
Advanced Gateways
in Automotive Applications

vorgelegt von
Diplom-Ingenieur
Tobias Lorenz
aus Berlin

von der Fakultät Fakultät IV – Elektrotechnik und Informatik
der Technische Universität Berlin

zur Erlangung des akademischen Grades

Doktor-Ingenieur
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Georg Böck, TU-Berlin
Berichter: Prof. Dr. rer. nat. Otto Manck, TU-Berlin
Berichter: Prof. Dr.-Ing. Reinhold Orgelmeister, TU-Berlin

Tag der wissenschaftlichen Aussprache: 15.07.2008

Berlin 2008

D 83

Acknowledgment

While I was working on my thesis over the last few years, I was fortunate
enough to have had many fruitful and inspiring discussions in a congenial
atmosphere with my colleagues both at the Technical University of Berlin as
well as at Bosch, the business company I have been working for since 2004.
I am also deeply indebted to Prof. Otto Manck, my supervisor and mentor.
During my time at his microelectronics division, he supported me with fruitful
discussions and sound advice on research and technical issues, as well as on a
personal level.
I would also like to thank Prof. Golze and Prof. Weinerth, which unfortunately
were not able to attend the exam, Prof. Orgelmeister and Prof. Manck as the
examiners and Prof. Böck as the chairman of the exam.
A special word of thanks goes also to the complete AE/EIP5 group at Bosch,
which not only supported my work on the technical side, but more over we
shared much of our recreational time. I also with to express my sincere thanks
to Jan Taube for many discussions we had on the structure and implementation,
Markus Ihle for the project management and Kay Hammer for helpful detailed
information. The friendships that grew in the last years will last beyond my
time in Reutlingen.
Furthermore, I would also like to thank my father, Jürgen Lorenz, and my
uncle, Gert Lorenz, as neutral reviewers of my work and again Markus Ihle
and Jan Taube regarding the scientific contents itself.
Without the steady support of my family during the complete time of education
and studies, I never would have been able to do my dissertation in a relatively
short time.
My special thanks also goes to all the other people, whom I have not directly
named, but who also helped me both directly and indirectly during this period
of my life.

2

Declaration

I hereby declare that this submission is my own work and that, to the best
of my knowledge and belief, it contains no material previously published or
written by another person, nor material which to a substantial extent has been
accepted for the award of any other degree or diploma of the university or other
institute of higher learning, except where due acknowledgment has been made
in the text.

(signature/name/date)

3

Abstract

Today’s devices in automotive environments are linked by several independent
networks, such as CAN, MOST and in the future FlexRay. The interconnection
technologies between these networks is one of the fastest developing areas in
automotive electronics. In recent years the improved capabilities enabled many
new features, e.g. driver assistance systems.
For the interconnection, complex gateway systems are necessary. Most of
them are implemented as a System-On-Chip with high-speed CPUs and large
buffer RAMs to provide just this functionality in software. With increasing
throughput and number of interfaces on the gateway, this leads to high latency
and jitter. Hardware based solutions can provide gateway functionality with
hard real-time requirements and, additionally, circumvent the given problems.
The developed gateway concept is versatile, thus usable by different network
types. It offers gateway functionality in hardware without the need to have
a powerful CPU or large buffer RAM. CPU access to the underlying network
interfaces is still possible to enable electronic control units (ECUs) to have
further functionality.
For the gateway configuration, many non-standardized description formats are
available. Unfortunately data exchange between different formats is inherently
error-prone and time-consuming. A common description format is necessary
and is found in the Field Bus Exchange Format (FIBEX).
On the other side gateway implementations have proprietary internal formats
in which they store their configuration data. An optimal gateway toolchain
should be based on the FIBEX configuration data of all connected networks
and translate the routing information directly into the internal format of the
target implementation.
The verification of complex gateway systems is problematic. Programming a
remaining bus simulation is usually done manually, takes a long time and almost
never covers the complete range of possible gateway mappings. Having an
automated verification configuration generator was necessary. Such a regression
test environment results in error logs containing patterns, which helps to find
design or configuration bugs. Detailed statistics about latency and jitter of every
mapping may be generated in parallel. Using FIBEX as common configuration
format for the gateway and for the verification environment can eliminate
inconsistencies.

Zusammenfassung

Heutige Steuergeräte in Kraftfahrzeugen sind über eine Reihe von unabhängigen
Netzwerken, wie CAN, MOST und zukünftig FlexRay, miteinander verbunden.
Die zunehmende Verknüpfung stellt derzeit eine der am stärksten wachsenden
Bereiche in der Automobilelektronik dar. In den vergangenen Jahren sind
durch die dadurch gestiegenen Möglichkeiten viele neue Funktionen entstanden,
insbesondere im Bereich der Fahrerassistenzsysteme.
Für die Verbindung von Netzwerken sind komplexe Gateway-Systeme not-
wendig. Derzeit sind diese System-On-Chips mit schnellen CPUs und großen
RAMs ausgestattet, speziell um die Gateway-Funktionen in Software zu rea-
lisieren. Mit der Zunahme von Datendurchsatz und Schnittstellenanzahl im
Gateway, führt dies mittlerweile zu nicht mehr tragbarem Latenz- und Jitter-
verhalten. Hardwarebasierte Lösungen können die Gateway-Funktionen mit
harten Echtzeitanforderungen erfüllen und die bekannten Probleme verhindern.
Das entwickelte Gateway-Konzept ist vielseitig und dadurch mit verschiedenen
Netzwerktypen nutzbar. Es ermöglicht die Verlagerung der Gateway-Funktion in
Hardware, ohne die Notwendigkeit einer schnellen CPU und eines großen Puffer-
Speichers. Der CPU-Zugang zu den darunter liegenden Netzwerkschnittstellen
ist weiterhin möglich, um weitere Funktionen im Steuergerät zu ermöglichen.
Für die Gateway-Konfiguration gibt es viele nicht-standardisierte Konfigura-
tionsformate. Das macht den Austausch von Daten zwischen verschiedenen
Formaten fehleranfällig und zeitaufwendig. Ein einheitliches Beschreibungsfor-
mat war notwendig und fand sich im Field Bus Exchange Format (FIBEX).
Auch intern weisen Gateways verschiedene proprietäre Konfigurationsformate
auf. Die entwickelte Gateway-Toolchain ist daher in der Lage eine FIBEX-
Konfiguration mit allen darin enthaltenen Konfigurationen zu laden und diese
in das interne Format des Gateways zu übersetzen.
Die Verifikation eines solchen komplexen Gateway-Systems ist problematisch.
Die Programmierung einer Restbussimulation wird üblicherweise manuell vor-
genommen, was viel Zeit erfordert und fast nie den kompletten Bereich mög-
licher Gateway-Funktionen testet. Ein Tool zur automatisierten Erzeugung
von Konfigurationen für die Verifikationsumgebung wurde entwickelt. Diese
Regressionstestumgebung liefert Fehlermeldungen, deren Muster helfen können
Fehler in Hard- und Software zu finden. Detaillierte Statistiken über Latenz
und Jitter jeder Gateway-Funktion werden parallel erhoben. Die Benutzung
von FIBEX als einheitliches Format für Gateway und Testumgebung hilft dabei
Inkonsistenzen zu vermeiden.

Contents

1 Introduction 10

2 Communication Networks 12
2.1 Basic Concepts . 12

2.1.1 Physical Transmission 12
2.1.2 Media Access Control . 13
2.1.3 Logical Link Control . 14
2.1.4 Upper Layers . 16
2.1.5 Communication Controller 16

2.2 Controller Area Network . 18
2.2.1 Protocol Description . 18
2.2.2 Higher Layer Protocols 19
2.2.3 Communication Controller 20
2.2.4 Configuration Format . 21

2.3 Time-Triggered Controller Area Network 21
2.3.1 Protocol Description . 22
2.3.2 Communication Controller 23

2.4 FlexRay . 24
2.4.1 Protocol Description . 24
2.4.2 Communication Controller 25
2.4.3 Configuration Formats 27

2.5 Media Oriented System Transport 27
2.5.1 Protocol Description . 28

6

CONTENTS

2.5.2 Communication Controllers 29
2.6 Network Architectures . 30

3 Current Gateways 32
3.1 Requirements . 32
3.2 Tasks . 34
3.3 Gateway-Optimized Microcontroller 36
3.4 Software Gateways . 38

3.4.1 K2L Gateway . 39
3.4.2 Automotive Open System Architecture 39
3.4.3 X2E Gateway . 41

3.5 Configuration Data Formats . 41
3.5.1 Field Bus Exchange Format 42
3.5.2 AUTOSAR System Constraint Templates 43

3.6 Problems and Issues . 43

4 Advanced Gateway Architectures 45
4.1 Advanced Gateways . 45

4.1.1 Requirements . 45
4.1.2 CAN-CAN Gateway . 46
4.1.3 Multi-Protocol Gateway 52
4.1.4 Software Gateway . 59

4.2 Configuration Toolchain . 61
4.2.1 FIBEX Engine . 62
4.2.2 Import/Export of CANdb++ DBC databases 63
4.2.3 Configuration of Communication Controllers 64
4.2.4 Gateway Configuration 64
4.2.5 Assembler . 65
4.2.6 Verification and Tests . 68
4.2.7 Assembler Instruction Simulator 69

4.3 Verification Environment . 70

7

CONTENTS

4.3.1 Gateway Executive Model 70
4.3.2 Automatic Test Generator 73

5 Implementation and Results 75
5.1 Gateway Development Hardware 75

5.1.1 Development Board . 75
5.1.2 Physical Layer Board . 76
5.1.3 Clock Frequencies . 77

5.2 CAN-CAN Gateway Comparisons 78
5.2.1 Instruction Set . 78
5.2.2 Comparison of Implementations 78
5.2.3 Description of Test System 79
5.2.4 Implemented Tests . 82
5.2.5 Results . 85

5.3 Multi-Protocol Gateway Implementation 85
5.3.1 RAM Configuration . 85
5.3.2 Instruction Set . 86
5.3.3 Finite State Machines 87
5.3.4 Gate Count . 92

5.4 Toolchain Optimization Results 93
5.4.1 Optimization Levels . 93
5.4.2 Code Size and Execution Time 93

5.5 Verification Environment Implementation 94
5.5.1 Test Description . 96
5.5.2 Test Scenarios . 98
5.5.3 Implementation Requirements 99
5.5.4 Results . 100
5.5.5 Future Improvements . 102

5.6 Gateway Evaluation in OEM Environments 102
5.6.1 Vector RAM Usage Estimation 103
5.6.2 Instruction RAM Usage Estimation 104

8

CONTENTS

5.6.3 GCU Utilization Estimation 105
5.6.4 Routing Latency . 108
5.6.5 Worst Case Execution Time 108
5.6.6 Evaluation of a High-Class Automotive Network 108
5.6.7 Evaluation of a Mid-Class Automotive Network 109
5.6.8 Conclusion . 111

6 Summary and Outlook 112

Glossary 115

List of Figures 119

List of Tables 122

Bibliography 123

Curriculum Vitae 134

9

Chapter 1

Introduction

The need for data transparency and information exchange within the overall
in-car network has increased with the continuous improvement of electronic
systems [1]. Just one of the numerous examples is the electronic stability
program (ESP), monitoring the drive dynamics of the vehicle and taking
control over engine management and brake systems when the vehicle is in
danger of tipping over or skidding. A low latency gateway system is needed to
connect the networks of both systems.
Nowadays most gateways are software gateways, based on standard communi-
cation controllers and a high performance CPU running appropriate software.
This is a flexible concept, but on the other hand the performance is affected,
since the hardware structure of a usual microcontroller is not optimized for
gateway operations and the electronic control unit (ECU) often has to do
other tasks as well. As the number of interfaces and the total bandwidth of a
gateway increases continuously, software gateways will soon become bottlenecks,
too slow to handle all incoming traffic in the required time. Currently these
gateways are using CPUs with a clock frequency of about 150 MHz or even
more [67], causing other problems, like high power consumption [75] and high
electro-magnetic emission/radiation.
For the described network environment such a low-latency gateway system has
been implemented in hardware. It currently allows processing of frame and
signal mappings between multiple CAN and FlexRay networks.
The major part of the configuration of such a gateway system is defining
the routing information for frames and signals between the channels. Before
the emergence of standardized gateway description formats, the configuration
data was necessarily specific for a gateway product and prohibited easy data
exchange with other applications. Checking configurations was time-consuming
and error-prone.

10

1. INTRODUCTION

A common description format was necessary and is found in the Field Bus
Exchange Format (FIBEX). FIBEX is the upcoming XML-based data exchange
standard with the capability to describe complete car networks, composed of
different communication protocols. Currently full support for CAN, LIN and
FlexRay networks is provided. The support of further protocols is recently
under development. FIBEX also covers the configuration of gateway ECUs and
defines operation tolerances in terms of relative or absolute timings.
Based on these FIBEX files a gateway configuration toolchain was developed
that interprets the network description and produces configuration images
for both, the gateway and the communication controllers. An implemented
abstraction layer allows the adaptation to different input formats in the future.
The code can be generated optimized for execution time or memory size.
Safe operation of a gateway system is crucial. This has to be proven by
an intensive test plan. The usual approach is to manually implement a test
environment using a remaining bus simulation. Manual programming has several
disadvantages. Checking the complete range of possible gateway mappings
and test parameters is very expensive. Also manual programming can lead to
errors not only in the implementation of the gateway function in hardware and
software, but additionally in the test environment. This is especially true when
changes to the gateway configuration also affect the test environment. Manual
changes are always error-prone and often result in inconsistencies between
gateway and test environment. These disadvantages can be eliminated by using
tools to automate most of these tasks and by referring to a common source of
information for the gateway and test configuration.
A verification environment was developed for black box testing of arbitrary
gateways. It includes checks of the gateway mappings and therefore tests
the gateways data consistency and timing behavior. A test generator has
been implemented as an enhancement to the existing gateway configuration
toolchain. This generator allows the usage of FIBEX files as a common
source of information for both, the configuration of the gateway and the
test environment. The test environment is implemented to test and compare
different gateway implementations including the developed hardware gateway
in realistic environments.

11

Chapter 2

Communication Networks

Gateways are based on communication networks. Some of the important
protocols in automotive and industrial applications are explained in this chapter,
along with their controllers, transport protocols and configuration formats [54]
as available.

2.1 Basic Concepts

Each communication protocol can be explained by describing its specific function
in the ISO/OSI reference model. Additionally the characteristics of their
communication controllers (CC) can be described.

ISO/OSI Reference Model OSI stands for Open System Interconnection,
an initiative that tries to standardize network communication. The OSI Refer-
ence Model is nowadays the most often model used to describe communication
networks and protocols. Meanwhile this model is standardized in DIN and
ISO/IEC 7498-1 [10]. The model is shown in table 2.1.

2.1.1 Physical Transmission

The physical layer describes the media, signal and binary transmission charac-
teristics. The connection to the upper layer is most often implemented in a
separate physical layer transceiver chip (PHY).

Media The most common media types are physical coupling (copper or fiber
optic), radio bands or infrared.

12

2.1. BASIC CONCEPTS

Layer Function
7 application
6 presentation
5 session
4 transport
3 network
2.5 logical link control
2 media access control
1 physical

Table 2.1: ISO/OSI Reference Model

Signal Codings Different signal codings are used to encode the signal on
the wire, e.g. bit stuffing, NRZ, BiPhase or Manchester. They can reduce the
frequency of the bit stream or enhance clock recovery from the signal.

Mapping Mechanism Mapping mechanisms can be used additionally to
enhance clock recovery, transmission safety or providing DC freeness. This is
done by adding additional bits to the data stream, but not by using calculations
to generate these bits. Instead coding tables are used, such as 4B5B and 8B10B.
In case of 4B5B a group of 4 source bits can be used to have a group of 5 target
bits. As not every target combination is valid, this enhances the error detection
or provide space for additional control characters for the Logical Link Control
layer.

2.1.2 Media Access Control

The data link layer can be divided into two sublayers named the Media Access
Control (MAC) and the Logical Link Control (LLC) layers. This separation is
defined in IEEE802 for Ethernet.
The MAC sublayer determines who is allowed to access the physical media at
any given time.

CSMA The most often used media access protocol is Carrier Sense Multiple
Access (CSMA). Carrier Sense describes the fact that a transmitter listens for
a carrier wave to prevent sender interference. Multiple Access describes the
fact that multiple nodes send and receive on the medium. Transmissions by
one node are generally received by all other nodes using the medium.
In pure CSMA systems collisions can still occur, when two nodes start sending
nearly at the same time. Receivers then only see frame errors and don’t

13

2.1. BASIC CONCEPTS

acknowledge the transmissions, causing the transmitters to timeout and try
again. One example using pure CSMA is the ALOHA network.
To solve this problem multiple additions have been developed.

CSMA/CD Carrier Sense Multiple Access With Collision Detection
(CSMA/CD) is a method to reduce timeouts on collisions. This is not possible
with all media and requires special PHYs. When a collision is detected the
sender stops immediately and repeats the attempt after a random time. This
is the technology used in every Local Area Network (LAN) using Ethernet
without switches.

CSMA/CA Carrier Sense Multiple Access With Collision Avoidance
(CSMA/CA) goes a step further as it tries to avoid collisions at all. Prior to
sending, the network node informs the network of the following transmission.
This is the technology used in every Wireless Local Area Network (WLAN).
Still collisions can occur in the preceding information or transmission stage.

CSMA/CD+CR Carrier Sense Multiple Access With Collision Detection
and Collision Resolution (CSMA/CD+CR) is collision free. This mechanism is
often implemented by using priority based arbitration. When multiple nodes
want to transmit, only the node with the highest priority is allowed to send,
all other have to wait. This mechanism is used in the Controller Area Network
(CAN).

2.1.3 Logical Link Control

The Logical Link Control (LLC) as defined in IEEE 802.2, can modify data on
transmit or receive, f.e. to add and remove additional source and target address
information. Optionally flow control, detection and retransmission of dropped
packets (data integrity) and acceptance filtering can be done. Most Ethernet
bridges and switches work on the LLC.

Data Integrity Data integrity always means to put additional bits of re-
dundant information to the data stream to detect or even correct erroneous
data.

Parity The simplest form of error detection is using parity bits. Based on the
number of high or low bits and depending on even or odd parity, an additional
bit is added to the data stream. Of course the error detection only works with

14

2.1. BASIC CONCEPTS

an odd number of wrong bits. More wrong bits will make all results meaningless.
This also means, that multiple wrong bits can have a correct parity and the
errors are not detected at all.

CRC The Cyclic Redundancy Check (CRC) provides a larger number of bits
to detect errors. It is a type of a hash function to generate a checksum using
polynomial division. The relevant data bits and the number of CRC bits are
flexible.

Message- and Address-oriented Communication A transmission is a
broadcast on the network media. Depending on the filter mechanism on the
receiver side, a communication can be message-oriented or address-oriented.

Message-oriented Communication means in this context, that a Message
ID is transmitted with every frame and is used to filter the messages on the
receiver side. The receiver selects, which broadcasts are relevant for this network
node. Most of the time the Message ID is sufficient to describe the contents.
Then transport protocols are not necessary. An example for message-oriented
communication is CAN.

Address-oriented Communication means that every message is provided
with a Sender or Receiver ID. The sender selects, which nodes should receive the
message. As the message contents are not described by the IDs, further transport
protocols are necessary. An example for message-oriented communication is
Ethernet and IP as transport protocol.

Message Filtering In either case filtering can be done in hardware or soft-
ware, mainly depending on the required functionality and the available commu-
nication controllers and CPUs.

Message Trigger Mechanism Depending on the message trigger mecha-
nism, the protocol can be event-triggered or time-triggered.

Event-Triggered Protocols are protocols, where new messages are sent as
soon as the wire is free. This allows low latency communication as long as the
network utilization is kept to a minimum. Also event-triggered communication
provides the maximum usage of bandwidth on collision free networks. An
arbitration is done with each transmission to select which message will be the

15

2.1. BASIC CONCEPTS

next. Low priority messages can lose the arbitration, when the bus load is high.
The sending delays for these messages are then not deterministic any more.

Time-Triggered Protocols are protocols, where messages are send in fixed
time slots defined in a schedule table. This is called Time Division Multiple
Access (TDMA). When the time slots can be flexible in duration, this is
sometimes referred to as Flexible Time Division Multiple Access (FTDMA),
e.g. FlexRay. Arbitration and prioritization are still possible in every slot, e.g.
TTCAN. Latency times are usually longer, as the time between a message
send request and the actual transmission depends on the message position in
the schedule table. Time-Triggered Protocols are predestined for real-time
applications, as the message transmission can be made deterministic.

2.1.4 Upper Layers

Most often upper layers are implemented in software and are used in address-
oriented networks.

Network Layer Path determination and logical addressing is provided by
the network layer. In Ethernet the Internet Protocol (IP) is an example of such
a network layer protocol.

Session Layer Mechanisms for host-to-host communication are provided by
the session layer. One example is the Transmission Control Protocol (TCP/IP),
which is based on the Internet Protocol.

Presentation Layer The presentation layer defined the representation of
data. Encryption is a possible presentation provided in this layer. XML, the
Extensible Markup Language, is another one.

Application Layer Network processes, which communicate using the net-
work, are contained in the application layer.

2.1.5 Communication Controller

Communication controllers can be grouped into two main categories based on
their mechanism of storing messages for receiving and transmitting as shown
in figure 2.1.

16

2.1. BASIC CONCEPTS

Protocol
Unit

Rx FIFO

Unit

Tx FIFO

RAM
MessageProtocol

Figure 2.1: FIFO- / MRAM-based Communication Controller

Message RAM Message RAM (MRAM)-based communication controllers
have their own RAM in which they store all relevant messages and control
information. Every message can be accessed whenever it is necessary and in no
specific order. As the Message RAM needs to be accessible from the network
side and from the host side for loading and storing messages, access protection
must be implemented.

Memory Mapped Access In memory mapped implementations, where
the Message RAM is mapped in the address space of the host CPU, mutual
exclusion (Mutex) bits are necessary. As long as this locking bit for a specific
message is set, the other side cannot access the message. This can lead to
conflicts, especially when having time-triggered communication controllers,
which need to have full access at any time.

Message Handler Access In this implementation direct access to the Mes-
sage RAM is not possible. Instead a message handler is used to arbitrate
between concurrent accesses to the Message RAM from the network and host
side. At least one message buffer register is used to signal requests for load and
store operations to the message handler from the host side.

FIFO Opposite to MRAM-based communication controllers, FIFO-based
controllers store their messages in a FIFO buffer. A prioritization for message
priority or message age is possible, but very uncommon. Therefore only the
oldest message can be read or send at one time.

Basic A basic communication controller is a sub-type of a FIFO-based commu-
nication controller with only limited FIFO sizes, normally one or two messages
per direction. These controllers are small in size, but require a high performance
CPU in order not to lose any messages on receive and possible wait before
transmitting new messages.

17

2.2. CONTROLLER AREA NETWORK

DMA All types can be enhanced by a DMA controller to transfer messages
between the system memory and the internal storage. This reduces data
transfers done by the CPU significantly.

2.2 Controller Area Network

The Controller Area Network (CAN) is a serial communications protocol
developed by Robert Bosch GmbH, efficiently supporting distributed real time
control with a very high level of security [30].
Its domain of applications ranges from high speed networks to low cost multiplex
wiring. For example in automotive electronics engine control units, sensors,
anti-skid-systems, e.g. are connected using CAN. At the same time it is cost
effective to install CAN into vehicle body electronics, such as lamp clusters, to
replace the wiring harness otherwise required.

DeviceNet DeviceNet [26] is a CAN based Layer 7 protocol, which was orig-
inally developed by Rockwell Automation, former Allen Bradley. Operation of
the DeviceNet is based on an object-oriented communication model. DeviceNet
is maintained by Open DeviceNet Vendor Association (ODVA). It is mainly
used in industrial applications, especially in factory automation.

Further Specifications Further interesting specifications are ISO 11783
(ISOBUS) for agricultural engineering, ISO 11992 for trucks and trailers,
NMEA 2000 [22] for maritime electronics, CANaerospace [19] for avionics and
space technology and CanKingdom [6] for machine control.

2.2.1 Protocol Description

CAN is best described using the ISO/OSI reference model.

Physical Layer The most common media type for CAN is twisted pair
[31, 38]. Further derivatives also work over single wires [9], optical wires and
radio bands [39]. The bit rates are normally between 5 kBit/s and 1 MBit/s.

MAC Layer On the MAC layer CAN uses NRZ encoding with bit stuffing.
Multi master access to the media is provided by the CSMA/CD+CR protocol.
Collision avoidance is done by bitwise arbitration, where the arbitration field is

18

2.2. CONTROLLER AREA NETWORK

used to define a static priority. The mechanism is therefore sometimes referred
to as CSMA/BA for Bitwise Arbitration.

LLC Layer The controller automatically tries to retransmit corrupted mes-
sages or messages which lost arbitration, as soon as the bus is idle again. A
distinction between temporary errors and permanent failures of nodes is made
and defect nodes switched off autonomously.

C
R

C

A
C

K
E

O
F

IF
S

IF
S

E
O

F

Se
qu

en
ce

Sl
ot

D
el

im
ite

r

D
el

im
ite

r

SO
F

SO
F

A
rb

itr
at

io
n

C
on

tr
ol

D
at

a

D
L

C

Id
en

tif
ie

r

Id
en

tif
ie

r

Extended Frame

Standard Frame

SR
R

ID
E

R
T

R
ID

E
/r

1 r0

D
at

a
(0

..8
 B

yt
es

)

Figure 2.2: CAN Standard and Extended Frame Format

The CAN protocol version 2.0B defines message identifiers to have 11-Bit
or 29-Bit depending on standard or extended frame format (see figures 2.2).
Messages can have a payload of up to 8 bytes.

2.2.2 Higher Layer Protocols

The CAN protocol is specified in ISO 11898. Several more standards from
transport protocols to higher layer specifications are based on this and have
been developed towards specific application areas.

CANopen The CANopen [2] profile family specifies standardized commu-
nication mechanisms and device functionalities. CANopen is maintained by
CAN in Automation (CiA). Application areas are industry automation and
embedded applications.

19

2.2. CONTROLLER AREA NETWORK

SAE J1939 SAE J1939 [40] is a communication protocol based on CAN for
real-time data exchange between electronic control units (ECUs) in the area of
commercial vehicles.

2.2.3 Communication Controller

Most CAN controllers are either implemented as basicCAN controllers or as
fullCAN controllers [3, 4]. BasicCAN controllers usually have one send buffer
and one receive buffer, sometimes also with shadow buffers. The message filter
mechanism and remote frame support is very limited. FullCAN controllers
instead have multiple send and receive buffers and are often implemented using
a Message RAM with full support for message filtering and remote frame
support. Some variants already allow the connection to multiple CAN channels
[18].

Overview C_CAN The most common Message RAM based CAN controller
is the Bosch C_CAN shown in figure 2.3. The C_CAN [32] is a single channel
CAN module that can be integrated as stand-alone device or as part of an ASIC
and is written in VHDL. It consists of the components CAN Core, Message
RAM, Message Handler, Control Registers and a Module Interface. The Control
Registers also include the CPU Interface Control Registers (CPU IFC Registers)
for message transfers from and to the Message RAM.

CAN Core

CPU IFC Register 2

CPU IFC Register 1

Message Handler

Message RAM

M
od

ul
e

In
te

rf
ac

e

Figure 2.3: C_CAN Block Diagram

20

2.3. TIME-TRIGGERED CONTROLLER AREA NETWORK

CAN Core The CAN Core implements the functionality required to per-
form the serial communication on the CAN bus according to the protocol
specification.

Message RAM For the communication on a CAN network, individual
message objects can be (pre-)configured. The message objects and related
configuration data are stored in the Message RAM with 32 message objects.
Successors of the C_CAN module can be given different numbers of message
objects at synthesis time, such as 16, 32, 64, 128.

Message Handler All functions concerning the handling of messages are
implemented in the Message Handler. This includes the transfer of messages
between the CPU Interface Control Registers, CAN Core and Message RAM,
acceptance filtering and the handling of transmission requests and interrupts.

Interface Registers Two sets of CPU Interface Registers are used for the
data transfer between the CPU’s peripheral bus and the Message RAM. They
consist of the complete data, header and control information used in the
C_CAN module. All host CPU accesses to messages in the Message RAM are
made through the Interface Registers.

2.2.4 Configuration Format

From all the CAN-supporting configuration formats, only one is widely used.

CANdb++ The most common configuration format for CAN is CANdb++
from Vector-Informatik [50, 51], also known as DBC files. CANdb is able to
define messages, signals and signal groups. Each information and signal state
can be given a name and a comment. Additional information can be defined
for physical units and linear conversion formula. Unfortunately there was never
a public specification of this format. Only a CANdbLib Class Library (DLL)
for Microsoft Visual C++ [52, 53] is available.

2.3 Time-Triggered Controller Area Network

Time-Triggered CAN (TTCAN) is a higher level protocol having a Time
Division Multiple Access (TDMA) mechanism on top of the event-triggered
CAN protocol.

21

2.3. TIME-TRIGGERED CONTROLLER AREA NETWORK

As TTCAN is based on CAN, only the additional protocol definitions and
communication controllers are described in the following sections.

2.3.1 Protocol Description

For Time-Triggered networks a global time information must be available to
all connected nodes.

Reference Message In TTCAN this global time is provided by a reference
message send by one time master (and up to seven potential time masters).
The slaves synchronize to this reference message.

Msg. ARef. Msg.

Ref. Msg. Msg. A Msg. B

Arb. Win.Msg. ARef. Msg. Arb. Win.

Basic Cycle 0

Basic Cycle 1

Basic Cycle 2

Basic Cycle 3

Ref. Msg. Msg. A Msg. B Free Win. Msg. D

Msg. D

Msg. D

Msg. D

Free Win.

Arb. Win.Msg. C

Figure 2.4: TTCAN Matrix Cycle

Transmission Columns Each reference message starts a basic cycle with a
constant number of transmission columns. These transmission columns can be
used for reference messages, time triggered windows, arbitration windows or
can be free windows. The arbitration windows are available for event-triggered
communication.

Matrix Cycle A frame can have a repeat factor higher then one, thus doesn’t
need to be sent in every basic cycle. Therefore up to 64 different basic cycles
can be defined. All basic cycles together are called a matrix cycle.

Specification TTCAN is specified in ISO 11898-4 in addition to the CAN
protocol itself.

22

2.3. TIME-TRIGGERED CONTROLLER AREA NETWORK

2.3.2 Communication Controller

The TTCAN module (also provided by Bosch as VHDL code to be synthesized
in FPGAs and ASICs) is based on the described C_CAN module. Only
two functional blocks, (see Figure 2.5) the Trigger Memory and the Frame
Synchronization Entity, have been added.

CPU IFC Register 1

CPU IFC Register 2

Trigger RAM Fr
am

e
Sy

nc
hr

on
iz

at
io

n
E

nt
ity

M
od

ul
e

In
te

rf
ac

e

CAN Core

Message Handler

Message RAM

Figure 2.5: TTCAN Block Diagram

Trigger Memory The Trigger Memory stores the time marks of the system
matrix that are linked to the messages in the Message RAM. The data is
provided to the Frame Synchronization Entity.

Frame Synchronization Entity The Frame Synchronization Entity is the
state machine that controls the time triggered communication. It synchronizes
itself to the reference message on the CAN bus, adjusts the cycle time and
generates Time Triggers.

Interface Register The TTCAN module also uses two interface register
sets to transfer the data between the Message RAM and the CPU. Both can
be accessed independently from each other. The function of the registers is
identical with the exception of the access from the second Interface Register to
the Trigger Memory in the initialization process.

23

2.4. FLEXRAY

2.4 FlexRay

The FlexRay protocol aims to be fast and redundant. It was developed towards
safety and fault-tolerant systems, e.g. for the use in X-by-Wire applications
(Brake-, Drive- and Steer-by-Wire) [29, 7].

2.4.1 Protocol Description

The FlexRay protocol is derived from several other protocol standards, especially
ByteFlight [27] and TTP/C [49] and has therefore many similarities.

Physical Layer Two physical layer transceivers [28] connect the communi-
cation controller to two channels of twisted pair wires for redundancy. Three
different bit rates are normally used: 2.5 MBit/s, 5 MBit/s or 10 MBit/s.

Data Link Layer FlexRay uses the NRZ in combination with 8B10B encod-
ing for the data parts of the frame.

Payload Segment

C
R

C

C
R

C

C
R

C

Trailer SegmentHeader Segment

Header CRC
covered area

Fr
am

e
ID

Pa
yl

oa
d

le
ng

th

H
ea

de
r

C
R

C

C
yc

le
 c

ou
nt

D
at

a

R
es

er
ve

d
bi

t
Pa

yl
oa

d
pr

ea
m

bl
e

in
di

ca
to

r
N

ul
l f

ra
m

e
in

di
ca

to
r

Sy
nc

 f
ra

m
e

in
di

ca
to

r
St

ar
tu

p
fr

am
e

in
di

ca
to

r

(0..254 Bytes)

Figure 2.6: FlexRay Frame Format

Communication Cycle A FlexRay communication cycle consists of four
parts: The static segment, the dynamic segment, the symbol window and the
network idle time. A frame in the communication cycle is shown in figure 2.6.

24

2.4. FLEXRAY

Macrotick/Microtick All messages are sent at defined times measured in
macroticks and microticks. This concept was derived from TTP/C [49].

Static Segment The static segment provides synchronous time-triggered
communication using a TDMA protocol.

Dynamic Segment In the following asynchronous dynamic segment minis-
lots allow event-triggered communication using prioritization based CSMA/CA
similar to ByteFlight [27].

Symbol Window The symbol window provides basic communication with
a bus guardian. A bus guardian terminates nodes which do not act conform to
the protocol specification.

Network Idle Time The network idle time allows to calculate clock cor-
rections and other cycle related tasks before the next communication cycle
starts.

Cycle Repetition A frame doesn’t need to be sent in every basic cycle, but
can also be sent with another repeat factor. Therefore up to 64 different basic
cycles can be defined. This is similar to TTCAN.

Clock Synchronization The multi-master distributed clock synchronization
mechanisms, necessary for the timing of the communication cycle, differentiates
the FlexRay cluster from other networks with independent clocks. In a cycle,
up to 15 time masters can send their synchronization message. All nodes adjust
their view of the global time using a voting mechanism during the network
idle time. The synchronization algorithm in use is the Fault-Tolerant Midpoint
Algorithm.

Cold Startup / Integration Startup To connect to the network every
node has to run a startup, whereas the first two nodes are the cold start nodes
and the following are integration nodes.

2.4.2 Communication Controller

The Bosch E-Ray module is a FlexRay IP-module that can be integrated as
stand-alone device or as part of an ASIC. The components of the module are
shown in figure 2.7.

25

2.4. FLEXRAY

M
od

ul
e

In
te

rf
ac

e

FSP
TBF B

NEM

INT
SUC

PRT A
PRT B

Message RAM

Input Buffer

Output Buffer
Message Handler

TBF A

GTU

Figure 2.7: E-Ray Block Diagram

Customer and Generic Interface The Customer and Generic Interface
(CIF, GIF) connects the E-Ray to the customer’s specific CPU peripheral bus.

Input and Output Buffers The Input and Output Buffers (IBF, OBF) are
used for the data transfer between the CPU and the Message RAM.

Message RAM The Message RAM is a single-ported RAM that stores up to
128 FlexRay message buffers together with related configuration data (header
and data partition).

Protocol Controller, Transient Buffer RAM The FlexRay Channel Pro-
tocol Controller (PRT) consists of a shift register and FlexRay protocol FSM.
They are connected to the Transient Buffer RAMs (TBF) for intermediate
message storage and transfer to the Message RAM.

Message Handler The Message Handler (MHD) controls data transfers
between the Input Buffers, Output Buffers and Transient Buffers and the
Message RAM.

26

2.5. MEDIA ORIENTED SYSTEM TRANSPORT

Global Time Unit The Global Time Unit (GTU) is used for the clock
generation and synchronization and for the timing control of the static and
dynamic segments.

System Universal Control The System Universal Control (SUC) controls
the wakeup, startup and operation modes.

Frame and Symbol Processing The correctness of received frames is
checked by the Frame and Symbol Processing (FSP) unit.

Network Management The network management vector contains a value
which is OR’ed with each received network management frame. This is arith-
metic is handled by the Network Management (NEM) unit.

Interrupt Control Unit The Interrupt Control unit(INT) handles the in-
terrupt flags lines by assigning the flags to the status and error interrupt lines
and setting and resetting the interrupt registers.

2.4.3 Configuration Formats

The configuration of FlexRay is very complex as it does not only cover the
frame configuration, but also the complex cluster and controller configurations.

xCDEF The XML Cluster Definition File (xCDEF) was defined by De-
ComSys for their FlexRay tools. This file format is also used by other tool
manufacturers as well. Detailed information of this format are not officially
available from DeComSys.

FIBEX Nowadays FlexRay nodes are configured by the FIBEX format,
described in section 3.5.1.

2.5 Media Oriented System Transport

The Media Oriented System Transport (MOST) [21, 20] is a networking stan-
dard intended for interconnecting multimedia components in automobiles and
other vehicles. It differs from existing vehicle bus technologies in that it

27

2.5. MEDIA ORIENTED SYSTEM TRANSPORT

connects via Plastic Optical Fiber (POC), thus providing a ring bus-based net-
working system at bit-rates higher than available on most previous vehicle-bus
technologies.

2.5.1 Protocol Description

The MOST specification defines all seven layers of the ISO/OSI Reference
Model for data communication.

Cable MOST networks normally work over optical fibers using an optical
PHY (oPHY). Very new and still unused is the possibility to also use unshielded
twisted pair wires (UTP) using an electrical PHY (ePHY).

Physical The MOST network often employs a ring topology, but star config-
urations and double rings for critical applications are possible and may include
up to 64 devices or nodes. BiPhase is used for the signal coding.

TDMA, CSMA/CA In the ICM segment TDMA is used, CSMA/CA in
the MCM and MDP segments.

Timing Master A Timing Master is one of the nodes, which continuously
feeds data frames into the ring or acts as the gate for data. The preamble
or packet header repeatedly synchronizes the rest of the nodes called Timing
Slaves.

Bandwidth The total bandwidth (including streaming data and packed data)
is approximately 24.8 MBit/s. Up to 16 stereo channels with a sample frequency
of 44.1 kHz can be configured.

Data Link Layer Data is transfered in blocks of 16 frames. Beside admin-
istrative information and control data, a MOST frame contains time slots
for synchronous and asynchronous transfer channels. Figure 2.8 shows the
frame format of a MOST frame. The boundary between synchronous and
asynchronous time slots can be selected using the boundary descriptor specified
in quadlets (4 Bytes).
The control data and the asynchronous channel contain frames itself, which are
transferred in fragments over the MOST frames in a block. A control frame is
32-Bit long and therefore contained in two MOST frames. An asynchronous
frame is 58 byte long including source address, target address and CRC.

28

2.5. MEDIA ORIENTED SYSTEM TRANSPORT

Fr
am

e
Fr

ag
m

en
ts

C
on

tr
ol

Fr
am

e
Fr

ag
m

en
ts

Control
Frame

Asynchronous
Channel

Time Slots

Synchronous
Channel

Time Slots

Admin. Admin.

Fr
am

e
C

on
tr

ol
Pa

ri
ty

B
ou

nd
ar

y
D

es
cr

ip
to

r

Sy
nc

hr
on

ou
s

Pr
ea

m
bl

e

Fr
am

e
Fr

ag
m

en
ts

A
sy

nc
hr

on
ou

s

Figure 2.8: MOST Frame Format

2.5.2 Communication Controllers

Currently MOST communication controllers are available only from SMSC,
former Oasis and Xilinx.

OS8104 The first Network Interface Control (NIC available for MOST was
the OS8104 [45, 24, 23]. This controller connects on one side to the optical
PHY and on the other to an interface that could either be used for connecting
four I2S and one I2C connection or for connecting a packet combined mode
(PCM) interface.

API/SDK When using the OS8104, most of the transport protocol functions
have to be implemented in software. Therefore an Application Programming
Interface (API) and a Software Development Kit (SDK) are available. The
advantage of having the API running on the host CPU and the reason, why
many OEMs still use the OS8104, is the upgrade possibility together with the
rest of the ECU software.
The MOST Network contains the following simultaneous operating networks
and frames:

• MOST Control Messages (MCM) are used to manage the network and
communicate control data across the network.

• MOST Data Packet (MDP) are used to support nodes that communicate
asynchronous data.

29

2.6. NETWORK ARCHITECTURES

• INIC Control Messages (ICM) are used to support high-speed synchronous
data with extremely low overhead, such as audio and video.

OS81050 The OS81050 [46, 42] (also called INIC@25) comes with an im-
proved host interface called the Media Local Bus (MLB [25]). It is called
Intelligent Network Interface Controller (INIC), because of the fact, that most
of the protocol stack previously running in software now runs as firmware on
a specialized core in the NIC itself. This makes upgrading the ECU more
complicated or even impossible, as not only the software needs to be handled,
but also the INIC firmware.

OS81082 The newest development is the OS81082 (also called INIC@50) [47].
The main advantage compared to the OS81050 is the possibility to connect an
electrical PHY [43].

2.6 Network Architectures

Todays automobiles consist of multiple communication networks of different
type. Each network is implemented to handle a specific function domain, such
as powertrain or infotainment. The interconnection between these networks is
provided by gateways. When analyzing complete network architectures, two
can be described as being most important: Central Gateway Architectures and
Backbone Architectures.
These network architectures will be described in the following paragraphs. For
simplicity the following figures present the physical topology only as a simple
bus line, but in fact it depends on the type of communication network.

Central Gateway Architecture A central gateway architecture has only
one gateway, that connects the communication networks. This creates high
demands on the performance, but also provides a latency minimized communi-
cation over the networks. The demands for safety are very high, as the gateway
is a single point of failure. An advantage lies in the possibility to provide one
central diagnostic access to the automotive network.

Backbone Architecture In contrary, in a backbone architecture every com-
munication network has its own gateway connected to a central high speed
backbone network, such as FlexRay or IDB1394. This reduces the demands on
performance and safety as every gateway has only two network connections.
Backbone architectures will therefore become more established in future [68].

30

2.6. NETWORK ARCHITECTURES

Node

Gateway

Node

Node NodeNode

NodeNode

NodeNode

NodeNode Node

Figure 2.9: Central Gateway Architecture

Node

GatewayGateway

Node Node

NodeNode

Node

Node Node

NodeNodeNode

Node

Gateway

Figure 2.10: Backbone Architecture

Mixed Architecture In fact many automotive networks have mixed archi-
tectures, somewhere between a central gateway and backbone architectures.
The low-speed LIN bus for example is usually connected to a body controller
ECU that itself is connected to a central gateway or backbone gateway.

Impact on the Gateway A gateway designed as central gateway with high
performance and safety requirements can easily be used as a backbone gateway
that has lower requirements. Therefore the difference has an impact mainly on
the scalability of the gateway.

31

Chapter 3

Current Gateways

Automotive gateways are developed within their limitation of rough physical
environment, required efficiency and high production quantities.
In recent years many new automotive features became available because of
improved interconnection techniques between different car networks. Therefore
new gateways were necessary with almost every car generation.
As hardware usually has longer product cycles, most gateways are implemented
in software. Unfortunately most microcontrollers are developed towards differ-
ent applications. Only few microcontrollers have specialized instruction sets
dedicated to provide gateway functionality.

3.1 Requirements

A gateway has to fulfill multiple requirements not only regarding technical,
but also economical issues. These can also be used in comparing different
implementations.

Proven Communication Controllers In automotive applications, the
safety of passengers is directly influenced by failures of critical systems. Gate-
way systems are the most critical ones as they connect multiple ECUs and
networks. Therefore it is very difficult to introduce completely new hardware
components, such as communication controllers.

Low Latency Generally spoken latency is the period of time between one
component generating and sending a message until another component is
receiving and handling this message.

32

3.1. REQUIREMENTS

Reaction

Generation
Latency

Network
Transmission
Latency

Gateway
Latency

Network
Transmission
Latency

Message

Latency
Receive

Event
Network 1 Network 2

Message

Figure 3.1: Latency between two networks

In a gateway environment the latency between two networks can be defined as
a sum of

• generation latency - to compute a new message after an event,

• transmission latency - to transmit the message over the first network (de-
pendent on schedule in time-triggered networks or message prioritization
in event-triggered networks),

• gateway latency - to process and transfer the content of the received
message to a second message,

• transmission latency - to transmit the message over the second network
and

• receive latency - to process and handle the received data.

The generation latency, transmission latencies and receive latency cannot be
influenced by the application. These latencies depend on the used bus systems,
the transmitting and receiving nodes and the synchronization of the time
masters. The only latency that can be actively influenced is the gateway latency,
which is in software terms identical to the task’s Worst-Case-Execution-Time
(WCET) [61]. It depends on the gateway concept, the number of interconnected
networks, bus loads and the complexity of the gateway function as described
below.

Low Jitter Jitter is the time in which the latency varies during normal
message transmissions. Having a high jitter is more a problem of event-triggered
communication systems, where high utilization of the communication link can
lead to high delays and unpredictable latencies. For real-time applications a
precise prediction of message delays and receive times is much more important
then fast message transmits. Therefore gateways intended to be used in real-
time applications are required to have low jitter.

33

3.2. TASKS

Scalability, High Bandwidth and Throughput Gateway systems are
often used in environments where high-speed networks need to be connected.
FlexRay, MOST and Ethernet each have a bandwidth of more than 10 MBit/s.
The throughput needs to be high enough to be able to process these data
even under worst case conditions. Scalability can therefore be described as the
impact of high network utilization and throughput on latency, jitter and frame
loss.

Low Power Consumption, Temperature, Frequency and Electromag-
netic Radiation On the other hand especially in automotive environments,
low power consumption is a crucial factor, not only to be economical and
efficient. High power consumption also means high temperatures that makes it
difficult to fulfill the requirement for the large automotive temperature range
from -40 C up to 125 C. It is often a result of complex hardware, where signal
changes and state transitions happen with high clock frequencies. High fre-
quencies are also causing high electromagnetic radiation which can affect other
ECUs, sensors and actuators as well.

Low Cost and Gate Count In applications with high production quantities,
the benefits can be increased dramatically by reducing the production cost of
each part. The only way to do this in hardware is to reduce the gate count and
RAM requirements by an innovative concept and an optimized implementation.
Optimization is reflected in a reduced software code and hardware die size,
which allows more dies per waver and therefore higher quantities at the same
price. Also smaller die sizes often have a positive influence on the power
consumption. On the other hand, a lower gate count allows to integrate more
functionality without changing the die size.

3.2 Tasks

The movement of large amounts of complete messages between networks is only
one task a gateway has to perform. Transfers can include operations on the
signal level and usually need to be done with a specific time behavior.

Frames and Signals In many cases one frame consists of some few indepen-
dent e.g. sensor and/or actuator signals of one or several bits. To minimize
the used bandwidth of the connected buses, messages transmitted contain
only signals necessary on the target bus. Therefore usually these transmitted
messages are created from signals out of several received frames. However,

34

3.2. TASKS

the bit position can vary in both messages so that many bit manipulating
operations are necessary.

Periodic Transmissions To increase the safety of in-car systems, periodic
transmissions can be used. Therefore the gateway has to buffer the message
data and a timer is used to periodically transmit the message.

Immediate Reaction The gateway can react differently to the reception of
a message. It is not only possible to immediately forward the frames and signals
therein, but it is also possible to only send new messages, if specific parts of
the received message have changed. The gateway has to compare the old and
the new message and has to react accordingly. It is also possible to store just
the received data for periodic transmission without immediate forwarding.

Timeout Handling The gateway can also react to messages, that are not
received within a specified time. It is then possible to set timeout bits in certain
messages, mark signals as obsolete, send additional timeout frames or change
the interval duration of periodic transmissions.

Debouncing Some ECUs try to increase transmission safety by sending the
same message multiple times in a short period. As this mainly wastes precious
bandwidth, a gateway can be configured to react to these frames only once.
Once a debounce time has passed, frame transmissions are allowed again.

Transport Protocols Some transport protocols require the gateway to not
only forward frames, but to process them. This is especially true, when the
gateway should transparently convert one transport protocol to another, which
is always the case when different network types and therefore protocols are
involved.

Network Management A gateway also needs to handle network manage-
ment requests and responses on all connected networks. If these networks are
of different type, a conversion is necessary.

Further Control Applications The previous tasks have shown the com-
plexity of gateway implementations. Additionally microcontrollers performing
the gateway function have to process several control applications, such as the
evaluation of sensor data or the adjustment of actuators.

35

3.3. GATEWAY-OPTIMIZED MICROCONTROLLER

3.3 Gateway-Optimized Microcontroller

To support software gateways in fulfilling the requirements and manage their
tasks, few microcontrollers have been developed especially for gateway appli-
cations. A characteristic of these controllers is that they already have many
communication controllers integrated. The connection to the CPU is provided
by high speed on-chip buses to reduce latency and increase throughput. In
addition DMA controllers or network coprocessors can be integrated.

Freescale MPC5567 The MPC5567 [66] is a microcontroller developed by
Freescale, shown in figure 3.2.

Figure 3.2: Freescale MPC5567 Block Diagram

It has a high-performance 32-Bit PowerPC core with a clock frequency of up to
132 MHz and a MMU with 32-entry fully associative translation lookaside buffer.
This processor core is enhanced by a signal processing extension (SPE), which
brings additional capabilities for DSP, SIMD and floating point operations.
The enhanced Time Processor Unit (eTPU) is a programmable unit on which
most timer handling functions of the gateway application can be offloaded.
Additionally a 32-channel enhanced DMA controller can be programmed to
automatically copy data from and to the communication controllers. This is one
of the first device in which Freescale integrated their own FlexRay controller.
It acts beside five CAN cores and an Ethernet core.

Infineon TriCore TC1130 The Infineon TriCore TC1130 [69, 70, 71, 72],
as shown in figure 3.3, provides four CAN controllers [11] and one Ethernet
controller.

36

3.3. GATEWAY-OPTIMIZED MICROCONTROLLER

ASC0

ASC1

ASC2

SSC0

SSC1

I2C
Mem

Check
MLI1MLI0

SMIF

DMAB
I0

GPTU

CCU61

CCU60

Multi CAN
(4 nodes)

Ethernet

BCU SCU

PLL

OCDS/JTAG

USB1.1

STM

PORTS

Boot ROM
16 KB BROM

Flexible
Peripheral

Bus (FPI)

TM

CPS

FPU

MMU

DMI

28 KB SPRAM
4 KB Cache

PMI

32 KB SPRAM
16 KB Cache

DMU

64 KB SRAM
EBU

SDRAM, BFLASH
LFI Bridge

Local Memory Bus (LMB)

Figure 3.3: Infineon TriCore TC1130 Block Diagram

The 32-Bit TriCore architecture combines RISC, CISC and DSP functionality
with a MMU and a FPU in a single chip. It can run with a core clock frequency
of up to 150 MHz.
The DMA controller can be used to transfer data to and from the four CAN
controllers and the Ethernet core. As the device supports hardware controlled
context switches for tasks and interrupts, the gateway latency and jitter is
reduced.

NEC V850 The NEC V850 [76] family is especially well suited for high-
end chassis applications in the automotive area. One family member, the
V850E/PH3 "Phoenix-FS", is shown in figure 3.4.
The V850E CPU is a 32-Bit RISC core with integrated FPU, a clock frequency
of up to 128 MHz and a maximum performance of 166 MIPS.
The two CAN controllers and one FlexRay controller can transfer their data
from and to the system RAM using an 8-channel DMA controller.

Freescale HCS12X The HCS12X [65] contains a 16-Bit HCS12 compatible
CPU on which the main application software runs. The suffix X stands for an

37

3.4. SOFTWARE GATEWAYS

Figure 3.4: NEC V850E/PH3 Phoenix-FS Block Diagram

additional XGate [64] peripheral coprocessor module, that has been added to
the system. This parallel processing module offloads the CPU by providing
high speed data processing functions for transfers between peripheral modules,
RAM and I/O ports.
The XGate offers a slight performance increase, but requires specialized software
[63]. Standard gateway software, as described in the following section, is
currently not available on the XGate and would not run fast enough on the
HCS12. Therefore the HCS12X is currently only used without the XGate in
gateway implementations. Although the XGate can be used to offload certain
tasks (interrupt, timers) of the HCS12 software application.

3.4 Software Gateways

For a long time the software structure of a gateway was not standardized.
Therefore many different vendors had their own incompatible implementations
of the same functionality, e.g. Vector Informatik, 3Soft or K2L.

Operating System The real-time operating system (RTOS) used by almost
all automotive ECUs is OSEK/VDX as standardized in ISO 17356 [73]. It
provides task management, different application modes, interrupt handling,
event control mechanisms, resource management, alarms, messages, different
hook routines for error handling, tracing and debugging.

38

3.4. SOFTWARE GATEWAYS

Driver Every hardware module, such as the communication controllers, do
need a software driver to adapt to this hardware module for low-level functions
and network management functions. The CAN Driver for example provides
services for initiating transmissions and callback functions for notifying receive
events independently from the hardware.

Network Management provides functions for network wide shut down of
the communication system, for determining the network configuration at start-
up, for monitoring the network configuration during operation and for providing
information of the current network status.

Communication Module provides signal and frame routing functions be-
tween equal (e.g. CAN/CAN) or different (e.g. CAN/FlexRay) vehicle network
systems. It is therefore also responsible for fragmentation and defragmentation
of data.

Transport Protocol Modules provide segmentation of data in transmit
direction, collection of data in receive direction, control of data flow and
detection of errors (e.g. messages loss/doubling/sequence).

3.4.1 K2L Gateway

K2L developed a software gateway with the described components. Their
demonstration system is called MoCCa Vario II [74]. It is able to connect up
to six CAN, two FlexRay, one MOST and multiple low speed bus systems.
The software is portable to different Real-Time Operating Systems. The signal
conversion and routing characteristics are defined in a table format, which
contains operations for bit, byte, word and various complex conversion methods
like scaling signal values or adding constants to messages. A configuration tool
is provided for this proprietary tabular gateway format. The overall gateway
application is embedded in a modular framework, suitable also to integrate
other, non gateway applications.

3.4.2 Automotive Open System Architecture

The Automotive Open System Architecture (AUTOSAR) Initiative tries to
standardize complete software architectures [58, 59] to improve and fasten
application developments [62]. Additionally, it does not only specify the current
basic software, such as the OSEK/VDK operating system [79, 77, 78], but also

39

3.4. SOFTWARE GATEWAYS

parts of the applications, the toolchain and the configuration formats. Several
components are already available as shown in figure 3.5.

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software
Standardized

Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

ECU
Firmware

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

API 1
RTE relevant

API 0

API 3 Private
Interfaces inside
Basic Software

possible

Different

Kinds of

Interfaces

S
ta

n
d

a
rd

iz
e
d

In
te

rfa
c
e

Figure 3.5: AUTOSAR Components

Microcontroller Abstraction Layer is the lowest software layer of the
Basic Software. It contains drivers, software modules with direct access to
the microcontrollers internal peripherals and memory mapped microcontroller
external devices.

ECU Abstraction Layer interfaces the drivers of the Microcontroller Ab-
straction Layer. It also contains drivers for external devices. It offers an
application programming interface (API) for access to peripherals and de-
vices regardless of their location (microcontroller internal/external) and their
connection to the microcontroller (port pins, type of interface).

Services Layer is the highest layer of the Basic Software and has the high-
est relevance for the application software. While access to I/O signals is
covered by the ECU Abstraction Layer, the Services Layer offers operating
system functionality, vehicle network communication and management services,
memory services (NVRAM management), diagnostic services (including UDS
communication and error memory) and ECU state management.

40

3.5. CONFIGURATION DATA FORMATS

Complex Device Drivers implement complex sensor evaluation and actua-
tor control with direct access to the microcontroller using specific interrupts
and/or complex microcontroller peripherals, e.g injection control, electric valve
control and incremental position detection.

Runtime Environment The RTE is a middleware layer providing communi-
cation services for the application software (AUTOSAR Software Components
or AUTOSAR Sensor/Actuator components). The AUTOSAR Software Com-
ponents communicate with other components (internal or external) or services
via the RTE.

3.4.3 X2E Gateway

X2E integrated and ported the K2L software gateway to an Altera FPGA using
a NIOS II softcore processor. This combination makes it possible to easily
implement various parts of the software in hardware.
The NIOS processor allows to integrate user-defined instructions for gateway
specific tasks. With recent versions (since 6.0) of the Quartus synthesis software
[90], it is also possible to use a technique called C2H [88]. C2H allows to select
certain C functions and to synthesize them as function blocks in hardware,
which improves the gateway performance even more.

3.5 Configuration Data Formats

Gateway configurations are based on non-standardized description formats.
Data exchange between these formats is inherently error prone and time
consuming.
Simple frame and signal relations between different CAN channels can already
be described in CANdb (see section 2.2.4). When more complex functions are
necessary, non-standardized user-defined attributes can be used. CANdb is
limited to only one CAN network, however multiple files can be used.
A common description format usable for different networks types and gate-
way configurations was necessary. The Field Bus Exchange Format (FIBEX)
provides these information.
The Automotive Open System Architecture adapted this format for their own
System Constraint Templates.

41

3.5. CONFIGURATION DATA FORMATS

3.5.1 Field Bus Exchange Format

The Field Bus Exchange Format (FIBEX) is an XML-based file format, the
upcoming standard for network configurations [60], which combines information
about each aspect of a complete in-car network including controllers, channels,
frames and signals [55, 56]. It is also the first standard to describe gateway
configurations. The exchange format covers the functional network, the system
topology and the communication level.

Standardization FIBEX is based on an initiative of BMW and was devel-
oped in cooperation with automobile manufacturers, suppliers and tool produc-
ers, proposed for data exchange between tools that deal with message-oriented
bus communication systems. It is now being maintained at the Association for
Standardisation of Automation- and Measuring Systems (ASAM e.V.).

Supported Networks FIBEX tries to be widely independent from all com-
munication controller implementations and protocols. In the version 1.2 it is
usable for CAN, LIN and FlexRay networks. A MOST extension is available
since version 2.0. A standardization for TTCAN is still pending.

FIBEX Object Model In FIBEX the description of all elements is split
into different objects as shown in figure 3.6.

Data Format and Instantiation The cluster, channel, frame and signal
objects describe the format and configuration of data, whereas the connector,
frame-triggering and signal-instance objects instantiate these data descriptions
by providing timing and position information. In FIBEX, the definition of
gateway configurations is done by defining one-way mappings between these
data instance objects. Timing attributes can be defined for each mapping, e.g.
message timeout, debounce time or cyclic sending. Trigger-conditions define
the immediate reaction on frame receives, such as send immediate or on-change
of the received data.

Manufacturer Extensions Although FIBEX already allows comprehensive
descriptions, manufacturer extensions may expand the capability even further.

Tools The description in FIBEX is very complex, resulting in files, which
evade easy comprehension. Therefore many tool manufacturers developed
FIBEX editors with assistance functions and support for specific configuration
aspects, e.g. FlexRay parameters and frame schedules.

42

3.6. PROBLEMS AND ISSUES

Figure 3.6: FIBEX Object Model

3.5.2 AUTOSAR System Constraint Templates

The Automotive Open System Architecture (AUTOSAR) Initiative, as de-
scribed in section 3.4.2, provides another XML-based standard, that can also
describe complete networks including node configurations and software layers.
They are called AUTOSAR System Constraint Templates [57] and are in fact
based on FIBEX with specific adaptations to reflect the AUTOSAR template
naming regulations.

3.6 Problems and Issues

Implementing the gateway functionality in software provides high flexibility
in the connection of new hardware components and the expandability of the
gateway functionality. The software modules of a software gateway soon become
standardized and will be provided by multiple manufacturers, that also give
support and can implement specific functionality. Most transport protocols
or modules for diagnostic applications are easier to integrate in the software
application.
However, software implementations have some disadvantages. Large memories
are required to store the functionality in form of software applications. It is

43

3.6. PROBLEMS AND ISSUES

less scalable regarding the bandwidth of the connected networks, as the CPU
frequencies (up to 150 MHz) have already reached the limit for automotive
environments. Although the requirements on latency and jitter for a usual
central gateway are difficult to achieve. As a consequence the microcontrollers
have high power consumptions and problematic electromagnetic radiations and
compatibility. The real-time ability is affected and even packet loss can be
expected.

44

Chapter 4

Advanced Gateway
Architectures

In this chapter two concepts for advanced gateways with configuration toolchain
and verification environment will be developed based on the requirements and
limitations described in the previous chapters.

4.1 Advanced Gateways

In previous chapters the requirements and limitations of current gateways have
been described. Based on that information the concept of an advanced gateway
architecture can be derived.
The developed gateway concept is versatile, thus usable by different network
types. It offers gateway functionality in hardware without the need to have a
powerful CPU or large system RAM.
A first implementation of the Gateway Control Unit utilizes the Bosch IP-
modules for CAN and TTCAN. The second implementation adds multi-protocol
support using the Bosch IP-module for FlexRay.
Accessing and interacting with the underlying network interfaces is still possible
from the host CPU to provide further independent functionality in software.

4.1.1 Requirements

An advanced gateway should be able to process most gateway tasks in hardware
without the need to inform the host CPU about it. The reduction of interrupt
load and gateway functionality in software should reduce the demand for a
high performance host CPU.

45

4.1. ADVANCED GATEWAYS

Access to the communication controller should still be possible in parallel
without the need to setup blocking Mutexes.

4.1.2 CAN-CAN Gateway

The CAN-CAN gateway is the first implementation of an advanced gateway.
This hardware solution can be a set of functions implemented in hardware to
support the software or an autonomous system that provides the functionality
completely in hardware. Example implementations of both solutions will be
described in this section.
It is based on a modular gateway structure which interconnects several single
channel Bosch C_CAN (see section 2.2.3) or TTCAN (see section 2.3.2) IP
modules. A block diagram of the used CAN controller was shown in figure 2.3.

Gateway Interface The (TT)CAN modules are expanded by several func-
tional blocks to add a specific gateway interface as shown in figure 4.1. These
functional blocks are an input multiplexer (In-Mux) and an output multiplexer
(Out-Mux) together with the necessary control signals to direct the data flow.

Message RAM

In−Mux

Out−Mux

CPU IFC Register 2

CPU IFC Register 1

Message Handler

CAN Core

M
od

ul
e

In
te

rf
ac

e

Figure 4.1: C_CAN Controller with Gateway Interface

Two multiplexers give access to the internal data bus, making it possible to
load the complete CPU Interface Control Register (IFC) in parallel from a wide
input port (Cascade-Input) and to export the contents of the CPU IFC Register
over an equally wide output port (Cascade-Output). The Cascade-Input may
also be routed directly to the Cascade-Output.

46

4.1. ADVANCED GATEWAYS

Cascade Ring Bus When several instances of this adapted single channel
CAN module are cascaded into a gateway module, the wide input and output
ports are connected to the cascade ring bus (Figure 4.2). This allows the
transfer of a complete CAN message and corresponding control information
directly from one CAN cell to all connected cells in one clock cycle, avoiding
the bottleneck of the CPU’s peripheral bus.

(TT)CAN n

(TT)CAN 2

C
PU

 P
er

ip
he

ra
l B

us
G

at
ew

ay
 B

us

(TT)CAN 1
Gateway
Control

Unit CPU IFC 2

CPU IFC 1

CPU IFC 1

CPU IFC 2

CPU IFC 1

CPU IFC 2

SWT

SWT

SWT

TMI

TMI

TMI

DIU

Figure 4.2: Gateway Module with cascaded CAN/TTCAN cells

TTCAN Cycle Time Synchronization When using TTCAN communi-
cation controllers, it is possible to configure a constant latency for transferring
messages from one TTCAN to another TTCAN by synchronizing its matrix
cycles. The Time Mark Interrupt (TMI) signal is set whenever a selected time
equals the value in the internal timer register. This signal can be connected
to the Stopwatch Trigger (SWT) input of another TTCAN to calculate and
reduce the time difference between the matrix cycles of both controllers. It is
always possible to synchronize a time master to another time source, such as
another time slave.

47

4.1. ADVANCED GATEWAYS

Data Integration Unit If additional functions beyond a simple message
transfer are required, special modules that implement these features can be
inserted into the cascade ring. One example of these features is a merge of
several messages into a new one. Therefore a Data Integration Unit (DIU) was
developed as shown in figure 4.3. This unit allows the extraction of one or more
bits of a message and the arbitrary insertion of these bits into a new message.
The complete message can then be copied via the cascade ring to all connected
nodes.

CPU Register

Compare Unit

Input Register

Output Register

Out−Mux

M
od

ul
e

In
te

rf
ac

e

Figure 4.3: Data Integration Unit

Gateway Control Unit Several instances of these adapted single channel
modules may be combined and turned into a gateway. The data flow between
the (TT)CAN modules and the DIU is controlled by an application specific
Gateway Control Unit (GCU) as shown in figure 4.4. It provides the control
signals for the input and output multiplexers, the information to load or store a
message from or to the internal message RAMs of the communication controllers
and the control signals for special modules.
Possible realizations are a set of special function registers (SFR) or a finite
state machine (FSM). The implemented Gateway Control Unit combines the
special function registers and the finite state machine in one module.

Special Function Registers The SFR block consists of a set of registers
for the DIU and each (TT)CAN module connected to the cascade ring. The
registers are written by the CPU. This means that the routing algorithm and

48

4.1. ADVANCED GATEWAYS

Signals

CAN
Status
Signals

Control
Gateway

M
ux

Routine Engine with FSM

Instruction
RAM

Vector
RAM

Message Handler FSM

Special Function RegisterG
en

er
ic

 I
nt

er
fa

ce

C
A

N
 2

C
A

N
 n

D
IU

Control & Status
Register

Timer

C
A

N
 1

Figure 4.4: Gateway Control Unit

the routing data are stored on the host CPU. Upon the reception of a message
the CPU examines the number of the affected message buffer and determines
if the message buffer has to be transferred to another network. If it has to
be transferred, the CPU writes the appropriate registers. The direct data
path minimizes the number of read and write accesses from the CPU to the
communication controllers, but a high number of CPU cycles is still necessary
to check for received messages by interrupt handling or polling. This load can
be further reduced by an FSM based solution.

Finite State Machine The FSM based solution is a small autonomous
control unit. It consists of the message handler, control and status registers, a
timer and configuration memory. The configuration memory is divided into
two parts, the Vector RAM (VRAM) and the Instruction RAM (IRAM). The
instruction memory contains the transfer directives for the message handler,
whereas the vector memory contains event triggers and the event handler start
address in the instruction memory. Possible event triggers can be the reception
of a message, a receive timeout or a cyclic transmission. The implemented timer
is used to realize the receive timeouts or the periodic transmission. Several
control and status registers are implemented to configure the used message
buffers and to show timeouts or pending interrupts. All functions concerning

49

4.1. ADVANCED GATEWAYS

the handling of messages are implemented in the message handler. This includes
the transfer of messages between the (TT)CAN modules, (de-)fragmentation
of data and the handling of transmission requests, timeouts and interrupts.
Therefore the message handler only needs a minimal instruction set.

Vector RAM The Vector RAM contains event triggers, such as a message
receive, receive timeouts and periodic sending and an instruction start address
for each CAN message buffer in case of an event. An interrupt bit can be
set to additionally interrupt the CPU in case of an event. This makes special
treatment possible, e.g. gateway functions between different communication
controllers (FlexRay, MOST). A set of Vector Registers reflects the Rx/Tx and
message valid configuration and holds timeout flags and interrupt pending bits.

Event Detection The algorithm to detect events differs in the software
(SFR) and hardware (FSM) implementations of the CAN gateway. Both
solutions use an event loop, which loops through all CANs and all message
buffers to find an event (receive, receive timeout, time to send). The maximum
jitter results from the event loop and is the time for a complete event loop
cycle, as the worst case is an event that happened just after checking for that
event. Then a complete cycle has to take place to detect that event. Therefore
the hardware solution is optimized by interrupting the loop when an receive
event occurs. As result the jitter is kept to a minimum. However, the software
solution checks for the ranges of configured CANs and message buffers and
it loops only through these. This also reduces latency and jitter. Another
component of jitter is also a result of impreciseness when reading the timer in
case of an Rx timeout detection or period sending of messages. Timer delays
are always shorter than desired. The worst case is a timer reading shortly
before and then shortly after the increment, then almost no time passed.

Instruction RAM The Instruction RAM of the FSM gateway, defines ac-
tions in case of an event. There are three groups of functions:

• The first group is for flow control and contains instructions for
(un-)conditional branches and the finish instruction.

• The second group contains instructions for reading, writing and sending
of CAN messages and to transfer messages from one CAN to another.

• The third group controls the Data Integration Unit for rearrangement of
message data.

50

4.1. ADVANCED GATEWAYS

Gateway mode The modular structure allows a flexible programming of
the gateway function. Even when the gateway function is controlled by the
Gateway Control Unit, the host CPU keeps full access to all functions of each
(TT)CAN cell, excluding the second interface register. This enables the parallel
evaluation and processing of messages. Concurrent requests of the CPU and
the FSM to the same cell are solved in a deterministic way.

Software mode If the direct data path is not used, the Gateway Control
Unit can be deactivated. Then the software has full access to both interface
registers and all functions of the communication controllers. The complex
gateway functionality can then be completely processed by the host CPU.

Assembler An assembler has been implemented to ease the configuration of
the gateway. It consists of four stages. The first stage evaluates preprocessor
macros. This is especially helpful to assign a CAN network number and
arbitration ID to a CAN message buffer. The second stage normalizes the
remaining code, e.g. removes comments, puts labels in own lines and replaces
leading and trailing and multiple spaces and tabs to get code with only one
space between each argument. The third stage evaluates labels in code and
branch instructions. The last stage is for writing the configuration of the
gateway, represented as an array with 32-Bit hexadecimal values in a C-like
fashion. In this way it is easy to parse and integrate the configuration directly
into the gateway program and it permits comments, which are already done
automatically for labels.

Compiler

GatewayGateway
SFRSW

Gateway

Data
Gateway

Assembler

Assembler
Gateway

Table
Gateway

FSM

Figure 4.5: Data Generation Flow

51

4.1. ADVANCED GATEWAYS

Compiler Writing a complete CAN gateway matrix to assembler code com-
piler is possible as shown in figure 4.5. In this way an optimization of instructions
can be done, e.g. a periodically transmitted message can get its data from
other CANs at send time or the other CANs can write the data to the transmit
message at their receive time, so that the transmission can then instantly take
place. The first solution uses less instructions at send time, but could run
unnecessary instructions at receive times. The second solution only transfers
messages once at send time, but takes more time to send.

4.1.3 Multi-Protocol Gateway

The Multi-Protocol Gateway is the second implementation of an advanced
gateway. It is based on the previous implementation of the CAN-CAN Gateway.

Enhancements Multiple enhancements have been made resulting from ex-
tended requirements and the gained knowledge and experiences with the CAN-
CAN Gateway.
New requirements for the second gateway implementation were further protocols,
e.g. FlexRay and MOST. This leads to the concept of a layered architecture
containing protocol domains.
Wrappers for every protocol domain allows protocol specific operations, e.g.
control functions for a CAN cascade bus can be integrated here.
A dual-bus concept was implemented to speed up the communication between
the different protocol domains and the Gateway Control Unit. The cascade ring
bus of the CAN domain was removed for simplicity, but can be implemented
again using the Domain Wrappers.
To increase the scalability and efficiency, a partitioning of the VRAM and the
FSMs working on it was necessary. The Special Function Registers have been
removed in favor of the partitioned FSM concept. Interaction with the CPU is
still possible while the gateway is in operation.
An automated configuration toolchain was necessary to ease configuration of
the gateway. The implementation is described in the following chapter 4.2.
For fully supporting FIBEX as the input format for the toolchain, further
modifications were necessary for use all possible features.
FIBEX supports message debouncing, which means suppression of message
bursts. This made additional entries in the VRAM necessary to define the
debounce time in addition to the cyclic sending time.

52

4.1. ADVANCED GATEWAYS

C
A

N
 1

...
 n

Unit

...
 1

Fl
ex

R
ay

 n

Fl
ex

R
ay

 2

Fl
ex

R
ay

 1

C
A

N
 n

C
A

N
 2

...
 2

CPU Peripheral Bus

Wrapper

Gateway Bus

...
Wrapper

Central
Processing

Gateway
Control

Unit

CAN
Wrapper

FlexRay

Figure 4.6: Gateway Layer Architecture

Gateway Layer Architecture The multi-protocol gateway is a dedicated
hardware structure optimized for gateway operations. It can be described in
four layers as shown in figure 4.6.

Processing Layer The Gateway Control Unit (GCU) in the processing layer
contains two configuration RAMs as shown in figure 4.7. The Vector RAM
(VRAM) and Instruction RAM (IRAM) contents are processed by a Finite
State Machine (FSM). A further description of the implementation is provided
in section 5.3.
The configuration is minimized and very efficient. The CPU is only needed for
the configuration of the GCU and to handle exceptional transfers that are too
complex to be processed in the Gateway Control Unit, e.g. advanced transport
protocols or extensive arithmetic functions. It has been estimated that with an
average gateway configuration less than 20% of the traffic must be handled in
software running on the CPU.

Bus Layer The bus layer contains the usual CPU system and peripheral bus
with all CPU-accessible peripherals used in the microcontroller, e.g. AMBA

53

4.1. ADVANCED GATEWAYS

(~4096 x 24−Bit)

Message

Message
Handling FSM

Vector RAM
(~512 x 32−Bit)

C
P

U
−

IF
G

at
ew

ay
−

IF

Configuration /
Timer

Detection FSM

Instruction RAM

Status Register

Figure 4.7: Gateway Control Unit

bus family [80]. An additional gateway bus is connected to the GCU and to
each wrapper for a set of equal communication controllers. Both buses are used
simultaneously and without interfering with each other.

Wrapper Layer The wrapper layer monitors incoming messages and com-
bines information for groups of 32 message buffers. A selection can be made by
masking message buffers meaningless for the gateway. The wrapper is necessary
to provide an abstraction of the different types of communication controllers
and their signaling of receive events to the GCU. Additional features could be
implemented here, for example direct data paths between communication con-
trollers of the same type, as already done in the CAN-CAN-gateway described
in the previous section 4.1.2.

Communication Controller Layer The communication controller layer
contains CC IP modules, which should be used in slightly modified variants to
better adapt to the gateway.
All communication controllers are accessible by the CPU and the gateway buses
in parallel. Depending on the implementation of the CC, different adaptations
can be made to optimize the gateway capabilities.
A communication controller with multiple interface buffers for reading and
writing message objects is essential to avoid access conflicts between CPU and
Gateway Control Unit. This is shown in figure 4.9. If the CC does neither

54

4.1. ADVANCED GATEWAYS

M
es

sa
ge

 S
ta

tu
s

S
ig

na
ls

Event

CC Wrapper

C
P

U
−

IF
G

at
ew

ay
−

IF

Receive

Receive

CC 2

CC n

CC Domain

Configuration
Register

Event

Handler

CC 1

Figure 4.8: Communication Controller Wrapper

support multiple buffers, nor a modification is possible, both CPU and GCU
have to arbitrate their buffer accesses using mutexes.
For even better performance it is valuable to have two different and logically
independent interface ports for both CPU peripheral bus and gateway bus,
called a dual bus interface as shown in figure 4.10. If not possible, arbitration
has to be used on a per-access base.
Whereas Message RAM based communication controllers have message buffers
to distinguish incoming messages, FIFO based communication controllers have
to evaluate the incoming messages by instructions in the IRAM. Specialized
commands have been implemented to do the filtering between messages intended
for the Gateway Control Unit and the CPU in an efficient way.

Configuration RAMs As described above, the Gateway Control Unit con-
tains two configuration RAMs. A block diagram of the implementation is
shown in figure 5.7.
The VRAM configuration selects the communication controller buffers to be used
by the Gateway Control Unit. It also contains additional processing information,
like a vector to the event handling functions in the IRAM. The Gateway Control
Unit detects received messages in the communication controllers and time
events like timeouts, bouncing messages and transmit cycles. Three partitions
constitute the VRAM.

55

4.1. ADVANCED GATEWAYS

IO−Buffer
Handler
Message

RAM
Message

PRT

In
te

rf
ac

e
C

us
to

m
er

Figure 4.9: Standard Interface Concept

C
us

to
m

er
G

at
ew

ay
In

te
rf

ac
e

In
te

rf
ac

e

Message
RAM

Message
Handler

PRTIO−Buffer

IO−Buffer

Figure 4.10: Extended Interface Concept

The VRAM Communication Controller partition (VRAM-CC) contains a spe-
cific entry for each group of message buffers. When a receive event or a time
event occurred in a group, the FSM is triggered to process a table in the VRAM
partition addressed by the MO-Vector.
VRAM Message Object partitions (VRAM-MO) have a variable length and
contain in tabular form detailed information for each message buffer/object in
the corresponding group of the VRAM-CC partition, like rx/tx configuration,
timing conditions and the instruction vector to the event handling function in
the IRAM.
The partitioning between the VRAM-CC and the VRAM-MO reduces the
memory usage, as only the message buffers used by the gateway need to have

56

4.1. ADVANCED GATEWAYS

an entry for the message object. It also reduces the time needed to look up a
message object.
Remaining VRAM can be used as data storage and is therefore called VRAM-
Data.
A state machine processes the events by executing the procedures in the
Instruction RAM. The instruction set of this processing unit contains specific
functions to access the communication controllers, to transfer data, to handle
transport protocols and to interact with the host CPU.

Time Behavior The figure 4.11 shows the next time events of a simple
gateway with two communication controllers and two gateway relevant message
buffers each. The four lines on the bottom of the diagram show the two message
buffers of both communication controllers. In the middle one line for every
communication controller shows the next time events over all message objects
of the respective controller. On the top the global next time event register over
all communication controllers is displayed.

Time Event 0© A time event t1 is triggered, when the continuously running
timer (tT imer) reaches a value greater or equal to the global next time event
register (tall).
1t© When this happens, the communication controllers are scanned until the
controller having the next time event is found.
2© On the next level, the message buffers of this communication controller are
scanned for their next time event.
3© If the triggering buffer is found, the next time event is calculated as a sum
of the current time event and a stored difference to the next time event (t4).
Only then, the handling function of the instruction RAM is started.
4© When the execution is finished, the next time events (t3 and t4) within the
scanned message buffers are searched and
5© the entry for the communication controller is updated with this time (t3).
6© This search for the next time event is then done for all communication
controllers (t2 and t3) simultaneous.
7© With this time the global next time event register is updated (t2).

Receive Event 1r©- 7© The execution of a receive event is similar, but in place
of the global timer comparison with the next time event register and the scan
for communication controllers, the process directly starts for the triggering
communication controller.

57

4.1. ADVANCED GATEWAYS

V
R

A
M

-M
O

V
R

A
M

-C
C

R
e

g
.

tTimer

tall

tCC1

tCC2

tCC1_MO1

tCC1_MO2

tCC2_MO1

tCC2_MO2

t1 t2 t3 t4

1t

2

3

4

5

6

71r

0

∆tCC2_MO1

evaluation of time vectors

calculation of next time event

comparison for next time event

update of time vectors

tCC2_MO2:

next time event of 2. MO of 2. CC

∆tCC2_MO1:

time difference between time events

Figure 4.11: Time Behavior

58

4.1. ADVANCED GATEWAYS

Specialization The described process for time events is only done for cyclic
sending.
In case of timeout handling, the process happens twice. 1r©- 7© The first part
is equal to the described receive event process, but the calculated next time
event is when the timeout triggers.
0©- 2© When no further message are received and therefore the next time event
is not advanced, the timeout triggers and a handling function is executed.
0©- 7© The timeout handler can also be executed in a cyclic manner, every time
the next time event is updated.
For debounce handling, the process must be three-parted. 1r©- 7© The first part
is a normal receive event.
2© A debounce bit in the message buffer entry is set and the next time event is
set to the time, where this bit is removed again.
1r©- 2© Until then no further receive events are processed.
0©- 2© When the next time event is reached, the debounce bit is removed again.

Message Group Size The size of the groups of message buffers (nMBperGrp)
in the VRAM-CC partition should be dimensioned in a way that the average
search time (tAvgSearchT ime) to find a particular message buffer is minimized.
The terms in the following formula describe the search time through the VRAM-
CC and VRAM-MO partitions under the assumption that only a part (pused)
of all message buffers (nMB) is used:

tAvgSearchT ime = nMB
2 · nMBperGrp

+ pused · nMBperGrp
2

The figure 4.12 shows, that because the VRAM-CC partition acts as a hash
table for the VRAM-MO entries, there is a logarithmic dependency between
the number of message buffers (nMB) and the number of message groups
(nMBperGrp). The average usage of the message buffers has been assumed as
80%.
As more than 250 message buffers have to be expected for a high-end gateway,
a group size of 24 seems to be appropriate. For the hardware implementation
the size should be a power of 2, therefore every group should contain 16 or 32
message buffers. The implementation will use 32 message buffers per group.

4.1.4 Software Gateway

Interaction with the multi-protocol gateway is possible between the host CPU
and the gateway itself. Using the following interaction types, all functionality

59

4.1. ADVANCED GATEWAYS

 25
 20
 15
 10
 5
 0

message buffers
per group

 60

 50

 40

 30

 20

 10
 0 100 200 300 400 500

 30

message buffers

Figure 4.12: Average Search Time

that cannot be provided or are not useful to implement in hardware, can still
be implemented as software components running on the host CPU.

VRAM-Data The VRAM-Data partition can be used as shared RAM to
exchange data between the CPU and the gateway. For example, it is possible
that the host CPU takes and processes sensor data and store this data as
signals in the VRAM-data partition. The gateway can then use these data and
integrate it in a frame that is send out periodically. In the other direction it
is also possible that the gateway already preprocesses data for the CPU by
disassembling received frames and storing its information in the VRAM-Data
partition. This is known as process data unit (PDU) acceleration.

CPU Trigger Register With the usage of the CPU trigger register, the
CPU is able to start instruction execution on the gateway. This is useful if
the gateway should be informed about new data stored in the VRAM-Data
partition and to immediately start processing of these data, i.e. to send a frame
with these data.

CPU Software Interrupts The gateway is also able to inform the CPU
about certain events, such as received frames, timeouts or stored signals in the
VRAM-Data partitions.

Conditions Certain conditions are known in the configuration format, e.g.
start-condition, stop-condition or active-condition. Depending on the conditions
of the gateway system or the complete network, the software needs to activate
or deactivate certain mappings or change its behavior in the hardware gateway.

60

4.2. CONFIGURATION TOOLCHAIN

Special Timing Conditions Also when special timing conditions are re-
quired beyond the possibilities provided in hardware, the software can evaluate
these conditions and inform the gateway about the results or directly recon-
figure its mappings. This is especially true, when multiple message debounce
times or timeouts are defined on one mapping. As the number of hardware
timers per mapping is limited, the software can evaluate the timers instead.

Transport and Diagnostic Protocols The usage of transport and diag-
nostic protocols is mostly limited to the maintenance of the car. Also different
protocols are used by every manufacturer. As this requires a high flexibility,
this functionality is not efficient to implement in hardware. Transport protocols
also require huge state machines that can better be implemented in software.

Configuration Formats As one part of the gateway is running in hardware
and the other part is running in software, a shared configuration database
is necessary. The modern configuration format FIBEX provides exactly this
functionality.

4.2 Configuration Toolchain

A toolchain has been developed to generate configuration images for the new
gateway architecture.
Being able to use both FIBEX and DBC files as an input, it provides a
standardized interface to most multi-network configuration tools, e.g. the
DeComSys Designer Pro [81].
The toolchain outputs information for the hard- and software parts of the
gateway as shown in figure 4.13.
The hardware information is provided by RAM configuration images for the
Gateway Control Unit. Therefore the development was based on the specific
RAM layout of the GCU. Residual routing information is generated for the
software part.
In the future, the toolchain may easily be expanded to support AUTOSAR by
an appropriate input filter or converter.
The processing stages are comparable to that of a typical compiler, apart from
the different input data and optimization options as shown in figure 4.14.

61

4.2. CONFIGURATION TOOLCHAIN

Configuration

Information
Residual Routing

Software
Gateway

Assembler Code

Assembler Firmware
Image

Gateway
Hardware

Translator

Configuration

Configuration
File

TestbenchTestbench

Editor

Figure 4.13: Gateway Toolchain Overview

4.2.1 FIBEX Engine

Section 3.5.1 describes FIBEX to contain all information to configure nodes on
a network including gateways.
The FIBEX engine provides modules for any kind of element provided. It is
possible to load and store ID-referenced objects and to change or add certain
values.

Manufacturer Extensions Minor things still have an imprecise definition
in FIBEX. Required information for the described gateways is also not available.
As described in section 3.5.1 FIBEX allows to define manufacturer extensions
to expand the descriptive capability even further.
A Manufacturer Identifier Extension has been defined to clarify certain protocol-
specific aspects, like the CAN frame format (distinction between 11-Bit or
29-Bit identifiers).
Further a Manufacturer Frame Mapping Extension allows the description of
gateway-specific features, like routing signals depending on certain conditions.
The Manufacturer Controller Extension is defined to enable the interaction
with a software gateway on top of the hardware gateway, providing coordina-

62

4.2. CONFIGURATION TOOLCHAIN

DBC Files

FIBEX Files

CC Adaptation

DBC Engine

FIBEX Engine

DBC Files

FIBEX Files

CC Configuration

Message RAM

Vector RAM

Instruction RAM

Test Execution Log

Gateway CAPL

Testbench CAPLCAPL Test Env. Gen.

CAPL GW Generator

Ass. Instr. Simulator

Assembler

Instruction Generator

Gateway Table

Figure 4.14: Gateway Processing and Data Flow

tion between hardware and software by predefining buffer configurations and
partitioning of the gateway tasks.

4.2.2 Import/Export of CANdb++ DBC databases

DBC Databases can be used to configure CAN channels as described in section
2.2.4.
The DBC engine is a module that can generate DBC channel databases based
on the information from the FIBEX file. It also allows to import DBC databases
including routing definitions into the loaded FIBEX file.

63

4.2. CONFIGURATION TOOLCHAIN

4.2.3 Configuration of Communication Controllers

The first processing step is to generate configuration register sets and Message
RAM contents for all involved communication controllers. This can be done
for any communication controller and runs independently from the rest of the
gateway toolchain. The output of this module is presented as C-style header
file.

4.2.4 Gateway Configuration

The gateway configuration involves multiple data processing modules.

Gateway Table The gateway object in FIBEX contains all connector, frame-
triggering and signal-instance mappings. All required information is read,
sorted and stored in an internal gateway table data structure. At this state
the gateway table only contains symbolic references to the message buffers
of the communication controllers. By searching the generated Message RAM
contents, the symbolic references can be resolved and the correct locations
added to the gateway table. Aside from using the gateway table as a debug
point, it also provides an abstraction of different input formats in the future,
e.g. AUTOSAR.

Timer Configuration The gateway table also contains the timing- and
trigger-conditions of every mapping. From this data the frequency of the
global FSM timer can be computed. The frequency must be the least common
denominator, that multiplied fits most times used in the gateway, e.g. cyclic
sending or timeouts.

Vector RAM The gateway table and timer configuration allows generating
the Vector RAM contents. However, the address vectors to the actual event
handling functions in the Instruction RAM are still symbolic and need to be
resolved after the generation of the Instruction RAM contents.

Instruction RAM The Instruction RAM contains the functions to handle
the receive and time events processed by the FSM. If a message cannot be
processed completely in hardware, a special function is generated that can be
triggered by the CPU. This information is stored in the filtered FIBEX output
by a manufacturer extension of the FIBEX controller object. A software layer
has to use this information to interact with the Gateway Control Unit.

64

4.2. CONFIGURATION TOOLCHAIN

Depending on the timing- and trigger-conditions a high-level assembler code is
generated.

Runtime and Memory Optimization By choosing different optimization
settings of the instruction generator, runtime-optimized or memory-optimized
codes can be generated.

4.2.5 Assembler

The assembler contains several processing steps to generate machine code out
of the generated assembler code. The complete flow is shown in figure 4.15.

Macro Evaluation

Code Normalization

Pseudo Instr. Eval.

Jump Optimization

Label Evaluation

Binary Generator

Instruction RAM

Vector RAM − MOVector RAM − Data

CC Adapt. Macros

Assembler Code

Figure 4.15: Gateway Assembler Processing Flow

Macro Evaluation The high-level assembler code contains mostly macro
functions and is therefore almost independent of the target gateway. By
evaluating the macros in the assembler code, it becomes more specific toward
the communication controllers and their base addresses in the gateway as

65

4.2. CONFIGURATION TOOLCHAIN

shown in figure 4.16. The macro expansion is done by calling the GNU m4
macro processor [82]. It interprets the macros and replaces them by the actual
assembler code.

include(`defined.m4')dnl

include(`addrs.m4')dnl

copy_on_chng_can0_1_to_can1_0:

; load source buffer

CAN_LOAD(0, 0)

; wait for completion

CAN_WOB(0)

…

copy_on_chng_can0_1_to_can1_0:

; load source buffer

LDM R1, can_read_all ; load constant

LDI R2, 1 ; buffer number 0

OR R1, R2, R1 ; combine

STP R1, 0x8000 ; start buffer request

; wait for completion

WOB 0x8000, 15, 0 ; wait on busy bit

…

Figure 4.16: Macro Evaluation

Code Normalization During the normalization, the code is cleaned of any
comments, all labels put to extra lines and an unified indentation is made as
shown in figure 4.17.

copy_on_chng_can0_1_to_can1_0:

; load source buffer

LDM R1, can_read_all ; load constant

LDI R2, 1 ; buffer number 0

OR R1, R2, R1 ; combine

STP R1, 0x8000 ; start buffer request

; wait for completion

WOB 0x8000, 15, 0 ; wait on busy bit

…

copy_on_chng_can0_1_to_can1_0:

LDM R1, can_read_all

LDI R2, 1

OR R1, R2, R1

STP R1, 0x8000

WOB 0x8000, 15, 0

…

Figure 4.17: Code Normalization

Pseudo Instruction Evaluation Some pseudo instructions are symbols rep-
resenting other instructions and need to be translated in the pseudo instruction
evaluation stage as shown in figure 4.18.

Jump Optimization The JMP command is 32-Bit long and takes two cycles
to execute. It is used for long jumps as absolute addresses are used. Opposite
to JMP the BRA command is 16-Bit long and takes only one cycle to execute.
It is therefore used for short jumps using relative addresses. Sometimes the
generated code contains BRA commands to addresses impossible to reach.
Therefore this optimization stage first changes every BRA to a JMP. Then it
changes iteratively every JMP back to a BRA whenever it is possible, which

66

4.2. CONFIGURATION TOOLCHAIN

copy_on_chng_can0_1_to_can1_0:

LDM R1, can_read_all

LDI R2, 1

OR R1, R2, R1

STP R1, 0x8000

WOB 0x8000, 15, 0

…

copy_on_chng_can0_1_to_can1_0:

LDM R1, can_read_all

LDI7 R2, 1

OR R1, R2, R1

STP R1, 0x8000

WOB 0x8000, 15, 0

…

Figure 4.18: Pseudo Instruction Evaluation

shortens the code until no further optimizations can be done. This order is
necessary, as it is impossible to just change a BRA to a JMP without affecting
surrounding branch instructions.
After this optimization no BRA instructions remain with too distant addresses.
As many JMPs are changed to BRAs the code is shorter and faster to execute.

Label Evaluation The data and instruction labels are evaluated in the label
evaluation stage as shown in figure 4.19. Data labels point to entries in the
VRAM-Data partition and instruction labels point to locations in the assembler
code. After the evaluation, the actual address of every function in the IRAM
is reported back to the VRAM-MO entries to resolve the symbolic references.

copy_on_chng_can0_1_to_can1_0:

LDM R1, can_read_all

LDI7 R2, 1

OR R1, R2, R1

STP R1, 0x8000

WOB 0x8000, 15, 0

…

copy_on_chng_can0_1_to_can1_0:

LDM R1, 0x0

LDI7 R2, 1

OR R1, R2, R1

STP R1, 0x8000

WOB 0x8000, 15, 0

…

Figure 4.19: Label Evaluation

Output Filters Different output filters can generate C-style header files or
binary images containing the contents of the VRAM and IRAM.
The C-code output filter generates images containing C structures, thus can be
compiled statically for the configuration function of the gateway.
Binary images can be generated and distributed as part of a firmware package
containing the static part of the gateway software and the configuration image.
The ModelSim output filter can be used to generate VHDL or testbench code
for RTL simulations with specific gateway configuration.

67

4.2. CONFIGURATION TOOLCHAIN

Assembler Frontend An assembler frontend can directly read assembler
code from a text file and generate different output formats, like C-style header
files or binary images. This allows assembling manually edited files.

4.2.6 Verification and Tests

Input and output data of every module in the toolchain can be loaded from
and saved to external text files. This allows intermediate white box testing
of every module and manual editing and viewing. There exist different test
environments around the complete toolchain and single modules.

Test cases A set of test cases provides input data for specified modules and
functions and provides expected output data, which is then compared to the
actual output. This makes testing easier, as only a limited set of functions need
to be tested. The testbench also works as regression test against the changed
software to ensure that the changes made in the current software do not affect
the functionality of the existing software.

Coverage Analysis This same set of tests is also used for code coverage tests
[84, 85]. A subroutine, statement/line, branch and condition coverage analysis
is made. By looking at these tabular reports, many unnecessary condition
checks and dead code fragments can be prevented. It also shows exactly, which
code fragments or conditions are still only partially tested and need additional
test cases.

Static Code Checker Static code checking is done by a lint tool [83]. It
shows unused variables, imprecise descriptions and coding mistakes.

C-code Integration Tests Finally integration tests are made by compiling
the generated C-style output files with parts of the actual software gateway
environment. The outputs produced when running these executables, are then
again compared to the expected outputs. This prevents errors in the source
codes generated by the output filter, especially when parts of the software
gateway change.

68

4.2. CONFIGURATION TOOLCHAIN

4.2.7 Assembler Instruction Simulator

An assembler instruction simulator has been developed. It simulates the
function of the IRAM-FSM, the communication controllers and the Message
RAMs. A block diagram is shown in figure 4.20.

at address
start signal

data access
RAM
Vector

peripheral
address
decoder

assembler
command
interpreter

ready signal
and statistics

transmit
requests

CC
simulations

Message
RAM

simulation

buffer data
for transmit

for receive
buffer data

Figure 4.20: Assembler Simulator

Assembler Instruction Command Interpreter A Assembler instruction
command interpreter simulates the behavior of the IRAM-FSM. It holds the
current state of the registers, flags and current execution location. With each
executed instruction the state is altered and counters for instruction cycles
and read memory are increased accordingly. One function group is provided to
simulate data accesses to the Vector RAM.

Communication Controllers Simulations All read and write accesses in
the peripheral address space are first processed by a peripheral address decoder
and second by a very simple simulation of the communication controllers. Only
transfers between virtual Message RAMs and the interface buffers are possible.
Write access that leads to message transmits are logged.

Message RAM Simulation Virtual Message RAMs used by the simulated
CCs are directly accessible. Receiving messages can be simulated by directly
manipulating the data therein and triggering the corresponding IRAM receive
function. As message transmits are logged and the corresponding data can
be directly read out of the virtual Message RAM, sending of frames can be
simulated.

69

4.3. VERIFICATION ENVIRONMENT

Equality Checks The assembler instruction simulator can be used to check
the equality of the transactions made by a function under different optimization
levels. With such an environment each transaction for a specified timing- and
trigger-condition can be tested for every function in the Instruction RAM.

Function Checks Also the assembler simulation of the gateway allows to
test the generated lines of assembler code under all possible time conditions,
e.g. timeout, message debounce. To check each code segment, the test results
are compared to the reactions of the executive model.

4.3 Verification Environment

Safe operation of a critical system can only be guaranteed with an intensive test
system. The usual approach is to manually implement a test environment using
a remaining bus simulation. Manual programming has several disadvantages.
Checking the complete range of possible gateway mappings and test parameters
is very expensive. Also manual programming can lead to errors not only in
the implementation of the gateway function in hardware and software, but
also in the test environment. This is especially true when changes to the
gateway configuration also affect the test environment. Manual changes are
always error-prone and often result in inconsistencies between gateway and test
environment. These disadvantages can be eliminated by using tools to automate
most of these tasks and by referring to a common source of information for
gateway and test configuration.

White/Black Box Tests Tests can be divided into two main categories.
The first category are white box tests, where information about the device
under test are required to create and execute them. This is especially true,
when only parts of the gateway should be examined. On the other side black
box tests can be used on any device without any prior knowledge required.
If black box tests include measurements, they can also be used to compare
different implementation.

4.3.1 Gateway Executive Model

A base for multiple tests is provided by the implementation of an executive
model. One possible usage is the comparison of the actual gateway implementa-
tion with the calculated behavior of the executive model under different stimuli.
This comparison can either be implemented as static test cases or dynamic in
form of a test program.

70

4.3. VERIFICATION ENVIRONMENT

Trigger Frame

Comparator
and

Error Logger

Trigger Frame

Executive Model

Actual Gateway

Comparator
and

Error Logger

Stimuli Generator

response
response
response

trigger

Error Recovery

Stimuli Generator

Executive Model

Actual Gateway

Figure 4.21: Static and Dynamic Testing

Static Tests Every static test contains trigger frames and calculated response
frames. The comparison can either be made while the test case runs or the
response can be logged for later comparison against the calculated response
frames.

Dynamic Tests The executive model can also be implemented in a test
program. Thereby the trigger frames are dynamically generated and compared
to the response frames on every message reception. Erroneous data can be
logged to find certain patterns that can give hints in finding implementation
bugs. This environment can also be used for long time regression tests, when
as soon as an error is detected, the gateway is forced back to a known state by
appropriate trigger frames.

71

4.3. VERIFICATION ENVIRONMENT

Implementation This Executive Model (EM) of the gateway as shown in
figure 4.22 is derived from the FIBEX Object Model. It is currently implemented
as part of the toolchain, but can easily be ported to other environments to be
used for dynamic testing.

T
ar

ge
t

Signal−
Instance
Signal

Signal−
Mapping

Signal−
Instance
Signal

Frame−

Frame
Triggering

Frame−
Mapping

Connector
Channel

Connector−
Mapping

Connector
Channel

ECU
Controller

Cluster

Gateway

ECU
Controller

Cluster

Time−Triggered Event−Triggered

Frame−
Triggering

Frame

M
ap

pi
ng

S
ou

rc
e

Figure 4.22: Gateway Model

Event-Triggered Communication A channel contains frames and a frame
contains signals. The task of a gateway is to receive source frames and to
generate and send target frames based on the defined mappings. A frame
mapping can be substituted by a signal mapping with one signal definition over
the complete bit range. Despite the delay times introduced by the reception
mapping and transmissions, this part of the model can be used to simulate
event-triggered communication.

Time-Triggered Communication Time-Triggered communication intro-
duces additional delays between the message send request and the actual
transmission time, so that each message is sent within an assigned time slot.
For a simulation of time-triggered communication additional objects are neces-
sary, that introduce the behavior of every frame in a communication channel
and cluster. Implementing the time-triggered part of the model can be cir-
cumvented, when the trigger frames are send and the results are compared at
specific times, e.g. sending before and receiving after the desired slot.

72

4.3. VERIFICATION ENVIRONMENT

Backward Calculation of Trigger Frames The event-triggered part of
the model can be used to generate trigger frames. These trigger frames are
source frames that trigger a desired mapping under specific conditions, e.g.
timeout, bouncing or data change. The backward calculation is necessary to
find the trigger frames that are relevant to test the desired signal mapping. To
simulate changed data the source frames or source signals can be randomized.

Forward Generation of Trigger Response Frames When the trigger
frame is sent out, the contained source signals can trigger multiple mappings.
Therefore multiple target signals can be produced leading to multiple target
frames. The forward calculation is used to generate all response frames to a
given trigger frame.

Response Filter In order to avoid checking all response frames of a trigger
frame, a filter can be used to only check the relevant information regarding the
desired mapping, e.g. target signals.

4.3.2 Automatic Test Generator

With the described backward and forward calculations the executive model can
be used to automatically generate static test cases containing trigger frames
and expected response frames for each mapping in the gateway configuration.
This is called Automatic Test Generation (ATG). These static test cases can
be generated for different environments.

Network Analyzer can be used to generate and monitor the traffic on
physical bus systems. If they support multiple different bus systems and a
simple scripting language, it is possible to use them as gateway test environment.
Connected to the gateway, they can simulate real traffic and monitor the
gateways responses. The simulated traffic can be described by static test cases.
The correctness of the replies can be verified by condition checks in the script
language, e.g. CAPL in Vector CANoe, or by examining the log files.

RTL Simulation An essential part of any hardware development is imple-
menting test cases on the register-transfer-level (RTL) using a simulation tool,
such as ModelSim. A new approach is that the test generator can also be used
for automatic test case generation of RTL code in the different languages, e.g.
VHDL, Verilog or SystemC. With this approach the gateway can be tested
with an ideal time behavior and identical test patterns.

73

4.3. VERIFICATION ENVIRONMENT

When ModelSim is executed with these input files, it can generate trace files in
an application specific format. These log files can then be parsed and filtered
to find the trigger response frames. Differences of the response frames to that
in the static test cases indicate errors.

Assembler Simulation As mentioned in section 4.2.7 the executive model
is also used to check the generated assembler code of each mapping under every
possible timing and trigger-condition. The trigger frames contained in the test
case are used to execute the simulator. Response frames from the simulator
are logged and compared to those from the test case. As this test environment
does not need any external hard- or software, it can be used as internal self
test running after each gateway configuration run.

74

Chapter 5

Implementation and Results

In this chapter some of the results of both the CAN-CAN and multi-protocol
gateways will be presented, along with the configuration toolchain and verifica-
tion environment.

5.1 Gateway Development Hardware

The hardware development required an FPGA[93] device with enough logic
elements for the gateway IP and the communication controllers. It must also
provide connections for the physical layer drivers and must be fast enough to
run the gateway system with the target clock frequency.

5.1.1 Development Board

Altera offers such a development board, the Altera Nios II Development Kit,
Stratix II Edition as shown in figure 5.1.
The development board contains an Altera Stratix II EP2S60 (EP2S60F672C3)
FPGA, 16 MByte SDRAM, 16 MB Flash and an Ethernet MAC.
A hardware toolchain is provided with Quartus II for synthesis and place-and-
route of the VHDL code of the gateway. Several IP cores are provided as add-ons
including an ethernet IP and a highly configurable and FPGA-optimized Nios II
processor core. The SOPC Builder (System-On-a-Programmable-Chip) allows
automatic connection of several of these modules using the Avalon Switch
Matrix, similar to a system bus.
Eclipse as graphical IDE integrates a specialized GNU Compiler Toolchain for
the software development and compilation of sample programs and gateway
initialization programs. The environment comes with a development license for

75

5.1. GATEWAY DEVELOPMENT HARDWARE

Figure 5.1: Altera Nios II Development Board [92]

the MicroC/OS-II real-time operating system and a license for the lightweight
TCP/IP Network Stack.

5.1.2 Physical Layer Board

Network specific boards containing the physical layer drivers can be connected
on top of the board using the two expansion/prototype headers.

CAN Physical Layer Board For the connection to four physical CAN
channels an expansion board has been designed to contain four Bosch CF151
CAN Physical Layer Transceivers [31, 38] or compatibles.

FlexRay Physical Layer Board Another board was manufactured con-
taining two TJA1080 Physical Layer Transceivers from NXP (former Philips
Semiconductors) or compatibles for the connection to a FlexRay network with
two channels [28].

MOST Physical Layer Board For later integration of MOST communica-
tion into the gateway, a module containing the OS81050 Network Transceiver
from SMSC (former OASIS SiliconSystems) with optical connection header
has been purchased [42, 46]. Further description of the OS81050 is provided in
section 2.5.2.

76

5.1. GATEWAY DEVELOPMENT HARDWARE

5.1.3 Clock Frequencies

When connecting modules with different clock frequencies to the Avalon Switch
Matrix, clock domain crossings are automatically generated by the SOPC
Builder.
The figure 5.2 shows the clock frequencies of the multi-protocol gateway. Dif-
ferent from this figure, the CAN-CAN Gateway omits the FlexRay Domain
and the Domain Wrappers. The Gateway Bus is replaced by the cascade ring
bus between the communication controllers. This is shown in figure 5.4.

Control
Unit

Application
Nios II CPU

Communication
Nios II CPU

Avalon−IFAvalon−IFAvalon−IFGW−IF

Avalon−IFGW−IF

CAN
Domain

GW−IF Avalon−IF Avalon−IF

Ethernet
UnitFlexRay

Domain

Avalon Switchmatrix

Gateway Bus

50 MHz GW clock85 MHz CPU clock 80 MHz FlexRay clock

Gateway

Figure 5.2: Clock Frequencies

The Application Nios CPU is implemented as the primary CPU of the ECU and
the Communication Nios CPU is for the communication with the development
host PC. Both CPUs and the Avalon Switch Matrix run at 85 MHz.
Most parts of the gateway, including the Gateway Control Unit, the Gateway
Bus, the complete CAN Domain and the interface parts of the FlexRay Domain
run at a clock frequency of 50 MHz.
Specific for the two-clock design of the E-Ray controller, the bus side of the
controller has a frequency of 80 MHz.

77

5.2. CAN-CAN GATEWAY COMPARISONS

5.2 CAN-CAN Gateway Comparisons

This section describes some of the implementation details and measurement
results of the CAN-CAN gateway.

5.2.1 Instruction Set

As described in section 4.1.2, the Gateway Control Unit has two configuration
RAMs. The Vector RAM configures event triggers (message receive or time
events) and the Instruction RAM of the FSM gateway defines actions to handle
these events. Figure 5.3 shows the three instruction groups for flow control,
communication controller access using the Special Function Registers (SFR)
and Data Integration Unit (DIU) control.

Bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction

JMP 0 0 0 0

JMPCMP 0 0 0 0 EW

JMPTO 0 0 0 0 TO res.

SEL 0 0 0 1

GW_WR_SEL 0 1 0 0

GW_RD_SEL 0 1 0 1

GW_COM_MASK 0 1 1 0

GW_COM_REQ 0 1 1 1

DIU_WR_SEL 1 0 0 0

DIU_CLR_S2 1 0 0 1

DIU_WR_S1 1 0 1 0

DIU_WR_S2 1 0 1 1

DIU_CP 1 1 0 0

DIU_CP_CPU 1 1 0 1

DIU_CMP 1 1 1 0

Opcode Selector Arguments

Jump, Select

Address #11..0

DIU_NR Address #11..0

Address #11..0

CAN_NR MSG_NR

Special Function Registers

Write Select #15..0res.

Read Select #15..0

CAN_NR COM_MASK

CAN_NR COM_REQ

res.

res.

res.

Data Integration Unit

Write Select #15..0

DIU_NR

DIU_NR

res.

res.

res.

DIU_NR

DIU_NR REG_OUT REG_IN

res.

OFF_OUT OFF_IN WIDTH

DIU_NR REG_OUT res. OFF_OUT OFF_IN WIDTH

DIU_NR REG_OUT REG_IN OFF_OUT

res.

res.

res.

res.

res.

res.

res.

OFF_IN WIDTH

Figure 5.3: Gateway Instruction Set

This limited but although efficient instruction set allows all operations to receive
and send frames and to copy and compare certain signals therein.

5.2.2 Comparison of Implementations

The efficiencies of the three gateway expansion stages (software solution, soft-
ware solution combined with a separate data path using the Special Function
Registers, CPU independent Finite State Machine) have been compared. This

78

5.2. CAN-CAN GATEWAY COMPARISONS

includes resulting code sizes, latencies and jitters for basic functions that reflect
the workload of real gateways.

Software Gateway In the first stage the gateway functionality is conven-
tionally done by software. The software needs to monitor the receive bits of all
communication controllers and regularly check for receive timeouts and times
to send a periodic message. In case of an event the software gateway has to get
the data out of a CAN, rearrange it and write or send it from another CAN.
The advantage of the software gateway to competing ones is that not the
gateway matrix is held in memory, but the FSM instructions, which are directly
interpreted by the software gateway. This reduces latency and jitter and
provides a common means of configuring the three gateway solutions.

Special Function Registers The second stage of the software gateway
functionality is improved by the usage of the special functions registers to
directly transfer messages from one CAN to another and to make rearrangements
of data by the DIU.

Finite State Machine As third stage the software only configures the FSM
to provide the functionality completely in hardware.

5.2.3 Description of Test System

The test system is synthesized on the development board as described in section
5.1. It contains the (TT)CAN Gateway with two Bosch C_CAN and two
TTCAN modules, controlled by an Altera NIOS II Application CPU. A second
NIOS II Communication/Traffic CPU controls two additional C_CAN modules,
intended for testing the CAN Gateway. This is shown in figure 5.4.

CAN Connection Each CAN of the Test Environment is connected to a
CAN and a TTCAN (running in CAN mode) of the Gateway Demonstrator by
an AND gate, so that communication without a CAN bus is possible. All of
the six Tx pins and the two CAN channels itself, can be monitored on FPGA
pins. The test CPU and the host CPU are clocked with 80 MHz, the remote
CANs and the CAN Gateway at 20 MHz.

Software on the CPUs The software application is based on Micrium µC-
OS RTOS. On the test CPU a software task provides communication with a
controlling Linux host using an Ethernet MAC on the development board. A

79

5.2. CAN-CAN GATEWAY COMPARISONS

DIU

CPU

Test Environment Gateway Demonstrator

Host
CPU

Gateway
Control

Unit

CAN 1

CAN 2

CAN 1

CAN 2

CAN 3

CAN 4

Test

Figure 5.4: Structure of test system

second task contains several functions for testing different aspects of the CAN
Gateway. This partitioning is shown in figure 5.5. User interaction is provided
by buttons and LEDs on the development board.

FIFO Communication A packet based communication protocol has been
defined for communication from the Linux host via Ethernet to the test CPU
and via mailboxes to the host CPU and back. Two FIFO ring buffers in an
on-chip shared memory provide this mailbox communication between the test
CPU and the host CPU. Apart from this the host CPU is strictly limited to
the gateway functionality, so that tests have no impact on the test results.

Scope For the tests an oscilloscope monitors the Tx pins from all six CANs
and the two CAN buses previously described. So the CAN message (length
of data, acknowledge, interframe space) and message transfer (latency, jitter)
can be exactly measured. The latency is measured by subtracting the time
for the acknowledge delimiter and end of frame space (EOF), before that a
CAN message cannot be processed. A picture of the scope’s output is shown
in figure 5.6.

80

5.2. CAN-CAN GATEWAY COMPARISONS

Network

TTCANCCAN

CCAN

DIU SFR FSM MBox

MBox

CCAN

CCAN

MBox

MBox

CAN−Gateway

Gateway Application

Test Application

Network

Network

Ctr. App.

Network

TTCAN

Figure 5.5: Software structure

Event Detection Loop Additionally the software triggers a signal to mon-
itor the event detection loop, so that the maximum jitter resulting from the
loop can be directly read as described above. The time to execute the event
loop is static as long as no event occurs.

Instruction Execution A second signal is raised during execution of FSM
instructions in case of an event. When executing instructions the event detection
loop time lengthens too. The more instructions are executed, the less is the
influence of the event detection loop to the overall performance. Theoretically

BusyIdle

Jitter

Latency

Figure 5.6: Time behavior of the CAN communication

81

5.2. CAN-CAN GATEWAY COMPARISONS

the maximum performance is possible, when every message buffer has an event
and instructions are permanently executed. So by measuring the instruction
execution time, maximum performance can be calculated from the idle event
loop executing time and instruction execution time.
The time to process instructions (and as such jitter and latency) is independent
of the message length or the CAN bus utilization as the cascade ring bus has
a constant transmission time independent of the message length. Thus the
utilization only depends on the rate of messages.

5.2.4 Implemented Tests

Simple tests for the basic functionality and measurement have been implemented
and more complex ones to reflect the workload of a real gateway. All other
scenarios can be calculated from the following representative tests. Obviously
when a process takes in average half the processors free time, then all results
will have doubled durations.

Immediate Tx after Rx The "Immediate Tx after Rx" test is for measuring
the latency and jitter of a transfer of a message that is received on one CAN
controller and transferred to and transmitted by another CAN. Two FSM
instructions are needed to read the message out of the CAN message RAM,
two to put into and get it from the cascade ring and two to send it on the
second CAN.

SW SFR FSM
Idle event loop 5.2 µs 4.7 µs –
Instruction time 24.7 µs 9.1 µs –
Average latency 28.7 µs 12.1 µs 1.6 µs
Jitter +/- 2.7 µs 2.4 µs 0.0 µs

Table 5.1: Test immediate Tx after Rx

The FSM has no jitter, which is a result of the different algorithms. The latency
of the software solution is high, as the data needs to be copied out of the CAN
and copied into the next. Whereas the SFR supported solution only switches
multiplexers to directly transfer the data onto and from the cascade ring.

Tx Cyclic Sending The "Tx cyclic sending" test is for measuring the accuracy
and jitter of a periodically transmitted message at an interval of 1 ms. Accuracy
and jitter can be calculated by the software triggered pins. There are only two
instructions required to transmit a message. The first one is required to load

82

5.2. CAN-CAN GATEWAY COMPARISONS

the value to transmit the specific message buffer and the second to store the
value in the specific CAN command register.

SW SFR FSM
Idle event loop 5 µs 4.5 µs –
Instruction time 9.3 µs 6.8 µs –
Accuracy 994.1 µs 992.6 µs 996.2 µs
Jitter +/- 4.5 µs 3 µs 3.4 µs

Table 5.2: Tx cyclic sending

The software jitter is almost identical to the hardware jitter, as the software
benefits from the limitation of message buffers to check. The latency and the
shortened period as a result of inaccurate timer readings as mentioned above,
results in an almost exact compliance of the time period.

Tx after Rx Timeout This test is for measuring the accuracy and jitter of
a CAN message which is transmitted as a result of a receive timeout after 3 ms.
It needs a conditional branch instruction which tests for a timeout. Only in
case of a timeout a message transfer takes place and three instructions need to
be executed.

SW SFR FSM
Idle event loop 5.5 µs 5 µs –
Instruction time 26.2 µs 9.3 µs –
Latency 3080 µs 3060 µs 3043.6 µs
Jitter +/- 35.4 µs 35.4 µs 34 µs

Table 5.3: Tx after Rx Timeout

Even though the latency is not given, it can be read out of the accuracy, e.g.
the latency of the SW solutions differs by 20 µs. Compared to the previous
example the latency timings are always longer then the desired period. This
is a result of the different measurements. The time difference in this case is
measured from the end of the last message, instead of the beginning as in the
previous test.

Swap Message A more complex test is the reception of a message and the
swap of each of the four 16-Bit words before transmitting the message again.
The latency of the FSM solution is almost constant over all tests and there is
again no jitter as the instructions are triggered by a received message and not
by the timer.

83

5.2. CAN-CAN GATEWAY COMPARISONS

SW SFR FSM
Idle event loop 5.2 µs 4.7 µs –
Instruction time 39.2 µs 16.7 µs –
Latency 44.3 µs 21.2 µs 1.6 µs
Jitter +/- 3.1 µs 2.4 µs 0 µs

Table 5.4: Swap Message

Split Message Another complex test is receiving and splitting of a message
and the transfer to different CAN message buffers. Again, two instructions are
needed to get or send a message and one to get a message from and onto the
cascade ring, altogether 15 instructions.

SW SFR FSM
Idle event loop 5.2 µs 4.7 µs –
Instruction time 50.2 µs 22.7 µs –
Latency 30.7 µs 18.4 µs 1.8 µs
Jitter +/- 3.2 µs 2.9 µs 0 µs

Table 5.5: Split Message

These results are almost identical to the previous one, as the test has an almost
identical function and uses just a few more instructions.

Code and RAM Sizes The following tables show the code and RAM sizes
for the three solutions, whereby the code necessary for the FSM is only for the
configuration function.

Code sizes RAM sizes
SW SFR FSM SW SFR FSM

Init 1316 2732 516 12 12 12
Event loop 836 2304 0 50 50 0
Instructions 1828 548 0 79 9 0
Sum 3980 5584 516 141 71 12

Table 5.6: Code and RAM sizes (bytes)

High code sizes of the SFR solution are a result of different optimization results.
In addition to the RAM size sums, the configuration RAMs and registers must
be added. With 1024 possible instructions and 32 message buffers, additional
5632 bytes must be calculated.

84

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

5.2.5 Results

The last section describes the implementation of the CAN-CAN gateway
solution providing the gateway functionality partially (SFR) or completely
(FSM) in hardware. Efficiency and the routing capabilities of both solutions
were compared to a gateway completely running in software.
It was shown that a partial hardware support can reduce the demand on CPU
performance, because of the minimized read/write accesses to the peripheral
modules. Latency and jitter are reduced, but the check for received messages
by interrupt handling or polling wastes computing capacity.
Compared to the conventional software solution the FSM based solution has an
almost constant latency and almost no jitter. It is usually more than seventy
times faster, when taking the different clock frequencies in account without
causing any CPU load. Despite this fact, the FSM solution is not very complex
and is still interface compatible to the standard C_CAN.
An enhancement of the (TT)CAN gateway to support further automotive
communication architectures, such as FlexRay or MOST, is only possible with
huge difficulties. The corresponding protocol converters must be integrated
in the cascade ring bus, which was originally implemented to support CAN
communication.

5.3 Multi-Protocol Gateway Implementation

The first step in the implementation of the multi-protocol gateway described
in section 4.1.3 was the definition of the RAM layouts and an instruction set.
After the implementation, the final design is a result of repetitive optimizations
of the finite state machines using gate count and RAM usage values from the
synthesis tools.

5.3.1 RAM Configuration

As described before the configuration is stored in two RAMs, the Instruction
RAM (IRAM) and the Vector RAM (VRAM), whereas the VRAM contains
three partitions for the Communication Controllers (VRAM-CC), the Message
Objects (VRAM-MO) and one to store shared data (VRAM-Data). The figure
5.7 shows the IRAM and the three partitions of the VRAM.

Buffer Configuration In the Vector RAM Message Object Partition, addi-
tional timing information to each message buffer used by the gateway is stored.

85

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCV NTEV

= CC Configuration Valid
= Next Time Event Valid

CT TO DB TX LAST MOV NTEV

= Cyclic Timeout
= Timeout Handling
= Debounce Handling
= Transmit Buffer
= Last configured Buffer
= MO Configuration Valid
= Next Time Event Valid

Vector RAM - Communication Controller Partition (32 Bit)
MO-Vector Next Time Event

Vector RAM - Message Object Partition (32 Bit)

NTEV
CCV

MO-Nr #4..0 Next Time Event
Cycle TimeInstruction Vector

reserved

Vector RAM - Data Partition (32 Bit)

Instruction RAM (16 Bit)

LAST
MOV
NTEV

CT
TO
DB
TX

Figure 5.7: Gateway Vector and Instruction RAM

Generally a buffer can be configured as transmit or receive buffer depending on
the TX bit. As the only timing option for transmit buffers is cyclic sending, the
TX automatically configured the buffer for cyclic transmission. A receive buffer
can additionally be configured to react to single timeouts, periodic timeouts
or to debounce incoming frames. Each of these entries can be temporarily
deactivated by resetting the MOV bit. The possible buffer configurations are
shown in the following table 5.7.

Buffer Configuration MOV TX TO CT DB NTEV
Deactivated 0 - - - - -
Rx Immediate 1 0 0 0 0 0
Tx Periodic 1 1 0 0 0 1
Rx Timeout (single) 1 0 1 0 0 1/0
Rx Timeout (periodic) 1 0 1 1 0 1/0
Rx Debouncing 1 0 0 0 1 0

Table 5.7: Buffer Configuration

5.3.2 Instruction Set

It contains four groups of instructions. The first group contains all instructions
for long jumps and short branches, as well as instructions to signal software
interrupts to the CPU and to set internal markers for jump and branch decisions.

86

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

Two groups are related to load and store operations from and to internal memory
and external communication controller addresses. Beside the normal arithmetic
instructions, two groups were introduced especially for gateway operations.
The block transfer group allows unaligned transfers and comparisons of one or
more 32-Bit values directly on the external memory. Bit Field Operations are
for unaligned copies of bit fields with one or up to 32-Bit. Also one instruction
in this group is used for changing 32-Bit values between different endianess
storage formats. The instruction set and codes are shown in figure 5.8 and in
figure 5.9.

5.3.3 Finite State Machines

Based on the defined RAM layout and functional description, multiple parallel
working FSMs have been implemented as shown in figure 5.10.

Main Message Handler FSM This FSM controls the startup and shutdown
of the Gateway Control Unit. After powering up, the RAMs are automatically
cleared. When finished, the FSM does switch from the "wait on clear ready"
state to the "wait on init" state. While the initialization bit is set, the RAMs
remain configurable. After clearing the init bit the Gateway Control Unit starts
operation and the CPU is limited to only access the VRAM-Data partition in
the "FSM is active" state.

Vector RAM - Communication Controller Partition - FSM The FSM
for the VRAM-CC starts handling receive events or time events, as well as
CPU trigger executions.
Until a new message or time event occurs, the FSM remains in the "idle" state.
When an event happens, it executes a new read cycle through the VRAM-CC
partition. After reading the location of the triggering communication controller
in the "scan VRAM CC" state and a new message or time event is detected,
the wrapper register is read out to find the correct message object in the
"read wrapper" state, otherwise it goes back to the "idle" state. With that
information, the processing can be passed over to the VRAM-MO FSM to
process the message object. Until this is done, the VRAM-CC FSM remains in
the "wait on VRAM MO" state. When the VRAM-MO FSM has finished, the
time information is written back to the VRAM-CC partition in the "write new
values" state. When there are no further groups of message buffers as checked
in the "check next time event" state, the FSM writes back the next time event
and becomes "idle" again, otherwise scanning is continued in the "scan VRAM
CC" state.

87

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
0

N
eg

0
0

0
0

1
1

N
eg

0
0

0
1

0
0

N
eg

0
0

0
1

0
1

…
0

0
0

1
1

0
0

0
0

1
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
0

0
0

1
1

1
P

ol

0
1

0
0

0
0

0
1

0
0

0
1

0
1

0
0

1
0

0
1

0
0

1
1

re
s.

0
1

0
1

0
0

re
s.

0
1

1
0

0
0

re
s.

0
1

1
0

0
1

re
s.

0
1

1
0

1
0

P
ol

0
1

1
0

1
1

0
1

1
1

0
0

1
0

0
0

0
0

1
0

0
0

0
1

1
0

0
0

1
0

1
0

0
1

0
0

1
0

0
1

0
1

1
0

0
1

1
0

1
0

1
0

0
0

1
0

1
0

0
1

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
1

0
0

1
1

x
0

0
0

1
1

x
0

0
1

1
1

x
0

1
0

1
1

x
0

1
1

re
s.

1
1

x
1

0
0

re
s.

W
or

d
B

yt
e

8
B

it
16

 B
it

B
S

E
T

B
C

LR
C

E
N

D
X

T
C

P

A
D

D
I

S
U

B
I

C
M

P
I

A
N

D

B
C

B
A

A
D

D
S

U
B

C
M

P

LD
P

S
T

P
W

O
B

B
T

B
A

LD
I2

3
LD

I3
2

LD
M

S
T

M

JM
P

JM
P

S
E

T
IM

LD
I7

L
o

ad
 /

S
to

re
 In

te
rn

al

S
et

 C
od

e

B
R

A
3

C
A

S
E

JM
P

In
st

ru
ct

io
n

N
O

P
S

X
IN

T
B

R
A

1
B

R
A

2

O
pc

od
e

A
rg

um
en

ts
 #

1
A

rg
um

en
ts

 #
2

F
S

M
, B

ra
n

ch
es

, J
u

m
p

, C
as

e

A
rg

um
en

ts
 #

3
A

rg
um

en
ts

 #
4

R
D

R
2

re
s.

A
dd

re
ss

 #
19

..6
A

dd
r(

5.
.0

)
A

dd
re

ss
 #

19
..6

N
um

be
r

of
 N

O
P

 c
yc

le
s

-
1

re
s.

R
1

R
D

Im
m

ed
ia

te
 #

6.
.0

re
s.

R
D

re
s.

R
el

. A
dd

re
ss

 (
6.

.1
)

L
o

ad
 /

S
to

re
 E

xt
er

n
al

B
F

C
M

P

A
dd

re
ss

 #
15

..0
C

as
e

de
pt

h
-

1

Im
m

ed
ia

te
 #

6.
.0

R
D

A
dd

r(
4.

.0
)

R
D

R
1

B
lo

ck
 T

ra
n

sf
er

A
ri

th
m

et
ic

R
D

R
1

R
2

R
1

E
nd

.C
od

e
R

2
R

D

R
1

R
2

O
ffs

et R
D

R
1

B
it

 F
ie

ld
 O

p
er

at
io

n
s

O
R

X
O

R
LS

LI
LS

R
I

R
D

R
1

re
s.

R
1

re
s.

R
D

re
s.

R
1

Im
m

ed
ia

te
 #

3.
.0

R
D

R
D

Im
m

ed
ia

te
 #

3.
.0

Im
m

ed
ia

te
 #

6.
.0

R
1

R
1

R
1

R
1

R
D re

s.

R
2

R
1

R
1

R
2

B
ra

. C
od

. 1

R
D

A
dd

re
ss

 #
5.

.0

re
s.

Jm
p.

 C
od

e
R

1
B

ra
. C

od
. 3

R
el

. A
dd

re
ss

 (
6.

.1
)

re
s.

R
1

R
el

. A
dd

re
ss

 (
6.

.1
)

B
ra

. C
od

. 2

re
s.

A
dd

re
ss

 #
19

..6
A

dd
re

ss
 #

19
..5

A
dd

re
ss

 #
19

..6
re

s.

A
dd

re
ss

 #
5.

.0
A

dd
re

ss
 #

5.
.0

O
ffs

et

A
dd

re
ss

 #
5.

.0
A

dd
re

ss
 #

5.
.0

A
dd

r(
5.

.0
)

B
. W

dt
h

+
 1

B
. W

dt
h

+
 1

R
2

R
D

R
D

S
hi

ft-
P

os
.

S
hi

ft-
P

os
.

R
D

O
ffs

et
 O

ut
pu

t
B

it
W

id
th

 +
 1

O
ffs

et
 In

pu
t

3
2

C
om

pa
re

 V
al

ue

re
s.

Im
m

ed
ia

te
 #

22
..7

A
dd

re
ss

 #
19

..6
re

s.

In
te

rr
up

t N
um

be
r

1
0

3
7

6
2

5
4

re
s.

A
dd

re
ss

 #
15

..0
A

dd
r.

 #
19

..1
6

O
ffs

et
 In

pu
t

Im
m

ed
ia

te
 #

22
..7

Im
m

ed
ia

te
 #

31
..2

3
re

s.
re

s.
A

dd
re

ss
 #

19
..6

re
s.

A
dd

re
ss

 #
19

..6

W
or

d
C

ou
nt

 +
 1

1

Im
m

ed
ia

te
 #

6.
.0

O
ffs

et
 In

pu
t

B
it

W
id

th
 +

 1
O

ffs
et

 O
ut

pu
t

O
ffs

et

R
2

0

R
1

A
dd

re
ss

 #
15

..0
A

dd
r.

 #
19

..1
6

O
ffs

et
 In

pu
t

W
or

d
C

ou
nt

 +
 1

Figure 5.8: Gateway Instruction Set

88

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

0 0 0 >= GE V = 0, Z = dont care 0 0 0 0 END Instruction decoder Ready
0 0 1 < LT V = 1, Z = dont care 0 0 0 1 RIJ Register Indirect Jump
0 1 0 <> NE V = dont care, Z = 0 0 0 1 0 TO Jump if timeout
0 1 1 = EQ V = dont care, Z = 1 0 0 1 1 NTO Jump if not timeout
1 0 0 > GT V or Z = 0 0 1 0 0 BO Jump if bouncing
1 0 1 <= LE V or Z = 1 0 1 0 1 NBO Jump if not bouncing
others AL unconditional branch 1 0 0 0 NIM1 Jump if IM1 not set

1 0 0 1 NIM2 Jump if IM2 not set
1 0 1 0 NIM3 Jump if IM3 not set

0 0 1 branch if timeout 1 0 1 1 NIM4 Jump if IM4 not set
0 1 0 branch if not timeout 1 1 0 0 IM1 Jump if IM1 set
0 1 1 branch if bouncing 1 1 0 1 IM2 Jump if IM2 set
1 0 0 branch if not bouncing 1 1 1 0 IM3 Jump if IM3 set
others unconditional branch 1 1 1 1 IM4 Jump if IM4 set

others AL unconditional jump

0 0 0 branch if IM1 not set
0 0 1 branch if IM2 not set 0 0 0 IM1 Set IM1
0 1 0 branch if IM3 not set 0 0 1 IM2 Set IM2
0 1 1 branch if IM4 not set 0 1 0 IM3 Set IM3
1 0 0 branch if IM1 set 0 1 1 IM4 Set IM4
1 0 1 branch if IM2 set 1 0 0 TO Set TO
1 1 0 branch if IM3 set 1 0 1 BO Set BO
1 1 1 branch if IM4 set others unused

0 x 0 1
0 x 1 0
0 x 1 1
1 x 0 0
others Endianess not changed

Little Endian -> Big Endian (0xD4C3B2A1 --> 0xA1B2C3D4)
Little Endian -> Middle Endian I (0xD4C3B2A1 --> 0xB2A1D4C3)
Little Endian -> Middle Endian II (0xD4C3B2A1 --> 0xC3D4A1B2)
Bitwise rearrangement (0xD4C3B2A1 --> 0x854DC32B)

Jump CodesBranch Codes 1

Set Code

Endianess Codes

Branch Codes 2

NBO

Branch Codes 3

AL

TO

NTO

BO

IM4

NIM1

NIM2

NIM3

NIM4

IM1

IM2

IM3

BE
ME1
ME2
BR

Figure 5.9: Gateway Instruction Set Codes

For the interaction with the software, the CPU is able to execute functions in
the IRAM. Therefore the VRAM-CC FSM can directly start the IRAM FSM
and wait until the execution is finished in the "wait on IFSM" state.

Vector RAM - Message Object Partition - FSM Finally the VRAM-
MO FSM works similar to the VRAM-CC FSM, except it works on the VRAM-
MO partition.
Starting in the "idle" state, the FSM is triggered from the VRAM-CC FSM to
read a group of message objects. This happens in the "scan VRAM MO" state.
When a relevant message object is found, additional information is read in
the "read second entry" state. Before the execution of the event handler using

89

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

V
R

A
M

−
C

C
V

R
A

M
−

M
O

IR
A

M

M
ai

n

id
le

ch
ec

k
ne

xt
tim

e
ev

en
t

w
rit

e
ne

w
va

lu
es

IF
S

M
w

ai
t o

n

w
ai

t o
n

V
R

A
M

M
O

re
ad

w
ra

pp
er

sc
an

V
R

A
M

C
C

F
S

M
is

 a
ct

iv
e

cl
ea

r
re

ad
y

w
ai

t o
n

w
ai

t o
n

IF
S

M

id
le

re
ad

an
d

ex
ec

ut
e

re
ad

y

w
rit

e
ne

w
va

lu
es

re
ad

se
co

nd
en

tr
y

sc
an

V
R

A
M

M
O

ch
ec

k
ne

xt
tim

e
ev

en
t

w
ai

t o
n

IF
S

M

id
le

Figure 5.10: Finite State Machines

90

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

the IRAM FSM, the next time event for the message object is updated in the
"write new values" state. The FSM remains in the state "wait on IFSM" until
the IRAM FSM has finished execution. When no further message buffers are
in the group as checked in the "check next time event" state, the FSM writes
back the next time event and becomes "idle" again.

Instruction RAM - FSM Where the VRAM FSMs handle event detections,
the IRAM FSM handles events by executing functions contained in the IRAM.
The IRAM FSM remains "idle" until it is triggered by one of the previous FSMs.
Then execution is started in the "read and execute" state, where it remains
until a special instruction signals the end of the function execution. Afterwards
it switches over to the "ready" state and optionally waits there for on a signal
of the VRAM FSMs, before it becomes "idle" again.

Vector RAM Arbiter The Vector RAM is accessible by the CPU, the
VRAM FSMs and the IRAM FSM. Therefore an arbitration is necessary for
the access to the Vector RAM. This task is done by the VRAM Arbiter as
shown in figure 5.11.

clear
VRAM

idle

read
VRAM

read
IRAM

read
CPU

Figure 5.11: VRAM Arbiter

As the VRAM Arbiter has direct access to the VRAM, the RAM is cleared by
the FSM in the "clear VRAM" state. It then remains in the "idle" state.
Depending on the origin of an IRAM access, the Arbiter switches to the states
"read CPU", "read VRAM FSM", "read IRAM FSM" until the access is finished.
Prioritization is implemented to fasten up the data transfers from and to the
CPU, then from and to the VRAM FSMs and finally from the IRAM FSM.

91

5.3. MULTI-PROTOCOL GATEWAY IMPLEMENTATION

5.3.4 Gate Count

Each module of the gateway has been synthesized separately for an ASIC and
for a FPGA. The FPGA synthesis was done for the Altera Stratix II EP2S60
using Quartus II Version 5.1. For the ASIC synthesis Synopsys Design Compiler
v2003.03 was used for a 0.13 µm fabrication process. 50 MHz was used as
target frequency for all synthesis.
Regarding the communication controllers multiple synthesis with different
message buffer count and before and after the interface modification for the
gateway were done.
The table 5.8 shows the results, whereas the exact values for the gate counts
may vary with each synthesis and with the used optimization settings.

ASIC (kGates) FPGA (ALUTs)
Module Configuration pre GW post GW pre GW post GW
C_CAN 32 MOs 15 16 2100 2300
C_CAN 64 MOs 19 20 2660 2860
CAN Wr. 3x32xCAN-MOs 2 300
CAN Wr. 4x64xCAN-MOs 6 860
E-Ray 128 MOs 105 115 14700 16200
E-Ray Wr. 1x128xFR-MOs 2 270
GCU 16 2450

Table 5.8: Gate count of CCs, Wrapper and Gateway Control Unit

The table shows, that a gateway with three CAN controllers and 32 message
buffers each and one E-Ray controller with 128 message buffers has a gate
count of 183000 ASIC gates or 26120 FPGA ALUTs. The same gateway with
four CAN controllers and 64 message buffers each would have a gate count of
219000 ASIC gates or 31220 FPGA ALUTs.

92

5.4. TOOLCHAIN OPTIMIZATION RESULTS

5.4 Toolchain Optimization Results

This section shows the results of the toolchain under different optimization
levels and configurations.

5.4.1 Optimization Levels

As mentioned in section 4.2.7 the assembler instruction simulator can be used
to test each transaction for a specified timing- and trigger-condition for each
function in the Instruction RAM. The generated statistics about execution
time and read memory can be used to compare different optimization levels.
Currently three optimization levels are implemented: Runtime, balanced and
memory optimized. The results are shown in figure 5.12.

sp
ee

d
op

tim
iz

ed
ba

la
nc

ed
m

em
or

y
op

tim
iz

ed

m
em

or
y

op
tim

iz
ed

ba
la

nc
ed

sp
ee

d
op

tim
iz

ed

m
em

or
y

op
tim

iz
ed

ba
la

nc
ed

sp
ee

d
op

tim
iz

ed

us
ag

e
m

em
or

y

ru
nt

im
e

(b
es

t c
as

e)

ru
nt

im
e

(w
or

st
 c

as
e)

40%

60%

80%

100%

120%

20%

0%

Figure 5.12: Runtime and Memory Optimization

5.4.2 Code Size and Execution Time

A configuration was implemented to demonstrate the available trigger- and
timing-conditions. The Gateway Control Unit was synthesized at 50 MHz on
an Altera Stratix II EP2S60 FPGA. One FlexRay and three CAN controllers
are part of the gateway as described in section 5.1.3.

93

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

Instruction Count and Code Size Figure 5.13 shows the number of in-
structions and the corresponding code sizes for each mapping. The results show
an average number of 15 instructions and an average code size of 50 bytes.

in
st

ru
ct

io
ns

im
m

ed
ia

te

on
−

ch
an

ge

tim
eo

ut

de
bo

un
ce

cy
cl

ic
−

se
nd

in
g

30

25

20

15

10

5

0

90

75

60

45

30

15

0

co
de

 s
iz

e
[b

yt
e]

Figure 5.13: Instruction Count and Code Size

Execution Times The best and worst case execution times of the Gateway
Unit are shown in figure 5.14. Additionally the FSM generates an overhead of
0.4 µs for the preparation and post processing of the instruction execution.

5.5 Verification Environment Implementation

A test generator has been implemented as an enhancement to the existing
gateway configuration toolchain. This allows the usage of FIBEX files as a
common source of information for both, the configuration of the gateway and
the test environment.

Validity of Data One aspect of these tests is the validity of data. This
includes that source and target frames and the signals therein (optionally
transformed by the gateway mappings) contain correct data. These checks are
required independent of the network and timing specifications.

94

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

0

0.4

0.8

1.2

1.6

2.0

2.4120

100

80

60

40

20

0

cl
oc

k
cy

cl
es

ex
ec

ut
io

n
tim

e
at

 5
0

M
H

z
[u

s]

im
m

ed
ia

te

on
−

ch
an

ge

tim
eo

ut

de
bo

un
ce

cy
cl

ic
−

se
nd

in
g

Figure 5.14: Execution time (best and worst case)

Timing Behavior Another aspect is to measure and test whether these
mappings are done inside the specified FIBEX time constraints, e.g. timeouts,
that are defined as attributes of frame or signal mappings. Maximum latency
for the immediate reaction is defined in the specification of the gateway. They
are provided using a manufacturer extension to the FIBEX gateway object.
Cyclic sending or message debounce times can be defined for target frames as
attributes of FIBEX frame triggerings. Both aspects are checked within each
test case.

Complexity Regarding the time behavior, testing even a single frame map-
ping can be difficult, if all the previously named time attributes are defined. In
the worst case a target frame received by the test environment cannot clearly
be assigned to a cyclic sending, timeout or regular mapping. An assignment
is only possible, when the time windows are known in which certain trigger
conditions and therefore target frames are expected.

Main Focus Measuring and checking the time behavior is necessary especially
in event-triggered networks and is in the focus of the following test methods.
Time-triggered networks have static frame schedules instead of cyclic sending

95

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

and do not use message debounce configurations. Besides measuring the frame
schedule, only the mappings and timeout handling have to be checked.

5.5.1 Test Description

A test run is split into two phases. The first phase synchronizes the test envi-
ronment to the gateway internal timers and allows simple time measurements
and checks. This is called the initial test phase. After the timers of the test
environment are synchronized to the gateway the main test phase starts.

Cyclic Sending In the initial test phase four tests are processed on every
relevant mapping. The first test stage measures the time windows in which
cyclic sending frames are expected (figure 5.15). As preparation the test stage
waits until the possibly configured timeout conditions of all mappings are met.
The only frames transmitted by the gateway are now the cyclic sending frames.
They can be measured and checked against limitations. The test environment
starts for each of these frames two timers with the same period. Their phase
difference defines time windows in which to expect cyclic sending frames. The
frame reception times (with tolerances) are specified in the cyclic-timing element
of the FIBEX file. Calibration of the time windows and identification of all
frames is a necessary preparation for the next test stages.

ct
dst

src

Figure 5.15: Cyclic Sending: Cycle Time

Latency The second test stage checks the latency of event controlled frame
forwarding. A repeated source frame with interval duration between debounce
time and timeout time (figure 5.16) stimulates the gateway. The trigger
condition attribute of the configured mapping changes the behavior of frame
receptions. When the trigger condition is "immediate", the target frames are
sent out immediately. If the trigger condition is "on-change", then the target
frames are sent only when source signals or frames have changed, additionally
to cyclic sending frames. When the trigger condition is "none", then the target
frames are prepared for cyclic transmission. The test stage checks the data and

96

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

measures the latency between source frame and target frames. The measured
latencies are used to configure timers on each mapping, so that in case of an
event controlled frame forwarding, the forwarded frames can be identified in
preparation for the next test stages.

ct
im

src

dst

changechange

no changeno change

Figure 5.16: Event Controlled Sending: Forwarding Latency

Timeout Timeout measurement is the third test stage (figure 5.17). This
is done by stimulating the gateway with periodic source frames with interval
duration longer than the maximum timeout time. The gateway reacts to
the received source frames as specified by the mappings and their trigger
condition. The long interval between the source frames causes the execution of
the mapping’s timeout reaction. The reaction is to send a target frame with
the newest signals or with default values. In either case the delay between
the source frame and the target frame is measured and compared with the
specification and tolerances defined in the FIBEX file. Two timers for each
mapping are adjusted for the expected timeout frame window, similar as done
in the previous test stages.

Debouncing The final test stage of the initial test phase is a check of the
debounce time (figure 5.18), which is defined in FIBEX as attribute of the target
frame triggering. The test environment provides a stimulus with alternating
interval times. One source frame is sent and the gateway reacts with an
immediate processing of the relevant mappings. The next source frame follows
earlier than the debounce time and the gateway must not react immediately
to the second frame. As there is no frame sent, the debounce time cannot
be measured directly. It is only possible to check that no target frames are
sent out in the specified debounce time window. A timer is used to define a
debounce time window for each target frame. A specific target frame may not
be transmitted inside its debounce window with the possible exception that
cyclic sending may still trigger the transmission of this frame.

97

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

ct
im
to

src

dst

changechange

timeout timeout

Figure 5.17: Timeout

db

ct
im
to

src

dst

bounce bouncechange

timeouttimeout

change

Figure 5.18: Debouncing

Post-Processing After running these test stages for each mapping separately,
the time windows in which the gateway’s reaction can be expected are known.
This calibration allows concurrent observation and checking in parallel to further
testing in the main test phase.

5.5.2 Test Scenarios

In the initial test phase all tests were run with minimal bus load. In the
main test phase test cases provide stimuli to check the gateway’s behavior in
several bus load situations with different interactions between the configured
mappings. This can be done by connecting actual ECUs or by connecting
emulated network nodes as part of a remaining bus simulation.

98

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

Complex Scenario One test scenario uses configuration data from an actual
implementation. For this scenario the user has to provide load information to
be used as stimuli. This information should be integrated into the FIBEX files,
as the common database. This can either be done by setting the cyclic sending
attributes of frames sent to the gateway or by a manufacturer extension to
the FIBEX standard, which defines the frame rates without using the cyclic
sending attribute.

Bus Utilization The second test scenario increases the bus load up to the
desired bus utilization. This is done by increasing specific source frame rates,
which can grow up to worst case scenarios or burst situations. The results from
this test show how latency and jitter is related to the bus utilization. This can
also show the limits within the gateway keeps the specified tolerances.

Further Scenarios Other scenarios are easy to implement by introducing
new stimuli or load environments. The measurement and check environment
always stays the same.

5.5.3 Implementation Requirements

A programmable hardware environment is required to implement the described
test methods. This environment should allow time stamping of all frames
received or transmitted by the gateway using a common time base. The test
software is partitioned in a way that most of the code is kept static and only
a small part depends on the gateway’s configuration. This part is generated
automatically by the toolchain. Two possible hardware platforms have been
evaluated.

Test System One environment is a high performance processor with enough
communication controllers to connect to all required networks. It needs enough
memory to store log files or needs an interface to transfer the log files to external
storage, e.g. via Ethernet. The platform should allow the software direct
access to the communication controllers. Advantageous would be timestamps
generated in hardware.

Remaining Bus Simulation An easier way is using a tool for remaining bus
simulations. Using network interfaces such an environment can be connected to
the physical networks and allows the programming of simulated ECUs, usually
in a high-level scripting language. Currently only few such tools are available

99

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

which support CAN, FlexRay and further network types and that also have a
synchronized timer for time stamping frames on these networks.

Vector CANoe The implemented toolchain currently generates test case
output for using the remaining bus simulation features of Vector CANoe. At
this time network support is implemented for CAN and FlexRay only.
This tool allows programming of ECUs in a C-like language called CAPL, which
stands for Communication Access Programming Language. CANoe also has
a sophisticated test management system, which allows the description of test
cases without the need for simulated ECUs. This is done in CAPL using an
extended function set based on the test service library.
Additionally XML test specification files can be used to provide a simpler and
more restricted description of test cases. A Document Type Definition (DTD)
for the test specification file is provided for this.
The CANdb output filter in the toolchain can be used to generate CANdb
databases for the required description of CAN networks in CANoe.

CAPL Generation Several CAPL templates are combined to generate com-
plete test cases. There are templates for source and target frame handling and
for the mapping functions between them. Currently the generated output has
the initial test phase implemented and provides different stimuli, while moni-
toring the gateway’s behavior in parallel. After a specified time the monitored
data is evaluated and a direct success or failure for every test case is generated
along with the measured timings for each mapping.

5.5.4 Results

The described initial test phase has been implemented in a test case generator
based on the already existing FIBEX gateway configuration toolchain as shown
in figure 5.19. As the focus was to measure event-triggered networks, the
generator currently supports CAN networks only.

Proof of Concept As a proof of concept, the multi-protocol gateway con-
nected to two CAN channels has been used as device under test (DUT) to
demonstrate the gateway verification environment. The first channel provides
input to the gateway. One mapping was configured to send on change, debounce
frames arriving earlier than 100 ms, timeout at 2 s, and a cyclic sending with
an interval of 1 s. The second channel was used as target for this mapping.

100

5.5. VERIFICATION ENVIRONMENT IMPLEMENTATION

DBC
Test

Parameter

Testcase
Generation

Config.
Toolchain

Synthesis
Toolchain

Log
Analyzer

CAPL /
XML

Test
Hardware

PC with
CANoe

Logs +
Statistics

Device
under
Test

RTL
Code

FIBEX /

Figure 5.19: CANoe Test Environment

Execution Time The complete test has been executed on the DUT. 10
measurements per test and per mapping were done in the initial test phase to
calibrate the test environment. This takes 10 s for the cyclic sending test. The
immediate test with alternating changed and unchanged data takes 20 s, the
timeout test takes 40 s, and the debounce test takes 2.5 s. A cumulated time
of 72.5 s is required to process the initial test phase.

Minimum time Average time Maximum time
Cycle time 1000.0058 ms 1000.0076 ms 1000.0078 ms
Immediate 0.1287 ms 0.1287 ms 0.1290 ms
Timeout 1999.9024 ms 2000.0115 ms 2000.1262 ms

Table 5.9: Gateway measurement results

All timings are within the tolerances specified in the FIBEX configuration. The
initial tests show no significant latency and jitter created by the device under
test with the provided timer resolutions as shown in table 5.9. Most of the
immediate transmission time of 0.1287 ms is introduced by the transmission
time of the CAN frame, which itself is already longer than 125 µs.

Main Test Scenario A simple load test was created manually. It sends
arbitrary frames with randomized payload in a specified interval. The current
DUT shows no impact on latency and jitter times introduced by high bus loads.
Using more complex configurations or different gateways will probably lead to
other results.

101

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

5.5.5 Future Improvements

Extrapolating from the time of the complete example test run, testing a gateway
with several hundred frames and several thousand mappings may take a very
long time. Further optimizations, e.g. more parallelization and less initial
measurements, are necessary to reduce the execution time.

Error Recovery The initial test phase calibrates the test environment to
the gateway, whereas the main test phase takes measurements under different
load scenarios. Currently errors may falsify all following test cases till the end
of the complete test run. This could be prevented when the test environment
interrupts the test run and brings the gateway and test environment back to a
known state if an error is detected.

More Scenarios In the main test phase several load scenarios are missing.
The target should be to create and execute further load tests. Special focus
lies in scenarios that reflect realistic environments.

Comparison of Different Gateways As FIBEX is a relatively new stan-
dard, most gateway configurations are not yet available in this format, but in
specification documents of other form. These specifications must be converted
to FIBEX format to be able to execute authentic test scenarios. These gateway
architectures and implementations can then be tested and compared with each
other, especially regarding latency and jitter times.

Further Networks Support for further networks needs to be implemented.
Adding FlexRay connectivity will be the next step. LIN and MOST networks
could follow, as these are used by many gateway implementations.

5.6 Gateway Evaluation in OEM Environ-
ments

Different OEM environments have been evaluated for the use of the multi-
protocol gateway. The main focus beside the general network utilization was
the RAM usage and GCU utilization of the gateway. As most OEMs provide
the specification of their networks in different formats and not necessarily in
FIBEX or DBC format, the results were calculated based on the average code
sizes and execution times of similar configurations in the testbench.

102

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

5.6.1 Vector RAM Usage Estimation

The RAM usage estimation is based on several estimated parameters. One
limitation is that the current gateway implementation only allows the controllers
of one type to have the same number of message buffers. Using these parameters,
the following formula allows to calculate the Vector RAM usage per controller
type. For the complete gateway, these results must be summarized across all
controller types (multiple CAN controllers or FlexRay controllers).
In the following variables the following naming scheme is used. Variables with
n... stand for a number or count. A rate is marked with r.... And a percentage
or part is named as p....
The correct number of message buffers (nMB) must be greater than the number
of all receive and transmit messages (nRX and nTX) divided by the number of
controllers (nCC) under a balanced distribution of message buffers:

nMB ≥
nRX + nTX

nCC

As one 32-Bit entry in the VRAM-CC partition per 32 message buffers is
necessary, the RAM usage for this partition can be calculated as:

VCC = 4 Byte · nCC · nMB32

Each receive and each cyclic transmit message buffer used by the gateway
requires two 32-Bit entries in the VRAM-MO partition. The complete number
of cyclic transmit message buffer can be calculated based on the percentage of
cyclic timing messages over all transmit messages (pCT). Then the following
formula calculates the VRAM-MO partition usage:

VMO = 4 Byte · 2 · (nRX + nTX · pCT)

Four 32-Bit entries in the VRAM-Data partition store constants for loading,
storing, transmitting and a combination of storing and transmitting of a message
buffer. Therefore the VRAM-Data partition usage (VData) is always constant:

VDATA = 4 Byte · 4

To calculate the Vector RAM size in byte, the previous number of 32-Bit entries
in the VRAM partitions must be summarized:

V = VCC + VMO + VDATA

These formulas must be repeated for each controller type to calculate the
complete VRAM usage.

103

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

5.6.2 Instruction RAM Usage Estimation

The calculation of the 16-Bit wide instruction RAM usage is based on several
more estimations about the gateways configuration. As the input and output
buffers of the C_CAN and E-Ray communication controllers are very similar,
the following formulas applies to both types of controllers.
The average number of instructions per signal copy (ISgCp) is calculated based on
three classes of signal copy operations. The first class contains copy operations
within 32-Bit boundaries and of less than 32-Bit (ncp1). The second class
contains copy operations within 32-Bit boundaries, but with at least 32-Bit
signals (ncp2). And the third class contains copy operations across 32-Bit
boundaries (ncp3). The average number of instructions per signal copy (ISgCp)
can then be calculated as follows:

ISgCp = 2 Byte · (8 · ncp1 + 4 · ncp2 + 16 · ncp3)

If an estimated percentage of target frames should only be sent on change
(pTxOnChg), a second execution path for the comparison must be generated
parallel to the signal copy path. This second path is usually four instructions
longer:

ISgCpCmp = 2 · ISgCp + 2 Byte · 4 · pTxOnChg

Before the signal copy operations can be executed at least the source message
buffers must be loaded. The target message buffer must only be loaded when it
is partially overwritten. After the copy operations, the target message buffers
must be stored or transmitted. To calculate the number of load, store and
transmit operations (ILdStTx), which usually require eight instructions each,
the average number of transmit messages per receive message must be known
(nTxPerRx) as well as the percentage of partially overwritten messages thereof
(pPartTxLd).

ILdStTx = 2 Byte · 8 · nTxPerRx · (1 + pPartTxLd)

Together with some leading and trailing instructions, the complete number of
instructions to forward received frames (IFrwd) can be calculated based on the
average number of signals per message (pSgPerMsg):

IFrwd = nRX · (8 + ILdStTx + pSgPerMsg · ISgCpCmp + 1)

The amount of configured timeout handling per receive message (pRxTo) allows
the calculation of timeout handling instructions (IRxToHndl):

IRxToHndl = 2 Byte · 10 · nRX · pRxTo

104

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

The number of cyclic sending instructions (ITxCtHndl) can be calculated based
on the average number of cyclic sending configurations per transmit message
(nCT):

ITxCtHndl = 2 Byte · 9 · nCT

Now the instruction RAM usage can be calculated as:

I = nRX · (IFrwd + IRxToHndl) + nTX · ITxCtHndl

5.6.3 GCU Utilization Estimation

Based on the CAN frame format described in section 2.2 the following formula
can be derived. It calculates the bit length of a standard CAN frame (l) based
on the payload (lpayload):

l = 47 + lpayload ∗ 8 +
(

47 + lpayload ∗ 8− 13− 5
4 + 1

)
/2

The calculation of the Gateway Control Unit utilization makes a categorization
of the mapping types necessary:

• cyclic sending

• receiving and partial forwarding

• receiving and complete forwarding

• send-on-change with no change

• send-on-change with partial forwarding

• send-on-change with complete forwarding

After calculating the rates of messages for every of these mappings, the GCU
utilization can be calculated based on the number of instructions and the
frequency the GCU is operating at.
Every mapping containing a cycle time (tct) must be included in the calculation
of cyclic transmitted frames per second (rfps_ct):

rfps_ct(i) = 1000ms
tct(i)

105

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

Additionally to cyclic sending frames, a specified amount is send on-change
(psoc). This allows the calculation of frames per second over both transmit
types:

rfps(i) = rfps_ct(i) · (1 + psoc)

Using these formula and the knowledge of the gateway’s configuration, the
following categories can be summarized:

rgw_tx = ∑
∀i rfps(i) if frame is send by the gateway

rgw_rx = ∑
∀j rfps(j) if frame is received by the gateway

rno_gw = ∑
∀k rfps(k) if frame is not relevant for the gateway

The sum over all cyclic transmitted frames per second is:
rct_tx =

∑
∀i
rfps_ct(i)

Cyclic received frames, which are partially or completely forwarded, can be
summarized as follows:

rct_rx_p(i) = ∑
∀i rfps(i) if frame is received cyclic and part. forw.

rct_rx_c(i) = ∑
∀i rfps(i) if frame is received cyclic and compl. forw.

Frames additionally forwarded on change can also be summarized in three
categories:

nsoc_n = ∑
∀i

1000ms
tct(i) on no change

nsoc_p = ∑
∀i psoc · 1000ms

tct(i) on partially forward
nsoc_c = ∑

∀i psoc · 1000ms
tct(i) on completely forward

Now as the frame rates of each type of mapping are known, the number
of instructions for each of these mappings as shown in table 5.10 can be
multiplied to get the number of instructions per second. For this calculation
the average number of signals per message (nSgPerMsg), the average number
of transmit messages per receive message (nTxPerRx) and the average message
length (nAvgLen) must be estimated. The utilization of the Gateway Control
Unit (UGW) is the number of instruction per second (nips) divided by the
frequency the Gateway Unit (fGW) is running:

UGW = nips
fGW

The frame rates can also be used to calculate the network utilization UNet
based on its bitrate (s):

UNet = 1
s
·
∑
∀i
s · rfps(i)

106

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

se
nd

re
ce
iv
e

re
ce
iv
e

se
nd

on
ch
ng

.
se
nd

on
ch
ng

.
se
nd

on
ch
ng

.
cy
cl
ic

pa
rt
ia
lf
rw

d.
co
m
pl
et
e
frw

d.
no

ch
an

ge
pa

rt
ia
lf
w
rd
.

co
m
pl
et
e
fw

rd
.

r c
t_
tx

r c
t_
r
x
_
p

r c
t_
r
x
_
c

n
so
c_
n

n
so
c_
p

n
so
c_
c

pr
e/
po

st
21

21
21

21
21

21
pr
oc
es
sin

g
so
ur
ce

bu
ffe

r
0

12
12

12
12

12
lo
ad

ta
rg
et

bu
ffe

r
0

12
*n
T
x
P
er
R
x

0
12
*n
T
x
P
er
R
x

12
*n
T
x
P
er
R
x

12
*n
T
x
P
er
R
x

lo
ad

co
m
pa

re
0

0
0

19
*n
S
g
P
er
M
sg

2.
5*
n
S
g
P
er
M
sg

(7
.5
+
3*
n
A
v
g
L
en
/8
)

*n
T
x
P
er
R
x

co
py

0
14
*n
S
g
P
er
M
sg

(1
0+

3*
n
A
v
g
L
en
/4
)

0
7*
n
S
g
P
er
M
sg

(5
+
3*
n
A
v
g
L
en
/8
)

*n
T
x
P
er
R
x

*n
T
x
P
er
R
x

ta
rg
et

bu
ffe

r
12

12
*n
T
x
P
er
R
x

12
*n
T
x
P
er
R
x

0
12
*n
T
x
P
er
R
x

12
*n
T
x
P
er
R
x

st
or
e+

tr
an

sm
it

Ta
bl
e
5.
10
:
In
st
ru
ct
io
ns

pe
r
M
ap

pi
ng

C
at
eg
or
y

107

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

5.6.4 Routing Latency

Maximum routing latency occurs, when the currently processed mapping is
configured to have the maximum number of transmit messages per receive
message (max (nTxPerRx)) and the maximum number of signals per message
(max (nSgPerMsg)). If the number of instructions (max (ni))to handle this worst
case routing is divided by the frequency the Gateway Control Unit (fGW) is
enabled, then the maximum routing latency is the result:

tMaxRoutLat = max(ni)
fGW

5.6.5 Worst Case Execution Time

Worst case execution time (WCET) is the time to handle a situation where all
possible events on all interfaces (nCC) happen at the same time and require
the longest time to process them. For the receive events, the maximum routing
latency is already given. For the time events, the maximum processing time
can be calculated based on the frequency of the gateway control unit (fGW)
and the number of instructions required to send a cyclic message (ITxCtHdnl).
Therefore the worst case execution time (tWCET) can be calculated as follows:

tWCET = nCC ·
(
tMaxRoutLat +

ITxCtHndl
fGW

)

5.6.6 Evaluation of a High-Class Automotive Network

The first OEM configuration was provided for a high-class vehicle. Its network
transfers about 3400 periodic messages per second across four CAN channels
(Body CAN, Chassis CAN, Diagnostic CAN and Impact CAN) as seen in table
5.11. A Body CAN controls most of the indoor functions, such as seat and
door/window control. Tire sensors (pressure and RPM) and further control
functions regarding the chassis movements are connected to the Chassis CAN.
The Impact CAN handles all safety relevant functions, e.g. airbag, acceleration
sensors. In maintenance the Diagnostic CAN gives central access to monitor
the other CANs and control most ECUs.

Gateway Tasks As the table 5.11 shows, one of the main tasks of the
gateway is to transfer frames between the Body CAN and the Chassis CAN.
While in maintenance most messages are also routed to the Diagnose CAN.
The following results in table 5.12 and table 5.13 are calculated including these
diagnostic messages.

108

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

Body Chassis Diagnostics Impact sum unit
baud rate 125 500 500 500 1625 kBit/s
GW Tx cyclic 175 156 899 606 1836 frm/s
GW Rx cyclic 370 1068 5 110 1553 frm/s
GW Tx sporadic 59 37 107 8 211 frm/s
GW Rx sporadic 80 58 98 9 245 frm/s

Table 5.11: Frame rates of a High-Class Car

RAM Usage The gateway has to handle 1552 messages per second and
transmits 1836 periodic messages per second in addition to sporadic messages.
As an average of 85 message buffers per CAN controller are required, all four
CAN controllers nCC = 4 have nMB = 128 message buffers. pRxTo = 10% of
the nRX = 168 receive messages are configured to have timeouts. pCT = 87% of
the nTX = 172 transmit messages are configured for cyclic sending in addition
to sporadic transmissions. The copy operations have a 40% : 40% : 20%
distribution across the four copy classes (ncp1, ncp2, ncp3). Only a few of these
copy operations must be duplicated for send on change pTxOnChg = 23%. The
average number of signals per frame is nSgPerMsg = 4 and about two new
messages are generated on receive nTxPerRx = 2, whereof pPartTxLd = 40% are
only partially overwritten.

GCU Utilization As average message length the following assumption of
nAvgLen = 6 was made.

Vector RAM 2.6 kByte
Instruction RAM 27.2 kByte

Table 5.12: RAM Usage of a High-Class Car

System Clock 20 MHz 32 MHz 50 MHz
Max. Routing Latency 24.8 µs 15.4 µs 10.0 µs
Theoretical WCET 104.0 µs 65.0 µs 41.6 µs
Total GCU Load 1.7% 1.1% 0.7%

Table 5.13: GCU Utilization of a High-Class Car

5.6.7 Evaluation of a Mid-Class Automotive Network

The second OEM configuration is provided for a medium-class vehicle. Its
network does not have less messages than the high-class vehicle, mainly be-
cause of more intense fragmentation of redundant information across the CAN

109

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

networks (Comfort CAN, Combi CAN, Powertrain CAN, Info CAN) as seen
in table 5.14. The Comfort CAN has a similar function as the Body CAN
from the previous OEM configuration, it handles most data for controlling
indoor components. An own Combi CAN exchanges information with the
combi instrument. Engine management, transmission and chassis functions,
such as ESP, are managed over the Powertrain CAN. The Info CAN handles
the infotainment and multimedia applications.

Comfort Combi Powertrain Info sum unit
baud rate 125 500 500 125 1250 kBit/s
utilization 49% 27% 50% 19%
frame rate 717 1259 2230 256 4462 frm/s

distribution of frame rates
GW Tx 195 1101 220 209 1725 frm/s
GW Rx 247 158 1210 24 1638 frm/s
other 275 0 800 23 1098 frm/s

distribution of GW Rx frame rates
partial transfer 31 60 793 0 884 frm/s
complete transfer 61 50 1035 10 1156 frm/s
ECU relevant 69 25 0 12 106 frm/s

Table 5.14: Frame rates of a Mid-Class Car

Gateway Tasks Most messages are transferred from the Powertrain CAN to
the other three networks. Much less messages are transferred in other directions.

RAM Usage The gateway transmits about 1638 periodic messages and needs
to handle 1725 receive messages per second. All four CAN controllers nCC = 4
are configured to have nMB = 64 message buffers to receive nRX = 78 messages
and transmit nTX = 122 messages. pRxTo = 10% of the receive messages are
checked for timeouts and all transmit messages pCT = 100% are sent on change.
An average of nSgPerMsg = 2 signals are part of each message and each message
usually generates nTxPerRx = 2 other messages, whereof nPartTxLd = 50% is
only partially overwritten. The distribution of copy operations is identical to
the previous OEM configuration and most of the copy operations are duplicated
for send on change pTxOnChg = 90%.

GCU Utilization The average frame length is identical to the previous
OEM configuration nAvgLen = 6.

110

5.6. GATEWAY EVALUATION IN OEM ENVIRONMENTS

Vector RAM 1.6 kByte
Instruction RAM 13.0 kByte

Table 5.15: RAM Usage of a Mid-Class Car

System Clock 20 MHz 32 MHz 50 MHz
Max. Routing Latency 16 µs 10.0 µs 6.5 µs
Theoretical WCET 70.8 µs 44.0 µs 28.3 µs
Total GCU Load 1.4% 0.9% 0.6%

Table 5.16: GCU Utilization of a Mid-Class Car

5.6.8 Conclusion

The evaluation of Mid-Class and High-Class vehicles shows that both have
similar communication requirements. As the RAM usages and GCU utilizations
show, the multi-protocol gateway can be used in both scenarios.

111

Chapter 6

Summary and Outlook

Present gateway solutions may lead to high latencies and jitter that are caused
by interrupt handling routines, complex gateway functions and the amount of
data. The current trend to increase the clock frequency to face these problems
results in high power consumption and high electro-magnetic radiation.
Two CAN-CAN gateway solutions providing the gateway functionality partially
(SFR) or completely (FSM) in hardware were presented. The efficiency and
the routing capabilities of both solutions were compared to a gateway solution
completely realized in software.
It was demonstrated that a partial hardware support (SFR) can reduce the
demand on CPU performance, because of the minimized read/write accesses
to the peripheral modules. Latency and jitter are reduced, but the check
for received messages by interrupt handling or polling still wastes computing
capacity.
Compared to the conventional software solution, the FSM-based solution has
an almost constant latency and almost no jitter. It is in average more than
seventy times faster when you take the different clock frequencies into account
and does not cause any CPU load. Despite this fact, the FSM solution is not
very complex and is still interface-compatible to the standard C_CAN except
the second interface register.
The requirement to support further automotive field buses in addition to CAN
resulted in the concept and implementation of the multi-protocol gateway. To
unify the event signaling mechanisms of every network domain to the controlling
gateway unit, wrapper units for C_CAN and E-Ray communication controllers
have been implemented.
Further timing options and faster message event detections lead to the reimple-
mentation of the gateway unit. The configuration RAM has been enhanced by

112

6. SUMMARY AND OUTLOOK

a hash table in hardware to handle groups of messages and for faster access to
the message objects.
As not every function is intended to run on the gateway unit without CPU
interaction, the interface to the software layer of the gateway has been im-
proved. This allows integration in existing ECU software projects including
AUTOSAR. The hardware gateway as coprocessor can reduce the load on the
CPU significantly and provides faster data transfers. The assumptions of very
small code size and high execution speed have been verified by a demonstration
environment.
A complete toolchain has been developed for generating gateway configurations
based on FIBEX files. The generated configurations include data for the
specialized gateway hardware and several communication controllers.
The combination of toolchain, hardware and software gateway provides one of
the first solutions, fully configurable by a FIBEX file.
The hardware gateway is able to process about 80% of all transfers of an average
gateway configuration. Complex transport protocols and extensive arithmetic
operations are processed in cooperation with the software layer of the gateway
ECU.
A verification environment has been implemented to allow black box testing of
arbitrary gateways. This includes checks for data corruption, timing constraints
and timing precision.
Extrapolating from the duration of the complete example test run, testing a
gateway with several hundred frames and several thousand mappings may take
a very long time. Further optimization, e.g. parallelization and less initial
measurements, are possibilities to reduce the execution time.
The current initial test phase calibrates the test environment to the gateway,
whereas the main test phase takes measurements under different load scenarios.
Currently errors may falsify all following testcases till the end of the complete
test run. This could be prevented if the test environment interrupts the test run
and brings the gateway back to a known state as soon as an error is detected.
In the current main test phase several high load scenarios are missing. The
target should be to create and execute further load tests, focused on scenarios
that reflect realistic environments. As FIBEX is a relatively new standard,
few gateway configurations are available in this format. These specification
documents must be converted to FIBEX format to be able to execute authentic
test scenarios.
Support for further networks needs to be implemented. Adding FlexRay
connectivity will be the next step. LIN and MOST networks could follow,
as these are used by some gateway implementations. Support of additional

113

6. SUMMARY AND OUTLOOK

network protocols, such as transport and diagnostic protocols, will be necessary
in the future.

114

Glossary

Notation Description
4B5B 4 Bit-5 Bit Signal Codec
8B10B 8 Bit-10 Bit Signal Codec

API Application Programming Interface
ASAM Association for Standardisation of Automation-

and Measurement Systems
ASIC Application Specific Integrated Circuit
ATG Automatic Test Generator
AUTOSAR Automotive Open System Architecture

C2H C-to-Hardware
CAN Controller Area Network
CC Communication Controller
CiA CAN in Automation
CIF Customer Interface
CISC Complex Instruction Set Computer
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSMA Carrier Sense Multiple Access
CSMA/BA Carrier Sense Multiple Access with Bitwise

Arbitration
CSMA/CA Carrier Sense Multiple Access with Collision

Avoidance
CSMA/CD Carrier Sense Multiple Access with Collision

Detection
CSMA/CD+CR Carrier Sense Multiple Access with Collision

Detection and Collision Resolution

DC Direct Current
DIU Data Integration Unit
DLL Dynamic Link Library
DMA Direct Memory Access

115

GLOSSARY

Notation Description
DSP Digital Signal Processor

ECU Electronic Control Unit
EOF End Of Frame
ePHY Electrical Physical Interface
ESP Electronic Stability Program

FIBEX Field Bus Exchange Format
FIFO First In First Out
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
FSP Frame and Symbol Processing
FTDMA Flexible Time Division Multiple Access
FTMA Fault Tolerant Midpoint Algorithm

GCU Gateway Control Unit
GIF Generic Interface
GTU Global Time Unit

IBF Input Buffer
ICM INIC Control Message
ID Identification/Identifier
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engi-

neers
IFC Interface Control (Register)
INIC Intelligent Network Interface Controller
INT Interrupt Control
IP 1 Intellectual Property
IP 2 Internet Protocol
IRAM Instruction RAM
ISO International Organization for Standardization

LAN Local Area Network
LIN Local Interconnect Network
LLC Logical Link Control

MAC Media Access Control(ler)
MCM MOST Control Message
MDP MOST Data Packet

116

GLOSSARY

Notation Description
MHD Message Handler
MIPS Million Instructions Per Second
MLB Media Local Bus
MMU Memory Management Unit
MOST Media Oriented System Transport
MRAM Message RAM
Mutex Mutual Exclusion

NEM Network Management
NIC Network Interface Controller
NMEA National Marine Electronic Association
NRZ Non-Return-to-Zero

OBF Output Buffer
ODVA Open DeviceNet Vendor Association
OEM Original Equipment Manufacturer
oPHY Optical Physical Interface
OSI Open Systems Interconnection

PCM Parallel Combined Mode
PDU Process Data Unit
PHY Physical Layer Transceiver
POC Plastic Optical Fiber
PRT FlexRay Channel Protocol Controller

RAM Random Access Memory
RISC Reduced Instruction Set Computer
RTE Run Time Environment
RTL Register Transfer Level
RTOS Real-Time Operating System

SAE Society of Automotive Engineers
SDK Software Development Kit
SFR Special Function Register
SIMD Single Instruction, Multiple Data
SOPC System-On-a-Programmable-Chip
SPE Signal Processing Extension
SUC System Universal Control
SWT Stopwatch Trigger of Bosch TTCAN

TBF Transient Buffer RAM
TCP Transmission Control Protocol

117

GLOSSARY

Notation Description
TDMA Time Division Multiple Access
TMI Time Mark Interrupt of Bosch TTCAN
TTCAN Time-Triggered CAN
TTP Time-Triggered Protocol
TTP/C Time-Triggered Protocol SAE Class C

UDS Unified Diagnostic Services
UTP Unshielded Twisted Pair

VHDL Very High Speed Integrated Circuit Hardware
Description Language

VRAM Vector RAM
VRAM-CC Vector RAM - Communication Controller Par-

tition
VRAM-MO Vector RAM - Message Object Partition

WCET Worst Case Execution Time
WLAN Wireless Local Area Network

xCDEF XML Cluster Definition File
XML Extensible Markup Language

118

List of Figures

2.1 FIFO- / MRAM-based Communication Controller 17
2.2 CAN Standard and Extended Frame Format 19
2.3 C_CAN Block Diagram . 20
2.4 TTCAN Matrix Cycle . 22
2.5 TTCAN Block Diagram . 23
2.6 FlexRay Frame Format . 24
2.7 E-Ray Block Diagram . 26
2.8 MOST Frame Format . 29
2.9 Central Gateway Architecture 31
2.10 Backbone Architecture . 31

3.1 Latency between two networks 33
3.2 Freescale MPC5567 Block Diagram 36
3.3 Infineon TriCore TC1130 Block Diagram 37
3.4 NEC V850E/PH3 Phoenix-FS Block Diagram 38
3.5 AUTOSAR Components . 40
3.6 FIBEX Object Model . 43

4.1 C_CAN Controller with Gateway Interface 46
4.2 Gateway Module with cascaded CAN/TTCAN cells 47
4.3 Data Integration Unit . 48
4.4 Gateway Control Unit . 49
4.5 Data Generation Flow . 51
4.6 Gateway Layer Architecture . 53

119

LIST OF FIGURES

4.7 Gateway Control Unit . 54
4.8 Communication Controller Wrapper 55
4.9 Standard Interface Concept . 56
4.10 Extended Interface Concept . 56
4.11 Time Behavior . 58
4.12 Average Search Time . 60
4.13 Gateway Toolchain Overview 62
4.14 Gateway Processing and Data Flow 63
4.15 Gateway Assembler Processing Flow 65
4.16 Macro Evaluation . 66
4.17 Code Normalization . 66
4.18 Pseudo Instruction Evaluation 67
4.19 Label Evaluation . 67
4.20 Assembler Simulator . 69
4.21 Static and Dynamic Testing . 71
4.22 Gateway Model . 72

5.1 Altera Nios II Development Board [92] 76
5.2 Clock Frequencies . 77
5.3 Gateway Instruction Set . 78
5.4 Structure of test system . 80
5.5 Software structure . 81
5.6 Time behavior of the CAN communication 81
5.7 Gateway Vector and Instruction RAM 86
5.8 Gateway Instruction Set . 88
5.9 Gateway Instruction Set Codes 89
5.10 Finite State Machines . 90
5.11 VRAM Arbiter . 91
5.12 Runtime and Memory Optimization 93
5.13 Instruction Count and Code Size 94
5.14 Execution time (best and worst case) 95

120

LIST OF FIGURES

5.15 Cyclic Sending: Cycle Time . 96
5.16 Event Controlled Sending: Forwarding Latency 97
5.17 Timeout . 98
5.18 Debouncing . 98
5.19 CANoe Test Environment . 101

121

List of Tables

2.1 ISO/OSI Reference Model . 13

5.1 Test immediate Tx after Rx . 82
5.2 Tx cyclic sending . 83
5.3 Tx after Rx Timeout . 83
5.4 Swap Message . 84
5.5 Split Message . 84
5.6 Code and RAM sizes (bytes) . 84
5.7 Buffer Configuration . 86
5.8 Gate count of CCs, Wrapper and Gateway Control Unit 92
5.9 Gateway measurement results 101
5.10 Instructions per Mapping Category 107
5.11 Frame rates of a High-Class Car 109
5.12 RAM Usage of a High-Class Car 109
5.13 GCU Utilization of a High-Class Car 109
5.14 Frame rates of a Mid-Class Car 110
5.15 RAM Usage of a Mid-Class Car 111
5.16 GCU Utilization of a Mid-Class Car 111

122

Bibliography

Introduction

[1] Jürgen Leohold. Communication Requirements for Automotive Sys-
tems. 5th IEEE Workshop on Factory Communication Systems,
sep 2004. http://iestcfa.org/presentations/wfcs04/keynote_
leohold.pdf (accessed June 04th, 2007).

Communication Networks

[2] CAN in Automation. CANopen, 2006. http://www.can-cia.org/
canopen/ (accessed June 04th, 2007).

[3] Konrad Etschberger. Controller Area Network. IXXAT Automation
GmbH, 2001. ISBN 3-00-007376-0.

[4] Konrad Etschberger. Controller-Area-Network. Grundlagen, Protokolle,
Bausteine, Anwendungen. Fachbuchverlag Leipzig, third edition, nov
2006. ISBN 3-446-21776-2.

[5] FlexRay Consortium. FlexRay Communication System. Protocol Spec-
ification. Version 2.1 Revision A, dec 2005. http://www.flexray.com
(accessed June 04th, 2007).

[6] Lars-Berno Frederikson. A CAN Kingdom. Revision 3.01. KVASER AB,
1995. http://www.cankingdom.org/ck301.zip (accessed June 04th,
2007).

[7] Prof. Harald Heinecke, Dr. Anton Schedl, Josef Berwanger, Mar-
tin Peller, Volker Nieten, Dr. Ralf Belschner, Dr. Bernd Hedenetz,
Peter Lohmann, and Claas Bracklo. FlexRay - ein Kommunika-
tionssystem für das Automobil der Zukunft. Design & Elektronik,
sep 2002. http://www2.elektroniknet.de/topics/kommunikation/
fachthemen/2003/0002/ (accessed June 04th, 2007).

123

http://iestcfa.org/presentations/wfcs04/keynote_leohold.pdf
http://iestcfa.org/presentations/wfcs04/keynote_leohold.pdf
http://www.can-cia.org/canopen/
http://www.can-cia.org/canopen/
http://www.flexray.com
http://www.cankingdom.org/ck301.zip
http://www2.elektroniknet.de/topics/kommunikation/fachthemen/2003/0002/
http://www2.elektroniknet.de/topics/kommunikation/fachthemen/2003/0002/

BIBLIOGRAPHY

[8] Robert Huber. Konzept, Realisierung und Bewertung des Sen-
sor/Aktorbusses TTP/A. PhD thesis, Technical University Munich,
mar 2003. http://mediatum.ub.tum.de/mediatum/servlets/
TUMDistributionServlet?id=mediaTUM_disshab_000000000001588
(accessed June 04th, 2007).

[9] Infineon Technologies. Single Wire CAN-Transceiver - TLE 6255 G,
nov 2003. http://www.infineon.com/upload/Document/cmc_upload/
documents/010/6284/tle6255finalDSV25.pdf (accessed June 04th,
2007).

[10] ISO/IEC. Information technology - Open Systems Intercon-
nection - Basic Reference Model: The Basic Model, 1994.
http://standards.iso.org/ittf/PubliclyAvailableStandards/
s020269_ISO_IEC_7498-1_1994(E).zip (accessed June 04th, 2007).

[11] Ursula Kelling. The MultiCAN module -Two CAN were not enough.
CAN Newsletter, pages 16–18, jun 2004.

[12] Hermann Kopetz. Real-Time Systems. Design Principles for Distributed
Embedded Applications. Springer Netherlands, first edition, 1997. ISBN
0-7923-9894-7.

[13] Wolfhard Lawrenz. CAN Controller Area Network. Grundlagen und
Praxis. Hüthig, 2000. ISBN 3-7785-2780-0.

[14] Wolfhard Lawrenz. CAN System Engineering. From Theory to Practical
Applications. Springer Verlag, Berlin, 2001. ISBN 0-387-94939-9.

[15] LIN Consortium. LIN Specification Package. Revision 1.3, dec 2002.
http://www.lin-subbus.org/ (accessed June 04th, 2007).

[16] LIN Consortium. LIN Specification Package. Revision 2.0, sep 2003.
http://www.lin-subbus.org/ (accessed June 04th, 2007).

[17] LIN Consortium. LIN Specification Package. Revision 2.1, nov 2006.
http://www.lin-subbus.org/ (accessed June 04th, 2007).

[18] G. Maus. Stand-alone CAN controller with eight channels. CAN Newslet-
ter, pages 22–24, jun 2004.

[19] Michael Stock Flight Systems. CANaerospace, 2006. http://www.
stockflightsystems.com/html/canaerospace.html (accessed June
04th, 2007).

[20] MOST Cooperation. MOST Specification Framework, 1999. Revision 1.1.
Version 1.1-07.

124

http://mediatum.ub.tum.de/mediatum/servlets/TUMDistributionServlet?id=mediaTUM_disshab_000000000001588
http://mediatum.ub.tum.de/mediatum/servlets/TUMDistributionServlet?id=mediaTUM_disshab_000000000001588
http://www.infineon.com/upload/Document/cmc_upload/documents/010/6284/tle6255finalDSV25.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/6284/tle6255finalDSV25.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://www.lin-subbus.org/
http://www.lin-subbus.org/
http://www.lin-subbus.org/
http://www.stockflightsystems.com/html/canaerospace.html
http://www.stockflightsystems.com/html/canaerospace.html

BIBLIOGRAPHY

[21] MOST Cooperation. MOST Specification, jun 2005. Revision 2.4.

[22] NMEA 2000 R©Standard Committee. NMEA 2000 R©Standard, 2003. http:
//www.nmea.org/pub/2000/index.html (accessed June 04th, 2007).

[23] OASIS SiliconSystems. OS8104 MOST Network Transceiver. Final
Product Data Sheet, jan 2003. http://www.smsc-ais.com/files/ics/
DS8104FP4.pdf (accessed June 04th, 2007).

[24] OASIS SiliconSystems. Errata: OS8104, Revision D, 2006. http://
www.smsc-ais.com/files/ics/ER8104ZZ0D8.pdf (accessed June 04th,
2007).

[25] OASIS SiliconSystems. Media Local Bus Specification. Physical Layer
and Link Layer. Version 3.0, 2006. http://www.smsc-ais.com/files/
MediaLB_Spec_3v0.pdf (accessed June 04th, 2007).

[26] ODVA. DeviceNet Technical Overview, 2004. http://www.odva.org/
10_2/05_tech/PUB00026R1.pdf (accessed June 04th, 2007).

[27] M. Peller, J. Berwanger, and R. Grießbach. byteflight specification. BMW
AG, oct 1999. http://www.byteflight.com (accessed June 04th, 2007).

[28] Philips Electronics. TJA1080 FlexRay Bus Driver. High-speed
time-triggered communication system transceiver chip, jun 2004.
http://www.semiconductors.philips.com/acrobat_download/
literature/9397/75013048.pdf (accessed June 04th, 2007).

[29] G. Reichart, R. Constapel, P. Hansson, H. Hönninger, K. Lange,
R. Makowitz, J.-M. Schneider, and W. Streit. Flexray - eine vision wird
realität. In 12ter internationaler Kongress - Elektronik im Kraftfahrzeug.
VDI Fahrzeug- und Verkehrstechnik, oct 2005.

[30] Robert Bosch GmbH. CAN Specification. Version 2.0, 1991.

[31] Robert Bosch GmbH. Datenblatt CF151 (UB62), jul 1998. http:
//www.semiconductors.bosch.de/pdf/DB_CF151.pdf (accessed June
04th, 2007).

[32] Robert Bosch GmbH. C_CAN User’s Manual. Revision 1.2, jun 2000.

[33] Robert Bosch GmbH. TTCAN User’s Manual. Revision 1.6, nov 2002.

[34] Robert Bosch GmbH. TTCAN Module Integration Guide. Revision 1.6,
mar 2003.

[35] Robert Bosch GmbH. C_CAN Module Integration Guide. Revision 1.2.1,
sep 2004.

125

http://www.nmea.org/pub/2000/index.html
http://www.nmea.org/pub/2000/index.html
http://www.smsc-ais.com/files/ics/DS8104FP4.pdf
http://www.smsc-ais.com/files/ics/DS8104FP4.pdf
http://www.smsc-ais.com/files/ics/ER8104ZZ0D8.pdf
http://www.smsc-ais.com/files/ics/ER8104ZZ0D8.pdf
http://www.smsc-ais.com/files/MediaLB_Spec_3v0.pdf
http://www.smsc-ais.com/files/MediaLB_Spec_3v0.pdf
http://www.odva.org/10_2/05_tech/PUB00026R1.pdf
http://www.odva.org/10_2/05_tech/PUB00026R1.pdf
http://www.byteflight.com
http://www.semiconductors.philips.com/acrobat_download/literature/9397/75013048.pdf
http://www.semiconductors.philips.com/acrobat_download/literature/9397/75013048.pdf
http://www.semiconductors.bosch.de/pdf/DB_CF151.pdf
http://www.semiconductors.bosch.de/pdf/DB_CF151.pdf

BIBLIOGRAPHY

[36] Robert Bosch GmbH. E-Ray. FlexRay IP Module. Module Integration
Guide. Revision 1.0.2, dec 2006.

[37] Robert Bosch GmbH. E-Ray. FlexRay IP Module. User’s Manual. Revi-
sion 1.2.5, dec 2006.

[38] Robert Bosch GmbH. Product Information CAN Bus Transceiver -
CF151, feb 2006. http://www.semiconductors.bosch.de/pdf/CF151_
Product_Info.pdf (accessed June 04th, 2007).

[39] Stephan Rohr and Herbert Kabza. High Speed Optical Controller Area
Network (CAN). In 10th iCC Proceedings, pages 04–1–04–8. CAN in
Automation, mar 2005.

[40] SAE International. SAE J1939 Standards Collection, 2006. http:
//www.sae.org/standardsdev/groundvehicle/j1939a.htm (accessed
June 04th, 2007).

[41] SMSC. OS8104A MOST Network Transceiver. Final Product Data Sheet,
jul 2005.

[42] SMSC. OS81050 INIC. Priliminary Product Data Sheet, oct 2005.

[43] SMSC. ePHY Overview and Implementation, 2006. http:
//www.smsc-ais.com/files/ePHY/ePHY_Overview_TB0812AN1A1.pdf
(accessed June 04th, 2007).

[44] SMSC. MOST Network Interface Controller. Multimedia Network Proto-
col Chip OS8104A, 2006. http://www.smsc-ais.com/files/OS8104A/
PFL_OS8104A_V01_00_XX-1.pdf (accessed June 04th, 2007).

[45] SMSC. MOST Network Interface Controller OS8104. Multimedia Net-
work Protocol Chip, 2006. http://www.smsc-ais.com/files/ics/PFL_
OS8104-03.pdf (accessed June 04th, 2007).

[46] SMSC. OS81050 INIC25 oPHY, 2006. http://www.smsc-ais.com/
files/ics/PFL_OS81050_V01_00_XX-6.pdf (accessed June 04th, 2007).

[47] SMSC. OS81082 INIC50 ePHY, 2006. http://www.smsc-ais.com/
files/OS81082/PFL_OS81082_V01_00_XX-2.pdf (accessed June 04th,
2007).

[48] Andrew S. Tanenbaum. Computernetzwerke. Pearson Studium - Prentice
Hall, fourth edition, 2003. ISBN 3-8273-7046-9.

126

http://www.semiconductors.bosch.de/pdf/CF151_Product_Info.pdf
http://www.semiconductors.bosch.de/pdf/CF151_Product_Info.pdf
http://www.sae.org/standardsdev/groundvehicle/j1939a.htm
http://www.sae.org/standardsdev/groundvehicle/j1939a.htm
http://www.smsc-ais.com/files/ePHY/ePHY_Overview_TB0812AN1A1.pdf
http://www.smsc-ais.com/files/ePHY/ePHY_Overview_TB0812AN1A1.pdf
http://www.smsc-ais.com/files/OS8104A/PFL_OS8104A_V01_00_XX-1.pdf
http://www.smsc-ais.com/files/OS8104A/PFL_OS8104A_V01_00_XX-1.pdf
http://www.smsc-ais.com/files/ics/PFL_OS8104-03.pdf
http://www.smsc-ais.com/files/ics/PFL_OS8104-03.pdf
http://www.smsc-ais.com/files/ics/PFL_OS81050_V01_00_XX-6.pdf
http://www.smsc-ais.com/files/ics/PFL_OS81050_V01_00_XX-6.pdf
http://www.smsc-ais.com/files/OS81082/PFL_OS81082_V01_00_XX-2.pdf
http://www.smsc-ais.com/files/OS81082/PFL_OS81082_V01_00_XX-2.pdf

BIBLIOGRAPHY

[49] TTTech Computertechnik GmbH. Time-Triggered Protocol TTP/C,
High-Level Specification Document, Protocol Version 1.1, nov 2003. http:
//www.tttech.com (accessed June 04th, 2007), http://www.ttagroup.
org (accessed June 04th, 2007).

[50] Vector Informatik. CANdb++ und CANdb++ Admin. The Distributed
System’s Backbone, may 2005. http://www.vector-worldwide.com/
portal/medien/cmc/datasheets/CANdb_DataSheet_DE.pdf (accessed
June 04th, 2007).

[51] Vector Informatik. CANdb++ und CANdb++ Admin. The Distributed
System’s Backbone, may 2005. http://www.vector-worldwide.com/
portal/medien/cmc/datasheets/CANdb_DataSheet_EN.pdf (accessed
June 04th, 2007).

[52] Vector Informatik. CANdbLib. Programmierschnittstelle für den Zugriff
auf CAN-Datenbanken, may 2005. http://www.vector-worldwide.
com/portal/medien/cmc/datasheets/CANdbLib_DataSheet_DE.pdf
(accessed June 04th, 2007).

[53] Vector Informatik. CANdbLib. Programming Interface for Access to CAN
Databases, may 2005. http://www.vector-worldwide.com/portal/
medien/cmc/datasheets/CANdbLib_DataSheet_EN.pdf (accessed June
04th, 2007).

[54] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der
Fahrzeugtechnik. Vieweg, sep 2007. ISBN 3-8348-0235-2.

Current Gateways

[55] ASAM e.V. FIBEX. Field Bus Exchange Format. Version 1.2, sep 2005.

[56] ASAM e.V. FIBEX. Field Bus Exchange Format. Version 2.0, jun 2006.

[57] AUTOSAR GbR. Specification of System Template. Version 1.0.0, 2005.

[58] AUTOSAR GbR. AUTOSAR - Layered Software Architec-
ture, feb 2007. Version 2.1.0. https://svn.autosar.org/
repos/10Releases/internal/release2.1/Standard/AUTOSAR_
LayeredSoftwareArchitecture.pdf (accessed June 04th, 2007).

[59] AUTOSAR GbR. AUTOSAR - Technical Overview, jan 2007. Ver-
sion 2.1.0. https://svn.autosar.org/repos/10Releases/internal/
release2.1/auxiliary/AUTOSAR_TechnicalOverview.pdf (accessed
June 04th, 2007).

127

http://www.tttech.com
http://www.tttech.com
http://www.ttagroup.org
http://www.ttagroup.org
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdb_DataSheet_DE.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdb_DataSheet_DE.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdb_DataSheet_EN.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdb_DataSheet_EN.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdbLib_DataSheet_DE.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdbLib_DataSheet_DE.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdbLib_DataSheet_EN.pdf
http://www.vector-worldwide.com/portal/medien/cmc/datasheets/CANdbLib_DataSheet_EN.pdf
https://svn.autosar.org/repos/10Releases/internal/release2.1/Standard/AUTOSAR_LayeredSoftwareArchitecture.pdf
https://svn.autosar.org/repos/10Releases/internal/release2.1/Standard/AUTOSAR_LayeredSoftwareArchitecture.pdf
https://svn.autosar.org/repos/10Releases/internal/release2.1/Standard/AUTOSAR_LayeredSoftwareArchitecture.pdf
https://svn.autosar.org/repos/10Releases/internal/release2.1/auxiliary/AUTOSAR_TechnicalOverview.pdf
https://svn.autosar.org/repos/10Releases/internal/release2.1/auxiliary/AUTOSAR_TechnicalOverview.pdf

BIBLIOGRAPHY

[60] Thomas Barthel. Austauschformat der Zukunft - XML-basiertes Daten-
format zur Beschreibung von Fahrzeugnetzwerken. Automotive, 2006.
http://www.elektroniknet.de/home/automotive/fachwissen/
uebersicht/l/bussysteme/austauschformat-der-zukunft/ (ac-
cessed June 04th, 2007).

[61] G. Bernat. Analyse der Worst Case Execution Time in Automobilanwen-
dungen. Elektronik Praxis, pages 45–55, 9 2005.

[62] Oliver Falkner and Christiane Picard. Quo vadis Kfz-Elektronik? - Opti-
mierungsvorschläge für die Elektronikentwicklung. Elektronik Automotive,
pages 82–85, 1 2005.

[63] Freescale. XGate Library: Signal Gateway - Implementing CAN and
LIN Signal Level Gateway, nov 2006. http://www.freescale.com/
files/microcontrollers/doc/app_note/AN3333.pdf (accessed June
04th, 2007).

[64] Freescale Semiconductor. 16-bit Microcontrollers - The XGATE Coproces-
sor, jan 2005. http://www.freescale.com/files/microcontrollers/
doc/fact_sheet/XGATECOPROCFS.pdf (accessed June 04th, 2007).

[65] Freescale Semiconductor. High-Performance 16-bit Microcon-
trollers - HCS12X, jun 2005. http://www.freescale.com/files/
microcontrollers/doc/fact_sheet/HC9S12XFAMFS.pdf (accessed
June 04th, 2007).

[66] Freescale Semiconductor. MPC5567 32-Bit Embedded Controller,
2006. http://www.freescale.com/files/32bit/doc/fact_sheet/
MPC5567FS.pdf (accessed June 04th, 2007).

[67] Josef Fuchs. Robuster Rechenkünstler - Optimierung der Systemleistung
am Beispiel des MPC5554: Hohe Taktfrequenzen allein reichen nicht
aus. Elektronik Automotive, 5 2005. http://www.elektroniknet.de/
home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/
mikrocontroller-prozessoren-dsps/robuster-rechenkuenstler/
(accessed June 04th, 2007).

[68] Dr. Robert Huber. Vom einfachen Bussystem zum anspruchsvollen
Datennetz - Teil 2. In Automotive 9-10.2004, pages 35–40. Carl Hanser
Verlag GmbH, 2004. http://www.hanser-automotive.de/fileadmin/
heftarchiv/2004/3025.pdf (accessed June 06th, 2007).

[69] Infineon Technologies AG. TC1130 32-Bit Single-Chip Micro-
controller. Volume 1 (of 2): System Units, nov 2004. http:
//www.infineon.com/upload/Document/cmc_upload/documents/

128

http://www.elektroniknet.de/home/automotive/fachwissen/uebersicht/l/bussysteme/austauschformat-der-zukunft/
http://www.elektroniknet.de/home/automotive/fachwissen/uebersicht/l/bussysteme/austauschformat-der-zukunft/
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3333.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN3333.pdf
http://www.freescale.com/files/microcontrollers/doc/fact_sheet/XGATECOPROCFS.pdf
http://www.freescale.com/files/microcontrollers/doc/fact_sheet/XGATECOPROCFS.pdf
http://www.freescale.com/files/microcontrollers/doc/fact_sheet/HC9S12XFAMFS.pdf
http://www.freescale.com/files/microcontrollers/doc/fact_sheet/HC9S12XFAMFS.pdf
http://www.freescale.com/files/32bit/doc/fact_sheet/MPC5567FS.pdf
http://www.freescale.com/files/32bit/doc/fact_sheet/MPC5567FS.pdf
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/robuster-rechenkuenstler/
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/robuster-rechenkuenstler/
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/robuster-rechenkuenstler/
http://www.hanser-automotive.de/fileadmin/heftarchiv/2004/3025.pdf
http://www.hanser-automotive.de/fileadmin/heftarchiv/2004/3025.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/1702/tc1130_um_v1.3_2004_11_sys.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/1702/tc1130_um_v1.3_2004_11_sys.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/1702/tc1130_um_v1.3_2004_11_sys.pdf

BIBLIOGRAPHY

010/1702/tc1130_um_v1.3_2004_11_sys.pdf (accessed June 04th,
2007).

[70] Infineon Technologies AG. TC1130 32-Bit Single-Chip Mi-
crocontroller. Volume 2 (of 2): Peripheral Units, nov 2004.
http://www.infineon.com/upload/Document/cmc_upload/
documents/010/1703/tc1130_um_v1.3_2004_11_per.pdf (accessed
June 04th, 2007).

[71] Infineon Technologies AG. TC1130 32-bit Superscalar
TriCoreTMArchitecture. Product Brief, feb 2004. http://www.infineon.
com/upload/Document/cmc_upload/documents/098/690/tc1130-pb.
pdf (accessed June 04th, 2007).

[72] Infineon Technologies AG. TC1130 32-Bit Single-Chip Microcontroller
Advance Information, feb 2005. http://www.infineon.com/upload/
Document/cmc_upload/documents/098/695/TC1130_DS_V1.0.pdf (ac-
cessed June 04th, 2007).

[73] ISO/IEC. Road vehicles – Open interface for embedded au-
tomotive applications, 2005. http://www.iso.org/iso/en/
StandardsQueryFormHandler.StandardsQueryFormHandler?scope=
ALL\&keyword=\&isoNumber=17356\&sortOrder=ISO\&title=true\
&search_type=ISO\&search_term=17356\&languageCode=en (ac-
cessed June 04th, 2007).

[74] K2L Software. K2L MoCCa Vario II, 2005. http://k2lgmbh.
de/website/products/moccavario2/MoCCaVario2.pdf (accessed June
04th, 2007).

[75] Ata Khan. Weniger Verlustleistung ist gefordert! - 90-nm-
Mikrocontroller verbessern Integrationsgrad, Energiebilanz, Rechen-
leistung und Produktionskosten. Elektronik SoC, 1 2006. http://www.
elektroniknet.de/home/bauelemente/fachwissen/uebersicht/
aktive-bauelemente/mikrocontroller-prozessoren-dsps/
weniger-verlustleistung-ist-gefordert/ (accessed June 04th,
2007).

[76] NEC Electronics (Europe) GmbH. V850 Phoenix-FS 32-bit
RISC Microcontroller, nov 2005. http://www.eu.necel.com/_pdf/
EPMC-PU-0002-3.0.PDF (accessed June 04th, 2007).

[77] OSEK/VDX. OSEK/VDX - Communication, jul 2004. Version
3.0.3. http://portal.osek-vdx.org/files/pdf/specs/osekcom303.
pdf (accessed June 04th, 2007).

129

http://www.infineon.com/upload/Document/cmc_upload/documents/010/1702/tc1130_um_v1.3_2004_11_sys.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/1702/tc1130_um_v1.3_2004_11_sys.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/1703/tc1130_um_v1.3_2004_11_per.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/010/1703/tc1130_um_v1.3_2004_11_per.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/098/690/tc1130-pb.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/098/690/tc1130-pb.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/098/690/tc1130-pb.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/098/695/TC1130_DS_V1.0.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/098/695/TC1130_DS_V1.0.pdf
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=ALL\&keyword=\&isoNumber=17356\&sortOrder=ISO\&title=true\&search_type=ISO\&search_term=17356\&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=ALL\&keyword=\&isoNumber=17356\&sortOrder=ISO\&title=true\&search_type=ISO\&search_term=17356\&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=ALL\&keyword=\&isoNumber=17356\&sortOrder=ISO\&title=true\&search_type=ISO\&search_term=17356\&languageCode=en
http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=ALL\&keyword=\&isoNumber=17356\&sortOrder=ISO\&title=true\&search_type=ISO\&search_term=17356\&languageCode=en
http://k2lgmbh.de/website/products/moccavario2/MoCCaVario2.pdf
http://k2lgmbh.de/website/products/moccavario2/MoCCaVario2.pdf
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/weniger-verlustleistung-ist-gefordert/
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/weniger-verlustleistung-ist-gefordert/
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/weniger-verlustleistung-ist-gefordert/
http://www.elektroniknet.de/home/bauelemente/fachwissen/uebersicht/aktive-bauelemente/mikrocontroller-prozessoren-dsps/weniger-verlustleistung-ist-gefordert/
http://www.eu.necel.com/_pdf/EPMC-PU-0002-3.0.PDF
http://www.eu.necel.com/_pdf/EPMC-PU-0002-3.0.PDF
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf

BIBLIOGRAPHY

[78] OSEK/VDX. OSEK/VDX - Network Management, jul 2004.
Version 2.5.3. http://portal.osek-vdx.org/files/pdf/specs/nm253.
pdf (accessed June 04th, 2007).

[79] OSEK/VDX. OSEK/VDX - Operating System, feb 2005. Ver-
sion 2.2.3. http://portal.osek-vdx.org/files/pdf/specs/os223.
pdf (accessed June 04th, 2007).

Advanced Gateway Architectures

[80] ARM. AMBA Specification, Revision 2.0, may 1999.

[81] DECOMSYS GmbH. DECOMSYS::DESIGNER PRO, feb 2007. Version
4.2. http://www.decomsys.com/flyer/Datasheet_DESIGNER_PRO.pdf
(accessed June 04th, 2007).

[82] Free Software Foundation. GNU M4 - A powerful macro processor,
aug 2006. Version 1.4.6. http://www.gnu.org/software/m4/manual/
m4.pdf (accessed June 04th, 2007).

[83] Stephen Johnson. Lint, a C program checker. In Computer Science
Technical Report 65. Bell Laboratories, jul 1998. http://citeseer.ist.
psu.edu/johnson78lint.html (accessed June 04th, 2007).

[84] Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in
Software Testing. A Context-Driven Approach. Wiley, first edition, dec
2001. ISBN 0-471-08112-4.

[85] Peter Liggesmeyer. Software Qualität. Testen, Analysieren und Veri-
fizieren von Software. Spektrum Akademischer Verlag, aug 2002. ISBN
3-827-41118-1.

Implementation and Results

[86] Altera Corporation. Nios II Custom Instruction - User Guide, dec
2004. http://www.altera.com/literature/ug/ug_nios2_custom_
instruction.pdf (accessed June 04th, 2007).

[87] Altera Corporation. Avalon Memory-Mapped Interface - Specification,
nov 2006. http://www.altera.com/literature/manual/mnl_avalon_
spec.pdf (accessed June 04th, 2007).

130

http://portal.osek-vdx.org/files/pdf/specs/nm253.pdf
http://portal.osek-vdx.org/files/pdf/specs/nm253.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://www.decomsys.com/flyer/Datasheet_DESIGNER_PRO.pdf
http://www.gnu.org/software/m4/manual/m4.pdf
http://www.gnu.org/software/m4/manual/m4.pdf
http://citeseer.ist.psu.edu/johnson78lint.html
http://citeseer.ist.psu.edu/johnson78lint.html
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

BIBLIOGRAPHY

[88] Altera Corporation. Nios II C2H Compiler - User Guide, aug 2006. http:
//www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf (ac-
cessed June 04th, 2007).

[89] Altera Corporation. Nios II Processor Reference Handbook, nov
2006. http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.
pdf (accessed June 04th, 2007).

[90] Altera Corporation. Quartus II Version 6.1 Handbook, nov 2006. http://
www.altera.com/literature/hb/qts/quartusii_handbook.pdf (ac-
cessed June 04th, 2007).

[91] Altera Corporation. Stratix II Device Handbook, apr 2006. http://www.
altera.com/literature/hb/stx2/stratix2_handbook.pdf (accessed
June 04th, 2007).

[92] Altera Corporation. Nios II Development Kit, Stratix II Edi-
tion, 2007. http://www.altera.com/products/devkits/altera/
kit-niosii-2S60.html (accessed June 04th, 2007).

[93] Wikipedia. Field-Programmable gate array, 2007. http://en.wikipedia.
org/wiki/FPGA (accessed August 28th, 2007).

Gateway-related Bosch Publications

[94] Stefan Bleeck. Evaluierung von Gateway-Konzepten für automobile
Bussysteme. Master’s thesis, Universität Rostock, Fakultät für Informatik
und Elektrotechnik, jul 2006.

[95] Florian Hartwich and Christian Horst. Message Handling Concept
for a FlexRay Communication Controller. In Automotive 2004 -
Special Edition FlexRay, pages 32–35. Carl Hanser Verlag GmbH,
2004. http://www.hanser-automotive.de/fileadmin/heftarchiv/
2004/flex32-35.pdf (accessed June 04th, 2007).

[96] Thomas Lindenkreuz and Florian Hartwich. Integration of Car Commu-
nication. In electronica automotive conference 2006, 2006.

[97] Tobias Lorenz, Jan Taube, and Markus Ihle. Evaluation of CAN gateway
implementations. In CAN Newsletter, pages 24–26. CAN in Automation,
mar 2007.

[98] Tobias Lorenz, Jan Taube, Markus Ihle, Otto Manck, and Helmut
Beikirch. FIBEX Gateway Configuration Tool Chain. In 11th inter-
national CAN Conference Proceedings, pages 04–13–04–19. CAN in Au-
tomation, sep 2006.

131

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/products/devkits/altera/kit-niosii-2S60.html
http://www.altera.com/products/devkits/altera/kit-niosii-2S60.html
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/FPGA
http://www.hanser-automotive.de/fileadmin/heftarchiv/2004/flex32-35.pdf
http://www.hanser-automotive.de/fileadmin/heftarchiv/2004/flex32-35.pdf

BIBLIOGRAPHY

[99] Tobias Lorenz, Jan Taube, Markus Ihle, Otto Manck, and Helmut
Beikirch. Verification Environment for Automotive Gateways. In Proceed-
ings embedded world Conference. WEKA Fachzeitschriften-Verlag GmbH,
feb 2007.

[100] Jan Taube. Entwicklung und Konzeptionierung von Hardwarearchitekturen
für Gateways im Automotive-Bereich. PhD thesis, Universität Rostock,
Fakultät für Informatik und Elektrotechnik, may 2007.

[101] Jan Taube and Helmut Beikirch. Self-Synchronizing Time-Triggered
Networks in Automotive and Industrial Gateways. In 4th International
Symposium on AUTOMATIC CONTROL. Hochschule Wismar, sep 2005.
ISBN 3-910102-79-4.

[102] Jan Taube and Kay Hammer. CAN Gateway and FlexRay IP Solutions
for Automotive Networks, 2005. Flyer FlexRay Product Day 2005.

[103] Jan Taube, Florian Hartwich, and Helmut Beikirch. C_CAN Gateway
Module - A New Approach for CAN Gateways. In Proceedings embedded
world Conference, pages 80–87. WEKA Fachzeitschriften-Verlag GmbH,
feb 2005.

[104] Jan Taube, Florian Hartwich, and Helmut Beikirch. Comparison of CAN
Gateway Modules for Automotive and Industrial Control Applications. In
10th international CAN Conference Proceedings, pages 06–1–06–8. CAN
in Automation, mar 2005.

[105] Jan Taube, Florian Hartwich, and Helmut Beikirch. Gateway Concepts
for Automotive Networks. In automotive 2005 - Special Edition FlexRay,
pages 10–12. Carl Hanser Verlag GmbH, dec 2005.

[106] Jan Taube, Tobias Lorenz, Helmut Beikirch, and Otto Manck. Per-
formance evaluation of different CAN Gateway implementations. In
Proceedings embedded world Conference 2006, volume 1, pages 573–581.
Franzis Verlag GmbH Poing, feb 2006. ISBN 3-7723-0143-6.

[107] Jan Taube, Tobias Lorenz, Markus Ihle, Helmut Beikirch, and Otto
Manck. Kommunikationsarchitekturen zur Verbindung von Netzwerken
im Automobil. In KFZ-Elektronik. WEKA Fachzeitschriften-Verlag
GmbH, may 2007.

132

BIBLIOGRAPHY

Gateway-related Bosch Patents

[108] Jan Taube Florian Hartwich. Patent: Verfahren und Vorrichtung zur Syn-
chronisation zweier Bussysteme sowie Anordnung aus zwei Bussystemen,
2005. German Patent Nr.: 102005018837.0.

[109] Florian Hartwich and Jan Taube. Patent: Kommunikationsbausteinanord-
nung mit einem Schnittstellenmodul und Schnittstellenmodul, 2004/2005.
German Patent Nr.: 102004057410.3. European Patent Nr.: 05817026.7-
2212.

[110] Tobias Lorenz, Jan Taube, and Markus Ihle. Patent: Teilnehmer und
Kommunikationscontroller eines Kommunikationssystems und Verfahren
zur Realisierung einer Gateway-Funktionalität in einem Teilnehmer eines
Kommunikationssystems, 2005. German Patent Nr.: 102005048585.5.

[111] Jan Taube, Markus Ihle, and Tobias Lorenz. Patent: Gateway zum
automatischen Routen von Nachrichten zwischen Bussen, 2007. German
Patent Nr.: 102007001137.9.

[112] Jan Taube, Tobias Lorenz, and Markus Ihle. Patent: Gateway zum
Datentransfer zwischen seriellen Bussen, 2006. German Patent Nr.:
102006055514.7.

[113] Jan Taube, Tobias Lorenz, and Markus Ihle. Patent: Kommunikations-
baustein, 2006. German Patent Nr.: 102006055513.9.

[114] Jan Taube, Tobias Lorenz, Markus Ihle, and Stefan Bleeck. Patent:
Mehrprozessor-Gateway, 2006. German Patent Nr.: 102006055512.0.

133

Curriculum Vitae

Name: Tobias Lorenz

Birth: April 26th, 1980 in Berlin, Germany

High school: Aug 1997 - Jun 1999:
OSZ Energietechnik I, Berlin-Spandau

Civilian service: Jul 1999 - Jul 2000:
Bethel Krankenhaus, Berlin-Steglitz
Tasks: Administration, Warehouse, Engineering

University: Oct 2000 - Sep 2004:
Technical University of Berlin
Degree: Dipl.-Ing. Computer Engineering (Grade A)
Duration: 8 semester (regular 10 semester)

Diploma thesis: uCLinux 2.6 for ARM:
Kernel porting and Network bootloader
in cooperation with
Mikroelektronik Anwendungszentrum Brandenburg

Doctorate: since May 2005:
Industrial doctorate
at Robert Bosch GmbH in Reutlingen
in cooperation with Technical University of Berlin

134

CURRICULUM VITAE

Internships: Jan 2004 - Mar 2004:
Itellium (KarstadtQuelle), Essen
Tasks: Linux terminal servers

Apr 2004 - May 2004:
Mikroelektronik Anwendungszentrum Brandenburg
Tasks: Development of GDB-JTAG-ARM debugger

Part-time jobs: Jun 2004 - May 2005:
Mikroelektronik Anwendungszentrum Brandenburg
Tasks: Industrial automation

Sep 2003 - Dec 2003:
Bethel Krankenhaus, Administration
Tasks: Conception and implementation of databases

Berlin, May 31, 2007

135

	Introduction
	Communication Networks
	Basic Concepts
	Physical Transmission
	Media Access Control
	Logical Link Control
	Upper Layers
	Communication Controller

	Controller Area Network
	Protocol Description
	Higher Layer Protocols
	Communication Controller
	Configuration Format

	Time-Triggered Controller Area Network
	Protocol Description
	Communication Controller

	FlexRay
	Protocol Description
	Communication Controller
	Configuration Formats

	Media Oriented System Transport
	Protocol Description
	Communication Controllers

	Network Architectures

	Current Gateways
	Requirements
	Tasks
	Gateway-Optimized Microcontroller
	Software Gateways
	K2L Gateway
	Automotive Open System Architecture
	X2E Gateway

	Configuration Data Formats
	Field Bus Exchange Format
	AUTOSAR System Constraint Templates

	Problems and Issues

	Advanced Gateway Architectures
	Advanced Gateways
	Requirements
	CAN-CAN Gateway
	Multi-Protocol Gateway
	Software Gateway

	Configuration Toolchain
	FIBEX Engine
	Import/Export of CANdb++ DBC databases
	Configuration of Communication Controllers
	Gateway Configuration
	Assembler
	Verification and Tests
	Assembler Instruction Simulator

	Verification Environment
	Gateway Executive Model
	Automatic Test Generator

	Implementation and Results
	Gateway Development Hardware
	Development Board
	Physical Layer Board
	Clock Frequencies

	CAN-CAN Gateway Comparisons
	Instruction Set
	Comparison of Implementations
	Description of Test System
	Implemented Tests
	Results

	Multi-Protocol Gateway Implementation
	RAM Configuration
	Instruction Set
	Finite State Machines
	Gate Count

	Toolchain Optimization Results
	Optimization Levels
	Code Size and Execution Time

	Verification Environment Implementation
	Test Description
	Test Scenarios
	Implementation Requirements
	Results
	Future Improvements

	Gateway Evaluation in OEM Environments
	Vector RAM Usage Estimation
	Instruction RAM Usage Estimation
	GCU Utilization Estimation
	Routing Latency
	Worst Case Execution Time
	Evaluation of a High-Class Automotive Network
	Evaluation of a Mid-Class Automotive Network
	Conclusion

	Summary and Outlook
	Glossary
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

