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Abstract: Cryogenics-based energy storage (CES) is a thermo-electric bulk-energy storage technology,
which stores electricity in the form of a liquefied gas at cryogenic temperatures. The charging process
is an energy-intensive gas liquefaction process and the limiting factor to CES round trip efficiency
(RTE). During discharge, the liquefied gas is pressurized, evaporated and then super-heated to drive
a gas turbine. The cold released during evaporation can be stored and supplied to the subsequent
charging process. In this research, exergy-based methods are applied to quantify the effect of
cold storage on the thermodynamic performance of six liquefaction processes and to identify the
most cost-efficient process. For all liquefaction processes assessed, the integration of cold storage
was shown to multiply the liquid yield, reduce the specific power requirement by 50–70% and
increase the exergetic efficiency by 30–100%. The Claude-based liquefaction processes reached the
highest exergetic efficiencies (76–82%). The processes reached their maximum efficiency at different
liquefaction pressures. The Heylandt process reaches the highest RTE (50%) and the lowest specific
power requirement (1021 kJ/kg). The lowest production cost of liquid air (18.4 €/ton) and the lowest
specific investment cost (<700 €/kWchar) were achieved by the Kapitza process.

Keywords: cryogenic energy storage; air liquefaction; exergy analysis; economic analysis;
exergoeconomic analysis

1. Introduction

The interest in electricity storage has significantly increased with higher shares of intermittent
renewable energy sources in the grid. In particular, grid-scale electricity storage with low costs are
considered suitable to integrate renewable electricity generation and introduce flexibility to the power
grid. Cryogenics-based energy storage (CES), frequently referred to as liquid air energy storage (LAES),
is the only energy storage technology so far, which is capable to store large quantities of electricity
without geographical limitations or a substantial negative environmental impact.

The thermo-electric energy storage technology stores electricity in the form of a liquefied gas
(air) at a cryogenic temperature. The integrated methods of operation (charge, storage, discharge) are
displayed in Figure 1. An energy-intensive liquefaction process forms the charging process of CES.
The liquefied gas (cryogen) is stored in a site-independent insulated storage tank at approximately
ambient pressure and a cryogenic temperature (e.g., −194 ◦C). The compression process of the
liquefaction is presented separately, as in the adiabatic CES the heat of compression is recovered
and stored to be used in the discharge process. In the discharge process, the liquefied gas is pumped
to supercritical pressure in a cryogenic pump, evaporated and superheated, with thermal energy
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provided by the heat storage, and supplied to a series of expanders regaining a part of the electricity
charged to the system.Energies 2019, 12, x FOR PEER REVIEW  2 of 18 
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Figure 1. Illustration of cryogenic energy storage steps of operation (charge, storage, discharge), heat
and cold recovery and storage.

The cold exergy rejected during the evaporation process is stored in order to increase the efficiency
of the liquefaction process (charge). The CES system is composed of well-known components from the
industrial gas and liquefied natural gas (LNG) supply chain.

As CES systems are based on mature technology, developers expect comparatively fast progress
towards commercialization, competitive costs and efficiency enhancement. CES exergy densities are by
approximately two orders of magnitudes higher than of competing technologies such as pumped hydro
and compressed air energy storage reaching values higher than 430 kJ/kg. A detailed comparison
of CES characteristics to other energy storages can be found in [1]. Moreover, long cycle life, low
storage costs, the economy of scale and the independent sizing of charge and discharge unit speak for
economic viability. Yet, the adiabatic CES systems upper limit to efficiencies is 45–50%. The thermal
integration at the system level is crucial to its performance, which is the reason why the integration of
cold storage into the liquefaction process is the subject of this paper.

State of the Art

Both, cryogenic energy storage and air liquefaction, are no new concepts. Large-scale air
liquefaction for industrial purposes became commercial in the 1940s [2] and the first conception
of storing electricity in liquid air dates back to the year 1977 [3].

Nowadays CES is rated as a pre-commercial technology being evaluated with a technology
readiness level (TRL) of about 8 [4]. The CES concept was confirmed viable in testing, after Mitsubishi
extended an existing air liquefier with the first pilot cryogenic power recovery unit (2.6 MW) [5].
The second pilot plant was the first integrated CES plant (350 kW/2.5 MWh) which was the result of
joint research between the University of Leeds and Highview Power Storage Ltd. (London, UK) in
the year 2011. The results were published in 2015: the CES economic viability was confirmed and a
positive outlook on performance and costs was given [6]. A demonstration plant of 5 MW/15 MWh
started operation in 2018, demonstrating a number of balancing services [7].

The significance of the liquefaction process to the CES’s performance was addressed by [8] as “the
key part” of the system as the discharge unit is relatively simple and efficient. The liquefaction was
found to account for more than 70% of the overall exergy destruction (MW) of the CES system by the
authors in a comparative exergy analysis of two 10 MW CES systems [9].

One of the key findings from the testing of the first pilot plant was the significant increase of
system efficiency by cold recovery and storage [6]. The effect of cold recycle was firstly quantified by
the authors as the introduction of cold storage doubled the liquid yield of the liquefaction process of
the analyzed system [9].
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Large-scale air liquefaction has been commercial for several decades. A number of processes
exist. The simplest (no moving parts) and first-industrialized configuration is the Linde process, where
purified compressed air is cooled and undergoes isenthalpic (free) expansion in a throttling valve, thus
brought to its due point by the Joule-Thomson effect [10]. Gas liquefaction is nowadays performed in
more complex configurations [11].

Recently, a number of publications have discussed the thermodynamic performance of CES. In the
reviewed literature, CES systems with different liquefaction processes, pressures and cold storage
configurations are presented in Table 1. Two kinds of a cold storage configuration are presented: (1)
quartzite gravel based packed bed store with dry air as secondary working fluid, and (2) a two-tank
fluid storage with methanol and propane (or R218) as secondary working fluids and storage media on
two different temperature levels.

The liquid yield γ, the ratio between the mass flow of the air liquefied in the liquefaction process
and the mass flow of the compressed air, is an indication of the charging-unit performance. The liquid
yield varies strongly from one publication to the other. The liquid yield increases with liquefaction
pressure. Yet, with increased pressures, the power consumption of the compression process increases
as well. This is why the liquid yield cannot be considered as the sole indicator for the performance of
the liquefaction process.

In general, different assumptions are made in the different references, e.g., ideal dry air was
assumed, heat and pressure losses in most components as well as heat losses in the cold box were
neglected [12], or assumed lower than 8% [6] which is why comparing the various configurations
is problematic.

Three comparative evaluations of air liquefaction processes in CES systems were presented
in [8,13,14]. Borri et al. [13] compared three air liquefaction processes (Linde-Hampson, Claude,
Collins) for application in a micro-scale CES. The Claude process was identified as the most suitable
air liquefaction process. The Linde-Hampson process (with a Joule-Thomson valve only) was found to
be inferior and the second cold expander used in the Collins process was claimed to be economically
not feasible. Yet, the integration of cold recovery and storage was not considered. Li [8] came to
the same conclusion, that the throttle-valve-based Linde-Hampson system is not applicable for CES.
Therefore, only the integration of a cold expander instead of a throttling valve in the Linde process and
an expander process, employing a refrigeration process with Helium as working fluid, are compared
in [8].

Table 1. Parameters of CES systems presented in [5,8,9,12,14–19]: Liquefaction processes, liquefaction
pressure pchar, liquid yield γ, cold storage configuration, discharge pressure pdis and round trip efficiency
ηRTE.

Source Process pchar, bar γ, - Cold Storage Configuration pdis, bar ηRTE, %

[12] Linde-Hampson 120 0.83 fluid tanks (CH4O, C3H8) 50 50–60
[15] Integr. Linde-Hampson 90 0.60 fluid tanks (CH4O, C3H8) 120 60
[9] Heylandt 180 0.61 fluid tanks (CH4O, R218) 150 41

[16] Modified Claude 180 0.86 packed bed gravel (air) 75 48.5
[17] 2 Turbine Claude/Collins 54 NA packed bed gravel (air) 150 47
[6] 4 Turbine Claude 56.8 0.551 1 packed bed gravel (air) 190 >50

[18] Linde-Hampson 180 0.842 fluid tanks (CH4O, C3H8) 65 50
[19] Linde-Hampson 140 NA NA 70 47.2
[11] Linde-Hampson 20 0.70 direct integration (ideal) 100 20–50
[8] Linde-Hampson 2 ~130 0.44–0.74 fluid tanks (CH4O, R218) 112–120 28–37
[8] Expander cycle NA NA fluid tanks (CH4O, R218) NA 40–46

[20] Single expander 135 0.84 fluid tanks (CH4O, C3H8) 80 50–58
1 calculated from: 12 h charging, 3:1 (charge-to-discharge ratio),

.
mchar = 34.1 kg/s. 2 with cold

expander/throttling valve.

Abdo et al. [14] compared the by Chen et al [21] patented CES system design based on a simple
Linde-Hamson liquefaction process to two alternative systems based on the Claude and the Collins
process. The heat of compression was taken into account but cold storage was not comprised.
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The Claude and Collins process showed similar thermodynamic performance with greater RTE that
the Linde based system. Despite the Linde-Hampson having the lowest specific costs, the Claude-based
system was evaluated the best option. The present paper aims to compare a number of air liquefaction
process configurations with integrated cold storage in order to identify the most suitable process for
implementation in CES systems.

2. Methods

For a comparative analysis, six liquefaction processes were simulated with and without
integration of cold storage under similar conditions. Results from energetic, exergetic, economic
and exergoeconomic analyses were used to identify the most cost-effective liquefaction process for
CES with cold storage.

2.1. Design and Simulation

Aspen Plus® (Version 9, Aspen Technology Inc., Bedford, MA, USA) was chosen as a suitable
software for process simulation. With the aid of the simulation software, all mass and energy
balances are fulfilled and the specific enthalpy and entropy values of all streams and substances
are calculated. The Peng-Robinson equation of state was employed and the simulation was performed
under steady-state conditions. Fortran routines are integrated to calculate exergy values for the
exergetic analysis. Six liquefaction processes were simulated: the simple Linde, the precooled Linde,
the dual pressure Linde, the simple Claude, the Kapitza and the Heylandt process. At first, the
liquefaction processes were manually optimized and later modified to accommodate the cold storage.
The assumptions made in simulation are given in Table 2.

Table 2. Assumptions made in simulation.

Parameter Value, Unit

Isentropic efficiencies (compressors, expanders) ηis,CM = 87% [8], ηis,EX = 80% [17]
Intercooler exit temperature and pinch Texit, IC = 25 ◦C, ∆Tpinch, IC = 5 K [15]

Main heat exchanger pinch temperature difference ∆Tpinch, MHE = 1–3 K [8,17]
Maximal pressure of compression pmax, CM = 200 bar [22]

Ambient conditions Tamb = 15 ◦C, pamb = 1.013 bar

The overall system configuration is shown in Figure 2. The pretreated air enters the analyzed
system at 15 ◦C, 1.013 bar and a molar composition of 79% N2 and 21% O2 (a1). The compression
block is the same for all systems. The air exits the last intercooler of the three-stage compression
at a temperature of 25 ◦C and a pressure of pmax,CM of 200 bar (a2). The largest part of the thermal
energy increase during compression is recovered in a heat storage. The heat storage is realized with
pressurized water tanks (5 bar, 205 ◦C). The design of the liquefaction block is different for each system.
Two types of liquefaction processes can be distinguished: Linde-based (Figure 3) and Claude-based
(Figure 4) liquefaction processes. The liquefied air exits the flasher and is stored at a temperature of
−192 ◦C and slightly elevated pressure 1.3 bar. The liquid is stored in an insulated storage tank with
boil-off losses of 0.2 %Vol.
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Figure 4. Flowsheets of Claude-based air liquefaction processes with cold recycle.

During discharge, the liquid air is pressurized to 150 bar, evaporated in heat exchange to the cold
storage media, superheated (Ta4 = 195 ◦C) and fed to the four-stage expander with reheat. The specific
power output of the discharge unit is constant for all systems (wdis = 470 kJ/kg of liquid air).

The assumed method of cold storage uses two fluid tanks and two circulating working fluids
that recover the high-grade and low-grade cold rejected in the evaporation process. Reviewing a
number of refrigerants, R218 and methanol are shown to be advantageous with respect to toxicity,
flammability, boiling and freezing temperatures [9]. The cold in the temperature interval −180 to
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−61 ◦C is recovered by R218, while the cold at higher temperatures (−19 to −59 ◦C) is captured and
stored using methanol. The amount of cold recovered is determined by the amount of air liquefied in
the liquefaction process. The mass flow rates of the cold storage media are therefore determined by a
ratio of the mass flow rate of the liquefied air

.
ma3:

.
mR218 = 2.29· .

ma3 (1)

.
mmethanol = 0.49· .

ma3 (2)

The ratio is adjusted to the optimal heat transfer between the evaporating liquid air and the cold
storage media. Thermal losses in the cold storage were accounted for and are equivalent to 4 K/cycle.

The liquefaction processes are shown in Figures 3 and 4. A detailed description of the liquefaction
processes and the fundamental concept can be found in fundamental publications e.g., [23]. The stream
values (mass flow

.
m, temperature T and pressure p) can be found in Tables 3 and 4.

The Linde-Hampson process, Figure 3a, is the most straightforward of all liquefaction processes.
The process consists of only four sets of components: the compressor(s), the main heat exchanger
(MHE), the throttling valve and the flash tank. After compression, the temperature of the air is
reduced (below −100 °C) in the MHE. The low-temperature high-pressure air is throttled reducing
the temperature close to the dew point resulting in partial condensation. In the flash tank, the liquid
air is separated and stored. The gaseous air is supplied back to the MHE to precool the compressed
air. The efficiency of the simple Linde-Hampson process strongly depends on the temperature of the
high-pressure gas at the inlet of the MHE.

The precooled Linde-Hampson process, shown in Figure 3b, intends to achieve a better
performance and a higher liquid yield by lowering the temperature of the air with the addition
of a compression refrigeration process. Working fluids such as ammonia, carbon dioxide or Freon
compounds are commonly used for the secondary refrigeration cycle.

In the dual-pressure Linde process (Figure 3c) the heat transfer in the MHE is improved by
introducing a second pressure level. The air enters the liquefaction process at an intermediate-pressure
(1). Together with the recycled stream, the pressure of the air is elevated further to the high-pressure
level (3). The gas is cooled and throttled to the intermediate-pressure level (5). The gaseous and the
liquid air are separated in the intermediate-pressure flash tank. The gaseous part is fed back to the
MHE to precool the entering air stream (3) to (4) and is mixed to the entering intermediate-pressure air
stream (1). The liquefied air is fed to the second pressure-stage. This modification reduces the specific
work required to liquefy the air at the expense of the share of air liquefied.

The Claude process and its modifications are the most commonly employed process in commercial
air liquefaction plants, as its efficiency is higher than that of the Linde process [23]. In the Claude
process the cooling of compressed air is provided by a cold recycle stream—a part of the pressurized
air that underwent an isentropic expansion in cold expanders [6]. The application of a cold expander
avoids part of the exergy destruction in the throttling process and reduces the required power for
liquefaction by the power output of the expander (

.
Wchar = ∑

.
WCM −

.
WEX). The stream exiting the

expander (
.

m10) is used to cool the air stream entering the MHE. The expander does not replace the
throttling valve before the flash tank.

The Kapitza process is analogous to the Claude process but with the difference that the third
partition of the MHE (or low-temperature heat exchanger) is eliminated. In other words, while using a
multi-stream heat exchanger, stream 7 is not fed to the MHE before mixing. Streams 7 and 10 tend
to have only a small temperature difference, which is why the difference in heat exchanger area and
performance is little. The Heyland process is also adopted from the Claude process. Nevertheless,
it can also be seen as a variation of the precooled Linde-Hampson process using air as a refrigerant.
The precooling process—the splitting of the stream before entering the MHE—improves the heat
transfer process in the MHE [23].
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Table 3. Stream values for the states indicated in the flowsheets in Figure 3.

Stream Variable, Unit
Simple Linde Precooled Linde Dual-Pressure Linde
With Storage With Storage With Storage

1
.

m kg/h 100.0 100.0 100.0 100.0 100.0 100.0
T ◦C 25.0 25.0 25.0 25.0 25.0 25.0
p bar 200.0 200.0 200.0 200.0 33.4 33.4

2
.

m kg/h 100.0 100.0 100.0 100.0 547.3 137.3
T ◦C −102.4 −125.3 −113.6 −138.7 24.1 24.2
p bar 200.0 1.03 200.0 200.0 30.4 30.4

3
.

m kg/h 100.0 100 100 100 547.3 137.3
T ◦C −191.8 −191.7 −192.3 −193.1 25.0 25.0
p bar 1.03 1.03 1.03 1.03 200.0 200.0

4
.

m kg/h 9.0 31.2 19.8 44.1 547.3 137.3
T ◦C −191.8 −192.7 −192.3 −193.1 −105.0 −124.5
p bar 1.03 1.03 1.03 1.03 200.0 200.0

5
.

m kg/h 91.0 68.8 80.2 55.9 547.3 137.3
T ◦C −191.8 −192.7 −192.3 −193.1 −146.2 −146.2
p bar 1.03 1.03 1.03 1.03 30.4 30.4

6
.

m kg/h 91.0 68.8 80.2 55.9 100.0 100.0
T ◦C 24.0 24.0 24.0 −95.8 −146.2 −146.2
p bar 1.03 1.03 1.03 1.03 30.4 30.4

7
.

m kg/h - - - - 100.0 100.0
T ◦C - - - - −192.9 −192.9
p bar - - - - 1.03 1.03

8
.

m kg/h - - - - 40.0 40.0
T ◦C - - - - −193.0 −193.0
p bar - - - - 1.03 1.03

9
.

m kg/h - - - - 60.0 60.0
T ◦C - - - - −193.0 −193.0
p bar - - - - 1.03 1.03

10
.

m kg/h - - - - 60.0 60.0
T ◦C - - - - 24.0 24.0
p bar - - - - 1.03 1.03

11
.

m kg/h - - - - 447.3 37.3
T ◦C - - - - −146.2 −146.2
p bar - - - - 30.4 30.4

12
.

m kg/h - - - - 447.3 37.3
T ◦C - - - - 24.0 24.0
p bar - - - - 30.4 30.4
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Table 4. Stream values for the states indicated in the flowsheets in Figure 4.

Stream Variable, Unit
Claude Kapitza Heylandt

With Storage With Storage With Storage

1
.

m kg/h 100.0 100.0 100.0 100.0 100.0 100.0
T ◦C 25.0 25.0 25.0 25.0 25.0 25.0
p bar 200.0 200.0 200.0 200.0 200.0 200.0

2
.

m kg/h 100.0 100.0 100.0 100.0 36.0 76.1
T ◦C −4.0 −2.0 −4.0 −2.0 25.0 25.0
p bar 200.0 200.0 200.0 200.0 200.0 200.0

3
.

m kg/h 34.3 73.2 34.3 73.3 36.0 76.1
T ◦C −4.0 −2.0 −4.0 −2.0 −177.6 −180.5
p bar 200.0 200.0 200.0 200.0 200.0 200.0

4
.

m kg/h 34.3 73.2 34.3 73.3 36.0 76.1
T ◦C −190.8 −182.8 −190.6 −182.8 −193.9 −194.0
p bar 200.0 200.0 200.0 200.0 1.03 1.03

5
.

m kg/h 34.3 73.2 34.3 73.3 28.6 62.3
T ◦C −194.1 −194.0 −194.1 −194.0 −193.9 −194.0
p bar 1.03 200.0 1.03 1.03 1.03 1.03

6
.

m kg/h 31.2 61.5 31.1 61.5 7.4 13.7
T ◦C −194.1 −194.0 −194.1 −194.0 −176.5 −179.0
p bar 1.03 1.03 1.03 1.03 1.03 1.03

7
.

m kg/h 3.1 11.8 3.2 11.8 71.4 37.7
T ◦C −194.1 −194.0 −194.1 −194.0 −176.4 −177.4
p bar 1.03 1.03 1.03 1.03 1.03 1.03

8
.

m kg/h 3.1 11.8 68.9 38.5 71.4 37.7
T ◦C −192.0 −191.0 −191.7 −192.1 −7.3 24.0
p bar 1.03 1.03 1.03 1.03 1.03 1.03

9
.

m kg/h 65.7 26.8 65.7 26.7 64.0 24.0
T ◦C −4.0 −2.0 −4.0 −2.0 25.0 25.0
p bar 200.0 200.0 200.0 200.0 200.0 200.0

10
.

m kg/h 65.7 26.8 65.7 26.7 64.0 24.0
T ◦C −191.6 −191.2 −191.6 −191.2 −176.4 −176.4
p bar 1.03 1.03 1.03 1.03 1.03 1.03

11
.

m kg/h 68.8 73.0 - - - -
T ◦C −191.7 −182.8 - - - -
p bar 1.03 200.0 - - - -

12
.

m kg/h 68.8 38.6 68.9 73.3 - -
T ◦C 24.0 23.4 24.0 24.0 - -
p bar 1.03 1.03 1.03 1.03 - -

The performance of the Claude-based processes is dependent on the splitting ratio r. The splitting
ratio is defined as the mass flow through the expander

.
mEX over the mass flow through the last

compression step
.

mCM:

r =
.

mEX
.

mCM
(3)

The Kapitza process dates back to 1939 when the inventor suggested the use of centrifugal
expansion turbines in the Claude process [10]. Most modern liquefiers utilize expansion turbines
proposed by Kapitza [10,24] and most high-pressure air liquefaction plants operate with the Heylandt
process. Highview Power Storage Ltd. base their charging unit on the Claude process relying on the
maturity of the process and the trouble-free scale-up [25]. The pilot plant operates with a Claude-based
liquefaction process similar to the Kapitza configuration [26]. The operation pressures for the different
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liquefaction processes differ [23]. For a better comparison, the liquefaction pressure is kept to 200
bar [23] first and later varied in sensitivity analysis.

2.2. Energetic and Exergetic Analyses

The six liquefaction processes were compared with and without cold storage in energetic and
exergetic analyses at the system level. For the three most efficient processes, sensitivity analyses and
exergetic analyses at the component level were further undertaken. The exergetic analysis is adopted
from [27]. The exergetic efficiency ε, the liquid yield γ and the specific power requirement w of the
systems were used as a basis for comparing the process’ performance with and without cold recovery.
The parameters are defined below:

ε =

.
Eliquid air +

.
Eq,hot

.
Wchar +

.
Eq,cold

[−] (4)

γ =

.
mliquid air

.
mCM

[−] (5)

w =

.
Wchar

.
mliquid air

[
kJ/kgliquid air

]
(6)

The general definition of the exergetic efficiency ε is the ratio of the exergy of the product
.
EP and

the exergy of the fuel
.
EF. The fuel supplied to the liquefaction system is the charging power

.
Wchar and

the exergy of the low-temperature exergy supplied by the cold storage
.
Eq,cold:

.
Wchar = ∑

.
WCM −

.
WEX (7)

.
Eq,cold =

∣∣∣(1− T0/Tcold)·
.

Qcold

∣∣∣ = .
mliquid·∆eR218 +

.
mmethanol ·∆emethanol (8)

Tcold (or Thot) denote the thermodynamic mean temperatures at which the low-temperature
energy (or the heat) is supplied. Both the exergy of the liquefied air

.
Eliquid air and the exergy of the

heat supplied to the heat storage
.
Eq,hot are products of the liquefaction process:

.
Eliquid air =

.
mliquid·eliquid air (9)

.
EQ,hot = (1− T0/Thot)·

.
Qheat (10)

The definitions of fuel and product for CES system components can be found in [9]. As the systems
partially operate below the ambient temperature, the physical exergy is split into its mechanical and
thermal parts, according to [28].

The liquefaction processes with the best performance with cold storage were identified (200 bar)
and a sensitivity analysis was performed. In sensitivity analyses the splitting ratio r and liquefaction
pressure pmax,CM were varied. For the optimal liquefaction pressure and splitting ratio, the three
systems were compared using economic and exergoeconomic analyses.

The round-trip efficiency (RTE) of the systems was calculated as base for comparison. The RTE is
defined as the ratio between the electricity charged and the electricity discharged:

ηRTE =

.
Wdis

.
Wchar· τchar

τdis

(11)

In contrast to evaluating the charging system only, for the overall system the charging
duration τchar and the discharge duration τdis need to be accounted for. Reason for this is that the
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charge-to-discharge ratio ( τchar
τdis

) may be unequal to one. For calculation of the RTE an exergy density of
approx. 445–465 kJ/kg and a charge-to-discharge ratio of two was accounted for.

2.3. Economic Analysis

The economic analysis was performed on the optimal system configuration ( pmax,CM, r → εmax )
of the best performing processes. The processes were sized to 20 MW charging power

.
Wchar. The total

revenue requirement (TRR) method was applied [22]. The bare module costs (BMC) of the components
were estimated with a number of methods. Cost estimating charts [29,30], cost estimating equations [8]
and past purchase orders [27,31,32] were considered. Pressure and temperate ranges were also taken
into account. The costs were adjusted to €2017 with the chemical engineering cost indexes of the
reference years (CEPCI2017 = 567.5 [33]). The derived cost equations of the BMC for each type of
component can be found in [34].

The assumptions made in the economic analyses are summarized in Table 5. The operation and
maintenance costs (OMC) are assumed as a percentage of the fixed capital investment (FCI) which
ranges from 1.5% to 3% of the plant purchase price per year [35]. The system is assumed to operate at
low electricity prices.

Table 5. Assumptions made in economic analysis.

Assumption Value

Service facilities, architectural work 30% of BMC
Contingencies 15% of BMC

Effective interest rate 8%
Average inflation rate 3%

Plant economic life 30 years
Annual full load operation 2882 h/a

Annual OMC 1.5% of FCI
Mean cost of charged electricity 17.2 €/MWh

For better comparability the specific investment costs are determined. The total capital investment
(TCI) of the charging unit is levelized to the charging capacity of the storage (€/kWchar).

For the exergoeconomic analysis, the levelized cost rate
.
Zk of each component k needs to be

determined. The component cost rate considers the costs associated with the capital investment
.
Z

CI
k

and the operation and maintenance costs
.
Z

OM
k of the respective component. The component cost rate

is calculated over the levelized carrying charges CCL, the levelized operation and maintenance costs
OMCL, the annual operation time of the component τ and the share of the investment costs BMCk
associated with the k-th component in the total bare-module costs BMCtot of the overall system:

.
Zk =

.
Z

CI
k +

.
Z

OM
k =

BMCk
BMCtot

· (CCL + OMCL)

τ
(12)

2.4. Exergoeconomic Analysis

The exergoeconomic analysis was applied to the best performing liquefaction processes. Aim is
to identify the cost-effectiveness of the processes, the costs associated with the thermodynamic
inefficiencies and the potential for cost reduction in the processes. This is achieved by “exergy
costing” [27], where the average cost per unit of exergy of each stream in the process is calculated with
the aid of cost balances and auxiliary equations. The cost balance for the k-th component of the process
is expressed by:

∑
.
Cout,k +

.
Ck,W =

.
Ck,Q + ∑

.
Cin,k +

.
Zk (13)

The cost balance needs to be fulfilled for each component in the system to determine the costs of
the exiting streams. The sum of the costs associated with the n entering streams of matter ∑

.
Cin,k, the
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cost rate of the respective component
.
Zk and the cost of heat supplied to the component

.
Ck,Q are equal

to the sum of costs associated with the m exiting streams of matter ∑
.
Cout,k and the work done by the

system. Each stream of matter, heat or work with associated exergy transfer rate has an average cost
per unit of exergy cn (€/GJ):

.
Cn = cn·

.
En (14)

.
CW = cW ·

.
W (15)

.
CQ = cQ·

.
E Q (16)

All costs associated with the streams entering the overall system need to be known. The specific
cost of the incoming air is set to c1= 0 €/MWh while the specific costs of the electricity is
cW= 17.5 €/MWh. The specific exergy costs of the entering cold storage media streams are assumed
equal to the cost per unit of exergy of the liquid air:

cR218, in = cmethanol,in = cliquid air (17)

If more than one stream exits the component, auxiliary equations based on the “fuel and product”
approach are necessary [24]. The cost balance at the component level can also be formulated as:

.
CP,k =

.
CF,k +

.
Zk (18)

The cost associated with the thermodynamic inefficiencies—the exergy destruction—is calculated
by the average cost per unit of exergy of the fuel to the component cF,k and the exergy destruction

.
ED,k

of the respective component:
.
CD,k = cF,k·

.
ED,k (19)

The components which are of high importance to the system’s cost-effectiveness are determined
by the sum of cost associated with the initial investment of the component

.
Zk and the cost associated

with the exergy destruction
.
CD,k. The exergoeconomic factor can be used to determine the type of

changes required to improve the cost effectiveness of the respective component:

f =

.
Zk

.
Zk +

.
CD,k

(20)

In the performed exergoeconomic analysis the major contributors to the overall costs are identified
and their potential for cost reduction is compared. Moreover, the results facilitate a subsequent
iterative optimization.

3. Results and Discussions

3.1. Energetic and Exergetic Analyses

The results of the energetic and exergetic analysis of each liquefaction configuration before and
after the integration of cold storage are shown in Figure 5. The integration of cold storage significantly
increases the liquid yield. The exergy of the product increases correspondingly:

.
EP ↑=

.
Eliquid air ↑ +

.
EQ,hot. (21)
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With a higher share of air liquefied the cold supplied by the cold storage increases (
.
Ecold ↑).

A substantial reduction of the specific power required to produce one kg of liquid air is observed for
all processes (

.
Wchar ↓). Thus, the exergetic efficiency is considerably augmented with the addition of

cold storage:

ε ↑=
.
Eliquid air ↑ +

.
EQ,hot

.
Ecold ↑ +

.
Wchar ↓

(22)

The improvements were most significant in the simple Linde and the precooled Linde
configuration where the exergetic efficiency increased significantly. Despite the liquid yield of the
precooled Linde reaching a compatible value (0.453), its specific power requirement and exergetic
efficiency cannot level with the Claude-based configurations. The simple Claude process, the Heylandt
process and the Kapitza process reach the highest exergetic efficiencies (76.6%, 76.7% and 76.6), and
have the lowest specific power requirement (1059, 1021 and 1059 kJ/kgliquid air) and the highest liquid
yields (0.609, 0.629, 0.609).

For the most efficient liquefaction configurations, the Claude-based processes, a sensitivity
analysis was conducted. The compression pressure was varied (80–200 bar) and the splitting ratio r
was reduced to its absolute minimum value. The effect of these variations on the exergetic efficiency ε

can be seen in Figure 6. The share of air liquefied increases with a reduction in the value of the splitting
ratio (r =

.
mEX/

.
mCM), as a greater mass flow enters the MHE and throttling process. The temperature

difference in the MHE decreases with a reduction in “cold feed” (
.

mEX) and a simultaneous increase in
“hot feed” (

.
mCM −

.
mEX). The minimum splitting ratio is therefore restricted by the minimum pinch

temperature ( ∆TMHE1, min → 1 K).
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Figure 6. Sensitivity analysis results of the Claude, the Kapitza and the Heylandt process: exergetic
efficiency ε over splitting ratio r, for various values of the liquefaction pressure. The maximum
efficiency line is indicated with a solid black line.

By minimizing the splitting ratio for the respective compression pressure, a maximum efficiency
line can be obtained. In Figure 7, the maximum exergetic efficiency curve of the Claude process, the
Kapitza process and the Heylandt process are compared. The maximum liquid yield and the minimum
specific power consumption graphs are also compared in Figures 8 and 9 respectively.

The thermodynamic performances of the Claude and Kapitza processes are almost the same.
Reason for this is the temperature difference of only 3.3 K of the two mixing streams. The three
processes reach their maximum efficiency at different pressures (Figure 7). This confirms that
comparing the systems at a single pressure level is not sufficient. For liquefaction pressures of
120 bar and above the Heylandt process performs better reaching its optimum of approximately 81.2%
(at 130 bar). The optimal configuration of the Claude and the Kapitza process is at about 100 bar
reaching 80% exergetic efficiency.
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3.2. Economic Analysis

The economic analysis was conducted for the optimal system configuration for each of the three
Claude-based systems. The system design parameters are given in Table 6. The charging power

.
Wchar,

the liquefaction capacity
.

mliquid air, and the storage capacity (
.

Wdis·τdis) are similar for all systems.
The liquid yield γ and the charging pressure pCM of the Heylandt process is slightly higher.

Table 6. Design parameters for liquefaction systems evaluated in economic analysis.

Parameter Unit Claude Heylandt Kapitza

Liquefaction pressure bar 95 130 95
Charging capacity MW 20 20 20

Liquefaction capacity tons/day 606 608 606
Storage capacity MWh 76.6 78.4 76.6

Liquid yield - 0.54 0.59 0.54
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Figure 10 shows the BMC broken down to the component groups: expander, compressors,
intercoolers, main heat exchanger and other components. The heat exchangers are responsible for
70–80% of the investment costs for all processes. The results of economic analysis of the Claude and
the Kapitza process differ despite similar performance in energetic and exergetic analysis. The small
difference in size of the MHE results in a noteworthy difference in costs. The total revenue requirements
for the Claude, Heylandt and Kapitza systems amount to 2770 €/a, 2915 €/a and 2670 €/a respectively.
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The Heylandt system is not competitive in regards to its specific investment per unit of exergy
stored despite the slightly higher energy output of the process, see Table 6. The specific investment
per kW installed capacity for the Claude, Heylandt and Kapitza systems amount to 733 €/kWchar,
792 €/kWchar and 691 €/kWchar, respectively.

3.3. Exergoeconomic Analysis

The results of the exergoeconomic analysis at the component level are shown in Figure 11.
All analyzed systems show an elevated exergoeconomic factor ( f � 0.5) which indicates that the
costs associated with the purchase and maintenance of the components

.
Zk dominates the cost picture

(
.
Zk �

.
CD,k). The cost of exergy destruction in the components

.
CD,k is a minor contributor to the costs

of the final product. When investment costs dominate, a reduction in investment costs while accepting
lower efficiencies is recommended to lower the total costs.

The exergoeconomic factor of several components in the Heylandt system is higher than in the
other two systems. This indicates that the Heylandt system leaves more room for improvement of
the cost-effectiveness of the system. Yet, regarding the significantly higher average cost per unit of
exergy of the product cP,tot (Table 7), the reduction in costs may not be substantial enough to surpass
the other configurations.

The average cost of exergy of the fuel cF,tot is relatively high in comparison to the low average cost
of the electricity celectricity = 17.5 €/MWh. Reason for this is the average cost of low-temperature exergy
supplied by the cold storage cq,cold which is relatively high and amounts to the average cost of exergy
of the liquid air cliquid air. The average cost of exergy of the heat supplied to heat storage has the lowest
value for the Heylandt process while the average cost of exergy of liquid air is the most expensive.
Regarding the average cost of the exergy of the final product cP,tot, the Kapitza process performs best.

This conclusion is not expected to be changed with increase in the system size. The reason is that
the heat exchangers are the major contributors to the costs of the liquefaction systems, and the cost of
heat exchanger increase linearly with scale—for all systems equally.
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Table 7. Results of exergoeconomic analysis for the three evaluated systems.

Parameter Claude Heylandt Kapitza Unit

Average cost of exergy of the fuel, cF,tot 44.3 61.2 44.0 €/MWh
Average cost of exergy of the losses, cL,tot 39.3 43.7 39.2 €/MWh

Average cost of exergy of the product, cP,tot 88.8 114.8 88.0 €/MWh
Average cost of exergy of the liquid air, cliquid air 95.4 133.4 94.6 €/MWh

Average cost of exergy of the heat, cq,hot 67.9 63.1 67.5 €/MWh

No previous publications considered the effect of integrating cold storage on the selection of
the liquefaction process. Thus, the results are validated by drawing comparison to values given in
literature for air liquefaction processes without cold storage (Table 8) and values reported in previous
publications for CES system characteristics (Table 9).

Table 8. Final results of the three Claude-based systems compared to air liquefaction processes.

Parameter Unit Claude Heylandt Kapitza Reference

Specific power consumption kWh/ton 264.0 263.3 264.0 520–760 [13],
439 [35]

Production cost of liquid air €/ton 18.6 25.9 18.4 37–48 [35]

Table 9. Final results of the evaluation of the three Claude-based systems compared to CES system.

Parameter Unit Claude Heylandt Kapitza Reference

CES specific investment €/kWdis 939 923 911 500–3000 [6,7,36]
CES round-trip efficiency % 46.9 49.0 46.9 40–60 [6,9,36]

The specific power consumption of air liquefaction processes reported in [13] and [35] is twice as
large than in the presented systems. The integration of cold storage thus not only decreases the specific
power consumption to half but also reduces the production cost of liquid air from 37–48 €/ton [35] to
18.4–25.9 €/ton (Table 8).
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Assuming a TCI for the 40 MW discharge unit of 17.1 Mio €, the specific investment of the
CES systems based on the Claude processes reach values lower than 1000 €/kWdis, see Table 9. The
specific investment costs of the total CES system is approximated from 500–3,000 €/kW [6,7,36] in
literature. The levelized cost of discharged electricity (LCOEdis) of the CES systems based on the
Claude, the Heylandt, and the Kapitza process are expected to reach 175.6 €/MWhel, 175.3 €/MWhel
and 172.0 €/MWhel, respectively. For industrial application 120-200 €/MWh are set as goal. A
sensitivity analysis of the LCOE and comparison to other technologies was reported in [34]. The final
RTE of 47–49% are also in line with the expected 40–60%, which confirms the presented results.

In Table 10, the specific investment costs and RTE of other bulk-energy storage technologies
are given. The competing bulk-energy storage technology are also capital intense which makes
CES competitive with compressed air energy storage (CAES), pumped hydro storage (PHS) and
hydrogen-based energy storage (H2). Regarding the RTE of PHS and CAES, CES efficiency is still the
greatest obstacle. The high exergy density of CES (120–200 kWh/m3 [36])—the absence of geographical
constraints—remains the technologies greatest advantage.

Table 10. Specific investment cost and RTE of competing bulk-energy technologies.

Parameter Unit CAES PHS H2

Specific investment cost €/kWdis 500–2200 [37] 350–1,500 [37] > 2000+ [38]
Round-trip efficiency % 40–5 [37] 75–85 [39,40] 30–50 [38,41]

Exergy density kWh/m3 0.5–1.5 [36] 3–6 [36] 133–785 [41], 500+ [36]

4. Conclusions

This paper presents the state-of-the-art of cryogenic energy storage with regards to air liquefaction
processes, thermodynamic parameters and cold storage configurations. Six air liquefaction processes
within the charge unit of CES were investigated and results obtained from the exergy-based analysis
were compared. The effect of cold storage integration on different liquefaction processes was
firstly quantified.

• The integration of the charging unit with cold exergy recovery was shown to substantially
augment the liquid yield γ, significantly reduce the specific power requirement wchar and
significantly improve the exergetic efficiency ε of all liquefaction processes assessed.

• The simple Claude, the Heylandt and the Kapitza processes were found to reach the highest
exergetic efficiencies and liquid yields, as well as the lowest specific power requirements
for liquefaction.

• The sensitivity analysis showed that for liquefaction pressures of 125 bar and higher, the Heylandt
process reaches the highest exergetic efficiencies, at lower pressures the Claude and the Kapitza
process are superior.

• The economic analysis revealed that the Kapitza process-based system has the lowest specific
investment cost and total revenue requirement.

• The exergoeconomic analysis demonstrated that the Kapitza process is the most cost-effective
liquefaction process to be considered for CES with cold storage. The average cost of the exergy of
the final product was the lowest in the Kapitza process.

• The results were compared to values from literature. The specific power consumption of
the presented air liquefaction processes with cold storage (≤264 kWh/ton) was found to be
approximately half the values reported in literature. The production cost of liquid air was found
to be significantly reduced with the integrating cold storage (18–26 €/ton).

• The final results on system level were found to be in line with the values reported for CES specific
investment cost and RTE. Finally, CES was evaluated cost-competitive with other bulk-energy
storage technologies.
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