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The fifth planet was very strange. It was the smallest of all. There was just
enough room on it for a street lamp and a lamplighter. The little prince was
not able to reach any explanation of the use of a street lamp and a lamplighter,
somewhere in the heavens, on a planet, which had no people, and not one house.
But he said to himself, nevertheless:

“It may well be that this man is absurd. But he is not so absurd as the king,
the conceited man, the businessman, and the tippler. For at least his work has
some meaning. When he lights his street lamp, it is as if he brought one more
star to life, or one flower. When he puts out his lamp, he sends the flower, or
the star, to sleep. That is a beautiful occupation. And since it is beautiful, it is
truly useful.”

When he arrived on the planet he respectfully saluted the lamplighter.
“Good morning. Why have you just put out your lamp?”

“Those are the orders,” replied the lamplighter. “Good morning.”
“What are the orders?”
“The orders are that I put out my lamp. Good evening.” And he lighted his

lamp again.
“But why have you just lighted it again?”
“Those are the orders,” replied the lamplighter.
“I do not understand,” said the little prince.
“There is nothing to understand,” said the lamplighter. “Orders are orders.

Good morning.” And he put out his lamp. Then he mopped his forehead with a
handkerchief decorated with red squares.

“I follow a terrible profession. In the old days it was reasonable. I put the
lamp out in the morning, and in the evening I lighted it again. I had the rest of
the day for relaxation and the rest of the night for sleep.”

“And the orders have been changed since that time?”
“The orders have not been changed,” said the lamplighter. “That is the

tragedy! From year to year the planet has turned more rapidly and the orders
have not been changed!”

“Then what?” asked the little prince.
“Then the planet now makes a complete turn every minute, and I no longer

have a single second for repose. Once every minute I have to light my lamp and
put it out!”

“That is very funny! A day lasts only one minute, here where you live!”
“It is not funny at all!” said the lamplighter. “While we have been talking

together a month has gone by.”
“A month?”
“Yes, a month. Thirty minutes. Thirty days. Good evening.” And he lighted

his lamp again. As the little prince watched him, he felt that he loved this



lamplighter who was so faithful to his orders. He remembered the sunsets,
which he himself had gone to seek, in other days, merely by pulling up his chair;
and he wanted to help his friend.

“You know,” he said, “I can tell you a way you can rest whenever you want
to...”

“I always want to rest,” said the lamplighter. For it is possible for a man
to be faithful and lazy at the same time. The little prince went on with his
explanation:

“Your planet is so small that three strides will take you all the way around
it. To be always in the sunshine, you need only walk along rather slowly. When
you want to rest, you will walk and the day will last as long as you like.”

“That doesn’t do me much good,” said the lamplighter. “The one thing I
love in life is to sleep.”

“Then you’re unlucky,” said the little prince.
“I am unlucky,” said the lamplighter. “Good morning.” And he put out his

lamp.
“That man,” said the little prince to himself, as he continued farther on

his journey, “that man would be scorned by all the others: by the king, by the
conceited man, by the tippler, by the businessman. Nevertheless he is the only
one of them all who does not seem to me ridiculous. Perhaps that is because he
is thinking of something else besides himself.”

He breathed a sigh of regret, and said to himself, again: “That man is the
only one of them all whom I could havemademy friend. But his planet is indeed
too small. There is no room on it for two people...” What the little prince did
not dare confess was that he was sorry most of all to leave this planet, because
it was blest every day with 1440 sunsets!

- ANTOINE DE SAINT-EXUPÉRY
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CHAPTER 1

Introduction

“If our brains were simple enough for us to understand them, we’d be so simple
that we couldn’t.”

- IAN STEWART

The mystery of the human brain and the control center of emotions and
thoughts in people have occupied many great minds from ancient times to this
very day.
As early as 3000 B.C., ancient Egyptians knew the relationship between the
symptoms of patients with brain injury and the site of their injury.
Greek philosopher Alcmaeon (5th. century B.C) is believed to be the first to re-
gard the brain as the seat of mind while distinguishing between understanding
and perception. He discovered that the sensory organs reach the brain through
channels (poroi) and performed actual experiments on animal brains [Ade+87;
Huf03].

Through the advancement of science, humans learnt much more about the
brain and its role as a processing unit. Meanwhile, the question of whether
localized or non-localized (distributed) contributions of brain regions result in
functions remains an interesting and partially obscure one.

Are the functions expected from the brain processed locally at a specific
location that is highly specialized for that function or are they processed in a
distributed fashion using the capacity of many distant regions?
Putting aside the two extreme answers of "highly localized" or "highly dis-
tributed" [OHK08; MBK09; Kan10; Sch+17], the popular view among modern
neuroscientists lies somewhere in between [Bor+10; Coc+22]. There are spatial

3



4 I CHAP. 1 INTRODUCTION

regions (differing in scale from single neurons to whole regions and areas) that
are responsible for very specific tasks. For example, the visual response to bod-
ies, places or faces [KMC97; Dow+01; KY06; TWD07; PC09; Iid14; Wei+18]
all support the localizationists theory. From 1950, localization was supported
by observations of lesions and their consequences, for example a lesion in
inferotemporal cortex area 21 (affecting the visual discrimination learning)
or premotor cortex area 6 (visuomotor associative learning) [MUM83; Pas85;
HP85].
There is however, a logical limitation when we infer the local functions from
the lesions; even if the region is only a part of a group or chain that is needed
to perform a certain cognitive task, its malfunction or loss will result in a mea-
surable impairment and therefore these studies do not effectively reject the
distributed performance of functions concept.

With the development of new techniques which allow scientists to measure
the brain activity in vivo non-invasively, the importance of distributed process
and connections and connectivity patterns between brain regions strengthened.
In 2002, Passingham et al [PSK02] proposed the concept of a "connectivity
fingerprint" for brain regions. They claimed that the function of each region is
determined by its collection of connections to the other brain regions [PSK02;
MPJ18].

In parallel, the interdisciplinary field of "Complex Networks" [New10]
emerged and thrived in the late 1990s. It has its roots in the traditional study of
graphs (first named so by Sylvester [Syl78]) in mathematics since at least 1736,
when Euler used it to solve the Seven Bridges of Königsberg problem [Eul41].
See Table 1.1 for an overview of groundbreaking works in network science.

In addition to the existing list1 in Table 1.1, the author would like to high-
light a number of other works which might be of interest 2:

- the 2007 work of Palla, Barabasi, and Vicsek which focuses on time de-
pendence of overlapping communities characterizing community evolution
[PBV07]. - the 2009 study by Opsahl and Panzarasa on clustering in weighted
networks that proposes a generalization of clustering coefficient which pre-
serves the information from the weights of network links [OP09]. - The 2010
paper by Mucha et al on the generalization of community detection trend in
time-dependent (multiscale and multiplex) networks [Muc+10] and the paper
(also published in 2010) by Olaf Sporns on networks of the brain [Spo10]. - The

1Following the discussions withMorteza Eftekhar and Abbas Rizi and with some kind input from Stefano
Bocalleti

2The list contains only a few studies that the author subjectively found interesting to mention. It is by no
means close to a complete network science studies list of all highly cited or well-known works.
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review of multiplex and multilayer networks studies conducted by Boccaletti
et al in 2014 [Boc+14].

More recent publications have focused on ever growing high quality big
datasets that became more significant due to the Covid-19 pandemic and the
supply chain crisis that should also be noted:

- The 2018 study on how a pandemic may spread in the United Kingdom
based on volunteers recorded movement and self reported contacts by Klepac,
Kissler and Gog [KKG18]. - A 2020 paper by Galloti et al assessing the risks
of what they call ’infodemics’ in response to the COVID-19 epidemic, which
analyzed over 100million Tweets to develop an Infodemic Risk Index capturing
the extent of exposure to unreliable news across nations [Gal+20]. - Inoue
and Todo’s 2020 study is also of particular value in relation to supply chain
management. They use an agent-based model to simulate the economic effects
of shutdowns on the actual supply chains of approximately 1,6Million Japanese
firms [IT20].

Remarkably, network science, provided the scientists with new tools to
study and analyze the interconnected systems they observed in the nature
[Lew11]. A graph (or network) is a mathematical structure made up of vertices
(or nodes) which are connected by edges (or links) [BM+76]. A brain can be
seen as such a structure.

In the following sections, a short introduction to networks in general and
"Network Neuroscience" in particular is presented.

1.1 GRAPHS

As mentioned above, Graphs are mathematical structures consisting of vertices
and edges. A graph G can be shown as:

⌧ = (+ (⌧), ⇢ (⌧)),
+ (⌧) = {E1, E2, E3, E4, ..., E=},
⇢ (⌧) = {41, 42, 43, ..., 4=0}

(1.1)

where V is the set of vertices and E is the set of edges [BM+76].
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T���� �.�. Historical timeline of a few signi�cant contributions to network science Origi-
nal table until ���� from Ted Lewis’ book "Network Science: Theory and Appli-
cations"[Lew��]. Re-used with permission from the publisher.

Date Who Contribution
���6 Euler Bridges of Koenigsberg
���� G. Yule Preferential attachment, Yule–Simon distribution
���� Kermack, McKendrick First epidemic model
���� Solomonoff, Rappaport Spread of infection in random networks
���� Simon Power law observed in word analysis
���� Gilbert First generative procedure for random graph
��6� Erdos, Renyi Random graphs
��6� Milgram Small-world experiment
��6� Bass Diffusion of innovation in populations—nonnetwork model
���� Fisher, Pry Diffusion by product substitution—nonnetwork model
���� Bollobas Complex graphs
���� Bonacich Idea of in�uence in social networks leading to in�uence diagrams
���� Granovetter Job-seeking networks formed clusters with “weak links” between them
���8 Pool, Kochen First theoretical examination of small worlds
��8� Kuramoto Synchronization of linear systems
��8� Bollobas Publishes book on “random graphs”
��88 Waxman First graph model of the Internet
��8� Bristor, Ryan “Buying networks” = application of network science to model economic system
���� Guare Coined phrase, “six degrees of separation” = name of his Broadway play
���� Molloy, Reed Generation of networks with arbitrary degree sequence distribution

���6 Kretschmar, Morris Early application of network science to spread of infectious disease contagion driven
by largest connected component

���8 Holland Introduction of emergence in complex adaptive systems

���8 Watts, Strogatz, Faloutsos, Faloutsos Renewed interest in Milgram’s original work on small worlds,
examples of clustering; �rst generative procedure for small world

���� Faloutsos Power law observed in Internet
���� Albert, Jeong, Barabasi Power law observed in WWW
���� Dorogovtsev, Mendes Small-world properties
���� Barabasi, Albert Scale-free network model

���� Dorogovtsev, Mendes, Samukhim,
Krapivsky, Redner Exact solution to scale-free network degree sequence

���� Watts Explanation of “small-world dilemma”: high clustering, low path length
���� Adamic Distance between .edu sites shown to be small-world
���� Kleinberg, Kumar, Raghavan, Rajagopalan, Tomkins Distance between .edu sites shown to be small-world Formalized model of WWW as “Webgraph”
���� Walsh Dif�culty of search in small worlds using local properties

���� Marchiori, Latora Harmonic distance replaces path length: works for
disconnected networks

����
Broder, Kumar, Maghoul,
Raghavan, Rajagopalan,
Stata, Tomkins, Wiener

Full Webgraph map of the WWW

���� Kleinberg Shows O(n) search in small world using “Manhattan distance”
���� Albert, Jeong, Barabasi Scale-free networks are resilient if hubs are protected (Internet’s “Achilles heel”)

���� Yung Taxonomy of applications of small-world theory to:
SNA, collaboration, Internet, business, life sciences

���� Pastor-Satorras, Vespignani Claim no epidemic threshold in scale-free networks;
Internet susceptible to SIS viruses

���� Tadic, Adamic Use of local information can speed search on scale-free networks

���� Levene, Fenner, Loizou,
Wheeldon

Enhanced Webgraph model concluded structure of the WWW couldn’t
be explained by preferential attachment alone

���� Kleinfeld Claims Milgram experiments not well founded: small-
world social network is an “urban myth”

����
Wang, Chen, Barahona, Pecora,
Liu, Hong, Choi,
Kim, Jost, Joy

Sync in small worlds equivalent to stability in coupled
system

���� Wang, Chakrabarti, Wang, Faloutsos Showed spread of epidemics determined by network’s spectral radius, largest eigenvalue
of connection matrix

���� Virtanen Complete survey of network science results up to ����
���� Strogatz Synchronization of crickets, heartbeats
���� NRC De�nition of network science

���6 Atay Synchronization in networks with degree sequence distribution
—application to networks

���� Gabbay Consensus in in�uence networks—linear and nonlinear models
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F����� �.�. An example graph with adjacency and incidence matrices
Adjacency matrix elements are showing if there are connections between
vertices and incidence matrix elements are showing how many times an edge
and a vertex are incident. Both of these matrices are used to specify a graph. In
this work, we focus more on adjacency matrix representations.
For the example graph above:
V(G) = {v1, E2, E3, E4, E5 },
⇢ (⌧) = {41, 42, 43, 44, 45, 46 }

1.1.1 Adjacency vs Incidence Matrices

For any given graph G, the corresponding two matrices (called the "incidence"
and "adjacency" matrix respectively) can be used for specification.

• Incidence Matrix: An incidence matrix " (⌧) = [<8, 9 ] is a = ⇥ =0

matrix with elements<8, 9 showing howmany times an edge and a vertex
are incident.

• AdjacencyMatrix: An adjacencymatrix�(⌧) = [<8, 9 ] is a=⇥=matrix
with its elements 08, 9 showing if vertex i is connected by an edge or more
to vertex j. If there is no self-loop in the graph, the diagonal elements of
adjacency matrix are all 0. If the edges have no preferred direction, the
graph is undirected and the adjacency matrix is symmetric.

An example of an undirected matrix with its two adjacency and incidence
matrices is shown in Figure 1.1.
The adjacencymatrix is generally significantly smaller than the incidencematrix
and is therefore used more often. In the following chapters of this work, we
mainly use the adjacency matrix.

1.1.2 Weighted Graphs

If there is a weightF (4), associated to each edge, then our graph G is called a
"weighted graph" [BM+76] [to be more precise, it is an "edge-weighted graph"
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in contrast to a "vertex-weighted graph" but the name "weighted graph" usually
refers automatically to "edge-weighted graph"]. To show the weighted graphs,
we use the "weighted adjacency matrices" where the elements 08, 9 show the
weight of edge/link between two vertices i and j instead of the number of
connections between them.

1.2 SCALES AND DIMENSIONS

F����� �.�. Aristotle idea of the
role of brain vs heart
Aristotle believed that
the brain serves to cool
down the blood from
the heart, the central or-
gan.

The Brain can be investigated as a network
in various dimensions and scales. Figure
Figure 1.3 from Betzel and Bassett [BB17a]
introduces the three axes of study for brain
networks; spatial, temporal and topologi-
cal. Spatially, single neurons, populations
of neurons and bigger regions or areas of
the brain can be defined as network nodes.
In the temporal dimension, networks can
be analyzed from an approximately a sin-
gle point in time to the millennia underpin-
ning evolutionary changes. Finally, in the
topological dimension, studies can focus
on local node/link scale, meso-scale mo-
tifs, clusters, groups, components or global
aspects of a network. The majority of stud-
ies on brain networks exist as points in
this space, focusing on networks defined
at a single spatial, temporal, and topologi-
cal scale. While such research has indeed
been insightful, Betzel and Bassett [BB17a]
suggest that in order to better comprehend
the brain’s real multi-scale nature, it is im-
perative that further network analyses begin to build bridges between different
dimensions.

1.3 BRAIN DATA

Aristotle (384 - 322 B.C.) believed that the brain is an organ which helps to cool
down the blood coming from the heart, similar to a car radiator, while the heart
is the seat of intelligence3[Ole18]. If that sounds absurd to a modern scientist,
3In his work "De Partibus Animalium", Aristotle discusses first the function of the heart and then the brain.
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F����� �.�. � different dimensions to study the brain network in different scales
Brain network can be studied in different scales and along different axes.
The �gure is re-used from Betzel and Bassett [BB��a] under the open licence
adopted with permission from [Bey+��; Buz��; Gog+��; Kru��].

it is helpful to consider the limitations of gathering data from living humans
without harming them. How might one methodically examine the interior
structure or function of the body without opening it or causing it harm?
The invention of X-Ray imaging by Röntgen in 1895 opened the door to inves-
tigate the state of bones in depth without requiring surgery [NS04].
However, X-Ray imaging is not helpful in the study of soft internal tissues.

Around the same time, the first attempts to study the function of brain in a
non-invasive way were performed by Angelo Mosso (1880) [Mos81; San+14].
Mosso hypothesized that demanding cognitive tasks need extra blood to reach
the brain; therefore, if one places human subjects on a carefully balanced plate
while they performed heavily demanding cognitive tasks, the plate would even-
tually tilt towards their heads. Following these first steps in the study of internal
structures and functions, several other methods were proposed during the 20th
century.
Xenon inhalation in 1960s and 1970 for example produced the first 2D map
of the brain on the colored screen. In their 1978 paper, Lassen and colleagues
[LIS78] measured the brain during rest, sensory perception, voluntary move-
ment, speaking and reading. A figure from their reading experiment is included
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F����� �.�. Brain image from Lassen et al in ���8 [LIS�8]
Colored brain image recorded using Xenon inhalation method. Reused with per-
mission from the publisher.

F����� �.�. Comparing different imaging techniques
Each of the imaging techniques cover different spatial and temporal scales. A
summary of some techniques is presented here. Plot re-created from [Ban��]

here with the permission from the publisher [Figure 1.4]. Positron Emission
Tomography (PET) and Near-InfraRed Spectroscopy (NIRS) then appeared
in the 1970s, they each contributed significantly to our understanding of the
human brain.

The well known electroencephalography (EEG) method was first intro-
duced in 1924 by Hans Berger [TTT05] but it was not up until 1938 that it
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became widely accepted and utilised. EEG signals are measured using small
electrodes placed on the skull that mainly detect the electrical activity of pyra-
midal cells, which make up about 70% of the brain cortex. EEG signals have
an excellent time resolution but lack a good spatial resolution. Collecting data
from the 2D surface of the head after the internal effects of different conduc-
tivities in various tissues and individually shaped skulls makes the locating of
signal sources difficult [NS05].

However, the most dominant functional brain imaging method in current
brain research is functional Magnetic Resonance Imagine (fMRI)4 [ZY15] ini-
tially discovered by Seiji Ogawa in 1990 [Ban20].
In the next subsection, a short introduction to fMRI is presented.

1.3.1 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) works based on the blood-
oxygen-level-dependent (BOLD) contrast. It detects where the blood is utilized
in the brain. The assumption is that the higher neural activity in a region
results in higher blood consumption there. Peter Bandettini counts five main
advantages that caused the success of fMRI in his work [Ban20] as follows:

1. MRI scanners were already available and accessible in hospitals and
therefore there is no need for the installation of a totally new device.

2. As far as research shows, this method is safe and non-invasive

3. The spatial resolution of this method is very high, voxels as small as
0.5<< ⇥ 0.5<< ⇥ 0.5<< can fall into the resolution range of fMRI
scans

4. Acquisition speed is high. The period between two imaging volumes can
be as short as 200ms

5. The High sensitivity of fMRI allows it to be useful in generating func-
tional maps of subjects brains in a considerably short period of time
(order of minutes). A subject can perform then several tasks in an hour
while being scanned.

4Some interesting statistics can be seen here: https://sapienlabs.org/lab-talk/500000-human-
neuroscience-papers/
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1.3.2 Diffusion Tensor Imaging (DTI)

Diffusion Tensor Imaging (DTI) is an MRI technique to generate a map of
white matter tracts in the central nervous system (CNS) [Lop18]. If water
molecules are diffusing through an isotropic environment, they will diffuse
as spheres. Any boundary condition that affects the diffusion will result in a
non-sphere ellipsoidal diffusion. DTI uses this principle to locate the white
matter (axons) tracts boundary conditions in the scanned brain. DTI indices
such as the "apparent diffusion coefficient" (ADC), "functional anisotropy",
"mean", "radial" and "axial-diffusivity" are the quantities that provide the needed
information to extract amapof axonal organization [Win22]. Amapofweighted
connections given by DTI can serve as an adequate depiction of the brain’s
structural organization.

1.4 BUILDING NETWORKS FROM BRAIN DATA

In neuroimaging-based network neuroscience, brain regions identified by any
given method of parcellation are considered the network’s nodes, while links
can be defined either as white matter connections between brain regions (struc-
tural networks) or as statistical interdependencies between the time series of
brain regions (functional networks)5 [BM08; Fai+09; FZB16; Pow+10; RS10;
Spo10; Spo12]. Figure 1.6 shows how fMRI and dMRI can result in the func-
tional and structural network weighted adjacency matrices. In the next section,
a common approach to construct functional network is explained.

1.5 FUNCTIONAL NETWORK

Time series for each node (from optional parcellation of the brain) are extracted
from the preprocessed fMRI images. A commonly used approach to build an
adjacency matrix from these time series is to calculate a co-activity measure
between pairs. Co-activation can be quantified using a wide variety ofmeasures
such as Pearson’s correlation and partial correlation [Buc+09; He+09; Wan+09;
Egu+05; Liu+08; NHB09; Zha+11; Lia+12] between two nodes time series.
Pearson’s correlation assesses the broad dependency between variables, while
partial correlation evaluates the direct interdependence after excluding the
impacts of third parties [PQB05; SMD04]. Smith et al. [Smi+11] proved that
both correlation approaches provide outstanding performancewhen estimating

5A third category, "effective" network is also used in some studies. Interested readers will find useful expla-
nations in [Fri11]
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F����� �.6. Structural and functional brain network schematic for fMRI and DTI
brain regions identi�ed by any given method of parcellation are considered the
network’s nodes, while links can be de�ned either as white matter connections
between brain regions (structural networks) or as statistical interdependencies
between the time series of brain regions (functional networks). fMRI: functional
MRI/ dMRI: Diffusion MRI. A) time series from fMRI and white matter tracts from
dMRI are extracted. B) A target parcellation is chosen. C) Structural and func-
tional weighted adjacency matrices are calculated in that parcellation. Figure re-
used from Fig � in [Per+��] under Creative Commons Attribution �.� International
License.

functional connections; however, when the number of nodes in brain networks
increased substantially, Pearson’s correlation surpassed partial correlation. In
this work, we focus on Pearson’s correlation coefficient. Pearson’s correlation
coefficient between the two time series x and y is calculated as

A =

ÕC
[=1 (G[ � G) (~[ � ~)qÕC

[=1 (G[ � G)2
qÕC

[=1 (~[ � ~)2
(1.2)

where r is the Pearson’s correlation coefficient. G[ is the [-th element of time
serie x. ~[ is the [-th element of time serie y. G is the average of time serie x
elements and~ is the average of elements in time serie y.

For each pair of time series for N nodes, the r coefficient can be determined.
The end result is an N by N matrix of Pearson correlation coefficients. This
matrix is the weighted adjacency matrix of a functional network.

1.6 STRUCTURAL NETWORK

Diffusion MRI (dMRI) data can be analyzed in a variety of ways to infer the
features of structural brain networks. Estimates of local "white matter in-
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F����� �.�. Three different degree variations
Simple illustrations of degree, weighted degree and weighted in/out degrees.

tegrity" can be obtained using voxel-wise diffusion measures such as fractional
anisotropy (FA) and mean diffusivity (MD), or by employing tractographic
techniques to reconstruct whole-brain structural networks and then subjecting
these to graph theoretical analyses. FA andMD have been the most widely used
of the aforementioned methods, employing either a voxel-based approach or
tract-based spatial statistics (TBSS)6[Per+19].

1.7 QUANTIFYING BRAIN DYNAMICS

The reliance of network science on graph theory gives the researcher access
to the rich history of graphs in mathematics. To investigate and compare
networks, we describe the measures degree and module or clusters here in
later subsections. A more detailed list of several well-known network measures
together with their mathematical definitions is presented in pages 1066 to 1068
of Rubinov and Sporn’s review [RS10]. In addition, an in-depth review of graph
theory as a tool for identifying connectivity patterns in the human brain can be
found in Farahani et al review in 2019 [FKL19]

1.7.1 Degree

The degree of a node in a non-weighted, undirected network is the number
of connections that node has to the rest of nodes in the network. This defi-
nition can be extended to the weighted network case as the sum of weighted
connections a node has [weighted degree] or the sum of incoming connections
as in-degree and the sum of outgoing connections as out-degree. See Figure
1.7 for an illustration.
6TBSS is an automated, observer-independent method for measuring fractional anisotropy in the major
white matter tracts on a voxel-by-voxel basis across subject groups[Smi+06]
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1.7.2 Clusters/Modules

Densely interconnected groups of nodes or nodes that share a specific feature
can form distinct meso-scale structures [along topological axis of Figure 1.3]
within the network. A network that includes a lot of densely interconnected
groups of nodes reacts differently to external stimulation in comparison to
a random network with uniform connections all over the network. Within
anatomical and functional networks, segregation measures have straightfor-
ward interpretations. The presence of clusters in anatomical networks indicates
the possibility of functional segregation in these networks, whereas the pres-
ence of clusters in functional networks indicates an organization of statistical
dependencies that is indicative of segregated neural processing[RS10]. There
are numerous methods to detect cluster or modules in a networks, which will
be discussed in the later chapters of this thesis. For a more general overview of
algorithms (both graphs-based and non graph based , see Xu and Tian’s 2015
publication [XT15].

1.8 BRAIN SIMULATION

The last introductory topic in this chapter is "brain simulation". Simulations
of the human brain on a computer are one of the more modern techniques
employed by scientists. They are also low-cost opportunity to test hypotheses
that may not be ethically or practically applicable to the real brain.

With simulations and computational models, we can now predict the op-
timal targets of deep brain stimulation [FDK22; Tre+20], explain changes in
brain connectivity during the progression of Alzheimer’s disease [Dem+17]
and epileptic seizures or find a patient-specific epileptogenicity of the brain
regions to improve epilepsy surgeries in hospitals [Has+20; Ger+20; Olm+19;
Pro+18].

1.9 OUTLINE OF THE THESIS

This work consists of 7 chapters:
The current chapter, chapter 1, focuses on the fundamental principles required
by the reader to understand the basic concepts used in this thesis. The reader is
introduced to graphs, their adjacency matrices, weights, and representations.
Section 2 introduces the scales in which the brain networks are commonly
studied. The next section, section 3, addresses brain data types and the methods
used to obtain this data. Section 4 discusses the construction of a network based
on the brain data. "Functional" and "structural" brain networks are explained in
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the 5th and 6th sections. Some well-known measures to investigate the brain
network are described in section 7. The final section highlights the advantages
of brain simulations for our understanding of brain mechanism.

Chapter 2, re-introduces brain flexibility and its applications. A novel
"template/a-priori flexibility" measure is proposed in section 2, followed by
the step by step calculation detailed in section 3. The investigation of module
population is presented as a side advantage of the flexibility method. Section 5
describes the advantages and limitations of the newly proposed method and
the chapter ends in a short summary section.

In chapter 3, a fMRI dataset of over 300 participants is studied using the
method presented in chapter 2. The fMRI scans are collected during the per-
formance of a block-designed working memory task called n-back. The fist
section of this chapter details the method and data. A selection case for a-priori
modules is introduced in subsection 3.1.3. An integration measure is used as a
complementary method together with our flexibility information (subsection
3.1.4). The 2 final sections of chapter 3 explain the findings and compare the
results of new method with a previously used one. Finally come the discussion
on the findings, similarities and differences.

Chapter 4 expands the usage of flexibility-based measures to patients after
it was tested on healthy participants (in chapter 3). A total of 64 schizophrenia
patients and 64 healthy controls are compared based on their brain template
flexibility on the three [topological axis] scales of nodes, modules and whole-
brain. These participants were scanned during a "theory of mind" task 7. The
significantly different features of flexibility are explained and shown in sections
5 to 7. On the 9th section, a simple GLM classifier is applied on the flexibility
basedmeasures of the two groups to determine whether it is possible to identify
patients based on their brain flexibility.

Mini-chapter 5 is a report on the findings of a group of our collaborators
who investigated the influence of suicidality on the brain network using the
template flexibility method as a tool. The implementation of the method on
their dataset was done by the author of this thesis.

The 6th chapter is a theoretical approach to reconstruct the flexibility
pattern (observed in empirical data from chapter 3) on a simplified oscillator
model in physics. To this end, a computer simulation of the brain time series
is performed. This simulation is based on the dynamics of FitzHughNagumo
7Read more about the theory of mind task in chapter 4
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oscillators as nodes, Balloon model to generate fMRI-like signals and an aver-
aged empirical structural brain network extracted from DTI data.

The final chapter, chapter 7, concludes the thesis with a review on the
findings, limitations and future research opportunities.
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CHAPTER 2

Template Flexibility

“The map had been the first form of misdirection, for what is a map but a way
of emphasizing some things and making other things invisible?”

- JEFF VANDERMEER

The material discussed in this chapter has overlap with the content of the
below mentioned paper. Due to the differences in the nature of papers and
thesis, some results are discussed more extensively here in the thesis.
A fast and intuitive method for calculating dynamic network reconfig-
uration and node flexibility

Narges Chinichian1,2,3,⇤, Johann D. Kruschwitz2, Pablo Reinhardt2, Sarah A.
Wellan2,4, Susanne Erk2, Andreas Heinz2, Henrik Walter2,# and Ilya M. Veer5,#

First published in: bioRXiv (2022).
DOI: 10.1101/2022.02.06.479287
Currently in peer review process

In this chapter we introduce a novel measure to assess brain flexibility using
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F����� �.�. Schematic overview of the template-based �exibility method. A) Each node has
an a-priori af�liation to a template module, not allowing overlap. Importantly, ma-
trix M, describing the a-priori module af�liation for each node, is predetermined
and serves as a reference. B) Using a sliding-window approach, a weighted adja-
cency matrix is constructed for each time window by calculating Pearson’s cor-
relation coef�cients between the time series of all possible pairs of nodes. Then,
for each node and time window the reference module receiving the highest nor-
malized connection weight will serve as the newmodular af�liation for that node
in that timewindow. C) Last, the number of af�liation changes between af�liation
vector in C and its successive vector in C + 1 is de�ned as the �exibility �C of the
network between two time points. The average of �C across participants (called
�C ) can be plotted for all consecutive time points (an example is presented later
in chapter �).

the deformation of sub-networks found in the brain connectivity matrices.

2.1 BRAIN FLEXIBILITY

Mesoscopic structures or groups formed by interactions between nodes of a
network, calledmodules, clusters or communities, can be quantified by a variety
of detection methods [For10]. Nodal interactions are typically represented by
a weighted adjacency matrix� of the network, where each element 08, 9 of�
(called 08 9 ) is the weight of the connection or strength of interaction between
nodes i and j (undirected). Modules are usually determined based on the general
idea of maximizing the number/weight of within-group and minimizing the
number/weight of between-group links. Modules can then be considered as
entities in the network that can be modified individually without affecting the
rest of the network. Modularity measures have been shown to be useful as a
biomarker of disease, including epilepsy [Cha+10], Alzheimer’s disease [Bri+14],
schizophrenia, bipolar, and major depressive disorder [Ma+20]. However,
brain modularity has also been associated with normal variation in cognition:
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Individuals with lower whole-brain modularity performed better in complex
tasks, while those with higher modularity showed an advantage in simple tasks
[Yue+17]. Whereas the ‘static’ community detection methods employed in the
above-mentioned studies consider the brain’s connectivity averaged over time
(based on only one adjacencymatrix per subject as a single-layer network), other
methods have assessed changes in community structure over time [New+09;
Meu+09; Bas+11; Cal+14; Ala+15; SB16]. These dynamic approaches take
into account that a node can frequently change its connections depending
on which state the brain is in, both during resting-state (RS) and during the
performance of tasks. Here, changes in modular structure are captured by a
sequence of adjacency matrices (�C ), thus creating multi-layer networks. The
adjacency matrices are typically calculated using a sliding-window approach on
nodal time series, in which the window length reflects the time scale of interest
[FZB16]. Subsequently, dynamic module detection methods can be applied to
these time-dependent multi-layer networks to not only characterize changes of
modules over time, but also to determine how nodes change their affiliation [the
module/group they belong to] as a function of time. The latter can be thought
of as the flexibility of a node [Bas+11; BB17b] and is defined based on the
consecutive presence of nodes in different modules over time [MLB10; Cal+14].
These measures of flexibility enable us to track time-dependent changes and
thereby track phenomena of both integration and segregation in the brain
[Bas+11; Bra+15]. It offers the opportunity to studywhich brain nodes aremore
likely to change their affiliation over time and thereby which brain regions are
rather consistently associated with a certain brain module, forming a backbone
for the constantly changing network. For example, a recent study by Harlalka et
al [Har+19] suggested higher symptom severity in autism spectrum disorder to
be associatedwithmore connectivity flexibility in visual and sensorimotor areas
during rest. [Bra+15] demonstrated that individuals with more connectivity
flexibility in frontal cortices have enhanced memory performance and score
better on neuropsychological tests measuring cognitive flexibility, suggesting
that dynamic network reconfiguration may form a fundamental mechanism
underlying executive function. For a broader discussion on modularity and
flexibility findings, see [KVL19].
A data driven widely used method to calculate brain network flexibility is based
on the Louvain community detection algorithm by Blondel et al [Blo+08]. This
algorithm aims to optimize the "Modularity" variable& , initially introduced
for a single layer network in [New06] by Newman, and later modified for
multi-layer networks by others [Muc+10; VM18; Baz+16].

& =
1
`

’
8 9BA

✓
�8 9B � WB

:8B: 9B
2<B

◆
XBA + X8 9⇠ 9BA

�
X (28B , 2 9A ) (2.1)
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Where� is theweighted adjacencymatrix of the network,�8 9B is theweight
of connection between nodes 8 and 9 in layer B . WB is the resolution parameter (a
parameter to tune for the size of capturesmodules) for layer B , 8 and 9 are indices
of nodes, and B and A indices of layers. :8B is the degree of node 8 in layer B .<B

is proportional to the sum of weights in layer B .⇠ 9BA refers to the connection of
node 9 to itself in different layers. 28B is the defined module/cluster of node 8 in
layer B . Finally,& captures how good the grouping is compared to a null-model
(here random).

Although, this and similar methods have undoubtedly contributed to our
understanding of brain dynamics, these come with a cost: Given the random
nature of algorithms like Louvain, the resulting clusters may differ each time
the algorithm is run on the same adjacency matrix. As such, brain modules
show variation within and across participants, which is overcome by running
the algorithm multiple times to reach a consensus on the modular structure
[LF12]. However, this can be a computationally expensive process, while the
identified modules may in the end have low biological plausibility or at least
can not be interpreted straightforwardly.

2.2 A NOVEL FLEXIBILITY MEASURE

Here, we introduce a newmethod to capture nodal flexibility and brain network
reconfiguration using a fast and intuitive method based on a set of template
modules. This offers three main advantages over the existing methods:

1. It is computationally more efficient and deterministic compared to the
Louvain (and similar) algorithm.

2. It offers high replicability, as it uses the same set of module templates for
all subjects and time scales. This ensures comparability between subjects
and studies, which is one of the current concerns in the field [HH18].

3. It gives researchers the opportunity to choose the best-fitting, or biolog-
ically most relevant module templates for each study.

In this chapter, the proposed method is described in detail and step by step.
Later in chapter 3, this method is applied to a real-life dataset that was previ-
ously assessed using a Louvain-like locally greedy heuristic algorithm [Bra+15;
Blo+08]. Compared to the previous work, this method is equally successful in
capturing a brain reconfiguration pattern that mimics the stimulation periods
of an externally-cued working memory task, yet it can be directly related to
well-known functional brain networks as well.
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2.3 METHOD

2.3.1 Concept and Steps

Before going into mathematical detail, let us first explain the concept behind
the method. Consider the brain as a network, in which each region of the brain
(defined by any arbitrary parcellation) is a node, each co-activation between any
two nodes is an edge, and each node belongs to an a-priori defined set of nodes,
termed amodule. As a first step, we consider that each node has an a-priori affil-
iation to one of the predefined [template] modules or in other words, belongs to
an a-prioiri module. The affiliation is determined as the template module with
which each node of the selected brain atlas has the largest spatial overlap. Next,
the strengths of all edges between each node and all members of every module
are summed. When a node is more strongly connected to nodes affiliated with
another module than to nodes of its own predefined module, then this node
will receive another affiliation than its a-priori one. This can now be extended
to a dynamic scenario, in which node affiliations can be determined for a range
of consecutive time points. Some nodes might change their affiliation over
time, while others do not. The ratio of nodes changing affiliation with respect
to all is what we are interested in. We understand this ratio as a measure of
flexibility of the brain. In other words, the more nodes switch affiliation be-
tween consecutive time points, the more flexible the network dynamics are.
See Figure 2.1 for a summary of these steps.

The steps to calculate the template (aka a-priori) flexibility measure are
listed below in detail:

1. An a-priori affiliation is assigned to each node to form the following
matrix M:

" =

266666666664

0 0 0 1 0 ... 0
0 1 0 0 0 ... 0
.
.
.
1 0 0 0 0 ... 0

377777777775#A46⇥#<>3

(2.2)

Where #A46 is the number of regions (nodes) and #<>3 number of a-
priori modules. Each row of this matrix belongs to a node and, in the
first-approximation case in this study, has only one non-zero element
that indicates the a-priori modular affiliation of the node. For example,
in row 1 the fourth column is 1, which means that the first node has an
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a-priori affiliation to template module 4.
Note that we assign all nodes that do not show any overlap with the
template modules to a last, artificial module to not exclude these nodes
in calculating the flexibility metric. To add to the interpretability of the
process, it is better if we chose template modules that span the whole
brain or leave out only a small number of regions.

2. Next, for each node we extract the mean time series across all volumes
of the fMRI scan. We then divide our time-series into smaller windows
using a sliding-window approach. For each time window, a weighted
adjacency matrix is constructed using Pearson’s correlation coefficients
between all possible node pairs. The weighted adjacency matrix at time-
window C is defined as�C of shape #A46 ⇥ #A46:

�C =

,486⌘C43 �3 9024=2~ "0CA8G

> 5 )8<4 ,8=3>F C

�
(2.3)

3. Now, we want to calculate how each node is connected to the nodes that
are the predefined members of each of the template modules, as defined
in" . To this end, we sum the absolute values of all the weights from one
node to all the nodes affiliated to each of the modules, so that each node
has #<>3 [in our subsection chapter 3 analysis: 15] different values (one
weighted sum for links to each module), indicating the strength of its
links with the predefined members of each of the template modules. In
mathematical terms, we calculate the #A46 ⇥ #<>3 matrix ( 0 as follows:

( 0 = |�|C ⇥" (2.4)

where |�|C matrix elements are the absolute values of�C elements and the
matrix has the dimension #A46 ⇥ #A46 . Row i of ( 0 belongs to the region
8 and each column 9 shows the sum of absolute connection weights of 8
to the members of 9-th module. As the predefined modules differ in size,
the ( 0 matrix elements are then normalized to the number of regions
affiliated by template definition to the modules, creating a new matrix
called ( [dividing each matrix element ( 08 9 by the number of regions
affiliated to the 9 th template module.] Importantly, to be able to compare
the elements of ( , we normalize it in a way that the sum of each row is
one. This normalization step has no effect on the output of the next steps
but is rather to increase the interpretability at this stage. The normalized
numbers represent which portion of each node’s connections is to which
module. We call this new matrix, ( .

(#A46⇥#<>3 = A>F#>A<0;8I43 ((#A46⇥#<>3 ) (2.5)
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4. With ( , we have the ratio of affiliations to each module calculated for
all nodes. From these, the strongest affiliation per node is chosen as the
winner and together form an affiliation vector for time window t, we
call this vector ⌦C :

⌦C =

26666666666666664

�A6"0G ((1⇤)
�A6"0G ((2⇤)
�A6"0G ((3⇤)
�A6"0G ((4⇤)

..
�A6"0G ((8⇤)

...
�A6"0G ((#A46⇤)

37777777777777775#A46⇥1

(2.6)

where�A6"0G ((8⇤) points to the index (argument) of the module with
the largest average connection strength to node i in matrix ( .

5. Following steps 2-4 for consecutive time windows, we calculate one
⌦C for each window t. The 5 ;4G818;8C~ of the network denoted by � is
then defined as the ratio of regions that change their affiliation from one
window to the next, to the network size, or:

�C = 1 � 1
#A46

#’
8=1

XlC
8 ,l

C�1
8
, (2.7)

wherel denotes an element of vector ⌦. The Kronecker delta XlB
8 ,l

C
9
is

1 iflB
8 = lC

9 and 0 otherwise. The
Õ

then counts the number of nodes
that did not change their affiliation between windows C and C + 1. Note
that as a side-product of calculating ⌦, we can output a vector describing
the affiliations over time for each node separately as well by making a
vector of the same element in ⌦C=1,..,#C :

⇥
lC=1
8 ,lC=2

8 ,lC=3
8 ...,lC=#C

8

⇤
1⇥#C

(2.8)

Where #C is the total number of time windows. This output can be used
for further region-specific analysis.

6. Where we apply the method to real-life data (see subsection ??) we also
calculate the average 5 ;4G818;8C~ over time for a sample (cohort of sub-
jects), � C , by simply summing the flexibility over all participants and
divide it by the sample size #BD1 .
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2.4 MODULE POPULATION ANALYSIS

With⌦ fromall timewindows [see step 4], the distribution of regions inmodules
can be extracted. A change in the population of one module can be a cue to
interpret the level of that module’s importance during the performance of
cognitive task in hand. If a module is absorbing more members during the time
windows of a task, that module can be associated with more cognitive load
during that task. Less associated modules, on the other hand, can either lose
members to the dominant modules while still actively engaged in the cognitive
task or remain unchanged.

2.5 ADVANTAGES VS LIMITATIONS

We discussed above how our method could be used to assess flexibility at
multiple levels of the brain. That is, on the whole-network level, module level
and at the regional (node) level, thereby extending the inferential potential
compared to the other widely-used algorithms. However, this method, like
every method, has its own limitations that might affect the results. One possible
limitation appears when the sizes of a-priori modules are very different, a
module of size 1 and another of size 200 are not to be compared in such a
method. The researchers who use this method should also be aware that the
absolute value of correlation weights used in step 3, though widely used in the
neuroscience literature, equalizes the case of correlated and anti-correlated
weights. The logic behind is that the regions that are heavily anti-correlated are
also responding actively to the other node by doing the reverse of what they
do and only nodes with no [close to zero] correlation should be excluded from
meaningful connection.
In the description of our method, we determined the modular affiliation for a
particular node and window as the module with which the node demonstrated
the strongest connectivity in the affiliation vector. Although this crisp algorithm
is arguably the easiest and most pragmatic choice, it would also be possible to
use the weighted affiliation with each of the template modules in the affiliation
vector [3] as a fuzzy module detection to assess flexibility. Such a weighted
approach may ultimately prove to be even more informative in characterizing
brain flexibility.

On the positive side, in addition to having a much higher computational
efficiency, our method also promotes replicability across different samples
and studies through the use of biologically plausible template modules. We
believe that our approach can be a feasible choice for researchers aiming to
study dynamical reconfiguration at multiple scales of the brain, be it nodes,



2.6 CHAPTER SUMMARY J 27

modules, or the brain as a whole.

2.6 CHAPTER SUMMARY

This chapter contained the detailed calculation steps of the a-priori flexibility
measure together with a discussion of the advantages and limitations of it. An
example application of this method is going to be presented in the next chapter.
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CHAPTER 3

Application and Comparison

"memory is the glue that holds our mental life together. Without its unifying
force, our consciousness would be broken into as many fragments as there are
seconds in the day.”

- ERIC KANDEL

The material discussed in this chapter has overlap with the content of the
below mentioned paper. Due to the differences in the nature of papers and
thesis, some results are discussed more extensively here in the thesis.
A fast and intuitive method for calculating dynamic network reconfig-
uration and node flexibility
Narges Chinichian1,2,3,⇤, Johann D. Kruschwitz2, Pablo Reinhardt2, Sarah A.
Wellan2,4, Susanne Erk2, Andreas Heinz2, Henrik Walter2,# and Ilya M. Veer5,#

First published in: bioRXiv (2022).
DOI:10.1101/2022.02.06.479287
Currently in peer review process

In this Chapter, an application of our method introduced in the previous chap-
1Institut for Theoretical Physics, Technical University of Berlin, Berlin, Germany. 2Department of Psy-
chiatriy and Psychotheray, CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Univer-
sität Berlin and Humboldt-Universität zu Berlin, Germany. 3Bernstein Center for Computational Neuro-
science, Berlin, Germany. 4Faculty of Philosophy, Berlin School ofMind and Brain, Humboldt-Universität
zu Berlin, Berlin, Germany. 5Department of Developmental Psychology, University of Amsterdam, Ams-
terdam, The Netherlands.
#shared senior authorship.
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ter, Chapter 2, is shown.

3.1 APPLYING A-PRIORI FLEXIBILIITY METHOD ON EMPIRICAL BRAIN DATA

An ideal format to study the flexibility, can be found when two cognitive tasks
are repeatedly performed in separated blocks of time and the brain response is
recorded during and between the blocks. Such a data is used in this chapter to
evaluate our method performance in capturing the brain reconfiguration.

3.1.1 Working Memory

"Working memory" is widely defined as the cognitive system that is responsible
for short-term retaining and manipulating of information in the brain in order
to perform tasks [CAA18; MS99; Bad92] in absence of external cues or prompts
[Gol96]. Amongst the current popular paradigms to measure "working mem-
ory", the variants of "N-back" task, first introduced by Kirchner[Kir58], play a
central role. Subjects are required to observe a series of stimuli and respond
when the same stimulus is presented as the one in n trials back, where n can
vary and is usually 0 [for the control condition],1, 2, or 3. A meta-analysis of 24
studies done by Owen et al [Owe+05], on n-back associated brain regions, finds
the robustly activated (voxelwise false discovery rate = 1%) areas to be: lateral
premotor cortex, dorsal cingulate andmedial premotor cortex, dorsolateral and
ventrolateral prefrontal cortex, frontal poles, and medial and lateral posterior
parietal cortex (see also section 6.1.3 and Figure 6.7).

In the coming sections, the following variation of n-back task was per-
formed:
The task was presented in a blocked fashion. Four blocks of 0-back and 2-back
each (30s duration) were alternated, starting with the 0-back condition. Partici-
pants were asked to either press the button corresponding to the number shown
on the screen (0-back) or the number that was shown 2 steps ago (2-back). See
A and B panels from Figure 3.1 for more information on the task.

3.1.2 Subjects and Data

331 participants [a subset of 344 participants included in [Bra+15]] were consid-
ered for the analysis. Thirteen subjects [344-331]were excluded due to scanning
artefacts, exceeding movement or insufficient image quality. Functional MRI
data were acquired at three sites during performance of an N-back task: the
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F����� �.�. A) Example of the N-back working memory task with a �-back and �-back con-
dition, during which participants were asked to choose the value that was ei-
ther shown at the current step or � steps ago, respectively. B) Four blocks of
each condition were presented in alternated fashion for �� seconds. C) After pre-
processing, mean time courses were extracted from ��6 Brainnetome atlas re-
gions [Fan+�6]. D) Windowed time series were extracted using a sliding-window
approach, moving a window of �� time points over the time series one volume at
a time.

Life and Brain Center of the University of Bonn, the Central Institute ofMental
Health Mannheim, and Charité - Universitätsmedizin Berlin. The study was
approved by the Medical Ethics Committees of the three study sites and all
participants provided written informed consent. At all sites, a Siemens Trio 3T
MRI scanner (Siemens Healthcare, Erlangen, Germany) was used with identical
sequences: gradient-echo EPI, 28 slices, slice thickness 4mm (1mm gap), field of
view 192 x 192 x 140mm, acquisitionmatrix 64 x 64, TR (repetition time) 2s, TE
(echo time) 30ms, flip angle 80�. Standard preprocessing was conducted using
SPM8 [Pen+11] and included motion correction (participants with > 3mm
translation and > 1.7� rotation between volumes were excluded), slice-time
correction, spatial smoothing with a FWHM of 9mm, high-pass temporal fil-
tering with a 128s cutoff, and normalization to the Montreal Neurological
Institute (MNI) template space with 3mm isotropic voxel size. A detailed de-
scription of data acquisition and preprocessing is provided in [Ess+09].

Mean time-courses of the 246 Brainnetome Atlas regions [Fan+16] were
extracted from the preprocessed data of the 331 subjects. In line with [Bra+15],
a 15-volumewindow lengthwith 14 volumes overlapwas chosen for the sliding-
window analysis (figure Figure 3.1.C and Figure 3.1.D), generating in total 114
windows for each subject. For everywindow, an adjacencymatrix using Pearson
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correlation coefficients between all possible pairs of the 246 regions mean time
series was calculated (using scipy.stats.pearsonr [Vir+20]). Considering that the
N-back working memory task consisted of 30s alternating blocks of 0-back
and 2-back, the 15-volume window (30s length) allows for one window purely
reflecting a single condition block. For more information on selection of the
window length see [Bra+15] and [LV15].

3.1.3 A-priori Modules Selection

The a-priori modules (Matrix M) were selected based on 14 well-described
functional connectivity template networks (modules) in [Shi+12] by the FIND
lab . As described before, a 15th (artificial) module was added comprising
all atlas regions that did not overlap with any of the 14 template networks
(read more about this module in the next chapter, Figure 4.13). The a-priori
affiliations of all atlas regions can be found in Table Table 3.2 and the labels of
the FIND lab templates in Table Table 3.1.

T���� �.�. Findlab-based modules [Shi+��] used in our application section.

Number Name
Module 1 Anterior Salience
Module 2 Auditory
Module 3 Basal Ganglia
Module 4 Dorsal Default Mode Network (dDMN)
Module 5 High Visual
Module 6 Language
Module 7 Left Executive Control (LECN)
Module 8 Posterior Salience
Module 9 Precuneus
Module 10 Prim Visual
Module 11 Right Executive Control (RECN)
Module 12 Sensorimotor
Module 13 Ventral Default Mode Network (vDMN)
Module 14 Task Positive
Module 15 Undefined

http://findlab.stanford.edu/
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F����� �.�. Comparison of �exibility generated by the generalized Louvain-like locally
greedy heuristic algorithm [Blo+�8; Jeu+] and the template-based method dur-
ing an N-back working memory task. A) Flexibility plot from [Bra+��] illustrat-
ing the probability that a brain region changes its modular allegiance between
two consecutive windows in a sample of ��� healthy subjects. The original plot
is used with permission of the publisher. B) Flexibility plot generated by the
template-based method. Here, the �exibility number in each time-window is the
fraction of regions that change their af�liation from one time window to the next
(i.e., the number of changed regions divided by the total number of nodes). The
plots are generated using a subset, of size ��� subjects, from the same cohort
as used in [Bra+��]. Note that in both plots a time window covers �� EPI vol-
umes with a TR of �s, corresponding to a window length of ��s. The windowwas
shifted with one volume at a time, allowing for �� EPI volumes overlap between
consecutive windows, which yielded ��� windows in total

3.1.4 Complementary Integration Measure

In some studies like [Bra+15], a complementary measure to study the level of
integration/segregation of spatial meso-scale structures is used. To calculate
the integration matrix R defined in [Bas+15] with elements A:,; which show
the strength of co-activity between modules k and l, when there are #<>3

modules {"1,"2, ..."#<>3 }, first themodular allegiancematrix T is calculated.
Elements C8 9 of matrix T indicate the fraction of times that nodes i and j have
been assigned to the same community, in a predefined set of windows. Then
the T elements with one end in module k and the other end in module l are
used to calculate elements 8:,; of intermodule connection matrix I, . It can be
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written as:

8:,; =

Õ
82": , 9 2";

)8, 9
|": | |"; |

, (3.1)

where k and l are two modules and |": | shows the size of module ": .
Then the elements of I are normalized with a division by internal connections
of both modules and the resulting values, form integration matrix R elements
as shown in equation 3.2:

A:,; =
8:,;p
8:,:8;,;

. (3.2)

3.2 RESULTS AND COMPARISON

Figure 3.2.A shows theN-back flexibility pattern across all nodes from [Bra+15],
while Figure 3.2.B shows the pattern generated by our method when applied
to the same dataset (331/344 subjects of the same sample). Similar to Figure
3.2.A, the peaks illustrate maximum flexibility of the brain during performance
of both the 0- and 2-back condition. In contrast, the transitions between the
two task conditions coincide with troughs when applying our method, whereas
[Bra+15] described additional, yet smaller peaks during these transition phases
when using the generalized Louvain algorithm. On average, higher flexibility
is observed during the 2-back than 0-back blocks, although the difference is
relatively small (C = �2.9, ? = .03).

In addition to calculating flexibility across all nodes, we can use the infor-
mation captured in the fifth step to describe the affiliation changes of each
individual node. This allows us to have a closer look at which nodes switch their
affiliation over time most frequently, or at how often the a-priori constituents
of each of the template networks switch their affiliation. Figure 3.3 illustrates
how many times each node (Brainnetome regions in our analysis) switches
its affiliation between two consecutive windows. Note that the number of
switches was normalized to the number of switches performed by the node
that switched most frequently, forcing the latter node to have a value of 1 and
the other nodes to have a value between 0 and 1. Nodes within the prefrontal
cortex predominantly show affiliation changes over time during execution of
the N-back task. This is in agreement with the previous findings [Owe+05;
Cao+14; Min+15; BGS15].
One level coarser and at the module level, we can look at the average switching
ratio of template modules. The boxplots in Figure 3.4 demonstrate for each of
the FIND lab template modules how often their a-priori defined constituent
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F����� �.�. Brainnetome atlas brain regions switching Number of af�liation switches be-
tween consecutive windows for regions of the Brainnetome Atlas, averaged
across all subjects and normalized to themost frequently switching node to yield
values between � and �. The visualized regions are those with values higher that
�.�.

nodes on average switch their modular affiliation over time across participants.
Constituent nodes of the default mode network (DMN), salience network (SN),
left and right executive control network (L/RECN), and language network
seemingly switch their affiliation most often during execution of the N-back
task.
It is possible with the sliding window approach, to separate the windows corre-
sponding to each condition, 0-back and 2-back. We consider windows with
minimum 80% of their time-points in one condition as the representers of that
condition. We then calculate the modular allegiance) [see here: 3.1.4 ]and in-
tegration ' of our 2 conditions. Figure 3.5 shows the result of this analysis. We
observe a general increase in integration values in 2-back compared to 0-back
expect for 3 modules. This overall increase in integration is in agreement with
previous findings [Fin+20].

3.3 DISCUSSION

In this chapter an application and comparison of the flexibility measure was
presented. We set out to compare our method against the currently most used
data-driven method described in [Bra+15], in which the computationally more
expensive generalized Louvain algorithm was applied to derive the modular
structure of the data [Blo+08; Muc+10; Bas+11; Jeu+]. It was shown that our
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F����� �.�. A) Average number of af�liation switches between consecutivewindows for each
FIND lab template network, averaged across all subjects. Abbreviations are listed
in Table Table �.�. B) Illustration of the four template networks for which its con-
stituent nodes demonstrated the highest �exibility (http://�ndlab.stanford.edu/;
[Shi+��]). a

aPython packages "nilearn", "scikit-learn" and "Matplotlib" are used for the visualizations [Ped+11; Hun07a]

template-based a-priori method is able to reveal a flexibility pattern during
the N-back working memory task that is highly similar to the pattern found
in [Bra+15]. The most notable difference between the results obtained with a-
priori method and the Louvain algorithm was the absence of the small increase
in flexibility during the transition of the 0- and 2-back blocks. Braun and
colleagues [Bra+15] interpret this to reflect "dual-task" performance. We suggest
an alternative explanation based on the current results: increased flexibilitymay
be needed for switching tasks at the start of each new condition block (shown
as a delayed peak in the middle of the marked blocks), while less flexibility
may be needed during prolonged execution of the task in each block (shown
as a delayed trough exactly in between blocks). As such, the periods of lower
flexibility may show the preferred brain configuration for the execution of the
task blocks. A further more theoretical analysis of a simulated BOLD signal
with block induced inputs to help interpret the dual-task vs. no-dual-task
dilemma is presented in Chapter 6.

As has been shown abundantly in the literature, the prefrontal cortex plays
an important role in the performance of working-memory tasks [Owe+05;



3.3 DISCUSSION J 37

F����� �.�. Modular allegiance and difference in integration. Diagonal elements of the matri-
ces are set to be zero. A) Modular allegiance of �-back condition and �-back. B)
Integration difference between �-back and �-back ['2�102: �'0�102: ]. C) Modular
allegiance of �-back condition [to calculate a T matrix for one condition, only the
windows with 8�% of their time-points in that condition are used]. D) sum of rows
(from C panel matrix) as each modules integration value.a

aPython packages "nilearn", "scikit-learn" and "Matplotlib" are used for the visualizations [Ped+11; Hun07a]

Cao+14; Min+15; BGS15]. Therefore, it is not surprising that we found nodes
in the prefrontal cortex to show the most flexible behavior during execution
of the N-back task. Moreover, at the modular level we see the highest flexi-
bility in nodes that have an a-priori affiliation to the DMN, SN, L/RECN and
language modules. The DMN is known to have an antagonistic relation with
fronto-parietal networks, such as the L/RECN: when the latter is more active
during cognitively demanding tasks (such as the N-back) the DMN is less active
[Fox+05]. Interestingly, a key role has been assigned to the SN in allocating
neural resources between more internally (DMN) or externally (ECN) oriented
processes [Udd+11]. Taken together, we see these results as further proof of
the a-priori method validity.
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CHAPTER 4

Brain Flexibility in Schizophrenia

“That’s how the madness of the world tries to colonize you: from the outside in,
forcing you to live in its reality.”

- JEFF VANDERMEER

The material discussed in this chapter has overlap with the content of the
below mentioned extended abstract. Due to the differences in the nature of
abstract and thesis, some topics and results are discussed more extensively here
in the thesis.

Aberrant change in brain network flexibility during the performance
of Theory of Mind task in schizophrenia patients

Narges Chinichian1,2,3,⇤, Ahmad Ehyaei, Wladimir Tantchik2, Pablo Reinhardt2,
Henrik Walter2

First published in: Complex Networks 2022 Book of Abstracts (2022).
DOI: 10.5281/zenodo.7183312

In the following chapter, an exploratory investigation of template-based
brain flexibility measures (see chapters 2 and 3) is conducted on schizophrenia
1Institut for Theoretical Physics, Technical University of Berlin, Berlin, Germany. 2Department of Psy-
chiatriy and Psychotheray, CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Univer-
sität Berlin and Humboldt-Universität zu Berlin, Germany. 3Bernstein Center for Computational Neuro-
science, Berlin, Germany.
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patients and healthy controls. During the performance of a Theory of Mind
(ToM) task by both groups fMRI scans are collected. The analysis is performed
on three distinct scales: the entire brain, groups of regions [modules], and
individual regions. The results are then used to determine whether it is possible
to accurately classify the subjects into the two groups of patients and controls
using the flexibility-based features.

4.1 THEORY OF MIND (TOM)

Theory of Mind (ToM) is the ability to "see the others as intentional beings, to
see their actions as motivated by mental states." and "the realization that the
mental states of others may differ from one’s own" [Tso18]. Or in other words,
"the ability to infer intentions, dispositions, and beliefs of others"[Gre+08; Fri14;
Bar+01].
Extreme social dysfunction may result from the inability to empathize with
others and reflect on their mental state. Children between the ages of 3 and
5 begin developing the various components of theory of mind in different
sequential orders depending on their culture, with the majority of studied
cultures following this order1 [WL04]:

1. DiverseDesires (DD): The understanding of existence of different desires,
interests and motivations in others.

2. Diverse Beliefs (DB): The realization of existence of different beliefs
about the same things in different people.

3. Knowledge Access (KA): The realization that other individuals can only
know something if they have access to appropriate input/information.
As an example, if Alice and Bob are in the same room with a chocolate
bar on the table, and Alice leaves the room for a period of time while Bob
places the chocolate in the drawer. In her return, Alice must be informed
of this change in order to know it. Without observation or data, she will
be unaware of the correct location of the chocolate bar.

4. False Beliefs (FB): Knowing that others can hold false beliefs and act
based on them. In the above example, Alice can return and believe she
can find a chocolate bar on the table.

5. Hidden Emotions (HE): The understanding that the emotion shown by
people can differ from their real emotions.

1- The Chinese and Iranian children show faster KA and slower DB [Sha+11; Wel+06]
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There are numerous paradigms designed to measure the theory of mind in
children and adults that include stories, animations and games. Later in this
chapter, a slide-based story is used to study ToM.

4.2 SCHIZOPHRENIA

According to Diagnostic and Statistical Manual of Mental Disorders (DSM-
5)[Ass+13], schizophrenia is diagnosed by the presence of at least two of the
following criteria: "delusions", "hallucinations", "disorganized speech", "grossly
disorganized or catatonic behavior", or what are known as "negative symp-
toms" (i.e. diminished emotional expression or avolition). At least one of these
criteria must be from the first three, and they must persist for a significant
portion of a 1-month period. For the non-clinical experts, these criteria can be
explained in brief below:

• Delusion: Having firm beliefs that are not altered even when conflicting
evidences are presented. The most common theme of delusion, called
a "persecutory" delusion, is the belief that "one is going to be harmed,
harassed and so forth by an individual, organization or other group".

• Hallucination: Perception of experience that occurs with no external
stimulation. It can be with every sensory modality but DSM5 refers to
the "auditory" hallucinations as the most common case in schizophrenia.

• Disorganized Thinking (Speech): Having severe disorganized, discon-
tinued and incoherent speech (interpreted as the sign of disorganized
and derailed thinking). Answering the questions with barely relevant
or completely irrelevant statements and in rare cases, generating nearly
incomprehensible speech ("word salad").

• Grossly Disorganized or Catatonic Behaviour: Showing abnormal mo-
tor behaviours ranging from "childlike silliness" to "unpredictable agi-
tation" that can cause problems in the performance of various sorts of
goal-directed daily activities. Catatonic behaviour can be defined as the
decreased reactivity to the inputs from ones environment, it can be man-
ifested in the forms of inappropriate, non-existing or excessive motor
response to the situation.

• Negative Symptoms: Refer to decrease in normal motivation-related
functions and behaviours [CS20]. The two prominent negative symp-
toms in schizophernia are the diminished emotional expression (reduced
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emotional emphasis in speech, like not changing the intonation, not mak-
ing eyes contact or showing body gestures in general) and avolition (lack
of interest and motivation to initiate or follow purposeful activities).

A meta analysis by Sprong et al [Spr+07], which investigated 29 studies of
mentalizing in schizophrenia (on a total number of 1518 participants) from
publications between 1993 and 2006, found that the patients showed consistent
significant deficit in their theory of mind. Even patients in remission still
showed the deficits and IQ, gender and age did not significantly affect the mean
effect size.

In the following sections, we investigate if the difference in brain reaction
to a variation of ToM task between schizophrenia and control group is reflected
in the flexibility of brain functional network detected by the template flexibility
method introduced in chapters 2 and 3.

4.3 SUBJECT SELECTION AND SCANNING

64 healthy controls and 64 schizophrenia patients were matched and selected
from the IntegraMent (Integrated Understanding of Causes andMechanisms of
Mental Disorders) multi-centric study at Charité Universitätsklinikum Berlin
and the Zentrum für Seelische Gesundheit in Mannheim. The subjects were
recruited using both advertisements and psychiatric clinics recommendations
and they all gave written informed consent for their participation. Local ethics
committees approved the study. All of the schizophrenia patients were diag-
nosed (F20.x) according to ICD-10 by professional psychiatrists. In addition,
to confirm the diagnosis, all patients went through a clinical interview for
DSM-IV(SCID-I). The matching of subjects for sex and testing site was done
by fuzzy extension for SPSS Version 22 (IBM Corp. Released 2013. IBM SPSS
Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). More detail
on the selection of subset can be found in Tantchik et al [Tan+22].

4.3.1 Task and Preprocessing

The part of the multi-centric study data used in the present study contains
Blood-oxygen-level dependent fMRI collected during the performance of the
cartoon ToM paradigm first introduced by Schnell and colleagues and later
used in several further studies [Sch+11; Wal+11; Moh+14; Moh+16]. Subjects
were presented short cartoon stories of 3 images per trial and they were asked
to evaluate either the change in the main character’s affective state of mind
(options: better/equal/worst) which is ToM condition or the number of living
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F����� �.�. Sample cartoons from Theory of Mind (ToM) task
During ToM condition, The protagonist’s (character in bold line) change in affec-
tive state should be described by participants as better, worse or equal. During
the control condition, the number of living beings should be counted (more/few-
er/equal). Each condition takes ~�� s including the instruction.

beings (options: more/equal/less) considered the control condition. See Figure
4.1 for an example of cartoons. The protagonist is marked with bold lines. The
two conditions were presented in alternating blocks. Each condition contained
8 trials. Slides were presented each for 7.5 seconds (total of ~23 seconds) and a
6.5 seconds instruction slide was shown at the start of each block (adding up to
the blocks of ~30 seconds).

Blood-oxygen-level dependent fMRI was performed using identical scan-
ning protocols with Siemens Trio 3TMR scanners in Berlin and Mannheim.
TR of 2sec. and TE 30ms, echoplanar imaging (EPI) with 240 volumes of 28
slices of 4mm thickness + 25% gap, flip angle 80°with FOV set to 192mm in de-
scending slice order. Quality-control measurements were conducted at all sites
on every day of data collection according to a multicenter quality-assurance
protocol, revealing stable parameters over time. Preprocessing was done using
a similar pipeline from Erk et al [Erk+17] in SPM8. It included realignment
to mean image (movement parameters < 3mm and < 1.7 degrees between vol-
umes), slice-time correction, normalization to the standard MNI (Montreal
Neurological Institute) space with 3 ⇥ 3 ⇥ 3 mm voxel size and Gaussian kernel
smoothing with a 9 mm FWHM.



46 I CHAP. 4 CH. 4 FLEXIBILITY IN SCHIZOPHRENIA

4.4 DYNAMICAL FUNCTIONAL NETWORK

Time series from 246 Brainnetome atlas [Fan+16] regions were then extracted
from the preprocessed data using Python nilearn package [Ped+11]. Each Brain-
netome region is referred to as a node and is affiliated to one of the modules
(group of nodes, also referred to as “Networks” in the neuroscience literature.
We avoid the potentially ambiguous usage of "Network" term to refer to mod-
ules in this work) of the brain introduced by Findlab [Shi+12] shown in table
Table 4.1. Sliding windows of 15 time-points lengths (30 seconds) with an
overlap of 14 time-points were used to observe the dynamics of the network. In
each sliding window, pairwise Pearson correlation coefficients were calculated
between the time series of each pair of nodes as a measure of cooperation
between that pair of nodes.
A total of 237 time points (~7.5 minutes) were used to generate 222 sliding
windows. These pairwise values form amatrix that is then treated as a weighted
adjacency matrix of a network assigned to a window. The method for the calcu-
lation of flexibility introduced in chapter 2 is then applied. This method finds
the deformation of a-priori modules in the brain by comparing the connection
weights of the weighted adjacency matrix and pre-defined affiliation of the
nodes. In each weighted adjacency matrix, the absolute value of functional
connections between every single node and all the members of every module
is calculated and then normalized to the size of each module. The resulting
weights are compared to choose a “winner” affiliation. The winner affiliation
can be the same or different from the a-priori affiliation. Assigning winner
affiliations to every node, a new set of affiliations for all nodes in the window
is achieved.

4.5 WHOLE-BRAIN SCALE

By tracking the ratio of nodes that change their winner affiliation between
the two consecutive windows a “whole-brain flexibility” (WBF) value between
0 and 1 is determined between every 2 consecutive windows. A WBF time
serie of length 221 (from 222 windows) is therefore generated for each subject
(resulting in 64 + 64 = 128 time series). Figure 4.3 shows these time series. A
more detailed explanation of the method with the calculation steps is found in
chapter 2. The python script for the calculation of these time series is available
on the online thesis repository. For every time serie, the following values are
calculated and saved as the features later used in the classifier:

I Average along the time axis.
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F����� �.�. A summary of �exibility-based values calculated for each subject
On the whole brain scale, the WBF time series are calculated and average, vari-
ance, range, number of maxima and number of minima for each time serie are
extracted and saved.
On the module scale, the population time series for all �� Findlab modules are
extracted and average, variance and range are calculated and saved. In addition,
modules that had a dominant pattern of giving or takingmembers fromor to other
modules in the frequency associated with the task are marked and saved.
Finally, on node scale, � regions associated with ToM task are selected and the
the number of af�liation-switching for each of them is counted.

II Variance along the time axis.

III Range (maximum - minimum along time axis).

IV Number of local minima.

V Number of local maxima.

4.6 MODULE SCALE

4.6.1 Module Populations

The total number of nodes that belong to a single module at any given time can
be regarded as the population of that module. The 15 Findlab modules listed
in Table 4.1 have changing population during the performance of a cognitive
task. Population for each module is calculated by counting the regions that had
their winner affiliations to that module at any given window (see the averaged
population dynamics plot averaged in each group in supplementary material
Figure S1). For every time serie, similar to the previous measure, the average,
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F����� �.�. All whole-brain �exibility time series for schizophrenia patients and healthy con-
trols
Right column shows all healthy controls and left column the schizophrenia pa-
tients. Y axis is template �exibility value for the whole brain (WBF) and x axis is
time.
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F����� �.�. WBF (whole-brain �exibility) comparison
Average, variance and range of every WBF time serie is calculated and the � sub-
ject groups are compared based on these measures. Average, in contrast to the
other two measures, is not showing a signi�cant difference.

variance and range along the time axis were calculated and the results were
saved for every module and participant.

4.6.2 Frequency Filtered Give and Take

When a nodemoves from onemodule to another between two consecutive time
windows, one module loses a member and another gains one. We call these
modules the “giver” [the module which loses a member] and “taker” [the module
which gains a member] modules respectively. For each time step t between
two windows, a 15 ⇥ 15 non-symmetric matrix called ⇡C with elements ⇡C,8 9

showing the number of nodes that move from module i to module j in t is
calculated. Extracting the information of a fixed i and j through time dimension,
a time serie of giving-taking between module i and j is achieved. If this time

F����� �.�. Signi�cantly different module population averages
Blue and gold violin plots respectively show the control group and schizophre-
nia patients average module populations. The � modules (high visual, LECN,
vDMN, sensorimotor and unde�ned [regions not associated with Findlab mod-
ules]) show considerably small p-values (=< �.���).
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F����� �.6. Signi�cantly different module population variances
Blue and gold violin plots respectively show the control group and schizophrenia
patients variance of module populations. The � modules (high visual, Auditory,
vDMN, and unde�ned [regions not associated with Findlab modules]) show con-
siderably small p-values (=< �.��6).

serie shows a peak in the frequency value close to our change of task conditions
frequency, the giving-taking behaviour is associated with the performance of
the ToM task. The task-associated giver and taker modules of each subject that
show a repetitive behaviour in the range of +/-5 seconds from the task period
were extracted and saved.

4.7 NODE SCALE

The vectors showing the affiliations of one single node over time could be
extracted and studied individually. A mask of ToM-associated areas generated
by Neurosynth† engine from 181 studies was overlaid by a Brainnetome atlas
map of regions. Figure 4.9 shows Brainnetome regions and ToM associated
area. Brainnetome regions with higher than 50% overlap with ToM areas were
marked and selected to be investigated. These regions are the following five:

• Region 14: A10m, medial area 10 (SFG, Superior Frontal Gyrus, Frontal
Lobe)

† https://neurosynth.org/
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F����� �.�. Signi�cantly different module population ranges
Blue and gold violin plots respectively show the control group and schizophrenia
patients range of module populations. The � modules (high visual, vDMN, sen-
sorimotor and unde�ned [regions not associated with Findlab modules]) show
considerably small p-values (=< �.��8).

• Region 83: Left A21r, rostral area 21 (MTG, Middle Temporal Gyrus,
Temporal Lobe)

• Region 84: Right A21r, rostral area 21 (MTG, Middle Temporal Gyrus,
Temporal Lobe)

T���� �.�. Number and Name of modules.

Module Number (Short Name) Module Name
Module � (M�) Anterior Salience
Module � (M�) Auditory
Module � (M�) Basal Ganglia
Module � (M�) Dorsal Default Mode Network (dDMN)
Module � (M�) High Visual
Module 6 (M6) Language
Module � (M�) Left Executive Control (LECN)
Module 8 (M8) Posterior Salience
Module � (M�) Precuneus
Module �� (M��) Primary Visual
Module �� (M��) Right Executive Control (RECN)
Module �� (M��) Sensorimotor
Module �� (M��) Ventral Default Mode Network (vDMN)
Module �� (M��) Task Positive
Module �� (M��) Unde�ned (untagged nodes listed in Figure �.��)
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F����� �.8. All non-unique giver and taker modules for both groups When a node moves
from one module to another between two consecutive time windows, one mod-
ule loses amember and another gains one. We call thesemodules the “giver” [the
module which loses a member] and “taker” [the module which gains a member]
modules respectively.
For each time step t between two windows, a 15⇥15 non-symmetric matrix called
⇡C with elements⇡C ,8 9 showing the number of nodes that move frommodule i to
module j in t is calculated.
Extracting the information of a �xed i and j through time dimension, a time serie
of giving-taking between module i and j is achieved. If this time serie shows a
peak in the frequency value close to our change of task conditions frequency, the
giving-taking behaviour is associated with the performance of the ToM task.
The task-associated giver and taker modules of each subject that show a repet-
itive behaviour in the range of +/-� seconds from the task period were extracted
and and recorded to generate these plots. Each bar shows how many times a
module was found as a giver (purpule) or taker(green)
Right plot shows healthy controls and left plot the schizophrenia patients.

F����� �.�. Brainnetome and ToM regions
There are � regions fromBrainnetome atlas that have higher than ��%ovelapwith
ToM mask.

• Region 144: A39rv, rostroventral area 39(PGa) (IPL, Inferior Parietal
Lobule, Parietal Lobe)

• Region 153: A31, area 31 (Lc1) (Pcun, Precuneus, Parietal Lobe)

For each of these regions, the number of affiliation-switches (see chapter 2)
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was calculated.

F����� �.��.All ��6 nodes af�liations over time for one sample subject
Visualization of af�liation change over time for all nodes in one subject.

4.8 SCALES RESULTS

Schizophrenia patients and healthy controls show significantly different vari-
ance and range in their WBF time series (see Figure 4.4) while their mean
flexibilities are not significantly different. Looking at Figure 4.3, it can be
observed that the schizophrenia group subjects are more likely to show an
aberrant increase in their WBF at irregular times.

Our investigations on the module population dynamics suggests that there
are significantly different behaviours in modules population dynamics of Audi-
tory, High Visual, LECN, sensorimotor, vDMN and the 15th undefined module
(see chapter 2 for the definition of this 15th module and Figure 4.13 for the
list of regions in it). The differences are observed using the 3 measures (aver-
age, variance and range) on the module population time series (see Figure 4.5,
Figure 4.6 and Figure 4.7). Abnormalities in the DMN and Executive Control
Networks have been extensively reported in the resting state fMRI studies of
schizophrenia patients [CEP09; Sal+10; Lit+15]. Our findings suggest that the
different behaviours of DMN and ECN extend to the mentalizing tasks.



54 I CHAP. 4 CH. 4 FLEXIBILITY IN SCHIZOPHRENIA

An overall decrease in give/take changes associated with the task time-
pattern of ~30 s in schizophrenia is observed (height of all bars in Figure 4.8).
This in turn agreeswith the lower contrast betweenToMand control conditions
observed by several studies. The contrast is explained by either hypomentaliza-
tion during ToM or hypermentalization during the control condition [Abu99;
Fri04; LB08; Cia+15]. The results suggest that the schizophrenic brain distin-
guishes less betweenTOMand control stimuli than a healthy brain regardless of
whether hyper- or hypo-mentalizing is the source of this change in the contrast.

In addition, some columns in Figure 4.8 show a different trend between
the 2 groups. Module 2 [Auditory] and module 5 [High Visual], are dominantly
giver modules in the control group while they act as stronger takers in the
schizophrenia patients. This suggests that these modules are receiving rein-
forcement from other modules and expanding in a frequency corresponding to
the task-blocks. Several schizophrenia studies in fact suggest that the deficits
occurring at the stage of sensory processing and perception are the bottom-up
reasons for the dysfunction in higher cognitive levels in patients suffering from
schizophrenia [Jav09b; Jav09a; JS15; Bor+18].
The different trends observed by our method in the auditory, visual and senso-
rimotor modules could be interpreted as a further sign of perception-related
abnormalities associated with schizophrenia.

4.9 CLASSIFICATION OF CONTROL SUBJECTS AND SCHIZOPHRENIA PATIENTS

AGLMmodelwith L2 (ridge regression) penalties (alpha = 0), a gradient descent
solver and logistic regression (binomial family) [Nyk+22] from h2o python
package [H2O20] was used on a table with all the three level values (whole
brain, modules and nodes) listed in Figure 4.2 as columns. The giver/taker
columns were filtered to contain only columns with at least 10 non-zero values.
The total number of columns after this filtering was 81. The mean accuracy in
10 fold for the classification was 0.74 (see Figure 4.11 for the cross-validation
metrics summary). The relatively small dataset for training and test results
in considerable fluctuation in accuracy (each prediction moves the accuracy
by �8%) within different folds but the classification distinguishes between the
two groups with a significant margin. The contribution of columns as the
coefficients in the classification are shown in Figure 4.12. The most influential
five columns are:

The alpha parameter controls the distribution between the l1 (LASSO) and l2 (ridge regression) penalties.
The penalty is defined as [Nyk+22]:

% (U, V) = (1 � U)/2 | |V | |22 + U | |V | |1 = ⌃ 9 [ (1U)/2V29 + U |V 9 | ]
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F����� �.��. Cross-validation metrics summary
�� fold cross-validation metrics summary. For more information on how each
value is calculated see [H�O]

1. Module 13 (ventral default mode) average population

2. Module 15 (un-tagged regions, listed in Figure 4.13) average population

3. WBF time serie variance

4. M7 (Left Executive Control) module sending members to M15 aligned
with the task frequency

5. M2 (Auditory) module sending members to M7 aligned with the task
frequency

4.9.1 Raw data classification

To further validate, that the flexibility-based measures improved the classifica-
tion of subjects into controls and schizophrenia patients, we tested classifica-
tion of raw data using an RNN+CNN neural network model from Tensorflow
[Mar+15]. The highest accuracy achieved from the raw-data classification was
63%. This further confirms that the flexibility measures not only help in the
reduction of data size but also introduce more interpretability to the results
and improve the classification compared to the original fMRI time series.
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F����� �.��.GLM variable importance
Variable coef�cients sorted based on their importance in GLM model.

4.10 DISCUSSION

Our exploratory research shows significant difference in the reconfiguration
of functional [dynamical] brain networks between schizophrenia patients and
healthy controls. The differences are observed on 3 scales of whole-brain,
modules and nodes. A classification of subjects based on their flexibility-based
measures succeeds in differentiating the 2 groups with a higher than 20% above
chance accuracy. The significant differences found in the perception related
modules including auditory, visual and sensorimotor support the bottom-up
deficit hypothesis while the further distinguished behaviours in executive con-
trol and default mode modules are in line with the previous resting-state fMRI
findings in schizophrenia patients.
Our findings show a rather small gap in the reconfiguration of the 5 selected
ToMassociated regions in the 2 groups. In fact, the first ToM region (5th region)
to appear on the classification variable importance list (Figure 4.12) ranks 20th.
There are several limitations to be addressed in this study. Our interpretations
lack a bigger independent dataset validation. The relatively small dataset of
only 128 subjects, is a serious limit to the interpretation of different findings. A
further investigation on an independent dataset could help in a better training
and validation process of our classifier.
Our flexibility method, though comprehensive and easy to calculate, is new and
therefore not extensively available in the literature and the results could not be
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compared one-to-one with similar studies due to the different approaches in
the studies. The 15th module with regions listed in Figure 4.13, is not fitting a
unified Findlab definition and therefore the differences between the two groups
based on the behaviour of module 15 are not easily interpretable.

Despite all the limitations mentioned, we believe that the findings in this
study could pave the way for the design of further experiments and if they are
reproduced, they will provide us with a deeper understanding of the underlying
mechanism in cognitive deficits of schizophrenia patients and the share of
bottom-up or top-down deficits in the cognitive failures associated with severe
cases of schizophrenia.

4.11 CHAPTER SUMMARY

In this chapter, the flexibility-based measures of brain network obtained from
fMRI data collected during the theory of mind (ToM) cognitive task for 2
groups of schizophrenia patients and healthy controls were calculated and
compared. Based on these measures, the two groups could be distinguished
with an average accuracy of 74% while the algorithm relied heavily on the
information frompopulation ofmodules 13 and 15 and variance ofwhole-brain
flexibility together with the member exchange of modules 7 [Left Executive
Control (LECN)] and 15 [Regions that were not tagged based on the Findlab
atlas] and modules 2 [Auditory] and 7 [Left Executive Control (LECN)].
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F����� �.��.Module �� members
Regions in the ��th module and where they belong to.
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CHAPTER 5

A Short Report on Another fMRI Study

“How are psychiatric and neurological disorders different? At the moment, the
most obvious difference is the symptoms that patients experience. Neurological
disorders tend to produce unusual behavior, or fragmentation of behavior into
component parts, such as unusual movements of a person’s head or arms, or
loss of motor control. By contrast, the major psychiatric disorders are often
characterized by exaggerations of everyday behavior. We all feel despondent
occasionally, but this feeling is dramatically amplified in depression. We all
experience euphoria when things go well, but that feeling goes into overdrive
in the manic phase of bipolar disorder. Normal fear and pleasure seeking can
spiral into severe anxiety states and addiction. Even certain hallucinations and
delusions from schizophrenia bear some resemblance to events that occur in
our dreams.”

- ERIC KANDEL

The mini-chapter here is a short report on the findings from the collab-
orations with Justine Dickhoff and Marie-José van Tol from University of
Groningen, in the Netherlands.

Time-averaged and dynamic resting-state functional connectivity char-
acterizations in patients with suicide risk

Justine Dickhoff1, Jan-Bernard C. Marsman1, Narges Chinichian2,3,4 , Ilya M.
Veer3,5, Esther M. Opmeer6, Richard Dinga5 , Nic J.A. van der Wee7, Dick J.
Veltman8, André Aleman1,9, Marie-José van Tol1

1University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences
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Manuscript in preparation (2022).

Narges Chinichian’s Contribution:
The flexibility-based measures were primarily calculated by Narges Chinichian
using the method from chapter 2 and the python codes presented in the online
repository, in collaboration with the first author Justine Dickhoff and senior
author of the chapter 2 method draft, Ilya Veer.

5.1 FLEXIBILITY AND SUICIDALITY

A total of 95 people who met the criteria for Major Depressive Disorder and/or
common anxiety disorders were selected from the Netherlands Study of De-
pression and Anxiety (NESDA). Twenty-one had made at least one suicide
attempt in the past, and 27 had ongoing suicidal ideation. Resting state 3T
fMRI data was employed to investigate the suicidality and mood disorder effect
on the connectivity and reconfiguration of brain network.

Using six of the templatemodules (Anterior andposterior cingulo-opercular
(anterior/posterior salience), dorsal and ventral default mode (dDMN, vDMN)
and left and right central executive-network (LECN and RECN), see chapter
3 for the full list of Findlab modules in table Table 3.1), data from the resting
state was examined by a dual regression technique.
Two different comparison were made in the study:
1- A comparison between participants with (21 subjects) and without (74 sub-
jects) a history of suicide attempt.
2- A comparison between individuals with (27 subjects) and without (68 sub-
jects) suicidal ideation.
In total, 10 participants had both the history of suicide attempt and ongoing
suicidal ideation.

Suicidal ideation and no ideation differed in whole-brain flexibility (i.e.,
the total change of network connections across time of all 246 nodes) (F(1,81)=
5.33, p=.02, [2 = .062), but the other 2 groups (suicidal attempt and no attempt)

of Cells and Systems, Cognitive Neuroscience Center, Antonius Deusinglaan 1, 9713AV Groningen,
the Netherlands. 2Institut for Theoretical Physics, Technical University of Berlin, Berlin, Germany.
3Department of Psychiatriy and Psychotheray, CCM, Charité-Universitätsmedizin Berlin, corporatemem-
ber of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany. 4Bernstein Center for
Computational Neuroscience, Berlin, Germany. 5Donders Institute for Brain, Cognition and Behavior,
Nijmegen, the Netherlands; Radboud University Medical Center, Nijmegen, the Netherlands. 6Applied
University Windesheim, Department of Health and Welfare, Campus 2, 8017 CA Zwolle, the Netherlands.
7Leiden Institute for Brain and Cognition (LIBC), Department of Psychiatry, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands 8Department of Psychiatry, VU University Med-
ical Center, AcademicMedical Center University of Amsterdam, Amsterdam, the Netherlands 9University
of Groningen, Department of Clinical Psychology and Experimental Psychopathology, Grote Kruisstraat
2/1, 9712TS Groningen, The Netherlands
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showed no significant difference (F(1,81)=.10, p=.76, [2 = .001). For the six
a-priori modules in attempt vs no-attempt groups, no difference in network
flexibility was detected at the given threshold (U = .00833). Only the right
central executive network showed a marginal difference between suicide at-
tempt and no attempt (F(1,81)= 3.88, p=.05, [2 = .046), suggesting that this
network expanded and contracted more over time in people who attempted
suicide. In participants with suicidal ideation vs no suicidal ideation, the 6
selected modules showed no significant difference.

The authors finally conclude that their findings, a lower whole brain flexi-
bility for participants with suicidal ideation and mood disorder in comparison
to those suffering from mood disorder but showing no suicidal ideation, might
reflect the complex abnormalities including the deficits adapting to external
and internal demands known to suicidal ideation symptom and suggest that
the further suicidality research should include measures addressing the suicidal
ideation to achieve a more profound result of network abnormalities.
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CHAPTER 6

Numerical Simulation of Brain Flexibility

“Something that doesn’t actually exist can still be useful.”

- IAN STEWART

The material discussed in this chapter has overlap with the content of the
below mentioned paper. Due to the differences in the nature of papers and
thesis, some results are discussed more extensively here in the thesis.

Modeling brain flexibility in networks of coupled neural populations

NargesChinichian1,2,3,⇤,Michael Lindner1,4, SerhiyYanchuk4,5, Tilo Schwalger3,6,
Eckehard Schöll1,3,4, Rico Berner1,7

Manuscript in preparation (2022).

Understanding the brain and having an accurate model of it that can pre-
dict different functions, have been the dreams of generations of scientists from
various fields of studies. From the estimated 1.019 billion euros "Human Brain
Project"1to the "BRAIN Initiative" 2 , many scientist around the world are ac-
tively working on computational models of the brain.

1Institut for Theoretical Physics, Technical University of Berlin, Berlin, Germany. 2Department of Psy-
chiatriy and Psychotheray, CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Univer-
sität Berlin and Humboldt-Universität zu Berlin, Germany. 3Bernstein Center for Computational Neuro-
science, Berlin, Germany. 4Potsdam Institute for Climate Impact Research, Potsdam, Germany. 5Institute
ofMathematics, Humboldt Universität zu Berlin, Germany. 6Institute ofMathematics, Technische Univer-
sität Berlin, Germany. 7Department of Physics, Humboldt Universität zu Berlin, Germany.
1- https://www.humanbrainproject.eu/en/
2- https://braininitiative.nih.gov/
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Computer simulations of the human brain are one of the new approaches
used by scientists today. They not only help us to understand hidden aspects
of mechanisms behind the function, but are also low cost test opportunities to
examine hypotheses that might not be ethically or practically applicable on a
real human brain.

With the help of simulations and computational models we can now explain
the alterations in brain connectivity during progression of Alzheimer’s dis-
ease [Dem+17], predict the optimal targets of deep brain stimulation [FDK22;
Tre+20], explain epileptic seizures or find a patient-specific epileptogenicity of
the brain regions to improve epilepsy surgeries at hospitals [Has+20; Ger+20;
Olm+19; Pro+18].

In this chapter computer simulations of a simple dynamical model of the
brain are presented. The model uses an empirical network structure obtained
fromDiffusion Tensor Imaging (DTI) data [see chapter 1] and generic dynamics
on eachnode of the network. Themodel is employed to simulate brain flexibility
patterns in order to have a way to assess the mechanism behind the flexibility
measure [see chapter 2] in a simplified physics modeling sense and answer a
few questions raised by the results of empirical brain data analysis in chapter 3.
It was shown that during the performance of a working memory (WM) task
the brains of healthy volunteers show the re-groupings that correspond to the
block-designed task change. We will try to look at this flexibility phenomenon
from a physics point of view and propose a meaningful yet simple dynamical
model that helps us in the understanding of this phenomenon.

The questions investigated in this chapter are the following:
1- Is it possible to show the flexibility pattern as observed in the empirical
data with all of the approximations and simplifications of a FitzHugh-Nagumo
network model?
2- Is the brain specific network topology playing a role in the observed brain
flexibility? What happens if we distort the structure and introduce randomness?
3- Does the selection of nodes in the brain, that are being associated with a
task, have an effect on the flexibility observed?
4- Do the double-peaks [peaks both when the sliding window is capturing two
tasks and when the window is capturing only one] previously not observed by
our method in chapter 3 re-appear in an ideal simulation scheme?

The above questions were the motivation for the following brain simula-
tions.
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F����� 6.�. Empirical and Simulated Data Pipelines
Empirical data from participants is collected and preprocessed. Time series for
all regions are extracted. Pearson correlation coef�cients between time series
in every sliding window are calculated. The �exibility time series are generated
based on the changes of node af�liations between consecutive windows. For the
simulated data the fMRI-like time series are produced using FitzHughNagumo
(FHN) u-value time series and Balloon models slower oscillation conversion but
then these time series are treated as their empirical counterparts.

6.1 BRAIN SIGNAL SIMULATION

The computer simulation in this chapter is aimed at generating artificial func-
tional Magnetic Resonance Imaging time series that show similar behaviour to
those recorded from real human subjects who performed the working memory
task presented in chapter 3. These artificial time series can then be investigated
in detail to answer the questions mentioned above.

6.1.1 FitzHugh-Nagumo Model

To simulate the neural activity, a specific type of FitzHugh-Nagumo oscillators
[Fit61] is employed. The dynamics is similar to the one used by Ghosh et al
[Gho+08]. The activator variable D: and the inhibitor variable F: of each
oscillator k follow the dynamics shown in the equation below:
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F����� 6.�. Brainnetome atlas regions
A) Brainnetome atlasa with ��6
regions [Fan+�6].B)Schematic
�gure for image axis. Reused
by permission from [BJO��]

ahttps://atlas.brainnetome.org/

whereD: in the single neuron mod-
eling represents the membrane po-
tential andF: is the slow recovery
variable of the neuron. Index : 2
{1, ..# } refers to the k-th oscillator
[of a total of N oscillators]. Parame-
ters 0 and 1 are bifurcation param-
eters of the FitzHugh-Nagumo sys-
tem. �0 is an excitability parameter,
an input given to the unit, same for
every oscillator. The n ⌧ 1 is the
time-scale ratio of the fast activator and the slow inhibitor variable. In our
model, each Brainnetome brain region [see Figure 6.2] is seen as one single
oscillator. The state variablesD andF then describe the effective dynamics of
that brain region. The coupling weight between oscillators k and l is given by
the weighted adjacency matrix element 6:; multiplied by the overall coupling
strength coefficient f .
Finally, �: (C) is the input which is given specifically to oscillator : at time C .
An appropriate input based on the phenomenon under investigation should be
chosen.

A list of the parameters used in equation (6.1) [ and later (6.3) to (6.9)]
together with their meanings are presented in Table 6.1

The dynamics of the oscillators before they are coupled together is shown
in Figure 6.3. Panels A and C show the oscillations of all the oscillators. With
no coupling to connect the oscillators, each unit is only different in its initial
condition. Panel B shows the nullclines and trajectory of one single oscillator.
Panel D shows the u time serie for a longer period of time. Parameters b and
a help tune the system for the simple case of one intersection point between
the two nullclines and the move of intersection on the peak or trough of the
u-nullcline based on the respective case. For a more detailed review on the
behaviour of a FitzHugh-Nagumo oscillator, see chapter 3 of Gerstner’s book
[Ger+14] and the extensive dynamical visualizations with changing parameters
offered in Scholarpedia by Izhikevich† .

† Izhikevich E. M. and FitzHugh R. (2006) FitzHugh-Nagumo model. Scholarpedia, 1(9):1349.
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F����� 6.�. Oscillators behaviour when there is no coupling (f = 0)
A) Space-time plot of all ��6 oscillators vs time B) Phase portrait of one oscillator.
C) minimum and maximum of u time series for all of the oscillators. Blue dots
are minima and red dots are maxima D) Oscillation of one single oscillator for a
longer time.

T���� 6.�. Parameters used in the a FitzHugh-Nagumomodel (6.1) and Balloon model (6.3)
to (6.9).

Symbol Meaning

f = 1.8 overall coupling constant

0 = 0.45,1 = 0.9 bifurcation parameters of the FitzHugh-Nagumo system

�0 = 0.8 excitability parameter

n = 0.1 controls time separation between fast activation and slow inhibition

2 = 3 amplitude of the square-wave input I:

g0 = 0.98 mean transit time of venous compartment

⇢0 = 0.34 capillary bed net oxygen extraction fraction

+0 = 0.02 resting blood volume fraction
1
U = 0.32 �ow-volume relationship power

gB = 0.65 time constant for signal decay

g5 = 0.41 time constant for auto-regulatory feedback from blood �ow
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F����� 6.�. Oscillators behaviour with f = 1.8, �0 = 0.8 and no square-wave �: (C ) input given
to any region
A) Space-time plot of all ��6 oscillators vs time. B) Minimum and maximum
of u values for all of the oscillators. C) u values for the node with the lightest
weighted connections to the other nodes. D) u values for the node with the me-
dian weighted connections to the other nodes. E) u values for the node with the
heaviest weighted connections to the other nodes.

6.1.2 Structural Connectivity Matrix G

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) tech-
nique to obtain the map of neural tracts in the brain. This method uses the
ellipsoid-shaped diffusion of water in tissue, as opposed to a sphere, as an indi-
cator of the presence of a tract that imposes certain boundary conditions on the
diffusion. The neural tracts information can serve as a structural network of
the brain. It can assign a weight to each two spatial regions of the brain based
on the tracts connecting them (see chapter 1 for more information on DTI).
The structural connectivity weighted matrix G with elements 68 9 in equation
6.1 is expected to show the weights of connections between regions in the
brain. For this purpose a 246 ⇥ 246 averaged DTI matrix in Brainnetome
atlas [Fan+16], obtained from 32 adults (mean age 31.5 years ± 8.6 SD and
14 female [Set+13]) who participated in Human Connectome Project (HCP)
at Massachusetts General Hospital (“MGH HCP Adult Diffusion”), was used.

https://www.humanconnectome.org
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F����� 6.�. Average Diffusion
Tensor Imaging (DTI)
weighted adjacency

matrix from ��
subjects of Human
Connectome Project
a [Set+��] calculated
by Horn et al ����
using Lead software

[Hor+��; HK��;
Hor+��]. For

illustration purpose,
!>6 (68 9 + 10�4) is

plotted. b

ahttps://www.humanconnectome.org
bUsed plotting tool [Hun07b]

The averaged DTI was calculated using Lead group softwares. [Hor+17; HK15;
Hor+19]. Figure 6.5 shows this G. A coupling coefficient f is multiplied by⌧
so that the oscillation can be tuned.

6.1.3 Input

F����� 6.6. Alternating blocks of working memory task
N-back working memory task design.

TheN-backmemory task in chapter 3 was consisted of 30-second blocks of
0-back followed by 30 seconds of 2-back. 0-back serves as baseline in this task
(see Figure 6.6). The baseline provides all the activities (for example looking at
the slides, making decisions and choosing) minus the working memory part
that is being measured in the experiment. To mimic the block-design of our
memory task in a simplifiedway, we use a square-wave input that can bewritten
as:

�: (C) = �2 (2b5 Cc) � b25 Cc)), (6.2)
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where coefficient c regulates the amplitude, 5 = 1
) is the frequency and

T = 60 seconds [for empirical reason of having 30-sec blocks for each condi-
tion]. See Figure 6.12 panel A and Figure 6.6 for plot and schematic of this input.

To select the regions which should receive the input we used a map of
"working memory" associated areas from Neurosynth 1 which is shown in
Figure 6.7 and calculated the overlap of Brainnetome regions [also presented
in Figure 6.7] with Working Memory (WM) areas. The regions with over 50%
overlap were then selected as target regions to receive the input introduced in
equation 6.2. The total number of regions was six

6.1.4 Balloon-Windkessel Model

The high frequency activator outputs D from FitzHugh-Nagumo oscillators
go through the Balloon-Windkessel model [Fri+00] to form a slower BOLD-
like (Blood-oxygen-level-dependent) signal, which represents the measured
signal during brain scans in the fMRI (functional Magnetic Resonance Imaging)
machines [BHV21].

The Balloon model [Fri+00; Man+99; Cak20] is a hemodynamic model
that mediates between synaptic activity and measured BOLD (Blood-oxygen-
level-dependent imaging) signals. This model uses normalized venous volume
E , normalized total deoxyhemoglobin voxel content @ and resting net oxygen
extraction fraction by the capillary bed ⇢0 to generate BOLD-like signal~ (C)
as defined by:

~ (C) = _(E,@, ⇢0) = +0(:1(1 � @) + :2(1 �
@

E
) + :3(1 � E)), (6.3)

where :1 = 7⇢0 and :2 = 2 and :3 = 2⇢0 � 0.2 and +0 is the resting blood
volume fraction. A list of parameters in Balloon-Windkessel model together
with their meanings are summarized in Table 6.1

The changing rate of volume is defined by:

E§ = 1
g0
(58= � 5>DC ) (6.4)

which is dependent on the difference of in-flow 58= and out-flow 5>DC of
the venous compartment multiplied by a time constant g0 that represents the

1-Neurosynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging
(fMRI) data. A set of 1091 studies related to "WorkingMemory" were used to generate the association map.
See here: https://neurosynth.org/analyses/terms/working%20memory/
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A

B

F����� 6.�. Brain regions to be stimulated
A) Brainnetome regions from Brainnetome atlasa , ��6 regions in total [Fan+�6] B)
Working Memory associated areas extracted from Neurosynth engine b. c. The
Brainnetome regions with bigger than ��% overlap are listed below:

• Regions �� and �6: A6vl, ventrolateral area 6 from Middle Frontal Gyrus

• Region ��: A��d, dorsal area �� from IFG from Inferior Frontal Gyrus

• Region 6�: A6cvl, caudal ventrolateral area 6 from Precentral Gyrus

• Region ���: A�c, caudal area � from SPL from Superior Parietal Lobule

• Region ���: mAmyg, medial amygdala from Amygdala

The list of all Brainnetome regions can be found in the Supplementary Material

ahttps://atlas.brainnetome.org/
bhttps://neurosynth.org/
cBrain plots are made using nilearn package in Python [Ped+11]. The x,y,z values show the plotting coordi-
nates

average transit time (time to pass the venous compartment). The Windkessel
model 1 [Man+99] suggests that 5>DC is dependent on the volume and can be
written as

5>DC = E1/U , (6.5)

where U , determined empirically, relates to the flow regime and the ratio of
capacitance to compliance in balloon.
The dynamics of state variable @ then reflects the difference of out-flow and
in-flow of deoxyhemoglobin in the venous compartment.

@§ = 1
g0
(⇢ (58=, ⇢0)

⇢0
� 5>DC (E)

@

E
), (6.6)

1-“wind- kessel” means leather bag
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F����� 6.8. Fitzhugh-Nagumo and Balloon models outputs
An example plot for the outputs of FHN and Balloon models for a region in the
middle of the sorted list of weighted connections a for the � cases; Top: f = 0 and
no square-wave input to any region. Middle: f = 1.8 and no square-wave input to
any region. Bottom: f = 1.8 and square-wave input of �: (C ) = �3(2 b5 C c)� b25 C c))
given to the 6 selected working memory regions.
See supplementary material for the least connected node (���), most connected
node (���) and a node that is directly receiving input (6�).

aRegion 148 from Brainnetome

where ⇢ (58=, ⇢0) shows the ratio of oxygen extracted from the inflow to the
delivered amount and is assumed to depend on oxygen arrivingwith the in-flow:

⇢ (58=, ⇢0) = 1 � (1 � ⇢0)
1
58= (6.7)

The in-flow, 58= changes based on the induced signal that depends on the
fast neuronal activityD: (C) which comes from FitzHugh-Nagumo oscillators
in our study.

58=§ = B (6.8)

and

B§ = n⌫D: (C) �
B

gB
� (58= � 1)

g5
(6.9)

where n⌫ ,gB and g5 are parameters that determine the dynamics of s. They
respectively represent:

• n⌫ : Efficacy with which neuronal activity causes an increase in signal
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F����� 6.�. Schematic View of Simulation Steps
�) Structural network is based on white matter Diffusion Tensor Imaging (DTI)
data. �) Nodes that receive the input are marked and the shape of the input is de-
cided. �) FitzHughNagumo (FHN) time series are generated using the dynamics
introduced in equation 6.�. �) FHN u time series are passed to Balloon model to
produce slower Blood Oxygen Level Dependent (BOLD)-like signals. �) The slow
signals are treated like the empirical data. Sliding windows Pearson’s correlation
coef�cients are calculated between each pair of nodes and used as functional
networks.

• gB : Time constant for signal decay

• g5 : Time constant for auto-regulatory feedback from blood flow

Having equations 6.4,6.6,6.8 and 6.9 we are able to calculate the desired~ (C)
which has the nature of slower BOLD (Blood-oxygen-level-dependent) signals
we needed.
The parameters used for the simulation purposes are presented in Table 6.1 .

6.2 SUMMARY OF SIMULATION STEPS

The FitzHugh-Nagumo time series with parameters given in Table 6.1 and
the time-dependent input introduced in 6.2 given to regions in 6.1.3 were
generated on the nodes of matrix G in 6.1.2. The standardized [with z-score
1 ] output was then fed to the Balloon model introduced in section 6.1.4 and
the result was treated as a single subject fMRI brain signal. The simulation was
repeated 300 times with different random initial conditions to account for the
effect of initial condition and random fluctuations.

6.3 FLEXIBILITY AND PEARSON CORRELATION DISTANCE OF CONSECUTIVE WIN-
DOWS WEIGHTED ADJACENCY MATRICES

In addition to the flexibility measure introduced in chapter 2 another more
straight-forward measure for comparison between the empirical and simulated

1- For variable X from a time serie with mean ` and standard deviation s, the z-score is: I = -�`
f
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F����� 6.��.Comparing empirical and simulation cases
Correlations of consecutivewindowsweighted adjacencymatrices on the left col-
umn and template �exibilities on the right column in empirical data (�rst row, A
and B panels) and simulated data (second row, C and D panels). Pearson correla-
tion coef�cient for the two �exibility time series is �.8� and for the two Pearson
distances is �.8� (with mean absolute error (MAE) of �.�� and �.�� respectively).
A "subject" in empirical data means one participant and a "simulation" in simu-
lated data means a single run with a random initial condition [empirical data: av-
eraged over ��� participants and simulated data averaged over ��� random initial
conditions]. Calculating the �exibility time serie is explained in details in chapter
�. Each sliding time window is covering �� seconds and two consecutive time
windows have �8 seconds overlap.

data, which is independent of our choice of template modules, can be defined.
For the calculation of this measure, the same procedure as in chapter 2 until
step 2 is followed. At this step a weighted adjacency matrix (�F8= , we have to
avoid using w,s and t indices for less confusion) see Chapter 2) is calculated for
each sliding time window from the empirical or simulated BOLD time series.
Then these weighted adjacency matrices are flattened (we denote the flattened
�F8= by �F8=) and the Pearson correlation distance 1 � A (F8=�1,F8=) between
each two consecutive flattened windows arrays is calculated again using the
Pearson correlation coefficient r and Pearson’s distance 1 � A formula below:

1 � A (F8=�1,F8=) = 1 �
Õ# 2

[=1 (�(F8=,[) � �(F8=) ) (�(F8=�1,[) � �(F8=�1) )qÕ# 2

[=1 (�(F8=,[) � �(F8=) )2
qÕ# 2

[=1 (�(F8=�1,[) � �(F8=�1) )2
(6.10)

where [ is a counter over array elements. # 2 is the size of flattened array.
Overline shows the mean (e.g � is the average of the elements in �) and a time
series of "1 � A " can be calculated between all consecutive windows.
In other words, using 1 time Pearson correlation and 1 time Pearson distance
will result in this measure.
This measure is closely related to the template flexibility because if the two
consecutive weighted adjacency matrices are very similar the correlation is
high [note that it does not necessarily hold the other way around, very different
matrices (by element values) can still have big correlation coefficients] and at
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the same time there is less switching in affiliations. On the other hand, when
the two consecutive weighted adjacency matrices are dissimilar, the chance of
switching is high and in many cases the correlation coefficient is also small.
There are mathematical cases where the two measures are not showing similar
patterns [see Figure 6.11 as an example of the measures deviating] but they are
defined in a related way. Figure 6.10, shows the dynamics of the two measures,
flexibility and correlation of weighted adjacency matrices in empirical and
simulated data. The simulated case shows a similar pattern to the empirical
data.

6.4 RESULTS

Reproducing Flexibility Pattern

The first question in this study is if the simulation based on our highly simplified
oscillator model and connection assumptions can reproduce a similar pattern
to that observed in the empirical data. The differences in steps to generate the
flexibility time series in empirical vs simulated data are shown in figure Figure
6.1. The simulated data generation pipeline is shown in schematic figure Figure
6.9 and explained in more details in the method section. Structural network
is based on an averaged white matter Diffusion Tensor Imaging (DTI) matrix.
Nodes, that receive the input, are found by overlaying a mask of Working
Memory associated regions with our selected parcellation for regions. The
shape of the input is decided to be a simple square wave matching the block
design of empirical task. FitzHughNagumo (FHN) time series are generated
for every node using the dynamics introduced in the methods section. FHN
activator time series are then passed to Balloon model to produce slower Blood
Oxygen Level Dependent (BOLD)-like signals. Finally these slow signals are
treated like the empirical BOLD signals from human participants.

Figure Figure 6.10 shows the plots for the two cases, empirical and simu-
lated data. The two template a-priori flexibility time series [calculated using
the method introduced in previous study by Chinichian et al [Chi+22]] for
empirical data vs simulated data on the right column and the two simplified
correlation distance time series of weighted adjacency matrices introduced
in method section of this study on the left column. The averaged simulated
case shows a similar pattern to the averaged empirical data. The Pearson cor-
relation coefficient for the two flexibility time series equal to 0.85 and for the
two Pearson distances 0.87 (with mean absolute error (MAE) of 0.01 and 0.03
respectively). During the performance of each block of tasks, the brain stays in
a specific configuration which is then changed by moving to the next block. To
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have a comparable smoothing and count for the initial condition differences,
the simulation is repeated for 300 times with the same parameters and ran-
dom initial conditions and then averaged across all runs. The empirical data is
smoothed as a result of averaging across 331 participants.

6.4.1 Effect of Structure

The structure of brain networks and its importance in human cognitive abilities
has been a topic of great interest in the network neuroscience community but
is this structure playing any role in the mesoscale flexibility behaviour observed
during the cognitive task? To test for the effect of the specific DTI structure
(called ⌧ in this study) without increasing or decreasing the weights associ-
ated to the network links (edges), we use a randomly reshuffled version of the
empirical DTI matrix (and call it⌧ 0. We keep the upper triangle of the matrix
and shuffle the weights (and then use the upper triangle to build a symmetric
lower triangle). An ensemble (of size 50) of simulations with the same model
parameters but different structural matrices (⌧ and⌧ 0) were performed.

As shown in figure Figure 6.11, the simulations on random network topol-
ogy do not show the same regular oscillatory Pearson distance and template
flexibility measure patterns as seen in the previous case. The Pearson correla-
tion coefficient for the two flexibility time series is 0.64 and for the two Pearson
distances is 0.42 (with mean absolute error (MAE) of 0.01 for both cases). Both
shown cases ("Baseline" and "Reshuffled DTI") had the same ensemble size (runs
with different random initial conditions) of 50. The result suggests that the
structure of network is an inseparable part of the flexibility pattern in the brain.
The disturbance in the regular oscillatory pattern shows that the regular input
(the square wave) alone can not be the source of strong oscillatory pattern
observed.

6.4.2 Effect of Node Selection

The third question of this study on the role of node selection for input can
be answered with the investigation of flexibility pattern when the input in
equation 6.2 is given to regions other than those marked as Working Memory
(WM) associated. The workingmemory (WM) regions in 6.1.3 are the following
regions from Brainnetome atlas:

• Regions 25 and 26: A6vl, ventrolateral area 6 fromMiddle Frontal Gyrus

• Region 29: A44d, dorsal area 44 from IFG from Inferior Frontal Gyrus
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F����� 6.��. Randomly reshuf�ed G simulation
Comparing the two case with a normal DTI-based G and a randomly reshuf�ed
G with the same weight distribution. Panels A and B are from simulations on ⌧
(averaged DTI matrix) while panels C and D are from simulation on ⌧0 (reshuf-
�ed ⌧). All other simulation parameters were kept the same (equal to those in
Figure 6.��). In both cases, the ensemble size averaged is �� (�� simulations
with different random initial conditions). Pearson correlation coef�cient for the
two �exibility time series is �.6� and for the two Pearson distances is �.�� (with
mean absolute error (MAE) of �.�� for both cases)

• Region 63: A6cvl, caudal ventrolateral area 6 from Precentral Gyrus

• Region 127: A7c, caudal area 7 from SPL from Superior Parietal Lobule

• Region 211: mAmyg, medial amygdala from Amygdala

Figure 6.12.B shows the weighted degree distribution of the DTI matrix. The
WM nodes fall mainly in the middle part of this histogram. If we sort the nodes
in the DTI matrix (light to heavy i.e., low weighted degree to hight weighted
degree) based on their weighted degrees, the following list of indices is achieved:

115, 117, 211, 212, 116, 119, 213, 118, 49, 238, 109, 120, 111, 114, 113, 110,
112, 187, 50, 42, 168, 188, 41, 214, 184, 174, 166, 69, 180, 195, 70, 165, 102, 47,
246, 179, 100, 96, 158, 172, 46, 183, 236, 167, 48, 242, 164, 62, 94, 92, 157, 61,
196, 171, 90, 78, 43, 231, 45, 122, 44, 40, 77, 234, 101, 232, 84, 124, 235, 215,
244, 237, 38, 37, 74, 72, 73, 189, 217, 34, 80, 163, 216, 52, 89, 98, 32, 108, 20,
153, 240, 30, 106, 51, 82, 39, 54, 105, 67, 19, 185, 76, 177, 33, 93, 147, 219, 28,
64, 103, 191, 31, 36, 228, 14, 154, 27, 245, 91, 11, 35, 173, 159, 148, 202, 146,
79, 83, 65, 133, 192, 123, 104, 16, 178, 156, 218, 197, 13, 190, 241, 155, 88, 160,
15, 18, 95, 200, 71, 170, 149, 127, 29, 86, 24, 4, 129, 23, 151, 63, 22, 125, 220,
97, 145, 198, 66, 68, 26, 25, 204, 206, 193, 12, 134, 130, 239, 139, 194, 186, 243,
144, 21, 121, 137, 58, 128, 99, 131, 53, 201, 75, 107, 233, 87, 209, 55, 9, 132, 81,
227, 210, 181, 207, 175, 150, 1, 59, 152, 142, 85, 203, 10, 205, 135, 126, 56, 222,
223, 162, 141, 17, 8, 136, 60, 140, 199, 6, 208, 226, 161, 138, 7, 169, 224, 176,
57, 3, 2, 143, 5, 182, 221, 225, 229, 230
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F����� 6.��.Node selection scenarios
A) Shape of square-wave time dependent input given to the 6 selected nodes. B)
Histogram of weighted degrees for all ��6 nodes in the DTI matrix. The dashed
line shows the median value of weighted degrees. C) Comparison between Pear-
son distance measure for the � simulation scenarios of Working Memory (WM),
Heavy, Middle and Light nodes being stimulated by �: (C ) . D) Comparison of tem-
plate �exibility time series for the � scenarios.

where the working memory (WM) regions are underlined. We test 3 sce-
narios:
1- Stimulating the least connected nodes (Light scenario)
2- Stimulating the middle connected nodes (Mid scenario)
3- Stimulating the most connected nodes (Heavy scenario)
These three artificially chosen groups of high, intermediate, and low degree
(marked heavy, mid, light, respectively, in Figure 6.12) are marked in boldface
on our above list.

The results of our 3 simulation scenarios together with the WM case are
presented in figure Figure 6.12 panels C and D. The FitzHugh-Nagumo u time
series for the three scenario are also shown in figures Figure 6.13, Figure 6.14
and Figure 6.15. The "Light" scenario shows a visibly weaker oscillatory pattern.
This was to be expected as the lightest nodes are not well connected to the rest
of the network and the input would not strongly affect the neighboring nodes
through the couplings. The "Mid" scenario, has the most similar pattern to
the WM area. Indeed, checking the distribution of WM nodes in the weighted
degree list, the "Mid" scenario is the closest to it. The most notable result of
this simulation is the "Heavy" scenario, when the input is given to the heavily
connected nodes, the symmetry between the blocks is broken and the start of 2-
back task is marked by deeper troughs and the bigger flexibility is observed for
the 2-back reconfiguration. In the empirical data, marginally higher flexibility
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was observed during the 2-back compared to 0-back blocks (t = 2.9, p = .03).
This might suggest that the working memory regions are empirically well-
connected but they are not the main weight hubs of the brain network.

F����� 6.��.Light scenario FHN timeseries
In the left column, u time series for three different nodes (from start or low
weighted degree (A), middle or intermediate weighted degree (B) and end or high
weighted degree (C) of the sorted weighted degree list) are shown when 6 nodes
with lightest weighted degrees (Light) are stimulated by �: (C ) . In the right column,
a �� seconds period with red borders is magni�ed.

6.4.3 Middle-peaks

Our observations in the empirical data was consistently showing one single
peak per block. Some researcher suggest that the middle of each block and the
dual condition windows (the windows that have half of their time-points in one
condition (e.g. 0-back) and the other half in the other condition (e.g. 2-back)
should each introduce one peak in the meso-scale reconfiguration of the brain
[BGS15] adding up to 2 peaks per block. There was no observation of double
peaks in any of our simulations.

We added an investigation of the effect of contrast size between 2 conditions
(reflected in c coefficient of �: ) on the number of extrema per block to observe
if the increased contrast between the two conditions will introduce a change in
the number of extrema in flexibility or Pearson measures (to more than one

t-value and p-value from statistical hypothesis testing
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F����� 6.��. Intermediate degree (Mid) scenario FHN time series D8 (C )
In the left column, u time series for three different nodes (from start or low
weighted degree (A), middle or intermediate weighted degree (B) and end or high
weighted degree (C) of the sorted weighted degree list) are shown when 6 nodes
with intermediate degree (Mid) are stimulated by �: (C ) . In the right column, a ��
seconds period with red borders is magni�ed.

maximum/minimum per condition). A set of simulations with different input
amplitude 2 were performed but no clear middle-peak was observed in the
range investigated. Figure 6.16 shows a part of the time series for 3 of the
investigated inputs. The smaller indents observed are not consistently present
in every case and can best be described with step-like decays leaning towards
one of the peaks (with the sliding windows moving to new intervals sometimes
causing a small indent) than a singular middle-peak. These simulations are
not sufficient for the rejection of middle-peaks in the reconfiguration of brain
modules hypothesis but they suggest no double peak per condition can be
observed with tuning the two blocks contrast in our approximations. Further
investigations can be designed with more complex input functions and wider
range of inputs.

6.5 CHAPTER SUMMARY AND FURTHER INVESTIGATION

Using a computational dynamical model a simplified simulated version of
flexibility was built in this chapter. This reconstruction allowed for a more
thorough examination of the impact of characteristics such as brain structure.
The connectivity structure of the brain network plays a significant role in the
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F����� 6.��.Heavy scenario FHN timeseries
In the left column, u time series for three different nodes (from start or low
weighted degree (A), middle or intermediate weighted degree (B) and end or high
weighted degree (C) of the sorted weighted degree list) are shown when 6 nodes
with highest weighted degrees (Heavy) are stimulated by �: (C ) . In the right col-
umn, a �� seconds period with red borders is magni�ed.

cooperation of brain areas and the execution of cognitive tasks. A random
reshuffling of network weights can result in the expected oscillatory behav-
ior no longer being observed anymore. Additionally, the regions stimulated
during the execution of a cognitive task influence the patterns. Changes in the
task-stimulated areas can result in distinct patterns being observed. If highly
interconnected nodes in the system are stimulated, the difference between task
blocks with and without input becomes more significant. In conclusion, the
observed flexibility pattern in the brain is the result of a complex interaction
between the connectivity structure of the brain and the activation of cogni-
tively relevant regions during the execution of each task. An extended study
of the flexibility measure capacity in classification of Schizophrenia patients
performing "theory of mind" task is in preparation by the author [Chi22] on the
basis of findings in chapter 4. Future research that follows a simulation phase
with tuning structural and functional elements of the model in accordance with
the available literature on schizophrenia aids in replicating and explaining the
greater variation in patients relative to the control group.
Despite the success in reconstructing the flexibility pattern, our model has
severe simplification and limitations. Part of this comes from the n-back task
nature. Although the n-back task is a well-studied manipulation of working-
memory, the task’s structure makes it difficult to differentiate the cognitive
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F����� 6.�6.Effect of contrast of input step function uponmiddle-peak of �exibility response
Three different �: input amplitude c simulations. Fluctuations are observed in the
�exibility pattern (calculated using the template �exibility method in chapter �)
but there is no consistent signi�cant middle-peak effect in the highlighted zones
[in the middle of two bigger peaks]. Ensemble size refers to number of runs with
different random initial conditions.

processes of working-memory maintenance from information manipulation
[Bra+15; Kri+05]. Our study was simplified by taking 0-back as the baseline
and associating input only with the 2-back condition blocks. Although this
follows the idea of task design (stimulating all elements of cognition in the
baseline condition except for the aspect being researched), it is a very rough
estimation of the cognitive process. Another limitation is the ability of a single
Fitzhugh-Nagumo oscillator to simulate each brain area as large as a few cubic
centimeters. The choice of region size has a substantial impact on our spatial
resolution. Therefore, we overlook the critical fine-scale diversity in the com-
plexity of human brain function.
Yet evenwith all simplifications and limitations, we believe that this simulations
sheds some light on the possibility of simulating brain reconfiguration and the
significance of brain structure in the reconfiguration process.
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Supplementary Online Material: The Python and Julia scripts for our
simulations together with some videos of the dynamical systems’ behavior are
accessible online here.
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CHAPTER 7

Conclusion

"There is no real ending. It’s just the place where you stop the story"

- FRANK HERBERT

This thesis was focused on a deeper investigation of meso-scale reconfig-
urations in human brain network extracted empirically from fMRI scans or
artificially from computer simulations. A simple schematic of the subprojects
in this thesis is shown in figure Figure 7.1

Chapter 1, gave a quick overviewof essential concepts to the reader. Graphs,
their adjacency matrices, weights, and representations were introduced in
that chapter. A few different imaging techniques were briefly discussed the
procedures used to gather themwerementioned. The broadmethod to building
a network based on brain data was explained. The scales often used to study
brain networks were discussed. The terms "functional" and "structural" brain
networks were clarified and finally a few measures to investigate networks
were introduced. The final sections were dedicated to the advantages of brain
simulations to equip the reader with basic ideas behind this work.

The second chapter revisited brain flexibility as a meso-scale dynamical
measure of brain network performance. This measure focuses on how the
groups/clusters/modules formed by nodes in a network change over time as a
result of gaining or losing members. The standard variation of this measure in
the literature is based on heuristic algorithms like Louvain, the clusters that
result from running the algorithm on the same adjacency matrix may differ
each time. As a result, brain modules demonstrate diversity within and between
people. This can be solved by running the algorithm as many times as we obtain
a consensus on themodular structure. Nevertheless, it can be a computationally
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intensive procedure, and the found modules may have little biological plausi-
bility or cannot be interpreted easily. Our motivation to propose our novel
"template/a-priori flexibility" measure in chapter 2 was to improve three main
aspects: i) Reducing computation time by not needing a consensus for each
matrix. ii) Improving replicability with keeping the same template in different
subjects and samples. iii) Allowing researchers to select the most appropriate or
biologically relevantmodule templates for each study. In ourmethod, an apriori
set of modules is adopted based on our knowledge of human brain [consider an
example of all countries in the world map with people being nodes of a network
located on this map]. At the first level, every node is assigned an a-priori affili-
ation [in our map example, every human being can be assigned a nationality
based on their location]. On the second level, the correlation of time series from
pair of brain nodes is regarded as a layer of information that can change the
affiliation of that node, if the heaviest normalized sum of connections between
a node and members of another module is stronger than the a-priori module
of that node, the node is re-tagged as a member of the new dominant module
[in our country example, imagine we check each individual’s social media and
if their number of friends in a country other than the one they are located in
(normalized by the size of different countries) is bigger than their pre-assumed
country, we assign them a new nationality based on the dominant nationality
of their friends]. With this process, we find a deformed list of affiliations for
nodes in each matrix or window of time. We then count the number of nodes
that changed their affiliations between two consecutive windows [relative to
all nodes] and interpret it as a measure of network flexibility [in our country
exmaple, this measure can be an indicative of international mobility].
The study of flexibility gives us the opportunity to observe how the perfor-
mance of a cognitively demanding task effects the structure and cooperation in
the brain. Flexibility, with its broader definition of nodes reconfiguring in the
brain as a result of function, has been found to associate with executive func-
tion [Bra+15], mentalization [Chi22], mood, fatigue and novelty of experience
[Bet+16], aging [Bet+15] and learning [SB16].

Like all the proposed solutions to measure brain flexibility, there are limi-
tations to our proposed method. The feasibility of modules depends heavily
on the meaningful choice of a-priori modules. The reliability of normalization
to the size of modules is reduced if the a-priori modules vary in size signifi-
cantly. Our modules are separated by hard clustering, meaning a node can only
belong to one single group, this can in turn result in overlooking the finer pat-
terns of affiliation specially if a node has close to uniform weighted connection
distribution to different modules.

Finally, we argue that our proposed a-priori method merits consideration
due to its computational efficiency and promotion of replicability across dif-
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F����� �.�. Overview of subprojects collected in this thesis
The � projects and their datasets are shown above. After developing the method
and testing it on healthy control data, we implemented the techniques for the
study of patients data. Finally, a �rst attempt to simulate the �exibility pattern as
seen in the empirical data using a simpli�ed model was made.

ferent samples and studies via the use of physiologically plausible template
modules. We believe that the method can be a viable option for researchers
wishing to examine dynamical reconfiguration at varying scales of the brain,
including nodes, modules, and the whole brain.

In chapter 3, we apply the flexibility method developed in chapter 2 [orig-
inally developed and tested on a sample of 120 fMRI recordings from both
healthy controls and patients before theOHBM (Organization forHumanBrain
Mapping) conference in 2019 where the initial poster of the idea was presented]
to an fMRI dataset of 331 healthy subjects. The fMRI scans were acquired dur-
ing the performance of the n-back working memory task, which was designed
with alternating blocks of 2-back and 0-back. The reason to choose this dataset
was the previous study by Braun et al [Bra+15] on it (we in fact only included 331
of their 344 patients. Thirteen subjects were excluded due to insufficient image
quality, scanning artefacts or exceeding movement). Their study included an
extensive Louvain-based flexibility analysis that could be used as a comparison
basis for our investigation. We demonstrate that our method is capable of
identifying a pattern of flexibility during the N-back working memory task
that is highly similar to that found in Beaun et al [Bra+15]. The prefrontal
cortex has a crucial role in the execution of working-memory tasks, as has been
extensively demonstrated in the literature [BGS15; Cao+14; Min+15; Owe+05].
Thus, it is not unexpected that nodes in the prefrontal cortex demonstrated
the most flexible behaviour during N-back task performance. Besides that, at
the modular level, the most adaptable nodes are those with an a-prori affilia-
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tion to the DMN, SN, L/RECN, and language modules. When fronto-parietal
networks, such as the L/RECN, are more active during cognitively demanding
tasks (such as the N-back), the DMN is less active [Fox+05]. Finally, the SN
has a crucial role in allocating brain resources between more internally (DMN)
and outwardly (ECN) focused functions [Udd+11]. We regard these findings as
evidences that our flexibility method is able to capture reasonable aspects of
the cognitive function. At this point, a curious mind might ask if this patterns
of flexibility could be a basis for distinguishing patients from controls. With
this in mind, we moved to the fourth chapter of this thesis.

Chapter 4 extended the use of flexibility-basedmeasurements to patients, af-
ter having been tested on healthy participants in Chapter 3. The brain template
flexibility of 64 schizophrenia patients and 64 healthy controls was compared
on the three [topological axis] scales of nodes, modules, and whole-brain dur-
ing the performance of a "Theory of Mind" task. Schizophrenia patients and
healthy controls have significantly different variance and range in their whole
brain flexibility time series [no significantly different mean]. Subjects in the
schizophrenia group are more likely to have aberrant changes in whole brain
flexibility at non-task-related intervals.
According to our investigation on module population dynamics, the Auditory,
High Visual, LECN, sensorimotor, vDMN, and the 15th non-tagged module
exhibit significantly different behaviors between the two groups. On the mod-
ule population time series, the differences are observed using three measures
(average, variance, and range). In resting state fMRI studies of schizophrenia
patients, abnormalities in the DMN and Executive Control Networks have
been extensively reported [CEP09; Sal+10; Lit+15]. Our findings suggest that
the differences in DMN and ECN behavior extend to mentalizing tasks.
In schizophrenia patients, there is an overall decrease in give/take [of member
nodes] changes associated with the task time-pattern of 30s. This is consistent
with the lower contrast observed in several studies between ToM and control
conditions. This difference can be explained by hypomentalization during
ToM or hypermentalization during the control condition [Abu99; Fri04; LB08;
Cia+15]. The findings suggest that the schizophrenic brain distinguishes less
between TOM and control stimuli than the healthy brain, regardless of whether
this difference is caused by hyper- or hypo-mentalizing.
Furthermore, some give/take measures show a distinct trend between the two
groups. In the control group, Module 2 [Auditory] and Module 5 [High Vi-
sual] are dominant giver modules, whereas in the schizophrenia patients, they
are stronger takers. This implies that these modules are receiving reinforce-
ment from other modules and expanding at the task-block frequency. Several
schizophrenia studies suggest that deficits in sensory processing and perception



CHAP 7. CONCLUSION J 91

are the root causes of dysfunction in higher cognitive levels in patients suffer-
ing from schizophrenia [Jav09b; Jav09a; JS15; Bor+18]. The different trends
observed by our method in the auditory, visual, and sensorimotor modules
could be interpreted as another hint towards schizophrenia perception-related
abnormalities.
Finally, feeding the measures from the three scales of flexibility study to a sim-
ple GLM classifier, an average accuracy of 0.74 was achieved. This means that
the flexibility measures increase the chance of classifying patients and controls
in their correct corresponding groups to a significant degree.

Mini-chapter 5 was a brief report on the results of a group of our collabora-
tors who explored the impact of suicidality on the brain network utilizing our
template flexibility method as a tool. The author of this thesis was responsible
for implementing the method on their data set. The fundamental difference
between this application and our Schizophrenia chapter is that the data in the
study desinged by Dickhoff et al was resting state fMRI. A resting state scan
means that the subjects lay inside the scanner without being asked to perform a
specific cognitive task. Methods based on the reconfigurations therefore might
fail in capturing significant differences without synchronized instructed task
being performed by the participants. Two major comparisons were performed
in that study. One comparison was between participants with and without a
history of suicide attempt. The other between participants with and without
suicidal ideation. In the comparison of suicidal ideation vs no suicidal ideation,
the two groups differed in accumulated whole-brain flexibility (i.e., the total
change of network connections across time for all 246 nodes) (F(1,81)= 5.33,
p=.02, [2 = .062). In the other comparison, only on the module level, the right
central executive network (RECN) demonstrated a small difference between
suicide attempt and no attempt (F(1,81)=.388, p=.05, [2=.046), indicating that
this network expanded and contracted more in those who attempted suicide.

In the sixth chapter, a simplified oscillator model in physics was used to
replicate the flexibility pattern found in the N-back empirical data. This simula-
tion was built on an averaged empirical brain structural network based on DTI
data, the nodes showed a dynamics following a form of the FitzHughNagumo
(FHN) oscillator equations. Six nodes that associate with working memory
were given a square-wave input in the blocks resembling 2-back. The output
from FHN oscillators was then fed to the Balloon model in order to generate
fMRI-like signals. Although this simulation was an extremely simplified first
attempt to regenerate the flexibility pattern, the results were showing some
potentials for further research. The simulated reconstruction allows for a more
in-depth evaluation of the effects of factors such as brain structure. The net-
work structure of the brain has a substantial impact on the collaboration of
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brain regions and the performance of cognitive tasks. This network did not
exhibit the expected oscillating flexibility behavior when it underwent ran-
dom reshuffling. Moreover, the patterns were influenced by the selection of
regions that were stimulated during the execution of our artificial cognitive
task. Changes in the task-activated regions could result in the observation
of significantly different patterns. When the heaviest (in terms of weighted
connections) nodes of the network were receiving the square-wave input, the
start of 0-back and 2-back blocks were not showing the considerably similar
peak heights they showed in middle and light nodes stimulation scenarios.
We can carefully conclude that the observed pattern of brain flexibility is the
consequence of a complex interaction between the structure of the brain and
the activation of cognitively important regions during the performance of each
task though further more accurate simulations with more details are always
needed to have a better chance of uncovering the exact mechanism behind the
complex brain behaviour.

Anyway, we still need a Hari Seldon of the twenty-first century Earth to
mathematically prove that the complexity of the human brain can be captured
by things less complex than the human brain.

"Well then, we know that some comparatively simple things are easy to
simulate and as things grow more and more complex they become harder to
simulate until finally they become impossible to simulate. But at what level of
complexity does simulation cease to be possible? Well, what I have shown,

making use of a mathematical technique first invented in this past century and
barely usable even if one employs a large and very fast computer, our Galactic
society falls short of that mark. It can be represented by a simulation simpler
than itself. And I went on to show that this would result in the ability to

predict future events in a statistical fashion-that is, by stating the probability
for alternate sets of events, rather than flatly predicting that one set will take

place."⇤

* From "Prelude to Foundation" by Isaac Asimov. Conversation between Hari Seldon, the mathematician
and Hummin, the reporter.
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Lobe Gyrus Label ID.L Label ID.R
� � A8m, medial area 8
� � A8dl, dorsolateral area 8
� 6 A�l, lateral area �
� 8 A6dl, dorsolateral area 6
� �� A6m, medial area 6
�� �� A�m,medial area �

SFG, Superior Frontal Gyrus

�� �� A��m, medial area ��
�� �6 A�/�6d, dorsal area �/�6
�� �8 IFJ, inferior frontal junction
�� �� A�6, area �6
�� �� A�/�6v, ventral area �/�6
�� �� A8vl, ventrolateral area 8
�� �6 A6vl, ventrolateral area 6

MFG, Middle Frontal Gyrus

�� �8 A��l, lateral area��
�� �� A��d,dorsal area ��
�� �� IFS, inferior frontal sulcus
�� �� A��c, caudal area ��
�� �6 A��r, rostral area ��
�� �8 A��op, opercular area ��

IFG, Inferior Frontal Gyrus

�� �� A��v, ventral area ��
�� �� A��m, medial area ��
�� �� A��/��o, orbital area ��/��
�� �6 A��l, lateral area ��
�� �8 A��m, medial area ��
�� �� A��, area ��

OrG, Orbital Gyrus

�� �� A��/��l, lateral area ��/��
�� �� A�hf, area �(head and face region)
�� �6 A6cdl, caudal dorsolateral area 6
�� �8 A�ul, area �(upper limb region)
�� 6� A�t, area �(trunk region)
6� 6� A�tl, area �(tongue and larynx region)

PrG, Precentral Gyrus

6� 6� A6cvl, caudal ventrolateral area 6
6� 66 A�/�/�ll, area�/�/� (lower limb region)

Frontal Lobe

PCL, Paracentral Lobule 6� 68 A�ll, area �, (lower limb region)
6� �� A�8m, medial area �8
�� �� A��/��, area ��/��
�� �� TE�.� and TE�.�
�� �6 A��c, caudal area ��
�� �8 A�8l, lateral area �8

STG, Superior Temporal Gyrus

�� 8� A��r, rostral area ��
8� 8� A��c, caudal area ��
8� 8� A��r, rostral area ��
8� 86 A��dl, dorsolateral area��MTG, Middle Temporal Gyrus

8� 88 aSTS, anterior superior temporal sulcus
8� �� A��iv, intermediate ventral area ��
�� �� A��elv, extreme lateroventral area��
�� �� A��r, rostral area ��
�� �6 A��il, intermediate lateral area ��
�� �8 A��vl, ventrolateral area ��
�� ��� A��cl, caudolateral of area ��

ITG, Inferior Temporal Gyrus

��� ��� A��cv, caudoventral of area ��
��� ��� A��rv, rostroventral area ��
��� ��6 A��mv, medioventral area��FuG, Fusiform Gyrus
��� ��8 A��lv, lateroventral area��
��� ��� A��/�6r, rostral area ��/�6
��� ��� A��/�6c, caudal area ��/�6
��� ��� TL, area TL (lateral PPHC, posterior parahippocampal gyrus)
��� ��6 A�8/��, area �8/�� (EC, entorhinal cortex)
��� ��8 TI, area TI(temporal agranular insular cortex)

PhG, Parahippocampal Gyrus

��� ��� TH, area TH (medial PPHC)
��� ��� rpSTS, rostroposterior superior temporal sulcus

Temporal Lobe

pSTS, posterior Superior Temporal Sulcus ��� ��� cpSTS, caudoposterior superior temporal sulcus
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��� ��6 A�r, rostral area �
��� ��8 A�c, caudal area �
��� ��� A�l, lateral area �
��� ��� A�pc, postcentral area �

SPL, Superior Parietal Lobule

��� ��� A�ip, intraparietal area �(hIP�)
��� ��6 A��c, caudal area ��(PGp)
��� ��8 A��rd, rostrodorsal area ��(Hip�)
��� ��� A��rd, rostrodorsal area ��(PFt)
��� ��� A��c, caudal area ��(PFm)
��� ��� A��rv, rostroventral area ��(PGa)

IPL, Inferior Parietal Lobule

��� ��6 A��rv, rostroventral area ��(PFop)
��� ��8 A�m, medial area �(PEp)
��� ��� A�m, medial area �(PEm)
��� ��� dmPOS, dorsomedial parietooccipital sulcus(PEr)Pcun, Precuneus

��� ��� A��, area �� (Lc�)
��� ��6 A�/�/�ulhf, area �/�/�(upper limb, head and face region)
��� ��8 A�/�/�tonIa, area �/�/�(tongue and larynx region)
��� �6� A�, area �

Parietal Lobe

PoG, Postcentral Gyrus

�6� �6� A�/�/�tru, area�/�/�(trunk region)
�6� �6� G, hypergranular insula
�6� �66 vIa, ventral agranular insula
�6� �68 dIa, dorsal agranular insula
�6� ��� vId/vIg, ventral dysgranular and granular insula
��� ��� dIg, dorsal granular insula

Insular Lobe INS, Insular Gyrus

��� ��� dId, dorsal dysgranular insula
��� ��6 A��d, dorsal area ��
��� ��8 A��rv, rostroventral area ��
��� �8� A��p, pregenual area ��
�8� �8� A��v, ventral area ��
�8� �8� A��cd, caudodorsal area ��
�8� �86 A��c, caudal area ��

Limbic Lobe CG, Cingulate Gyrus

�8� �88 A��sg, subgenual area ��
�8� ��� cLinG, caudal lingual gyrus
��� ��� rCunG, rostral cuneus gyrus
��� ��� cCunG, caudal cuneus gyrus
��� ��6 rLinG, rostral lingual gyrus

MVOcC, MedioVentral Occipital Cortex

��� ��8 vmPOS,ventromedial parietooccipital sulcus
��� ��� mOccG, middle occipital gyrus
��� ��� V�/MT+, area V�/MT+
��� ��� OPC, occipital polar cortex
��� ��6 iOccG, inferior occipital gyrus
��� ��8 msOccG, medial superior occipital gyrus

Occipital Lobe

LOcC, lateral Occipital Cortex

��� ��� lsOccG, lateral superior occipital gyrus
��� ��� mAmyg, medial amygdalaAmyg, Amygdala ��� ��� lAmyg, lateral amygdala
��� ��6 rHipp, rostral hippocampusHipp, Hippocampus ��� ��8 cHipp, caudal hippocampus
��� ��� vCa, ventral caudate
��� ��� GP, globus pallidus
��� ��� NAC, nucleus accumbens
��� ��6 vmPu, ventromedial putamen
��� ��8 dCa, dorsal caudate

Subcortical Nuclei

BG, Basal Ganglia

��� ��� dlPu, dorsolateral putamen
��� ��� mPFtha, medial pre-frontal thalamus
��� ��� mPMtha, pre-motor thalamus
��� ��6 Stha, sensory thalamus
��� ��8 rTtha, rostral temporal thalamus
��� ��� PPtha, posterior parietal thalamus
��� ��� Otha, occipital thalamus
��� ��� cTtha, caudal temporal thalamus

Tha, Thalamus

��� ��6 lPFtha, lateral pre-frontal thalamus



110 I APPENDIX A SUPPLEMENTARY INFORMATION

F����� S�. Chapter 6: Fitzhugh-Nagumo and Balloon models outputs
An example plot for the outputs of FHN and Balloon models for a region at the
start of the sorted list of weighted connections a for the � cases; Top: f = 0 and
no square-wave input to any region. Middle: f = 1.8 and no square-wave input to
any region. Bottom: f = 1.8 and square-wave input of �: (C ) = �3(2 b5 C c)� b25 C c))
given to the 6 selected working memory regions.

aRegion 115 from Brainnetome
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F����� S�. Chapter 6: Fitzhugh-Nagumo and Balloon models outputs
An example plot for the outputs of FHN and Balloon models for a region at the
end of the sorted list of weighted connections a for the � cases; Top: f = 0 and
no square-wave input to any region. Middle: f = 1.8 and no square-wave input to
any region. Bottom: f = 1.8 and square-wave input of �: (C ) = �3(2 b5 C c)� b25 C c))
given to the 6 selected working memory regions.

aRegion 230 from Brainnetome
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F����� S�. Chapter 6: Fitzhugh-Nagumo and Balloon models outputs
An example plot for the outputs of FHN and Balloon models for a region which
is receiving the input �: directly a for the � cases; Top: f = 0 and no square-wave
input to any region. Middle: f = 1.8 and no square-wave input to any region.
Bottom: f = 1.8 and square-wave input of �: (C ) = �3(2 b5 C c) � b25 C c)) given to
the 6 selected working memory regions.

aRegion 63 from Brainnetome
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