033
Final R indices [I> $2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0746$, wR2 $=0.1850$
R indices (all data)	$\mathrm{R} 1=0.1089$, wR2 $=0.2238$
Largest diff. peak and hole	$1.021 \mathrm{e} \AA^{-3}$ and $-0.833 \mathrm{e} \AA^{-3}$

A. 2 Atomic coordinates

Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \cdot 10^{3}\right)$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

A.2.1 PhTATC

$\left.\begin{array}{lrrr|l|l|lll}\hline \text { Atom } & \mathrm{x} & \mathrm{y} & \mathrm{z} & \mathrm{U}(\mathrm{eq}) & \text { Atom } & \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \hline \mathrm{U}(\mathrm{eq}) \\ \hline \mathrm{N}(1) & 3658(1) & -886(4) & 1758(1) & 40(1) & \mathrm{C}(24) & 4031(2) & 2070(6) & 4426(2) \\ \mathrm{N}(2) & 4471(1) & 1429 & 2396(1) & 37(1) & \mathrm{C}(25) & 4261(2) & 1339(6) & 5138(2) \\ \mathrm{N}(3) & 5006(1) & 512(4) & 1328(1) & 39(1) & \mathrm{C}(26) & 3351(2) & 1079(5) & 5457(2) \\ \hline & 69(1) \\ \mathrm{C}(1) & 4155(2) & 769(4) & 1702(1) & 34(1) & \mathrm{C}(27) & 1777(2) & 1897(5) & 4413(1) \\ \mathrm{C}(2) & 4134(2) & -2166(5) & 2237(2) & 55(1) & \mathrm{C}(28) & 1002(2) & 1511(5) & 4764(2) \\ \mathrm{C} & 54(1) \\ \mathrm{C}(3) & 4360(2) & -1358(5) & 2938(2) & 60(1) & \mathrm{C}(29) & 293(2) & 404(5) & 4486(2) \\ \mathrm{C}(4) & 4977(2) & 184(5) & 2865(1) & 49(1) & \mathrm{C}(30) & 336(3) & -321(6) & 3852(2) \\ \mathrm{C}(5) & 5016(2) & 3036(5) & 2358(1) & 50(1) & \mathrm{C}(31) & 1092(3) & 34(6) & 3504(2) \\ \mathrm{C}(6) & 5905(2) & 2782(5) & 1999(2) & 56(1) & \mathrm{C}(32) & 1813(2) & 1131(5) & 3778(2) \\ \mathrm{C}(7) & 5625(2) & 2015(5) & 1295(1) & 50(1) & \mathrm{N}(7) & 1305(2) & 1634(4) & 7500(1) \\ \mathrm{C} & 45(1) \\ \mathrm{C}(8) & 4860(2) & -415(5) & 672(1) & 50(1) & \mathrm{N}(8) & 668(2) & -929(4) & 7970(1) \\ \mathrm{C}(9) & 4285(2) & -2047(5) & 717(2) & 57(1) & \mathrm{N}(9) & 2123(1) & 352(4) & 8528(1) \\ \mathrm{C}(10) & 3411(2) & -1654(5) & 1075(2) & 53(1) & \mathrm{C}(33) & 1172(2) & 702(5) & 8139(1) \\ \mathrm{C}(11) & 3385(2) & 2056(4) & 1392(1) & 38(1) & \mathrm{C}(34) & 1674(2) & 611(6) & 6961(1)\end{array}\right) 62(1)$

```
C(12) 2644(2) 2401(5) 1782(1) 47(1) C(35) 1042(2) -894(7) 6787(2) 79(1)
C(13) 1926(2) 3550(5) 1553(2) 59(1) C(36) 1023(2) -1971(5) 7426(2) 72(1)
C(14) 1919(2) 4348(5) 929(2) 61(1) C(37) 603(2) -1948(5) 8591(2) 67(1)
C(15) 2637(2) 4003(5) 528(2) 59(1) C(38) 1575(2) -2405(6) 8971(2) 72(1)
C(16) 3368(2) 2862(5) 762(1) 49(1)
N(4) 2771(2) 2651(4) 5452(1) 47(1) C(40) 2760(2) 1842(5) 8657(2) 58(1)
N(5) 1970(2) 4864(4) 4758(1) 49(1) C(41) 2843(2) 2845(5) 8012(2) 67(1)
N(6) 3381(2) 3546(5) 4414(1) 55(1)|C(42) 1861(2) 3211(5) 7653(2) 62(1)
C(17) 2502(2) 3250(5) 4744(1) 42(1) C(43) 477(2) 1860(5) 8498(1) 38(1)
C(18) 3224(2) 3957(6) 5922(2) 63(1) C(44) -387(2) 2283(5) 8115(1) 46(1)
C(19) 2585(2) 5489(6) 5937(2) 70(1) C(45) -1040(2) 3355(5) 8381(2) 54(1)
C(20) 2401(2) 6201(5) 5224(2) 68(1)
C(21) 1738(3) 5544(6) 4059(2) 72(1)
C(22) 2620(3) 5972(7) 3723(2) 87(1) C(48) 650(2) 2528(5) 9154(1) 49(1)
C(23) 3278(3) 4447(6) 3742(2) 76(1)
```


A.2.2 PhTATC. HCl

Atom	x	y		z U(eq)	Atom	x			U(eq)
C	438	188	-37	$35(1)$	$\mathrm{C}(7)$	6	53)	39
$\mathrm{N}(1)$	6944	4221(4)	-1078(4)	22(1)	$\mathrm{C}(8)$	6688	5972	-37(5)	39
$\mathrm{N}(2)$	8148(4)	$5507(4)$	$-1355(4)$	$33(1)$	$\mathrm{C}(9)$	5832	4670 (6)	-480(6)	$37(1)$
(3)	7101	5968(4)	-741(4)	30(1)	$\mathrm{C}(1$	647	415	-413(5)	29(1)
C(1)	7811(5)	5589(5)	-608	$25(1)$	C	905	658	801(5)	28
C(2)	7414(5)	3533 (1213(5)	$30(1)$	$\mathrm{C}(12)$	9585	6412	1595(5)	30
C(3)	7887	3634	875(5)	39(1)	$\mathrm{C}(13)$	10738($7416(5)$	2822(5)	$33(1)$
C(4)	8755(5)	4981	-1328(5)	40(1)	$\mathrm{C}(1$	11398(5)	8629(6)	3295(5)	$42(1)$
C(5)	7139(5)	4906(6)	$-2668(5)$	41(1)	$\mathrm{C}(15)$	10878(6)	8818(6)	2506(6)	69(2)
C(6)	6609 (6)	5543(6)	$-2634(5)$	48(2)	$\mathrm{C}(16)$	9735(6)	7823(6)	1284(6)	61(2)

A.2.3 $[\text { PhTATCH }]^{+}[\text {TFPB }]^{-}$

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$	Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
B	$5083(3)$	$11526(3)$	$2848(2)$	$29(1)$	$\mathrm{C}(20)$	$4369(2)$	$10861(3)$	$3412(2)$	$29(1)$
$\mathrm{C}(21)$	$4437(3)$	$9790(3)$	$3392(2)$	$32(1)$	$\mathrm{C}(22)$	$3880(3)$	$9260(3)$	$3908(2)$	$35(1)$
$\mathrm{C}(23)$	$3901(3)$	$8077(3)$	$3799(3)$	$47(1)$	$\mathrm{F}(1)$	$4805(2)$	$7800(2)$	$3492(2)$	$75(1)$
$\mathrm{F}(2)$	$2987(3)$	$7293(2)$	$3256(3)$	$97(1)$	$\mathrm{F}(3)$	$3948(3)$	$7912(2)$	$4550(2)$	$76(1)$

4)	3254(3)	9813(3)	4483(2)	38(1)	C(25)	3184(3)	10	4530(2)	(1)
C(26)	2485(3)	11491(3)	5122(2)	46(1)	$\mathrm{F}(4)$	3039(3)	12497(3)	5683(2)	7
F(5)	1647(3)	11	46	113(1)	E			5558(3)	175(3)
	3728(3)	11397(3)	3998(2)	32(1)	$\mathrm{C}(30)$	6229(2)	12398(2))	28(1)
1)	6197(3)	13464(3)	4174(2)	31(1)	$\mathrm{C}(32)$	7098(3)	14158(3)	$)$	(1)
33)	98	152	5523(2)	45	$F(7)$)	15	5204(2)	1)
F(8)	63	150	6078(3)	148(2)	$F(9)$				111(1)
C(34)	8099(3)	13834(3)							
C(36)	910	12398(3)	4475(2)	39(1)					
F(11)	10	13218(3)	4976(3)	122(2)	$F(12)$)	11947(3)	3728(2)	89(1)
C(37)	722	120	369	32(1)	$\mathrm{C}(40)$)	10	1970(2)	29(1)
)	4582(3)	9549(3)	1468(2)	(1)	C)	8790(3))	4(1)
	43		$395(2)$					627(2)	
C(44)	577	907	386)	C	6564(3)	10	870(2)	34(1)
C(46)	767	1042	56	43(1)	F	83	11	1014(2)	(1)
	8301	740(3)	623 (2))	F)	10	-261(2)	(1)
	6355	1089	1633(2)			4316(2)	12205(3)	2471(2)	
C(51)	3129	11757	2206(2)	32(1)	C	2466(3)		1839(2)	
C	119	117	1584(2)	41(1)	F	869(2)	10	1266(2)	(1)
F(20)	675	120	2266(2))	F	741(2)	12064(3))	4(1)
(5)	2972(3)	13294(3)	1732(2))		1971(2)	(1)
)	4696	148	1853(3))	F	3992(5)	15424(6)	1752(7)	(
F(23)	5421	15630(4)	2616(5)	71(2)	$F(24)$	5352(16)	14741	292(10)	
F (22A)	4201(26)	15574(13)	2088(20)	193(14)	$\mathrm{F}(23 \mathrm{~A})$	5721(8)	$15125(21)$	1966(21)	(11)
F	4461(13)	14569(10)	943(7)	92(4)	C(57)	4808(3)	13210	2331 (2)	(1)
(1)	1322(3)	3020(3)	7862(2)	36(1)	(1)	2161(2)	34	8553(2)	(1)
C(2)	2881(3)	2749(4)	8721(3)	57(1)	$\mathrm{C}(8)$	143(4)	3357(4)	9564(3)	56(1)
C(9)	1398(4)	4023(4)	9944(3)	59(1)	$\mathrm{C}(10)$	2108(4)	4422(3)	9330(3)	$55(1$
C(11)	886(3)	3877(3)	7603(2)	37(1)	$\mathrm{C}(12)$	-171(3)	4094(4)	7667(3)	0 (1)
C(13)	-420(4)	4952(4)	7421(3)	58(1)	$\mathrm{C}(14)$	368(4)	5591(3)	7104(3)	52(1)
C(15)	1397(4)	5356(4)	7015(3)	58(1)	$\mathrm{C}(16)$	1662(3)	4510(3)	7261(3)	49(1)

A.2.4 BzTATC

Atom	x	y		U(eq)	Atom	x	y		z U(eq)
N(1)	4108(2)	708(1)	8445(2)	52(1)	C(8)	6210(3)	978(2)	6736(3)) 75(1)
$\mathrm{N}(2)$	1623(2)	1180(1)	6929(2)	53(1)	$\mathrm{C}(9)$	7020(3)	866(2)	8123(3)) $83(1)$
$\mathrm{N}(3)$	4439(2)	$1267(1)$	6519(2)	53(1)	C(10)	5840(3)	391(2)	8688(3)) 76(1)

```
C(1) 3299(2) 803(1) 7107(2) 43(1) C(11) 2965(3) 1(1) 6510(2) 59(1)
C(2) 4080(3) 1379(1) 9230(2) 69(1) C(12) 2211(3) -581(1) 7220(2) 53(1)
C(3) 2275(3) 1670(2) 9022(3) 76(1) C(13) 867(3) -433(2) 7748(3) 74(1)
C(4) 1613(3) 1856(1) 7684(3) 70(1) C(14) 198(4) -979(2) 8372(3) 84(1)
C(5) 810(3) 1354(2) 5601(3) 77(1) C(15) 834(4) -1694(2) 8486(3) 79(1)
C(6) 1972(4) 1804(2) 4981(3) 86(1) C(16) 2136(4) -1864(2) 7947(3) 80(1)
C(7) 3678(4) 1419(2) 5180(2) 77(1)|C(17) 2837(3) -1315(1) 7326(2) 66(1)
```


A.2.5 $\quad[\mathrm{TATC}]\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right](\mathrm{THF})$

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$	Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Fe}(1)$	$1942(1)$	2500	$864(2)$	$60(1)$	$\mathrm{N}(4)$	$3904(8)$	$1538(15)$	$9409(13)$	$66(6)$
$\mathrm{Fe}(2)$	$627(1)$	2500	$2396(2)$	$54(1)$	$\mathrm{C}(8)$	$3101(16)$	$1396(26)$	$7728(24)$	$83(11)$
$\mathrm{Cl}(1)$	$1726(3)$	2500	$-724(4)$	$79(2)$	$\mathrm{C}(9)$	$3607(12)$	$548(23)$	$7930(20)$	$88(8)$
$\mathrm{Cl}(2)$	$2504(2)$	$1004(3)$	$1223(3)$	$99(1)$	$\mathrm{C}(10)$	$3771(15)$	$480(21)$	$9041(20)$	$62(7)$
$\mathrm{Cl}(3)$	$1070(2)$	2500	$3861(3)$	$69(1)$	$\mathrm{C}(11)$	$4204(12)$	$1553(22)$	$10387(20)$	$95(8)$
$\mathrm{Cl}(4)$	$11(2)$	$1015(3)$	$2245(3)$	$91(1)$	$\mathrm{C}(12)$	$4027(14)$	2500	$11065(22)$	$67(9)$
$\mathrm{O}(1)$	$1198(8)$	2500	$1481(13)$	$135(7)$	$\mathrm{N}(3 \mathrm{~A})$	$4241(19)$	2500	$9401(29)$	$74(13)$
$\mathrm{N}(1)$	$3196(6)$	2500	$4263(11)$	$58(4)$	$\mathrm{N}(4 \mathrm{~A})$	$3610(21)$	$1500(41)$	$8206(32)$	$138(17)$
$\mathrm{N}(2)$	$4050(4)$	$1528(7)$	$4951(7)$	$57(3)$	$\mathrm{C}(8 \mathrm{~A})$	$3209(19)$	$1598(34)$	$7474(30)$	$58(11)$
$\mathrm{C}(1)$	$3770(7)$	2500	$4687(12)$	$42(4)$	$\mathrm{C}(9 \mathrm{~A})$	$4189(25)$	$397(38)$	$9276(33)$	$103(15)$
$\mathrm{C}(2)$	$2862(6)$	$1496(10)$	$4058(11)$	$81(4)$	$\mathrm{C}(10 \mathrm{~A})$	$3561(21)$	$522(38)$	$8746(37)$	$80(16)$
$\mathrm{C}(3)$	$3287(7)$	$619(11)$	$3875(12)$	$99(5)$	$\mathrm{C}(11 \mathrm{~A})$	$4293(36)$	$1201(66)$	$10026(55)$	$209(32)$
$\mathrm{C}(4)$	$3800(6)$	$464(9)$	$4639(10)$	$69(4)$	$\mathrm{C}(12 \mathrm{~A})$	$3121(31)$	2500	$7001(49)$	$112(22)$
$\mathrm{C}(5)$	$4678(6)$	$1513(10)$	$5443(10)$	$69(4)$	$\mathrm{O}(1)$	$370(10)$	2500	$6613(13)$	$160(8)$
$\mathrm{C}(6)$	$4823(9)$	2500	$5994(14)$	$82(6)$	$\mathrm{C}(21)$	$1414(12)$	$1850(17)$	$6547(14)$	$144(8)$
$\mathrm{C}(7)$	$3686(8)$	2500	$8934(12)$	$54(4)$	$\mathrm{C}(22)$	$769(15)$	$1508(18)$	$6706(22)$	$190(12)$
$\mathrm{N}(3)$	$3476(10)$	2500	$8082(15)$	$45(6)$					

A.2.6 $[\mathrm{TATC}]_{2}\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6}\right]\left(\mathrm{Et}_{2} \mathrm{O}\right)$

Atom	x	y	$\mathrm{z}(\mathrm{U}(\mathrm{eq})$		Atom	x	y	z
$\mathrm{U}(\mathrm{eq})$								
$\mathrm{Fe}(1)$	$3190(1)$	$2812(1)$	$768(1)$	$40(1)$	$\mathrm{C}(5)$	$3289(6)$	$714(10)$	$3924(8)$
$\mathrm{Cl}(1)$	$3527(1)$	$4682(2)$	$917(2)$	$40(1)$	$\mathrm{C}(6)$	$3917(6)$	$467(12)$	$4531(10)$
$\mathrm{Cl}(2)$	$2967(1)$	$2328(2)$	$-845(2)$	$42(1)$	$\mathrm{C}(7)$	$4450(6)$	$1196(11)$	$4231(10)$
$\mathrm{Cl}(3)$	$3738(2)$	$1412(3)$	$1638(2)$	$53(1)$	$\mathrm{C}(8)$	$4830(6)$	$3192(12)$	$3978(11)$
$\mathrm{N}(1)$	$3489(5)$	$3882(8)$	$3647(7)$	$43(2)$	$\mathrm{C}(9)$	$4597(9)$	$4235(16)$	$3367(15)$

$\mathrm{N}(2) \quad 3147(4) \quad 1964(8) \quad 3867(6) 35(2) \mid \mathrm{C}(9 \mathrm{~A}) 4659(9) 4424(18) 4166(20) \quad 53(9)$
$\mathrm{N}(3) \quad 4258(5) \quad 2423(8) \quad 4093(7) \quad 43(2) \mid c(10) \quad 4002(5) \quad 4785(8) \quad 3597(8) \quad 50(3)$
$\mathrm{C}(1) \quad 3643(5) \quad 2747(9) \quad 3816(7) 33(2) \mid \mathrm{O}(1) \quad 613(5) \quad 2866(8) \quad 2227(8) 131(11)$
$\mathrm{C}(2) \quad 2821(5) 4324(10) \quad 3361(9) \quad 43(3) \quad \mathrm{C}(11)-105(5) \quad 2445(8) \quad 3460(8) 162(12)$
$\mathrm{C}(3) \quad 2342(6) 3533(12) 3715(10) \quad 54(3) \quad \mathrm{C}(12) \quad 495(5) \quad 2419(8) \quad 3194(8) \quad 135(9)$
C(4) 2471(5) 2289(10) 3473(11) 51(3)

A.2.7 [PhTATC $]\left[\mathrm{FeCl}_{3}-\mathrm{O}-\mathrm{FeCl}_{3}\right]$

Atom		y		U(eq)	Atom	x	y		z U(eq)
(1)	351	4412(1)	2641(1)	29(1)	C	12638(3)	631(2)	3)	36(1)
(1)	1404(1)	5415(1)	3667(1)	51(1)	C	12810 (3)	476(2)	1426(3)	46(1)
$\mathrm{Cl}(2)$	463(1)	5239(1)	1362(1)	52(1)	$\mathrm{C}(1$	1224	787(3)	1951(3)	51(1)
$\mathrm{Cl}(3)$	2961	$3224(1$	2902(1)	53(1)	$\mathrm{C}(16)$	114	1232(3)	1600(3)	44(1)
(4)	4266		388	53(1)	$\mathrm{N}(4)$	475	3452(2)	-212(2)	37(1)
(453	4238	17	63(1)	$\mathrm{N}(5)$	5464	2367(3)	(397	53(1)
2)	1674	5608	2329	28	$\mathrm{N}(6)$	5535	2361 (2)	471(2)	29(1)
$\mathrm{Cl}(6)$	1921(1)	6901(1)	2172(1)	43 (1)	$\mathrm{C}(17)$	4767	4048(3)	-921(3)	55(1)
$\mathrm{O}(1)$	2639(2)	5058(2)	2159(2)	47(1)	$\mathrm{C}(18)$	4692	3641 (3)	1841(3)	59(1)
N(1)	10489(2)	2630(2)	753(2)	26(1)	$\mathrm{C}(19)$	5425	3058	1980(3)	60(1)
(2)	10512(2)	2613(2)	-1118(2)	33(1)	$\mathrm{C}(20)$	6331(3)	196	1154(3)	52(1)
N(3)	9722(2)	1562(2)	-10(2)	26(1)	$\mathrm{C}(21)$	634	143	-374(3)	45(1)
C(1)	11327(2)	3106(2)	811(3)	$33(1)$	$\mathrm{C}(22)$	6349	1861(2)	488(3)	39(1)
(2)	11388(3)	3536(2)	-42(3)	34	$\mathrm{C}(23)$	4682	1914(2)	438(3)	38(1)
(3)	11392(3)	3010(2)	-842(3)	$35(1)$	$\mathrm{C}(24)$	3929(3)	2484(3)	521(3)	49(1)
C(4)	10479(3)	1930(3)	$-1707(2)$	$39(1)$	$\mathrm{C}(25)$	3865	3087(3)	-204(4)	53(1)
C(5)	9722(3)	1337(3)	$-1598(3)$	$39(1)$	$\mathrm{C}(26)$	5521	$3101(2)$	153(2)	25(1)
C(6)	9768(3)	956(2)	-687(3)	34(1)	$\mathrm{C}(27)$	6388(2)	3573(2)	378(2)	25(1)
C(7)	8841(2)	1978(2)	-92(3)	$37(1)$	$\mathrm{C}(28)$	6866(3)	3957(2)	-194(3)	33(1)
C(8)	8849(3)	2538(2)	667(3)	38(1)	$\mathrm{C}(29)$	7632(3)	4412(2)	128(3)	35(1)
C(9)	9646(3)	3099(2)	684(3)	33(1)	$\mathrm{C}(30)$	7927(4490(2)	1010(3)	39(1)
C(10)	10468(2)	1894(2)	421(2)	$24(1)$	$\mathrm{C}(31)$	7463(3)	4097(2)	1593(3)	36(1)
C(11)	11312(3)	1399(2)	703(2)	$27(1)$	$\mathrm{C}(32)$	6700(2)	3656(2)	1278(2)	31(1)
C(12)	11887(2)	1088(2)	178(3)	$30(1)$					

A.2.8 (PhTATC) CuCl_{2}

A	x	y		eq)	Atom				
$\mathrm{Cu}(1)$	22	320(1)	3373(1)	18(1)	C(7)	4021(3)	2056(2)))
$\mathrm{Cl}(1)$	13	,		26(1)	$\mathrm{N}(3)$	2701(3)	1901(2)	2985(1))
$\mathrm{Cl}(2)$	3043(1)	-61	235	40(1)	C	12	2324(2)	2426(2))
	2875(3)	227	897	17(1)	$\mathrm{C}(9$	-1	18	2))
	16	($\mathrm{C}(10$	(3)	1926(3)	3668(2)) 28
	170	1302(2)	5018(2)		C	2739(3)		2))
	3321(4)	1013	5498	27(1)	C	337	429	3574(2))
	4489(3)	1812(2)	5289(2)	23(1)	$\mathrm{C}(13$	3301	542	3727(2)) $32(1)$
	4315(3)	1779	4358(1)	19(1)	$\mathrm{C}(14)$	2609(4)	5818(3)	4350(2)) $32(1)$
(5)	5667(3)	2165(2)	4062(2)	22(1)	$\mathrm{C}(15)$	2017(4)	5072(3)	4836(2)) $35(1)$
C(6)	5539(3)	1724(2)	3164(2)	23(1)	$\mathrm{C}(16)$	2082(4)	3943 (3)	4683(2)) 32(1)

A. $\left.2.9 \quad\left[{ }^{(}{ }^{\mathrm{P}} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$	Atom	x	y
$\mathrm{Cu}(1)$	$4155(1)$	$5114(1)$	$2527(1)$	$31(1)$	$\mathrm{C}(1)$	$4487(3)$	$7632(5)$

```
N(5) 3983(2) 3298(4) 276(2) 24(1)
C(52) 4071(3) 4043(7) 1045(2) 43(2) C(53) 2998(3) 3051(8) 786(2) 52(2)
N(6) 4156(2) 4662(4) -328(2) 26(1)
C(61) 4118(3) 6027(6) -516(2) 33(1) C(62) 3460(3) 6311(7) -747(3) 51(2)
C(63) 4681(3) 6263(6) -830(2) 49(2) P(2) 5947(1) 3878(1) 255(1) 26(1)
C(70) 6537(2) 2984(6) -91(2) 27(1) C(71) 6619(3) 1642(5) -29(2) 35(1)
C(72) 6960(3) 929(7) -345(2) 41(2) C(73) 7229(3) 1509(7) -710(2) 43(2)
C(74) 7161(3) 2848(7) -763(2) 44(2)| C(75) 6812(3) 3601(6) -460(2) 36(1)
C(80) 6268(3) 5528(5) 329(2) 31(1) C(81) 6937(3) 5825(6) 362(2) 37(1)
C(82) 7131(3) 7097(7) 442(2) 46(2)
C(84) 6012(4) 7806(6) 460(2) 48(2)
C(90) 6002(3) 3108(5) 802(2) 28(1)
C(92) 6418(3) 2854(7) 1539(2) 43(2) C(93) 5990(3) 1832(7) 1617(2) 42(2)
C(94) 5580(3) 1412(6) 1284(2) 42(2) C(95) 5578(3) 2034(6) 881(2) 36(1)
B(1) 6631(4) 7072(8) 3102(3) 43(2) F(1) 6713(3) 6702(6) 2678(2) 92(2)
F(2) 5976(2) 7241(7) 3195(2) 99(2) F(3) 6865(4) 6108(6) 3375(2) 121(2)
F(4) 6971(2) 8185(5) 3201(2) 81(2) B(2) 4000(4) 8648(8) 624(2) 41(2)
F}(5) 3772(3) 8708(6) 212(2) 106(2) F(6) 4510(2) 9508(5) 699(2) 75(1
F(7) 4154(5) 7436(7) 721(4) 196(5) F(8) 3509(3) 8998(10) 892(3) 188(5)
```


A.2.10 $\left[\left(\mathrm{Bz}_{3} \mathrm{TAC}\right) \mathrm{CuPPh}_{3}\right]\left[\mathrm{BF}_{4}\right] \cdot 0.5 \mathrm{Tol}$.

$\left.\left.\begin{array}{lrrr|lrrrr}\hline \text { Atom } & \mathrm{x} & \mathrm{y} & \mathrm{z} & \mathrm{U}(\mathrm{eq}) & \text { Atom } & \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{U}(\mathrm{eq}) \\ \hline \mathrm{Cu} & 3577(1) & 2421(1) & 7495(1) & 31(1) & \mathrm{P} & 4218(1) & 3907(1) & 6964(1) \\ \mathrm{C}(1) & 2044(4) & 1311(3) & 8374(2) & 34(1) & \mathrm{N}(1) & 3731(3) & 934(2) & 8178(1) \\ 30(1) \\ \mathrm{C}(10) & 4665(4) & 524(3) & 8753(2) & 39(1) & \mathrm{C}(11) & 4613(4) & 1507(3) & 9177(2) \\ \mathrm{C}(12) & 5313(4) & 2413(3) & 8945(2) & 45(1) & \mathrm{C}(13) & 5241(5) & 3333(4) & 9342(3) \\ 65(1) \\ \mathrm{C}(14) & 4479(6) & 3329(4) & 9973(3) & 72(1) & \mathrm{C}(15) & 3820(5) & 2437(4) & 10203(2) \\ \mathrm{C} & 63(1) \\ \mathrm{C}(16) & 3879(4) & 1536(3) & 9806(2) & 47(1) & \mathrm{C}(2) & 1581(4) & 1013(3) & 7274(2) \\ \mathrm{N}(2) & 1372(3) & 1893(2) & 7769(1) & 29(1) & \mathrm{C}(20) & -284(4) & 2542(3) & 7894(2) \\ \mathrm{C}(21) & -432(3) & 3613(3) & 8269(2) & 32(1) & \mathrm{C}(22) & -170(4) & 4638(3) & 7945(2) \\ \mathrm{C} & 40(1) \\ \mathrm{C}(23) & -238(4) & 5615(3) & 8287(2) & 50(1) & \mathrm{C}(24) & -574(5) & 5580(4) & 8952(2) \\ \mathrm{C}(25) & -836(5) & 4569(4) & 9287(2) & 59(1) & \mathrm{C}(26) & -772(4) & 3588(3) & 8945(2) \\ \mathrm{C}(3) & 3998(4) & 17(3) & 7712(2) & 38(1) & \mathrm{N}(3) & 3268(3) & 581(2) & 7118(1) \\ \mathrm{C}(30) & 3616(4) & -250(3) & 6588(2) & 47(1) & \mathrm{C}(31) & 3270(4) & 341(3) & 5923(2) \\ \mathrm{C}(32) & 2222(4) & 28(4) & 5558(2) & 54(1) & \mathrm{C}(33) & 2001(5) & 504(4) & 4925(2) \\ \mathrm{C} & 67(1) \\ \mathrm{C}(34) & 2794(5) & 1320(4) & 4646(2) & 62(1) & \mathrm{C}(35) & 3821(5) & 1651(4) & 5001(2) \\ \mathrm{C}(36) & 4058(4) & 1158(3) & 5635(2) & 45(1) & \mathrm{C}(41) & 4774(4) & 4995(3) & 7396(2) \\ \mathrm{C}(42) & 3994(4) & 5290(3) & 8002(2) & 41(1) & \mathrm{C}(43) & 4324(5) & 6184(3) & 8332(2)\end{array}\right) 52(1)\right)$

$\mathrm{C}(44)$	$5431(5)$	$6744(3)$	$8057(2)$	$54(1)$	$\mathrm{C}(45)$	$6228(5)$	$6455(3)$	$7464(2)$	$54(1)$
$\mathrm{C}(46)$	$5899(4)$	$5588(3)$	$7128(2)$	$44(1)$	$\mathrm{C}(51)$	$2563(3)$	$4756(3)$	$6527(1)$	$25(1)$
$\mathrm{C}(52)$	$1895(4)$	$5949(3)$	$6594(1)$	$29(1)$	$\mathrm{C}(53)$	$510(4)$	$6497(3)$	$6318(2)$	$35(1)$
$\mathrm{C}(54)$	$-193(4)$	$5856(3)$	$5965(2)$	$38(1)$	$\mathrm{C}(55)$	$473(4)$	$4675(3)$	$5890(2)$	$39(1)$
$\mathrm{C}(56)$	$1834(4)$	$4122(3)$	$6170(2)$	$32(1)$	$\mathrm{C}(61)$	$5808(3)$	$3436(2)$	$6333(1)$	$26(1)$
$\mathrm{C}(62)$	$5919(4)$	$4034(3)$	$5723(2)$	$35(1)$	$\mathrm{C}(63)$	$7150(4)$	$3611(3)$	$5259(2)$	$41(1)$
$\mathrm{C}(64)$	$8274(4)$	$2590(3)$	$5408(2)$	$40(1)$	$\mathrm{C}(65)$	$8177(4)$	$1998(3)$	$6020(2)$	$37(1)$
$\mathrm{C}(66)$	$6948(3)$	$2411(3)$	$6480(2)$	$30(1)$	B	$1463(5)$	$10881(4)$	$2514(3)$	$55(1)$
$\mathrm{F}(1)$	$1843(3)$	$9733(2)$	$2347(1)$	$61(1)$	$\mathrm{F}(2)$	$2151(4)$	$11517(2)$	$1982(2)$	$92(1)$
$\mathrm{F}(3)$	$-79(3)$	$11403(2)$	$2523(2)$	$94(1)$	$\mathrm{F}(4)$	$2216(4)$	$11022(3)$	$3025(2)$	$112(1)$
$\mathrm{C}(71)$	$1154(5)$	$9540(4)$	$268(3)$	$62(1)$	$\mathrm{C}(72)$	$786(11)$	$10354(8)$	$769(4)$	$60(2)$
$\mathrm{C}(73)$	$-609(9)$	$11324(5)$	$714(3)$	$91(2)$	$\mathrm{C}(74)$	$1533(12)$	$8695(10)$	$-242(8)$	$98(5)$
$\mathrm{C}(75)$	$-241(11)$	$10481(7)$	$191(4)$	$60(2)$					

A.2.11 $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{2} \mathrm{CuCl}_{2} \cdot\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)_{0.5}$

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$	Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
Cu	$794(1)$	$468(1)$	$2605(1)$	$37(1)$	$\mathrm{Cl}(1)$	$-824(2)$	$1407(1)$	$1805(1)$	$50(1)$
$\mathrm{Cl}(2)$	$1951(2)$	$1346(1)$	$3596(1)$	$50(1)$	$\mathrm{C}(1)$	$2138(6)$	$43(4)$	$1366(2)$	$47(1)$
$\mathrm{N}(1)$	$2630(5)$	$586(2)$	$2032(2)$	$40(1)$	$\mathrm{C}(11)$	$3326(6)$	$1566(3)$	$1884(3)$	$52(1)$
$\mathrm{C}(2)$	$3721(5)$	$-49(3)$	$2481(3)$	$45(1)$	$\mathrm{N}(2)$	$2798(5)$	$-887(3)$	$2693(2)$	$45(1)$
$\mathrm{C}(21)$	$3648(7)$	$-1481(4)$	$3271(3)$	$69(2)$	$\mathrm{C}(3)$	$2257(6)$	$-1475(3)$	$2058(3)$	$53(1)$
$\mathrm{N}(3)$	$1281(5)$	$-826(3)$	$1592(2)$	$47(1)$	$\mathrm{C}(31)$	$542(7)$	$-1367(4)$	$967(3)$	$76(2)$
$\mathrm{C}(4)$	$-245(5)$	$-879(3)$	$3664(2)$	$39(1)$	$\mathrm{N}(4)$	$-909(4)$	$-210(2)$	$3091(2)$	$34(1)$
$\mathrm{C}(41)$	$-1896(6)$	$-806(4)$	$2540(2)$	$45(1)$	$\mathrm{C}(5)$	$-1838(5)$	$569(3)$	$3423(2)$	$41(1)$
$\mathrm{N}(5)$	$-3001(4)$	$119(3)$	$3831(2)$	$42(1)$	$\mathrm{C}(51)$	$-3837(6)$	$917(4)$	$4164(3)$	$57(1)$
$\mathrm{C}(6)$	$-2288(6)$	$-532(3)$	$4393(2)$	$47(1)$	$\mathrm{N}(6)$	$-1438(5)$	$-1326(3)$	$4056(2)$	$41(1)$
$\mathrm{C}(61)$	$-751(6)$	$-2016(4)$	$4614(2)$	$53(1)$	$\mathrm{C}(10)$	$3891(20)$	$3992(18)$	$4467(8)$	$88(4)$
$\mathrm{C}(20)$	$3929(12)$	$5064(12)$	$4557(5)$	$102(4)$	$\mathrm{C}(30)$	$3823(44)$	$6022(61)$	$4626(23)$	$312(45)$
$\mathrm{C}(40)$	$4995(21)$	$6569(10)$	$5085(9)$	$156(5)$	$\mathrm{C}(50)$	$4917(30)$	$5614(14)$	$4969(11)$	$118(8)$

A.2.12 $\left(\mathrm{Me}_{3} \mathrm{TAC}\right)_{6}\left(\mathrm{CuCl}_{3}\right)_{2}\left(\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right)$

Atom	x	y	z U(eq)	Atom	x	y	z U(eq)	
$\mathrm{Cu}(1)$	$1071(1)$	$2199(1)$	$12089(1)$	$45(1)$	$\mathrm{Cl}(1)$	$1182(1)$	$983(1)$	$12419(3)$
$\mathrm{Cl}(2)$	$1003(1)$	$3451(1)$	$12054(3)$	$53(1)$	$\mathrm{Cu}(2)$	$699(1)$	$1442(1)$	$9603(2)$
$\mathrm{Cl}(1)$	$53(1)$							
$\mathrm{Cl}(3)$	$316(1)$	$1230(2)$	$11098(3)$	$56(1)$	$\mathrm{Cl}(5)$	$1092(1)$	$6990(2)$	$2322(3)$
			$54(1)$					

$\mathrm{Cl}(6)$	1048(1)	6989(1)	-2387(2)	47(1)	$\mathrm{Cl}(7)$	378(1)	6169(1)	399(3)	47(1)
$\mathrm{Cl}(4)$	994(1)	1631(2)	7631(3)	58(1)	$\mathrm{Cu}(3)$	835(1)	6737(1)	7	$45(1)$
$\mathrm{Cu}(4)$	2460(1)	9808(1)	2351(1)	$37(1)$	$\mathrm{Cl}(8)$	2605(1)	$11113(1)$	2347(3)	44(1)
$\mathrm{Cl}(9)$	2844(1)	8912(1)	2228(3)	42(1)	$\mathrm{Cl}(10)$	1972(1)	9445(2)	2451(4)	57(1)
N(1)	-107(2)	1286(5)	16563(9)	48(2)	$\mathrm{N}(2)$	301(2)	2121(4)	15580(8)	41(2)
N(3)	351(2)	750(4)	15438(8)	40(2)	$\mathrm{N}(4)$	1075(2)	4491(4)	6960(8)	40(2)
N(5)	1433(2)	5107(4)	8757(7)	38(2)	$\mathrm{N}(6)$	1521(2)	5190(5)	6031(8)	$37(2)$
N(7)	391(1)	564	4850	$33(1)$	$\mathrm{N}(8)$	-44(2)	6129(4)	6278(9)	$44(2)$
N(9)	343(2)	6993(4)	525	36(2)	$\mathrm{N}(10)$	2441(1)	6985(4)	2280(9)	35(1)
$\mathrm{N}(11)$	1973(2)	7360(4)	993($34(2)$	$\mathrm{N}(12)$	1999(2)	7353(4)	3757(7)	36(2)
N(13)	1322(2)	9295(4)	8850(8)	36(2)	$\mathrm{N}(14)$	1684(2)	10124(4)	7420(9)	41(2)
N (15)	1327(2)	9261(4)	6070(8)	$38(2)$	$\mathrm{N}(16)$	1872(2)	$12222(5)$	3543(8)	40(2)
$\mathrm{N}(17)$	1928(2)	13511(4)	2318(9)	41(2)	$\mathrm{N}(18)$	1872(2)	12287(5)	795(9)	42(2)
C(1)	110(2)	639(5)	16646(11)	46(2)	$\mathrm{C}(2)$	55(2)	2034(5)	16779(11)	$45(2)$
C(3)	432(2)	1469(5)	15047(11)	40(2)	$\mathrm{C}(4)$	1197(2)	4991(6)	5694(10)	$43(2)$
C(5)	1113(2)	4868(5)	8493(10)	$38(2)$	$\mathrm{C}(6)$	1609(2)	5242(4)	7526(10)	$33(2)$
C(7)	464(2)	6373(5)	4518(9)	$31(2)$	$\mathrm{C}(8)$	169(2)	5468(5)	6143(10)	$41(2)$
C(9)	119(2)	6867(5)	6542(10)	43(2)	$\mathrm{C}(10)$	2334(2)	7361(6)	3704(10)	42(2)
C(11)	2311(2)	7376(6)	880(10)	42(2)	C(12)	1843(2)	7368(4)	2389(10)	$34(2)$
C(13)	1252(2)	8962(4)	7501(10)	$34(2)$	$\mathrm{C}(14)$	1502(2)	10056(6)	8840(10)	$41(2)$
C(15)	1491(2)	10022(5)	5997(10)	41(2)	$\mathrm{C}(16)$	1887(2)	11883(5)	2119(11)	$39(2)$
C(17)	1808(2)	13084(5)	3668(10)	41(2)	$\mathrm{C}(18)$	1811(2)	13170(5)	853(10)	40(2)
$\mathrm{C}(10 \mathrm{~A})$	$-299(2)$	1252(7)	15113(16)	70(3)	$\mathrm{C}(20)$	414(2)	2919(5)	15188(13)	$54(2)$
C(30)	514(2)	$57(5)$	14854(12)	53(2)	C(40)	1198(2)	3660(5)	6910(12)	48(2)
C(50)	1535(3)	5225(6)	10405(9)	50(2)	C (60)	1723(2)	5321(5)	4692(10)	$43(2)$
C(70)	509(2)	4971(5)	3920(10)	41(2)	C(80)	-259(2)	6158(6)	4943(14)	56(2)
$\mathrm{C}(90)$	461(2)	7803(4)	4997(11)	41(2)	$\mathrm{C}(100)$	2400(2)	6110(5)	2257(14)	49(2)
$\mathrm{C}(110)$	1793(2)	7368(6)	-481(10)	48(2)	$\mathrm{C}(120)$	1842(2)	7429(7)	5284(10)	$53(3)$
C(130)	1222(2)	8976(6)	10375(10)	47(2)	$\mathrm{C}(140)$	1954(2)	9609(5)	7418(14)	$54(2)$
$\mathrm{C}(150)$	$1247(2)$	8860(5)	4588(10)	44(2)	$\mathrm{C}(160)$	1878(2)	11740(7)	5018(12)	$61(3)$
C(170)	2262(2)	13571(6)	2320(14)	58(2)	$\mathrm{C}(180)$	1858(3)	11901(7)	-763(12)	$63(3)$

A.2.13 ($\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{TACCH}_{2}\right)-\mathrm{mC}_{6} \mathrm{H}_{4}-\left(\mathrm{CH}_{2} \mathrm{TAC}^{\mathrm{t}} \mathrm{Bu}_{2}\right)$

Atom	x	y		z U(eq)	Atom	x	y		$\mathrm{U}(\mathrm{eq})$
C(1)	6478(16)	-1685(17)	14094(13)	39(4)	$\mathrm{N}(1)$	5841(10)	3117(14)	13629(11)) $46(4)$
C(11)	4519(14)	$-3828(15)$	13993(12)	34(4)	$\mathrm{C}(12)$	4108(1)	$-5320(19)$	13654(16)	67(6)
C(13)	4450(20)	$-3370(20)$	15046(16)) $72(7)$	$\mathrm{C}(14)$	3502(18)	$-3580(20)$	13230(16)	64(6)
C(2)	6807(15)	$-3646(14)$	13951(13)	39(4)	$\mathrm{N}(2)$	8083(13)	-3014(14)	13473(10)	39(4)

	8986(15)	-3632(16)	13507(12)	35(4)	$\mathrm{C}(22)$	8385(18)		12899(13)	56(5)
)	9713(19)	-3482(18)	14552(18)	68(6)	$\mathrm{C}(24)$	10267(16)		13069(16)	$69(7)$
C(3)	8531(14)		13866(12)	32(4)	$\mathrm{N}(3)$				
C(31)	73	1153(15)		36	C				
C	91	10		41(4)	C	102			
	107								
C(37)	10	-8(18)		39(4)					
C(4)	11969(17)	-255(17)	8	45(5)	$\mathrm{N}(4)$	11167(12)			
C(5)	9858(17)	-57	9020(14)	47(5)	$\mathrm{N}(5)$		1		33(3)
C	770	86		33	C		$-1060(20)$		
(53)									
C(61)	121	,	76	43	C		-339	6991(15)	
C	132	09	8	61(6)	C	12812(14)	12	6933(14)	51(5)
C	791	,	9520(15)	57(6)	$\mathrm{N}(7)$	8434(14)	3649(10)	9863(9)	31(3)
(71)	(19)	,						10131(16)	
C(8)	737	4025(18)	965	$45(5)$	N	6	35	10103(9)	23(3)
C(81)	518	4120(20)	10114(16)	$53(5)$	C(82)	4680 (20)		907	68(6)
C(83)	5989(18)	,	10582(17)	57(6)		6)	350	107	43(4)
	553(15)					6502(12)			
	6855(19)	1638	1098	71(7)	$\mathrm{C}(92)$	5084(16)	-58	109	$35(4)$
C(93)	3991	4	,		$\mathrm{C}(94)$	3428(14)	-89	120	37(4)
)	3953(19)		12438(12)	42(5)	$\mathrm{C}(96)$	3407(18)	1120)	71(7)
(10)	5052(16)	1275				672(11)			
(2251(15)	715(16)	,	4(5)		3104(13)	388		$55(4)$
C	4332(13)	562	145	$24(3)$		506	1886		42(4)
C(111)	6448	2216	15582	56(5)	$\mathrm{C}(112$	7198(15)	2050	147	$76(7)$
C(113)	6604(19)	1330)	71(6)	C	7140(17)	3732(17)	161	$64(6)$
C(120)	4265(14)	2244(15)	15902	$30(4)$	$\mathrm{N}(12)$	2973(11)	2110(11)	15	$30(3)$
C	2088(16)	2499(16)	15975(13)	40(4)	$\mathrm{C}(122)$	1420(20)	1643	16660(14)	$64(6)$
C(124)	984(17)	2630(20)	5362(14)	67(6)	$\mathrm{C}(123)$	2928(19)	3962(17)	16587(12)	56(6)

A.2.14 $(\text { HTATC })_{2}($ TATC $)\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Cr}\left(\mathrm{CSiMe}_{3}\right)\right]_{2}$

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$	Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Cr}(1)$	$60(1)$	$4658(1)$	$558(1)$	$40(1)$	$\mathrm{C}(20)$	$218(5)$	$3182(4)$	$799(3)$	$47(1)$
$\mathrm{Si}(1)$	$138(1)$	$2110(1)$	$265(1)$	$40(1)$	$\mathrm{C}(21)$	$1275(5)$	$2087(6)$	$-236(3)$	$63(2)$
$\mathrm{C}(22)$	$-1209(5)$	$2089(5)$	$-245(3)$	$61(2)$	$\mathrm{C}(23)$	$233(6)$	$904(5)$	$721(3)$	$59(2)$

$\mathrm{C}(30)$	$72(9)$	$5557(5)$	$1314(3)$	$87(3)$	$\mathrm{Si}(2)$	$-314(2)$	$5136(1)$	$2019(1)$	$78(1)$
$\mathrm{C}(31)$	$-518(9)$	$6114(6)$	$2583(4)$	$96(3)$	$\mathrm{C}(32)$	$709(14)$	$4255(12)$	$2413(7)$	$88(5)$
$\mathrm{C}(33)$	$-1565(16)$	$4247(16)$	$1951(9)$	$116(7)$	$\mathrm{C}(32 \mathrm{~A})$	$-253(18)$	$3996(15)$	$2334(9)$	$89(7)$
$\mathrm{C}(33 \mathrm{~A})$	$-1986(27)$	$4958(28)$	$1676(17)$	$184(15)$	$\mathrm{C}(40)$	$-1101(5)$	$4934(4)$	$-50(3)$	$47(2)$
$\mathrm{Si}(3)$	$-2651(2)$	$4931(2)$	$-169(1)$	$89(1)$	$\mathrm{C}(41)$	$-3250(13)$	$3917(12)$	$287(8)$	$90(5)$
$\mathrm{C}(42)$	$-3130(18)$	$4235(17)$	$-947(9)$	$133(8)$	$\mathrm{C}(43)$	$-3344(16)$	$6028(15)$	$-176(9)$	$122(7)$
$\mathrm{C}(41 \mathrm{~A})$	$-3178(15)$	$5879(14)$	$-789(8)$	$84(6)$	$\mathrm{C}(42 \mathrm{~A})$	$-3207(17)$	$5795(16)$	$495(9)$	$98(7)$
$\mathrm{C}(43 \mathrm{~A})$	$-3404(21)$	$3891(19)$	$-291(13)$	$131(9)$	$\mathrm{C}(1)$	$-637(4)$	$10102(4)$	$3797(2)$	$35(1)$
$\mathrm{N}(1)$	$-53(3)$	$9148(3)$	$3744(2)$	$36(1)$	$\mathrm{C}(2)$	$927(5)$	$9057(5)$	$4203(3)$	$47(1)$
$\mathrm{C}(3)$	$1726(5)$	$9913(5)$	$4149(3)$	$52(2)$	$\mathrm{C}(4)$	$1115(5)$	$10897(5)$	$4190(3)$	$47(1)$
$\mathrm{N}(2)$	$131(3)$	$10936(3)$	$3730(2)$	$38(1)$	$\mathrm{C}(5)$	$-423(5)$	$11911(4)$	$3772(3)$	$55(2)$
$\mathrm{C}(6)$	$-1417(6)$	$11996(5)$	$3297(3)$	$61(2)$	$\mathrm{C}(7)$	$-2187(5)$	$11119(5)$	$3365(3)$	$53(2)$
$\mathrm{N}(3)$	$-1589(3)$	$10162(3)$	$3326(2)$	$39(1)$	$\mathrm{C}(8)$	$-2378(5)$	$9338(5)$	$3366(3)$	$51(2)$
$\mathrm{C}(9)$	$-1801(5)$	$8338(4)$	$3328(3)$	$53(2)$	$\mathrm{C}(10)$	$-798(5)$	$8289(4)$	$3813(3)$	$48(1)$
$\mathrm{C}(11)$	2500	$-112(6)$	2500	$40(2)$	$\mathrm{N}(4)$	$1532(4)$	$386(4)$	$2372(2)$	$42(1)$
$\mathrm{C}(12)$	$1474(6)$	$1475(5)$	$2436(4)$	$56(2)$	$\mathrm{C}(13)$	$2500(10)$	$1926(9)$	$2178(6)$	$56(3)$
$\mathrm{N}(5)$	2500	$-1123(5)$	2500	$52(2)$	$\mathrm{C}(14)$	$453(5)$	$-132(5)$	$2267(3)$	$47(2)$
$\mathrm{C}(15)$	$597(5)$	$-1136(5)$	$1985(3)$	$61(2)$	$\mathrm{C}(16)$	$1454(6)$	$-1707(5)$	$2371(4)$	$69(2)$

References

[1] K.Hock, Ger., 1904, 139, 394; L.Kahovec, Z. Physik. Chem., 1939, B43, 364; L. Henry, Bull. Acad. Belg., (3), 1893, 26, 200; L. Henry, Bull. Acad. Belg., (3), 1895, 29, 23; A. Francimont, H. Van Erp, Rec. trav. chim, 1896, 15, 66; J. Graymore, J. Chem. Soc., 1932, 1353
[2] a) E. M. Smolin, L.Rapoport "s-Triazines and Derivatives" in"The Chemistry of Heterocyclic Compounds", Interscience Publischer Ltd., London 1959, 473 and Ref.; b) E. D. Bergemann, A.Kaluszyner, Recl. Trav. Chim., Pays-Bas 1969 , 78, 315; c) H. Linde, H.Oelschl" ager, C. Czirwitzky., Arzneim. Forsch. 1978, 28, 973; d) BEILSTEIN, "Handbook of Organic Chemistry", 4th Ed. Vth Suppl. Series, Springer-Verlag, Berlin, Vol. 26, 1986, pp. 3 and Ref.
[3] a) D. C. Bradley, D. M. Frigo, I. S. Harding, M. B. Hursthouse, M. Montevalli, J. Chem. Soc, Chem. Commun., 1992, 577; b) D. C. Bradley, H. Dawes, D. M. Frigo, M. B. Hursthouse, B. Hussain, J. Organomet. Chem., 1987, 325, 55
[4] M. Westerhausen, W. Schwarz, J. Organomet Chem., 1993, 463, 51
[5] W. Uhl, M. Koch, S. Pohl, W. Saak, Z. Anorg. Allg. Chem., 1994, 620, 1619
[6] A. Lüttinghaus, W. Kullick, Tetrahedron Lett., 1959, 13
[7] H. Werner, J. Organomet. Chem., 1966, 5, 100
[8] M. B. Hursthouse, M. Motevall, P. O'Brien, J.R. Walsh, Organometallics, 1991, 10, 3196
[9] R. Fuchs, P. Klüfers, J. Organomet. Chem., 1992, 424, 353
[10] Murray V. Baker, Maria C. Palermo, Brian W. Skelton, Allan H. White, Aust. J. Chem., 1999, 52, 170
[11] Paul J. Wilson, Paul A. Cooke, Alexander J. Blake, Philip Mountford, Martin Schröder, New J. Chem., 1999, 271
[12] R. D. Köhn, Habil. paper, TU-Berlin 1996
[13] M. Haufe, R. D. Köhn, R. Weiman, G. Seifert, D. Zeigan, J. Organometal. Chem., 1996, 520, 121
[14] M. Haufe, Randolf D. Köhn, Gabriele Kociok-Köhn, Alexander C. Filipou, Inorg. Chem. Comm., 1998, 1, 263
[15] Y. Nomura, K. Ogawa, Y. Takeuchi, S. Tomoda, Chem. Lett., 1977, 693
[16] Steven P. van Kouventberg, Edward H. Wong, Gary Weisman, Eric J. Gabe, Florence L. Lee, Pete Jackson, Polyhedron Vol. 8, 1989, 19, 2333
[17] Kenneth D. Karlin, Yilma Gulneh, Prog. Inorg. Chem., 1987, 35, 219
[18] S. Mahapatra, V. G. Young Jr., S. Kaderli, A. D. Zuberbuehler, William B. Tolman, Angew. Chem., 1997, 109, 109
[19] G. R. Weisman, V. Johnson, R. E. Fiala, Tetrahedron Lett., 1980, 21, 3635
[20] T.J. Atkins, J. Am. Soc., 1980, 102, 6364
[21] Roger W. Alder, Rodney W. Mowlam, David J. Vachon and Gary R. Weisman, A. Chem. Soc. Chem Commun., 1992, 507
[22] J. M. Erhardt, J. D. Wuest, J. Am. Chem. Soc., 1980, 102, 6363
[23] J. M. Erhardt, E. R. Grover, J. D. Wuest, J. Am. Chem. Soc., 1980, 102, 6365
[24] J. Chatt, L. Manjiliović-Muir, K. Muir, Chem Commun., 1991, 655; J. M. Mayer, Angew. Chem., 1992, 104, 293; Angew. Chem. Int. Ed. Engl., 1992, 31, 286 and references therein.
[25] W. D. Stohrer, R. Hoffmann, J.Am.Chem.Soc., 1972, 94, 1661
[26] R. D. Köhn, Guido Seifert, G. Kociok-Köhn, Angew. Chem. Int. Ed. Engl., 1996, 35, 2879
[27] M. Pasquali, C. Floriani, A. Gaetani-Manfredotti, A. Chiesi-Villa, J. Am. chem. Soc., 1978, 100, 4918
[28] W. E. Broderick, K. Kanamori, R. D. Willett, J. I. Legg, Inorg. Chem., 1991, 30, 3875
[29] R. D. Köhn, Guido Seifert, G. Kociok-Köhn, Chem. Ber., 1996, 129 1327
[30] H. Brunner, A. Winter, B. Nuber, J. Organomet. Chem, 1998, 558, 213
[31] E. I. Solomon, M. J. Baldwin, M. D. Lowery, Chem. Rev., 1992, 92, 521
[32] W. Kaim, J. Rall, Angew. Chem., 1996, 108, 47
[33] H. Stegeman, A. Oprea, K. F. Tebbe, Z. Anorg. Allg. Chem., 1995, 621, 871
[34] C. Clegg, J. R. Nicholson, D. Collison, C. D. Garner, Acta Crystallogr., Sect. C, 1988, 44, 543
[35] S. Andersson, S. Jagner, Acta Chem. Scand. Ser. A, 1988, 42, 691
[36] See, for example: a) P. Pyykkö, Chem. Rev., 1997, 97, 597; b) Unkonventionelle Wechselwirkungen in der Chemie metallischer Elemente, ed. B. Krebs, VCH, Weinheim, 1992
[37] H. Schmidbaur, Gold Bull., 1990, 23, 11
[38] D. E. Harwell, M. D. Mortimer, C. B. Knobler, F. A. L. Anet, M. F. Hawthorne, J. Am. Chem. Soc., 1996, 118, 2679
[39] U. Simeling, U. Vorfeld, B. Neumann, H. G. Stammler, Chem. Commun., 1997, 1723
[40] T. Yamaguchi, O. Lindqvist, Acta. Chem. Scand. Ser. A., 1983, 37, 685; G. W. Eastland, M. M. Mazid, D. R. Russel, M. C. R. Symons, J. Chem. Soc., Dalton Trans., 1980, 1682; P. W. R. Corfield, H. M. M. Shearer, Acta Crystallogr., 1966, 20, 502
[41] K. Singh, J. R. Long, P. Stavropoulos, J. Am. Chem. Soc., 1997, 119, 2942
[42] J.-M. Poblet, M. Bénard, Chem. Comm., 1998, 11, 1179
[43] N. Kitajima, T. Koda, S. Hashimoto, T. Kitagawa, Y. Moro-oka, J. Am. Chem. Soc., 1991, 113, 5664
[44] E. W. Ainscough, A. M. Brodie, S. L. Ingham, J. M. Waters, J. Chem. Soc., Dalton Trans., 1994, 215
[45] Z. Tyeklár, R. R. Jacobson, N. Wei, N. N. Murthy, J. Zubieta, K. D. Karlin, J. Am. Chem. Soc., 1993, 115, 2677
[46] R. D. Köhn, G. Kociok-Köhn, M. Haufe, J. Organomet. Chem., 1995, 501, 303
[47] L. T. J. Delbaere, D. W. McBride, R. B. Ferguson, Acta Crystallogr., Sect. B, 1970, 26, 515
[48] F. Olbrich, G.Schmidt, E. Weiss, U. Behrens, J. Organomet. Chem., 1993, 456, 299
[49] F. A. Cotton, J. Takats, J.Am.Chem.Soc., 1970, 92, 2353
[50] Murrray V. Baker, D. H. Brown, B. W. Skelton, Allan H. White, J. Chem. Soc., Dalton Trans., 1999, 1483
[51] Steven D. R. Christie, Kwok W. Man, Richard J. Whitby, Alexandra M. Z. Slawin, Organometallics, 1999, 18, 348
[52] Y.-X. Chen, T. J. Marks, Organometallics, 1997, 16, 3649
[53] Gielens, E. E. G.; Tiesnitsch, J. Y.; Hessen, B.; Teuben, J. H., Organometallics, 1998, 17, 1652
[54] G. Bhandari, Y. Kim, J. M. McFarland, A. L. Rheingold, K. H. Theopold, Organometallics, 1995, 14, 738
[55] R. Emrich, O. Heinemann, P.W. Jolly, C. Krüger, G. P. J. Verhovnik, Organometallics, 1997, 16, 1511
[56] P. W. Jolly, K. Jonas, G. P. J. Verhovnik, A. Dohring, J. Gohre, J. C. Weber (Studiengesellschaft Kohle m.b.H.), WO-A 98/04570, 1998 [Chem. Abstr. 1998. 128, 167817v].
[57] R. D. Köhn, private communication
[58] Jason A. Halfen, Victor G. Young, Jr., William B. Tolman, J. Am. Chem. Soc., 1996, 118, 10920
[59] Scott E. Watkins, Xinhao Yang, Donald C. Craig, Stephen B. Colbran, J. Chem. Soc., Dalton Trans., 1999, 1539
[60] Y. Ishii, K. Miyashita, K. Kamita, M. Hidai, J. Am. Chem. Soc., 1997, 119, 6448
[61] Appel, Angew. Chem. Int. Ed. Engl., 1975 14, 801; [Angew. Chem., 87 , 863]
[62] Robert A. Egli, Helv. Chim. Acta, 1970, 53, 47
[63] R. A. Heintz, R. L. Ostrander, A. L. Rheingold, K. H. Theopold, J. Am. Chem. Soc., 1994, 116, 11387
[64] A. A. Danapoulos, G. Wilkinson, T. K. N. Sweet, M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1995, 2111
[65] S. K. Noh, S. C. Sendlinger, C. Janiak, K. H. Theopold, J. Am. Chem. Soc., 1989, 111, 9127
[66] S. K. Noh, R. A. Heintz, C. Janiak, S. C. Sendlinger, K. H. Theopold, Angew. Chem. Int. E. Engl., 1990, 29, 775
[67] M. B. Hursthouse, K. M. A. Malik, K. D. Sales, J. Chem. Soc., Dalton Trans., 1978, 1314
[68] F. Huq, W. Mowat, A. C. Skapski, G. Wilkinson, J. Chem. Soc., Chem. Commun., 1971, 1477
[69] P. Stavropoulos, P. D. Savage, R. P. Tooze, G. Wilkinson, B. Hussain, M. Montevalli, M. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 557 and references therein
[70] J. A. Halfen, S. Mahapatra, M. M. Olmstaed, William B. Tolman, J. Am. Chem. Soc., 1994, 116, 2173
[71] A. Halfen, William B. Tolman, J. Am. Chem. Soc., 1994, 116, 5475
[72] Samiran Mahapatra, Jason A. Halfen, Elizabeth C. Wilkinson, Gaofeng Pan, Christopher J. Cramer, Lawrence Que, Jr., William Tolman, J. Am. Chem. Soc., 1995, 117, 8865

Curriculum Vitae

Guido Seifert

Biographical Data

Birth date: July, 10th 1964
Place of Birth: Berlin, Germany
Citizenship:
German

Education

Doctoral Candidate

Technische Universität Berlin
July 1993 to Present
Priv.Doz.: Randolf D. Köhn, Ph.D.

Dipl. Chem.

Freie Universität Berlin
Diploma in chemistry ("Hauptdiplom"), 1993
Thesis Title: Diffusion of Titanium in mono-crystalline Copper
(Diffusion von Titan in einkristallinem Kupfer)
Professor: G. Neumann, Ph.D.
"Vordiplom", 1988

School

School in Berlin (Germany), 1971-1983
"Abitur", 1983

Work Experience

Freie Universität Berlin
Research assistant, 1990-1992
Technische Universität Berlin
Research assistant for Dr. Randolf Köhn, 1993-1998

Languages

English, Japanese

List of Publications

1. Syntheses and Structures of 13-Substituted 1,5,9,-Triazatricyclo[7.3.1.0 $\left.{ }^{5,13}\right]$ tridecanes and their Copper(II) Chloride Complexes

Randolf D. Köhn*, Guido Seifert, and Gabriele Kociok-Köhn, Chem. Ber. 129 (1996), 21-24
2. Cationic zinc(II)alkyl complexes of N-alkylated-1,3,5-triazacyclohexanes and 13 -benzyl-1,5,9-triazatricyclo[7.3.1.0 $0^{5,13}$]-tridecane Matthias Haufe, Randolf D. Köhn*, Roman Weimann, Guido Seifert, Dieter Zeigan, J. Organomet. Chem., 520 (1996) 121-129
3. Strained 1,3,5-Triazacyclohexane Complexes of Copper(I) and (II) R. D. Köhn*, G. Seifert, G. Kociok-Köhn, Chem. Ber., 129 (1996) 1327-1333
4. Solvent Dependent C-N Bond Length in a protonated Orthoamide, R. D. Köhn*, G. Seifert, G. Kociok-Köhn, Angew. Chem., 108 (1996) 3044-3046; Angew. Chem., Int. Ed. Engl., 35 (1996) 2879-2881

