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Abstract

This thesis discusses the influence of vibrations in dynamic systems with dry friction.
Force locked connections such as screws, bolts and interference fits are in practice often
subject to external vibrations. This may lead to an incremental slip of the contact
interface and failure of the connection, even if the tangential force is insufficient to
cause complete sliding. Vibrations also affect systems with gross sliding such as brakes,
clutches and joints. Their frictional resistance strongly depends on system dynamics and
its corresponding variables such as mass, velocity and stiffness.

As a generic model for a force locked connections under the influence of vibrations, the so
called oscillating rolling contact is introduced. It consists of a tangentially loaded contact
between two bodies, where the upper body follows an oscillating rocking motion. For
the analysis the well-known Method of Dimensionality Reduction (MDR) is used and
three-dimensional simulations are performed. In addition, an experimental rig is used
for comparison. The results show that the oscillatory rolling influences the pressure
distribution and the contact region. Together with the tangential load, this rocking
motion causes incremental sliding processes and a macroscopic rigid body motion. In case
that the rolling amplitude is sufficiently small, the slip ceases after the first few periods.
The residual force in the contact withstands the tangential load and the system reaches a
new equilibrium: a so called shakedown occurs. Otherwise a continuing macroscopic rigid
body motion is induced where one side of the contact alternately sticks, while the other
slips. This effect is referred to as ratcheting. Using the MDR analytical failure criteria,
i.e. the so called shakedown limits, are derived as a function of the rolling amplitude
and the tangential load. These are in very good agreement with the experimental results
and the three-dimensional simulations. Furthermore, the incremental shift per period in
case of ratcheting is determined.

In order to examine the influence of system dynamics on sliding friction, the micro-
walking machine is introduced as a model. It consists of a rigid body with a number
of elastic contact spots that is pulled by a constantly moving base. In addition to an
experimental rig, numerical integration and an extensive parameter study are used for
the analysis. The results show that the frictional resistance almost vanishes if a certain
parameter range is met. If so, self-excited oscillations occur that lead to a particular
dynamic mode where the motion is characterized by a strong correlation between low or
even zero normal forces and a fast forward motion. This effect is referred to as micro-
walking and leads to a theoretical reduction of the frictional resistance of up to 98 %.
These results are confirmed by the experiments where the maximal reduction is 73 %.
Following the analysis and identification of the relevant parameter ranges for all of the
three effects, their occurrence in technical systems discussed. In addition guidelines are
given for possible technical applications.
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Kurzzusammenfassung

Diese Arbeit beschreibt den Einfluss von Vibrationen in dynamischen Systemen mit
trockener Reibung. Kraftschliissige Verbindungen wie Schrauben, Bolzen und Press-
passungen sind in der Praxis hdufig externen Vibrationen ausgesetzt. Dies kann zu
einem inkrementellen Schlupf in der Kontaktfliche und einem Versagen der Verbindung
fiihren, auch wenn die Tangentialkraft nicht ausreicht, vollstindiges Gleiten zu erzeu-
gen. Vibrationen beeinflussen ebenso das Verhalten von Systemen, in denen komplettes
Gleiten auftritt. Beispiele hierfiir sind Bremsen, Kupplungen und Gelenke. Deren Reib-
widerstand hédngt stark von der Systemdynamik und den Einflussgrofien wie Masse,
Geschwindigkeit oder Steifigkeit ab.

Als allgemeines Modell einer kraftschliissigen Verbindung unter dem Einfluss von Vibra-
tionen dient der sogenannte oszillierende Rollkontakt. Dieser besteht aus einem tangen-
tial belasteten Kontakt zweier Korper, wobei der obere eine oszillierende Wipp-Bewegung
ausfithrt. Fiir die Analyse werden die Methode der Dimensionsreduktion (MDR) ver-
wendet und dreidimensionale Simulationen durchgefiihrt. Ein Versuchsstand dient zur
Verifikation. Es zeigt sich, dass das oszillierende Rollen die Druckverteilung und die
Kontaktfliche variiert. Zusammen mit der tangentialen Belastung erzeugt dies ein inkre-
mentelles Gleiten und eine makroskopische Starrkérperbewegung. Im Falle einer ausrei-
chend kleinen Rollamplitude stoppt das Gleiten nach einigen Perioden. Die Restkraft
im Kontakt widersteht der tangentialen Belastung und das System erreicht einen neuen
Gleichgewichtszustand: ein sogenannter Shakedown tritt auf. Andernfalls wird eine fort-
gesetzte Starrkorperbewegung induziert, bei der abwechselnd eine Seite des Kontaktes
haftet, wahrend die andere gleitet. Dies wird als Ratcheting bezeichnet. Mit Hilfe der
MDR werden Versagenskriterien als Funktion der Rollamplitude und der Tangentialkraft
hergeleitet. Diese sogenannten Shakedown-Grenzen stimmen sehr gut mit den experi-
mentellen Ergebnissen und den dreidimensionalen Simulationen {iberein. Zuséatzlich wird
fiir den Fall des Ratcheting die inkrementelle Verschiebung bestimmt.

Zur Untersuchung des Einflusses der Systemdynamik auf die Gleitreibung dient die
sogenannte Mikro-Laufmaschine. Diese besteht aus einem starren Korper mit einer
Anzahl von elastischen Kontaktstellen, der von einem konstant bewegten Fuflpunkt
gezogen wird. Neben einem Versuchsstand werden zur Analyse numerische Integration
und umfangreichen Parameterstudien verwendet. Die Ergebnisse zeigen, dass der Rei-
bungswiderstand fast verschwindet, wenn ein bestimmter Parameterbereich eingestellt
wird. Es treten selbsterregte Schwingungen auf, die zu einem charakteristischen dy-
namischen Modus fithren. Die Bewegung ist durch eine starke Korrelation zwischen
niedrigen oder verschwindenden Normalkriften und einer schnellen Vorwérts-Bewegung
gekennzeichnet. Dieses sogenannte Micro- Walking fithrt zu einer theoretischen maxi-
malen Reduzierung des Reibungswiderstandes von bis zu 98 %. Dies konnte experi-
mentell bestatigt werden, wobei die maximale Reduktion im Experiment bei 73 % lag.

Nach der Analyse und der Identifizierung der relevanten Parameterbereiche fiir alle drei
Effekte wird ihr Vorkommen in technischen Systemen diskutiert. Dariiber hinaus werden
Leitlinien fiir mogliche technische Anwendungen gegeben.
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symbol unit  parameter
a m contact radius
a; - factor value ¢ in DoE method
A, m? cross sectional area of spring rod
A. m? contact area
Asiip m?2 slip area
b m slip radius
b; - factor value 7 in DoE method
c m stick radius
Cs ms~!  speed of sound
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d m indentation depth
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D, m contact length
E Nm~=2 Young’s modulus
E* Nm~2 effective Young’s modulus
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symbol  unit  parameter

Frmax N maximum holding force
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g ms~2? gravitational acceleration
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p(z) Nm™2 pressure distribution
Po Nm~2 maximal pressure
Po1—12 1 coefficients of polynomial fit function
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symbol unit parameter
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S m  coordinate of spring position in MDR model
SM 1 stiffness parameter in the model of Martins et al.
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t 1 dimensionless time
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T s, 1 time of observation
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U 1 normalized displacement
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Ugd 1 normalized shakedown displacement
Ustat 1 normalized static displacement
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Chapter 1

Introduction

Frictional resistance is a crucial parameter in various technical, seismological and even
biological systems. The core problem can be broken down to the frictional interaction of
two bodies as depicted in Fig. 1.1 (a) that is often modelled using the so called Coulomb’s
law of dry friction. This model goes back to the works of Amontons [1] and Coulomb [2]
and gives a proportional relation between the normal load F and the tangential load
Fr of the contact.

| F i

s Hk > Fr

i L e
y T y x ’
(a) macroscopic system (b) microscopic contacts

Fig. 1.1: frictional contact of two bodies loaded in the normal and tangential direction
with Fiy and Frr. (a) macroscopic system. (b) free body diagram with microscopic contacts

However, one distinguishes two cases. If Fp falls below the maximum holding force
Fr maz the system remains at rest:
FT S FT,max = MSFN . (101)

This refers to the state of stick. Otherwise a relative movement of the two bodies
occurs, where each of the two is subjected to the resistance force Fr which is caused by
dissipative processes in the contact:

FR = ,u,kFN . (102)

This refers to the state of slip, where the resistance force acts in the opposite direction
of the slip direction. The two constants of proportionality denote the so called static
(1s) and dynamic (ug) coefficient of friction. One explanation for the proportionality
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of Coulomb’s law lies in the contact properties of rough surfaces. According to the
theory by Bowden and Tabor [3] rough surfaces consist of numerous small hills named
asperities. Thus, the two bodies only touch in a few contact spots where, in case of dry
metals, cold-weld junctions are formed. Assuming that the number of contact spots is
proportional to the normal load, the coefficient of friction equals the ratio of the traction
necessary to shear the cold-weld junctions and the penetration hardness. This explains
also why experimentally, the static coefficient us often exceeds the kinetic one py since
the metallic junctions become stronger after the surfaces have been in static contact for
some time [4]. The coefficients are determined experimentally and are classified for a
large number of combinations of contacting materials. This often leads to the widespread
misconception of Coulomb’s law of dry friction according to which the coefficients of
friction are true constants that only depend on intrinsic properties of the materials in
contact [5]. In fact they depend on small scale effects in the contact and are influenced
by a various time and environmental conditions for both lubricated and dry contacts'
[3]. In particular, the material combination, the contact geometry, chemical reactions,
the temperature and the normal force itself all play an important role [5]. The static
coefficient is also affected by the history of the contact, as evidenced by the fact that
it increases with time [4, 7]. Furthermore, the kinetic coefficient is strongly affected by
dynamic influences as sliding velocity [8] and vibrations [9]. This is a particular problem
as it affects every measurement apparatus, i.e. tribometer, that is used for determination
of the coefficients. On the one hand, this limits the value of tabulated coefficients as
the influence of the tribometer used in the experiment remains vague. On the other
hand, this is a possible explanation for difficulties on the reproducibility of measurement
of coefficients that are determined with different tribometers under otherwise similar
conditions [10].

In order to illustrate the basic underlying mechanism that is responsible for the influence
of the systems motion, i.e. the system dynamics, one can consider a microscopic model
of dry friction with only one constant coefficient p. This coefficient is intended to reflect
all microscopic influences on the surface that depend on the material pairing. Regardless
whether the system consists of one single contact or numerous contact zones as in rough
surfaces, the contact loads will occur as a stress distribution on the real contact area
A.. One distinguishes the pressure p (z,y), which is the stress that acts perpendicular
to the tangent of the contact surface, and the traction 7 (x,y), which acts parallel to the
tangent, as shown in Fig. 1.1 (b). Thus, the microscopic equivalent to Coulomb’s law
states that a particle at the contact surface at position (z,y) is at rest as long as:

7(2,Y) < Trnaz = pp (2,Y) (1.0.3)

and starts to slip as soon as this so called traction bound, i.e. the local maximal tan-
gential load, is exceeded. In this case, the particle is subjected to a resistance traction:

Tr (2, y) = pp (z,y) . (1.0.4)

Tt should be emphasized that Coulomb was already fully aware of these many influences and also
presented a lot of experimental work on this subject as shown in the article of Popova and Popov [6].
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For real static systems or stationary dynamic systems with constant relative velocity
between the two contacting bodies, the microscopic criteria (1.0.3) and (1.0.4) would
not imply any difference to the macroscopic criteria (1.0.1) and (1.0.2), except for the
constant p. However, the case is different if one considers a pressure distribution p (x, y, t)
that varies in time. The particles on the surface will start to slip whenever the traction
bound (1.0.3) is exceeded. Assuming that adjacent contact zones are sufficiently far
away from one another they could be regarded as being independent. This gives the
possibility that some of them are in a state of stick (stick zones) while others are in a
state of slip (slip zones). This applies even under the assumption that the macroscopic
tangential force does not exceed the maximal tangential load at any time:

Fr(t) = / 7 ()AA < pFy (t) V. (1.0.5)
In case that slip occurs successively in all the contact zones it would consequently accu-
mulate to a continued rigid body motion even if assumption (1.0.5) is never violated. For
instance, one can consider an elastic substrate and a rigid block that is constantly loaded
as in Fig. 1.2 (a). A slight oscillatory rotation will lead to a time varying pressure such
that slip alternately occurs on one side while the other side sticks as shown in Fig. 1.2
(b). Thus within every period the system will move an incremental step AU to the right
as shown in Fig. 1.2 (c¢). The micro-slip induces a rigid body motion. However, this
scenario also requires that the slip is always directed in the same direction, otherwise no
net rigid body motion would occur.

| Eiv &y
* " @* @—
58 5y
slip stick stick”™ slip
(a) rigid block (b) alternating slip (c) motion

Fig. 1.2: (a) constantly loaded rigid block on elastic substrate. (b) oscillatory rotation
leads to varying slip and stick zones. (¢) micro-slip causes rigid body motion AU

Considering mechanical systems with friction this introductory example raises several
issues. Firstly, micro-slip can lead to failure of nominally static systems. By this,
one means the effect that micro-slip can cause relative motion of technical components
that should actually not move according to the macroscopic criterion (1.0.1). Secondly,
micro-slip can explain the dynamic influence on the frictional resistance of systems with
gross slip. This describes the effect that a macroscopic motion that appears as smooth
sliding can in fact be superposed by microscopic vibrations in the contact zone. These
vibrations might reduce the frictional resistance of the overall system such that it is
actually lower than estimated considering the macroscopic criterion (1.0.2).
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1.1 State of Scientific Research

In the following section some important works will be introduced that serve as the
starting point for the following analysis. A more or less arbitrary classification into
nominally static and dynamic systems is chosen, although such a strong distinction does
not exist. Here, nominally static refers to systems in which no gross sliding and thus
no relative motion of components is initially expected. Dynamic refers to the opposite,
those systems in which gross sliding and relative motion is expected to occur.

1.1.1 Nominally Static Systems

Force locked connections are found in various technical systems. These nominally static
frictional contacts? are crucial for the generation of solid detachable and non-detachable
connections between technical components. Examples include bolted connections [11,
12], machining fixtures [13], interference fits [14] or dovetail connections on the hub of
fan-blades [15]. The tangential load capacity of these systems is primarily determined by
the macroscopic normal load Fy and the coefficient of friction . According to Coulomb’s
law of dry friction such a connection holds as long as the macroscopic tangential load Frp
falls below the maximum holding force Fr 4, of equation (1.0.1). Due to vibrations, the
macroscopic loads often either consist of a significant static part superposed by small
oscillations, or the overall loads are constant and there occur only oscillations of the
stress distribution. For example, in the dovetail connections of turbine blades the radial
centrifugal force pulls the dovetail into the socket while there is a superimposed vibration
in the plane of the fan. These scenarios can lead to a periodic incremental slip U (x,y) of
the particles in the interface, even if Frr is far below Fr 4z, i.e. appears insufficient to
cause complete sliding [16]. Possible consequences of this are micro-slip [17] and fretting
fatigue [18, 19] of the relevant components.

Frictional Shakedown Churchmann and Hills [20] and Antoni et al. [21] showed
that under certain conditions, it happens that the interface slip ceases after the first few
oscillation periods. This is the case, if the initial displacement of particles generates a
residual force in the interface, which is sufficiently strong to prevent any further slip.
Subsequently, the entire contact will finally remain in a state of stick even if the oscillation
is continued. Due to the strong analogy to the shakedown state in solid mechanics, in
which the deformed bodies only show plastic strain in the first few loading cycles and
pure elastic response afterwards [22], this effect is referred to as frictional shakedown
[23]. Consequently, Klarbring et al. transferred the well-known Melan theorem for
plastic shakedown [24] to both discrete [25] and continuous systems [26] with Coulomb
friction and incomplete contact, i.e. systems in which the contact area does not change
during the loading cycle. The shakedown theorem states that if there exists a safe
shakedown displacement of particles in the interface U (x,y) for which the whole system
is in a state of stick, then the actual slip displacement U (x,y) will monotonically reach

2This refers to connections that are intended to hold.
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U (x,y) for all (z,y) € A.. Thus, a system that is subjected to an oscillating load, will
shakedown and monotonically reach a safe shakedown displacement, i.e. an equilibrium
state without any slip and dissipation, even if the oscillation is continued. One important
requirement for this is an uncoupled system, meaning that tangential displacements in
the interface do not influence the pressure and vice versa. However, in case of coupled
two dimensional discrete systems, shakedown is also possible, if the friction coeflicient in
each node is less than a critical value, which depends on the coupling between adjacent
nodes [25].

Ratcheting In case that the system exceeds the shakedown limits, i.e. the prereq-
uisites for a safe shakedown to occur, the micro-slip continues and the system exhibits
steady state slip. One possible scenario is that the micro-slip occurs in different con-
tact areas for each loading cycle. In turn, the accumulation over all the cycles leads
to a rigid body motion. This case is referred to as ratcheting due to the similarity to
plasticity, where ratcheting specifies an accumulating deformation that usually leads to
plastic collapse of the system [22, 23]. Antoni et al. stated that ratcheting can lead
to significant global relative displacement between components and can account for the
failure of some assembly parts in mechanical structures [21]. Mugadu et al. introduced
a rigid flat punch loaded by a constant tangential force insufficient to cause gross sliding
[27]. A constant normal force that moves backwards and forwards on the punch causes
micro-slip that alternately migrates in from one side of the contact. This induces a
rocking motion of the punch such that it walks across an elastic half plane by a constant
increment in each loading cycle, even though the global friction limit is not exceeded at
any time. Nowell used numerical methods to also study the case for a normal force being
strong enough to completely lift the punch from the ends [28]. Ciavarella extended the
model taking into account dissimilar materials and showed that dissimilarity decreases
the load needed for ratcheting to occur and increases the slip per cycle [29].

Cyclic Slip In addition, it is possible, that a mechanical system with friction exhibits
reversing slip with no net rigid body displacement. This case is referred to as cyclic slip
in accordance to the cyclic plasticity case [23]. Ciavarella showed that for the walking
punch model cyclic slip only occurs for dissimilar materials, as for similar materials, a
constant tangential load leads to a constant direction of slip [29].

1.1.2 Dynamic Systems

Many systems also exhibit sliding friction [30]. This describes the situation when two
contacting bodies move relatively to each other. Examples include brakes [31], clutches
[32], machine tool slide-ways [33], joints in technical [34] and biological systems [35]
and even seismological systems as tectonic plates [36]. Generally spoken, sliding friction
occurs whenever Frp exceeds the maximum holding force. The system is then subjected
to the resistance force Fg as in equation (1.0.2) that is caused by dissipative processes in
the contact. Despite the fact that the kinetic coefficient of friction ux can be measured
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with little difficulty under laboratory conditions, there exist severe dynamic influences.
Firstly, this makes it very difficult to predict the coefficients a priori from first principles.
Secondly, this limits the value of tabulated coefficients as the influence of the tribometer
used in the experiment remains unclear [5, 37].

System Dynamics Dynamic influences on the frictional resistance include for instance
damping, self-excited and externally excited vibrations, the velocity, the contact stiffness
and the interaction between the structural dynamic behaviour and the excitation by the
frictional force [5]. In particular the impact of system dynamics on the interface response
of frictional contacts is a crucial factor. This is mainly caused by a coupling between the
in-plane and out of plane vibrations in sliding systems [38]. An important work is the
experiment of Tolstoi, who studied the interaction of the tangential and normal degree
of freedom [39]. He found that tangential slip events are accompanied by an upward
movement of the contacting body and that damping increases the frictional resistance.
In addition, he used piezo actuators to induce externally excited vibrations in the normal
direction. Through resonance effects, the frictional resistance was reduced between 35 %
and 85 %. Godfrey used electrical resistance measurements and showed that this effect
is due to a reduction of the metal-to-metal contact zone induced by decreasing loads.
The reduction in the coefficient of friction was therefore characterized as apparent [40].
Polycarpou and Soom used linear dynamic models to compute the normal motion of
a lubricated sliding system. They concluded that the instantaneous normal separation
significantly affects the friction force. A good representation of the dynamics of the
sliding system in the normal direction is therefore very important [41, 42, 43]. Several
authors added a rotational degree of freedom. By this, they considered that the kine-
matic coupling between normal, tangential and rotational motion leads to varying forces
and moments what in turn influences the friction [10, 44, 45]. Twozydlo et al. modelled
a typical pin-on-disk apparatus consisting of rigid bodies with elastic connections. They
showed that coupling between rotational and normal modes induces self-excited oscil-
lations. In combination with high-frequency stick-slip motion, these oscillations reduce
the apparent kinetic coefficient of friction. A particular pin-on-disk experimental set-up
gave good qualitative and quantitative correlation with numerical results [46]. Adams
examined a beam that is in frictional contact with an elastic foundation [47]. In this
model the interplay of the friction force and moments at the interface and the bending of
the beam leads to instabilities that increase with increasing coefficient of friction. This
self-excited oscillation leads to a partial loss of contact and a stick-slip motion.

Slip Waves Despite discrete lumped parameter models, many authors considered in-
terface waves with separation between contacting half-spaces. Caminou and Dundurs
investigated the so-called carpet-fold motion, which gives the possibility of a sliding mo-
tion between two identical bodies without interface slipping [48], i.e. without frictional
resistance. Adams examined elastic half-spaces in dry contact and concluded that the
deformation along the interface and slip wave propagation is a potential destabilizing
mechanism for steady sliding [49]. Although his model uses a constant coefficient of
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friction without distinction between the static and kinetic case, he demonstrated that
interface slip waves may be responsible for the apparent velocity-dependence of friction
coefficient measurements [50]. The apparent coefficient of friction can decrease with
increasing sliding speed due to the carpet-fold motion.

1.2 Objective

On basis of the studies described above, theoretical models and experiments are to be
developed in order to examine the influence of micro-slip on the macroscopic behaviour
of mechanical systems with friction. As sketched in Fig. 1.3 system dynamics and micro-
slip affects nominally static systems as well as dynamic systems.

system dynamics

A4 A4

nominally dynamic
static systems systems
failure of frictional
connections resistance

Fig. 1.3: sketch of the influence of system dynamics on systems with friction

Starting from the distinction introduced in section 1.1 the objective of this work is
structured as follows.

Shakedown and Ratcheting Shakedown characterizes the effect that oscillatory fric-
tional slip causes a state of residual stress that inhibits or reduces the slip in subsequent
cycles. It is worthwhile to predict under which conditions a system responses like this
because shakedown is one way to prevent for instance fretting or failure of force locked
connections. So far the theory of frictional shakedown was examined only for complete
contacts but much less is known for the case where the contact area changes with time
[29]. In addition, many studies are based on numerical simulations and the results are
often difficult to interpret and cannot easily been transferred to slightly modified systems
[28]. Thus, the objective is to introduce a frictional system with an incomplete contact
and to study the different scenarios that occur if this system is subjected to oscillating
loads. More specifically the first objectives for this work are as follows:

e Development of generic models for incomplete contacts
e Analysis of the shakedown process and the final shakedown state
e Derivation of the shakedown limits, i.e. failure criteria

o Examination of the ratcheting phenomenon in incomplete contacts
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Dynamic Influences on Sliding Friction Vibrations in the normal direction de-
crease the frictional resistance of mechanical systems. This effect has been known for
long and is also applied in technical systems [39, 51]. Furthermore friction and cer-
tain dynamic coupling effects can lead to instabilities [49, 50]. This raises the question
to what extent these self-excited vibrations can lead to a self-excited reduction of the
macroscopic frictional resistance. In case that the corresponding amplitudes are of a
microscopic character, they could be superimposed to an apparently smooth sliding mo-
tion of the system while being undetected. Hence, it is one aim of this work to develop
a model that exhibits this kind of behaviour. More specifically, the further objectives
are as follows:

e Introduction of a model that captures dynamic influences on sliding friction
o Investigation of the post-instability behaviour and analysis of the parameters

e Analysis of the underlying basic mechanisms for the reduction

In order to achieve these aims, classical contact mechanics, the well-known Method
of Dimensionality Reduction, several numerical simulation tools and experiments are
being used. The final goal is not only to gain a deeper understanding of the effects
of shakedown, ratcheting and walking, but also to give guidelines for the construction
of real technical systems. Examples range from force-locked connections to mechanical
drives and to tribometers.

1.3 Structure

Methods and theories that are important for the further analysis are introduced in
chapter 2. In addition to a short description of important contact systems, the Method
of Dimensionality Reduction is described and different aspects of the modelling of dry
friction are discussed. This gives the fundamentals for the next steps of the analysis.
Firstly, chapter 3 focuses on shakedown and ratcheting in incomplete contacts. Several
models are introduced and analysed and the shakedown limits are derived. Secondly,
in chapter 4, the phenomenon of self-induced oscillations and the resulting reduction of
sliding friction is discussed. Both topics are followed by an experimental investigation.
The experimental rigs that are used in the analysis and the experimental procedures are
introduced in chapter 5. Finally a conclusion and an outlook are given in chapter 6. In
the appendix, for reasons of reproducibility, methods and theories are described that are
used in this work but do not contribute substantially to the results.



Chapter 2

Fundamentals and Methods

In general, mechanical systems with friction are influenced by a complex interaction of
different phenomena:;:

Rigid Body Motion The relative motion of the contacting bodies influences the
stresses in the contact. The motion has its origin in the forces and moments acting on
the bodies but is also influenced by inertia effects.

Contact Mechanics The stresses in the contact lead to deformation of the materials
of the contacting bodies and thus change the contact area. This deformation depends
on the geometry of the bodies as well as their material behaviour.

Friction The distribution of stick and slip in the contact area is a result of the contact
stresses. However, this in turn affects the forces acting on the bodies.

These many cross influences complicate the understanding and the analysis of the in-
terplay of system dynamics and friction. In the following section, the basic tools and
models used in this work are introduced. In addition to a brief summary of important
contact systems, the Method of Dimensionality Reduction (MDR) is introduced. Fur-
thermore, some important aspects in the modelling of frictional systems are discussed.
This enables an accurate and efficient modelling of mechanical systems with friction
under consideration of dynamic influences.

2.1 Contact Mechanics

In case that the contact area and the slope of the geometry of the bodies, respectively
their deformation, are small in comparison to the size of the contacting bodies, they may
be represented by half-spaces [52]. This assumption describes a semi-infinite body whose
only boundary is an infinite plane what greatly simplifies the calculation of elastic contact
problems. In general, one distinguishes two qualitatively different kind of contacts,
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depending on the geometry of the contacting bodies [52]. The first kind is characterized
as complete and occurs whenever the contact area is independent of the force. As an
example, one can consider a flat-ended punch which is pressed into an elastic half-space,
as shown in Fig. 2.1 (a). This often leads to difficulties in the analysis of systems where
both bodies are elastic, because the contact pressure will be singular at the edges of the
contact and the punch cannot be modelled as a semi-infinite body. Therefore, solutions
of incomplete contacts mostly assume a rigid punch. The second kind of contacts is
characterized as incomplete and occurs when the contact area changes with the loading.
These systems are found when two convex bodies come into contact as shown in Fig. 2.1
(b). In this case, the two bodies initially only touch in one point. As the applied load
increases, the contact area increases as well. In contrast to the former case, the contact
pressure falls continuously to zero at the edges for incomplete contacts.

s

(a) complete contact (b) incomplete contact

Fig. 2.1: (a) complete contact: contact area is independent from loading. (b) incomplete
contact: contact area changes during loading [52]

Moreover, the contact can be assumed as decoupled if the so-called Dundurs’ constant
B is equal to zero [53]. For plane strain § is given as:

(2.1.1)
where G; and v; are the shear modulus respectively Poisson’s ratio for the two contacting
bodies. The uncoupling condition is satisfied for the following cases [54]:

1. both bodies consist of the same material

2. both bodies are incompressible, v; = v5 = 0.5

3. one body is incompressible and the other body is rigid

4. the contact is frictionless, =0

This condition is also referred to as elastically similar and indicates that the integrals
describing the normal and tangential loading are uncoupled [52]. As a consequence,
variations in the normal force will not induce any tangential displacement and vice
versa. Hence, the normal and tangential direction can be analysed separately and their
superposition then gives the overall solution. In addition, the initial contact problem
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of two elastic bodies can be transferred to the indentation of an elastic half-space by a
rigid punch, where the effective, elastic modules are defined as [55]:

11— 1—1n -1 <2—l/1 2—1/2>1
E* = d * = . 2.1.2
( 2G, T 26, ) and ¢ 16, G, (2.1.2)

Throughout this work, only contacts that are uncoupled and fulfil the half-space as-
sumption are considered. Consequently, all systems introduced will be from the latter
type, i.e. indentation of an elastic half-space by a rigid punch. In the following, a few
results and methods of classical contact mechanics that are important for the further
analysis are summarized. Please refer to the well-known books of Popov [55] or Johnson
[56] for a detailed representation of the derivations.

2.1.1 Spherical Normal Contact

Consider the classical Hertzian contact [57] of an elastic half-space and a rigid sphere,
which is loaded in the z-direction with the normal force Fy as shown in Fig. 2.2 (a).
The radius of the sphere R is chosen as an effective radius of a contact consisting of two
elastic spheres with particular radii R; [55]:

R:(é ;)1‘ (2.1.3)

Instead of solving this initial contact problem, where neither the stress distribution nor
the area of contact are known initially, one usually considers the deformation of the
half-space by a given stress distribution. In the classic works of contact mechanics these
direct solutions are then used as bricks for the solution of the initial contact problem

[55].

(a) contact problem (b) direct problem

Fig. 2.2: (a) contact problem: indentation of an elastic half-space by a rigid sphere. (b)
direct problem: elastic half-space loaded by a pressure distribution

Sphere and half-space will only touch within a circular area A, with radius a in the
centre of the contact. This contact area is loaded with the pressure p (z,y) that leads to
a vertical displacement of the particles U, on the surface (z = 0). It is maximal in the
centre (x =0,y =0,z =0), where U, matches the indentation depth d that is defined
as the vertical shift of the sphere. Pressure and normal displacement in the contact
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area are related through the following integral equation, that is given by the potential
functions of Boussinesq and Cerruti [56, 58]:

Uz(x,y):ﬂlf* //,4 p(i’")dgdn for a,y€ A, (2.1.4)

where:

s = \/(f—x)2—|—(n—y)2. (2.1.5)

In case of the rigid sphere, the displacement U, of particles in the contact must match
the difference of the indentation d and the initial separation h (r), i.e. the profile of the
sphere. Using the parabolic approximation! for R > d [55] this yields:

7,2

Uz(r):d—h(r):d—ﬁ, (2.1.6)
where r = /22 + y2. The following pressure is given by the Hertz theory of the friction-
less contact between two bodies of revolution [57]:

p(r) =po (1 - (2)2> " . (2.1.7)

This pressure fulfils the integral of equation (2.1.4) with U, as in (2.1.6). Here the
maximal pressure pg and the contact radius a are given as:

1/2
po = %E* <?{) ,a=VRd. (2.1.8)

Finally, the relation between normal force and indentation yields:

4
Fy = gE*Rl/QdS/Q : (2.1.9)

2.1.2 Spherical Tangential Contact

As a consequence of the decoupling assumption, the tangential contact can simply be
modelled as a superposition of the normal contact by a tangential loading F7 in the
z-direction. Coulomb type of friction with finite constant coefficient p between the
two surfaces is assumed. The tangential load is compensated by an initially unknown
frictional shearing traction 7 (z,y) on the surface of the half-space. In case that Fr is
insufficient to cause gross sliding, i.e. Fr < puFp, the contact area will be divided into
a stick region delimited by the stick radius ¢ in the centre and an annular slip region
on the edge, as shown in Fig. 2.3 (a). Inside the stick region, the surface displacement

'The exact profile is given as: h(r) = R — vVR? — r2.
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of particles U, in the direction of Fp must be constant, whereas in the slip region, the
traction must match the traction bound:

stick-region: 0 < y/a2?2+y?<c¢ = U, (z,y) = const. ,
slip-region: c< V2?2 +y2<a = 7(z,y)=pp(z,y) .

The problem corresponds to finding the correct shearing traction distribution that causes
this contact configuration [58]. As for the normal direction, traction and tangential
displacement in the contact area are again related through an integral equation, that is
given by the potential functions of Boussinesq and Cerruti [56, 58]:

(2.1.10)

2
Uz (2,y) = 2771G// 7 (x,9) <1_V+V(£ ;336) >d§dn for z,ye A.. (2.1.11)

S

Here s is defined as in equation (2.1.5) and G and v are given as:

1 1\ ! 141 Vo
_ _of( ) 2.1.12
¢ (G1+G2> Y G<G1+G2) ( )

Cattaneo [59] and Mindlin [60] independently presented a method of solution for elliptic
contacts for this configuration known as incipient sliding.

Y

Ac Shp
a stick
c
€T
r
(a) contact regions (b) traction distribution

Fig. 2.3: (a) contact area with contact radius a and slip-radius ¢. (b) stress distribution
in the contact area

A good description of their procedure is given in book of Popov [55]. The starting point

is the case off full sliding, where the tangential traction must match the traction bound
in the entire contact area:

2\ /2
7(r) = 1po (1 — (2) ) for 0<r<a. (2.1.13)

Now, to maintain sticking in case of incipient slip, the traction in the stick region must
be a superposition of two elliptical distributions of the Hertzian type:

T (1) = upo <1 - (2)2> " — T (1 - (Z)2> " for 0<r<ec. (2.1.14)
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These tractions cause a parabolic surface displacement in the stick region [55]:

Y
Ux(x’y)zuponga(4(27V)a2*(473V)$2*(4fy)y2)
T 9 ) )
a - - — - <r< 1.
g (121 — (=32’ —(4-v)y’) for0<r<c, (2115)

that must be constant in accordance to the no slip condition, i.e. U, = Ugr = const..
Finally, this gives the correctional traction-term:

(&
T2 = [ipo - (2.1.16)

The complete traction distribution is as shown in Fig. 2.3 (b). In addition, the stick
radius ¢ as well as the constant displacement in the stick region yield:

Fr )1/3
c=all—-—— , 2.1.17
( N ( )
E* Fr \**
_ -2 (1o 2 <ec. 1.
Ustat = Uy (x,7) MG*d (1 (1 MFN> ) for r<e (2.1.18)

For axially symmetric, three-dimensional contacts the tangential problem can also be
solved using the principle of Ciavarella [61, 58] and Jéger [62]. According to this, the
tangential contact problem can be analysed as one of two normal contacts: the actual
normal contact and an additional normal contact for a reduced load, that provides the
correction of the tangential traction in the stick area.

2.1.3 Steady State Rolling Contact

Consider a rigid sphere with radius R that rolls on an elastic half-space with shear
modulus G and Poisson’s ratio v. As depicted in Fig. 2.4 (a), the sphere rotates with an
angular velocity w while it moves to the right with the forward velocity v and is loaded
with Fy and Fp. Between the surfaces applies dry friction of the Coulomb type with
finite constant coefficient u. The case v = wR refers as pure rolling and can only be
obtained for infinite friction u — oo or vanishing tangential force?. In case of tractive
rolling, i.e. Fp # 0, occurs a difference between the circumferential velocity and the
forward velocity, whose relative ratio is defined as the creep ratio [55]:
v—wR

o= ——- (2.1.19)

For wR > v the friction force on the sphere is pointing forward and the system corre-
sponds to a driven wheel. Otherwise, the friction force is pointing backwards and the
system corresponds to a braking wheel. Reynolds identified creep as the reason for rolling
resistance and described that it is caused by both, elastic deformation of the contacting
bodies and relative displacement of particles in the interface [63]. The creep tries to drag

20One also distinguishes between free and tractive rolling, i.e. Fr = 0 respectively Fr # 0.
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the sphere surface particles over the substrate and can be seen as an average amount of
slip. Considering one particle on the surface of the wheel, the contact configuration can
be explained as follows. When entering the contact area at the leading edge, the particle
is free of stress. As the sphere rolls forward, it sticks to a particle of the opposing surface
and is strained by the overall motion difference between the two bodies. This leads to a
shear stress, which increases until the traction bound is reached and the particle starts
to slip. As for the tangential contact, the contact area is thus divided into a stick and a
slip region, the only difference being that the stick area is shifted to the leading edge and
the slip area is shifted to trailing edge. As the state of each surface particle varies over
time, one considers the steady rolling state? and uses a coordinate system that moves
along with the contact.

(a) tractive rolling of sphere (b) contact region

Fig. 2.4: (a) tractive rolling contact of rigid sphere and elastic half-space. The sphere
moves with velocity v and rotates with angular velocity w. (b) contact area with contact
radius a and spindle-shaped stick region with half-width ¢

Hence, in the sticking region, the mass flow of substrate particles that move to the left
with velocity v must match the mass flow of sphere particles that move to left with
velocity wR. This gives the relation between creep-ratio and strain as [55]:

£r= —2 e (2.1.20)

Again, the normal and tangential problem are decoupled, such that the contact radius 2a
is directly given by the Hertzian theory. The stick region is a spindle- or lemon shaped
area of width 2¢ as shown in Fig. 2.4 (b). One can assume it to be elliptically shaped*
in order to give a closed form solution for the traction and creep [56]. In this case, the
solution procedure resembles to the static problem as in section 2.1.2. Given the relation

3The transient starting process of the rolling is neglected.
4This is clearly an error, since the leading edge is located outside the stick region.

15



Chapter 2. Fundamentals and Methods

(2.1.20), the creep ratio® for the rolling sphere finally results to [64]:

4—-3v pa Fr >1/3
r=————— |1 —-(1—— , 2.1.21
& 41-v) R ( < 3N ( )
and the half-width of the stick region yields:
1/3
C:a<1_f;zv> . (2.1.22)

2.2 The Method of Dimensionality Reduction

Given the approaches introduced in the former sections, incomplete contacts can in
principle be calculated using a stepwise equilibrium approach on basis of the actual
pressure and traction distribution. However, there exist several serious difficulties. Often
the exact distribution of pressure remains unknown [55]. Another problem is given by
the different boundary conditions which have to be satisfied for the stick and slip zones
when the configuration of these zones is not known in advance [56]. In addition, it often
remains vague whether a closed form solution of the integrals can be found. Furthermore,
numerical simulations, e.g. the boundary element method (BEM), are numerically very
expensive as the corresponding stiffness matrix is dense.

The well-known Method of Dimensionality Reduction (MDR) offers a solution to these
problems for a variety of applications. The MDR is based on the observation that
close analogies exist between certain types of three-dimensional contact problems and
one-dimensional contacts consisting of independent contact elements. The basic idea
was firstly described in [65] and in the PhD thesis of Geike [66]. A more detailed
description is given with the book of Popov and HeB[67]. The physical background of
the MDR lies in the proportionality of the stiffness of a three-dimensional contact to the
associated contact length instead of its contact area [68], what leads to certain mapping
rules. Heflderived the exact mapping rules for axial symmetric bodies in various normal
contact configurations including adhesion [69]. If these rules are fulfilled, the macroscopic
properties of the new system coincide exactly with those of the initial system. Thus, the
MDR is not an approximation but transfers the initial problem to an equivalent one.
According to this, solving contact problems, either analytical or numerical, is trivialized
[67]. There is a wide number of applications and further developments of the MDR
ranging from rough surfaces [70, 71] to viscous media [72], fretting wear [73] and the
modelling of stick-slip drives [74]. The MDR is exact for uncoupled (8 = 0), rotational
symmetric, three-dimensional normal and tangential contacts that satisfy the half-space
assumption [67]. It consists essentially of two basic steps, as illustrated concisely in [75].

5This result is valid only in case that one of the contacting bodies is rigid. If both bodies are from
the same material the creep ratio is doubled [56].
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First Step of MDR In this, the three dimensional bodies in contact are replaced
by an equivalent elastic or viscoelastic foundation and a rigid indenter. For an elastic
contact, the correct equivalent foundation must consist of linear springs with normal
stiffness Ak, and tangential stiffness Ak, as shown in Fig. 2.5 (a):

Ak, = E*Ax and Ak, =G"Az. (2.2.1)

Here Az is the distance between adjacent springs, i.e. the grid-size. As the springs are
independent from one another, in the equivalent model remains only one dimension.

E* G* A2 o0 . Ax
Yy T
CMDR—>
= |
o0
(a) elastic half-space (b) one-dimensional system

Fig. 2.5: (a) initial three-dimensional system: elastic half-space. (b) equivalent one-
dimensional system: elastic foundation with independent linear springs. First step of MDR

Second Step of MDR In this, the initial three dimensional profile h (r) is transformed
into a one-dimensional profile function g (x) as shown in Fig. 2.6:

(2.2.2)

|| "(r
g =l [ B

Fig. 2.6: transformation of the three-dimensional profile & (r) into a one-dimensional equiv-
alent profile g (z). Second step of MDR

If these rules are fulfilled, the macroscopic properties of the one-dimensional system
exactly match those of the initial three-dimensional system. However, special care must
be taken not to violate the initial assumptions of the MDR. The following sections
describe the application of the MDR to the tangential contact as well as the steady state
rolling contact.
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2.2.1 Spherical Tangential Contact using MDR

Consider a three-dimensional contact of a rigid sphere with radius R that is pressed into
an elastic half-space by the normal force Fy and subsequently loaded in the tangential
direction with Fp. Coulomb friction with constant g is assumed. In the first step
of the MDR, the elastic half-space is replaced by an equivalent system consisting of
independent linear springs with normal stiffness Ak, and tangential stiffness Ak, as
in equation (2.2.1). In the second step of the MDR the approximation of the initial
three-dimensional profile of the sphere as in equation (2.1.6):

2
h = — 2.2.
)= o (223)
is mapped to a one-dimensional profile according to equation (2.2.2):
@ =lel [ @224
x) = | ———dr, 2.
g 0o R+/z2—r2
2
x
g(x)=—. (2.2.5)

R

This result can be interpreted as a stretch of the initial profile [76], where the new radius
of the one-dimensional profile Ryp yields:

1
Rip=3R. (2.2.6)

(a) three-dimensional contact (b) one-dimensional system

Fig. 2.7: (a) initial three-dimensional, tangentially loaded, elastic contact. (b) equivalent
one-dimensional system consisting of an elastic foundation with stretched radius Rip

Fig. 2.7 gives the initial three-dimensional system (a) and the equivalent one- dimensional
model (b). The major advantage of the MDR is that the integral equations with mixed
boundary conditions that arise in contact mechanics, are replaced by simple algebraic
equations [67]. Instead of a pressure and traction distribution one only needs to know
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the displacement of the springs in the normal and tangential direction U, and U,. The
corresponding spring forces are then given by the relations:

[2(x) = AkU, () and  fy (z) = AkyUy () . (2.2.7)

The missing displacements can be derived by kinematic considerations, as all springs are
independent from one another. In case of the normal direction, the deflection U, for all
springs in contact is simply determined by the difference between the profile g () and
the indentation depth d:

2
Uz(x):d—g(x):d—%for—agxga. (2.2.8)
Given the condition that U, must be zero at the contact edges x = +a and equa-
tion (2.2.8) the missing contact radius yields:
2
UZ(\x|:a):0:d—%:>a:\/Rd. (2.2.9)

This corresponds exactly to the well-known result of the Hertzian contact [55], see (2.1.8).
The macroscopic normal force Fy must match the overall normal force of the springs:

Fy = / dF, . (2.2.10)
f
With the relation:
. Akz *
dF, = lim U,dx = E*U.dx (2.2.11)
Az—0 Az
and equation (2.2.8) this yields:
a a .’EQ
Fy = 2/ E*U.dz = 2/ E(d-2 )dz, (2.2.12)
0 0 R
4
Fy = gE*Rl/QdS/Q : (2.2.13)

what is again equivalent to the well-known Hertzian contact [55], see (2.1.9). The tan-
gential displacement can be derived as follows. For Fp insufficient to cause complete
sliding, i.e. Fr < uFy, slipping will only occur at the boundary area of the contact. In
this region, the forces of the springs equal the traction bound, what in connection with
equations (2.2.7) and (2.2.8) gives:

E* x?
fo () = pfz(2) = Uy () = how (d - R) . (2.2.14)

The centre region remains in a state of stick and is delimited by the stick radius c. Here,
the tangential displacement is constant and matches the displacement between sphere
and substrate Ugq:. Taken together the tangential contact configuration reads:

stick-region: 0<|z|<c¢ = U, (z)=Usat ,

slipregion: c<|z|<a = U,(z)= M% (d _ 2) . (2.2.15)

zZ
R
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The missing stick radius can be derived from the condition that the displacements must
be continuous at the edge of the stick region = +¢. With equation (2.2.15) this yields:

E* c? G* U,
Ustat = Uz (x =) = e (d - R) =c=R (d ~ Za’t) . (2.2.16)
The macroscopic force Fr must match the overall normal force of the springs:
c a 2
Fr= 2/ G*Ustardr + 2/ pwE* {d—— |dz. (2.2.17)
0 ¢ R
Together with (2.2.16) this gives the static displacement as:
E* Fr \**
Ustat =p—d|1—(1— — . 2.2.18
stat MG* ( ( NFN) ( )
Finally, inserting (2.2.18) into (2.2.16) yields the stick radius as:
Fr\"?
c=a (1 - F;) . (2.2.19)

Again, ¢ and Uy correspond to the well-known results of the three-dimensional system
[55], see (2.1.17) and (2.1.18). This shows that tangentially loaded contacts of a rigid
sphere and an elastic half-space can be mapped exactly to an equivalent one-dimensional
system. This applies for tangential contacts of arbitrarily shaped bodies as well, as long
as the assumptions of axial symmetry and decoupled displacements are not violated [67].

2.2.2 Steady-State Rolling Contact using MDR

In this section it is shown that three dimensional tractive rolling contacts can be mapped
to a one-dimensional equivalent system as well. Starting point is the steady state rolling
contact between an elastic half-space and a rigid sphere as introduced in section 2.1.3.
The sphere is pressed into the half-space by the normal force Fy and is tangentially
loaded with Fp. The sphere moves with velocity v in the z-direction and rotates with
an angular velocity w, as shown in Fig. 2.8 (a).

- C MDR—> Akz,Akm\%%{ : %

2a

(a) rolling contact (b) equivalent system

Fig. 2.8: (a) steady state rolling contact between a sphere and an elastic half-space. (b)
one-dimensional equivalent system with constantly moving coordinate ¢
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Again, in the first step of MDR, the elastic half-space is replaced by an elastic foundation
that consists of a number of similar independent springs with normal stiffness Ak, and
tangential stiffness Ak, as in equation (2.2.1). Likewise, the radius of the MDR system
Rip is stretched as Rip = 1/2R according to second step of MDR (2.2.2). With this, the
MDR system gives the exact relations between load, contact configuration and rigid body
displacement for the normal contact, as shown in section 2.2.1 [67]. Thus, indentation
depth d and contact radius a correspond exactly to the Hertzian contact and one only
has to consider the uncoupled tangential problem.

As in the static case, the contact region is divided into a stick- and a slip-region. At
the leading edge at the right side of the contact, the springs are initially completely
relaxed. As soon as they touch the sphere they start to stick. The tangential force of an
arbitrary spring f, then increases with the further rolling due to the elastic displacement.
Its normal force f, initially increases as well until the lowest point of the sphere rolls
past it. The normal force then decreases until finally f, exceeds the friction bound
fT,maz = 11f- and the spring starts to slip. In consequence, the contact region is divided
into a stick-region at the leading edge and a slip-region at the trailing edge, as shown in
Fig. 2.8 (b). For further consideration, the co-moving coordinate ( is chosen that has its
origin exactly at the leading edge and moves with the sphere as shown in Fig. 2.8 (b).
The tangential displacement U, ({) of an arbitrary spring at position ¢ then corresponds
to the so far unknown path difference Avit = (wR — v)t between the sphere and the
substrate. With ( = vt it follows:

¢ Avy

Uz = Avit = Avy =t = —(, 2.2.20
(©) vy v ” ¢ ( )
what gives the tangential force for the springs in the stick region 0 < ¢ < 2¢:
Av
fo (Q) = AkaUs () = Mk ==( . (2.2.21)

In the rest of the contact region 2¢ < ¢ < 2a, the springs are slipping;:

f (Q) = pf: (Q) = pAkU (() (2.2.22)

The missing normal displacement U, ({) is given by the indentation of the rigid sphere
into the elastic foundation of independent springs. With the indentation depth d and
the approximation of the profile of the sphere for R > d as in in equation (2.1.6) follows:

(a—¢)° _20¢-¢*

U, =d— 2.2.23
©) o - (22.23)
The unknown stick-radius is given by the stick condition at { = 2¢:
Jz (26) = pufz (26) )
4ac — 4c?
Akx—AUI 2c = MAk27ac ¢ ,
v R

1G* R Any
=q——————. 2.2.24
=c=a 2E 0 0 ( )
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As the displacement and the contact radii are known, one can determine the macroscopic
force Frr via integration. Using equations (2.2.21) - (2.2.24) the tangential force reads:

2a¢ — 2

—dC = L1 (a* =) . (2.2.25)

2c AUl 2a
Fr = G*——=(d E*
: /O Sdc | -L

Division of equation (2.2.25) by the well-known Hertzian relation of equation (2.1.9)
initially yields:
Fr

e = <1 - <2)3> . (2.2.26)

Rearranging this equation, one obtains the same expression for the stick-radius as for
the initial three-dimensional case as in equation (2.1.22) or shown in [55]:

1/3
2: ( - j;jv) . (2.2.27)

In addition rearranging (2.2.24) and inserting (2.2.27) gives the creep ratio & of the
one-dimensional MDR model:

Avq 1 E* pa Fr )1/3
= =————"—([1-(1- —/ . 2.2.28
&1 v 2G* R < ( uFy ( )
Given the relations for the effective modules [55]:
2G 4G
Er=— = 2.2.2
T and G 5 ( 9)

one can compare the one-dimensional creep with the original creep &, as stated in equa-
tion (2.1.21):

v—wR 4—3v pa Fp\"7/3
_ - _ =01 - = . 2.2.
b v 4(1-v) R ( < ,UFN) (2:2.30)
This yields the following relation between the creep ratios:
4(2—-v)
= Z¢0. 2.2.31

Equation (2.2.31) shows that the result of the one-dimensional system must be scaled in
order to determine the correct creep of the three-dimensional system. The deviation is
due to the asymmetry in the tangential stress distribution of the rolling contact [55, 56]
that contradicts the MDR assumption of rotational symmetry of the contact configura-
tion. In summary it shows that the MDR enables the mapping of the three-dimensional
tractive rolling contact to a one-dimensional equivalent system. Thus the MDR allows
to analyse more complex problems, such as the oscillating rolling contact as introduced
in section 3.1. However, it must be ensured that the influence of potential contradictions
to the MDR assumptions are cautiously taken into account.
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2.3 Modelling of Frictional Systems

In this section some important aspects considering the modelling of frictional systems
are briefly described. The principles introduced will be used in the following chapters.

2.3.1 Separation of Scales

As mentioned in the introduction of this chapter, one important characteristic of friction
is the interaction between various factors as for instance the local deformation in the
contact and the macroscopic motion of the system. However, under certain assumptions
it is possible to separate certain time and space scales that contribute to the system.

Quasi-Statics The main requirement is quasi-statics of the contact problem [55]. A
contact can be assumed to be quasi-static as long as its characteristic time of loading 7T,
is much larger than the time an elastic wave in the continuum needs to travel a distance
of the order of the contact length D, [67]:

7, 2o (2.3.1)
Cs

where ¢ denotes the speed of sound of the material. This is fulfilled in most tribologic
systems, as the speed of sound of the materials is much larger than the relative movement
of components, which determines the contact time 7.. In consequence, the contacts
instantaneously reach the equilibrium state. Thus, even in case of an unsteady loading
one can apply static equilibrium conditions in every time step to calculate the forces and
deformations in the contact.

Elastic Energy The linear elastic deformations in the contact decrease with 1/r, with
r being the distance to the contact area. In addition, the stresses and strains decrease
in proportion to 1/r2. Therefore, the elastic energy of the deformation is concentrated
in a volume with linear dimensions of the order of the contact width D, [65]. The elastic
energy of the contacts can thus be characterized as a local quantity that only depends
on the conditions at the vicinity of the contact. In consequence it is independent from
the size of the macroscopic body as well as other contacts of the system, as long as the
distance between adjacent contacts is larger than their contact length [55].

Kinetic Energy In contrast, under most conditions, the kinetic energy of systems
involving frictional contacts is a non-local quantity that is independent from the contact
configuration. The kinetic energy of the system as a whole corresponds to the kinetic
energy of the bulk body. Thus, the inertial properties of the system can be sufficiently
described by the rigid body dynamics of the bulk body[65].

It should be emphasized that the elastic and kinetic energy of the system are not truly
independent as both are connected through the forces and moments that act in the
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contact and on the rigid body, i.e. Newton’s third law. But both are decoupled through
the separation of space scales. In case of dynamic problems this gives the possibility to
determine the rigid body motion using the equations of motion and then solve for the
contact configuration in every time step. In turn the resulting forces and moments serve
as input parameters for determination of the next step of the rigid body motion.

2.3.2 Modelling of Coulomb Friction in Dynamic Systems

Once the static maximum holding force Fr4: = psFn is exceeded and sliding has
started, the friction force drops to its lower kinetic value Fr = uipFn, where up < ps.
In addition, it was shown in numerous experiments that the kinetic friction is a function
of the relative velocity v with a negative slope [77, 78, 9, 79]. This phenomenon is also
referred to as rate weakening [38]. Both effects lead to a non-linear behaviour of mechan-
ical systems with dry friction. A stick-slip motion may occur where the sliding surfaces
alternately switch between sticking and slipping [3]. In the modelling, the distinction
initially leads to a set of differential equations with discontinuous right hand side. One
widespread solution is to apply a smoothing method for the frictional coefficient [9, 80]
what yields a system of ordinary differential equations. A popular approach is to apply
a velocity dependent coefficient as shown in Fig. 2.9 [81]:

2 arctan (yv)

(2.3.2)
L

1925 (U) = Us

where v denotes the relative velocity between the surfaces. In equation (2.3.2), the limit-
ing velocity dv defines the velocity range in which static friction applies and v determines
the steepness around v = 0. However, this type of model has several drawbacks. Firstly,
the unknown and in principle arbitrary parameters dv and = need to be determined
and there is no standard rule for their estimation. Secondly, this type of model cannot
accurately represent sticking, since it allows a nearly stationary system, i.e. v — 0,
to accelerate even if the net tangential forces are less than the maximum holding force
[38, 82]. This was also examined in detail by Elmer who states that any kinetic friction
law as in (2.3.2) becomes invalid if:

D,

v < T (2.3.3)
where D, denotes the microscopic length scale and T, the macroscopic time scale, i.e. the
contact time [83]. Increasing the steepness parameter v will improve the approximation
around v = 0. However, this will also lead to large computation times as the differential
equations become stiff, particularly in case of large frictional resistance. Another popular
model is the so called force-balance method developed by Karnopp [84]. Here, for v > v
the friction force is a function of the sliding velocity. For v < dv the friction force is
determined as such that it balances all other forces in the tangential direction in case of
sticking, i.e. leads to zero acceleration, or matches the friction bound in case of slipping.
An important extension of the force balance method is the switch model developed by
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Leine et al. [81]. On basis of the velocity and the external forces it is determined
whether the system slips or sticks and the corresponding time derivatives are chosen,
i.e. the differential equation is changed. One drawback of the models introduced is
their inability to describe so-called pre-sliding, an effect that is caused by the elastic
deformation of the contact whenever a sticking system is loaded tangentially. This is
effect is captured by the elastoplastic friction model [85] which is an extension of the
commonly used Dahl-model [86]. However, the model consists of a number of empirical
parameters which are difficult to determine. Some can be measured while others have to
be chosen arbitrarily, so that they are more likely fitting parameters by nature [74]. In
addition, Oden and Martins conclude that the exact slope of the friction function is not
defined uniquely by the nature of the surfaces in contact, but is rather a consequence of
all the dynamic variables involved [9]. Thus it is not only affected by the slip velocity
but also by inertia and stiffness properties of the frictional system. Finally, a clear
understanding of frictional sliding phenomena at small speeds has not been yet achieved
and none of the models proposed has gained general acceptance [10].

g (V) NN
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Fig. 2.9: smooth model function of ve- Fig. 2.10: rigid slider with elastic con-
locity dependent coeflicient of friction tact modelled as a linear spring

2.3.3 Algorithm for the Modelling of Contacts

The objective of this study is in particular to identify the influence of microscopic effects,
e.g. the spatial variations of pressure and traction and the distribution of stick and slip
in the contact interface, on the macroscopic behaviour of the system. Parameters that
can be rather characterized as empirical, e.g. v or v, complicate the clear interpretation
of the results. Thus, it is convenient to use a relatively simple friction model for the
contact itself in order to separate the influences of system dynamics. This corresponds to
the approach of Martins et al. [10]. Their model neglects the distinction between static
and kinetic case and the dependency on the relative velocity. However, they were able to
simulate apparently smooth sliding motions with apparent coefficients of kinetic friction
smaller than the static one and also stick-slip oscillations. Hence, their relatively simple
contact model and the interplay with the system dynamics reflects the experimentally
observed dependencies on the velocity, although these dependencies are not considered
in the initial contact model, i.e. u is not a function of time or velocity.
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Chapter 2. Fundamentals and Methods

Likewise in our model, the elastic deformations of the contact are taken into account
without distinction between static and kinetic coefficient of friction. The model that is
used in this work and its corresponding equations of motions are described in detail in
section 4.1. In order to explain the basic principle, the rigid slider with two degrees of
freedom X and Z is introduced, which is depicted in Fig. 2.10. On basis of the separation
of scales approach as described in section 2.3.1 the contact is modelled as a linear spring
with normal stiffness k, and tangential stiffness k, and corresponding spring deflections
U, and U,. Thus, the spring forces are given as:

F,=kU, and F,=k,U,. (2.3.4)

Coulomb’s law of dry friction applies in the contact with a microscopic coefficient of
friction p. Therefore the contact sticks whenever:

Iy (£) | < Py & kol Uy (1) | < UL (2) (2.3.5)

The deflections are dependent variables that are directly determined by the motion of
the system, i.e. they depend on the translation X and Z. The time derivative of the
normal spring deflection equals the normal velocity:

U.(t)=Z(t) . (2.3.6)

In accordance to the switch model [81] the friction force Fr and the tangential spring
deflection are given by a case distinction. For this purpose a test deflection is calculated
assuming sticking of the contact:

U, (t) = Uy (t — At) + AtX (t — At). (2.3.7)

Here At denotes the time step. Thus, in case of sticking the rate of tangential deflection
U, corresponds to the velocity of the mass X. Finally, the case distinction reads:

ko|Us (t)| < pk.U, (t) = sticking = FR (t) = =k, Uy (t) ,
Us (t) = Us (t)
kolUs (£)| > pkoU. (1) = slipping = FR (t) = —psign (T, (1) kU2 (1), (238)

Ua (t) = psign (U (1)) £2U- (1) -

This algorithm ensures continuity of the so called state vector of the system without
numerical instabilities and enables pre-sliding, as the rigid body can move tangentially
even for sticking contacts. In a slightly modified form, this friction model is used for
the analysis of systems with sliding friction in section 4. The modifications enable to
consider the cases of completely released contacts, a spatial variation of stick and slip
and negative spring deflections in the tangential direction. A detailed description of the
model used in the analysis is given in section 4.1. In addition, the contact model is
described in detail in appendix B.4.
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Chapter 3

Shakedown and Ratcheting in
Incomplete Contacts

Oscillating micro-slip can cause failure of frictional contacts in nominally static systems,
i.e. systems that are intended to stay in a stable equilibrium without macroscopic slip.
One has to distinguish three cases. Firstly, the system can shakedown what means that
the slip ceases after the first few periods. Secondly, ratcheting can occur, where the
micro-slip accumulates and leads to a continuing body motion. Thirdly, reversing slip
might occur, what describes the situation in which no net tangential motion occurs. In
the following chapter a model for a nominally static system is introduced, which consists
of an incomplete contact, meaning that the contact area changes during oscillation. The
exact shakedown limits are derived. These are the prerequisites that must be fulfilled in
order for the system to shakedown. In addition, the supercritical case of ratcheting is
examined. Finally, some variations of the initial system are considered.

3.1 Oscillating Rolling Contact

In order to give a generic model for a force locked connection with an incomplete con-
tact, the so called oscillating rolling contact is introduced. Starting point is the tan-
gentially loaded contact between a rigid sphere and an elastic substrate as described in
section 2.1.1 and section 2.1.2. A good description for this system can also be found for
example in [55] or [56]. As introduced before, the elastic modules E* and G* of the sub-
strate, i.e. of the half-space, as well as the radius of the sphere R are effective quantities
of a contact of two elastic spheres. The system is assumed to be uncoupled, meaning
that variations in the normal force will not induce any tangential displacement and vice
versa, i.e. Dundurs’ constant 5 = 0 applies. Dry friction of the Coulomb type with
constant coefficient u between sphere and substrate is assumed. The sphere is pressed
on the substrate by the normal force Fy and is additionally loaded with a tangential
force Fp. The normal force leads to the indentation depth d, which is defined as the
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Chapter 3. Shakedown and Ratcheting in Incomplete Contacts

vertical displacement of the rigid sphere:

Fy \*7*
d= <4Z 21) . (3.1.1)
*R2

The area of contact is delimited by the contact radius a = v Rd . A tangential loading
Fr, insufficient to cause complete sliding, will lead to a slight rigid body displacement
of the substrate in the direction of the force:

* 2/3
Ustat = M%d (1 — (1 - /f;;v) ) . (312)

This static displacement refers to the relative shift of points that are sufficiently far away
from the contact area, i.e. it equals the constant surface displacement as in (2.1.18). As
shown in section 2.1.2 slipping will initially only occur at the boundary region of the
contact area, whereas the centre region remains in a state of stick and is delimited by
the stick-radius ¢ as in (2.1.17):

c:a<1—FT>l/3 . (3.1.3)

In the next step, this static tangential contact is superposed by a slight oscillatory rolling
of the sphere with amplitude W, being the lateral movement of the centre of the sphere,
as depicted in Fig. 3.1 (a). The system is assumed to be quasi-static, meaning that a
constant y is assumed and inertia effects are neglected, as described section 2.3.1. This
is valid as long as the excitation W is slower than the propagation speed of elastic waves
¢s within the bodies, i.e. W < c¢s.
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U substrate
(a) oscillating rolling contact (b) time response of the rolling

Fig. 3.1: (a) oscillating rolling contact between rigid sphere and elastic substrate. Move-
ment of the centre of the sphere is denoted by W and displacement of the substrate is
denoted by U. (b) time response of the rolling W with oscillation period T

The overall macroscopic normal and tangential forces will both be kept constant in mag-
nitude and the rolling will not induce any additional forces or moments. However, the
rolling varies the contact area and leads to a periodic change of the pressure distribution.
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As depicted in Fig. 3.2 the actual trailing edge is released and the corresponding fric-
tion bound Ty, = pp is reduced. According to this, the problem setting is equivalent
to a frictional contact, which is exposed to an oscillatory back and forth movement of
the normal force. This corresponds to a rocking motion of the contacting bodies. The
system is thus the three-dimensional Hertzian counterpart of the rocking and walking
punch [27, 28, 29] and represents a general model of force-locked connections where the
contact area changes under the influence of vibrations.

Fy=const. ¢FN:con(s<
.................. \ /‘
Sy / FT:COHSt. \ o FT:CODSt.
/} ) —> ) 2 —>
release L Tmaz¥ Tmaz¥ release

Fig. 3.2: oscillating rolling of the sphere releases the actual trailing edge and alternately
reduces the friction bound 7,42

3.1.1 Influence of the Oscillating Rolling

In order to determine the influence of the oscillating rolling, the displacement of the
substrate U is examined. The essential factors of influence are the tangential force Fr
and the rolling amplitude W. All three variables are normalized as:

U F w
G I L w=—". (3.1.4)

- b
FT,max a

u =

Here Fr ., equals the maximal holding force of equation (1.0.1) and Upe, describes
the static displacement in equation (3.1.2) for Fip = Fp paq:
E*
Unaz = ,u@d . (3.1.5)
Only tangential forces below the maximum holding force and oscillation amplitudes
smaller than the contact radius are considered:

fr<l and w<1. (3.1.6)

Consequently, without oscillatory rolling, no complete sliding will occur and the centre
of the sphere will not be moved beyond the initial area of contact at any time. The
latter means that there will always remain an area in the centre of the contact that is
never released. Thus, taken by itself, neither of the two factors leads to a failure of the
contact.

Figure 3.3 and Fig. 3.4 give the displacement u over rolling periods for fr = 0.09 and
fr = 0.72 and different amplitudes w. These time responses are the product of the
CONTACT simulation that is described in appendix B.2. They agree well with the
experimental ones, that are shown in section 5.1.4. Both, simulation and experiment
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show that the oscillatory rolling increases the displacement of the substrate with respect
to the static value ugyq;. For f7 and w being sufficiently small, the displacement stops and
the system reaches a new equilibrium as shown in Fig. 3.3. This effect is characterized
as a frictional shakedown and is explained in more detail in section 3.2. Otherwise, if fr
and w exceed certain limits, the displacement continues and so called ratcheting occurs.
This case is shown in Fig. 3.4 and also in 3.3 for w = 0.74 and is discussed in section 3.3.
Comparison of both cases shows that reaching the shakedown equilibrium requires more
cycles than reaching a steady state ratcheting state.

0.2 ‘ ‘ ‘
S H w = 0.24
j 015 3 —w = 0.51
g v ‘5 6H—w=0.74
: -
= 01 g 4
= < 2
0.05 | | | | |

periods n

periods n

Fig. 3.3: displacement of the substrate Fig. 3.4: displacement of the substrate

u for fr = 0.09 and different oscillation
amplitudes w. Shakedown: displacement
stops and system reaches a new equilib-
rium

u for fr = 0.72 and different oscillation
amplitudes w. Ratcheting: displacement
continues with the rolling

3.1.2 MDR Model of the Oscillating Rolling Contact

In order to describe the introduced system, one can theoretically use the classical ap-
proach of Cattaneo [59] and Mindlin [60], as in described in section 2.1.2. For this
purpose both the contact configuration, i.e. the distribution of stick and slip, as well as
the distribution of stress must be known. Then the potential functions of Boussinesq
and Cerruti [56] determine the tangential displacement of the substrate. It is at least
doubtful whether this can be achieved for the given system, with its changing contact
area and stress field.

The results of section 2.2.2 prove the usefulness of the MDR in the modelling of rolling
contact problems. Therefore, the MDR is the method of choice for the description of the
oscillating rolling contact. Again the profile of the sphere is transformed in accordance
to the second step of the MDR, see equation (2.2.2):

1
Rip=3R. (3.1.7)

And the elastic substrate is replaced by an elastic foundation of independent, linear
springs with normal and tangential stiffness Ak, and Ak, as stated in the first step of
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the MDR, see equation (2.2.1):
Ak, = E*Ax and Ak, =G"Ax. (3.1.8)

Both the initial model and the MDR model are shown in Fig. 3.5. One major advantage
of the MDR is that due to the independence of the springs, the corresponding deflections
of the springs can be directly determined by kinematic considerations. Consequently,
the instantaneous displacement in the z-direction at the reversal points of the rolling
yields:

2 2
(W) (W)

U,(z)=d— ————=d— ———— 3.1.9
where z gives the position of one particular spring. Using this relation one can derive
the analytical description of the system. In addition, one can perform a quasi-static
incremental simulation as described in more detail in appendix B.1.

Fr

(a) three-dimensional contact (b) equivalent MDR model

Fig. 3.5: (a) three-dimensional tangential contact. (b) equivalent one-dimensional MDR,
model with mapped radius R1p

3.2 Shakedown of the Oscillating Rolling Contact

The characteristic response in case of shakedown, which is shown in Fig. 3.3, can be
explained as follows. At first, the system is in static equilibrium due to the constant
macroscopic forces. As fr < 1 the displacement of the substrate corresponds to the static
value u = ugq of equation (3.1.2). The back and forth rolling of the sphere then alters
the pressure distribution as depicted in Fig. 3.6. When the sphere starts to roll forward,
the pressure at the trailing edge drops. As this reduces the friction bound T4 = pup
slipping occurs and the traction decreases at the trailing edge. At the same time, at
the leading edge, the pressure increases but the traction initially remains constant. This
results in an imbalance of force in the tangential direction. The same effect occurs, when
the sphere rolls backwards. Thus, at first, this reduces the stick area and increases the
rigid body displacement between sphere and substrate u within every back and forth
movement of the sphere, as shown in Fig. 3.3. However, for sufficiently small fr and w a
saturation level is reached after a certain number of periods and the displacement stops.
The residual force within the contact is sufficiently strong to prevent any further slip
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and the system reaches a new equilibrium, i.e. the shakedown state. The displacement
then corresponds to the constant, time independent shakedown displacement u = ugg
[25].

S

T -
-W 2a

Fig. 3.6: alternating contact area and periodic displacement of the pressure distribution
p(z,y = 0) as a consequence of the rolling motion with amplitude W
slip

0000

n=2~0 n =0.25 n=2.75 n=12

Fig. 3.7: distribution of stick (black) and slip (grey) area in case of shakedown after various
numbers of rolling periods n for w = 0.24 and fr = 0.56 (CONTACT Simulation). Slipping
occurs on the actual trailing edge while the actual leading edge sticks. After several periods
the system reaches a new equilibrium

Figure 3.7 depicts the time evolution of the contact area. In the beginning the contact
area is divided into the stick and slip areal. Due to the rolling, slipping? occurs on the
actual trailing edge while the actual leading edge sticks. In the centre of the contact area
remains a region that permanently sticks. After several periods a shakedown occurs.
Even if the rolling is continued, the whole contact area remains in a state of stick,
respectively in a state of no-slip in case of the regions that are released periodically.

Another way to enlighten the transient process towards the shakedown state is to examine
the frictional dissipation in one time step Wy,;.. A frictional shakedown is then and only
then reached if Wy,;. vanishes. Hence, so called trailing edge slip may not occur, as this
would refer to the case of reversing slip. The frictional dissipation is defined as the
integral of the traction 7 (x,y) times the local slip displacement s (z,y) in one time step

' This means that the friction bound Tmaz = up is reached.
2This refers to a relative motion between particles.

32



Chapter 3. Shakedown and Ratcheting in Incomplete Contacts

over the slip area Ag;, [87):

Wiric = / T (z,y) s (z,y)dA . (3.2.1)

slip

The CONTACT model with world fixed (space-fixed) approach and 55 x 45 quadratic
discretization elements with a grid-size of Az, Ay = 0.22 mm and the parameters of the
experimental setting as described in 5.1.1 is used to compute Wy,;.. The dissipation of
one cycle of an oscillating tangential loading with amplitude Frp [56]:

1812 F% Fr\’?* 5 F Fr \*3
W, — BB EY 1<1 T) ot 1<T> : (3.2.2)
G*5a /,LF N 6 ,uF N ,uF N
is used for normalization. The results consistently show, that the frictional dissipation
decreases rapidly after the first few periods, as depicted in Fig. 3.8.
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Fig. 3.8: normalized dissipation per
time step Wyi./Wy for different relative
accuracies ¢ in case of shakedown

Fig. 3.9: normalized rigid body shift per
time step Us/Upmaz for different relative
accuracies € in case of shakedown

Afterwards for n > 5, dissipation and thus trailing edge slip only occurs exactly in the
reversal points of the rolling motion. The dissipation then decreases constantly with each
half period and finally reaches a level, that depends on the requested relative accuracy
of the output variables €. The normalized dissipation is in the range of 10~7 — 1073 at
the end of the process®. The corresponding rigid body shift per time step AUj is given
in Fig. 3.9 and shows that the dissipation in the steady state is caused by a numerical
effect. There occurs a characteristic back and forth motion in the region of constant
dissipation, which lacks any physical background. A constant tangential force, as it is
the case here, cannot produce a reciprocating motion in the tangential direction. Besides,
for elastically similar materials (5 &~ 0), slip always occurs in the same direction, that

3For the parameters used in the simulation this corresponds to 2-1071* J, i.e. the rest mass-energy
of elementary particles.
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is given by the tangential load [29]. Thus reversing slip cannot occur as fr = const..
Additionally, the amplitude of the shift is quite small again®. One can conclude that
both, the characteristic motion and the according dissipation, are most likely caused by
the iteration process. It is based on a Newton-Raphson procedure [88], which does not
improve the solution any more, when the requested relative accuracy is reached. This
corresponds exactly to the system behaviour in the steady state as shown in Fig. 3.8 and
Fig. 3.9 for n > 10. Taking into account the arguments above, the residual dissipation
and rigid body shift can be neglected. Consequently, neither slipping nor dissipation will
occur when the new equilibrium has been reached. One can conclude that the system
response is a true frictional shakedown. Reversing slip will not occur as the direction of
the tangential force does not change during the oscillation [29]. Figure 3.9 shows that
the new equilibrium is reached after n ~ 10 cycles. After this, the only displacement is
the non-physical back and forth motion.

3.2.1 Contact Configuration after Shakedown

In order to analyse the contact configuration in the new equilibrium, the CONTACT
model with world fixed approach, see appendix B.2, and 108 x 89 quadratic discretization
elements with a side length of Az, Ay = 0.11 mm and the parameters of the experimen-
tal setting as described in section 5.1.1 in Tab. 5.1.1 is used. Figure 3.10 depicts the
normalized traction 7 (z,y) /upo after shakedown, where py denotes the static maximum
pressure at (z,y) = (0,0) [55]:

2 (d\"
po=2E (R) , (3.2.3)
0.8
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y/a —1-1 z/a
Fig. 3.11: traction 7 (x,y = 0) /upo af-
Fig. 3.10: traction 7 (x,y) /upo after ter shakedown at the centre line aligned
shakedown for w = 0.24 and fr = 0.56 parallel to the rolling for w = 0.24 and
(CONTACT model) fr =0.56 (CONTACT model)

4This corresponds to 5 nm for the experimental parameters.
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It shows that in the new equilibrium, there occur three characteristic contact regions.
These are illustrated in Fig. 3.11 where the normalized traction is shown along the centre
line aligned parallel to the rolling, i.e. 7 (z,y = 0). In the centre occurs the stick region,
where the displacement of particles u, must match the shakedown displacement ugy in
order to meet the sticking condition. Adjacent thereto occurs the slip region, where
the tangential stress equals the traction bound that appears at the reversal point of the
rolling. Finally, at the outside of the contact, occurs the zero traction region. Here, the
traction vanishes as the sphere is periodically released and no trailing edge slip occurs
in shakedown state. The total contact after shakedown is configured as follows:

stick-region: U, = const. ,
slip-region: 7= pup , (3.2.4)
zero-traction: T=0.

The according normalized tangential displacement of particles in the contact region
ug (2,y) = Uy (2,Yy) /Unas is depicted in Fig. 3.12. It shows that the stick region in
the centre is slightly spindle shaped, see also Fig. 3.15. Figure 3.13 gives the centreline-
displacement of particles u, (x,y = 0). In the stick region the displacement u, corre-
sponds to the constant shakedown displacement wuq.
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y/a x/a Fig. 3.13: tangential displacement

ug (x,y = 0) after shakedown at the cen-
Fig. 3.12: tangential displacement tre line aligned parallel to the rolling for
ug (x,y) after shakedown for w = 0.24 w = 0.24 and fr = 0.56 (CONTACT
and fr = 0.56 (CONTACT model) model)

The displacement of particles u, (z,y) for a given traction 7 (x,y) and contact area is
determined by the potential functions of Boussinesq and Cerruti [56]. However, even if
the exact distribution of 7 (z,y) is identified, it remains vague whether a closed solution
of the integral of this classical approach exists. Instead, the MDR model as introduced
in section 3.1.2 is used, where the displacements can easily be identified from kinematic
relations. Figure 3.14 shows ug (z) for the MDR model. The blue line symbolizes the
static displacement before shakedown and the red line the displacement after shakedown.
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As for the initial three dimensional case, there remain three contact regions. The stick
region in the centre is delimited by the stick radius after shakedown csq. Here u, matches
the shakedown displacement u,g, which is increased in comparison to the static value
Ustat- Adjacent to the stick region occurs the slip region which is delimited by the slip
radius b. In this region, the tangential spring forces match the lowest friction bound
of the process, which occurs exactly at the reversal points of the rolling. Finally, at
the outside of the contact area occurs a region in which the displacement and hence
the tangential force is zero due to the alternating release of the springs. In order to
determine the contact configuration, it is briefly returned to the dimensionful notation.
Here, the normal and tangential spring forces f, and f, are given as:

fz(z) = Ak U, (x) and f, () = Ak, Uy (2) . (3.2.5)
The minimal normal displacement is reached in the reversal point of the rolling:

(zFW)?

U,(x)=d— 7

for —axW <z <axW. (3.2.6)

Thus, together with the friction bound f, () = uf. () and equation (3.2.5) the tan-
gential displacement in the slip region yields:

Up () = p=2 Uz () = iy 7

E* E* d_(m+W)2
G *

) for coq < |z| <b. (3.2.7)

At position x = c¢g4g this must exactly match the shakedown displacement what deter-
mines the missing stick radius:

Usd =U; (l‘ = Csd) 5 (328)
E* (Csa + W)?
=== - 2.
& Cyq = (d—G*U)R—W (3.2.10)
sd = e s . 2.

The slip radius directly depends on the rolling amplitude and is given as:
b=a—-W. (3.2.11)
In summary the contact configuration after shakedown for the MDR, system reads:

stick-region: 0 < |z| <cyq = Uy (z) =Usyq,
N 2
slip-region:  cgg < || <b =Uy(z) = pg* (d - %) , (3.2.12)
zero-force: b<|z|<a =U;(z)=0.
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With the complete contact configuration being known, it is possible to determine the
equilibrium condition. After shakedown, the external tangential force Fpr must match
the overall tangential force of the springs:

FT:/ dF :/ G*U, (z)d | (3.2.13)
F Lc

where L. denotes the contact length. With the symmetric contact configuration this
yields the following integral:

Cg b 2
Pr = 2/ "G Udr + 2/ WE* (d - (“RVV)> dz . (3.2.14)
0 Csd

Finally, inserting equations (3.2.10) and (3.2.11) into (3.2.14) gives the equilibrium con-
dition in normalized form:

fr=1- gwusd — (1 —usg)”* . (3.2.15)
Equation (3.2.15) specifies the relation between tangential load fr, oscillation amplitude
w and shakedown displacement usy. Thus, on the one hand it enables to determine wu gy
for a given combination of fr and w using numerical solving procedures. On the other
hand, it is possible to derive the shakedown limits, i.e. the maximal values for fr and
w for which a safe shakedown occurs. Both is shown in section 3.2.2.
However, the equilibrium condition (3.2.15) is the direct result of the MDR, which
is based on the assumption of rotational symmetry of the contact region [67]. Fig-
ure 3.15 gives the tangential displacement in the contact region computed with the
three-dimensional simulation. The contour lines show that the distribution of tangential
displacement is slightly elliptic or spindle shaped. This can be seen especially at the
stick region of constant displacement in the centre. Consequently, a small deviation in
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the relation between loading and oscillation amplitude of equation (3.2.15) is expected.
Considering this, the mapping parameter  is introduced, such that:

fr=1— kwigg — (1 —ug)”?. (3.2.16)

3.2.2 Shakedown Limits

Expression (3.2.16) enables the prediction of the shakedown displacement ugq for a given
combination of f7r and w below the shakedown limits. The unknown mapping parameter
K is gained via comparison with the results of the experiments, where the goodness of the
fitting procedure is given in appendix A.1.3 in Tab. A.1.1. The fitting indicates k = 1.
Finally, this yields the following expression for the relation of shakedown displacement,
tangential force and oscillation amplitude:

fr=1—wusg — (1 —ug)” . (3.2.17)
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Fig. 3.16: shakedown displacement usq as a function of the tangential force fr for differ-
ent amplitudes w determined with equation (3.2.17). The oscillating rolling increases the
displacement with respect to the static value ugtq¢

Figure 3.16 illustrates uzqg as a function of fp for different w. The solid lines show the
analytical results of (3.2.17), whereas the experimental results are indicated by the error-
bars and marks. The asterisks depict the results for the three-dimensional CONTACT
simulation, where values for tangential forces close to the shakedown limit are not given,
because the iterative solution procedure of CONTACT lacks robustness in this case [88].
As mentioned before, it shows that wugg is increased in comparison with the static value
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Ustat- 1t 18 also known that in the case that the oscillating rolling stops to soon, the final
displacement might differ from this theoretical shakedown value [25]. In the experiments,
the shakedown state is already reached after n &~ 10 rolling periods. This corresponds to
the simulation results shown in the beginning of section 3.2. The dotted line in Fig. 3.16
indicates the maximal displacement for different amplitudes that is achieved, before the
oscillation leads to a complete failure of the contact. In this case, the stick radius cgg
is zero, which in combination with equations (3.2.10) and (3.2.17) gives the maximal
tangential force:

Jriim =1 — Wiim (3.2.18)
and the maximal displacement:
Ulim = 2fT 1im — f%,lim . (3.2.19)
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Fig. 3.17: maximal amplitude wy;, as Fig. 3.18: maximal displacement w;,
a function of the tangential force fr jim as a function of the tangential force
determined with equation (3.2.18) fr1im determined with equation (3.2.19)

Figure 3.17 and Fig. 3.18 give the analytical (solid lines) and experimental (error-bars
and marks) results for the shakedown limits. For medium tangential forces, both wy;y,
and w, show strong agreement with the theory. Fig. 3.17 gives wyip, = 1 — fr1im since
in the experiments, the maximal amplitude is identified by increasing it stepwise while
fr is kept constant. The exact experimental procedure for the determination of the
shakedown limits is described in section 5.1.4.

These maximal values correspond to the analytical shakedown limits for the oscillating
rolling contact. Thus, for a given oscillation amplitude w, the maximum tangential force
fr1im to achieve a safe shakedown can be identified and vice versa. Additionally, since
friim < 1, it turns out that in case of the oscillatory elastic rolling contact, shakedown is
accompanied with a significant reduction of the tangential loading capacity. This effect
must be considered in the design and construction of frictional contact systems under
the influence of vibrations of the type that is being regarded here.
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3.3 Ratcheting of the Oscillating Rolling Contact

In case that fpr or w exceed the shakedown limit stated in equation (3.2.18), i.e. fp >
fT.1im O W > Wy, the contact fails and frictional ratcheting occurs. At first the system
responses as in the shakedown case. The rolling causes alternating slipping processes
at the actual trailing edge and the initial sticking area in the centre decreases. In turn
this increases the rigid body displacement within every period. As shown in Fig. 3.19
the initial sticking area vanishes completely after only a few rolling periods. Thus, the
system does not reach the shakedown equilibrium. Instead, one side of the contact
alternately sticks, while the other slips in dependence on the actual rolling direction.
This leads to an accumulated rigid body displacement of the substrate also referred to
as ratcheting or walking [27, 28, 29] as shown in Fig. 3.4.

slip
. ‘ heting Ratc

n=~0 n =0.25 n=26 n=2~8.9

Fig. 3.19: distribution of stick (black) and slip (grey) area in case of ratcheting after
various numbers of rolling periods n for w = 0.24 and fr = 0.8 (CONTACT Simulation).
Slipping occurs on the actual trailing edge while the actual leading edge sticks

The displacement per period, respectively the incremental displacement Aw is an in-
creasing function of fr and w, as depicted in Fig. 3.21. Here marks and error-bars
depict experimental results. Solid lines give an approximation function which is gained
on basis of the MDR model. For this purpose at first a parameter study is conducted
using the incremental MDR-simulation as described in appendix B.1. This shows that
Aw is proportional to the supercritical portion of the oscillation amplitude:

Au=n(w — wyp) . (3.3.1)

The constant of proportionality 7 is a function of w4 and is displayed in Fig. 3.20. The
blue line gives the numerical results on basis of the MDR, simulation. The red line gives
the approximation function:

Nfit = 4‘77\/ Ustat (332)

which is the outcome of a linear regression analysis with uge: as the regressor. For
static displacements in the region of 0.2 < wuge < 0.8 this expression differs +5%
from the results of the MDR simulation. The resulting function is then adapted to the
experimental results what yields 7ezp ~ v/2ustq¢ and thus:

Au = 2ugspqr (W — Wiipy) (3.3.3)

40



Chapter 3. Shakedown and Ratcheting in Incomplete Contacts

The goodness of the fitting is given in appendix A.1.3 in Tab. A.1.1. The small deviation
between 77 and 7., can again be explained with the violated rotational symmetry®,
which is one of the basic assumptions of MDR. Finally, for consistency reasons, equa-
tion (3.1.2) is inserted what gives the function that is depicted in Fig. 3.21:

Ay = \/2 (1 —(1- fT)2/3) (W — W) - (3.3.4)

It must be noted that wy;,, also depends on fr, as stated in equation (3.2.18). The
results show qualitatively good agreement with those for the walking of a rocking punch,
as examined by Mugadu et al. [27].
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Fig. 3.21: incremental displacement Au
as a function of the tangential force fr for
different oscillation amplitudes w in case
of ratcheting. Solid lines give approxima-
tion function (3.3.4)

Fig. 3.20: coefficient i as a function of
the static displacement. Blue line gives
results of MDR simulation and red line
gives approximation function (3.3.2)

Once the oscillating rolling stops, the incremental displacement stops as well. Thus, the
ratcheting effect must not only have a negative impact, but can also be used for the
generation and control of small displacements in case that an increase of the tangential
loading is impossible or if high accuracy is needed as in micro-electromechanical systems
(MEMS). Using equation (3.3.4) one can calculate this supercritical system response.

5In fact the contact region isn’t even axial symmetric for ratcheting of the oscillating sphere.
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3.4 Influence of the Alignment of Load and Oscillation

In addition to the system introduced in section 3.1, also the case of oscillation and
tangential loading being perpendicular to each other is examined. This setting is shown
in Fig. 3.22 (b) where W describes the rolling amplitude of the centre of the sphere in
the y-direction.

—>
Fr
/////ﬂ//// \<///// . = .
p="0 substrate e U
(a) static tangential contact (b) perpendicular rolling

Fig. 3.22: (a) static tangential contact and (b) oscillating, elastic rolling contact with the
lateral motion of the sphere W, being perpendicular to the tangential loading F7

The normalization of the parallel setting given in equation (3.1.4) is used for the per-
pendicular setting. Likewise, tangential forces below the maximum holding force and
oscillation amplitudes smaller than the contact radius are assumed. Only numerical re-
sults of the CONTACT simulation are reported here. For the simulation of a both cases
a world fixed approach with 61 x 50 quadratic discretization elements with side length
Az, Ay = 0.2 mm and the parameters of the experimental setting as described in section
5.1.2 in Tab. 5.1.2 is used. The numerical model is described in appendix B.2.

0.45 T
B

S ’\ N
| g
g 04} = =
D Usd 8
£ el
a,
% Ustat P || rcé)

0.35 0l

| | | T
0 2 4 6 8 10
periods n periods n

Fig. 3.23: displacement of the substrate Fig. 3.24: displacement of the substrate
u for w || fr and w L f7 with w = 0.23 u for w || fr and w L fr with w :.0'23
and fr = 0.46. Displacement stops and and fr = 0.77. Displacement continues
shakedown occurs and ratcheting occurs

The system response as a result to the oscillation is the same in both cases, parallel and
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perpendicular. Again, it shows that the oscillatory rolling initially leads to an increase of
the rigid body displacement with respect to the static value, as depicted in Fig. 3.23 and
Fig. 3.24. In case that fr and w fall below the shakedown limits, the displacement stops
after a certain number of periods and a shakedown occurs as in Fig. 3.23. The system
reaches a new equilibrium and the displacement refers to the constant, time independent
shakedown displacement u = ugq [25] as described in section 3.2. Otherwise, if fr and w
exceed the shakedown limits, the contact fails and the displacement continues with the
oscillation as in Fig. 3.24. An accumulated displacement described as ratcheting occurs
[27] as described in section 3.3.

3.4.1 Contact Configuration after Shakedown

Whether the alignment is parallel or perpendicular, the system response to the rolling
is the same. Alternating slip processes occur at the actual trailing edge that increase
the rigid body displacement. Finally, the system reaches a new equilibrium where three
characteristic contact regions occur as depicted in Fig. 3.25. Here the traction 7 along
the centre line aligned parallel to the rolling is given for both settings, i.e. 7 (z,y = 0) for
w || fr respectively 7 (z = 0,y) for w L fr. The parallel centre lines are also symbolized
by the dashed lines in Fig. 3.29.

0.8 \ 0.8 ‘
- X — Il
< H--- L1 PN - < H— 1 -
S 0.6 AN\ S 0.6
\ ’ \ ~
= 0 \ =
'g 0.4 _——__,» \ | _5 0.4 |
2 0.2] stick- slip- \ | zero-| = 0.2 stick- slip-— ||
region region | tract. region region
\
0 | | | O | | | |
0 02 04 06 08 1 0 02 04 06 038 1

coordinate z/a (||), y/a (L) coordinate y/a (]]), z/a (L)
Fig. 3.25: traction 7/upo after shake-
down along the centre line aligned paral-
lel to the rolling for w || fr and w L fr
with w = 0.23 and fr = 0.46 (CON-
TACT model)

Fig. 3.26: traction 7/upy after shake-
down along the centre line aligned per-
pendicular to the rolling for w || fr and
w L fpr with w = 0.23 and fr = 0.46
(CONTACT model)

It shows that the contact configuration is very much the same in both cases the only
difference being the alignment, i.e. x for w || fr and y for w L fr:

stick-region:
slip-region:
zero-traction:

U, = const. ,
T =Hp,
7=0.

(3.4.1)
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Fig. 3.26 gives the traction aligned perpendicular to the rolling direction. The perpen-
dicular centre lines are symbolized by the solid lines in Fig. 3.29. In both cases the
zero-traction region almost vanishes along the perpendicular line. However, the trac-
tion distribution slightly differs for both cases. Along the parallel centre line shown in
Fig. 3.25, it is higher for the perpendicular setting. And vice versa, along the perpen-
dicular centre line, which is depicted in Fig. 3.26, it is higher for the parallel case. The
difference of the displacement of particles is more obvious, as illustrated in Fig. 3.27 and
Fig. 3.28, which show w, along the centre lines. In accordance with the observations of
section 3.4, u, in the stick region is higher for fr | w . However, along the parallel cen-
tre line, u, in the slip- and zero traction-regions is higher for w || fr. This is expected,
since the overall tangential force is the same in both cases and a higher displacement in
the centre is equalized by a lower displacement in the outer region. The difference in the
traction and displacement distribution is caused by the evolution of the contact during
the shakedown process. As a result, the direction of the oscillation influences the final
shakedown displacement.

R e I, a & 04 a
g . A ] _
: [ e : ||
8 -== J_ N . b 8 — J_
= 0.2 oo = 021 M
o o8
< stick- slip- Zero- = sticke slip-
region region | tract. region region
0 | | | O | | | |
0 02 04 06 038 1 0 02 04 06 08 1
coordinate z/a (]|), y/a (L) coordinate y/a (||), z/a (L)
Fig. 3.27: tangential displacement wu, Fig. 3.28: tangential displacement wu,
after shakedown along the centre line after shakedown along the centre line
aligned parallel to the rolling for w || fr aligned perpendicular to the rolling for
and w L fr withw = 0.23 and f7 = 0.46 w || fr and w L fp with w = 0.23 and
(CONTACT model) fr =0.46 (CONTACT model)

3.4.2 Shakedown Limits for the Perpendicular Case

As in the parallel case, using the MDR the perpendicular rolling contact is mapped to
a one-dimensional elastic foundation and a rigid indenter with stretched radius. The
influence of the oscillating rolling on the vertical displacement of springs in contact U,
can again be directly deduced from kinematic relations. In the reversal points of the
rolling for both settings applies:

(s¥ W)’

U,(s)=d— 7

for —axW <s<axtW. (3.4.2)
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Here, the coordinate s points in the z-direction for w || fr and in the y-direction for
w L fr, as shown in Fig. 3.29. The influence of the rolling on the normal contact is
thus identical in both cases®. However, since the MDR requires rotational symmetry
and decoupled systems, the tangential displacements and the contact region must be the
same for both settings’. Consequently, the equilibrium condition is the same for both
settings:

fr=1- gwusd —(1- usd)g/2 . (3.4.3)

However, a different relation between loading and oscillation amplitude, i.e. a different
mapping parameter s, is expected:

w | fr= fr=1-rwug — (1 —ua)”* (3.4.4)

w L fr = fr=1-k1wuq— (1 —ua)” . (3.4.5)

Comparison with the simulation and the experiments yields the different mapping pa-
rameters for the two cases:

k=1 and rp =1.1. (3.4.6)

what gives:
| fr=fr=1-wugq— (1—uyq)”*, (3.4.7
wl fr=fr=1-1lwug — (1 —ua)? . (3.4.8)

Again, the goodness of the fitting is shown in the appendix A.1.3 in Tab. A.1.1.

RID\‘\ ,// \\\‘
! o 1
z, Y ' ‘
TA.T _ < \ 2W ) / Fr
S 7
Y /U
Ve

Fig. 3.29: equivalent one-dimensional MDR model. The control variable s is aligned in the
a-direction for the parallel case (left) and aligned in the y-direction for the perpendicular
case (right)

Fig. 3.30 shows the shakedown displacement us; as a function of the tangential force fr
for different amplitudes w. Dashed lines are computed with equation (3.4.7) and solid
lines are computed with equation (3.4.8). The error-bars and marks show experimental
results for w L fp. Experimental results for w || fr are given in section 3.2. The

5The reason for the change of vertical displacement, i.e. parallel or perpendicular rolling, does not
make a difference for one specific spring.
7At least within in the MDR model.
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corresponding CONTACT simulation results are indicated by the asterisks. As for the
parallel case, values close to the shakedown limit are not given because CONTACT lacks
accuracy close to the traction bound [88]. Comparison of the theoretical, experimental
and numerical results shows that the shakedown displacement wu,y is slightly higher for
a perpendicular setting of tangential load and rolling direction.
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Fig. 3.30: shakedown displacement usq as a function of fr for different w. Solid lines give
(3.4.8) and dashed lines give (3.4.7). The oscillating rolling increases the displacement in
comparison to the static value ugs,:. Perpendicular alignment w | fr leads to higher ugq
than parallel alignment w || fr

The dash-dot line gives the maximal displacement wy,, as a function of fp, that is
achieved before complete sliding occurs and the contact fails. With the vanishing stick
radius condition c¢sq = 0 and equation (3.2.10) one gets the same expression for the two

cases:
w || fr = uim =1— w%lim ’ (349)
w L fr = wim =1 — Wiy, - (3.4.10)

However, the relations between maximal tangential load and amplitude differ slightly.
With w;,, and equation (3.4.7) and equation (3.4.8), the maximal tangential forces read:

w | fr = fr = frim=1— Win , (3.4.11)
w L fr= fr = frim=1-11wim + 0.1w},, . (3.4.12)

The shakedown limits are depicted in Fig. 3.31. Experimentally, the maxima are identi-
fied by a stepwise increase of the amplitude, while the tangential force is kept constant,
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see also section 5.1.4. The first amplitude for which the contact fails is identified as the
shakedown limit. Thus, Fig. 3.31 shows wy;,, as a function of f7 . Again, experimen-
tal results are illustrated with triangles and error-bars and are only given for w L fr.
Experimental results for w || fr are given in section 3.2. The theoretical values are
represented by the blue line for w || fr and by the red line for w L fr. It shows that
Wy 18 slightly lower for w L fr. However, the difference is in the range of the relative
deviation. Additionally, Fig. 3.32 shows the maximum shakedown displacement wy;,, as
a function of fr ;. Experimental values are again only given for w L fr, see section 3.2
for results of the parallel case. The experiment shows relatively good agreement with
the theory, which is indicated by the red line for w L fr respectively the blue line for

w || fr.
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Fig. 3.31: maximal amplitude wy;,, as a
function of the maximal tangential force
friim for w fr and w L fp. Triangles
give the experimental results for w L fr,
solid lines gives the theoretical values of
(3.4.11) and (3.4.12)

Fig. 3.32: maximal displacement
as a function of the maximal tangential
force fryim for w || fr and w L fr.
Circles give the experimental results for
w L fr, solid lines gives the theoretical
values of (3.4.9) and (3.4.10)

With the shakedown limits defined in equations (3.4.11) and (3.4.12), one can compute
the maximal tangential force to achieve a safe shakedown for a given rolling amplitude
and vice versa. In addition, one can determine the corresponding maximal displace-
ment. The results show that shakedown is accompanied with a significant reduction of
the loading capacity, as fr,m < 1 applies in both cases. Additionally, for the same
amplitude, the parallel setting could theoretically bear slightly higher tangential load,
but the difference is only minor. Thus, in force-locked connections with oscillations of
this type, it might be more convenient if tangential loading and oscillation are aligned

parallel.

3.4.3 Ratcheting for the Perpendicular Case

Once the shakedown limits are exceeded, the alternating slipping processes at the trailing
edge will be continued with the rolling. In turn, the system does not reach a new
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equilibrium and the contact fails. As shown in section 3.3, ratcheting occurs, where
one side of the contact slips, while the other sticks. This accumulated slip leads to a
rigid body motion [27]. Both, experiments and simulations show that the incremental
slip Au, i.e. the displacement per period, is an increasing function of fr and w. As
the difference for the two settings, parallel and perpendicular, is only minor, the same
approximation function as in section 3.3 is used. The incremental displacement Aw for
w > Wym 1s given as:

Au=n(w — Wiy) - (3.4.13)

Again, it should be emphasized that wy;,, also depends on fp. The constant of propor-
tionality n is a function of fr, as shown in section 3.3. Adaption to the experimental
results finally gives:

w | fr=Au= \/2 (1 —(1- fT)2/3) (w — wym) (3.4.14)

wariAu:¢Mﬁ_u_fﬂ%yw_mM% (3.4.15)

where the goodness of the fits is shown in appendix A.1.3 in Tab. A.1.1. It turns out that
the incremental displacement Aw is significantly higher for the perpendicular setting as
could be seen in Fig. 3.33. Here, experimental results are symbolized by marks and
error-bars and are only given for w L fr. Dotted lines give equation (3.4.14) and the
solid lines give equation (3.4.15). The ratcheting effect can be used for the generation
of small displacement in case that an increase of the tangential loading is not possible
or high accuracy is needed as in MEMS devices. The perpendicular setting is more
convenient as for the same rolling amplitude and tangential force it generates a higher
displacement.
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Fig. 3.33: incremental displacement Aw as a function of the tangential force fr for different
oscillation amplitudes w in case of ratcheting for w || fr and w L fr. Marks and error-bars
give experimental results for w L fr. Dotted lines give the theoretical values of (3.4.14)
and solid lines those of (3.4.15)
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3.5 Oscillating Cylindrical Rolling Contact

One important extension of the oscillating rolling contact are cylindrical systems, since
such are often used in technical applications. Consider a tangentially loaded contact of
a rigid cylindrical body of length L and an elastic substrate, as sketched in Fig. 3.34
(a). As before, the radius of the cylinder R and the elastic moduli E* and G* of the
substrate, i.e. of the half-space, are effective quantities of two contacting bodies. Again,
dry friction with constant u, uncoupling displacements and a constant load regime Fy
and Fr are assumed. According to the Hertz theory [52] a pressure distribution® is
considered that is elliptic in the x, z-plane and constant in the y-direction:

p(x) = po (1 — <m>2>1/2 for—a<z<a. (3.5.1)

a

Here py denotes the maximum pressure in the centre and a is the half width of the
contact:

(3.5.2)

With p (z) as in equation (3.5.1) the indentation depth of the cylinder d reads [89, 90]:

2Fy (;(1“11(4))“11 <L>> _ (3.5.3)

a

d=

TE*L

ADT
bo__|_ ()
P "~ p - pressure
R4 N
0/ .
7 2 \ 7(x) - traction
I pe——— "
) \
T
I >
2a
(a) cylindrical contact (b) pressure and traction

Fig. 3.34: (a) tangentially loaded contact of a rigid cylinder with radius R and length L
and elastic half-space. (b) tangential contact with pressure p (z) and traction distribution
7 (z). Incipient sliding: contact width 2a and stick region with width 2c¢ in the centre

The tangential problem was derived independently by Cattaneo [59] and Mindlin [60]. A
good description of their procedure is given in [55] or [56]. Just as in the spherical case,

81n fact, the shape of the cylinder must rather slightly resemble to a barrel in order to achieve such a
pressure distribution in a real system [89]. However, such a profile is very difficult to manufacture and
correct only at the design load [52].
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which is briefly described in section 2.1.1 and section 2.1.2, a tangential force insufficient
to cause complete sliding, i.e. Fr < Fr ., = pFn, will lead to slipping only at the
boundary region of the contact area. The centre region —c < x < ¢ remains in a state
of stick, where the half stick width reads:

Fr\"
c=a (1 - MF:CV> . (3.5.4)

To maintain this condition known as incipient sliding, the traction in the contact 7 (z)
must be a superposition of two elliptical traction distributions of the Hertzian type as
in equation (3.5.1). In the complete contact region —a < x < a applies the traction:

71 () = ppo (1 - C’;)Q) " , (3.5.5)

while in the sticking region —c < z < ¢ a second term is added:

™ (@) = =79 <1 - (j)2> " (3.5.6)

The so called correctional term 7y reads:
c
To = MPOE (3.5.7)

and is given by the condition that the tangential displacement of particles must be
constant in the sticking region. Finally the traction in the static case is distributed as
sketched in Fig. 3.34 (b):

T(@)=711(z)+m(x) for 0<|z|<c,

7(x) =71 () for c<lz|<a. (3.5.8)

However, no exact solution is known for the tangential displacement of the substrate
Ustat, one exception being elliptical contacts, where the displacements are expressed in
terms of elliptical integrals [64, 91]. Even if the stress distribution is constant in the y-
direction, the problem cannot be treated as being two-dimensional due to the following
reason. In case of a two dimensional load, the displacement is decreasing logarithmically
with r being the distance from the loaded surface [56]:

r

U, x —kln () ) (3.5.9)
To

where k is the constant of proportionality. The constant rg is given by the condition

that the displacement vanishes far away from the contact. Thus, the displacement in the

centre of the contact depends on the choice 79 and approaches infinity” for ry — oco. It is

9Prescott has likened the situation to a load applied to an infinitely long rod fixed at one end. The
extension of such a rod caused by the application of any load would be infinite [90].
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therefore necessary to treat the problem as fully three dimensional, even if the stress is
constant in the y-direction. Again, the tangential displacement for a given traction 7 (z)
and contact area is in principle determined by the potential functions of Boussinesq and
Cerruti [56]:

L
2 c B 9
Ustat = Ux (07070) = % / / (1 s - + lf:;) (Tl (5777) + T2 (5777)) dfdﬁ
Lo
%
1 (11— €2
+= {/( Sy+’;3>n (€,n) dedn . (3.5.10)

-2

with G and v as equation (2.1.12) and s as in equation (2.1.5). Using equation (3.5.2)
and (3.5.4) and the traction as in equations (3.5.5)-(3.5.8) one can conduct a numerical
integration!® of equation (3.5.10). Finally, curve fitting gives an approximation for the

tangential displacement:
F 0.92
Ustat = Uo(l - (1 - uFTN)) . (3.5.11)

Here, Uy denotes the maximum displacement for Fr = pFy, which is also an approxi-
mation based on the indentation depth of equation (3.5.3):

2F 1 E*L
Uo = ppi ( (1+1n(4))+1n (1.8G*a)> . (3.5.12)

2
Again, the goodness of the fits is given in appendix A.1.3 in Tab. A.1.1.

3.5.1 Influence of the Oscillating Rolling

As for the spherical case, the static tangential contact is superposed by a slight oscillatory
rolling of the cylinder. Again, the amplitude W denotes the lateral movement of the
centre of the cylinder, as depicted in Fig. 3.35. Likewise, the overall macroscopic normal
and tangential forces are kept constant in magnitude and the rolling corresponds to a
rocking of the contacting bodies. The parameters of influence and the displacement are
normalized as:
_ Pr W U

fT - MTN’ w = ;a U = FO )
where a refers to equation (3.5.2) and U is the maximal static displacement as stated
in equation (3.5.12). Again, tangential forces below the maximum holding force and
oscillation amplitudes smaller than the half contact width are assumed:

(3.5.13)

fr<l and w<1. (3.5.14)

OEven as both, integration limits and integrand, are known and several advanced symbolic mathe-
matical software was used, it was unfortunately not possible to find a closed form solution.
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Thus, taken by itself, neither of the two factors leads to a failure of the contact, exactly
as in the spherical case.

Fig. 3.35: oscillating rolling contact of a rigid cylinder and an elastic half-space. The
centre of the cylinder rolls with amplitude W and the macroscopic forces are constant.
This corresponds to a rocking of the of the upper body

1.0 T T
. e Usd
= 0.09F - 3
8 E
£ 0.08] / i =
= 3
e w = 0.26 =
= 0.07 | Ustat —w =052 %
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Fig. 3.36: displacement u for different
oscillation amplitudes w and fr = 0.08.
Shakedown: displacement stops and sys-
tem reaches a new equilibrium

Fig. 3.37: displacement u for different
oscillation amplitudes w and fr = 0.58.
Ratcheting: displacement continues

Figures 3.36 and 3.37 give the displacement of the substrate u for different amplitudes
w. It is computed using the CONTACT model, see also appendix B.2. The parameters
of the experimental rig as in section 5.1.3 in Tab. 5.1.3 are used. The displacement
corresponds to the rigid body displacement between remote points within the cylinder
and the substrate as the sum of the elastic displacement and the accumulated shift per
time step. As one expects, the system response is equivalent to the oscillating contact
with spherical rolling body. In combination with the constant macroscopic load, the
rolling leads to an increased rigid body displacement in relation to the static value.
Figure 3.36 shows that the displacement stops after a few periods and the contact holds,
even if the rolling continues. The system reaches a new equilibrium and the according
displacement corresponds to the constant time independent shakedown displacement u g
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[25]. For this effect to occur, fr and w must fall below the shakedown limits, otherwise
the contact fails. As for the sphere, the accumulated shift per time step leads to a
continuing displacement, as depicted in 3.37. This is referred to as frictional ratcheting
or walking [27, 28, 29].

3.5.2 Contact Configuration after Shakedown

The system starts in equilibrium and the entire contact sticks. When the cylinder starts
rolling, the pressure drops at the actual trailing edge and increases at the leading edge.
In the reversal points the pressure is distributed as in Fig. 3.38 (a):

2\ /2
p(ﬂ?):p()(l—(J::FW)) for —a+W<z<atW. (3.5.15)
a

This causes slipping at the trailing edge, while at the leading edge the traction initially
remains constant. The resulting imbalance in the tangential direction increases the
rigid body displacement between cylinder and substrate u within every back and forth
movement. For sufficiently small fr and w, shakedown occurs and a saturation level is
reached after a certain number of periods, as shown in Fig. 3.36.

AT (2)
o |2¢4. stick-region
To—sd () "\ slip-region
o - () TR B ’ zero-traction
- 1—sd
K 0 ' |z ; 0\« 2b
fe————>] fe———]
2a 2a 2a
(a) pressure distribution (b) traction distribution

Fig. 3.38: (a) pressure distribution p (z) and contact region in the reversal points, caused
by the oscillatory rolling. (b) traction distribution 7 (x) and contact regions (stick-region,
slip-region, zero-traction) after shakedown

In the new equilibrium, there remain three characteristic contact widths, as depicted in
Fig. 3.38 (b). Firstly, in the centre region, the displacement must be constant because of
the sticking condition (stick region). Secondly, adjacent thereto occurs a region, where
the tangential stress equals the traction bound (slip region). Thirdly, at the outside of
the contact, the cylinder is periodically released and the tangential traction is zero (zero
traction). In summary this gives:

stick-region: 0 < |z| < ¢gq = U, = const. ,
slip-region:  cgg < || <b =T7=pup, (3.5.16)
zero-traction: b<|z[|<a =7=0.
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Chapter 3. Shakedown and Ratcheting in Incomplete Contacts

Here c¢yq denotes the half stick width and for b applies b = a — W. In order to deduce
the traction distribution, the slip region is considered firstly. In this region the traction
7 () must equal the friction coefficient times the minimal pressure distribution, that
appears at the reversal points of the oscillation, as stated in equation (3.5.15):

1/2
w 2
T1—sd (T) = p1po (1 — <m—; ) ) for cgg < |z| <b. (3.5.17)

In contrast to the static case, the traction in the centre region will be from a different
type as this region is neither released nor slipping at any time. However, one can proceed
in the Cattaneo [59] and Mindlin [60] manner and can propose that the traction in the
stick region is again a superposition of two Hertzian distributions:

N\ 2\ 72 2\ 2) 72
To—sd (T) = 01 (1 - <b) ) — T2 (1 - (C> ) for 0 <|z| <csqg. (3.5.18)
sd

Each of these tractions causes a parabolic tangential displacement [92] of particles in the
centre region. The total displacement is a superposition of the individual displacements:

o 21 9 722 9
U, (z) =Cy ot +Cy+ CsdE*x (3.5.19)

that must be constant in the stick region in accordance to the no slip condition. Figure
3.39 gives the displacement U, in the entire contact. It is computed using the CONTACT
model. The sticking condition yields:

. oU, Csd

Exx (.%') = O =0= 7199 = 7'217 . (3.5.20)

Further, the traction must be continuous at the edge of the sticking region x = c5q. With
equations (3.5.17), (3.5.18) and (3.5.20) this gives

Tl—sd (IE = Csd) = T2—sd ((L‘ = Csd) = To1 = (3521)

Finally, the complete traction 7 (z) after shakedown is distributed as in Fig. 3.38 (b):

stick-region:  0<z<c¢yy =7(x)="T2_sq(2),
slip-region: ¢y <z <b =7(x)=T71_54(2), (3.5.22)
zero-traction: b<zr<a =7(x)=0.

It must be noted that csq is still unknown. After shakedown, the integral of the traction
over the contact width £. = 2a must match the tangential loading per length:

Csd b
P
T /T(x)dx _9 / 7o s (@)d + 2 / s (2)da . (3.5.23)
Le 0

Csd
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With equations (3.5.17), (3.5.18), (3.5.20) and (3.5.21) this gives:

2
fr= . arccos (Céd + w)

1
i) (B ) sy
T a a (1 B CZ d)Z) %

Using numerical solving procedures this transcendent equation gives the unknown stick
radius cgq for different fr and w. The results are depicted in Fig. 3.40. For a mutual
verification cgq is also computed using the CONTACT model. Lines depict the results
using equation (3.5.24) and marks depict the results gained via simulation. Both solu-
tions show strong agreement. As one expects, the half stick-width decreases if f7 and w
are increased.

T T 1 ‘
S w = 0.26
0.6 . i~
S Jr =0.66 F 0.8 ow = 0.52 ||
- N8)
= < vw = 0.77
= = 0.6 o
£ 04 ] g
% fr=0.44 =
= %«:) 0.4 .
2 @
el | | .
0.2 fr = 0.22 = 0.2
| | | ~ O | | |
-1 =05 0 05 1 0 02 04 06 08 1
width z/a tangential force fr
Fig. 3.39: tangential displacement of Fig. 3.40: half stick width c,q after
particles u, for different fr and w = 0.26 shakedown as a function of fr for dif-
computed with CONTACT model. Dis- ferent w computed with (3.5.24) (solid
placement is constant in the centre lines) and CONTACT model (marks)

With these results, it is now possible to compute the missing traction constants 77 and
Too and thus 7 (z). Again, the simulation is used for a mutual verification. The traction
distribution for different fr is shown in Fig. 3.41. Here, the dashed lines show the CON-
TACT solution, whereas the analytical expression is denoted by the solid lines and just
given for one half of the symmetrical contact. Both solutions show strong agreement. As
one can see, the stick region decreases and the maximal traction increases with fr. Since
w is not changed, the slip radius b is constant for all forces considered. Figure 3.42 de-
picts the traction for different amplitudes w. Higher amplitudes decrease the stick region
and increase the periodically released area, i.e. the zero traction region. Additionally,
the magnitude of the remaining traction is amplified. This is because the remaining
area with non-zero traction decreases at a constant tangential force. This illustrates the
shakedown effect, where the residual force in the contact must be sufficiently strong to
withstand the tangential load and to prevent any further sliding [25].
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3.5.3 Shakedown of the Cylindrical Rolling Contact

With the traction after shakedown being known, it is possible to compute the according
tangential displacement of the substrate usqy. Again, the potential functions of Boussinesq
and Cerruti for symmetric 7 (z) [56] are used:

L
2 B 2
Usd—Ux(O,O,O)—lG//<1 V+V£3 )7'2 sd (§,m) d€dn
0

_ 2
/(1 =+ Vj )ﬁ sd (&, m)dédn , (3.5.25)

where G and v and s are as in equation (2.1.12). However, since the exact solution
for the half stick width cgg remains unknown, it is not possible to give a closed-form
solution for equation (3.5.25). Instead, equation (3.5.24) is used to compute cyq for
different fr and w. Subsequently, the results are inserted into equation (3.5.25) and
numerical integration procedures are used to get Usq. Finally, curve fitting tools are
used to compute an approximation for the normalized displacement as a function of fp
and w:

Usg =1 — (1 — f7)*% +0.3f7w . (3.5.26)

The goodness of the fit is given in appendix A.1.3 in Tab. A.1.1. The shakedown dis-
placement for different fr and w is given in Fig. 3.43. Solid lines give the results using
equation (3.5.26) and asterisks give the CONTACT simulation results. Error-bars and
marks indicate the experimental results. As for the sphere u4y is increased in comparison
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to the according static value ugq:. It shows that the bandwidth of the displacements is
narrower than for the spherical contacts.

1
o Z i 8 98 ratcheting
%081 O w=0.52
S
= v w=0.76
g s= = Ulim
g 0.6
=
&
2
e L
= 0.4
S
E AR
- '/I(E Ustat
<
Z o020 PZ |
0 A | | | N~ | |

| | |
0 0r 02 03 04 05 06 07 08 09 1
tangential force fr

Fig. 3.43: shakedown displacement us4 as a function of the tangential force fr for different
oscillation amplitudes w in case of a cylindrical roller. Solid lines give theoretical result
(3.5.26). The oscillatory rolling increases the displacement by comparison with its static

value Ugtqr

The dash-dot line shows the maximal displacement w;;,, that is reached before complete
sliding occurs and the contact fails. If so, the stick width csq goes to zero. In combination
with equation (3.5.24) this gives the exact analytical relation between maximal tangential
load frim and maximal amplitude wyjy,:

2 1/2
JTlim = — (arccos (Wiim) — wlim(l - (whm)2) / ) . (3.5.27)
s
Curve fitting again gives approximations for the inverse relation:
Wim = 1 = [P » (3.5.28)
as well as for the maximum displacement, see appendix A.1.3 and Tab. A.1.1:

Wim = [ 5m - (3.5.29)

The equations (3.5.27) and (3.5.28) enable to specify the highest possible amplitude to
maintain a safe shakedown for a given tangential force and vice versa. Again, the CON-
TACT model is used for verification. Starting points are rather small amplitudes that
are increased stepwise until ratcheting occurs. Fig. 3.44 depicts the maximum amplitude
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as a function of the tangential force. Equation (3.5.28) is symbolized by the solid line.
Triangles give the simulation results, where upward pointing ones depict the last shake-
down amplitude (sd) and downward pointing ones depict the first ratcheting amplitude
(rt). Also experimentally, the maxima are identified by a stepwise increase of w, see
section 5.1.4 for a description of the experimental procedures. The results are shown by
asterisks (exp) and error-bars. The deviations between equation (3.5.28) and the exper-
iments are relatively high. The good agreement with the numerical values indicates a
faulty experiment. One explanation for this might be a deviation of the actual pressure
distribution from the assumed cylindrical one, as discussed in section 5.1.5. Besides, the
determination of the maximal amplitude is not straight forward but relatively artificial
as described in section 5.1.4. Figure 3.45 shows the according maximum displacements.
Formula (3.5.29) (solid line), simulation (triangles) and experiment (asterisks and error-
bars) are in good agreement.
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0.2 3 = 0.2] 1
O | | | | 0 | | | |
0 02 04 06 0.8 1 0 02 04 06 08 1
tangential force frim tangential force frim
Fig. 3.44: maximal amplitude wy;,, as Fig. 3.45: maximal displacement wu;,
a function of the tangential force fr iim. as a function of the tangential force
Solid lines give (3.5.28) frim- Solid lines give (3.5.29)

3.5.4 Ratcheting of the Cylindrical Rolling Contact

As for the sphere, ratcheting occurs if the shakedown limits stated in equations (3.5.27)
and (3.5.28) are exceeded. Slip occurs on the actual trailing edge of the contact that
accumulates to a continuing rigid body motion. The incremental slip per period Au for
different fr and w is given in Fig. 3.46. The solid lines show the approximation function:

Au = 0.64f7 (w — wyim) (3.5.30)

which is computed using a linear regression wtih usq; being the regressor, see details
in appendix A.1.3 in Tab. A.1.1. For this purpose the CONTACT model is used to
increase the number of data points. The obtained coefficient is then adjusted to the
experimental data. Except for low amplitudes w experiment and equation (3.5.30) are
in good agreement. It shows that Aw is lower for the cylindrical contact than for the
spherical ones, where the incremental displacement is given in Fig. 3.33.
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Fig. 3.46: incremental displacement Aw as a function of the tangential force fr for different
oscillation amplitudes w in case of ratcheting. Marks and error-bars give experimental
results, solid lines gives the theoretical value of (3.5.30)

3.6 Summary

As generic models for force-locked connections under the influence of vibrations, oscil-
lating rolling contacts between spherical and cylindrical rollers and a flat substrate have
been introduced. Basic assumptions are a constant load regime Fp and Fl, dry friction
of the Coulomb type with a constant y and linear elastic material behaviour. Addi-
tionally, the systems are assumed to be quasi-static and from an uncoupled type, i.e.
Dundur’s constant 8 = 0, meaning that variations in the normal force will not induce
any tangential displacement and vice versa.

It shows that slight oscillatory rolling of the roller varies the pressure distribution and
the contact region within every cycle. In turn, this leads to partial slip and macroscopic
rigid body displacement of the substrate. Depending on both, oscillation amplitude w
and tangential loading fr im, the displacement stops after a few periods or continues.
The former case is referred to as shakedown and the latter as ratcheting. The exact
shakedown limits for both, oscillation amplitude and tangential load for the three cases
considered have been derived: spherical roller with parallel and perpendicular alignment
of load and oscillation and cylindrical roller with parallel alignment. In all three cases it
turns out that shakedown is accompanied with a significant reduction of the tangential
load capacity, which is approximately:

friim = 1 — Wiim . (3.6.1)

In addition, using the results one can predict the rigid body motion for the shakedown
case and the incremental slip in case of ratcheting. The comparison of experiment and
theory shows that the method of dimensionality reduction (MDR) has proven to be a
suitable instrument for the modelling of oscillating rolling contacts.
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Chapter 4

Dynamic Influences on Sliding
Friction

System dynamics is a crucial factor for the macroscopic frictional resistance of dynamic
systems [5, 9, 45]. In the following chapter an explanation for the underlying effects
is proposed and a theoretical model is introduced that captures the basic mechanisms.
A non-dimensional form of the governing equations of motion is derived and the non-
dimensional parameters are identified. In the next step numerical simulation is used
to determine the parameter range that enables to induce a significant reduction of the
frictional resistance. Finally, the theoretical outcomes are compared with experimen-
tal results. Taken together, it shows that characteristic self-excited oscillations with
vibrations in the normal direction can lead to an almost vanishing frictional resistance.

4.1 The Micro-Walking Machine

A potential basic system that captures important dynamic effects that enable a signif-
icant reduction of the apparent frictional resistance could be as follows. Assume an
elastic specimen which is pressed on a rigid substrate by the macroscopic normal force
Fy. In the tangential directional direction it is additionally loaded with the macroscopic
tangential force Frp, such that it slides with a constant velocity vy like in Fig. 4.1 (a).

T

T
z
Vo F T
— I~
%
(a) elastic specimen (b) free body diagram

Fig. 4.1: basic model for the micro-walking effect. (a) elastic specimen moving on a rigid
substrate with constant velocity vg. (b) free body diagram in rotated position with contact
forces of contact spot i
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As in real contacts, specimen and substrate will not touch over the entire apparent
contact surface but in several small contact zones [3]. Each contact zone will exhibit
its own stress distribution in the normal and tangential direction which is represented
by a normal and a tangential force Fy; and Fp; as depicted in Fig. 4.1 (b). Only the
case of dry friction is considered and it is assumed that Coulomb’s law with a constant
coeflicient pg = pui = p applies in the contact spots. Thus, any distinction between static
and kinetic friction and the variation of the latter with sliding speed are neglected, as
discussed in section 2.3.3. The coefficient p reflects all microscopic influences of the
surface that depend on the material pairing. According to the local sticking condition a
specific spot sticks, whenever:

’FTZ" < /LFNi . (4.1.1)
Otherwise, the contact spot slips and is subjected to a local resistance force:

Due to the kinematic coupling between the normal and tangential translation and the
rotation of the rigid body, the forces in the contact spots will vary in time. This effect
significantly influences the apparent frictional resistance [10, 45] as will be explained in
the following. Assuming that there are overall n similarly loaded contact spots in the
system, one can define the theoretical average normal force acting in one contact spot:

Fyn; = v . (4.1.3)
n

Due to the elasticity of the specimen, the actual status of a specific contact spot, i.e.
sticking or slipping, is independent from the actual status of the rigid body. Thus, the
rigid body can move in the tangential direction while a single spot is sticking. In addition,
the distance between the spots is assumed to be sufficiently large so that the spots are
independent. The relative displacement between substrate and bulk body therefore only
changes the elastic deformation in the vicinity of a sticking spot and a slipping spot
simply moves along with the bulk body. Under these assumptions the system will be
able to micro-walk on the substrate. In this case micro-walking describes a particular
behaviour of the contact spots:

e a contact spot only slips whenever its actual normal force F; falls below Fy;
« a contact spot sticks whenever its actual normal force Fi; exceeds Fy;

As a result, the average resistance force of contact spots Fr; = (Fr;), where (.) denotes
the time average, falls below the expected value calculated with (4.1.2) and (4.1.3):

Fri < nFn; . (4.1.4)

In consequence, the overall resistance force of the system, which is the sum over all of
the n contact spots, will fall below the overall theoretical value as well:

n n
FR:ZFRi<Z/’LFNi:/’LFN' (415)
i=1 i=1
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This leads to the definition of the effective coefficient of friction p.:

Fr

Lhe " Fy <1. (4.1.6)
There is a strong analogy to the ratcheting case described in section 3.3, where one side
of a single contact slips while the other sticks [27]. The micro-slip accumulates to a rigid
body motion. Hence, ratcheting decreases the tangential load that is needed for gross
sliding, i.e. decreases the effective static and kinetic friction.
An experimental analogy of the dynamic mechanism of friction reduction is given by
the work of Tolstoi [39]. In this case, increasing sliding speed increases the normal
oscillations of the sliding body. Due to the non-linearity between indentation and normal
force, see section 2.1.1, the vibrations of the slider are highly asymmetric. Consequently,
an increase of the normal oscillation amplitude decreases the mean value of indentation
and the contact radius of the contact spots during sliding. As a result, the friction force
decreases as well [93, 10]. The micro-walking machine extends this concept, as it also
includes the spatial variation of normal and tangential forces and stick and slip zones.

4.1.1 Discrete Model

The simplest implementation of a system that captures the aforementioned effects is a
plane specimen that has only two contact spots at the edges, as depicted in Fig. 4.2 (a).
The specimen is unloaded in the normal direction except for the force of gravity mg
of the bulk body. Here m denotes the mass of the specimen and ¢ is the gravitational
acceleration. The tangential force Fr is applied by a constantly moving base, that is
connected via a spring with stiffness ks;. As the base moves with constant velocity vy,
the mean velocity of the specimen v exactly corresponds to vg. This type of excitation
models a nominally steady motion of the system. Thus, any vibrations that may occur
are not directly caused by the excitation but rather by self-excited oscillations.

The separation of space scales principle as is introduced in section 2.3.1 is used for a
further simplification. According to this, the space scales contributing to the elastic and
kinetic energy of a mechanical system with friction can be separated in the following
way [65]:

e The elastic energy is a local quantity which only depends on the conditions in the
contact region

e The kinetic energy is a mon-local quantity which can be assumed to equal to the
kinetic energy of the rigid bulk as a whole

This enables a further simplification, such that there remains a rigid body with mass
m, moment of inertia €, height 2a and length 2b that consists of two elastic contact
spots as shown in Fig. 4.2 (b). These spots are modelled as linear springs with normal
stiffness k, and tangential stiffness k. as described in section 2.3.3. The stiffness can be
approximated as [55]:

k,=FE*D., and k,=G*D,. (4.1.7)
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Here E* and G* denote the effective elastic modules, that are a function of the shear
modulus G and Poisson’s ratio v of the elastic specimen [55]:

2G and G — 4G

E* = .
1—v 2—v

(4.1.8)

The contact diameter D. depends on the instantaneous contact configuration and is
estimated as shown in section 5.2.1. The deflections of the springs in the normal and
tangential direction U,; and U,; depend on the actual state of motion of the rigid body,
i.e. they are a function of x, z and . These deflections represent the elastic deformations
of the specimen in the normal and tangential direction. This can be illustrated as follows.
Considering Fig. 4.3 (a) it shows that the change of position of a point on the rigid body
P to P’ causes deformations that are concentrated in the vicinity of the contact spots in
a volume with linear dimensions of the order of the contact width D, [65]. As shown in
Fig. 4.3 (b), in the theoretical model this effect is considered by the spring deflections.
The system is also assumed to be decoupled as introduced in section 2.1.3. Thus, a
change in U, does not change U, and vice versa!. Consequently, the contact forces
acting on the rigid body are given as:

Fnijg = kUsiyp and - Fryjp = kaUspya (4.1.9)

where the subscript (.), /2 denotes the two contact spots as shown in Fig. 4.2 (b). Fi-
nally, in the simplified model, there remain only three degrees of freedom: X and Z,
which describe the lateral and the vertical translation of the centre of gravity of the
specimen, and ®, which describes the rotation of the rigid body. In addition, there are
two dependent variables for each contact spot: the spring deflections U /; and Uy o.
Still, the moving base acts as the only external excitation, where h denotes its lever arm
with respect to the centre of gravity. This configuration allows the lever arm to be larger
than the height a, as examined in section 4.2.3.

WX ks
G,v : 1 Vo
) |myg k. gl 2 5 lZ h
)| & | o % | Ce
-2 M\ 1} img 2:.sz7]%
1
(a) specimen b) simplified system

Fig. 4.2: (a) elastic specimen consisting of two spherical shaped edges pulled by a con-
stantly moving base. (b) simplified rigid body model with three degrees of freedom and
linear springs to model the contact spots

!Nevertheless, the deflections are coupled through the equations of motion of the system.
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G,v

(a) contact spot (b) linear spring

Fig. 4.3: (a) elastic contact spot, where deformations are concentrated in a volume with
linear dimensions of the order of the contact width D.. (b) spring element with normal
stiffness k, and tangential stiffness k, and corresponding deflections U, and U,. The dotted
lines show the old positions of the rigid bodies

There is an analogy to the model proposed by Martins et al. which consists of a rigid
block that exhibits the same degrees of freedom, i.e. translation and rotation [10]. In
the normal direction the rigid block is as well only subjected to its own weight. And in
the tangential direction it is restrained by a spring and a viscous damper (dash-pot) and
subjected to a moving belt. Also the interface friction is modelled assuming Coulomb
dry friction with contact stiffness in the normal and tangential direction. This enables
to compare the results. However, their stress distribution in the contact surface is a
directly determined function of the rigid body motion and does not enable parts of the
contact to slip, while others stick as in the model introduced here. Thus, on the one
hand the present model is an extension of the model proposed by Martins et al. which
also takes into account the spatial variation of stick and slip zones. On the other hand,
the non-linearity of the interface response [10] is neglected.

Again it should be emphasized that this work considers the known basic mechanisms that
are responsible for the experimentally observed dependency of the frictional resistance
on the system dynamics. These are essentially vibrations in the normal direction [39, 40,
93, 43] and coupling effects between normal, tangential and rotational degrees of freedom
[10, 44, 45]. In the present model, a rotation of the body ®, i.e. a pitching motion, leads
to varying normal and tangential spring deflections U /5 and U, /» and therefore forces
at both contacts. The other way round, this asymmetry acts as a twisting moment
on the rotation. Thus, an appropriate synchronization of these motions will enable
the system to walk in such a way as explained in the beginning of this chapter. The
questions remain, under which conditions the excitation of the constantly moving base
can cause self-excited oscillations of the rigid body and whether these oscillations will
be synchronized in the proposed manner.

4.1.2 Parameters of Influence

The initial model is described by eleven dimensionful parameters. According to the
so called II-theorem [94] the number of parameters can be reduced introducing a non-
dimensional representation of the governing equations. Therefore the displacements and
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deflections are normalized with the geometrical constants a and b:

X Z a U.1/2 Uz1/2
r = ?7 Z = 3’ Y= E(I)v Uz1/2 = b/ y Ug1/2 = T/ : (4110)

In addition, the characteristic period 7 and the dimensionless time ¢ are introduced:

m tdim
=,/— = t= , 4.1.11
T ky T ( )

where tg;,, denotes the dimensionful time. This yields the accelerations as:

d2x 2z kpbd%x  kgb ,

= =b — = D7
dt2,..  “d@r)? m A2 om
5 kab
m
L

) o, (4.1.14)
ma

%

(4.1.12)

, (4.1.13)

where (.)" denotes the derivation with respect to the non-dimensional time t. This
procedure reduces the number of parameters from eleven to eight, the remaining ones
being listed in Tab. 4.1.1. Considering the analogy to the model of Martins et al. [10]
the parameter ki corresponds to their stiffness parameter sp; that takes into account
the ratio of the stiffness of the base spring and the normal contact stiffness. In addition
parameter k3 is equivalent to their ratio of height and width hjp;. Finally, the microscopic
friction p resembles to their more sophisticated friction parameter fp;. Despite the
differences between the two models this enables to compare the overall trend of the
influences of the parameters in the following sections.

Tab. 4.1.1: definitions and interpretation of the remaining parameters of the non-
dimensional system

parameter | definition | physical interpretation

K1 ']j—; ratio of macro and micro stiffness

Ko Z—; ratio of normal and tangential contact stiffness

K3 7 geometry ratio, slenderness of the rigid body

K4 % ratio of normal force and contact stiffness times half width
K5 7 microscopic friction

Kg B % velocity dependent non-dimensional parameter

K7 % ratio of rotational inertia of the rigid body

KS % ratio of the lever arm of the excitation
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4.1.3 Modelling and Simulation

Figure 4.4 depicts the free-body diagram of the micro-walking machine in a deflected
position. In the non-dimensional form of the system, the deflections of the springs
correspond to the contact forces:

fN1/2 = R2Uz1/2 and fT1/2 = Ug1/2 (4.1.15)

where the subscript (.), /2 again denotes the two contact spots. Depending on the instan-
taneous motion, the contact spots might be in contact or be released from the substrate
as shown Fig. 4.4. Here, the left contact (1) is fully released, what will lead to zero
contact forces. In case that a spring is in contact, the spots can slip or stick, depending
whether the instantaneous friction bound is exceeded or not. These many options are
taken into account numerically using a case distinction of the equations of motion as
shown in section 2.3.3. A detailed description of the procedures in pseudo-code-notation
is also given in appendix B.4.

released

Fig. 4.4: free body diagram of the non-dimensional system, where x5 denotes the displace-
ment of the base. Due to the rotation, the left contact is released from the substrate

Assuming small rotations, i.e. ¢ < 1, and the springs to be undeflected for z, z, o = 0,
Newton’s second law [95] yields the equations of motion (EoM) for the system depicted
in Fig. 4.4 as:

= kg 4.1.16
o ’ (
7" = —ug1 — U + K1 (75 — T + Kgp) (4.1.17)
2" = —Kouy — KoUse + Ka , (4.1.18)
1
o’ = s (—lizliguzl (1 — ) + Kok (14 @) — Uy (I‘L% + go) — Uy (m% — go))
1 2
s (/ﬂ (K’,3Iﬁ}8 + tp) (xs —x + ﬁg(p)) . (4.1.19)

Equation (4.1.16) is the result of introducing a new variable x5 = kgAt, what removes
the time dependency and enhances the computation [96]. The motion of the system is
computed using a stepwise numerical integration scheme. The basic principle may be
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explained with reference to the simple Euler method [97]. According to this, for a given
derivative §y = f (y,t) and the initial value y (¢) the solution in the next step y (¢t + At)
can be approximated as:

y(t+At) =y (t)+ Atf (y,t) , (4.1.20)

where At denotes the time step. The so called Velocity-Verlet algorithm is used to
determine the motion of the system from equations (4.1.16) - (4.1.19), where a detailed
description of the scheme is given in Appendix B.3. The algorithm is widely used in
molecular dynamics (MD) to compute the motion of molecules on basis of Newton’s
second law. In MD the forces acting on a molecule in time ¢t + At are given by a
potential, i.e. they are a function of the position of the molecule at time ¢t + At. In
the same way the state of motion of the system z, z and ¢ in the time step t + At is
computed firstly. The normal and tangential spring deflections u,; /o and u,q/, at time
t + At, i.e. the contact forces, are computed afterwards as described in Appendix B.4.
These determine the velocities at time ¢t + At that in turn determine the state of motion
in time-step t + 2At and so on.

T T T

T T
. g ; 2f[—5 |
£ 2f—=* pe —z
REVAWAREB=
T - fs T 0y - fs -
= ok | g
@ <
a =
> >
.s) < 9| /|
_2 | | | | | | | |
0 2 4 6 8 10 0 2 4 6 8 10
time t* =t — tg time t* =t — tg
Fig. 4.5: steady state motion for pa- Fig. 4.6: steady state motion for pa-
rameter set A. All quantities are normal- rameter set B. All quantities are normal-
ized as AZ = (v — x5) /pka, Z = 2/Zstat, ized as AZ = (v — x5) /ka, 2 = 2/Zstat,
¢ = ¢p/pkr3ky and fs = fs/pra ¢ = p/prsks and fs = fs/pra

Using the numerical integration procedures described in appendix B.3, the motion of
the system in steady state, i.e. = (t),z (t) and ¢ (t), as well as the spring force f; (t) are
determined for various sets of parameters. The initial condition are as follows:

z(0)=0,  '(0)=0,
2(0) = zstat , 2 (0)=0,

v (0)=0, ¢ (0)=0, (4.1.21)
Ls (0) =0 )

where 244 denotes the static displacement yielded with equations (4.1.18) and (B.4.1)
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from appendix B.4:

Kq

2" =0= zga = (4.1.22)

2%y
In order to determine the frictional resistance the spring force f, is computed as:

fs () = k(s () — 2 (8) + rep (1)) - (4.1.23)

This excitation force corresponds to the macroscopic resistance force of the overall sys-
tem. Finally, with (.) being the time average, the effective coefficient of friction is
computed as:

(s (8)) : (4.1.24)

k4

Figures 4.5 and 4.6 depict the normalized steady state motion for two parameter sets as
a function of time t* =t — ¢y3. Here ¢y indicates a time at which the transient process is
already completed. The two sets of parameters are as follows:

set A: Ki_g = (2, 1.2,0.5,107%,0.5, 10—4,0.42,0.5) , (4.1.25)
set B:  Ki_g = (2,1.2,0.5, 1074,0.68, 10’4,0.42,1.18) . (4.1.26)

Despite the fact that the parameter sets only differ slightly, i.e. u = 0.5 and kg = 0.5
for set A versus u = 0.68 and xg = 1.18 for set B, the steady state motion of the system
differs strongly. This becomes clearer considering the vertical displacement z that is
represented by the red lines in Fig. 4.5 and Fig. 4.6. For set A applies z = const.,
whereas for set B z follows an harmonic oscillation. A more detailed analysis of the
influence of the different parameters is given in the following section 4.2.

4.2 System Dynamics and Frictional Resistance

Using the simulation model as described in section 4.1 appropriate parameter ranges of
k1—g are identified that lead to a reduction of the effective frictional resistance p.. This
is followed by a more detailed analysis in order to identify the parameter combination
necessary for a (theoretical) maximal reduction. The experimental setting that is de-
scribed in section 5.2 is designed such that it matches this parameter combination as
closely as possible.

4.2.1 Influence of the Parameters

The non-dimensional model is described by eight parameters, each of it potentially influ-
encing the motion and in turn the effective frictional resistance of the system. Starting
point is the determination of appropriate basic points of the parameter space. These are
described in the following.
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The ratio of the base-spring stiffness and the contact stiffness k1 can be interpreted
as a measure for the stiffness of the system. Hence, high values correspond to a stiff
tribological system such as a disc brake. One example for a soft system is a pin-on disc
tribometer with flexible arm. The range of x; is assumed to be:

ks _
p1= "= k€ [1071,10] . (4.2.1)
ky

The ratio ks depends on the contact geometry. A narrow bandwidth is considered:

k.
Ko = kf = K9 € [1, 1.4] . (4.2.2)

Parameter k3 denotes the ratio of height and width of the rigid body, i.e. the slenderness.
Medium values are considered:

Ky = % = k3 € [0.5,1.5] . (4.2.3)

Parameter x4 lacks an illustrative physical meaning. However, one can estimate it as-
suming a specimen of mass m = 100 g and half-width b = 1 cm and a tangential contact
stiffness of k, € [10%,10°] N/m (see section 5.2.1):

_mg —4 102
Ri= e [1074,1072] . (4.2.4)

In this first step, medium values of the microscopic coefficient of friction are assumed:
w € 10.2,0.6] . (4.2.5)

The parameter kg depends inter alia on the speed of the constantly moving base vyg.
Assuming a velocity range of vy € [1,100] mm/s it results to:

_ v [m D
wo =3\ = o € [1074,1072] . (4.2.6)

Assuming a rectangular shape of the rigid body and taking into account? (4.2.3), the
ratio of the rotational inertia results to:

e 4 )
= — = (1++13) = w7 €[05,15] . (4.2.7)

Finally, kg denotes the ratio of the lever arm and the height. Allowing the spring to be
applied underneath the centre of gravity, the range of kg results to:

h
Ky = = ks € [—0.8,0.8] . (4.2.8)

2Tt is important to emphasize that k7 is an independent parameter and is not influenced by ks, as
the exact shape of the rigid body might differ from the rectangular shape.
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Following a straightforward approach one would for instance analyse ten different values
for each parameter. This would result in 10® different parameter combinations. Con-
sequently, given the computation time for one combination of approximately 90 s, this
would finally require an overall computation time of 300 years if one uses a standard
PC and simulate one combination after the other. To avoid this, the so called design of
experiments (DoE) approach is used, which is introduced in detail at appendix A.2. This
method systematically minimizes the effort needed for a sufficiently accurate analysis.
A so-called full-factorial experimental schedule is used that considers all possible basic
points in parameter space. Thus, three values of each parameter (minimum, intermedi-
ate, maximum) are taken and the motion of the system in steady state is computed to
give the effective coefficient of friction. Overall, this leads to 3% = 6561 different combi-
nations. In order to enhance the overall computation time, the calculation is performed
in parallel on a graphics processing unit (GPU). Using a Geforce GTX 560 GPU and a
step size of At = 1-1072 the whole calculation takes about 15 min for a non-dimensional
period of observation of T" = 4000. Finally, the main effect is calculated, which is the
mean of all 6561/3 = 2187 combinations in which one specific parameter is held con-
stant. The so called interaction effect, which describes the interaction between different
parameters, is not considered here, since the high number of combinations preclude a
meaningful evaluation. For computation of the main effect only solutions without tilting
of the specimen are considered, see also section 4.2.2. For this purpose, solutions with
high rotational amplitudes are excluded from the evaluation. Figure 4.7 depicts the main
effect on the effective coefficient of friction p.. The overall influence of factors is rather
low, as the maximal reduction is in the range of 10 %.

0.98 F A F A F A F a
0.96 - 1 1 10 -
o 0941 \/ 1 1 r 10 -
= 0921 1 1 1 b |
0.9 1 1 1T .
0887 | | I (i | I (i | I I | [
01 1 10 1 12 14 05 1 15 1074103 102

K1 K2 K3 K4
0.98F qF ‘ 1 F ‘ qF ‘ n
0.96 - 1 1T 1 .
o 0.94 1 T o~ I -
= 092 1 10 1 -
0.9} 1 10 1 -
0887 | | B I | I (i | I (i | [
02 04 06 104103102 05 1 15 -08 0 08

H K6 K7 K8

Fig. 4.7: main effect-plot of the eight parameters of influence k,_g on the effective coeffi-
cient of friction p,
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On the one hand, this may mean that the individual influence of all parameters is low and
there do not exist any points in the parameter space that lead to a strong reduction. On
the other hand, this may indicate that only a few parameters are from great influence,
whereas the majority has almost no influence. Thus, a strong reduction would only
occur in a few points in parameter space. In this work the DoE analysis rather serves
as a tool for the identification of convenient parameter combinations. Despite the fact
that a further analysis is given later in section 4.2.2 and section 4.2.3, the results are
briefly interpreted. However, it must emphasized that the results of the DoE should be
considered with caution, as the overall effect is rather low.

More specifically, it turns out that pu. is low for k1 around 1, meaning that a similarity
of the excitation and contact stiffness is convenient. This resembles to the model of
Martins et al. in which a large stiffness parameter sp; or a small sp; combined with a
large damping lead to an apparently smooth sliding with an effective coefficient of friction
lower than the static one [10]. The ratio k2 has a low influence. In contrast, x3 is from
great influence indicating that a more compact shape of the rigid body decreases j.. A
higher k3 leads to a higher rotational moment of the spring force f; in comparison to
the contact forces. Conversely, the friction increases with increasing k4. Thus, low ratio
of mass and contact stiffness reduces the effective friction in this system. The influence
of the microscopic friction g is relatively high, where u. decreases with increasing u.
This effect is consistent with the beam model by Adams [47] and can be explained by
an increasing interplay of the tangential forces and the rotational moment that leads
to self-excited oscillations. The friction also decreases for increasing kg indicating that
the effective friction decreases with increasing velocity. This effect also occurs in the
slip wave model of Adams [50] and in the rigid body model of Martins et al. [10]. In
addition, the effect of decreasing friction with increasing velocity was experienced in
numerous experiments [77, 78, 79] where an overview is given for example in [9]. The
influence of k7, which depends on the rotational inertia, is relatively poor. In contrast,
the lever arm of the base, which is represented by kg, is from great influence. The
effective friction decreases with increasing lever arm, thus with an increasing moment
of the spring force fs with respect to the contact spots. This increases the coupling
between the rotational moment and the friction forces and is consistent with the beam
model [47].

In addition, the main effect on the minimal vertical amplitude in steady state zin /2stat iS
computed as given in Fig. 4.8. Here 24 is the static displacement as defined in (4.1.22).
It shows that the amplitudes are negative and reach values of -100. A negative zpp
indicates jumping of the rigid body, i.e. a total release of the contact spots. In addition,
a high magnitude of z,,;, indicates instabilities and self-excited oscillations of the rigid
body in the normal direction that are caused by the interplay of the friction force and the
rotational moment. However, it should again be emphasized that the high magnitudes
can indicate two scenarios. Namely, a small number of parameters combinations can
exhibit very high corresponding magnitudes while the remaining combinations exhibit
no jumping at all. Or a large number of parameter combinations can exhibit similarly
high amplitudes. In both cases, jumping must not necessarily occur in all combinations.
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Fig. 4.8: main effect-plot of the eight parameters of influence k1 _g on the vertical minimal
amplitude zpin/Zstat

In detail, it shows that k9, k3 and x7 all have a weak effect on the vertical amplitude.
The absolute value increases with decreasing k1, what shows that the vertical motion
is stronger, the weaker the guidance of the spring. Decreasing k4 strongly increases the
magnitude of z,,;,. Thus, a heavier specimen jumps less strongly for the same contact
stiffness and width b. The magnitudes of z,;, strongly increase with . This may be
explained with the effect that a higher friction increases the coupling between lateral
and vertical translation and rotation, what leads to higher displacements in the vertical
direction. This is again consistent with the Adams beam model where increasing u leads
to increasing instabilities [47]. The same effect occurs in the Martins et al. model, where
the normal displacement increases with the friction parameter fp; [10]. Parameter kg
has a strong effect, indicating that a higher velocity generates higher vertical jumps.
One can assume that a higher velocity simply increases the kinetic energy of the system
that is then transferred to the vertical motion through the coupling effect. In addition,
it shows that the vertical amplitudes are weak for kg = 0.

Taken together, the DoE analysis shows that a relatively narrow parameter range needs
to be matched in order to induce a reduction. Especially for the parameters k4, p
and kg the reduction is accompanied with an increasing amplitude of the oscillation in
the vertical direction. Again it should be emphasized that the DoE analysis is used
to determine parameter combinations that enable a significant reduction. It is not the
intention to give a detailed analysis at this point. However, the results are consistent
with those found in the literature.

73



Chapter 4. Dynamic Influences on Sliding Friction

4.2.2 Reduction of the Frictional Resistance

In the following some of the parameters are kept constant for a more detailed analysis.
The results of section 4.2.1 show that a significant reduction requires x; (macroscopic
stiffness) around 1 and low values of k4 (normal force vs. contact stiffness times half
width). In addition, the influence of k2 and k7 is relatively poor and high values of
kg lead to a strong amplification of the vertical amplitudes. These and the parameter
k3 are kept fixed, where the exact values are listed in Tab. 4.2.1. A low value for kg
is chosen in order to induce only small vertical amplitudes in the range of the static
displacement zg,¢. This maintains the microscopic character of the walking effect. The
remaining parameters are the microscopic friction p and the position of the lever arm kg.
According to the DoE analysis, both have a significant influence on the efficient friction.
In addition kg is relatively easy to vary in real experiments and the influence of 1 was
already examined by other authors [10, 47] what gives the possibility for comparison.

Tab. 4.2.1: parameters that are constant in the detailed parameter study

(pamameter | m | m | m | | m | ]

| ovalue | 2 [ 12 | o5 | 10t | 10* | o042 |

A parameter study for 1600 combinations of the two remaining factors is conducted.
Again, the influence on the effective friction p. is examined, which is shown in Fig. 4.9.
In addition, the influence on the minimal vertical amplitude of the motion of the centre
of gravity of the specimen is examined, which is shown in Fig. 4.10. In both figures
occur three characteristic parameter ranges, namely the no effect-range, the reduction
range and the critical range. These can be explained as follows.

0
—10
3
0 0.5 1 1.5 2 Me 0 0.5 1 1.5 2 %
H8 HS sta
Fig. 4.9: parameter study of kg and u Fig. 4.10: parameter study of kg and
for the effective coefficient p.. The star u for the minimal amplitude zmin/Zstat-
denotes the maximal reduction of 98 %. In the reduction range applies 2, < 0.
The dash-dot line gives p. of (4.2.13) The dash-dot line gives p. of (4.2.13)
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No Effect Range Here no reduction of the macroscopic frictional resistance occurs
at all, i.e. g = 1. This range is indicated by the solid line in Fig. 4.9. The comparison
of Fig. 4.9 and Fig. 4.10 shows that this parameter range coincides with a region of
low vertical amplitudes or even of no vertical vibrations at all. The region of constant
vertical displacement is delimited by the solid line in Fig. 4.10. This indicates that
vertical vibrations play an important role in the reduction effect. Without vertical
vibration, no reduction occurs at all. This is consistent with the known experiments of
Tolstoi et al. [39, 40, 93].

Critical Range The reason of the critical behaviour of the system is caused by a
tilting of the rigid body over spot 2. It is indicated by the white regions in Fig. 4.9 and
Fig. 4.10. The simulation is stopped in this case, because the model as stated in (4.1.16)
- (4.1.19) is no longer valid as the magnitudes of ¢ no longer permit linearization of the
trigonometric functions. In order to give an explanation for this effect the dimensionful
system as depicted in Fig. 4.2 (b) is used. Consider a tilted position of the rigid body
such that contact 1 is completely released. This is situation is sketched in Fig. 4.11
where a free body diagram is given. The only forces acting on the rigid body are the
spring force Fj, the force of gravity mg and the forces in the right contact 2.

Fig. 4.11: free body diagram of the system in a tilted position

Using the principle of angular momentum with respect to contact 2 and assuming small
rotations, i.e. ® < 1, gives:

0@é = —F, (h+a) + mgb . (4.2.9)

A further tilting in the clockwise direction requires a negative angular acceleration ® < 0,
what yields:

Fs(h+a)>mgb. (4.2.10)

Assuming sliding of spot 2 and a constant velocity vg, the spring force Fs must match
the tangential force Fpo. In turn, Fpo corresponds to the actual friction bound, i.e.
Fro = pFys. Given the free body diagram of Fig. 4.11 and the assumption Z =0 the
spring force in the tilting state results to:

FS = FTQ = /,LFNQ = umg . (4211)
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Inserting this into (4.2.10) gives the condition for the coefficient of friction for which the
rigid body tilts over spot 2:

mgb b
> = . 4.2.12
s mg(h+a) (h+a) ( )

Finally, using the definition of the non-dimensional parameters as listed in Tab. 4.1.1,
the non-dimensional form of the critical coefficient p. for the limiting case yields:

1

P (4.2.13)

Me =

Relation (4.2.13) is denoted by the dash-dot line in Fig. 4.9 and Fig. 4.10 and is in
good agreement with the simulation results. Within the critical limit, the rotational
amplitudes where small, i.e. ¢ < 1-1073. A similar type of critical system behaviour
was also studied by Martins et al. for their sliding block model. In this, the maximum
value fys of the friction parameter fj; was chosen such that steady sliding equilibrium
ceases to be possible due to tumbling of the block [10]. The case k3 = 1 and kg = 1
exactly corresponds to the case fi; = 1/hys, where hjy is the ratio of height and length
of the block. They conclude that no one would run a comparable experiment allowing
for the occurrence of such large oscillations. However, they point out that the same may
not be true for instance in a pin-on-disk tribometer having very flexible arms and a small
contact region.

Reduction Range For a specific range of parameters occurs a significant reduction
of pe over 50 %. The comparison of Fig. 4.9 and Fig. 4.10 shows that the reduction co-
incides with negative vertical amplitude z,,;,. This indicates that a total release of the
contact spots, i.e. jumping, is an important prerequisite for a reduction in this system.
Thus, one reason for the reduction are oscillations of the rigid body in the vertical di-
rection. This is consistent with the well-known experiments of Tolstoi et al. [39, 40, 93]
and with theoretical works [10, 41, 42, 47]. However, the amplitudes are of the order
of the static vertical displacement. Hence, in a real system these vibrations are from a
microscopic character and can be superposed unnoticed to an apparently smooth sliding
motion. The maximal reduction of 98% is denoted by the star and occurs at kg = 1.18
and p = 0.68. The corresponding minimum amplitude is zin/2stat = —0.42.

For a further analysis, the relative stick time of the contact spots is computed, which is
the ratio of the time a specific contact sticks Ty /o and the period of observation T

T. 1/2
ta1js = S'T/ . (4.2.14)

The stick times are depicted in Fig. 4.12 and Fig. 4.13.
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Fig. 4.12: parameter study of kg and pu
for the relative stick time ¢4; of contact 1.
In the reduction range applies t5; ~ 15%

Fig. 4.13: parameter study of kg and p
for the relative stick time ¢4 of contact 2.
In the reduction range applies tg2 ~ 20%

It shows that sticking coincides with the reduction with t5; ~ 15% and s ~ 20% in the
reduction range. In contrast, no sticking occurs in the no effect range. Thus, sticking
is important for the reduction. There are three explanations for this. Firstly, sticking
leads to storage of elastic energy in the contacts. This energy is needed for the jumping
that occurs in the reduction range, as shown in Fig. 4.10. Secondly, the concept of
micro-walking implies that only one spot is sticking, while the other one is slipping or is
completely released from the substrate as introduced in section 4.1. And thirdly, sticking
may decrease the average value of the friction force as observed by Martins et al. [10].
Furthermore, the Pearson correlation coefficients 71 and ro are computed to examine
the linear correlation between the velocity of a spot s} /2 and the corresponding normal
spring deflection w9, i.e. the corresponding normal force. More information on the
correlation coefficients is given in appendix A.1.4. The velocities are computed as the
central difference of the motion of the spots divided by the time step At:

1
sy (1) = AL (51/2 (t+At) — 519 (t — At)) , (4.2.15)
where the motion of spots sy /5 is given as:
s172(t) =2 (t) + @ (t) = upiy2 (t) - (4.2.16)

Figures 4.14 and 4.15 give the correlations r; and ry for the spots. The case r = 1
describes a positive linear correlation between two quantities. A comparison of the
different parameter ranges in both figures shows that the correlations are about -0.5 in
the reduction range. This indicates a negative linear correlation of spot velocities and
normal forces as low forces coincide with high velocities and vice versa. This means that
the spots make most of their motion while the corresponding normal forces are low. In
addition, they stick, i.e. s} ,, =0, while the corresponding normal force is high. Firstly,
this indicates that the specimen walks as proposed in section 4.1. Secondly, this indicates
that the rigid body and its contact spots make most of the forward motion while being
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totally released from the substrate. This is in particular confirmed by comparison of
Fig. 4.9 and Fig. 4.10, what shows that the reduction coincides with negative vertical
amplitudes zin, i-e. jumping of the rigid body.

2 £ 0 0
—0.2 —0.2
3 04 <
—0.6
—-0.8
0 0.5 1 1.5 2 0 0.5 1 1.5 2
K8 kg
Fig. 4.14: parameter study of kg and p Fig. 4.15: parameter study of kg and p
for the correlation coefficient 71 of veloc- for the correlation coefficient ro of veloc-
ity s} and normal deflection w.; of con- ity s, and normal deflection w5 of con-
tact 1. In the reduction range applies tact 2. In the reduction range applies
r <05 r2 S 0.5

4.2.3 Vanishing Frictional Resistance

In order to illustrate the proposed effects, the maximal reduction case is considered,
which is symbolized by the black star in the figures 4.9, 4.10 and 4.12-4.15. The corre-
sponding parameter combination is given as:

Ki_g = (2, 1.2,0.5,107%,0.68,107%,0.42, 1.18) . (4.2.17)

The maximum is 98% and the corresponding minimal amplitude is zpin/2star = —0.42.
This indicates jumping of the rigid body, i.e. a complete release of the contact spots.
In order to examine the influence of the initial conditions on the steady state and the
transient process, the DoE approach as described in appendix A.2 is used. Three initial
values for each motion variable are used what gives 37 = 2187 combinations of initial con-
ditions. The initial displacements are chosen on basis of the vertical static displacement
as defined in equation (4.1.22):

2(0),2(0),¢(0),zs(0) € [~2stat, 0, zstat] (4.2.18)
and the base velocity, i.e. the parameter kg, gives the initial velocities:
2’ (0), 2 (0),¢" (0) € [—ke,0, kg] - (4.2.19)
The non-dimensional mean kinetic energy of the steady state serves as a measure:
Chin = Mjsm% ( 24274 :—§¢’2> : (4.2.20)
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For comparison, the non-dimensional initial mechanical energy is computed:

1 1 )
em (0) :fi4zsmt 3 (U?ﬂ + uz@ + Ko (Uz1 + uzz) + k1 (s — 2+ Kg)” — /14z)

+ epin (0) (4.2.21)

Figure 4.16 gives the main effects of the initial conditions on the steady state kinetic
energy, which is depicted by the red line, and on the initial mechanical energy, which
is represented by the blue line. It shows that the steady state kinetic energy is not
influenced by the initial conditions. One can argue that the frictional damping leads
to a decay of the oscillations that are caused by the initial mechanical energy. For the
considered range of initial conditions the system reaches practically the same steady

state.
7 T T T
6 | 1t |
S | N 1 1 |
E
3 I I R I I A
—Zstat 0 Rstat —Zgtgqr 0 Zstat —Zgtqr 0 Zstat —2Zgqr 0 Zstat
z (0) z(0) ¢ (0) s (0)
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s 6 1t 1t |
g — €kin
| \/ N \/ 1 |
E —em(0)
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—kg O Ke —kg 0 K6 —kg 0 K6
(0) 2(0) ¢ (0)

Fig. 4.16: main effect-plot of the initial conditions on the mean kinetic energy in steady
state (red line) and the corresponding initial mechanical energy (blue line)

Figure 4.17 depicts the phase-space diagram for the relative displacement = — x5 for the
maximal reduction combination. The black dot depicts the initial conditions z (0) = 0
and z’ (0) = 0. After the blue coloured transient process, the system reaches a stable
limit cycle (lc), which is dark coloured. Several dynamic quantities as a function of the
time t* = t—1%¢ in steady state are displayed in Fig. 4.18. Here ¢ indicates a time at which
the transient process is already completed. The difference Az = z (t) — = (t9) is shown,
to give all quantities in one plot. It shows that the centre of gravity exhibits a harmonic
oscillation around the static displacement zs ., what leads to highly varying normal
deflections of the springs. As one expects, their maximum approximately coincides with
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the maximum vertical displacement. The small shift between u,; and u,o is caused by
the rotation ¢.

.
T

N
Il

\V)

dynamic quantities
(e

(2 — ) ik =t —tg

Fig. 4.18: motion of the system for
the maximal reduction range. Dy-
namic quantities are normalized as AT =
Ax/uky, 2 = 2/2stat, ¢ = p/pksky and
Us1/2 = Us1/2/ K4

Zstat | (4)
T I it o [

Fig. 4.17: phase space diagram of the
lateral motion for the maximal reduction
range. The system reaches a stable limit
cycle (lc)

Fig. 4.19: phases of motion of the specimen in the vanishing reduction range. The rigid
body follows harmonic oscillation in the vertical direction. The rotation is not shown as
© < 1-1073 applies in steady state

The vertical motion is highly synchronized with the lateral translation x. More specif-
ically, the rigid body makes most of the lateral displacement when the vertical dis-
placement is negative, i.e. the body is jumping, and the contacts are released from the
substrate. One can identify four specific states as marked in Fig. 4.18 and Fig. 4.19:

(1) start of sticking phase: sticking contact spots, downward movement and increasing
normal forces, only minor lateral motion

(2) turning point: end of downward movement, sticking contact spots, high normal
forces, storage of elastic energy

(3) end of sticking phase: upward movement and start of forward movement

(4) microscopic jump: release of the spots and zero contact forces, fast forward (ff)
motion of the rigid body
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The motion can be characterized as a highly synchronized vertical and lateral vibration
with alternating jumping and sticking phases of the rigid body. It is this particular
system behaviour that leads to an almost vanishing frictional resistance. This matches
the effect of micro-walking as introduced in section 4.1.

4.2.4 Summary of the Theoretical Results

Considering the overall results of section 4.2, one can finally identify three main factors
that are responsible for the reduction effect of the frictional resistance:

1. The coupling of the tangential, vertical and rotational degrees of freedom causes
self-excited oscillations in the vertical direction. As the friction forces in the con-
tact spots are mainly responsible for this, the amplitudes grow with increasing
microscopic friction and lever arm of the base spring with respect to the contact
spots. This effect is consistent with theoretical works of Martins et al. [10] and

Adams [47].

2. The experimental works of Tolstoi et al. [39, 40, 93] showed that the normal vibra-
tions themselves already cause a reduction due to the non-linearity between normal
separation and normal force. However, in the present work a linear dependency
between spring deflections and contact forces is assumed. Hence, the reduction is
caused by another effect.

The most significant effect in the micro-walking machine is the reduction of the
overall resistance force that is induced by the strong correlation between low or
even zero contact forces and forward motion respectively high normal forces and
sticking contacts. This corresponds to the micro-walking as proposed in section 4.1.

3. Jumping and fast forward motion of the rigid body requires energy that is stored
in the elastic springs. This is maintained by a characteristic alternation between
storage and motion phase: the spots stick and energy is conserved that is than
used for the vertical jumps and the tangential fast forward motion. Furthermore,
sticking simply decreases the average value of the friction force as observed by
Martins et al. [10].

One can conclude that the dynamic mode that is responsible for the reduction is the

proposed micro-walking effect, i.e. a convenient synchronization of lateral and vertical
motion and a jumping of the rigid body with released contacts.
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4.3 Experiments

The results of section 4.2 give clear but also strict guidelines for the design of a real
technical system with the effect of frictional resistance reduction through self-excited
oscillations. However, there exist certain experimental limits, as discussed in detail in
section 5.2. Firstly, there occur differences in the geometry and the contact configuration
between theoretical and real system. These are mainly caused by the fact that the two-
dimensionality of the theoretical model cannot be simply transferred to the real world in
particular due to alignment problems. Secondly, there exist several practical limitations
which make it impossible to reach the values of the non-dimensional parameters that
are required for the almost vanishing friction. For instance, simultaneously fulfilling
the conditions k1 ~ 1 (ratio of spring stiffness and contact stiffness) and k4 ~ 1-1074
(normal force vs. contact stiffness times half width) is very hard in practice as discussed
in section 5.2.3. Thirdly, the results show that there exists a critical coefficient of friction
1o that depends on the geometry respectively the point of application of the spring force
as shown in section 4.2.2. To avoid the critical range, the experiments are limited to
negative values of kg (ratio of lever arm of the base), i.e. the point of application of
fs is always underneath the centre of gravity. According to equation (4.2.13) this will
enhance the stability of the experiment with respect to the rotation, i.e. will avoid
tumbling of the rigid body, but will also decrease the reduction. Finally, some of the
parameters are easier to vary in the experiments than others. For instance, it does not
require much effort to change kg or kg (velocity of the base vg). In contrast, changing x3
(slenderness of the rigid body) or k7 (ratio of rotational inertia) requires an update of
the geometry and changing p requires a different combination of materials. This would
lead to undesired changes in several other parameters as k1, k4 and kg as they depend
on material properties. Overall, five parameter sets are considered which are named set
1-5. The physical parameters are given in section 5.2 in Tab. 5.2.1.

4.3.1 Experimental Results

Due to the reasons stated above, i.e. the effort for a variation of certain parameters,
firstly significantly different parameter ranges without intermediate combinations are
compared as listed in Tab. 4.3.1. In order to identify convenient parameter combinations,
the extended model as introduced in section 5.2.3 and appendix B.4 is used. It shows
that within the experimental limits, the theoretical maximal reduction is about 50%.
Thus, the reduction in the experiment is expected to be lower than in the theoretical
model of section 4.1. However, the contact stiffness was initially underestimated. On
this basis an insufficient spring stiffness was chosen such that the stiffness parameter
was k1 = 0.1 instead of the intended k1 = 2. Set 1 meets the theoretical maximal range
within the experimental limits except for k1. Set 2 has unsuitable geometry and inertia
properties, i.e. k3 is inconveniently changed. Set 3 and set 4 correspond to the previous
ones with low k1, i.e. a very soft base-spring. For this purpose, a spiral spring with
stiffness ks_gp = 60 N/m is used. In the experiments, the base velocity vy is varied,
which is linear proportional to the non-dimensional parameter xg.
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Tab. 4.3.1: parameters of the different sets used in the experiment. Parameters xo and kg
are the same for all

’ set ‘ K1 ‘ K9 ‘ K3 ‘ K4 ‘ 7] ‘ K7 ‘ K8 ‘
1 ~ 0.1 1.33 1.51 [ 2-107*| 0.79 0.95 -0.47
2 ~0.1 1.33 0.85 |[1-107*| 0.79 0.25 -0.47
3 ~107* | 1.33 1.51 | 2-107* | 0.68 0.95 -0.47
4 ~107* | 1.33 0.85 |[1-107*| 0.68 0.25 -0.47

The spring force F; (t) is measured and the effective coefficient of friction is computed
as defined in equation (5.2.2). Figure 4.20 depicts the results of the different sets. For
the sake of clarity, all curves are plotted over vy and not over kg as this parameter is
cross-influenced by other quantities that change between the sets. The reduction for
set 1 is about 54%, meaning that the effective friction g is more than halved even for
k1 = 0.1. In contrast, no significant reduction applies for the other sets. The effective
friction slightly varies within a range of approximately 10% of p. One can conclude,
that the effect of friction minimization as introduced in section 4.2 does not occur for
sets 2-4, thus p. ~ 1. This means, just as with the theoretical results, that in order
to induce the friction minimizing effect, a very narrow parameter range has to be met.
In addition, the effect hardly depends on velocity but only occurs if a certain velocity
limit is exceeded as can be seen for set 1 where p, is halved only for vy > 15 mm/s.
However, the experimental results show that it is possible to induce the effects introduced
in section 4.2 in a real system.
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‘E 0.4 | set 4
]
&)
= 02} |
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10 20 30 40 50 60

base velocity vy [mm/s]

Fig. 4.20: effective coefficient of friction p. for varying base velocity vy and different
parameter sets

In the experiments, the only time varying value that is measured is the spring force
in the base. The normal oscillations have not been measured. Nevertheless, one can
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assume that whenever instabilities occur in the normal direction, i.e. strong oscillations,
they will also affect the tangential direction due to the coupling effect. Thus, self-excited
oscillations in the normal direction must be detectable in the time response of the base
spring. Figure 4.21 displays the time response of the spring force F for set 1 and set
2. It shows that in case of set 1, which is represented by the blue line, the reduction
is accompanied with self-induced oscillations as F; oscillates with high frequency and
magnitude. The force reaches negative values, meaning that the specimen pushes the
base point of the spring. For set 2, which is represented by the red line, the force
is not oscillating and is positive all the time. In this case the instability, i.e. self-
excited oscillations in the vertical direction with high amplitude, do not occur at all.
Consequently no reduction is induced.
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Fig. 4.21: time course of the spring
force for set 1 and set 2 for vg = 20 mm/s.
Instability occurs only for set 1 but stops
temporarily

Fig. 4.22: relative time of instability
t;s as a function of the base velocity
vy for experimental set 1. Star shows
vo = 20 mm/s

Additionally, it shows that the vibrations of the force of set 1 significantly decrease
temporarily. This can be seen in Fig. 4.21 for ¢ > 8.4 s. Consequently, the instability as
well as the reduction effect temporarily pauses. In contrast, such an effect does not occur
in the simulation at all. One can conclude that the pausing is caused by experimental
imperfections rather than self-stabilization. The geometry and the microscopic friction,
which is influenced inter alia by the roughness and contamination by dust, will slightly
change when the substrate is moved along the specimen. In order to determine the ratio
of the time the instability occurs, i.e. a significant increase of the amplitudes of F with
negative values, and the time of observation t;s/T', the revolving variance var (Fs (t)) of
the friction force is considered. Within the Dirichlet window with size 2tp of the time
response, the variance is defined as:

1 t=toto

var (Fy (1)) = J St AT _Z Fo(t;) — Fs (1),

(4.3.1)
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where F (t) denotes the corresponding mean within the window:

B 1 ti=t—tp
Fs(t) = —— Fs (L) . 4.3.2
0= o7, X, P (®) (432

Here Fj (t;) denotes the spring force of the measurement sample ¢ at time ;. The window
2tp corresponds to approximately 10 characteristic periods of Fs(t). As a criterion,
only those time sections are regarded as instable in which var (Fs(t)) > 0.1 applies.
In addition, for determination of the effective friction p. only instable time sections
are taken into account. Figure 4.22 gives the relative time of instability ¢;s/7 for set
1. It shows that t;s =~ T applies if a certain velocity limit is exceeded. Additionally
the self-induced oscillations highly coincide with minimized friction as can be seen by
comparison with Fig. 4.20. The instability is thus crucial for the reduction effect. This
confirms the results of the theoretical model given in section 4.2.

4.3.2 Comparison of Experiment and Model

The results of section 4.2.2 indicate that the application point of the spring is from
great influence for the reduction. For this reason, the joint influence of the velocity vy,
i.e. parameter kg, and the position of the lever arm, which refers to kg, is examined.
Four values of kg are considered. In the experiment this is simply realized by several
differently positioned mounting holes, as shown in Fig. 4.23 (a). The specimen is then
rotated such that the line between the selected mounting hole and the centre of gravity is
vertical. As sketched in Fig. 4.23 (b), the experiments are restricted to values of kg < 0
in order to reduce unwanted instabilities of the motion, i.e. tumbling and tilting of the
rigid body.

centre of gravity

g = —0.47
contact disc

kg

s = —0.71 contact disc

JLL
w0 ‘UWJTE centre of gravity

(a) front view (b) lateral view

Fig. 4.23: specimen with four positions of the lever arm of the spring with respect to
centre of gravity, i.e. four values of parameter xg. (a) front view. (b) lateral view with the
line between centre of gravity and the mounting hole for kg = —0.47 being vertical
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This refers to the critical coefficient as defined in equation (4.2.13):
1

K3 (1 + Iﬁ:g) '

Thus, the lower the value of kg, the higher the critical coefficient. However, this will also
decrease the maximal possible reduction. For a mutual verification, the extended model
is used, which is described in section 5.2.3 and appendix B.4. In comparison to the
experiments shown in section 4.3.1 a stiffer material for the connection element is used
and the mass of the specimen is increased to lower the influence of unwanted side-effects.
With this, the maximal reduction parameter range is identified as listed in Tab. 4.3.2.
Theoretically, this combination gives a maximal reduction of about 50%.

fe = (4.3.3)

Tab. 4.3.2: maximum parameter range of the experimental set

| r | m

K3

| !

‘ set ‘ K1
~2 | 133 | 151 [2.107'] o075 | 177 |

K2

Figure 4.24 shows a contour plot of the effective coefficient of friction for 1600 combi-
nations of vy and kg. Both, higher values of vy and kg increase the reduction. Thus, a
higher rotational moment of the spring force with respect to the contact spots leads to
higher reduction. Additionally, the yellow area shows the limit range which is delimited
by the black line. Here no reduction occurs at all. Thus, one can conclude that there
exists a limit velocity that has to be exceeded in order to induce the reduction effect.
And that this limit velocity depends on the lever arm of the spring.
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Fig. 4.24: surface plot of the effective Fig. 4.25: area plot of time portion of
coefficient of friction . as a function of the instability ;5 /7T as a function of base
vo and kg. Simulation model velocity v for different kg. Experiment

Figure 4.26 gives a comparison of the theoretical values, which are symbolized by the
circles, and the experimental results, which are denoted by the error-bars and marks.
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Although there occurs a certain deviation between theory and experiments, the overall
trend is similar. A certain velocity limit exists that has to be exceeded for the reduction

effect to occur. For kg = —0.93 and xg = —0.71 this velocity threshold is about vy =
40 mm/s respectively vg = 25 mm/s. This agrees with the simulation as shown by the
corresponding pink and blue circles. For kg = —0.47 and kg = —0.27 the limit velocity

is approximately vgp = 15 mm/s. This does not coincide with the simulation, where no
limiting velocity exists for these values of kg. However, in the experiments the reduction
increases with increasing velocity once the limit velocity is exceeded, what agrees with
the simulation. It turns out that for every kg examined, the specific maximal reduction
is higher in the experiments. For kg = —0.93 the reduction is 52%, for kg = —0.71 it is
48% and for kg = —0.47 it is 60% in the experiments. The maximal reduction is 73%
and occurs for kg = —0.27.
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Fig. 4.26: effective coefficient of friction u. as a function of base velocity vy for different
kg. Simulation (circles) and experiment (error-bars and marks) show that a velocity limit
has to be exceeded to induce the friction minimizing effect

In addition, Fig. 4.25 gives area plots of the time portion of instability ¢;s/7 for the four
cases of kg. The time of instability is determined on basis of the revolving variance as
defined in equation (4.3.1). It shows that ¢;s increases with the base velocity vy and lever
arm ratio kg. Thus, the higher the rotational moment of the spring force of the base with
respect to the contacts, the higher is the relative time of instability. In addition, the
velocity threshold for the instability to occur, i.e. the velocity for which t;5 ~ 1 applies,
is lower for a higher rotational moment. Comparison of Fig. 4.25 and Fig. 4.26 shows
that the reduction effect also highly coincides with increased time portion of instability.
The experimental results confirm the results of the DoE as shown in Fig. 4.7, where the
reduction increases with increasing kg and increasing velocity, i.e. increasing parameter
kg. As stated in section 4.2.2, the reduction effect is caused by self-excited vertical
oscillations of the rigid body. These oscillations increase with an increasing moment of
the spring force with respect to the contacts what increases the coupling between the
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rotational moment and the friction forces. In addition, the oscillations increase with the
velocity as this increases the kinetic energy that is transferred to the vertical motion
through the coupling effect. The effect of decreasing kinetic friction with increasing
velocity was experienced in many experiments [77, 78, 79] where an overview is given for
example in [9]. The same effect also occurs in theory as in the slip wave model of Adams
[50] or in the rigid body model of Martins et al. [10]. However, the deviations between
experiment and model are relatively high. One reason for this might be a deviation
between the real parameters of the experiment and the theoretical values. Another one
might be that the model does not capture the true contact mechanics. Section 5.2.3
gives a detailed discussion of the deviations between theory and experiment.

4.4 Summary

On basis of important experimental [39, 40] and theoretical works [10, 47] a simulation
model is introduced, in order to examine the influence of the system dynamics on sliding
friction. The model captures known basic effects as the coupling between normal and
tangential motion and adds features as the spatial variation of stick and slip zones. In
theory, the frictional resistance almost vanishes when a certain parameter range is met.
If so, self-excited vibrations in the vertical direction occur and the system moves in a
characteristic dynamic mode. The different mechanisms that are responsible for the
reduction can be summarized as:

1. self-excited oscillations in the vertical direction caused by the coupling effect
2. strong correlation between low or even zero contact forces and forward motion
3. characteristic alternation between storage and motion phase

In the reduction mode the system moves in such a way that the forward motion is
highly synchronized with the vertical vibrations and thus normal forces in the contact.
It moves forward at low normal forces or even released contacts and almost stops at high
normal forces. This dynamic mode is referred to as micro-walking. The amplitudes of
the vertical oscillations can be rather small, i.e. they are from the order of the static
vertical displacement, and can thus be characterized as microscopic. This means that a
significant reduction can be accompanied with apparently smooth sliding of the system,
i.e. the oscillation can remain undetected in a real system.

Both, simulations and experiments, show that the reduction requires a sufficient speed
and high moment of excitation with respect to the contact spots to enhance the kine-
matic coupling and the self-excited vibrations. Another important criterion for the effect
to occur is a similarity of the excitation and contact stiffness, meaning that there is a
medium guidance of the base motion. The experiments confirm the theoretical results
with the maximal reduction being 73%. However, there is a discrepancy between simu-
lation and experiment as the final results differ slightly indicating that further research
is needed. In this, attempts should be made to achieve the theoretical maximal range
with a reduction of 98 %, i.e. with an almost vanishing macroscopic frictional resistance.
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Experimental Analysis

Two tribological experimental rigs have been built in order to examine the theoretical
results. Firstly, the rolling body test rig. It is used to investigate the effects of shakedown
and ratcheting in incomplete contacts and is described in section 5.1. Secondly, the
micro-walking machine test rig which is used to measure the influence of system dynamics
on sliding friction. This experimental rig is introduced in section 5.2. The computers
and measurement devices of the Institute of Mechanics have been used for measurement
and control of the experiments. The measurement results in the present work are given
with confidence interval on the confidence level 68.3%, as described in appendix A.1.1.

5.1 Experimental Rig for the Rolling Body Effects

The experimental rig sketched in Fig. 5.1 is used to investigate the effect of oscillating
rolling. It is mounted on a vibration-isolated table in order to minimize the influence
of external dynamic interferences. The experimental rig consists of a drive unit with
joint kinematics, rolling body (1) and a movable substrate (2), which is mounted on a
friction reduced cross-roller table. The tangential force is applied through a weight pot
which is connected to the substrate via a string. This enables an efficient and precise
control of Fr which is the result of the force of gravity of the pot G = mpg reduced by
the resistance force of the cross-roller table, i.e. Fr = mpg — Fy. The resistance force
is measured to be Fyy = 0.1 N. The force of gravity of the sphere acts as the normal
force F, which is measured at the centre of the contact using a load cell. The rolling
motion is generated by the linear drive and the joint kinematics. In theory, the fulcrum
of the lever arms is on the same level as the contact point of the rolling body, see also
section 5.1.5. Consequently, a lateral motion of the linear drive with amplitude W leads
to a rotation of the lever arm with an angle of rotation:

. (‘g) 7 (5.1.1)

where R denotes the radius of the rolling body. This leads to a lateral motion of the
bearing points x,, und z, shown in Fig. 5.1. Assuming small amplitudes ¢ < 1 the
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lateral motion results to:
Ty =W and z,=2W, (5.1.2)

what leads to a rolling motion of the body in which the actual point of contact corre-
sponds to the instantaneous centre of motion.

lever
roller (1)

laservibrometer

substrate (2)

linear drive

m cross-roller table
weight, mp J

Fig. 5.1: experimental rig for the oscillating rolling: rolling body (1), kinematic joints and
movable substrate (2)

controller
C-863
sensor
OFYV 503
< data board E controller
OO PC NI-RXI-5922 OFV 5000

Fig. 5.2: experimental rig for the oscillating rolling with measurement chain consisting of
laservibrometer, controller and PC

In order to keep the deviation from theoretical, ideal rolling motion as small as possible,
an accurate adjustment of the geometry is needed. This is achieved using spacers between
the substrate and the cross-roller table and spring washers on the upper bearing points.
The entire experimental rig including the measurement chain is depicted in Fig. 5.2. As
described previously, the rolling motion is generated by a high precision linear drive M
403.02-DG/M 405-DG which is controlled using a C-863 controller. Both devices are
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made by Physik Instrumente GmbH & Co. KG. The displacement of the substrate U is
measured by a laservibrometer. It consists of the sensor unit OFV 503 and the controller
FV 5000 both made by Polytec GmbH. The measurement resolution in the experiments
is 80 nm. The electrical output signals of the controller are fed to the PC using a 24-bit
data acquisition card NI PXI-5922 made by National Instruments Corporation.

5.1.1 Parallel Alignment of Force and Oscillation

Figure 5.3 shows the experimental set-up for the parallel case, including the vibration-
isolated table. Here the rolling body (1) is a massive steel sphere and the substrate
(2) consists of silicone rubber with a thickness of 8 mm. Both, the Young’s modulus
of the substrate Fy and the coefficient of friction between sphere and substrate p are
determined using the least square method (LS), as described in appendix A.1.2. In this,
the static displacement Uy as a function of Frp is measured firstly and the according
static displacement for different combinations of the parameters Fs and p is computed
using equation (2.1.18). Secondly, the parameters for which the sum of the squared
deviations between experiment and theory is the smallest are identified. For the parallel
set-up, this gives Fy = 5.2 MPa and p = 0.57. There are two reasons for this procedure.
Firstly, the experimental setup does not allow a sufficiently accurate direct measurement
of p. Secondly, only mean values of the Shore-A hardness without tolerance ranges are
known. If the given mean value for the Shore-A hardness is used, the Young’s modulus
results to Fo =~ 5 MPa according to Boussinesq, respectively Fo ~ 6 MPa according to
Kunz and Studer where both values are taken from [98]. This matches the values gained
using the mean square method. In addition, the optical measurements as explained in
section 5.1.5 give almost the same contact radii as the theory taking into account the
fitted values. Table 5.1.1 gives all important parameters of the parallel set-up.

Fig. 5.3: rolling body experimental rig with sphere and parallel alignment of tangential
force Frr and oscillating rolling W
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Tab. 5.1.1: parameters of the rolling body experimental rig with sphere and parallel
alignment of force Fp and direction of the rolling W

\ parameter \ symbol \ value \ unit \
radius R 40 mm
coefficient of friction (LS) 7 0.57 1
Young’s modules (LS) Ei/E, | 206-10%/5.2 | MPa
Poisson-ratios v1/vo 0.3/0.5 1
normal force Fy 21.1 N
contact radius a 4.56 mm
indentation depth d 0.52 mm

5.1.2 Perpendicular Alignment of Force and Oscillation

In this case, the rolling is aligned perpendicular to the tangential force as shown in
Fig. 5.4. Again, a solid steel sphere acts as the rolling body (1) and silicon rubber with
thickness 8 mm is used for the substrate (2). Likewise, the parameters p and Es are
determined with the least square method: Ey = 4.35 MPa and p = 0.93. The difference
to the parallel case is because another sort of silicone from another supplier is used.
Again, the optical measurements as explained in section 5.1.5 show a good agreement
with the theory taking into account the fitted values. Table 5.1.2 provides a summary
of all important parameters for the perpendicular alignment.

(a) lateral view (b) top view

Fig. 5.4: rolling body experimental rig with sphere an perpendicular alignment of tangen-
tial force Fr and oscillation W. (a) lateral view and (b) top view
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Tab. 5.1.2: parameters of the rolling body experimental rig with sphere and perpendicular
alignment of force Fr and direction of the rolling W

| parameter | symbol | value | unit |
radius R 40 mim
coefficient of friction (LS) 1 0.93 1
Young’s modules (LS) E1/E, | 206 -10%/4.35 | MPa
Poisson-ratios v1/vo 0.3/0.5 1
normal force Fy 21.19 N
contact radius a 4.8 mim
indentation depth d 0.58 mm

5.1.3 Cylindrical Roller and Parallel Alignment

In this case, a cylindrical roller with radius 40 mm and length 80 mm is used as the
rolling body (1) and silicone rubber with 5 mm thickness is used for the substrate (2).
As shown in Fig. 5.5 (a), rolling motion and tangential force are aligned parallel to each
other. The cylinder has a 1 mm chamfer and almost flushes with the substrate. This
configuration is chosen in order to minimize the influence of the edges of the contact on
the pressure distribution, as discussed in detail in section 5.1.5. Again, another sort of
silicone rubber is used. With the least square method the parameters result to y = 0.79
and F5 = 3.6 MPa. In this case the results of the three dimensional simulation are
used for comparison. Again, the fitted values show good agreement with the optical
measurements. Other important parameters are listed in Tab. 5.1.3.

(a) lateral view (b) front view

Fig. 5.5: (a) rolling body experimental rig with cylindrical roller an parallel alignment of
tangential force Fr and rolling amplitude W. (b) cylindrical roller almost flushes with the
substrate
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Tab. 5.1.3: parameters of the rolling body experimental rig with cylindrical roller and
parallel alignment of force Fr and direction of the rolling W

parameter ‘ symbol ‘ value ‘ unit ‘

radius R 40 mm

length L 80 mm
coefficient of friction (LS) 1 0.79 1

Young’s modules (LS) Ei/Ey | 206 -103/3.6 | MPa
Poisson-ratios v1/va 0.3/0.5 1
normal force Fy 32.3 N

contact width 2a 4.2 mm

indentation depth d 0.26 mm

5.1.4 Experimental Procedures

In order to increase the reproducibility, it is briefly described how the experiments are
conducted and a few time responses of measured values are shown. For the shakedown
case the final experimental results are given in the sections 3.2.2, 3.4.2 and 3.5.3. For
the ratcheting case the final experimental results are given in the sections 3.3, 3.4.3 and
3.5.4. The parameters of influence fr and w as well as the displacement u are normalized
as described in equation (3.1.4) for the spherical rollers respectively equation (3.5.13)
for the cylindrical roller.

Shakedown for Spherical and Cylindrical Rollers The procedure to measure the
shakedown displacement ugq of the substrate is as follows:

—

. placing of the rolling body on the substrate

2. application of the tangential force fp using the weight pot

3. wait for 60 — 90 s until static equilibrium is reached

4. oscillating rolling for n = 12 periods with specific subcritical amplitude w < wy;,

In order to study a particular combination of parameters three to five iterations, i.e.
measuring runs, are performed before the experimental set-up is changed. Figure 5.6
shows the time response of the displacement of the substrate for fr = 0.19 and different
w in case of w L fp. The displacement stops after several periods and a safe shakedown
occurs. The small oscillations around the shakedown displacements are caused by slight
geometrical deviations, as explained in section 5.1.5. The last value of the displacement
was chosen as the resulting displacement after shakedown. The roller is then in its initial
upright position. Examples of time responses for w || fr and for the cylindrical roller
are not given here, as they are very much the same, except for the final displacement.
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Shakedown Limits for Spherical Rollers Figure 5.7 gives the displacement for
fr =0.64 and w L fr for the limit case and three experimental runs. These experiments
are used to determine the maximal amplitude wy;,. Therefore, starting from a safe
shakedown state, the amplitude is increased stepwise W = W + AW until ratcheting
occurred. The asterisks delimit the intervals in which the amplitude is held constant.
The complete procedure to identify the maximal amplitude wy;,, is as follows:

1. placing of the rolling body on the substrate
2. application of the tangential force fr using the weight pot
3. wait for 60 — 90 s until static equilibrium is reached
4. oscillating rolling for n = 5 — 10 periods and subcritical amplitude w < wy;,
5. increasing of the amplitude W = W + AW
6. repeating of step 4. and 5. until ratcheting occurs
The incremental increases of the amplitudes are chosen as:

w || fr = AW =0.1mm, (5.1.3)
w L fr=AW =0.05 mm .

The last amplitude before ratcheting is identified as the maximal amplitude wy;,, and
the result is the mean of three measurement runs. The time responses for the parallel
case w || fr are not given here, as they match with the perpendicular case except for
the exact values.

0.3 1
3 rit¢heti
3 = 08 &l
2 02 1 g
g Y <
g o)
g 2 0.6 )
= a2, shakedown
2 0.1 w=0.23| 2
= —w = 0.48 041 N
—w = 0.71 Ustat | |
| | T T
00 1 5 3 1 0 50 100 150

time ¢ [min] time ¢ [min]
Fig. 5.7: three measurement runs for
the displacement u for fr = 0.64 and
stepwise increase of w in case of w L fr
for determination of wy;m,

Fig. 5.6: displacement u for different
oscillation amplitudes w and fr = 0.19
in case of w L fr and shakedown
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Shakedown Limits for Cylindrical Rollers

The measurement procedure for deter-

mination of the maximal amplitude wy;,, in case of the cylindrical roller resembles the

one for the spherical rollers:

—_

. placing of the rolling body on the substrate

2. application of tangential force fr using the weight pot

3. wait for 60 — 90 s until static equilibrium is reached

4. oscillating rolling for n = 60 periods and sub-critical amplitude w < wym,

5. increase amplitude W = W + AW with AW = 0.05 mm

6. repeat step 4. and 5. until ratcheting occurs

Unfortunately, the distinction between shakedown and ratcheting is not as clear as for
the spherical case even for a highly increased number of periods, i.e. 60 instead of 10.
Figure 5.8 shows the displacement for fr = 0.42 and a stepwise increase of w for three
experimental runs. As can be seen, there occur regions of clear shakedown and regions of
clear ratcheting with high incremental displacement per period. Here, the displacement
for fr = 0.42 and a stepwise increase of w is shown for three experimental runs. The
asterisks delimit the intervals in which the amplitude is held constant. It shows that the
transition region is ambiguous what makes it hard to identify the maximal amplitude.

displacement u

clear qhakedo&yn

0 10 20 30 40
time ¢ [min]
Fig. 5.8: displacement u for fr = 0.42

and stepwise increase of w in case of the
cylinder for determination of wy;,

U
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Fig. 5.9: conditioned displacement
and polynomial fit @, for the intervals (1)
and (2) in Fig. 5.8

In order to give a distinct and comprehensible criteria, the displacement of the substrate
4 for a specific amplitude w is approximated with a second order polynomial fit:

ity = p2 () 2 + p1 () T+ po (w) . (5.1.5)
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Here, @, 4, and t denote the conditioned and normalized displacement and time such
that in the interval the displacement starts with 0 and reaches 1 at the end:

a(f=0)=0, a(f=1)=1. (5.1.6)

An example for the conditioned displacement as well as the polynomial approximation
is given in Fig. 5.9. These refer to the intervals (1) and (2) of Fig. 5.8. It is assumed
that the system still approaches a state of shakedown as long as the curvature of the
polynomial fit (5.1.5) is negative. Otherwise ratcheting must have started:

ity < 0 = shakedown (5.1.7)
ot? ’ o
2~

aaggp > 0 = ratcheting . (5.1.8)

The last shakedown amplitude is then identified as the maximal shakedown amplitude.
For the examples given in Fig. 5.9 the curvatures yield —0.65 for interval (1) and 0.13 for
interval (2). Thus, one can conclude that the system still shakes down for w in interval
(1) and ratcheting has started for w in interval (2). This is done for all the measurement
runs.

Finally, the maximal amplitude is computed as the mean value of three measurement
runs. Due to the described processes the maximal displacement cannot be read directly
as the system has still not reached the final shakedown state. Therefore, an artificial
criterion for determining the maximal displacement is defined. The displacement of
the last shakedown interval Ugqy and the first ratcheting interval U,; are approximated
linearly:

Ugg (t) =put+po1 and Uy (t) = p12t + po2 - (5.1.9)

The intersection of the two lines Ugq (t) = Uy () is assumed to give the maximal dis-
placement:

Up, = 220U, 4 pi (5.1.10)
P11 — P12

Although the maximal displacements match the theoretical values relatively good, see
Fig. 3.45 in section 3.5.3, the deviations of the maximal amplitudes are relatively high,
see Fig. 3.44 in section 3.5.3. For the maximal amplitudes wy;,, the mean deviation is
approximately 16%. Thus the maximal force fr i, in the experiments is 16 % higher
than the theoretical prediction. Due to the strong agreement between theory and sim-
ulation, see again Fig. 3.44 in section 3.5.3, one can conclude that the experiment is
somehow faulty. Potential causes are:

e an incorrect criterion for the determination of the maximal amplitude
¢ deviations in the alignment of tangential force and rolling amplitude
¢ deviations in the pressure distribution, as discussed in section 5.1.5

e erroneous determination of the parameters of the experimental rig
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Ratcheting for Spherical and Cylindrical Rollers The measurement procedure
for determining the incremental displacement Aw is the same in all three cases that are
considered:

[

. placing of the rolling body on the substrate

2. application of tangential force fr using the weight pot

3. wait for 60 — 90 s until static equilibrium is reached

4. oscillating rolling for n = 10 — 20 periods and supercritical amplitude w > wy;,

In order to study a particular combination of parameters three to five iterations, i.e.
measuring runs, are performed before the experimental set-up is changed.

5.1.5 Analysis of Deviations

Dynamic Influences In order to estimate the dynamic influences of the test rig, the
eigenfrequencies of the system are determined. For this purpose, the rolling body and
the main board of the joint kinematics are assumed to be rigid and only three degrees
of freedom are considered: translation and rotation of the roller and translation of the
substrate. The remaining components are modelled as linear elastic springs. With the
values of Tab. 5.1.1 the first eigenfrequency [99] for the spherical roller and the parallel
alignment of force and oscillation results to fi = 22 Hz. The highest excitation frequency
occurs for the smallest amplitude W = ia. With a drive speed of W = 1 m/s the highest
excitation frequency results to fo = 0.21 Hz and is thus two orders of magnitude less
than fi. The excitation and the displacement of the substrate can thus be assumed to
be quasi-static in relation to the natural oscillations of the system. In turn, its dynamic
influences are neglected.

Also for the perpendicular alignment the eigenfrequencies are estimated using a simplified
system with rigid body degrees of freedom only. With the values of Tab. 5.1.2, the first
eigenfrequency results to fi = 19 Hz which also exceeds the highest excitation frequency
of fo = 0.21 Hz by two orders of magnitude. The difference between the two settings is
caused by the fact that the bending stiffness of the lever arms is lower than their tensile
stiffness. Again, the dynamic influences of the system are neglected. For the cylindrical
roller, the eigenfrequencies are assumed to be comparable to the settings with spherical
rollers. Thus the excitation and the displacement of the substrate are again assumed to
be quasi-static in relation to the natural oscillations.

Kinematic Deviations Figure 5.10 depicts the rigid body displacement of the spher-
ical rolling contact for w || fr in case of shakedown. As one can see, some slight
oscillations occur in the shakedown state. These are caused by small geometrical de-
viations of the experimental setting. The model is such that the main bearing of the
lever kinematics is on the same level as the lowest point of the rigid sphere, i.e. the
contact point. Thus, the instantaneous centre of motion of the sphere coincides with its
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lowest point. However, in the experiment occurs a small deviation Ah such that the true
instantaneous centre is on a higher level, as depicted in Fig. 5.11. During rolling, this
will induce a small displacement of the substrate AU which is a function of the rotation
o= % around the instantaneous centre of motion:

AU = %Ah. (5.1.11)

This effect causes slight oscillations of the displacement around the shakedown value
as can be seen in Fig. 5.10. These oscillations also occurred in the unloaded case, i.e.
fr = 0. For the parallel case and fr = 0 and w = 0.75 the amplitude of the oscillation
is measured:

A

AU = (1.5540.13) um = Ah = (62.17 £ 5.38) pm . (5.1.12)

One can assume that these oscillations are from the same order for all the cases that are
considered. Although these geometric deviations might have a small influence on the
contact area, this effect can be neglected. The displacement u when the roller is in its
upright position is taken as the experimental result uzq for the shakedown case.
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Fig. 5.10: displacement u for different
oscillation amplitudes w and fr = 0.24
in case of shakedown for w || fr (experi-
ment)

Fig. 5.11: height difference between
bearing and contact point Ah causes de-
viation of the displacement AU

Half-Space Assumption In the experiments, a rubber substrate is used that is glued
to a metal plate which again is mounted on the cross roller table. It is to be discussed
to which extent the finite layer thickness of the rubber b contradicts the theoretical as-
sumption of a semi-infinite substrate. The half-space model assumes that all boundaries
of the semi-infinite bodies are sufficiently distant from the contact, so that the relative
displacements in the contact are independent of the remote boundary conditions [52].
The elastic deformations decrease with 1/r, with r being the distance to the contact
area, and the stresses and strains decrease in proportion to 1/r2. Therefore, the elastic
energy of the deformation is concentrated in a volume with linear dimensions of the
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order of the contact width D, [65], as shown in Fig. 5.12. Considering this, the layer
thickness is of great influence for the contact stresses and the contact area. In case that
b > D., the half-space assumption is not violated and the contact stresses are given by
the Hertz theory [56]. In case that b < D, the contact area is reduced and the maximum
pressure is increased in comparison with the Hertzian solution [100].

roller p(z,y)

; .‘.Dc ,
M
e 0 el

1 s '

Fig. 5.12: model of the contact between Fig. 5.13: optical measurement of the
roller and elastic layer of thickness b. De- contact area in case of the spherical
formation is concentrated in a volume roller. The diameter is approximately
with linear dimensions of the order of the D, ~ 9 mm

contact width D, (shaded area)

For the experiments, the ratios of the layer thickness b and the contact length D, are
calculated as:

b b
() _ 369 and () dmm g, (5.1.13)
sphere cylinder

D, 9 mm c - 4.2 mm

The layer thickness is thus of comparable size as the contact length D.. For frictional
contacts incorporating elastic layers as in the experiments presented here, the contact
can assumed to be effectively Hertzian for b > D, [101, 52]. Thus, one can conclude
that the experiments are sufficiently covered by the Hertzian theory and satisfy the half-
space assumption. This is also supported by optical measurements of the contact radii.
In these, the rollers are covered with stamping ink before indentation. After removing
the roller from the substrate, a coloured imprint remains at the surface that indicates
the size of the contact area, as shown in Fig. 5.13. The measured radii agree well with
the theoretical values computed with the Hertz theory.

Boundary of the Cylindrical Contact The model of the cylindrical rolling contact
assumes the stress distribution to be constant in the y direction perpendicular to the
rolling. However, the finite length of the cylinder causes a much sever state of stress
in the contact. Although the Hertzian theory predicts the pressure correctly over the
majority of the contact, significant deviations occur at the boundaries [56], as shown in
the diagrams in Fig. 5.14. In case of two coincident sharp ends as shown in Fig. 5.14
(a), the free end of the solids expand slightly what reduces the pressure as:

ph~ (1=v%)po. (5.1.14)
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A sharp stress concentration occurs when the mating substrate extends beyond the
roller, as in Fig. 5.14 (b). For a frictionless contact with § = 0, the pressure in the close
neighbourhood of the edge will vary as y~°23 [102]. This problem is typically avoided
by barrelling the rollers as depicted in Fig. 5.14 (c). Here, the pressure increases slightly
and then relaxes, resulting in a dog-bone shape of the contact area. Provided that the
radius at the ends is significantly larger than the contact width, both bodies can be
regarded as half-spaces [56]. Kunert gives the profile correction for the cylinder, that is
needed to leave unchanged the elliptical pressure in the rolling direction but to achieve
a constant pressure in the perpendicular direction [89]. However, such a profile is very
difficult to manufacture and is correct only at the design load.

(©)

(a)

Fig. 5.14: boundary effects of the cylindrical roller. (a) two coincident sharp ends, (b) one
sharp end and (c) rounded end, taken from [56]

Considering these relations and practical restrictions of the measurement set-up, the
test rig is built as a mixture of type (a) and (c). The cylinder has a 1 mm chamfer
and almost flushes with the substrate. In addition, the ratio of the length of the line
contact L and the contact width 2a is L/a =~ 20. Although these characteristics might
minimize the boundary effects, they cannot fully be neglected. The increased maximal
pressure in case (c¢) might be one reason for the increased maximal load that is observed
in the experiments in comparison with the theoretical value, as shown in section 3.5.3
in Fig. 3.44.

Viscoelasticity of Rubber The silicone rubber, which serves as the substrate in the
experiments, is assumed to be elastic in the considered parameter range. In fact the
rheology of rubber is characterized as viscoelastic, meaning that it exhibits both elastic
and viscous characteristics. Mechanically, this is described by the time dependent shear
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modulus G (t) function:

oo
G(t) = 1/ 1 (G'sin (wt) + G’ cos (wt))dw . (5.1.15)
21T J oo W

Here G’ and G” denote the storage respectively the loss modulus and w is the frequency
of the stress acting inside of the rubber [55]. The standard rheological model for rubber
is a combination of a spring (G1) and a so called Maxwell element, which is a series
connection of another spring (G3) and a dash-pot (7)), as shown in Fig. 5.15 (b). Usually
for rubber, GG is much larger than Gj.

B .

N\ (G "

\ il "2z
(a) rubber substrate (b) standard model

Fig. 5.15: (a) contact of rubber substrate and indenter. (b) standard rheological model
for rubber

As this standard model is a parallel connection, the corresponding modules are given as:

(wr)?
1+ (wn)2 ’

(wry)?

G’=G1+G21+(m)2 and G” = Gy (5.1.16)

where 7, = Glz denotes the relaxation time. For low frequencies, i.e. w < G1/n, rubber
behaves almost elastic with G (¢t) ~ G1. Likewise for very high frequencies, i.e. w >
Ga/n, rubber also behaves almost elastic with G (¢) ~ G2 [55]. The viscous dissipation
can be neglected in both cases. In contrast, in the intermediate range, rubber behaves
like a viscous fluid doing periodic loading, i.e. it exhibits high dissipation. Now, for the
silicone rubber used in the experiments the viscosity is approximately n = 40 Pas [103]
and the quasi-static shear-modulus is measured G; = 1.7 MPa as listed in Tab. 5.1.1.
Given the speed of the linear drive of W = 1 mm/s, the highest excitation frequency
results to fo = 0.21 Hz what yields:

wo 27 - 0.21 Hz - 40 Pas

= ~3.107° t) ~ . 1.1
N T 3-107° = G (1) ~ Gy (5.1.17)

Thus, one can assume the rubber to behave elastic in the examined parameter range.

102



Chapter 5. Experimental Analysis

5.2 Experimental Rig for the Micro-Walking Effect

The experimental set-up shown in Fig. 5.16 is used to investigate the micro-walking effect.
Most important components are the specimen and the substrate. The drive moves the
substrate with velocity vg relative to the specimen. Thus, the system corresponds to the
well-known moving belt model.

:]-’\/\/‘Oi
controller force-sensor
Zwick BX 1 < o | TD-112/KD 24s
\NNNRRRRRRRRRRRRNEY
drive
Zwick Z1.0
‘ \ c data board c amplifier
OO PC NI-PCI-6221 HBM MC 55

Fig. 5.16: experimental rig for the micro-walking effect with measurement chain consisting
of force sensor, amplifier, data board and PC

The experimental rig is powered by an electro-mechanical testing actuator made by
Zwick GmbH €& Co. KG whose good ganging properties reduce unwanted dynamic in-
teractions. The actuator is controlled using the controller BX-1. Straight rods act as
the spring between specimen and base. The spring force F is measured at the base of
the spring using a S-force sensor. Different sensors are used, namely the sensor TD-112
by Yuyao Tongda Scales Co., Ltd. and the sensor KD24s by MFE measurement systems
GmbH. The latter one has smaller dimensions and allows a larger adjustment range of
the height of the base. For amplification of the sensor signal, the amplifier system MGC
of the company HBM is used, which essentially consists of the amplifier HBM MC 55.
The measured signals are fed to the PC via a measuring system with 16-bit data acquisi-
tion board, namely NI PCI-6221 by National Instruments Corporation, which also serves
to control the drive. The sampling frequency used to measure the spring force Fj is cho-
sen to be fsqmp = 4000 Hz. This satisfies the Whittaker-Nyquist-Kotelnikov—Shannon
theorem [104] as:

Qe:p
fsamp = 4000 Hz > 2 x 2—;’ ~ 760 Hz , (5.2.1)

where ;) is determined from the frequency spectrum of the time response of F as
shown in section 5.2.3. Finally, the effective coefficient of friction u. is computed as:

~ (Fs (1))
N (5.2.2)
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5.2.1 Parameters of the Experimental Rig

The materials and the exact dimensions of the specimen and the substrate are chosen
such that the dimensionless parameter combinations, which are determined with the
numerical model as described in section 4.2.1 and section 4.2.2, are met as closely as
possible. However, experimental feasibility leads to certain limitations as discussed be-
low. The specimen has an hourglass shape as shown in Fig. 5.17 (a). It consists of a
steel centrepiece and two contact discs made of polypropylene (Epp = 1.4 GPa). This
configuration enables a quick adjustment of the geometry and thus inertia properties.
The substrate consists of smooth window glass (Egs = 90 GPa) and has a prism shape
as shown in Fig. 5.17 (b) and Fig. 5.18 (a). On the one hand, this configuration en-
hances the stability and parallelism of the motion of the specimen. On the other hand,
the contact configuration of the experiment differs slightly from the initial theoretical
model introduced in section 4.1.3. Thus, for the comparison in section 4.3.2 an extended
model as described in sections 5.2.3 and appendix B.4 is used. Other dimensions and
parameters of the experimental rig and the different combinations for set 1-5 are given
in Tab. 5.2.1. A detailed discussion of how these parameters are determined is given
below. In addition a deviation analysis is given in section 5.2.3.

(a) lateral view (b) front view

Fig. 5.17: (a) lateral view of the hourglass-shaped specimen with dimensions. (b) front
view of the specimen with prism-shaped substrate

(a) experimental rig (b) mount of the spring

Fig. 5.18: (a) experimental rig for the micro-walking effect consisting of specimen and
prism-shaped substrate. (b) mount of the spring at the S-force sensor with spring rod
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Tab. 5.2.1: parameters of the micro-walking experimental rig for the different parameter
combinations set 1-5. The numbers in brackets gives the corresponding set

parameter ‘ symbol ‘ value ‘ unit ‘
radius R, 5 mm
contact disc diameter D 60 mm
body diameter Dy 30(1,2,3,4) /50 (5) mm
model half-height a 21.2 mm
length of centre part I 18(1,3,5) /40 (2,4) mm
model half-width b 14(1,3,5) /25(2,4) mm
length of side-disc lo 5 mm
mass of specimen m 201 (1,3) /327(2,4) /490 (5) g
length of spring-rod ls 100 mm
friction coefficient 1 0.79(1,2) /0.68 (3,4) /0.75 (5) 1
Young’s modules Epp/Egs 1.4/90 GPa
Poisson-ratios vpp/vas 0.4/0.3 1
contact diameter D, 1.8 mm

Contact Stiffness and Contact Diameter The contacts between specimen and
substrate are modelled as linear springs with normal and tangential stiffness:

k,=FE*D, and k,=G*D,. (5.2.3)

The effective modules £* and G* directly depend on the materials in contact, whereas
the contact diameter D, is a function of the actual contact configuration as sketched in
Fig. 5.19 (a). Hence, it depends on the state of motion of the system. In the following,
different ways for the estimation of D, are presented.

1) If the ‘contacts are assumed to be of the Hertzian type with an average normal
force Fiy = %ﬂmg acting on each single contact the contact width yields:

c =

<6FNRC) ~ 0.4 mm . (5.2.4)

One drawback of this assumption is that in fact the normal force and thus D,
change in time. In addition, it remains unclear if the contact model is chosen
correctly.

2) Due to wear, the shape of the contacts will soon not resemble a Hertzian contact
but a flattened ellipse with a more or less constant effective diameter as shown in
Fig. 5.19 (b). Here one wear spot in the contact zone is shown. A rather crude
optical estimate of the conjugate diameters of the wear spots gives:

D.=2Vab~2mm. (5.2.5)
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But again, the question remains whether the wear spots really correspond to the
visible contact zones.

3) Another way to estimate the contact stiffness is to compare the characteristic
frequencies of the spring forces of the experiment and the simulation as discussed in
section 5.2.3. Assuming that the simulation maps the reality sufficiently accurate,
the characteristic frequencies must match. This gives the characteristic time 7 as
defined in equations (4.1.11) and (5.2.35) and one can compute the contact stiffness
as:

m
hy = 2.
> (5.2.6)

The contact stiffness and diameter then yield:

ke =(22+15)-10° N/m and D, = (1.8 +1.2) mm . (5.2.7)

The values stated in (5.2.7) are used for approximation and for the comparison of exper-
iment and simulation in section 4.3.2 as these values resemble to the flattened elliptical
contact.

wear zone

specimen

(a) model of the contact (b) wear zone at the specimen

Fig. 5.19: (a) contact of elastic body and rigid substrate with contact diameter D, as a
model of the contact zones of the between specimen. (b) contact disc with elliptical shaped
wear zone

Spring Stiffness The parameter studies of the numerical model as described in sec-
tion 4.2.1 show that the micro-walking effect occurs if for the dimensionless parameters
k1 and k4 applies:

o

K= 2 ~1 and Ky = % ~ 1074 . (5.2.8)

8

The use of a soft spring, e.g. ks = 103> N/m, would lead to experimental advantages as
this increases the difference between the eigenfrequencies of the specimen and those of
the experimental rig, i.e. drive and base frame. However, in order to fulfil (5.2.8) the
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half width b would result in completely impractical values, as can be shown for typical
dimensions of the experiment, e.g. m = 100 g, g = 9.81 m/s%:

mg%104. 1N

= b=10 10° N/m

10m. (5.2.9)

Instead, stiff polypropylene is used for the contact discs, such that the tangential stiffness
results to k; = 2-10% N/m and the half width to b = 1072 m. In order to achieve a
spring stiffness of ks = k,, straight rods made of fibre-reinforced plastic respectively
polystyrene are used. Their corresponding Young’s modules are measured on the basis
of the DIN norm 178 [105] and result to:

Epg = (3.42+0.02) GPa, (5.2.10)
Ecp = (176.66 + 2.02) GPa . (5.2.11)

The spring stiffness corresponds to the according longitudinal stiffness:

_ BJA,

ks ;
Ls

(5.2.12)

where Ay is the cross sectional area of the rod. Initially, the spring stiffness result to

ks_ps = (2.4240.14) - 10° N/m , (5.2.13)
ks_sp =60 N/m , (5.2.14)
ks_cr = (5.50 £0.63) - 106 N/m , (5.2.15)

where ks_gp denotes the spring stiffness of the spiral spring used in section 4.3.1. This
value is simply taken from the corresponding data sheet, where the uncertainty of the
measurement is not given. However, the stiffness of the sensor used for determination of
the spring force has to be taken into account. For the sensor KD24s the spring stiffness
is kxposs = 2107 N/m. As it is in series with the spring, the effective spring stiffness
IES can be determined as :

1%—<1+ ! )1 (5.2.16)
° ks kKD24s ’ -
what finally yields':
ks_ps = (2.3840.14) - 10° N/m , (5.2.17)
ke_cor = (4.34£0.39) - 106 N/m . (5.2.18)

The stiffness of the sensor TD-112 is not known. As its nominal load is higher than
for the KD24s it is expected to be stiffer. Thus, according to (5.2.16) its influence is

!The sensor can assumed to be rigid in comparison to the spiral spring, i.e. it does not influence the
stiffness in this case.
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lower. In the end, the high error of measurement for the contact stiffness discussed in
section 5.2.3 leads to the following rather crude estimates of the parameters x;:

K1_pg = B=PS a4 0.1 — used in set 1, 2

Ki-sp = 5252 A 1071 — used inset 3, 4 (5.2.19)
Kl_cF = =7 ~ 2 — used in set 5 .

Sets 1-4 are used in the analysis of section 4.3.1 and are tabulated in Tab. 4.3.1. Set 5
is used in the comparison of experiment and simulation in section 4.3.2 and is described
in Tab. 4.3.2.

5.2.2 Experimental Procedures

In order to increase the reproducibility, it is briefly described how the experiments are
conducted and a few time responses of the spring force are shown. The final experimen-
tal results are given in sections 4.3.1 and 4.3.2. The experimental procedure used for
detection of the time response of the spring force is as follows:

1) cleaning of the glass substrate with degreaser

2) alignment of the base and specimen and attaching of the spring
3) measuring run with desired velocity vy

4) return run with velocity vo = 15 mm/s

The running distance is 190 mm. In order to ensure an almost stationary contact configu-
ration, i.e. elliptical wear patches at the contact zones, about 100 runs for the running-in
process are conducted after every change of the experimental set-up. In order to study
a particular combination of parameters 10 to 20 iterations, i.e. measuring runs, are per-
formed before the experimental set-up is changed. The following figures depict cut-outs
of the time response of the normalized spring force Fy for the parameter set 5 as de-
scribed in section 4.3.2 in Tab. 4.3.2, i.e. the maximum parameter set of the experiment.
The lever arm ratio is kg = —0.71. As shown in Fig. 5.20, where F for vy = 8.33 mm/s
is given, only small oscillations occur in case that the base velocity vy falls below the
limit velocity. If the limit velocity is exceeded, instabilities with high frequency occur,
as shown in Fig. 5.21 which gives Fs for vg = 33.33 mm/s. These instabilities cause a
reduction of the efficient coefficient of friction. Comparison of the close ups in Fig. 5.22
and Fig. 5.23 highlights the differences between the time responses.
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Fig. 5.20: time response of Fy for set 5 Fig. 5.21: time response of Fy for set 5
with the parameters as in Tab. 4.3.2 and with the parameters as in Tab. 4.3.2 and
kg = —0.71 and vg = 8.33 mm/s kg = —0.71 and vg = 33.33 mm/s
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Fig. 5.22: close up of the time response Fig. 5.23: close up of the time response
of F, for the parameters as in Tab. 4.3.2 of F for the parameters as in Tab. 4.3.2
and Kg = —0.71 and vy = 8.33 mm/s and Rg = —0.71 and Vo = 33.33 mm/s

5.2.3 Analysis of Deviations

Contact Configuration The geometry and contact configuration of the experiment
differs from the theoretical model. This is mainly caused by the inability to replicate the
two-dimensionality of the theoretical model in practice. For instance, usage of a lateral
guidance in the y-direction would induce an additional friction force to the system,
especially since it would theoretically have to be free of bearing clearance. However, the
three dimensional experiment can be modelled as a two dimensional model that consists
of three dimensional contacts. This is possible, since for symmetrical initial conditions?

)

2In this case the word symmetrical means that the rigid body is not rotated around the y- and z-
direction and not displaced in the y-direction. This was tested by the author using a full 3-D model
taking into account all 6 directions of motion.
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the contact forces are symmetrical for all of the four contacts. The according equations
of motion are then the same as for the theoretical model that are given in equations
(4.1.16)-(4.1.19). One difference relates to the contact forces. The contact plane is
inclined since the substrate is prism shaped. This leads to an additional spring deflection
us as described in section B.4. There are four contacts spots each exhibiting its own
spring deflections. But as the model is symmetrical, the two contacts on the left and
on the right obtain the same contact conditions. Thus, only one contact on the left and
one on the right are considered and the corresponding contact forces are doubled:

V2
fnip=2 R2 5" (%1/2 + U51/2) ) (5.2.20)
fri2 =2 uz0 - (5.2.21)

The equations of motion in the non-dimensional form yield:

T = kg , (5.2.22)

" = —2uy — 2uge + K1 (Ts — T+ Kgp) (5.2.23)
2 2

"= —2/@2\2[ (unl -+ usl) — 2/12\? (ung + u52> + kg, (5.2.24)

1 V2 V2
80” = ;7 (252"432 (un1 +us1) (1 — ) + 252“137 (un2 + us2) (1 + @)) )

+ Kl? (—2le (K:ZJ, + 80> — 2ugo (/f:%, - <P> — K1 (n%ng + go) (xs —z+ Iig(p)) . (5.2.25)

As a consequence of the inclined contact plane, the effective coefficient for the experi-
mental model must be computed as:

t
Lo = s @) (5.2.26)
V2pury
Hence, it corresponds to p of the experiment as defined in equation (5.2.2):
Fs(t
e = {(Fs (0) : (5.2.27)
V2pumg

Deviation of the Parameter Range Some of the parameters can simply be mea-
sured geometrically. This is the case for the parameters k3, k7 and kg. For these, the
deviation between the real values of the experiment and the calculated ones is expected
to be such small that it can be neglected. The microscopic friction x can be determined
experimentally using the test rig and base velocities below the threshold for the insta-
bility. Different batches for the material of the contact disc result in different values for
the microscopic friction:

pu=0.79+0.01 — usedinsetl, 2 ,
1w =0.68+£003 — usedinset3, 4 , (5.2.28)
pn=0.75+0.03 — usedinset5 .
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Sets 1-4 are used in the analysis of section 4.3.1 and are tabulated in Tab. 4.3.1. Set 5
is used in the comparison of experiment and simulation in section 4.3.2 and is described
in Tab. 4.3.2. The value of k2 can only be estimated as the real contact configuration
remains unknown. This is not a problem, since the influence of ko is only minor as shown
in section 4.2.1. Assuming an approximately circular contact area and considering the
parameters of Tab. 5.2.1, the Hertzian contact theory yields the parameter ko as:

Ko~ 1.33 . (5.2.29)

In contrast the remaining parameters ki and kg are of great influence as shown in
section 4.2.1. Both depend on the unknown tangential contact stiffness k.. One way to
estimate k,, is to determine the non-dimensional time:

m m
T=4/— =k, =

k =R (5.2.30)

For this purpose the time response of the normalized spring force of both, experiment
and simulation, is determined. Afterwards, the corresponding frequency spectra Sy [99]
are computed. For the simulation Sy is computed as:

1 (T fs(t)
Se_sim = — exp (—iQt)dt , 5.2.31
Ty Vauma p (—iQ2t) ( )
and for the experiment it is computed as:
1 (T Fy(t)
Se—eap = — | ———T—exp (—iQt)dt . 5.2.32
P =T T o (1) (5:2:32)
T T T
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Fig. 5.25: frequency spectrum Sg_cqp

Fig. 5.24: time response of the spring
of F for the for the parameter set 5

force F for the parameter set 5

Figure 5.24 gives the time response of Fy of the experiment for the parameter set:

set 5: Ki_g = (2, 1.33,1.51,2-107%,0.75,1.6 - 1073, 1.77, —0.47) . (5.2.33)
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Figure 5.25 shows the corresponding frequency spectra S; where the star denotes the
characteristic frequency €¢z;,. Assuming that the simulation maps the reality sufficiently
accurate, the frequencies must match, i.e. Qg = Qezp. In case of the simulation, the
characteristic frequency g, is given as the computed non-dimensional frequency wg;pm,
divided by the characteristic time 7:

Wsim

Qgim = (5.2.34)
T
Thus, the characteristic time is determined as:
L Qi = Qegp = T = (5.2.35)
T Qezp

In order to determine 7, 10 time responses of the force for different base velocities are
measured and the characteristic frequencies are computed. The results are shown in
Fig. 5.26 and Fig. 5.27. The mean frequencies result to:

Qezp = (240+62) Hz and  wgm = 0.1 £0.006 , (5.2.36)
what yields the characteristic time as:
T=(47+15)-10""s. (5.2.37)

Finally, under the assumption that the contact stiffness is the same for all velocities, the
contact stiffness can be identified as:

2
ke = 2 — (Qe”’> =(22+1.5)-10°N/m . (5.2.38)

Wsim
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Fig. 5.27: characteristic frequency wg;m,

Fig. 5.26: characteristic frequency Q)
as a function of the velocity vy

as a function of the velocity vg

It shows that the absolute error of measurement is high. This is caused by the highly
varying frequencies of the experiments as depicted in Fig. 5.26. One reason for this is
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the changing contact configuration as discussed in section 5.2.1. Firstly, the contact
stiffness changes with the load as in the Hertzian contact. Secondly, there is a constant
wear that changes the contact area. Thus, the resulting stiffness of (5.2.38) is not more
than an indicator for the magnitude of the real contact stiffness, which obviously changes
for the different test runs. Additionally, it remains unclear if the rest of the parameters
is estimated correctly. Furthermore, the parameters x; and kg used in the simulations
are determined in advance on basis of an educated guess for k,. One can conclude that
the model at least captures the basic effects of the experiment and shows the correct
magnitudes. Figure 5.28 gives a comparison of the time response of the normalized
measured force F and the force of the simulation model f; for parameter set 5. It shows
that the amplitudes match relatively good.

W
T

[\]
T

Fs/\@ﬂmga fs/\/il-“{ll

—9 |
4|
| | |
2.2 2.22 2.24 2.26 2.28
time ¢ [s]

Fig. 5.28: time response of the spring force for the experiment and simulation for the
parameter set 5. The time of the simulation is computed with the characteristic time 7

Influence of the Spring A more accurate modelling would characterize the connect-
ing element between base and specimen as a beam consisting of a stiffness that considers
all of the three degrees of motion of the model. It is to be determined whether these
unwanted influences can be neglected. For this purpose the model shown in Fig. 5.29 is
chosen that consists of an Euler-Bernoulli beam that is connected to a rigid mass that
is supported by a spring with the contact stiffness k,. As k, ~ k, ~ k; applies in the
reduction regime, the contact stiffness corresponds to the longitudinal stiffness of the
beam kg as in (5.2.12). The well-known beam theory gives the elastic force Fjz and the
moment Mg that act from the beam on the mass [106]:

3E1 E I
FbZ = B w (ls> and Mb@ = i w/ (ls) . (5239)

Here w (I5) and w' (I5) give the displacement and the rotation of the beam at z = I.
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Fig. 5.29: (a) beam model of the connection element of the system. (b) cross section of
the beam

The other important loads are the force F,.z and the moment M ¢ of the contact:
F.;=k.Z =kZ and My = k,b’® = kb*® . (5.2.40)

With (5.2.39), (5.2.40) and (5.2.12) the ratios of the forces and moments yield:

3Es1s sls
By _Zgwl) o M Fw' () (5.2.41)
Fez E;—;%Z Mo Eii?slﬁq) . o

Asw(l;) = Z and v’ (Is) = ® as well as Ay =72 and I, = Zr? this gives:

F 3 2 M, 1/b\?
bz _° <rs> and 2 == () . (5.2.42)
FcZ 4 ls MC@ 4 Ts

Finally, with r, = 1-103 mm, [y =1-10"' m and b = 1-1072? m this yields:

Bz 100 and Mo 192 (5.2.43)
FcZ Mc@

Thus, one can conclude that the influence of the connection element on the vertical

displacement and the rotation can be neglected in the modelling, as the corresponding

loads are by orders lower than the contact forces and moments. Therefore, the bending

and torsional-stiffness of the connection element is not considered and it can be modelled

as a simple spring.
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Conclusion and Outlook

6.1 Conclusion

Two principally different models have been introduced to examine the influence of mi-
croscopic slip on the macroscopic behaviour of mechanical systems with friction. Firstly,
the oscillatory rolling contact, which corresponds to a Hertzian contact with time vary-
ing contact area and pressure distribution. Secondly, the micro-walking machine, which
corresponds to a rigid slider with several independent contact spots.

6.1.1 Shakedown and Ratcheting in Incomplete Contacts

As generic models for incomplete contacts, the oscillating rolling contacts with constant
load regime Fp and Fj have been introduced. Basic assumptions are dry friction of
the Coulomb type with constant coefficient of friction p and linear elastic material be-
haviour. Additionally, the systems are assumed to be quasi-static and from an uncoupled
type, i.e. Dundur’s constant 8 = 0. Thus, variations in the normal force will not induce
any tangential displacement and vice versa. The system resembles a tangentially loaded
contact problem from the Hertzian type that is superposed by a slight oscillatory rolling
of the upper body. This rolling resembles to a rocking motion, i.e. a back and forth
movement of the point of application of the normal force as in the rocking punch exam-
ined by Mugadu et al. [27]. In consequence, the pressure distribution and the contact
region are varied within every cycle of the rolling. In the analysis, the MDR [67], the
CONTACT simulation software [88], classical analytical contact mechanics [56, 55] and
experimental test rigs have been used. Depending on the system parameters two distinct
cases can occur.

Shakedown In the first few periods the rolling leads to partial slip and increases the
rigid body displacement of the substrate. In case that the rolling amplitude w and the
tangential force fr fall below the so-called shakedown limits, the system reaches a new
equilibrium and the centre of the initial contact area remains in a state of stick. During
the transient, the traction is increased until a residual force is formed that balances
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the macroscopic tangential force. This process is referred to as a frictional shakedown
[25, 26]. In the experiment, the shakedown state is reached after 10-12 periods of rolling.
For all three cases that have been considered, i.e. spherical roller with parallel and
perpendicular alignment of load and oscillation and cylindrical roller with parallel align-
ment, the shakedown displacement and the shakedown limits have been derived. The
former describes the new equilibrium state. The latter gives the maximal tangential
force for a given rolling amplitude for which a safe shakedown occurs and vice versa. In
all three cases it turns out that shakedown is accompanied with a significant reduction
of the tangential load capacity. The reduction in all three cases is approximately:

Jrtim = 1 — Wiim, - (6.1.1)

This effect must be considered in the design of force locked connections in which the
contact is incomplete and the pressure distribution varies in the described manner. Com-
parison of the three cases shows that spherical contacts can bear higher tangential loads
than cylindrical ones. In addition, the parameter range of the shakedown displacement
is narrower for the cylindrical case, i.e. the final shakedown displacements differ only
slightly for different f7 and w.

Ratcheting In case that the shakedown limits are exceeded, an effect called ratchet-
ing occurs. The alternating slip processes cover the complete initial contact area and
shakedown is no more possible. Depending on the actual rolling direction one side of
the contact sticks while the other slips. This accumulated displacement results in a rigid
body motion referred to as ratcheting or walking [27, 28, 29]. Approximation functions
for the incremental slip per period as a function of the tangential load and the rolling
amplitude have been derived. These are in good agreement with the experimental results
and show qualitatively good agreement with the results for the walking of the rocking
punch [27]. The ratcheting effect can be used for the generation and control of small
displacements in case that an increase of the tangential loading is not possible or high
accuracy is needed as in MEMS. Comparison shows that the incremental displacement
is highest for the spherical contact with perpendicular setting of load and rolling and
lowest for the cylindrical setting.

The results of the different methods show good agreement. The MDR [67] enables to
deduce the analytical form of the shakedown state and the shakedown limits. This
would have been almost impossible using classical contact mechanics as for instance the
Catteneo-Mindlin approach [59, 60] or the Ciavarella-Jager principle [58, 62]. This is
because both, contact area and traction distribution are not known and are the product
of a transient process. However, comparison with the experiments and the 3-D CON-
TACT simulation indicates that the MDR results are only qualitatively correct. The
slight deviation that occurs is caused by the missing rotational symmetry of the contact
configuration after shakedown, what violates one basic assumption of the MDR. Never-
theless, the results show that the MDR has again proven to be a very suitable method
for the analytical description and simulation of frictional contacts.
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6.1.2 Dynamic Influences on Sliding Friction

The so called micro-walking machine is introduced in order to study the system behaviour
in case that the tangential load is sufficient to induce gross sliding. It consists of a rigid
body with several contact spots that are assumed to be linear elastic and independent
from one another. Again, dry friction of the Coulomb type is assumed with a constant
coefficient of friction p and no distinction between static and kinetic case. The system
takes into account spatial variation of stick- and slip zones and contact forces, thereby
enabling micro-walking of the specimen. This characterizes a dynamic mode in which
the system travels most of the forward motion while the normal forces in the contacts
are low in comparison to the average value. This causes a reduction of the effective
coefficient of friction, i.e. a lower apparent macroscopic frictional resistance. For the
analysis numerical simulations and an experimental rig have been used.

Parameters of Influence In a first step, parameter combinations are identified for
which a significant reduction occurs. The results indicate that a reduction is induced
if the stiffness of the excitation and the contact stiffness are comparable in size. In
addition, the friction decreases with increasing velocity, increasing microscopic friction
and increasing coupling between rotational moment and friction forces. These results
are consistent with those gained with more or less comparable models [10, 47, 50].

Vanishing Frictional Resistance The maximal reduction is 98 % in theory and
73 % in the experiments. A further analysis of the results shows that the reduction
is caused by self-excited oscillations that are induced by the coupling of the different
degrees of motion. The excitation causes a rotation of the rigid body which increases
the contact forces and induces oscillations in the vertical direction. This instability is
characterized by a microscopic jumping of the rigid body with released contacts that is
in strong correlation with the lateral motion: low or zero contact forces coincide with
a fast forward motion of the rigid body. In addition, the alternation between storage
and motion phase is identified as the prerequisite for the characteristic jumping and fast
forward movement. The reduction increases with increasing velocity, increasing lever
arm of the excitation and with increasing microscopic friction as all of these effects sup-
port the instability, i.e. increase the amplitude of the vertical oscillations. However,
the vertical amplitudes in the reduction range are of the order of the static deflection,
i.e. the self-excited oscillations are from a microscopic character. Taken together, the
model shows that micro-vibrations play an important role for the dynamic influences
on the effective frictional resistance of systems that exhibit apparently smooth sliding.
In these systems, the experimentally observed dependency of the frictional resistance
on dynamic quantities might be explained by microscopic effects that are influenced by
macroscopic system features such as the stiffness or the geometry. One example for this
being the rate weakening of the friction coefficient. The model shows that this effect
can be explained to some extent by dynamic instabilities that simply increase with the
sliding velocity. This is particularly important for the design of tribometers.
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The results of the simulations give a clear but also strict guideline for the parameter
range that needs to be adjusted if one wants to induce this reduction through dynamic
instabilities. Both, the design-phase of the experimental rig and the experiments itself
show that this parameter range is narrow and hard to reach. For instance, matching
the non-dimensional parameters in reality is very challenging. Furthermore, a change
of the scaling of the model would change the non-dimensional parameters, due to cross
influences and some constant parameters as for instance the gravitational acceleration.
Thus, it remains vague to what extent the proposed effect occurs in practical systems.
However, the results provide a solid starting point for further research and development
of applications in technical systems.

6.1.3 The Interplay of System Dynamics and Friction

The first model explains the failure of force locked connections under the influence of
oscillations in the pressure distribution. The second model shows that micro-vibrations
can be responsible for the dynamic influences on the effective frictional resistance of
systems that exhibit apparently smooth sliding. Although both systems are relatively
different in terms of basic assumptions (nominally static vs. dynamic) and type of anal-
ysis (analytic derivations vs. numerical experiments) the results are fairly connected to
each other. As shown in Fig. 6.1, the different phenomena can be imagined as neigh-
bouring scenarios. The range of scenarios starts on the left with the shakedown effect.
In this range, a system that is subjected to oscillating loads will reach a new equilibrium
after some periods, i.e. it will remain stable as long as both tangential force and oscil-
lation amplitude fall below the shakedown limits. If these are exceeded, the system will
enter the next scenario. Ratcheting starts which is an accumulation of micro-slip that
alternately affects the whole contact area and leads to a continuing rigid body motion. If
the instability limit is exceeded, the system enters the next scenario: the micro-walking
range. Here, self-excited oscillations occur that lead to temporarily released contacts.
The instability limit depends on different system properties such as the sliding velocity,
stiffness, mass and geometry.

(20)
—
shakedown ratcheting micro-walking

Fig. 6.1: scenarios in mechanical systems with friction and oscillations
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The consequences of the different effects are very similar. In the case of shakedown
occurs a significant reduction of the maximal tangential load capacity. In consequence,
the force that is needed to induce a rigid body motion in the case of ratcheting is lower
than expected, i.e. the effective frictional resistance is reduced. This is the same effect as
in the case of micro-walking. Thus, as stated in the introduction of this work all of these
effects strongly influence the macroscopic behaviour of the system although they occur
at the micro-scale. In the model for shakedown and ratcheting in incomplete contacts,
the oscillations are externally driven. In contrast, in the micro-walking machine the
oscillations are self-excited. Consequently, throughout this work the different effects are
considered separately. However, a mechanical system with friction that is subjected to
oscillations in the contact area or contact stresses can successively or simultaneously
exhibit all these effects. Therefore, future research should combine the two models to
give further insights to the subject of dynamic influences in mechanical systems with
friction.

6.2 Outlook

In addition to a possible combination of the two models proposed in this work, there exist
several other promising extensions that are briefly described in the following section.

6.2.1 Shakedown and Ratcheting in Incomplete Contacts

Shakedown in Contacts of Rough Surfaces Since all technical surfaces are rough
to some extent, one interesting extension of the work is to consider shakedown and ratch-
eting in the contact of rough surfaces. Starting point is the tangentially loaded contact
between an elastic half-space and a rigid rough indenter. Instead of oscillatory rolling on
can consider rocking of the contacting bodies that is induced by a moving normal force
as in the rocking and walking punch of Mugadu et al. [27]. The MDR enables to map
the initial 3D system to a one-dimensional system of independent elements [67] and has
proven to be a suitable instrument for the modelling of fractal rough surfaces [70, 71].
For this reason, one can expect that also shakedown and ratcheting in rough surfaces
can be simulated using the MDR.

Shakedown for Further Contact Geometries Further research is needed to ex-
amine other forms of smooth rolling bodies as cones or ellipsoids. Although it remains
vague whether an analytical description of the shakedown limits of these systems can be
achieved, it is certainly possible to conduct 3D simulations using the CONTACT model
and to conduct experiments using the rolling body test rig.

Interaction of Parameters Especially for technical applications it would be inter-
esting to consider the interaction of different parameters. For example, the oscillatory
rolling might be superposed by varying normal and tangential forces. Or the influence
of the alignment of load and oscillation for angles between 0 and 7/2 can be considered.
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6.2.2 Dynamic Influences on Sliding Friction

Extended Experiments As the theoretical maximal reduction of the frictional re-
sistance is not reached, further development of the experimental test rig is needed in
order to match the maximal range of the non-dimensional parameters. One possibility
is to identify other maximal parameter combinations that are easier to reach in practice.
Another possibility is to attach some kind of guide-way such that the two-dimensional
character of the theoretical model can be reproduced. For this, a plane substrate instead
of a prism shaped substrate needs to be used.

Contribution of Instability Mechanisms The simulations show that several mech-
anisms contribute to the reduction effect: vibrations in the normal direction, synchro-
nization of tangential and normal motion and characteristic alternation between storage
and motion phase. Attempts should be made to reveal which of the proposed effects
contributes mostly to the reduction. For this purpose, models and experiments must be
designed where certain effects can be switched off. For instance, one can avoid jump-
ing of the specimen using a vertical guidance in order to examine the influence of the
rotation.

Practical Guidelines The origin for the work on the dynamic influences of the fric-
tional resistance is the poor reproducibility of measurements of friction coefficients.
Therefore, the results should be revised in order to give practical guidelines for the
design of tribometers. This can be followed by analysis and improvement of an existing
tribometer with regard to its dynamic properties.

Measurement of Normal Oscillations The only dynamic quantity that is measured
in the experiments is the time response of the spring force at the base. Although, the
time responses of the spring forces of simulation and experiment match relatively good,
it would be an important extension to measure the normal translation of the rigid body
in order to compare it to the simulation results. Especially, since in accordance to many
other authors [39, 40] the normal oscillations are responsible for the reduction effect.
The experimental set-up makes it easy to measure the normal displacement as the mean
position of the rigid body is constant and the substrate is moved. For this, the laser
vibrometer used in the rolling body experiments can be applied to the micro-walking
machine test rig.

Parameters The DoE analysis indicates that certain parameters deserve further anal-
ysis as they have a significant impact on the frictional resistance. For instance, increasing
ratio of height and width of the specimen increases the friction. For this purpose, also
instability analysis can be used, where one considers perturbations of the steady sliding
solutions.
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Appendix A

Statistics

A.1 Analysis of the Experiments

A.1.1 Specification of Measurement Results

Experimental measurements are always subjected to some statistical deviations, which
are caused, among other things, mainly by imperfections of the instruments and their
operation. The specific value x; of a measurement ¢ differs from one another and thus
scatters around the mean value Z, which is defined as the arithmetic mean of the par-
ticular measurements:

ixi . (A.l.l)

With increasing number of measurements, the arithmetic mean approaches the so-called
expected value z.. In order to evaluate the uncertainty of measurement, the standard
deviation of the mean value is considered, which indicates how far the mean value of
measurement differs from the true value z. :

01:1J LS -2, (A.1.2)

n—1:=

For n — oo one can determine with the probability density h(z) that the true value .
lies within the range T + oz with a probability of 68.3%. This range is defined as the
confidence interval on the confidence level 68.3%. In case of only a few measurement
values n, one has to use the so-called student-t distribution for the probability density
h(zx). This is considered by the correction term ¢ that is tabulated for instance in the
DIN norm 1319-3 for different numbers of measurements n and for various confidence
intervals [107]. A measurement result is then specified as follows:

where t is taken from tables. Unless otherwise noted, the measurement results in the
present work are given with confidence intervals on the confidence level 68.3%. In case
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that a certain measurement variable y is a function G' of an arbitrary number m of
uncorrelated variables zp the uncertainty of measurement follows from the so called
Gaussian error propagation law that is also defined in the DIN norm 1319-4 [108]:

m 8G 2 )
_ E il 2 Al4
7 k=1 (3$k) = ( )

A.1.2 Identification of Parameters

Not all parameters of the experimental rigs are known or can be measured directly.
Examples include the coefficient of friction p, the elastic modulus of the substrate of the
rolling body test rigs Fo and the mapping parameter s that occurs due to the violated
rotational symmetry. In order to determine the unknown values the so called method
of least squares is used. In the first step, the sum of the squared deviation between the
measured variable y; and the model function f (z;, a;) is computed:

n
Sj = Z(f (mi,aj) —yi)Q . (A.1.5)

i=1
Here o denotes a specific set j of a number of model parameters in the model func-
tion and n is the number of observations or measurements. In the second step, the
parameter set j for which the corresponding S; is minimal is chosen for determination
of the unknown parameters. The two basic assumptions for this approach are normally
distributed measurement deviations of y; and a correct measurement of the independent
variable x;. In practice this means that the measurement deviations of x; must be small
compared to those of y; [109]. Linear model functions f(z;, ;) enable the analytical de-
termination of both the minimum and the parameters a;. Otherwise iterative methods
are used [110]. However, in the present work mostly non-linear functions derived from
physical principles are used for f (z;, «;), as for instance the static displacement of the
substrate Usiqs (Fr, o) with a = (E, ). Often, only one or two parameters occur in the
functions. Thus it is useful to compute S; for a sufficiently high resolution of «;. The

minimum can then easily be detected.

A.1.3 Curve Fitting and Regression

Curve fitting and regression are widely used instruments in many areas, particularly
in econometrics, where a good introduction is given by Woolridge [111]. The aim is
to construct a smooth function that approximately fits the given data z; and y;. For
instance in a linear regression analysis the starting point is the model function:

y=ox+f. (A.1.6)

The coefficients « and 8 have to be determined such that the model function reflects the
relation between x and y as good as possible. For this the least square method is used.

1 . .
Here G can be a known function or a guessed model function.
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Based on the estimated parameters & and B one can calculate the fitted value g;. The
deviation between the fit §; and each measured value y; is called the residual dy;:

The goodness of the fit is determined by several measures. Besides others, the explained
sum of squares (SSE) and the residual sum of squares (SSR) are important:

SSE =3 (5 — )", (A.1.8)
i=1

SSR=> 6yl (A.1.9)
=1

where 7 is the mean of all measured values.

Tab. A.1.1: quality of the curve fitting results

reference | fitted model function SSE R?
(32.17) | fr=1—wugg — (1 — ugg)™? 3-1077 1
(3.32) | npir = 4.77\/Ustar 0.257 | 0.986
(3.34) | Au= \/2 (1 . fT)2/3) (W — Wiim) 0.011 | 0.989
(3.4.8) | fr=1—Llwug — (1 — ugq)™? 5-1074 | 0.999
(3.4.15) | Au= \/5 (1 —(1- fT)2/3) (W — W) 0.048 | 0.975
0.92
(3.5.11) | Ugtat = Uo(l - ( - %)) 3.1075 1
(35.12) | Up=p2E (30 +m@)+mn (185 L)) |40 | 1
(3.5.26) | ugg=1—(1— fp)*2 +0.3f7 7-1072 | 0.999
(3.5.28) | wim =1 — fR5, 2-1072 | 0.999
(3.5:29) | wim = fP5m 5-107° | 0.999
(3.5.30) | Au = 0.64fr (w — Wi ) 2-1073 | 0.95

SST and SSR define the coefficient of determination R? which is the ratio of the ex-
plained variation and the total variation:

B SSE

~ SSE+ SSR
The ratio R? is interpreted as the fraction of the sample variation in y that is explained
by z. In case of a perfect fit all data points would lie on the model function, which yields

R? = 1. A value of R? equal to zero indicates a poor fit. Table A.1.1 gives an overview
of the different fits together with the SSE and R? values.

R? (A.1.10)
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A.1.4 Correlations

The correlation coefficient measures the strength of the linear correlation of two variables
x and y. One of the most common coefficients is the Bravais-Pearson product-moment
correlation r, which is a dimensionless index that is invariant to linear transformation
of either variable [112]:

. im1 (@i — ) (yi — ) ‘ (A111)
VI (- 22 S0 (i - 9)

Here z and y denote the mean value of a sample with n observations. Consider a diagram
in which x; depicts the horizontal coordinate and ¥; depicts the vertical coordinate. The
more the distribution of values of x; and y; resembles a straight line, the closer is r to 1
or -1 in case of a negative slope. It is important to know that the case r ~ 0 does not
indicate no correlation but only indicates no linear correlation. In a coarse raster one
can classify the correlation as [113]:

|r| < 0.5 weak correlation ,
0.5< |r] <0.8 medium correlation |, (A.1.12)
0.8< |r| strong correlation .

But this raster strongly depends on the variable examined. Therefore, correlation coef-
ficients are particularly useful as comparative measurements. They are rather from an
exploratory and descriptive character. The following form of (A.1.11) is very useful for
a revolving calculation of r as needed for simulations on the GPU:

r= iz LiYi — Ty . (A.1.13)

V(S 22 — nz?) (S0, v? — n?)

A.2 Design of Experiments

The term design of experiments (DoE) describes a specific method used for an efficient
planning and execution of experiments with several parameters of influence [114, 115].
The intended area of application are experiments in the real world, where the experimen-
talist often lacks deep knowledge about the real underlying mechanisms of the examined
system. The DoE then helps to fill this black box and enables to develop model func-
tions. In the case of the micro-walking machine exists a precisely known numerical
model. Thus, it is not necessary to consider the experimental principles of replication,
randomization and blocking because the experimental conditions do not change. How-
ever, one can make good use of the evaluation methods. In the first step, the overall
number of parameters is divided into two groups: factors whose influence is studied and
all other parameters that are held constant. The different adjustments of the factors
are called levels. In case of the basic principle of the DoE, the so-called full factorial
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experimental schedule, every factor is varied and all possible combinations are taken into
account. For n levels and k factors, the full-factorial schedule gives:

m=n" (A.2.1)

different combinations of parameters. For example, if one considers two factors a, b and
two levels for each factor, this yields 22 = 4 points in the parameter space as shown in
Fig. A.1 (a). The experiment gives four different results y. The so-called main-effect
y is a measure for the influence of a specific factor and is given by the mean for all
combinations in which this factor is held constant. For example the main effect for the
factor a = ay is given as:

Yg1 = %(y (al,bl)—i-y(al,bg,)) . (A.2.2)

The so called main-effect plot summarizes all main effects as in Fig. A.1 (b). In addition,
the interaction-effect plot shows the interaction between the different factors, as shown
in Fig. A.1 (c). It gives the influence of a specific factor, b in this case, while the other
factor is kept constant.

(a1,b2) (a2, b2)
Y2
.
T L7 ’ T .
oo ’
b > S
| | | |
(a1, b1) (as,b1) | | | |
ay a9 bl by
(a) parameter space (b) main effect (c) interaction effect

Fig. A.1: design of experiments (DoE). (a) parameter space. (b) main effect plot. (c)
interaction effect plot

The drawback of the full factorial experimental schedule is the large number of factor
level combinations in comparison to other methods of the DoE. However, as every ex-
periment is only conducted once, the full-factorial schedule is used in the analysis of the
parameters of influence of the micro-walking machine.
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Numerical Methods

In order to carry out simulations of the different systems, several numerical models
are used that are briefly discussed in the following section. Important algorithms are
illustrated in pseudo-code-notation. Please refer to the given references for more detailed
information on the methods used in this work.

B.1 Incremental MDR Simulation

One of the most important properties of the MDR model is the decoupling of the degrees
of freedom of the elements of the foundation. Consequently, the numerical effort of the
MDR system is of the order O = n, where n gives the numbers of elements, i.e. degrees
of freedom. In comparison, the numerical effort of the boundary element method (BEM),
which is widely used in contact mechanics, is of the order @ = n*. In this way, the MDR
allows a very fine discretization with low computational complexity and enables detailed
parameter identifications [67].

The oscillating rolling contact as introduced in section 3.1 is simulated with the MDR
using a quasi-static incremental approach. Here, the rolling path W is divided into
incremental steps with step-size AW. The displacement of the substrate U is then
computed in every time step on basis of the equilibrium of forces. The simulation is
divided into two parts, namely the rolling part and the deflection part.

Rolling Part On basis of the half-space assumption rolling only changes the normal
displacement U,. Thus, for an arbitrary spring at position s for step k this yields:

U, (s, k) :d—(stl;AW, (B.1.1)
[z (s, k) = Ak.U, (s) . (B.1.2)

Here —kAW in (B.1.1) simulates forward rolling and +kAW backward rolling. The
corresponding contact region for step k is shifted as:

—a T kAW <s<a+ kAW . (B.1.3)
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Displacement Part Firstly, the displacement is slightly increased so that the test
displacement U, and the test-tangential force f, read:

Uz (8,k) =Ug (s,k— 1)+ AU , (B.1.4)
fe (s, k) = Ak, U, (s, k) (B.1.5)
Uk)=U(k—-1)+ AU . (B.1.6)

Here U, (s,k — 1) and U (k — 1) denote the old spring deflections respectively the old
rigid body displacement. Given the test force, the stick and slip regions are identified
on basis of the traction bound. The new displacements are then computed as:

fo(s,k) < pf.(s, k) = stick-region: = U, (s,k)=Us(s,k—1)+ AU ,

K . B.1.
fo(s, k) > nf.(s,k) = slip-region: = U, (s, k)= M%Uz (s, k) . (B.L7)
Consequently, the new tangential forces result to:
fo(s,k) = Ak, Uy (s, k) . (B.1.8)

In principle, rolling initially decreases the tangential force in the contact Fj (k) =
> fz(s,k). This leads to an imbalance of the forces what in turn increases the dis-
placement. Thus, the displacement step is repeated until:

F,(k)>Fr(1—¢), (B.1.9)

where ¢ denotes the relative accuracy of the calculation. This loop is repeated for
every single rolling step as shown in Fig. B.1, where the stepwise incremental simulation
scheme is illustrated. In principle, the proposed scheme can be adapted to a system that
takes into account the inertia of the contacting bodies, i.e. the macroscopic dynamics,
as described in chapter 13 in the book of Popov and HeB[67].

rolling part displacement part

Uz:d_(S:Fk}%W)Q»E Ux:U$+AU E—

p—
“F, > Fr(l—e) -

1174 SINEEIEE RETER.

t k / \ / ‘\‘ / AN

S ep / * I/' \ I"I \\
—— ]IC \‘ ','I \\ /’I > d e—

\/ 2 periods
...... - - .- ==

Fig. B.1: stepwise incremental simulation scheme for the oscillating rolling contact
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B.2 CONTACT Simulation

In order to conduct a three-dimensional, quasi-static simulation of the oscillating rolling
contacts, the well-known CONTACT software package is used, whose first version was
released 1982. The program has since been continuously developed by the company
VorTech BV and its fields of application have been expanded. It is freely available
for academic use. The program implements the theories of rolling contacts by Kalker
[116, 117, 118] and is based on the boundary element method (BEM). Here, the elasticity
equations for the interior of the contacting bodies are transferred to equations for their
bounding surfaces. Under the half-space assumption, the main resulting equation is the
displacement and stress relation as given by the potential functions of Boussinesq and
Cerruti, see section 2.1.1 and section 2.1.2. The code uses constant element discretization
and the potential contact area is split into ma x my rectangular elements of size Ax x Ay.
The contact problem is solved using nested iteration processes. In case of a decoupled
system the normal problem is solved first. As this gives the contact area and the traction
bound, the tangential problem is solved subsequently. Here, the solver initially guesses
a potential subdivision of stick- and slip area which is then updated on basis of contact
conditions [88]. The iteration processes are based on a Newton-Raphson procedure, that
(in this case) determines the indentation d and the tangential shift U on basis of the
prescribed forces Fy and Fp. Once the requested relative accuracy e is reached, the
iteration process does not improve the solution any more. For tangential forces close
to the maximum CONTACT lacks robustness [88] due to the non-linear dependence
of total forces on creepages [55]. A so called world-fixed coordinate system is used in
which the rolling body moves with velocity v in the z-direction and the particles in the
contact area more or less stay at the same coordinate. The geometry of the contacting
bodies is entered using a so-called Hertzian approach. Here, the initial distance between
the undeformed surfaces h (z,y) is entered directly. The rolling is then simulated as an
incremental stepwise shift of the profile with AW being the step-size. In order to avoid
inaccuracies or convergence problems AW should be comparable to the grid-size in the
rolling direction Az [88]. Because CONTACT has only a rudimentary graphical user
interface (GUI), a MATLAB script is used to produce the text-based input files.

<>
Ar <y X
(a) spherical contact (b) cylindrical contact

Fig. B.2: numerical model of the CONTACT software. (a) spherical: discretization along
the z- and y-direction. (b) cylindrical: just one line of elements along the z-direction
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Spherical Rolling Contact For a rolling sphere the initial profile hg (z,y) reads:

22 2
ho (z,y) = R + 2yiR : (B.2.1)

In case of w || fr, the actual profile after k rolling steps reads:

_ 2t RAW L (RAW)S
“9rR R © 2R 9R

hi (x,y, k) (B.2.2)
For a mutual verification, the exact parameters of the experimental test rigs described in
section 5.1.1 in Tab. 5.1.1 and in section 5.1.2 in Tab. 5.1.2 have been used. The number
of elements varies with the amplitude due to the world fixed approach. For instance, with
a grid-size of Az, Ay = 0.2 mm and an incremental step size of AW = 0.2 mm result
3050-4200 discretization elements. For the shakedown effect 10 periods of rolling are
simulated resulting in 241-681 computation steps or 2 — 4 h running time on a standard
PC for each single parameter combination of fr and w .

Cylindrical Rolling Contact For a rolling cylinder the initial profile hg (z,y) reads:

1‘2

ho (2.y) = 5 - (B.2.3)

and the actual profile after k rolling steps reads:

(z 4+ kAW)?

hk ('Iayak): 2R

(B.2.4)
The cylindrical shaped roller with length L is modelled as a truncated 3D problem.
This means that there is just one row of elements and all the contact quantities such
as pressure or traction are constant along the y-direction. The numerical problem is
thus two-dimensional! as depicted in Fig. B.2 (b). Again, the exact parameters of the
experimental test rig described in section 5.1.3 in Tab. 5.1.3 have been used. The number
of elements varies with the amplitude due to the world fixed approach. For a grid-size
of Az = 0.02 mm, Ay = L and an incremental step size of AW = 0.02 mm result 220-
307 discretization elements. For each combination of fr and w 10 periods of rolling
are computed, resulting in 881-2641 computation steps or 1 — 2 mén running time on a
standard PC per combination.

!The problem still resembles to the loading of a three-dimensional elastic half-space.
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B.3 Time Integration

Newton’s seconds law yields the general initial value problem for the motion of a me-
chanical system as:

Z(t)=——= and z(0)==x9, x(0)=1vp. (B.3.1)

The motion of the system can be computed using a stepwise numerical integration
scheme. For the simple Euler method the solution is based on the difference quotients:

LortrA)—a@®) o E(E+AY) - ()

At At

z(t+At)\  [z(t) x (t)

<:'c (t+At)> - (x (t)) Al (ﬁfﬁ) ’ (B.33)
where At denotes the time step. In rigid body dynamics one often uses multistep meth-
ods as the famous Runge-Kutta method [97]. Most of these classical procedures require
knowledge of the exact time course of the force F (¢). This might be one reason for the
widespread use of velocity dependent friction laws. However, in the present model the
forces in the contact are a direct result of the spring displacements, thus the scheme
proposed in (B.3.3) cannot be used. But this situation almost exactly corresponds to
the situation in molecular dynamics (MD) where the forces that act on the molecules

are a direct result of their actual relative position. This leads us to the commonly used
Velocity-Verlet algorithm whose scheme is as follows [119]:

(B.3.2)

what gives [97]:

2 I (1)

2 (t+ Ab) = 2 (£) + At (1) + % (a0 (B.3.4)
B+ AL = & () + %At (FTS“L) + £ (t;; At)) . (B.3.5)

The scheme enables to determine the new displacements first which then serve as input
factors for the new forces F' (t + At).

B.4 Contact Models for the Micro-Walking Machine

Using the separation of space scales principle [65] as discussed in section 2.3.1, the
contact spots of the micro-walking machine are modelled as linear springs as described
in the sections 2.3.3 and 4.1.1. As the spring deflections in the normal and tangential
directions directly depend on the actual motion of the rigid body, i.e. x, z and ¢, a case
distinction is being used to determine them. Here the subscript (.), /2 denotes the two
contact spots, thus every case distinction is carried out separately for the two spots on
the left (1) and the right (2) of the specimen.
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Two-dimensional Contacts In the model described in section 4.1.1 each spring has
one normal deflection u,; /5 and one tangential deflection u,; /o aligned parallel in the z-
and z-direction as in Fig. B.3 (a). Firstly, a test normal deflection ., /2 1s computed:

oy (t) = 2 () £ 370 (1) (B.4.1)
and it is checked whether a specific spring is released from the substrate:

@519 (t) >0 = spring in contact = u,y/p (t) = 2 (t) & mglgo (t), (B.4.2)
t51/9 (t) <0 = spring is released = w1/ (t) =0 . Bl

After that, the tangential deflections u,;/, are computed via a second case distinction.
For a sticking contact, the deflections are directly determined by the change of rigid body
motion between the two time steps, i.e. Ax, Az and Ap. Thus, the test deflections are
computed firstly:

Uy /o (1) = ug1/o (t — At) + Az + Agp (B.4.3)

where 1, /5 (t — At) denotes the old deflections. If this test deflection exceeds the friction
bound jik2uq /9 (t), the contact slips. Consequently, the case distinction for the new
tangential deflections reads:

|Ug1/2 (1) | > prousje (t) = spring slips = ugyy ) (t) = prau, /o (1) sign (%1/2 (t)) :
|Ug1/2 (t) | < prousiya (t) = spring sticks = g9 (1) = g1/2 (1) -

(B.4.4)
specimen contact
n / Ug'
v s uskay ug + U3
25BN SN NS ONNN S
substrate HE2Up
(a) 2D contact (b) 3D contact (c) topview

Fig. B.3: (a) contact model of initial model with linear spring. (b) contact model of the
extended model with additional spring deflection us. (c) top view of the surface of the
substrate of the extended contact model with friction bound pxou,

Three-dimensional Contacts The contact geometry of the experimental specimen
as introduced in section 5.2 differs slightly from the numerical model described in sec-
tion 4.1.1. In order to identify appropriate parameter ranges and to enhance compa-
rability an extended contact model is being used. The prism shaped substrate adds
an additional deflection ug /o to each spring. As shown in Fig. B.3 (b) and (c) u,y /s is
aligned perpendicular to the normal deflection wu,,; /5 as well as to the tangential deflection
ug1/2- The tangential stiffness of the two directions is the same as in the two-dimensional
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contact, i.e. k, in the dimensionful model. The normal direction of the contact is now
inclined by 45° to the z-direction and the test normal deflection yields:

o (0 = 2 (20 £ 0570 (1) (B.45)

The first case distinction reads:

pyy2 () >0 = spring in contact = uy/9 (t) = (z (t) £ k3o (t)) " (B.AG)

N

Upy/2 () <0 = spring is released = up; /9 (t) =

Again, in case of sticking contacts, the deflections directly follow from the change of
motion between the time steps, i.e. Az, Az and Ap. This yields the tangential test
deflections as:

Uz /2 (1) = Ug1 /o (t — At) + Az 4 Ap (B.4.7)
. _ V2 .
Us1/2 (t) = us1y2 (t — At) + > (Az — K3 Ago) : (B.4.8)

In case of slipping contacts, the friction bound pkauy,; /e only gives the norm of the
tangential deflections. Thus, one has to determine the angle oy, between u,;/5 and
ug /2 as shown in Fig. B.3 (c). With the test deflections 1,/ and @y /o, the case
distinction for the three-dimensional contacts at time ¢ thus finally reads:

pur;) 5 . . _ Us1/2
Uzt jo + Uzyjg = H2Un1/2 = spring slips = ;5 = arctan (|?1//2|) )

= Ugl/2 = UR2UR1/2 COS | Qy/o ),

= Ug1/2 = [R2Up1 /2 SID (041/2) ;

\/m < [iK2Upi/o = spring sticks = w0 = Uy ,

= Ugy /o = Us1/2 -
(B.4.9)
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