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ABSTRACT
A supersonic mixing layer with a blunt base is of practical significance to engineering. Two flow configurations with splitter thicknesses of
1 mm (TN) and 5 mm (TK) are simulated using large eddy simulation. The cluster-based network model (CNM) projects the supersonic
mixing layer into a ten-centroid based low-dimensional dynamical system. The CNM’s outputs of TN and TK cases are compared in order to
better understand the spatial and temporal physics. The given baseline case (TN) demonstrates a quasi-steady dynamics with a periodic visit
between ten centroids. Each cluster occupies a nearly uniform space region and is also populated with equal probability. The CNM identifies
ten centroids associated with these two flow regimes observed in the TK case: Kelvin–Helmholtz vortex and vortex pairing. According to the
resolved centroids, increasing the thickness of the splitter plate complicates the flow structures and expands the high-dimensional state space.
The CNM presents probable state transitions, revealing that the temporal dynamics in the whole field exhibits highly intermittent behaviors,
with large shape modifications but small fluctuations in turbulent kinetic energy. In the near-wake field, the reattachment point and shock
wave behave similarly that they move downstream and upstream alternatively. The blunt base supersonic mixing layer, in aggregate, increases
the turbulent kinetic energy by 20.5%.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0062145

I. INTRODUCTION

A mixing layer is a canonical flow observed in many prac-
tical engineering issues, such as noise reduction,1,2 drag reduc-
tion,3 aero-optic effect,4 and mixing enhancement.5–7 Over the past
few decades, numerous studies on mixing layers have been car-
ried out. Starting with the incompressible regime, the mixing layer
has been extensively investigated from the perspectives of veloc-
ity and pressure fields,9 large-scale coherent structures,10,11 and
their merging/pairing in the entrainment process.12 Subsequently,
Bell and Mehta13 discovered that the incompressible mixing lay-
ers are able to maintain the self-similar state with the averaged
profiles of the first and second-order flow quantities. Following
the deep insights into the incompressible one, research interest
in compressible mixing layers was highly encouraged owing to
their wide engineering applications. Ortwerth and Shine11 exper-
imentally confirmed the presence of large-scale structures in the

supersonic mixing layer. However, due to the limitations of exper-
imental optical devices, fine structures cannot be captured. Goebel
et al.14,15 first discovered the self-similar state in the supersonic
mixing layer, which was later confirmed by the following simula-
tions16 and experiments.17,18 Bogdanoff19 first proposed the convec-
tive Mach number (Mc) to quantify the compressible effects, and
subsequent researchers have continued to recognize it. Apart from
the heat release,20,21 increasing Mc reduces the expansion of the
compressible mixing layer.15,22 These studies, like the ones men-
tioned above, are mostly concerned with flow visualization and
statistical analysis of flow quantities, with minimal emphasis on
dynamics.

The military value of hypersonic aircraft has recently attracted
much attention. The development of combined cycle engines is
critical as they are the most promising propulsion system for the
single-stage-to-orbit air-breathing launch vehicle and the reusable
recce/strike airplane platform.23 The engineering development of
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combined cycle engines has reignited the research interest in the
fundamental studies24–27 and mixing enhancement techniques28,29

in the supersonic mixing layer. However, the splitter plate with a rel-
atively thin trailing edge is generally included in the experiments30–32

for the study convenience, especially in the supersonic regimes since
the flow structures are pure at this moment. The velocity inlet in
simulations is assigned as a tanh-type profile without taking into
account a splitter plate.24–26 These methods are appropriate to con-
centrate on the core issues of interest, i.e., a simple mixing layer, nev-
ertheless, disjoint from the engineering practice. In a combined cycle
engine, the fuel supply and protective cooling system are imperative
constituent parts, which incur the inevitable increase in the thick-
ness of the splitter plate. Thus, the supersonic mixing layer with a
blunt base deserves deep exploration.

Some pioneers have illustrated the characteristics of the super-
sonic mixing layer downstream a splitter plate via experimental
means33 and numerical methods.34,35 Flow structures and statis-
tic analysis are frequently entailed, but dynamical analysis is rarely
concerned. The nonlinear nature in the dynamical system and a
large amount of data from both experiments and numerical simu-
lations pose great challenges to understanding the dynamics. The
reduced-order model (ROM) is a key enabler for physical under-
standing. Laizet et al.35 simulated incompressible mixing layers hav-
ing various geometries of thick splitters by means of direct numerical
simulation. The influence of the trailing edge shape is carefully con-
sidered on the spatial development of the mixing layer. In addi-
tion, the proper orthogonal decomposition (POD) is employed to
understand the transition from the wake to the mixing layer. Low-
dimensional models were also built using POD to understand the
temporal and spatial evolution of the mixing layer.36,37 However,
the POD is conducted by solving the eigenvalue problem on the
correlation matrix of any two fields. It tends to mix the tempo-
ral and spatial frequencies. The POD modes are closely associated
with the eigenvectors instead of the practical physics, which are
hard to be interpreted. Dynamic mode decomposition (DMD) is
an exciting tool to overcome these drawbacks. Song et al.38 con-
ducted DMD analysis to explore the sound generation mecha-
nisms in mixing layers. DMD successfully captures both the far-
field acoustics and the near-field dynamics with a few modes. Soni
and De39 executed DMD to segregate the coherent structures on
the basis of the pure frequency in the supersonic mixing layer.
The dominant modes capture the breakdown, pairing/merging, and
stretching of vortices to aid in understanding the contribution to
supersonic mixing. However, DMD modes cannot be ranked
according to their importance for flow physics. Due to the lin-
earization of the governing equations in the algorithms,40 the DMD
generally shows weak robustness to the nonlinear dynamics with
complicated dynamics, especially with highly intermittent dynam-
ics.41 Given the success and drawbacks of standard DMD, a few
variants of DMD have been proposed, such as recursive DMD,42

spatial–temporal DMD,43,44 and optimized DMD,45 just to name
a few.

Most drawbacks mentioned in the POD and DMD can
be avoided by means of the cluster-based reduced-order model
(CROM). Burkardt et al.46,47 first introduced an approach of cen-
troidal Voronoi tessellation (CVT) to produce a ROM of the
Navier–Stokes equation. Subsequently, Kaiser et al.48 proposed a
cluster-based Markov model (CMM) that integrates the cluster

analysis with a Markov model to identify the transitions between
different spatial modes. Then, the CMM is employed to analyze
the wake of a high-speed train,49 twisted cylinder flow,50 super-
sonic mixing layer,51 and turbine wake.52 Shahbazi and Esfaha-
nian53 built a ROM using cluster analysis and orthogonal clus-
ter analysis to analyze the lead-acid battery, which continuously
enriched the family member of the CROM. In the CMM, the cluster-
ing is employed to coarse-grain the data into representative states,
and the temporal evolution is modeled as a probabilistic Markov
model. In this model, the state vector of cluster probabilities con-
verges to a fixed value representing the post-transient attractor,
which leads to the disappearance of the dynamics. To surmount
the drawback of the CMM in modeling dynamic evolution, we
proposed a cluster-based network model (CNM) in Refs. 54 and
55, which is a universal method for data-driven modeling of non-
linear dynamics from time-resolved snapshots without any prior
knowledge. The CNM, a branch of CROM, combines a cluster
analysis of an ensemble observations from simulations or experi-
ments and a network model for transitions between the different
flow characteristics educed from the cluster analysis. The snap-
shots are coarse-grained into a small number of clusters with the
representative states called centroids. The dynamics is described
by a network model with “constant velocity flights” between the
centroids.

This study seeks to understand the flow dynamics of a blunt
base supersonic mixing layer using the CNM instead of the statistical
analysis. Considering various configurations and influence factors in
this kind of flow, this paper is studied based on two given examples.
This paper is organized as follows: Sec. II briefly describes the phys-
ical flow model and large eddy simulation method. The grid inde-
pendence analysis and code verification are carefully carried out to
ensure the accuracy of numerical results. Section III introduces the
algorithm of the cluster-based network model step by step, including
the pre- and post-processing for the clustering results as well as the
method for creating a network model based on them. To give read-
ers an overall expression, the fundamental flow features are briefly
described in Sec. IV A. Section IV B compares the CNM results from
the two cases in order to provide an in-depth insight into the blunt
base supersonic mixing layer. Finally, Sec. V summarizes some key
findings.

II. NUMERICAL SIMULATION SETUP
A. Physical model

The physical model in the present simulation is the supersonic
mixing layer downstream a splitter plate. We include the splitter
plate in the computational domain to reproduce realistic situation
as in our previous experiment.57 Dual parallel streams encounter in
the trailing edge of the splitter plate. Interactions happen and grad-
ually generate a mixing layer whose visualization thickness increases
along with the streamwise orientation. Figure 1 illustrates the two-
dimensional numerical sketch. The flow is described in a Cartesian
coordinate where the origin is located in the geometrical center of
the starting edge of the splitter plate. The x axis is aligned with
the streamwise direction and y axis with the transverse direction.
U, P, and T represent the inlet velocity, static pressure, and static
temperature, respectively. The subscripts “1” and “2” denote the
upper and lower streams, respectively. In this study, two splitter
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FIG. 1. The two-dimensional sketch of the numerical simulation setup. The numer-
ical domain is rectangular with the dimension excluding a splitter plate. The letters
“A,” “B,” and “C” are used to denote the different boundaries. Two-dimensional
simulation is acceptable at Mc = 0.22.

plates are considered in the numerical simulations: the thin split-
ter plate (“denoted by TN”) and thick splitter plate (denoted by
“TK”). Note that only two-dimensional simulations are conducted
since the two-dimensional vortex structures that originated from
the Kelvin–Helmholtz (K–H) instability play the absolutely domi-
nant role in the weakly compressible regime with Mc < 0.4.25,56 The
mass transfer and combustion in the mixing layer are not involved
in this simulation. The two splitter plates (TN and TK) have the
same dimension in the length Ls = 80 mm but different thicknesses:
hTN = 1 mm and hTK = 5 mm. The convective Mach number is
expressed by

Mc =
u1 − u2

a1 + a2
(1)

with the corresponding convective velocity

Uc =
U1a2 +U2a1

a1 + a2
. (2)

Note that a is the local Mach number. The convective velocity Uc is
the averaged moving downstream velocity of the characteristic flow
structures. The Reynolds number is based on the convective veloc-
ity Uc and thickness of the splitter plate h. They read ReTN = 3.46
× 104 and ReTK = 1.73 × 105. The computational domain extends a
rectangular area excluding the splitter plate,

Ω = Lx ×H − Ls × h. (3)

Many previous literature studies have demonstrated that the
splitter plate is of great significance to the vortex dynamics of the
mixing layer.33–35 Herein, we stress the differences between this
study and other numerical simulations of the supersonic mixing lay-
ers. A tanh-type velocity profile is generally employed as the inlet
condition for a rectangular domain. This estimation is convenient
for the fundamental analysis on the mixing layer vortex but stay
away from the engineering practice.

The dimensions of the computational domain and flow param-
eters in this numerical study are inspired from our previous numer-
ical6,7 and experimental study.57 Notably, the TK case is the same as
our experimental study in the supersonic wind tunnel.6 The TN case
is benchmarked as a baseline. The parameters of dual streams are
thoroughly listed in Table I.

TABLE I. The parameters of dual incoming streams for numerical simulation.

Upper Lower

Convective Mach number Mc 0.22
Mach number a1, a2 2.12 3.18
Convective velocity Uc (m/s) 576.9
Density ρ (kg/m3) 0.0556 0.0834
Density ratio s = ρ2/ρ1 1.5
Velocity ratio r = U2/U1 1.2
Streamwise velocity U (m/s) 519 623
Static pressure Ps (Pa) 2 640 2 520
Total pressure P0 (Pa) 21 360 101 325
Boundary layer thickness δ (mm) 0.5 0.5

We have to state that many vital variables will affect the super-
sonic mixing layer’s evolution in the downstream. These variables
include the thickness and geometrical shape of the splitter plate, the
thickness of the initial boundary layer, the Reynolds number, and
the convective Mach number. This paper does not discuss these vari-
ables and focuses on the dynamics using the cluster-based network
model introduced in Sec. III.

B. Numerical method
In our present simulation, the compressible mixing layer is

computed using an in-house large eddy simulation (LES) solver
based on the finite volume method (FVM). In this solver, the mes-
sage passing interface (MPI) based on parallel architecture using
domain decomposition and distributed memory is employed to
gain high calculation efficiency. This solver has been successfully
applied to the simulations of the supersonic mixing layer and cavity
flow.6,7,51

The two-dimensional Navier–Stokes equations are filtered
using the Deardorff box filtering58 and resulting equations are as
follows:

Continuity equation,

∂ρ̄
∂t
+

∂

∂xj
(ρ̄ũj) = 0. (4)

Momentum equation,

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj + p̄δij − τ̃ij + τsgs

ij ) = 0. (5)

Energy equation,

∂

∂t
(ρ̄Ẽ) +

∂

∂xj
[(ρ̄Ẽ + p̄)ũj + q̃j − ũiτ̃ij +Hsgs

j + σsgs
j ] = 0. (6)

Here, ρ denotes the density. ui(i = 1, 2) is the velocity vector in
Cartesian coordinates and p is the pressure. The total energy of the
system is the sum of the internal energy and kinetic energy. Then, the
filtered total energy is determined by the sum of the filtered internal
energy, the resolved kinetic energy, and the subgrid kinetic energy.
The subgrid-scale stress resulting from the filtering operations is
modeled by the subgrid-scale turbulences based on the Boussinesq
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hypothesis59 and can be computed by

τsgs
ij −

1
3

τkkδij = −2μtSij, (7)

where μt is the subgrid-scale turbulent viscosity. The Sij is the rate-
of-strain tensor for the resolved scale defined by

Sij =
1
2
(
∂ui

∂xj
+
∂uj

∂xi
). (8)

Note that the isotropic part of the subgrid-scale stress τkk is added
to the filtered pressure term. The compressible form of the subgrid
stress tensor is defined as

τsgs
ij = ρ̄ ˜uiuj − ρ̄ũiũj. (9)

The term can be split into its isotropic and deviatoric parts,

τsgs
ij = τsgs

ij −
1
3

τkkδij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
deviatoric

+
1
3

τkkδij

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
isotropic

. (10)

The deviatoric part of the subgrid-scale stress tensor is modeled
using the compressible form of the Smagorinsky model,60

τsgs
ij −

1
3

τkkδij = −2μt(Sij −
1
3

Skkδij), (11)

where the SGS eddy viscosity is

μt = ρL2
S∣S̄∣. (12)

In the above equation,

∣S̄∣ ≡
√

2S̄ijS̄ij. (13)

The mixing length for subgrid scales Ls reads

Ls = min(κd, CsΔ). (14)

In Eq. (14), κ is Karman’s constant, d is the distance to the clos-
est wall, and Cs is the Smagorinsky constant. Δ is the scale of the
local grid scale and can be computed according to the volume of the
computational cell using

Δ = V1/3, (15)

and ∣S̄∣ is the modulus of rate-of-strain for the resolved scales.
Following Ref. 6, Cs is set as 0.1 for the reliable results, which
is also found to yield the best results for a wide range of
turbulence.

The time-marching is performed by means of a second-
order, implicit dual time step scheme to improve the calculat-
ing efficiency. A Lower-Upper Symmetric Gauss–Seidel (LU-SGS)
method is employed to achieve the inner product. The gradients
are calculated by the Green–Gauss cell-based method. The second-
order spatially accurate upwind scheme with the low-diffusion Roe
Flux Difference Splitting (low Roe-FDS) formulation is utilized in
this solver to reduce the dissipation during calculations, which
is an updated version of the Roe-FDS. The time step is fixed at

Δt = 5 × 10−8 s to facilitate the clustering snapshots at convenience.
The Courant–Friedrichs–Lewy (CFL) number is less than 0.5. Note
that the physical time step Δt is limited only by the level of desired
temporal accuracy. The pseudo-time step Δτ in the dual time
step scheme is determined by the CFL condition of the implicit
time-marching scheme. The calculation case in this paper simu-
lates nearly 2 × 105 time steps to ensure accuracy of the statistical
results.

To simulate the actual situation of the boundary layer, the
velocity conditions of two inlets with a Blasius flat-plate boundary
layer spanning the inlet were determined. The two inlets (denoted
by “A” in Fig. 1) are tested by imposing random noise on a mean.
The mean profile has a 1/7th power law implemented, and a tur-
bulent kinetic energy of 0.4% is employed. The non-slip boundary
and constant temperature conditions (denoted by “B” in Fig. 1)
are adopted in the boundaries of the upper wall, bottom side-
wall, and splitter plate. The outflow condition (denoted by “C” in
Fig. 1) is set as the non-reflective condition61 for calculation sta-
bility. The reflection waves from the outflow boundary are well
controlled.

The supersonic mixing layer with the weak compressibility
effect (Mc ≤ 0.4, Mc = 0.22 in this paper) will mainly exhibit two-
dimensional vortex structures.8 In addition, the mixing layer with
these conditions will exhibit three-dimensional behaviors in a 3D
view, but the two-dimensional vortex tubes play the dominant role.
Readers are referred to our published results with nearly the same
conditions in Ref. 7.

C. Grid independence analysis and code verification
To ensure the simulation’s validity and reliability, the grid

independence analysis is conducted using three distinct grid sys-
tems, namely, coarse, moderate, and refined grids. Table II con-
tains the detailed grid information, including the minimum scale of
Δx and Δy required to satisfy the constraints of x+ ≤ 1 and y+ ≤ 1.
The calculation area is discretized into a structured non-uniform
grid.

By comparing the statistical profiles at the same spatial posi-
tion, the effect of grid scales on the numerical results is inves-
tigated. As illustrated in Fig. 2, the dimensionless time-averaged
temperature and pressure for the TK case at x/H = 3 are com-
pared using coarse, moderate, and fine grids, respectively. Three
curves for both quantities basically coincide, indicating that no
obvious difference exists between numerical results from three
grid scales. Additionally, the results from moderate and refined

TABLE II. Three sets of meshes for the 2D numerical simulation of the supersonic
mixing layer.

Grid Coarse Moderate Refined

nx × ny 838 × 260 1001 × 301 1201 × 351
Cell number 193 980 272 301 375 361
Δymin (m) 2.00 × 10−5 1.00 × 10−5 1.00 × 10−5

Δymax (m) 5.00 × 10−4 5.00 × 10−4 5.00 × 10−4

Δxmin (m) 2.00 × 10−5 1.00 × 10−5 1.00 × 10−5

Δxmax (m) 5.00 × 10−4 5.00 × 10−4 2.00 × 10−4
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FIG. 2. Comparison of time-averaged profiles in three grid systems at x/H = 3
for the TK case. (a) Time-averaged static pressure and (b) time-averaged static
temperature.

meshes are highly comparable. As a result, selecting a moderate
grid scale for the computational grid can result in cost and time
savings.

We conduct code verification to ensure the solver’s reliabil-
ity. As shown in Fig. 3, the statistical results obtained using the
LES solver for the TK case agree reasonably well with the exper-
imental data. Nota bene, the experimental data are taken from
Ref. 6.

In summary, this LES solver performs admirably well when
used to simulate the supersonic mixing layer numerically.

FIG. 3. Streamwise velocity profiles obtained from the numerical results (black
solid line) and experimental data (red dots) at (a) x/H = 2.5 and (b) x/H = 3.5 for
the TK case.

III. CLUSTER-BASED NETWORK MODEL
The cluster-based network model paves a new avenue to model

the high-dimensional nonlinear dynamics in a data-driven manner.
Figure 4 shows the technical sketch of the cluster-based network
model exemplified by the incompressible mixing layer. Cluster anal-
ysis groups the high-dimensional state space into a given number
of subspaces with the representative states called centroids in an
unsupervised manner. Obviously, cluster analysis is indeed one of
the dimension reduction techniques. Then, the dynamics is repro-
duced by the CNM on a directed network, where the nodes are the
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FIG. 4. The methodology sketch of the cluster-based network model. The snapshots u(x, t) are collected at constant sampling frequency. These snapshots are grouped
into K clusters in terms of their similarity meanwhile obtaining centroids ck and cluster affiliations. The representative states, i.e., centroids, are considered as the network
nodes. The direct transition probabilities between network nodes are identified from the training data, which describe all possible transitions from the probabilistic point of
view. Finally, the complicated dynamics in the high-dimensional state space is converted into a simple dynamics between centroids.

centroids, i.e., the representative states for the subspaces of the sys-
tem. The transition probability and transition time between nodes
can be inferred from the original data. Generally, there are three
steps for the CNM analyzing a dynamical system. The data should
be collected at first. These data will be coarse-grained into a given
number of clusters to get the centroids and time series of labels for
each observation. The network is built temporally by means of the
time series of labels and spatially by means of the centroids. Network
science becomes increasingly popular in nearly all fields of mathe-
matical modeling, including computer sciences, biology, and fluid
dynamics.62–64

A. Data collection
The CNM is a purely data-driven model to resolve a dynamic

system without any prior knowledge. The starting point of the CNM
is the data collection of M time-discrete N-dimensional state of
the system. Theoretically, any variables can be fed into the CNM
due to the great robustness to the nonlinear system. Recommended
by the model developers, the interested variables, especially reflect-
ing the property of a dynamic system, should be first picked up.
The state represented by the collected data can comprise the full
state, the low-dimensional representation of the full state, or an
observation. Note that these data can be from the numerical sim-
ulations or experiments. In addition, the model quality is directly
related to its training data. In particular, the sampling frequency for
snapshots must be selected that the relevant dynamics are resolved.
The total time range covering these snapshots should ensure the
statistic convergence of the dynamics. Therefore, the CNM needs
a larger amount of training data than other data-driven models
like DMD. In the present study, we collect M time-resolved veloc-
ity snapshots in a steady domain Ω as the observation for the
CNM. These snapshots are obtained from the numerical simula-
tion described in Sec. II. The velocity field is collected at an instant
time step Δtc and denoted as um

(x) ∶= u(x, tm
), m = 1, . . . , M. The

time step Δtc should be short enough to capture the character-
istic flow features. We emphasize the difference between Δt in
LES and Δtc that two variables should satisfy the requirement
of Δt ≤ Δtc.

B. Cluster analysis
1. Data preprocessing: Compression using POD

We consider the POD method as a data compression tool to
reduce the computational loads, but this step is not mandatory for
the CNM. The data compression is highly recommended for the
clustering of large high-dimensional datasets since it is pretty expen-
sive. Lumley65 first introduced POD into the turbulence community.
This method aims to find optimal basis functions by maximizing
the mean square projection of the system using a spatial two-point
correlation in an eigenvalue problem. The inner product of two
square-integrable velocity fields u1 and u2 ∈ L2

(Ω) is given as

(u1, u2)Ω ∶= ∫Ω
u1(x) ⋅ u2(x)dx. (16)

The corresponding norm reads ∥u∥Ω ∶=
√
(u, u)Ω. All collected

snapshots are averaged in time to get the mean flow um. The
snapshot-based POD is applied to the velocity fluctuations,

vm
(x) = u(x, tm

) − um(x). (17)

The two-point correlation matrix C = (Cmn
) ∈ RM×M of the fluctua-

tions is first determined,

Cmn
=

1
M
(vm, vn

)Ω. (18)

The eigenvalue problem for the correlation matrix C is solved to
determine the POD modes and time coefficients (i.e., mode ampli-
tudes),

Cei = λiei, i = 1, . . . , M. (19)

Each POD mode is a linear combination of the snapshot
fluctuations,

ui =
1

√
Mλi

M

∑
m=1

em
i vm, i = 1, . . . , N. (20)

AIP Advances 11, 085322 (2021); doi: 10.1063/5.0062145 11, 085322-6

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

Note that any two POD modes are mutually orthonormal, i.e.,
(ui, uj)Ω = δij, ∀i, j ∈ {1, . . . , M}. The POD mode amplitudes can be
expressed by

am
i ∶=
√

λiMei
m, i = 1, . . . , N. (21)

Finally, the POD method decomposes each snapshot into a lin-
ear combination of the time coefficients ai(t) and spatial modes ui,

u(x, t) = um(x) +
N

∑
i=1

ai(t)ui(x), (22)

where N =M − 1 means the lossless POD decomposition.
Cluster analysis identifies the flow pattern via the similarity

metric between any two snapshots. The similarity is measured by
the Euclidean distance, expressed by

d(um, un
) =

√

∫
Ω

dx∥um − un∥2. (23)

In this equation, the whole computational domain Ω is used for the
integration. In the cluster algorithm, many repetitions are required
to gain a better result, which leads to extremely expensive calcula-
tion. Note that any two POD modes are mutually orthonormal. The
distance between any two velocity fields can be converted into the
distance of the corresponding POD mode amplitudes, given as

d(um, un
) = ∥um

− un
∥Ω = ∥am

− an
∥. (24)

In this way, a large amount of the area/volume integrals in the
computation of Euclidean distance for cluster analysis are avoided
since the most expensive process has been finished by comput-
ing the two-point correlation matrix C 18 in the POD method.
Therefore, each snapshot is represented by a time coefficient vector
am
= [a1(tm), a2(tm), . . . , aM−1(tm)]. The dataset of velocity snap-

shots is converted into a large matrix A containing a series of POD
time coefficient vectors,

A =

⎛
⎜
⎜
⎜
⎜
⎝

a1(t1) ⋅ ⋅ ⋅ aM−1(t1)

⋮ ⋮ ⋮

a1(tM) ⋅ ⋅ ⋅ aM−1(tM)

⎞
⎟
⎟
⎟
⎟
⎠

. (25)

The subsequent clustering and analysis in this paper are con-
ducted based on this matrix. In Sec. III B 2, the cluster analysis
algorithm is described based on the POD time coefficients.

2. Clustering analysis to identify characteristic
flow patterns

The cluster analysis is a dimension reduction tool that dis-
cretizes the high-dimensional state space in an unsupervised man-
ner. To be specific, it partitions the observations/snapshots that are
mutually similar to K relatively homogeneous clusters. The homo-
geneity of each cluster is quantified by the cluster diameter Dk.
The representative state of each cluster is described by the centroid
ck, k = 1, . . . , K. The similarity of any two velocity fields um and un

is measured using Euclidean distance D. As mentioned in Eq. (24),
the distance of two velocity snapshots um and un based on the norm
associated with the Hilbert space ℒ 2

(Ω) of square-integrable func-
tions is converted to the distance between two corresponding POD

time coefficients am and an. Therefore, the cluster analysis is applied
to a sequence of POD time coefficients am

= am
(tm
), m = 1, . . . , M.

In this study, cluster analysis is achieved using the unsupervised k-
means++ algorithm66 that minimizes the inner-cluster variance and
maximizes the inter-cluster variance.

In the k-means++ algorithm, a set of centroids ck is ran-
domly initialized and their performance can be evaluated by the
total inner-cluster variance J of snapshots am with respect to their
corresponding centroids,

J(c1, . . . , ck) =
K

∑
k=1
∑

am∈𝒞 k

d(am, ck). (26)

The k-means++ algorithm solves this optimization problem through
iterations to pursue the minimum inner-cluster variance. The itera-
tions will stop until the convergence is reached, and meanwhile, a
set of optimal centroids copt,a

k (k = 1, . . . , K) associated with the POD
time coefficients are determined,

(copt,a
1 , . . . , copt,a

K ) = argmin
c1 ,...,cK

V(ca
1, . . . , ca

K). (27)

The cluster analysis assigns a cluster index to each snapshot that cor-
responds to the nearest centroid, resulting in the cluster affiliation
function,

k(am
) = arg min

i
∥am
− ca

i ∥. (28)

This function defines K cluster regions as Voronoi cells 𝒞 k sur-
rounding centroids. In order to communicate with other following
variables conveniently, a characteristic function is proposed as an
alternative of Eq. (28) and reads

Tm
k ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if am
∈ 𝒞 k,

0 otherwise .
(29)

The centroid is defined as the mean flow of all snapshots
belonging to a cluster,

ck =
1
nk
∑

am∈𝒞 k

am
=

1
nk

M

∑
m=1

Tm
k am, (30)

where nk is the number of snapshots in cluster 𝒞 k and reads

nk =
M

∑
m=1

Tm
k . (31)

3. Data postprocessing after cluster analysis
To visualize the centroids, the flow structures are reconstructed

via the inverse process of the POD by computing the linear combi-
nation of the POD coefficient vector of centroid ac

i,k and POD modes
ui, i.e.,

ck(x) = um(x) +
N

∑
i=1

ac
i,kui(x). (32)

Similar to POD and DMD, the transverse fluctuation velocity v′ is
visualized to show the flow patterns rather than including the mean
flow.

AIP Advances 11, 085322 (2021); doi: 10.1063/5.0062145 11, 085322-7

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

The performance of cluster analysis is evaluated by the degree
of homogeneity of the resolved subspaces. The diameter of a clus-
ter is the distance between the cluster’s two most distant observa-
tions. The cluster diameter is the maximum Euclidean distance [see
Eq. (23)] between any two velocity fields am and an within a cluster,
and it is expressed as

Dk = max
m,n
(Dmn : am, an

∈ 𝒞 k). (33)

The standard deviation is a measure of how closely data are
clustered around the mean. Basically, low standard deviation means
that data are clustered around the mean, whereas a high standard
deviation indicates dispersed data. The standard deviation is defined
as

Rk =

¿
Á
ÁÀ

1
nk
∑

am∈𝒞 k

∥am − ac
k∥

2. (34)

The dissimilarity between any two representative states can be
quantified by the Euclidean distance between their two correspond-
ing centroids in the steady domain Ω. This leads to a K × K sym-
metric distance matrix d. Each entry dij of this matrix is defined as

dij = d(ci, cj) =

√

∫
Ω

dx∥ci − cj∥2. (35)

The clusters resolve the regions of the dynamical trajectory
associated with various turbulent kinetic energies (TKEs). Herein,
we estimate the mean TKE of each cluster using the snapshots in
this section,

TKEk =
∑

M
m=1Tm

k ∥a
m
− a∥2

2∑M
m=1Tm

k
. (36)

The probabilistic representation of a dynamical system is
defined as

qk ∶=
nk

M
=

1
M

M

∑
m=1

Tm
k . (37)

A probability qk is approximated in this equation by the ratio of
snapshots in cluster k to the total snapshots M. This parameter
contains data about the cluster population.

C. Network model for state transitions
In Sec. III B 2, the k-means++ algorithm assigns a cluster index

to each snapshot from the training dataset, which leads to a discrete-
time cluster affiliation function k(am

). From a probabilistic stand-
point, the link between any two clusters is described using a derived
network model. The cluster affiliation function is used to infer the
direct transition matrix Q and its related time scale matrix T in
the network. The network model, unlike the cluster-based Markov
model,48,51 ignores inner-cluster residency and only considers inter-
cluster switches. The element of Qij and Tij describes an event in
which the cluster j takes time Tij to transit to cluster i with the prob-
ability Qij. The direct transition probability Qij is inferred from the
training data as

Qij =
nij

nj
, i, j = 1, . . . , K, (38)

where nij is the number of transitions from 𝒞 j to 𝒞 i and nj is the
number of transitions departing from 𝒞 j regardless of the terminal

points. Note that the key diagonals of the matrix T are all 0 as the
lingering in the same cluster is omitted.

A time-delay gained from the training data is embedded into
the low-dimensional dynamical system, in contrast to the constant
time step of the cluster-based Markov model.48,51 Assume tn (tn+1)
is the time of the first (last) snapshot to enter (leave) the cluster 𝒞 i.
The residence time in cluster 𝒞 i is computed using the following
formula:

τi = tn+1 − tn. (39)

The spatial mode in the low-dimensional dynamical system is
represented by the centroid ci, which represents the spatial mode in
the low-dimensional dynamical system, supposes to stay at the cen-
ter of this time range (tn + tn+1)/2. The individual transition time
from cluster j to cluster i is then defined as half the residence time of
both clusters and reads

τij =
τi + τj

2
=

tn+2 − tn

2
. (40)

Because of the dynamical system’s complexity, the transition tra-
jectory between two clusters may change, resulting in distinct time
scales. To characterize time scale, we average the transition dura-
tions between clusters, imitating the definition of a centroid, which
is the mean of all snapshots belonging to this cluster. The entry of
the averaged transition time matrix reads

Tij = ⟨τij⟩. (41)

The cluster-based network model can also predict the future
evolution of a dynamical system with a predetermined initial state.
The validation of the model is of significance to gain accurate perfor-
mance. We do not introduce the detailed algorithm in this paper to
focus on the physical understanding of the supersonic mixing layer.
Readers are referred to Ref. 54 for the details.

IV. RESULTS AND DISCUSSION
In this section, the TN and TK cases are simulated using

the large eddy simulation. The dynamics is thoroughly investi-
gated by comparing CNM output for both TN and TK cases.
Section IV A provides an overview of the flow characteristics
in order to gain a fundamental understanding. The supersonic
mixing layer is characterized by a large range of time and spa-
tial scales, intrinsic high dimensionality, and nonlinear dynamics.
Section IV B presents the clustering-derived representative spatial
modes (i.e., centroids). Cluster analysis is an entirely data-driven
dimension reduction technique for identifying flow patterns. The
supersonic mixing layer’s high-dimensional state space is projected
into K = 10 centroids. In Sec. IV C, the cluster-based network
model is used to reproduce the high-dimensional nonlinear com-
plex dynamical system of the supersonic mixing layer. To compre-
hend the dynamics, the state temporal transitions are thoroughly
analyzed.

A. Flow features
Numerous publications attest to the significance of the role of

the splitter plate in the development of the supersonic mixing layer.
The fundamental flow characteristics of the blunt-base supersonic
mixing layer are visualized in Fig. 5 using the numerical schlieren

AIP Advances 11, 085322 (2021); doi: 10.1063/5.0062145 11, 085322-8

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 5. The fundamental features of the supersonic mixing layer visualized via numerical schlieren67 in the TK case.

method.67 This sketch clearly illustrates the layout of wake-mixing
layer and shock-mixing layer interactions, which differs from the
layout observed in the majority of simulations using a tanh-type
velocity profile. Along with the expansion waves, the supersonic
streams begin to separate at the trailing edge of the splitter plate.
Instead of the immediate confrontation, two streams are separated
at the rear of the splitter plate by a low-speed wake. When two shear
layers approach the splitter plate’s centerline, compression occurs
as the flow attempts to realign with the streamwise direction. The
compression waves originated in the shear layer’s supersonic regions
gradually coalesce into the recompression oblique shock wave. Their
reflected waves from the upper or lower wall interact with the rede-
veloping mixing layer and exert influence on the growth process
via the modification of compressibility effects along the streamwise
direction. Following the disappearance of the wake, the two main-
streams merge into a redeveloping mixing layer. As illustrated in
Fig. 5, roll-up typical structures, i.e., K–H vortices, develop down-
stream of the flow field due to the free mixing layer’s inherent
K–H instability. We assume that the wake instability has a signif-
icant effect on the expansion of the mixing layer, which will be
analyzed in Sec. IV B. Maintaining K–H instability results in the
pairing and merging process of adjacent vortices, which leads to
the growth of the mixing layer. The curvature shocklets are cap-
tured astonishingly well in the vicinity of the large-scale structures
in Fig. 5.

FIG. 6. Instantaneous vorticity contour for the two cases.

The instantaneous vorticity fields for these two cases are com-
pared in Fig. 6 to demonstrate the dynamic difference. Consider-
ing the intermittent dynamics of the wake-mixing layer, these two
instantaneous images can only provide a primary understanding of
flow features. These two examples demonstrate significant differ-
ences in wake size, vortex shedding position, and vortex size. As for
the TN case, the wake-mixing layer exhibits a rapid roll-up of K–H
vortices following a small wake. This indicates that the wake has a
negligible effect on the mixing layer dynamics. In comparison, the
shedding positions in the TK case are significantly delayed down-
stream, but larger-scale structures emerge at the start of the redevel-
oping mixing layer. Note that the occurrence position of shedding
is not fixed and generally shows intermittent dynamics. This is fur-
ther confirmed in the centroids captured in Sec. IV B by the cluster
analysis.

B. Spatial modes: Characteristic flow states
To implement the cluster analysis, M = 2000 post-transient

velocity snapshots are collected with an instant time step of Δτ
= 5Δt = 2.5 × 10−7 s. The sampling frequency 1/Δτ is sufficiently
small to capture the relevant dynamics, and the time range of
M = 2000 snapshots is satisfactory for the accurate statistics. The
optimal number of clusters K is a trade-off between the resolu-
tion of dynamics and modeling time horizon. These snapshots are
first compressed using the POD method to withstand the compu-
tational loads generated by the k-means++ algorithm’s iterations.
These snapshots, denoted by POD time coefficient vectors, are par-
titioned into K = 10 clusters in this paper. The number of clusters
K = 10 is confirmed to be reasonable for the current dataset, consis-
tent with our previous publications in Refs. 7, 51, and 54. We remark
on the critical nature of model validation for the sake of model
accuracy. The validation of the CNM via the correlation function
is omitted here in order to focus on the mechanism understanding
and also for the writing conciseness. Readers are referred to Refs. 7,
51, and 54 for more details.

The homogeneity of each cluster is quantified using the cluster
diameter Dk and standard deviation Rk, as shown in Fig. 7. Similar
diameter and standard deviation distributions in a case demonstrate
the k-means++ algorithm’s superior performance, as each clus-
ter is relatively homogeneous in size. The M = 2000 snapshots are
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FIG. 7. Cluster diameter Dk (a) and standard deviation Rk (b) of K = 10 clusters for TK (gray) and TN (white).

sufficient to fill the high-dimensional state space of the supersonic
mixing layer. The clustering process discretizes high-dimensional
state space into a set of K subspaces. Clustering projects the high-
dimensional state space into K-dimensional subspace. The diameter
quantifies the size of a subspace and standard deviations describe the
distributed density of observations (snapshots) surrounding the cor-
responding centroids. Each cluster’s Dk and Rk are nearly identical
in the TN case, indicating a relatively homogeneous partition of the

high-dimensional state space and also implying periodic dynamics.
Almost all diameters of TK are more than twice as large as those of
the TN cases. The standard deviations of TK (at least k = 1, . . . , 8)
are over three times larger than that of the TK case. This implies
that, abstractly speaking, the TK case spans a significantly larger state
space than the TN case with dispersedly distributed snapshots.

The K = 10 centroids can be used to illustrate the representa-
tive flow patterns of clusters, as shown in Figs. 8 and 9. Centroids are

FIG. 8. K = 10 centroids in the whole computational domain for the TN case. Only the transverse fluctuation velocity v′ is visualized.
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FIG. 9. K = 10 centroids in the whole computational domain for the TK case. Only the transverse fluctuation velocity v′ is visualized.

reconstructed using the POD method’s reverse process, as described
in Eq. (32). Each centroid has two components in this study: stream-
wise velocity and transverse velocity. We visualize the transverse
fluctuation velocity v′ in this section as it is critical for mass mixing
and approaches the vortex structures. We will refer to the transverse
fluctuation velocity v′ as centroids in the following. These two cases
exhibit radically different flow characteristics. In the TN case, the
redeveloping mixing layer forms immediately after the trailing edge
of the splitter plate. The wake is small enough that its effect on the
development of the mixing layer can be completely ignored. This
results in a significantly greater advance of the reattachment point in
the TN case than in the TK case as illustrated in Fig. 5. The expansion
angle β between the upper and lower expansion waves, as shown in
Fig. 8, is pretty small. The spatial structure in the TN case is approx-
imately uniform structures in the streamwise direction. Starting at
x/H = 1, the area occupied by the vortex structures is amplified and
gradually decreases until x/H = 1.5. Another similar process occurs
between x/H = 1.5 and x/H = 2.25 and also between x/H = 2.25 and
x/H = 3.

Increasing the thickness of the splitter plate greatly affects
the spatial and temporal dynamics of the supersonic mixing layer.
The TK case contains a variety of structures of varying sizes and
shapes. The wake behind the trailing edge has a very low transverse
fluctuation velocity v′ where the streamwise motions dominate the

dynamics of this region. The shapes of the K = 10 centroids reveal
two distinct subsets: Kelvin–Helmholtz vortices (K–H k = 1 . . . 8)
and vortex pairing (VP, k = 9, 10). It is widely acknowledged that the
VP behavior significantly generates more energy than K–H behav-
ior. In the K–H subset, the wake effects cease to exist at around
x/H = 1.5, followed by the fast expansion of the mixing area to
approximately x/H = 2 with the peak. Similarly, after the peak, the
mixing area decreases to around x/H = 2.5. Subsequently, another
increase begins. Various flow behaviors, such as vortex pairing,
merging, and tearing, are well captured in the VP subset. In addi-
tion, rare events, such as quadruple-vortex pairing/merging, are also
clearly resolved in centroids k = 9, 10, as denoted by “QP” and “QM”
(QP′ and QM′). Due to the wide value range of the legend, the
wake flow near the trailing edge of the splitter plate is deliberately
eliminated in Fig. 9. This area has been magnified to show the fine
flow structures of the wake, as illustrated in Fig. 10. The absolute
v′ amplitudes are only equal to 1 as the maximum ΔU approaches
100. The reattachment points in these centroids are not fixed, which
are related to the redeveloping mixing layer’s diverse behaviors.
The shock-wave/mixing layer interactions are well captured in the
majority of centroids, denoted by “S” in Fig. 9. In comparison to
the VP subset, the reattachment points of the K–H subset are gen-
erally delayed, except for centroid k = 1. The unstable position of
the reattachment point strengthens the initial turbulence of the
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FIG. 10. K = 10 centroids near the trailing edge of the splitter plate for the TK case. Only the transverse fluctuation velocity v′ is visualized. These figures corresponds to
Fig. 9 with a new legend. The star symbol (⋆) and solid lines denote the reattachment points and reattachment shock waves, respectively. The intersection location of two
shock waves approximates the reattachment point. We emphasize that the denoted positions are roughly determined according to the visualization.

redeveloping mixing layer, implying the presence of a variety of
dynamical behaviors downstream.

The geometrical difference of the flow structures in the same
regime can be overall measured using the Euclidean distance
d(ci, cj), which results in the symmetry distance matrix D ∈ R10×10

[see Eq. (35)]. Figure 11 depicts the symmetrical distance matrix
D for TN and TK, respectively. The cluster distance matrix can be
used to estimate the trajectory length for cluster transitions as well as
the geometric relationship between the centroids. The TN’s distance
matrix reveals the close association of two adjacent centroids, for
example, centroid cn is mutually similar to centroid cn+1. This indeed
implies that the flow structures in the convective process move in a

periodic manner. The adjacent centroids exhibit a small phase dif-
ference almost entirely independent of structure shape modification.
The TK’s distance matrix is more informative than the TN’s since it
further highlights the difference between two regimes as mentioned
above: the K–H and VP.

C. Dynamics analysis: State temporal transitions
The CNM extracts a sequence of events from a probabilistic

point of view, providing an in-depth insight into the flow dynamics
of the supersonic mixing layer, especially the intermittent behavior.
After cluster analysis, the k-means algorithm assigns an affiliation

FIG. 11. Cluster distance matrix D [see Eq. (35)]. (a) TN and (b) TK. Distances are linearly scaled with all zero elements in the diagonal.

AIP Advances 11, 085322 (2021); doi: 10.1063/5.0062145 11, 085322-12

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 12. Cluster affiliation function (a) TK and (b) TN.

to each snapshot, which is the index of the corresponding near-
est centroid of the snapshot. As illustrated in Fig. 12, the cluster
affiliation function depicts the cluster temporal transition among
training data, i.e., these M = 2000 snapshots. We establish a rule
that the first cluster to appear is designated cluster k = 1. Then, the
subsequent newly appearing cluster is considered to be k + 1. These
cluster transitions are summarized using a direct transition matrix
(DTM) Q with the averaged time scale, i.e., averaged transition time
matrix T, as shown in Figs. 13 and 14, respectively. The TN case
exhibits strictly periodic dynamics with a cycled state visit at cen-
troid 1→ 2, . . . , 9→ 10. As shown in Fig. 16, there is no fluctuation
for the turbulent kinetic energy during the periodic dynamics, which
indicates the same contributions of each cluster to the flow mixing.

The resolved centroids move downstream continuously with a short
distance between adjacent centroids. As shown in Fig. 8, a vortex
denoted as “B” convects downstream from centroid k = 1 until this
structure propagates out of the computational domain in centroid
k = 10. The vortex’s geometrical modification is almost unheeded
except the phase difference in this cycled behavior. In addition, the
expansion angle denoted by “β” in Fig. 8 formed by the two expan-
sion waves is not changed in the periodic motion. The observations
belonging to each cluster are equally distributed in population with
a probability qTN

k ≈ 0.1, k = 1, . . . , 10, as shown by white rectangles
in Fig. 15.

We must emphasize that the TN case displays pretty spe-
cial dynamics only with K–H vortices in the community of the
supersonic mixing layer. The disappearance of the vortex pair-
ing could result from the limited length of the computational
domain. In addition, the length of the splitter plate Ls, inflow con-
ditions of the numerical simulation, and Reynolds number could
also significantly affect the dynamics. We focus on the dynamics
of the given supersonic mixing layer instead of discussing these
factors.

Increasing the thickness of the splitter plate entangles the flow
dynamics of the TK case with a highly random and chaotic state. As
shown in Fig. 16, the energy of all TK’s clusters is much higher than
that of TN. However, the population exhibits maldistribution, which
is assembled in the first several clusters. The VP regime k = 9, 10 with
larger TKE is populated at a pretty small probability. The K–H subset
contains the majority of state transitions among TK’s clusters, which
are accompanied by a small fluctuation in turbulent kinetic energy
(see Fig. 16). The phenomenon is explained by the probability distri-
bution qk, which shows that the K–H clusters are overall populated
at 96.45%. The direct transition matrix Q can be used to investigate
the dynamics of state transitions. The cluster k = 1 is assumed to be
the initial state as this cluster is populated at the largest probabil-
ity. In the dynamics, only the most probabilistic transition route is
considered. The cluster k = 1 prefers cluster k = 3 as the next state.
Then, within the K–H regime, there is one cyclic motion with high

FIG. 13. Cluster-based network model for TN case. (a) Direct transition matrix Q. (b) Averaged transition time matrix T . Q and T have the same geometry. White areas in
two figures denote the zero elements. All elements of Q are 1.
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FIG. 14. Cluster-based network model for the TK case. (a) Direct transition matrix Q. (b) Averaged transition time matrix T .

probability: 3→ 5→ 6→ 3. The flow starts with an advanced reat-
tachment point (denoted by a ⋆ in Fig. 10), revealing fast develop-
ment of the mixing layer of dual mainstreams at around x/H = 1.24
in cluster k = 1 (see Fig. 10). We emphasize that the reattachment
point and reattachment shock are determined roughly according
to the visualization instead of the accurate detection method. The
numerical schlieren67,68 could be a good choice. This state takes
longer to transit into the cluster k = 3 [see Fig. 14(b)], where the reat-
tachment point and redeveloping mixing layer are both delayed to
around x/H = 1.30. The expansion angle is also found to decrease.
The cluster k = 5 follows the trend of the two characteristic flow fea-
tures being further postponed to x/H = 1.38 and then advanced to
x/H = 1.3 in cluster k = 3. During the intermittent evolution, the
size of the wake oscillates in a similar way. In contrast to the loop
motions in the TN case, the wake effects on the downstream mixing
layer are greatly amplified, affecting the downstream redeveloping
mixing layer. The advanced (delayed) reattachment point, as shown
in Figs. 9 and 10, indicates the complicated (simple) vortex struc-
tures in the near field but simple (complicated) vortex structures in
the far field. The turbulent kinetic energy carried by each cluster in
the cyclic motion is remarkably similar, with only minor variations.

FIG. 15. Cluster population probability qk for the TK (gray) and TN (white) case.

Beginning with cluster k = 1, the carried turbulent kinetic energy
gradually climbs to the peak with cluster k = 5. In the near field, the
centroid c5 exhibits a fast expansion of the K–H vortex, while in the
far field, vortex pairing/merging and vortex tearing can be observed.

With a smaller probability, the cluster k = 1 could select the
cluster k = 2 as the next state. Then, the following transition is
→ 8→ 5→ 6→ 3. The cluster k = 2 passes through cluster k = 8
to enter the route the same as that with the highest probabil-
ity. The reattachment point displays a slower downstream motion
in the cyclic motion. Meanwhile, the TKE fluctuation exhibits a
similar trend that climbs into the peak at cluster k = 5 and then
decreases. In these two dynamical routes, the cluster k = 5 is the
only node that must be passed. The cluster k = 3 serves as the
terminal state. In the K–H regime, a delayed reattachment point
reveals more complicated structures in the far field with the larger
TKE.

The cluster k = 5 acts as a bifurcation point in both dynami-
cal routes. Apart from returning to cluster k = 3 via cluster k = 6,
the cluster k = 5 has four additional evolutions, including a direct

FIG. 16. The turbulent kinetic energy of each cluster for the TK (gray) and TN
(white).
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return to cluster k = 1 forming a closed-loop, passing through
cluster k = 4 with a lower probability, transiting to cluster k = 2
followed by a new evolution, and immediately transiting to cluster
k = 7. Throughout these evolutions, the reattachment point oscil-
lates forward and downward in response to the TKE fluctuation
and the stretching of the flow structures. The VP regime k = 9, 10
can be merely accessed by the cluster k = 8 and then reverted to
the K–H regime via cluster k = 5. The VP regime only accounts for
a negligible portion with 3.55%, as shown in Fig. 15. This implies
that the VP remains a rare event in the supersonic mixing layer
with a 5 mm splitter plate despite the fact that the individual cen-
troid of the VP regime contains more turbulent kinetic energy than
the K–H regime, as shown in Fig. 16. This indicates that the K–H
regime is found difficult to reach a high-energy level. The state tran-
sition from cluster k = 9 to cluster k = 10 is unidirectional in the
VP subset. The flow structures retain their original shapes during
this evolution, as illustrated in in Fig. 9. With rotational deforma-
tion, the QP and QM structures migrate downstream evolve into QP′

and QM′. To quantify the overall energy fluctuation in a particular
dynamical system, we define the weight-average cluster TKE as the
overall captured energy E = ∑K

k=1qkTKEk. In the TK case, the over-
all fluctuation energy (E = 1.76) is 20.5% larger than that of the TN
case (E = 1.46).

V. CONCLUSION
In this article, the flow dynamics of a blunt base supersonic

mixing layer is analyzed using the cluster-based network model
(CNM). The mechanism of the wake/mixing layer attractor is com-
prehensively understood in comparison to a given benchmark with
the eliminated wake effect. With only ten physical centroids, the
CNM resolves the dynamical system of the broadband supersonic
mixing layer. The direct transition matrix Q and averaged transition
time matrix T define the spatial and time scales of the ten-centroid
based low-dimensional model, respectively. In the given baseline
case, the CNM identifies only one flow pattern existing in the
dynamical system: the K–H regime. The given baseline case exhibits
strictly periodic transitions between these ten K–H clusters with
a nearly constant turbulent kinetic energy. Each cluster is equally
populated with a probability qTN

k ≈ 0.1, k = 1, . . . , 10. Increasing the
thickness of the splitter plate undergoing a wake results in highly
complicated flow behaviors from spatial and temporal points of
view. In the supersonic blunt base mixing layer, the CNM identi-
fies two distinct flow regimes: K–H and VP. The cluster diameter
Dk and standard deviation Rk reveal that the TK case spans signif-
icantly larger state space than the TN case. Each cluster of the TK
case in the given regime brings much larger TKE than that of the TN
case. In contrast to the TN case, the TK case results in vortex pair-
ing/merging and the formation of more complex flow structures. In
terms of temporal dynamics, the flow structures exhibit highly inter-
mittent behaviors with small amplitude fluctuation. The CNM has
identified some probable routes for state transitions and the related
bifurcation point, which aids in the design of control strategy. The
control design using the CNM is via changed direct transition proba-
bility Q and changed transition time T. Appendix C4 in Ref. 54 gives
a framework of the flow control strategy.

The present study gives an example to analyze the given
blunt base supersonic mixing layer using the CNM. The resolved

instantaneous behaviors are described in two-dimensional flow
fields as graphical means instead of one-dimensional signals. Addi-
tionally, the CNM provides a set of useful methods for quantifying
the similarity of representative states, carried energies, mode switch-
ing time scales, and metrics in high-dimensional state space. In
general, the CNM opens a novel automatable avenue for nonlinear
dynamical modeling.

When the splitter plate thickness is small or when the inlet tanh
profile is embedded, the dominant instability inclines to be con-
vective in nature. The wake behind the splitter plate’s trailing edge
behaves global instability, which exacerbates the initial instability of
the redeveloping mixing layer. The asymmetric conditions in the
upward wake flow further complicate the flow dynamics. However,
increasing the thickness from 1 to 5 mm does not significantly mag-
nify the turbulent kinetics. The TKE is only raised by 20.5%, which
is much less than the cavity-actuated supersonic mixing layer.7 In
practice, the thickness of the splitter plate is invariably increased
and the flow parameters are also temporally changed during engine
operation. The comparison of direct transition matrices reveals the
dynamical difference in regimes with various initial conditions, i.e.,
the thickness of the splitter plate in this study. This paper inspires
the critical nature of geometrical dimensions for splitter plate while
developing a supersonic mixer. There should exist a set of geometri-
cal parameters that are optimal for given incoming flow parameters.
Indeed, the CNM provides a means of optimizing the flow system to
meet the needs of researchers. This merits further exploration, which
the authors intend to do in the future.
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