Distributed Log Analysis for Scenario-based
Detection of Multi-step Attacks and Generati-
on of Near-optimal Defense Recommendations

vorgelegt von
MSec.
Kerem Kaynar
geb. in Ankara, Tiirkei

Von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
— Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Jean-Pierre Seifert
Gutachter: Prof. Dr.-Ing. Sahin Albayrak
Gutachter: Prof. Dr. Alexander Schill
Gutachter: Prof. Dr. Albert Levi

Tag der wissenschaftlichen Aussprache: 19. September 2017

Berlin 2017

Zusammenfassung

Die Erkennung verwandter, laufender Aktionen von Angreifern ist bedeutend
fiir eine umfassende Situationsbewertung der Netzwerksicherheit und die Be-
stimmung der wirksamsten, reaktiven Gegenmafinahmen fiir ein Netzwerk.
Die Log-Eintrige, die von den Software generiert werden, die auf das Netz-
werk laufen, konnen zu diesem Zweck verwendet werden, da sie die Spuren
von bosartigen Aktivitdten enthalten konnen, die innerhalb des Netzwerks
auftreten. Primére Log-Eintréage, die Sicherheitsalarme wie die Ausnutzun-
gen der Schwachstellen angeben, konnen verwendet werden, um die Angriffs-
pfade zu berechnen, die von einem potenziellen Angreifer wahrscheinlich ver-
folgt werden. Angriffsgraphen werden eingesetzt, um die Angriffspfade darzu-
stellen. Einer der Hauptbeitrage dieser Doktorarbeit ist der Vorschlag eines
verteilten Algorithmus zur Generierung der Angriffsgraphen, der das Skala-
bilitdtsproblem beseitigen kann, das in der Angriffsgraphberechnung fiir auch
mittlere Netzwerke inhérent ist. Sekundére Log-Eintrége sind nicht direkt mit
Sicherheitsalarmen verkniipft. Die Verwendung dieser Log-Eintrige kann je-
doch einen besseren Einblick in die Aktivitdten der Angreifer ermdglichen.
Wir tragen zur Verarbeitung der sekundéren Log-Eintrdge durch die Gene-
rierung von Verhaltens-Malware-Signaturen und die Ubereinstimmung von
diesen Malware-Signaturen an die sekundéren Log-Eintrége bei. Die instan-
tilerten Malware-Signaturen werden mit den berechneten Angriffsgraphen
integriert. Die Skalabilitédtsprobleme, die durch das hohe Volumen an se-
kundéren Log-Eintrige verursacht werden, werden durch die Nutzung einer
streambasierten Big Data-Infrastruktur gemildert. Die Bestimmung der ent-
sprechenden Reaktionen auf die anhaltenden Angriffsszenarien wird durch die
Anwendung einer Optimierungsmethode ausgefiihrt, die eine speziell gestal-
tete Kandidatenauswahlfunktion und die berechneten Angriffsgraphen ver-
wendet.

Zusammenfassung

iii

Abstract

Detecting related, ongoing actions of attackers is significant for providing a
complete situational assessment of security and determining the most effec-
tive reactive defense measures for a network. The logs generated by software
running across the network can be used for this purpose, since they may con-
tain the traces of malicious activities occurring inside the network. Primary
logs that indicate security alerts such as vulnerability exploits can be used
to compute the attack paths that are likely being followed by the attack-
ers. Attack graphs are utilized to represent the attack paths. One of the
main contributions of this thesis work is the proposal of a distributed attack
graph generation algorithm eliminating the scalability problem inherent in
attack graph computation for even medium scale networks. Secondary logs
are not directly related to security alerts. However, the usage of these logs
can provide more insight into the activities of the attackers. We contribute
to the secondary log processing by generating behavioural malware signa-
tures and matching them to the secondary logs. The instantiated malware
signatures are integrated with the computed attack graphs. The scalability
problems caused by the high volume of secondary logs are alleviated by utiliz-
ing a stream-based Big Data infrastructure. Response to the ongoing attack
scenarios is performed by applying an optimization method that utilizes a
specifically designed candidate selection function and the computed attack
graphs.

Abstract

Acknowledgments

I would like to thank Prof. Dr.-Ing. Sahin Albayrak for his precious support
for this work from the creation to the completion.

Likewise, I would like to thank Dr.-Ing. Karsten Bsufka and Dr. Brijnesh
Johannes Jain for their precious comments, suggestions and support while
forming this work.

I would like to thank all my colleagues at the DAI-Labor and GT-ARC for
their support.

Most importantly, I would like to thank my family for their support and
everything.

Acknowledgments

vii

Contents

Acknowledgments vi
1. Motivation 1
1.1 Why is the Attack Scenario Detection Process Important? . . 2

1.2 What is Important in the Attack Scenario Detection Process? 3

2. Approach 6
2.1 Representing Relations among Vulnerability Exploits and

Privileges o 7

2.2 Representing Malicious Activities after Vulnerability Exploits . 10

2.3 Correlating Network-wide Logs: Attack Scenario Detection . . 12

2.4 Responding to Attacks 14

3. State of the Art 16

3.1 Behavioural Malware Signatures 16

3.2 Attack Scenario Detection Using Logs 20

3.3 Security Information and Event Management Systems 27

3.4 Optimal Network Hardening Measure Recommendation 29

4. System Overview 33

5. A Taxonomy for Attack Graph Generation Process 37

5.1 Reachability Analysis Phase 38

Contents ix

8.

5.2 Attack Graph Modelling Phase 41
5.3 Attack Graph Core Building Phase 45
5.4 Using Attack Graphs for Network Security 49
5.5 Comparison of Past Works on Attack Graphs 52
Attack Graph Generation 66
6.1 Basic Problems in Attack Graph Generation 66
6.2 Attack Graph Modelling 72
6.3 Proposed Attack Graph Core Building Mechanism 81
Generation of Behavioural Malware Signatures 101

7.1 Behavioural Artifact and Malware Component Tree Models . . 106

7.2 Generation of Behavioural Artifacts 109
7.3 Incremental Clustering of Malware 110
7.4 Generation of Behavioural Signatures 115
7.5 Experiments Lo 115
Attack Scenario Detection Using Network-wide Logs 122
8.1 Log Collection 123
8.2 Log Preprocessing 125
8.3 Log Processing 126
8.4 Log Processing Results’ Correlation 128
8.5 Experiments 134
Responding to Attack Scenarios 142
9.1 Hardening Measure Graph 143
9.2 Finding the Optimal Solution 147
9.3 A Small Case Study 153

9.4 Experiments 156

Contents

10. Conclusions and Future Work

Bibliography

4.1

5.1
5.2
2.3
5.4
2.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

List of Figures

System overview 34

Attack graph generation phases and related classification criteria 38

Reachability information classification 39
Attack model classificationo 42
Attack graph model classification 44
Attack graph core building mechanism classification 45
Application areas of attack graphs for network security 50
Attack template model 72
Pre and Postcondition Categories 73
Attack graph structure 76
An Example Attack Graph 78
Network model 79
An Example Reachability Hyper-graph 83
Parallel, distributed shared memory-based depth-first search

algorithm oo 86

Flow chart for the parallel, distributed shared memory-based
depth-first search algorithm 87

Checking exploitability of a vulnerability or an information
source by an attacker 0oL 88

List of Figures xii

6.10

6.11

6.12

6.13
6.14
6.15
6.16

7.1

7.2
7.3

7.4

7.5

8.1
8.2

8.3

8.4
8.5
8.6
8.7
8.8

Finding the privileges gained by an attacker after exploiting a
vulnerability or an information source 89

Updating the expansion status of the privileges gained by an
attacker in shared memory 90

Updating the partial attack graph for each search agent after
exploitation of a vulnerability or usage of an information source 91

Merging the partial attack graphs by the leader search agent . 93
An example target network for attack graph generation 96
Elements of DMZ sub-domain in the example target network . 97

Performance comparison of the serial and proposed distributed
attack graph building algorithms in terms of execution time . 100

Workflow for the malware behavioural signature generation
system 104

An example malware component tree 108

The algorithm for the addition of the behavioural artifacts of
a malware sample to the malware component tree 111

The illustration of the addition of the behavioural artifacts of
a sample malware to the malware component tree 112

The computation of the similarity between the behavioural
artifacts contained by two malware components 113

Log processing framework architecture 124

Generating partial attack graphs using evidence processing re-

sults . .o 129
Matching alarmed attack scenario elements to the nodes of the

partial attack graphs oL 130
Expanding partial attack graphs 132
Merging partial attack graphs 133

Sample network for attack scenario detection system evaluation138
Devices infected with Stuxnet worm on the sample network . . 139

Devices infected with Zbot Trojan on the sample network . . . 140

List of Figures xiii

9.1
9.2
9.3
9.4

9.5

9.6

9.7
9.8
9.9
9.10
9.11

Example hardening measure graph 144
Generating the hardening measure graph 145
Computing eliminated attack path count for a candidate solution148

Candidate selection (generation) function used during the sim-

ulated annealing algorithm 150
Example of application and removal of hardening measures

during early phases of the optimization algorithm 152
Example of application and removal of hardening measures

during later phases of the optimization algorithm 152
Sample input attack graph for the case study 154
Hardening measure graph for the case study 155
Network used for the experiments 157
Attack graph used for the experiments 158

Comparison of the run-time performance and accuracy (in
terms of optimal solution score ratio) of the brute-force and
proposed method 163

5.1

5.2

5.3

0.4

3.5

6.1

7.1

7.2

8.1

9.1

9.2

List of Tables

Classification of past works according to the reachability anal-
ysis criteriao 52

(Classification of past works according to the attack graph
modelling criteriao 53

Classification of past works according to the attack graph core
building mechanism criteria, 54

(Classification of past works according to the uses of attack
graphs and a list of commercial tool suites 55

Complexity measures, max network size used in experiments
and significant features of past works o7

Running times of serial DFS and the proposed distributed,
parallel algorithm 98

Overall precision and recall values for the proposed clustering
system 118

Malware clustering execution times for the proposed malware
clustering system L 119

Performance measurement of the secondary log processing
through several experiments 136

Comparison of the proposed method with the brute force so-
lution for the first set of experiments 159

Comparison of the proposed method with the brute force so-
lution for the second set of experiments 161

List of Tables

pas

1
Motivation

Nowadays, almost all corporates’ security administrator teams deploy
perimeter security appliances and anti-virus software in order to protect their
information networks against malicious software originating from outside or
inside their networks. As the size of the corporate networks, the variability
of the software used in these networks and the interconnections among the
networks increase, managing the network security by using isolated security
applications becomes more difficult. The need for integration of different
security applications to create a global security analysis framework for a cor-
porate network arises. Such a global security analysis framework can be used
to assess the online security situation of the network by detecting ongoing
attacks.

The global security analysis framework for a network investigates the exis-
tence of attacks directed to the network, their potential propagation paths
and payloads. It tries to react to ongoing attacks on time and also find the
sources of attacks to determine the identity of the attackers. To achieve
these aims, the global security analysis framework can use the logs/events
collected from various log/event sources on the network. The logs/events can
be obtained from the alerts generated by the security sensors and the exe-
cution traces of various software on the network hosts, among others. They
should be processed in near real-time to detect and react to ongoing attacks
which can be performed simultaneously by one or more groups of coordinated
attackers.

The concept of an attack scenario that collects related atomic attack actions
that are performed by a single group of coordinated attackers plays an im-
portant role for global, network-wide security analysis. Atomic attacks are
generally represented by vulnerability exploits. Atomic attacks employed in

1.1 Why is the Attack Scenario Detection Process Important? 2

an attack scenario serve as a whole to the aim of compromising common
targets. An attack scenario shows the development of related attacks and
can be utilized to find the possible sources of attacks. It is generally rep-
resented by an attack graph that shows vulnerability exploits and attacker
privileges used to apply these exploits and gained after successfully exploit-
ing the vulnerabilities. There can be more than one attack scenario targeted
to a network during the same time interval.

The aim of this thesis work is to devise a system for detecting ongoing attack
scenarios for a target network via analyzing logs/events that are generated
by the software installed on the network machines. The system provides
also support for determination of near optimal defense measures to eliminate
as much as possible the propagation of attacks performed in the scope of
the detected attack scenarios. Support for analyzing large-scale networks is
provided in the system via designing and implementing the components of
the system in such a way that allows the execution of them over distributed
environments.

1.1 Why is the Attack Scenario Detec-
tion Process Important?

An attack scenario represents a set of related atomic attacks performed by
a coordinating group of attackers. Detecting the attempts of related atomic
attacks and the relations among them give clues about which privileges the
attackers have already obtained on the target network hosts or any hosts that
can reach to the target network hosts. The determination of the privileges
already obtained by the attackers makes prediction of future attack attempts
that can be performed by these attackers possible. The possible propagation
paths for the currently active attacks can also be predicted. This future
attack and propagation path predictions can be utilized in selecting the most
effective defense measures among the available ones, which can stop further
propagation of the currently active attacks and render possible future attack
attempts infeasible. The more focused the predicted possible future attack
attempts and propagation paths are, the more effective and accurate the
recommended defense measures are and it becomes possible to recommend
a more targeted defense measure configuration that can stop further attacks
with less number of defense measures and side effect on the current operation
of the network.

1.2 What is Important in the Attack Scenario Detection Process? 3

Another benefit of the determination of the privileges already obtained by
the attackers is that the infected network machines which are not detected by
isolated, local security sensors deployed across the network can be detected.
Because, the attack scenario detection process requires/employs global analy-
sis methods that can hypothesize the security events missed by local security
sensors. The hypothesized events can give clues about additional infected
machines on the network, the infection mechanisms applied to them by the
attackers and the effects of the malicious activities on these machines. This
allows to determine the appropriate actions in order to quarantine these
machines and revert the effects of the malicious activities on them. This
contributes to the elimination of further propagation of attacks.

1.2 What is Important in the Attack
Scenario Detection Process?

The most important point in the attack scenario detection process is to rec-
ognize the related activities and goals of the attackers accurately as early
as possible. This is not so easy under all circumstances, since at the early
stages of the attacks, the collected logs are so dispersed that constructing
an attack scenario by relating them can be very difficult. Most probably,
the attacker performs some network reconnaissance activities (such as port
scanning or fingerprinting) at these early stages, so the generated logs may
be spread across the whole region that is accessible remotely by the attacker.
For instance, the attacker may perform a random IP scan and get port or
operating system (OS) information about some hosts on the Demilitarized
Zone (DMZ) of the corporate network. At these early stages, the attacker
has most probably no idea about which paths she has to follow to reach the
target hosts in her mind, so she may have to perform some random trials. For
an insider attacker, the situation may be similar. She may have to find an
intrusion point through a series of access-controlled sub-networks in order to
reach her target. Therefore, the collected logs may not differentiate specific
attack paths at this stage.

After taking some preliminary attack steps, the attacker starts to utilize
the vulnerabilities she finds, when there is such an opportunity. Exploiting
vulnerabilities, gaining privileges on software and obtaining more information
can cause the attacker to be more selective in her future actions to reach her
goals. After that point, the traces that her attacks left on the software on the

1.2 What is Important in the Attack Scenario Detection Process? 4

network can be easily correlated to differentiate specific attack paths. It is
crucial to extract these paths indicating ongoing attack scenarios in a timely
manner. This is important, because the security administrator shall employ
the required counter-measures in a timely manner in critical situations. In
order to provide support for timely attack scenario detection even for large-
scale networks, the attack scenario detection process can be performed in a
fully distributed manner. In this case, the distributed agents spread across
the target network need to combine their results and deduce accurate attack
scenarios in collaboration with each other.

Another important point in the attack scenario detection process is to filter
false and unrelated alarms as much as possible. These alarms may have been
generated as the side effects of a malicious software, or they may be generated
because of the imperfectness of the security applications. Even, they may be
generated as a result of the deliberate, deceptive actions performed by the
attackers. These alarms can be eliminated by extracting the cohesive, highly
connected set of actions from the collected alarms/logs. This can be achieved
by defining and searching for possible relationships among the alarms/logs
at a fine-grained level.

1.2.1 Timely Detection and Prevention of Attack Scenar-
ios

Distributed computation techniques can be utilized to provide for timely
detection of attack scenarios. The aggregation and correlation of the collected
logs/events are performed by using a distributed, real-time middleware in
order to determine the related sequences of attack actions on time. Since
an attack graph is used to represent an attack scenario, the computation of
attack graphs is also performed in a distributed manner.

The process of defense measure recommendation takes place after detecting
an ongoing attack scenario. The recommended defense measures should incur
minimal cost and eliminate maximum number of attack paths in an attack
scenario that allow the attacker gain privileges on critical network resources.
The defense measure recommendation problem can be considered as an opti-
mization problem. The near-optimal defense measures should be found fast
enough to prevent further propagation of ongoing attacks. For this purpose,
prominent optimization algorithms can be enriched with network security
domain-specific functionalities and heuristics.

1.2 What is Important in the Attack Scenario Detection Process? 5

1.2.2 Accurate Attack Scenario Detection

The logs collected from the software on the target network are correlated to
detect ongoing attack scenarios. The logs can be of two types. A primary
log is a log directly related with a security (violation) event. It is generally
generated by security software. A secondary log is a log or network trace
that does not directly indicate a security event. It is generally generated
by software other than security software. A collection of more than one
secondary log can indicate a security event.

Primary logs mostly indicate infection vectors, namely vulnerability exploit
attempts. They can also indicate the existence of a malware on a network
host (trojan, virus, e.g.). A collection of secondary logs mostly indicate
the actions taken by an attacker, after infecting the target software. These
actions can seem innocent when individually analysed, but as a collection
they can indicate the usage of a number of privileges by the attacker for
malicious purposes. In order to provide for accurate determination of ongoing
attack scenarios, both primary and secondary logs should be utilized. Specific
signature or anomaly-based techniques can be devised and used to find the
security events implied by a collection of secondary logs. The found security
events can be correlated with the ones directly indicated by the primary logs
in order to obtain accurate attack chains.

2
Approach

We try to detect ongoing attack scenarios using the logs generated by various
applications (operating systems, server/client applications, security sensors,
etc.) running on the target network. An attack scenario is designated by
a partial attack graph. An attack graph contains as nodes vulnerability ex-
ploits (infection vectors) and privileges gained by an attacker on applications
running on the network. Each node of an attack graph can be in alarmed
status or not. A node being in alarmed status means that the existence of
the node (vulnerability exploit or privilege) is implied by a primary log or
a collection of more than one secondary log. Vulnerability exploit nodes are
implied by primary logs. Privilege nodes indicate the usage of the corre-
sponding privileges by an attacker for malicious purposes and can be implied
by a primary log or a collection of secondary logs. Section 2.1 contains de-
tailed information about attack graphs, their generation methods and the
contributions of this thesis in this subject.

In order to find the privileges used by an attacker for malicious purposes,
we should correlate the collected secondary logs in addition to analysing the
primary logs. A signature-based technique from the domain of malware be-
haviour analysis is developed and applied to correlate the secondary logs. We
generate and use behavioural malware signatures in this context. By using
the behavioural malware signatures, we try to provide for more resistance
to the evasion techniques utilized by the attackers to hide their malware
from detection. Section 2.2 describes behavioural malware signatures and
the contributions of this thesis in generating them.

The volume of secondary logs can be huge for even a moderately sized net-
work. The matching of secondary logs to the generated behavioural malware
signatures should be performed in near real-time to determine alarmed priv-

2.1 Representing Relations among Vulnerability Exploits and Privileges 7

ileges on time. The high volume of secondary logs can be a bottleneck in
this respect. We use a distributed, stream-based Big Data framework to
provide for near real-time processing of the collected secondary logs. The
related log correlation algorithms are designed and implemented over this
framework. The correlated logs are used to form attack scenarios in the form
of attack graphs, each of which represents a group of related (coordinated)
actions taken by the attackers. The approach of detecting ongoing attack
scenarios by correlating logs and contributions of this thesis in this subject
are described in Section 2.3.

We treat the (near optimal) defense measure recommendation problem as
a single objective optimization problem. The criteria forming the objective
for the optimization problem are to minimize the total cost of the applied
defense measures and to maximize the number of the attack paths on the
input attack graph which are eliminated by the applied defense measures.
We propose a new candidate selection function to be used in the execution of
the selected optimization algorithm. By using this candidate selection func-
tion, near optimal sets of defense measures can be found in a reasonable time
even for large attack graphs. The near optimal defense measure recommen-
dation problem and contributions of this thesis in this respect are described
in Section 2.4.

2.1 Representing Relations among Vul-
nerability Exploits and Privileges

An attack graph shows the possible paths that an attacker can follow to in-
trude into a network and gain certain target privileges, given a set of initially
satisfied attacker privileges as input. It generally represents the relationships
among various vulnerability exploits that can be employed by the attacker
and the privileges gained by the attacker as a result of exploiting these vul-
nerabilities successfully. The term vulnerability is treated in different ways
in attack graph generation literature. In some cases, the existence of a bug in
a specific version of a software/hardware product that allows an attacker to
compromise the software/hardware product is considered as a vulnerability.
In other cases, an inappropriate configuration setting for a software /hardware
product may be considered as a vulnerability. In this work, the vulnerabil-
ities defined in National Vulnerability Database (NVD) [50] are used. In
this respect, a vulnerability can be considered as a bug in a specific soft-

2.1 Representing Relations among Vulnerability Exploits and Privileges 8

ware/hardware product that allows an attacker to affect the confidentiality,
integrity or availability of data managed by the computer system containing
the software/hardware product.

The number of vulnerabilities on the target network, the reachability condi-
tions among the vulnerable software instances on the network and the level
of detail in vulnerability modeling are the main factors determining the size
of the state space for the attack graph computation process. States in this
context correspond to nodes in the resulting attack graph, which generally
represent attacker privileges and vulnerability exploits. When the state space
becomes too large, the popular serial attack graph generation algorithms,
running on a single computer and generally employing hashes or other in-
memory data structures to hold the already traversed parts of the state space,
may become ineffective.

In order to compute vulnerability-based attack graphs, the pre- and post-
conditions of possible vulnerabilities shall be generated in advance. The
preconditions of a vulnerability determine the necessary privileges that an
attacker must own to exploit the vulnerability, while the postconditions are
the privileges gained by the attacker, after successfully exploiting the vul-
nerability. The determination of which facts can be a privilege is an issue
that should be handled before the attack graph building process. The level of
detail of these facts affects the chaining of vulnerability exploits in the attack
graph building process. If the level of detail is very high, it becomes difficult
to chain unrelated vulnerabilities, because pre- and postconditions of vulner-
abilities are more specific (for instance, specific to an application’s module
name and version). The detailed, fine-grained extraction of the pre-and post-
conditions for vulnerabilities may become an error-prone, cumbersome task,
if it is performed manually.

In order to compute attack graphs, a model of the target network shall be
created, which contains the network topology, information about the software
installed on the network hosts and the necessary network configuration in-
formation to compute the reachability conditions among the network hosts.
The reachability conditions are affected by the filtering rules and security
policies employed across the network, among others. The information about
the software installed on the network hosts can be used to determine the
vulnerabilities of them. The information sources contained by the software
are also important, since they can contain information referring to other soft-
ware. As examples, the cookies file of a specific web browser can be treated
as an information source of the web browser, a database storing sensitive
(login) information and managed by a database server can be considered as

2.1 Representing Relations among Vulnerability Exploits and Privileges 9

an information source of the database server.

2.1.1 Main Contributions in the Context of Attack Graphs

Our main contribution in the context of attack graphs is related to the At-
tack Graph Core Building phase and we try to improve the time and space
complexity of the problem by applying a parallel and distributed search al-
gorithm to cope with the potential state explosion problem in the resulting
attack graphs.

A hyper-graph is used to represent the reachability conditions among the net-
worked software applications, in which a hyper-vertex represents a networked
software application and a hyper-edge indicates a collection of networked
software applications which can access each other using a specific network
protocol. One of the main contributions of this thesis work is to perform
reachability hyper-graph partitioning to guide the distributed search per-
formed to generate an attack graph. Distributed search is performed on a
multi-agent platform and the tasks assigned to each agent is determined ac-
cording to the results of partitioning the reachability hyper-graph. Therefore,
the tasks of the determination of the attacker privileges on networked soft-
ware applications are distributed over agents in such a way that an agent can
perform attacker privilege determination on the networked software applica-
tions that are closely connected. The main aim of this kind of task distribu-
tion among the agents is to minimize the required communication among the
agents. (Communication is needed among the agents for exchanging knowl-
edge about the current privileges of the attacker and using this knowledge
to decide the exploitability of a vulnerability. In order to compute the ex-
ploitability of a vulnerability on host h, agent a requires information about
the privileges already gained by the attacker on the hosts that can reach host
h. This information may have been stored in another agent and should be
transferred to agent a.) The list of networked software applications handled
by an agent can also be changed dynamically at run-time.

Another contribution of this thesis is to provide a virtual shared memory
abstraction across distributed agents to avoid multiple expansion of nodes
(multiple expansion of the attacker privileges) during the generation of an
attack graph. The algorithm described in [40] is used to provide a virtual
shared memory abstraction over a distributed multi-agent system. One of the
important parameters of a virtual shared memory abstraction is the initial
allocation of memory pages (or, memory objects) to the distributed agents.
This is performed by partitioning the reachability hyper-graph, so that the

2.2 Representing Malicious Activities after Vulnerability Exploits 10

more closely connected any two networked software applications, the more
likely that the privileges that can be obtained on them are stored in the same
memory page and thus handled by the same agent without having to transfer
memory pages from other agents.

2.2 Representing Malicious Activities
after Vulnerability Exploits

The relations among the vulnerability exploits (infection vectors) and at-
tacker privileges are computed and displayed in the form of attack graphs.
The existence of a vulnerability exploit can be deduced by analysing the pri-
mary logs generated mainly by intrusion detection/prevention systems. The
existence of an attacker privilege can be deduced by analysing the primary
logs or tracking and correlating the activities indicated by the secondary
logs. These activities may represent the malicious activities performed by
the attacker, after exploiting a vulnerability (infecting a system). In this
thesis work, these activities are correlated by using the behavioural malware
signatures derived by processing the:

e malware reports (behavioural profiles) downloaded from the web site
https//:malwr.com,

e malware reports generated manually for sample malicious files by using
a dynamic malware analyser called ANUBIS [39].

The number of malware variants has been increasing at a higher rate than
before due to the rich set of publicly available malware generation and obfus-
cation tools on the Internet. Static malware detection methods utilizing mal-
ware signatures in the form of byte sequences are insufficient today to detect
possibly a huge number of different variants of the same malware. Packing,
binding, encryption, instruction resequencing, using syntactically different
but semantically equivalent instructions, nop (no operation) instruction in-
sertion, etc. are among the well-known malware obfuscation techniques that
can be used to evade detection by static malware analysers.

An obvious alternative to static malware detection is dynamic malware de-
tection in which an input binary is executed in a controlled environment

2.2 Representing Malicious Activities after Vulnerability Exploits 11

(sandbox) and a behavioural profile is generated for the binary. A be-
havioural profile may contain system call sequences executed by the binary,
however detection via using such a profile is also prone to malware obfusca-
tion techniques (system call reordering, insertion or change without changing
the semantics of malware, etc.). In order to eliminate the effects of these
obfuscation techniques, a behavioural profile may be composed of a set of
high level operations performed by the input binary. These operations can
be registry record read/change, file creation/read /modification, process cre-
ation/termination, service start-up, setting up an HTTP connection, sending
an e-mail, etc. There is generally no temporal dependencies among the high
level operations contained in a behavioural profile.

Malware behavioural profiles consisting of high level operations can be clus-
tered and a malware behavioural signature can be generated for each cluster
to be used in the online malicious activity detection process. One of the
main problems in this behavioural signature generation process is caused by
the insertion of deceptive high level operations into the malware binaries by
the attackers. Each variant of a malware binary may perform a number of
misleading (tricky) high level operations to hide its main purpose. In order
to eliminate the adverse effects of deceptive high level operations in mal-
ware behavioural signature generation, we propose a graph similarity-based
approach to the processing of malware behavioural profiles. We provide sup-
port for the distributed computation of the applied graph similarity algorithm
by utilizing graph partitioning.

2.2.1 Main Contributions in the Context of Behavioural
Malware Signatures

Our main contributions in this thesis work for malware behavioural clustering
and signature generation are:

e We represent the behavioural profile for the malware binary as a mal-
ware graph. A node of the malware graph represents a malicious activ-
ity performed by the malware. An edge represents a relation between
the values of the fields of the source and target malicious activity. By
this way, we account for the dependencies among the malicious activi-
ties performed by the malware.

e We apply a specific graph similarity algorithm to find the structurally
and contextually similar parts of a set of malware graphs. These similar

2.3 Correlating Network-wide Logs: Attack Scenario Detection 12

parts serve as the malware behavioural signatures. Contextual similar-
ity refers to the similarity in terms of the field values of the malicious
activities in the malware graphs. Structural similarity refers to the sim-
ilarity of the patterns of connections among the malicious activities in
the malware graphs. The aim of applying graph similarity to the mal-
ware graphs is to eliminate deceptive malicious activities (behavioural
components) as much as possible.

e In order to support for distributed generation of malware behavioural
signatures, we utilize graph partitioning to separate the highly con-
nected sub-graphs of a malware graph and compare them with the
highly connected sub-graphs of other malware graphs by using our spe-
cific graph similarity algorithm.

2.3 Correlating Network-wide Logs: At-
tack Scenario Detection

The concept of an attack scenario that collects related atomic attack actions
that are performed by a single coordinated group of attackers plays an im-
portant role for the network security analysis. An attack scenario serves as
a whole to the compromise of common targets. It shows the development
of attacks and can be utilized to find the possible sources of attacks. There
can be more than one attack scenario targeted to a network during the same
time interval.

In this thesis work, the attacks targeted to a network are grouped into attack
scenarios by collecting and analysing logs generated throughout the network.
Two types of logs are defined: primary and secondary logs. A primary log in-
dicates directly a malicious activity performed by an attacker. A secondary
log is a normal event that does not indicate a malicious activity by itself.
However, a collection of more than one secondary logs can indicate a mali-
cious activity as a whole.

The main challenge to construct attack scenarios is to summarize the huge
number of collected logs into a number of groups that contain correlated
logs and indicate malicious activities. For each malicious activity, a number
of security events are generated and then appropriate attack scenarios are

2.3 Correlating Network-wide Logs: Attack Scenario Detection 13

created and updated with the security events. The previous works use dif-
ferent log correlation models to generate security events and create/update
attack scenarios. Some of them use pre-defined or statistical similarities
among the attributes of the logs. Some others use pre-defined attack sce-
nario templates and groups the logs according to the components of the
templates. Even some others define pre- and postconditions for atomic at-
tacks (vulnerability exploits) to generate attack graphs representing attack
scenarios. Attack graph-based approaches are more effective for attack sce-
nario detection, since they can detect new (zero-day) attack scenarios. In
attack graph-based approaches, the existence of a vulnerability exploit node
is deduced by analysing primary logs. The existence of an attacker privilege
can be deduced by analysing both primary and secondary logs. When the
existence of a vulnerability exploit or an attacker privilege is deduced by
a collection of logs, the corresponding node on the attack graph is used to
create/update attack scenarios.

There are important points to be improved in previous works that employ
attack graph-based approach to detect ongoing attack scenarios. The ones
that are addressed in this thesis work are:

e The previous attack graph-based approaches generally do not process
secondary logs, because of their possible huge volume. However, some
of these logs can collectively indicate a malicious activity and can pro-
vide for the creation/update of the nodes on the attack scenarios that
are referred to by the malicious activity.

e The previous attack graph-based approaches generally mark the nodes
of the pre-computed full attack graph which are implied by the collected
primary logs as alarmed. Then, they find the (shortest) paths among
the alarmed nodes over the full attack graph. This gives rise to the
traversal of the parts of the full attack graph that are unrelated with
the alarmed nodes. When we consider a huge full attack graph with
some alarmed nodes scattered on the attack graph far away from each
other, these approaches may have to traverse a huge portion of the
attack graph that do not contain alarmed nodes in order to find paths
among the alarmed nodes.

2.4 Responding to Attacks 14

2.3.1 Main Contributions in the Context of Attack Sce-
nario Detection

We provide a method to construct attack scenarios by processing the collected
logs. Our method processes the secondary logs in addition to the primary
logs in order to provide for more accurate attack scenario detection. The
processing of the collected primary and secondary logs is performed over a
real-time, stream-based Big Data framework by using specifically developed
distributed algorithms (application topologies). The primary logs are used
to prove the existence of the vulnerability exploits. We generate behavioural
malware signatures for the specific categories of malicious activities such as
mass mailing worms, trojans, adwares, etc. The secondary logs are matched
to these signatures. If these matchings are successful, we conclude that the
matched secondary logs collectively indicate a malicious activity. After that,
by using the indicated malicious activities, we prove the existence of the
specific privileges that could have been possibly used by an attacker for
malicious purposes. These privileges are attacker privilege nodes on the
attack graph.

We construct attack scenarios by using partial attack graphs which are
dynamically created/expanded during the log correlation/processing. The
nodes in partial attack graphs, whose existence are proved by the primary
or secondary logs, are found. These nodes are called alarmed nodes. The
expansion of a partial attack graph is performed using the pre-computed full
attack graph. We determine the nodes to be expanded in a partial attack
graph by using their alarmed status and their distance to the alarmed nodes,
among other factors. By this way, we can also include the unalarmed nodes,
which are most likely missed by IDSs, in the expansion process. With this
partial attack graph-based approach, we try to eliminate as much as possible
the traversal of the parts of the full attack graph that are unrelated with the
received logs during attack scenario construction.

2.4 Responding to Attacks

With the growing need for connectivity inside and among the enterprise
networks, it becomes ever more challenging to ensure the confidentiality, in-
tegrity and availability of data. Therefore, the accurate assessment of the
interactions among the possible network defense or network hardening mea-

2.4 Responding to Attacks 15

sures becomes crucial. This assessment is dependent on the target network
configuration and plays a crucial role in determining the optimal sets of hard-
ening measures for the target network. An application of a specific hardening
measure may eliminate the need for a set of other measures, if the measure
can subsume the utility gained by the application of those measures. In ad-
dition to the role of the target network configuration, the selected defense
criteria to minimize or maximize are also important to determine an optimal
network hardening plan.

In this thesis work, the problem of finding the optimal hardening measure
set by using an attack graph is defined as a single-objective optimization
problem, which is then solved using the simulated annealing algorithm. The
objective function is a linear combination of the two optimization criteria
that represent the minimization of the total cost of the applied hardening
measures and the maximization of the number of the eliminated attack paths.
Their relative weights would depend on the target network configuration and
preferences that can be adjusted by the network security administrators.

2.4.1 Main Contributions in the Context of Network Hard-
ening

The main contribution of this thesis work is the proposed candidate selec-
tion function used in the optimization process, where each candidate solution
represents a set of hardening measures. The aim of the candidate selection
function is to prevent the optimization process from being caught in local op-
tima easily and help the optimization process find the near-optimal solutions
in a reasonable time frame.

3
State of the Art

This section explains the approaches proposed by the prominent works in the
literature in the context of four main subjects:

behavioural malware signatures

ongoing attack scenario detection by correlating alerts and logs

security information and event management systems

optimal network hardening (defense) measure recommendation.

The works related with each subject are discussed in the separate subsection
for the subject. The state of the art for the generation of attack graphs is
described in Section 5, which describes the taxonomy for the whole attack
graph generation process proposed in this thesis work (by referring to the
related past works).

3.1 Behavioural Malware Signatures

In this section, we describe the related work for dynamic (behavioural) mal-
ware analysis and malware clustering approaches which use the results of
dynamic malware analysis. The proposed method for malware clustering in
this thesis work is based on high-level, behavioural, dynamic malware anal-
ysis results in order to eliminate the possible negative effects of well-known

3.1 Behavioural Malware Signatures 17

malware obfuscation techniques, such as instruction (system call) reorder-
ing, adding nop instructions, instruction (system call) renaming etc. on
other malware analysis methods. Actually in [46], a binary obfuscation and
rewriting method to emphasize the insufficiency of static malware analysers
is proposed. The method allows to change the binaries of malwares to hide
their existence from analysis by both pattern-matching- based and semantics-
aware static malware detectors. The main obfuscation method proposed in
[46] is based on the famous 3-satisfiability NP-complete decision problem
(3SAT) in Boolean logic. Opaque constants that cannot be determined in a
reasonable time by static malware analysers are created. To determine each
bit of the value of a constant, the malware analyser must solve a specific
instance of the 3SAT problem. The authors propose techniques that incor-
porate 3SAT-based opaque constants in binaries in order to hide the target of
jump, call and branching instructions, the reached data locations and usage
patterns, and also the locations of loaded shared (or dynamic link) library
functions.

Yin et al. [94] use a QEMU-based emulator as an environment to test, mon-
itor and analyse the information access patterns and information processing
behaviour of input unknown sample codes. Sensitive information is intro-
duced into the environment in a test case and marked with a taint. During
the execution of the test case, the propagation of the taint among the oper-
ating system objects and resources is recorded as a taint graph. Taint graphs
represent the results of the dynamic malware analysis.

In [88], input unknown sample code is executed in a controlled simulation
environment, called CWSandbox, instruction-by-instruction. As the results
of this execution, the processes spawned, file entries changed, registry en-
tries changed by the sample code are automatically derived. CWSandbox
uses Windows API hooking and DLL injection to catch the implicit and ex-
plicit DLL function calls made by the input sample and analyse the DLL
function call parameters. By this way, a behavioural profile for the input
sample is created and reported. The usage of Windows API hooking and
DLL injection mechanisms also prevents the malicious code from detecting
the controlled simulation environment, namely prevents the malware from
realizing being tracked. It is also stated that CWSandbox can detect the
network connections created by malicious code to download new malicious
applications.

Bayer et al. [39] propose a malware clustering system based on malware
behaviour. Malware samples are fed into a sandbox ANUBIS supporting
dynamic taint analysis and advanced network analysis capabilities to obtain

3.1 Behavioural Malware Signatures 18

system call traces. The system call traces are converted into a more abstract
representation called behavioural profiles. A behavioural profile is comprised
of the operating system (OS) objects and operations performed by a malware
sample. It also contains the dependencies between OS operations. An OS
object can be a file, registry key, synchronization object (mutex) or a network
socket, among others. An OS operation is an abstraction over the system
calls having a similar functionality.

In [39], the features for the clustering algorithm are generated from the be-
havioural profiles by using the string representations of OS objects and op-
erations and string concatenation. However, string concatenation can not
accurately represent the graph structure inherent in a behavioural profile.
The order of string representations of the OS objects and operations in the
concatenated string may cause inaccurate distance computations among the
behavioural profiles. It may also not eliminate deceptive (tricky) OS oper-
ations and objects in the behavioural profiles when generating signatures.
Complete-linkage hierarchical clustering algorithm is used for clustering the
behavioural profiles. To avoid quadratic amount of distance computations
among the feature sets, the locality sensitive hashing algorithm is used.

Apel et al. [5] compare various distance measures to measure their efficiency
in clustering malware behavioural traces. Among the compared measures are
the graph edit distance, approximated edit distance, normalized compression
distance with different compression algorithms and Manhattan distance. Col-
lected malware samples are analysed with CWSandbox and the behavioural
malware traces for them are obtained. A malware trace contains system call
sequences. The distance measures are compared in terms of three qualitative
criteria: ensuring appropriateness by creating minimum number of malware
clusters with diverse shared behaviour, ensuring sensitivity to system call
reordering and having acceptable runtime performance.

Rieck et al. [66] propose a malware behaviour analysis framework combining
clustering and classification approaches. The clustering approach is used to
find novel classes of malware from the samples with similar behaviour. The
classification approach is used to match unknown malware binaries to known
(previously determined) classes of malware. The proposed framework uses
the CWSandbox tool to determine the system call sequences performed by
a binary. These sequences are embedded into a vector space denoted by
the proposed malware instruction set. The distances among the generated
vectors are computed during the clustering algorithm. The proposed method
may not handle system call reordering employed for malware obfuscation,
since it uses system call sequences. It also can not catch the dependencies

3.1 Behavioural Malware Signatures 19

among the different system call sequences performed by a malware binary.

In [8], a malware classification system is proposed, which uses the changes in
the behaviour of an operating system incurred by malware. It uses the per-
formance monitor data, frequency of single system calls and pairs of system
calls as features. For each malware sample execution, the feature data are
collected for a tunable amount of time before and after the execution time
of the malware sample as two separate data sets. For each feature data set,
the normalized changes in the mean and variance values are computed. The
normalized changes are given as input to a decision tree-based, supervised
classifier algorithm to classify malware samples. Decision trees are given as
input to a specific random forest algorithm for training them. Feature se-
lection is applied during the execution of the random forest algorithm. The
method is prone to the malware obfuscation techniques employing system
call reordering and does not catch dependencies among the system call pa-
rameters.

Borojerdi et al. [62] introduce a malware classification tool, named Mal-
Hunter, which uses high-level semantic behavioural sequences instead of only
system calls. System calls in malware traces are grouped into behavioural
sequences. After that, using the normalized edit distance metric, the be-
havioural sequences are clustered. For each cluster, a number of (possibly
more than one) malware behaviour patterns are formed. The tool does not
account for the relations among the different behavioural sequences of a sin-
gle malware trace. So, it is incapable of distilling deceptive behavioural
sequences from a malware trace. (Deceptive behavioural sequences can be
added by a malware writer to hide the real behaviour of the malware and
they are mostly isolated from other malware-mission-specific behaviour.)

In [47], a malware classification method based on network traces of malware
is proposed. The network traces of a malware are converted into network
flows. A behavioural malware profile in the form of a graph is formed using
the network flows. The graph contains the network flow information as nodes
and the dependencies between the different network flows as edges. The
dependencies are created using the source and destination IP addresses. The
authors define a set of features on malware behavioural profile graphs. These
features are processed by a supervised classification algorithm. To create a
training set for the supervised classification algorithm, the authors have to
collect the network traces for a set of malware samples and label each of
them with the appropriate malware family name.

3.2 Attack Scenario Detection Using Logs 20

3.2 Attack Scenario Detection Using
Logs

There are various works in the literature concentrating on the management
and correlation of events, alerts, network traces and other kinds of logs gen-
erated throughout a computer network. The aim is generally to determine
and evaluate the global security status of the network. Most of these works
correlate intrusion alerts to generate attack scenarios. The attack scenarios
are generally in the form of attack graphs representing multi-step attacks.

In [26], the authors propose to use dependency graphs extracted from the
management data stored in management systems for event correlation. After
normalizing the events received from different streams, the pre-generated
dependency graph is used to determine the cause of these events. A breadth-
first search strategy starting from each event received in a specified time
interval is employed and the managed objects in the dependency graph that
are reachable by a number of received events greater than some threshold
value are determined. The breadth-first search instances can continue up to
reaching a specified search depth. A basic breadth-first strategy does not
eliminate the traversal of the large sub-graphs of the dependency graph to
find the managed objects.

In [17], global candidate attacker plans are created by applying intrusion alert
correlation based on a predefined attack base created using LAMBDA attack
specification language. An attack is defined in this language by specifying
its prerequisites, consequences, scenario and detection information. The de-
tection information contains the definition of the alert types related with the
attack. The intrusion alert correlation process includes the application of the
correlation rules between pairs of attacks in the attack base and the instan-
tiation of the variables in the rules with the data of actual intrusion alerts.
The application of the correlation rules between pairs of attacks in the attack
base corresponds to performing a template matching over all possible attacks
and their relationships with a set of (sliding window of) received intrusion
alerts.

Ning et al. [48] propose a method for building attack scenarios using hyper-
alert types and hyper-alerts. A hyper-alert type represents an attack possibly
having a corresponding signature on a particular intrusion detection sensor.
Each hyper-alert type has its prerequisites and consequences. On the other
hand, a hyper-alert is a collection of received intrusion alerts that are related

3.2 Attack Scenario Detection Using Logs 21

with the same hyper-alert type. By using the prepare for relations among the
hyper-alerts, hyper-alert correlation graphs are created. In [49], the authors
introduce attack strategy graphs. An attack strategy graph is composed of
a collection of related hyper-alert correlation graphs and denotes an attack
scenario. Although our approach of representing attack scenarios with partial
attack graphs is somehow similar to the approach of these two past works,
there is no indication of processing secondary logs in these two works. The
methods employed by them only process intrusion alerts.

In [14] a language, called CAML (Correlated Attack Modelling Language),
for modelling multi-step cyber attacks in a way that enables attack scenario
recognition by recognition engines (for ex. intrusion detection systems (IDS))
is proposed. CAML consists of modules linked to each other with predicates.
Each module defines a template for a specific step of a multi-step attack
scenario. The work of [14]) resembles to the work of ([17], since they both use
attack scenario templates and match intrusion alerts to template elements.

Wu et al. [89] propose a distributed, collaborative intrusion detection frame-
work that collects intrusion alerts from individual sensors and aggregates
them in order to decrease the false positive and false negative alarm rates.
The collaborative intrusion detection system (CIDS) proposed in this work
is comprised mainly of the individual event detectors (sensors) placed on dif-
ferent locations on the target network, CIDS manager process and response
strategy determiner. In the CIDS manager, there is an inference engine re-
lated to each different host on the target network. These are local inference
engines. Also, there is a global inference engine that is responsible from col-
lating the results of the local inference engines and inferring the occurrence
of global (depending on more than one network host) intrusion attempts.
There is a group of rule objects associated with each inference engine. Each
rule object can be represented with a graph or a Bayesian network. Each
rule object also represents a specific attack class (for ex. buffer overflow at-
tack). An inference engine tries to match the translated events coming to its
inference queue to its rule objects. The work of [89] uses an attack template
approach similar to the works of [48]. However, an inference engine with its
Bayesian network-based rule objects improves the cause-consequence-based
hyper-alert correlation graphs in [48] by incorporating probabilistic reason-
ing.

Noel et al. [54] propose an intrusion event correlation method based on the
distances among the exploits on an all-paths attack graph for a target net-
work. The attack graph for the target network is built off-line by taking into
account the network vulnerability information and exploit models derived

3.2 Attack Scenario Detection Using Logs 22

using the information on the public vulnerability databases on the Internet.
After the attack graph is built, the distances of the shortest paths between
each pair of exploits on the attack graph are computed and stored. When
an intrusion event is received, it is mapped to the corresponding exploit
on the attack graph and checked for correlation with the previous intrusion
events. Two intrusion events are correlated, if the distance between their
corresponding exploits on the attack graph is not infinite.

In [78], a comprehensive framework defining relevant phases for intrusion
alert correlation is proposed. The aim of the framework is to reduce the
number and increase the abstraction level of the intrusion alerts. It tries to
achieve this aim by constructing meta-alerts from the raw alerts by applying
specific algorithms in alert correlation phases. By this way, an alert tree
is produced whose leaves are single alerts and intermediate nodes and root
node are meta-alerts. Some of the alert correlation phases defined by the
framework are normalization, pre-processing, fusion, thread reconstruction,
attack session reconstruction, focus recognition, multi-step attack analysis,
verification, impact analysis and prioritization.

Wang et al. [85] propose a novel algorithm for alert correlation and attack
prediction, which is called queue graphs. The main factor causing the de-
velopment of this algorithm is a need to eliminate the disadvantages of the
nested loop-based intrusion alert correlation methods developed so far. An
obvious disadvantage of the nested loop-based alert correlation is the intro-
duction of a sliding time window for the processing of the alerts and the
comparison of a new alert with all the previous alerts for correlation. Even if
in-memory indices are used for locating the previously received alerts, some
of these indices must be deleted according to a sliding time window because
of memory limitations.

In contrary to the nested loop-based approach, the queue graph approach
takes only the latest alert corresponding to each exploit into account. In an
all-paths attack graph consisting of exploit and security condition (privilege)
nodes, each exploit node contains a queue of length one to store the latest
intrusion alert related to the exploit node. When a new alert is received, its
corresponding exploit is found in the attack graph, the alert is enqueued to
the queue of the exploit and a breadth-first search is started backwards in
the attack graph. When hypothesized alerts are not generated (in the basic
correlation algorithm), the search stops, when an empty queue is reached.
Since the backwards breadth-first search are performed over the whole all-
paths attack graph, it may be very time-consuming because of the possible
traversal of large parts of the attack graph that are unrelated to the received

3.2 Attack Scenario Detection Using Logs 23

events, if the all-paths attack graph is large.

In [75], an approach that uses hyper-alert type graphs to generate hyper-alert
correlation graphs, similar to those in [48], is described. The authors decide
not to use vulnerability-based attack graphs containing also network topology
information. The basic correlation algorithm uses in-memory indices among
the attribute subsets of hyper-alerts, if these hyper-alerts satisfy the prepares
for relation among themselves. The prepares for relation implies an inherent
cause-consequence relationship and is the precondition for the existence of
in-memory indices among the attribute subsets of the corresponding hyper-
alerts. There is another graph to be used in the generation of the correlation
graph. This graph is called attack-type graph whose nodes are hyper-alert
types and edges represent the prepares for relation between hyper-alert types.
There are also backward and forward indices stored in the hyper-alert types
of the attack-type graph. These indices represent the relations among the
different attribute combinations of the hyper-alert types. To generate the
correlation graph, attack-type graph is traversed using these in-memory in-
dices. Attack type graphs can be considered as network-independent attack
templates.

The framework proposed in [87] consists of three main phases. These are
evidence collection and aggregation, evidence graph manipulation and hier-
archical reasoning using the generated evidence graph. Evidences are col-
lected from different IDSs and network traffic captures and then converted
into a normalized format. The evidence aggregation procedure tries to re-
duce the number of the evidences by eliminating duplicate evidences and
providing support for many-to-one (DDoS) and one-to-many (network scan-
ning) attack types. It uses basic comparison relations among the attributes
of different evidences. The evidences generated as a result of the aggregation
procedure are called hyper-evidences.

The evidence graph manipulation phase creates the evidence graph using
the hyper-evidences. Each node in this graph represents a network host and
each edge represents a hyper-evidence. There are two important attributions
(labelling functions), one for nodes and one for edges. The most important
node attribute is the functional state that can have values of Attacker, Vic-
tim, Stepping Stone and Affiliated. Each functional state value for each node
has also a real strength value between 0 and 1. The most important edge
attribute is the edge priority that is computed by considering the impor-
tance (weight) and relevancy (whether the attack is successful or not) of the
corresponding hyper-evidence.

The hierarchical reasoning framework uses the generated evidence graph to

3.2 Attack Scenario Detection Using Logs 24

generate attack scenarios in the form of attack groups. It contains two layers:
local reasoning and global reasoning. Local reasoning computes and updates
the values for each function state for each node in the evidence graph dynam-
ically. It uses rule-based fuzzy cognitive maps. Global reasoning finds the
attack groups by computing the structural similarities among the evidence
graph parts using the function states for the nodes and priority attributes
for the edges. The secondary evidences are not accounted in the generation
of the attack scenarios.

In [64], the authors propose both an off-line and an online approach to intru-
sion alert correlation. The off-line approach tries to determine the features
of a pair of attack types that play important roles in the formation of the
causality relationships among the instances of these attack types. The off-
line approach benefits from the Bayesian networks containing alerts as nodes.
The probabilistic dependency values among the nodes of the Bayesian net-
work are calculated by considering the specific features of alerts, such as the
source and destination IP addresses and ports. These probabilistic depen-
dency values are calculated from the raw alert stream, after performing some
low-level alert correlation.

The online approach uses the correlation and relevance tables generated by
the off-line approach to identify the correlated alerts and construct the at-
tack scenarios on-the-fly from the raw alert stream. In addition to being
history-based (uses the results of off-line approach), the online approach can
also dynamically adapt the correlation probabilities between any two alert
types according to the alert occurrence probability values measured from the
current alert stream.

Roschke et al. present [68] an attack graph-based approach to intrusion alert
correlation. Specific methods for mapping the received intrusion alerts to
the attack graph nodes, alert aggregation, building alert dependency graphs
and selecting suspicious subsets of alerts from the created alert dependency
graphs are proposed. Each of these methods are parametrized to adjust the
accuracy and speed of the overall correlation algorithm. The authors define
several alternatives for the mapping of the received alerts to the attack graph
nodes. Each of these alternatives requires different constraints to be satisfied
among the specific fields of a received alert and the attack graph node to
be matched. The alert dependency graphs are also built using the attack
graph. The authors also define several alternative functions that determine
the existence of dependencies among the matched alerts according to the
locations of the corresponding nodes of the matched alerts in the attack
graph. For instance, one of these alternative functions looks for the existence

3.2 Attack Scenario Detection Using Logs 25

of a path of length less than some threshold value between the attack graph
nodes of two matched alerts. If such a path exists, then an edge connecting
the matched alerts is created on the alert dependency graph.

Yen et al. [92] propose a system that tries to detect the malicious activ-
ities and policy violations inside an enterprise network by using the dirty
logs generated by various network devices. The volume of the generated logs
in the used network in the performed experiments is beyond 1TB per day.
The proposed system first normalizes the collected log data by normaliz-
ing their timestamps to UTC, detecting dynamically and statically assigned
IP addresses, performing IP-to-hostname mapping and detecting dedicated
hosts. Then, for each host a feature vector is created periodically. Destina-
tion, policy, host and traffic-based features are defined. After feature vectors
are formed for the hosts, principal component analysis (PCA) is applied to
the vectors. The resulting vectors created by PCA are clustered by using a
modified K-means algorithm that does not need the number of clusters to
be specified in advance. The distance between any two vector is computed
by the L1 distance metric. The clustering results are manually examined to
identify the possible malware infections and policy violations.

In [72], a network incident and malicious activity detection/response tool,
called Reasonets, is proposed, which employs anomaly-based intrusion and
case-based malicious activity detection methods. The anomaly-based intru-
sion detection method forms a model for regular network traffic by training
over the normal network traffic data collected for the target network. Ma-
chine performance metrics such as the average usage of CPU and memory
are also collected and used in training. For the case-based malicious activity
detection method, a number of cases each representing a malicious activity
(DoS, spyware, worm, etc.) are created by using the network traffic incidents
obtained from the execution traces of various malware. Matching of the inci-
dents collected from the target network to the generated cases is performed
by using fuzzy logic methods and accounting for the incidents previously
matched to the cases.

Marchal et al. [45] develop a network security monitoring system that uti-
lizes four types of log data to detect malicious activities inside the target
network. These types of log data are the DNS replies, HT'TP packets, IP-
flow data and honeypot data. For the instances of each type of data, a score
is computed that indicates its maliciousness level. The determination of the
values of the elements used to compute a score and the relations among these
values are not based on formal, concrete methods. The selection method for
the values of the weight vectors for the score elements is not described. The

3.2 Attack Scenario Detection Using Logs 26

effects of these weight values on the maliciousness are also not explained.
The authors measure the performance of five big data frameworks (Hadoop,
Hive, Pig, Spark and Shark) with different attack scenarios representative of
the computation of the maliciousness scores for different types of log data.
It is done to determine the best big data framework for their score compu-
tations. However, there is no description about the implementation of the
score computation algorithms over the mentioned big data frameworks.

In [95], a method for detecting stealthy malware activities by inferring trig-
gering relations among the network events is proposed. The existence of a
triggering relation between two network events is derived by creating pairwise
features from the individual features of the events and using these pairwise
features in specific machine learning algorithms. The creation of a pairwise
feature uses the relation between the same individual features from the two
network events. This may be considered as insufficient, since there can be a
relation between two different individual features from the network events.
As an example there may be a relation between the source IP feature of the
first event and the target IP feature of the second event. The labelling of
the created pairwise feature values with the existence of a triggering relation
is performed manually or by using pre-defined rules. The machine learn-
ing algorithms used are naive Bayes, Bayesian classifier and Support Vector
Machine classifier.

As a result, in our approach, attack scenarios are represented by partial
attack graphs which are created and expanded dynamically. The nodes to
be expanded in each iteration are selected according to their alarmed status,
the ratio of their alarmed neighbours and the number of previous expansions
applied to them. With this approach, during the attack scenario generation
process, we try to eliminate the traversal of the large portions of the input all-
paths attack graph that are irrelevant to the received logs (alarmed nodes).
We also process secondary logs to determine additional alarmed privilege
nodes in the partial attack graphs to make the attack scenario generation
process more accurate.

3.3 Security Information and Event Management Systems 27

3.3 Security Information and Event
Management Systems

Security Information and Event Management (SIEM) systems collect and
store the logs and security events generated by software running on the de-
vices in a network, perform log trend/statistical analysis and apply specific
event correlation rules to the collected data in order to detect attacks tar-
geted to the network. They execute online during the normal operation of
the target network and can recommend defense measures as responses to
the intrusion attempts directed to the network. They can also perform net-
work forensics analysis. SIEMs act as an information fusion system which
interprets the collected log and event data in order to derive high-level se-
curity incidents and reports the derived information to the network security
administrator together with recommended reactive defense measures.

A general-purpose information fusion system that requires a small amount of
a priori network configuration information and can be utilized in cyber attack
tracking is proposed in [73]. The main input to the system is a collection
of sensor messages which can be any raw data generated by any hardware
or software application on the target network. The (attack) tracking models
are also provided as plug-ins to the system. The architecture of the models
are defined to be composed of concepts and their containing features. Each
feature contains a set of association constraints that are evaluated against
sensor messages. Constraints can also be defined among the concepts. The
different ways of the formation and update of the attack tracks by using
the models and the input sensor messages are described in the paper. The
measurement and reporting functions that can be performed on the detected
tracks are provided as plug-ins to the system.

The applicability of the data mining methods for the analysis of security
events is discussed in [27]. Given a list of malware incident log data, the
authors apply A-priori data mining algorithm to identify patterns in the log
data. This gives rise to the determination of the possible factors affecting
(causing) malware infection. In addition, malware permanence and propa-
gation analysis are performed by using the number of computers infected by
the same malware and the date information in the input malware incident
log data. Clustering algorithms are utilized for these analysis.

In [79], a parallel and distributed Complex Event Processing (CEP) rules
engine that can be used as core event correlation engine in a STEM system is

3.3 Security Information and Event Management Systems 28

proposed. In the proposed engine, a CEP rule can be divided into sub-rules
and each sub-rule can be deployed on a number of SIEM physical nodes. The
operations in a sub-rule can also be deployed on different nodes. The pro-
posed engine makes the detection of slow and stealthy attacks possible, even
when there is a huge volume of security event data generated on the target
network. The performance of it is evaluated on a simulated environment that
mimics the Olympic Games I'T infrastructure.

Cheng et al. [13] present multi-core and parallel processing support for the
security event correlation framework of SIEM systems. A plugin-based multi-
core functionality is added to the STEM system implemented by them. A par-
allel version of the k-means algorithm is implemented and integrated into the
SIEM system via the multi-core functionality. The k-means implementation
is used for event clustering (correlation).

The fundamentals of the STEM systems and the challenges of forming them
are discussed in [6]. A SIEM system is a fundamental component of a se-
curity operations centre. It consists of collecting, normalizing, storing and
correlating large amounts of security event data generated by a large num-
ber of different event sources, such as anti-virus software, firewalls, proxies,
application software and operating systems. The correlation of normalized
events are generally performed by using pre-defined rules. These systems
also contain network forensics analysis functionality.

One of the challenges arising in the formation of a SIEM system is related to
the utilization of fine-grained, detailed rules to detect malicious behaviour.
With the increase of the generated events, this utilization becomes much
more resource-intensive necessitating the use of distributed, big data analy-
sis methods. Huge amounts of generated events give also rise to problems in
storing them in permanent storage. The lack of obtaining precise configura-
tion information for the target enterprise network is another challenge. This
may lead to increased false alerts produced by SIEM systems.

In [41], the authors propose a programming abstraction called semantic room
that can be used to facilitate the implementation of SIEM systems based on
collaborative information sharing among different institutions. Each seman-
tic room has a different objective such as detection of port scanning activity
or botnets. It has a number of gateways that are used to collect information
from different institutions, normalize, aggregate and filter them and send
them to the complex event processing component of the semantic room. The
complex event processing component of the semantic room can be imple-
mented with the Esper event correlation engine in a centralized manner or
with Apache Storm in a distributed manner. In the Apache Storm imple-

3.4 Optimal Network Hardening Measure Recommendation 29

mentation, a number of Esper engines can be used as Storm bolts.

The authors of [41] implement a port scan activity detection and a fraud
monitoring semantic room. In the port scan activity detection semantic
room, inter-domain stealthy TCP SYN port scans are detected. In the fraud
monitoring semantic room, unauthorized point of sales, tampered ATM and
counterfeit banknotes information supplied by different banks are used to
detect the fraud locations in Italian territory. The authors also propose the
use of specific privacy-preserving mechanisms to avoid the linkage between
the raw data sent by the institutions to the semantic rooms and the results
extracted and distributed by the semantic rooms. These mechanisms are
used to ensure the contracts provided by the semantic rooms that are used
to avoid the leakage of sensitive data of the institutions.

3.4 Optimal Network Hardening Mea-
sure Recommendation

There is considerable work in the literature on optimal network hardening
against attack paths. In one of the earliest works on the subject [60], Phillips
and Swiller propose a greedy network hardening algorithm based on d-optimal
shortest attack paths, where d is the error parameter. A node in the employed
attack graph represents a security state of the network in terms of attacker
privileges. A defense can be related with the elimination of any node in the
attack graph. However, the elimination of any node in their attack graph
structure may not always be enforceable by the network administrator.

Sheyner et al. [69] concentrate on eliminating all attack paths to the goal
states. The authors prove that the computation of the minimum atomic
attack sets that prevent the intruder from reaching her goals is NP-complete
by giving a reduction from the minimum cover problem. They propose finding
critical atomic attack sets with a greedy algorithm that is polynomial on the
size of the attack graph. However, a critical atomic attack set may be related
with any security state node in the attack graph whose negation may not
always be enforceable by the network administrator.

In [53], hardening measures are defined in terms of the negation of only initial
security states which are always enforceable by the network administrator.
A forward and a backward analysis are employed to convert the input attack
graph into an exploit dependency graph by removing the cycles in the attack

3.4 Optimal Network Hardening Measure Recommendation 30

graph. The goal states are expressed as a conjunctive normal form of terms
containing the initial conditions. The time complexity of the generation of the
conjunctive normal form is exponential in the number of the initial conditions
in the attack graph, since all combinations of the initial conditions’ negation
status can appear as a term in this form. Also, the initial conditions are
considered independent of each other. The existence of a hardening measure
that can negate more than one initial condition is not considered in [53].

An adaptive intrusion response system using a graph of intrusion goals (I-
Graph) is proposed in [23]. An [-Graph is formed by using the vulnerability
descriptions and service dependency graph for the target network. The sys-
tem can be used with any number of detectors that generate security alerts
(evidences). The alerts are mapped to the nodes of the I-Graph. For each
node to which an alert is mapped, a confidence value is computed by using
the confidence values of its children. The nodes for which responses are de-
ployed are determined according to their confidence values. The responses
deployed are determined by computing an effectiveness and disruptiveness
value for them. These values are updated by accounting for the previous
success conditions for the responses. This gives rise to the adaptive selection
of responses by improving the responses deployed against similar attacks over
time.

The proposed work in [86] improves the work of [53] by applying one-pass
backwards modified breadth-first search to the input attack graph in order
to both remove logic loops and obtain the logic expression of the negated
goals as a disjunctive normal form of the negated initial conditions.

Dewri et al. [21] define the optimal network hardening problem as a multi-
objective optimization problem. The objectives are minimizing the total
cost and residual damage. Their residual damage model computes a damage
value for each node in the attack graph. Minimizing the residual damage
is not as effective as maximizing the number of eliminated attack paths,
which is one of the optimization objectives in our work. This is because
the former gives priority to the decreasing of the residual damage on all the
conditions and not to the elimination of attackers’ possibility of reaching the
goal conditions. Our standpoint is that the latter fact should come first and
the residual damage minimization should be performed afterwards.

In [21], the authors also apply a genetic algorithm to solve the optimiza-
tion problem, but they do not take into account the interactions among the
hardening measures for the generation of new candidate hardening solutions
(new generations in the genetic algorithm). Instead, the candidate solutions
seem to be generated simply by random crossover and mutation processes in

3.4 Optimal Network Hardening Measure Recommendation 31

their genetic algorithm, independent of such interactions. These interactions
may indicate a number of common attack paths that can be eliminated by
various hardening measures, which can be utilized to prevent the optimiza-
tion process from being caught in local optima easily and help speed up the
optimization process.

In [33], breadth-first search is applied starting from the initial conditions, af-
ter assigning effective costs to them. The effective cost of an initial condition
is defined as its negation cost divided by its parity. The parity is taken as
the number of dependent exploits of the initial condition. Only the initial
conditions with the most effective costs are considered for each attack path
to the goal conditions, which can hinder obtaining optimal solutions in most
cases. In [12], an attack graph is first converted into a Reduced Ordered
Binary Decision Diagram (ROBDD). The computation of the optimal solu-
tion is performed by recursively applying Shannon decomposition rule to the
nodes of the ROBDD starting from the source node. The time complexity is
O(n), where n is the number of nodes in the ROBDD. The number of nodes
in an ROBDD is dependent on the variable ordering of the ROBDD and the
variables are the initial conditions in the attack graph. Therefore, the time
complexity is exponential in the number of initial conditions.

Poolsappasit et al. [61] utilize both single and multi-objective genetic op-
timization algorithms to find the optimal hardening solution for a network.
However, similar to [21], the candidate solutions are generated randomly
without accounting for the commonality of the effects induced by the harden-
ing measures on the target network. In [1], the assumption of independently
negating each initial condition in an attack graph is removed by considering
the inter-dependencies between the hardening measures. A forward search
starting from the initial conditions is performed to determine the suboptimal
sets of hardening measures on each of the traversed conditions and exploits.
A parameter to limit the number of these sets stored on each condition and
exploit is introduced in order to refrain from their exponential growth. The
effectiveness of the obtained hardening measure sets is highly dependent on
this parameter. Ma et al. [42] present a mathematical model employing
attack graphs for representing the optimal network hardening problem as a
non-restraint optimization problem with penalty. A parallel, genetic algo-
rithm is used to solve the resulting optimization problem.

In [83], a solution for hardening a network against multi-step intrusions by us-
ing attack graphs is proposed. It represents the specified critical resources as
a logic proposition of the initial security states. After simplifying the propo-
sition, the minimum-cost hardening measure set in terms of negating initial

3.4 Optimal Network Hardening Measure Recommendation 32

security states is determined. In [81], the network hardening problem using
attack graphs is formally defined and the applicability of graph-theoretic,
heuristic approaches to the problem is discussed.

In [82], the authors define formally the concept of a hardening action, the
interdependencies among the hardening actions and the concept of a harden-
ing strategy that can combine multiple, possibly interdependent hardening
actions into a composite representing a defense plan. They also propose a
near-optimal approximation algorithm for the network hardening problem
that employs attack graphs and scales linearly with the size of the graphs.

Yigit et al. [93] propose a heuristic method to find a cost-effective network
hardening solution with a limited budget. The method uses as input an
attack graph that contains only the possible attack paths which can reach
pre-specified critical resources in the target network. The exploit or initial
security state contributing most to the elimination of these attack paths with
least cost is selected at each step of the method, until the total cost exceeds
the allocated budget.

4
System Overview

We define an attack scenario as a related group of atomic attacks performed
by a coordinated group of attackers to achieve specific target compromises
on a network. The main aim of the system proposed in this thesis work is to
find ongoing attack scenarios for the target network in near real-time using
the logs collected throughout the network. Vulnerability exploits are used to
represent atomic attacks.

One of the inputs to the proposed system is the stream of logs generated
across the target network. They are the log records generated by various soft-
ware running on the network hosts. The other inputs are the pre-computed
full attack graph for the target network and the pre-generated behavioural
malware signatures. The system tries to output the attack scenarios that
have been/are being followed by the attackers on the target network by us-
ing its inputs. An overview of the attack scenario construction (detection)
system proposed in this thesis work is shown in Figure 4.1.

The logs are collected by the log collection module that is composed of dis-
tributed software components each of which is responsible from fetching the
logs recorded by the software running on a single network host. The col-
lected logs are first preprocessed to normalize them, eliminate duplicates
among them and classify them as primary or secondary. The normalized
primary and secondary logs are processed by using different methods. The
aim of the log processing phase is to determine and output the possible at-
tacker privileges and vulnerability exploits that are indicated (implied) by
the normalized logs generated so far. In log processing results’ correlation
phase, the attacker privileges and vulnerability exploits output by the log
processing phase are matched to the nodes on the full attack graph.

The matched nodes are used to create attack scenarios in the form of partial

34

Behavioural Malware

Signatures
Logs generated by various ‘
software on the network -)
(Application logs) Log Collection Input

Log Processing i
Log Normalization Primary Log Secondary Log
Processing Processing

Log Aggregation

Log Preprocessing

Logs in the form of network
packets

(Network traces) Generate
Log Classification
Privileges and
Vulnerability
Exploits
Input/
/
Log Processing Results Correlation
Partial Attack Pargiﬁt;ack Partial Attack Partial Attack
Graph Matching Expansion Graph Merging Graph Filtering

Attack Scenarios [—Generat:

Partial Partial Partial Partial
Attack Attack Attack [- - - - - - Attack
Graph 1 Graph 2 Graph 3 Graph n

T

In;‘)ut

Full Attack Graph for the
Target Network

Fig. 4.1: System overview

attack graphs. We search each matched node on the already created partial
attack graphs. If a node n having the same content as the content of the
matched node exists on a partial attack graph, we mark node n on the partial
attack graph as alarmed. If we do not find a node having the same content
as the content of the matched node on any partial attack graph, we create
a new partial attack graph, add a copy of the matched node to the newly
created partial attack graph and mark the copy node as alarmed. It should
be noted that a partial attack graph must contain at least one alarmed node.

The partial attack graphs (representing attack scenarios) are expanded by
using the full attack graph. The nodes to be expanded can be alarmed or not
and are selected according to their distances to the alarmed nodes, among
other factors. After the expansion of the partial attack graphs is finished, the
partial attack graphs are searched for a possibility to merge them together.

Actually, there is a pipelined, continuous execution among all the processes
(log preprocessing, log processing and log processing results correlation) per-
formed by the system as shown in Figure 4.1. All the processes are executed
over a real-time, stream-based Big Data framework (Apache Storm). A dis-
tributed execution (application) topology comprised of Storm components
(spouts and bolts) is designed and implemented. The spouts and bolts are

35

distributed processing agents defined in the Apache Storm framework. The
spouts are responsible from collecting data from data streams. The bolts
process the data transferred to them by spouts. The data is processed by ex-
ecuting user-defined algorithms. The users can define any application topol-
ogy via using Apache Storm API (Application Programming Interface) that
is composed of connected spouts and bolts in order to execute distributed
algorithms over Storm.

The spouts defined by the proposed system are responsible for collecting,
filtering, normalizing and classifying the logs. They transfer the resulting
normalized logs to the bolts that are responsible from log processing. Log
processing bolts finds the attacker privileges and vulnerability exploits in-
dicated by the normalized logs and transfers the found items to the bolts
that are responsible from correlating log processing results to detect attack
scenarios. The detected attack scenarios are in the form of partial attack
graphs and also stored in a database. Before storing the attack scenarios
in a database, they are post-processed to filter the irrelevant nodes in them.
The irrelevant nodes are the nodes which are not existing on a neighbourhood
of an alarmed node that is of length less than a specific threshold value. (The
irrelevant nodes are far away from the alarmed ones and may be generated as
a result of imperfectness of the algorithms employed in the proposed system.)
When the system user wants to obtain the attack scenarios detected so far,
she can send a signal to the backend system shown in Figure 4.1 via a user
interface.

The proposed system has four main components that are listed below:

e Attack graph generation component responsible for generating the full
attack graph for the target network in a distributed manner

e Behavioural malware signature generation component responsible for
generating malware signatures that are matched against the logs col-
lected for the target network

e Attack scenario detection component responsible for processing the col-
lected logs to create/update partial attack graphs representing ongoing
attack scenarios

e Defense recommendation component responsible for computing near-
optimal defense measures to react to the detected attacks and stop
further propagation of the attacks indicated in the detected attack sce-
narios

36

Generating attack graphs forms the basis for detecting ongoing attack scenar-
ios in the scope of this thesis work. The next section describes the taxonomy
for the attack graph generation process proposed in this thesis work. After-
wards, each component of the proposed system listed above is described in
detail in its own section by referring to the main phases of the execution of
the system illustrated in Figure 4.1.

5

A Taxonomy for Attack Graph
Generation Process

In this section, we describe the attack graph generation process taxonomy
proposed in this thesis work by also referring to the prominent works on the
attack graph literature. The different phases of the attack graph generation
process are explained and a set of classification criteria is proposed for the
applicable models/methods for each phase. During the explanation of each
phase, the models/methods implemented in the related past works in the
scope of this phase are also discussed. Additionally, different uses of attack
graphs are described by discussing the approaches proposed by the related
past works. The contents of this section are mostly taken from [36] which
was also written by the author of this thesis work.

The activities performed during the whole attack graph generation process
can be classified into three high-level phases, as illustrated in Figure 5.1.
The first phase, reachability analysis, mainly considers the computation of
the reachability conditions among the target network hosts. The modelling
phase considers how to model the individual attack templates and the at-
tack graph structure. In the core building phase, the possible attack paths
are determined and some paths are possibly pruned to construct the attack
graph. The uses of attack graphs cover the operations performed on the
constructed attack graphs for network security analysis and are detailed in
the corresponding subsection. The remainder of this section provides a sys-
tematic description of the proposed classification scheme for the applicable
models/methods in each phase with brief examples of each classification cri-
terion from the related literature.

5.1 Reachability Analysis Phase

38

Reachability Reachability Reachability
Scope Analysis Phase Content
Attack Graph Attack Graph
AR [el Modelling Phase Model
Attack .Paths Attack G?raph Attack Paths
Determination Core Building Pruning Method
Method Phase 9
Uses of Attack
Graphs

Fig. 5.1: Attack graph generation phases and related classification criteria

5.1 Reachability Analysis Phase

Reachability analysis phase mainly investigates the reachability conditions
within the target network, which, in a simplistic viewpoint, determines
whether two given hosts can access each other. It can also indicate more
detailed information, such as which applications of the two hosts can ac-
cess each other, which protocols can be used for the communication between
the two hosts, etc. The reachability conditions among the network hosts are
mainly represented with a single reachability matrix whose rows and columns
indicate the network hosts. An entry of a reachability matrix can simply be
a boolean indicating the existence of a reachability (accessibility) between
the corresponding two hosts, or any complex data structure.

The two main classification criteria for the reachability information are the
reachability scope and reachability content. The reachability scope determines
the scope of the network hosts among which the reachability conditions are
computed, before the attack graph core building process. The reachability
content determines the network security objects (entities) that are accounted
for in the computation of the reachability information. A detailed classifica-
tion scheme for the reachability information is given in Figure 5.2.

Reachability Scope The possible values for the reachability scope classifi-

5.1 Reachability Analysis Phase 39

Reachability
Analysis
Reachability Reachability
Scope Content
A . Filtering and -
Whole N rk Atomic Domain: A Tr Application
Reachabilt Reachabiity | | | Acoess Control | | IPS Modeling | | poict Relationships
Y Y Rules Modelling P P
Reachability Each node computes Firewall rules and IPS signatures Trust Usage
conditions among its own reachability router access control are considered relationships relationships
nodes are computed lists are considered among nodes/ among network
for whole network (for applications are applications are
each pair of nodes) considered considered

Fig. 5.2: Reachability information classification

cation criterion according to Figure 5.2 are:

1. Whole Network Reachability: Single step reachability condition for each
pair of hosts on the network is computed. A single step reachability
condition denotes direct reachability at any network layer between the
two hosts (without any intermediate hosts).

2. Atomic Domains Reachability: Each host (or in the general case, a
group of hosts) computes single step reachability conditions for the
hosts in its neighbourhood in the target network topology.

Actually, most of the past works related to attack graph generation compute
whole network reachability as an input to the attack graph core building
process. One exception is [11], where the authors propose using atomic do-
mains, each of which contains information about one network host and its
directly connected hosts, to generate attack graphs. This ensures that there
is no need to generate the whole attack graph from scratch, when one part
of the target network topology changes. Only the information in the related
atomic domains should be updated. The protection domain abstraction in
the TVA tool in [52] and [34] can also be considered as an Atomic Domains
Reachability abstraction, since it encodes single step reachability conditions
for the network hosts in a protected domain, which does not contain any
connectivity limitations among its contained network hosts. A host in a pro-
tection domain may have recorded the reachability conditions with the hosts
in other protection domains.

5.1 Reachability Analysis Phase 40

Reachability Content The possible values for the reachability content clas-
sification criterion according to Figure 5.2 are:

1. Filtering and Access Control Rules Modelling: Firewalls’ filtering rules
and routers’ access control rules are accounted for in the computation
of the reachability information.

2. Intrusion Prevention System (IPS) Modelling: Signatures defined in
the intrusion prevention sensors are taken for the computation of the
reachability information into account.

3. Trust Relationships: Trust relationships among the network hosts are
accounted for in the computation of the reachability information.

4. Application Relationships: Usage relationships among the networked
applications (service usages, etc.) are accounted for in the computation
of the reachability information.

The four items enumerated above represent the most commonly used network
security entities that affect the reachability information computation. The
use of relational predicates to represent trust relationships, running services
and existing vulnerabilities on the network hosts is proposed in [69]. The
authors model the connectivity among the network hosts by processing the
access control rules and the vulnerability signatures on the network intrusion
prevention sensors. All of the possible values for the reachability content
classification criterion are eligible for this work.

In [32], a reachability matrix is computed by accounting for the service us-
ages, network and application layer filtering rules on the security boundary
devices. Filtering and access control rules modelling and application relation-
ships values in the reachability content classification criterion are exemplified
by this work. The NetSPA tool that is developed in [32] is improved in [31] by
the same group from MIT Lincoln Laboratory. Most notably, the improve-
ments account for the rules in personal and proxy firewalls and the signatures
in intrusion prevention systems as additional reachability content in network
reachability computation.

5.2 Attack Graph Modelling Phase 41

5.2 Attack Graph Modelling Phase

The classification associated with the attack graph modelling phase takes
into account the attack model and attack graph model. The attack model
can be considered as a model for forming an attack template describing the
elements of a number of attacks, the conditions (required/gained attacker
capabilities) for the attack elements and the relations among the elements and
the conditions. An attack template defines the utilization logic for a number
of attacks. An attack graph model defines a structure used to represent attack
instances (successfully applied attacks) and the connections among them.

5.2.1 Attack Model

An attack model defines the elements and the utilization logic, in terms
of required/gained attacker capabilities, of one or more attacks via attack
templates. Attack templates can include high-level, abstract adversary and
threat models or low-level vulnerability exploit models. Threat models can
be formed by defining the relations among the vulnerability exploit mod-
els. As an example, a specific type of worm that can exploit two different
vulnerabilities for infiltration and privilege escalation in its life-cycle can be
modelled with a threat model combining the exploitation models of these
two vulnerabilities. Adversary models can be formed by incorporating vari-
ous attacker behavioural profiles and combining a number of threat models
according to these profiles. As an example, a specific hacker can be modelled
with an adversary model accounting for the exploits that are at her disposal.
The adversary model can be refined to determine the transitions among the
appropriate threat models by considering the capability of the hacker to hide
her existence from the defense applications.

The possible values identified for the attack modelling classification criterion
are as follows, as also depicted in Figure 5.3.

1. Manually-defined Attack Templates: In this case, attack templates
manually formed by security experts are used.

2. Intrusion Alert-based Attack Templates: In this case, attack templates
are formed by using intrusion alerts’ meta information and forming re-
lations among the alerts by utilizing specific alert correlation algorithms
executing on these meta information.

5.2 Attack Graph Modelling Phase 42

3. Text Processing-based Attack Templates: In this case, attack templates
are formed by applying text processing methods to the information
contained in some specific vulnerability, weakness or attack databases.

The attack templates formed in each of the above cases define a collection of
related attacks with their pre- and postconditions and relations among them.
The pre-and postconditions are generally templates for representing network
states and attacker privileges that are independent of any specific network.

Attack Model
Manually-defined Intrusion Alerts / Text Processing-
Attack System Logs based Attack
Templates Correlation-based Templates
2 Attack Templates

Emprically defining pre- Determine pre- and postconditions
and postconditions of of attacks by correlating alerts and
attacks system logs

Determine pre- and postconditions of
attacks by text processing methods

Fig. 5.3: Attack model classification

In [60], attack templates, each of which defines a collection of atomic attacks
as edges among attack stages in a directed graph, are described. There is
no indication of semi-automatic or automatic generation of attack templates.
In [67], the described attack model defines the vulnerabilities of the network
hosts, exploits applied to the hosts and access level of the attacker on the
hosts as variables. It also defines the relations among the variables. All
these definitions are encapsulated in the manually-defined attack templates.
The vulnerabilities and access levels serve as pre- and postconditions for the
exploits.

In [76], the concepts take the form of atomic attacks. Their pre- and post-
conditions are defined by the capabilities. In this work, there is no indication
of semi-automatic or automatic generation of pre- and postconditions of the
concepts and capabilities. In [69], the authors model atomic attacks as rules
that describe how an attacker (intruder) can change the state of the network
or add to her knowledge new facts about the network state. These rules
form pre- and postcondition relationships with the exploits. In this work,
there is also no indication of semi-automatic or automatic generation of pre-
and postconditions of vulnerability exploits defined as atomic attacks, so the
attack model can be considered as a collection of manually-defined attack
templates taking the form of rules.

5.2 Attack Graph Modelling Phase 43

Ning et al. [49] propose a model and an algorithm for the extraction of hy-
per alert types from intrusion alerts. A hyper alert type represents an attack
template containing information about the prerequisites and consequences
of the constituent attacks based on the attribute values of the related intru-
sion alerts. The model described in this work exemplifies the utilization of
intrusion alert-based attack templates for modelling attacks.

Kotenko et al. [38] considers vulnerability exploits as low-level attacker ac-
tions (atomic attacks). The vulnerability descriptions in Open Source Vulner-
ability Database (OSVDB) are processed by specific text processing methods
to extract pre- and postconditions for the vulnerabilities. An attack model
representing the utilization logic for the atomic attacks are formed by using
text processing-based attack templates, where each attack template defines
pre- and postconditions for one atomic attack.

In [10], the authors define an abstraction, called attack pattern, over vul-
nerabilities. The attack patterns are generated by applying text processing
methods over the attack pattern enumeration and classification information
in CAPEC database ([9]), which are then used to form attack templates
each of which describes the utilization logic for a set of vulnerabilities with
similar weakness types. The attack patterns can represent threat models in
this context. In [29], attack scripts that are generated by security experts
are combined in the form of directed graphs. The vulnerability descriptions
existing in NVD are processed by a specific text mining method using the
keywords in the attack scripts to match the vulnerabilities to the nodes of
the directed graphs representing combined attack scripts. Attack scripts can
be considered as threat models.

5.2.2 Attack Graph Model

An attack graph model defines how to represent the attack instances on the
target network hosts and the connections among them. Attack graph models
can be classified in terms of their structures as given in Figure 5.4 and listed
below.

1. Single level: There is only one type of graph comprising the resulting
attack graph, possibly containing more than one layer.

2. Multi-level: There is a hierarchical structure of different types of
graphs, all of which form the resulting attack graph output together.

5.2 Attack Graph Modelling Phase 44

Attack Graph
Model

2N

Single
level

Multi-level

Single graph Multiple-levels each
containing possibly containing a different type
more than one layer of graph

Fig. 5.4: Attack graph model classification

Ammann et al. [3] introduce a single level attack graph model where the
nodes represent the hosts on the target network and the edges represent the
highest access level that can be obtained by an attacker attacking from the
source hosts to the target hosts. Ou et al. [57] employ a single level at-
tack graph model containing derivation and fact nodes which define the ap-
plied exploits and facts about the network state in order. In [32], multiple-
prerequisite attack graph structure, which is also based on a single level
attack graph model, is introduced. This structure models the attacker priv-
ileges and reachability conditions as nodes in the attack graph. In [96], a
single level attack graph model based on virtual performance nodes is in-
troduced. A virtual performance node indicates the negative effects of the
attacker activities on the network performance. Privilege nodes are also used
in this model.

Dacier et al. [20] propose a multi-level attack graph model consisting of a
privilege and an intrusion process state graph. A privilege graph represents
the privileges (capabilities) gained by the attacker with its nodes, and the
atomic attacks to gain these privileges with its edges. An intrusion process
state graph summarizes a privilege graph to determine the attack scenarios
as a collection of individual atomic attack paths in the privilege graph. An
attack scenario can be considered to represent a summary of a single path
composed of atomic attacks in the privilege graph. Another multi-level attack
graph model is proposed in [4], where a number of layers may be created
dynamically during the attack graph core building mechanism. Each layer
stores different nodes that can be the vulnerabilities on the specific network
hosts, attacker privileges, etc.

Ning et al. [49] propose a multi-level attack graph model consisting of a hyper

5.3 Attack Graph Core Building Phase 45

alert correlation and an attack strategy graph. A hyper alert correlation
graph is formed by using the correlated intrusion alerts for the target network.
An attack strategy graph is formed by generalizing (parts of) the hyper
alert correlation graphs. In [38], the authors propose an attack graph model
that contains a hierarchical structure composed of three levels representing
low-level (atomic) attack instances, attack purposes and stages constituting
attack scenarios and combination of the attack scenarios. In [90], a two-tier
attack graph model is proposed, where the higher level is formed by host
access graphs that are built using sub-attack graphs at the lower level.

5.3 Attack Graph Core Building Phase

Attack graph core building phase refers to the core algorithm used to con-
struct the attack graphs. In this phase, some of the attack paths may also be
pruned during the formation of the resulting attack graph. Figure 5.5 shows
the classification criteria proposed in this thesis work for the methods that
are applied in the attack graph core building phase.

Attack Graph
Core Building
Mechanism

/\

Attack Paths
Determination Att§0k Paths
Method Pruning Method
Logic-based Graph-based All Attack Depth-Limited » :
I\%ethods MF;thods Scenarios For Attack Paths Probability-based Goal-oriented
Goal Conditions Pruning Attack Paths Attack Paths
(No Pruning) Pruning Pruning

. Graph traversal; Attack paths are pruned Attack paths are pruned Multiple edges which
Resolution, backwards, forwards t P i P! according to the allow for reaching to the
model checking and bidirectional a derfex%ez mﬁ ? pre- likelihood of success same goal state can be
search efined depth limit value pruned

Fig. 5.5: Attack graph core building mechanism classification

An attack graph core building mechanism can be considered from two dif-
ferent perspectives according to the proposed classification scheme. One of
them is the attack paths determination method and the other is the attack
paths pruning method, which are described next.

5.3 Attack Graph Core Building Phase 46

5.3.1 Attack Paths Determination Method

The attack paths determination method indicates the main algorithmic ap-
proach to the attack graph core building process. The possible methods for
the attack paths determination are:

1. Logic-based Methods: The attack paths are created by using logic de-
duction methods (resolution, model checking, etc.). The network states
are represented with facts and the exploits are represented with rela-
tional predicates over these facts.

2. Graph-based Methods: The attack graph building problem is seen as a
graph traversal problem and the attack paths are created during back-
wards, forwards or bidirectional graph search. The graph-based attack
graph building algorithms employ some form of searching procedure
to generate the nodes and edges of the attack graph on the fly. This
searching process may sometimes approach to the logic-based deduction
methods, especially when attack templates (with variables indicating
network security states) containing facts and predicates are used and
instantiated during the search.

In [67], attack graphs are generated by applying model checking on a state
machine that represents possible network states as facts and atomic attacks as
logic predicates. The user can specify desired security conditions as temporal
logic formulas and an attack scenario is generated by applying model checking
on the state machine to find the counter examples to the specified logic
formulas. The model checking tool developed in [67] is improved in [69] to find
all the counter examples to a given security condition. In [57], logic deduction
is applied to reach from the initial facts to the goal facts representing the
attacker privileges. All of these works use logic-based methods to generate
the attack paths on the resulting attack graph.

In [60], a backwards search from the goal states (attacker’s goal privileges)
is performed to generate an attack graph. The search process employs a uni-
fication mechanism to instantiate the attack templates using the provided
attacker profile and the target network configuration information. This work
exemplifies the utilization of graph-based methods (graph search) to generate
the attack paths. In [4], a breadth-first search with a specific marking proce-
dure to generate the resulting attributes (attacker privileges) in a multi-layer
graph is applied. The marking of the attributes is used to determine the ter-
mination condition of the algorithm and is used by the additional algorithms

5.3 Attack Graph Core Building Phase 47

(e.g., finding minimal attack paths). Also in [3] a graph-based method is used
to generate an attack graph showing only the highest access levels that can
be obtained when attacking from a host to other hosts with a direct exploit.
After that, a transitive closure on this graph is computed to reflect the effects
of the indirect application of exploits. In [10], a search-based algorithm is
used to build an attack graph via unifying attributes (attacker privileges)
to the pre-defined attack patterns. This unification mechanism resembles to
that in [60], but in [10] the authors also define some basic simplifications
that can be applied during the unification process to stop the further update
of instantiated unsatisfiable attack patterns earlier during the search. Ma
et al. [43] apply a bidirectional search in parallel (forwards from the ini-
tial privileges and backwards from the goal privileges) to generate an attack
graph.

5.3.2 Attack Paths Pruning Method

The attack paths pruning methods aim to avoid the combinatorial state ex-
plosion problem that can occur in the attack graph building process. Possible
approaches for the attack paths pruning are:

1. All Attack Scenarios For Goal Conditions (No Pruning): No pruning
method is applied.

2. Depth-Limited Attack Paths Pruning: Attack paths are pruned, when
their depth values exceed some predetermined threshold. By this way, it
is assumed that the attack paths containing a number of exploits more
than the predetermined threshold value are less likely to be followed
by an attacker.

3. Probability-based Attack Paths Pruning: Each edge (generally exploit)
and each node (generally network state, attacker privilege) is assigned
a probability of successful occurrence. By using these values, a cumula-
tive probability of success value is computed for each attack path during
attack graph building. This cumulative probability value indicates the
likelihood of the attack path to be followed by an attacker. The attack
paths whose cumulative probability of success value decrease below
some predetermined threshold value are not extended further.

4. Goal-oriented Attack Paths Pruning: There may be more than one
attack path between any two network states, one of which is a goal state
(attacker’s goal). Some of these paths can be eliminated by removing

5.3 Attack Graph Core Building Phase 48

corresponding redundant edges. This process can be performed by
taking into account the sub-goals (critical network states) instead of
the end goals of the attacker.

Different graph structures and algorithms have been proposed in the litera-
ture to avoid the exponential time and space complexity (depending on the
network size) that can be encountered in the attack graph building process.
In [3], the authors propose a method for attack graph computation based on
highest access levels obtained on the network hosts. However, the resulting
attack graph is not a full attack graph, namely it does not express all the
possible paths that an attacker can use to intrude into the target network.
It only shows the example worst-case attack scenario among each host pair
in the network, which can be utilized by an attacker. The proposed attack
paths pruning method in this work can be considered as a goal-oriented at-
tack paths pruning method, since it eliminates some paths reaching the goal
states according to the importance of the access levels gained as a result of
applying the exploits on the paths.

Dapeng et al. [44] utilize both depth-limited and probability-based attack paths
pruning methods to reduce the effects of the combinatorial state explosion
problem that can be encountered when generating full attack graphs.

Bhattacharya et al. [7] propose a goal-oriented attack paths pruning method,
which is used to identify the attack paths leading to the determined goal
states by removing redundant (useless) edges from an input exploit dependent
attack graph.

In [91], a probability-based attack paths pruning method containing the com-
putation of three different types of probability values is introduced. The
three different probability value types are used to denote the likelihood of
successful exploitation for the vulnerabilities, the effects of inaccurate net-
work configuration information collected before the attack graph building
process and the likelihood of utilization of the attack paths by an attacker.

In [43], the authors apply a simple depth limitation policy to the bidirectional
graph search method they use for the attack graph building. The attack paths
whose lengths are greater than a given threshold are no longer expanded.

5.4 Using Attack Graphs for Network Security 49

5.4 Using Attack Graphs for Network
Security

Once an attack graph is generated, it can be used for a variety of purposes
with positive or negative effects. This section is mainly concerned with the
use of attack graphs for increasing the security level of the network, e.g. by
determining the network applications presenting higher security risk values
and optimal security measures based on the generated attack graphs. The
major application areas of the attack graphs for network security can be
listed as follows, which are also depicted in Figure 5.6.

1. Network Security Metrics Computation: Attack graphs can be used to
derive network security metrics used for global security assessment of
the target network. These metrics can be used to perform security risk
analysis for the target network. Each node (generally indicating a net-
work state) and each edge (generally indicating a vulnerability exploit)
on the attack graph can be assigned a probability of occurrence. A node
can also be assigned a possible damage value, if the corresponding net-
work state for the node indicates the compromise of some information
source for a network host. From these probability and damage values,
the cumulative risk values are computed for each network state (node)
on the attack graph.

2. Counter-measure Recommendation: Attack graphs can be used for rec-
ommending near optimal security defense counter-measures.

3. Near Real-time Security Analysis: Attack graphs can be used for online
security situational awareness and detecting ongoing attack scenarios
by performing high-level correlation and aggregation of the intrusion
alerts, network traces and system logs. The detected attack scenarios
can be used to perform future attack predictions and determine reactive
defense measures.

4. Network Design Generation: An attack graph can be used to gener-
ate optimal firewall rules and IDS/IPS locations automatically for the
target network to effectively counteract the attack paths on the attack
graph.

In fact, all of the application areas for attack graphs described above can
be employed in practice, if we assume that the attack graphs are updated

5.4 Using Attack Graphs for Network Security 50

Uses of Attack
Graphs

N

Network Security Near Real-time A
Metri Counter-measure S . Network Design
etrics Recommendation Selilyy Generation
Computation Analysis
Computation of metrics Optimal defence Includes on-line attack Determination of optimal
indicating the security level of measure scenario detection, attack locations and
the target network and used for recommendation prediction and reactive configurations for intrusion
security risk analysis based on attack graph defense measures detection/prevention and
determination filtering devices

Fig. 5.6: Application areas of attack graphs for network security

continuously with the updates of the target network configuration. Net-
work security metrics computation can provide an indication of the critical
attack paths and the associated weakest links. For this purpose, the goal
attacker privileges supplied as input to the attack graph core building al-
gorithm shall reflect the privileges that can be obtained on critical network
resources. Optimal counter-measure recommendation can also find practical
usage for determining proactive defense recommendations. It can also use
the attack graphs generated by accounting for the goal privileges pointing
to critical network resources. Network design generation can find practical
use in locating the intrusion detection/prevention systems and firewalls op-
timally in the target network. It can also be used to determine firewall and
access control rules, if necessary support for resolving conflicting rules and
processing different custom rule formats is provided.

Near real-time security analysis can be utilized in practice in two ways. In
the first way, a full attack graph is generated and stored off-line and used
for intrusion alert/log correlation online. In the second way, there is no
off-line, statically generated full attack graph. Instead, partial and depth-
limited attack graphs are generated online using the intrusion alerts/logs
as inputs. The partial attack graphs are expanded with the reception of
additional related intrusion alerts/logs. Independent of whether a full attack
graph is statically generated or not, the correlated intrusion alerts on the full
attack graph or partial attack graphs are used to predict future attacks and
determine reactive defense measures. Actually, attack graphs can be utilized
in collaborative intrusion detection systems in similar ways.

Dacier et al. [20] propose a security evaluation and a network security met-
rics computation framework based on attack graphs, which can be used to
perform risk analysis and counter-measure recommendation to evaluate and

5.4 Using Attack Graphs for Network Security 51

increase the security level of the target network. In [60], a counter-measure
recommendation method is introduced, which takes into account the cost
values for recommended defense measures and total budget for the target
network to spend for defense measures. Sheyner et al. [69] propose a counter-
measure recommendation approach using the resulting attack graphs. Mini-
mal and minimum atomic attack sets, which prevent the attacker from reach-
ing her goals, are computed via utilization of the algorithms developed for
the minimum cover problem. In [3], the generated attack graphs are used
for counter-measure recommendation and predicting future attacks in near
real-time.

A counter-measure recommendation method that represents the conjunction
of negated goals as a logic proposition of the initially satisfied conditions on
the attack graph and disables the appropriate initially satisfied conditions
according to the obtained representation is proposed in [86]. In [12], a so-
lution to the minimum cost network hardening problem based on Reduced
Ordered Binary Decision Diagrams (ROBDDs) is presented. The solution is
used for determining the counter-measure recommendations that incur min-
imum cost and minimize the number of attack paths that can be utilized
by an attacker. In [33], a heuristic-based search solution approach to the
minimum cost network hardening problem is proposed.

The works in [24] and [25] interpret attack graphs as Bayesian networks to
provide a general network security metrics computation framework. In [61],
the authors propose network security risk evaluation and mitigation plan
assessment methods based on Bayesian attack graphs they formally define.

Templeton et al. [76] describe online attack scenario detection as a possible
utilization method for the attack graphs generated off-line to support near
real-time security analysis. 1t is also mentioned that the detected attack sce-
narios can be used for online future attack prediction for the target network.
In [49], the authors propose computing a similarity measure between two at-
tack (strategy) graphs that can be utilized in near real-time security analysis.
It can be used during intrusion alert correlation to identify and hypothesize
attacks missed by the intrusion detection/prevention sensors. The identifi-
cation of the missed attacks can lead to more accurate detection of ongoing
attack scenarios for the target network. In [59], Bayesian networks are gen-
erated from attack graphs by incorporating specific uncertainties defined in
the context of near real-time security analysis. One of these uncertainties is
related to the false positive and negative intrusion alerts.

An integrated tool called TVA, which can recommend near optimal defense
measures using the resulting attack graphs is introduced in [34]. It also

5.5 Comparison of Past Works on Attack Graphs 52

provides support for the determination of the near optimal locations for the
intrusion detection/prevention devices on the target network based on attack
graphs (network design generation).

5.5 Comparison of Past Works on At-
tack Graphs

In this section, a comparative analysis of the past works related to the at-
tack graph generation and usage is provided. The analysis is presented in
tabular format for easy reference according to the classification criteria pro-
posed in the containing section. Additional comments related to possible
improvements for these works are also included. In Table 5.1, the list of the
past works is shown with their corresponding category for the classification
criteria for reachability analysis.

Tab. 5.1: Classification of past works according to the reachability analysis criteria

Reachability Scope Reachability Content

‘Whole Network Atomic Filtering and IPS | Trust | Appli-

Reachability Domains | Access Con- Mod-| Rela- cation
Reacha- trol Rules el- tion- Rela-
bility Modeling ing ships tion-

ships

All works mentioned [32], [31], [69], [32], [31], [31] [69], [32], [31],

in this section except: | [11], [52], [52], [34] [52], [52], [34]

32], [31], [11], [52], | [34] 34

[34]

Atomic domains reachability can provide an inherent support for the develop-
ment of distributed attack graph core building algorithms. It can also elimi-
nate the need for the whole reachability recomputation, when an update in
the target network configuration (topology, filtering rules, etc.) occurs. Only
the related atomic domain’s reachability information is recomputed in this
case. Its disadvantage can be the increased reachability information process-
ing time during the attack graph core building process, since the connections
among the atomic domains should be computed (at least searched inside a
statically formed table) and traversed during this process.

5.5 Comparison of Past Works on Attack Graphs 53

Obtaining the IPS locations and signatures and using them to compute reach-
ability gives more precise results compared to just using the filtering and
access control rules and trust relationships. It can eliminate the attack paths
employing exploits that are blocked by the IPS signatures. However, it is
better to introduce some uncertainty measure in this process or use exploits
and vulnerabilities together in the generation of attack graphs, because there
can be a set of exploits for a vulnerability, some of which are blocked and
some of which are not blocked by the corresponding IPS signatures. Using
only vulnerability-based attack graphs without incorporating exploits may
not give complete attack paths in this situation.

It is important to incorporate the application relationships on the target net-
work as detailed as possible in the generation of the reachability conditions.
Some specific information sources, which are contained by applications (soft-
ware installations) and can point to other applications, can be defined and
incorporated into the reachability graph generation process. An example of
such an information source may be a database table managed by a web ap-
plication and storing user credentials for a specific client application. When
an attacker obtains file access right on the database table by, for instance,
applying an SQL injection attack to the web application, she can read the
user credentials for a completely different application and access this client
application. This kind of relationship is not included by any reachability
computation process for the past works. It may not be derived by just using
vulnerability scanners and host-based asset managers. Cookies are another
example for information sources. If an attacker can access the cookie store
of a web browser, she can get authorization right on the web applications
pointed to by clear-text cookies directly, without using any vulnerability.

Tab. 5.2: Classification of past works according to the attack graph modelling

criteria

Attack Model Attack Graph Model

Manually- Intrusion Text Sin- Multi-

defined At- | Alert/System Log Processing- gle level

tack Tem- Correlation-based based Attack | Level

plates Attack Templates Templates

[60], [67], [49] (38], [10], [29] | [3], [20],

[76], [69] [57], | 1],
32], | [49],
[96] | [38],

[90]

5.5 Comparison of Past Works on Attack Graphs 54

In Table 5.2, the categorization of the past works according to the attack
model and attack graph model is shown. Generating manually-defined attack
templates is an error-prone task performed by human experts. Intrusion
alert/system log correlation-based attack template generation may utilize
some machine learning algorithms to perform the correlation of the collected
logs and alerts. At the raw alert/log level, they can use rules generated
by human experts to relate raw data fields. This kind of attack template
generation may also introduce some false cause-consequence relationships
among atomic attacks. For text processing-based attack templates to be
performed, there should be some descriptive texts for vulnerabilities and
exploits. These texts can be found in the public weakness and vulnerability
databases on the Internet. For this kind of attack model generation to be
more comprehensive, the information on more than one text source can be
aggregated.

Multi-level attack graph models are more flexible than single level ones, since
they can provide an inherent support for distributed attack graph core build-
ing algorithms, advanced (hierarchical) visualization of attack graphs and
easy re-computation of attack graphs when the network configuration is up-
dated. In essence, with multi-level attack graph model, the attack graphs
are abstracted in more than one layer and only the required layers are pro-
cessed for the intended attack graph computation process. It can decrease
the time and space complexity of the attack graph-related processes, such as
reachability computation, attack graph core building, etc. by concentrating
only on the layers intended to be processed.

Tab. 5.3: Classification of past works according to the attack graph core building
mechanism criteria

Attack Paths
Determination Attack Paths Pruning Method
Method
. Depth- Probability-| &2
Logic- Graph- No Prun- Limited based At- oriented
based based in Attack tack Paths Attack
Methods| Methods| & Paths . Paths
X Pruning .
Pruning Pruning
60], [67]
60), [4), | [60L 67),
67, | 1S I e, [57),
3], [10], 44], 43 44], [91 3], [7
[10]

In Table 5.3, the classification of the past works according to the attack paths

5.5 Comparison of Past Works on Attack Graphs 55

determination and paths pruning methods is shown. The logic-based meth-
ods employing model checking suffer from the scalability issue for network
sizes greater than 10. The logic-based method proposed in [57] is somewhat
different in the sense that its specific reasoning engine simulates the instan-
tiations of attack rule templates in parallel with a specific tabled execution.
The best worst-case run-time complexity obtained by the graph-based meth-
ods employing the monotonicity assumption is quadratic on the number of
network hosts.

To decrease the number and expansion level of the attack paths, some of the
past works propose pruning the attack paths according to specific criteria.
Probability-based attack path pruning can provide more accurate pruning
points for the attack paths than depth-limited attack paths pruning. Goal-
oriented attack path pruning considers the importance of vulnerability ex-
ploits in the context of the (sub)goals of the attackers. For probability-based
and goal-oriented attack path pruning methods, there must be some source
providing an ordering of the likelihood of success values and importance val-
ues (in the context of the goals) for the vulnerability exploits. These values
are dynamic in their nature, so temporal factors can also be accounted in the
computation of them to obtain more precise attack paths. All these three
attack paths pruning methods can be used together.

Tab. 5.4: Classification of past works according to the uses of attack graphs and
a list of commercial tool suites

Uses of Attack Graphs
Network Se- | Counter- Near Network | Complete
curity Met- measure Real-time Design Commer-
rics Compu- | Recommen- Security Genera- cial Tool
tation dation Analysis tion Suites
[20], [60], [24], | [20], [60], [69], | [76], [49], [52], [34] | ([52], [34] -
[25], [84], [61] [3], [86], [12], [59] Cauldron),
[33], [52], [34], [71], [63]
[61]

Table 5.4 presents the categorization of the past works in terms of their uses
of attack graphs. It also shows some commercial tool suites. Topological
vulnerability analysis (TVA) tool described in [52] and [34] forms the basis
of the integrated security suite Cauldron developed by George Mason Univer-
sity’s Center for Secure Information Systems (CSIS). It incorporates network
configuration extraction, vulnerability and exploit models, multi-step attack
graph generation and visualization and optimal defense measures computa-

5.5 Comparison of Past Works on Attack Graphs 56

tion. The works of MIT Lincoln Laboratory about attack graphs ([32], [31],
[52], [34]) are quite important for the TVA project. To extract software con-
figuration for the target network, vulnerability scanners and host-based asset
managers are used. Vulnerability and exploit models are derived by aggre-
gating the information on the popular product and vulnerability databases
on the Internet such as NVD [50] and OSVDB [56], etc. Attack graph gener-
ation utilizes the derived pre- and postconditions for the vulnerabilities. An
attack simulation scenario can be given as input to the attack graph genera-
tion process. It can determine the start and end (goal) security states for the
target network. The achieved worst-case time complexity for attack graph
generation algorithms is on the quadratic order of the number of network
hosts.

In TVA, there is an extensive support for the visualization of attack graphs.
An attack graph can be divided into hierarchical layers according to specific
criteria. The most important criterion is based on the protection domain
abstraction. The hosts in a protection domain can access each other di-
rectly, without any connectivity limitations. The TVA tool can generate
near optimal defense measures for network hardening by using the vulnera-
bility (exploit) patches. There is also a support for determining the optimal
places for the firewalls and intrusion detection/prevention devices on the
target network based on the generated attack graphs.

Skybox Risk Control [71] is another commercial integrated vulnerability man-
agement /analysis tool suite that combines the capabilities to discover vul-
nerabilities daily, prioritize risks automatically and derive defense measures
using the configuration of the target network. The commercial tool suite
RedSeal [63] continuously analyses the configuration of the target network
and determines the critical weaknesses and configuration flaws that can be
utilized by an attacker to compromise the critical resources of the target
network. The tool also performs risk analysis and provides interactive and
continuously updated visualizations of the target network and security in-
frastructure for the target network.

In Table 5.5, the worst-case time complexities for the employed algorithms,
the maximum number of network security-related objects used in the per-
formed experiments and the distinguishing features for each of the past works
are presented. Some of the entries in these tables are omitted, since no in-
formation about the entry is found in the related past work.

5.5 Comparison of Past Works on Attack Graphs

57

Tab. 5.5: Complexity measures, max network size used
in experiments and significant features of past works

Past
Work

Worst-case
Time
Complexity
Measure

Maximum
Network
Security
Object
Counts

In Experi-
ments

Significant Features

[20]

Multi-level attack graph
model composed of privi-
lege and intrusion process
state graphs, network
security evaluation frame-
work for risk analysis and
defense measure recom-
mendation

[60]

exponential in
the number of
network hosts

Introduction of manually-
defined attack (scenario)
templates as an attack
model and unification
mechanism to instantiate
the attack templates using
the attacker profile and
network configuration
information

[67]

exponential in
the number of
network hosts

4 network
hosts and 15
vulnerabilities

Model-checking based net-
work vulnerability anal-
ysis that finds a counter
example to a given safety

property

[76]

Definition of attack sce-
nario templates using

an attack specification
language, called JIGSAW
and generation of new
templates from old ones
via application of specific
mutation methods

5.5 Comparison of Past Works on Attack Graphs 58
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Counts
Measure .
In Experi-
ments
Realization of attack
template concept and
unification mechanism
I 2 network introduced in [60] by
exponential in . .
hosts and 5 implementing an attack
[74] the number of :
attack tem- graph generation tool
network hosts . ..
plates which can eliminate re-
dundant nodes, edges and
also cycles in the resulting
attack graphs
Development of model-
checking based analysis to
find all counter examples
exponential in 5 network to a given safety property
hosts and 8 and defense measure rec-
[69] the number of :) .
atomic attack | ommendation by finding
network hosts . D
templates minimal and minimum
atomic attack sets that
prevent the attacker from
reaching his goals
Introduction of the mono-
3 network tonicity assumption and
O(n®) where n hosts and 6 application of a breadth-
[4] is the number of | vulnerabili- first search with a specific
network hosts ties (atomic marking procedure to
attacks) the attack graph building

problem

5.5 Comparison of Past Works on Attack Graphs 59
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Measure Counts .
In Experi-
ments
Introduction of hyper
alert correlation and
attack strategy graphs
4] i i which are generated from
correlated intrusion alerts
and hyper alert types rep-
resenting possible attack
templates
Presentation of the toolkit
exponential in 4 network implementing the at-
[70] the number of hosts and 30 tack graph generation
network hosts vulnerabilities | and analysis algorithms
proposed in [69]
Introduction of an attack
graph whose nodes rep-
resent network hosts and
O(n3) where n 7 network edges represen‘t highest—
3] is the number of hosts level access privileges that
network hosts can gained by an attacker
attacking from the source
hosts to the target hosts
of the edges
O(n?) where n ig)(s)’gs I;ﬁv%% Computation of attack
[57] is the number of graphs based on logic

network hosts

vulnerabilities
per host

programming (reasoning)

5.5 Comparison of Past Works on Attack Graphs 60
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Counts
Measure .
In Experi-
ments
O(V™n!) where
n is the num-
ber of network 10 network
hosts and V' is Modeling attack scenarios
[38] hosts and 16 : : .
the number of ey in a hierarchical structure
e vulnerabilities
vulnerability
instances in the
network
Introduction of reach-
ability groups in the
computation of the reach-
O(n?) where n over 50,000 abili’Fy matrix and iptro—
. hosts and over | duction of the multiple-
[32] is the number of s .
1.5 million prerequisite attack graph
network hosts .
ports structure containing at-
tack prerequisites (reach-
ability conditions) as
nodes
Representation of the con-
junction of the negated
around 20 goals as a logic propo-
exponential in attack graph sition of the initially
86] the number of nodes using satisfied conditions on
nodes in the 3 network the attack graph by dis-
attack graph hosts and 9 junctive normal forms
vulnerabilities | and using these forms to
compute minimum cost
defense recommendations
Utilization of depth lim-
6 network itation and likelihood
[44] - hosts and 7 of success value for an
vulnerabilities | attack path to decide to

expand it further

5.5 Comparison of Past Works on Attack Graphs 61
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Counts
Measure .
In Experi-
ments
Conversion of an attack
graph into a reduced
L ordered binary decision
exponential in) .
around 10 diagram and applica-
the number of .
[12] : attack graph tion of depth-first search
nodes in the
attack eraph nodes and Shannon decompo-
grap sition on this diagram to
provide minimum cost
defense recommendations
O(m) where m L
. Definition and removal
is the number 3 network
. of useless edges from at-
[7] of nodes in the | hosts and 4
. . tack graphs to get more
resulting attack | atomic attacks .
scalable representations
graph
Evaluation of various
polynomial in heuristics for selecting the
3] the number of over 40 attack | initially satisfied condi-
nodes in the graph nodes tions to be patched for
attack graph minimum cost defense
recommendation
3 network :)
Introduction of condi-
hosts and 5 . e
s tional probabilities among
vulnerabilities, - .
[24] - vulnerabilities which
almost 20 .
are not connected in the
attack graph attack oraph
nodes grap
3 network
hosts and 5 Incorporation of tempo-
25] i vulnerabilities, | ral factors to compute
almost 20 successful exploit proba-

attack graph
nodes

bilities for vulnerabilities

5.5 Comparison of Past Works on Attack Graphs 62
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Measure Counts .
In Experi-
ments
Definition of the likeli-
hood of an attack graph
3 network node being reached by
O(n?) where n | hosts, 5 vul- an attacker for the first
84) is the number nerabilities time in the attack graph
of nodes in the and around 20 | and provision of a spe-
attack graph attack graph cific search algorithm to
nodes compute these likelihood
values even in the context
of cyclic attack graphs
Introduction of an atomic
domain containing reacha-
5 network bility information among
a network host and its
[11] - hosts and 4 : s
vulnerabilities neighbours, division of
the whole network reach-
ability information into
atomic domains
over 40000
network hosts, | Introduction of the re-
52 personal verse reachability concept
O(n?) where n ﬁr'ewalls each ?Lnd support Eor model-
31] s the number of with at most ing personal firewalls,

network hosts

10000 filtering
rules when

the number of
network hosts

is held at 251

proxy firewalls, intrusion
prevention systems, client-
side attacks and zero-day
exploits

5.5 Comparison of Past Works on Attack Graphs 63
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Counts
Measure .
In Experi-
ments
3 o, . B
O(An) where around 1000 Deﬁnltlon of an ab.s.tr.ac
A is the num- tion over vulnerabilities,
. network hosts
ber of possible . called an attack pattern
each contain-) .
[10] attack pat-) which summarizes vul-
. ing around e
terns and n is nerabilities that can be
three vulnera- e)
the number of bilities utilized with a common
network hosts method of exploit
Presentation of a fully-
functional automated
network security testing
tool suite which inte-
grates attack simulation
over 40000 with attack graph con-
52] O(n?) where n network hosts | struction, includes novel
3 4]’ is the number of | each with methods for the visual-
network hosts around 5 ization of attack graphs
vulnerabilities | and algorithms for placing
firewalls and IDS/IPS
devices optimally in the
target network and deter-
mining optimal security
counter-measures
Introduction of a two-tier
O(n?*) where n | 4 network attack graph model con-
[90] is the number of | hosts and 9 sisting of a sub-attack
network hosts vulnerabilities | graph and a host access
graph
Introduction of a
O(n?) where n | 6 network probability-based attack
[91] is the number of | hosts and 17 paths pruning method by
network hosts vulnerabilities | using three distinct types

of probability values

5.5 Comparison of Past Works on Attack Graphs 64
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Counts
Measure .
In Experi-
ments
Definition of an attack
O(n?) where n 5 network graph model considering
[96] is the number of | hosts and 6 negative effects of the at-
network hosts vulnerabilities | tacks on the performance
of the target network
O(n(L—l) 2)
where n is the
number of net- 5 network Application of a bidirec-
[43] work hosts and | hosts and 5 tional search method to
L is the max- vulnerabilities | compute an attack graph
imum search
depth
Determination and mod-
ularization of domain-
4 network spec1'ﬁf: uncertalntlf;? in
conditional probability
[59] - hosts and 4 :
vulnerabilitios tables of a Bayesian net-
work which is used for
near real-time security
analysis
Introduction of an attack
3 attack .
. graph generation method
scripts each . ..
. which uses text-mining
with around
10 extracted methods on the vulnera-
[29] - bility definitions in NVD

keywords and
53967 vulnera-
bilities defined
in NVD ([50])

([50]) to find the keywords
defined in attack scripts
generated by security
experts

5.5 Comparison of Past Works on Attack Graphs 65
Maximum
Worst-case NetW(?rk
Past Time Security
. Object Significant Features
Work Complexity
Counts
Measure .
In Experi-
ments
O(n?) for attack
graph genera- Introduction of Bayesian
tion and O‘(Q) 9 network attack graphs and usage
for computing of them to compute risk
[61] : hosts and 13
marginal proba- e values and assess the
vulnerabilities

bilities, where n
is the number of
network hosts

effectiveness of specific
mitigation plans

6
Attack Graph Generation

In this section, the basic problems related to attack graph generation are
discussed and the solutions to these problems proposed in this thesis work
are described. The solutions are generally related to attack graph modelling
and attack graph core building mechanism. The contents of this section are
mostly taken from [37] which was also written by the author of this thesis
work.

6.1 Basic Problems in Attack Graph
Generation

The problems that should be tackled for full or partial attack graph genera-
tion may arise in the initial preparation process or during the attack graph
core building process. Of particular importance is the initial preparation
process, since the structure of the resulting preparation data directly affects
the complexity of the attack graph core building process. In determining the
basic problems, the role of the vulnerabilities and privileges gained on the
network hosts should be considered, as most of the attack graph generation
algorithms proposed in the literature refer to these constructs in one way
or other. Six basic problems are determined in this thesis work for attack
graph generation: privilege determination, vulnerability data processing, net-
work configuration information collection, reachability analysis, attack graph
structure determination, and attack graph core building mechanism. These
are detailed further in the following subsections.

6.1 Basic Problems in Attack Graph Generation 67

6.1.1 Privilege Determination

An attack graph usually contains the privileges gained on the target network
hosts by an attacker. Therefore, the determination of what can be a privilege
shall be performed before the attack graph core building process. Exam-
ple privileges include access levels (e.g., user, root), file access/modification
rights, and memory access/modification rights. One can design privileges
based on the applications installed on the network hosts, e.g., file modifica-
tion rights on browser cookies or system files. When the detail level of the
determined privileges increases, the precision of the resulting chains of the
vulnerability exploits in the generated attack graphs increases, but the time
and space requirements of the attack graph core building process may also
grow.

6.1.2 Vulnerability Data Processing

An attack graph is generally built by finding the chains of the vulnerabili-
ties, possibly on different network hosts, that can be exploited by a potential
attacker one after the other. For an attacker to exploit a vulnerability, her
current privileges on the attacking, target or any specific intermediate host
must satisfy the preconditions of the vulnerability. Also, if the attacker
succeeds in exploiting the vulnerability, she gains additional privileges on
the attacked (target) host determined by the postconditions of the exploited
vulnerability. Therefore, the pre- and postconditions of a vulnerability de-
termine in order the exploit success for the vulnerability at a specific point
during attack graph core building process and the privileges gained by an
attacker after successful exploitation of the vulnerability.

Vulnerabilities are collected and managed in specific databases publicly ac-
cessible on the Internet. One of these databases is called National Vulnera-
bility Database (NVD) [50]. (Another database is Open Source Vulnerability
Database (OSVDB) [56].) However, the vulnerability descriptions in NVD
are not completely machine-readable, impeding the easy parsing of the vul-
nerabilities and extraction of adequately detailed pre- and postconditions for
them. Without applying complex text processing algorithms, one may not
extract detailed pre- and post conditions which account for the application
types, for instance memory access precondition on a web browser. For pre-
conditions, only the connectivity and authorization requirements could be
derived by applying basic XML parsing on the NVD data. The situation is
similar for postconditions, as one may not determine application-type-based,

6.1 Basic Problems in Attack Graph Generation 68

direct or indirect postconditions by applying only XML parsing to the NVD
data. For an example vulnerability exploited by an SQL injection attack, the
postconditions derived by basic XML parsing may most likely not contain the
indirect privileges gained by an attacker on the back-end database (indirect
postconditions of the vulnerability), and instead these indirect privileges may
be falsely represented as direct privileges on the web application on which
the vulnerability exists.

An alternate solution to this problem may be to utilize the weakness de-
scriptions in addition to the vulnerability descriptions. A weakness is an
abstraction over one or more related vulnerabilities. An example weakness
is insufficient input control for special characters. The weaknesses are inde-
pendent of specific products, while the vulnerabilities are product-specific.
Therefore, the number of weaknesses is far less than that of vulnerabili-
ties, one can determine pre- and postconditions for the weaknesses semi-
automatically or manually and relate these conditions with products, when
processing the vulnerabilities. The Common Weakness Enumeration (CWE)
database [19] currently describes around 1000 weaknesses, as of mid-2014.
They are hierarchically organized and publicly accessible.

6.1.3 Network Configuration Information Collection

In order to perform network reachability analysis in the attack graph gener-
ation process, the information about the target network configuration shall
be obtained. The configuration information can include the following: the
topology of the target network, the applications (software or hardware in-
stallations) on the network hosts, the employed filtering and access control
rules, the intrusion detection/prevention system configurations and the trust
relations among the network hosts. The more network configuration infor-
mation is obtained, the more accurate the computed attack graphs will be.
This information directly affects the derivation of the reachability conditions
among the target network hosts.

The vulnerabilities of the network hosts are determined by using the infor-
mation about the applications installed on the hosts and the vulnerability
databases on the Internet such as NVD [50] and OSVDB [56]. Determining
the applications on the hosts includes the determination of both the net-
worked and local applications. The networked applications, services, etc.
can be determined by using network vulnerability scanners. However, the
network vulnerability scanners may be blocked by the firewall rules on the
target network. Then, for each protection domain (subnet), a separate vul-

6.1 Basic Problems in Attack Graph Generation 69

nerability scanner session can be performed as exemplified in [52] and [34].
The examples of network vulnerability scanners are [77], [55], [28], [65]. The
existence of the local applications is determined via asset detectors (host-
based application/vulnerability scanners). The examples of host-based vul-
nerability scanners are [2] and [58]. However, these scanners may also be
blocked by the personal firewalls and anti-virus scanners. Network discovery
tools and vulnerability scanners can be used to extract network topology.
One example network discovery tool is [51].

Network and host-based application and vulnerability scanners can provide
valuable information; however, it may require a long time to gather the
vulnerabilities in a network with thousands of hosts and millions of vulner-
abilities. In this case, some assumptions may be utilized to summarize the
application and vulnerability information for a group of hosts in a subnet.
For instance, it may be assumed that the network administrator enforces a
specific operating system and office software for all the hosts in a specific
subnet. These assumptions may save time, since they can eliminate the need
for running host-based scanners for all the hosts in a specific subnet and
(some scanning plug-ins of) network-based scanners for all the subnets.

Collecting and processing the access control and filtering rules and intrusion
prevention system configurations is also a cumbersome process, since there
is no widely accepted common format for them. It can also be extremely
difficult to gather and interpret these rules in large networks. One may have
to resolve the conflicts among a large number of such rules to compute the
reachability conditions correctly. For the intrusion prevention systems, find-
ing that one or more exploits for a vulnerability are blocked by the intrusion
prevention signatures may not mean that this vulnerability can not be uti-
lized by an attacker for the target network. There can be an exploit that
benefits from the vulnerability and is not blocked by the signatures. There-
fore, more elaborate work may be needed to cross check the signatures with
the well-known exploit and vulnerability databases. Processing the intru-
sion detection system configurations is much more difficult, since they may
employ specific machine learning (anomaly detection) algorithms and the
configuration options are related to these algorithms. The trust relations are
also stored in custom formats for different types of applications, which may
hinder simple processing.

There are also information sources like database tables, cookies and password
files which can include sensitive user information for the applications totally
irrelevant with their containing applications. For instance, a database table
in a database server can be managed by a web application and may include

6.1 Basic Problems in Attack Graph Generation 70

the user credentials for this web application. Therefore, the information
sources (assets) are also one of the main factors determining the reachability
conditions among the network hosts. They can be changed from one instal-
lation to another for a specific software product. They can also be changed
in time for a specific software installation (application). Although there are
off-the-shelf tools to collect information sources of specific types from a tar-
get network, there is often no standard format for the content of different
information sources of the same type.

6.1.4 Reachability Analysis

The attack graph core building process usually utilizes network reachability
data to check for the target hosts’ reachability by an attacker from the cur-
rent attacking host. The network reachability data is mostly represented as a
reachability matrix, where the columns and rows include the hosts in the net-
work and each entry represents the reachability condition between the host
on the corresponding row and the host on the corresponding column. Each
entry in the reachability matrix may be a boolean or indicate the protocols
that can be used between the two corresponding hosts to reach each other.
A reachability matrix can be used to represent any type of connection among
the hosts; physical, network, transport or application-level connection. Its
space complexity is on the order of the square of the number of hosts in the
network. In fact, it is not necessary to use a matrix to represent the reach-
ability conditions. A (hyper)graph structure can also be used to represent
them. By this way, the space complexity can be reduced.

The main factors affecting the reachability conditions are the filtering rules
and access control lists defined on the (security) boundary devices in the
target network, e.g. firewalls, routers. In fact, a reachability matrix or
graph encodes the connectivity conditions among the hosts that may well
be a precondition for the exploit of a specific vulnerability. The reachability
analysis is usually performed before the attack graph core building process
and the resulting reachability matrix or graph is put into a compact form
according to specific algorithms to accelerate the attack graph core building
process. It is important to determine the common patterns of the reachability
conditions for the target network and find near optimal grouping schemes for
the reachability conditions according to these patterns. This can minimize
the redundant information in the resulting reachability matrix and speeds
up the traversal of the reachability conditions during the attack graph core
building process by minimizing the number of look-ups to the reachability

6.1 Basic Problems in Attack Graph Generation 71

matrix or graph.

6.1.5 Attack Graph Structure Determination

The space complexity of a full attack graph may easily reach an exponential
order in the number of hosts in the target network, if each permutation of
the possible vulnerability exploits on the hosts are recorded. To refrain from
this exponential space complexity, there are various attack graph structures
proposed in the literature. Although some of these structures are not as
expressive as a full attack graph at the end, the others may have the same
expressive power as a full attack graph by representing all possible attack
paths. Generally, privileges and vulnerability exploits are used as the attack
graph elements. However, in some works in the literature, other kinds of
graph elements are introduced to reduce the space complexity of a full attack
graph and the time complexity of building attack graphs. The resulting
state space of an attack graph is also important in post-processing of the
attack graph (defense measures recommendation, risk analysis, etc.). For
the attack graph post-processing activities, the coverage of an attack graph
is also significant. The attack graph shall contain the necessary states (nodes)
and edges that can critically affect the decisions of a specific post-processing
activity.

6.1.6 Attack Graph Core Building Mechanism

For both partial and full attack graph generation, the initial and target priv-
ileges possessed by the attacker can be given as input. For full attack graph
generation, each possible attack path from the initial to the target privileges
are found. For partial attack graph generation, this is not the case. Only
a number of critical (shortest) attack paths may be found. Such specific
partial attack graph generation problems may be formulated as artificial in-
telligence planning problems. The full attack graph generation process may
be formulated as a general graph traversal problem, since it has to find all
the attack paths. In essence, most of the attack graph generation algorithms
proposed in the literature use some form of searching algorithm to find the
corresponding nodes in the resulting attack graph. Some of them introduce
domain-specific improvements to the basic prominent search algorithms ex-
isting in the artificial intelligence literature.

6.2 Attack Graph Modelling 72

6.2 Attack Graph Maodelling

Attack graph modelling is concerned with attack template modelling, at-
tack graph structure determination and network modelling. The attack tem-
plate modelling comprises the representation of pre- and postconditions for
the vulnerabilities. It also includes a mechanism for the derivation of these
conditions for specific vulnerabilities by using the information in public vul-
nerability and weakness databases. The determination of the attack graph
structure includes deciding which types of nodes and edges can be found in
an attack graph. The network modelling aims to determine an appropriate
representation for the network assets (e.g., software/hardware applications
running on the network hosts). In the following subsections, each of these
sub-parts is described in detail.

6.2.1 Attack Template Modelling

Attack template modelling determines a model for the vulnerabilities and
their pre- and postconditions and also suggests a method for creating in-
stances of them. The attack template model used in our system is shown in
Figure 6.1, with the formal definitions of its components following next.

Vulnerability

CVE Id: <String>
Preconditions: <List>
Postconditions: <List>
| Relative Location
contains <Enum>

Attacker Application,

Condition contains | Victim Application,
Backend Application,
Category: <Enum> Intermediate Application

ExistsIn: Relative Location

inherits inherits
Direct Condition Indirect Condition
CPE Id: <String> Product Type: <Enum>

Fig. 6.1: Attack template model

Definition 6.2.1. A condition represents a right that can be gained on a
software application. It is a two element tuple < Category, ExistsIn >,

6.2 Attack Graph Modelling 73

where Category represents the right gained on the software application and
ExistsIn represents the location of the software application on which the
right is gained. The location is determined relative to the attacker and
victim software application. It can be the attacker software application,
victim software application, a backend application of the victim software
application or an intermediate software application that is located between
the attacker and victim application and can intercept the traffic between
them.

A condition is independent from any IP network and does not specify an
IP address in its definition. For the conditions, in the first place, the possi-
ble values for the category (right) of a condition shall be determined. The
level of detail for the condition categories shall be adjusted carefully to ade-
quately express the pre- and postconditions of the vulnerabilities and also to
eliminate the chaining of the unrelated vulnerabilities in the resulting attack
graphs. The proposed scheme for the determination of the condition cate-
gories is illustrated in Figure 6.2. The condition categories are hierarchically
organized.

Condition Categories

- 1

~ Denial of
Crash Connection Shutdown Entity Access or Software Access Level
GERCEIERLS Modification [Operating system or e

Execution another software)
Authentication FRTEE] Transport Level

and/or Level
Authorization Rt
Requiremen t/ File (Application Security

Status | or 05 file) Information User

(Credentials)

Network Level Link Level

[Memory
(Application or
Local Access 05 level)

Fig. 6.2: Pre and Postcondition Categories

Definition 6.2.2. A direct condition specifies an additional element to a
condition tuple. This element is named C'PEId and represents the CPE
product identifier [15] of the software application on which the condition
category is gained.

Definition 6.2.3. An indirect condition specifies an additional element to
a condition tuple. This element is named ProductType and specifies the

6.2 Attack Graph Modelling 74

product type of the software application on which the condition category is
gained.

The product types are defined in the proposed system. A product type can
be mail server, mail client, web server, web client, ftp client, database server
application, etc. indicating the technology class of the software application.
We have manually derived product types for around 10000 CPE identifiers
related to the mostly used products in the information technology sector.
The derived product type-CPE identifier matchings are used in the attack
graph building process.

Definition 6.2.4. A vulnerability in thesis work is defined as a single CVE
entry defined in the CVE database ([18],[50]). It is represented by a three
element tuple < CV EId, Preconditions, Postconditions >. A vulnerability
is identified by its unique CVE [18] identifier stored in the C'V E1d element.
It has a list of preconditions that denote the list of the required attacker
privileges to exploit the vulnerability. The preconditions are stored in the
list Preconditions. There is a conjunction relation among the preconditions.
A vulnerability also has a list of postconditions that denote the privileges
obtained by the attacker after successfully exploiting the vulnerability. The
postconditions are stored in the list Postconditions. There is a disjunctive
relation among the postconditions. A precondition and a postcondition can
be a direct or indirect condition.

There are over 70000 vulnerabilities described in NVD [50]. Our method
for generating the pre- and postconditions for the vulnerabilities parses the
vulnerability descriptions in NVD to find the base pre- and postconditions
for them. In this context, the Access Vector and Authentication fields of a
vulnerability record are utilized to extract the postconditions for the vulner-
ability. The Impact Type field of a vulnerability record is used to extract the
preconditions for the vulnerability.

The vulnerability descriptions in NVD contain some useful information to
enrich the pre- and postconditions for the vulnerabilities. However, they are
not in a form that allows the automatic generation of the pre- and postcon-
ditions easily and mostly, they are not detailed enough to derive the pre- and
postconditions in an adequate granularity. Most of the descriptions are very
brief explanations of how to use the corresponding vulnerabilities. Based
on these considerations, our method for generating the pre- and postcondi-
tions for the vulnerabilities utilizes also the weaknesses defined in the CWE
database [19] and the vulnerability-weakness mappings provided by NVD in

6.2 Attack Graph Modelling 75

order to enrich the base pre- and postconditions generated by using only the
NVD data and make them more accurate.

We manually generate the pre- and postconditions for the weaknesses existing
on a specific weakness hierarchy formed by CWE. Research Concepts (CWE-
1000) hierarchy is used. The relatively small number of weaknesses (on the
order of 100) allows manual pre- and postcondition generation according to
the proposed attack template model. In order to derive the preconditions for
the weaknesses, the Description, Applicable Platforms, Modes of Introduction
and FEnabling Factors for Exploitation fields of the CWE weakness records are
examined manually. In order to derive the postconditions for the weaknesses,
the Description, Applicable Platforms and Common Consequences fields of
the CWE weakness records are examined manually. An example can be
given by using the SQL injection weakness with CWE identifier CWE-89.
The manually derived precondition for the SQL injection weakness is:

1. Transport Level Connection to an Application with Product Type Web
Server on the Victim Side.

The manually derived postconditions for the SQL injection weakness are:

1. Authorization on an Application with Product Type Web Server on the
Victim Side,

2. File Modification on an Application with Product Type Database Server
on the Backend Side.

6.2.2 Attack Graph Structure Determination

Attack graph structure determines the nodes and the edges of the generated
attack graphs. The proposed attack graph structure is shown in Figure 6.3.

An attack graph can contain four types of nodes. The formal definitions of
the different types of nodes in an attack graph and attack graph are given
below.

Definition 6.2.5. A privilege node represents an attacker privilege on a soft-
ware application on a network host and is a six element tuple < I PAddress,
CPEId, ApplicationName, Category, InEdges, OutEdges >. IPAddress
denotes the IP address on which the software application is running. C PEId
is the CPE [15] identifier of the product related to the software application.

6.2 Attack Graph Modelling 76

Attack Graph Edge Attack Graph Node
[—contains—

Source Node: Attack Graph Node In Edges: <List>

Target Node: Attack Graph Node [—references ¥ ot Eqges: <List>

inherits inherits

Attack Element Node Privilege
Conjunction Node

IP Address: <String>
CPE Id: <String>
Application Name: <String>

inherits inherits inherits
Privilege Vulnerability Exploit Information Source Usage
Category: <Enum> CVE Id: <String> Information Source Name: <String>

Fig. 6.3: Attack graph structure

ApplicationName is the name of the software application. C'ategory repre-
sents the category of the condition possessed by the attacker on the software
application. Possible condition categories are shown in Figure 6.2. InFEdges
and OutFEdges are the lists holding references to the in and out attack graph
edges connected to the privilege node.

Definition 6.2.6. A privilege conjunction node denotes a conjunction con-
nector for a number of privilege nodes in an attack graph. It is a two element
tuple < InEdges, OutEdges >. InFEdges and OutFEdges are the lists hold-
ing references to the in and out attack graph edges connected to the privilege
conjunction node.

Definition 6.2.7. A vulnerability exploit node represents an exploit of a
vulnerability on a software application on a network host by an attacker. It
is a six element tuple < IPAddress, CPEId, ApplicationName, C'V EIld,
InEdges, OutEdges >. IPAddress, CPEId, ApplicationName elements
are defined the same as in Definition 6.2.5. C'V E1d is the unique identifier of
the exploited vulnerability and is defined in the CVE [18] database. InFEdges
and OutFEdges are the lists holding references to the in and out attack graph
edges connected to the vulnerability exploit node.

Definition 6.2.8. An information source usage node represents an access
and usage of an information source (cookie file, DNS table, database table,
etc.) on a software application on a network host by an attacker. It is
a six element tuple < IPAddress, CPEId, ApplicationName, ISName,
InEdges, OutEdges >. [IPAddress, CPEId, ApplicationName elements
are defined the same as in Definition 6.2.5. I.SName is the name of the used

6.2 Attack Graph Modelling 77

information source inside the software application. InFEdges and OutEdges
are the lists holding references to the in and out attack graph edges connected
to the information source usage node.

Definition 6.2.9. An attack graph is a graph G = (N, E), where N denotes
the set of nodes and F denotes the set of edges of the graph G. n € N can be
a privilege, privilege conjunction, vulnerability exploit or information source
usage node. e € E is a two element tuple < SourceNode, TargetNode >,
where SourceNode denotes the source and TargetNode denotes the tar-
get node for the edge e. The possible node types for SourceNode and
TargetNode are < Pr, Ve >, < Pr, Pc >, < Pr, Isu >, < Pc, Ve >,
< Pc, Isu >, < Ve, Pr > and < Isu, Pr >, where Pr denotes a privilege,
Ve denotes a vulnerability exploit, Pc denotes a privilege conjunction and
Isu denotes an information source usage node.

The edges of an attack graph just denote the relationships among different
types of nodes. There can be an edge:

1. from a privilege to a vulnerability exploit or an information source
usage indicating that the existence of only the privilege is sufficient and
necessary for an attacker to exploit the vulnerability or the information
source usage,

2. from a privilege to a privilege conjunction indicating that the privi-
lege is one of the necessary preconditions for an attacker to exploit
the vulnerability or information source usage targeted by the privilege
conjunction,

3. from a privilege conjunction to a vulnerability exploit or an information
source usage indicating that the acquisition of the privileges connected
to the privilege conjunction by an attacker gives rise to the vulnerability
exploit or the usage of the information source,

4. from a vulnerability exploit or an information source usage to a priv-
ilege indicating that the exploit of the vulnerability or usage of the
information source gives rise to the acquisition of the privilege by an
attacker.

An example attack graph is shown in Figure 6.4.

6.2 Attack Graph Modelling

78

Vulnerability Exploit

IP Address: 75.62.2.22

CVE Id: CVE-2010-3004

CPE Id: cpe:/
a:microsoft:internet_explorer:10
Application Name: Host 2
Internet Explorer

Vulnerability Exploit

IP Address: 75.62.2.22
CVE Id: CVE-2011-3544
CPE Id: cpe:/
a:mozilla:thunderbird:17.0.2
Application Name: Host 2
Mozilla Thunderbird

Vulnerability Exploit

IP Address: 75.62.3.35

CVE Id: CVE-2012-4576

CPE Id: cpe:/
o:microsoft:windows_xp::sp2
Application Name: Host 3 Windows
XP

Fig. 6.4: An Example Attack Graph

6.2 Attack Graph Modelling 79

6.2.3 Network Modelling

The network model is used to model the target network topology and installed
software configuration on the target network. It includes the network hosts
as the main elements. The network hosts are connected to each other via
their contained network interfaces. Each network interface has an IP address
and a reference to the communication link, which connects it to another
network interface contained in another network host. Our network model is
illustrated in Figure 6.5 and formally defined next.

Network Interface

IP Address: <String>

) Link: Communication Link
Network Host contains Host: Network Host

. T |
Network Interfaces: <List>

Software Applications: <List> refere‘}nces references

Communication Link

Source Network Interface: Network Interface

tai
contains Target Network Interface: Network Interface

Software Application Information Source
ef CPE Id: <Stri N Stri
references : <String> I contains ame : <String>
L—— Host IP: <String> | Referenced Software: <List>
Port: <Integer> \—references—{ Preconditions: <List>
Backend Applications: <List> Postconditions: <List>
Information Sources: <List> .

inherits inherits inherits

| Credentials Store | | DNS Records | | Routing Table |

Fig. 6.5: Network model

Definition 6.2.10. A network host is a two element tuple

< NetworklInter faces, SoftwareApplications >, where
NetworkInter faces is a list of the network interfaces contained by
the network host and SoftwareApplications is a list of the software
applications installed on the network host.

Definition 6.2.11. A network interface denotes a OSI Layer 3 interface on
a network host and is a three element tuple < IPAddress, Link, Host >.
IPAddress is the IP address associated with the network interface. Link
denotes the communication link connected to the network interface. Host
denotes the network host containing the network interface.

Definition 6.2.12. A communication link connects two network interfaces
and is a two element tuple < Source NI, TargetNI >. SourceNI refers to

6.2 Attack Graph Modelling 80

the source network interface, T'arget NI refers to the target network inter-
face connected to the communication link. The designation of the source or
target network interface is performed randomly and does not impose any re-
striction on the data transfer direction between the network hosts containing
the network interfaces.

Definition 6.2.13. A software application is a five element tuple < CPEId,
HostI P, Port, BackendApplications, InformationSources >. CPEId de-
notes the software product identifier (CPE identifier [15]), HostI P denotes
the IP address on which the software application is serving (running) and
Port denotes the port on which it is serving. BackendApplications refers to
the software applications whose services are used by this software applica-
tion. InformationSources is a list of information sources contained by the
software application such as credentials stores, cookies, DNS tables, routing
tables and databases.

A software application object stores references to the other software appli-
cations used by the software application in its backend. For instance, a web
server application may reference a database server application as its backend
application. If an attacker uses a specific vulnerability on this web server ap-
plication, she can gain privileges on the backend database server application
without even using a vulnerability on the database server application. The
backend software applications are accounted for during the attack graph core
building process.

Definition 6.2.14. An information source denotes a sensitive data store that
is contained by a software application and can be accessed and used by an
attacker. It is represented by a three element tuple < ReferencedSoftware,
Preconditions, Postconditions >. In order to use an information source,
an attacker should satisfy the preconditions that are stored in the list
Preconditions for the information source. After successfully benefiting from
the information source, the attacker gains the postconditions that are stored
in the list Postconditions for the information source. The postconditions
are gained on the software applications referenced by the information source
that are stored by the element ReferencedSoftware.

An attacker can gain privileges on a host by benefiting from the information
sources on a software application on a different host, e.g., without using any
vulnerability defined in NVD. As an example, an attacker gaining access to
the cookies file on a web browser on one host may gain authorization rights
to a web application on another host by using the information stored in the
cookies file.

6.3 Proposed Attack Graph Core Building Mechanism 81

6.3 Proposed Attack Graph Core Build-
ing Mechanism

The attack graph core building process is treated as a search problem in this
thesis work, which is solved in a distributed multi-agent environment. For
this purpose, a reachability hyper-graph is first formed and then, a modified
parallel version of the classical depth-first search algorithm is applied by tak-
ing the reachability conditions stored in the hyper-graph into account. One
of the main issues in parallel searching in a distributed memory environment
is the difficulty of eliminating duplicate attack graph node expansions. To
eliminate this problem, a virtual shared memory abstraction is implemented
to provide memory coherency over the distributed search agents.

6.3.1 Reachability Hyper-graph and Partitioning

Reachability determines the accessibility conditions among the software ap-
plications installed on the target network. The filtering rules on the fire-
walls, access control lists on the routers, security policies applied among the
software applications are among the factors that determine the reachability
conditions. All these factors are taken into account to create our reacha-
bility hyper-graph, in which a hyper-vertex indicates a software application.
Each hyper-vertex has an associated weight value that indicates the density
of the workload related to the software application. The computation of this
workload accounts for the number of the attack graph nodes for the software
application that will be created by the search agents.

A hyper-edge indicates a collection of source and target software applications
such that the source applications can directly access the target applications,
if they satisfy specific conditions. These conditions, allowing direct reacha-
bility among the software applications, are stored in the hyper-edge. Such
conditions can include network protocols, port numbers, user credentials, etc.
A hyper-graph is more efficient in terms of storage space than a reachability
matrix or graph.

The resulting reachability hyper-graph is partitioned to determine the initial
tasks of each distributed search agent responsible for generating the attack
graph. Each search agent shall be responsible for determining the attacker
privileges, vulnerability exploits and information source usages for a num-
ber of software applications. The software applications are allocated to the

6.3 Proposed Attack Graph Core Building Mechanism 82

search agents with hyper-graph partitioning in such a way that the number
of messages transferred among the search agents, when building the resulting
attack graph, is minimized and the workload of the search agents are bal-
anced. Any hyper-graph partitioning algorithm can be used to partition the
reachability hyper-graph, e.g. [35].

As stated in [35], hyper-graph partitioning is a significant problem with many
application areas, including VLSI design, efficient storage of large databases
on disks and data mining. The problem is to partition the vertices of a
hyper-graph into k£ roughly equal parts, such that a certain objective func-
tion defined over the hyper-edges is optimized. A commonly used objective
function is to minimize the number of hyper-edges that span different parti-
tions. These hyper-edges are cluttered across different partitions.

In [35], the authors propose a hyper-graph partitioning method based on
a greedy k-way partition refinement algorithm. They successively coarsen
the given hyper-graph into smaller representative hyper-graphs, partition
the smallest representative hyper-graph into k& roughly equal parts and then
refine the partitions by traversing the representative hyper-graphs back to
the original hyper-graph. The partition refinement algorithm is performed
by following a greedy approach that selects the vertices to be moved across
the partitions by considering the greatest positive reduction (gain) in the
objective function caused by the vertex movements. The greedy approach
also accounts for the load balancing constraints among the partitions in order
to create roughly equal partitions. Hyper-vertex weights are considered in
load balancing.

The main aim of the reachability hyper-graph partitioning is to achieve the
load balancing in terms of the hyper-vertex weights and minimize the number
of the hyper-edges spanning across the search agents. We assign large weight
values to the hyper-vertices (software applications) related to the initial at-
tacker privileges, since main work density in the attack graph computation
will be related to (i.e., will be in the neighbourhood of) these hyper-vertices.
The minimization of the cluttered edges across the search agents provides
for the minimization of the transferred messages among the search agents
during the attack graph computation. An example reachability hyper-graph
is depicted in Figure 6.6.

The software applications that have a common color in Figure 6.6 can di-
rectly access each other. After partitioning, the reachability hyper-graph
contains minimum number of cluttered hyper-edges and the total weight of
the hyper-vertices contained in each partition is comparable (load balancing).
The hyper-vertices (software applications), which are related to the initially

6.3 Proposed Attack Graph Core Building Mechanism 83
Reachability HyperGraph:
O
' . Clients |ntem£ﬁ«w§dx‘u1
. Client 4 Emerb
Imternal LAN 2 Router 1 Malicious Domain Re
Client 2 Client 8
@]
Client 3 Maliciot
@
Client1 tlali
@
Internal LAN 1 Firewall 1 on
@
Internal LAN 1 Router 1 DMz
@ @
Administrator 2 DMZ We
[(]

Fig. 6.6: An Example Reachability Hyper-graph

satisfied attacker privileges, are assigned higher weight values than the other
hyper-vertices, so that the workload can be distributed to the search agents
almost equally.

6.3.2 Virtual Shared Memory Abstraction

The main aim of the virtual shared memory abstraction is to provide memory
coherency across all the distributed search agents. The Dynamic Distributed
Memory Manager Algorithm described in [40] is employed in this paper. In
this algorithm, there is no centralized memory manager. Each distributed
search agent stores information about the attacker privileges for the software
applications that are assigned to it in its local memory. This information at
least comprises the expansion status of the corresponding privileges, namely
whether they are used to exploit some vulnerabilities or benefit from infor-
mation sources to generate additional privileges.

As a distributed search agent is performing, it may need to expand an at-
tacker privilege and request information (expansion status) about the at-
tacker privilege, which is stored in another agent’s local memory. In this
case, it has to transfer the corresponding information into its local memory.
Some messages are transferred among the search agents according to the al-
gorithm described in [40] to transfer the corresponding memory page to the
local memory of the requesting search agent. If the corresponding informa-
tion indicates that the associated privilege has already been expanded, then
the requesting agent does not expand it. Otherwise, the requesting agent

6.3 Proposed Attack Graph Core Building Mechanism 84

pushes the privilege to its search stack to expand it later, sets its expansion
status to true and invalidates the copies of the corresponding memory page
in other agents by sending messages to them.

In this proposed method, it is important to decrease the memory read/write
faults, thereby memory page transfers. For this, it is crucial to determine
a reasonable initial configuration for the virtual shared memory. At the
initialization of the virtual shared memory, one must carefully select which
memory pages contain which memory objects (privileges) and which search
agents store which memory pages locally. In this paper, this is performed by
using the results of the reachability hyper-graph partitioning. Hyper-vertices
in the reachability hyper-graph, representing software applications on which
the privileges are defined, are distributed as equally as possible to the search
agents. The number of hyper-edges cluttered across the search agents is
minimized by the partitioning process to minimize the number of transferred
messages among the search agents. In summary, the distribution of the
memory objects to the search agents’ local memories is performed according
to the reachability conditions among the software applications related to the
memory objects. These reachability conditions are used by the search agents
during the attack graph building process.

6.3.3 Parallel, Shared Memory-Based Depth-first Search

In this thesis work, a parallel, shared memory-based depth-first search
method is proposed as the core attack graph building algorithm. Each dis-
tributed search agent performs this algorithm. Actually, each distributed
search agent performs a stack-based depth-first search starting by expanding
the initially satisfied attacker privileges assigned to it. The decision of ex-
panding a privilege during the search is determined by examining the boolean
expansion status of it stored in the virtual shared memory. If an agent gen-
erates a privilege, it first queries the shared memory to learn whether the
privilege has already been expanded or not. If the privilege has not already
been expanded, the agent sets its expansion status to true and pushes the
privilege to its search stack to expand it later.

When a search agent has no privilege to expand in its search stack at a
certain time, it starts to request one or more privilege from other search
agents. When a search agent requests privilege from the search agent z,
the search agent x sends a random number of privileges that are stored on
the bottom half of its search stack to the requesting search agent, if it has
sufficient privileges in its stack. If the request has resulted in no privilege

6.3 Proposed Attack Graph Core Building Mechanism 85

transfer, then the requesting search agent tries other search agents. If no
privilege transfer is occurred after a specified number of trials for each other
search agent in a cyclic manner, then the requesting search agent gives up and
enters into a passive state, but does not terminate. When all the search agents
enter into the passive state, the distributed search algorithm is assumed to
be terminated.

Parallel, Distributed Search Performed By Search Agents

The proposed parallel, distributed shared memory based depth-first search al-
gorithm is given in Figure 6.7. It is executed by each distributed search agent
on the multi-agent platform. Before performing the search algorithm, the
reachability hyper-graph has already been generated and the virtual shared
memory pages have already been initialized with the hyper-graph partition-
ing results.

During the distributed search algorithm, each agent uses the previously com-
puted reachability hyper-graph to determine which target software applica-
tions are reachable from the software application related to the currently pro-
cessed privilege (FindContainingEdges() and FindTargetSoftwareApps()).
Then, the vulnerabilities and information sources on each of these target
software are fetched and their exploitability/usability are checked by call-
ing the function CheckExploitability(). For each exploitable vulnerability
and usable information source, the new privileges gained by the attacker are
computed by calling the function FindGainedPrivileges(). The expansion
status of all the gained privileges stored in the shared memory are updated
by calling the function UpdateGainedPrivilegesInMemory().

The flow chart for the parallel, distributed shared memory-based depth-first
search algorithm performed by each search agent is also given in Figure 6.8.

Checking Exploitability of Vulnerabilities and Information Sources

During the parallel, distributed shared memory-based depth-first search algo-
rithm, the exploitability of each vulnerability /information source in the soft-
ware applications currently reachable by an attacker is checked via matching
the already expanded (searched) privileges in shared memory to the precon-
ditions of the vulnerability /information source. This is performed by the
function CheckExploitability(). The pseudocode for the CheckExploitabil-
ity() function is shown in Figure 6.9.

6.3 Proposed Attack Graph Core Building Mechanism 86

1: procedure PERFORMDFS(RHG,IPRGS) > Reachability hyper-graph (RHG) and initial attacker
privileges (IPRGS) are inputs
MainStack +CreateMainStack() > Create the search main stack
for all initial Privilege € IPRGS do
initial PrivilegeStatus <—new PrivilegeStatus()
initial PrivilegeStatus.set Expanded(true)
WriteToSharedMemory (initial Privilege, initial PrivilegeStatus)
MainStack.push(ip)
foundPrivileges.add(initial Privilege)

=

[\
—_

[GUFJURILRJU)
N

53:
54:

—_ =
oo uEwy

DO = = =

GO DN N DD DD N DN N

end for

while true do
if MainStack.size() > 0 then > Continue to the search while there are privileges on the

main stack
currentPrivilege < M ainStack.pop()
else
received Privileges <+ GetWorkFromOtherAgents() > Requests privileges from other

agents to expand

if receivedPrivileges.size() == 0 then

break

else

MainStack.push(received Privileges)
foundPrivileges.addAll(received Privileges)
continue

end if
end if

vertex <—FindVertexForPriv(currentPrivilege, RHG)
edges +FindContainingEdges(vertex, RHG)
gainedPrivileges +new List()

for all edge € edges do

attacker

targetSoftwareApps <+ FindTargetSoftwareApps(edge)
for all targetSoftwareApp € targetSoftwareApps do

for all vulnerability € targetSoftwareApp.vulnerabilities() do
requiredPrivileges <—CheckExploitability (vulnerability, current Privilege,
targetSoftwareApp)
if requiredPrivileges! = null then > Vulnerability can be exploited by an attacker
vulnGainedPrivileges < FindGainedPrivileges(
vulnerability, current Privilege, targetSo ftware App)
gainedPrivileges.addAll(vulnGained Privileges)
UpdateAttackGraph (vulnerability,
required Privileges, vulnGained Privileges, targetSo ftware App)
end if
end for
for all infoSource € targetSoftwareApp.infoSources() do
requiredPrivileges +—CheckExploitability (in foSource, current Privilege,
targetSoftwareApp)
if requiredPrivileges! = null then > Information source can be used by an

infoSourceGainedPrivileges +FindGainedPrivileges(
infoSource, current Privilege, targetSo ftwareApp)
gainedPrivileges.addAll(in foSourceGained Privileges)
UpdateAttackGraph(infoSource, required Privileges,
infoSourceGainedPrivileges, targetSo ftware App)
end if
end for

end for

end for

UpdateGainedPrivilegesInMemory (gained Privileges, M ainStack, foundPrivileges)
end while
55: end procedure

Fig. 6.7: Parallel, distributed shared memory-based depth-first search algorithm

6.3 Proposed Attack Graph Core Building Mechanism

Write the expansion status of
initial privileges to shared
memory as true

Push the gained privilege
to the search stack

Push initial privileges to the Update the expansion status
[" search stack of the gained privilege to
Yes true

ﬁ These 3
No operations
are performed
atomically.

Search stack is
empty

Get work from other

l[e—VYe:
search agents

Is the expansion status o
the gained privilege true

No
Are there works .)
(privileges to be Pop privilege P from Read status information
expanded) the search stack of gained privilege from
shared memory
No
3
No [
Fetch the next
Find software N .
I
End application S related gained privilege
with P LY
Yes

Are there gained
privileges that are not
processed

Find software
applications reachable
from S

A Update the partial attack
graph managed by this
agent with gained privileges,
their corresponding
exploited vulnerabilities and
information sources

, i

Check exploitability of
vulnerabilities in reachable
software applications

Check usability of Find privileges gained from
information sources in .| exploitable vulnerabilities
reachable software and usable information

applications sources

Fig. 6.8: Flow chart for the parallel, distributed shared memory-based depth-
first search algorithm

6.3 Proposed Attack Graph Core Building Mechanism 88

1: foundPrivileges < new Set() > Global variable across the search agent
2: function CHECKEXPLOITABILITY(SP,CP,TSA) > SP can be a vulnerability or information source,
CP is the current privilege, TSA is the target software application

3: required Privileges < FormPrivileges(SP.preConditions(), CP.softwareApp, TSA)

4: if not (requiredPrivileges contains CP) then

5: return null;

6: end if

7 for all requiredPrivilege € requiredPrivileges do

8: if not (foundPrivileges contains requiredPrivilege) then

9: requiredPrivileges < ReadFromSharedMemory (required Privilege)

10: if requiredPrivilege.expanded == false then > If the privilege is not expanded, then it
means that it is not generated by any search agent until now.

11: return null

12: end if

13: end if

14: end for

15: return requiredPrivileges

16: end function

Fig. 6.9: Checking exploitability of a vulnerability or an information source by an
attacker

In the function CheckExploitability(), first, the required privileges for the
exploitation of the input vulnerability or information source are found by
calling the function FormPrivileges(). The FormPrivileges() function makes
the given preconditions of the input vulnerability or information source spe-
cific to the given source and target software application by adding the infor-
mation (IP address, CPE [15] name, etc.) of the source and target software
application to them. The second parameter of the FormPrivileges() function
is the source (attacking) software application and the third parameter is the
target (attacked) software application. For instance, if the condition is an
indirect condition and specifies a product type instead of a CPE name on
the attacker relative location, then the FormPrivileges() function makes this
condition more specific by attaching the CPE name of the source software
application to it. However, this is possible, only if the source application has
the same product type specified in the condition.

If the currently traversed privilege, given as parameter, does not exist in
the required privileges, then the CheckExploitability() function returns null,
indicating that the satisfaction conditions (preconditions) of the input vul-
nerability or information source are unrelated to the currently traversed priv-
ilege. A required privilege is satisfied, if and only if it is found in the global
list foundPrivileges or it has already been written into the virtual shared
memory (its expanded status is true). (foundPrivileges is a global set used
in both algorithms shown in Figure 6.7 and Figure 6.9.) If at least one of the
required privileges is not satisfied, then the function CheckExploitability/()
returns null indicating that the input vulnerability or information source can

6.3 Proposed Attack Graph Core Building Mechanism 89

not be exploited/used by the attacker now.

If the required privileges returned by the function CheckExploitability() is
not null, the vulnerability or the information source can be exploited /used by
an attacker. The newly gained privileges after the exploitation are computed
from the postconditions of the exploitable vulnerability or usable information
source by calling the function FindGainedPrivileges() in Figure 6.7. The
details of the process of computing the newly gained privileges are explained
next.

Computing Gained Privileges and Updating Status of Them in Shared
Memory

When computing the newly gained privileges, relative locations for the post-
conditions of the exploitable vulnerabilities and usable information sources
are accounted. If the relative location for a postcondition refers to the back-
end application of the parameter target software application, then the back-
end software applications used by the target software application are found
and the corresponding gained privileges on the backend software applications
are created by using the postcondition. By this way, the attacker can gain
privileges on a (backend) software application by using another application’s
vulnerability instead of using a vulnerability of the (backend) software appli-
cation. Newly gained privileges are pushed to the main search stack used by
the search agent, if they have not been already expanded. The pseudo-code
for the function FindGainedPrivileges() is shown in Figure 6.10.

1: function FINDGAINEDPRIVILEGES(SP, CP,TSA) © SP can be a vulnerability or information source,
CP is the current privilege, TSA is the target software application

2: gainedPrivileges < EmptyList()

3: BA <+ RelativeLocation.BackendApplication ~ > Account for relative location value of backend
application for postconditions

4: for all postCondition € SP.postConditions() do

5: if postCondition.ExistsIn == BA then

6: for all backendSoftwareApp € T'SA.backendSoftwareApps() do

7 gained Privileges.add All(FormPrivileges(postCondition,

8: CP.softwareApp, backendSo ftwareApp))

9: end for

10: else

11: gainedPrivileges.add All(FormPrivileges(postCondition, C P.so ftwareApp, TS A))

12: end if

13: end for

14: return gprgs

15: end function

Fig. 6.10: Finding the privileges gained by an attacker after exploiting a vulnera-
bility or an information source

6.3 Proposed Attack Graph Core Building Mechanism 90

After finding the privileges gained by the attacker, the expansion status of
these privileges are checked, appropriate actions are performed according to
the checked status and the status information is updated by calling the func-
tion UpdateGainedPrivilegesInMemory(). The pseudo-code for this function
is shown in Figure 6.11. The expansion status of each gained privilege stored
in the shared memory is checked. If the gained privilege has not already
been expanded, its expansion status is updated to true in the shared mem-
ory and the gained privilege is pushed into the search stack. The two shared
memory operations, namely reading the expansion status from the shared
memory and updating it with new status object, are performed atomically
by the function Read AndUpdateSharedMemory(). More than one agent can
not enter into this function simultaneously.

1: function UPDATEGAINEDPRIVILEGESINMEMORY (gained Privileges, M ainStack, foundPrivileges)

2 for all gainedPrivilege € gainedPrivileges do

3: newGainedPrivilegeStatus +new PrivilegeStatus()

4: newGained PrivilegeStatus.set Expanded(true)

5 oldGainedPrivilegeStatus + Read AndUpdateSharedMemory (

6: gainedPrivilege, newGained PrivilegeStatus)
> Read AndUpdateSharedMemory is an atomic operation that updates the status of its input
privilege and returns its old status.

7 if oldGainedPrivilegeStatus.expanded == false then
8: MainStack.push(gained Privilege)

9: end if

10: foundPrivileges.add(gainedPrivilege)

11: end for
12: end function

Fig. 6.11: Updating the expansion status of the privileges gained by an attacker
in shared memory

Updating Partial Attack Graphs

The partial attack graph computed by a search agent is updated with
the newly gained privileges, exploited vulnerabilities and used information
sources in UpdateAttackGraph() function during the distributed search algo-
rithm as shown in Figure 6.7. The partial attack graph is updated according
to the attack graph structure described in Section 6.2.2 as follows: If a vul-
nerability is exploited or an information source is used by an attacker, a
vulnerability exploit node or an information source usage node is created by
using the meta-information (IP address, CPE [15] name, etc.) of the target
software application and added to the partial attack graph. If there is one
required privilege, given as parameter, then an edge from the required priv-
ilege to the vulnerability exploit node or information source usage node is
added in the partial attack graph for the search agent. Otherwise, a privilege

6.3 Proposed Attack Graph Core Building Mechanism 91

conjunction is created and added to the partial attack graph. An edge from
each of the required privileges to the privilege conjunction node is added in
the partial attack graph. Also, an edge from the privilege conjunction node
to the vulnerability exploit node or information source usage node is added
in the partial attack graph. Lastly, an edge from the created vulnerability
exploit node or an information source usage node to each of the privileges is
added, which are gained by the attacker as a result of successfully exploit-
ing/using the vulnerability exploit or information source. The pseudo-code
for the function UpdateAttackGraph() is shown in Figure 6.12.

1: partial AttackGraph < new AttackGraph() > Global variable across the search agent code

2: procedure UPDATEATTACKGRAPH(SP, REQPS,GPS,TSA) > SP can be
a vulnerability or information source, REQPS is the required privileges, GPS is the gained privileges,
TSA is the target software application

3: if SP instanceof Vulnerability then

4 exploitNode + CreateVulnerabilityExploitNode(SP,TSA)

5 else

6 exploitNode < CreateInformationSourceUsageNode(SP,TSA)

7 end if

8 if REQPS.size() > 1 then

9: privilegeConjunction < new PrivilegeConjunction()

10: partial AttackGraph.addNode(prjc)

11 for all requiredPrivilege € REQPS do

12 partial AttackGraph.add Edge(required Privilege, privilegeConjunction)

13

14

end for

: partial AttackGraph.addEdge(privilegeConjunction, exploit N ode)
15: else
16: if REQPS.size() == 1 then
17: partial AttackGraph.addEdge(REQPS.get(0), exploit Node)
18: end if
19: end if
20: for all gainedPrivilege € GPS do
21: partial AttackGraph.addEdge(exploitN ode, gained Privilege)

22: end for
23: end procedure

Fig. 6.12: Updating the partial attack graph for each search agent after exploita-
tion of a vulnerability or usage of an information source

Merging Partial Attack Graphs

After all search agents finish computing their partial attack graphs, the par-
tial attack graphs are merged by one of the search agents, which is designated
as the leader search agent. The other agents send their computed partial at-
tack graphs to the leader agent and the leader agent performs the procedure,
shown in Figure 6.13, to merge them and form a single attack graph.

The attack graph merge algorithm starts by merging the same privileges
existing in the different partial attack graphs. If a privilege exists in more

6.3 Proposed Attack Graph Core Building Mechanism 92

than one partial attack graph, only one instance of it can contain descendant
nodes. Because, we expand each privilege only once during the distributed
search algorithm via holding its expansion status in virtual shared memory.
Therefore, if there is an instance of a privilege in a partial attack graph that
contains descendant nodes, this instance should exist in the resulting attack
graph computed by the leader search agent. Other instances of the privi-
lege are removed from the attack graph. The incoming edges of the other
instances (existing privileges) are updated to target the instance containing
the descendant nodes by calling the UpdatelnEdgesOfExistingNode() func-
tion. This function updates the target nodes of the incoming edges of its first
parameter with the value of the second parameter.

After eliminating the duplicate privileges in the resulting attack graph, the
merging algorithm eliminates the duplicate vulnerability exploit and infor-
mation source usage nodes (exploit nodes) contained by the resulting attack
graph. If there exist same instances of an exploit node in the resulting attack
graph, their out edges are merged (combined). If we find an exploit node
named exploit Node during the traversal of the exploit node list of the result-
ing attack graph, for which the same node has already existed, we first find
the outgoing neighbour nodes of the already existing exploit node. We add
an edge from the exploit Node to each outgoing neighbour node. Then, we
update the target nodes of the incoming edges of the already existing exploit
node with the value of exploit Node by calling the UpdatelnEdgesOfExist-
ingNode() function. We remove the already existing exploit node from the
resulting attack graph. As a summary, we collect the incoming/outgoing
neighbours of the same exploit nodes, make one of these exploit nodes refer
to all of these incoming/outgoing neighbours and remove the other exploit
node from the attack graph.

6.3.4 Complexity Analysis

The complexity of the distributed search algorithm, shown in Figure 6.7, is
considered in terms of the message transfer and execution time complexity.
The maximum number of the messages transferred among the distributed
search agents is dominated by the number of the memory page faults en-
countered by them, since we try to provide for comparable workload for each
search agent during the execution of the search algorithm.

The number of the possible privileges that can be obtained on a software
application is constant. If virtual shared memory abstraction is used with-
out any specific memory initialization scheme (e.g. reachability hyper-graph

6.3 Proposed Attack Graph Core Building Mechanism 93

1: function MERGEPARTIALATTACKGRAPHS(PGS) > PGS is the partial attack graphs generated by the

search agents
if PGS.size() == 0 then

3 return new AttackGraph()

4 end if

) attackGraph < PGS.removeFirst() > Update privileges for the attack graph

6: privilegeHashMap < FormHashMap (attackGraph.privileges()) > Hash of privileges mapped
by their identifiers

7 for all partial AttackGraph € PGS do

8 for all privilege € partial AttackGraph.privileges() do

9 existing Privilege < privilegeHashM ap.get(privilege.id())

10: if existingPrivilege! = null then

11: if (privilege.outEdges.size() > 0 then

12: if existingPrivilege.outEdges.size() == 0) then > Remove the existing privilege
from the attack graph and add the privilege and its subtree in place of existing privilege

13: attackGraph.addN odeW ithItsSubT ree(privilege)

14: UpdateInEdgesOfExistingNode(existing Privilege, privilege)

15: attackGraph.removeN ode(existing Privilege)

16: privilege Hash M ap.put(privilege.id(), privilege)

17: end if

18: end if

19: else

20: attackGraph.addN odeW ithItsSubT'ree(privilege)

21: privilegeHashMap.put(privilege.id(), privilege)

22: end if

23: end for

24: end for
> Remove duplicate vulnerability exploit and information source usage nodes for the attack graph
25: ezploitHashMap + new HashMap()

26: exploits < attackGraph.vulnerability Exploits

27: exploits.addAll(attackGraph.in formationSourceU sages)

28: for all exploit € exploits do

29: existing Exploit < exploit HashMap.get(exploit.id())

30: if existingEzploit! = null then

31: for all outNeighbour € existingExploit.outNeighbour Nodes() do
32: attackGraph.addEdge(exploit, out N eighbour)

33: end for

34: UpdateInEdgesOfExistingNode(existing Exploit, exploit)
35: attackGraph.removeN ode(existing Exploit)

36: end if

37: exploitHashMap.put(exploit.id(), exploit)

38: end for
39: return attackGraph
40: end function

Fig. 6.13: Merging the partial attack graphs by the leader search agent

6.3 Proposed Attack Graph Core Building Mechanism 94

partitioning), then the maximum number of the memory page faults encoun-
tered by the search agents is O(FE), where E denotes the number of edges
among the directly reachable software applications. This is because, each
edge among the directly reachable software applications is traversed maxi-
mum C' times totally by all the agents during attack graph building, where
C denotes the maximum total number of privileges related to a software ap-
plication and is constant. Actually, in the computation of the attack graph
there can be at most O(E * C') privileges directly obtainable from a specific
privilege. Since each privilege has its expansion status stored in the virtual
shared memory, each of the edges between a privilege and its directly obtain-
able privileges is traversed exactly once. Memory page transfers can occur,
when going from one privilege to each of its directly obtainable privileges
during the attack graph building. C'is constant, so the maximum number of
memory page faults encountered by the search agents is O(E). In the worst-
case, this complexity is O(N?), where N denotes the number of network
interfaces/hosts containing software applications.

If virtual shared memory abstraction is used with memory initialization based
on reachability hyper-graph partitioning, then the maximum number of mem-
ory page faults encountered by the search agents is O(N x H), where H is
the number of cluttered hyper-edges (whose contents are distributed into
more than one search agent) after reachability hyper-graph partitioning, N
denotes the number of network interfaces/hosts. Each privilege is processed
only once and can have at most H containing hyper-edges, which can be
stored in the memory of other search agents. Memory page transfers can
occur, when going from one privilege to each of its directly obtainable priv-
ileges which are related to the software applications stored in the cluttered
hyper-edges. It should be noted that this complexity reasoning is made un-
der the assumption of comparable workload for each search agent during the
execution of the search algorithm.

According to [40], the worst-case number of messages for locating the owner
of a single page K times is O(P 4+ K x log(P)), where P is the number of
processors (the search agents in our case). Therefore, the worst-case com-
plexity of the number of messages transferred among the search agents in
our algorithm is O(P + N x H * log(P)), where H denotes the number of
cluttered hyper-edges obtained after reachability hyper-graph partitioning
as described above.

When considering the execution time complexity of the distributed search
algorithm, since a virtual shared memory abstraction is applied over the
distributed search agents, each edge in the resulting attack graph is tra-

6.3 Proposed Attack Graph Core Building Mechanism 95

versed only once as in popular serial depth-first or breadth-first search-based
algorithms running on one processor, by controlling the memory coherent
expansion status for the privileges. The worst-case time complexity of the
popular serial depth-first or breadth-first search-based attack graph build-
ing algorithms is O(N?), where N denotes the number of the network in-
terfaces/hosts (when considering constant maximum number of privileges
per network interface/host). If we assume that the number of the search
agents is P and account for the load balancing as a result of the reachability
hyper-graph partitioning algorithm, then the number of the network inter-
faces/hosts that should be handled by one agent is O(N/P). Therefore, the
worst-case execution time complexity of one search agent’s execution of the
modified depth-first search-based algorithm is O(N?/P?).

The execution time complexity of the merging algorithm used to merge the
partial attack graphs (generated by the search agents) by the leader search
agent and shown in Figure 6.13 is O(P %= N % log(N)), if we assume that
getting a value from a hash map takes O(log(N)) time.

As a result, the time complexity of the overall distributed attack graph gen-
eration algorithm is:

O((N?/P?)+ P+ N % H x log(P) + P x N * log(N)) (6.1)

If P2 < N/log(N), then the last term in Equation 6.1 which is P* N xlog(N)
is smaller than N?/P2. Also, if H < N/(P?log(P)), then the third term in
Equation 6.1 which is N x H * log(P) is smaller than N?/P? and the time
complexity of the overall distributed attack graph generation algorithm be-
comes bounded by O(N?/P?), namely the first term in Equation 6.1. Tt is
easy to satisfy the above two if conditions for enterprise networks with a
large number of network interfaces/hosts. For instance, for a network com-
posed of 1000 network interfaces/hosts (IV), we can take P as at most 6 to
satisfy the first if condition. If we take P as 4, H should be at most 104 to
satisfy the second if condition. This means that there can be at most 104
cluttered (cut) hyper-edges on the reachability hyper-graph. If we collect the
network interfaces/hosts on the same subnet in a single group (in one reach-
ability hyper-edge) as in the previous works such as [32], we will use most
probably around 10 hyper-edges for this purpose. It will remain around 90
reachability hyper-edges that can be used to encode the accessibility relations
enforced by the firewall rules. If we use one hyper-edge for representing all
the outside accessibility relations of a single network interface/host, we will
be able to store the outside accessibility relations for around 90 network inter-
faces/hosts. This number will be more than enough for a realistic network

6.3 Proposed Attack Graph Core Building Mechanism 96

with 1000 network interfaces/hosts. Under these conditions, we can com-
pute an attack graph around 16 (P?) times faster than the serial, depth-first
search-based algorithm in theory.

6.3.5 Experiments

The experiments used to evaluate the performance of the proposed attack
graph building mechanism are performed by using the open-source multi-
agent platform JIAC V [30], developed at DAI-Labor at TU Berlin. Each
search agent in JIAC V multi-agent environment can be considered to execute
in its own thread. JIAC V agents communicate via TCP sockets in the
employed experimental configuration.

] exampleNetwork.csnetwork_diagram 4l p! k_diagy X

<4 Organization Firewall 1

Interface Address: 4 75.62.134.65 |

SubDomain Name: < DMZ

| ame: 4 DMZ Router1

Ulmewace Address: 4 756213264 |

SubDomain Name: < Internal LAN1

‘:' ter Name: 4 Internal LAN 1 Router1

SubDomain Name: < Administrative LAN Interface Address: 4 75.62.130.90

me: 4 ALAN Router1

|Interface Address: 4 756213183 I 4 Inernal LAN1 Firewall 1
i

Interface Address: 4 75.62130.92

4 ALAN Firewall 1

|Interfa(& Address: 4 756213185 |

SubDomain Ngme: < Internal/LAN 2

e: <4 Internal LAN 2 Router 1

|Interfacs Address: 4 75.62.129.81

4 Internal LAN 2 Firewall 1

|Inle|facs Address: 4 756212076 |

Fig. 6.14: An example target network for attack graph generation

The original network (network domain) to be tested (for which the attack
graph is to be generated) is given in Figure 6.14. It consists of four sub-
domains: DMZ, Administrative LAN, Internal LAN 1 and Internal LAN 2.

6.3 Proposed Attack Graph Core Building Mechanism 97

The elements of the DMZ sub-domain are given in Figure 6.15 as an example.

| exampleNetwork.csnetwork_diagram il pl csnetwork_di [network_diag &3

Router Name: 4 DMZ Router1

Node Name: 4 DMZ Web Server1

Interface Address: 4 75.62.132.64

Application Bundle Name: < Apache Web Server Bundle 1

Interface Address: 4 7562.132.55

Name: 4 DMZ Web Server 2

Application Bundle Name: 4 Apache Web Server Bundle 2

Interface Address: 4> 75.62.132.53

DMZ

me: 4 DMZ Application Server1

[Application Bundle Name: 4 MS IIS Server Bundle 1

Interface Address: 4 75.62.132.51

lode Name: % DMZ Mail Server 1

ame: 4 DMZ Application Server 2
Application Buniile Name: 4+ MS Exchange Mail Server Bundle 1 + pplication Server

|Appi1',at\on Bundle Name: 4 MSIS Server Bundle 2

Interface Address: 4 75.62.13246
Interface Address: 4 756213249

me: 4 DMZ Database Server 1

e Nare: 4 DMZ Database Server 2

Application Buhdle Name: 4 MySQL Server Application Bundle 1
Application Bundle Name: 4 Oracle 9i Server Bundle 1

Interface Address: 4 756213247

Interface Address: 4 75.62.132.48

Fig. 6.15: Elements of DMZ sub-domain in the example target network

There is a malicious external domain, consisting of a single sub-domain, con-
nected to the domain of the example network. Each host found in the Internal
LANs and Administrative LAN in the target network domain contains the
following applications: MS Windows 7 gold, MS Outlook 2007, MS Office
2010, MS Internet Explorer 10. Two of the web servers found in DMZ in the
target network domain contain Apache HTTP Server 2.4.3, the other two
contain MS IIS Server 6.0. One of the database servers in DMZ contains Or-
acle9i Database Server 9.0.1.2, the other contains MySQL Database Server
5.1. The mail server in DMZ contains MS Exchange Server 2010. The vul-
nerabilities of each of these applications (with their pre- and postconditions)
are stored in a specific vulnerability database managed in our system.

The aim of these experiments is to compare the performance of the dis-
tributed search algorithm, proposed as the core attack graph building mech-
anism in this thesis work, with the performance of the serial search-based at-

6.3 Proposed Attack Graph Core Building Mechanism 98

tack graph building algorithms, which has worst-case time complexity O(N?),
where N denotes the number of network interfaces/hosts in the target net-
work. To the best of our knowledge, no attack graph building algorithm
proposed so far in the literature attains a worst-case time complexity bet-
ter than O(N?). Also, there has been no distributed attack graph building
algorithm proposed so far. By increasing the count of the network hosts
(except the routers and firewalls) in the Internal LANs in the target network
domain and in the external malicious network domain in each experiment
iteration, the performance of the serial (depth-first) search-based and the
proposed distributed attack graph building algorithm are compared. The
proposed distributed attack graph building algorithm is executed with two
to four search agents running on a computer with Intel X7550 quad-core
processor. The configurations of the firewalls are held constant across the
experiment iterations. The running times of both algorithms with respect to
the total number of the hosts in the resulting network (the target network
domain combined with the external malicious network domain) are shown in
Table 6.1.

Tab. 6.1: Running times of serial DFS and the proposed distributed, parallel al-

gorithm
Attack

Network Size Graph Size Running Time (sec.)
(Privilege Dist. (2 Dist. (3 Dist. (4
(Host Count) Count) Serial DF'S Agents) Agents) Agents)
18 352 1.85 5.95 5.93 5.99
27 680 2.68 6.67 6.83 6.85
36 1,008 3.82 7.71 7.30 7.99
54 1,664 5.19 9.41 9.25 10.47
90 2,976 10.72 13.09 12.24 12.79
126 4,288 19.59 21.11 18.25 16.79
162 5,600 32.35 29.73 27.36 25.63
198 6,912 50.49 38.69 36.48 34.65
243 8,552 78.29 62.65 48.85 46.66
288 10,192 124.23 86.32 79.45 68.55
333 11,832 171.35 122.63 105.41 88.68
387 13,438 231.86 167.87 122.28 100.22
441 16,754 295.57 200.52 151.82 121.71
495 19,936 385.36 261.82 198.21 145.25

In Table 6.1, the attacker privilege count in the resulting attack graph for
each target network is also shown. An attacker privilege is a type of at-
tack graph node and represents a specific right that is gained by an attacker
on a software application on a network host as described in Section 6.2.2.

6.3 Proposed Attack Graph Core Building Mechanism 99

Therefore, the number of the attacker privilege nodes in the resulting attack
graphs represent their size roughly. Since attack graph building algorithms
are mostly based on the traversal of the privileges and aim to eliminate the
duplicate expansion of the privileges as much as possible, the number of the
privilege nodes in the resulting attack graphs also serves as an indication
of the workload that must be performed by the attack graph building al-
gorithms. By indicating the workload for each experiment, we compare the
performance of the serial algorithm with our distributed algorithm in the
face of increasing workload. In each of these experiments, there is only one
initial attacker privilege that is supposed to be gained on one of the malicious
nodes. This initial privilege triggers the attack graph building process. The
page size for the virtual shared memory is set so that each page can contain
all the privileges associated with 16 network hosts. Additionally, for each
target network, the average number of the vulnerabilities per network host
is almost 10.

When the benefit (time decrease) gained from parallelism (increasing the
number of search agents executing the attack graph building process) ex-
ceeds the time increase caused by the message transfers among the agents,
the proposed distributed attack graph building algorithm becomes desirable.
For instance, starting from the experiment where the target network has 162
hosts (resulting attack graph has 5600 privileges), the proposed algorithm
running with the 2-agent configuration gives better performance in terms
of time with respect to the serial, graph search-based attack graph building
algorithm. Similar condition is true for the execution of the proposed algo-
rithm with the 3- and 4-agent configurations starting from the experiment
where the target network has 126 hosts. The performance gain by the dis-
tributed computation of attack graphs goes up to 40 percent or more using
only 4 agents for networks of at least 250 hosts. Figure 6.16 further depicts
the performance gains obtained by the distributed algorithm in terms of the
execution time.

We can also conclude from the experiment results that while the number of
the network hosts increases, the execution time for the 4-agent configura-
tion becomes much better than the 3-agent configuration and the execution
time for the 3-agent configuration becomes much better than the 2-agent
configuration. Namely, as the number of the network hosts increases, the
performance gain obtained with a specific number of agents compared to the
performance gain obtained with less number of agents increases. The benefit
of the distributed algorithm becomes more obvious.

6.3 Proposed Attack Graph Core Building Mechanism

100

Time (s)

/
/

/

/ /

/.

L

=

e

y y y T T T T T T T T T T d
18 27 36 54 90 126 162 198 243 288 333 387 441 495
Network Size

—Serial

= Distributed (2 Agents)
——— Distributed (3 Agents)
= Distributed (4 Agents)

Fig. 6.16: Performance comparison of the serial and proposed distributed attack
graph building algorithms in terms of execution time

7

Generation of Behavioural
Malware Signatures

The increased importance of the utilization of as much data as possible gener-
ated by the software running throughout a network in assessing the security
situation of the network gives rise to the proliferation of developments in
Security Event and Information Management (SIEM) tools. The first SIEM
tools using only manually generated rules to correlate software logs for detect-
ing the malicious activities occurring inside the network is being updated to
contain advanced detection capabilities that are anomaly and/or signature-
based. The trend in developing signature-based detection techniques is to-
wards using automatically generated behavioural malware signatures instead
of content-based (byte sequence-based) ones. This supports the detection of
zero-day malware which can be essentially packed, polymorphic or meta-
morphic variants of existing malware and perform semantically equivalent
with respect to the existing malware, but can have totally different syntactic
structures.

A behavioural signature characterizes the effects of a family of malware on
a target operating system (OS) in terms of the OS operations performed by
the malware on specific OS objects. The examples of these OS objects are
the files, registry keys/values, processes, services, threads, memory areas,
mutexes and network sockets. The OS operations performed by a malware
sample file and the affected OS objects can be extracted by executing the file
in a dynamic software (or malware) analysis tool. Such a tool basically exe-
cutes the file in a virtual machine (sandbox) environment, collects the system
(or API) calls performed by the file and optionally abstracts the system calls
into high level behavioural artifacts in order to generate a concise, system-

102

independent behavioural profile for the file. The behavioural profiles for the
malware sample files are clustered to generate behavioural signatures, after
converting them into a format that can be processed by specific clustering
algorithms. For each cluster, a behavioural signature is generated. Namely,
the outputs of the dynamic software analysis tools serve as the main inputs
for generating malware behavioural signatures.

A behavioural signature can also be generated without executing the malware
sample files in a sandbox. For this purpose, static software analysis methods
can be utilized. Control and data flow diagrams generated after disassembling
a malware sample file can be used with the import address tables to generate
a system (API) call graph for the file. The call graphs for different malware
files are compared by using a specific similarity measure and the comparison
results are used to cluster them. The signatures can be created in the form
of a graph of system calls for each cluster.

Anti-virus vendors receive hundreds of thousands of files per day, many of
which can be indeed malicious (the variants of existing malware). The possi-
bly huge amount of malicious files appeared each day necessitates the devel-
opment and usage of a scalable and incremental clustering and signature gen-
eration method for them. Additionally, the generated behavioural signatures
can be used in the context of security information and event management.
For this purpose, the format of the generated signatures should allow the
implementation of matching among the signatures and software logs easily.
For instance, to represent a signature with a graph structure holding con-
ditions on its edges that specify the to be satisfied relationships among the
fields of the corresponding graph nodes can introduce the need for complex
and resource-intensive algorithms to match the logs into the signatures. In
addition to the conditions among the fields of a single node, the conditions
on the edges should also be satisfied in this case.

The generation of the behavioural signatures by processing sample malicious
files requires the determination of:

e A method for the generation of the behavioural artifacts (system calls,
call graphs, high-level artifacts representing the OS state changes, etc.)
of a malicious file,

e A similarity (distance) computation method to measure the similarity
(distance) between the artifacts of a pair of malicious files,

e A clustering (unsupervised) or classification (supervised) method to
cluster or classify the malicious files by using the computed similarity

103

(distance) values,

e A method for generating signature(s) for each of the resulting clusters
or classes,

e A method for labeling the generated signatures (determining the family
labels).

The main contribution of this thesis work in this context is to propose a
method for clustering malware files that is incremental and has linear av-
erage time complexity. The method also generates a behavioural signature
for each malware cluster in a form that can easily be used in SIEM tools for
detecting the malicious system activities. These activities can be detected by
computing the matchings among the collected system/application logs and
the generated behavioural signatures. There is no condition defined on any
component of the signature that specifies a relationship among the values of
components’ fields. The proposed method for signature generation uses the
system (or API) calls generated via dynamic analysis of each sample mali-
cious file as input. The system calls performed by a file is divided into groups
according to their generic operation (read, write, create, etc.) and OS object
(registry key, file, memory area, etc.) type. The computation of the simi-
larity between the system calls of a pair of files is performed via application
of a modified form of Jaccard distance (weighted Jaccard distance) between
the corresponding system call groups. The proposed clustering algorithm is
tree-based and the signatures are computed by a simple depth-first traversal
of the generated tree.

The malware behavioural signature generation system proposed in this thesis
work introduces an incremental, tree-based, scalable clustering algorithm to
group malware having similar behavioural artifacts. For each of the resulting
clusters, a signature that can be easily used to match against the software
logs collected by a SIEM tool is generated. The workflow for the system is
shown in Figure 7.1.

The system takes the system (or API) calls performed by a malware sample
as input. The input can be generated by executing the malware sample in
any virtual sandbox (or dynamic malware analyser) like Cuckoo sandbox [16]
or Anubis [39]. (We use the behavioural reports downloaded from the web
site https://malwr.com for sample malware.) The system calls are processed
to generate the behavioural artifacts for the sample. A behavioural artifact
consists of operating system (OS) operations of a specific type performed
on OS objects of a specific type. There are different types of operations

104

Logic for the determination of
OS object identifiers via using
system (or API) call names and
their parameter names

System (or API)
calls performed by a

F N

malware sample

Create the behavioural artifacts
for the sample by processing

Mapping between system (or
API) call names and OS
operation/object types

the system calls

A 4

Behavioural artifact and
malware component tree
models

Behavioural artifacts
(OS operations)

h 4

Add the behavioural artifacts into the
malware component tree

A 4

Updated malware
component tree

h 4

Determine the cluster of malware
sample and generate/update the
signature for each cluster

!

Updated cluster
signature 1

Updated cluster | ————-
signature 2

Updated cluster
signature k

Fig. 7.1: Workflow for the malware behavioural signature generation

system

105

like read, write, create, delete, execute and terminate operations that can be
performed on different types of OS objects like registry keys, files (includ-
ing directories), section objects (memory areas), processes, services, network
sockets and synchronization objects such as semaphores. Each malware sam-
ple has the following behavioural artifacts: registry entry read, registry entry
write, registry entry create, directory read, directory write, directory create,
directory delete, file execute, memory area read, memory area write and net-
work socket write. Not all OS operation type-object type combinations are
used in the proposed system, rather some combinations are merged (e.g.,
process create and process execute are merged into file execute) and some
are eliminated to increase performance and decrease the effect of name varia-
tions (e.g., operations for synchronization objects which mostly have differing
names across malware variants), some are not used, since they are not mean-
ingful (e.g., registry key execute). Also, the behavioural artifact file execute
is associated with the execution of a file in a specific directory, where the
name of the file is not important.

The behavioural artifacts of the malware samples are organized in a tree
structure which is called the malware component tree. The addition of a
behavioural artifact to the tree can include the merging of the artifact with
another artifact previously added into the tree, or the insertion of the arti-
fact as a separate node. During the addition, the artifact is compared to the
existing artifacts on the tree which have the same OS operation and object
type. After all the behavioural artifacts of a malware sample are added to
the malware component tree, its cluster is determined and the behavioural
signatures for the affected clusters are updated. The following subsections
details the components of the workflow illustrated in Figure 7.1. Section 7.1
describes the behavioural artifact and malware component tree models. The
generation of the behavioural artifacts from the system (or API) calls per-
formed by a malware sample is discussed in Section 7.2. The generation of
the malware component tree during incremental clustering of the malware
samples is described in Section 7.3. Section 7.4 describes the generation of
the behavioural signatures for the malware clusters based on a depth-first
traversal on the malware component tree. In Section 7.5, the experiments
performed to measure the performance and accuracy of the proposed malware
behavioural signature generation system are described.

7.1 Behavioural Artifact and Malware Component Tree Models 106

7.1 Behavioural Artifact and Malware
Component Tree Models

This section comprises the description of the formal data models of the ob-
jects used to represent the behavioural artifacts and malware component tree.
In this context, two models are described. The first model is the behavioural
artifact model and the second one is the malware component tree model.
The description of the behavioural artifact model includes the formal defini-
tions of an OS object, OS object occurrence, OS operation and a behavioural
artifact as given below:

Definition 7.1.1. An OS object is a two-element tuple (T'ype, [dentifier)
indicating a data structure implemented by an operating system and used by
software to facilitate their activities such as file-system, process and network
management. The Type field denotes whether the OS object is a registry
key, file (directory), memory area used by a process or network socket. The
Identi fier field denotes the unique identifier for the OS object. Its value is
determined according to the type of the OS object. If the type of the OS
object is registry key, the Identifier field is set to the name of the registry
key indicated by the OS object. If the type is file, the Identifier field is
set to the absolute location of the directory of the actual file indicated by
the OS object. If the type is network socket, the Identifier field is set to
the concatenation of the protocol and destination port of the network socket
related to the OS object.

Definition 7.1.2. An OS object occurrence is a two-element tuple
(0sObject, occurrenceCount) defining the count of occurrences of an OS ob-
ject in any related context. The osObject field denotes an OS object, the
occurrenceCount field indicates the occurrence count for the OS object in
the defined context.

Definition 7.1.3. An OS operation is a constant denoting the type of the
operation that is performed on a set of OS objects. Its possible values are
read, write, create, delete, execute.

Definition 7.1.4. A behavioural artifact is a three-element tuple
(0sObjectType, osOperation, 0sObjectOccurrences) indicating a concept
which groups a number of instances of the same OS operation on a set of
OS objects of the same type. The 0sObjectType field denotes the type of all
the OS objects operated upon by the corresponding operation indicated by

7.1 Behavioural Artifact and Malware Component Tree Models 107

the osOperation field. 0sObjectOccuurrences is a list of OS object occur-
rence objects each holding an OS object with a different identifier. Example
behavioural artifacts are registry entry read, registry entry write, directory
(file) read, directory write, memory area read, memory area write and net-
work socket write. For instance, the behavioural artifact registry entry read
of a malware sample contains the identifiers of the registry keys read by the
sample.

The description the malware component tree model includes the formal defi-
nitions of a malware component and malware component tree as given below:

Definition 7.1.5. A malware component is a three-element tuple
(behavioural Arti fact, childComponents, malwareSample Names) that en-
capsulates a behavioural artifact in the context of a tree structure. The
behavioural Arti fact field represents the corresponding behavioural artifact
and the childComponents field contains references to the child malware com-
ponents of this malware component. The malwareSampleNames field stores
the names of the malware sample files contributing to the formation of the
behavioural artifact of this malware component.

Definition 7.1.6. A malware component tree is a tree defined by a
three-element tuple (nodes, edges,rootNode), where nodes is the set of
nodes and edges is the set of edges of the tree. A node of the tree
is a malware component and an edge of the tree is a two-element tuple
(sourceNode, target Node), where sourceNode indicates the source malware
component and target Node indicates the target malware component for the
edge. The root malware component of a malware component tree is indicated
by the root Node field. The behavioural Artifact field of the root malware
component is set to null.

Only one malware component tree is generated during the clustering of the
malware samples. A layer of this tree is considered to be composed of the
malware component nodes having the same depth value (starting from 0).
The tree is built in such a way that requires the placement of the behavioural
artifacts in a layer that have the same OS operation and object type. The tree
has 11 layers corresponding to the following types of behavioural artifacts:
registry entry read, registry entry write, registry entry create, directory read,
directory write, directory create, directory delete, file execute, memory area
read, memory area write and network socket write. In first layer of the
malware component tree, there are registry entry read behavioural artifacts,
in the second layer there are registry entry write behavioural artifacts, and
so on. In the last layer of the tree, there are network socket write behavioural
artifacts. An example malware component tree is shown in Figure 7.2.

7.1 Behavioural Artifact and Malware Component Tree Models 108

Registry Read Registry Read
Software\Policies\Microsoft\Windows\Install 4 SOFTWAREMicrosoft\Windows\CurrentVersion\Uninstall\Branding 2
Software\Microsoft\Windows NT\CurrentVersion\DRIVERS3 5 Software\Microsoft\Windows NT\CurrentVersion\DRIVERS3 4
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\AddressBook 7 SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\AddressBook 6
|
Registry Write Registry Write
Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders 4 Sof i ertifi Y 2
Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders 6 Software\Microsoft\Windows NT\CurrentVersion\Winlogon 4
—
/ - —— _
/ - _
yd _—
File Write File Write
C:\WINDOWS\system32 1 C:\WINDOWS\Registration 2

C:\Documents and Settings\User 1 C:\Documents and Settings\User\Local Settings\History 2

C:\Documents and Settings\User\Application Data 1 C:\DOCUME~1\User\LOCALS~1\Temp 3

Memory Area Read Memory Area Read Memory Area Read

C:\WINDOWS\system32\alg.exe

C:\WINDOWS\system32\smss.exe 2 C:\WINDOWS\system32\services.exe 1

C:\WINDOWS\system32\lsass.exe

C:\WINDOWS\system32\spoolsv.exe 1 C:\WINDOWS\system32\svchost.exe 1

Fig. 7.2: An example malware component tree

7.2 Generation of Behavioural Artifacts 109

7.2 Generation of Behavioural Artifacts

The behavioural artifacts for a malware sample are generated by processing
the system (or API) calls performed by the sample. Firstly, the following
11 behavioural artifacts that have no content (no OS object occurrences) are
created for the sample: registry entry read, registry entry write, registry entry
create, directory read, directory write, directory create, directory delete, file
execute, memory area read, memory area write and network socket write.
During the processing of the system calls, the OS object occurrences are
generated. According to the results of a keyword-based searching on the
name of a system call, the behavioural artifact to which this system call can
contribute is found. For instance, if the name of a system call contains both
the keywords Reg and Read, then it is decided that this system call specifies
an OS object for the registry read behavioural artifact. The keywords to be
searched are determined according to the format of the system (or API) calls
for the supported operating systems.

After finding the behavioural artifact to be contributed to by the current
system call, which parameter of this system call specifies an identifier for an
OS object is determined. This determination is also performed in a hard-
coded way according to the the format of the system (or API) calls for
the operating systems supported by the proposed system. A behavioural
artifact should not contain multiple OS object occurrences containing the
same OS object. To ensure this, the OS object identifiers are stored and
checked for duplicates during the processing of the system calls for a sample.
The occurrence count for each of the created OS object occurrences for each
behavioural artifact is set to 1. This indicates that only one malware sample
performs the operation indicated by the behavioural artifact on the OS object
contained by an OS object occurrence.

Another point to note is that for file operations, only the absolute path of the
directory containing the related file is used as the corresponding OS object
identifier. For registry operations, the user identifiers are found and elimi-
nated from the registry key names. Additionally, operating systems mostly
generate handle identifiers for objects such as files, threads and processes,
when creating them via specific system calls and utilize these identifiers in-
stead of names or locations of the objects in the subsequent system calls
operating on these objects. Therefore, the proposed system stores a map-
ping between the handle identifiers and the object names or locations during
the processing of the system calls. When a handle identifier is referenced,

7.3 Incremental Clustering of Malware 110

the system finds the corresponding object name or location and determines
an OS object identifier from this data.

7.3 Incremental Clustering of Malware

In this thesis work, a tree-based, incremental malware clustering algorithm
is proposed. The algorithm uses the generated behavioural artifacts for the
input malware samples and has linear time complexity on the number of the
input malware samples. The clustering is performed via the construction and
update of the single malware component tree. The behavioural artifacts for
each malware sample are used to update the nodes of the malware component
tree. At the beginning, the tree has only one malware component which is
the root node. When the system (or API) calls for a malware sample are
input to the system, the behavioural artifacts for the sample are generated.
Then, the generated artifacts are added to the malware component tree in
the form of malware components by using the algorithm shown in Figure 7.3.

The addition of the behavioural artifacts of a malware sample to the malware
component tree is conducted via the AddBehavioural Artifacts() procedure
as follows: At the beginning of the procedure, the root node of the tree
is the current node (currentMalwareComponent). The first behavioural
artifact to be added is compared against all the existing behavioural ar-
tifacts in the first layer of the tree. The existing artifact which has the
maximum similarity to the first behavioural artifact is tried to be found. If
there is no existing artifact in the first layer or the maximum similarity be-
tween the existing artifacts and the first behavioural artifact is smaller than
a pre-specified threshold value (M alwareComponentSimilarityT hreshold),
then the first behavioural artifact is added as a child of the root (current)
node of the tree and is made the current node. Otherwise, a common be-
havioural artifact (maxCommonArtifact) is formed by merging the first
behavioural artifact of the malware sample and the existing artifact in the
first layer of the tree which is most similar to it. The malware component
(maxSimilarChildNode) containing this existing artifact is updated with
the common behavioural artifact (mazCommonArtifact) and is made the
current node. The procedure then proceeds with the second behavioural
artifact of the malware sample and so on.

Figure 7.4 illustrates the addition of the behavioural artifacts of a malware
sample to the malware component tree. A behavioural artifact of the malware

7.3 Incremental Clustering of Malware 111
1: MalwareComponentSimilarityThreshold < 0.8
2: procedure ADDBEHAVIOURALARTIFACTS(Behavioural Artifacts, MalwareSampleName,

30:
31:

MalwareComponentTree) > Inputs are the behavioural artifacts for a malware sample, the name of
the malware sample and the malware component tree.

currentM alwareComponent <— M alwareComponentTree.rootNode

for all behavioural Artifact € Behavioural Artifacts do

newM alwareComponent < newM alwareComponent()
newM alwareComponent.behavioural Arti fact <— behavioural Artifact
new M alwareComponent.malwareSample N ames.add(M alwareSample N ame)
addedT oCurrentNodeAsChild < false
maxSimilarityV alue < MalwareComponentSimilarityT hreshold
mazxSimilarChildNode < null
maxCommonArtifact < null
for all childM alwareComponent € currentM alwareComponent.childComponents do
(commonArti fact, similarityV alue) <+
ComputeSimilarityBetweenMalwareComponents(child M alwareComponent,
newM alwareComponent)
if similarityValue > maxSimilarityV alue then
addedT oCurrentNode AsChild + true
maxSimilarityV alue < similarityV alue
maxSimilarChildNode < childM alwareComponent
maxCommonArtifact < commonArtifact
end if
end for
if addedT'oCurrentNodeAsChild = true then
mazSimilarChildN ode.behavioural Artifact < maxCommonArtifact
maxSimilarChildN ode.malwareSample Names.add(M alwareSample N ame)
currentM alwareComponent <— mazSimilarChildN ode
else
currentMalwareComponent.childComponents.add(new M alwareComponent)
currentM alwareComponent < newM alwareComponent
end if

end for

32: end procedure

Fig. 7.3: The algorithm for the addition of the behavioural artifacts of a malware

sample to the malware component tree

7.3 Incremental Clustering of Malware 112

sample is merged with an existing artifact x on the corresponding layer of
the tree which is most similar to it, if the similarity between the artifacts is
greater than the threshold M alwareComponentSimalarityThreshold. If the
merging takes place, the artifacts on the next layer which will be compared
to the next artifact of the malware sample are selected as the artifacts of the
children of the malware component holding the artifact x. This is shown by
straight vertical lines that are not dashed and have no label.

New Malware Sample
(Artifacts)

<Regislry Read>

Registry Write

< File Write >

Gegistry Read DGegistw Read 9— Registry Read i —Gegistry Read n) Gegistry Read D

Merged:

Gegisvy Write DGegistry Write 9— —{ Registry Write] }— —Gegistry Write mD Gegistry Write rD
[Merged
g

< File Write 1 >< File Write 2 >— —{ File Write k — —< File Write p-1 >< File Write p >

J
g

Memory Area
Write 1

O

Memory Area
Write 2

>_

Memory Area
Write |

Memory Area Memory Area
Write g-1 Write q

Memory Area
Write

d

Network Socket
Write

| —
Network Socket Network Socket \ Network Socket Network Socket Network Socket
Write 1 Write 2 Write y Write x-1 Write x
| Merger

d

4'7

Fig. 7.4: The illustration of the addition of the behavioural artifacts of a sample
malware to the malware component tree

The computation of the similarity between two malware components, so
to say between their contained behavioural artifacts, is performed by the
ComputeSimilarity Between M alwareComponents() function. This func-
tion also computes the common behavioural artifact for the behavioural arti-
facts contained by the input malware components. The common behavioural
artifact contains the union of the OS objects contained by the two input be-
havioural artifacts. An OS object in the common behavioural artifact is en-
capsulated in an OS object occurrence object whose occurrence count value is
determined by summing the occurrence count values of the corresponding OS
object occurrences in the input behavioural artifacts. The pseudo-code for
the ComputeSimilarity BetweenM alwareComponents() function is shown
in Figure 7.5.

7.3 Incremental Clustering of Malware 113

1: function COMPUTESIMILARITY BETWEENMALWARECOMPONENTS(
MalwareComponentl, M alwareComponent2) > Malware components to be compared are the
inputs.
behavioural Artifactl < MalwareComponentl.behavioural Artifact
behavioural Artifact2 < MalwareComponent2.behavioural Artifact
commonBehavioural Artifact < newBehavioural Artifact()
commonBehavioural Arti fact.osObjectType < behavioural Artifactl.osObjectType
commonBehavioural Artifact.osOperation < behavioural Artifactl.osOperation
intersectionCount < 0
totalCount < 0
intersectingOSObjectOccurrences < newList()
for all 0sObjectOccurrencel € behavioural Artifactl.osObjectOccurrences do
0sObjectIdl +toLowerCase(osObjectOccurrencel.osObject.Identifier)
intersectedOSObjectOccurrence < null
for all 0sObjectOccurrence2 € behavioural Artifact2.0s0ObjectOccurrences do
0sObject1d2 +toLowerCase(osObjectOccurrence2.0sObject.Identi fier)
if 0sObjectld]l = 0sObjectld2 then
intersectingOSObjectOccurrences.add(osObjectOccurrence2)
intersectedOSObjectOccurrence < 0sObjectOccurrence2
end if
end for
copyOsObjectOccurrencel <+ copy(osObjectOccurrencel)
if intersectedOSObjectOccurrence # null then
intersectionCount+=copyOsObjectOccurrencel.occurrenceCount
intersectionCount+=intersectedOSObjectOccurrence.occurrenceCount
copyOsObjectOccurrencel.occurrenceCount+=
intersectedOSObjectOccurrence.occurrenceCount
end if
total Count+=copyOsObjectOccurrencel.occurrenceCount
commonBehavioural Arti fact.osObjectOccurrences.add(copyOsObjectOccurrencel)
end for
for all 0sObjectOccurrence2 € behavioural Artifact2.0s0ObjectOccurrences do
if not intersectingOSObjectOccurrences.contains(osObjectOccurrence2) then
copyOsObjectOccurrence2 < copy(osObjectOccurrence2)
commonBehavioural Arti fact.osObjectOccurrences.add(copyOsObjectOccurrence2)
total Count+=copyOsObjectOccurrence2.occurrenceCount
end if
end for
similarityV alue < intersectionCount/totalCount
38: return (commonBehavioural Artifact, similarityV alue)
39: end function

WWWWWWWWNINNNNNINNDINDN R
R g e N N e o o =R R

Fig. 7.5: The computation of the similarity between the behavioural artifacts con-
tained by two malware components

7.3 Incremental Clustering of Malware 114

The ComputeSimilarity BetweenMalwareComponents() function com-
putes the similarity between the behavioural artifacts by summing the occur-
rence count of the OS objects contained by both artifacts and then dividing
this value to the total occurrence count value for both artifacts. This simi-
larity computation would be similar to the Jaccard distance computation, if
all the occurrence count values were kept as 1.

Each path of the malware component tree forms a cluster. The malware
sample names stored on the leaf node for each path indicate the malware
samples belonging to the cluster corresponding to this path. The paths (the
clusters) of the tree can be found by a simple depth-first traversal on the
tree.

During the insertion of a behavioural artifact z into the malware com-
ponent tree, the AddBehavioural Artifacts() procedure compares the ar-
tifact © to F existing artifacts. If we set the value of the threshold
MalwareComponentSimilarityT hreshold to 1.0, then F' denotes the num-
ber of different behavioural artifacts which are contained by the malware
samples and have the same OS operation and object type as x. This num-
ber is actually far smaller than the number of malware samples inserted
into the tree. It is bounded by the number of clusters (malware fami-
lies) generated by the procedure. If we decrease the value of the threshold
M alwareComponentSimilarityT hreshold, the value of F also decreases.
When we increase the accuracy of the proposed clustering according to a
reference clustering (that can be obtained by majority voting across the de-
cisions/labellings of different anti-virus products) by adjusting the threshold
MalwareComponentSimilarityT hreshold, the value of ' becomes closer to
the number of clusters generated by the reference clustering. Therefore, the
time complexity of the insertion of the behavioural artifacts of all the mal-
ware samples into the tree (namely, the clustering of all the malware samples)
becomes closer to O(NF), where N is the number of all malware samples.
This complexity is much less than O(N?). The important question is how
much closer the value of F' can become to the number of clusters (different
malware families) generated by the reference clustering. We try to answer
this question in Section 7.5 by computing the accuracy and performance of
the proposed method in different experimental settings.

7.5 Experiments 115

7.4 Generation of Behavioural Signa-
tures

A behavioural signature is generated for each cluster represented by a path
on the malware component tree. The behavioural signature for a cluster is
simply composed of all the malware component nodes on the path corre-
sponding to the cluster. The signatures are generated by applying a simple
depth-first search on the malware component tree. The generated signatures
can be easily used by a SIEM tool in matching the collected software logs
against the behavioural artifacts contained by the components of the signa-
tures. A log can be matched to an OS object occurrence in a behavioural
artifact by checking the OS object identifier of the occurrence and OS oper-
ation type of the artifact against the corresponding information in the log.
In this matching process, the occurrence counts in the matched OS object
occurrence objects should also be taken into account, since they indicate the
count of malware which operate upon the OS objects contained by the OS
object occurrence objects. If a log of the software can be matched to an OS
object occurrence with a higher occurrence count value, the probability of
this software being malicious is higher. If a number of logs can be matched to
a portion of the OS object occurrences in the behavioural artifacts contained
by a signature, then the signature can be instantiated. The lower bound for
the value of this portion can be pre-specified.

7.5 Experiments

There are two sets of experiments performed to measure the accuracy and
efficiency of the malware behavioural clustering system proposed in this thesis
work. All of the experiments are conducted on a single server with Intel Xeon
E5520 quad-core 2.26 GHz processor and 16GB memory. The behavioural
reports for almost 3000 malware sample files collected from the web site
https://malwr.com form the basis for both sets of experiments. They are
all Windows operating system malware having various file extensions (.pdf,
.exe, .doc, .xls, etc.). The malware families related to these files are found by
feeding the MD5 hashes of them to the VirusTotal web site [80]. These files
are related to a wide range of malware families defined by several off-the-shelf
anti-virus products.

7.5 Experiments 116

The first set of experiments measures the accuracy of the proposed mal-
ware clustering system with respect to the selected 12 off-the-shelf anti-virus
products. The collected malware sample files are used for this purpose. The
malware family labels assigned to each file by each of the 12 off-the-shelf
anti-virus products are found by referring to the VirusTotal web site. If
more than half of these 12 anti-virus products label a file as clean, the file
is removed from the list of collected sample files. At the end, 237 malware
files remain in the sample files list. These 237 files are used to measure the
accuracy of the proposed clustering system.

A reference clustering is needed for the 237 malware files to compute the
accuracy of the proposed clustering system. The accuracy of the proposed
clustering system is computed by calculating the precision and recall value
for each experimental setting. The precision and recall values are calculated
as in [39]. We calculate a precision value P; for each cluster C; (j starting
from 1) generated by the proposed system as follows:

Pj = max |C; NTil (7.1)
where ¢ is the total number of reference clusters, T} is the j'h reference
cluster. The overall precision value P is calculated as follows:

P=(Y_ P)/n (7.2)

1<i<m

where m is the total number of the malware clusters generated by the pro-
posed system and 7 is the total number of the malware files clustered (237 in
our case). We calculate a recall value R; for each reference cluster j (starting
from 1) as follows:

R; = max |C; N Tj| (7.3)

The overall recall value R is calculated as follows:

R=()_ Ri/n (7.4)

1<e<t

It is not needed to determine descriptive labels (such as Trojan.Zeus, Adware,
etc.) for the reference clusters to compute the overall precision and recall
values for the proposed system.

The reference clustering for the selected 237 malware files is created by ac-
counting for the majority voting method on the decisions of the selected 12
anti-virus products on the similarity of each pair of malware files. Two mal-
ware files are supposed to be similar, if more than half of the 12 anti-virus

7.5 Experiments 117

products decide that they should be in the same cluster. The decision of
an anti-virus product for a pair of malware files is determined by compar-
ing the labels assigned to the files by the anti-virus product. If the labels
match after removing the malware variant indicators (for instance, in the
label Trojan.Zbot.a, a is supposed to be the variant indicator) that are gen-
erally found at the end of the labels, then the two files should be in the same
cluster according to this anti-virus product. The removal of the malware
variant indicators is performed differently for the labelling schemes used by
different anti-virus products.

The reference clustering is formed as follows: First, each malware file is
put into a separate reference cluster. Then, the malware files are processed
pairwise. If for a pair of malware files, more than half of the selected anti-
virus products decide that the files should be in the same cluster, then the
reference cluster for the second file is changed as the reference cluster for
the first file in the pair. At the end of the processing of all the file pairs, if
any reference cluster is found to contain no files, it is deleted. For the 237
malware files used in the experiments, the reference clustering contains 119
clusters.

The only parameter to the proposed clustering system is the thresh-
old MalwareComponentSimilarityThreshold which determines the min-
imum similarity value between two behavioural artifacts to merge them
into a single behavioural artifact during the addition of the behavioural
artifacts into the malware component tree. The details about the ad-
dition of the behavioural artifacts of a malware file into the malware
component tree are given in Section 7.3. The definition of the thresh-
old MalwareComponentSimilarityThreshold is shown in the algorithm
in Figure 7.3. We compute the overall precision and recall values
for the proposed clustering system for different values of the threshold
MalwareComponentSimilarityT hreshold. Table 7.1 shows the results of
this computation.

The overall precision and recall values for each of the selected 12 anti-virus
products are also calculated. The maximum, average and minimum pre-
cision values for all of these anti-virus products are 0.85, 0.72 and 0.53.
The maximum, average and minimum recall values for all of these anti-
virus products are 0.79, 0.53 and 0.20. When we examine the results
for the proposed clustering system in Table 7.1, we realize that the pre-
cision value for the proposed system remains over the average precision
value for the anti-virus products for the values of the similarity thresh-
old (M alwareComponentSimilarityThreshold) greater than approximately

7.5 Experiments 118

Tab. 7.1: Overall precision and recall values for the proposed clustering system

Similarity Overall Overall
Threshold Precision Recall
0.9 0.81 0.55
0.8 0.78 0.62
0.7 0.75 0.67
0.6 0.72 0.67
0.5 0.67 0.68
0.4 0.64 0.68
0.3 0.62 0.68
0.2 0.57 0.69
0.1 0.53 0.76

0.6. When we increase the similarity threshold value to 0.7, the recall value
for the proposed system remains almost constant at 0.67, but the precision
value increases to 0.75. When we continue to increase the value of the sim-
ilarity threshold, the recall value for the proposed system decreases sharply.
As a result, it is concluded that the most appropriate value for the similar-
ity threshold can be selected at around 0.7. At this value for the similarity
threshold, the precision and recall values for the proposed system are suffi-
ciently greater than the average precision and recall value for the selected 12
anti-virus products. Also, there are 127 clusters generated by the proposed
system at this value for the similarity threshold. It is not much greater than
the number of clusters generated for the same malware data set (119 clusters)
by the reference clustering described above.

When we examine the previous works in the literature, we realize that some
of them attain better results for the precision and recall of their malware
clustering methods. However, the malware sample files in the datasets used
by the experiments in all of these works are mostly labelled as malware by
almost all of the anti-virus products. For instance, many previous works use
the CWSandbox [88] example dataset which contains sample files that are
labelled as malware by nearly all the popular anti-virus products. After our
examinations, we conclude that a measure can be defined for quantifying the
difficulty of clustering the malware sample files in a dataset. This measure
can compute the ratio of the malware labels to all the labels (clean plus
malware labels) assigned to the files in the dataset by the popular anti-virus
products. The more the value of this measure for a dataset, the less difficult
to cluster the malware sample files in this dataset. For our dataset containing
237 malware sample files, the value of this measure is 0.62 which is computed
by taking into account the labels assigned to the sample files by the selected
12 anti-virus products. We believe that without the specification of a value
for this measure, it is not meaningful to compare the precision and recall

7.5 Experiments 119

values for two different malware clustering systems.

The second set of experiments measures the efficiency of the proposed mal-
ware clustering system in terms of the execution time. The 237 malware
sample files are augmented (multiplied) by copying them at each experiment
iteration for this purpose. The proposed malware clustering system is used
to cluster the multiplied numbers of malware sample files and the execution
times for the clustering process are collected for each iteration. The files are
fed into the proposed system incrementally. When passing from experiment
iteration = to x + 1, the number of files are augmented and only the newly
created files are fed into the system for incremental clustering. For instance,
when passing from the first to the second iteration, only the newly created
2370 sample files are fed into the system incrementally, even if there are 3555
files in total in the second experiment. During the experiments for measur-
ing the efficiency of the proposed malware clustering system, the value of the
similarity threshold (M alwareComponentSimilarityT hreshold) is held con-
stant at 0.7. Table 7.2 shows the execution time for the proposed clustering
process for different number of malware sample files added incrementally.

Tab. 7.2: Malware clustering execution times for the proposed malware clustering

system
Total Number Number of Incremental
of Malware Added Mal- Execution Time
Files ware Files for Clustering
(seconds)
1185 - 352
3555 2370 774
8295 4740 1614
17775 9480 3726
36735 18960 7661
74655 37920 15012
150495 75840 32812
302175 151680 60616

It can be deduced from Table 7.2 that the increase in the execution time with
the number of malware files which is doubled in each iteration is lower than
quadratic increase. Actually, it is almost linear in the number of malware
files. Since the collected sample malware files are copied in each iteration
to augment the malware sample set, the malware families and therefore the
upper bound for the breadth of the malware component tree do not change
across the iterations. When we double the number of malware files across
the iterations, the execution time for the incremental clustering is roughly
doubled in each iteration (actually, it becomes slightly more than double

7.5 Experiments 120

of the execution time of the previous iteration). These results support the
complexity reasoning for the proposed incremental clustering algorithm in
Section 7.3. This reasoning indicates that the execution time complexity of
the proposed algorithm is O(NF), where N is the number of malware files
to be clustered in each iteration and F'is bounded by the number of malware
families generated by the proposed clustering system (which is actually an
upper bound on the breadth value of the malware component tree). When
the number of malware families is held constant, the time complexity of the
proposed clustering algorithm changes almost linearly with the number of
malware files (with the linearity constant almost 1) as can be deduced from
Table 7.2. (In this discussion, it should be noted that the number of the
clusters (128) generated by the proposed clustering system when the similar-
ity threshold value is set to 0.7 is comparable to the number of the clusters
(119) generated by the reference clustering for the same data set and it is
not changed across the experiment iterations shown in Table 7.2.) In addi-
tion, when we consider the number of malware files received per day by the
anti-virus companies is on the order of 100Ks, we believe that the computed
execution time for clustering 150K malware samples (151680 samples) is
reasonable for the generation, update and deployment of malware signatures
before any of these malware propagate to a wide range of machines on the
Internet.

The utilization of an incremental, tree-based algorithm for clustering malware
files seems to have significant advantages over using clustering algorithms re-
quiring the execution of the algorithm on all the malware files collected so far
with each introduction of a set of new malware files. The proposed incremen-
tal clustering algorithm has also another advantage. It does not require the
computation of the similarity (distance) values between each pair of malware
files to be clustered. It allows even around 150K malware files to be clustered
in a reasonable time interval incrementally. The behavioural signature for
the malware files belonging to a cluster is generated by a simple depth-first
search on the clustering (malware component) tree. The signatures are gen-
erated in a format that easily allows to match them against the software logs
collected across a target network (in the context of SIEM tools). They do
not contain any conditions that need to be satisfied among the fields of their
components, which may necessitate the usage of more complex and resource-
intensive signature matching algorithms during the software log analysis.

The proposed malware behavioural clustering system now supports the clus-
tering of only the malware files that are specific to the Windows operating
system, since it only provides support for the processing of the Windows
system and API calls for now to generate the behavioural artifacts. As a fu-

7.5 Experiments 121

ture work, appropriate extensions allowing to generate behavioural artifacts
from system (or API) calls specific to the other operating systems can be

implemented and integrated into the system.

8

Attack Scenario Detection Using
Network-wide Logs

The main aim of the overall system proposed in this thesis work is to de-
tect ongoing attack scenarios from the collected logs by creating dynamically
expanded partial attack graphs. The inputs to the attack scenario detec-
tion process are the full attack graph for the target network, the generated
behavioural malware signatures and the logs collected across the target net-
work. The logs are composed of the entries in the log files of various software
running on the hosts of a target network. We first apply log preprocessing to
convert the logs collected from different software into a common, normalized
format and then eliminate the spurious, duplicate logs. The remaining logs
are then classified as primary or secondary. A primary log directly indicates
an attack. It can be a vulnerability exploit attempt among others. A sec-
ondary log can not indicate an attack by itself, but a collection of more than
one secondary log can indicate an execution of a malware and in this case,
each secondary log of the collection represents a malicious activity.

After log preprocessing, we apply different processing to the primary and
secondary logs to determine the attack scenario elements indicated by them.
The attack scenario elements can be matched directly to the attack graph
nodes. There are three types of attack scenario elements that are defined in
the system:

e Usage of a privilege by an attacker which correspond to privilege nodes
in the attack graphs,

e Vulnerability exploits by an attacker which correspond to vulnerability
exploit nodes in the attack graphs,

8.1 Log Collection 123

e Usage of an information source (e.g. accessing a credentials store, read-
ing cookie files) which correspond to information source usage nodes in
the attack graphs.

The attack scenario elements are used to mark the appropriate nodes in
the partial attack graphs as alarmed nodes during the correlation of the
log processing results. The alarmed nodes in the partial attack graphs are
used to form attack scenarios by applying partial attack graph filtering and
determine the nodes in the partial attack graphs to be further expanded in
each correlation phase during the life cycle of the system. After expansion
of the partial attack graphs, they are checked pairwise to see if they can be
merged.

As stated above, we process the software logs collected throughout the target
network in streaming mode to detect the ongoing attack scenarios targeted to
the network. Four phases of operations are defined in this scope: log collec-
tion, log preprocessing, log processing and log processing results’ correlation.
The algorithms implemented in the context of these phases are executed
continuously in a pipelined manner. These algorithms are implemented over
Apache Storm framework containing a spout layer and three layers of bolts.
The log processing framework architecture is shown in Figure 8.1.

The spouts are responsible for collecting and preprocessing the logs. The
first two bolt layers are responsible for primary and secondary log processing
(malicious activity detection). The last layer of bolts are responsible for
correlating the log processing results. In this section, we describe each of the
operational phases in detail.

8.1 Log Collection

We have implemented software to collect the logs generated by various soft-
ware. We can collect:

Apache web server logs,

Linux, BSD system logs,

Microsoft IIS logs,

Windows system and application logs,

8.1 Log Collection

124

ANUBIS SandBox

Malicious Application

Binaries (Executables)

collected

System calls performed by
the executable are

High level behavioral profile for an

- file

- memory

- registry, process, service operations
- network activities

Emulations of different operating systems
and Intemet emulation software

Behavioral malware signatures
are created by using behavioral

System Calls Performed by
a Set X of Applications
during their Run-time

profiles for known malicious
executables

System Calls Performed by
a SetY of Applications
during their Run-time

Behavioral
Malware
Signatures

Spout 1
(Log

Preprocessing)

Spout 2
(Log
Preprocessing)

Storm Big Data Framewo%

Spout n

(Log
Preprocessing

Bolt Layer 1

A

(Primary Log Processing)

Bolt Layer 2
(Secondary Log
Processing — Malicious
Activity Detection)

Bolt Layer 3
(Correlating Log
Processing Results)

7/

Fig. 8.1: Log processing framework architecture

8.2 Log Preprocessing 125

e Alerts generated by Snort intrusion detection system.

The log collection process is performed by a number of spouts implemented
over Apache Storm framework and requires (log collector) agents to be in-
stalled on the network hosts. The collected logs are preprocessed inside the
spouts as described in the next section.

8.2 Log Preprocessing

Log preprocessing is responsible for normalizing the collected logs, eliminat-
ing the duplicates among them and classify them. First, the collected logs
are converted into a common, proprietary format with the normalization
procedure. A normalized log can be represented by a tuple containing the
following fields: source and target IP address, source and target port, source
and target application path, source and target process identifier, source and
target thread identifier, source and target user name, processed data type,
processed data size, processed data path, processed data creation and mod-
ification time, log activity type, log timestamp and references to other nor-
malized logs aggregated by the normalized log.

As can be understood from the normalized log representation, it can indicate
a network event (e.g. TCP connection establishment, UDP data transfer) or
an event local to a single network host. A normalized log can also be related
to a single processed data block. This processed data can be a modified
registry record, a file transferred over the network, a modified file located
on the file-system of a network host, among others. A normalized log also
contains references to its aggregated normalized logs. The timestamp field
for a normalized log is set to the minimum timestamp of its aggregated logs.

The log activity type field for a normalized log indicates the main system op-
eration that the log indicates. The possible values for this field are hard-coded
in the system. It can be network data transfer, network connection estab-
lishment, data update, shared library load, file read /update/delete/execute,
registry key read /update/delete, memory area read /update, vulnerability ex-
ploit among others. It should be noted that some of the fields of a normalized
log may have no (empty) value.

After normalization, log aggregation takes place. The first operation per-
formed by the aggregation is eliminating the duplicate normalized logs. Two

8.3 Log Processing 126

normalized logs are assumed to be duplicate, if all of their initialized fields are
equal and the difference between their timestamps is less than some thresh-
old value. After eliminating duplication, the aggregation tries to merge the
related logs indicating network traces into network flows. It constructs the
network flows by tracking TCP sessions. Off-the-shelf tools can also be used
to construct the network flows. A network flow is also represented by a
normalized log instance recording general characteristics for the correspond-
ing network traffic such as total bytes/packets transferred in each direction,
bytes/packets transferred per second in each direction, etc.

After aggregation, normalized log classification takes place. The classification
operation classifies the normalized logs, whose log activity type denotes a
vulnerability exploit, as primary logs. The other normalized logs are classified
as secondary logs. Each operation of the log preprocessing phase is performed
by the spouts implemented over Apache Storm framework.

8.3 Log Processing

After a spout has completed its log preprocessing operations for a log in
streaming node, the log is transferred to one of the first layer of bolts imple-
mented on the Apache Storm framework. The log is processed differently by
the bolts in this layer according to whether it is a primary or secondary log.

8.3.1 Primary Log Processing

A primary log denotes directly a vulnerability exploit. Therefore, primary log
processing creates a vulnerability exploit element from each primary log in
a straightforward manner. Each of the created vulnerability exploit element
represents an attack scenario element and has the same fields as Vulnerability
Ezploit class in the proposed attack graph model in this thesis work. The
attacker privileges required to benefit from the vulnerability exploits indi-
cated by the created elements are also fetched from the full attack graph for
the target network. These attacker privileges are included also in the attack
scenario elements created by the primary log processing. The created attack
scenario elements (vulnerability exploit and attacker privilege elements) are
transferred directly to the third (last) layer of bolts by jumping over the
second layer of bolts. They are used to create/update the attacker privilege

8.3 Log Processing 127

and vulnerability exploit nodes in the partial attack graphs in log processing
results’ correlation phase.

8.3.2 Secondary Log Processing

A secondary log can not directly indicate a vulnerability exploit (or attack).
However, a collection of more than one secondary log can indicate an exe-
cution of a malware. This indication is deduced by matching the secondary
logs to the behavioural malware signatures. If a collection of secondary logs
indicate an execution of a malware, then each secondary log in the collec-
tion corresponds to a single malicious activity that is a component of the
behavioural signature of the malware.

If a log received by a first layer bolt from a spout is a secondary log, then
the bolt first finds the malicious activities (behavioural artifacts) inside all
the behavioural malware signatures that can be matched to the log. The
matching is true, if and only if the values of the corresponding fields of
the log and any operating system (OS) object of the behavioural artifact
are equal. A precomputed set of hash maps formed by components (path
components) of OS object identifiers is utilized to perform the matching.
The behavioural artifacts that are matched to the received log are found by
finding the components of the OS path identifier contained by the log and
querying the precomputed hash maps with these components. Afterwards,
the bolt transfers the secondary log and the information about its matched
behavioural artifact to the appropriate second layer bolt which is responsible
for collecting the logs that can be related to different malware instances. The
communication among the first layer and second layer bolts for the secondary
log processing phase is multiplexed according to the source IP address stored
in the received logs. Namely, the logs having the same source IP address are
processed by the same second layer bolt. This ensures that the malicious
activities occurring at an IP address are collectively processed by the same
second layer bolt to determine the existence of a malware executing at this
IP address.

When a second layer bolt receives a number of logs and the information
about their matched malware behavioural artifacts, it checks whether these
logs together with some of the previously received logs satisfy the behavioural
signature for the malware containing the behavioural artifacts. Namely, the
bolt checks whether there is adequate number of appropriate logs that have
been matched to the OS objects of the behavioural artifacts of the malware.
In order to check this, the bolt stores information about the previous log-

8.4 Log Processing Results’ Correlation 128

signature matchings in its local memory.

If a malware signature is satisfied by a collection of secondary logs, then the
attacker privileges providing for the (malicious) activity indicated by each
secondary log matched to the signature are determined. An attack scenario
element is created from each determined attacker privilege and is sent to a
third (last) layer bolt.

The derivation of the values of the fields of an attacker privilege from the fields
of a secondary log is hard-coded in the system. For instance, if a secondary
log indicates that a file on a web server that has an executable (application)
path epl and is running on a machine with an IP address ipl is modified
(activity type field), then an attacker privilege is created with its category
field set to file modification, IP address field set to ipl and application name
field set to a value derived from the string epl. The CPE [15] identifier field
of the created attacker privilege is also filled by using the string epl and
CPFE identifier-software application path mappings prepared for each target
network host before the attack scenario detection process begins.

8.4 Log Processing Results’ Correlation

Primary log processing generates vulnerability exploit attempts and attacker
privileges as alarmed attack scenario elements. Secondary log processing
generates attacker privileges as alarmed attack scenario elements. The aim
of the log processing results correlation phase is to correlate the generated
alarmed attack scenario elements in attack scenarios each of which is repre-
sented by a partial attack graph. The third (last) layer of bolts implemented
over Apache Storm framework are responsible for performing this correlation.
It should be noted that the full attack graph for the target network is used
as an input for creating/updating the partial attack graphs.

The main algorithm for the correlation phase is shown in Algorithm 8.2. It
essentially defines a loop that continues up to receiving a finish signal (Get Up-
datesForFinishSignal()) from the graphical user interface or elsewhere. In the
loop, a specified number of the alarmed attack scenario elements that are gen-
erated as a result of (primary and secondary) log processing are fetched and
processed. If an alarmed attack scenario element can not be matched to any
node of the currently existing partial attack graphs, a new partial attack
graph is created with the attack scenario element as its root node. Other-
wise, the nodes that are matched to the alarmed attack scenario element are

8.4 Log Processing Results’ Correlation 129

marked as alarmed. This is exemplified in Figure 8.3. The function that is
used to match the nodes of the partial attack graphs to the attack scenario
elements is the FindVertezInGraph() function. It is a simple function that
compares the non-null values of the appropriate fields of the attack scenario
element and the nodes of the partial attack graphs.

1: procedure GENERATEPARTIALATTACKGRAPHS(full AttackGraph, expansionDepth,
expansionBreadth) > The full attack graph (full AttackGraph) for the target network. Expansion
depth (expansionDepth) and breadth (expansionBreadth) for privileges to be expanded.

2 partial AttackGraphs < EmptyList()

3 finishSignal < FALSE;

4 while finishSignal == FALSE do

5: alarmedPrivileges AndExploits < FetchResultsOfLogProcessing()

6: for all alarmedEntity € alarmedPrivilegesAndExploits do

7 alarmedEntityFound < FALSE

8 for all partial AttackGraph € partial AttackGraphs do

9 partial AttackGraphNode <FindVertexInGraph (partial AttackGraph,

10: alarmedEntity)

11: partial AttackGraphNode.alarmed < TRUE

12: alarmedEntityFound < TRUFE

13: end for

14: if alarmedEntityFound == FALSE then

15: new Partial AttackGraph +EmptyGraph()

16: AddVertexToGraph(newPartial AttackGraph,, Copy (alarmedEntity))
17: AddToList(partial AttackGraphs, newPartial AttackGraph)

18: end if

19: end for

20: ExpandPartialAttackGraphs(partial AttackGraphs, full AttackGraph,

21: expansionDepth, expansionBreadth)

22: MergePartialAttackGraphs(partial AttackGraphs)

23: GetUpdatesForFinishSignal(finishSignal)

24: if a signal has been received from graphical user interface to show attack scenarios then
25: attackScenarios < FilterPartial AttackGraphs(partial AttackGraphs)

26: SendToGUlI(attackScenarios)

27: end if

28: end while
29: end procedure

Fig. 8.2: Generating partial attack graphs using evidence processing results

After each of the fetched alarmed attack scenario elements are processed, the
partial attack graphs are expanded by using the input full attack graph for
the target network (ExpandPartialAttackGraphs()). The expansion breadth
is also an input for the correlation algorithm and is not changed during the
algorithm execution. It should be determined so that it accounts for the
maximum number of the consecutive vulnerability exploit attempts that can
be missed by a single IDS/IPSs located at the gateway of a network (or a
subnet). The expansion depth is also an input which is not changed during
the algorithm execution. It should account for the maximum number of the
consecutive vulnerability exploit attempts that can be missed by a chain of
IDS/IPSs located inside the network.

The partial attack graphs are expanded by extending the privilege nodes

8.4 Log Processing Results’ Correlation 130

Attack Scenario 1 Attack Scenario 2 Attack Scenario n

L
~_ Match alarmed privileges and
=< vulnerability exploits to the already -7

~ — _existing nodes of partial attack -
~graphs (anad<\§oenarios) -

= = If an alarmed privilege could not be matched Attack Scenario n+1

to any existing node in any partial attack graph, _

m T 7 7 create new attack scenario containing the .
alarmed privilege as its root node.

Alarmed Privileges Alarmed Privileges &
Vulnerability Exploits

. Alarmed privilege or
wvulnerability exploit
Secondary Log Primary Log yew
Processing Processing O Unalarmed privilege or

vulnerability exploit

Fig. 8.3: Matching alarmed attack scenario elements to the nodes of the partial
attack graphs

of them. The extension of a privilege node gives rise to the creation of
vulnerability exploit nodes and further privilege nodes. The privileges to
be extended in the partial attack graphs in each iteration of the loop are
determined by using the ratio of their alarmed neighbour nodes in the partial
attack graphs, among other factors. After expansion of the partial attack
graphs in each iteration of the main loop, the partial attack graphs are tried
to be merged together (MergePartialAttackGraphs()). Some of the partial
attack graphs can be merged and yield a single partial attack graph as a
result of this process.

When the user wants to display the constructed attack scenarios, the algo-
rithm filters the current partial attack graphs to form a list of attack sce-
narios (FilterPartialAttackGraphs()). A single attack scenario is generated
from each partial attack graph by eliminating unalarmed nodes of the partial
attack graph during filtering, which are far away from any alarmed node in
the graph. A threshold value for path lengths is used in this procedure.

8.4 Log Processing Results’ Correlation 131

8.4.1 Partial Attack Graph Expansion

Partial attack graphs are expanded by extending the selected privileges inside
them during each iteration of the main loop in the correlation algorithm, as
shown in Figure 8.2. The full attack graph is used to expand the partial
attack graphs. The pseudo-code of the expansion algorithm is shown in
Figure 8.4. At the start of the algorithm, the privileges to be extended in each
partial attack graph need to be determined. For this purpose, a score function
is executed for each privilege of a partial attack graph to compute its score
(ComputeScoreForPrivileges()). The score value for a privilege is affected by
the alarmed status of the privilege and the ratio of the alarmed neighbour
privileges of the privilege. The score function is shown in Equation 8.1.

Score(p) = pa * 0.5 + (Pan/pn) * 0.5 (8.1)

where p, is 1 if privilege p is an alarmed privilege and otherwise 0. pg,
denotes the count of the alarmed neighbour privileges of privilege p and p,
denotes the count of all the neighbour privileges of privilege p. The privilege
conjunctions, vulnerability exploits and information sources are ignored in
neighbour computation.

A privilege in a partial attack graph can be expanded at most once. We
give precedence to the alarmed privileges or privileges which have alarmed
neighbour privileges, when selecting the privileges to be expanded. After
computing the scores for all the privileges in a partial attack graph that have
not been expanded so far, they are sorted according to their scores in a de-
creasing manner (SortPrivilegesByScore()). A random number of privileges
are selected from the front of the sorted privilege list (GetListElements())
for expansion. The selected privileges are marked as being expanded.

In order to expand a privilege in a partial attack graph, the input full attack
graph for the target network is used. The privilege is found on the full
attack graph (FindVertexInGraph()). A sub-graph of the full attack graph
rooted at the privilege with the specified expansion depth and breadth are
extracted (ExtractSubGraphFromGraph()) and added to the corresponding
partial attack graph at the point of the privilege (AddSubGraphToGraph()).
The privileges existing in the extracted sub-graph of the full attack graph are
marked so that they will not be extracted in the future requests. Actually,
the function AddSubGraphToGraph() ignores the marked, already extracted
privileges, when extracting a sub-graph from the full attack graph.

8.4 Log Processing Results’ Correlation 132

1: procedure EXPANDPARTIALATTACKGRAPHS(partial Graphs, full AttackGraph, expansion Depth,
expansionBreadth) > A list (partialGraphs) of partial attack
graphs to be expanded. The full attack graph (full AttackGraph) for the target network. Expansion
depth (expansionDepth) and breadth (exzpansionBreadth) for the privileges to be expanded.

2 for all partialGraph € partialGraphs do

3 ComputeScoreForPrivileges(partialGraph)

4: all Privileges < VertexList(partial Graph)

5: notExpandedPrivileges < EmptyList()

6: for all privilege € all Privileges do

7 if privilege.expanded == FALSE then

8: AddToList(not Expanded Privileges, privilege)

9: end if

10: end for

11: sortedPrivilegeList +SortPrivilegesByScore(not ExpandedPrivileges, 'descending’)
12: randomNumber < Random(Size(sorted PrivilegeList))

13: expandedPrivileges < GetListElements(sorted PrivilegeList, 0, random Number)
14: for all expandedPrivilege € expandedPrivileges do

15: expanded Privilege.expanded < TRUE

16: fullGraphExpandedPrivilege <+~ FindVertexInGraph(full AttackGraph,

17: expandedPrivilege)

18: subGraph < ExtractSubGraphFromGraph(full AttackGraph,

19: fullGraphExpanded Privilege, expansionDepth, expansion Breadth)

20: AddSubGraphToGraph(partial Graph, expanded Privilege, subGraph)

21: end for

22: end for
23: end procedure

Fig. 8.4: Expanding partial attack graphs

8.4.2 Partial Attack Graph Merging

After expansion of the partial attack graphs, they are checked pairwise to
see if they can be merged. If a partial attack graph contains a node n with
the same content as the root node of another partial attack graph, then the
second partial attack graph is added as a sub-graph inside the first partial
attack graph at the location of node n. The pseudo-code for the partial
attack graph merging algorithm is shown in Figure 8.5. When merging one
partial attack graph inside another, each edge of the first partial attack graph
is traversed and checked if there exists a vertex in the second attack graph
with the same content as the source/target vertex of the edge. If there exists
not, a new vertex that has the same content with the source/target vertex
of the edge is created and added to the second graph. A new edge between
a pair of vertices that correspond to the source and target vertices of the
original edge is created and added to the second graph, if such an edge does
not exist already in this graph.

After merging a partial graph inside a second, the first graph is marked as
being merged. When there is no possibility of merging any two attack graphs,
the partial attack graphs that are not marked as being merged are added to
the result graph list. The graphs in this list are the new partial attack graphs

8.4 Log Processing Results’ Correlation 133

1: procedure MERGEPARTIALATTACKGRAPHS(partial Graphs) > A list (partialGraphs) of partial
attack graphs. Opportunities for merging any number of graphs from partialGraphs are searched.
resultGraphs <+ EmptyList()
mergeHappened < TRUFE
while mergeHappened == TRUE do
mergeHappened < FALSE
for all partialGraphl € partialGraphs do
for all partialGraph2 € partialGraphs do
if (partialGraphl != partialGraph2) and (partialGraph2.merged == FALSE) then
partial GraphlVertices < VertexList(partialGraphl)
partial Graph2Root <+ RootVertex(partial Graph?2)
: if partialGraphlVertices contains a vertex with the same content as
partialGraph2Root then
for partialGraph2Edge €EdgeList(partialGraph2) do
sourceVertexl <FindVertexInGraph(partialGraphl,
SourceVertex(partial Graph2Edge))
if sourceVerterl == Null then
AddVertexToGraph(partialGraphl,
SourceVertex(partial Graph2Edge))

— =
Coowuaumwy

=

17: sourceVertexl <—SourceVertex(partial Graph2Edge)
18: end if

19: targetVertexl <Find VertexInGraph(partialGraphl,
20: TargetVertex(partialGraph2Edge))

21: if targetVertexl == Null then

22: AddVertexToGraph(partialGraphl,

Target Vertex(partial Graph2Edge))

23: targetVertexl < TargetVertex(partialGraph2Edge)
24: end if

25: AddEdgeToGraph(partialGraphl, sourceVertezl,targetVertexl)
26: end for

27: partialGraph2.merged < TRUE

28: mergeHappened < TRUFE

29: end if

30: end if

31: end for

32 end for

33 end while

34 for all partialGraph € partialGraphs do

35 if partialGraph.merged == FALSE then

36: AddElementToList(resultGraphs, partial Graph)

37: end if

38: end for

39: partial Graphs < resultGraphs
40: end procedure

Fig. 8.5: Merging partial attack graphs

8.5 Experiments 134

that will be used during the next iteration of the main loop of the correlation
algorithm shown in Figure 8.2.

8.4.3 Partial Attack Graph Filtering

The aim of the partial attack graph filtering is to eliminate the unrelated
nodes from the partial attack graphs and construct the final attack scenario
for each partial attack graph. During filtering, a basic BFS (Breadth First
Search) is applied on a copy of each partial attack graph and the unalarmed
nodes that are closer to any alarmed node more than a specific threshold
value are marked. After BFS finishes, the unmarked and unalarmed nodes
are deleted from the copy of the partial attack graph. The resulting copy of
the partial attack graph constitutes an attack scenario.

8.5 Experiments

Two different sets of experiments are conducted in the context of the attack
scenario detection process. The first set of experiments measures the perfor-
mance of the secondary log processing process. The secondary log processing
is performed by the first and second layer of bolts in the Apache Storm frame-
work by matching the collected logs to the generated behavioural malware
signatures. The second set of experiments illustrates a sample case study
including the processing of both primary and secondary logs.

8.5.1 Experiment Set 1

The aim of the experiments described in this section is to measure the per-
formance of the signature-based secondary log processing process. A set
of sample networks each containing a different number of hosts is used in
the experiments. For each experiment, a number of hosts in the used net-
work is infected by a randomly selected malware by injecting the log records
generated by the corresponding malware into the corresponding host’s log
records. The time interval between the consecutive activities performed by
each malware instance is also varied across the experiments by varying the
time interval between the injections of the consecutive log records of the
malware instance to the corresponding host’s logs.

8.5 Experiments 135

Each component (behavioural artifact) of a behavioural malware signature
should be matched to a collection of appropriate logs in order to be accounted
as a matched signature. The performance of the signature-based secondary
log processing process is evaluated in terms of the average delay between the
injection/generation of the last log record for each malware instance and the
reporting of the matched signature for the malware instance by the proposed
system.

The experiments are conducted by using two PCs each having Intel Corei7-
2620M 2.70GHz CPU and 8GB RAM. Each experiment is conducted at least
ten times and the average performance (delay for malware detection) values
are computed. The parameters for each experiment are:

e the number of the hosts in the used network

e the number of the hosts in the used network which are infected by a
malware instance

e the time interval between the consecutive activities performed by each
malware instance

Benign log records are interleaved with the log records performed by malware
instances for each experiment. The count of the benign system calls generated
by one host per second is held at constant across the experiments. This
constant value is equal to roughly 100. The benign logs are generated by
using the log records generated during 3-day operation of an experiment
PC (client computer) which is assumed to be not infected by any malware.
This experiment PC is not connected to Internet and is checked against
possible malware infection with external tools and found to be clear. To
generate the benign logs, also some popular, built-in Windows executables
(e.g., notepad.exe, mspaint.exe) are executed in this experiment PC. While
creating the benign logs for a host in the used network for each experiment,
a number of the benign logs collected from the experiment PC are selected
randomly and the IP address for the host is attached to each of the randomly
selected logs.

In Table 8.1, the results of the conducted experiments are shown. In each of
the experiments, all the malware instances are detected by the secondary log
processing process. The network size in terms of the host count and the time
interval between malicious log records (injected activities) adversely affect
the average delay for the malware detection. This effect is caused by the
increased number of the benign log records interleaved among the malicious

8.5 Experiments

136

Tab. 8.1: Performance measurement of the secondary log processing through sev-

eral experiments

Network Infected | Time Interval Average Delay for
Size Host Between Malicious Malware Detection
(Host Count Log Records (ms) (ms)
Count)

100 10 400 622
100 10 1200 1676
100 10 3600 4386
100 10 10800 14479
100 20 400 964
100 20 1200 2338
100 20 3600 7738
100 20 10800 20196
200 20 400 1983
200 20 1200 5604
200 20 3600 15833
200 20 10800 46508
200 40 400 2890
200 40 1200 8329
200 40 3600 23067
200 40 10800 70981
400 40 400 6018
400 40 1200 19875
400 40 3600 62382
400 40 10800 190208
400 80 400 9349
400 80 1200 31972
400 80 3600 96650
400 80 10800 288526

8.5 Experiments 137

ones. The effect is not very huge though. The number of infected hosts
(malware instances) in the used network also adversely affects the average
delay for the malware detection, but the effect is smaller than that for the
previous case. In this case, the log records generated by additional malware
instances on newly infected hosts can interleave among the malicious log
records of a specific malware instance on a previously infected host.

Even if the network size, the time interval between consecutive malicious log
records and the number of malware instances injected into the used network
adversely affect the performance of the secondary log processing, the result-
ing performance is adequate for near real-time detection of ongoing malicious
activities. When the network contains 400 hosts, the time interval between
the malicious log records is 400 milliseconds and 80 hosts are infected, the
average malware detection delay is almost 10 seconds. By considering this
detection delay value, we can conclude that the advance of malware on the
propagated hosts can be hindered. When we consider that the average num-
ber of the log records generated by a malware instance is on the order of
100 and there is 400 milliseconds of time interval between each consecutive
activity of the malware instance, then the total time for the malware instance
to complete its activities is almost 40 seconds at minimum. Even if the mal-
ware instance has jumped to a new network host, it can be detected before
completing even half of its activities. (It should be noted that this is just
an informal reasoning that do not take the delays imposed by the logging
system of different software and network delays into account.)

8.5.2 Experiment Set 2

The aim of the experiments described in this section is to show the results
generated by the proposed system for a sample network. The network is
shown in Figure 8.6. Two different attack scenarios are conducted on the
network simultaneously and the attack scenarios generated by the proposed
system are examined. The experiments are conducted on a network simula-
tion environment in a single PC with Intel Corei7-2620M 2.70GHz CPU and
8GB RAM. The sample network is modelled on the simulation environment.

The first attack scenario conducted on the sample network comprises the
infection of the IP devices with addresses 10.0.2.2 and 10.0.2.15 with the
Stuxnet (version b2) worm via USB flash disks. It is assumed that the
host-based intrusion sensors on these IP devices can not detect the exploit
attempts for the vulnerabilities used by the Stuxnet worm. Therefore, there

8.5 Experiments 138

Fig. 8.6: Sample network for attack scenario detection system evaluation

is no primary logs (alerts) collected related to these infections. The logs
generated by the execution of the Stuxnet malware are created (simulated)
by using the dynamic malware analyzer (ANUBIS) report for the Stuxnet
(version b2) worm. These logs serve as the secondary logs for the execu-
tion of the proposed system, since they are not related to any security alert
(vulnerability exploit or virus detection, etc.).

The second attack scenario conducted on the sample network comprises the
infection of the IP devices with addresses 10.0.2.5 and 10.0.2.9 with the
Zbot Trojan (Trojan.Zbot.B) via connecting to the IP device with address
101.98.112.2 (Attacker PC). The Zbot Trojan exploits the vulnerability with
CVE identifier CVE-2008-0726 on the IP device with address 10.0.2.9. It ex-
ploits the vulnerability with CVE identifier CVE-2009-2994 on the IP device
with address 10.0.2.5. It is assumed that these exploit attempts are detected
by the network-based intrusion detection sensor deployed on the IP device
DAIGATE_Router containing addresses 10.0.2.16 and 10.0.2.17. Therefore,
we have collected primary logs (alerts) for the exploit attempts in this sce-
nario. The other logs generated by the execution of the Zbot Trojan are
created (simulated) by using the dynamic malware analyzer (ANUBIS) re-
port for the corresponding version of the Zbot Trojan. These logs serve as
the secondary logs.

We create (simulate) benign logs in addition to the logs related to the
malware executions. In order to create the benign logs, we first execute
well-known non-malicious programs (Windows Explorer, Internet Explorer,
Mozilla Firefox, Google Chrome, Adobe PDF Reader, calc.exe, notepad.exe,

8.5 Experiments 139

etc.) on a clean Windows system and collect the log records generated by the
execution of these programs. We copy a random subset of these log records
for each IP device on the sample network and set the source IP address of
each log record trace to the IP address of the device it is related to. There are
almost 10000 benign logs for each IP device. At the end, we randomly mix
the benign logs for the infected devices with the logs related to the malware
executions.

Our system generates two attack scenarios in the form of partial attack
graphs. The first attack scenario detected by our system consists of the
attack elements related to the devices on the sample network infected by the
Stuxnet worm. It is shown in Figure 8.7.

ﬁ A
|VULNERABILITY EXPLOIT VULNERABILITY EXPLOIT
10022 10022
[CVE2013.3850 CVE13ZTE
|AP1200-2 Office Word 2010 AP1200-2 Windows 7 0S
(cpe:/a:microsoft word: 2010:sp1 cpeiiomicrosoft windows_7:sp1:x85.
L - —— —

Fig. 8.7: Devices infected with Stuxnet worm on the sample network

The attack elements surrounded by red, tick rectangles are the alarmed el-
ements. All the alarmed elements are attacker privileges. Since there is no
primary log (alert) collected for the first attack scenario, the existence of the
alarmed attacker privileges are inferred by matching the secondary logs to
the behavioural malware signatures generated by our system. Two instances
of the same malware signature are created for this scenario, one for the IP
device with address 10.0.2.2 and the other for the IP device with address
10.0.2.15. The corresponding malware signature is used (generated) by the
system to detect the Stuxnet worm (version b2) and also other similar mal-
ware. The attack scenario detected by the system and shown in Figure 8.7

8.5 Experiments 140

also contains attack elements that are not alarmed, but are related to the
alarmed ones. These unalarmed attack elements complete the attack paths
that are indicated by the alarmed ones and give clues about the future attack
actions that can be performed by the attackers.

The second attack scenario detected by the system consists of the attack
elements related to the devices infected by the Zbot Trojan. It is shown in
Figure 8.8.

—
innos

leveamaan7s
DAns.STzS g

Fig. 8.8: Devices infected with Zbot Trojan on the sample network

The attack elements surrounded by red, tick rectangles are the alarmed ele-
ments. The existence of alarmed vulnerability exploit attempts are inferred
by using the primary logs (alerts) generated by the network-based intru-
sion detection sensor deployed on DAIGATE_ROUTER device. The exis-
tence of the alarmed attacker privilege on device Attacker PC with address
101.98.112.2 is inferred by utilizing the fact that it is a precondition for the
alarmed vulnerability exploits. Namely, the existence of this attacker priv-
ilege is also inferred by using the primary logs. However, the existence of
the other alarmed attacker privileges are inferred by matching the collected
secondary logs to the behavioural malware signatures. It is important to
note that all the alarmed attack elements, whether they are generated by
processing the primary or secondary logs, form a connected graph segment
in this attack scenario. This proves the existence of the related actions per-
formed by the attacker in the context of the attack scenario. For the second
attack scenario detected by the system, again two instances of the same mal-

8.5 Experiments 141

ware signature are created, one for the device with IP address 10.0.2.5 and
the other for the device with IP address 10.0.2.9. The malware signature
in this case is used (generated) by the system to detect the Zbot Trojan
(Trojan.Zbot.B) and also other similar malware.

9
Responding to Attack Scenarios

In the context of defense recommendation, the aim of this thesis work is
to find the near optimal set(s) of available hardening (defense) measures
that can be used to respond to the ongoing attack scenarios. The proposed
method to finding near optimal network hardening solution(s) takes as in-
put an acyclic attack graph that represents an attack scenario for the target
network. A set of goal states on the attack graph selected by the network
security administrator is also given as input. The goal states are actually
selected from the attacker privilege nodes on the input attack graph. The
method additionally takes as input the hardening measures available to the
network security administrator. Each hardening measure can have the effect
of eliminating some of the incoming edges of one or more weakness exploit
nodes in the input attack graph. A weakness exploit node in an attack graph
can be a vulnerability exploit or information source usage node. The set of in-
coming edges that can be eliminated by each hardening measure is computed
before the optimization process begins. This computation can be performed
by considering the contents of the hardening measures. Each measure has
also a relative cost value specified by the network security administrator.

The proposed method first builds a hardening measure graph, which shows
the effects of the available hardening measures on the input attack graph
according to the target network configuration. The structure and construc-
tion of this graph are explained in Section 9.1. After the hardening measure
graph is built, the simulated annealing algorithm is applied with the defined
optimization criteria to find the near optimal network hardening solution(s).
In generating the candidate set of hardening solutions during each iteration
of the optimization algorithm, a specific candidate selection function utilizing
the hardening measure graph is used. Section 9.2 details the optimization

9.1 Hardening Measure Graph 143

algorithm, criteria and the proposed candidate selection function.

9.1 Hardening Measure Graph

The hardening measure graph is formed by using the input acyclic attack
graph and the hardening measures available to the network security adminis-
trator. The formal definition of a hardening measure and hardening measure
graph is given below.

Definition 9.1.1. A hardening measure contains information about the ef-
fects of a defense measure occurring when it is applied to a target network.
It is defined as a five element tuple (Cost, EliminatedAttackGraphEdges,
PathCount, InEdges, OutEdges) in the context of an attack graph with
the goal security states specified. Cost specifies the relative cost for apply-
ing the hardening measure. EliminatedAttackGraphEdges is a list storing
references to the attack graph edges eliminated by the application of the
hardening measure. PathCount denotes the number of the eliminated attack
paths to the goal security states after applying the hardening measure. Each
attack path is a sequence of the weakness exploits on a path of the attack
graph ending in one of the goal security states. InEdges and OutEdges are
lists holding references to the incoming and outgoing edges in the hardening
measure graph connected to this hardening measure. It should be noted that
the definition of the content peculiar to specific defense measures (specific
firewall rule addition/deletion, specific vulnerability patch) in the context of
the hardening measure definition is not in the scope of this thesis work.

Definition 9.1.2. A hardening measure graph is a graph G = (N, E), where
N denotes the set of the nodes and E denotes the set of the edges of the graph
G. n € N represents a hardening measure. e € F is a three element tuple
(SourceNode, TargetNode, IntersectingPathCount), where SourceNode
denotes the source and TargetNode denotes the target hardening measure
node for the edge e. IntersectingPathCount denotes the number of the
attack paths that are eliminated by both the target hardening measure node
and the source hardening measure node. The direction of the edge indicates
that the target hardening measure can negate attack graph elements located
at higher depths in the attack graph than the elements negated by the source
hardening measure.

An example hardening measure graph is shown in Figure 9.1.

9.1 Hardening Measure Graph

144

Hardening Measure 7

Eliminated Edges: Edge x7
Eliminated Path Count: 7
Cost: 5000

Intersecting Path
Count=1

Intersecting Path
Count =1

Hardening Measure 2

Eliminated Edges: Edge x2
Eliminated Path Count: 7
Cost: 4000

Intersecting Path
Count=5

N

Hardening Measure 5

Eliminated Edges: Edge x5
Eliminated Path Count: 7
Cost: 4000

Intersecting Path
Count=1

Intersecting Path

Count=3

Intersecting Path
Count =4

Cost: 7000

Hardening Measure 1

Eliminated Edges: Edge x1
Eliminated Path Count: 15

Hardening Measure 6

Eliminated Edges: Edge x6
Eliminated Path Count: 3
Cost: 4000

Intersecting Path
Count =2

T~

Hardening Measure 3

Eliminated Edges: Edge x3
Eliminated Path Count: 8
Cost: 2000

Intersecting Path
Count =4

Hardening Measure 4

Eliminated Edges: Edge x4
Eliminated Path Count: 7
Cost: 5000

Fig. 9.1: Example hardening measure graph

9.1 Hardening Measure Graph 145

1: function GENERATEHARDENINGMEASUREGRAPH(AttackGraph, Available M easures, GoalStates)
2 hardeningM easureGraph <+ CreateEmptyGraph()

3 for all measure € Available Measures do

4: measureNode < CreateMeasureNode()

5: measureN ode.pathCount < 0

6: measureNode.cost < measure.getCost()

7 hardeningM easureGraph.addN ode(measureN ode)

8

end for
9: for all goalState € GoalStates do
10: measuresStack + CreateEmptyStack()
11: PerformDFSOnAttackGraph(goalState,
12: hardeningM easureGraph, measuresStack)

13: end for
return hardeningM easureGraph
14: end function

15: procedure PERFORMDFSONATTACKGRAPH(CurrentNode, HardeningM easureGraph,
MeasuresStack)

16: isExploitNode + IsExploitNode(CurrentNode)

17: for all incomingEdge € currentNode.incomingEdges() do

18: if isExploitNode then

19: measureList < FindMeasuresNegatingEdge(incomingEdge)
20: UpdateHardeningMeasureGraph(HardeningM easureGraph,
21: measureList, MeasuresStack)

22: end if

23: sourceNode < incomingEdge.getSourceN ode()

24 if isExploit Node then

25: MeasuresStack.push(measureList)

26: end if

27: PerformDFSOnAttackGraph(sourceNode,

28: HardeningMeasureGraph, MeasuresStack)

29: if isEzploit Node then

30: MeasuresStack.pop()

31: end if

32: end for
33: end procedure

34: procedure UPDATEHARDENINGMEASUREGRAPH(HardeningM easureGraph, MeasureList,

MeasuresStack)
35: for all measure € MeasureList do
36: measure.pathCount + +
37: for all stackedMeasureList € MeasuresStack do
38: for all stackedMeasure € stackedMeasureList do
39: edge < FindMeasureEdge(H ardeningM easureGraph, measure, stackedMeasure)
40: if edge == null then
41: edge < CreateMeasureEdge(measure, stackedM easure)
42: edge.intersectingPathCount < 0
43: HardeningMeasureGraph.addEdge(edge)
44: end if
45: edge.intersecting PathCount 4+ +
46: end for
47: end for

48: end for
49: for all stackedMeasureList € MeasuresStack do

50: for all stackedMeasure € stackedM easureList do
51: stackedM easure.pathCount + +
52: end for

53: end for
54: end procedure

Fig. 9.2: Generating the hardening measure graph

9.1 Hardening Measure Graph 146

The function for the generation of a hardening measure graph is shown in
Figure 9.2. It first creates the hardening measure nodes and adds them to
the empty hardening measure graph. Then, it performs a modified depth-
first search (DFS) algorithm on the input attack graph starting from each
goal security state (goal attacker privilege). The search is performed by the
recursive PerformDFSOnAttackGraph() procedure. During the search, the
edges between the hardening measures on the hardening measure graph are
created. The list of the hardening measures negating the incoming edges
to the exploit nodes on the currently traversed attack path are stored in
MeasuresStack during the search.

The hardening measures that negate the current incoming edge are found by
calling the function FindMeasuresNegatingEdge(). The exact internal opera-
tion of this function is specific to the contents of the hardening measures and
is out of the scope of this work. From an external point of view, it is respon-
sible for identifying the edges negated by each hardening measure, caches the
identified edges and uses the cached information to return the set of hard-
ening measures that negate a given edge. Then, an edge from each of these
hardening measures to each stacked hardening measure in MeasuresStack is
created, if it does not exist, by the UpdateHardeningMeasureGraph() func-
tion call. The intersection path counts of these edges are incremented by 1,
as well as the eliminated attack path counts for these hardening measures
and stacked measures.

A call to the recursive PerformDFSOnAttackGraph() function traverses each
attack graph edge that are reachable from the currently processed goal state.
This traversal is performed in the reverse direction of the attack graph edges.
The number of traversals over an edge e in the attack graph is limited by the
number of edges residing between the edge e and the goal states. This gives
an upper bound of O(FE), where E denotes the number of the edges in the
attack graph. Therefore, in total, O(E?) edge traversals are performed by
this function. The function UpdateHardeningMeasureGraph() has O(HG)
time complexity, where H denotes the number of available hardening mea-
sures and GG denotes the maximum number of elements that can be contained
by MeasuresStack at any time. G is bounded by O(HN), where N denotes
the number of the nodes in the attack graph. Therefore, the time complex-
ity of a call to the recursive PerformDFSOnAttackGraph() function can be
computed as O(E*H?N). Finally, the time complexity of the GenerateHard-
eningMeasureGraph() function becomes O(E?H?*N?), since the number of
the goal states is bounded by O(N).

9.2 Finding the Optimal Solution 147

9.2 Finding the Optimal Solution

The simulated annealing optimization algorithm is applied to find the near
optimal hardening measure set(s) (optimal solution(s)). The simulated
annealing-based optimization process utilizes the hardening measure graph
to guide the generation process of the candidate solutions and compute the
scores for the candidate solutions. Each candidate solution generated dur-
ing the execution of the simulated annealing is a set of a number of disjoint
hardening measures that can be applied by the target network’s security ad-
ministrator. At the end of the optimization process, an adjustable number
of near-optimal solutions can be obtained. The objective function considers
two optimization criteria:

e Minimize the total cost of the applied hardening measures in the solu-
tion.

e Maximize the number of the eliminated attack paths to the goal states
on the attack graph.

The score for a candidate solution is computed according to the two opti-
mization criteria as follows:

Score(solution) = axT + fx E (9.1)

T =1— (Cost(solution)/ Z Cost(measure;)) (9.2)
i=0

E = Eliminatedpathcount(solution)/p (9.3)

where a and [are adjustable weights of the two optimization criteria.
Cost(solution) is the cost of the candidate solution computed by summing
the costs of the hardening measures contained in the candidate solution. m
is the total number of the hardening measures available to the network ad-
ministrator, p is the total number of the attack paths to the goal states in
the input attack graph. FEliminatedpathcount(solution) gives the number
of the eliminated attack paths to the goal states in the input attack graph,
when the solution is solely applied. It is computed by using the informa-
tion in the hardening measure graph as shown in Figure 9.3. First, the total
number of the eliminated attack paths for the hardening measures in the can-
didate solution is computed by using the corresponding information in the

9.2 Finding the Optimal Solution 148

1: function COMPUTEELIMINATEDATTACKPATH-
CouNt(HardeningM easureGraph, CandidateSolution)

2 pathCount < 0

3 for all hardeningMeasure € CandidateSolution do

4 pathCount < pathCount+

5 hardeningM easure.pathCount

6: incomingFEdges <

7 FindIncomingEdges(hardeningMeasure,

8 HardeningMeasureGraph)

9 for all incomingEdge € incomingEdges do

10: sourceMeasure < incomingEdge.getSource()

11: if CandidateSolution contains(sourceMeasure) then
12: pathCount < pathCount—

13: incomingEdge.intersecting PathCount

14: end if

15: end for

16: end for
return pathCount
17: end function

Fig. 9.3: Computing eliminated attack path count for a candidate solution

hardening measure nodes. Then, the intersecting path counts between any
two hardening measures in the candidate solution are subtracted from this
amount. The intersecting path counts are found by using the information in
the corresponding edges of the hardening measure graph.

We use the simulated annealing algorithm [22] to perform the optimization,
starting with a random, accepted initial solution. During the simulated an-
nealing, candidate solutions are tried one after the other to find the solution
with the maximum score. If the score of the currently tried candidate so-
lution is greater than the score of the last accepted solution, the candidate
solution is accepted. Otherwise, the candidate solution is accepted according
to some probability value, which is dynamically changing with a temperature
value. As commonly applied in simulated annealing, this temperature is kept
high at the start of the algorithm and even a candidate solution with a score
much lower than the score of the last accepted solution may be accepted.
The temperature is then decreased slowly during the algorithm, eventually
allowing only the candidate solutions with a score greater than or slightly
lower than the score of the last accepted solution being accepted.

The candidate solutions tried during the optimization process form a tree
whether they are accepted or not. The edges of this tree represent the trial
order of the candidate solutions. This tree actually comprises the state space.
As stated in [22], it is crucial in simulated annealing to design the candidate
generation (selection) function in such a way that the candidates that have
the potential of being local optima are placed in shallower portions in the
candidate tree. By this way, such local optima candidates are evaluated at

9.2 Finding the Optimal Solution 149

the early stages of the algorithm with high temperature and they can be
separated from each other. If this principle is not followed, there is a high
chance for the simulated annealing to be caught in local optima at the later
stages of the algorithm and not be able to explore better solutions.

We introduce a customized candidate solution selection function for the sim-
ulated annealing algorithm. The intuition at the core of this function can be
explained as follows:

e [f the majority of the attack paths eliminated by a hardening measure
are also eliminated by the other already-applied hardening measures in
the candidate solution, then the application of this hardening measure
can provide additional benefit only if the cost of the measure is very
low in comparison with the other measures.

e Conversely, if a hardening measure has a small number of intersect-
ing eliminated attack paths with the other already-applied measures,
then the application of this hardening measure has greater potential to
provide additional benefit, if its cost is not too high.

e At the start of the simulated annealing algorithm where the temper-
ature is high, we form the candidate solutions each of which contains
hardening measures that have a small number of intersecting elimi-
nated attack paths. This way, we try to evaluate all the potential local
optima regions in the state space as early as possible.

o At the later stages of the algorithm where the temperature is low,
we perform fine-tuning by allowing hardening measures in a candidate
solution that have high number of intersecting eliminated attack paths,
by also taking the cost of these hardening measures into account.

The proposed candidate selection (generation) function is illustrated in Fig-
ure 9.4. At the early stages of the optimization process, the candidate solu-
tions are composed of hardening measures that have less number of common
(intersecting) eliminated attack paths and that do not incur very high cost.
By using T'hresholdl, the following points are ensured in forming the next
candidate solution, after selecting a random hardening measure from all the
available ones:

e If a selected measure has a number of common eliminated attack
paths with the measures in the candidate solution that is greater than
Thresholdl, then:

9.2 Finding the Optimal Solution 150

Thresholdl < 0.1
Threshold2 < 0.01
CostRatioThreshold < 1.5
StepCountForThresholdV alueChange < 100
function GENERATECANDIDATE(Last AcceptedSolution, HardeningM easureGraph)
> Last accepted solution in the optimization process and hardening measure graph are inputs
candidateSolution <— Copy (LastAcceptedSolution)
availableHardeningMeasures < HardeningMeasureGraph.getNodes()
measuresTotalCost < TotalCost(availableHardeningM easures)
shuf fledHardeningM easures < Shuffle(available HardeningMeasures)
randoml < GenerateRandomNumber (shuf fledHardeningMeasures.size())
for i:=0 do randoml
hardeningMeasure < shuf fledHardeningMeasures|i]
maxQOutgoingEdge —
FindOutgoingEdgeWithMaximumValue(hardeningMeasure, candidateSolution)
intersectingPathCountRatio < 0
intersecting PathCountRatio <+ maxOutgoingEdge.intersectingPathCount/
hardening M easure.pathCount
if intersectingPathCountRatio > Thresholdl then
> At the start of the algorithm, eliminate hardening measures
with a high number of intersecting eliminated attack paths. At later stages, apply this kind of
measures for fine-tuning using the next else clause.

[

=

17: if candidateSolution contains(hardeningMeasure) then
18: Remove(hardeningMeasure, candidateSolution)

19: else

20: targetMeasure < maxOutgoingFEdge.getTargetNode()
21: Add (hardeningM easure, candidateSolution)

22: Remove(targetMeasure, candidateSolution)

23: end if

24: else

> At the start of the algorithm, apply hardening measures with a small
number of intersecting eliminated attack paths. At later stages, eliminate this kind of mea-
sures to decrease the wasted optimization steps and reserve steps for fine-tuning using the next else

clause.
25: if intersectingPathCountRatio > Threshold2 then
26: if hardeningMeasure.cost/measuresTotalCost < CostRatioT hreshold then
27: Add(hardeningMeasure, candidateSolution)
28: else
29: random?2 <—GenerateRandomNumber(1.0)
30: if random?2 > 0.5 then
31: Add(hardeningMeasure, candidateSolution)
32: end if
33: end if
34: else
35: Remove(hardeningMeasure, candidateSolution)
36: end if
37 end if

38: end for
39: if total number of optimization steps is divisible by StepCountForThresholdV alueChange
then

40: Thresholdl <— Thresholdl + 0.1

41: Threshold2 < Threshold2 + 0.01

42: CostRatioT hreshold <— CostRatioThreshold — 0.1
43: end if

return candidateSolution
44: end function

Fig. 9.4: Candidate selection (generation) function used during the simulated
annealing algorithm

9.2 Finding the Optimal Solution 151

— if it already exists in the candidate solution, it is removed from
the candidate solution.

— if it does not already exist in the candidate solution, it is added
to the candidate solution, and the measure that has the maxi-
mum number of common attack paths with the selected measure
is removed from the candidate solution. This is performed to
form candidate solutions composed of different hardening mea-
sures with small number of common attack paths.

The value of Thresholdl is increased with the number of optimization steps.
So, at the later stages of the algorithm, its effects gradually disappear. At
the early stages of the optimization process, Threshold2 is used to increase
the addition of hardening measures in the candidate solutions that have a
small number of intersecting eliminated attack paths. Its value is kept as
nearly one-tenth of the value of Thresholdl and is also increased with time,
however with a pace slower than that of T'hresholdl.

With the increase of T'hreshold2 at the later stages of the algorithm, the
elimination of the hardening measures that have small number of intersecting
eliminated attack paths increases. Also at the later stages of the algorithm,
the addition of very low-cost hardening measures into the candidate solutions
that have large number of intersecting eliminated attack paths increases.
This facilitates just fine-tuning the candidate solutions at the later sages of
the algorithm. The application and removal of hardening measures according
to their intersecting path counts during the earlier and later stages of the
algorithm are illustrated for a small scenario in Figure 9.5 and Figure 9.6 in
order. (It is assumed that the selected hardening measures shown at the left
side of the figure have not already existed in the candidate solution.)

The value of T'hreshold2 is used as the basis for the addition (application)
of a hardening measure in the candidate solution. A hardening measure
is applied, if the ratio of its cost to the average cost of all the available
measures is below a specific threshold named CostRatioThreshold. The
value of CostRatioT hreshold is decreased with the number of optimization
steps. Therefore, the measures with small number of intersecting attack
paths are applied at the start of the algorithm, if they do not have very high
cost. Also, the measures with large number of intersecting attack paths are
added to the candidate solutions at the later stages of the algorithm, if they
have low cost (the value of Cost RatioT hreshold is low at the later stages of
the algorithm.). If the measures do not satisfy these cost restrictions, they
can be applied with random probability (random2).

9.2 Finding the Optimal Solution 152

ipcr = intersectingPathCountRatio Threshold1 = 0.1, Threshold2 = 0.01,
CostRatioThreshold = 1.5
acr = hardeningMeasure.cost / measuresAverageCost

For early phases qf the optimization Apply hardening Remove hardening
algorithm measure measure
Hardening measure
with high intersecting ipcr greater
path count ratio (e.g., than Threshold1
ipcr = 0.3)
4
N TLr)r(;;ﬁgidwfzrr:d N acr smaller than
L4 v .
Threshold2 CostRatioThreshold
Hardening measure
with low intersecting
path count ratio (e.g.,
ipcr = 0.03) ipcr smaller

than Threshold2

Fig. 9.5: Example of application and removal of hardening measures during early
phases of the optimization algorithm

ipcr = intersectingPathCountRatio Threshold1 = 0.5, Threshold2 = 0.05,
CostRatioThreshold = 1.1
acr = hardeningMeasure.cost / measuresAverageCost

For later phases of the optimization - :
algorithm Apply hardening Remove hardening

measure measure

y K

Hardening measure
with high intersecting
path count ratio (e.g.,

ipcr = 0.3)

ipcr greater
than Threshold1

ipcr between
Threshold1 and
Threshold2

acr smaller than
CostRatio Threshold

Hardening measure

with low intersecting

path count ratio (e.g.,
ipcr = 0.03)

ipcr smaller
than Threshold2

N
14

Fig. 9.6: Example of application and removal of hardening measures during later
phases of the optimization algorithm

9.3 A Small Case Study 153

In summary, at the start of the algorithm, we form a candidate solution from
the hardening measures that are disjoint in terms of the eliminated attack
paths. This way, at the beginning, we try to evaluate and compare all the
candidate solutions that have a potential of being located close to the distinct
local optimal solutions in the state space. At the later stages of the algorithm,
simulated annealing allows less exploration in the solution state space, as the
temperature is decreased. We utilize this fact by fine-tuning the solutions
with the application of additional, very low-cost hardening measures that
may have high number of intersecting eliminated attack paths with other
already-applied hardening measures. Thus, we avoid wasting time with dense
exploration in the state space at the later stages of the algorithm, since the
algorithm would reject the majority of the candidate solutions in this case.

9.3 A Small Case Study

We explain the flow of the proposed candidate generation approach with a
small case study in this section. The sample attack graph shown in Figure 9.7
is used as the input attack graph for the optimization process. The goal
security states are determined as the bottommost two attacker privileges on
IP addresses 75.62.3.33 and 75.62.3.35 in order. The hardening measures are
the ones given in the computed hardening measure graph shown in Figure 9.8.

Each hardening measure node stores information about its cost, the elimi-
nated attack graph edges and the count of the eliminated attack paths after
its application. For instance, hardening measure 1 eliminates edge 10 on
the attack graph. The attack paths on the attack graph eliminated by this
measure are then as follows:

e (vulnerability exploit 1, vulnerability exploit 3)
e (vulnerability exploit 2, vulnerability exploit 3)

e (vulnerability exploit 3)

It should be noted that each attack path is a sequence of vulnerability exploits
on a specific path on the attack graph and the last vulnerability exploit on
the sequence must have an edge to any one of the goal security states. As
another example, hardening measure 4 eliminates edge 2 and the following
attack paths on the attack graph:

9.3 A Small Case Study

154

Edge 1

Vulnerability Exploit 1

IP Address: 75.62.2.22

CVE Id: CVE-2010-3004

CPE Id: cpe:/
a:microsoft:internet_explorer:10
Application Name: Host 2
Internet Explorer

Edge 3

Edge 7

Edge 10
s

Vulnerability Exploit 3

IP Address: 75.62.3.33
CVE Id: CVE-2011-3144
CPE Id: cpe:/
a:apache:http_server:2.2.4
Application Name: Host 4
Apache Web Server

Edge 12

Edge 2

Vulnerability Exploit 2

IP Address: 75.62.2.22
CVE Id: CVE-2011-3544
CPE Id: cpe:/
a:mozilla:thunderbird:17.0.2
Application Name: Host 2
Mozilla Thunderbird

Edge 8

Edge 11

Edge 5

Edge 6

Edge 9

Vulnerability Exploit 4

IP Address: 75.62.3.35
CVE Id: CVE-2012-4576
CPE Id: cpe:/
o:microsoft:windows_xp::sp2

Application Name: Host 3 Windows
XP

Vulnerability Exploit 5

IP Address: 75.62.3.35

CVE Id: CVE-2014-4598

CPE Id: cpe:/
o:microsoft:windows_xp::sp2
Application Name: Host 3 Windows
XP

Edge 13

Edge 14

Fig. 9.7: Sample input attack graph for the case study

9.3 A Small Case Study 155

Hardening Measure 4

Eliminated Edges: Edge 2
Eliminated Path Count: 3

GEsiB 400 Intersecting Path
Count=1 Hardening Measure 5
. Eliminated Edges: Edge 9
Hardening Measure 3
g Eliminated Path Count: 2
Eliminated Edges: Edge 1 Cost: 6000
Eliminated Path Count: 2
Cost: 11000 Intersecting Path Intersecting Path
Count=1 Count=1
Intersecting Path Intersecting Path
Count=1 Count=1
Hardening Measure 1 Hardening Measure 2
Eliminated Edges: Edge 10 Eliminated Edges: Edge 11
Eliminated Path Count: 3 Eliminated Path Count: 3
Cost: 8000 Cost: 12000

Fig. 9.8: Hardening measure graph for the case study

e (vulnerability exploit 2, vulnerability exploit 3)
e (vulnerability exploit 2, vulnerability exploit 4)

e (vulnerability exploit 2, vulnerability exploit 5)

At the earlier stages of the optimization process, the candidate solutions are
formed from the hardening measures that have small number of common
eliminated attack paths. This is accomplished by using the T"hresholdl and
Threshold2 thresholds. For instance, if we assume that the initial candi-
date solution is the set of all available hardening measures, then by using
Thresholdl, we eliminate the measures with large number of common elimi-
nated attack paths in the following candidates. If we assume that the initial
candidate solution is the set of not all but some hardening measures, the same
is again true. In this case, by using T'hreshold2, we also add the measures
that have small number of common eliminated attack paths in the following
candidates.

At the earlier stages of the optimization process, it is more likely to obtain
candidate solutions composed of the nodes not directly linked in Figure 9.8,
e.g., we can form the below candidate solutions with higher likelihood:

e hardening measure 1, hardening measure 2

9.4 Experiments 156

e hardening measure 1, hardening measure 2, hardening measure 5
e hardening measure 3, hardening measure 4
e hardening measure 3, hardening measure 5

e hardening measure 1, hardening measure 5

At the later stages of the algorithm, T'hreshold2 is used to add to the can-
didate solutions the hardening measures having large number of common
eliminated attack paths with the measures in the candidate solutions. The
purpose of this is to fine-tune the currently obtained near-optimal solution
with the measures that can eliminate additional (may be a few) attack paths
with very low cost. For example, the hardening measure set {1,5,4} can be
generated as a candidate solution at the later stages, with the addition of
hardening measure 4 to the initial set of {1,5}. In this example, we can gain
one extra eliminated attack path with the addition of hardening measure 4
with relatively low cost. The eliminated attack path in this case is the one
that uses vulnerability exploit 2 and vulnerability exploit 4 on the attack
graph.

9.4 Experiments

The main aim of the experiments described in this section is to show the bene-
fits of the proposed candidate selection function applied during the optimiza-
tion algorithm. The benefits appear in the form of substantially decreased
time required for the optimization algorithm to find the near optimal hard-
ening solutions. We have carried out extensive experimentation with varying
topologies, exploits and hardening measures as inputs to evaluate and verify
our approach. For clarity of presentation, we provide a representative ex-
ample network depicted in Figure 9.9, which forms the basis of the results
provided in this section. However, the conclusions drawn are general and not
only specific to this example network. The experiments are performed in a

single PC with Intel Corei7-2620M 2.70GHz CPU and 8GB RAM.

The hosts in the network can have various software with a number of vulnera-
bilities defined in NVD [50]. The software configuration for the hosts and the
filtering rules applied by the routers can be changed across the experiments
in order to obtain different attack graphs. A full or partial attack graph can

9.4 Experiments 157

Fig. 9.9: Network used for the experiments

be given as input to the proposed method to find the near optimal network
hardening solution. A sample attack graph utilized in the experiments is
shown in Figure 9.10. Each area shaded in light blue indicates a network
host, which can be collapsed or expanded to simplify the visualization of
the attack graphs. Red nodes indicate security states (attacker privileges),
orange nodes indicate weakness exploits (vulnerability exploits in the figure)
and black nodes indicate conjunction (AND) relations.

The weakness exploit nodes in the attack graph are related with 12 different
vulnerabilities. There are 22 exploit nodes on the attack graph having a total
of 45 incoming edges. The average out-degree for the nodes in this attack
graph is 2.

In our model, an enforceable hardening measure can have effects on the attack
graph in terms of negating one or more incoming edges of the weakness exploit
nodes. A hardening measure can patch various vulnerabilities and negate all
the incoming edges of one or more weakness exploit nodes in the attack
graph related to the patched vulnerabilities. It can also negate some specific
incoming edges of an exploit node selectively by including filtering rules or
according to the application location of the hardening measure inside the
target network.

We provide the results of two sets of experiments, both based on the network
shown in Figure 9.9. There is one goal security state used as input to the
proposed optimization method, common in both sets of experiments. The
goal security state is to gain the user access privilege on MySQL server

9.4 Experiments 158

——

]

\VULNERABILITY EXPLOIT
100z

CuE20120142
AP1200-2 Office Excel 2010

Fig. 9.10: Attack graph used for the experiments

software installed on the host with the IP address 10.0.2.10.

We use the attack graph shown in Figure 9.10 in the first set of experiments
and change the availability of different hardening measures as a parameter.
In each of these experiments, we determine a specific number of hardening
measures and mark them as available to the network security administrator.
The attack graph edges negated by a hardening measure are determined
randomly. Also, the costs for the hardening measures used in the experiments
are selected randomly in a pre-determined range (5000-50000).

We compute the near optimal hardening solution for the used attack graph
with both brute force and our simulated annealing-based optimization
method for each of the 20 different experiments in the first set. We com-
pare the results in terms of the execution time of both methods and the ratio
of the score of the optimal hardening solution obtained by our method to the
score of the best solution obtained by the brute force method. The scores for
both methods are computed using Equation 9.1, with the values of a and (8
both set to 0.5. (We have also performed experiments for different values of
a and £ and the results for these experiments are comparable to the results
of the experiments shown in this section.)

Table 9.1 shows the results of the first set of experiments with varying sets of
available hardening measures. For each experiment, the count of the harden-

9.4 Experiments 159

ing measures available to the network security administrator and the number
of the edges in the attack graph negated by each available hardening measure
are given. The execution time values for the proposed optimization method
accounts for the hardening measure graph computation time. The results of
each experiment are actually obtained by averaging the results of a number of
executions of the proposed optimization method with the selected available
hardening measures defined for the experiment.

Tab. 9.1: Comparison of the proposed method with the brute force solution for
the first set of experiments

Available Attack
ﬁiﬁiﬁ;ﬂg Szzg?e q ﬁr;fogome Our Optimization Method
Count Edge Count

Execution Execution | Score

Time (ms) Time (ms) | Ratio
10 1 434 559 1.0
10 2 452 567 1.0
10 4 479 591 1.0
10 6 497 602 1.0
15 1 2942 758 1.0
15 2 3177 776 1.0
15 4 3358 793 0.998
15 6 3572 807 0.996
17 1 9866 861 1.0
17 2 10063 901 0.996
17 4 10768 937 0.986
17 6 11280 968 0.982
20 1 69448 996 0.993
20 2 71211 1059 0.988
20 4 79374 1092 0.979
20 6 82554 1137 0.972
25 1 N/A 1267 1.117
25 2 N/A 1301 1.086
25 4 N/A 1368 1.067
25 6 N/A 1392 1.055

These experiments show the effectiveness of the proposed candidate solution
selection function used during the optimization process. When the number
of the available hardening measures for a specific attack graph increases, our

9.4 Experiments 160

method can become more advantageous. For 20 available hardening measures
with 1 negated edge count per measure, our method generates an optimal
solution with a score that is 0.99 of the score of the optimal solution generated
by the brute force method within a fraction (0.01) of the time required by
the brute force method. For 25 available hardening measures, the brute force
method can not even terminate in a reasonable time interval, indicated by
the values of N/A in Table 9.1. The score accounted for the brute force
method in these cases is the best score obtained, until manually terminating
the execution after a specified time interval. Our simulated annealing-based
optimization method is terminated, when the best solution is not improved
after 2000 consecutive optimization steps (candidate evaluations).

When the number of the attack graph edges negated by one hardening mea-
sure increases for the same attack graph and same number of available hard-
ening measures, finding the optimal solutions becomes more difficult; how-
ever, even in such cases, the score ratio of our method to the brute force
solution remains above 0.97.

For the second set of experiments, we generate three additional attack graphs
for the network shown in Figure 9.9, each with different initial security states
(attacker privileges). The average out-degrees for the nodes in the additional
attack graphs are chosen to be 4, 6 and 7. The number of exploit nodes in
those are 28, 38, 47 respectively. The number of attack graph edges negated
by each hardening measure is held constant at 4 for each of the 20 experiments
in the second set. Table 9.2 compares the scores obtained by the brute force
and the proposed method as in Table 9.1, where the used attack graphs are
varied across the experiments. The attack graph used for each experiment
is indicated by its degree. It should be noted that the attack graph with
average out-degree 2 is the graph shown in Figure 9.10.

Similar to the earlier case, we get near optimal network hardening solutions
with comparable scores to the best solutions generated by the brute force
method almost hundred times faster for the second set of experiments. Our
solutions’ scores are between 0.95 and 1.0 of the corresponding best solutions
for even very large and complex attack graphs (with average node out-degree
7). For 25 available hardening measures, the brute force method execution
can not even terminate in a reasonable time frame, indicated again by N/A
values in the corresponding entries of Table 9.2. For such cases, we record
the best score obtained by the brute force method, before terminating its
execution manually after a specified time interval.

When the average node out-degree for the used attack graphs increases and
other parameters remain the same, the accuracy (score ratio) of our method

9.4 Experiments

161

Tab. 9.2: Comparison of the proposed method with the brute force solution for
the second set of experiments

Available Attack
Hardening Graph Brute Force
Node Av- Our Optimization Method
Measure Method
Count erage Out
Degree
Execution Execution | Score
Time (ms) Time (ms) | Ratio
10 2 479 591 1.0
15 2 3358 793 0.998
17 2 10768 937 0.986
20 2 79374 1092 0.979
25 2 N/A 1368 1.067
10 4 655 1673 1.0
15 4 3875 2702 0.991
17 4 12663 3284 0.976
20 4 85371 4302 0.957
25 4 N/A 6358 1.037
10 6 731 4366 0.989
15 6 4286 8772 0.982
17 6 16648 10216 0.971
20 6 91559 13783 0.954
25 6 N/A 23433 1.021
10 7 787 8449 0.983
15 7 4426 18040 0.968
17 7 18912 22971 0.960
20 7 97262 31508 0.944
25 7 N/A 47824 1.012

9.4 Experiments 162

decreases, since the interactions (e.g., common eliminated attack paths)
among the available measures can increase substantially with the increasing
number of edges in the used attack graphs and finding the optimal solutions
becomes harder. However, even with 20 available hardening measures and
attack graphs with an average node out-degree of 7, the score ratio of our
method remains around 0.94. Also, when the average node out-degree for the
used attack graphs increases, the number of available hardening measures for
which our method outperforms the brute-force method in terms of execution
time increases. For instance, for an attack graph with average node out-
degree 4, our method outperforms the brute-force method, when the number
of available hardening measures reaches 15. This number of hardening mea-
sures increases to 17 for an attack graph with average node out-degree 6.
Figure 9.11 compares the run-time performance and accuracy of the brute-
force and proposed method by changing the node average out-degree for the
input attack graph and the number of available hardening measures. (We
increase the attack graph size while increasing the node average out-degree.)
The results of Table 9.2 are utilized to create this figure.

When the average node out-degree for the input attack graph (and also the
attack graph size) increases, the run-time performance benefit gained by
using the proposed method increases without sacrificing the optimality of
the obtained solutions significantly. This benefit is more obvious, when the
number of available hardening measures increases, from which the network
security administrator should select the optimal ones.

9.4 Experiments

163

100000

90000

80000

70000

60000

50000

40000

Execution Time (ms)

30000

20000

10000

0

Run-time Performance Comparison

= Brute-force Method (out-
degree=2)

e Our Method (out-degree=2)

= Brute-force Method (out-

degree=4)

== Our Method (out-degree=4)

= Brute-force Method (out-
degree=6)

== 0ur Method (out-degree=6)

10

T T T

15 20 25

Number of Available Hardening Measures

Score Ratio (Our Method's Score/Brute Force Optimal

Score Ratio Comparison

= Qur Method (out-degree=2)
e Qur Method (out-degree=4)

== Q0ur Method (out-degree=6)

T T T T T

12 14 16 18 20
Number of Available Hardening Measures

10

22

Fig. 9.11: Comparison of the run-time performance and accuracy (in terms of
optimal solution score ratio) of the brute-force and proposed method

10
Conclusions and Future Work

In this thesis work, a system for detecting ongoing scenarios of attacks per-
formed on a target network and responding to these attack scenarios is pro-
posed. The system collects and processes the software logs in streaming mode
in order to provide timely detection and response. Partial attack graphs are
used to represent the attack scenarios. A taxonomy of the applied algorithms
and models associated with the reachability analysis, attack graph modelling,
and core building phases of the attack graph generation process is developed.
The algorithms and models employed by the selected prominent works in the
literature related to the attack graph generation process are described by
categorizing them according to the presented classification scheme.

A distributed attack graph building algorithm employing a virtual shared
memory approach over distributed agents and a reachability hyper-graph
partitioning technique to determine the tasks and initial memory configu-
ration of each agent is proposed. Experiments are performed to prove the
performance gain obtained as a result of the application of this algorithm.
The experiment results demonstrate that the distributed computation of at-
tack graphs can be utilized to overcome the state space explosion problem
occurring in the attack graph building process, when the number of hosts
and vulnerabilities on the target network grows.

As a future work for the attack graph core building, one can try to apply
heuristics-based search algorithms (A*, Iterative Deepening A* D* etc.) for
the partial attack graph generation, after developing a set of appropriate net-
work security domain-specific heuristics. The target privileges, determined
by the network security administrators for partial attack graph generation
as input, will be the goal states for the applied heuristics-based search al-
gorithms. These algorithms generally find the shortest paths, however, they

165

may be modified to give a range of critical attack paths to the specified tar-
get privileges. In order to use these search algorithms, a cost value must
be assigned to each edge to appear on the resulting attack graph. These
costs may indicate the likelihood of vulnerability exploits, if the edges on the
attack graph represent vulnerability exploits.

Another future work for the attack graph core building may include the as-
sessment of the advantages that can be gained by allowing duplicate privilege
expansions at some points in the distributed attack graph building process
to refrain from additional memory page transfers among the search agents.
Therefore, at certain points, the principle of preserving coherence across the
distributed search agents’ memories can be relaxed. One other future work
can be to develop methods using map-reduce-based approaches in order to
solve the attack graph core building problem. Additionally, as a future work,
some values may be assigned to the vulnerability exploits and information
source usage vertices in an attack graph at run-time to eliminate the com-
putation of the attack paths that are less likely to be utilized by a potential
attacker because of difficulty of utilization, less damage level introduced to
the target network, etc. In this case, instead of all the possible attack paths to
the given target privileges, a number of paths advantageous for the attacker
may be computed.

The primary logs (indicating vulnerability exploit attempts) are directly
matched to the vulnerability exploit nodes on the computed attack graphs.
The secondary logs are matched to the behavioural malware signatures that
are generated by using an incremental, tree-based clustering method. The
accuracy of the generated signatures are compared against the accuracy of
the off-the-shelf anti-virus products’ signatures. We have obtained better
accuracy and performance by applying an incremental, tree-based malware
clustering method to the behavioural signature generation problem. The pro-
posed method clusters malware samples by processing their behavioural anal-
ysis reports downloaded from the web site https://malwr.com. The reports
generated by ANUBIS [39] dynamic malware analyser for sample malicious
files can also be processed by the proposed method. The behavioural arti-
facts for a sample malware are derived by processing its behavioural analysis
report, each of which specifies an operating system (OS) operation performed
on OS objects of a specific type (read registry key). The behavioural artifacts
of all the malware samples are organized into a tree structure called malware
tree whose nodes can be formed by merging a number of behavioural artifacts
with the same OS operation and object type. The malware tree is traversed
to create the behavioural malware signatures. If a new malware is received,
it can be incrementally added to the malware tree. The time complexity

166

of the creation of the malware tree is almost linear on the number of the
malware samples used to construct the tree. The incremental addition of a
new malware sample into the malware tree has constant time complexity.

As a future work, the proposed malware behavioural clustering system can be
extended in such a way that allows the derivation of additional fields for the
behavioural artifacts (OS operations and objects) of a malware. We currently
determine the values of the fields of the behavioural artifacts based mainly
on the name and absolute location of the files and registry keys, and the
destination port and protocol for the network sockets. However, additional
data such as the last access/modification time for the files, the symbolic
links to the files, the information (e.g., byte count, packet count, specific
flags) about the contents of the data transferred over the network sockets,
the memory snapshots etc. that can be obtained by using various dynamic
malware analysis tools can be utilized in the determination of the values of the
fields for the behavioural artifacts and addition of new fields. The utilization
of these kinds of additional data can provide for more accurate similarity
computations among the behavioural artifacts of a malware. However, the
volume of the information to be processed and the required CPU and memory
resources will increase.

We use dynamically created and expanded partial attack graphs to repre-
sent the ongoing attack scenarios. The expansion direction (to be expanded
nodes) of the partial attack graphs are determined according to the alarmed
attacker privileges that are indicated by the primary and secondary logs. A
primary log indicates a vulnerability exploit and the precondition privileges
of this vulnerability exploit. A collection of secondary logs can indicate a
number of attacker privileges, if and only if the logs can be matched to a
behavioural malware signature as a collection. The malicious activities con-
tained by the matched signature can be used to compute the attacker privi-
leges indicated by the corresponding secondary logs. These are the privileges
giving rise to the performance of the activities indicated by the corresponding
secondary logs by the attacker.

In this thesis work, we also describe a new attack model to separate the
security state nodes (mostly representing attacker privileges) and weakness
exploit nodes in the attack graph and define the effects of an enforceable
hardening measure as the negation of one or more incoming edges of the
exploit nodes. As our main contribution, we propose a customized candidate
selection function for the simulated annealing-based optimization algorithm
to obtain the near optimal solutions much faster than the brute force al-
gorithm. We evaluate the effectiveness of the proposed candidate selection

167

function with the experiments, across which the used attack graph and the
number of available hardening measures are varied.

As a future work, the proposed candidate selection function can be applied
in the scope of a multi-objective optimization solution for the near optimal
network hardening solution finding problem. They can be utilized to de-
fine effective, custom cross-over and mutation operators in the domain of
the genetic algorithms to solve the multi-objective version of the problem.
In addition, the proposed attack graph model can be improved to make it
more flexible and effective, and it can be used to increase the runtime perfor-
mance of the search-based optimal network hardening processes by allowing
a hardening measure to negate the intermediate exploit nodes in the attack
graph.

As a result, we have developed a system that is capable of detecting ongoing
attack scenarios by using both the primary and secondary logs accurately.
The system is also capable of recommending responses to the detected attack
scenarios on time by utilizing a specific candidate selection function inside
an optimization algorithm.

1]

Bibliography

M. Albanese, S. Jajodia, and S. Noel. Time-efficient and cost-effective
network hardening using attack graphs. In Dependable Systems and Net-
works (DSN), 2012 42nd Annual IEEE/IFIP International Conference
on, pages 1-12, June 2012.

Symantec Altiris. Endpoint management powered by altiris technology,
March 2015. http://www.symantec.com/endpoint-management.

P. Ammann, J. Pamula, R. Ritchey, and J. Street. A host-based ap-
proach to network attack chaining analysis. In Computer Security Ap-
plications Conference, 21st Annual, Dec 2005.

P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based net-
work vulnerability analysis. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS 02, pages 217-224,
New York, NY, USA, 2002. ACM.

M. Apel, C. Bockermann, and M. Meier. Measuring similarity of mal-
ware behavior. In Local Computer Networks, 2009. LCN 2009. IEEFE
34th Conference on, pages 891-898, Oct 2009.

S. Bhatt, P.K. Manadhata, and L. Zomlot. The operational role of
security information and event management systems. Security Privacy,
IEFEFE, 12(5):35-41, Sept 2014.

S. Bhattacharya, S. Malhotra, and S.K. Ghsoh. A scalable representa-
tion towards attack graph generation. In Information Technology, 2008.
IT 2008. 1st International Conference on, pages 1-4, May 2008.

R. Canzanese, K. Moshe, and S. Mancoridis. Toward an automatic,
online behavioral malware classification system. In Self-Adaptive and

http://www.symantec.com/endpoint-management

Bibliography 169

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Self-Organizing Systems (SASO), 2013 IEEE 7th International Confer-
ence on, pages 111-120, Sept 2013.

CAPEC. Common attack pattern enumeration and classification, March
2015. http://capec.mitre.org/.

F. Chen, J. Su, and Y. Zhang. A scalable approach to full attack graphs
generation. In Engineering Secure Software and Systems, volume 5429
of Lecture Notes in Computer Science, pages 150-163. Springer Berlin

Heidelberg, 2009.

F. Chen, C. Wang, Z. Tian, S. Jin, and T. Zhang. An atomic-
domains-based approach for attack graph generation, 20009.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.308.4314&rep=repl&type=pdf.

F. Chen, L. Wang, and J. Su. An efficient approach to minimum-cost
network hardening using attack graphs. In Information Assurance and
Security, 2008. ISIAS '08. Fourth International Conference on, pages
209-212, Sept 2008.

Feng Cheng, A. Azodi, D. Jaeger, and C. Meinel. Security event cor-
relation supported by multi-core architecture. In IT Convergence and
Security (ICITCS), 2013 International Conference on, pages 1-5, Dec
2013.

S. Cheung, U. Lindqvist, and M. W. Fong. Modeling multistep cyber
attacks for scenario recognition. In DISCEX (1), pages 284-292. IEEE
Computer Society, 2003.

MITRE Corporation. Common platform enumeration, January 2015.
https://cpe.mitre.org/.

Cuckoo. Automated malware analysis - cuckoo sandbox, November 2016.
https://cuckoosandbox.org/.

F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion
detection framework. In IEEE Symposium on Security and Privacy,
pages 202-215. IEEE Computer Society, 2002.

CVE. Common vulnerabilities and exposures, March 2015. https:
//cve.mitre.org/.

CWE. Common weakness enumeration, March 2015. http://cwe.
mitre.org/.

http://capec.mitre.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.4314&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.4314&rep=rep1&type=pdf
https://cpe.mitre.org/
https://cuckoosandbox.org/
https://cve.mitre.org/
https://cve.mitre.org/
http://cwe.mitre.org/
http://cwe.mitre.org/

Bibliography 170

[20]

[21]

[25]

[26]

[27]

28]

[29]

M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of
operational security: Models and tools, March 1996.

R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley. Optimal security
hardening using multi-objective optimization on attack tree models of
networks. In Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS '07, pages 204-213, New York, NY,
USA, 2007. ACM.

R. W. Eglese. Simulated annealing: A tool for operational research.
European Journal of Operational Research, 46(3):271-281, June 1990.

B. Foo, Yu-Sung W., Y.-C. Mao, S. Bagchi, and E. Spafford. Adepts:
adaptive intrusion response using attack graphs in an e-commerce en-
vironment. In Dependable Systems and Networks, 2005. DSN 2005.
Proceedings. International Conference on, pages 508-517, June 2005.

M. Frigault and L. Wang. Measuring network security using bayesian
network-based attack graphs. In Computer Software and Applications,
2008. COMPSAC "08. 32nd Annual IEEE International, pages 698703,
July 2008.

M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network
security using dynamic bayesian network. In Proceedings of the jth ACM
Workshop on Quality of Protection, QoP ’08, pages 23-30, New York,
NY, USA, 2008. ACM.

Boris G. Integrated event management: Event correlation using depen-
dency graphs, 1998.

R. Gabriel, T. Hoppe, A. Pastwa, and S. Sowa. Analyzing malware
log data to support security information and event management: Some
research results. In Advances in Databases, Knowledge, and Data Ap-
plications, 2009. DBKDA ’09. First International Conference on, pages
108-113, March 2009.

GFILanGuard. Gfilanguard network security scanner and
patch management, March 2015. http://www.gfi.com/
products-and-solutions/network-security-solutions/
gfi-languard.

B. Han, Q. Wang, F. Yu, and X. Zhang. A vulnerability attack graph
generation method based on scripts. In Proceedings of the Third In-
ternational Conference on Information Computing and Applications,
ICICA’12, pages 45-50, Berlin, Heidelberg, 2012. Springer-Verlag.

http://www.gfi.com/products-and-solutions/network-security-solutions/gfi-languard
http://www.gfi.com/products-and-solutions/network-security-solutions/gfi-languard
http://www.gfi.com/products-and-solutions/network-security-solutions/gfi-languard

Bibliography 171

[30]

[36]

[39]

B. Hirsch, T. Konnerth, and A. Hessler. Merging agents and services -
the jiac agent platform. In Multi-Agent Programming, pages 159—-185.
Springer US, 2009.

K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling
modern network attacks and countermeasures using attack graphs. In
Computer Security Applications Conference, 2009. ACSAC "09. Annual,
pages 117-126, Dec 2009.

K. Ingols, R. Lippmann, and K. Piwowarski. Practical attack graph
generation for network defense. In Computer Security Applications Con-
ference, 2006. ACSAC °06. 22nd Annual, pages 121-130, Dec 2006.

T. Islam and L. Wang. A heuristic approach to minimum-cost network
hardening using attack graph. In New Technologies, Mobility and Secu-
rity, 2008. NTMS ’08., pages 1-5, Nov 2008.

S. Jajodia and S. Noel. Topological vulnerability analysis. In Cyber
Situational Awareness, volume 46 of Advances in Information Security,
pages 139-154. Springer, 2010.

G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning.
In Proceedings of the 36th annual ACM/IEEE Design Automation Con-
ference, DAC 799, pages 343-348, New York, NY, USA, 1999. ACM.

K. Kaynar. A taxonomy for attack graph generation and usage in net-
work security. Journal of Information Security and Applications, 29:27
— 56, 2016.

K. Kaynar and F. Sivrikaya. Distributed attack graph generation. I[EEE
Transactions on Dependable and Secure Computing, 13(5):519-532, Sept
2016.

I. Kotenko and M. Stepashkin. Attack graph based evaluation of network
security. In Proceedings of the 10th IFIP TC-6 TC-11 International Con-
ference on Communications and Multimedia Security, CMS’06, pages
216-227, Berlin, Heidelberg, 2006. Springer-Verlag.

C. Kruegel, E. Kirda, M. P. Comparetti, U. Bayer, and C. Hlauschek.
Scalable, behavior-based malware clustering. In Proceedings of the 16th

Annual Network and Distributed System Security Symposium (NDSS
2009), 1 2009.

Bibliography 172

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

K. Li and P. Hudak. Memory coherence in shared virtual memory sys-
tems. ACM Trans. Comput. Syst., 7(4):321-359, November 1989.

G. Lodi, L. Aniello, Giuseppe A. Di L., and R. Baldoni. An event-based
platform for collaborative threats detection and monitoring. Inf. Syst.,
39:175-195, January 2014.

J. Ma and J. Sun. Optimal network hardening model based on parallel
genetic algorithm. In Industrial Control and Electronics Engineering
(ICICEE), 2012 International Conference on, pages 546-549, Aug 2012.

J. Ma, Y. Wang, J. Sun, and X. Hu. A scalable, bidirectional-based
search strategy to generate attack graphs. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on, pages
2976-2981, June 2010.

D. Man, B. Zhang, Y. Wu, W. Jin, and Y. Yang. A method for global
attack graph generation. In Networking, Sensing and Control, 2008.
ICNSC 2008. IEEE International Conference on, pages 236-241, April
2008.

S. Marchal, J. Xiuyan, R. State, and T. Engel. A big data architecture
for large scale security monitoring. In Big Data (BigData Congress),
2014 IEEFE International Congress on, pages 56—63, June 2014.

A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware
detection. In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, pages 421-430, Dec 2007.

S. Nari and A. A. Ghorbani. Automated malware classification based
on network behavior. In Computing, Networking and Communications
(ICNC), 2018 International Conference on, pages 642—647, Jan 2013.

P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through
correlation of intrusion alerts. In Vijayalakshmi Atluri, editor, ACM
Conference on Computer and Communications Security, pages 245-254.

ACM, 2002.

P. Ning and D. Xu. Learning attack strategies from intrusion alerts. In
Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security, CCS '03, pages 200-209, New York, NY, USA, 2003.
ACM.

Bibliography 173

[50]

[51]
[52]

NIST. National vulnerability database, March 2015. http://nvd.nist.
gov/.

Nmap. Nmap security scanner, March 2015. http://nmap.org/.

S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K. Prole.
Advances in topological vulnerability analysis. In Proc. of the 2009

Cybersecurity Applications € Technology Conf. for Homeland Security,
CATCH ’09, pages 124-129, Washington, DC, USA, 2009.

S. Noel, S. Jajodia, B. O’'Berry, and M. Jacobs. Efficient minimum-cost
network hardening via exploit dependency graphs. In Proceedings of the
19th Annual Computer Security Applications Conference, ACSAC 03,
pages 86—, Washington, DC, USA, 2003. IEEE Computer Society.

S. Noel, E. Robertson, and S. Jajodia. Correlating intrusion events and
building attack scenarios through attack graph distances. In Computer
Security Applications Conference, 2004. 20th Annual, pages 350-359,
Dec 2004.

OpenVAS. Openvas open source vulnerability scanner and manager,
March 2015. http://www.openvas.org/.

OSVDB. The open source vulnerability database, March 2015. http:
//osvdb.org/.

X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to
attack graph generation. In Proceedings of the 13th ACM Conference

on Computer and Communications Security, CCS 06, pages 336-345,
New York, NY, USA, 2006. ACM.

OVALdi. Ovaldi - an open-source local vulnerability assessment scanner,
March 2015. http://www.decalage.info/en/ovaldi.

X. Peng, J. H. Li, O. Xinming, L.. Peng, and R. Levy. Using bayesian net-
works for cyber security analysis. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on, pages 211-220,
June 2010.

C. Phillips and L. P. Swiler. A graph-based system for network-
vulnerability analysis. In Proceedings of the 1998 Workshop on New
Security Paradigms, NSPW '98, pages 71-79, New York, NY, USA,
1998. ACM.

http://nvd.nist.gov/
http://nvd.nist.gov/
http://nmap.org/
http://www.openvas.org/
http://osvdb.org/
http://osvdb.org/
http://www.decalage.info/en/ovaldi

Bibliography 174

[61]

[62]

[69]

[70]

N. Poolsappasit, R. Dewri, and I. Ray. Dynamic security risk man-
agement using bayesian attack graphs. IEEE Trans. Dependable Secur.
Comput., 9(1):61-74, jan 2012.

H. Razeghi Borojerdi and M. Abadi. Malhunter: Automatic generation
of multiple behavioral signatures for polymorphic malware detection. In
Computer and Knowledge Engineering (ICCKE), 2013 3th International
eConference on, pages 430-436, Oct 2013.

Redseal. Redseal proactive network security, March 2015. http://www.
redsealnetworks.com/.

H. Ren, N. Stakhanova, and A. A. Ghorbani. An online adaptive ap-
proach to alert correlation. In Proceedings of the 7th International Con-
ference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, DIMVA’10, pages 153-172, Berlin, Heidelberg, 2010. Springer-
Verlag.

Retina. Retina network security scanner unlimited,
March 2015. http://www.beyondtrust.com/Products/
RetinaNetworkSecurityScanner/.

K. Rieck, P. Trinius, C. Willems, and T. Holzaff. Automatic analysis of
malware behavior using machine learning. J. Comput. Secur., 19(4):639—
668, dec 2011.

R.W. Ritchey and P. Ammann. Using model checking to analyze net-
work vulnerabilities. In Security and Privacy, 2000. S P 2000. Proceed-
ings. 2000 IEEE Symposium on, pages 156-165, 2000.

S. Roschke, F. Cheng, and C. Meinel. A new alert correlation algorithm
based on attack graph. In Proceedings of the jth International Confer-
ence on Computational Intelligence in Security for Information Systems,
CISIS’11, pages 58-67, Berlin, Heidelberg, 2011. Springer-Verlag.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated
generation and analysis of attack graphs. In Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pages 273-284, 2002.

Oleg Sheyner and Jeannette Wing. Tools for generating and analyz-
ing attack graphs. In F. S. De Boer, M. M. Bonsangue, S. Graf, and
W. De Roever, editors, Formal Methods for Components and Objects,
volume 3188 of Lecture Notes in Computer Science, pages 344-371.
Springer Berlin Heidelberg, 2004.

http://www.redsealnetworks.com/
http://www.redsealnetworks.com/
http://www.beyondtrust.com/Products/RetinaNetworkSecurityScanner/
http://www.beyondtrust.com/Products/RetinaNetworkSecurityScanner/

Bibliography 175

[71]

[72]

[74]

[75]

[77]

78]

Skybox. Skybox risk control, March 2015. http://www.
skyboxsecurity.com/.

A. C. Squicciarini, G. Petracca, W. G. Horne, and A. Nath. Situational
awareness through reasoning on network incidents. In Proceedings of

the 4th ACM Conference on Data and Application Security and Privacy,
CODASPY ’14, pages 111-122, New York, NY, USA, 2014. ACM.

A. Stotz and M. Sudit. Information fusion engine for real-time decision-
making (inferd): A perceptual system for cyber attack tracking. In
Information Fusion, 2007 10th International Conference on, pages 1-8,
July 2007.

L.P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack
graph generation tool. In DARPA Information Survivability Conference
amp; Fxposition II, 2001. DISCEX ’01. Proceedings, volume 2, pages
307-321 vol.2, 2001.

G. Tedesco and U. Aickelin. Real-time alert correlation with type
graphs. In Proceedings of the 4th International Conference on Infor-
mation Systems Security, ICISS '08, pages 173—-187, Berlin, Heidelberg,
2008. Springer-Verlag.

S. J. Templeton and K. Levitt. A requires/provides model for com-
puter attacks. In Proceedings of the 2000 Workshop on New Security
Paradigms, NSPW 00, pages 31-38, New York, NY, USA, 2000. ACM.

Nessus Tenable. Nessus vulnerability scanner, March 2015. http://
www.tenable.com/products/nessus.

F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer. A compre-
hensive approach to intrusion detection alert correlation. IFEFE Trans.
Dependable Secur. Comput., 1(3):146-169, July 2004.

V. Vianello, V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, R. Tor-
res, R. Diaz, and E. Prieto. A scalable siem correlation engine and its
application to the olympic games it infrastructure. In Availability, Reli-
ability and Security (ARES), 2013 Fighth International Conference on,
pages 625-629, Sept 2013.

VirusTotal. Virus total, March 2015. https://www.virustotal.com/.

L. Wang, M. Albanese, and S. Jajodia. Attack graph and network hard-
ening. In Network Hardening, SpringerBriefs in Computer Science, pages
15-22. Springer International Publishing, 2014.

http://www.skyboxsecurity.com/
http://www.skyboxsecurity.com/
http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
https://www.virustotal.com/

Bibliography 176

[82]

[83]

[84]

[85]

[88]

[89]

[90]

[91]

L. Wang, M. Albanese, and S. Jajodia. Linear-time network hardening.
In Network Hardening, SpringerBriefs in Computer Science, pages 39—
58. Springer International Publishing, 2014.

L. Wang, M. Albanese, and S. Jajodia. Minimum-cost network harden-
ing. In Network Hardening, SpringerBriefs in Computer Science, pages
23-38. Springer International Publishing, 2014.

L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack
graph-based probabilistic security metric. In Proceeedings of the 22Nd
Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, pages 283-296, Berlin, Heidelberg, 2008. Springer-Verlag.

L. Wang, A. Liu, and S. Jajodia. An efficient and unified approach to
correlating, hypothesizing, and predicting intrusion alerts. In Proceed-
ings of the 10th European Conference on Research in Computer Security,
ESORICS’05, pages 247-266, Berlin, Heidelberg, 2005. Springer-Verlag.

L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening
using attack graphs. Comput. Commaun., 29(18):3812-3824, November
2006.

W. Wang and T. E. Daniels. A graph based approach toward network
forensics analysis. ACM Trans. Inf. Syst. Secur., 12(1):4:1-4:33, October
2008.

C. Willems, T. Holz, and F. Freiling. Toward automated dynamic mal-
ware analysis using cwsandbox. IEEFE Security and Privacy, 5(2):32-39,
March 2007.

Y. Wu, B. Foo, Y. Mei, and S. Bagchi. Collaborative intrusion detection
system (cids): A framework for accurate and efficient ids. In Proceedings
of the 19th Annual Computer Security Applications Conference, ACSAC
‘03, pages 234—, Washington, DC, USA, 2003. IEEE Computer Society.

A. Xie, G. Chen, Y. Wang, Z. Chen, and J. Hu. A new method to
generate attack graphs. In Secure Software Integration and Reliability
Improvement, 2009. SSIRI 2009. Third IEEE International Conference
on, pages 401-406, July 2009.

A. Xie, Li. Zhang, J. Hu, and Z. Chen. A probability-based approach to
attack graphs generation. In FElectronic Commerce and Security, 2009.
ISECS °09. Second International Symposium on, volume 2, pages 343—
347, May 2009.

Bibliography 177

[92]

[95]

[96]

T. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,
and E. Kirda. Beehive: Large-scale log analysis for detecting suspi-
cious activity in enterprise networks. In Proceedings of the 29th Annual

Computer Security Applications Conference, ACSAC 13, pages 199—
208, New York, NY, USA, 2013. ACM.

B. Yigit, G. Gur, and F. Alagoz. Cost-aware network hardening with
limited budget using compact attack graphs. In Military Communica-
tions Conference (MILCOM), 2014 IEEE, pages 152-157, Oct 2014.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Cap-
turing system-wide information flow for malware detection and analysis.
In Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, CCS '07, pages 116-127, New York, NY, USA, 2007.
ACM.

H. Zhang, D. D. Yao, and N. Ramakrishnan. Detection of stealthy
malware activities with traffic causality and scalable triggering relation
discovery. In Proceedings of the 9th ACM Symposium on Information,

Computer and Communications Security, ASIA CCS ’14, pages 39-50,
New York, NY, USA, 2014. ACM.

Y. Zhao, Z. Wang, X. Zhang, and J. Zheng. An improved algorithm
for generation of attack graph based on virtual performance node. In
Multimedia Information Networking and Security, 2009. MINES ’09.
International Conference on, volume 2, pages 466-469, Nov 2009.

	Title Page
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	1. Motivation
	1.1 Why is the Attack Scenario Detection Process Important?
	1.2 What is Important in the Attack Scenario Detection Process?

	2. Approach
	2.1 Representing Relations among Vulnerability Exploits and Privileges
	2.2 Representing Malicious Activities after Vulnerability Exploits
	2.3 Correlating Network-wide Logs: Attack Scenario Detection
	2.4 Responding to Attacks

	3. State of the Art
	3.1 Behavioural Malware Signatures
	3.2 Attack Scenario Detection Using Logs
	3.3 Security Information and Event Management Systems
	3.4 Optimal Network Hardening Measure Recommendation

	4. System Overview
	5. A Taxonomy for Attack Graph Generation Process
	5.1 Reachability Analysis Phase
	5.2 Attack Graph Modelling Phase
	5.3 Attack Graph Core Building Phase
	5.4 Using Attack Graphs for Network Security
	5.5 Comparison of Past Works on Attack Graphs

	6. Attack Graph Generation
	6.1 Basic Problems in Attack Graph Generation
	6.2 Attack Graph Modelling
	6.3 Proposed Attack Graph Core Building Mechanism

	7. Generation of Behavioural Malware Signatures
	7.1 Behavioural Artifact and Malware Component Tree Models
	7.2 Generation of Behavioural Artifacts
	7.3 Incremental Clustering of Malware
	7.4 Generation of Behavioural Signatures
	7.5 Experiments

	8. Attack Scenario Detection Using Network-wide Logs
	8.1 Log Collection
	8.2 Log Preprocessing
	8.3 Log Processing
	8.4 Log Processing Results' Correlation
	8.5 Experiments

	9. Responding to Attack Scenarios
	9.1 Hardening Measure Graph
	9.2 Finding the Optimal Solution
	9.3 A Small Case Study
	9.4 Experiments

	10. Conclusions and Future Work
	Bibliography

