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This publication presents a three-part road classification system that util-
ises the vehicle’s onboard signals of two-wheeled vehicles. First, a curve
estimator was developed to identify and classify road curves. In addition,
the curve estimator continuously classifies the road curviness. Second, the
road slope was evaluated to determine the hilliness of a given road. Third, a
modular road profile estimator has been developed to classify the road profile
according to ISO 8608, which utilises the vehicle’s transfer functions. The
road profile estimator continuously classifies the driven road. The proposed
methods for the classification of curviness, hilliness, and road roughness have
been validated with measurements. The road classification system enables
the collection of vehicle-independent field data of two-wheeled vehicles. The
road properties are part of the customer usage profiles which are essential to
define vehicle design targets.

Keywords: Road classification, road profile estimation, ISO 8608, curve
detection, customer usage profiles, motorcycle dynamics

1 Introduction

Customer usage profiles are a key factor in durability analysis and product design. The
detailed knowledge of customer usage profiles improves design loads and ultimately the
vehicle development process. On the one hand they are essential to define vehicle
design targets as Gorges et al. [1] and Johannesson and Speckert [2] discussed. On
the other hand customer usage profiles enable a virtual load acquisition, where customer
loads are simulated on virtual test tracks. Johannesson and Speckert [2] highlight that
the customer usage distribution consists of three components: customer usage, vehicle-
independent road properties, and the vehicle model. The vehicle-independent road prop-
erties are the main focus of the present research. It has the objective to collect information
about the driven road classes using the onboard signals of two-wheeled vehicles.
Common methods to obtain customer loads are survey sampling and online- monit-
oring systems. Survey sampling is expensive due to extra measurement equipment and

cannot reveal the entire customer load distribution. Miiller [3] and Matz [4] already
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developed model-based online monitoring system with integrated counting of durability-
related values. This has become possible because the number of onboard sensors rises
anyway due to the increased functions of motorcycles including an anti-lock braking sys-
tem, dynamic traction control, or curve assistant. Onboard signals are defined as signals
that can be accessed by the vehicle’s Controller Area Network (CAN) bus. In addition,
Gorges et al. [1] developed a customer load acquisition system for two-wheeled vehicles
that utilises the vehicle’s onboard signals to gather wheel forces and vehicle loading. As
a result, customer loads are revealed that are directly associated with the fatigue of the
vehicle. Hence, the loads are vehicle-dependent. On the contrary, the present research
has the objective to collect vehicle-independent road properties. Karlsson [5] has already
discussed methods to derive customer loads from road classification but the question
remains how the distribution of road classes driven by the customers can be revealed.

Therefore, this publication presents methods to detect and evaluate road classes in
terms of curviness, hilliness, and most importantly road roughness, which is evaluated in
terms of ISO 8608 [6]. On the small scale, the knowledge of the current road class en-
ables further real-time applications, that is, active suspension systems or curve warning
systems. On the large scale, the distribution of driven road classes helps understanding
the customer usage and makes a virtual load acquisition feasible. In detail, the distri-
bution of curve characteristics gives useful information about the lateral wheel forces
and abrasion of the outer tyre flanks. The distribution of travelled altitude differences
improves design targets for the powertrain. Third, road roughness is highly correlated
to the severity of vertical wheel forces. Therefore, the distribution of road roughness is
an essential part of the customer usage profiles.

In summary, the information about driven road classes improves the vehicle design tar-
gets and enables the design of artificial test tracks for a virtual product development and
validation. Furthermore, the overall road class distribution helps designing real meas-
urement campaigns according to the customer usage. Speckert et al. [7] developed the
Virtual Measurement Campaign (VMC) which improves the derivation of design loads
by geo-referenced data. Real existing roads have been recorded in a database and were
scored within different classes for curviness, hilliness, and road roughness. Together with
the information of road classes driven by the customers, specific measurement tracks
could be selected that correspond with the the customer distribution. In contrast to
specific application-driven publications, the contribution of this paper is the road classi-
fication with onboard signals of two-wheeled vehicles. This paper is organised as follows.
Section 2 describes the reference motorcycle and the onboard measurement equipment.

Section 3 describes the algorithm for the curve detection and classification. Section 4



explains the counting and classification method of the road slope to obtain the elevation
gain. Section 5 introduces the evaluation of measured road profiles, the generation of
pseudo-random road profiles, the utilised full-vehicle model and ultimately the estimation
and classification algorithm to evaluate the road profile. Section 6 presents the results of

the developed methods and Section 7 provides a summary and conclusion.

2 Experimental set-up

A motorcycle (BMW R1200GS) with data-logging devices was prepared for experimental
tests and validation of the algorithms, as introduced in the previous work [1]. The
reference frame will not rotate around the roll axes during banking of the motorcycle,
which means that it is aligned with the road plane. When the motorcycle is upright, it
coincides with the vehicle’s coordinate system. The following onboard signals were logged
during pre-defined routes and manoeuvres for an offline simulation of the developed

algorithms:

e vehicle velocity v,
e front and rear spring deflections sg, Sy, and

e model-based signals (e.g. roll angle ).

These signals were logged through the CAN bus. Additionally, the vehicle was equipped
with a Global Positioning System (GPS) logging device, which provided information
about the position and the altitude for subsequent validation. The logged signals were
imported in a Simulink® model to simulate vehicle dynamics and validate the developed
algorithms. The discrete model uses the same time step size as the vehicle’s onboard
system, which is set to ¢ = 0.01s. This in principle enables an online application of the
developed algorithms. It is not part of the present study to evaluate specific hardware
requirements for an implementation of the methods into existing or new production

vehicles.

3 Road curve estimator

The first part of the road classification system is the road curve estimator. The knowledge
about road curve characteristics has two major applications: First, the estimation of the
current curve properties helps driving assistant systems to detect dangerous situations
in which the rider exceeds the physical limitation of velocity for a given curve, see, for

example, Biral et al. [8]. They developed a curve warning system, which is part of



the SAFERIDER! project. The detection strategy is based on the difference between
the actual state of the vehicle and a previewed optimal safe state, which is forecasted
with the help of the GPS position. Therefore, a detailed model of the motorcycle’s
dynamic behaviour during cornering is essential for real-time applications, see Cossalter
et al. [9-11] and Tanelli et al. [12]. The second purpose for estimating the current road
curve properties is field data collection, which is part of the main focus of this research.
Compared to the detailed and more complex models [9-12], the authors propose a simpler
approach, which requires less onboard sensors and is therefore more suitable for field data
collection. According to Cossalter [11], a two-wheeled vehicle during cornering can be
described as a lumped mass with physical properties mass m, velocity v, and banking
angle ¢, see Figure la. During steady-state cornering and on the assumption of infinitely
slim tyres and a negligible steering angle, the equilibrium of moments around the X-
axis can be applied to obtain the curve radius r., see Equations (1)—(3). The normal
force FN appears due to gravity. The centrifugal force Fen occurs due to the circular
movement of the motorcycle around the rotational axis, which is the centre of the curve.

The curvature « is defined as the inverse of the curve radius r. and is always positive.

Fx =mg, (1)
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The developed algorithm detects the beginning of a curve with the help of the absolute
value of the banking angle ¢. There are two additional conditions. First, the vehicle
velocity must exceed a given threshold to omit the detection of banking during parking.
Once a curve is detected, the algorithm calculates the running mean of the velocity o, the
running mean of the banking angle ¢, and the timespan At for the cornering manoeuvre.
When the absolute value of the banking angle falls below a given threshold, the mean
curve radius 7, and the mean curve angle 7 are computed, see Figure 1b and Equation (4).

Second, the mean curve angle ¥ must be > 60° to omit the detection of small curves and

!SAFERIDER Consortium is a paradigm of cooperation between the users, the motorcycle industry,
the ARAS (Advanced rider assistance systems)/OBIS (On bike information systems), subsystems sup-
pliers and the Research and Academic world, see www.saferider-eu.org.
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Figure 1 — Road curve estimation physics.
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For the evaluation of the curve characteristics, preliminary assumptions must be con-
sidered. The objective of the algorithm is to classify a curve with feasible parameters.
Assuming a curve is designed as a circular arc, it can be described by the curve radius and
the curve angle. The obtained parameters mean curve radius 7. and mean curve angle ¥
describe the curve in a geometrical manner, but they lead to a loss of information due to
the simplification of the curve as a circular arc. Instead, a road curve is designed with
clothoids at the beginning and at the end of the curve to ensure a smooth derivative of the
curvature k. For this reason, the authors suggest to establish a further parameter named
curviness ¢, see Figure 1b and Equation (5). The curvature k is therefore integrated over

the travelled curve path x:

lc
c= [ k(z)dr with I[.=z1 — x0. (5)
0
The calculation of the curviness c¢ requires the length I. of the curve path which can
easily be derived from the velocity once the curve is detected. The curviness parameter

¢ has the unit radian. It is equal to the curve angle 7 in case of an ideal circular shaped



curve since the curvature is also defined by

dy
K= |—

! (6)

Although the curviness parameter ¢ has also the dimensions of an angle, it takes the
clothoids into account and is more suitable for distorted curves than the pure calculation
of the mean curve angle. Therefore, the curviness ¢ describes the curve by meanings of
its curve angle, assuming the curve would have an ideal circular shape with the same
overall curvature as the real curve the rider went through. These advantages justify the
introduction of the curviness c.

In principle, the obtained parameters describing the curve characteristics can be clas-
sified by diverse possibilities, depending on the purpose of classification and memory
requirements. The authors prefer a two-dimensional counting of mean curve radius over
mean curve angle. This approach allows the identification of challenging curves with a
small curve radius and a large curve angle, for example, sharp bends. The number of
gradations of the data bins can be chosen by the users. The curviness ¢ can also be
classified into bins. To sum up, a single curve can be classified by its mean curve radius

T, mean curve angle 4 and curviness c.

The classification of the curve by its characteristic parameters is a kind of event de-
tection and event classification. To score the curviness of a given road or road segment,
the travelled distance shall also be considered. Therefore, the authors propose to integ-
rate the curvature k not just over the curve path, but also over a standard distance of

[ = 1km to compute the road curviness C, see Equation (7).

!
C= /K(SL‘) dz with [ = 1km. (7)
0

A higher amount of curves as well as the curviness ¢ of the curves located within
I = 1km lead to a higher road curviness C'. In contrast to the single event classification,
this approach allows a continuous classification of the road segments in terms of curviness.
In summary, the curve estimator is based on a lumped-mass model and requires the

velocity v and the roll angle ¢ as input signals.



4 Road slope classification

The second part of the road classification system is the evaluation of the travelled eleva-
tion gain. Gorges et al. [1] developed a road slope estimator, which estimates the current
road slope a (°) of two-wheeled vehicles with the help of a linear Kalman filter. They
utilise the road slope to compute the slope resistance force and finally the wheel forces to
identify customer loads. It is also possible to utilise the current road slope for a real-time
application, that is, a downhill brake assistant. In the present paper, the road slope is
utilised to score the hilliness of a driven road. The difference in altitude is defined as
the elevation gain. The knowledge of the elevation gain travelled by the customers helps
for a better understanding of the customer usage. In addition, it improves the design
of virtual or real measurement campaigns. For a differentiation between positive and
negative elevation gain, the road slope « is prior splitted into only positive and negative

values, see Equation ().

a fora>0 0 fora>0
op = and oy = .
0 fora<0 a fora<0

(8)

The road slope « is integrated over the distance x to determine the elevation gain h,

see Equation (9).

hyp = /sin ap(z)dz and hn = /sin an(z) de. (9)

The elevation gain is accumulated separately for positive and negative sign of the
road slope in order to compute continuous elevation gains h, and h, for positive and
negative values. This distinction makes it possible to differentiate between uphill and
downhill ride. The continuous integration of the road slope results in absolute values,
which describe the overall amount of elevation gain travelled by the motorcycle. Similar
to the road curviness C' it is convenient to score the road hilliness H of road segments.
Hence, the positive and negative elevation gain for a standard distance of [ = 1km is

computed to obtain the road hilliness H, see Equation (10).

l

l
H, = /sin ap(z) dz and H, = /sin ap () dz, (10)
0 0
with [ = 1km.



The road hilliness H is also accumulated separately for positive and negative elevation
gain. It can be classified into bins to make an online classification and subsequent count-
ing feasible. In contrast to the accumulated values, this approach allows a continuous
classification of the road hilliness. In a nutshell, the proposed method takes the velocity

v and the road slope « as input signals.

5 Road profile estimator

The third part of the road classification system is the road profile estimator. Road
roughness causes vehicle vibrations and has a direct influence on vehicle wear, comfort,
safety, and fuel consumption. In addition, the dynamic wheel forces induced by road
roughness cause road deterioration [13]. For this reason, the knowledge of road roughness
has various applications. Road manufacturers and public authorities are interested in the
road conditions due to maintenance reasons, see, for example, [14, 15]. Moreover, road
roughness affects traffic safety and helps defining speed limits. Vehicle engineers utilise
the current road roughness for real-time applications, for example, active suspension
systems, as shown in [16-21|. The present study aims at the evaluation of the road
roughness to derive customer usage profiles in terms of durability, as it is also the focus
in |22, 23].

Various studies have already been published to estimate the current road profile from
mechanical responses of the vehicle, using different techniques. Ngwangwa et al. [15] and
Yousefzadeh et al. [24] adopted an Artificial Neuronal Network (ANN) to reconstruct and
classify the road profile depending on the measured vehicle responses. One disadvantage
of the ANN method is that it requires high computational efforts for an online application
and a large set of training data. Imine et al. [25] and Rath et al. [26] developed sliding
mode observers to estimate the road profile. Other methods of control theory have been
applied by Doumiati et al. [18, 19] and Tudoén-Martinez et al. [21], who used an adaptive
observer with the Q-parameterisation method. The methods of control theory require in
general more onboard sensors than the present study can provide. Kalman filters and
augmented Kalman filters have been utilised by Doumiati et al. [16], Yu et al. [17],
Jeong et al. [27], and Fauriat et al. [23]. Furthermore, an 7%, observer was adopted by
Tudon-Martinez et al. [20]. These methods based on observer theory utilise a Quarter-of-
Vehicle model to estimate the road profile. This is unsuitable for motorcycle dynamics,
since two-wheeled vehicles have a distinct pitch mode that needs consideration. Burger
[22] formulated an inverse control problem to estimate the road profile and solved it with

the help of the control-constraints method, which requires the solution of differential-
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Figure 2 — Definition of longitudinal road profiles.

algebraic equations. Mathematical optimisation techniques have been applied by Harris
et al. [28] and Nordberg [29]. Wavelet transformation of the vehicle’s response signals and
a subsequent Adaptive Neuro-Fuzzy Inference System for the road classification has been
developed by Qin et al. [30, 31]. The application of wavelets has also been accomplished
by Solhmirzaei et al. [32]. The rather simple but fast approach of estimating the road
profile in the frequency domain with the help of transfer functions has been published
by Gonzalez et al. [14] and Barbosa [33-35].

The cited methods differ in complexity, objective, and computational cost. The present
study uses the approach of transfer functions [14, 33-35| and extends it to a full-vehicle
model with a delayed rear-wheel excitation. The main disadvantage of constant vehicle
velocity is eliminated by applying the method just to a small time span with velocity-
dependent transfer functions, which is the novel contribution of this research. The ob-
jective is to develop an algorithm that can estimate the current road profile continuously

with the onboard signals.

5.1 Road profile evaluation

Sayers and Karamihas postulate that “a road profile is a two-dimensional slice of the road
surface, taken along an imaginary line” [36]. If the line is following the road direction,
the profile is defined to be a longitudinal profile, as illustrated in Figure 2. Longitudinal
road profiles describe the roughness and texture of the road.

Road profilers evaluate and measure the longitudinal road profile. They exist in several
variations. In the 1960’s, the first inertial profilers developed by General Motors Research
Laboratories [37] had a breakthrough to measure large road networks at high speed. An

accelerometer measures the inertial reference and a non-contacting sensor measures the



relative height, for example, a laser transducer. Inertial profilers must be moving to
measure the road roughness and require a minimum speed. They have been proven to
produce accurate results even if they cannot collect long road undulations. However,
spatial frequencies less than 0.01 cycles/m (wavelengths above 100 m) are negligible for
road statistics in sense of durability [36]. Other road profilers have been developed,
for instance, the Longitudinal Profile Analyzer [25], whereby a single-wheel trailer is
towed by a car and the movement of the wheel is transformed to the profile elevation. A
similar road profiler was developed by Barbosa [35], who transformed the wheel movement
with the systems transfer function to obtain the road profile. In 1986, the World Bank
published the International Road Roughness Experiment [13]| to establish a standard
for road roughness measurements and evaluation methods. The authors proposed the
International Roughness Index (IRI) to evaluate the road roughness on a single scale.
The IRI is a statistical value that is computed with a virtual quarter car travelling over
a road profile with a constant velocity of v = 80kmh~!. The accumulated suspension
motion y(z) = zs(x) — zy(z) is divided by the travelled distance L, see Equation (11).
The sprung mass displacement is defined by zs(z) and the unsprung mass displacement
by zy(x).

L
1
IRI = 1000 /|y(m)| dz. (11)
0

IRI has the unit of slope (mkm~1). The specific set of parameters characterising the
quarter car system is called The Golden Car. The IRI is well known and widely accepted
in the automobile industry. One advantage is that it measures the vehicle response
to a given road profile and makes a comparison possible. A more detailed description
can be found in [13]. Furthermore, ASTM-E1926 [38| defines a standard procedure
for computing the IRI. Andrén [39] points out, that the IRI is related to the comfort
experienced by a private car, but it is unsuitable for a mathematical description of the
road profile. Accordingly, another method to evaluate the road roughness is the power
spectral density (PSD) of a road profile. The ISO 8608 [6] defines a method to report the
PSD of a given road profile measurement as illustrated in Figure 3. The original PSD of
an artificial road profile is shown in the spatial frequency domain. According to ISO 8608,
the road profile can be classified into eight different road classes (A-H). Furthermore,
the ISO proposes a straight line fit G4(n) with the two parameters roughness coefficient
G4(no) and waviness w, see Equation (12). The roughness coefficient Gq(ng) represents

the PSD of the road profile at the reference spatial frequency ng = 0.1 cycles/m.
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Figure 3 — PSD and straight line fit of an artificial road profile according to ISO 8608.

Ga(n) = Ga(no) <n> with  ng = 0.1cycles/m, (12)

no

for 0.011cycles/m < n < 2.83 cycles/m.

The spatial frequency n has the unit cycles/m and is the inverse of the wavelength A.
The ISO fixed w = 2, which defines the slope of the fitted PSD. For an evaluation of
the straight line fit and other PSD approximations with more parameters, see [39, 40].
For the description of a road profile with a PSD, the road profile is assumed to be a
homogeneous and isotropic two-dimensional random process, as Dodds and Robson [41]
describe it. On the contrary, Bogsjo [42, 43| showed that short segments of irregularities
cannot be modelled with Gaussian processes. Hence, Bogsjo et al. [44] proposed a new
class of random processes called Laplace models to take the irregularities into account.
Furthermore, Johannesson and Rychlik [45] describe a non-stationary Laplace model to
stochastically reconstruct the road profile from condensed roughness data in form of IRI.

They also formulated a relation between the IRI and the roughness coefficient Gq(no).
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Table 1 — Properties of the road classes according to ISO 8608 and Sayers and Karamihas [36].

ISO Ga(no) IRI Umax
Class  (107%m?®) (mkm™!) Description (ms—1)
A 16 1.6 Airport runways and superhighways 60
B 64 3.1 Normal pavements 50
C 256 6.3 Unpaved roads and damaged pavements 30
D 1024 12.5 Rough unpaved roads 20
E 4094 25.1 Enduro tracks 10
F 16 384 49.7 Off-road tracks 5
G 65536 99.1 Rough off-road tracks 5
H 262144 198.5 Simulation purpose only 5

5.2 Road profile generation

Synthetic road profiles are required for the development of algorithms to estimate the
road roughness. Tyan et al. [46] discussed the two most commonly used methods to
create synthetic road profiles: shaping filter and approximation with sinusoids. The first
method applies linear digital filters to white noise. This generates coloured noise and
in this case pink noise, whose PSD is characterised by a linear declining slope in double
logarithmic scale as shown in [30, 47]. The second method is described by Cebon [48]
and has been applied by Gonzalez et al. [14]|, Ngwangwa et al. [15], and Sun [49]. This
method is also utilised by the present research. For the approximation of a pseudo-
random road profile zg(z), a large number of N sinusoids with different amplitudes A;

and random phase angles ®; is superimposed, see Equations (13)—(14).

N
zr(x) = Z A;sin (2mn;z + ®;)  with (13)
i=1

Ai = +/Ga(n;))An and &; =U[0,27). (14)

The amplitudes A; are calculated from the straight line fit G4(n;), see Equation (12),
for the N different spatial frequencies n;. The relation of the PSD to the amplitude
of the road profile is obtained from Fourier analysis, where An is the spatial frequency
increment, see Equation (14). The random phase angle ®; is taken from the uniform
distribution ¢. The spatial variable x is defined along the longitudinal direction of
the road profile. The reference values G4(ng) are taken from ISO 8608 [6], which are
illustrated in Table 1 together with an exemplary description of the different road classes
[36] and the maximum possible velocity vmax, respectively. Additionally, the IRI is
reported for the generated pseudo-random test tracks.

The presented method generates random road profiles according to the different road

12
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Figure 4 — Pseudo random test track comprising road classes A—H and a detailed extract of
class C.

classes. For the validation of the developed algorithms, random profiles for all road
classes (A—H) were linked together to obtain a complete virtual test track, see Figure 4.
The upper plot shows the complete test track while the bottom plot shows a detailed
extract of the class C road profile. The characteristic PSD of the class C road profile is
shown in Figure 3. The ISO mentions that road class H is only for simulation purposes.
The particular profiles have a length of [ = 1 km and are multiplied by a window function
to ensure a smooth transition between them. This test track enables the development

and validation of specific algorithms in order to estimate the current road roughness.

5.3 Full-vehicle model

A motorcycle in its plane of symmetry can be represented by three rigid bodies with four
independent coordinates. Hence, a full-vehicle model with four degrees of freedom (DOF)
was utilised to describe the system dynamics, as illustrated in Figure 5. Additionally, the
spring deflections are illustrated because they are utilised for the estimation algorithm.
The full-vehicle model has been used in several publications to simulate in-plane dynamics

of motorcycles, see [11, 12, 14, 35, 50]. The in-plane dynamics are generally excited by
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Figure 5 — Full-vehicle model with four DOFs.

road undulations zg(x) and inertial effects due to rider manoeuvres such as accelerating
and braking. On the assumption of a constant vehicle velocity v, the in-plane dynamics
are reduced to four DOFs: vertical motion of the chassis zs, pitch of the chassis ©, rear
unsprung mass motion z,;, and front unsprung mass motion zg. These four DOFs are
related to the vibration modes: bounce, pitch, front wheel hop, and rear wheel hop [12].
The sprung mass mg has the moment of inertia Js and comprises the frame, the engine,
the chassis, and the rider. Additionally, parts of the front and rear suspension system
are counted to the sprung mass. The sprung mass is lumped in the centre of gravity
(COG). The rear unsprung mass m,, comprises the rear wheel, the rear brake, and parts
of the rear suspension. The front unsprung mass mg comprises the front wheel, the front
brake, and parts of the front suspension. Furthermore, the main geometric dimensions
are illustrated: wheelbase p and perpendicular distance b of the COG from the rear-wheel
Z-axis. The lumped masses are connected with parallel spring-damper elements, which
are represented by reduced stiffness and damping coefficients for front suspension (kg, cg)
and rear suspension (kyr, ¢;y). The tyre stiffness and damping coefficients are defined by
kr and cr. The full-vehicle model properties used for this study are illustrated in Table 2.
The reduced stiffness and damping coeflicients are derived with the help of a multi-body
simulation. The equations of motion of the full-vehicle model with road excitation are

as follows:

14



Table 2 — Full-vehicle model properties.

Description Symbol Value Unit
Sprung mass ms 283 kg
Front unsprung mass Mg 26 kg
Rear unsprung mass Myr 32 kg
Rotational inertia sprung mass Js 55 kg m?
Reduced stiffness coefficient front suspension ket 17000 Nm~—?!
Reduced stiffness coefficient rear suspension krr 16 000 Nm~!
Reduced damping coefficient front suspension Ct 500 Nsm™!
Reduced damping coefficient rear suspension Crr 1000 Nsm~!
Tyre stiffness coefficient kT 170000 Nm~!
Tyre damping coefficient cr 500 Nsm™!
Wheelbase p 1.5 m
Perpendicular distance of COG from rear-wheel Z-axis b 0.7 m
M# + C# + Kz = F  with (15)
2 ms 0 0 0
) 0 Js O 0
T = , M= ° , (16)
2f 0 0 mg O
Zrr 0 0 0 my
Cft + Crr Ctt (p - b) — o —Cft —Crr
2 2
C— Cft (p - b) — b g (p - b) + ceb _Cft(p - b) Crrb 17
- : (17)
—cg —cg(p — b) ¢y +cr 0
—Crr Crrb 0 Crr + CT
kft + Fry kft (p - b) — kb _kft —kpy
2 2
K — kft(p - b) - krrb kft(p - b) + krrb _kft (p - b) krrb (18)
- )
— kit —kg(p — b) kg + kr 0
_krr krrb 0 krr + kT
0
0
F= . (19)

krzgr(t) + crir(t)
kTZR(t — 7') + CTZ:’R(t — T)

On the assumption that the rear wheel follows the same road profile as the front wheel,
the road excitation of the rear wheel is the same function as for the front wheel with a

time delay 7:

(20)

SHES
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This implies that the excitation of the system depends on the vehicle velocity wv.
Moreover, this formulation makes a single-input multiple-output (SIMO) system defini-
tion possible to analyse the dynamic behaviour of the system as a function of the road
roughness zg (t). Linear time-invariant (LTI) systems are suitable to analyse the response
of a system to an arbitrary input in the time and frequency domain. The aforementioned
full-vehicle model is therefore formulated as an LTI system, since the matrices are linear
and the solution is linear shift-invariant. The relation between the excitation and the
response of the system is described with transfer functions H (s), which relate the output

Y (s) to the input X (s) in the frequency domain:

Y(s) _ L{y®)
X(s) ~ Z{at))

The Laplace transformation of the system equations needs to be derived to obtain

H(s) = (21)

the transfer functions. For the formulation with just one input variable for the road
roughness Zg(s), the shift theorem as well as the derivation theorem from the Laplace

transformation rules are used as follows:

25

ZL{r(t)} = Zr(s), (22)
Lzt — 1)} = Zr(s)e™ ™, (23)
L{r(t)} = sZr(s), (24)

) (25)

The Laplace transformation of the system equations assuming zero initial conditions

is given by:

0
sMX (5) + sCX (s) + KX (s) = brZa(s) —ESCTZR(S) . (26)

krZr(s)e™"® + scvZr(s)e™ ™

X (s) is the Laplace transformation of the input x(¢). The equations of the spring
deflections sy, s;r are derived and subsequently transformed to the frequency domain,
see Equations (27)—(28).
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The onboard signals comprise the front spring deflection sg and the rear spring deflec-

tion s... For this reason, the following two transfer functions are formulated:

_ Su(s) _ Su(s)
~ ZR(s)’  Zr(s)

The input variable is the road roughness Zgr(s), respectively. The transfer functions
can be derived by solving Equations (26)—(28) numerically. Since the road roughness

excites the rear wheel depending on the time delay 7, the transfer functions are functions

Hg(s,v)

H,\(s,v)

. (29)

of the vehicle velocity v. Figure 6 shows the magnitude part of the bode plot of the
two transfer functions for a vehicle velocity of v = 15ms~!. These transfer functions
describe the frequency response of the respective output signals to the road excitation.

In the following, they are used to estimate the road profile with the onboard signals.
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5.4 Estimation algorithm

The relation between the response and the road profile in the time frequency domain
f can be expressed with transfer functions, as shown in Equation (29). To apply the
transfer functions to the PSD signals, the magnitude part of the transfer function needs
to be squared. This relates the PSD of the response signal PSDges(f) to the PSD of the
road profile PSDgead(f), as shown in Equation (30).

(PP = e pspy () = PODRel) (30)

~ PSDroad(/f) \H(f)|?
This means that the PSD of the road profile can be determined with the PSD of the

response signal and the associated transfer function. The PSD must be transformed to
the spatial frequency domain n to determine the road class according to ISO 8608 with

the following relation:

n= % and PSDRgead(n) = v PSDRead(f)- (31)

The formulation PSDgroaq(n) = v PSDRead(f) follows from the definition of the PSD
as the squared amplitude per frequency increment. In summary, the characteristic PSD

of the road profile can be determined with the following expression:

v PSDRes(f)
|H(f)

This approach is based on the assumption of a constant velocity v. For the develop-

PSDRoad(n) = (32)

ment of a method that is feasible to estimate the current road roughness under realistic
operating conditions, the algorithm must be fast and independent of a constant vehicle
velocity. Hence, the approach is modified as follows: The transfer functions are calcu-
lated in advance for a range of different velocities. As a result, the function stack H(f,v)
provides the correct transfer function H,(f) depending on the velocity. For a continuous
estimation of the PSD of the road profile, an algorithm was developed, as illustrated in
Figure 7. Starting from the onboard signals, a circular ring buffer records the required
signals for a given time span Atpys. Subsequently, the mean value of the velocity v is
calculated for the extracted time frame. In the meantime, the fast Fourier transform
(FFT) and PSD of the signal PSDges(f) are computed in the time domain. The correct
transfer function is interpolated from the transfer function stack for the given mean ve-
locity © and the calculated frequencies f resulting from the FFT. Afterwards, the PSD
of the road profile PSDRoaq(n) can be calculated according to Equation (32), followed by

the classification algorithm. The choice of the time span Atpys has an influence on the
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Figure 7 — Flow chart of the road profile estimation algorithm.

classification quality and is evaluated in Section 6.3.

5.5 Road profile classification

As introduced in Section 5.1, the PSD of the road profile can be evaluated by ISO 8608
[6]. According to this standard, the PSD of the road profile can be classified either at
the spatial reference frequency ny = 0.1 cycles/m or multiple times in every single octave
band. The first method has the disadvantage that the classification result depends only
on the PSD value at the spatial reference frequency. Furthermore, it assumes that a
straight-line fit can approximate the PSD. As Andrén [39] showed, PSDs from real road
measurements deviate from this assumption. The classification in every single octave
band is also infeasible for the present research, since different classification results in the
single octave bands must be stored for every time segment. Moreover, this method gives
indistinct classification results. Hence, the main objective is the classification of a road
segment by its PSD into a single category with the maximum of information provided.
For this reason, the authors propose a novel method to classify the PSD of a road
profile for a given time- or distance segment. After the PSD of the road profile has
been calculated according to Equation (32), it is smoothed in 10 octave bands, which are
illustrated in Table 3 and which are proposed by ISO 8608 [6]. The centre frequency in
each octave band is calculated by n. = 2XP. The authors propose the following novel

smoothing algorithm. Weighted average values of the PSD in the respective octave bands
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Table 3 — Octave bands and geometric mean values for road classification.

Geometric mean values for road classes according to ISO 8608

Ne Gq(ne)(10~6m?)
EXP (cycles/m) A B C D E F G H
-7 0.00786 2621 10486 41943 167772 671089 2684354 10737417 42949668
—6 0.0156 655 2621 10486 41943 167772 671089 2684354 10737417
-5 0.0313 164 655 2621 10486 41943 167772 671089 2684354
—4 0.0625 41 164 655 2621 10486 41943 167772 671089
-3 0.125 10 41 164 655 2621 10486 41943 167772
-2 0.25 2.56 10 41 164 655 2621 10486 41943
-1 0.5 0.64 2.56 10 41 164 655 2621 10486
0 1 0.16 0.64 2.56 10 41 164 655 2621
1 2 0.04 0.16 0.64 2.56 10 41 164 655
2 4 0.01 0.04 0.16 0.64 2.56 10 41 164

are calculated to smooth the PSD. The weighted average is performed by a normalised
Gaussian window function for each octave band. This smoothing algorithm ensures
a correct value of the PSD at the respective centre frequency n., even if only a few
values are available within each octave band. This is necessary since different velocities
result in different spatial frequency at which the PSD is calculated. In addition, the
smoothing in octave bands provides a uniform distribution of PSD values over the spatial
frequencies. This is also necessary because the classification is treated in the logarithmic
domain. The output of the smoothing algorithm is PSDsmoothed(72c). At this point,
the algorithm can handle multiple estimates of the road profile from different onboard
sensors. Subsequently, one smoothed spectrum is calculated.

The classifier is formulated as a minimum distance classifier, which calculates the
distances of PSDgmoothed (72c) from the geometric mean values of the different road classes
in every single octave band. The matrix M(n.,class) of geometric mean values of the
different road classes in the respective octave bands is illustrated in Table 3. The road
profile is classified as the road class with the minimum sum of distances, according to
Equation (33).

10

Road class = min {Z [1og;0[PSDsmoothed (7c,i)] — log1g[M(ne i, class)] \} . (33)
i=1

Figure 8 illustrates three different examples of road profile classification for different

segments. The classified road classes are denoted beside the graphs. At first, the original

PSDs of the road profile estimation algorithm are smoothed in the specified octave bands,

which are highlighted with dashed lines. For these examples, the front and rear spring

deflection signals have been used to estimate the road profile. It can be seen that the
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Figure 8 — Examples of road profile classification.

smoothed PSD is the mean of the two provided PSD estimates PSDy (n) and PSD,,(n).
Finally, the minimum sum of distances classifies each road segment. The PSDs are
located at different spatial frequencies, which is a result of different velocities at each
segment. For example, road segment categorised to class A was driven at a velocity of
va = 60ms~!. Road segment class D was driven at a velocity of vp = 15ms~!. Road

1

segment class G was driven at a velocity of vg = bms™". Further influences on the

frequencies resulting from the FFT are the time span Aty and the sample frequency,
which is set to f = 100 Hz.

One advantage of this classification method is its modular approach. The more onboard
sensors are available, the more robust becomes the classification result. The smoothing
algorithm can easily be extended to calculate the mean values of more than just one
PSD estimation. Additional transfer functions can be derived from the full-vehicle model
depending on the available onboard sensors. After the road class has been determined,
the travelled distance can be calculated from the mean velocity. The distances in the
road classes are incremented by the respective segment distance. Thus, a distribution of

travelled road classes can be recorded for the customer usage profiles.
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Figure 9 — Results of the road curve estimator.

6 Results and Validation

6.1 Validation of the road curve estimator

A test ride with the reference motorcycle as described in Section 2 was performed on
a curvy road to validate the road curve estimator. Figure 9 shows an extract of the
driven test road and the classified curves, respectively. The coloured sections highlight
the identification of a curve while the colour itself represents the curviness ¢ of the
classified curves. It can be seen for example that curve No. 11 has the highest curviness
score, while curve No. 9 has the lowest curviness score. All curves were identified by
the curve estimator, which indicates the robustness of the developed algorithm. The
particular curve properties mean curve radius 7., mean curve angle 7, and curviness
c are illustrated in Table 4. It can also be seen that the distorted curve No. 11 was

scored with a high curviness even if the mean curve angle 4 was scored not that high
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Table 4 — Properties of the classified road curves.

Road curve No.

Property 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Te (m) 43 49 35 98 38 77 35 42 70 35 61 33 28 30
o1 (O) 113 85 254 119 218 103 208 78 74 112 182 184 237 130
c (rad) x1072 169 123 388 226 358 181 319 117 114 166 408 319 396 207
240
————— GPS
220 . .
s Curve Detection
[ ] Classification Result
200 .
~~
G
N 180 .
160 .
140 + / .

1060 1080 1100 1120 1140 1160
X (m)

Figure 10 — Properties of road curve No. 7.

in comparison to the other curves. This manifests the proposed index curviness ¢ as an
curve-evaluation index.

Figure 10 shows the classification results of curve No. 7 in more detail. The curve
estimator detected the correct beginning and end of the curvature of the road, which
is represented by the solid line (Curve Detection). In addition, the estimated curve
properties are highlighted with a circular arc with geometric dimensions according to
the estimation results (Classification Result). It can be seen that the estimated circular
arc roughly fits to the real road curvature. The overestimation is a result of the curve
construction with clothoids, as can be seen at the beginning and end of the curve in
Figure 10. These parts also contribute to the estimation algorithm. The calculation of
the running mean of the roll angle results in curve properties that are a compromise
between the smallest curve radius and the clothoids of the curve. The proposed method
is well suited to detect and classify curves in order to collect customer usage profiles

and to evaluate the driven curves. In addition, the road curviness C' continuously scores
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Figure 11 — Results of the road curviness classification.

road segments of [ = 1km, as illustrated in Figure 11. It can be seen that the road
curviness scores the respective road segment depending on the amount and curviness
of curves within the segment. The road curviness C' was scored to 9, 11, 15, 17, and 6
(rounded) for the given road segments No. 1-5. Road segment No. 4 was scored with the
highest road curviness C'. This is reasonable due to the amount of sharp curves within
the segment. In contrast to the single curve classification, the continuous classification
of road segments makes a characterisation of the driven roads possible.

The lumped-mass model achieved sufficient results for the scope of customer usage
profiles. The classified curve properties can be counted online, whereas the number of
gradations is chosen by the user and the memory capacities. Since the algorithm is based
on the response of the vehicle, the estimated curve properties are based on the driving line
of the motorcycle. Thus, different curve driving techniques can lead to different results
for the same curve. The differences are assumed to be negligible in terms of customer

usage profiles.

6.2 Road slope classification

The road slope estimator developed by Gorges et al. was validated with the help of
a mountain road in a previous publication [1]. In the present paper, this mountain
road has been utilised to show the results of the road slope classification method. The
mountain road was driven uphill and downhill with the reference motorcycle, as shown in
the upper plot of Figure 12. The counting results of the road hilliness H are illustrated

in the bottom plot for positive and negative values, respectively. The road hilliness
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Figure 12 — Results of the road slope classification.

H counts the positive and negative elevation gain per kilometre. The overall elevation
gain for this ride was counted to h, = 342m and h, = —343m. Once the road slope
estimator is implemented in the vehicle, it is convenient to count the elevation gain
with the presented method. The distribution of an overall elevation gain as part of the
customer usage profiles is favourable for the vehicle development process, since it affects
vehicle design targets and improves the understanding of the customer behaviour. The
travelled elevation gain has a direct influence on the powertrain design and on the brake
design. In addition, the classification of the particular road segments improves the choice

of real test road or for the design of virtual test tracks.

6.3 Validation of the road profile estimator

Real roads are not characterised by a homogeneous road class, as highlighted by Andrén
[39] and Bogsjo [42, 43]. Furthermore, arbitrary roads are in general not surveyed by
a road profiler, which makes a validation infeasible. For this reasons, the validation
of the road profile estimator was achieved by numerical simulation, for which the full-
vehicle model was excited by the pseudo-random test track as presented in Section 5.2.
The simulation was performed by the ode45-solver of MATLAB®, which is based on
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the Runge-Kutta method. Each of the eight road class segments (A-H) was travelled
with a constant acceleration of the motorcycle. This guarantees that the estimator was
tested under variable velocities and that all possible frequencies in the range of use have
been excited. The maximum velocities vyax for the respective road classes were chosen
with respect to the physical limitations of a motorcycle travelling over the tracks. The
minimum velocity is vmin = 3ms™!, which is the minimum required velocity for the road
profile estimator. Each road class was driven for a time period of ¢ = 100s. Since the
full-vehicle model has no degree of freedom in the longitudinal direction, the variable
velocity was realised through the transformation of the road profile from the spatial
domain to the time domain. Figure 13 shows the results of the simulation. The upper
plot shows the linear slope of the velocity v in every road class segment together with the
maximum velocities vmayx, respectively. The last three road classes (F-G) were driven
with a maximum velocity of vmax = 5ms~! because they represent heavy off-road tracks
which are difficult to ride even for an enduro motorcycle like the reference vehicle. The
middle plot shows the respective road profile zg(t). It gets rougher with an increase
in the road class. The bottom plot shows the classification results of the road profile
estimator. It can be seen that almost all predicted road classes are classified correctly.
The time span was set to Atpys = 1s. This means that 100 time segments have been
classified per road class. A total of four estimates have been classified false, but only by
a one road-class difference. This indicates that the proposed method is robust and highly
accurate. As is common in classification analysis, the results are reported in a confusion
matrix, see Table 5.

The entries contain the amount of respective classifications. The last row and column
illustrate the percentage of correct classified values in each class. An overall classification
result of 99.5% was achieved. A higher time span Atyys leads to a more robust result,
since the signal length and thus the frequency content gets higher. On the other hand,
under the assumption of a variable velocity, the transfer function gets ambiguous and
therefore the classification quality gets worse. Additionally, the road quality can change
very fast, so that a longer time period results in an indistinct classification result. In
the end, the choice of the time span Atyy,s is a compromise between reaction speed and
quality. The underlying method of the PSD calculation has also an influence on the
classification result. Since the smoothing algorithm is applied after the PSD calculation,
an overlapped PSD calculation method is not necessary to achieve a robust result. In
addition, this would lead to a loss of frequency resolution, which is essential for the road
classification algorithm.

The results show that the frequency approach is successful and highly accurate even

26



O_
800

(%)

I

e}

I

I

I

|
500

OO OO —~H®WHO
F (S}

0000%000
i

DO O OO OO0
A S

—

Actual Class
|
|
|
|
|
400
Time t (s)

Actual class

00%00000
—

|
I
I
|
I
I
I
I
|
300

0%000000
—

[N el ool

|
|
I
I
i
I
I
I
|
I
I
I
I
200

o]
(=]
Al

Figure 13 — Validation of the road profile estimator.

<MOARKIE

Table 5 — Confusion matrix of the road profile estimator.

SSe[D PaYIIpaI]

|
I
I
1
I
I
I
|
I
I
I
I
100

<

1 1 I 1 1 1 1 1 1 1 1 o
LLSCe & 2 o ZmUREADM<

—

)
0
(s/ur) a Lyoep () ¥z SSe[D) PojdIpeld

o
Nel

100 100 100 100 98 99 99 99.5
27

100

2_(%)




under variable velocity, which had been addressed as a disadvantage of this method in the
past [20, 21, 23]. The reaction time is fast enough for collecting customer usage profiles
and implementing it into real-time control systems. Furthermore, the modular approach
makes the presented method easily extensible depending on the available onboard sensors.
In addition, the computational effort is less compared to the alternative methods. An
online application is therefore feasible. The developed road profile estimator requires a
full-vehicle model of the motorcycle, the velocity v, and at least one suspension deflection
signal as input. The derivation of transfer functions requires an LTI system formulation.

Thus, the model has to be reduced to a linear system.

7 Summary and Conclusion

The objective of this research was to develop a road classification system with onboard
signals of two-wheeled vehicles. First, a curve estimation algorithm was developed, which
identifies and classifies curves on the driven road. The authors propose a method to
evaluate every single curve by its mean curve radius, mean curve angle, and its curviness
—a quantity that expresses how intense a rider would experience the curve. The algorithm
takes the velocity and the roll angle as input signals. Beside the event detection, the
road curviness continuously evaluates the underlying road to gather information about
the driven road segments. The results show that the curve estimator works as expected
and that curves are classified in accordance with their geometric dimensions. Second, the
road slope was utilised to classify the hilliness of the driven road. An absolute value of
the elevation gain can be obtained through the continuous integration of the road slope
over the distance travelled. The road hilliness continuously evaluates the elevation gain
per road segment. The proposed method takes the velocity and the road slope as input
signals.

Third, a road profile estimator was developed. Different evaluation methods are presen-
ted for a scientific classification of the road profile. The authors decided to utilise a
frequency approach, which is fast and easy to implement, but was supposed to have
some disadvantages in the past. The transfer functions of a two-wheeled vehicle were
derived with the help of a full-vehicle model and the Laplace transformation. In con-
trast to previous publications which utilised a simple quarter-car model, the presented
model excites the front and rear wheel and is formulated with just one input variable,
the road roughness. This enables the correct application of the transfer functions, which
describe the relationship between the suspension deflections and the road profile. The

presented estimation algorithm is formulated in the frequency domain and does not rely
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on a constant velocity assumption, which was addressed as a disadvantage so far. The
results show that the classification algorithm detects the correct road class within one
second. The road profile estimator is highly accurate and robust. The modular approach
makes it easily adaptable and extendable to the available onboard signals. The classi-
fication algorithm is based on the ISO 8608 standard. It has successfully been proven
on a virtual test track. It has to be mentioned that the transfer functions as well as the
validation have been achieved by the same numerical model of the full vehicle model.
For this reason, the results are quite good. The proposed method will be verified with
a real motorcycle on existing roads in further research. The nonlinear behaviour of the
tyres, the spring-damper system and the influence of the vehicle dynamics needs to be
investigated. The road profile estimator works fast and requires no excessive computa-
tional effort compared to other methods. The presented method requires a linearised
full-vehicle model of the motorcycle, the velocity, and at least one suspension deflection
signal as inputs.

All of the developed algorithms are feasible to work in real time. For this reason, an
implementation into existing electronic control units is feasible. Vehicle design targets can
incrementally be improved with the knowledge of the road class distribution. It helps
understanding the customer usage and it enables to develop further customer-specific
applications. Another benefit is the evaluation of measurement campaigns compared
to the customer profiles. In addition, the distribution of different road classes makes a
virtual load acquisition possible, where a virtual vehicle collects load data on a virtual
test track. The vehicle-independent road classification enables a comparison between
different product segments and different markets. In the future, detailed knowledge
about customer usage profiles offers a variety of applications throughout the automotive
business.

Since no time and location stamps are collected, an implementation of the system is
assumed to be uncritical in terms of data privacy. The data is collected anonymously
without any customer assignment. The resultant customer distribution is treated statist-
ically to derive values such as quantiles, which do not correspond to individual customers.
Further research is planned to validate the developed road profile estimator on real roads
of different road classes. In addition, the detection and classification of irregularities,

that is, potholes, within the road segments will be analysed.
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