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Abstract

This work presents results in the field of real algebraic geometry as
well as in the theory on polyhedra. The main result is that every d-
dimensional polyhedron can be described by at most 2d polynomial
inequalities and, moreover, an explicit construction for these polynom-
ials is provided.

It is also shown that for any d-dimensional pointed polyhedral cone
there is a description using (2d—2) polynomial inequalities, and that for
bounded polyhedra there is a representation involving 2d—1 polynomial
inequalities. A construction for the necessary polynomials is provided
for both cases.

In each case, the number of polynomials constructed is close to the
lower bound: To represent a d-dimensional polyhedron containing a
vertex, at least d polynomial inequalities are needed.
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1. Introduction

The central result of this thesis is that any Polyhedron in R¢ can be
described using 2d polynomial inequalities, and that these can moreover
be constructed.

A deep result in semi-algebraic geometry by BROCKER and SCHEI-
DERER ([Brd91], [Sch89)), states that any closed semi-algebraic set of
dimension d can be described by at most d(d+1)/2 polynomial inequal-
ities. Surprisingly, the number of polynomials necessary is completely
independent of the geometric or algebraic complexity of the considered
set. Unfortunately, all known proofs of this result are non-constructive.

A class of semi-algebraic sets crucial to optimization are polyhedra.
This thesis presents a constructive proof for the theorem of Brocker and
Scheiderer in the case of polyhedra, providing an appropriate algorithm.
Moreover in this case the upper bound on the number of polynomials
necessary is also reduced from d(d + 1)/2 to 2d.

1.1 Background and motivation

The power of linear programming, one of today’s most important op-
timization techniques, is - to a large extent - based on deep insights
into the interplay between the geometry and the algebraic description
of polyhedra.

A linear program can be interpreted as the task to optimize a linear
objective function restricted to a polyhedron. Consequently all known
algorithms solving linear programs incorporate some geometric proper-
ties of polyhedra, and their successful implementations use special ana-
lytic or algebraic representations of polyhedra: The simplex-algorithm
is based on an efficient matrix-representation of vertices, inner-point-
methods use analytic centers or the central path in polyhedra.

A special challenge in combinatorial optimization is the complex-
ity of linear programs, arising from combinatorial problems. Often
the number of facets of the involved polyhedra is exponential in their
dimension, and with this the number of linear inequalities used to de-
scribe them. There are techniques that deal with this efficiently — the
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ellipsoid-method in theory and in praxis the simplex-algorithm together
with cutting plane techniques. Nevertheless, there is still potential for
improvement here, subsequently leading to an interest in fundamentally
new procedures.

In principle, the result of BROCKER and SCHEIDERER offers the
possibility to describe any d dimensional polyhedron by d(d + 1)/2
polynomial inequalities, even though its number of facets might be ex-
ponentially in d. Unfortunately, all known proofs of the corresponding
result are non-constructive. In contrast, this thesis presents an algo-
rithm resulting in a description using 2d polynomial inequalities which
describe a given d-dimensional polyhedron.

Thus combinatorial optimization problems could be reformulated as
the task to maximize a linear objective function over a system of few
polynomial inequalities. The use of methods of nonlinear optimization
could then lead to efficient numeric treatment of the resulting polynom-
ials.

Related Work

The ideas used in the construction presented in this thesis, evolve from
earlier approaches for the description of special polyhedra by means of
polynomial inequalities:

In [Bro91], Example 2.10, or in [ABR96], Example 4.7, a descrip-
tion for a regular convex n-gon in R? using two polynomials is given.
This result was generalized to arbitrary convex polygons by voM HOFE
in [Hof91] using three polynomial inequalities, which was improved by
BERNIG showing in [Ber98] that any convex polygon may be described
using two polynomial inequalities. GROTSCHEL and HENK give a con-
structive description in [GHO3] of simple convex polytopes of any di-
mension d involving O(d?) polynomials.

The presented approach is the first to examine polyhedra without
additional restrictions, the results have been published in advance in
[BGHO4]. A refined version of the corresponding approach is presented
in this work.
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1.2 Main Theorem

In this paper we will show the following:

Theorem 1.2.1 (Main Theorem). Any d-dimensional convex poly-
hedron can be described using at most 2d polynomial inequalities.
These polynomials can be constructed using basic techniques such as
linear optimization.

The explicit construction for the necessary polynomials is provided
in Chapter 3, leading to Algorithms 3.6.1 and 3.6.4 (pg. 61 and 65).

From the viewpoint of Real Algebraic Geometry the given thesis pre-
sents a constructive proof for a stricter version of the results of BROCKER
and SCHEIDERER on a subclass of basic closed semi-algebraic sets in
R?, specifically those defined by linear polynomials.

A corollary from the presented construction is that the the interior
of a given d-dimensional polyhedron can be described using 2d strict
polynomial inequalities. Rephrased, for any open semi-algebraic set in
R? defined by linear polynomials, this work provides a description using
2d-many polynomial inequalities.

1.3 This Thesis is organized as follows

The main ambition of this work is to prove the Main Theorem and
therefore to present a construction for the necessary polynomials. This
is done in three steps.

The first chapter introduces the used notation and reduces the proof
to the case of polyhedral cones. Chapter 2 reviews the combinatorial
and geometrical concepts hidden in the actual construction. This is
followed by the main work of this thesis, the algebraic proof for the
Main Theorem: Chapter 3 presents an algorithm for the calculation of
the polynomials describing a given input-polyhedron which is studied
on an Example.

The last two chapters examine the construction presented in the first
three chapters. In Chapter 4 other possible approaches are presented
and discussed. The final chapter concludes this thesis by a review on
the given construction, the algorithms and resulting implications.

The first part of this Thesis is important to the conception of the
whole work: The geometric interplay between the objects created is a
key to the understanding of the overall algebraic construction.
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1.3.1 The concept

In anticipation of the following definitions the concept of this work can
be sketched as follows:

The main principle is to replace linear polynomials used in the de-
scription of a given polyhedron P by their product. Unavoidably this
results in a set containing additional points, these are then removed by
introducing new polynomials to the resulting semi-algebraic set. Spe-
cial properties of the introduced polynomials ensure that they again can
be replaced by their products — but without changing the corresponding
set.

In brief the following holds: For each face F' of P two polynomials pg
and qr are constructed, such that the semi-algebraic set defined by all
these polynomials is P. For each dimension £ = 0, .. ., d all polynomials
pr can be replaced by their product without changing the set. The same
holds for the polynomials qr. This results in 2d polynomials describing
P. The key to this is the geometric property of each semi-algebraic set
defined by two polynomials pr, qp.

1.4 Notation and Definitions

1.4.1 Semi-algebraic sets

In the following we denote basic closed semi-algebraic sets (algebraic
varieties) based on polynomials fi, . .., f,, € R*[X] in the following way:

SZ(f1y. .y fm) = {z€R" : fi(x)
S7(f1, .-+ fm) {z eR" : fi(z)
S~ (f1,- -, fm) = {z€R" : fi(z)

0,...,fm >0},
0,...,fm >0}, and
0,...,fm =0} (a variety).

I
\ARLYS

The algebraic variety S=(f1,. .., fm) is called the Zariski-closure of the
first two semi-algebraic sets. If a polynomial { is non-positive in some
point x € R?, this can be expressed by —f(z) > 0, and so the corre-
sponding semi-algebraic set of all such x is S=(—f). The central idea of
this work is to replace polynomials in a semi-algebraic set S=(f1,.. ., fm)
by their product, meaning the set S=(f1 *. .. *f,,) is created, where f*g
denotes the product of the polynomials f and g.

1.4.2 Closed cones

This work uses special properties of closed cones:



1.4. Notation and Definitions 15

Definition 1.4.1. A cone C C R? is a set for which the following holds:
With y € C one has Ay € C for every A > 0. C is called pointed if it
contains no linear space as a subset.

In this work closed is used in the topological sense: A cone C is
closed, when its complement is open, i.e., for each = ¢ C there is an
e-ball wrapping = which is also not contained in C.

We will be working both with cones which are semi-algebraic sets —
called semi-algebraic cones, as well as with polyhedral cones, these are
cones, which are polyhedra:

1.4.3 Convex polyhedra and their faces

For a broad characterization of polyhedra we would like to refer the
interested reader to [Zie98]. The only difference of this work to the
general usage of terminology is the fact that here polyhedra are defined
by linear polynomials which are positive on the set.

Convex polyhedra

A subset H C R? is called half-space, if there is a non-zero vector a € R¢
and some b € R such that

H={zecR*:a z>b}

The corresponding Zariski-closure {x € R? : a -z = b;} is called
a hyper-plane. A convex polyhedron is the intersection of finitely
many half-spaces

P={zeR:a;-24+b>0,...,0m, 2+ by >0},

it is a semi-algebraic set defined on linear polynomials, where a; € R¢
and b; € R for s = 1,...,m. This is the half-space- or H-representation
of P. Opposed to this, P can also be described as the Minkowski-sum
of convex combinations of vertices, a cone and a linear space:

P = conv(V') + cone(W) + lin(U).

This is the V-representation of P, where conv(V) is the convex combi-
nation of a finite set of vectors V' and cone(W) is the conic hull of a
finite set of vectors .

The lineality-set

The lineality set of a polyhedron P C R? is the maximal linear space
V, such that the Minkowski-sum of both results in the original set, i.e.,
such that P = P+V holds. A bounded polyhedron is called a polytope.
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Faces of polyhedra and support-vectors

The procedure outlined in this work makes use of the combinatorics of
faces of polyhedra. Let P C R? be a polyhedron. A set F' C P is called
a face of P, if there is a linear polynomial a - z + b with a € R? and
b € R such that

F={z€R:a-24+b=0} and PC{zeR?:qa-2+b>0}

The corresponding hyper-plane {z € R? : a-z + b = 0} is called a
supporting hyper-plane of F', the corresponding vector a a support-
vector of F. The whole is rephrased by stating that the linear in-
equality a-x + b > 0 is tnctdent to F. The experienced reader should
note that the support-vectors used in this work point into the polyhe-
dron. This concept of defining faces will be generalized leading to the
definition of support-polynomials.

By [F] C {1,...,m} we denote the set of all indices of inequalities
a; - ¢ + b; > 0 incident to F, i.e., for each ¢ € [F] and each z € F one
has a; -z — b; = 0.

The dimension dim(F) of F is the minimum of dimensions of
affine spaces containing F'. The face F' is called proper, if both F' # P
and F' # () hold. Both sets, P itself and () are faces of P, one defines
dim(0) := —1. With .#(P) we denote the set of all proper faces of
P, with .Z,(P) the set of all k-faces, faces of dimension k. A face of
dimension d — 1 is called a facet of P.

Polyhedral cones are given in irredundant H-description

A cone C that is a polyhedron is called polyhedral cone. The H-
representation of such sets has the foorm C = {r € R? : (a; - z) >
0,...,(am - x) > 0} (cf. [Zie98]). This representation is called irre-
dundant if each polynomial (a; - ) > 0 is incident to a different facet
F;, € Z44(C), i.e., F; # F; holds for pairs ¢ # j. In the following we
assume that the description of any given polyhedral cone is irredundant.

1.4.4 This work uses support-polynomials which
form cones

The polynomials used in this work have two important properties. The
first links them to a face of the given polyhedron, which helps exploiting
the combinatorial properties of faces of polyhedra. This causes the d in
the 2d. The second is of “geometrical nature” and ensures the 2 in 2d.
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All used polynomials are support-polynomials

Definition 1.4.2. Given a face F € F#(P), any (not necessary linear)
polynomial fr fulfilling

i)PCS=(fr) and i) F=PnNS (fr), (1.1)

1s called support-polynomial of the face F'. This is rephrased by
stating that the polynomial fr defines the face F'.

Remark 1.4.3. Any face F € #(P), can be obtained from P using a
support-polynomial fr, by observing F = 8=(—fp) N P.

This seemingly unimportant property is the basis for the main idea
of this work. It is the reason why all polynomials used in this construc-
tion are support-polynomials for some face of a polyhedron.

All used semi-algebraic sets are cones

The semi-algebraic sets used in our construction are cones, which ap-
proximate polyhedral cones. They are defined using polynomials which
are either linear, or sums of squares. Both properties ensure that the
resulting semi-algebraic sets are cones:

Lemma 1.4.4. Let | be a sum of squares, i.e.,
fz) =) Allz)”
i=1

holds for some polynomials I;, and some \; € R, then both sets S=(f)
and S=(—f) are cones.

The reason is that for each y € §=(f) and u € R one has f(uy) =
p?f(y) > 0. The corresponding holds for S=(—f). An example for this
is the cone {z € R® : (z1)? — (z2)? — (x3)* > 0}.

S
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1.

Introduction




2. The combinatorics and
geometry behind the
construction

2.1 Introduction

This chapter is an introduction to the combinatorial and geometric
principles implicitly used in the algorithm presented in Chapter 3.

The proof of the Main Theorem is divided into three parts: In the
first section of this chapter, the proof is reduced to the special case of
polyhedral cones, making use of homogenization. The second section
motivates, that the necessary polynomials can be constructed, making
a short journey through algebra, combinatorics and the geometry of
the corresponding semi-algebraic sets. Finally, in the the next chapter,
the 2d — 2 polynomials describing a polyhedral cone will be calculated
in detail. The second section of this chapter is for motivation only, the
information given there is only implicitly used in the resulting construc-
tion. Thus if uninterested in the geometric and algebraic background,
the reader may stick to the third chapter.

The basic idea behind the construction in this work is to replace po-
lynomials which appear in a semi-algebraic set by their product and
some additional polynomials: Given a pointed polyhedral cone C' in
semi-algebraic description, C = {z € R? : py(z) > 0,...,pn(z) > 0},
the polynomials used are multiplied into a single polynomial B =
p1*Pox...%xp,,. Here x is used to indicate the product of real numbers
as well as the product of polynomials. In C all p; are positive, so their
product 3 is, too. But the resulting semi-algebraic set S= (‘) contains
various other polyhedra besides C. These will be removed by adding
new polynomial inequalities to the description S=(8). Each polynom-
ial used thereby corresponds to some face of the cone C, allowing to
exploit the combinatorics of the faces of C. Grouping the new polynom-
ials by dimension of the corresponding face, each group of polynomials
is replaced by their product. Due to other special “geometric” proper-
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ties of the used polynomials, the unavoidably resulting undesired sets
“cancel out”.

The task of this chapter is to motivate these properties, which will
be used implicitly in the explicit construction in Chapter 3.

2.2 Reduction to polyhedral cones

The following theorem shows, that it suffices to prove the Main The-
orem for cones. This simplifies the construction, polynomials will be
explicitly constructed only for the case that the given polyhedron is a
polyhedral cone.

Theorem 2.2.1. Let C C R¢ be a d-dimensional polyhedral cone. Then
one can construct (2d — 2) polynomials p; € Rlz], 1 <1i < 2d — 2, such
that C = Sz(pl, . ,de_z).

The general case — that of polyhedra — can now be derived through
homogenization: To prove the Main Theorem 1.2.1, any given polyhe-
dron P is homogenized (cf. [Zie98]) resulting in a polyhedral cone C' :=
{\z,1) e RH* . £ € P, A\ > 0}. According to Theorem 2.2.1, C' can
be described using 2(d+1)—2 = 2d polynomials p;(z) € R[X]?*!. Thus
restricting both C' and all p; to the hyper-plane induced by z4.1 = 1,
one obtains a description of P:

PZ{JZER‘i : 131(%1) 207"-7p2d($71) ZO}

In case P is a polytope, one of the p; is redundant in this description for
P, as we will see later. This is a consequence of the special construction
behind Theorem 2.2.1.

2.3 General Concept

In the following, let C := {z € R : a; -z >0,...,a,, - = > 0} always
be a pointed polyhedral cone, given in irredundant description. This

means, each polynomial a; - z is support-polynomial for a different facet
F; € #44(C), ie., F; # Fj holds for i # j.

2.3.1 Replacing polynomials by their product

In this work the following approach is followed:
To reduce the number of polynomials used in the description of a given
polyhedral cone C := {r € R¢ : a; -2 >0,...,a, -z > 0}, the given
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linear polynomials are replaced by their product
PB(z) == [J(@i-2).
i=1

In the following this will be referred to as "multiplying polynomials in
a description of C”. The resulting semi-algebraic set S~ (), based on
a single polynomial inequality, is the union of C' and all sets where an
even number of the given inequalities are inverted to a; - z < 0 (see
Figure 2.4). In order to retrieve C' from S=() new polynomials are
added to the description, i.e., C = SZ(B,fi,...,f.) holds for some
polynomials fi, ..., f, € R[X]?. This can be understood as intersecting
SZ(P) with new semi-algebraic sets S=(§;):

Sz(mafla--'af’n) :Sz(m)m ﬂ Sz(fz)

i=1,...,n

In the following this is used to link this procedure to the geometry of
such sets.

Repetitive multiplication

The mentioned description C = S=(%B, f1,. .., f,) involving 3, might
use more than the initially given m linear polynomials (a; - x), ..., (am -
z). To again reduce the number of polynomials used in the description,
the newly introduced polynomials §; are replaced by their product, as
done above. The resulting set S= (B, [[i, f;) contains C, and again
new polynomials must be introduced in order to retrieve C. The cy-
cle of introducing new polynomials and multiplying them, comes to a
halt after d steps due to special “combinatorial” properties of the con-
structed polynomials. This is examined more detailed in the following,
starting with a sketch in the following Subsection 2.3.2.

Other approaches

Aside of the approach of multiplying all linear polynomials describing
C, it is also possible to split the given linear polynomials describing
C into separate groups and to build the products in groups. Such ap-
proaches, based on coloring theorems, lead to fewer polynomial inequal-
ities only for very special polyhedra. This will be one of the subjects
discussed in Chapter 4.

Example

The unit-square W = {z€R? : |z;] < 1, i = 1,2} can be described as
W = §=(f,g), where f(z) := (1= (21)*) * (1= (22)°) and g(z) =
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2 — (21)? — (z2)? (see Figure 2.1). The polynomial f is the product of
four linear polynomials used in the following description

W={zeR:1+4+2,>0 1—2;>0, i=1,2}

Figure 2.1 visualizes the replacement of linear polynomials by their

T2

i) The unit-square  ii) The set SZ(J) iii) The set SZ(
142,20, 1-2,>0, i=1,2  f(z)= (1—(z1)?) * (1—(z2)?)  g(z)= 2—(z1)*~ (932

Fig. 2.1: Replacing polynomials by their product and adding a
correction-polynomial

products: Figure 2.1 i) shows the set W. The semi-algebraic set S=(f)
defined by the product of all all linear inequalities defining W is dis-
played in ii). Finally, iii) shows the disc {x € R? : (z1)? + (z1)? < 2},
which contains W, but contains no point of S=(f) \ W.

In the example, the undesired part of S=(f), namely S=(f) \ W is
connected to W in its vertices. Moreover, the the polynomial g zeroes
in these four points, so the boundary {z € R? : 2— (z)*— (z2)? = 0} of
the correcting set S=(g) passes through these vertices. These properties
are important for the intended procedure and are generalized in the next
section.

2.3.2 Exploiting the combinatorics of faces of
polyhedra

In this work we use the following combinatorial invariant: In a descrip-
tion of C, a set of at most one support-polynomial {z for each k-face
F € Z(C) can be replaced by their product §% = [[rc g, (c) fr, when
introducing appropriate support-polynomials for faces of dimension at
most k£ — 1 to the description (cf. Lemma 2.4.1).

A combinatorial view on the algorithm

This principle leads to the following iterative process:
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e Each of the linear polynomials a; -z in an irredundant #-descrip-
tionC ={z R :ay-2>0,...,a, 7 > 0} is a support-
polynomial for a different d — 1 dimensional face of C. Therefore
all (a;-x) can be replaced by their product, when introducing sev-
eral appropriate support-polynomials for each face of dimension
at most d — 2.

e The resulting support-polynomials for all (d — 2)-faces again can
be replaced by seweral products and some support-polynomials
for faces of dimension at most d — 3, and so on.

In each step of this iterative process, the dimension of faces for which
support-polynomials are added gets lower. So it must come to a halt
after d steps, because there is only one face in C' of dimension 1, namely
the vertex.

This approach has been followed in [GHO03], leading to O(d?) poly-
nomial inequalities. The reason why this principle alone does not lead
to O(d) many polynomials is that for a face F' two different support-
polynomials may never end up in the same product. If at any point
of the iteration above, the description of C' contains n support-polyno-
mials for the same face, this results in at least n products in a following
step. So the introduction of new support-polynomials in each step is a
problem.

The “2” in the 2d polynomials used in a description of C

Instead of introducing new polynomials in each step of the iteration,
here the polynomials added in the very first step of the iteration are
“reused” in all following steps. Due to special geometric properties of
the sets moreover two polynomials suffice for each face:

In the very first step two support-polynomials pr, qF are introduced
for each face F. The polynomials are constructed such, that when
replacing pr, qr for k-faces by their products By := [[ 5 #o(C) PP and
Q= HFE%(C) qr, the errors caused by this are undone by all pr, qp
with dim(F) < k.

2.3.3 A sketch of the algorithm

In this construction, each polynomial used is a support polynomial for
some face of the polyhedral cone C = {zx € R : a; -z > 0,...,a, -
z > 0}. As a start, in the given irredundant description, each linear
polynomial a; -z is the support-polynomial of some face F; € %#;41(C), a
facet of C'. In each step of the following iteration, support-polynomials
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of k-faces are replaced by their products. The errors resulting from this
are undone by two support-polynomials pr, qr of faces of dimension at
most k — 1.

As a start, one can replace the polynomials (a;- ), by their product
PBa 1(x) := (ay-z)*. .. (ay-z), when introducing two special polynomials
pr,qr for each face F' € #(C) with dim(F) < d—2:

d—2
C = SZ(Pa)N N N S=(vr, 9r). (2.1)
k=0 Fe#,(C)
The reason why for each face two polynomials suffice, lies in the ge-
ometry of all sets S=(pr,qr), examined later. Now successively for
k=d—2,...,1 the polynomials pr and qr for k-faces F' € Z(C) will
be separately replaced by their products

H pF and Ly = H qr-

FeZy(C FeZ(C)
When replacing the polynomlals pr and qr for faces of dimension

d — 2 by their products, without any additional insights the resulting
set contains the set in (2.1), one obtains

d—2
C C S(Pa1,Pa22 N N N Sprar) (2.2)
k=0 FcFi(C)

Now any point in 8% (Pg-2, Qa—2) not in Npez, (o) S~ (Pr, dr) can be
removed using support-polynomials for faces of dimension at most d—3.
In the following section we motivate, that the remaining polynomials
pr,qr can be constructed such that they do so — in addition to their
original task. This results in

d—2
C = 82(Pa-1,Pa—2, Qa—2) N N N S=(pr, ar)-
k=0 FeZ(0)

Due to the same reasons, repetitive multiplication results in a descrip-
tion of C using 2d — 1 polynomials after d steps:

= Sz(md—l,‘pd—m Qa2,...,P1, Q1) N ﬂ ﬂ 3 (br, qr).

k=0 FE?}C )

The vertex v is the only 0-dimensional face of the pointed cone C,

leading to
pva qv ﬂ ﬂ S pFa qF

k=0 FeZ(C)

As shown later, one has Q4 2 = P4 2, such that one polynomial in the
above is obsolete, leading to 2d — 2 polynomials.
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Reusing support-polynomials

The most important property in the algorithm sketched above is, that
for each face one has to construct only two polynomials pr, qr. This is
due to the special geometry of the corresponding sets S=(pr, qr ).

The central geometric idea of this work is, to choose all pg, qr such
that each set S=(pr, qr) is a closed cone approximating C. With this,
according to Lemma 2.4.2, when replacing the polynomials pr,qr by
their products P, Qi, the resulting additional sets

(B, )\ [ “(pr,qr)

FeFy, (C
are contained in closed cones €, each intersecting C in a face G of
dimension at most £ — 1. Viewed from the perspective of such a face
G, there are appropriate polynomials pg, g such that no set € \ C is
contained in the closed cone 8= (pg, qg)-

For example viewed from the perspective of the vertex v, there are
some closed cones €y_i, ..., 67 attached to v (see Figure 2.2). Since

Fig. 2.2: An approximation 8Z(p,,q,) removes several closed cones
simultaneously from a polyhedral cone C.

all €7 are closed, there is some cone 8= (p,,q,) containing C' and not
containing any point in ¢ \ C, see Figure 2.2. The set S=(p,,dy)
is a semi-algebraic cone approximating C'. Here the polynomial p, is
linear, and g, is a sum of squares. An example for such a pointed cone
82 (py, qv) is the well known cone {z € R3 : z3 > 0, (z3)? — (71)* —
(1132)2 Z 0}

Accordingly, for each other k-face F, the set SZ(pr,qr) is also an
approximation to C, which removes closed cones € ,..., 6L, from
C. Roughly speaking, by improving how good S=(pr, qr) approximates
C, one can adjust its capability in removing closed cones from C' (see
Figure 2.3).
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Fig. 2.3: Improving the quality of approximation, S=(p, q) can remove
more closed cones from C.

This way restrictions are “handed down” in dimension, fixing some n-
face G the restrictions for the polynomials pg, qg, are imposed from
pr,qr for faces of dimension at least n + 1. Roughly speaking, the
lower the dimension of G, the better S=(pg, q¢) must approximate C.
This is examined closer in the following sections.

Example

As an example examine the replacement of all (a; - ) by their product
PBa_1(z) := (a1 - ) * ... (a, - z). The resulting set S=(P4_1) contains —
besides C' — all sets where an even number of inequalities are inverted,
such as for example the set

Ci1:={reR*: (a;-2)<0,(az-2)<0, az - >0,...,a, -z > 0}.

Here we call these sets undesired. Just as C, these undesired sets are
closed, polyhedral cones, and more precisely the set S=() \ C is con-
tained in the union of all such sets (cf. Lemma 2.4.2). Each undesired
set intersects C in a face F' € #(C) of dimension at most d — 2, for
example

CNEy_

= {zeR?: (a;-7)>0,(az-2)>0, az-z>0,...,a, x>0}
N{z eR?: (a;-2)<0,(ay-7)<0, az-z>0,...,a, x>0}
= {zeR?: (a;-2)=0,(ag-z)=0, a3-z>0,...,a, 7 >0}

holds, where the last set is a face of C'. In each undesired set € at
least two polynomials are negative. Thus at least £ = 2 polynomials
a; - x zero in the intersection F' = C'N %, making F' a face of dimension
d—k=d—2or less.
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2.4 Using the combinatorial structure of
polyhedra

When replacing the polynomials in the description of a semi-algebraic
set A = S2(f1,...,fn) by their product, in general, the resulting set
B = 8>(f1 * ... * f,) contains additional points. In order to reobtain
A from B, the artifact A\ B is removed by adding more polynomial
inequalities to the description.

As roughly introduced in the previous section, it is possible to re-
place support-polynomials for k-faces of C' by their product when in-
troducing appropriate support-polynomials for faces of dimension at
most £ — 1. In this section this is first proved, then this is examined in
its geometrical meaning. Please note that although the corresponding
proof uses the sum of polynomials, this work uses other polynomials.
The approach of using the sums of polynomials has been examined in
[GHO03], leading to a description of simplicial polyhedra using O(d?)
polynomials.

2.4.1 The combinatorial invariant

In this work we use the following combinatorial invariant:

Lemma 2.4.1. In a description of C, a set of one support-polynomial
for each N-face can be replaced by their product and additional support-
polynomials py for faces H € % (C) with dim(H) < N.

To prove this we examine the sets “gained” by replacing polynomials
with their product. Roughly, the reduction of dimension then follows
since in each such set two polynomials are negative. Lemma 2.4.1 is a

direct consequence of
Lemma 2.4.2 (Main Lemma 1). Let N € {1,...,d—1} and for each

N-face F € #N(C) let fr be some support-polynomial. Replacing the
polynomials defining An = ﬂFegN(C) 8=2(fr) by their product Fy :=
[resyc)fr one obtains

Ay € 8*(Fn) € Avu | 83 (—fr —fa) \ 8= (Ir fa)-  (2:3)
F,GeZn(C)
F#G
Moreover for each pair F,G € F#(C) with F # G there is a support-
polynomial pprg for the corresponding face F' N G removing the addi-
tional sets:

Av = 87@v)n (] 8 (rnoe) (2.4)

F,GeZn(C)
F#G
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Proof. The first inclusion in (2.3) holds, since for any y € Ay all fr are
positive, leading to F(y) > 0. For any point z € SZ(Fn) \ An, due to
z & Ay there is at least one fr with fr(z) < 0. In addition there is at
least one f¢ with F' # G and fg(z) < 0, otherwise [[pc 2\ (c) fr(z) = 0
would not hold. So —fp(z) > 0 and —fg(z) > 0 hold, this together
with fp(z) # 0 lead to z € 82(—fr, —f¢) \ S=(fr, f¢), proving (2.3).
Moreover prrg = (fr + fg)/2 is a support-polynomial for the corre-
sponding face and prng(z) < 0 holds, implying = € SZ(frng). Since z
is chosen arbitrarily this proves (2.4). O

With the used combinatorial invariant Lemma 2.4.1 follows imme-
diately from Lemma 2.4.2 since if F' # G and dim(F) = dim(G) = N
hold, then dim(F N G) < N follows.

Replacing polynomials results in additional artifacts

In this section, the additional sets resulting from replacing polynomials
by their product in a semi-algebraic set is called artifact:

Definition 2.4.3. For a semi-algebraic set A = S=(f1,...,fn) the set

artifact(f1, ..., fn) == SZ(f1 % ... % fa) \ 8= (f1,- -, )

1s called the artifact of f1,...,f,. If clear which polynomials are meant,
this is abbreviated to “the artifact of A”.

For example Figure 2.1 ii), (page 22) depicts the artifact of the unit
square W. For two polynomials fy, fo the artifact is the set where both
are non-positive and at least one is negative: If the product f; * fo is
positive, then either both polynomials are positive or both are negative,
leading to S=(f; * fa) = SZ(—f1, —f2) U S=(f1, f2). This results in

artifact(f1,fo) = S=(f1 * f2) \ S=(f1, f2)
= 87(—f1, —f2) \ S~ (f1, f2)-

According to Lemma 2.4.2 (2.3) any additional point resulting from
replacing polynomials with their product, is contained in a set of this
form, i.e.,

SZ(h* . 4 f)\S7(Fr,- . F) € | S7(=Fi, —F;) \ S=(Fi, )

1<i<j<n

With Definition 2.4.3 this is rephrased by

artifact(fy,...,fn) C U artifact(fy, fa)-

1<i<j<n



2.4. Using the combinatorial structure of polyhedra 29

So when multiplying polynomials used in a description of C, one needs
to remove the artifact of each pair of the corresponding polynomials
from C.

This can be done using support-polynomials, for faces of lower di-
mension.

2.4.2 Motivating the combinatorial invariant

To interpret the combinatorial invariant stated in Lemma 2.4.1 geo-
metrically, a slight shift in the perception of (2.4) is necessary: Given
a description C = 8=(fy,-..,fn), the set C is reobtained from A :=
8= (f1 *...*f,) by intersection with an appropriate set B. But although
the task of B is to “remove parts of A resulting in C”, from the per-
spective of C, this is reinterpreted as “B cuts off something which was
attached to C”:

Definition 2.4.4. We say the set B cuts off some set D from C, if
it literally does, i.e., C = (C' UD)N B holds. This can be rephrased by
CCBand (D\C)NB=0.

With this shift of perception, reobtaining C' from A by intersection
with B, reduces to three insights:

1. A set B can only fulfil C = ANB,if C C Band (A\C)NB =1
hold. Thus the task of reobtaining C' from A is equivalent to
finding some B which cuts off A\ C from C.

2. Due to a relaxation of (2.3), A\ C is contained in the union of
all sets of the form S=(—f;, —f;). So the previous task can be
reduced to cutting off all such sets from C.

3. According to (2.5), for support-polynomials fr and f¢ for faces F’
and G respectively, SZ(—fr, —f¢) intersects C in F NG, and can
be cut off from C using a set S=(frng), where frng is a support-
polynomial for the corresponding face FF N G.

The following motivates the last insight, the corresponding proof is part
of the proof of Lemma 2.4.1. A visualization is found in Figure 2.4, page
30.

Additional points are removed from C using support
polynomials

So although the final goal is to remove parts of A, this is done finding
polynomial inequalities which cut off some set S=(—fr, —f¢) from C,
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for a pair of faces F' # . This can be done using a support-polynomial
for the corresponding face FF' N G. The geometric intuition for this is
that the set S>(—fr, —fg) intersects C' in FNG: The set C is contained
in S2(fr, f¢) and by by definition F = C N 8=(fr) holds, implying

CNS&>(—fp,—fo) = CNS(fr,fc) N SZ(—fr,—fc)
= CNS=(frfc) (2.5)
= FNG.

Thus S2(—fr, —f¢) can be separated from C using a support-polynomial
frng for this face as done in Figure 2.4.

So as a whole this motivates, that a set of one support-polynomial
fr per k-face F' € #;(C) used in a description of C, can be replaced by
their product and support-polynomials for faces of dimension at most
k—1.

Example

For example given the cone S=(fy,...,fs) in Figure 2.4, the set A :=
SZ(f1%...xf4) contains also the set S=(—fy, ..., —f4) where all inequal-
ities f;(z) > 0 are inverted to —f;(z) > 0. This set is contained in

/ﬁz(—fl, R
(

2 _f17 _f3)

\/F‘l N Fy
S (e )

82(—f1, —f3), which intersects C' in the face F} N F3 and thus can be re-
moved from this set using an appropriate support-polynomial g ~r, for
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FiNFs. So the set S=(f1 .. .%f4, fr,nr; ) is @ more precise approximation
to C than A.

2.4.3 A combinatorial view on the algorithm

To replace a set of one support-polynomial fz per face F € %5 (C) by
their product, one needs to introduce support polynomials for the faces
F N G, which remove a set

artifact(fp, ](G) = 82(_fFa _fG) \ S:(fF7 fG)

from C. Viewed from the perspective of a face H with dim(H) < N,
there can be “quite a bunch” of sets to remove, namely all artifact(fz, fg)
with F,G € #xn(C) and F NG = H. For example choosing H as the
single vertex v € C, all N = 1 dimensional faces of C' pairwise intersect
only in v.

A straight-forward solution for this is to construct one polynomial
fr g for each such pair, resulting in “many” support-polynomials for the
face H. The problem with “many” support-polynomials for one face is,
that two of these must end up in a different product, when replacing
polynomials by their products. For example the set S=(fg * fzr) = R?
can not be removed from C' using a support-polynomial for a lower
dimensional face.

A sketch of the algorithm

In this paper, exactly two polynomials pg, qy are constructed for each
face H. The resulting set S=(pg, qx) approximates C. Roughly speak-
ing it “mimics” the geometry of C close to the face H. This way the set
S=(pm,qy) is able to remove as “many” sets S=(—fp, —fg) as neces-
sary, just by improving the quality of its approximation. For the vertex
of C this is visualized in the Figures 2.2 and 2.3 on page 25 and 26 re-
spectively. The motivation for this property and additional restrictions
on all pp, qr are given in the next section.



32 2. The combinatorics and geometry behind the construction

Algorithm 2.4.5. A combinatorial sketch of the algorithm

Input: An irredundant description
C={zeR?:a,-2>0,...,a, x>0}

Output: A set of 2d polynomials B;,Q; (i=1...,d),
such that C = 8(P1,Qx1, ..., Ba, Qa)-

Init: Set k:=d—1 and for eacht=1,...,m
set pp(z) = qp(x) = a; - ¢ (redundantly), where
F; € #n(C) is the facet incident to a; - x = 0.
Set Pa-1(z) = Qa-1(z) = HFefd_l(C) br

Step 1: Setk:=k—1.
Step 2:  For each H € F(C), construct support-polynomials
P, qg such that: For each pair of faces F' # G

with F NG = H, the set S=(py,qm) removes both
artifact(—pr, —pg) and artifact(—qr, —qg) from C.

Step 3: Set ‘;Bk = HFE(?N(C) Pr and Qk = HFEQN(C) qr

Step 4: Ifk > —1, go to Step 1, else end.

The algorithm comes to a halt, when k reaches —1: There is only
one face of dimension 0, namely the vertex F' = 0 of C, leading to
Po = p, and Qg = ¢,. So no polynomials are multiplied. Here a brief
sketch of the proof for the correctness of the corresponding Algorithm,
Main Algorithm, on page 61, is given. For a complete proof, see there.

Sketch of the proof for the algorithm
The idea behind the above algorithm is an iterative argument: Any
point in some set S= (P, Qi) which is not in C, is contained in some set
of the form artifact(—pp, —pg) or artifact(—qr, —qg) with dim(F) =
dim(G) = k (cf. Lemma 2.4.2). But such sets are removed from C
using S=(prna, drne), where dim(F N G) < k. This way there is some
minimal dimension n for which z € 8(,, Q,) holds, leading to x ¢
ﬂ?:_ol S=(Pi, Qi) U
The above can work only, since in each step the restrictions on the
polynomials pr,qr with dim(F) = k are imposed by the properties
of polynomials pr,qr with dim(F) > k. In each step the added po-
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lynomials must remove more sets, than the polynomials added before
did. So the polynomials pr, gr must be “controllable” in their ability of
removing sets from C. The sets SZ(pr, qr) are approximations to the
cone C, and the mentioned improvement is done by improving “how
good” 8=(pr,qr) approximates C. So the overall process works due
to the special geometry of the sets involved, which is examined in the
following section.

2.5 Geometry: using 2
support-polynomials per face

Where the last section motivated, that a polyhedral cone C = {z €
R :a;-2>0,....4m 2 > 0} can be described using a number of
polynomials linear in d, this section motivates that 2d suffice.

In the following, for each i = 1,...,m let F; € #41(C) be the facet
induced by a; - ¢ = 0, and to simplify notation, (redundantly) define
pr(z) := qp,(z) := a; - . By definition, for any support-polynomial fg
of some face F' € #(C), one obtains C C §=(fr). So, with the above
definition of pp, and qp, and any choice of support-polynomials pr, qr
for each other face F € %#(C) with dim(F') < d — 2 one obtains

c= N e a0 (26)

k=0 FeZ(C)

The task of this section is to motivate the properties, that must hold
in order to multiply polynomials in (2.6), without changing the set.

More precisely, defining B, := HFefk(C) pr and Qi = HFefk(C) qr,
we motivate that for special polynomials pr, qr the following holds:

c= 5% (Pr, Q). (27)

This is due to the special geometric properties of the corresponding
sets SZ(pr, qr), stated in (2.8). This geometric invariant basically ex-
presses, that there are two polynomials, which separate C' from the
union of several semi-algebraic sets. In general, the separation of semi-
algebraic sets using polynomials is a non trivial task (cf. [AAB99]).
Therefore this is motivated after the corresponding proof.
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2.5.1 The geometric invariant
Two polynomials per face suffice

In review of Algorithm 2.4.5, the following Lemma 2.5.1 proves that
there are polynomials pr, qr such that replacing these polynomials by
their products in the description (2.6) of C results in (2.7), a description
of C involving 2d polynomials.

Algorithm 2.4.5 implies the following: In the description (2.6) of
C, the polynomials pp for all k-faces can be replaced by their prod-
uct P without loss, if for each pair F,G € Z,(C) the corresponding
artifact(pr, pg) is removed from the resulting set. The same holds re-
garding all qr. We claim that there are two adequate polynomials py
and qg, such that the set S=(pz, qz) removes all artifacts “belonging”
to the corresponding face H = F'N G. From the perspective of the face
H this reads as follows:

Lemma 2.5.1 (Main Lemma 2). Allpy, qg with0 < dim(H) < d—2
in (2.6) can be constructed such, that for any two different faces F, G €
Fr(C) of equal dimension k > dim(H) intersecting in H = F NG one
obtains

artifact(pp, pg) N SZ(pH, CIH) =0 and

artifact(qp, qg) N SZ(]JH, qH) = (. (2'8)

The center of the following proof is the construction done in the
next chapter. Since there the Main Theorem is explicitly proved, the
following proof is meant to be a motivation for the “cryptic” restrictions
(2.9) on the polynomials constructed in the following chapter.

Proof. Corollary 3.5.4 in Chapter 3 proves that all polynomials pr, qr
with 0 < dim(F') < d — 2 can be explicitly constructed such that

S8 (prre, arne) € 87 (pr,ar) US”(ar,46) US~(PF, dr, P, dc) (2.9)

holds for any pair F,G with dim(F) = dim(G). Now we prove, that
(2.9) essentially is equivalent to the claim in (2.8):

Assume H € % (C) with 0 < dim(H) < d — 2, and choose two
F,G € #y(C) with N > dim(H) such that H = F N G. Then (2.8)
essentially claims that S=(pg,qg) is contained in the complement of
both artifact(qr, q¢) and artifact(pr, qr). For each point z in the com-
plement of artifact(pr, qr), either z € S=(pF, pe) holds, or one of both
polynomials is strictly positive in z:

( 8*(=pr,—pc)\ S~ (pr,pc) )° = & (pr)US”(pc)US~(pF,pc)
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(For a visualization of the complement see Figure 2.7). The correspond-
ing holds for artifact(qr, qg), with (2.9) leading to

Z(pHaqH) -
g S>(pFaqF) U S>(qFaqG) U & (pFaqF,pGaqG)
C [ S~ (pr) U 8>(pe) U S=(pr,pc) |
N [ S (qr) U S87(q6) U S (qr,q6) |
= [artifact(pr,pe)]¢ N [artifact(qr, gg)]°

This proves Lemma, 2.5.1 since with the polynomials constructed in the
next chapter, (2.8) holds. O

In review of Algorithm 2.4.5, Lemma 2.5.1 proves that there are po-
lynomials pr, qr such that replacing these polynomials by their prod-
ucts in the description (2.6) of C results in (2.7), a description of C
involving 2d polynomials.

A geometric view on the algorithm

The main message of Lemma 2.5.1 is the following: One can construct
support-polynomials pr, qr for faces of dimension dim(F) =0,...d—2,
such that defining

H pp and Q= H qr.

FeZ,(C FeZ,(C)
leads to
d—1
C = ﬂ SZ(pFa qF)
k=0 FeZ,(C)
d—1 d—2
= N B, &%) N N N 3 (pr, qr)
k=d—1 k=0 FeF(C
d-1 d-3
= N S>(Pe Q) N N, S e ar) (2.10)
k=d—2 k=0 FeZF(C

= erSZ(mk,Qk) n N N SZ(pr, 9r)-

k=0 FeZ,(C)

This results in a description of C using 2d polynomials, since there is ex-
actly one face of C with dimension 0, leading to (¢ z, (o) S Z(pm, qm) =
82(po, qo). Two of the polynomials, namely Q4_; and Q4_» are redun-
dant in such a description. This is shown in the following chapter,
leading to a description of C' using 2d — 2 polynomials.



36 2. The combinatorics and geometry behind the construction

The idea behind (2.10) is, that any point in some set S=(By, Qi) not
contained in (\pe g, (c) S=(pr, qr), is part of some artifact of the form
artifact(pp, pg) or artifact(qr,qg) with dim(F) = dim(G) = k. But
such sets are removed from C using 8= (prng, qrnag), SO in each line of
(2.10), equality holds.

The reason why Lemma 2.5.1 works, is the geometry of the sets
SZ(pr,qr), which we examine now, before they are constructed in the
next chapter.

2.5.2 Motivation for the geometric invariant
Separating semi-algebraic sets is non-trivial

The geometric invariant stated in Lemma 2.5.1 basically expresses,
that there are two polynomials, which separate the basic closed semi-
algebraic set C' from the union of several semi-algebraic sets. This
insight is non trivial. In fact, the separation of semi-algebraic sets has
attracted attention during the last years (cf. [AAB99]|, [Br688|, and
[ABR96))

The construction used in this work leads to one of the common
examples of two semi-algebraic sets which can not be separated using a
single polynomial inequality. However, the separation is possible with
the help of square roots or rational functions p(z)/q(x), due to the
Minkowski separation theorem (see [ABR96]). Implicitly, we construct
a rational function p(z)/q(x) for separation, but instead of using the
inequality q(z)/p(z) > 0, two inequalities p(z) > 0 and q(z) > 0 are
used. This is depicted in Figure 2.6.

All polynomials constructed define closed cones

Lemma 2.5.1 holds due to special properties of the polynomials pr, qr
constructed later. To obtain a continuous argumentation, such proper-
ties should be valid for all pr and qr. So one can only impose prop-
erties, that the linear polynomials defining C' posses: Each such linear
polynomial fz is support-polynomial for a facet F' and

i) 82(—fr) is a cone, which is topologically closed,
ii) SZ(—fr) has lineality-set lin(F), meaning (2.11)
§2(—fr) = §>(—fr) + lin(F).

These properties are also valid for each S=(—pr) and S=(—qr) we will
construct. Here we would like to motivate, that these special geometric
properties are the main reason why claim 2.5.1 works geometrically.
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Motivating Lemma 2.5.1 by iteration

We motivate Lemma 2.5.1 by showing that if all polynomials pp, qr
have the properties in (2.11), then (2.8) can hold. This is done using an
iteration: As a start by definition all polynomials pr, qr with dim(F') =
d — 1 have the properties in (2.11).

Fix 0 < N < d— 2 and assume all pp, qr with dim(F) > N have
the properties in (2.11). Let H € %#x(C) be a face of dimension N,
then there are py, gy having properties in (2.11), such that (2.8) holds.
To motivate this the geometry of the set to be removed by S=(py, qx),
is examined:

Reviewing (2.8) — the essence of Lemma 2.5.1 — from the perspective
of the face H, the set S=(py, qm) has to remove a “hole bunch” of sets
from C: For any pair of faces F' # G of equal dimension with FNG = H,
one has to ensure S=(pyr, qm) separates the appropriate artifacts from
C. The restrictions on F' and G imply dim(F') = dim(G) > dim(H),
and so the union of all the corresponding artifacts can be written as

Ag = U U [ artifact(pr, pg) U artifact(qr, qg) |
dim(H)<k<d-1 Fg:;ng;c)
) k

By definition, for any support-polynomial fr of a face F € Z(C), fr
zeroes in F', and thus lin(F) C S=(fr) holds. So the artifact of two
support-polynomials fg, f¢ is contained in

artifact(fr,f¢) = S=(—fr, —fc) \ S~ (fr, fa)
C 8% (—fr, —fc) \lin(F N G).

Here the first line follows from the definition for an artifact. This leads
to Ag C By \ lin(H), defining

By = U U  [8%(=pr,—pc) USZ(=ar,—qc) .
dim(H)<N<d-1  #=rnG

So to remove Ap from C, it suffices to remove By \ lin(H) from C.
To this end we examine the geometric properties of By, namely those
in (2.12). These properties allow for a semi-algebraic cone S=(pg, qr)
removing By \ lin(H) from C- see Figure 2.5.

Due to the properties in (2.11), each set S=(—pr, —pg) in the defini-
tion of By is a closed cone —see (2.11) 1) — with lineality-set FNG = H
— see (2.11) 7). Moreover each set S=(—pr,—pg) intersects C in
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FNG = H —see (2.5) on page 30. So as a finite union of such sets, By
has the following three properties:

a) By is a (closed) cone due to (2.11) ),
b) By =By +lin(H)  due to (2.11) %) and, (2.12)
c) Ba NC=H due to (2.5).

For a visualization see Figure 2.5 ii). Property b) ensures that the

By

i) The polyhedral cone C

—_—

SZ (Pl a%)

SZ(pm,am)

iii) The projection to H~ iv) py, gy are constant along lin(H)

Fig. 2.5: S2(py, qm) removes By from C, where By = By + lin(H)
and By NC = H.

geometry of By is determined by its projection to H+: Let 7y be the
orthogonal projection of R? onto H', then one has By = mg(Br) +
lin(H). Both the projections of C' and By are closed cones, intersecting
in mg(C)N7wyg(By) = my(H) = {0} — see Figure 2.5 iii).

So the task of removing By \lin(H) from C, boils down to removing
mg(By) \ {0} from the pointed polyhedral cone 7y (C). Here my(Bg)
is the finite union of some pointed, closed cones. This can be done
using a semi-algebraic cone S=(p’;q% ), which is an “appropriate” ap-
proximation to C, see Figure 2.6. Here p’; is a linear polynomial, such
that S=(p’;) is a supporting-half-space of H. While g}, is a polynomial
of the form (p)%* — >°7",(I)** with some linear polynomials [[. An
example for such a pointed cone S=(p’y,q’;) is the well known cone
{zeR® : 23>0, (z3)% — (z1)? — (z2)? > 0}.

We define py(z) := py(n(z)) and qx = gy (7(x)), which means
that py(z +y) = pm(z) holds for all y € lin(F), and similarly for
qr- So both resulting polynomials are constant in direction of lin(H),
leading to 8= (b, qr) = S=(pm,qm) + lin(H). Moreover the resulting
set S=(pm,qm) removes By \ lin(H) from C (see Figure 2.5 iv).
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Fig. 2.6: An approximation S=(p, q) removes several closed cones si-
multaneously from a polyhedral cone C.

Aside from this the polynomials have the appropriate properties
(2.11): By definition of py,qy are independent of lin(F') leading to
property (2.11) 4i). Since p’; is linear and since qg is the sum of poly-
nomials of even degree, both S=(p’;) and q; are closed cones — which
is property (2.11) 7). Thus separating By from C' can be done using
two polynomials pg, qg with the desired properties (2.11).

2.5.3 Example: Where to put correction sets

Figure 2.7 shows a brief example of placing a “correction set” into the
complement of an artifact. It visualizes S=(f1, fa) = S=(f1 * fo, f3). The
sign of each polynomial is indicated by '—’ and '+’ in each area. For
simplicity, assume that f;(z) > 0 holds for each z in the topological
interior of each set S=(f;).

Image 1 shows the set S=(f; * f2) (green), this set contains both
82 (f1, f2) and 82 (—f1, —f2). The intersection of these sets, S=(—f;, —f2)N
8=(f1,f2) = 8=(f1, f2), belongs to the originally given set S=(fy, f») and
so the undesired part of S=(f; * f) has the form

SZ(f1* §2) \ SZ(f1, f2) =  S2(=f1, —F2) \ S=(f1, f2)-

Image 2 shows the removal of this undesired part of S=(f;  f»), called
artifact, through S=(f3) (orange). The ”correction-set” S=(f3) is placed
in the complement of §=(—f;, —f2) \ S~ (f1, f2). For each point z of this
complement, either x € S=(fy, f2) holds, or one of both polynomials is
strictly positive in x:

( 87(—f1, )\ 8= (f1,f2) )° = 87(71) US” (2) US™(f1, f2)-

Sets of this form are part of the central proof. In Image 2, S~ (f;) and
8> (f2) are easy to find, they are the interior of the two discs S=(f;)
and S=(f), while S=(f1,f2) are the two indicated points where their
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7 g 82 (f1) < ©
@ 82(f2)
©
F]\§/F282(f1,f2)

@ =

ST (f1) S7 (f2)

Sz(fl * f2’ f3)

Fig. 2.7: Two steps: 1% multiplying polynomials, 2°¢ adding a
correction-polynomial

outer hull intersect. The set S=(f3) is mostly contained in the first, the
border of S=(f3) neatly passes through the latter.

2.6 Summary

Using semi-algebraic cones which approximate C, it is possible to de-
scribe C using 2d polynomial inequalities. The d in 2d results from re-
placing support-polynomials for faces of equal dimension by their prod-
uct. The changes in the resulting set can be undone using 2 support-
polynomials for lower dimensional faces, leading to the 2 in 2d. This is
due to two invariants, namely:

e Support-polynomials for faces of dimension k can be replaced by
their product when having appropriate support-polynomials k —1
in the description.

e Closed cones which intersect C' in F' can be removed using a set

SZ(pFaqF)'

When replacing polynomials by products the inevitably resulting ad-
ditional points are contained in sets SZ(—pr, —pg) or S=(—qr, —qq).
These are closed cones that can be removed from the resulting set us-
ing appropriate approximations to C', built on support-polynomials for
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faces of lower dimensions. So more or less each set SZ(pr, qg) mimics
the geometry of C' in F'.

The Main Lemmata 2.4.2 and 2.5.1 state these invariants. Lemma
2.5.1 is proven by anticipating the following construction using (2.9)
which is the central line (3.17) of Lemma 3.5.4.



42 2. The combinatorics and geometry behind the construction




3. Construction

3.1 Introduction

The task of this chapter is to prove the Main Theorem, by construct-
ing a semi-algebraic description for d-dimensional polyhedra using 2d
polynomial inequalities. As proved in the first chapter, this can be re-
duced to constructing a semi-algebraic description for polyhedral cones
involving 2d — 2 polynomials. Concerning this, the previous chapter
motivates that the key to constructing the corresponding polynomials
is the construction of a controlled approximation for polyhedral cones.

Therefore the first part of this chapter introduces a construction
for an approximation of a polyhedral cone. With the polynomials con-
structed, the Main Theorem then is proven.

3.1.1 The constructed polynomials

In the following let C = {z € R : a;-2 >0, i = 1,...,m} be
a d-dimensional, pointed, polyhedral cone, given in irredundant de-
scription. The previous chapter motivated the following: If a spe-
cial semi-algebraic cone S=(pr, qr) is constructed for each proper face
F € #(C), the resulting polynomials can be used in a description of C
and then replaced by their products. Roughly speaking, when replacing
polynomials by their products in a semi-algebraic description of C, the
introduction of pr, qr ensures that C' does not change close to F'. To
this end it is crucial to control how good 8= (pr, qr) approximates C.

Each semi-algebraic cone SZ(pr, qr) is constructed as an approxi-
mation to a relaxation of C, the face cone Cjr (cf. definition 3.2.2).
This polyhedral cone inherits all relevant geometric information about
the face F, passing it on to its approximation S=(pr, qr).

The approximation itself is based on an an idea of Minkowski (cf.
[Min03]) for the approximation of bounded polytopes. Therefore in
the following several statements for bounded polytopes are used. The
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sets appearing in the construction are mostly unbound, and so bound-
edness is introduced by intersection with hyper-planes. Moreover, the
construction uses both the - and the V-description of the given face-
cone. Therefore each set and constant involved is defined for both
descriptions.

3.2 Polyhedra used approximating C

3.2.1 Reduction to bounded sets by vertex figures
The vertex figure

The approximation used here evolves from an approximation for poly-
topes given by Minkowski. A good way to bring in polytopes when
working with cones is to use vertex-figures: The intersection of a pointed
polyhedral cone C' with an appropriate hyperplane results in a bounded
polytope - a vertex figure P of C. To obtain such a vertex-figure a
support-vector u of the apex of the appropriate polyhedral cone is used,
namely P:=CN{z eR? : (u-z)=1}.

Measuring approximation quality using a linear function

The set C' is the infinite union of parallel vertex-figures, e.g. one has
C = Ux>oAP. In each such slice u - z is constant, v -z = A holds for any
x € AP. So to obtain an approximation to C', from an approximation
to P, will involve the usage of u-x. If one achieves to approximate P “c-
good” with a semi-algebraic set, then each set AP can be approximated
“Ae-good” with a similar set. This leads to the (rough) insight, that for
an approximation to C', the measurement u-x with z € C'is a criterion
of measuring the quality of approximation.

3.2.2 Support-vectors

The approach followed in this work involves constructing an approxi-
mation for each proper face of C. Therefore a support-vector up will
be needed for each face F € Z#(C). To ease notation, we fix some
arbitrary choice of support-vectors.

Definition 3.2.1. For each proper face F € % (C) choose the support-
vector up 1= Zie?(C) a;.

This choice is made purely in desire to ease notation. Without fixing
the support-vectors, virtually every object in the following would have
an additional index. The construction works with any other choice of
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support-vectors, no additional properties of this special choice are used
in the following.

3.2.3 The set to approximate: The face cone
A face cone is a relaxation of C

In the following let F' € %#(C) be a proper face of C, proper meaning
that both F' # C and F # () hold. For F, a polyhedral cone called the
face-cone is defined, which is a relaxation of C, which represents the
geometrical properties of F'.

Definition 3.2.2. For a proper face F € F(C) let [F| denote the set
of all indices of linear inequalities incident to F':

[Fl:={ie{l,...,m} : (a;-z) =0 for allx € F}.
The face-cone Ciz of F', is defined by all inequalities incident to F':

Cri={z€R* :q;-2>0,i€[F]}.

Corollary 3.2.3. The vectors a;, i € [F] span F*.

The set F'* is the set of all vectors in R? perpendicular to F. By
definition, for each ¢ € [F], one has a; € F*, since a;-z = 0 holds for all
z € F. Defining k := dim(F'), one finds that there is a subset of d — k
linearly independent vectors in {a; : i € [F]}. Since dim(Ft) =d —k
holds, this implies that the vectors in {a; : i € [F]} span F*.

The face cone C}; inherits geometric and combinatorial
properties of F

For any face I’ the face-cone Ciz contains C, so Cjz can be understood
as an approximation to C', which inherits the “important” geometric
information of the face F'. For example, for the single vertex v of C one
has C|,; = C, since any inequality defining C'is incident to v. Moreover,
face-cones preserve the combinatorial properties of faces:

If G C F holds for some face G € #(C), then this implies Cig C
Cir- This holds since C¢, is defined using a subset of the inequalities
defining C|; the inverse inclusion [F] C [G] holds for the index-set of
incident inequalities.
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The V-representation of a face cone

In the general case C|r is not pointed, since it contains lin(F'), but
since the dimension of F* equals the rank of all a;, i € [F], the cone
CisNF* is pointed. Later, for each face-cone of C, an approximation by
a semi-algebraic set will be constructed. The following helps reducing
the corresponding construction to approximating pointed cones:

Lemma 3.2.4. For each face F' € F(C) one has
C[F] = C + hn(F) = (C[F] N FJ_) + hn(F),
where Cipy N F* is pointed.

Proof. The inclusion Cir; 2 C + lin(F') must hold, since for any triple
i€ [F],y € C and w € lin(F) one has a; -y + w = a, - y > 0 and thus
y+w € Cpy.

The reverse inclusion Cir; 2 C +lin(F) follows from two facts: First
of all one has Cr; = Cjm+1in(F), since ;- = 0 holds for all z € lin(F)
and 7 € [F]. Moreover, as proven below, the projection of C' to F* is
Ci; N F. These two facts imply, that for every z € Cip there is a
y € lin(F) such that z — y € C, implying z € C + lin(F).

Using the Fourier-Motzkin-Projection Method, it is now shown that
the projection of C to F* is Cjpy N F*:

Assume that F' = cone{vy,...,v,} holds for a set of vectors v;.
Starting with C, each k-th step of the Fourier-Motzkin-Algorithm projects
the previously constructed cone to vi. This way C is projected to F*
in n steps. In the first step of the algorithm the set of all a; is sorted
into groups, depending on the sign of a; - v;. Since v; € C holds, this
sign is never negative, and due to the properties of the algorithm the
projection of C to vi is {z € R? : a;-x > 0, i € [cone(vy)]} Nwvi.
Here [cone(v)] is the index set of all inequalities incident to the one-
dimensional-face cone(v;) of C. Each following projection step follows
the same rules leading to the set

{z€R? :q;-2>0, 1€ [cone(vy,...,vx)]} Nlin{vy,...,ve}"

after k steps. This set is exactly Cjsy N F*+ for k = n.

The cone C)N F* is pointed, since lin(F) is a face of C{;; therefore
lin(F) N F*+ = {0} is a vertez of Cjyy N F*, which thus is pointed. [J

Corollary 3.2.5 (V-representation). Let V € R? be a finite set such
that C = cone(V'). Then for each face F € F(C) one has

Cr=cone{fveV : v¢g F}+lin(F).
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3.3 Principles of approximating cones

In the following we will construct a semi-algebraic set, which approxi-
mates a given polyhedral cone. The approximation itself will be a cone
and will have the same lineality-space as the given polyhedral cone.
Roughly speaking, the quality of approximation will be measured by
determining how far it is for each point in C to the outside of the ap-
proximation. This is measured using an auxiliary polyhedron A which
has the same lineality set as the given polyhedral cone C'. For each point
in C, the approximation provides some space of the form z +¢(u-z)A,
where u is a support-vector for the apex of C.

At first, the general idea used in this approximation is examined:

3.3.1 Approximating a bounded polytope
Approximation of an interval

The overall construction of approximating cones is based on an ap-
proximation to polytopes by Minkowski presented in [Min03|. Since
the approximation is the central element of this thesis, we would like
to give a brief introduction to how these approximations work. The
technique Minkowski introduced, makes use of approximating intervals
by a single polynomial inequality. The main idea is to replace absolute
values by a quadratic functions in inequalities, e.g. |z| < 1 is equivalent
to z? < 1.

So any Interval I = [m —r, m + r] C R, with midpoint m and
radius r > 0, can be described using a single polynomial of even degree,
ie, I ={yeR : ((y—m)/r)* < 1}, with k € N. From this
description an approximation to I can be derived, namely the set {y €
R : ((y —m)/r)** < 2}. The last polynomial inequality transforms to
ly —m| < r%/2, where %X/2 converges to 1 as k goes to infinity.

Approximating polytopes, the intersection of
“multi-dimensional intervals”

Replacing y above by a linear polynomial a-x, the set enclosed between
two parallel hyperplanes in R? can be described or approximated using
a single polynomial inequality. Every bounded polytope P = {z € R? :
a;-x >b;, i=1,...,n} can be understood as the intersection of such
sets: Using the support-function h(a;, P) := max{a; -x : = € P} one
has

P={zeR:b<a;-z<h(a;,P),i=1,...,n}.
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So defining m;, r; such that [b;, h(a;, P)] = [m; — r;, m; + r;] by setting

T = —(a ) and m; = —(a )+
2 2
for each i € {1,...,n}, one obtains a description and and an approxi-

mation of P using monomes of even degree by observing

p

{zeR : la; -z —m;| /i <1, 1€{l,...,n}}
= {zeR¢: (a; -z —my)?*/r* <1, ie{l,...,n}}
C {zeR: YT (ai-z—m)**/rk <n } =P

All summands in the definition of P, are positive, so for x € P} the
single polynomial inequality “simultaneously” implies (a; - x —m;)?* <
r?kn for each 4, equivalent to |a; - z — my| < 7; ¥/n. Therefore Py
approximates P arbitrarily good, when k € N is chosen large. For a
given € > 0 choose k£ € N such that ¥/n < 1+ € holds, then the above
leads to the following set, bounding Py:

P, C {zeR: (a;-z—m)* <rPnp, ie{l,...,n}}
C {zeR?: Ja-z—my| <m(l+e), ie{l,...,n}}
C {reRd: a;- T >b;,—er;, i€{l,...,n}}

Here the last inclusion derives from b; = m; —r;. Geometrically, the last
set bounding Py is P “inflated”, i.e., the half-spaces defining P have
each been “moved away” by er; from P. With this bounding, one finds
that with £ going to infinity — and thus € going to zero — Py converges
to P, since b; — er; goes to b;.

The remaining question is “how good” Pj, approximates P. This can
be answered using the auxiliary polytope A := {z € R? : |a;-z| < 2r;}.
Utilizing special properties of the barycenter of P, one can show that
Py, is bounded by the Minkowski-sum

P, CP+edA.

So how close Py, really is to P depends on the geometric properties of
A, which are examined later on.

3.3.2 The “radius” of a face-cone is a linear
function

The difficulty that arises when approximating polyhedral cones, is that
here “r;” is a linear function, not a constant. For P which is bounded,
the relative width 2r; = h(a;, P) — h(—a;, P) is bounded for any direc-
tion a; € RY. This is not true in general for a pointed polyhedral cone,

but it holds true for any of its vertex-figures.
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Calculating the “radius” of C|; using a vertex-figure P¥

In the following let C = {z € R¢ : a; -z > 0} be a pointed polyhedral
cone. Further for each face F' € .%#(C), let ur be a fixed support-vector
of F'. To obtain a measure of relative width in each direction a;, define
the following:

Definition 3.3.1. For any proper face F € % (C) with support-vector
ur let PY be the following vertez-figure of Cip:

PP ={z€Cy : up =1}

For every indez i € [F), define rf' :== mazx{(a;-x)/2 : = € PF}, where
2rF is the relative width of P¥ in direction of a;.

Note that although the vertex-figure P not necessarily is bounded,
rF is finite, see Lemma 3.3.3, below. With the value of rf" the cone Cj,
can be rewritten:

Lemma 3.3.2. For any proper face F' € %#(C), the cone Cir can be
rewritten as

Cr = {r€R?:0<(a;-2) <2rf (up-2), i € [F]} (3.1)
= {zeR?: |a;-x—r(up-2)| <rf(ur-x), i €[F]} (3.2)

Thus for any x € C and i € [F] one finds (a; - x) < 2rf (up - z).

Proof. Let F € % (C) be any proper face of C. By definition, one has
Cr={z€R?:0< (a;-z), i € [F]}, so to prove (3.1) it suffices to
prove the inclusion “C”. To this end, we choose j € [F] and y € Cp
arbitrarily, and prove a; - y < 2r7 (up - y):

Since up is a support-vector for a face of Ci, one has up -y > 0. If
up -y > 0 holds, then this implies (a;-y) < 2rf (up-y) by the definition
of rf’, since y/(up-y) € P¥. If up-y = 0 holds, then one has y € lin(F),
due to y € Cp. Thus a; -y = 2r] (up - y) = 0 holds, by the definition
of [F]. So in both cases y is part of the set of the right-hand-side of
(3.1), proving the examined inclusion.

The set in (3.2) can be obtained from (3.1) by direct calculation, ob-
serving that for each i € [F] the value r¥’ (ug-x) > 0 is positive. Viewing
rF as both radius as well as the midpoint of the interval [0, 27 (ur - z)],
this calculation follows the previous discussion on intervals. O

To calculate ", observe the following:
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Lemma 3.3.3 (V-description). For every pair of a proper face F €
Z(C) and index i € [F], the value vl is finite, since for any V-
description C = conv(V') one obtains

rf = max{;ai%v) cvelV, ai-v;éO}.

’ (ur - v)
Proof. Let F € Z#(C) be a proper face and choose some i € [F|. The
set PF is the vertex figure of Cr, which can be rewritten as C¥ =
cone{v € V :v & F} + lin(F) due to Corollary 3.2.5. For any v € V,
the restriction v € F' is equivalent to up - v = 0, implying the V-
description

PF:conv{ :vEV,uF~U7éO}+1in(F).

(up - v)
Now the definition of [F] leadsto {v € V : a;-v #0} C {v eV :
up - v # 0}. Moreover, a; - v > 0 holds for all v € V| and there is at

least one v € V with a; - v > 0. Otherwise C is not full-dimensional.
This leads to

rf = max {(a;-7)/2 : v € PF}
= max {%:UEV,%-’U;&O},
proving the lemma. l

3.3.3 The auxiliary polyhedron AF

The following polyhedron is an auxiliary object, it is used measuring
the quality of approximation to face-cones. Though never explicitly
appearing in the actual construction, it is used in the following proofs
and so its properties have to be examined to some extent.

Definition 3.3.4. For any proper face F € F(C) of C let AF be the
following polyhedron:

A :={zeR?: |a;-z| <20, i € [F]}.

These polyhedra are unbounded in the general case, each containing
lin(F), but their intersection with F* is bounded. In case F is a facet,
the set AF is the intersection of two parallel half-spaces. This must
hold, since in this case there is only one possible support-vector up =
aj, where j is the only element of [F]. So one obtains v} = 1/2 =
max{(a; - )/2 : x € P} leading to AF ={z € R? : |a; - x| < 1}.
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The auxiliary polyhedron Af is bounded in direction of uz

Since a; - = 0 holds for every i € [F] and z € lin(F'), the lineality-set
of AF contains lin(F), meaning that one has AF = (AFNF+) +1in(F).
Here the set A N F* is bounded:

Lemma 3.3.5. For each proper face F € Z(C) the set AF N Ft is
bounded and moreover for each v € AY one has

lup -v| < (d+1). (3.3)

Proof. Let F € #(C) be a proper face of C. Then A" NF* is bounded
due to the following:

Any ray in F* is of the form cone(y), where y € F*. If such a
ray is contained in AF then |a; - (\y)| < 2rf must hold for any A > 0
and all i € [F], implying a; -y = 0 for all i € [F]. The vectors q;
with ¢ € [F] span F* (see Corollary 3.2.3) and thus the above implies
y € (F+)* = lin(F), leading to y = 0 due to y € F*. This shows that
AF N F+ contains the trivial ray {0} only and thus is bounded.

To prove (3.3), first restrict to the case where F' is the vertex of C.
The special in this case is that C\ = C is pointed and thus its vertex-
figure P¥ is bounded. Let s be the barycenter of the polytope P¥ and
i € [F] an arbitrary index. Then with [BF34] and h(a;, PF) = 2rf and
h(—a;, P¥) = 0 one obtains

uwF < g;-s< orf
d+1’l“l_a 8_d+17'l

Thus Cip translated by —(d + 1)s must contain AF:

AF C {zeR?: a; > —2r, i € [F]}
C {zeR? :a;-z2>—(d+1)(a;-s), i€[F]}

Since ug -y > 0 holds for any y € Cx, the above implies that for any
r € AF one has up -z > —(d+1)(up - s) = —(d + 1). The last derives
from up - s = 1, which is due to s € PF. Since AF is symmetric to the
origin, this implies up - < (d + 1) and thus shows |up - z| < d + 1.

Now if F' is not the vertex of C, then one uses the above in the space
F*. One has Cp = (CisyNF*) +1in(F) and AT = (ApNF*) +1in(F).
Here C| N F* is pointed and so the same argumentation as above leads
to lup - z| < d+1 for any x € A¥ N F*. Recalling that up -v = 0
holds for any v € lin(F'), as a whole this leads to |ur - z| < d + 1 for
any z € AF. O
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The auxiliary polyhedron Af contains P¥ — PF

The following relates AF to the vertex figure P¥. Note that thereby
the Minkowski-sum P¥ — P is in general not just {0}.

Lemma 3.3.6. For a proper face F € Z(C), one finds PF—PF C AF.

Proof. Let i € [F] be an arbitrary index of a proper face F. Each
r € PF fulfills 0 < a; - ¢ < 2rf" and thus each y € PF + (—PF) must
fulfill |a; - y| < 2rF, implying y € AF. O

1

3.4 Central Construction

The following is the construction of an approximation to a face-cone,
whose outer hull is close (3.5), but not too close (3.4) to Cz:

Lemma 3.4.1. Let F € #(C) be a proper face and 0 < e < 1/2. Then
there is a polynomial q5 such that defining pr(x) := up - x one obtains

{z+ew(ur-2)AT 1 2€Cpn} S S (pr,d7)US (pr,a%) (3:4)
{z+ e(ur-2)A" : z€Crn} 2 87(pr d7), (3.5)

where w = 274(d + 1) 2. Moreover, one has S=(pr,q%) = lin(F).

Proof. Let F' € Z(C) be a proper face of C and define n := |[F]| as the
amount of indices in [F]. Set € := ¢/(2d 4+ 2). With these definitions
define

) e (e N L (@ 2) o (ur )\

where k := Blr}?l(i)g)-‘ Both the proofs for (3.4) and (3.5) fall into two

cases, each depending on if the considered point y fulfills up - y = 0 or
up -y > 0. In the latter case, the proof will use a vertex-figure of Cz
in order to exploit properties of bounded polyhedra.

Proof for (3.4):

Choose an arbitrary point y in the set on the left-hand side in (3.4):
To this end, let z,v be arbitrary points with z € Cj and v € AF|
and with € := we define y := x + (up - )ev. The definition of £ leads
to 0 < € < ¢/(d + 1), which together with |up - v| < (d + 1) implies
|E(up - v)| < e/2 < 1/2, leading to the estimation

2(ur - z) = (ur - y) = (up - 2)(1+E(up - v)) = (ur-z)/2  (3.7)
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This shows that up - y > 0 must hold and more over, up - y = 0 holds
if and only if up - z = 0.

So assume up -y = 0, which implies urp - © = 0. Together with
z € C}p this leads to z € lin(F'), implying that a; - £ = 0 holds for
each i € [F]. From this a; -y = 0 is derived by observing a; - y =
a; - ¢+ (ur - 2)&(a; - w) = 0. With up -y = 0 and a; - y = 0, direct
insertion leads to q%(y) = 0. Thus y € S~(pr, q5) holds, proving (3.4)
in this case.

Now assume up -y > 0, then one has

q%(y):(up-y)% 1_21((ai-y)/(up-y)—n ) ’ (3.8)

———
e (1+72)r]

which implies that to prove gr(y) > 0, it suffices to show (a; - y)/(ur -
y) —rF < (1 +&)rf for each i € [F]. So let i € [F] be an arbitrary
index. The core task is to bounded a; - y relative to up - y. To this
end define T := z (ur - y)/(up - ), where up -  # 0 holds since with
up-y > 0 one has up-z > 0. In addition of 7 fulfilling up -y = up -7, it
is a positive multiple of x and thus a point in the cone Ciz. Moreover
the value of € is chosen such that y € T+¢ (up-y)AF must hold: Direct
calculation leads to the first line of

a;-(y—7)| = | (up-2) € (ai-w) — (up-w) € (a;- 7))
< 2up-y) & 2F 4+ (d+1) § 4F(up-y)
< erf(up-vy).

The second inequality follows from 0 < a; -z < 2rf (up-z),0 <up-z <
2up -y (cf. (3.7)) and |up - w| < (d + 1) together with the triangle
inequality. The last inequality uses d > 0 leading to 4(d + 2) <
8(d + 1) = €. The above implies

(@i -y) —ri(ur-y)| < l(ai-Z) —rf(up-y)| + lai-(y—7)|

< rf (up - y) + erf(ur-y).

Here in the second line 0 < (a; - ) < 2rf(a; - T) is used, which holds
due to T € Cjy. So for the index 7 one obtains

<<az» )/ (ur - y) = o ) <1 (3.9

(1+2e)rf

Since i € C|r was chosen arbitrarily, each summand in (3.8) correspond-
ing to the fraction in (3.9) is strictly smaller than 1/n = 1/|[F]|. So
the above proves that g% (y) > 0 must hold, this shows y € 8~ (p, q5%),
finally proving (3.4).
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Proof for (3.5):
Choose an arbitrary point y € R? fulfilling p(y) > 0 and q5(y) > 0.
With p(y) = ur - y > 0 there are two cases to examine:

First assume that up - y = 0 holds. Direct insertion leads to

HOEEDY % <%>% >0,

1E[F]

implying that a; - y = 0 holds for each ¢ € [F]|. Thus y is a point in
lin(F) C Clz, which together with 0 € A¥ proves that y is contained
in the set on the left-hand side of (3.5).

Now assume up -y > 0 holds. To prove the inclusion in (3.5), it
suffices to restrict to the case up -y = 1. This is due to the fact, that
if ¥ := y/(up - y) is part of the left-hand side of (3.5), y is too:

First of all, ¥ € §=(p, q%) must hold, since one has p(7) = p(y)/(up-
y) > 0 and q5%(¥) = q%(y)/(ur - y)®** > 0. Moreover, if 7 is in the
left hand side of (3.5), i.e. there are T € Cjr; and w € AF such that
y=T+e(up-T)w, then y = z+e(up-z)w holds for z = (up-y)T € Cig.
Here one has x € Ciz, since z is a positive multiple of z.

So assume w.l.o.g., that up -y = 1, and let s be the barycenter of
the bounded polytope PF N F*. The next paragraph proves

y—se(1+¢)(PF—5s), (3.10)
which with s € P¥ and P¥ — PF C AF leads to
y€ (1+e)P" —esC PF +¢(PF — PF) C PP +eAF.

This proves the lemma by showing that there is z € P¥ C Cj and
w € AF such that y = z + ew. So it suffices to show (3.10), which is
done by finding an estimation on the ratio of a; - y and the values of
a; - = for any x € PF — 5. To this end special properties of s are used:

From ug - y = 1 one derives directly up - (y — s) = 0 and obtains
1 ((a;-y) —rF 2k
Sy)=1-Y — (L) >0
Tr(Y) an ( (1+z&)rf -

by direct insertion. This inequality implies, that each negative sum-
mand may not exceed 1, more precise

(ai-y) =i’ | < (L +E)rf ¥n (3.11)
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must hold for each ¢ € [F|. Here, by choice of k, one has %/n < (1+2)
and so ¥/n(1+4%) < (1+4¢) holds due to € < 1. Using this, (3.11) can
be relaxed to the statement

—b;—4er] <(a;j-y—s) < (2+48)rf — b, (3.12)
where b; := a; - s for each i € [F]. Using the last definition one obtains
Pf—s={zecR*: —b; < (a;-2) <2rf —b;, i €[F], (up-z)=0},

by additionally observing that (uz-z) = 0 must hold for any z € P¥ —s
due to (up - s) = 1. So defining

7

bi ’ 27’1F — bz

A ;= max max

—b; —dgrf  2F — b +4ErF
i€[F] — ’

one has (y —s) € A (PF —s). From [BF34] one obtains for each i € [F]
the estimations

2rf < b; < orF.
d+17% =7= g
which lead to
_b—dz T o F
@_74;7"1 = 1448 % da1
o F _b, +dzrF _ O, F <1+4¢ =1+e.
wrp, = 1T g 2T —b;

This proves A < 1+ ¢, leading to y — s € (1 + €)(P¥ — s), proving the
lemma — using the argumentation above.
U
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3.5 Proof of the Main Theorem

3.5.1 Replacing polynomials with their product

Polynomials can be replaced if approximations fit into each
other

The main objective of the presented proof strategy is to replace po-
lynomials qr. and pp for faces F' € #,(C) of equal dimension k €
{0,...,d— 1} by their products. For a special choice of the parameters
g, the arising 2d polynomials P and £y, give a complete description
of the cone C. Roughly speaking, to prove this one has to study, for
two k-faces F' and G, how to “fit” SZ(prng,q5ng) into the union of
S=(pr,q%) and S=(pg,q%). More precise, SZ(prng, d5ng) must be
fitted into the complement of the corresponding artifacts, this is the
geometric invariant stated in Lemma 2.5.1.

Approximations are compared using points in the
approximated sets

This is done using the sets introduced in Lemma 3.3.2. Using the
insights presented there, we find that 8 (prng, q%.g) is wrapped by
{z + (upng - ©) e AFC 2 € Clprg}- Given some z € Clpng, the set
S=(pr, q%) “provides” some space = +we (up-z) A in its interior, the
similar holds for S=(pg, q%)-

So to prove SZ(prng, 45~c) is contained in the two other sets, first
it is proven that that MAFG C AF and MAFG C A% hold for some
constant M. Then, for each £ € Cipng it is shown that upng - = is
related linearly to the maximum max{up -z, ug -z} involving the same
constant M. This holds since z can not be close to F' as well as G
without being close to F'N G, and the three linear functions (urng - ),
(ur - ), and (ug - ) represent these distances.

3.5.2 Fitting auxiliary sets into each other
The central constant M

To calculate the constant M it is necessary to know how close a point
yr € F can be to some other face (G, measured relative to upng - yr.
This is expressed by the constant 7,in:

Definition 3.5.1. As above, let C = cone(V') be the irredundant V-
description of the pointed, polyhedral cone C. For each face F € % (C)
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let up be the chosen support-vector. Then one defines M := Tmin/Tmax
by setting

Tmin = Milpeg ) Minp min{ 22‘;;”3)) cweV, a;-v#0 } ,
Tmax = MaXpeg(C)MaXic[p] max{ 2((‘;;”3)) cwEeEV, a;-v# O} )

Please note that both constants depend on the choice of support-
vectors ur for each face F' € % (C'). Moreover 7,y is just the maximum
of all possible values of " (see proof below) while 7y, is deliberately
chosen to be lesser than the minimum of all these values.

Corollary 3.5.2. For any pair of a face F € Z(C) and indez i € [F|,
one obtains 0 < rpin < rf < Pmax ond thus 0 < M < 1.

Proof. Choose some F € #(C) and i € [F], then 7 < rF < 7o
is implied by the definition of 7f in Lemma 3.3.3. To prove 0 < T'min,
observe that there is some v € V' with a;-v # 0, otherwise C' would not
be full-dimensional. Moreover for any such v one has up - v # 0 since
by definition of [F], the polynomial a; - z zeroes in F, implying v ¢ F
and thus up - v # 0. This leads to a; - v > 0 implying 7y, > 0. O

Comparing polytopes A’ and support-polynomials (up - z)

Lemma 3.5.3. For every pair F,G of k-faces of C and for every x €
Cirne one finds

(M/2) (upng - @)
M AFﬂG

max{(ur - x), (ug - )} (3.13)
AF, (3.14)

N IA

Proof. The lemma holds trivially, if one has F' = G, due to M < 1. So
assume F' # G and choose z € C|png) arbitrarily.

Proof for (3.14): One has FNG C F, leading to the inverse inclusion
[F] C [F N G] for the indices of incident inequalities. So for i € [F]
both rF and rf"¢ are defined and one has M rf"¢ < r;, < rF. Thus
by definition one has

= {z€R!: |a;-2| <2MrF"C i€ [FNG)}
C {zeR?: |a;-z| < 2rF, i € [F|} = AF.

Proof for (3.13): Here it suffices to show

M (uprg - ) < (urp +ug) -, (3.15)
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when observing (urp + ug) - ¢ < 2max{ur - z,ug - }. To this end
assume the irredundant V-description of C is given by C' = cone(V),
where V' C R? is a finite set. Defining Vs :={v eV : v & (FNG)},
one has Cpng = cone(Ving)+lin(FNG), due to Lemma 3.2.4. So there
are y € cone(Vp ;) and w € lin(F N G) with z = y + w. It suffices
to prove (3.15) separately for both y and w, due to the linearity of the
involved scalar-products:

Both, upng and (up +ug), are support-vectors for the face FNG €
F(C), implying upng - w = (ur + ug) - w = 0. So for w (3.15) holds
trivially.

The vector y is the conic combination y = ZveVmeG Ayv for some
Ay > 0. Here each v involved is part of C'\ (FNG) and thus by definition
of support-vectors upng-v > 0 must hold for each. This leads to a proof
for (3.15), by observing

M(upne - y) < ZveV;mG Av <(1(pr+r:é;cg)v) (urnG - ) (3.16)
= (ur +ug) .

Here the inequality holds since each v can not be in both F' and G:

Let v € Vipng), then one has v ¢ FFN G, so at least one of v & F
or v € G must hold. Assuming w.l.o.g. v € F, one finds an index
i € [F] C [FNG] with a; -v > 0. Using the definitions of 7., and 7y,
one obtains:

. . . 1
(rtug) v (wpw) (aew) 1

(urng - v) (a; - v) (upnG - V) ~ Tmax

which proves (3.16) since v € Virng) was chosen arbitrarily. So subse-
quently (3.15) (and thus the lemma) is proven. O

3.5.3 Fitting approximations into each other

A corollary of Lemma 3.5.3 is that one can explicitly calculate e, 0 <
k < d — 1, such that given F,G € Z,(C) and [ := dim(F N G) the
inclusion (3.17) holds. To understand this “cryptic” property, notice
the following: The meaning of (3.17), is that S=(pg, q3) is contained
in the complements of both artifact(pr, pe) and artifact(q%,q3%). This
insight is the central part of the proof for Main Lemma 2 (see (2.9)
page 34), and Main Lemma 2 directly leads to a description of C' using
2d polynomials.

Corollary 3.5.4. For each k € {0,...,d — 1} let

_ M2 1 d—1-k
=\ T2 28(d 1) ’
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then for any pair of two different k-faces F,G € F#(C), k € {1,...,d—
1}, with intersection H :== F NG and | :== dim(H) one has
S (pm, ) S S7(pr,aF) US” (pe, q¢) (3.17)
U SZ(pFa q?ﬁ Pa, qgc)

Proof. Onehas0 < eg < ... < €4_1 = 1, so each €, meets the restriction
0 < & < 1 for Lemma 3. " 1, which states $=(pw,q%) C {z + & (ug -

z)A" : z € Cy}. Thus choosmg an arbitrary y € Ciy), it suffices to
show

y+e(ug-y)AT € S (pr, i) US” (e, qd)
U Sz(pFa q;"ca Pa, Clgc)
in order to prove (3.17). To this end distinguish the cases (ug - y) =0
and (ug - y) > 0:
In case uy -y = 0 holds, one has y € lin(H) = lin(F N G) due to
y € Ciyy, implying

y+e (ug - y) A" ={y} Clin(FNG) = S~ (pr, 9%, bs,qe).

The last equation is a result of Lemma 3.4.1, which states lin(F) =
S=(pr,q7), accordingly this holds also for G.

Now assume ug -y > 0 holds, and w.l.o.g. assume that up-y > ug-y
holds. In addition one infers up-y > 0 from y € C5. With this, Lemma
3.5.3 leads to the first two of the following inclusions:

y+e(ug-y) A" C y+ %2 er(up - y) A"
C y+ 5 ealur-y)AF
C y+ w ep(up- y) (3.18)
g (pFaqF)Ul (F)

The last inclusion is a direct consequence of (3.5) in Lemma 3.4.1, the
inclusion before follows from the value w = defined there, i.e.

1
2%(d+1)
one has

2 _2 1

28 S gt = 2+ 1)
What is left to show in order to prove the lemma, is that in (3.18) the
set lin(F) is obsolete. To this end we show that for each v € we, AF
one has up - (y + (up -y)v) > 0 and thus (y + (up - y) v) & lin(F). One
has |up - v| < weg(d+ 1) = /2% < 1/2, implying

Ep = W Eg.

up - (y+ (ur - y)v) = (up - y)(1 + (ur - v)) > (ur-y)/2 > 0.
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So since by assumption ug -y > 0 holds, the above and (3.18) lead to
y+e(um-y)AT C S8 (pr,q).
This finally proves the lemma. Ul

Since every (d — 2)-face H of C is given by the intersection of two
uniquely determined facets F' and G of C' we may even set

€a—2:=1/2, q3 *(z):=pu(z)=uy -z (3.19)
without violating the validity of Corollary 3.5.4. Now we come to the

definition of the polynomials, which give us a representation of an n-
dimensional pointed polyhedral cone.

3.5.4 Proof of the Main Theorem

Definition 3.5.5. Let ¢, 0 < k < d — 1, be chosen according to
Corollary 8.5.4 and (3.19). For F € Z(C), let pr,q% € R[X] be
gwen as in Lemma 3.4.1. Then, for k=0,...,n—1, let

Pul@) = [] pe(@) and Q@)= [] a#@).

FeZ,(0) FeZ,(0)

Proof of the Main Theorem. First we show that
C={zeR: Py(z) >0, Q(z) >0, k=0,...,d—1}.

The inclusion C is obvious. So let y ¢ C, but suppose that y satisfies
all the polynomial inequalities. Since y ¢ C one of the facet defining
inequalities has to be violated, i.e., there exists an (d — 1)-face F' with
pr(y) < 0. Hence we may define [ € {0,...,d — 1} as the minimum
number (index) for which one of the factors in the polynomials 3;(z)
or () is violated. Since both, Po(z) and Qy(z), consist only of one
such polynomial factor we have [ € {1,...,d — 1}.

Let F € %(C) such that pr(y) < 0 or q7#(y) < 0. Since P,;(y) >0
and £;(y) > 0 there must exist a G € %#(C) with ps(y) < 0 (in the
case that pr(y) < 0) or with qg(y) < 0 (if q%(y) < 0). Thus we
know that y is neither contained in S”(pp, q3) nor in S~ (pg, q¢) nor
in the linear space S=(pr, 4%, Pa, 9¢) = lin(F) Nlin(G). By the choice
of 4im(rng) and Corollary 3.5.4, however, those points y are cut off by
the cone SZ(prag, Gpme™"). Thus we must have

y & 87 (prne Arme ),
contradicting the minimum property of [. Finally, we observe that
Pa 1 = Qg 1 and P4 2 = Qg 2 hold, and hence one obtains only
2d — 2 polynomials. U
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3.6 Algorithm

Algorithm 3.6.1. Main Algorithm

Input A polyhedral cone C given in double-description by
C = cone(V)
={zeR: (a;-2)>0,i=1,...,m}.
Output Polynomials By, Qr with £ =0,...,d — 1 such that

C={zeR: Py(z) >0, Q(z) >0, k=0,...,d—1}.

Step 1  For each F' € #(C) calculate [F] C {1,...,m}, the
index-set of all linear inequalities incident to F' and fix
a support-vector ug.

Step 2  Calculate /" and 7} for each pair F € #(C), i € [F] as
well as Tmin, Tmaz:

7 = min % veV, (a-v)#0 ¢,
rf = max % cveV, (a;-v)#0
Tmin = Milpeg) Milep 77,

Tmax = MaXpeg(C) MaXic[F) TZF .

Step 3  Construction of the support-polynomials pg, qz:
For each F € %#(C) set pr(z) := (ur - ) and
—1fd1m(F) >d— 2 set qr = Pr,

—if dim(F) < d — 2 set
. - . (T?r.in . )dldim(F)

€F T 2(drD) \ rRay B(dH) ’
In(|[F
ng = [—th((a[gi)-‘ and
on 1 ( (arw)—rF (up-a) | 27
ar(e) = (up-zfrr = 3 iy (i)™,

1E€[F]
Step4 Foreach k=0,...,d—1 set

Pr(z) = HFE.?k(C)pF(m) and
Qp(z) = Hpeyk(C)qF(x)-
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Proof of correctness of the Main Algorithm. The polynomials B;, and
£}, constructed in correspond to the polynomials in Definition 3.5.5.
According to the proof of the Main Theorem on page 60, these poly-
nomials describe C, i.e.,

C =8>(PBa1,Ba—2, Bas3, a3, - - -, Po, )
holds. U

3.6.1 Discussion
Complexity

The complexity of the Algorithm 3.6.1 in its given form is not poly-
nomial in the input-size: In general, the number of faces F' € .#(C) is
exponential in the input-size of all a; and all v used in the initial descrip-
tions. Since one has to calculate a polynomial for each face F' € Z#(C),
in the worst case the running time is not polynomially bounded in the
input-size. This general obstruction can not be overcome.

The general intention is to use a semi-algebraic description for poly-
hedra arising in combinatorial optimization. For such sets mostly the
facet-defining inequalities are known, implying knowledge on the cor-
responding support-vectors. This gives rise to the following question:
Assume C' is given in H-representation together with a support-vector
for each face. Is it possible to calculate the core values rmin, "max, and
rF more efficiently than traversing all extremals v of C?

The calculation of each rf and 7., can be reduced to solving an LP
of the form max(a;-z) st. z € {z €R? : q;-2 >0, i € [F] and (ur-
z) = 1}. Each such operation can be solved in polynomial-time in the
given input-size, see [GLS88].

Unfortunately, it is not clear, how to calculate ry,;, more efficiently
in such a setting. This value reflects how close any v € V can be to
F. if v € F holds. More precise it depends on the minimum angle
between two rays cone(v) and cone(w) which are contained in different
faces. For the given construction calculating a lower-bound for ry;,
would suffice, but unfortunately it is not clear how to calculate such a
bound, without traversing all extremals of C.

Preliminaries

The given cone C does not need to be pointed, in order to apply Algo-
rithm 3.6.1. The presented construction is restricted to pointed poly-
hedral cones to simplify the proofs involved. In fact a polyhedral cone
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in R with an n-dimensional apex, i.e. each face of it has at least
dimension n, can be described using at most 2(d — n) polynomials.

The initially given H- and V-representations of C' need not be irre-
dundant. But to keep the resulting exponents as low as possible, one
should use at least an irredundant V-representation: The exponent 2np
of each polynomial qr is greater than 1/In(1 + 2. ). Where the value
of rmin becomes arbitrarily close to 0, when adding a single redundant
vector v € C to V, if v is close to some face F.

3.6.2 Implications for semi-algebraic geometry

The following corollaries offer the explicit construction of polynomials
describing special semi-algebraic sets. The number of polynomials in-
volved is relatively far from the proven lower bounds, namely d(d+1)/2
polynomials for closed and d polynomials for open semi-algebraic sets
(cf. [BCR9S] p. 122 and p. 259). But since the latter bounds are ob-
tained non-constructive, the following corollaries are interesting because
this work provides a construction for the corresponding polynomials:

Corollary 3.6.2. Any d-dimensional basic open semi-algebraic set A C
R? defined by linear polynomials can be described using 2d strict poly-
nomial inequalities. The corresponding polynomials can be constructed.

Proof. Let
P={zcR?:a,-2+b,>0,...,an T+ by >0}

be a basic open semi-algebraic set, defined by strict linear inequali-
ties. Then the corresponding polyhedron P = {z € R? : a; -z +
by > 0,...,am, - ¢ + by, > 0} can be described using 2d polynomials
P = SZ (md,‘pdfl,mdfg, Qd,Q, . ,‘Bo,ﬂo). In Algorithm 361, these
polynomials are constructed such, that each polynomial 3; and Qy
vanishes on all k-faces of P. Any point z € P is contained in P and
not contained in any of its faces, implying that

P =8 (Ba, Ba1,Pa 2,94 2, -, Po, Qo)
holds. 0
The following corollary is an observation of CLAUS SCHEIDERER:

Corollary 3.6.3. Any d-dimensional basic closed semi-algebraic set
A =82(f1,---,fm) C R? defined by polynomials §; of degree at most
n, can be described using 2(":d) — 2 strict polynomial inequalities. The
corresponding polynomials can be constructed.
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Proof. Each inequality f;(z) > 0 can be understood as a linear in-
equality in the space of monomes: Let my,...,my € R[X] be the
monomes such that §; = Zjvzl Aijm; holds for each §; and some coeffi-
cients \;; € R. Fixing these coefficients, one defines the polyhedron

N N
P:={y€RN : Z)\lijO,---,Z)‘mijO}'
i=1 i=1

This set can be described using 2N polynomials 3;, which moreover
can be constructed, one obtains P = SZ(By,...Pan). The set A is
the pre-image of P under the polynomial mapping p : R — RV, z
(mi(z),...,my(x)), and so one obtains A = {z € R? : Py (p(z)) >
0,...,Pon(p(z)) > 0}. This proves the corollary, since the number of
possible monomes is bounded by N < (":d) -1 O

3.6.3 A description for bounded polytopes

Based on Algorithm 3.6.1, any polyhedron in R? can be described using
2d polynomials as stretched out in the first chapter. For a bounded poly-
tope P, the corresponding algorithm possesses a simple form, leading
to a semi-algebraic description of P involving 2d — 1 polynomials. This
results from the following: The semi-algebraic description of P is ob-
tained from running Algorithm 3.6.1 for the homogenization C C R?*!
of P. The cone C has a single vertex v = 0, and a possible support-
polynomial p, for v is z4,1 > 0. The description for P is obtained
from the description of C by fixing z4.1 = 1 in all polynomials. This
way the polynomial PBo(z,1) = p,(z,1) = 1 becomes obsolete for the
description of P.

The following algorithm calculates such a description. The seem-
ingly only change is the replacement of the homogeneous linear poly-
nomials a; - x and up - ¢ by linear polynomials of the form a; - = + b; or
ar - T + bF.
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Algorithm 3.6.4. Algorithm for bounded polytopes

Input

Output

A bounded polytope P given in double-description by
C = conv(V)
={zeR: (a;-x)+b;>0,i=1,...,m}.

Polynomials §4_1,8q—2, &1
and §x, &, with £k =0,...,d — 3 such that

C = SZ {S’dfl,gdf% Sd*?ua 6d73a s ;SO, 60) 671} .

Init

Step 1

Step 2

Step 3

Step 4

Step 5

Fori=1,...,m, set [;(z) := (a; - ) + b;.

For each F € %#(C) calculate [F] C {1,...,m} and fix
a linear support-polynomial fz. Set fg := 1 and [()] :=

{1,...,m}.
For each k =0,...,d — 1 set
Sk(z) = llpes, (o) fr(z) and

For each pair F' € .Z(C) U {0}, i € [F] calculate

R = min 2[;151(’1))) cveV, L(v)#0;,

[; (v .
RF = max 2](;(1))) cveV, L(v)#0

. . P

Ruin = minpege) mingr Ry,
— 7

Ruax = maxXpege) maxer R .

For each F € Z(C) U {0} with dim(F) < d — 2 set

)

= . . R, d—1—dim(F)
F T 2(d+1) \R2,, 25(d+1)

~ In(|[F
ng = [721&[4%-‘ and

- Li(z) RFip(z) \ 2°F
or(@) = fr(@)?r - ¥ oy (LOpRIER) T

1€[F|

For each £k = —1,...,d — 1 set

Gi(z) = Hpeyk(C) gr(z).
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Proof of correctness of Algorithm 3.6.4

Proof. The proof of correctness for Algorithm 3.6.4 comes through Al-
gorithm 3.6.1 (the Main Algorithm) with the help of homogenization.
To simplify notation, in the following (z,\) with z € R? and A € R
is used to represent a vector (z”,\)” € R¢T!. The polytope P can
be reobtained from its homogenization C' := {(Az,\) € R*! : z €
P, X\ > 0} by fixing 4,1 = 1 in any semi-algebraic description of C"

Taking the lift of dimension into account when indexing, the Main
Algorithm yields a description

C = Sz(md,md—la md—?;gd—% v )mO)’QO%

from which one derives
P={zeR?: Py(z,1) >0...,Po(z,1) > 0,Q0(z,1) > 0}. (3.20)

So the task is to compare the polynomials Py, Q, calculated in
Algorithm 3.6.1 for C' with the polynomials constructed in the Main
Algorithm 3.6.4, i.e., one must show that Fr_1(z) = Pr(z,1) and
&_1(z) = Qi(z,1) hold, and that the polynomial Py(z, 1) is obso-
lete in (3.20).

The homogenization C := {(Az,\) € R : x € P, A\ >0} of Pis
a pointed cone since P is bounded. Setting @; = (a;,b;) fori =1,...,m
and V := {(v,1) : v € V} its H- and V-representation are given by
(cf. [Zie98]):

C = {yeR*™ : yg120,a-2>0,...,am -z >0} (3.21)
= cone(V). (3.22)
The values calculated in Algorithm 3.6.4 are the same calculated in the
Main Algorithm: Let w € V and v € V such that w = (v,1), then
one has @; - w = a; - v + b; = [;(v). Moreover each face F € #(C) is
the homogenization of a face F' € %#(P), except for the vertex w € C.
Let fr(z) = ap - ¢ + br be the chosen linear support-polynomial for
some face F' € #(P), then Uz := (ar,br) is a support-vector for the
corresponding face F € Z(C). For compatibility one defines § := w
and chooses u,, := (0,1) as a support-vector for the vertex w € C' With
these choices on uz, the values calculated in Algorithm 3.6.4 result in
the values calculated in the Main Algorithm:

Rf' = max %: vev, [i(v)%O} B
= max 2%;’_”10 cweW, Ei-w#O} = rf,

fr(z) = up-(z,1) and

L(z) = a-(z,1).
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Accordingly Rpax = Tmax and Ry, = Tmin hold, Moreover, the lift of
dimensions dim(F) + 1 = dim(F) and dim(P) + 1 = dim(C) = d + 1
cancel out, in the definitions of € = 7 and ng = np. Here the
values with tilde appear in Algorithm 3.6.4 and the others in the Main
Algorithm.

All in all this leads to gr(z) = qz(z, 1), such that for the polynom-

ials P, Qp calculated in Algorithm 3.6.1 one obtains:
Sro1(z) = Pr(z,1) andB_1(z) = Qi(z, 1),

leading to P = SZ("Sd—lv gd—?a &d—37 ®d—37 s 73—17 6—1)- Here the po-
lynomial §_1(z) = pu(z,1) = Uy - (z,1) = 1 is obsolete, which finally
proves the algorithm. O

3.6.4 Example

The description of the d-cube Dy := {z € R¢ : —1 < z; < 1} al-
ready uses 2d polynomial inequalities. These can easily be reduced to
d polynomial inequalities of degree 2, namely Dy = {z € R? : (z1)? <
1,...,(zq)* < 1}. The construction stretched out in Algorithm 3.6.4,
results in more polynomials of higher degree: A direct calculation for
every k-face F' € Z#,(Cy), leads to the following exponent 2np of fp:

2 = {m (@) <ln (1 + 5 1)(32d21(d+ 1))'1_1_'“))_1} |

The degree 2n, of a polynomial f, constructed in Algorithm 3.6.4 for
some vertex v € Cy is given in Table 3.1. Recalling that every cube Cy

d= 2 3 4 5 6 7 8 9 10 15 20
Ny = 211 224 238 254 270 287 2105 2123 2142 2242 2350

Tab. 3.1: The exponent n, of a single polynomial f,

has 2¢ vertices, these exponents have to be taken to the power of 2¢
to obtain the degree of the resulting product &y. In R? the resulting
polynomial &, has a degree of 2'%2. This obstructs the direct usage
of Algorithm 3.6.4 to present an example. But in fact, with reduced
exponents 2ng, the polynomials constructed in Algorithm 3.6.4, lead
to a description of C3 = S8Z(F2, 81,50, Bo, B_1). The corresponding
polynomials are presented on the following page in order to demonstrate
the resulting degrees. On the following page, Figure 3.1 presents the
geometry of the corresponding semi-algebraic sets.
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Fa(z)
S1(z)

So(z)

60(&')

— 22222 2P 2 — P yP — P — 22+ 1

28yt — 228222 — 882 + 2824 — 82822 + 1628 — 2255 +
2 289422 +2 269224 +-64 25¢%2%4+-96 25y —2 2525496 2522 —
256 28 + z4y8 + 2 4y822 — 6 oty 2t — 48 iyt 22 + 48 iyt +
2x%y?2% — 48 2%yt — 256 21y?2% — 640 z%y? + 228 +
48 £42*— 640 2422+ 1536 2* —2 229822 —8 22y® +2 229024+
64 221522 4+ 96 22y5 + 2 22125 — 48 22yt 2t — 256 22y*2? —
640 22y* — 2 22228 + 64 229225 — 256 22y 24 + 512 22y% 22 +
2560 z2y? — 82228 + 96222% — 640222 + 2560 222% —
4096 22 +182% — 84222 +169® — 29020 + 96 622 — 256 % +
yi® + 48 ytet — 640 y*2? + 1536 y* — 89228 + 969226 —
640 y22* + 2560 3222 — 4096 y? + 16 28 — 256 28+ 1536 2% —
4096 2% + 4096

28 —425y2 — 42522 - 36 2% + 6 2yt + 4 21y222 + 36 2ty? +
6z42* + 362422 + 486 2% — 4 22y + 4 22y*2? + 36 22yt +
4x%y%2* — 360 22y%2% + 324 x2y? — 42%2% 4+ 36222 +
3242222 —2916 22 +18 — 41522 — 369y + 6 y*2* +36 ¢ 22 +
486 y* — 49220 +369y%2* +324 9222 — 2916y + 22 — 36 20 +
486 2% — 2916 22 + 6561

(1122 — 16 7y? — 32 zyz — 58y — 16 22> — 58 12 — T8 x —
494 —161y32—56 3% —24y?2%2 — 168 y?2 — 289 y? — 16 yz> —
168 yz? —578 y2—678 y—4 2* —56 23 —289 2% — 678 2—657)
(1122 — 16 zy? + 32 xyz — 58 xy — 16 222 + 58 12 — 78 1 —
4yt 416132 —56 9> —24 4222 + 168322 — 28912 + 16 y2° —
168 y22+578 yz—678 y—4 2*+56 23— 289 22 +678 2 —657)
(1122 —16zy* + 32 zy2 + 58 2y — 16 £22 — 58 x2 — T8 —
4y*+16132+56y% —249y%2% — 168 y?2 — 289 y2 + 16 y2° +
168 yz2+578 y2+678 y—4 2*—56 2> —289 22 —678 2 —657)
(112%> — 16 zy> — 32 xyz + 58 xy — 16 22> + 58 22 — 78 —
49yt — 16932 +56y° —24 y?22 + 168 22 — 289 y? — 16 yz3 +
168 y2z2 —578 y2+678 y—4 2*+56 23— 289 22 +678 2 —657)
(112* + 16 zy* — 32 xyz + 58 zy + 16 122 — 58 2 + 78z —
4yt 416132 —56 y> —24 222 +168y%2 — 2892 + 16 y2° —
168 yz2+578 yz— 678 y—4 2 +56 23— 289 22+ 678 2 —657)
(1122 +167y> + 32 2y2 + 58 xy + 16 222 + 58 22 + T8 x —
494 —16y32—561y° —24y%2%2 — 168 y22 — 289 y% — 16 yz> —
168 yz? —578 y2— 678 y—4 2* —56 23 —289 2% — 678 2—657)
(1122 + 16 xy* +321yz — 58 zy + 16 122 — 58 22 + 78 7 —
4yt —16y32+56 y> —24 y222 + 168 y?2 — 289 y2 — 16 y2° +
168 yz2—578 y2+678 y—4 2*+56 23 —289 22 +678 2 —657)
(1122 +162y* — 322y2 — 58y + 16 2% + 58 22 + 78 7 —
4yt +169°2+56y° — 24 4222 — 168422 — 289 y2 + 16 y2° +
168 yz2+578 y2+ 678 y—4 2 —56 2% —289 22 — 678 2 —657)

—z8 — % — 28 + 3+ 1/12230590464



1) Given linear inequalities are 2) As in R? resulting ad- 3) are contained in sets, where
replaced by their product Fs. ditional points SZ(F2) \ P ... 2 polynomials are negative.

4) Such sets are removed by intro- 5) These are replaced by 6) The set SZ(F2,T1) \ P
ducing new linear polynomials. their product §i. is contained in sets ...

7) where two polynomials are 8) are removed using a cone 9) All §, (and g,) are replaced
negative. These sets ... 52 (§y, gv) for each vertex. by their product §o (g resp.).

PN

10)Additional points 11) are contained in a set 12) These are removed using
82(32,51,30,60)\P... 82(—gv,—gw) or SZ(—fU,—fw). an approximation 82(6_1).

Fig. 3.1: The unit-cube in R3 is described using 3 polynomials.
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4. Other approaches

This chapter reviews other possible approaches that can be followed in
order to obtain a description for polyhedra involving few polynomials.
In fact, there are exactly two basic principles that can be followed to do
so. This is due to algebraic principles “hidden” behind the presented
construction. So opposed to the presented construction there is the
possibility to follow a generally different principle. In addition, it may
be possible to refine the construction introduced in this thesis.

As a whole, there are exactly two points where one can stray from
the procedure presented in this work: Either right at the beginning, or
after the first step. The resulting two approaches and their capabilities
are demonstrated in the following by two examples. While refining
the given construction may lead to to a description of d-dimensional
polyhedra in d polynomial inequalities, following the other approach in
general can not.

4.1 Review on Construction and
Principles used

4.1.1 Algebraic background

There are three underlying principles of semi-algebraic geometry behind
this work: Let P = {z € R? : (a1-2)+b; > 0,...(@m x)+by > 0} be a
d-dimensional polyhedron with an additional semi-algebraic description
P =382(f1,---,fn). Then the following holds:

1. Given any proper face F' € %(P), then at least d — dim(F)
polynomials f; vanish in F'. This is a consequence of Proposition
2.1 [GHO3], a work of M. Henk and M. Grotschel.

2. Any polynomial (a; - x) + b; is a factor of at least one of the
polynomials f;. This is due to Proposition 2.1 in [GHO03].

3. Any polynomial | strictly positive on P, can be written as the
conic combination of products of the linear polynomials defining
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P: There are \; € R with A; > 0 and N, n;; € NU {0} such that
fe) =Y N[ ](a; - =+ b))

=1 j=1

holds. This result is due Handelmann (cf. [Han88]) a constructive
version is Theorem 2 in [RP01], a work of B. Reznick and V.
Powers.

How this work meets the principles

Given a polyhedron P, the construction used in this work meets prin-
ciple 1), by defining a polynomial for each dimension & =0, ...,d — 1,
which vanishes simultaneously on all faces F' € .%#;(P): Each polynom-
ial pr for a k-face F' € %;(C) vanishes on F, so their product
vanishes on all k-faces. The same holds for the corresponding qr and
. So for each face F' € #,(C), from the polynomials used in in the
description

P =38%(Ba1,Ba 2, Pa 3,2 3,---,Bo, Qo)

at least d — k vanish on F', namely By 1,...,Br. In addition, the
approximating polynomials qr are constructed in close observation of
principle 3).

4.2 Further research and unused
techniques

Two possible concepts have not been used in this work: The first is to
split the given linear polynomials defining a polyhedron into groups and
then replace each group by its product. The second is the use of conic
combination of polynomials positive on the polyhedron. Both concepts
are explained in the following by means of toy examples.

Possible other approaches

One of the remaining questions is, if in general there is a description
for a d-dimensional polyhedron P using only d polynomials — this is the
lower bound if P contains a vertex, due to principle 1). So the question
is, at which point one can stray from the given construction. Due to the
principles given above, there are only two general approaches of describ-
ing polyhedra by polynomials. As a consequence of principle 2), any
algorithm constructing a semi-algebraic description of P must output
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products of the linear polynomials defining P. So all such algorithms
can be split into two classes:

(I) Such where the product of all a; - z + b; is part of the output and

(IT) others. At some point these must split all linear polynomials into
some (not necessarily disjoint) groups and build the product of
each group.

Following Approach (I) may lead to a description of a d dimensional
polyhedron in d polynomial inequalities in the general case, following
Approach (IT) can not. Approach (IT) can be followed using colorings of
facets, or more general using coverings of stable sets, explained below.
For special d dimensional polyhedra, this way one can find a description
using less than 2d polynomials. Following approach (I), one may end up
with d polynomial inequalities describing P, if one finds an appropriate
polynomial §j for each £ = d — 2,...,1 vanishing on all faces of the
corresponding dimension F' € % (P).

Both ideas are presented in more detail in the following using two ex-
amples.

4.2.1 Grouping polynomials
Grouping leads to fewer polynomials in special examples

The effectiveness of replacing groups of polynomials by their product
is easily demonstrated using the cube

{zeR : 142,20, 1—2;>0,i=1,...d}

which can be represented as {z € R? : 1—(z;)2 >0, i =1,...d}. Here
each pair of linear polynomials 1 4+ z; and 1 — z; can be replaced by
their product 1 — (x;)? without changing the set. So in some cases it is
better to first group the linear polynomials defining a polyhedron and
then replace each group by its product. Such grouping can be done by
coloring the corresponding facets, this is explained using an example in
the following. After this the general drawback for this approach in R¢
is motivated.

How to group

Let
P={zecR?: lp(z) >0, FecZ.0)}

be a polyhedron, defined by linear polynomials [r(z) € R[X], each
incident to a different facet F € %#; 1(P). When replacing a group
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of the linear polynomials by their product in this description, the un-
avoidably resulting additional points are contained in sets of the form
8Z(—Ip, —lg), which intersect P in F N G. It is desirable to reduce
the dimension of such faces, this can be done covering the facets with
stable sets, i.e., the polynomials [z are grouped such that

e each [y is contained at least in one group,

e and for two polynomials [z and [g in one group, F'N G is a face
of dimension at most d — N.

Here N can be chosen as desired, in the general case resulting in more
groups, the higher N is chosen. In general this approach can not result
in a description involving d polynomials, the counterexample is the d-
dimensional tetrahedron. Each pair of its d + 1 facets intersect in a
ridge, leading to at least d 4+ 1 polynomials resulting from any such

grouping.

In R3 coloring leads to fewer polynomials in some examples

The facets of a 3-dimensional polyhedron P C R? can be grouped into
4 groups such that two facets in the same group intersect at most in a
vertex. This is due to the four color theorem (cf. [AH77],[RSST97]).
Using such a grouping, the corresponding polynomials [z for each group
are replaced by their product in the H-description of P. Each additional
set SZ(—Ip, —lg) resulting from this, intersects P in F' N G, which is
either a vertex or the face ().

In the following example, the facets of the cross-polytope are split
into two groups using coloring. Each group of corresponding polynom-
ials [r is replaced by its product. The additional sets resulting from
this are attached to vertices of the cross-polytope. These are removed
from P using a single polynomial inequality, involving a polynomial
zeroing in all vertices. In general, using 4 colors to color the facets of
a polyhedron in R3, this concept leads to a description of P using at
least 5 polynomials.

Example

Theset P:={x € R® : 1—a-x >0, a € {-1,1}%} is called the
cross-polytope, depicted in Figure 4.2.1. Splitting the vectors a into
two groups

At i={ae {-1,1}*: Hai =1}
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and A= = {—1,1}3\ A", the set P can be described using three poly-
nomials, i.e., one obtains P = S=(§{, 81,3, ) for

81 (2) = llacar(1—a-2)
$1(z) = llaea-(1—a-z)
o (2) = 1—(21)" — (22) — (ws)”.

The splitting up in this case was done such that the facets corresponding
to two vectors in AT intersect only in a vertex of P. In Figure 4.2.1
the facets corresponding to A™ are blue, those corresponding to A~ are
green. The proof for the description is obtained by looking at the set

1—( y1+y2+y3) <0and part of
z3 1—-(-y1 —y2+wy3) <0 SZ(ETaEI)\P

The cross-polytope

i) In each additional point ii) The corresponding sets
two polynomials are negative are removed by a ball
Fig. 4.1: The cross-polytope: Replacing groups of linear polynomials
by their product.

Pt ={zeR:1-a-2>0,ac A"}

and the accordingly defined P~.

Replacing the linear polynomials defining P* by their product leads
to SZ(F7). In any resulting additional point y € P+ \ SZ(F{) two of
the corresponding linear polynomials are negative, one of both strictly.
Due to symmetry one can assume w.l.o.g. 1 — (y; + ¥2 + y3) < 0 and
1—(—y1—y2+vys3) < 0implying 1 < y3 and thus Fo(y) < 0. Figure 4.2.1
i) shows the corresponding set, the union of two such sets is presented
in Figure 4.2.1 i). The same holds for the set P~ \ S=(g7). Since
P = P™ N P~ holds, any point S=(F;,81) \ P is not contained in
82(Fo). Geometrically this is presented in Figure 4.2.1 ii), depicting
two sets in which two polynomials are negative. These are removed
from P using the ball §=(Fp).
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The drawback and advantages of this approach

A general advantage of this approach is to result in polynomials of lower
degree than the approach presented in this work. But aiming for a
description for a d-dimensional polyhedron in d polynomial inequalities
this approach must fail in R? already. In general the coloring leads to
4 groups of polynomials and thus to 4 products already. Secondly, for
d > 3 there are highly neighborly polytopes, whose facets can in general
not be grouped into few groups such that no two facets in the same
group intersect in a low-dimensional face.

4.2.2 Constructing one polynomial for all k-Faces

Principle 1), one of the three principles stated on page 71 implies the
following: Given a d-dimensional polyhedron P in a semi algebraic-
description P = 8=(f1,...,fn), then in any proper face F € .#(P) at
least d — dim(F') polynomials f; vanish. Aiming for a description of
P involving d polynomials §4_1,...,80, a possible way to meet these
restrictions is is the following:

First one replaces all linear polynomials in a ?{-description of P
by their product §4_1. Then one has to find “correction” polynomials
Sk with £ = d — 2,...,0, undoing the errors caused. In observation
of the above, each polynomial §; should vanish on all faces of the
corresponding dimension k, namely all F' € Z(P).

The polynomials P and £ constructed in Algorithm 3.6.1 have
these properties. This results from the properties of their factors pp
(and qp resp.) which zero on a face F' and are positive on P. The
question is now, if there are other ways to construct appropriate poly-
nomials aside of using products of one polynomial for each face. In the
following example, for each dimension there is such a polynomial.

4.2.3 Using surfaces with many double points

Let P C R? be the tetrahedron defined by the four vertices

U1 = ( 17 ) 1)7 U2 ::( 17
-1

1 1,-1)
V3 = ( 717_1) Vg = (_17 )

1, 1).

This polytope can be described using three polynomials §s,F;, and
So, i-e., P = 82(F2,F1,50) holds. These are constructed such, that
each §y zeroes in all k-faces and is strictly positive on the rest of P.
Roughly speaking each §} is support-polynomial for all k-faces. The
corresponding surfaces induced by each §;(z) = 0 and Fa(z) = 0 are
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shown in Figure 4.2. The H-description of P is

P={zeR: 1+z,+z2+z3>0, 1+x1— 29 —13 >0,
1—z1+2x9—23 >0, 1—:171—.1'2+.’L'320}.

The product of these polynomials is §», it vanishes on all facets. The
polynomial
31(1') =1 .'1?12 — 11,'22 — 1'32 + 2.’1)11’2.’1)3

is positive on P and vanishes in all edges of P. The corresponding
surface S=(F1) is called Cayley cubic (see Figure 4.3). It has four

i) The set 52 (F2) contains P ii) The parts of additional sets  iii) ... are removed by SZ(SO)
and additional sets. contained in 82(31)...

Fig. 4.2: Any point in 8=(F) \ P is not contained in S=(F1, Fo)

double-points, exactly in the vertices of P. The polynomial §; zeroes
in all edges of P: For example any point in the edge (vq, vs) is of the form
yx = (1, A, A) with A € [—1, 1], leading to F1(yx) = 1—1—2X\2+2)2 = 0.
Moreover for any point x € P, one has §;(z) > 0: For the linear-
combination y, = 2?21 Aiv; with A; € [0, 1] and 2?21 Ai = 1, a longer
calculation leads to

Sl(y)\) = A A2 A3 + A1 oy + A A3 + Aadg Ay > 0.

Finally a polynomial that vanishes on the vertices is used, namely §g :=
3 — (z1)? — (z2)? — (x3)?. The corresponding set S=(F,) can be found
in Figure 4.2 iii).

The geometric idea

The proof for P = 8= (F2, F1,53) is slightly long and tedious, therefore
here only the geometric insights are presented. Since the polynomial §»
is the product of all linear polynomials defining P, the set S(g2) con-
tains P and several other points. In each such additional point two of
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=
N o

Fig. 4.3: The Cayley cubic passes neatly through the edges of a tetra-
hedron

the given polynomials are negative, one of the corresponding sets is de-
picted in Figure 4.2 i). The idea is now to understand the set S=(F1, F2)
as a correction-tool removing these additional points from S=(g,): Fig-
ure 4.2 i) depicts the set SZ(F1) in red, it “cuts additional sets off the
edges” of P, leaving sets that are attached only to vertices of P, as
shown in Figure 4.2 ii). These remaining sets are then removed using
S82(Fo), as can be seen in Figure iii). So all in all P = 8Z(F2, 1, T0)
holds.

A polynomial such as §; zeroing on all edges e € P should have
double points in the vertices of P, therefore to generalize the sketched
approach it seems worthy to examine such sets.



5. Conclusions and Outlook

5.1 Results

5.1.1 Main Result

The central result of this thesis is that any Polyhedron in R? can be
described using 2d polynomial inequalities, and that these can moreover
be constructed.

Using fundamental techniques from linear algebra, together with
homogenization, Algorithm 3.6.1 results in a description using 2d poly-
nomial inequalities for any d dimensional polyhedron. Algorithm 3.6.4
yields a semi-algebraic description involving 2d — 1 polynomials for ev-
ery d-dimensional polytope.

5.1.2 Implications for Semi-Algebraic Geometry

The results [Br691] and [Sch89] of Brécker and Scheiderer show that any
d-dimensional semi-algebraic set can be represented by at most d(d +
1)/2 polynomial inequalities. Thus for the case of d-dimensional poly-
hedra, this work additionally lowers this upper bound from quadratic
in d to 2d. This is close to the lower bound d for pointed polyhedra in
d dimensions.

The construction behind Algorithm 3.6.1 leads to the insight, that
the interior of a d dimensional polyhedron can be described using 2d
strict inequalities. Reformulated, any basic open semi-algebraic set in
R? defined by strict linear inequalities, can be described using 2d strict
polynomial inequalities (see Corollary 3.6.2).

From this and the main result SCHEIDERER immediately observed
the following: For any basic closed semi-algebraic set A C R? defined
by polynomials of degree at most n, one can construct a description
involving at most 2(”;‘1) — 2 polynomial inequalities. This is done
using the presented construction in the space of monomes as shown in
Corollary 3.6.3. The same holds for any d-dimensional basic open semi-
algebraic set. In both cases the number of polynomials are relatively far
from the proven lower bounds for the general case, namely d(d + 1)/2
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polynomials for closed and d polynomials for open semi-algebraic sets
(cf. [BCRY8] p. 122 and p. 259). But to this time there are no
constructive proofs known fro these bounds. In contrast, this work
provides the corresponding polynomials.

Chapter 4 suggests an approach, which could lead to the description
of d dimensional polytopes by means of d polynomial inequalities. The
example given there presents a description for a polyhedron P C R3
involving d = 3 polynomials. In addition the total degree of the used
polynomials is bounded from above by the dimension and the num-
ber of facets of P. A generalization of this would clearly improve the
application of the resulting description.

5.1.3 Implications for Optimization

This work was initially motivated by the desire to follow new strate-
gies in the attack of combinatorial optimization problems. A common
way of solving these, is to represent the corresponding feasible set by a
polyhedron and maximize a linear function on this set. The aim is, to
exploit special properties of the corresponding polyhedra when repre-
senting them by polynomial inequalities, and then apply methods from
nonlinear optimization.

The class of polynomials used in the presented approach theoreti-
cally meet the requirements: The polynomials constructed in the pre-
sented algorithm are based on sums of squares. For these there is both
a rich theoretical background (cf. [ML], [Las97]) and applicable algo-
rithms (cf. [Las01]) exist.

But a general disadvantage of the description of polyhedra using
few polynomials is the high degree of the appropriate polynomials, ob-
structing their numerical treatment: If a d dimensional polyhedron with
m facets is described by 2d polynomial inequalities, then at least one
of the used polynomials has a degree of m/(2d) or higher (cf. [GHO03]).
Since the number of facets m is independent of the dimension n, the de-
gree of the resulting polynomials can obstruct their numeric treatment.

In brief, in a semi-algebraic description of a polyhedron involving
few polynomials, only the degree can reflect the geometrical complexity
of the set. Consequently, the degree of the polynomials resulting from
the presented construction depends on geometric properties of the cor-
responding polyhedron.

However there is hope, to obtain a balance between the number and
the degree of the used polynomials in the future. Accordingly, a goal of
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further research would be a description of polyhedra, where — relatively
to the number of facets — few polynomials are needed.

5.2 The principles and invariants used

The given construction of a semi-algebraic description for a polyhedron
P follows a trail through combinatorics and geometry to algebra, ending
with a set of consistent polynomials positive on P:

For each face F of P two polynomials pr, qF are constructed. All to-
gether these polynomials form a semi-algebraic description of P. More-
over, in this description all pr for faces F' of dimension &k can be replaced
with their product, without changing the set. The same holds for all
qr. This results from three insights, the last two are of iterative nature:

e When replacing all pr with dim(F) = k by their product in a
semi-algebraic description of P, the resulting set contains addi-
tional points. The algebraic observation is, that in each such point
at least two polynomials are negative. Accordingly this holds for
all gp.

e The following geometric detection is, that for k-faces F' and G the
corresponding sets S=(—pr, —pg) and SZ(—qr, —qg) are closed
cones intersecting P in a face of lower dimension, namely F' N G.

e The final insight is of geometrical nature: A collection of several
closed cones can be simultaneously removed from F' N G using
a semi-algebraic cone 8= (prng, qrng), Where prrg and qpng are
support-polynomials, having the properties leading to the previ-
ous point.

So when replacing all pp,qr for faces of equal dimension k£ by their
products By and i, the polynomials pg, qr for faces of dimension at
most k£ — 1 undo the resulting errors. This allows to do so for each
dimension, resulting in a description of P involving 2d polynomials.

5.3 The algorithm

The presented algorithm works in theory, but it is not of practical use.
Some of the obstacles responsible for this can not be overcome.
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5.3.1 Complexity

Both presented algorithms, the Main Algorithm 3.6.1 and Algorithm
3.6.4 are not polynomial in the input-size.

The most costly step in both algorithms is the construction of a
polynomial for each face of the given polyhedron. There is no general
bound for the number of all faces of a polyhedron, which is polynom-
ial in the number of all its facets and all its vertices. So even if the
polyhedron is given in both its H and V-description, this step can not
be done in polynomial time. This is an inevitable consequence of the
construction scheme and can not be overcome without changing the
construction. In contrast to this, Section 4.2.2 indicates that there
could be a different approach which overcomes this drawback.

5.3.2 Numerical stability

Algorithm 3.6.1 constructs a pair of polynomials for each face of a given
polyhedral cone. It is absolutely crucial for the given construction that
the semi-algebraic set defined by each such pair is a cone. The problem
arising from this is that slight rounding on the “wrong” coefficients re-
sults in sets without a singularity. This makes the approach unstable in
its numerical handling, when calculating the corresponding polynomials
straight forward. But this can be overcome by the right choice of for the
free parameters of the algorithm, namely by choosing an appropriate
support-vector for each face.

5.3.3 Degree of resulting polynomials

The polynomials calculated for the Example in Section 3.6.4 show, that
in some cases it is possible to lower the degree of the polynomials re-
sulting from Algorithm 3.6.1. But in general, the high degree of the
output-polynomials can not be overcome, since these are due to the
principle of construction: The algorithm creates a polynomial for each
k-face then all these are multiplied. Using this principle to describe a
d-dimensional polyhedron P by polynomials, at least one of the result-
ing polynomials has degree |%(C)|/d or higher, where |%(C)| is the
number of all faces of C.

5.4 Remaining open problems
It is still an open question if in general there is a semi-algebraic de-

scription for a d dimensional polyhedron involving at most d polynom-
ial inequalities. To examine this, it should be fruitful to examine conic
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combinations of polynomials positive on P rather than their products.
In R? candidates for such polynomials are those that result in varieties
with many double points, just as in the example in Section 4.2.2.

Another question is, whether for special classes of polyhedra the
given construction can be simplified. Relating this to combinatorial
optimization, another question arises: For the construction presented
in this work, it is necessary to characterize all faces of a given polyhe-
dron. For several polyhedra resulting from combinatorial optimization
problems, there exists a complete characterization of their facets. So
the question arises, if there is a generic description for the corresponding
lower-dimensional faces in some cases.

But the practically most relevant task is to find a balance between
the amount of polynomials used in the description of P and their degree.
The hope is here that these two values level out in a description using
relatively few polynomials of relatively low degree. The search for the
corresponding construction would be a rewarding challenge.
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