
Self-Managing

Publish/Subscribe Systems

vorgelegt von
Diplom-Informatiker
Michael A. Jaeger

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Professor Dr. Bernd Mahr

Gutachter: Professor Dr. Hans-Ulrich Heiß

Professor Dr. Kurt Geihs

Tag der wissenschaftlichen Aussprache:

17. Dezember 2007

Berlin 2007
(D83)





Abstract

In recent years, event-based systems have been generating considerable interest
in industry and academia. One substantial reason for this is that information-
driven applications such as automated workflows, information dissemination
and aggregation, as well as enterprise application integration gained increasing
prominence in their role of being important enablers for easier automation and
system integration. Publish/subscribe middleware provides a platform which is
well suited to the implementation of event-based systems. These unfold their
strength particularly in dynamic scenarios, where usage patterns and system pa-
rameters may change unexpectedly. Most of today’s publish/subscribe systems
are, however, rather static and require manual intervention in order to adapt
them to changing conditions.

Our research is targeted at large-scale systems on the one hand, where ad-
ministration is expensive and sometimes impossible due to the high complexity.
On the other hand, we also target smaller systems which must be able to run
autonomously since administration is not possible (e.g., in remote areas) or the
users are not able to take over administrative tasks (e.g., in an e-home scenario).

In this thesis, we present our work on reducing the efforts to manage pub-
lish/subscribe systems, rendering them self-managing with respect to fault man-
agement and performance optimizations thereby. We tackle the problem of fault
handling with algorithms for self-stabilizing content-based routing and com-
plement them with a self-stabilizing broker overlay network. Furthermore, we
present the first general formal analysis of publish/subscribe systems which also
allows to judge the overhead induced by self-stabilization in form of additional
messages without having to rely on simulation studies. An important manage-
ment task in publish/subscribe systems is the reconfiguration of the broker over-
lay network topology at runtime. However, all algorithms for this task proposed
so far may cause both message loss and message ordering violations. We present
algorithms for regular and self-stabilizing publish/subscribe systems which pre-
vent this undesirable behavior. Finally, we present a distributed heuristic which
enables the broker overlay network to adapt its topology to the notification flows
caused by the clients. This way, the system is able to autonomously improve its
overall performance. A comprehensive simulation study shows that our heuristic
outperforms other heuristics proposed in the past.
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Zusammenfassung

Sowohl in der Industrie als auch in der akademischen Forschung hat das Inter-
esse an ereignisbasierten Systemen in den letzten Jahren stark zugenommen.
Einer der wesentlichen Gründe für diese Entwicklung ist die wachsende Verbrei-
tung von informationsgetriebenen Anwendungen wie automatisierten Workflows,
Informationsverbreitung und -aggregation sowie der Integration von Unterneh-
mensanwendungen. Diese Anwendungen stellen Wegbereiter für eine vereinfachte
Automatisierung und Integration von Systemen dar. Publish/Subscribe-Middle-
ware bietet eine hervorragende Plattform für die Implementierung von ereignis-
basierten Systemen. Diese wiederum entfalten ihre Stärken vor allem in dynami-
schen Umgebungen, in denen sich sowohl die Benutzungsmuster als auch die Sys-
temparameter unerwartet ändern können. Die meisten der heutigen Publish/Sub-
scribe-Systeme sind jedoch recht statisch und benötigen manuelle Eingriffe, um
sie an sich ändernde Gegebenheiten anzupassen.

Unsere Forschung zielt zum einen auf sehr große Systeme ab, deren manuelle
Verwaltung aufgrund der hohen Komplexität teuer, wenn nicht gar unmöglich
ist. Zum anderen berücksichtigen wir aber auch kleinere Systeme, die autonom
operieren müssen, weil eine manuelle Administration nicht möglich ist (z.B. in
abgelegenen Gegenden) oder weil ein kompetenter Administrator nicht zugegen
ist (z.B. in einem vernetzten Privathaus).

In dieser Arbeit präsentieren wir die Ergebnisse unserer Forschung, die dar-
auf abzielt, den Verwaltungsaufwand von Publish/Subscribe-Systemen zu ver-
ringern. Dies erreichen wir, indem wir sie zum Selbstmanagement im Hin-
blick auf Fehler und Leistungsoptimierungen befähigen. Die Fehlerbehand-
lung unterstützen wir mit Algorithmen zum selbststabilisierenden inhaltsba-
sierten Routing, die zusätzlich um ein selbststabilisierendes Broker Overlay-
Netz ergänzt werden. Darüber hinaus stellen wir die erste formale Analy-
se von Publish/Subscribe-Systemen vor. Sie erlaubt es auch, die zusätzlichen
Kosten zu berechnen, die durch die Selbststabilisierung entstehen, ohne da-
bei auf Simulationen zurückgreifen zu müssen. Die Rekonfiguration der Bro-
ker Overlay-Topologie stellt eine der wichtigsten Managementaufgaben in
Publish/Subscribe-Systemen dar. Allerdings ist es bei allen bisher vorgestell-
ten Lösungen möglich, dass sowohl Nachrichten verloren gehen als auch deren
Reihenfolge unzulässig verändert wird. In dieser Arbeit werden Algorithmen für
herkömmliche und selbststabilisierende Publish/Subscribe-Systeme vorgestellt,
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die dieses unerwünschte Verhalten nicht aufweisen. Schließlich präsentieren wir
eine verteilte Heuristik, die das Broker Overlay-Netz in die Lage versetzt, sich
an sich verändernde Nachrichtenströme anzupassen. Dadurch wird das System
befähigt, seine Leistung autonom zu verbessern. Umfassende Simulationen haben
gezeigt, dass unsere Heuristik die bisher vorgeschlagenen übertrifft.
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Chapter 1

Introduction

1.1 Motivation

Over the last decades, computer systems of every scale have enriched our lives
ranging from the World Wide Web on the one end to MP3 players and cell
phones on the other end. The availability of wireless networking standards and
the cheap price of the hardware needed to build computer networks has pushed
the proliferation of computer and networking technology further into our day-
to-day lives. With every year, we are getting closer to the vision of Internet
access anywhere at anytime for affordable access fees. Moreover, the “Internet
of things”1 as the ultimate vision of an interconnected world gets within reach.
This technical evolution fosters the development of new applications that take
social as well as local (in terms of geography) aspects into account. Moreover,
the current development shows that not only the number of consumers of content
in those systems grows, but also that of producers. This development is demon-
strated by new applications gaining growing prominence in the recent past like
weblogs, wikis, and social networks like Facebook2, just to name a few. The
vast sources of information in existence and the desire to combine them in order
to obtain an added value drive the classical distributed programming paradigm
based on the remote procedure call to its limit.

A good example which is often used for aggregating information and which
also reflects the problems of large scale information dissemination systems based
on synchronous mechanisms is Rich Site Summary3 (RSS ). RSS is a family
of data format specifications for providing summaries of website contents. It
is mostly used to provide short information snippets about recent changes on a
website which can be aggregated by other websites or subscribed for and read by
users with the help of RSS reader software. The basic mechanism to get informed
about updates relies on polling. In the past, this led to severe problems on some

1http://www.itu.int/internetofthings (last visit: 2007-10-04)
2http://www.facebook.com (last access: 2007-10-03)
3Or RDF Site Summary, or Really Simple Syndication

1

http://www.itu.int/internetofthings
http://www.facebook.com
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web servers hosting popular websites because polling can easily be automated
in the client software and a small update interval results in a high timeliness.
Since many users nowadays possess a broadband Internet connection and are
interested in up-to-date information, a low polling period is often chosen which
can overload the servers similar to a denial-of-service attack. This problem could
be solved by relying on an active push mechanism which proactively delivers news
to the clients in contrast to a polling-based scheme, because the update rates of
most RSS sources are rather low.

Event-Based Computing

Today, we are already in the very comfortable situation that we can access
a vast range of information through the Internet. This enables us to track
changes happening in the world and react to them accordingly. However, it is
not feasible for humans to manually track changes from a large set of sources—
and a respective automated management sooner or later reaches system limits
as described for RSS above. This insight evolved to the idea of event-based
computing which is easy to understand because it resembles our daily life much
more than the classical synchronous procedure call. Similar to getting informed
when our CD-player is repaired, we want to get informed when a website or
stock quote changes instead of permanently asking for the current state (which
resembles a polling model). Actions are, thus, the consequence of an event ,
which indicates an arbitrary state change.

The paradigm of event-based programming has, for example, been success-
fully applied to graphical user interface programming with Java Swing and
event-condition-action rules (ECA-rules) in the area of active databases [128].
The idea of using events as the central programming abstraction, however, is still
not widespread although it has already found its way into teaching at universi-
ties [73]. The event paradigm is especially well suited to data-centric dynamic
communication like workflow systems, logistics, and systems monitoring (e.g.,
intrusion detection). It increases the flexibility and fosters the decoupling of
components. The Enterprise Service Bus (ESB) [41] is just one prominent ex-
ample, where the event-based computing paradigm is used to integrate enterprise
applications via loose coupling.

For event-driven (distributed) systems, it is common to rely on a (distributed)
mediator which is responsible for delivering events from producers to consumers.
This role can be taken over by a database, a tuple space, or a publish/subscribe
middleware, for example. The relevance of event-driven approaches is accommo-
dated by a respective support mechanism in various implementations of popular
middleware standards like the Corba Event and Notification Service,
Java Message Service (JMS), and the Data Distribution Service for

Real-Time Systems (DDS).
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Towards Self-Managing Publish/Subscribe Systems

Publish/subscribe middleware is an excellent choice for the implementation of
event-based systems which are well suited to dynamic environments. This is
mainly due to the simple, yet elegant, interface of publish/subscribe systems
which decouples the clients in time, space, and program flow [61]. The require-
ments posed on the publish/subscribe middleware by dynamic environments,
however, require new approaches regarding its management.

The management of publish/subscribe systems comprises a wide variety of
tasks including reconfigurations of the broker overlay network topology (e.g.,
for maintenance or performance optimization), adding (removing) brokers to
(from) the system (e.g., to increase the performance of the system), resetting
brokers in case of faults to bring the system back into a working state, and
adapting publication rates of publishers (e.g., to avoid congestion). It can be
assumed that the systems that are built on top of publish/subscribe middleware
will significantly grow in the near future. Large-scale software systems, however,
often turn out to come along with not only quantitative but also qualitative new
challenges regarding the management due to various reasons explained in the
following.

Growing Management Costs. Thanks to significant advances in research
on software engineering in the last decades, it is today feasible to engineer and
build software systems of considerable scale. Running and maintaining large-
scale software systems, however, is an expensive task because it often requires
large numbers of well-trained personnel. As a consequence, the total cost of
ownership of large systems is increasingly dominated by administration costs.

Exploding Complexity. Experience shows that the complexity of large-scale
systems is the key issue which makes manual management costly if not impossi-
ble. Research on automated management is, thus, gaining increasing interest in
academia and industry. This development is also driven by the growing demand
for interconnecting systems to form new systems providing value-added services.
As a consequence, the complexity of the resulting systems grows, as well as the
complexity of the ways in which those systems fail [144]. In such a setting, hu-
man operators are no more able to keep the overview of the system. They are,
thus, unable to draw management decisions because the consequences of their
actions are unforeseeable.

Unmanageable Dynamics. Besides the complexity of large-scale systems,
the dynamics of modern computer systems pose another challenge. In the past,
most systems were deployed in a rather static environment, for example, inside
a company. The trend towards opening systems to the Internet and fostering
interconnecting them has significantly increased the dynamics those systems are
exposed to and requires fast reactions from the system administrators. Paired
with the growing complexity, the task of manually managing such a system
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becomes extremely difficult if not infeasible. The growing popularity of mobile
devices and their integration into existing systems also push this development.

Due to the above reasons it is, thus, of significant importance to enrich pub-
lish/subscribe systems with features which enable them to manage themselves
minimizing human intervention thereby. This would not only facilitate run-
ning complex systems in face of dynamic changes but would also save costs.
Automated management includes fault management and performance optimiza-
tions which are both extremely important in dynamic scenarios. Regarding fault
management, recovery guarantees are getting increasingly important since the
probability of faults grows with the system size. In order to support dynamic
environments, reconfigurations need to be carried out. It is, thus, important to
support them at runtime while not interrupting the system service. The next
step is to enable the system to draw reconfiguration decisions by itself in order
to improve its performance. The ultimate goal is to build a system which does
not need any external management and is able to run completely autonomously.

1.2 Shortcomings of Current Approaches

In this thesis, we present the results of our research on management of pub-
lish/subscribe systems. In a publish/subscribe system, the task of disseminat-
ing events from producers to consumers is taken over by a notification service.
A distributed implementation of the notification service often consists of a set
of brokers which are interconnected to form an overlay network. Research in
the area of publish/subscribe systems has been very agile in the last few years.
However, the task of managing and reconfiguring publish/subscribe systems at
runtime has rarely been researched yet, particularly in the context of automa-
tion. The shortcomings of current approaches are listed in the following.

Lack of Recovery Guarantees in the Face of Faults. Fault management
is of significant importance in dynamic environments. Most research in the past
has not dealt with faults at all, or has tried to mask occurring faults. Another
common approach is to layer publish/subscribe systems on top of peer-to-peer
routing substrates, thereby inheriting their fault resilience properties on the
overlay network layer [132]. However, those systems are only designed with
particular faults in mind, like link or broker failures neglecting the higher appli-
cation layers like perturbed routing table entries, for example. The increasing
system complexity and miniaturization, however, raises the probability of faults
which may lead to arbitrary corruptions of data structures. This issue has often
been neglected in fault tolerance research for publish/subscribe systems in the
past to such an effect that recovery guarantees in case of transient faults were
not provided.
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Service Interruption Due to Reconfigurations. Reconfiguration is an im-
portant topic for systems exposed to dynamic changes. In the case of pub-
lish/subscribe middleware it may be necessary to reconfigure the broker overlay
topology for maintenance or performance optimization. In both cases, it is re-
quired that the reconfiguration is seamless and transparent for the users and
that the system service is not interrupted. Algorithms proposed in the past for
topology reconfiguration do not prevent message loss due to reconfigurations and
do not guarantee a particular message ordering.

Only Manual Adaptation. Adapting a system automatically to changes in
dynamic environments becomes particularly interesting because the sheer size
of Internet-wide systems makes it expensive or even impossible to manually
manage them. A similar situation arises for the new generation of small-scale
networks which are deployed in isolation (e.g., sensor networks) or are operated
by non-experts who are unable to manage them (e.g., home consumer networks).
While peer-to-peer substrates are able to cope with changes and can even adapt
to the underlying physical network infrastructure, they do not adapt to the
application behavior on the higher publish/subscribe layers yet. Research on
publish/subscribe in the past has either assumed a static broker network or
proposed heuristics which do not take network and application dynamics into
account.

Lack of Analytical Models. It is common practice to evaluate publish/sub-
scribe systems by simulation. However, there is no standard simulation environ-
ment available up to now and the impact of parameter variations on the system
behavior is often unclear. Analytical models can serve to create a deeper under-
standing of publish/subscribe systems and may furthermore relieve researchers
from expensive simulations.

1.3 Focus and Contribution

Our focus in this thesis is on fault management, dynamic reconfigurations, and
performance optimizations as well as formal analysis. We concentrate on four
topics which are detailed in the following.

Guaranteed Recovery After Transient Faults. Fault masking is expensive
and requires that all faults are specified in advance. Moreover, if a fault occurs
which cannot be masked, the system can move into an invalid state from which it
may not recover—even if the fault was only transient. Self-stabilization provides
valuable recovery guarantees in dealing with faults. We present algorithms for
selected routing algorithms and also a general wrapper algorithm which renders
arbitrary correct routing algorithms self-stabilizing. We evaluate the overhead
induced by self-stabilizing mechanisms in a simulation study. We are, thus, able
to provide recover guarantees in the face of transient faults.
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Seamless Broker Overlay Topology Reconfiguration. One of the most
important management tasks in a publish/subscribe system is to reconfigure its
topology. Reconfigurations are needed to recover from faults, to optimize system
performance, and to deal with joining and leaving brokers. Solutions presented in
the literature either conflict with the message completeness requirement or with
the ordering imposed on notification delivery and control messages or with both
of them. We present algorithms for regular and self-stabilizing publish/subscribe
systems which permit a seamless reconfiguration of the broker overlay topology
at runtime, preventing message loss and providing message ordering if required.

Self-Optimizing Broker Overlay Topology. Most distributed publish/sub-
scribe systems are realized by a broker overlay network, where the brokers co-
operatively provide the event notification service. The structure of this overlay
network has an impact on notification forwarding and, thus, the performance
of the notification service. We analyze the problem of finding a “good” broker
overlay topology with respect to communication and processing costs. We show
that the problem of finding an optimal broker overlay topology is NP-hard and
propose a distributed heuristic which renders the broker overlay network self-
optimizing. This way we enable the system to autonomously adapt to changes
in the physical network as well as to changes on the application layer.

Formal Analysis. A formal analysis is often the key to a deeper understand-
ing of systems. In publish/subscribe research, analytical models are still rare.
This has led to the situation that most work is evaluated in simulation studies
which are time consuming and often hard to compare. In this thesis, we present
a formal analysis based on probability theory which represents a first step to
analyzing publish/subscribe systems without the need for extensive simulations.
The analysis is carried out as part of the work on self-stabilizing content-based
routing.

1.4 Methodology

The scenarios targeted by our research comprise large-scale as well as small-scale
networks. In order to evaluate the algorithms presented, we decided to rely on a
simulation-based approach, and an analysis where appropriate. The reasons for
relying on simulations are manifold. Running large-scale experiments requires an
adequate infrastructure which is ideally under sole control of the experimenter.
Running experiments on a scale bigger than 10 computers becomes difficult
since an adequate infrastructure is hard to obtain. Even if the infrastructure is
available, faults which are independent of the algorithm studied may tamper the
results. Moreover, these experiments cannot be parallelized. As a consequence,
repetitions of the experiments (in order to obtain statistically relevant results)
have to be serialized which increases the time needed. Additionally, network
dynamics prevent an exact reproduction of the results.
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For the simulation studies, we implemented our own simulation platform
which provides the opportunity to replay experiments in order to verify the
results. Since we were explicitly interested in the higher layers of the algorithm
stack, we did not use existing simulation platforms like ns2. Evaluating the
algorithms with “real” applications on platforms like PlanetLab would be an
interesting next step, although some of the problems discussed above will remain.

Besides simulation studies, we also used formal methods to analyze our al-
gorithms for self-stabilizing content-based routing. We built on Markov chains
and probability theory in order to evaluate publish/subscribe systems applying
content-based routing and calculate the overhead induced by the self-stabilizing
algorithms presented. The results thus gained confirmed the results from the
simulations carried out.

1.5 Organization of this Thesis

The topics and the organization of this thesis are depicted in Figure 1.1. We
start with a basic introduction to publish/subscribe systems, the notion of self-
management including self-optimization and self-stabilization in Chapter 2 which
closes with the basic assumptions this thesis builds upon.
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Figure 1.1: Topics and organization of this thesis in the algorithm layers

In the first part of Chapter 3, we then present algorithms which render
content-based routing in publish/subscribe systems self-stabilizing. We present
algorithms for selected routing algorithms and also a general wrapper algorithm
which renders arbitrary correct routing algorithms self-stabilizing. We evaluate
the overhead induced by self-stabilization in a simulation study and compare
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its performance to flooding. In the second part of Chapter 3, we present a
stochastic analysis of the message complexity which also allows to analyze the
overhead induced by self-stabilization without performing extensive simulations.

Chapter 4 deals with reconfiguring the broker overlay network. In the first
part of this chapter, we present an algorithm for regular publish/subscribe sys-
tems (i.e., those which are not self-stabilizing). In the second part, we present
a reconfiguration algorithm for self-stabilizing publish/subscribe systems. To
achieve this, we rely on the results presented in Chapter 3. Both algorithms pre-
vent message loss and are able to preserve FIFO-publisher and causal ordering.

In Chapter 5, we analyze the problem of finding an optimal topology for the
broker overlay network. We then present a heuristic which adapts the broker
topology according to the message flows in a decentralized manner. We compare
its performance in an extensive simulation study with that of two other heuristics
proposed in literature. The reconfigurations can, for example, be carried out
using the algorithms proposed in Chapter 4.

Chapter 6 summarizes our results and presents our conclusions. Furthermore,
we discuss problems which remain open and sketch areas for future work.
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Basics and Model
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2.1 Introduction

In this chapter, we lay the foundations for this thesis. We first introduce the
publish/subscribe system model and architecture (Section 2.2). Then, we explain
our notion of self-management and self-managing publish/subscribe systems in
Section 2.3. The notion of self-optimization is discussed in Section 2.4, where we
also discuss its relation to self-management. Section 2.5 gives an introduction to
self-stabilization and its relationship to self-management. We close this chapter
with Section 2.6, where we list and explain the basic assumptions we build upon
in this thesis.

9
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2.2 Publish/Subscribe

The publish/subscribe communication paradigm is event-based and belongs to
the general class of group communication paradigms. In the following, we in-
troduce the publish/subscribe system model and architecture we rely on in this
thesis. Routing and matching are central issues in publish/subscribe systems and
various algorithms have been proposed for them. We give a short introduction
to selected algorithms for both topics.

2.2.1 System Model

A publish/subscribe system consists of a notification service and a set of clients
that interact via a notification service. Clients can act as publishers (also: pro-
ducers) or subscribers (also: consumer). While the former publish notifications ,
the latter issue subscriptions that contain filters that match the set of notifica-
tions the subscriber is interested in (on the implementation level, subscriptions
may contain more information than just the filter like additional meta-data, for
example). The set of notifications matched by filter f is given by N(f). The no-
tification service is responsible for routing published notifications to those clients
which issued a subscription with a filter which matches these notifications. This
content-based addressing scheme is sometimes viewed as the essential difference
between “channel-based” schemes like IP multicast and publish/subscribe [34].
Another essential feature of publish/subscribe systems is the potential decou-
pling of the clients in space, time, and program flow [61].

The basic interface of the notification service consists of the following opera-
tions which can be used by the clients: pub(n) for publishing a notification n and
sub(s) (and unsub(s)) for (un)subscribing for a subscription s. The notification
service calls the operation notify(n) on a client in order to inform it about a new
notification n it subscribed for. The semantics of the (un)subscribe operation
are the following. The notification service manages the set of subscriptions S

for all clients. If a client subscribes to a new subscription s, this subscription is
added to S:

sub(s)⇒ S← S ∪ {s} (2.1)

In case a client unsubscribes for a subscription for which it is not currently
subscribed, this operations has, thus, no effect. Similarly, issuing a subscription
for a filter the client is already subscribed to, has no effect, too.

Analogous, an unsubscription for a subscription s removes the subscription
from S:

unsub(s)⇒ S← S \ {s} (2.2)

Sometimes, the notification service also supports the operations adv(f) and
unadv(f) which are used to announce or recall advertisements . They are issued
by publishers to announce which kind of notifications they are going to publish.
The semantics of the operations are analogous to those of the respective opera-
tions for subscriptions. Similar to subscriptions, advertisements are filters and
are used to optimize routing inside the notification service.
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Figure 2.1 illustrates the system model and the operations described above.

Notification Service

Local Broker Local Broker

Subscriber S Publisher P

(un)sub(s) pub(n)notify(n) (un)adv(f)

Figure 2.1: Publish/subscribe system model

2.2.2 System Architecture

In this thesis, we focus on a distributed implementation of the notification service
which consists of a set of brokers forming a broker overlay network . We require
an acyclic topology for the broker overlay network which is a prerequisite for
using advanced routing algorithms such as covering-based routing. Moreover, we
require FIFO links between any two brokers; this is common in literature because
it simplifies maintaining message ordering and preventing message duplicates
(regarding control messages and notifications). The set of all brokers in the
system is called B. Figure 2.2 illustrates the architecture of a publish/subscribe
system we refer to in this thesis.

Broker Overlay Network
(Notification Service)

B3 B4

B2

B1

B5

B6
Clients

Local Broker
of S

Publisher P

Subscriber S

Routing Table Entry

Inner Broker

Figure 2.2: Publish/subscribe system architecture

Each broker B maintains a routing table TB in order to decide whether and
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if where to forward an incoming notification to. A routing table holds routing
entries which are 〈filter, destination〉 pairs, where a destination is a neighbor
broker or a local client. In Figure 2.2, the routing table entries are depicted
as little arrows. We differentiate between local and remote routing entries (in
Figure 2.2, all routing entries are remote except for the one at B5). NB is the
set of remote destinations of B (e.g., NB5

= {B4} in the example figure) and
LB is the set of local destinations of B (e.g., LB5

= {S}).

2.2.3 Matching, Forwarding, and Routing

Matching

When a broker B receives a notification n, it decides based on its routing entries
whether to forward it to a destination or not. Therefore, B checks whether a filter
for a destination matches n. The problem of determining all filters which match a
notification is termed the matching problem. With channel-based matching each
notification is tagged with a selected channel and subscribers can only subscribe
to channels. Subject-based matching is more expressive, because notifications
are published with respect to a selected subject, where the subjects themselves
can be arranged in a hierarchical fashion in contrast to “flat” channels. The most
expressive matching relies on the content of the notification. Many different
algorithms have been proposed in the past for content-based matching, most
notably the counting algorithm [166], decision trees [6], and binary decision
diagrams [29].

Forwarding

Mühl et al. distinguish between matching and forwarding [120]. While matching
refers to the problem of determining all filters in a routing table which match
a given notification, the forwarding problem consists of determining all destina-
tions a given notification must be sent to. The difference between both problems
is that for notification forwarding it may not be necessary to find all matching
filters in a routing table for a given notification.

Routing

Besides the fundamental matching and forwarding problems, notification routing
is also an important issue. The routing problem deals with routing notifications
from publishers to subscribers through the broker network. Therefore, routing
tables are maintained by the routing algorithm. The simplest routing algorithm
is flooding, where every notification is sent to all brokers in the system. The
brokers then match each notification against their local subscriptions to decide
whether to deliver the notification to their local clients or not. It is obvious that
this routing strategy is suboptimal for notifications, when there is a significant
number of brokers not having a local client that is interested in them. A more
sophisticated approach is simple routing, where subscriptions are flooded in the
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broker network. On receiving a subscription, the receiving broker installs a
routing entry in its routing table pointing to the broker from which it received
the subscription. In this case, each subscription is treated in isolation from other
subscriptions.

Advanced Routing Algorithms. More sophisticated routing algorithms try
to exploit similarities between the filters stored in subscriptions and are often
referred to as advanced routing algorithms . In the case of identity-based routing,
subscriptions are not forwarded to a neighbor broker if an identical subscription
has already been sent there in the past which is still active. Two subscriptions or
filters f1 and f2 are identical if the set of notifications both match are identical
(i.e., N(f1) = N(f2)). With covering-based routing, subscriptions are tested
with respect to their covering relation. A filter f1 covers a filter f2 if the set of
notifications it matches is a superset of the set of notifications f2 matches (i.e.,
N(f1) ⊇ N(f2)). In this case, a subscription s does not need to be forwarded to
a neighbor broker if a covering subscription has been sent there in the past. With
merging-based routing, brokers try to merge different filters in order to create
a new filter. This new filter either perfectly matches the set of notifications
covered by the constituent filters (perfect merging) or it covers a superset of those
notifications (imperfect merging). The new filter that results from merging can
accordingly be used to perform subscription forwarding optimizations similar to
covering-based routing.

Hierarchical vs. Peer-to-Peer Routing

With the help of advanced routing algorithms it is often possible to reduce the
traffic caused by control message forwarding. Additionally, the routing table
sizes decrease which can lower the matching overhead. Regarding the dissem-
ination of subscriptions in the broker overlay network we distinguish between
hierarchical routing and peer-to-peer routing. With hierarchical routing, every
subscription is sent only towards a dedicated root broker R which does not
forward them any further. Additionally, all notifications published are also for-
warded at least to R. Figure 2.3(a) illustrates hierarchical routing in a scenario
where B6 subscribed for a filter which matches a notification n that is published
at B5. The gray arrows depict the path the notification is sent while the black
arrows represent the routing table entries.

With peer-to-peer routing, there is no dedicated root broker. Thus, notifica-
tions do not need to be sent always to a dedicated broker but routing entries have
to be installed in the whole broker network. Figure 2.3(b) illustrates peer-to-peer
routing in the same setting used for the hierarchical routing example.

Advertisements

While in the case of hierarchical routing subscriptions are only sent to a dedicated
root broker (and notifications are sent there at least, accordingly), subscriptions
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Figure 2.3: Routing options in publish/subscribe systems

may be flooded in the whole broker network with peer-to-peer routing. Adver-
tisements can be used to build up routing tables for subscription forwarding just
as regular routing tables are used for notification forwarding. The subscription
routing tables ensure that subscriptions are only forwarded in directions, where
brokers with publishers reside which may publish notifications that match this
subscription. This way, the traffic caused by (un)subscriptions can be reduced
if there are only a few publishers in the system producing notifications clients
are interested in.

In Figure 2.4, an example scenario is depicted analogous to the one in Fig-
ure 2.3(b), where B5 issued an advertisements which installs subscription routing
entries in the whole broker network. Afterwards, B6 issues a subscription s which
matches a subset of the notifications the advertisement matches. Accordingly, s
is only sent towards B5 and the respective routing table entries are created on
the path.

: Subscription Routing Table Entry

: Notification Routing Table Entry

B1

B2 B5B3 B6

B7

B4

Figure 2.4: Example for the application of advertisements

For advertisements, the same routing algorithms can be used as for subscrip-
tions. A general comprehensive overview of publish/subscribe systems is given
by Mühl et al. in [120].
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2.3 Self-Management

In the thesis at hand, we present algorithms and concepts to render publish/sub-
scribe systems self-managing. However, the meaning of self-management is
rather fuzzy in the literature and often misses a formal definition besides its intu-
itive meaning. In this section, we, thus, introduce the notion of self-management
based on our work published in [122] and put it into the context of publish/sub-
scribe systems.

2.3.1 Basics

Intuitively, a system is self-managing with respect to a management goal, if it
executes management tasks on its own without external (manual) intervention
by a human operator in order to reach this goal. Although easy to understand,
this description of self-management leaves several issues open which are tackled
in the following definitions from [122].

Definitions

We start by defining our notion of a system which is based on a behavioral model
by Willems and relies on input, output, and behavior [161].

Definition 1 (System). A system S is a tuple S = (I, O, B) with input inter-
face I, output interface O, and behavior B.

In analogy to Zadeh [169], we call system S adaptive if it performs acceptably
well with respect to a performance criterion W.

Definition 2 (Adaptive System). A system S = (I, O, B) is adaptive wrt. a
set I ⊆ I, a performance function p, and an acceptance criterion W iff the
following holds

∀i ∈ I : o = B(i)⇒ p(i, o) ∈W

Intuitively, a system is adaptive if it performs “well” in a range of scenarios
characterized by a set of input functions I. For the definition of self-management
we need to differentiate the input fed into the system by i ∈ I into regular input
and control input (which “manages” the system) according to Lendaris [105]. In
the following, we set R as the regular input and C as the control input. The
input I is the conjunction of regular and control traffic (I = R ∪ C).

Definition 3 (Self-Manageable System). A system S = (I, O, B) with I =
R ∪ C is self-manageable wrt. I iff the following holds:

1. S is adaptive wrt. I and

2. there exists a computable, non-anticipating behavior C : (T → dom(R) ×
dom(O))→ (T→ dom(C)) with:

∀i ∈ I ∃i′ ∈ I : i′ = iR ◦ C(iC, B(i′))
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A self-manageable system is, thus, an adaptive system for which the control
input needed to make the system adaptive can be computed without requiring
knowledge about the future (i.e., the function which computes the control input
exhibits a non-anticipating behavior). Since control input C is responsible for
managing the system S, we can determine if a system is self-managing by simply
looking at the type of input and the output. If the system performs well and the
input to the system contains no control input, then the system is self-managing.

Definition 4 (Self-Managing System). A system S is self-managing wrt. a set
of input functions I iff it is adaptive wrt. I and C = ∅.

It is important to note that self-management is strongly tied to the definition
of adaptivity and its notion of performance. The term “self” refers to the ability
to reach this adaptivity without external intervention.

Example

We illustrate the definition of a self-manageable and self-managing system by
the example of a simple room heating system. Assume that the user requires a
comfortable room temperature between 22 ℃ and 25 ℃. Thus, the performance
function accepts all temperature curves which do not break these thresholds.
Let us view the room together with the heating system as the system S. The
input to the system comprises every external stimulation like the temperature
outside, the temperature inside, and manual regulation of the heating system.
Now, if the user controls the heating system to such an effect that he feels
comfortable with the room temperature, the system is called adaptive because
the output (the room temperature in this case) performs well since it meets the
user’s requirements.

Assume that we can build an automaton which turns up or down the heating
system according to the current room temperature in order to keep the room
temperature within the given range. In this case, S is self-manageable. This is
certainly only the case if the outside temperature which has an influence on the
room temperature is changing slowly enough and not too extreme (this limits
the set of input functions I for which the system is adaptive or self-manageable).
A new system S′ consisting of S together with the automaton is self-managing
with respect to the temperature requirements given by the user and the out-
side temperature constraints since it performs well without any external control
input.

In the example, it is possible to test whether S′ is self-managing by looking
at the input fed into the system and measuring the room temperature simultane-
ously. The system S′ is self-managing if the input does not contain control input
and the room temperature is not lower than 22 ℃ and not higher than 25 ℃.

2.3.2 Self-Management for Publish/Subscribe Systems

Important management tasks in the context of publish/subscribe systems are,
for example, fault management, choosing an appropriate routing or matching
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algorithm, determining publication rates in order to not overload the system,
and selecting the number of brokers in the system. Many of these decisions have
to be drawn at design or deployment time. Enabling systems to be reconfigured
or adapted at runtime requires further efforts.

In this thesis, we tackle the problems of providing recovery guarantees in face
of faults and adapting the broker overlay topology to optimize the performance
of the publish/subscribe system with respect to communication and processing
costs. For performance automation, we integrate topological reconfigurations at
runtime and reconfigure the topology based on a distributed heuristic which takes
notification flows into account and issues reconfiguration stimuli if beneficial.
Testing the adaptivity of the resulting system can be accomplished, for example,
by relying on the notion of c-adaptivity introduced by Herrmann in [76]. A
system is c-adaptive if it performs within a constant factor c of the theoretical
optimal performance. For a simulation study, Herrmann determined the factor c
using the results of the experiments executed [76, Section 8.8.1].

2.4 Self-Optimization

The term self-optimization has been introduced as part of IBM’s Autonomic
Computing Initiative (ACI) and is meant to be used in the context of automated
performance tuning [97]. We use it in the same lax meaning in here.

Adapting the broker overlay topology perfectly fits the notion of self-orga-
nization as defined by Herrmann [76] because we change the structure of the
system (here: the broker overlay topology) in a decentralized fashion in order to
improve its performance (or meet some performance requirements). However, we
decided to use the term self-optimization since it better expresses our intention.

2.5 Self-Stabilization

The concept of self-stabilization was introduced by Dijkstra in 1974 and relies
on the notion of legitimate states [56]. A system is in a legitimate state if its
state conforms to a legitimate configuration with respect to its specification.
According to Dijkstra, a system is self-stabilizing if and only if started in an
arbitrary initial state, it is guaranteed that it eventually reaches a legitimate
state. This means that if no fault happens, the system is guaranteed to stay in
the set of legitimate states once it has reached one. These two properties have
been termed convergence and closure by Arora and Gouda [11]. The maximum
time needed for a system to converge back to a legitimate state is called its
stabilization time.

The fault model of self-stabilization comprises arbitrary state perturbations
which are temporary (transient). It is important to note that it is assumed that
the program code itself as well as data stored in ROM will not be perturbed.
Self-stabilization has been successfully used in several areas (e.g., for networking
protocols like OSPF and RIP) and is very attractive for lowering management
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and implementation costs as almost no assumptions regarding failures are re-
quired. On the downside, no guarantees concerning the behavior of the system
can be made while it is not in a legitimate state.

There are various ways to realize self-stabilization. Most solutions follow
either the detect and repair or the push approach. Algorithms following the
first try to detect faults and repair them accordingly. This approach can be
used when the correct state of the system is independent of external input.
A good example for an algorithm falling into this category is a self-stabilizing
spanning tree algorithm, where each node detects whether its parent conforms
to the definition of a legitimate state (e.g., in the algorithm by Afek, Kutten,
and Yung [3]). Systems whose correct state relies on a soft state that depends
on external input have to rely on a push approach, where the self-stabilizing
algorithm constantly pushes the system into a correct state using external input.
This is necessary because the system may be corrupted arbitrarily to such an
effect that it is impossible to converge back to a correct state without information
fed into the system from the outside.

Self-stabilization can be used to supplement or replace fault masking. This
is of particular interest in large networked systems, where the probability of
faults grows. The same is true for networks that consist of error-prone links
and unreliable nodes like sensor and ad hoc networks. In Chapter 3, we discuss
the issue of self-stabilizing content-based routing in greater depth and provide
a definition of legitimate configurations of a publish/subscribe system in order
to define the set of legitimate states. Our solution follows a push approach
as described above because the correctness of the publish/subscribe system is
defined at its interfaces and depends on the set of active subscriptions of each
client which are assumed to reside outside the system. Thus, clients have to
refresh their state regularly in order to facilitate convergence of the soft state in
the system (i.e., the routing table contents) to a legitimate configuration.

According to the definition of self-managing systems given above, a self-
stabilizing system is also self-managing with respect to the following inputs
and set of performance functions. We allow any possible regular input which
comprises also arbitrary faults. For the performance functions, we allow every
function that accepts only the correct behavior at least after the stabilization
time when the last fault occurred. In this case, the system does not need any
control input to work acceptably well.

Since an in-depth introduction to self-stabilization would go beyond the scope
of this thesis, we refer the interested reader to the following literature on self-
stabilization. Arora and Wang give a short introduction to self-stabilization,
where they also discuss common misunderstandings [12]. A more complete and
in-depth discussion is given by Dolev in his book on self-stabilization [57] and
by Schneider in his survey on self-stabilization [143].
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2.6 Basic Assumptions

In this thesis, we make some assumptions which might not hold in general. We
list and explain them in the following.

Local Communication. Our model assumes that the communication be-
tween clients and their local broker is free and instantaneous. This is, for exam-
ple, the case if the clients and their local broker run on the same machine.

Cooperative Behavior. We assume that brokers behave in a cooperative
manner, i.e., they act as defined by the routing algorithm and cooperate with
the other brokers in forwarding messages. We, thus, do not take malicious
brokers into account which might try to disturb the whole system.

Small Proportion of Control Traffic. In order to justify the application of
content-based routing algorithms, we assume that the notification traffic is much
higher than the control traffic caused by (un)subscriptions and (un)advertise-
ments. If this does not hold, it would not be beneficial to employ a subscription-
or advertisement-based approach and it could be favorable to fall back to simple
flooding. We, thus, for example consider only the notification traffic in Chapter 5
when optimizing the broker overlay topology of a publish/subscribe system.

Moderate Dynamics. The control traffic in a publish/subscribe system is
tied to the behavior of the clients which publish notifications and subscribe for
them. As already discussed above, we assume moderate dynamics in this case.
Similarly, we also assume moderate dynamics on the links and the broker nodes
with respect to the communication and processing costs, respectively. We come
back to this assumption in Chapter 5, where both costs are considered when
optimizing the broker overlay topology. The same is true for faults which are
tackled in Chapter 3 in the context of self-stabilization.

FIFO Links. We require that the communication links in the broker over-
lay network exhibit a FIFO behavior. This property is important because it
is this way guaranteed that messages cannot overtake each other in a static
acyclic broker overlay network. Otherwise it could happen, for example, that an
unsubscription overtakes a subscription, creating stale routing entries thereby.
FIFO links are easy to implement and required by many publish/subscribe sys-
tems which employ a single acyclic broker overlay network. They are explicitly
required in Chapters 3 and 4.
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3.1 Introduction

Publish/subscribe systems are used to implement large-scale event-driven ap-
plications. The loosely-coupled style in the publish/subscribe communication
paradigm has a lot of advantages as it clearly separates communication from
computation. However, this separation poses severe challenges on handling
faults—for system designers as well as for application developers. In the past,
most research on fault tolerance in publish/subscribe systems has concentrated
on fault masking in a restricted fault model that only regards link or node fail-
ures and only offers best-effort semantics. Corrupted or erroneously inserted
messages as well as perturbed routing tables have not been considered at all
so far. Fault masking is always specific to certain faults and the larger the
system grows, the higher the probability gets that faults occur which cannot
be masked. In this case, recovery is not guaranteed. Especially in large-scale
scenarios, however, eventual recovery from transient faults is required.

Self-stabilization is a concept which fits well in this gap because it provides
guarantees regarding the convergence to a correct state from any transient fault
and also from permanent faults under certain conditions. The question may
arise, whether the assumption that arbitrary faults or state corruptions of a
system need to be considered. One argument against this approach may be that
this is purely theoretical and may not happen in practice. However, Jayaram
and Varghese showed that for asynchronous protocols and for nodes with non-
volatile memory which can crash and restart with an initial state, any global
state can be reached by solely dropping messages and crashing nodes which
represent common faults practice [89, 157]. Moreover, the probability of memory
perturbations grows due to the miniaturization. Apart from this, periodic self-
stabilizing “audits” that “push” the system to a correct state can also help to
catch implementation and protocol bugs and, thus, lead to an improvement in
the stability of applications.

In this chapter, we present self-stabilizing content-based routing algorithms
for publish/subscribe systems. Self-stabilization is an interesting supplement or
even alternative to other fault handling approaches because it provides guar-
antees to reach a correct state if no fault happens for a long enough time
period—regardless which transient faults happened previously. This implies
that a self-stabilizing system that has been started in an arbitrary state will
eventually reach a correct state in case no fault happens for a sufficiently long
time period. With self-stabilizing content-based routing, the configuration of
the brokers’ routing tables will eventually converge to a legal state such that the
publish/subscribe system is able to work correctly again.

In the first part of this chapter, we start with a definition of our fault model
and the notion of a correct publish/subscribe system (Section 3.2). In the fol-
lowing section, we present the basic idea and algorithms which rely on a leasing
concept designed for particular routing algorithms (Section 3.3). We describe
concrete implementations of self-stabilizing versions of simple, covering-based,
identity-based, and merging-based routing together with a discussion of the sta-
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bilization time of the respective algorithms. Subsequently, we evaluate the pro-
posed algorithms in a simulation study with respect to message overhead. We
finally present generalizations and extensions in Section 3.4, which extend the
applicability in order to render arbitrary correct publish/subscribe routing algo-
rithms self-stabilizing. Moreover, we incorporate advertisements and show how
the generalization can be applied to peer-to-peer routing.

In the second part of this chapter, we present a formal analysis of the mes-
sage complexity in publish/subscribe systems which is then used to determine
the overhead induced by self-stabilization (Section 3.5). The analysis opens
up the possibility to formally reason about the performance of self-stabilizing
content-based routing. Moreover, it represents the first comprehensive theoreti-
cal analysis of message overhead in publish/subscribe systems and, thus, provides
an alternative to extensive simulations for the evaluation of publish/subscribe
systems. The analysis first concentrates on the setting discussed in the exper-
imental evaluation in the first part and presents a formalism based on Markov
chains. Then, a generalization is presented which drops several of the restricting
assumptions and further broadens the applicability of the analysis.

We close this chapter with a discussion of related work and general issues in
Section 3.6 and Section 3.7.

3.2 Foundations

In this section, we first define our notion of a correct publish/subscribe system
which is then applied in the definition of a self-stabilizing publish/subscribe
system. We close with a description of the fault model and the introduction
of the notion of self-stabilizing content-based routing, which we rely on in the
following.

3.2.1 Correct Publish/Subscribe Systems

Our notion of a correct publish/subscribe system builds upon previous work by
Mühl, Fiege, and Gärtner which presented a formalization of publish/subscribe
systems as a requirement specification [63, 119, 120]. The authors specify pub-
lish/subscribe systems using safety and liveness properties [104]. Their spec-
ification relies on trace-based semantics which are formalized using temporal
logic [135]. In the following, we give an intuitive as well as a formal definition
of these properties. The formal definitions are formulated with linear temporal
logic using the operators “2” (always), “3” (eventually), and “#” (next) [135].

Definition 5 (Correct Publish/Subscribe System). A correct publish/subscribe
system is a system satisfying the following requirements:

1. Safety Properties

(a) A notification is only delivered to a client C at most once.
2[notify(C, n)⇒ #2¬notify(C, n)]
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(b) A client C only receives notifications which have previously been pub-
lished.
2[notify(C, n)⇒ ∃C′ : n ∈ PC′ ]

(c) A client C only receives notifications it is subscribed for.
2[notify(C, n)⇒ n ∈ N(SC)]

2. Liveness Property: A client C which is subscribed to a filter f (and does
not issue an unsubscription for this filter) will, from some time on, receive
every notification n that is published thereafter and is matched by f .
2[2(f ∈ SC)⇒ 32(pub(C′, n) ∧ n ∈ N(f)⇒ 3notify(C, n))]

The definition of a correct publish/subscribe system is useful for the definition
of a self-stabilizing publish/subscribe system, since the latter differs from the first
only with respect to the safety property: this may temporarily be violated due
to faults.

Definition 6 (Self-Stabilizing Publish/Subscribe System). A publish/subscribe
system is self-stabilizing if it satisfies the following requirements:

1. Eventual Safety Property: Starting from an arbitrary state, it eventually
satisfies (in a bounded time period t) all safety properties given in Defini-
tion 5. This is also true for the time after the system has stabilized if no
fault occurs.
3tS ∧ 2[S ⇒ 2S]

2. Liveness Property: The system always satisfies the liveness properties de-
fined in Definition 5.

It is important to note that we require that the system, once it reached a
legal state, will not reach an illegal state thereafter if no fault occurs. This
goes in line with the initial definition of self-stabilization given by Dijkstra [56].
Doing this, we do not explicitly exclude systems that are pseudo-stabilizing as
defined by Burns et al. [28]. Here, a system may switch from one legitimate
state to another which may not be recognized by an external observer. In our
example, a publish/subscribe system may switch from a correct advanced routing
configuration to flooding, where brokers deliver notifications only to their clients
if they subscribed for a matching filter. In this case, clients do not observe a
difference and the system works correctly since its specification only relies on
the interface. However, from the system point of view, this is not desirable since
complex routing algorithms are applied to reduce the message complexity. By
switching to flooding, the system still remains correct from the perspective of
the clients, but the advantage of possibly lower message overhead due to the
application of advanced routing algorithms is lost. In general, only a correct
routing configuration with respect to the routing algorithm can guarantee a
correct behavior.
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3.2.2 Fault Model

Classical theory on self-stabilization assumes that a system may reach any pos-
sible state due to a transient fault. On the routing layer of a publish/subscribe
system, the notion of state comprises the routing tables’ entries which are used
by the routing algorithm to forward a notification to subscribers as well as all
variables stored in RAM that are used by the routing algorithms to draw routing
decisions. The state may be corrupted due to transient hardware errors, tem-
porary network link failures resulting in message duplication, loss, corruption,
or insertion, arbitrary sequences of process crashes with subsequent recoveries,
and arbitrary perturbations of data structures of any fraction of the processes.
It is, however, usually assumed that the program code of the routing algorithm
itself and data stored in ROM cannot be corrupted.

The routing tables determine the current routing configuration of a pub-
lish/subscribe system. A routing algorithm starts from an eligible initial routing
configuration and subsequently adapts it. To achieve this control messages are
propagated through the broker network when clients issue new or cancel existing
subscriptions. Intuitively, a routing algorithm is valid if it adapts the routing
configuration such that the resulting system satisfies the safety and the liveness
property of Definition 5. Several content-based routing algorithms are known in-
cluding simple, identity-based, covering-based, and merging-based routing [119].
These algorithms exist in a peer-to-peer and in a hierarchical variant [33].

In the following, we assume an asynchronous communication model. There-
fore, we consider it as a fault if the maximum delay of a communication link
exceeds a given limit.

3.2.3 Further Assumptions

In our fault model, the routing configuration can be corrupted arbitrarily by
transient faults. Therefore, the routing algorithm must ensure that corrupted
routing entries are corrected or deleted from the routing table and that missing
routing entries are inserted into the routing table.

Without loss of generality, we assume in this chapter that each broker stores
the information about its neighbors in its ROM. This ensures that this infor-
mation cannot be corrupted. If it would be stored in RAM or on hard disk,
it could also be corrupted by a fault. In this case, we would have to layer
self-stabilizing content-based routing on top of a self-stabilizing spanning tree
algorithm to achieve a self-stabilizing publish/subscribe system. Layered com-
position of self-stabilizing algorithms is a standard technique which is easy to
realize when the individual layers have no cyclic state dependencies [57]. In this
case, the stabilization time would be bounded by the sum of the stabilization
times of the individual layers.
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3.3 Algorithms

In this section, we start explaining the basic idea of leasing which we use to
implement self-stabilizing content-based routing. We continue with a description
of selected routing algorithms and their self-stabilizing implementations. We
distinguish flooding, simple routing, and the advanced routing algorithms which
have to be treated separately. Finally, we present an experimental evaluation of
the message overhead due to self-stabilization.

3.3.1 Basic Idea

The basic idea for making content-based routing self-stabilizing is that routing
entries are leased. A routing entry must be renewed before the leasing period π
has expired to protect it from being discarded. If a routing entry is not re-
newed in time, it is removed from the routing table. Interestingly, this approach
does not only allow the content-based routing of a publish/subscribe system to
recover from internal faults but also from certain external faults. For exam-
ple, if a client crashes, its subscriptions are automatically removed after their
leases have expired. We also demand that a subscription has a unique ID which
can be generated easily using a unique identifier of the broker together with a
timestamp.

To support leasing of routing table entries, we use a second chance algorithm.
Routing entries are extended by a flag that can only take the two values 1 and 0.
Before a routing entry is (re)inserted into the routing table, all existing routing
entries whose filter has the same ID (as the ID of the filter of the routing entry
to be inserted) are removed from the routing table. This is necessary since the
IDs and the contents of the routing entries can be corrupted, too. We assume
that the clock of a broker can only take values between 0 and π − 1 to ensure
that if the clock is corrupted, it can diverge from the correct clock value by at
most π. When its clock overruns, a broker deletes all routing entries whose flag
has the value 0 from the routing table and sets the flag of all remaining routing
entries to 0 thereafter. New subscriptions have the flag set to 1 initially. Hence,
it must be ensured that an entry is renewed at least once in π to prevent its
expiry. On the other hand, it is guaranteed that an entry which is not renewed
will be removed from the routing table after at most 2π.

The renewal of routing entries originates at the clients. To maintain its
subscriptions without interruption, a client must renew the lease for each of its
subscriptions by “resubscribing” to the respective filter once in a refresh period ρ.
Resubscribing to a filter is done in the same way as subscribing. In general, π
must be chosen to be greater than ρ due to varying link delays. The link delay δ
is the amount of time needed to forward a message over a communication link
and to process this message at the receiving broker. In our model, it is considered
a fault when δ is not in the range between δmin and δmax. It is important to
note that assuming an upper bound for the link delay is a basic assumption of
self-stabilization to be able to deal with faults. This is due to the fact that if no
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bound exists, it is impossible to differentiate between transient and permanent
faults. Please note that unsubscriptions are handled regardless of the flags of
the routing entries and are, thus, applied to all entries for the given filter ID.

Using this leasing mechanism, an upper bound ∆u can be given for the
stabilization time for idempotent routing algorithms, where resubscriptions have
no effect on the routing algorithm:

∆u = 2π + ρ + d · δmax (3.1)

The value of ∆u is determined by the maximum time, an erroneous routing
entry stays in a routing table (2π), plus the maximum time period it then needs
until the last subscription is refreshed (ρ), plus the maximum time which is
needed to disseminate the last refreshed subscription to all brokers in the system
(d ·δmax). After this time period, the routing tables of all brokers are guaranteed
to be repaired, such that the publish/subscribe system is back in a correct state.
We define d as the network diameter, i.e., the length of the longest path a message
can take in the broker network.

3.3.2 Routing Algorithms

In this section, we present self-stabilizing extensions for different content-based
routing algorithms. We start with flooding, which is self-stabilizing by nature,
and present a solution for simple routing and advanced routing algorithms there-
after. More details on the routing algorithms described can be found in [120].

Flooding

The naive implementation of self-stabilizing routing in publish/subscribe systems
is flooding. With flooding, a broker that receives a notification from a local client
forwards it to all neighbor brokers. If it receives a notification from a neighbor
broker, it forwards it to all other neighbor brokers. Additionally, it delivers each
processed notification to all local clients which subscribed for a matching filter.
Flooding only requires a broker to keep state about the subscriptions of its local
clients. Therefore, errors in this state can be corrected locally by forcing clients
to renew their subscriptions once in a leasing period. This means that ρ = π
suffices (as stated in Chapter 2, we assume that client-broker communication
is negligible with respect to time). The main advantage of this scheme is that
coordination among neighboring brokers is not necessary. Hence, no additional
network traffic is generated. Additionally, new subscriptions become active im-
mediately. Thus, a corrupted or erroneously inserted subscription survives no
longer than 2π in a routing table and a missing subscription is reinserted after at
most ρ. An erroneously inserted or corrupted notification disappears from the
network after at most d·δmax. Hence, for flooding, the stabilization time ∆f , i.e.,
the maximum time it takes for the system to reach a legitimate state starting
from an arbitrary state, is given by

∆f = max{2π, d · δmax} (3.2)
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The drawback of flooding is the high message complexity which is indepen-
dent of the subscribers: filtering is only performed at the local broker of a client
which means that notifications may be sent to brokers which do not have any
local clients that subscribed for matching filters and which are not needed in
order to route these notifications to brokers with subscribed clients.

Simple Routing

Flooding of notifications can be extended to simple routing which treats each
subscription independently of other subscriptions. A subscription is inserted into
the routing table and flooded into the broker network. If a broker B receives a
subscription from a local client, it forwards it to all neighbor brokers. If B re-
ceived it from a neighbor broker, it forwards it to all neighbor brokers except for
the sender. Unsubscriptions are handled similarly to subscriptions: if B receives
an unsubscription, it removes the respective routing entry. Subsequently, B
forwards the unsubscription like a subscription. Thus, simple routing is idempo-
tent to resubscriptions and a subscription is redistributed (flooded) through the
broker network when it is renewed by the client. Please note that subscriptions
become active only gradually with this routing algorithm, because notifications
are forwarded according to routing entries which are installed by subscriptions
which need time for dissemination.

Since subscriptions become gradually active, it is a critical issue that the
timing assumptions must allow the clients to renew their leases everywhere in
the network before they expire. How large must π be with respect to ρ in this
case? To answer this question, consider two brokers B and B′ connected by
the longest path a message can take in the broker network. This situation is
illustrated in Figure 3.1. Assume that a local client C of B leases a routing
table entry of B at time t0 and renews this lease at time t1 = t0 + ρ. C’s lease
causes other leases to be granted all along the path to broker B′. Considering
the best and worst cases of the link delay, the first lease reaches B′ at time
a0 = t0 + d · δmin in the best case and the lease renewal reaches B′ at time
a1 = t1 + d · δmax in the worst case. If C refreshes its leases after time ρ and
if network delays are unfavorable, two lease renewals will arrive at B′ within at
most a1− a0. Hence, π > a1− a0 must hold to ensure that the entry is renewed
in time. Thus, we obtain the following result for the leasing period:

π > ρ + d · (δmax − δmin) (3.3)

The stabilization time ∆s depends on the value of π because a corrupted
routing entry will stay in a routing table for at most 2π. However, since corrupted
or erroneously inserted messages can contaminate the network, a delay of d·δmax

must be assumed before their processing is finished. Overall, the stabilization
time sums up to

∆s = d · δmax + 2π (3.4)

There is a trade off between π and ρ. To obtain a low message overhead
ρ should be as large as possible. However, this implies a large value of π, but
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Figure 3.1: Deriving the minimum leasing time

π should be as small as possible to facilitate fast recovery. In particular, the
value of ρ should be chosen such that the additional network traffic that is
introduced by ensuring self-stabilization does not degrade the quality of service
in an unacceptable way.

Advanced Routing Algorithms

The situation is more complicated if advanced content-based routing algorithms
such as identity-based, covering-based, or merging-based routing are applied.
In contrast to flooding and simple routing these algorithms are—at least the
versions presented so far—not idempotent with respect to resubscriptions. Ad-
vanced routing algorithms exploit commonalities between filters to reduce unnec-
essary forwarding of a new subscription s by a broker B to a neighbor broker B′

in case notifications matching s are already forwarded by B′ to B due to another
subscription matching the same set or a superset of s. Thus, resubscriptions are
not forwarded and can not refresh existing routing entries. However, we show
in the following how advanced routing algorithms can be made idempotent with
some minor changes. Doing this, it is possible to render them self-stabilizing
with the leasing approach already presented.

We use the term destination for a broker according to the routing framework
proposed in [120]. A destination from the perspective of broker B is a neighbor
broker or a local client. The set of B’s neighbor brokers is given by NB. The
set of local clients of B is named LB.

Identity-based Routing. When a broker B processes a new or canceled sub-
scription s with filter f from destination D, it counts the number i of destinations
D′ 6= D for which a routing entry with a filter matching the same set of noti-
fications exists in the routing table TB of B. Depending on the value of i, s is
forwarded differently. This way a subscription s for a filter f will not be for-
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warded to a neighbor broker B′ if another subscription with the same filter has
been forwarded to B′ previously and has not been recalled yet. Details are given
in pseudocode notation in Algorithm 1.

Algorithm 1 Identity-based routing

Broker B received a subscription with filter f from destination D. The variable i holds

the number of destinations distinct from D for which a routing entry with an identical

filter exists.

1 if (i = 0) then

2 if (D ∈ LB) then

3 Forward f to all Destinations in NB

4 else // D ∈ NB

5 Forward f to all Destinations in NB \D

6 endif

7 elseif (i = 1 ∧ D′ ∈ NB) then

8 Forward f only to D′

9 endif // elseif (i ≥ 2 ∨ D′ ∈ LB): do not forward f at all

This scheme is not idempotent to resubscriptions. If, for example, i ≥ 2 and
one of the identical subscriptions is renewed at B it will not be forwarded to any
neighbor broker. If no measures are taken in this case, refreshing subscriptions
will, thus, only be forwarded when the identical routing entries have been re-
moved from the routing table. This, however, may lead to missed notifications
and, thus, to an incorrect system behavior.

We propose that B takes only those subscriptions into account whose flag
is 1 when calculating i to make the algorithm idempotent. This simple extension
enables us to use the leasing mechanism with identity-based routing and gain
a stabilization time that is equal to that of simple routing. Assume that, due
to a fault, an erroneous subscription is fed into the system. It will then take at
most d · δmax until it has reached the last broker, where it generates a routing
entry with its flag set to 1. This routing entry will then persist for at most 2π
after which it will be removed by the second chance algorithm. Hence, after
time d · δmax + 2π, this fault is corrected.

Another fault that may lead to corruption of a routing table is an erroneously
inserted routing entry or a flag that has been toggled. This routing entry may
cause unnecessarily forwarded notifications which will stop after at most 2π.
More serious is the case, where it blocks “real” subscriptions from being for-
warded for at most π (after which its flag is set to 0). Then, after at most ρ, the
ordinary refresh mechanism can continue which reinstalls routing entries that
may be removed meanwhile due to missing refresh messages. It will take at
most d · δmax to reach every broker in the system. Thus, from the point on,
where the first broker removes a routing entry that has not been refreshed in
time, it takes at most ρ + d · δmax until the last broker has corrected its routing
table.
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Since π > ρ (Equation 3.3) it is guaranteed that it takes no longer than ∆i

until the system is stable again:

∆i = d · δmax + 2π (3.5)

Please note that the way how subscriptions are forwarded depends on the
order in which subscription with identical filters are renewed after the broker
has run the second chance algorithm. However, this order has no impact on the
actual forwarding of notifications in the refresh process.

Covering-based Routing. With covering-based routing, a broker B which
receives a subscription from neighbor D with filter f is forwarded according
to the value of i as with identity-based routing. However, i is not calculated
by taking identical filters into account but also by checking for filters which
match a superset of notifications that f matches. Accordingly, Algorithm 1
can be used, except for that i is calculated using the number of destinations
distinct from the sending broker for which a routing entry with an identical or a
covering filter exists. Obviously, this routing scheme is not idempotent, too. In
the following, we present two idempotent variants which differ in stabilization
time and message complexity. Both use two different i’s: one for routing entries
with filters that are identical to the filter f of the subscription received (ii) and
another one for routing entries regarding filters that cover f (ic). A subscription
is then forwarded as with identity-based routing, where i = ii + ic holds.

In the first variant, only those routing entries are considered when calculat-
ing ii and ic that have their flag set to 1. This way, a shorter stabilization time
compared to the second variant is achieved on the cost of a possibly greater
message complexity. This comes from the fact that a covered subscription can
be refreshed before the covering subscription is refreshed after a broker executed
the second chance algorithm as discussed above. The stabilization time ∆c in
this case is calculated analogous to that of identity-based routing:

∆c = d · δmax + 2π (3.6)

The second variant considers all routing entries when calculating ic regardless
their flags. Thus, also routing entries with their flag set to 0 are considered when
looking for entries with covering filters (i.e., filters that match a real superset
of notifications f covers). Forwarding of subscriptions is accomplished as in the
first variant.

By considering also covering filters in routing entries that are flagged with 0
when calculating ic, this variant avoids unnecessary forwarding of covered sub-
scriptions that may be refreshed later anyway. The case where a covering sub-
scription is refreshed after the covered one, thus, does not lead to unnecessarily
forwarded subscriptions of the covered subscription.

This lower message complexity is bought on the cost of a longer stabilization
time. Consider the following case, where a subscription with a filter fa is added
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due to a fault which covers all other filters and the routing tables of all brokers
are initialized due to the same fault short before. In this case, it takes at most
time 2π until the routing entries containing fa are removed (a). Another time ρ
is needed at most until the last client has sent a refreshing subscription (b) which
needs at most d ·δmax until it has reached the last broker in the system (c). This
results in the stabilization time ∆c′ for the second variant as follows:

∆c′ = 2π
︸︷︷︸

(a)

+ ρ
︸︷︷︸

(b)

+ d · δmax
︸ ︷︷ ︸

(c)

(3.7)

In this particular example, another disadvantage of the second variant be-
comes apparent. While in the first variant no notification would get lost in face
of the fault described, notification loss is possible with the second variant until
all routing tables are rebuilt.

Merging-based Routing. Merging-based routing comprises a class of routing
algorithms not only one concrete instantiation. Its aim is to further reduce the
routing table sizes and the message complexity of subscription forwarding similar
to covering-based routing. Therefore, it tries to merge different filters to a new
one which replaces the merged filters in the routing tables and is forwarded
instead.

In order to make merging-based routing self-stabilizing with our approach, the
refreshing of merged filters must additionally be ensured. As with covering-based
routing there is a trade-off between stabilization time and message complexity.
Again, we present two variants of one algorithm.

We focus on one concrete merging-based routing algorithm implementation
which is presented in [120] and exploit its specific mechanisms. This algorithm
tries to create a filter fM that is a merger of a set of filters {f1, . . . , fn} for the
same destination. This merger has to be perfect, i.e., N(fM ) = N(f1) ∪ . . . ∪
N(fn). If it is possible to create a perfect merger, it is forwarded instead of the
individual subscriptions. This way it is possible to reduce the routing table size
to at most 1.

Processing of subscriptions and unsubscriptions is handled similarly to cover-
ing-based routing so that analogous mechanisms can be applied. However, we
have to ensure that merged filters are renewed correctly. The routing algorithm
stores for every merged filter fM the set c(fM ) of constituting filters. Thus, we
have to adapt the second chance algorithm as with covering-based routing above.

Each broker sets the flag of all routing entries containing regular and merged
filters and also the flags of the constituting filters to 0 when its clock overruns.
At this point, we exploit the approach of creating only perfect mergers of the
concrete merging-based routing algorithm to lower the message complexity.

In the first variant, a broker forwards a subscription with a filter that is a
constituent filter of a merger in case this merged filter has its flag set to 0. The
merged filter is renewed if the last constituent filter has set its flag to 1. Thus, an
erroneously inserted merged filter will take time 2π until it is removed from the
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routing table after it reached the last broker in the system which takes at most
d · δmax. For routing entries with regular filters, the rules from covering-based
routing can be applied. The resulting stabilization time ∆m is equal to that of
the first variant of covering-based routing (Equation 3.6):

∆m = d · δmax + 2π (3.8)

To achieve ∆m, we risk unnecessary forwarding of subscriptions that will
later be merged to a new filter which is forwarded instead. This can lead to an
increased message complexity. We tackle this drawback in the second variant.

The second variant is similar to the second variant of the idempotent
covering-based routing algorithm. A subscription will never be forwarded if
there is a merged filter for which this subscription has a constituent filter. The
merged filter itself is refreshed as in the first variant when the last constituent
filter has been refreshed. The rationale behind this approach is the assumption
that the merger in the routing table is not inserted due to a fault and will be
refreshed when the last constituting filter has been refreshed. The main advan-
tage compared to the first variant is that constituent filters are not renewed as
regular ones if the merged filter’s flag has the value 0. However, this leads to a
longer stabilization time in case the merger is the result of a fault. Let us con-
sider the case, where a merger is erroneously inserted into the routing table of a
broker B, claiming that it is constituted by all other filters in the routing table.
Moreover, let us assume that the routing tables of all other brokers have been
initialized. Then, refreshing subscriptions will not be forwarded by B until the
false merger is removed from its routing table which takes at most time 2π (a).
It takes at most another time ρ (b) until the last client has refreshed its sub-
scription afterwards which will take at most time d ·δmax (c) until it has reached
the last broker in the system. This results in a stabilization time ∆m′ of the
second variant which is equal to that of the second variant of self-stabilizing
content-based routing (Equation 3.7):

∆m′ = 2π
︸︷︷︸

(a)

+ ρ
︸︷︷︸

(b)

+ d · δmax
︸ ︷︷ ︸

(c)

(3.9)

Discussion

The concept of leasing is a common way to keep soft states which can be used
to create flexible and survivable applications [45]. This technique is used in
many protocols and algorithms such as the Routing Information Protocol

(RIP) [112], Protocol Independent Multicast (PIM ) [62], and Directed

Diffusion [82].
The values of π and ρ depend on the delay of the links in the network. So

far, we assumed that these values are fixed and equal for every broker in the
system. In many scenarios such as large-scale networks or e-home environments,
link delays vary a lot among distinct links. Thus, it could be beneficial to
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incorporate this heterogeneity into the algorithm to gain better stabilization
times in parts of the network, where the links delays are lower, such as in local
area networks. One approach could be to manually localize the values for the
link delays and, thus, all other values that are derived from them. This approach
is rather brittle since a network may dynamically become slower or even faster
by the time (similar issues arise with mobile brokers). It would then be necessary
to calculate the values of π and ρ individually for every subscription, depending
on where the subscribers reside. Additionally, π and ρ have to be refreshed the
same way as described previously for subscriptions. Taking this approach, the
algorithm running on the broker can take advantage of faster links and stabilizes
subtrees of the broker topology faster in case the link delays allow for this.

In [146], the authors propose an adaptive approach to refreshing soft state.
Their aim is to limit the bandwidth used for control messages by adapting the
refresh rate dynamically: if the state a client has to refresh grows, it dynamically
reduces the refresh rate to not break this limit. The state-holder has to adapt
to the changed refresh rate. Therefore, the authors propose two algorithms:
one based on rounds (where clients refresh their state in a round-robin fashion)
and one based on prediction. However, for deterministic self-stabilization it
is important to provide strict guarantees in form of a stabilization time that
is assured. The adaptive approach does not satisfy this requirement since it
adapts the refresh rate to the available bandwidth. It would be an option to
define an upper bound for the refresh period and allow for shorter refresh periods
if possible. In consequence, parts of the network (e.g., fast local area networks
or high-speed backbones) could benefit in form of lower stabilization times. In
this case, individual timers for each subscription are necessary. This way it is
guaranteed that the maximum refresh period will never be exceeded. If higher
refresh rates are possible, the adaptive mechanism would decrease the refresh
period again, also if it had been set to a greater value due to a fault.

3.3.3 Evaluation

Introducing soft state in a computer system can increase its robustness signifi-
cantly. For publish/subscribe systems it additionally fosters the loosely coupled
nature inherent to this communication paradigm. This comes at a cost since
soft state implies an overhead in control messages which are needed to keep the
state in the system.

We carried out a discrete event simulation to compare self-stabilizing content-
based routing to flooding with respect to message complexity. Since the essential
issue in self-stabilizing systems is not the average but the guaranteed worst-case
stabilization time, we abandoned any experiments on the average stabilization
time since this strongly depends on the type and number of faults and the
topology of the broker network. Before we discuss the results, we describe the
setup of the experiments.



3.3. ALGORITHMS 35

Setup

We consider a broker hierarchy being a completely filled 3-ary tree with 5 levels.
Hence, the hierarchy consists of 121 brokers of which 81 are leaf brokers. Since
we use a tree for routing, this implies a total number of 120 communication links.
We use hierarchical routing but similar results can be obtained for peer-to-peer
routing, too. With hierarchical routing, subscriptions are only propagated from
the broker to which the subscribing client is connected towards the root broker.
This suffices because every notification is routed through the root broker. Hence,
control messages in our scenario travel over at most 4 links. We use identity-
based routing and consider 1000 different filter classes (e.g., stock quotes) for
which clients can subscribe. These classes are exclusive, i.e., an event that
matches one class does not match another one.

Subscribers only attach to leaf brokers. Results for scenarios, where clients
can attach to every broker in the hierarchy, can be derived similarly. Instead of
dealing with clients directly, we assume independent arrivals of new subscriptions
with exponentially distributed interarrival times and an expected time of λ−1

between consecutive arrivals. When a new subscription arrives, it is assigned ran-
domly to one of the leaf brokers and one of the available filter classes is randomly
chosen. The lifetime of individual subscriptions is exponentially distributed with
an expected lifetime of µ−1. Each notification is published at a randomly chosen
leaf broker. Hence, notifications travel over at most 8 links until they reach a
subscriber. The corresponding filter class is also chosen randomly. The interar-
rival times between consecutive publications are exponentially distributed with
an expected delay of ω−1. We assume a constant delay in the broker network of
δ = 25 ms including the communication and the processing delay caused by the
receiving broker.

To illustrate the effects of changing the parameters, we considered two possi-
ble values for some of the system parameters: for each of the 1000 filter classes,
a publication is expected every 1 s (10 s), i.e., ω1 = 1000 s−1 (ω2 = 100 s−1).
The expected subscription lifetime is 600 s (60 s), i.e., µ1 = (600 s)−1 (µ2 =
(60 s)−1). Each client refreshes its subscriptions once in 60 s (600 s), i.e., a re-
fresh period of ρ1 = 60 s (ρ2 = 600 s). Since d = 8 in our scenario, we choose a
leasing period of π1 = 60.2 s (π2 = 600.2 s) for ρ1 (ρ2). Hence, a subscription
will on average be refreshed 10 (1) times before it is canceled by the subscrib-
ing client if µ = (600 s)−1. The resulting stabilization time is ∆1 = 120.6 s
(∆2 = 1200.6 s). Table 3.1 gives an overview of the system parameters.

We are interested in how the system behaves in equilibrium for differ-
ent numbers of active subscriptions Ns. In equilibrium, dNs/dt = 0, where
dNs/dt = λ − µ · Ns(t), implying Ns = λ/µ. Thus, if Ns and µ is given, λ can
be determined. If the system was started with no active subscriptions, we would
have to wait until the system approximately reached the equilibrium before we
begin the measurements. However, in our scenario it is possible to start the
system right in equilibrium. At time 0, we create Ns subscriptions. For each of
these subscriptions, we determine how long it will live, to which filter class it is
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Parameter i = 1 i = 2

ωi 1000 s−1 100 s−1

µi (600 s)−1 (60 s)−1

ρi 60 s 600 s
πi 60.2 s 600.2 s
⇒ ∆i 120.6 s 1200.6 s

Table 3.1: System parameter values chosen for evaluation

assigned to, and at which leaf broker it is allocated. Since we use an exponential
distribution for the lifetime, this approach is feasible because the exponential
distribution is memoryless. Hence, it does not matter for the remaining lifetime
of a subscription how long it is already in the system.

Results

The results of our simulation are depicted in Figure 3.2. A magnification of the
most interesting part is shown in Figure 3.3. The results plotted are described
in the following:

bn is the notification bandwidth saved if filtering is applied instead of flooding.
The plot depicts bs1 and bs2 which correspond to the publication rate ω1

and ω2, respectively. Because bs linearly depends on ω, a decrease of ω
by a factor of 10 leads to 10 times less saving of notification bandwidth.
If there are no subscriptions in the system, bs1 = 116, 000 s−1 and bs2 =
11, 600 s−1, respectively. These numbers are 4000 s−1 and 400 s−1 less
than the overall number of notifications published per second. This is
because with hierarchical routing, a notification is always propagated to
the root broker.

bc depicts the control traffic that is caused by subscribing, refreshing, and
unsubscribing clients. It only arises if filtering is used. The figure shows
bc1, bc2, bc3, and bc4 which result from the different combinations of µ
and ρ. The value to which bc converges for large numbers of subscriptions
mainly depends on the refresh period ρ. Thus, bc1 and bc3 converge to
120, 000/ρ1 = 2000s−1, while bc2 and bc4 converge to 120, 000/ρ2 = 200s−1.
The evolution of bc for numbers of subscriptions in the range between 0
and 200, 000 is largely influenced by the value of µ. A small µ such as µ2

leads to a hump (cf. bc3 and bc4 in Figure 3.3).

Filtering saves bandwidth compared to flooding if bs exceeds bc. The points,
where the curves of the respective variants of bs and bc intersect are important:
if the number of subscriptions is smaller than at the intersection point, filter-
ing is superior, while for larger numbers flooding is better. For example, the
curves of bs1 and bc1 intersect at about 300, 000 subscriptions. Thus, filtering is
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Figure 3.2: Notification bandwidth saved by doing filtering instead of flooding
(bs1 : ω1 = 1000 s−1, bs2 : ω2 = 100 s−1) and control traffic caused by filtering
and leasing (bc1, bc4, : ρ1 = 60 s, bc2, bc3, : ρ2 = 600 s, bc1, bc2 : µ1 = (600 s)−1,
bc3, bc4 : µ2 = (60 s)−1).

superior for less than 300, 000 subscriptions, while flooding is superior for more
than 300, 000 subscriptions with the given distributions. Since we consider eight
scenarios, we have eight intersection points in Figure 3.3.

Discussion

The setup chosen for the experimental evaluation depicts a worst-case scenario.
The assumption that subscribers only connect to leaf brokers increases the mes-
sage complexity. The same is true for a uniform distribution of subscribers, since
publish/subscribe systems are especially beneficial for non-uniform distributions
that may, for example, result from locality of subscriptions or differences in the
number of clients brokers serve.

3.4 Generalizations and Extensions

In the previous section, we built on several presumptions regarding the rout-
ing algorithms and the routing topology. In this section, we present a generic
wrapper algorithm for a very broad range of correct routing algorithms (Sec-
tion 3.4.1). Due to the general applicability of the wrapper algorithm, we are
able to present a layered approach in Section 3.4.2 to integrate advertisements
into self-stabilizing content-based routing. In the remainder of this section, we
describe how to integrate the generic wrapper algorithm with acyclic as well as
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Figure 3.3: Magnification of Figure 3.2 showing 1/40 of the y-axis

with cyclic peer-to-peer routing.

3.4.1 Generic Self-Stabilization Through Periodic Rebuild

In a self-stabilizing system, arbitrary transient faults can occur as pointed out
in Section 3.2.2. The only parts that cannot be corrupted are the program code
and the data stored in ROM. In general, we cannot reason about how a routing
algorithm (which works correctly in a fault-free system) behaves when it receives
corrupted messages or when it is applied to perturbed routing tables. What can
merely be assumed is that it will eventually work correctly again when it is
restarted from a legitimate initial routing configuration.

In this section, we present a generic wrapper algorithm A for hierarchical
routing which makes a publish/subscribe system self-stabilizing, regardless which
correct routing algorithm R it wraps. The only assumptions are that

1. R has no private state and draws its decision solely on the basis of the
respective routing table and the notification or control message it has re-
ceived.

2. R terminates after finite time when called1.

3. Each client refreshes its subscriptions once in a refresh period ρ.

The wrapper algorithm periodically rebuilds the routing tables starting from
an initial routing configuration that is stored in ROM of each broker. Note that

1Please note that the processing delay caused by the routing algorithm in forwarding a
message in our model is already part of the link delay δ.
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most routing algorithms use an empty initial routing configuration [119]. The
algorithm A can be seen as a periodic precautionary distributed reset [10].

Generic Wrapper Algorithm

Each broker B maintains two routing tables T 0
B and T 1

B which are alternately
rebuilt on a periodic basis and a flag aB ∈ {0, 1} which determines which of both
routing tables is currently rebuilt. An optimized solution can be implemented
with only one table and two flags for every entry indicating to which routing
tables the entry belongs2. However, notification routing always uses both routing
tables to determine the target destinations of a notification. A notification is
forwarded to a destination if it matches a routing entry for this destination in
any of the two routing tables. If the routing tables are in a correct state, this
does no harm.

Since A wraps R, every call to R is intercepted by A. A determines which
routing table the next call of R operates on as described in the following. For
every subscription from a local client of B, T aB

B will be used. If control messages
are generated by R in reaction to the subscription, they will be tagged with aB.
Accordingly, when a broker B′ receives a control message tagged with x from
a neighbor broker, then T x

B′ will be used by R for this call. If B receives an
unsubscription (from any destination), it applies it to both routing tables. This
is done to avoid unnecessary forwarding of notifications. The control messages
generated by R for both routing tables in reaction to the unsubscription are
then forwarded to the respective destinations, all tagged with aB.

The periodical rebuild is triggered by a modulo clock every π on the root
broker R. The rebuild sets aR ← ¬aR. Then, it initializes T aR

R with the initial
routing configuration stored in ROM and propagates a switch(aR) message to all
of its neighbors. Similarly, when a broker B′ receives a switch(x) message from
a neighbor, it sets aB′ ← x, initializes T

aB′

B′ and forwards a switch(x) message
to all other neighbors.

If a subscription (unsubscription) is issued twice by a client between two
consecutive switch messages without an intervening unsubscription (subscrip-
tion), this could raise a problem because R might not tolerate resubscriptions.
To avoid this potential problem we propose the use of a wrapper algorithm as
described later in this section.

Correctness. Before we show the correctness of our scheme, we prove the
preparatory Lemma 1 which determines a lower bound for the value of π. Then,
we prove with Theorem 1 that, if this bound holds, A renders content-based
routing in publish/subscribe systems self-stabilizing.

Lemma 1. In a correct system, if π > 2 · d · δmax, no “old” control messages
tagged with x can arrive at any broker after the root broker issued the next “new”

2Actually, this is the way self-stabilizing identity-based routing has been implemented in
Section 3.3.2.
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Figure 3.4: Choosing π such that “old” and “new” control messages do not
interleave

switch(x) message.

Proof. Old control messages tagged with x disappear at most d · δmax after
the last broker has received the switch(¬x) message. This means that at most
2 · d · δmax after the root broker has sent the switch(¬x) message no old control
messages tagged with x can arrive. Since π is greater than this value, only new
control messages tagged with x can arrive at any broker after the next “new”
switch(x) message is issued by the root broker (Figure 3.4).

Theorem 1. When the wrapper algorithm is applied and π > ρ + 2 · d · δmax

holds, content-based routing is self-stabilizing and the stabilization time ∆g is
given by

∆g = 2π + d · δmax (3.10)

Proof. For the correctness, we have to show that (1) the system stays in a cor-
rect state if it is currently in a correct state (closure) and that (2) the system
will eventually enter a correct state if it is currently in an incorrect state (con-
vergence).

(1) For the system to stay in a correct state, we have to ensure that (1a)
at each broker the rebuild process of the routing table which is currently
rebuilt is completed before the next switch message is received, that (1b)
the rebuild is based only on new control messages, and that (1c) all new
control messages are received after the respective switch message.
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(1a) This means that at each broker the time period between two consec-
utive switch messages must be large enough to ensure that all nec-
essary control messages are received in time. The time difference at
which two brokers receive the same switch message cannot be greater
than d · δmax. At all brokers, the clients need at most ρ to reissue
all their subscriptions after the broker has received the switch mes-
sage. The resulting control messages need at most d · δmax to travel
through the broker network. Therefore, π ≥ ρ + 2 · d · δmax must hold
to guarantee that at each broker the rebuild is complete before the
next switch message is received.

(1b) By Lemma 1 and the fact that π ≥ ρ + 2 · d · δmax.

(1c) Due to the FIFO-property of the communication channels and the
fact that the topology is acyclic, a broker B′ can only receive control
messages and (un)subscriptions of local clients tagged with x after B′

received the corresponding switch(x) message.

(2) Starting from an arbitrary state, every broker receives the next switch
message after at most π+d·δmax. This message causes the receiving broker
to reinitialize one of its two routing tables. Due to (1) it is guaranteed that
this routing table will be completely rebuilt before the subsequent switch
message is received. This second switch message is received by all brokers
at most 2π + d · δmax from the beginning. It causes the other routing
table to be reinitialized. After all brokers have received and processed the
second switch message, the system is guaranteed to be in a correct state
again. This is because at all brokers the one routing table is completely
rebuilt, while the other is reinitialized.

Therefore, the stabilization time ∆g is 2π + d · δmax (see Figure 3.5).

Handling Repeated (Un)subscriptions

The self-stabilizing algorithms presented rely on repeated refresh messages for
subscriptions. Routing algorithms are not necessarily robust to resubscriptions
although the algorithms we investigated so far had this property. To be able to
support every correct routing algorithm R it is, thus, possible to use another
wrapper algorithm I which makes R idempotent by keeping a list of all sub-
scriptions that have been received in the active leasing period. If I is called with
a repeated subscription, it silently discards it and immediately returns from the
procedure sub(), according to the specification of the routing framework intro-
duced in [119].
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Figure 3.5: Deriving the stabilization time ∆g

Overhead Considerations

The generic wrapper algorithm is equivalent to the algorithm proposed for
identity-based routing and very similar to the first variant of the idempo-
tent algorithms for covering-based and merging-based routing presented in Sec-
tion 3.3.2. Similarly to the generic wrapper algorithm, they only consider routing
table entries with their flag set to 1, simulating two routing tables thereby. As
shown previously, the complete rebuild of the routing tables can comprise a
higher message complexity since the order in which routing entries are refreshed
can have a significant influence on the way (un)subscriptions are forwarded.
With covering-based routing, for example, it is always beneficial if the largest
filter is refreshed first since covered filters, if at all, only need to be forwarded
to fewer destinations subsequently.

3.4.2 Advertisements

Without using advertisements, the notification service has to take care that for
every subscription there will eventually be a respective routing entry (depending
on the routing algorithm used) at every broker’s routing table. This is due to the
fact that a publisher may connect to any broker in the system. The motivation
of advertisements [33] is to reduce control traffic due to (un)subscriptions by
actively announcing publishers with their respective set of notifications they
may produce. This is, of course, only effective if the rate at which publishers
cease or new publishers arrive is low, i.e., if the subscribers behave more dynamic
than the publishers do.

Every publisher “advertises” the set of possible notifications it may publish
by publishing advertisement filters. These filters must match all notifications
this publisher is going to produce and is disseminated in the broker network.
Besides the routing table for notifications, hence, every broker also holds a rout-
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Notification Routing Table

Used to route subscriptions

which build the notification
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Built by (un)advertisements
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Figure 3.6: Dependency between different routing layers in publish/subscribe
systems which use advertisements

ing table solely for advertisements. When a broker receives a new advertisement
it forwards it according to the routing algorithm used, which can be any of the
subscription routing algorithms. Cancellations of advertisements (i.e., unadver-
tisements) are handled analogous to unsubscriptions.

When advertisements are used, subscriptions only need to be forwarded to
destinations for which an overlapping advertisement exists. For every other
destination it is unnecessary to forward the subscription since no matching no-
tification will be published by any client in this direction.

In the following, we show how to incorporate advertisements into self-stabi-
lizing content-based routing using the generic wrapper algorithm for both routing
tables. Other routing algorithms can be used with only minor modifications.

Combining Advertisements with Subscriptions

Publish/subscribe systems that use advertisements contain a dependency be-
tween the routing tables built by advertisements (i.e., the subscription routing
tables) and those built by subscriptions (i.e., the notification routing tables)
which implies an order in which the routing tables have to be rebuilt (Figure 3.6):
the notification routing table can only be repaired when the subscription routing
table is in a correct state. This is due to the fact that subscriptions are routed
according to the subscription routing table like notifications are routed using the
notification routing table on each broker.

The goal is to create a self-stabilizing routing stack which consists of two
layers: the subscription and the notification routing tables. The latter gets its
input from the first. According to Dolev [57], we can create this algorithm stack
by simply composing self-stabilizing algorithms for both layers, since there are
no cyclic dependencies between them. This approach is called fair composition
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and presumes that each algorithm step is executed infinitely often. Doing this, it
is not necessary for the algorithm which stabilizes the notification routing table
to detect whether the subscription routing table is stable—if the latter is stable,
the first will stabilize because it is self-stabilizing. For the stabilization time ∆a,
this means that it equals the sum of the stabilization times of both layers. When
using the generic wrapper algorithm on both layers this is

∆a = 2 · (2π + d · δmax) (3.11)

3.4.3 Acyclic Peer-to-Peer Routing

The generic wrapper algorithm presented relies on a distinct root broker R which
periodically broadcasts a switch(x) message and, thus, synchronizes all brokers.
This mechanism can easily be transferred to acyclic peer-to-peer routing, be-
cause R can be an arbitrary dedicated broker in the network. We never ex-
ploited the fact that (un)subscriptions are only forwarded to R when designing
the generic wrapper algorithm. Thus, it is compatible with peer-to-peer routing,
too.

3.4.4 Cyclic Peer-to-Peer Routing

In the previous sections, we considered only acyclic routing topologies (i.e., hi-
erarchical and acyclic peer-to-peer routing) with exactly one path between two
distinct brokers. Acyclic topologies simplify the task of preventing duplicates.
In a fault-free scenario a notification is guaranteed to arrive no more than once
at a broker since forwarding cycles are avoided. Carzaniga proposes a routing
algorithm for acyclic peer-to-peer topologies which relies on reverse path for-
warding [33]. Thereby, the acyclic structure is broken up into a structure, where
there is always only one shortest path between two brokers, preventing forward-
ing cycles this way. Therefore, each broker Bx needs a routing table which stores
the next broker on the shortest path between Bx and By in the system.

The routing algorithms that are used on top of this cyclic routing topology
are the same that are used for cyclic topologies. Thus, we can use our generic
wrapper algorithm here, too.

3.5 Analysis of Self-Stabilizing Content-Based

Routing

Our focus in the first part of this chapter laid on algorithms for rendering content-
based routing self-stabilizing. In this second part, we develop the first com-
prehensive analysis of the message complexity of hierarchical publish/subscribe
systems including self-stabilization, providing an alternative to extensive simula-
tions. The analysis is based on continuous time birth-death Markov chains and
investigates the characteristics of publish/subscribe systems in equilibrium. We
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give closed analytical solutions in a simplified setting for the sizes of routing ta-
bles, for the overhead required to keep the routing tables up-to-date, and for the
leasing overhead required for self-stabilization. Later, we drop many restricting
presumptions and present a generalization which facilitates the analysis of much
more complex scenarios.

3.5.1 Assumptions

We assume the common model of a publish/subscribe system made up by a
set of cooperating brokers forming an overlay network. In this model, transient
faults can affect the communication channels connecting neighboring brokers as
well as the state of the brokers. We focus on self-stabilizing routing tables on the
publish/subscribe layer and assume that the overlay network topology is static
and, thus, stored in ROM (i.e., it cannot be corrupted). An alternative would
be layering self-stabilizing routing algorithms on top of a self-stabilizing broker
overlay topology. This is a standard technique which is easy to realize if both
layers have no cyclic state dependencies [57]. However, we did not take layering
self-stabilizing content-based routing on top of a self-stabilizing broker overlay
tree into account. Doing this would demand further efforts that would need
additional information about the self-stabilizing algorithm which is used on the
overlay layer. For example, a fault may completely change the topology which
may have an impact on the number of messages sent.

Model

We consider a broker hierarchy that forms a complete m-ary tree with k levels,
where m ≥ 1 and k ≥ 1. The number of brokers on the i-th level 0 ≤ i ≤ k − 1
equals mi. Hence, the total number of brokers NB in the hierarchy is

NB =
k−1∑

i=0

mi =
mk − 1

m− 1
(3.12)

and the number of leaf brokers NL is

NL = mk−1 (3.13)

implying the total number of communication links l of

l = NB − 1 (3.14)

since we use a tree for routing. A hierarchy for m = 2 and k = 4 is shown in
Figure 3.7.

We initially assume that subscribers are only attached to leaf brokers to sim-
plify the analysis. Results for scenarios, where clients can be attached to every
broker in the hierarchy, can be derived similarly through superposition. Please
note that our assumption is a worst-case assumption as the traffic increases if the
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Figure 3.7: An exemplary broker topology

subscribers are only attached to the leaf brokers. The communication between
the subscribers and their local broker is assumed to be local and is, thus, not
considered in the analysis.

Instead of dealing with clients directly, we assume independent arrivals of
new subscriptions, where the interarrival times of subscriptions are exponentially
distributed with an expected delay of (NL ·z ·λ)−1 between consecutive arrivals.
When a new subscription arrives, it is assigned randomly to one of the NL leaf
brokers using a uniform distribution, choosing randomly one of z different filter
classes using also a uniform distribution. This means that from the viewpoint
of a single leaf, the arrival times of subscriptions regarding a specific filter are
exponentially distributed with an expected interarrival time of λ−1. The lifetime
of individual subscriptions is exponentially distributed with an expected lifetime
of µ−1.

For the analysis we assume that hierarchical routing is used. The applica-
bility of the analysis with other routing algorithms is discussed in Section 3.5.5.
This implies that subscriptions only have to be propagated towards the root
broker as every notification is routed through the root broker. We first assume
that all notifications are published by a single producer which is connected to the
root broker. We drop this assumption later and discuss the general case, where
the publisher can attach to any broker. Regarding the notifications produced,
we consider an average publication rate ω. When a new notification is published,
the corresponding filter class is randomly chosen using a uniform distribution.

Example Scenarios

Throughout this analysis, we refer to exemplary settings to illustrate the theo-
retical results. In these settings, the broker hierarchy is a 3-ary tree with 5 levels
(m = 3 and k = 5). Hence, we have l = 120 communication links and NB = 121
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brokers of which NL = 81 are leaf brokers. Since we assume hierarchical rout-
ing, this means that control messages (i.e., forwarded (un)subscriptions) have to
travel over at most 4 links. We assume that there are z = 1000 different filter
classes for which clients can subscribe.

To illustrate the effect of a variation in the parameters, we create plots for
eight different settings if appropriate, where for each filter class one (1/10)
publication is expected per second, i.e., ω = 1000 s−1 (ω = 100 s−1). For
the subscriptions, we assume an expected subscription lifetime of 600 s (60 s),
i.e., µ = (600 s)−1 (µ = (60 s)−1). We assume a refresh period of ρ = 60 s
(ρ = 600 s).

The minimum delay for one hop in the overlay network including the com-
munication delay on a link and the processing delay of a broker is δmin = 1 ms
and the maximum delay is δmax = 251 ms. The diameter d equals k − 1 in this
setting, d · δmin = 4 ms and d · δmax = 1.004 s, which implies a leasing period of
π = ρ+d ·(δmax−δmin) = 61 s (π = 601 s) for ρ = 60 s (ρ = 600 s). This means,
for example, that a subscription will on average be refreshed 10 (1) times before
it is canceled by the subscribing client if ρ = 60 s (ρ = 600 s) and µ = (600 s)−1.

These settings resemble the settings chosen for the simulation in Section 3.3.3
and can, hence, be used to verify the results gained there.

3.5.2 Modeling State Distribution Using Markov Chains

For the analysis, we use a continuous time birth-death Markov chain that corre-
sponds to an M/M/∞ queuing system which is also known as responsive server
(Figure 3.8) [99, Chapter 3.4]. For every leaf broker and filter class, we consider
an independent Markov chain, where the birth rate λi = λ does not depend on
the current state of the chain and where the death rate depends on the state
and is given by µi = i · µ. In our exemplary setting, we, thus, consider 81, 000
independent Markov chains. A Markov chain is in state i when the respective
leaf has i simultaneously active subscriptions for the respective filter class.

k − 1 k0 1

λ0 λ1 λkλk−1

...

µ1 µ2

λk−2

µk−1 µk µk+1

...

Figure 3.8: State transition rate diagram of M/M/∞ queuing system

Since we are interested in the equilibrium, we concentrate on the stationary
distribution of the states. It is easy to see that in our scenario the condition for
a stationary distribution is met because a k exists, where λi/µi < 1 ∀i ≥ k. In
our scenario, where λi = λ, µi = i ·µ, and pi is the probability that a broker has
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Figure 3.9: Distribution of the states of one Markov chain in equilibrium for
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exactly i subscriptions, we get according to [98]:

pi =
e−

λ
µ

i!

(
λ

µ

)i

(3.15)

Let n be the number of subscriptions per leaf and filter class. In this case,
the expected value n̄ in equilibrium is

n̄ =
λ

µ
(3.16)

Hence, in equilibrium a leaf has on average λ/µ subscriptions for one filter
class. Figure 3.9 depicts the state distribution of one of the Markov chains, where
it is easy to see how the number of subscriptions per filter class in equilibrium
grows with an increasing total number of subscriptions in the system.

Finally, we can substitute λ/µ by n̄ in Equation 3.15 and get

pi =
e−n̄ · n̄i

i!
(3.17)

In the context of this analysis, the probability p0 that a broker has no sub-
scription plays a central role:

p0 = e−n̄ (3.18)

Since the expected number of active subscriptions in the system N̄ is

N̄ = n̄ · NL · z (3.19)
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we can determine pi by setting the system parameter N̄.

3.5.3 Message Complexity

In this section, we investigate the message complexity of self-stabilizing flooding
and identity-based routing. To compare the efficiency of both routing algorithms,
we analyze the number of messages that come up with each of the algorithms
and calculate, in which settings either algorithm is preferable.

The message complexity of flooding bf is simply the number of notification
messages sent over all links:

bf = ω · l (3.20)

The messages created when using self-stabilizing identity-based routing con-
sist of notification messages bn and control messages bc consisting of refresh
messages due to leasing bl and toggle messages bo.

Refresh Messages. A refresh message is created every time period ρ for each
〈subscription, leaf〉 combination. As already described in Section 3.3.1 the bro-
kers apply a second chance algorithm and refresh messages are only forwarded
to parent brokers if the respective subscription has had its flag set to 0 before.
This way, a refresh message is created at most once in period ρ for each sub-
scription and forwarded over at most all links up to the root broker. Again,
refresh messages sent by the clients to their local broker are not counted as it is
assumed that this is free of charge local communication.

Toggle Messages. When a broker receives an unsubscription for the routing
entry containing a certain filter class, it “toggles” its state from subscribed to
not subscribed for this filter class. The opposite is true when a broker receives a
subscription with a certain filter class for which no routing entry yet exists. In
both cases, the broker sends a (un)subscribe message to its parent broker (if it is
not the root broker) and causes a toggle message this way. One such toggle can
generate up to k−1 subsequent toggle messages, e.g., if the first client subscribes
to a filter class to which no other client is subscribed to in the subtree that is
rooted in a broker on the first level.

Accordingly, the number of messages b saved when applying identity-based
routing instead of flooding is

b = bf − (bn + bl + bo) (3.21)

Notification Messages

To analyze the number of notification messages that occur we have to consider
the expected number of remote routing entries, since every notification message
will be sent over as many links as there are remote routing entries in the system
for the matching filter class.
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Leaf brokers can only have local routing entries because we use hierarchical
routing. Every non-leaf broker has a remote routing entry for each 〈filter class,
child broker〉 combination if there is a client subscribed to this filter class that is
connected to a leaf broker in the tree rooted in the respective child broker. If a
broker receives a notification from its parent broker, it forwards it only to those
child brokers for which there is a routing entry for a combination consisting of
this child broker and a matching filter class. There can be no more than l · z
remote routing entries in the system (i.e., 120, 000 in our exemplary setting).

On the i-th level there are mi brokers and each subtree rooted in one of the
m child brokers of a broker on the i-th level contains mk−2−i leaf brokers. The
probability that all these leafs have no subscription for a certain filter class is

pmk−2−i

0 . Hence, the expected number of occupied remote routing entries x in
the system is

x = z ·

(

l −
k−2∑

i=0

mi+1 · pmk−2−i

0

)

(3.22)

When the number of subscriptions in the system N̄ grows, x converges to l ·z
because p0 approaches zero in this case (Figure 3.10). This is consistent with the
intuition that when the expected number of subscriptions in the system reaches
a certain point, it is expected that every leaf broker has a subscription for each
filter class, since the subscriptions are uniformly distributed to all leaf brokers.
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Figure 3.10: Number of remote routing entries

If filtering is applied, a published notification traverses on average x/z links.
Hence, the bandwidth used by notification filtering is given by

bn = ω ·
x

z
(3.23)
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The portion of the notification traffic y that is saved by applying filtering
instead of flooding is given by

y =
bf − bn

bf
=

l · z − x

l · z
= 1−

x

l · z
(3.24)

and as expected, y approaches 0 for large N̄.
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Figure 3.11: Saved notification bandwidth by applying filtering instead of flood-
ing (for bs1 : ω = 1000 s−1 and bs2 : ω = 100 s−1)

The bandwidth used for notification forwarding that is saved by applying
filtering instead of flooding bs is

bs = bf − bn = ω ·
(

l −
x

z

)

(3.25)

Figure 3.11 shows how the plot of bs approaches zero for the two different
publication rates.

Leasing

The bandwidth used for leasing depends on the refresh period ρ as the clients
refresh their active subscriptions once in a period. For each remote routing entry
that is refreshed, one refresh message is sent. Hence, the bandwidth used for
leasing bl is

bl =
x

ρ
(3.26)
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It is obvious, that the number of routing entries refreshed per second con-
verges to z · l/ρ since x converges to z · l for large n. In our exemplary setting,
bl, thus, approaches 2000 (200) messages per second for ρ = 600 s (ρ = 60 s) for
large numbers of subscriptions (Figure 3.12).
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Figure 3.12: Bandwidth used by leasing (for bl1 : ρ = 600 s and bl2 : ρ = 60 s)

Toggling

The second type of control message caused by (un)subscriptions to keep the
routing tables of the brokers up-to-date are the toggle messages. Here, we have
to consider only two states of the Markov chain (Figure 3.13): a leaf broker
either has a subscription for a filter class (state 1) or it has not (state 0). In
consequence, we have to consider two state transitions: (i) a leaf toggles from
state 0 to state 1 because a first subscription for this filter class arrived and (ii) a
leaf toggles from state 1 to state 0 because the last subscription for this class
disappeared.

0 1

λ′

µ′

Figure 3.13: Markov chain for leaf toggling

Please note that toggle messages that are caused by brokers that change
their state from state 1 to state 0 can be disregarded if unsubscriptions are only
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used to modify local routing entries and are not forwarded accordingly. In this
case, removing remote routing table entries at other brokers is left to the second
chance algorithm. This would reduce the number of toggle messages on the cost
of an increase in the notification traffic. This is due to the fact that it may then
happen that notifications are sent to a broker because of remote routing entries
that had been inserted due to a subscription which has already been revoked
meanwhile by the respective subscriber.

To determine the bandwidth that is used for leaf toggling, we must find out
how often a leaf toggles between the two states and how many messages a toggle
creates. First, we determine how many messages a toggle costs on average.

For the number of tree levels k = 1, a toggle message is never sent because all
clients are attached locally to a single broker. For k = 2, we have m leaf brokers
with clients and a root broker to which the leaf brokers are directly connected.
In this case, we always send a single toggle message for each toggle. Now, we
turn to the more interesting case where k ≥ 3.

If a leaf broker toggles in either direction for a filter class, it always sends a
message to its parent broker. An inner broker B sends a toggle message that it
received from one of its child brokers to its parent broker if all leaf brokers that
are located in the subtree rooted in B (except for that leaf which is responsible
for the toggle message) are in state 0 for this filter class. If B is on the i-th
level, this affects mk−1−i − 1 leaf brokers. Hence, the probability that B sends

a toggle message to its parent broker is pmk−1−i−1
0 . Thus, the expected number

of control messages per toggle o is

o =

k−1∑

i=1

pmk−1−i−1
0 =

k−2∑

i=0

pmi−1
0 ∀k ≥ 3 (3.27)

Note that o quickly approaches 1 when N̄ grows (Figure 3.14) which is in-
tuitive, since with a growing number of subscriptions the probability that other
brokers toggled decreases.

Now, we derive the expected number of toggles. Since we know the birth
rate λ′ = λ and the probabilities p′0 = p0 and p′1 = 1 − p′0 = 1 − p0 that the
broker is in state 0 and state 1, respectively, we can derive the death rate µ′:

µ′ = λ′ ·
p′0
p′1

= λ ·
p0

1− p0
(3.28)

If a leaf enters state 0, the expected time it stays in this state before it
toggles to state 1 is λ′−1. The reason for this is that the interarrival times are
exponentially distributed with mean λ−1. Similarly, if the leaf enters state 1, the
expected time it stays in state 1 is µ′−1 due to the exponential distribution of the
subscription lifetimes. Thus, each leaf will toggle on average two times in time
period λ′−1 + µ′−1 for each of the z filter classes. Thus, the toggle rate mf

o (Bl)
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Figure 3.14: Number of messages per toggle

of a leaf Bl for one filter class f is given by

mf
o (Bl) =

2

λ′−1 + µ′−1
=

2
1
λ′

+ 1
λ′
· 1−p0

p0

=
2 · λ′

p0+1−p0

p0

= 2 · λ′ · p0 = 2 · n̄ · µ · e−n̄ (3.29)

The toggle rate, thus, depends on the toggle rate of a leaf broker for one filter
class, on the expected number of subscriptions this broker maintains, and the
expected lifetime of these subscriptions. For example, the longer the subscrip-
tions last in the system (i.e., the lower the death rate µ), the lower is the toggle
rate.

Since there are NL leafs in the hierarchy and we have z different filter classes,
we obtain for the toggle rate mo for the system

mo = NL · z ·m
f
o = NL · z · 2 · n̄ · µ · e

−n̄ (3.30)

In our exemplary setting, mo has its maximum of approximately 99 (993) tog-
gles per second for 80, 998 subscriptions (Figure 3.15). The expected bandwidth
used for toggling bo is derived by multiplying o and mo:

bo = o ·mo (3.31)

The maximum of 117 (1174) messages per second is reached in our exemplary
setting with 57, 382 subscriptions and the expected subscription lifetime µ−1 =
60 s (µ−1 = 600 s) (Figure 3.16).
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Figure 3.15: Number of toggles per second (for mo1 : µ = (600 sec)−1 and
mo2 : µ = (60 s)−1)

Additional Bandwidth for Publishers at Leaf Brokers

In our model as described in Section 3.5.1, we assumed that all notifications
are published at the root broker. This is a best-cased assumption because with
hierarchical routing every notification published has to be sent at least to the
root broker—even if there is no subscriber at all in the system. If we relax this
assumption and consider the case, where notifications are instead published at
the leaf brokers, we recognize that a published notification may traverse more
links than if it were published at the root and we turn to the worst case. However,
this concerns only those k − 1 links on the path from the publishing leaf to the
root broker. A message sent from a broker B on level i to its parent broker on
level i− 1 (1 ≤ i ≤ k − 1) is additional if no leaf in the subtree rooted in B has
a subscription for the respective filter class. In this case, if the same message
were published at the root broker, the message would have not traversed this
link. The number of leaf brokers in a subtree rooted in a broker on level i equals
mk−1−i. Hence, the probability that none of the leafs has a subscription for the

respective filter class is pmk−1−i

0 . The publication rate holds for all leaf brokers
and the expected number of additional messages is equal for all of them. Thus,
the expected additional bandwidth bp is given by

bp = ω ·
k−1∑

i=1

pmk−1−i

0 = ω ·
k−2∑

i=0

pmi

0

︸ ︷︷ ︸

=p0·o

= ω · p0 · o (3.32)
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Figure 3.16: Bandwidth used by toggling (for bo1 : µ = (600 s)−1 and bo2 : µ =
(60 s)−1)

and plotted in Figure 3.17. The relationship between the expected additional
number of notifications and the expected toggle messages in this case comes
from the fact that a toggle message is generated if all brokers on the same level i
are in state 0 for the respective filter class. A notification sent to the root,
however, is additional if not only the other brokers on the same level i but
also the publishing broker itself is in state 0. We, thus, have to multiply the
probabilities accumulated in Equation 3.27 with p0.

For all values of N̄, the bandwidth saved when applying filtering instead of
flooding, i.e., bf − bn, is at most l/(k − 1) times the additional bandwidth bp.
In our example setting, this means a maximum of 30, i.e., publishers at leaf
brokers add no more than 3.3 % of the traffic saved when applying filtering
instead of flooding. Thus, the assumption that notifications are published at the
root broker does not have a significant influence on the bandwidth needed when
applying filtering and can be disregarded for growing N̄.

Overall Bandwidth Saved

The bandwidth used for control traffic bc, i.e., the bandwidth used for toggling
and leasing is

bc = bo + bl (3.33)

Hence, the overall bandwidth b saved when applying filtering instead of flood-
ing equals

b = bs − bp − bc (3.34)
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Figure 3.17: Additional bandwidth if notifications are published at the leafs (for
bp1 : ω = 1000 s−1 and bp2 : ω = 100 s−1)

Figure 3.18 illustrates the behavior of the system in all eight scenarios de-
scribed in Section 3.5.1 and matches the results from the simulations conducted
in Section 3.3.3. The plots of bs1 and bs2 show the number of messages saved
when applying filtering instead of flooding for different publication rates. The
other functions represent the control traffic generated by filtering for different
expected subscription lifetimes and leasing period combinations. As one can
easily see, filtering is a lot more efficient than flooding for smaller numbers of
subscriptions. The break-even points, where flooding becomes more efficient
than filtering, are the intersections of the control traffic curves (bl{1|2} + bo{1|2})
with the saved traffic curves (bs1/2 − bn1/2).

In our exemplary setting, b becomes negative if N̄ exceeds 299, 503 subscrip-
tions and b is bounded below by −bl which equals 2000 messages per second.
Hence, in our exemplary setting, filtering is at most 1/60 worse than flooding
(Figure 3.18). Without leasing, filtering would be at least as good as flooding in
this case. However, this may not hold for all other scenarios.

Comparing Figure 3.18 with Figure 3.3 on page 38, we see that the results
are very similar. Thus, the analysis confirms the findings of the simulation study
carried out in the first part of this chapter.

3.5.4 Generalization

The analysis so far was based on several restrictive assumptions. In this section,
we present a generalization of the analysis, where most of the restrictions are
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Figure 3.18: Notification messages saved when applying filtering instead of flood-
ing (for bs1 : ω = 1000 s−1 and bs2 : ω = 100 s−1) and control traffic created
by filtering and leasing ( bl1 : ρ = 60 s, bl2 : ρ = 600 s, bo1 : µ = (600 s)−1 and
bo2 : µ = (60 s)−1)
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dropped. The assumptions we built upon so far are the following:

(1) The broker topology is a complete m-ary tree.

(2) The subscribers can only attach to the leaf brokers.

(3) The interarrival rates for subscriptions and their death rates are equal for
all brokers and filter classes.

(4) The publication rate for all filter classes is equal.

(5) The publishers attach either only to the root broker or only to the leaf
brokers.

(6) The interarrival times and lifetimes of subscriptions form Poisson pro-
cesses.

(7) Hierarchical routing is applied.

(8) Identity-based routing is used.

In the following, we relax all assumptions except for the last three. Re-
laxing Assumptions 1 to 5 means that the analysis as we have done it before
using closed formulas is not possible anymore. Thus, we propose a formalism
based on recursive formulas. Relaxing Assumption 6 would require a shift from
M/M/∞ to G/M/∞ or G/G/∞ queueing systems, changing the basis of the
analysis thereby. While this is possible, it will probably not gain any new major
insights into the basic interrelationships between the various parameters. Drop-
ping Assumption 7 would change the way subscriptions are forwarded, since
(un)subscriptions and toggle messages are then not guaranteed to be forwarded
to the root broker only. To be able to drop Assumption 8, additional informa-
tion, for example, regarding the distribution of subscriptions and notifications
would be required. We discuss the relaxation of these assumptions in greater
detail in Section 3.5.5.

We start with the assumption that the broker topology is a complete tree.
Relaxing it has a severe impact on the calculation of all message complexities.
In the following, every broker, thus, has its own set of child brokers C(B) which
is independent of C(B′) of any other broker B′.

Since we are not restricted to closed formulas, we can also treat each broker
individually and drop any restriction on where the subscribers can attach to
(Assumption 2). Therefore, we introduce pf

0 (B) as the probability that broker B
has no local subscription for one filter class f and λf (B) as the birth rate of
subscriptions at broker B for this filter class f . It can be determined with the
subscription death rate µf (B) of B using

pf
0 (B) = e−λf (B)/µf (B) (3.35)

This way, we are also able to drop Assumption 3.
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Furthermore, we introduce a publication rate for individual filters, where ωf

is the publication rate of filter f , relaxing Assumption 4 thereby. Moreover, we
introduce a publication rate ωf(B) for each broker and filter, modeling the case
that a publisher for a filter class f can connect to arbitrary brokers. Doing this,
we drop Assumption 5. The only requirement is, that the publication rates of
all brokers for one filter class are consistent with the total publication rate for
this filter class:

ωf =
∑

B∈B

ωf (3.36)

In the following, we determine the notification and control traffic as done in
the restricted scenario discussed so far.

Notification Traffic

Analogous to our previous approach, we start with the case, where all publishers
are connected to the root broker and determine later the additional traffic if
publishers can connect to arbitrary brokers.

Publisher Connected to the Root. Let xf (B) be the sum of the occupied
routing entries for filter class f at all brokers in the subtree rooted in B. To
calculate xf for arbitrary trees, we propose a recursive formula. Let C(B) be

the set of all child brokers of broker B and P f
0 (B) be the probability that B

is in state 0 for one filter class f , i.e., it has no subscription (neither local nor

remote) for this filter class. Then, P f
0 (B) directly depends on pf

0 (B) and on the

value of P f
0 of all child brokers of B (if B is not a leaf broker):

P f
0 (B) = pf

0 (B) ·
∏

C∈C(B)

P f
0 (C) (3.37)

A broker B has one remote routing table entry for a filter class f and a child
broker B′ if B′ has either a local subscriber or at least one remote routing entry
for f . The expected number of remote routing entries in the subtree rooted in B
for one filter class f is given by xf (B) and accordingly depends on the value of

P f
0 and xf of all child brokers:

xf (B) =




∑

C∈C(B)

(1 − P f
0 (C))





︸ ︷︷ ︸

(a)

+




∑

C∈C(B)

xf (C)





︸ ︷︷ ︸

(b)

=
∑

C∈C(B)

(

1− P f
0 (C) + xf (C)

)

= |C(B)| −
∑

C∈C(B)

(

P f
0 (C)− xf (C)

)

(3.38)
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The number of occupied remote routing entries xf (B) for filter class f in the
subtree routed in broker B consists of (a) the expected number of remote routing
entries in each child broker of B plus (b) the number of remote routing entries
in the subtrees rooted in each child broker of B. Starting the recursion with the
root broker R we obtain the expected number of remote routing entries xf (R)
in the whole system. In the following, we set

xf = xf (R) (3.39)

For complete trees, the recursive equation equals the closed formula in Equa-
tion 3.22 when multiplied with the number of filter classes z. The total number
of notifications sent is obtained by multiplying the number of remote routing
entries for filter class f with the respective publication rate and summing up the
results for all filter classes in F as follows:

b′n =
∑

f∈F

ωf · xf (3.40)

Publishers Connected to Arbitrary Brokers. As in Equation 3.40, the
notification traffic b′n is obtained by summing up the product of the publication
rate and the number of remote routing entries for all filter classes. However, this
is only true for the case, where all notifications are published at the root broker.
If publishers can connect to arbitrary brokers, we have to add the number of
additional messages sent due to hierarchical routing. Additional messages are
produced when notifications are sent from the publisher hosting broker towards
the root broker if there is no subscriber attached to a broker in the subtree
rooted in the forwarding broker.

A notification forwarded by broker B to its parent broker B′ is additional if
there is no subscriber in the subtree rooted in B since it would not be forwarded
over this link from B′ to B if the notification would have been published at the
root broker R. We already determined the probability P f

0 that a broker has no
routing entry for f in Equation 3.37. We can, hence, apply a similar reasoning
as for Equation 3.32 and sum up the expected number of additional messages b′p
produced by all brokers which can be determined per broker B and filter class f
by multiplying the sum of the probabilities P f

0 (B′) of the brokers on the path
to the root. We introduce P(B) as the set of brokers on the path from B to R,
including B and excluding R

P(B) = {B′|B′ 6= R ∧ (B′ = B ∨B′ ∈ ancestors(B))} (3.41)

Each B′ ∈ P(B) has a publication rate ωf (B). The number of additional
messages created in the subtree rooted in B for filter f is given by bf

p(B) as
follows:

bf
p(B) =

∑

C∈C(B)



ωf (C) ·
∑

B′∈P(C)

P f
0 (B′)



 (3.42)
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The number of additional messages b′p for one filter class f is, thus, given by

bf
p = bf

p(R) (3.43)

The total number of additional messages is the sum of the additional mes-
sages bf

p for all filter classes:

b′p =
∑

f∈F

bf
p (3.44)

For the specific case, where all publishers are connected to leaf brokers in
a complete m-ary tree, ωf (B) = 0 holds for all inner brokers and the total
publication rate over all filter classes equals ω. We, thus, obtain the same result
as in Equation 3.32:

b′p =
∑

f∈F

∑

B∈B

ωf (B) ·
∑

B′∈P(B)

P f
0 (B′)

︸ ︷︷ ︸

=
Pk−2

i=0
pmi

0

=

k−2∑

i=0

pmi

0 ·
∑

f∈F

∑

B∈B

ωf (B)

︸ ︷︷ ︸

=ω

= ω ·
k−2∑

i=0

pmi

0 (3.45)

Notification Traffic Saved. The notification traffic caused by flooding can
be obtained analogous to Equation 3.20 by summing the product of the number
of links l′ and the publication rate for filter class f over all filter classes F :

b′f =
∑

f∈F

ωf · l′ (3.46)

For complete trees it is easy to calculate the number of links l′ in the hierar-
chy. For arbitrary tree topologies, l′ can be derived using the following recursive
formula starting at the root broker R:

l′(B) =

{
0 , B is a leaf
|C(B)|+

∑

C∈C(B) l′(C) , otherwise
(3.47)

We set

l′ = l′(R) (3.48)

As in Equation 3.25, the notification traffic saved compared to flooding when
applying filtering is

b′s = b′f − b′n + b′p =




∑

f∈F

ωf · (l′ − xf )



+ b′p (3.49)
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Control Traffic

The control traffic b′c consists of the bandwidth used for leasing b′l and the band-
width used for toggling b′o.

Leasing Traffic. Since each remote routing entry must be refreshed once in
a refresh period the resulting leasing traffic b′l can be determined analogous to
the traffic determined in Equation 3.26 as follows:

b′l =
∑

f∈F

ρ−1 · xf (3.50)

Toggle Traffic. The bandwidth needed for toggling depends on the toggle
rate of each broker: if a broker toggles, it sends a toggle message upwards to
its parent. The toggle rate mf

o (B) of a broker B depends on its individual
toggle rate mf

o determined by its local clients and the toggle rate of its child
brokers C(B). In Equation 3.29, we obtained the toggle rate mf

o (Bl) for one filter
class f and a leaf broker Bl based on the arrival rate λ and the probability p0 that
this broker has no local subscriptions. We allowed subscribers to only connect
to leaf brokers such that it was straightforward to obtain the toggle rate in the
system. We now allow that subscribers attach to any broker in the system. Thus,
the arrival rate at an inner broker depends on the arrival rate at the broker itself
(given by λf (B)) and the toggle rate of all of its child brokers. The arrivals
of subscriptions are a Poisson process and the arrival rates of the superposition
of multiple Poisson processes is also a Poisson process, where the arrival rate
equals the sum of the arrival rates of the particular Poisson processes. Hence,
we obtain the following recursive formula for the accumulated arrival rate λf

a(B)
of broker B and filter class f

λf
a(B) =

{
λf (B) , B is a leaf
λf (B) +

∑

C∈C λf
a(C) , otherwise

(3.51)

With λf
a(B) we are able to calculate the toggle rate Mf

o (B) of each broker
in the system according to Equation 3.29 as follows:

Mf
o (B) = 2 · λf

a(B) · P f
0 (B) (3.52)

Every toggle produces exactly one message. The total number b′o of toggle
messages sent in the system, thus, equals the sum of the toggle rates of all
brokers B for all filter classes:

b′o =
∑

f∈F

∑

B∈B

Mf
o (B) (3.53)

The results obtained match our results gained for the case, where subscribers
can only attach to leaf brokers. In this case, λ and p0 is equal for all leaf brokers
and p0 = 1 and λ = 0 for all inner brokers. These values are equal for all z filter
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classes. The toggle rate of broker B on the i-th level is equal to twice the sum
of the arrival rates of all leaf brokers that are ancestors of B (i.e., λ ·mk−1−i)

times P f
0 (B) with P f

0 (B) =
∏

C∈C(B) P f
0 (C) and P f

0 (B) = p0(B) if B is a leaf.

Since there are mi brokers on the i-th level in the tree, the number of toggles
in the example is

b′o = z ·
∑

B∈B

Mf
o (B) = 2 · z ·

k−1∑

i=1

mi ·mk−1−i · λ · pmk−1−i

0 (3.54)

= 2 · λ · z ·mk−1 ·
k−2∑

i=0

pmi

0 = 2 · λ · z ·mk−1
︸ ︷︷ ︸

=NL

·p0 ·
k−2∑

i=0

pmi−1
0 (3.55)

= 2 · λ · z · NL · p0
︸ ︷︷ ︸

=mo

·
k−2∑

i=0

pmi−1
0

︸ ︷︷ ︸

=o

(3.56)

This result matches with those of Equation 3.27 and 3.30.

Messages Saved

The overall number of messages saved when applying filtering instead of flood-
ing b′ according to Equation 3.21 is

b′ = bf − b′n + b′p − b′l − b′o = b′s − b′l − b′o

=




∑

f∈F

(
ωf · (l′ − xf ) + bf

p

)



− ρ−1 ·




∑

f∈F

xf



−




∑

f∈F

∑

B∈B

Mf
o (B)





=
∑

f∈F

(

ωf · (l′ − xf ) + bf
p − ρ−1 · xf −

∑

B∈B

Mf
o (B)

)

(3.57)

3.5.5 Discussion

In the initial analysis, our work based on several restrictive assumptions which
enabled us to provide a formalism consisting of closed formulas. In the general-
ization, we dropped several of those assumptions and, thus, broadened the class
of scenarios which are covered by the analysis. Subscribers can now attach to
every broker in the system. Moreover, it is possible to set the birthrate and
the lifetime of subscriptions individually for each broker and filter class as well
as the publication rate of connected publishers. However, we still rely on the
assumption that the arrivals and lifetimes of subscriptions are a Poisson process
and determine P f

0 (B) accordingly. This is the reason why we can simply add the
arrival rates of parent and child brokers to obtain the accumulated arrival rate
of the superpositioned processes at a broker. Using another probability distribu-
tion than the exponential distribution for the arrivals affects the calculation of



3.6. RELATED WORK 65

the number of toggle messages in the system. We leave the extension for other
probability distributions open for future work.

Another advantage of the generalization is that we are now able to examine
the effects of locality by parameterizing the probability distribution on each
broker separately. This way, we are able to model, for example, local clusters
of identical subscriptions. Before having this formalism, we had to conduct
simulations to analyze the behavior of the system in such complex settings.

Our generalized analysis is still based on hierarchical and identity-based rout-
ing. It would be interesting to consider other routing strategies like peer-to-peer
routing instead of hierarchical routing. This is possible with our formalism. How-
ever, it is necessary to consider the fact that forwarding of (un)subscriptions and
toggle messages is not limited to the root broker. Thus, the message complexity
is expected to increase in this case. In order to use more sophisticated rout-
ing algorithms than identity-based routing (like covering-based routing), more
changes are required. Although not straightforward it is possible to incorporate
such routing algorithms into our analytical framework. In this case, we need
to additionally model the covering relations between the filters different sub-
scriptions carry. If we knew the probability that a subscription covers another
one, we could incorporate this into the formalism given above since we could
then reason about the probabilities that subscriptions and toggle messages are
forwarded. We leave this issue for future work.

3.6 Related Work

In the following, we discuss related work in the areas of self-stabilization, fault
tolerance, and analysis of publish/subscribe systems and put it in the context
of our work presented in this chapter.

Self-Stabilizing Content-Based Routing

In the field of self-stabilizing routing in publish/subscribe systems the closest
related work is by Shen and Tirthapura [147]. In their approach, all pairs of
neighboring brokers periodically exchange “sketches” of those parts of their rout-
ing tables concerning their other neighbors to detect corruption. Those sketches
exchanged are lossy because they are based on Bloom filters (which are a gen-
eralization of hash functions) [25]. However, due to the information loss it is
not guaranteed that an existing corruption is detected deterministically. Hence,
the algorithm is not self-stabilizing in the usual sense. Moreover, although gen-
erally all data structures can be corrupted arbitrarily, the authors’ algorithm
computes the Bloom filters incrementally [148]. Thus, once a Bloom filter is
corrupted, it may never be corrected, resulting in a system which may never
stabilize! Furthermore, clients do not renew their subscriptions. Without this,
corrupted routing entries regarding local clients are never corrected. Finally, in
its current form, their algorithm is restricted to identity-based routing.
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An interesting idea is that of limiting the message complexity with transient
link failures. However, the solution proposed by the authors relies on a topology
maintenance algorithm which actively informs the self-stabilizing routing layer
about failed links. In addition to that, the algorithm needs to know the size
of the subtree that is rooted in the broker it runs on. The authors neither
explain how they obtain this information nor do they discuss the effect on the
self-stabilizing behavior of the whole system.

The only other directly related work realizes self-stabilizing publish/subscribe
on top of a peer-to-peer network [165]. Therefore, the authors add self-stabilizing
mechanisms to an earlier work by Datta et al. which supports topic-based pub-
lish/subscribe by maintaining one overlay tree (“layer”) per topic [54]. The
authors claim that they also support content-based routing. However, this sup-
port is rather restricted as it still requires topics and super-peers to which clients
connect according to the topics they want to subscribe for. It, thus, does not
conform to the general notion of content-based routing which does not require
topics.

Fault-Tolerant Publish/Subscribe Systems

Strom and Jin propose using a stateful approach for publish/subscribe sys-
tems [91, 151]. They introduce a history of events held in the system, enabling
new functionality thereby (e.g., publishing an hourly mean value of notification
values). This way, it is also possible to handle transient faults and compensate
lost notifications. The authors consider transient faults regarding links or notifi-
cations which may get lost. However, they do not handle arbitrary perturbations,
e.g., of routing tables. Thus, the system they propose is not self-stabilizing.

There has been some work on layering a publish/subscribe system on top of a
peer-to-peer routing substrate like Pastry [141] (the Hermes publish/subscribe
system [133, 134]), CAN [138] (Meghdoot [71]), and Chord [149] (as described
in [154]). These peer-to-peer routing substrates are designed with failing or
leaving nodes in mind and are, thus, very robust with respect to these faults.
Layering a publish/subscribe system on top of such a routing substrate can
be beneficial with respect to faults. However, the fault tolerance mechanisms
provided by the routing substrate do only relate to the broker overlay network.
The routing tables held by the brokers are not considered such that it is necessary
to employ another mechanism if they are corrupted. Aside from this, it is not
clear yet whether the routing substrates used are self-stabilizing themselves.

Costa et al. [46, 47, 48] take an interesting approach to obtain reliability
by using a probabilistic algorithm which relies on the theory of epidemics [55].
By caching notifications and gossiping cache contents the authors try to reach
eventual notification completeness (similar to what Shen and Tirthapura do
with subscriptions in [147]). This approach is well suited for highly dynamic
environments with link failures and message loss. Corrupted routing tables are
not taken into account such that these may lead to an incorrect state of the
system from which it may never recover. Moreover, their approach only provides



3.6. RELATED WORK 67

probabilistic delivery guarantees and is not able to provide a given message
ordering.

The authors of [22, 151] propose an algorithm which guarantees notification
delivery in the Gryphon publish/subscribe system [150]. It is able to cope
with lost or reordered messages by employing an approach which is based on
(negative) acknowledgements and event histories. The failure model comprises
node failures, dropped and reorders messages, as well as link failures. Publishers
log messages in stable storage to be able to resend them. However, arbitrary
corruption of data structures like routing table entries is not considered and not
handled.

Other work in this area comprises the use of virtual time vectors in combi-
nation with redundant paths [170]. This way, the authors are able to provide
complete and in-order delivery of messages. The authors of [111] take a similar
approach and try to render the publish/subscribe system tolerant with respect
to node and link failures by using a replication algorithm. In contrast to our
fault model, the fault model of both solutions does not consider perturbations
of routing tables and is not self-stabilizing.

Self-Stabilizing Multicast Communication

Recently, there have been some research efforts for implementing self-stabilizing
multicast communication in mobile ad hoc networks [72, 90]. They aim at build-
ing a self-stabilizing spanning tree which is well suited to the application scenario.
Several algorithms have been proposed for self-stabilizing spanning trees like the
ones by Dolev et al. [59], and Aggarwal and Kutten [4], just to mention two of
them. Gärtner gives a good overview of self-stabilizing spanning tree algorithms
in [67].

Self-stabilizing spanning tree algorithms are also an interesting way to main-
tain the broker network, the publish/subscribe routing is layered upon. However,
since content-based routing is far more complex than multicast communication,
simply maintaining a spanning tree does not help in making content-based rout-
ing self-stabilizing. In [124], the authors describe an algorithm which exploits
IP multicast for content-based routing in publish/subscribe systems. Therefore,
the algorithm maps subscriptions more or less accurate to multicast groups. Al-
though single multicast groups may be realized with a self-stabilizing spanning
tree algorithm, the whole system is not self-stabilizing since the group member-
ship management, for example, is generally not self-stabilizing.

Analysis of Publish/Subscribe Systems

At the time writing, there are only three publications which deal with analyzing
publish/subscribe systems. The first one by Bricconi et al. [27] presents a rather
simple model with a lot of restrictions for the analysis of the Jedi publish/sub-
scribe systems. The model is mainly used to calculate the number of events
received by each broker using a uniform distribution of subscriptions. To model
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the multicast communication, the authors introduce a spreading coefficient be-
tween 0 and 1 which models the probability that a broker in a given distance (in
hops) of the publishing broker receives an event published.

The other analysis has been published by Baldoni et al. [13]. Besides a
system model, the authors propose an analytical model. Instead of analyzing
the message complexity as we did in Section 3.5, the proposed model is only
used to calculate the number of notifications that are missed by subscribers due
to high network delays.

We are only aware of one other analytical model that deals with questions
regarding message complexity of publish/subscribe systems. In this recent work
the same assumptions are made with respect to the broker topology as in our
initial analysis [37]. The distribution of subscribers and publishers is assumed to
be uniform such that mean values can be used to make the analysis easier. How-
ever, the authors take a different approach in the routing protocols considered
which makes it hard to compare it to our approach. Nevertheless, the general-
ization of our approach is far more powerful since it is easily possible to model
locality and arbitrary individual parameterizations of subscription distributions
and their respective lifetimes. It is important to note that this approach was
published more than two years after our first results had been published [86].

3.7 Discussion

In this chapter, we introduced the notion of self-stabilizing content-based routing
for publish/subscribe systems. We proposed self-stabilizing algorithms for sim-
ple, identity-based, covering-based, and merging-based routing. We discussed
that our self-stabilizing content-based routing algorithms induce extra costs in
form of additional messages. We also showed in an experimental evaluation in
which scenarios self-stabilizing hierarchical identity-based routing is superior to
flooding. The simulations assumed a rather conservative setting with a uniform
distribution of subscriptions at the leaf brokers; thus, they mark a rather worst-
case scenario. Furthermore, we proposed several generalizations and extensions:
a wrapper algorithm which can be used to make arbitrary correct routing al-
gorithms self-stabilizing, the integration of advertisements into self-stabilizing
routing, and the combination with (a)cyclic peer-to-peer routing.

We realized self-stabilization by a periodic task which “pushes” the system
towards a correct state. The cost of this periodic task may not always pay off
in all situations. In small-scale energy-sensible scenarios like sensor networks
or mobile ad hoc networks, for example, one has to take care that the self-
stabilizing mechanism does not lead to an energy shortage due to a large message
overhead which wastes all the energy available. However, especially in those
scenarios, self-stabilization is a property of great value. In [160], we applied
a self-stabilizing routing algorithm presented in Section 3.3 to create a self-
stabilizing role-assignment mechanism in actuator/sensor networks. Similar to
small-scale networks, the extra load imposed on large-scale networks may not
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justify the advantages of self-stabilization. Here, it could be of great value to
segment the network into different “zones” with different stabilization demands
and, hence, different message overhead due to self-stabilization. An adaptive
approach would be the next step—however, it has to be taken care that the self-
stabilization guarantees still hold since adaptive solutions often rely on complex
soft state. More complex soft state with more complex interdependencies inside
the state makes it increasingly difficult to ensure convergence from an incorrect
to a correct state without external intervention. We leave this issue for future
work.

In the second part of this chapter, we presented a stochastic analysis of the
message complexity in publish/subscribe systems which allows for the first time
to reason about the message overhead of a publish/subscribe system without
having to rely on simulations. The analysis confirmed our findings from the
simulation study in the first part. For this scenario, we proposed closed formulas
for complete trees and hierarchical routing. Later, we generalized the analysis
to arbitrary trees, where publishers and subscribers can connect to any broker
in the system. The clients’ (i.e., subscribers’ and publishers’) behavior can be
parameterized per broker and is, thus, able to capture a wide range of scenarios.
Given the formalism, we are now able to analyze the message complexity of self-
stabilizing publish/subscribe routing without having to rely on long-running
simulations, where implementation details, which have an impact on the results,
are often not clear to the reader.

For the analysis, we required hierarchical identity-based routing and did not
consider more complex routing algorithms like covering-based and merging-based
routing. This is due to the fact, that handling these routing algorithms requires
additional assumptions and models regarding the covering- or merging-proba-
bility of subscriptions and their distribution. We believe that it is possible to
include both into our analytical framework and leave this open for future work.
Furthermore, we assumed that subscription arrivals can be modeled as Poisson
processes and that subscription lifetimes are exponentially distributed. This
may not hold in all scenarios. Incorporating other probability distributions in
our analysis is another issue which we left open for future work.

Our analysis provides an important foundation for modeling and analyzing
publish/subscribe systems. Providing tools to formally analyze publish/sub-
scribe systems is an important contribution in an area, where evaluations mostly
rely on extensive simulation studies and often neither the simulation code nor
the underlying datasets are open to the reader.
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4.1 Introduction

Publish/subscribe systems are well suited to and often used in dynamic scenarios,
where system parameters may vary significantly in an unexpected and unpre-
dictable way. Examples for large-scale and small-scale scenarios, respectively,
are Internet-wide information dissemination systems and e-home applications
with spontaneously joining and leaving nodes. In a distributed implementation,
brokers cooperate in a peer-to-peer fashion and contribute on their part to the
infrastructure they use. When new nodes join the system or participating nodes
leave, for example, it might be beneficial or even necessary to reconfigure the
broker overlay network topology in order to keep the network connected or to
optimize its performance. Thus, support for reconfiguring the broker overlay
topology of a publish/subscribe system is essential for managing or even en-
abling the evolution of the broker topology of a publish/subscribe system in a
dynamic environment.

In this chapter, we discuss the problem of reconfiguring the broker over-
lay network of conventional and self-stabilizing publish/subscribe systems. We
first do not consider faults and assume that reconfigurations are carried out in a
fault-free scenario. We start with presenting our notion of reconfiguration in Sec-
tion 4.2 which is assumed to be planned and executed as part of system manage-
ment. We introduce elementary reconfigurations which can be combined to ex-
ecute complex reconfigurations. Subsequently, we discuss the general challenges
of reconfiguring publish/subscribe overlay topologies in Section 4.3. This also
comprises the integration of reconfigurations into the publish/subscribe model
and the identification of guarantees we want to provide during reconfiguration.

We then present a novel algorithm for managed reconfigurations in controlled
environments for conventional publish/subscribe systems in Section 4.4. It is the
first algorithm which is capable of guaranteeing FIFO-publisher as well as causal
message ordering when carrying out reconfigurations. Besides message ordering,
our focus is on preventing message loss and minimizing message overhead. The
influence of the particular ordering requirements and the reconfiguration scenar-
ios on the performance of the algorithm are examined in a simulation study. The
results are compared to those of the classic strawman approach which is often
cited in literature.

In Section 4.5, we consider reconfigurations in self-stabilizing publish/sub-
scribe systems which apply self-stabilizing content-based routing as presented
in Chapter 3. For these systems, we cannot apply the algorithm presented for
regular publish/subscribe systems because self-stabilization implies subtle issues
which have to be handled appropriately. We first complement the self-stabilizing
content-based routing layer with a self-stabilizing broker overlay network in or-
der to realize a self-stabilizing publish/subscribe system. Both layers need to
be coordinated in order to prevent service interruptions due to reconfigurations.
Therefore, we introduce a coloring mechanism which coordinates actions on both
layers. We, thus, obtain a complete self-stabilizing publish/subscribe stack which
is capable of implementing reconfigurations without message loss while maintain-
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ing message ordering. We conclude this chapter with an overview of related work
(Section 4.6) and a discussion of the results (Section 4.7).

The ability to reconfigure the broker topology of a publish/subscribe system
is an essential prerequisite for the next chapter which focuses on the problem of
how to enable a publish/subscribe system to optimize its broker overlay topology
autonomously. The optimizations found have to be carried out, for example, by
using the algorithms presented in this chapter.

4.2 Reconfigurations

While faults happen suddenly and may lead to abrupt changes in the broker
topology, we consider a reconfiguration as a cooperative process which is usually
planned in advance and tolerates a delay to take effect.

In the following, we present different types of reconfigurations of the broker
overlay topology. We then reduce all possible reconfigurations to three basic
reconfigurations which we call “elementary reconfigurations”. We show that
arbitrary reconfigurations can be carried out with a sequence of elementary re-
configurations and define our notion of reconfiguration accordingly.

4.2.1 Types of Reconfiguration

We discuss four different types of reconfiguration of the broker overlay network
and their impact on the maintenance of the affected brokers’ routing tables in
the following.

Broker Addition

When a new broker B wants to join the overlay network, it has to connect to
at least one broker while maintaining the acyclic structure of the topology at
the same time. If B shall be added as a leaf broker, this is easily accomplished
by connecting it to one broker and then starting it. The integration is complete
when B has obtained all necessary subscriptions (and advertisements) from its
neighbor broker. After that, B is part of the broker overlay network and inte-
grated into the publish/subscribe system.

Adding B as an inner broker is far more complicated. In this case, it is
necessary to remove at least one link from the topology to keep the topology
acyclic after integrating B. To finalize its integration, B needs to make its
routing table consistent with the routing tables of all of its neighbor brokers.
Additionally, the removal and addition of links may require other brokers to
update their routing tables.

Broker Removal

The problem of removing a broker B is similar to that of adding a broker. If B
is a leaf broker it simply has to cancel all its subscriptions (and advertisements)
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and can be disconnected subsequently. If B is an inner broker, links have to be
relocated and routing tables have to be synchronized which affects at least those
brokers to which B is connected.

Link Addition

We already discussed that broker addition or removal may require adding an
additional link to the topology. Since we must keep the topology acyclic, a
newly inserted link (which does not connect a new leaf broker with the rest of
the topology) automatically results in the removal of another link. This link has
to be chosen from the links forming the cycle which results in the topology when
inserting the new link. We call this path the reconfiguration cycle. Figure 4.1
depicts an example of a reconfiguration cycle, where the link Ba

1Ba
2 (called a

in the following) shall be inserted into the topology. It replaces the link Br
1Br

2

(called r in the following). In this example, the reconfiguration cycle consists of
the brokers Ba

1 , B1, Br
1 , Br

2 , B2, and Ba
2 .

removed

new

Reconfiguration Cycle

Br
1 Br

2

Ba
2

B1 B2

Ba
1

r

a

Figure 4.1: Example of a reconfiguration cycle (the dashed link is inserted)

Since the contents of the routing tables is strongly tied to the broker topology,
adding a new link as in Figure 4.1 may require an update of the routing tables of
other brokers which are not an endpoint of the new link or the link removed for
it. For example, B1 in Figure 4.1 may need to forward notifications for which
only B2 subscribed after the reconfiguration in direction of Ba

1 while the same
notifications would have been forwarded towards Br

1 before.

Link Removal

Analogous to inserting a new link, removing a link requires a new link to be added
in order to keep the topology connected. The cycle that results from adding both
links to the topology is also called reconfiguration cycle as introduced above.
Thus, adding or removing a link finally comes down to the exchange of one link
with another one.
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4.2.2 Elementary Reconfigurations

In the previous section, we identified four different reconfigurations of the broker
topology: link exchange, and inner and outer broker removal and addition. These
reconfigurations can also be carried out by a sequence of only three elementary
reconfigurations . In the following, we describe them and show how an arbitrary
complex reconfiguration can be constructed by a sequence of them.

Adding a Leaf Broker

As described in Section 4.2.1, adding a leaf broker is easy since it implies only
adding one link. Moreover, it is only necessary to make the routing table of the
new leaf broker consistent with its neighbor broker. Thus, adding a leaf broker
is a relatively “cheap” operation. Figure 4.2(a) depicts an example scenario,
where broker Ba is added to broker B using the new link a.

Removing a Leaf Broker

Similar to adding a new leaf broker it is also easy to remove one. On the topology
level this only requires tearing down one link, while on the routing layer, the leaf
broker to be removed must remove all its subscriptions (and advertisements) by
issuing respective unsubscriptions (and unadvertisements).

Figure 4.2(b) shows an example scenario, where broker Br should be re-
moved which implies the removal of the link r which connects Br with its sole
neighbor B.

a
B

Ba

(a)

B

Br

r

(b)

Figure 4.2: Adding and removing a leaf broker

Link Exchange

This type of reconfiguration encompasses the action of replacing a link in the
topology with another one. When removing (adding) a link, it is necessary
to add (remove) another link to keep the topology acyclic and connected. An
example is depicted in Figure 4.3, where link r is replaced with link a. With a,
the topology is connected and acyclic again if r is removed.
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The problem lies in making the routing tables of the brokers consistent with
the new topology structure. Messages, which have been routed over r before the
reconfiguration, have to be routed over a afterwards. We will later see that the
routing tables of all brokers on the reconfiguration cycle may need to be updated.
Thus, exchanging links in the topology may require considerable effort.

removed

new

r

a

B1 B2

Ba
1 Ba

2

Br
2Br

1

Figure 4.3: Exchanging one link with another one

4.2.3 Complex Reconfigurations

Reconfigurations that cannot be implemented with one elementary reconfigu-
ration step are called complex reconfigurations in the following. They include
adding and removing inner brokers as discussed previously but also transforming
the topology from one into another arbitrary spanning tree.

We prove that complex reconfigurations can be carried out by a sequence
of elementary reconfigurations. For example, adding an inner broker B can be
achieved with the following procedure: add B as a leaf broker and execute a
sequence of link exchanges until B has reached its final position, i.e., until the
tree has a topology, where B resides at the intended position. For removing an
inner broker B, we require to execute a set of link exchanges until B is a leaf
broker and the rest of the brokers in the tree are connected as intended. Then,
it is easy to remove B as already described.

Before we prove that complex reconfigurations can be composed by elemen-
tary reconfigurations, we need to introduce the notion of distance between two
spanning trees T1 and T2 for an identical set of nodes which represents the
number of edges contained in T2 but not in T1.

Definition 7 (Distance). Let T1 = (V , E1) and T2 = (V , E2) be spanning trees
of the connected graph G = (V , E). The distance D(T1, T2) of T1 to T2 is given
by the number of edges that are present in E2 but not in E1

D(T1, T2) := |{e|e 6∈ E1 ∧ e ∈ E2}|

Please note that T1 equals T2 if D(T1, T2) = 0 holds and that D is symmetric:
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Lemma 2 (Symmetry). The relation D is symmetric

D(T1, T2) = D(T2, T1)

Proof. Assume that D(T2, T1) > D(T1, T2) without loss of generality. The total
number of edges in T1 and T2 is equal because both are spanning trees of G

|{e|e ∈ E1}| = |{e|e ∈ E2}| = |V| − 1 =: l

The proof is by contradiction.

D(T2, T1) > D(T1, T2)

⇔ |{e|e ∈ E1 ∧ e 6∈ E2}| > |{e|e ∈ E2 ∧ e 6∈ E1}|

⇔ l − |{e|e ∈ E1 ∧ e ∈ E2}| > l − |{e|e ∈ E2 ∧ e ∈ E1}| 	
Theorem 2. For a fully connected graph G = (V , E), a spanning tree T1 =
(V , E1) can be transformed into an arbitrary spanning tree T2 = (V , E2) with
T1 6= T2 by only a sequence of link exchanges.

Proof. In the following, we provide step-by-step instructions to transform T1

into T2. We set

k := D(T1, T2),

E ′1 := {e|e ∈ E1 ∧ e 6∈ E2}, and

E ′2 := {e|e ∈ E2 ∧ e 6∈ E1}.

Replace one edge in E ′1 with one from E ′2. Doing this D(T1, T2) is reduced
by one. Now repeat this k − 1 times, recalculating E ′1 and E ′2 each time. Due to
the symmetry of D it is ensured that there is always an edge in E ′1 which can
be replaced with one from E ′2. This transforms T1 into T2 because D(T1, T2)
equals 0 afterwards, i.e., T1 = T2. Thus, it was possible to transform T1 to T2

using only k link exchanges.

Transforming a topology T1 = (V1, E1) into a topology T2 = (V2, E2), where
V1 6= V2 can accordingly be accomplished by first adding the set {v|v ∈ V2 ∧ v 6∈
V1} of nodes to T1 which are contained in T2 and not in T1 and removing the
set {v|v ∈ V1 ∧ v 6∈ V2} of nodes which are part of V1 and not V2 from T1. The
resulting topology T′

1 can afterwards be transformed into T2 by exchanging links
as explained previously. Inner nodes can be removed from T1 by executing link
exchanges until the broker is a leaf and can be remove accordingly. New brokers
are added as leafs.

We focus on elementary reconfigurations in this chapter. More precisely, the
definition of a reconfiguration we use is as follows.
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Definition 8 (Reconfiguration). A reconfiguration is a change of the broker
overlay topology, comprising leaf broker removals, leaf broker additions, and link
replacements that can be delayed for a finite time. This change must maintain
the spanning tree property of the broker overlay topology.

It is important to note that reconfigurations as defined in Definition 8 do
always maintain the spanning tree property of the broker overlay topology.
Changes in the topology that lead to a partitioned network or a cyclic graph,
for example, are not reconfigurations in our sense and are considered as faults.
The definition only considers three different reconfiguration types.

4.3 Challenges

The loose coupling between publishers and subscribers in a publish/subscribe
system suits dynamic changes in the system very well: new publishers may join
while old publishers leave without any impact on the subscriber side. The same
holds vice versa but in the former case, advertisements have to be sent out or
cancelled if used, while in the latter case, (un)subscriptions have to be prop-
agated. This is, however, transparent to the clients because this management
task is handled by the notification service and, thus, neither the subscribers nor
the publishers are normally aware of new or leaving participants in the system.
From the clients’ perspective this transparency should also hold for reconfigu-
rations inside the notification service, i.e., the clients in general do not expect
disturbances like message loss, duplication, or reordering due to reconfigurations
of the notification service. This, however, is not easy to accomplish as we show
in the following.

We build on the common architecture for publish/subscribe systems which
relies on an acyclic broker overlay topology. From the programming perspective,
clients (subscribers and publishers) are applications while brokers are started lo-
cally on the computer which hosts the clients or may run standalone. In the for-
mer case, a leaving node may not only comprise leaving publishers or subscribers
but also a leaving broker. In an acyclic topology, this may lead to a partitioned
network if the broker is not a leaf in the broker topology. The same is true if
a standalone broker without local clients goes off-line (e.g., for maintenance).
In this section, we explore the problems that may occur during reconfiguration
and discuss the integration of reconfigurations into the publish/subscribe system
model.

4.3.1 Issues During Reconfiguration

For the reconfiguration types discussed so far, we concentrated on keeping the
topology acyclic and the state of the routing tables consistent with the topol-
ogy. The rationale behind this is that correct routing table configurations will
route messages correctly and, thus, the correctness properties from Definition 5
will hold after a reconfiguration. Since we assume a fault-free environment, we
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assume that this also holds before the reconfiguration. However, this is not
necessarily true for the time period between the start and the end of a reconfig-
uration.

We already discussed that reconfigurations of the topology of the notifica-
tion service at runtime are expected to be executed without any service inter-
ruption. The service guarantees that should also hold during reconfigurations
center around the requirement that reconfigurations have to be transparent to
the clients. In the following, we discuss two important guarantees that are often
required during reconfiguration: message completeness and message ordering.

Message Completeness

When links are replaced, new routing table entries have to be installed while
superfluous routing entries have to be removed in order to keep the routing
tables of the brokers on the reconfiguration cycle consistent with the broker
network topology. At this point, timing is crucial since new routing table entries
are necessary for routing messages over the new link and removing superfluous
routing table entries prevents messages from being duplicated and from being
routed towards directions, where no subscribers reside. When notifications are
forwarded in this time period, they may get lost or be duplicated due to race
conditions.

Message completeness is a very important guarantee which inherently relates
to the basic functionality of correct publish/subscribe systems (cf. Definition 5).
We consider two types of messages: control messages and notifications. Con-
trol messages are used by the routing algorithms and can comprise subscriptions,
unsubscriptions, advertisements, and unadvertisements. Please note that we nei-
ther consider faults, nor do we consider the general feature of message-complete
publish/subscribe systems which goes beyond the scope of this thesis [153].

In the context of reconfigurations, where a broker overlay network is trans-
formed from topology T1 to topology T2, we define message loss as follows.

Definition 9 (Message Loss During Reconfiguration). When a broker overlay
network is transformed by a reconfiguration from topology T1 to topology T2 and
provided that no fault occurs, a message m published is called lost if one of the
following statements holds:

• (m is a notification) A client c does not receive m, while c would have re-
ceived m in T1 provided that the topology would not have been reconfigured.
To prevent race conditions due to unsubscriptions or unadvertisements, we
require that c does not issue an unsubscription concerning m for a long
enough time period.

• (m is a control message) The configuration of the brokers’ routing tables
(advertisement tables) in T2 prevents satisfying the liveness condition in
Definition 5 during or after the reconfiguration because missing routing
(advertisement) table entries lead to lost notifications.
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It is important to note that due to the asynchronous nature of publish/sub-
scribe communication, (un)subscriptions and (un)advertisements become only
gradually active. Thus, we consider in Definition 9 for notifications only those
cases, where subscriptions or advertisements are not changing for a long enough
time period while reconfiguring the topology. Otherwise it may happen, for
example, that due to the new topology it may take longer to forward a notifica-
tion from a publisher-hosting broker Bp in T2 to a subscriber-hosting broker Bs

than in T1: if Bs issues an unsubscription in T2 short before the notification
has reached Bs, then the notification may have been received in T1 but is not
received in T2 due to differing delays. In this case, the notification would be lost
according to Definition 9 which is certainly counter-intuitive.

Regarding reconfigurations, we focus on the prevention of message loss in
the following. There are different reasons why messages might get lost and the
consequences are manifold. We discuss them in the following.

Notification Loss. When performing a reconfiguration, a notification may get
lost in two situations: (i) the notification is sent over a link which is torn down
in this moment, or (ii) the notification arrives at an intermediate broker which
drops it since the routing table entries needed for forwarding this notification
correctly have not been installed yet. The first case can only be prevented by
introducing a synchronization mechanism such that a link is not torn down while
a notification is sent over it. This does not pose a problem if we assume that
reconfigurations can be delayed. The second case represents a race condition
which must be prevented by appropriate measures. We give a more detailed
description of race conditions below.

The impact of notification loss is depending on the application but should
be prevented in general since it violates the liveness property of a correct pub-
lish/subscribe system.

Control Message Loss. Similar to notifications, (un)subscriptions or (un)ad-
vertisements may be lost due to dropped links, out-dated routing tables, or race
conditions. However, while lost notifications represent a transient error, a lost
control message may lead to a permanent error and is, thus, more severe. If
a client, for example, issues a subscription which is lost during dissemination,
it may happen that the client never receives every publication produced that
matches this subscription, because the subscription did not reach a respective
publisher. This violates the liveness property of a correct publish/subscribe
system.

Race Conditions. During reconfiguration, the most difficult part is to avoid
race conditions. We, thus, discuss this issue in greater detail in the follow-
ing. The routing tables in a publish/subscribe system are built according to
the broker overlay topology. Hence, they have to be adapted when the topology
changes. A simple example is depicted in Figure 4.4, where link r is replaced



4.3. CHALLENGES 81

by link a. The little arrows depict the routing table entries for one filter with
one subscriber connected to B2. In this example, it becomes obvious that a
reconfiguration affects the routing tables of brokers Br

1 , B1, and Ba
1 and that a

notification forwarded by B1 to Br
1 in Figure 4.4(a) may be dropped at Br

1 if the
topology is reconfigured to the one depicted in Figure 4.4(b) meanwhile (this
is due to the fact that routing algorithms normally do not send a notification
they received back to the sender). The same applies to subscriptions and ad-
vertisements. Similarly, notifications may be duplicated if they are sent over a
and r. It is, hence, reasonable to coordinate the forwarding of messages with
the reconfiguration of the topology and the routing tables.

Br
2

Ba
2

B1

Ba
1

n1

Br
1

r

B2

(a)

Ba
2

B1

Ba
1

Br
1n1

Br
2

a

B2

(b)

Figure 4.4: Example for message completeness violation

Message Ordering

Besides message loss, a reordering of notifications may happen due to recon-
figurations. Let us assume the same scenario as in Figure 4.4, where link r
is replaced by link a and that before the reconfiguration starts, Ba

1 publishes
notification n1, where B2 has subscribed for a matching filter. After the recon-
figuration has been carried out, Ba

1 publishes n2, which then reaches B2 over
the new link as depicted in Figure 4.5. This results in a much shorter path with
respect to broker hops. It may, thus, happen that n2 arrives before n1 at B2.
In this case, the order in which Ba

1 published the notifications is different from
the order in which the notifications arrived at B2. This could not happen in a
static topology, because the FIFO property of the communication links between
brokers guarantees a FIFO-publisher ordering of notifications received by the
subscribers.
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Figure 4.5: Example for message ordering violation

The reason why keeping a message ordering in face of reconfigurations is
difficult although we require FIFO links between the brokers, is that messages
might be forwarded over different paths to the same broker because of a recon-
figuration. Due to varying link delays on the way messages may then overtake
each other on different routes.

4.3.2 Integration

It is an important question how to integrate a reconfiguration mechanism into a
publish/subscribe system. The basic interface operations of a publish/subscribe
system are the operations pub(), sub(), and unsub() (and adv() and unadv(), if
supported). For an easy integration it is sensible to rely only on these opera-
tions. Doing this, we are able to benefit from the abstractions regarding the
routing algorithm used provided by the interface operations when incorporating
reconfigurations with different routing algorithms.

However, from the issues explained previously it is obvious that implementing
reconfigurations only with theses operations will not suffice since notifications
may need to be delayed, queued, or replayed to prevent message loss and guar-
antee a required ordering. Thus, we cannot simply layer the reconfiguration
algorithm on top of the content-based routing layer. Therefore, we install addi-
tional coordination mechanisms inside the publish/subscribe system which are
discussed in the following section.

4.3.3 Guarantees

We outlined the main challenges on which we focus in this section. As already
stated, we do not handle reconfigurations due to faults but concentrate on re-
configurations to consistently change the broker overlay network, for example,
by an administrative order (Definition 8).

In the previous section, we already described the most important guarantees
when reconfiguring the topology of a publish/subscribe system at runtime. The
example in Figure 4.5 already illustrated that a reconfiguration can mess up the
message ordering. In the following, we present the guarantees which we want
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to support (prevention of message loss, FIFO-publisher ordering, and causal
ordering) and others which may be required but are not part of our research.

Prevention of Message Loss

This basic requirement of preventing message loss has already been discussed
in length in Section 4.3.1. However, due to timing issues, this guarantee re-
mains a little bit vague in an asynchronous publish/subscribe system although
its meaning is easy to understand intuitively.

Ordering

Many applications that can be realized using a publish/subscribe communica-
tion infrastructure implicitly rely on ordering guarantees. In the following, we
give concise descriptions of different options which have also been identified in
research on group communication. It is important to note that ordering guar-
antees always come at a cost since they limit concurrency in the system.

Total Ordering. For some classes of applications it is a basic requirement that
all subscribers receive every notification in the same order. In combination with
message completeness, total ordering resembles the “atomic broadcast primitive”
introduced by Birman and Joseph [23], where total ordering is combined with
the requirement that either all subscribers receive the message or none.

Total ordering can be used, for example, to keep replicated copies of
databases consistent. In this case, all commands that alter the contents of
the database are sent to all copies in parallel. In this scenario, it is important
that all database copies receive the database commands in the same order. Oth-
erwise, the contents of different copies may diverge, for example, if two update
commands for the same data item are received in different ordering at two copies.

It is important to note that total ordering does not require any particular
order at individual receivers, i.e., total ordering can be combined with the order-
ings described below. In a publish/subscribe system, it is very difficult to realize
total ordering because of the loose coupling and the anonymous communication.

FIFO-Publisher Ordering. Imagine a set of actuators which can open or
close valves according to a command they receive encapsulated in a notification
from one publisher: if the valve is open and the commands “open” and “close”
are received in this order, the state of the valves will be closed afterwards.
However, if the ordering is mixed up, the final state of some valves may be “open”
with possibly serious consequences. In this case, FIFO-publisher ordering is
needed. However, it is not necessary, that all subscribers receive all notifications
in the same order in this case, because notifications from another publisher that
trigger other functionalities at the actuators can be arbitrarily interleaved with
the valve-commands depending on the application.
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Causal Ordering. Another ordering requirement is causal ordering. Here,
notifications arrive in FIFO-publisher ordering but cannot be arbitrarily inter-
leaved with notifications received from other publishers. Instead, it is guaranteed
that a message m2 which is triggered by another message m1 arrives after m1 at
every node—even if the publishers of m1 and m2 are different. Causal ordering
has been introduced together with the happened-before relation by Lamport [103]
and was later applied to multicast communication by Birman and Joseph as part
of the causal broadcast primitive [23].

Bounded Delay

Reconfiguring of the broker topology, especially in combination with ordering
guarantees, may incur an overhead which can result in delayed message delivery.
In real-time systems, for example, it might be required that the maximum delay
is bounded. The same applies to the time it takes to implement the reconfigu-
ration. Some applications may require an upper bound for the time needed for
asynchronous communication and possible coordination.

The time it takes for a reconfiguration to be implemented correlates with
link delays and processing capabilities of the brokers involved as well as with
the type of the reconfiguration. We do not consider this guarantee and leave it
open for future work.

4.4 Reconfiguring Broker Overlay Topologies

In this section, we present an algorithm for reconfiguring regular acyclic broker
topologies of publish/subscribe systems, while preventing message loss and guar-
anteeing ordering in face of reconfigurations. Thereby, we focus on elementary
reconfigurations and the difficult case of exchanging links in particular, because
adding and removing leaf brokers is easy as we have seen before.

The algorithm builds on the important observation which has first been pub-
lished by Cugola et al. in [50]: when replacing a link, only those brokers’ routing
tables are affected that are part of the reconfiguration cycle. The rationale be-
hind this insight is that exchanging a link does not inject any new subscription or
advertisement into the system. Thus, the set of notifications or (un)subscriptions
forwarded to or from the brokers on the reconfiguration cycle does not change.
This can easily be seen by “contracting” all the brokers on the reconfiguration
cycle to one logical broker. Doing this, the set of notifications forwarded to or
by this logical broker must not change due to reconfigurations inside this logical
broker. Our approach is, thus, to limit all reconfiguration activities to those
brokers on the reconfiguration cycle. This way, we are able to minimize the
overhead that is introduced by reconfigurations. The basic idea is to remove
all subscriptions from the routing tables of the brokers on the reconfiguration
cycle that are needed to route notifications over the old link and instead install
routing entries for the new link.
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In the following discussion of related work, we start by explaining the most
basic related approaches which rely only on standard publish/subscribe opera-
tions and do not need any coordination efforts. Based on this, we motivate that
coordination is an important issue during reconfiguration and discuss related
approaches which try to overcome the problems inherent to the uncoordinated
approaches by additional coordination. Then, we present our approach which
we call the advanced coordinated reconfiguration algorithm. We close with an
evaluation of the our reconfiguration algorithm based on a simulation study.

4.4.1 Related Work

We begin with the simplest approach to reconfiguration which employs no coordi-
nation between brokers. Then, we continue with more sophisticated approaches
that introduce coordination mechanisms and remove several shortcomings.

Uncoordinated Approaches

The easiest way to activate a new link a and deactivate the old link r in the rout-
ing configuration is to issue unsubscriptions regarding r and issuing respective
subscriptions regarding a. We call approaches that follow this recipe uncoordi-
nated if the brokers on r do not coordinate their actions with the brokers at a.
They are commonly used in practice and are in general easy to integrate into
publish/subscribe systems since they can be layered on top of the routing layer
requiring no further modifications on the lower layers.

Strawman Approach. The first approach to reconfiguring an acyclic pub-
lish/subscribe broker overlay topology has been published by Yu et al. [168]. It
follows a straightforward approach: when link r is replaced by another link a,
the two brokers Br

1 and Br
2 connected by r act as if they received unsubscrip-

tions for all subscriptions they received in the past from the respective other side
of r. Analogous, the two brokers Ba

1 and Ba
2 connected by a forward all the sub-

scriptions they received in the past from their neighbor brokers to the respective
broker on the other side of a, where they are handled as regular subscriptions
and disseminated accordingly. As a result, notifications which have been routed
over r will be routed over a afterwards. In accordance with the literature, we
call this approach the strawman approach in the following.

The two most important advantages of the strawman approach are that
(i) reconfigurations can easily be carried out in parallel and that (ii) they can be
implemented by simply using the standard publish/subscribe operations sub()
and unsub(). However, it has also three serious drawbacks which consist of (i) a
potentially large message overhead, (ii) possible message loss, and (iii) possible
message reordering. The potentially large overhead results from unsubscriptions
issued by brokers connected to r that leave the reconfiguration cycle and are
later reestablished by subscriptions issued by the brokers connected to a (i.e.,
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unsubscriptions, and respective subscriptions, may leave the reconfiguration cy-
cle). Messages may be lost due to race conditions when the brokers connected
to r and a act in an uncoordinated way as described in Section 4.3.1.

We will later use the strawman approach as a baseline for the evaluation
of our algorithm because it is a well-known representative of the uncoordinated
approach and often used for comparison in literature.

Deferred Unsubscriptions. To reduce the number of unsubscriptions that
can potentially leave the reconfiguration cycle, the deferred unsubscrip-

tions algorithm has been proposed which slightly improves the strawman ap-
proach [64]. The contribution is simply adding a delay between the time the
brokers on a start issuing their subscriptions and the time the brokers connected
to r issue their unsubscriptions. In the ideal case, this delay should correspond
to the time that is needed to set up the new link and propagate the subscriptions
of the brokers connected to it. However, this approach still bears a significant
disadvantage. If a bigger value is chosen for the timeout, the probability of mes-
sage loss and unsubscriptions leaving the reconfiguration cycle decreases while
the probability of duplicates increases simultaneously, since notifications may be
routed over r and a. The opposite is true for smaller values for the timeout.
It is also in general not possible to avoid unnecessary overhead, message loss,
or message duplication this way—especially in the face of nondeterministically
varying communication and processing delays.

Coordinated Approaches

From the problems of the uncoordinated approaches described above it becomes
apparent that coordination between the brokers on the reconfiguration cycle
can prevent message loss and limit the overhead. In the following, we describe
related approaches which invest in coordination to different degrees in order to
minimize overhead, message loss, and duplicates.

Coordinated Unsubscriptions. The authors of [52] propose the coordi-

nated unsubscriptions algorithm which uses dedicated flush messages in
addition to a timeout as above in order to ensure that the endpoints of a have
issued their subscriptions before the endpoints of r start sending out their respec-
tive unsubscriptions. By doing this, it is ensured for many routing algorithms
that no unsubscriptions leave the reconfiguration cycle. The flush message is
sent by the brokers on a right after they issued their subscriptions and marks
the end of subscription forwarding. When brokers at r receive this message,
they can start issuing their unsubscriptions. The flush message is meant to be
flooded through the whole tree which may result in a significant overhead.

The scenario the authors target consists of highly dynamic environments,
where links are removed spontaneously. Here, they achieve much better results
than the strawman solution since unsubscriptions normally do not leave the
reconfiguration cycle [131]. However, this scenario is different from the scenario
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of reconfigurations we target, where links are exchanged in a controlled manner.
If r is removed instantaneously, this may result in message loss with coordinated
unsubscriptions, while waiting with tearing down r until both endpoints of a
have issued their subscriptions may lead to duplicates (as discussed above for
the deferred unsubscriptions algorithm). Another issue not discussed by
the authors but important in many scenarios is that of notification ordering.

Informed Link Activation. The informed link activation algorithm
which improves the deferred unsubscriptions algorithm above is presented
by Frey in [64]. The aim of the author is to further reduce the number of
subscriptions propagated during reconfiguration. Therefore, the endpoints of r
determine the set of subscriptions for which only brokers are subscribed that
belong to the tree on the “other side” of r. These subscriptions are then for-
warded to the brokers connected to the respective side of a which accordingly
handle them as subscriptions they received from a neighbor broker on “their
side” of a. Similarly, the brokers on r only unsubscribe for subscriptions from
this set. Thereby, the number of (un)subscriptions issued during reconfiguration
is reduced because new unsubscriptions forwarded on the reconfiguration cycle
that have not reached r at the beginning of the reconfiguration would other-
wise lead to subscriptions forwarded over a which would later be removed when
the unsubscriptions issued reach the brokers at a. For the actual coordination of
(un)subscriptions, the author proposes the use of one of the algorithms discussed
above.

Although this algorithm reduces the overhead during reconfiguration it also
does not prevent message loss or give any ordering guarantees because it still
relies on the algorithms discussed above for coordination purposes.

Reconfiguration Path. A more sophisticated approach is taken in [50], where
the reconfiguration path algorithm is proposed which uses additional mes-
sages, similar to the informed link activation algorithm above, to limit the over-
head of reconfigurations even more. It invests more effort into keeping all recon-
figuration related actions limited to the reconfiguration cycle (or reconfiguration
path how the authors call it). Therefore, they introduce dedicated messages
which do not leave the reconfiguration path such that the (un)subscriptions
that are necessary to adapt the routing tables of the brokers on the reconfigura-
tion path do never leave it. This way, it is possible to limit the (un)subscriptions
sent on the cost of a special treatment of concurrent (un)subscriptions which are
forwarded as part of the normal operation of the publish/subscribe system. The
advantage gained is that no messages are flooded anymore through the whole
broker network. Instead, the brokers at r send a reconfiguration message over
the reconfiguration cycle which includes the subscriptions to be removed for r
and the subscriptions to be added for a regarding their side of the reconfigu-
ration cycle. When the reconfiguration message has reached the broker on the
other side of r then the routing tables on the reconfiguration cycle are prepared
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for adding a from the perspective of the original issuer of the reconfiguration
message.

Although very sophisticated, this approach also lacks the requirement of
keeping notifications ordered. Additionally, notifications still might get lost dur-
ing the reconfiguration process when the reconfiguration message is being for-
warded. This is not a serious disadvantage in some scenarios, where notification
loss cannot be avoided at all because links may vanish unexpectedly. For our
purpose, where reconfigurations should not disrupt the system service, however,
this algorithm is not applicable. Another disadvantage of the reconfiguration

path algorithm is that parallel reconfigurations are not supported if the recon-
figuration cycles overlap because brokers can only attend one reconfiguration at
a time.

Summary

From the approaches discussed above it becomes evident that coordination can
be of substantial help to be able to provide the guarantees identified in Sec-
tion 4.3.3. All the algorithms presented so far were not able to prevent message
loss which is an important requirement for non-disruptive reconfigurations of
publish/subscribe broker overlay topologies.

It also became clear that message ordering guarantees can be achieved by
delaying them appropriately. We, thus, implement a reconfiguration by intro-
ducing additional queues and messages which coordinate the brokers involved in
the reconfiguration process.

4.4.2 Advanced Coordinated Reconfiguration

In this section, we describe our algorithm for exchanging links to seamlessly
reconfigure the broker overlay topology of a publish/subscribe system. We start
with introducing a coloring mechanism which is applied to prevent message loss
and keep message orderings. Then, we formulate rules which have to be respected
to prevent message loss and guarantee message ordering. With those rules it is
easier to follow the explanations of the algorithm.

In the following, we refer to the labeling introduced in Figure 4.3 on page 76.
We call the link to be replaced r, the new link a, and the brokers connected
to them Br

1/2 and Ba
1/2, respectively. Furthermore, we illustrate the algorithms

where sensible only for the left side of the reconfiguration cycle, i.e., the side to
which Br

1 and Ba
1 belong, as actions for the right side are analogous.

The basic idea of the algorithm is that all brokers are colored black initially
and that the brokers connected to r send the subscriptions regarding the other
side of the reconfiguration cycle out-of-band to the brokers on the respective
side of a. Those brokers handle them as if they received them from the other
side of a and forward them accordingly. Then, the brokers at a send a special
message in direction of the brokers at r which colors the brokers on the path
gray and on which receipt the brokers at r issue unsubscriptions regarding r. To
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be able to provide ordering guarantees, messages may need to be queued at the
brokers connected to a. This affects notifications and (un)subscriptions that are
forwarded during the reconfiguration process.

The algorithm requires simple, identity-based, or covering-based routing on
the notification routing layer. The reason for this is that we assume that it
suffices to send the routing table entries of the broker on one side of r to the
broker on the same side of a in order to be able to reach a consistent state of the
routing tables of the brokers on the reconfiguration cycle. This assumption only
holds if the routing entries in the routing tables of the brokers at a are the same
after the subscriptions forwarding is completed as if the (un)subscriptions in the
past had been issued in the new topology which contains a but not r. This is true
for the aforementioned routing algorithms but does not necessarily hold for every
routing algorithm. Furthermore, we initially do not support advertisements but
discuss how they can be incorporated later.

Coloring

To ease reasoning, we adopt a coloring mechanism in the following. When start-
ing a reconfiguration, every broker that is affected by it (i.e., every broker on
the reconfiguration cycle) is colored black. A broker that has received all the
subscriptions that enable him to route notifications to the other side of the new
link turns its color to gray.

As discussed above, we take the following approach: Br
1/2 determine all the

subscriptions that are needed to route notifications over r and send them to
their counterparts at a on the same side of the reconfiguration cycle. Ba

1/2 add
the subscriptions to their routing tables such that all notifications routed over r
can now be routed over a. They disseminate the subscriptions received on their
side of the reconfiguration cycle just like they received the subscriptions from
the other side of a. Doing this, the brokers on the path from Ba

1 (Ba
2 ) to Br

1

(Br
2) gradually turn their color from black to gray since they—and every other

broker on the path to a—are now capable of forwarding notifications over a.

Every notification that enters the reconfiguration cycle inherits the color of
the first broker it encounters on the reconfiguration cycle. The same applies to
(un)subscriptions. This information is later used to decide whether a message
can be forwarded or must be delayed.

Guarantees

With the coloring mechanism and the basic forwarding strategy, we can now
formulate rules which must hold to not break the guarantees we want to provide.
They are derived from the guarantees identified in Section 4.3.3 on page 82.

Duplicates and Message Completeness. To be able to guarantee the pre-
vention of message duplicates or message loss, the following rules must hold.
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Rule 1 (Notification Duplicates). During the reconfiguration process there are
two links, r and a, which connect the left and the right subtree. To avoid dupli-
cates, notifications must either be sent over r or over a.

Each notification has one of the two colors according to the coloring mech-
anism because every notification inherits the color of the first broker on the
reconfiguration cycle it encounters. We implement Rule 1 by routing black no-
tifications only over r and gray messages only over a.

Rule 2 (Notification Loss). The old link r must not be removed if there is still
a notification on the reconfiguration cycle that will be routed over it.

Again, we can take advantage of the coloring mechanism here and implement
Rule 2 by not removing r until all brokers on the reconfiguration cycle have
turned gray. The following lemmas are needed to show that this is sufficient to
satisfy Rule 2.

Lemma 3. Removing r before all brokers have turned gray may lead to lost
notifications.

Proof. If the old link r would be removed before all brokers have turned gray,
this may lead to the following situation: a notification arrives at a black broker
and, thus, turns black. Accordingly, the message cannot be forwarded over a
because of its color. Since r has already been removed, it cannot be forwarded
over r, and because the message is black, it cannot be forwarded over a. Thus,
the message is lost.

Lemma 4. When all brokers on the reconfiguration cycle have turned their color
to gray, there are no more black messages on the reconfiguration cycle that need
to be routed over r.

Proof. When all brokers have turned gray, every new notification that enters the
reconfiguration cycle will turn gray, too. The order in which the brokers turn
gray starts from the brokers connected to a and ends at the brokers connected
to r. Since the recoloring of the brokers is stimulated by a message that is for-
warded from Ba

1/2 to Br
1/2 and we require FIFO channels between the brokers,

every black message that is forwarded on the reconfiguration cycle after all bro-
kers have turned gray cannot stem from this side of the reconfiguration cycle
and, thus, does not need to be forwarded over r anymore because it has already
passed it then.

For (un)subscriptions, the same rules apply that we discussed above for no-
tifications. Due to the coloring mechanism that applies to notifications as well
as (un)subscriptions, the implementation of Rule 2 is analogous to the imple-
mentation of Rule 3 below.

Rule 3 ((Un)subscription Loss). To not lose any (un)subscription, the old link r
must not be removed if there is still a (un)subscription that has to be routed
over r.
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The same holds for (un)subscription duplicates.

Rule 4 ((Un)subscription Duplicates). To avoid (un)subscription duplicates,
they must only be routed either over r or over a.

In order to reduce message overhead, we implement this rule by simply for-
warding all (un)subscriptions that are received over r to the respective broker
at a. A broker connected to a that receives such a (un)subscription handles it
as if it had received it over a. This mechanism will be discussed in greater detail
later.

(Un)subscription Ordering. After handling message completeness and du-
plicates, we now turn to message ordering. We start with the ordering of
(un)subscriptions, which has to be taken care of separately: if a broker issues
a subscription followed by an unsubscription it is necessary that both messages
arrive in the same order they had been issued. Thus, every broker must receive
subscription/unsubscription pairs issued by the same broker in exactly the same
order they have been published. This can be generalized to the requirement that
all (un)subscriptions must be received in FIFO-producer ordering.

Ensuring FIFO-producer ordering for (un)subscriptions implies that they
may need to be delayed. An example for a scenario, where this is necessary is
illustrated in Figure 4.6 (for ease of understanding, it shows only the messages
forwarded on the reconfiguration cycle). Here, broker B3 issues a subscription s
which enters the reconfiguration cycle at broker B1 which is colored black at
this time. Shortly after B1 forwarded s from Broker B3 it turns gray such that
the following unsubscription ¬s issued by B3 turns gray when it is forwarded
by B1. Due to the different colors, s is forwarded over r to reach the other
side of the reconfiguration cycle, while ¬s is forwarded over a. Longer delays
on the path B1Br

1B
r
2B2Ba

2 than on the path B1Ba
1Ba

2 may have the effect that
Ba

2 receives ¬s before s and, hence, has a stale routing entry for s afterwards.
Thus, we deduce Rule 5.
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Figure 4.6: Example scenario, where Ba
2 may not receive (un)subscriptions in

FIFO-producer ordering

Rule 5 ((Un)subscription FIFO-Producer Ordering). (Un)subscriptions must
be received in FIFO-producer ordering by every broker in the system. To avoid
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that (un)subscriptions overtake each other, it is necessary to delay gray (un)sub-
scriptions which stem from this side of the reconfiguration cycle from being sent
over a until it is assured that all black (un)subscription that stem from this side
left the other side of the reconfiguration cycle.

We introduce queues to be able to delay (un)subscriptions in order to imple-
ment Rule 5. Thereby, we are able to maintain their FIFO-producer ordering.

To minimize the message complexity of (un)subscription forwarding during
reconfiguration, we propose the following optimization. Assume that broker B3

in Figure 4.7(a) issues a subscription s when the reconfiguration has already
started. As depicted, it arrives at B1 and inherits the color black. Accordingly it
is forwarded to Br

1 and Ba
1 . Since its color is black, it will also be forwarded over r

to Br
2 but not over a. This subscription will later be removed by Br

2 after being
installed by Ba

1 . We, thus, change the regular processing of (un)subscription
forwarding at this point in order to reduce the message overhead. When s
arrives at Br

2 it is not forwarded on the right side but instead colored gray and
sent to Ba

2 , where it is handled as if Ba
2 had received it from Ba

1 . We do this,
because it is not sensible to establish the routing entries on the right side of the
reconfiguration cycle for s starting from Br

2 when r will be removed and s has
to be migrated to Ba

2 later anyway.
When B3 issues a respective unsubscription shortly after s, but still long

enough such that B1 turned its color into gray meanwhile, the situation depicted
in Figure 4.7(b) appears. Similar to s, the unsubscription ¬s is routed over B1

to Br
1 and Ba

1 . Since its color is gray, it is not routed over r but over a instead. In
this situation, it is important that s is processed before ¬s at Ba

2 . Otherwise it
could happen that ¬s is disseminated before s in the right part of the tree which
would lead to a situation, where the subscription s exists in the routing tables of
brokers on the right side but there is no subscriber on the left side. Therefore,
we add a queue to Ba

2 to delay gray (un)subscriptions (including ¬s) which have
not been relayed from a broker on the same side of the reconfiguration cycle
until all black (un)subscriptions from the other side have left this side of the
reconfiguration cycle.

The queue for (un)subscriptions is called Qsub in Figure 4.7. When Ba
2 re-

ceives a gray (un)subscription from Br
2 it disseminates it like an (un)subscription

it received from Ba
1 . If the (un)subscription is gray and received over a, it is put

into Qsub. (Un)subscriptions in Qsub are handled during the reconfiguration,
when it is guaranteed that no black (un)subscriptions will arrive at Ba

2 which
stem from the other side of the reconfiguration cycle, since this would disturb
the required FIFO-producer ordering.

Notification Ordering. We can use the same mechanism introduced to im-
plement (un)subscription ordering in Rule 5 to guarantee FIFO-publisher or-
dering for notifications because the situation is similar. Figure 4.8 depicts a
situation, where B4 subscribed to a filter that matches notifications published
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Figure 4.7: Realizing FIFO-producer ordering of (un)subscriptions using a queue

by B3 (the small arrows represent the respective routing table entries). Now
assume that B3 publishes n1 which enters the reconfiguration cycle at B1 when
this broker is still black (Figure 4.8(a)). Accordingly, n1 is colored black and
routed over r. If B3 now publishes n2 and n2 enters the reconfiguration cycle
right after B1 turned gray, it is colored gray and not routed over r. Instead, it
is routed over a, where it is queued analogous to gray (un)subscriptions at Ba

2

in the queue Qnot. This prevents the case that n2 arrives at B4 before n1 (Fig-
ure 4.8(b)). The problem is analogous to that of (un)subscription FIFO-producer
ordering with the exception that n1 is forwarded regularly by Br

2 .
For queueing notifications and (un)subscriptions, we use separate queues

since (un)subscriptions must always be delivered in FIFO-producer ordering
while notifications may be delivered without any ordering guarantees or with
a separate ordering, depending on the application requirements.

The following rule applies to notification FIFO-publisher ordering analogous
to Rule 5.

Rule 6 (Notification Queueing for FIFO-Publisher Ordering). Gray notifica-
tions that are sent over a must be queued and delayed at a broker Ba

1/2 until it
is guaranteed that all black notifications which stem from the other side of the
reconfiguration cycle have left the half of the reconfiguration cycle Ba

1/2 belongs
to.

The reasoning is similar to that of Rule 5: if there is still a black notification
on the right side of the reconfiguration cycle which stems from the left side of
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Figure 4.8: Realizing FIFO-publisher ordering of notifications with a queue

the reconfiguration cycle, it is possible that a dequeued notification reaches a
broker on Ba

2 ’s side of the broker tree before the black notification arrives there.
If both notifications stem from the same publisher, the FIFO-publisher ordering
is disturbed in this case.

In Section 4.3.3, we identified causal ordering as another important order-
ing besides FIFO-publisher ordering. It requires that a notification n2 which
depends causally on another notification n0 must be received after n0 at every
subscriber. This problem is particularly difficult during reconfiguration if n0 is
published on a broker which belongs to the subtree on one side of the reconfig-
uration cycle while n2 is published on the subtree which belongs to the other
side.

For example, assume that B4 in Figure 4.8(a) publishes n0 (which is colored
black accordingly) for which B3 and Ba

2 are subscribed while B3 publishes n1.
Now, assume that B3 publishes n2 in reaction to receiving n0 (as depicted in
Figure 4.8(b)) and that B1 turned gray, such that n2 is colored gray, too. Fur-
thermore assume, that Ba

2 is also subscribed for a filter matching n2. Then,
it is required that a subscriber connected to Ba

2 which is subscribed for filters
matching all three notifications receives n2 after n0 and n1.

In the example, it is necessary that the delivery of n2 must be delayed until n1

and n0 have reached Ba
2 . Since it could take a long time to forward n1 on

the reconfiguration cycle, we can derive the generalized rule that n2 in Qnot

at Ba
1/2 must be delayed until there is no more black notification on the whole
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reconfiguration cycle. The following rule summarizes this.

Rule 7 (Notification Queueing for Causal Ordering). Gray notifications that
are queued in Qnot at broker Ba

1/2 have to be delayed until it is guaranteed that
no more black notifications will be routed over the reconfiguration cycle until the
end of the reconfiguration.

It is important to note that queuing notifications in Qnot is only necessary
if ordering guarantees are required. Otherwise, notifications arriving at Ba

2 can
be forwarded instantaneously.

Integration into the Publish/Subscribe Model

The advanced coordinated reconfiguration algorithm relies on queues and ex-
tra messages which are needed by the brokers to ensure certain guarantees,
for example, that all black messages have left the reconfiguration cycle in the
case of causal ordering. Thus, it is necessary to include these additions into
the publish/subscribe system model. Figure 4.9 depicts the model of a bro-
ker B together with the queues Qnot and Qsub needed for the reconfiguration (as
mentioned above, Qnot can be omitted if a certain notification ordering is not
required). When B receives a message it enqueues it in the respective queue if
necessary. Therefore, the receiveMsg() procedure has to be modified such that in-
coming messages can be enqueued before they are processed by the handleMsg()
procedure and are colored appropriately. The procedure sendMsg() must also
be altered such that the color attribute is resetted when a message leaves the
reconfiguration cycle and such that messages are only sent if they are colored
appropriately.

Broker B

Input

Output

handleMsg()

receiveMsg()

sendMsg()

added for
reconfiguration

QsubQnot

Figure 4.9: Integration of queues needed for the advanced coordinated reconfig-
uration algorithm into the publish/subscribe broker model

In total, we introduce five new message types for the integration of the new
reconfiguration algorithm into the publish/subscribe model:



96 CHAPTER 4. RECONFIGURING BROKER OVERLAY NETWORKS

Lock: With the lock message, the initiator of the reconfiguration process “locks”
all brokers on the reconfiguration cycle such that they cannot be part of
another reconfiguration. This is done to avoid disturbances due to parallel
overlapping reconfigurations which are not supported by the algorithm and
may lead to undesired side effects.

Begin: The initiator of the reconfiguration process sends a begin message to
the brokers Br

1/2 connected to r. Subsequently, Br
1/2 determine the set of

subscriptions Psub they received from the broker on the other side of r and
send them out-of-band to the respective broker Ba

1/2 on the same side of the
reconfiguration cycle connected to a. Ba

1/2 then handle these subscriptions
as if they received them over a and disseminate them accordingly.

Separator: The two initial separator messages are sent by Br
1/2 to Ba

1/2 follow-
ing the subscriptions regarding r. The receiving brokers forward it along
the path to Ba

1/2 on the reconfiguration cycle when they have established
all routing entries for a that they received previously. Forwarding the sep-
arator message implies that a broker has turned its color to gray which also
means that it will not inject any black message into the reconfiguration
cycle anymore because every message that reaches the reconfiguration cy-
cle through this broker will be colored gray. When the separator message
finally arrives at the brokers on the respective side of r, Br

1/2 can be sure
that all brokers on their side have turned gray.
In order to inform all brokers on the reconfiguration cycle about this, they
forward the separator message over r towards Br

2/1 on the other side of the
reconfiguration cycle and back to Ba

1/2 on their respective side of the re-
configuration cycle after they issued unsubscriptions regarding r. If Br

1/2

received both separator messages it starts unlocking the reconfiguration
cycle since the reconfiguration is then finished from its perspective as all
brokers on the reconfiguration cycle have turned gray then and the unsub-
scriptions regarding r have already been issued. If Ba

1/2 receive a separator
message from the other side, they can start dequeuing notifications in Qnot

depending on the ordering requirements.

End: When the brokers connected to r will relay no more subscriptions regard-
ing the old link r (which is the case when they have received a separator
message over r), they send an end message to the respective brokers con-
nected to the same side of a. The receiving broker Ba

1/2 then knows that
the sending broker has received and processed the separator message and
that all brokers on the other side have turned gray. Accordingly, it will
not receive any forwarded subscriptions anymore from the sender. Thus,
it can now start to dequeue the subscriptions in Qsub.

Unlock: When the reconfiguration is ended, the reconfiguration cycle is un-
locked with an unlock message. This means that brokers on the recon-
figuration cycle are now free to join another reconfiguration. The initial
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unlock message messages are issued by the brokers at r on the receipt of a
separator message.

Algorithm Details

In this section, we describe in detail how the advanced coordinated reconfigu-
ration algorithm works. We step chronologically through the algorithm by con-
cisely explaining the five message types, when, how, and why they are sent and
formulate the algorithms such that they fit into the routing framework proposed
in [119].

Variables. The algorithms use several variables. The broker which runs the
algorithm refers to itself using Bthis and its neighbor brokers are stored in the
set Bneighbors. Every broker on the reconfiguration cycle maintains two pointers
Bleft and Bright that point to the preceding and succeeding broker on the cycle
(from the perspective of the initiator), respectively.

Similarly, on brokers connected to r (a), Brelay stores a pointer to the broker
on the other side of r (a). The brokers connected to r (a) use Bnew (Bold) to
store a pointer to the respective broker on the other side of the link.

The set Bgray stores pointers to the brokers that already turned from black to
gray. This information is later used to determine if there are still black messages
on one or both sides of the reconfiguration cycle. The brokers connected to a
(i.e., B1 and Bn) use Bqueue to store the set of brokers from which they have
not yet received a separator message. This set is only needed for notification
ordering.

Table 4.1 gives an overview of the variables with a short description. Fig-
ure 4.10 depicts the pointers in the example scenario. In the following, we
sometimes use Ba

1 instead of B1 and Ba
2 instead of Bn where it improves the

readability.

Lock Message. The reconfiguration process is started by one broker (B1),
called the initiator , by executing the handleLockMsg() procedure described in
Algorithm 2. The initiator is one end-point of the new link a (B1Bn). It is
responsible of implementing the reconfiguration and is initially the only broker
which knows about the reconfiguration cycle, a, and r. It starts the reconfigura-
tion by sending out a lock message in order to lock the reconfiguration cycle. A
reconfiguration is only executed, if every broker on the reconfiguration cycle has
been locked successfully, avoiding race conditions due to parallel overlapping
reconfiguration processes thereby. For routing purposes, the lock message ml

contains the brokers on the reconfiguration cycle from the initiator to the other
endpoint of a (ml

path = 〈B1, . . . , B
r
1 , B

r
2 , . . . , Bn〉) plus the edge to be removed

(ml
edge = 〈Br

1 , Br
2〉).

The lock message brings the receiving broker B into the state “locked” and
changes its color to black. Due to parallel reconfigurations, it may happen
that B is already locked by another reconfiguration process when it receives ml
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Variable Description

Bthis The broker running the algorithm.
Bleft Preceding broker on the reconfiguration cycle.
Bright Succeeding broker on the reconfiguration cycle.
Bneighbors Set of neighbor brokers of Bthis.
Bold Points to the broker on the other side of r (only Br

1 and Br
2).

Bnew Points to the broker on the other side of a (only B1 and Bn).
Brelay Points to the broker on the same side of r (a) if the broker is

connected to a (r) (only B1, Br
1 , Br

2 , and Bn).
Bgray Set of brokers that turned their color from black to gray.
Bqueue Set of brokers no separator message has been received from yet

(only B1 and Bn).
relaying States if the brokers on r relay (un)subscriptions to B1 and Bn,

respectively (only Br
1 and Br

2)

Table 4.1: Overview of variables used during reconfiguration

(line 39). In this case, and if the topology on the reconfiguration cycle changed
due to other reconfigurations such that the neighbor brokers on the path ml

path

do not share a link anymore (line 23), B sends ml back on the path to the
initiator (in case B is not the initiator itself). The receiving brokers accordingly
change their state back to “unlocked” until the initiator received the message
(line 33).

The lock request succeeded, i.e., all brokers on the reconfiguration cycle have
been locked successfully, if the initiator of the lock request (the first broker
stored in ml

path) receives the lock message again. In this case, B1 adds Bn to its

neighbors and sends out a begin message mb to the endpoints of r (Br
1 and Br

2)
in order to start the actual reconfiguration (line 28). After the handleLockMsg()
procedure has terminated at a broker, it is locked, colored black but forwards
messages and (un)subscriptions as before.

Figure 4.10 depicts an example scenario, where B2 has just processed a lock
message received from B1. Accordingly, it has set its pointer variables to the
values shown. Similarly, B1 has also set its pointers as depicted.

Begin Message. After the brokers on the reconfiguration cycle have been
locked successfully, the initiator starts the reconfiguration by sending a begin
message mb to the brokers Br

1 and Br
2 connected by r. The receiving brokers

accordingly collect the subscriptions which point to the respective broker Br
2/1 on

the other side of r (Brelay) and send them to the broker Ba
1/2 out-of-band on their

side of the reconfiguration cycle (Brelay) in form of a subscription message mr

(Algorithm 3, line 8). These subscriptions are marked as relayed and are colored
gray.

After all subscriptions for the other side have been forwarded, Br
1/2 send a



4.4. RECONFIGURING BROKER OVERLAY TOPOLOGIES 99

Algorithm 2 Handle lock message ml

ml
path = 〈B1, . . . , B

r
1 , B

r
2 , . . . , Bn〉, ml

edge = 〈Br
1 , Br

2〉

1 Set procedure handleLockMsg(Broker Bsender, LockMsg ml)
2 begin

3 if ¬locked then // initialize variables

4 Bleft ← Bthis 6= B1 ? Bi−1 : Bn

5 Bright ← Bthis 6= Bn ? Bi+1 : B1

6 Bneighbors ← Bright = B1 ? Bneighbors ∪B1 : Bneighbors

7 if Bright ∈ Bneighbors then // accept lock message

8 Bnew ←⊥ ; Bold ←⊥ ; Brelay ←⊥ ; Bgray ←⊥
9 if Bthis = B1 then Brelay ← Br

1 ; Bnew ← Bn

10 elseif Bthis = Bn then Brelay ← Br
2 ; Bnew ← B1

11 elseif Bthis = Br
1 then Brelay ← B1 ; Bold ← Br

2

12 elseif Bthis = Br
2 then Brelay ← Bn ; Bold ← Br

1

13 endif

14 Bqueue ← ∅
15 if Bthis ∈ {B1, Bn} ∧ FIFO order then

16 Bqueue ← Bthis = B1 ? {Br
2 , . . . , Bn} : {B1, . . . , B

r
1}

17 elseif Bthis ∈ {B1, Bn} ∧ causal order then

18 Bqueue ← {B1, . . . , Bn}
19 endif

20 side← Bthis ∈ {B1, . . . , B
r
1} ? left : right

21 color ← black ; locked← true ; relaying← false

22 M← {(Bright, m
l)}

23 else // path changed meanwhile

24 Bleft ←⊥ ; Bright ←⊥

25 M← {(Bsender, m
l)}

26 endif

27 else // broker is already locked

28 if Bsender = Bleft then // lock request succeeded

29 Bneighbors ← Bneighbors ∪ Bleft

30 mb ← new BeginMsg() // start reconfiguration with a begin message

31 sendMsg(Br
1 , mb) ; sendMsg(Br

2 , mb)
32 M← ∅
33 else if Bsender = Bright then // lock request failed

34 M ← Bnew =⊥ ? {(Bleft, m
l)} : ∅

35 Bleft ←⊥ ; Bright ←⊥ ; Bold ←⊥ ; Brelay ←⊥
36 Bqueue ← ∅
37 locked← false

38 else // concurrent reconfiguration

39 M← Bsender 6= Bthis ? {(Bsender, m
l)} : ∅

40 endif

41 endif

42 return M
43 end
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Figure 4.10: Example scenario depicting variable values after B2 processed the
lock message ml

separator message ms to their respective Brelay (line 12). This marks the end of
the subscription forwarding phase.

In the case that Bold from the perspective of Br
1/2 has already turned gray

(i.e., the separator message from Bold has already reached Bold again, and
also Br

1/2 to disseminate this information), Br
1/2 sends an end message me right

after the separator message to Brelay (line 15). This can happen due to message
forwarding delays which may differ significantly on both sides of the reconfigu-
ration cycle.

The handleBeginMsg() procedure returns an empty set because all the mes-
sages to be sent out have already been sent in the body of the procedure (line 19).
Additionally, the begin message puts the broker into relaying mode (line 3), i.e.,
from now on, new (un)subscriptions received by this broker coming over r are
colored gray and relayed to the respective broker connected to a on the same side
of the reconfiguration cycle (cf. to the optimization described in Figure 4.7(a)).

The subscription message and the separator message sent (lines 8 and 12) have
the relayed flag set, which means that the receiving broker handles them like it
had received them over a.

In Figure 4.11, an example is shown, where B1 sends a begin message mb

to Br
1 and Br

2 . In reaction to receiving mb, Br
1 and Br

2 send the subscriptions
regarding the other side of r to B1 and Bn in subscription messages mr, followed
by a separator message ms.

Separator Message. The name of the separator message is derived from fact
that every broker that receives a separator message changes its color from black
to gray. This way, the separator message “separates” the black from the gray
messages, because it is guaranteed that no black messages issued on the same
side of the reconfiguration cycle, the separator message originates from, will
follow the separator message in the same direction. This is due to the coloring
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Figure 4.11: Example scenario depicting the case, where B1 sends begin messages
to Br

1 and Br
2 which react by forwarding subscriptions mr regarding r to Ba

1/2

followed by a separator message ms

mechanism which colors every message with the color of the first broker on the
reconfiguration cycle it encounters.

The brokers Br
1 and Br

2 each issue a separator message on their side of the
reconfiguration cycle after they have sent all the subscriptions regarding the
other side of r to the respective broker at a. The receiving brokers B1 (Ba

1 )
and Bn (Ba

2 ) change their color to gray and forward the separator message along
their side of the reconfiguration cycle towards the originator of the respective
separator message.

Every broker that receives a separator message which originates from a broker
on the same side of the reconfiguration cycle changes its color from black to gray
because its routing table is then prepared for the activation of a (the separator
message is following the subscriptions regarding a). The separator message, thus,
separates black messages from gray messages—a broker which turned gray colors
every notification gray that enters the reconfiguration cycle through it.

A detailed description of the handleSeparatorMsg() procedure is given in Al-
gorithm 4. Every separator message ms is forwarded along the reconfiguration
cycle, i.e., a broker B receiving ms from Bleft forwards it to Bright and vice versa
(line 4). If the message originates from the same side of the reconfiguration
cycle the receiving broker changes its color to gray and adds itself to the set of
brokers ms

brokers which already turned gray. If B is the first broker at r which re-
ceives ms it also sends a copy of ms back to the sender in addition to forwarding
it over r (line 10) informing the other brokers on its side of the reconfiguration
cycle that all brokers have turned gray on this side of the reconfiguration cycle.

The separator message ms carries the brokers that already turned gray on
the side of the initiator of ms in ms

brokers. On receiving a separator message,



102 CHAPTER 4. RECONFIGURING BROKER OVERLAY NETWORKS

Algorithm 3 Handle begin message mb

1 Set procedure handleBeginMsg(Broker Bsender, BeginMsg mb)
2 begin

3 relaying← true

4 for (f, B) ∈ RoutingTable do // select subscriptions for the other side of r

5 if B = Bold then

6 // send subscription pointing to the other side of r to the respective broker

7 mr ← new SubscriptionMsg(filter← f , color← gray, relayed← true)
8 sendMsg(Brelay, m

r)
9 endif

10 endfor

11 // send separator message marking the end of this phase

12 ms ← new SeparatorMsg(broker← ∅, gray← false, relayed← true)
13 sendMsg(Brelay, m

s)
14 if Bold ∈ Bgray then // reconfiguration already finished on the other side?

15 sendMsg(Brelay, new EndMsg())
16 Brelay ←⊥
17 relaying ← false

18 endif

19 return ∅
20 end

B updates its local knowledge about the brokers that have already turned gray
(line 14).

The two special cases, where B is connected to r and a have to be handled
separately. If B is connected to r and ms has not been sent via r this means that
the separator message has passed all brokers on the reconfiguration cycle on the
side of B (line 24). Thus, the routing tables on this side of the reconfiguration
cycle have been updated for a which means that B can remove all filters stored
in its routing table that point to the broker on the other side of r, disabling
forwarding over r thereby (line 25).

If B is connected to r, and ms has been received over r (line 21), accordingly
the routing tables on the other side of the reconfiguration cycle are prepared for
forwarding messages over a. Thus, B will not receive any black subscriptions
over r anymore which would have to be relayed to Brelay. Thus, it sends an end
message me to Brelay (i.e., the broker on its side of the reconfiguration cycle con-
nected to a) informing it that it can now start dequeuing the (un)subscriptions
in Qsub. Afterwards, the separator message is forwarded on B’s side of the re-
configuration cycle to “flush” the channels on this side and finally inform the
receiving broker at a that all black notification stemming from the other side of
the reconfiguration cycle have left this side.

If B is an endpoint of a and it knows that all necessary brokers (stored
in Bqueue—depending on the ordering) have received a separator message, it can
process the notifications stored in Qnot accordingly (line 16). Together with the
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check on Bqueue, this ensures the implementation of Rules 6 and 7 regarding the
ordering of notifications (Bqueue has been initialized accordingly in lines 14–19
of Algorithm 2). The brokers connected to a never forward a separator message
over a to prevent that the broker on the other side of a receives it for a second
time (since it was the first broker which received this separator message). Thus,
it drops ms if the next receiving broker would be Bnew (line 5).

The reconfiguration process is finished from the perspective of B if B is an
endpoint of r, its color is gray, and it has received a separator message from the
broker on the other side of r (line 32). In this case, it forwards the separator
message to the remaining brokers and starts unlocking the reconfiguration cycle
by sending an unlock message (line 37). Then, it is finally possible to deactivate
the old link by removing the broker on the other side of r from Bneighbors (line 38).
The coloring mechanism together with the FIFO channels between the brokers
ensures that no more black messages will arrive later at B which have to be
forwarded over r, satisfying Rule 2 and Rule 3 thereby.

Figure 4.12 depicts an example scenario, where B1 forwards the subscriptions
received from Br

1 followed by a separator message ms. In the beginning, ms

only carries B1 in ms
brokers. When it is forwarded by B2 to Br

1 , it carries the
ms

brokers = {B1, B2}. In the following, when ms is forwarded by Br
1 back to B1

and over r, the value of ms
brokers = {B1, B2, B

a
1} does not change anymore.
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Initiator
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r
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Figure 4.12: Example scenario depicting the case, where Ba
1 forwards the set

of subscriptions received from Br
1 (according to the routing algorithm used)

followed by a separator message ms (Br
1 only forwards ms over r)

End Message. Brokers on r send out an end message me to the respective
broker on the same side of the reconfiguration cycle that is connected to a when
they have received a separator message coming over r from the other side of
the reconfiguration cycle (line 15 in Algorithm 3). Doing this, they mark the
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Algorithm 4 Handle separator message ms

1 Set procedure handleSeparatorMsg(Broker Bsender, SeparatorMsg ms)
2 begin

3 // forwarding of separator message

4 M← Bsender = Bright ? {(Bleft, m
s)} : {(Bright, m

s)} // forward ms in direction

5 if (Bnew, ms) ∈M then M← ∅ // do not forward ms over a

6 if Bsender = Brelay ∨ (Bsender = Bleft ∧ side = left)
7 ∨ (Bsender = Bright ∧ side = right) then

8 color ← gray ; ms
brokers ← ms

brokers ∪ {Bthis}
9 if Bold 6=⊥ then

10 M←M∪ {(Bsender, m
s)}

11 endif

12 endif

13 // update status of brokers that turned gray

14 Bgray ← Bgray ∪ms
brokers ; Bqueue ← Bqueue \ms

brokers

15 if Bnew 6=⊥ ∧ Bqueue = ∅ then // notifications can be deqeued at B1 or Bn

16 for (B′, m′) ∈ Qnot do // dequeue in FIFO order

17 Qnot ← Qnot \ (B′, m′)
18 handleMsg(B′, m′)
19 endfor

20 elseif Bold 6=⊥ then // broker is connected to the old link

21 if Bsender = Bold then // ms has been received over r

22 sendMsg(Brelay, new EndMsg())
23 Brelay ←⊥ ; relaying ← false
24 else // ms has not been received over r

25 for (f, B′) ∈ RoutingTable do // remove routing entries regarding r

26 if B′ = Bold then

27 mn ← new UnsubscriptionMsg(filter← f , gray ← false)
28 handleMsg(Bold, m

n)
29 endif

30 endfor

31 endif

32 if Bthis ∈ Bgray ∧ Bold ∈ Bgray then // start unlock process

33 for (B′, m′) ∈M do

34 sendMsg(B′, m′)
35 endfor

36 mk ← new UnlockMsg(gray← false)

37 handleMsg(Bold, m
k)

38 Bneighbors ← Bneighbors \ {Bold}
39 Bold ←⊥
40 M← ∅
41 endif

42 endif

43 return M
44 end
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end of the reconfiguration on the other side of the reconfiguration cycle because
they will receive no more black messages from there until the reconfiguration
has terminated. Algorithm 5 details how the receiving broker B processes the
end message me.

Receiving me, a broker knows that the sender of me will not relay
any (un)subscription to him anymore. Thus, B can process the gray
(un)subscriptions stored in Qsub (line 4) that have been received during re-
configuration and have been received over a. This procedure implements Rule 5.

When B receives an end message it may already have received an unlock
message that has been processed but not forwarded because of the missing end
message (line 8). This is possible due to varying message delays. In this case, B
has to take care of activating a by sending an unlock message to itself (line 11).

Algorithm 5 Handle end message me

1 Set procedure handleEndMsg(Broker Bsender, EndMsg me)
2 begin

3 Brelay ←⊥ // reconfiguration finished on the other side

4 for (B′, m′) ∈ Qsub do // process queued (un)subscriptions

5 Qsub ← Qsub \ (B′, m′)
6 handleMsg(B′, m′)
7 endfor

8 if (Bleft = Bnew ∧Bright =⊥) ∨ (Bright = Bnew ∧ Bleft =⊥)
9 ∨ (Bleft =⊥ ∧ Bright =⊥) then // received unlock message meanwhile

10 mk ← new UnlockMsg(gray← false)

11 handleMsg(Bthis, m
k)

12 endif

13 return ∅
14 end

Unlock Message. Complementary to the lock message which locks the bro-
kers on the reconfiguration cycle to prevent race conditions due to parallel over-
lapping reconfigurations, the unlock message mk is responsible of freeing the
brokers after the reconfiguration is implemented. A broker B which receives mk

initializes its pointers according to the direction from which mk has been re-
ceived (line 12 in Algorithm 6). The broker is finally unlocked if it has received
an unlock message from both neighbors on the reconfiguration cycle (and an end
message if the broker is connected to a, line 16).

Sending an initial unlock message is triggered on receipt of a separator message
at brokers connected to r (cf. Algorithm 4, line 37). In this case, B sends an
unlock message to itself which is then handled like it had been received from the
other side of r and is forwarded in both directions on the reconfiguration cycle.

A broker B that receives mk for the first time forwards it to both neighbors
on the reconfiguration cycle (line 3), where the message to the original sender
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serves as an acknowledgement which finally unlocks the broker (line 7). An
unlock message that has been received for the first time by a broker connected
to a will neither be acknowledged nor forwarded if B has not yet received an end
message (line 11). If an unlock message and an end message has been received by
a broker connected to a, the unlock message will be forwarded over a to finally
activate it (line 5).

It is not necessary to send mk over r because the unlock process is already
triggered by a separator message for Br

1/2 (line 10).

Br
1

B2

Initiator

a

left right

r
Br

2

Bn

mk

mk

me

mk

B3

B1

Figure 4.13: Br
1 sends an unlock message mk to B1 and B2. Both forward them

counter clockwise on the reconfiguration cycle (B2 and B1 acknowledge mk with
another unlock message)

Figure 4.13 depicts an example scenario, where Br
1 sends an end message me

to B1 and an unlock message mk to B2. B2 acknowledges mk and forwards it
to B1 which also acknowledges it and additionally forwards it to Bn. Bn does
not forward mk until it received an end message me from Br

2 and a separator
message from B3.

Modifications of Basic Operations

The advanced coordinated reconfiguration algorithm relies on queueing and col-
oring of messages. Up to now, we have only addressed the different new message
types introduced to coordinate the reconfigurations and left coloring and queue-
ing issues aside. The latter are addressed in the procedures receiveMsg() (Algo-
rithm 7) and sendMsg() (Algorithm 8) described in Figure 4.9 and presented in
the following.

Receiving a Message. When broker B receives a message, it may need
to be delayed due to ordering requirements. This affects notifications and
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Algorithm 6 Handle unlock message mk

1 Set procedure handleUnlockMsg(Broker Bsender, UnlockMsg mk)
2 begin

3 if Bsender 6= Bnew ∧ Bleft 6=⊥ ∧ Bright 6=⊥ then // received first unlock message

4 M← {(Bleft, m
k), (Bright, m

k)}
5 elseif Bnew 6=⊥ ∧ (Bleft =⊥ ∨Bright =⊥) then // 2nd unlock message at a

6 M← {(Bnew, mk)}
7 else // received an acknowledgement for an unlock message

8 M← ∅
9 endif

10 M← Bsender = Bold ?M\ {(Bold, m
k)} : M // do not send over r

11 M← Brelay 6=⊥ ?M\ {(Bnew, mk)} : M // wait for end message

12 Bleft ← Bsender = Bleft ? ⊥ : Bleft // forward on the reconf. cycle

13 Bright ← Bsender = Bright ? ⊥ : Bright // forward on the reconf. cycle

14 Bnew ← (Bnew, mk) ∈M ? ⊥ : Bnew

15 color← Bnew =⊥ ? black : color // change color back to default

16 if Bleft =⊥ ∧ Bright =⊥ ∧ Bnew =⊥ then // unlock process finished

17 Bgray ← ∅
18 locked← false

19 endif

20 return M
21 end

(un)subscriptions received over a. Notifications have to be delayed in case of
ordering requirements and are, thus, enqueued accordingly (Algorithm 7, line 3).
(Un)subscriptions have to be delayed if B has not yet received an end message
from Brelay due to FIFO-publisher ordering requirements (line 5).

If B is connected to r, in relaying mode, and an (un)subscription has been
received over r, this (un)subscription is relayed to Brelay (line 7). This is done
to implement the optimization proposed for Rule 5 as depicted in Figure 4.7(a)
on page 93. The receiving broker of a relayed message handles it like a regular
message that has been received over a (line 11).

If B is the first broker on the reconfiguration cycle that received a message m
and B is gray, then m is colored accordingly (line 14). Messages which have their
gray-flag set are interpreted as being gray. Otherwise, they are handled as black
messages.

Messages that are not queued or relayed are handled in the conventional way
by using them as a parameter when calling handleMsg() procedure (line 17).

Sending a Message. Similarly to the extra pre-processing of messages when
receiving them, it may be necessary to post-process a message in the sendMsg()
procedure before it is sent (Figure 4.9). This affects the case, where messages
have to be “uncolored” when they leave the reconfiguration cycle (i.e., they are
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Algorithm 7 Receiving a message

1 void procedure receiveMsg(Broker Bsender, Msg m)
2 begin

3 if Bsender = Bnew ∧ Bqueue 6= ∅ ∧ m is notification then

4 enqueue(Qnot, (Bsender, m)) // delay notifications coming over a

5 elseif Bsender = Bnew ∧ Brelay 6=⊥ ∧ m is (un)subscription then

6 enqueue(Qsub, (Bsender, m)) // delay unil end message received

7 elseif Bsender = Bold ∧ relaying ∧ m is (un)subscription then

8 mrelayed ← true

9 sendMsg(Brelay, m)
10 else

11 if mrelayed then // message has been relayed

12 mrelayed ← false ; Bsender ← Bnew

13 endif

14 if Bsender 6= Bleft ∧ Bsender 6= Bright ∧ color = gray then

15 mgray ← true // color message on reconfiguration cycle entry

16 endif

17 handleMsg(Bsender, m)
18 endif

19 end

colored with the default color black, line 6). If the message is sent to the broker
itself, the handleMsg() procedure is directly called (line 8).

Gray messages which should be sent via r and black messages which should be
sent over a are discarded silently except for lock, unlock, begin, and end messages
(line 3). The other message types discussed above are handled regularly because
they are necessary for the reconfiguration algorithm and are, thus, not forwarded
according to their color. Dropping notifications and (un)subscriptions with the
wrong color is necessary to avoid duplicates as required in Rule 1 and Rule 4.

Advertisements

Advertisements are used to build routing tables for subscriptions. Accordingly,
the same rules apply to them as for (un)subscriptions, i.e., it is necessary to
ensure a FIFO-producer ordering for them. Advertisements must be processed
before the subscriptions such that the subscription routing tables are already
built when the subscriptions are forwarded. Thus, advertisements can be in-
corporated just like subscriptions. However, it has to be taken care that the
advertisements are processed before the subscriptions.

4.4.3 Evaluation

In this section, we present the results of experiments we conducted using a dis-
crete event simulation. The goal of the experiments was to measure the perfor-
mance of the presented algorithm. The performance can be measured regarding
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Algorithm 8 Sending a message

1 void procedure sendMsg(Broker Breceiver, Msg m)
2 begin

3 if (m is lock, unlock, begin, or end message)
4 ∨ ¬ ((Breceiver = Bnew ∧ ¬mgray) ∨ (Breceiver = Bold ∧mgray)) then

5 if Breceiver 6∈ {Bthis, Bleft, Bright, Bnew, Bold, Brelay} then

6 mgray ← false // remove color if receiver not on the reconfiguration cycle

7 endif

8 if Breceiver = Bthis then // message is sent to this broker

9 receiveMsg(Breceiver, m)
10 else

11 send(Breceiver, m)
12 endif

13 endif

14 end

the overhead of the algorithm and regarding the message delay induced during
reconfiguration. The latter is necessary to provide message ordering guarantees
as described earlier and induces extra delays compared to an algorithm which
does not give ordering guarantees and, thus, does not need to delay any message.

The evaluation focuses on the average delay of a notification in the queue Qnot

managed by the brokers connected to a. Furthermore, additional messages have
to be sent for coordination purposes which leads to a higher bandwidth consump-
tion. All measurements are compared with the results gained when applying the
basic strawman approach that has been discussed as the most basic uncoordi-
nated approach in Section 4.4.1. Moreover, we measure the number of duplicates
and notifications lost when applying the strawman approach which gives an
impression of the impact of missing guarantees. In the experiments, we focused
on the interesting case of exchanging a link in the broker topology.

Simulation Setup

The simulation scenario is chosen in a way such that sufficiently complex message
streams are created to evaluate our algorithm with respect to correctness and
overhead. The number of brokers is chosen such that reconfiguration cycles of
sufficient sizes can be evaluated. We relied on an Internet-like physical topology
to obtain realistic delay times.

All experiments are based on a transit-stub network topology with a total
number of 10, 000 nodes, subdivided into 100 domains of equal size. The topology
was generated using the Brite topology generator [113] with the configuration
described in Appendix A.1. The publish/subscribe broker overlay topology is
composed of 100 randomly chosen brokers which initially form a randomly gen-
erated acyclic graph. In the broker overlay network, every broker can potentially
connect to any other broker. The maximum delay of an overlay link is limited
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to 100 ms, while a broker needs at most 0.01 ms to process a message (in this
scenario, one tick of the discrete event simulation corresponds to 10 ms). The
brokers host a total of 500 clients, which are uniformly distributed among them.
The clients consist of 50 publishers, each having a set of 9 dedicated subscribers
that receive all of the notifications it publishes.

The publication rate follows an exponential distribution and a publisher cre-
ates a new notification every 50 ms on average. The following experiments were
repeated up to 50 times and arithmetic means as well as 95% confidence inter-
vals were calculated for every measured value. Thus, we executed 50 simulation
runs per point measured in each experiment. To ensure that results of different
algorithms are comparable, the same setups and random seeds were used for
corresponding simulation runs.

Reconfiguration Overhead

In the first experiment, we evaluate the control message complexity of the ad-
vanced coordinated reconfiguration algorithm and compare it to the strawman

approach. Therefore, 100 randomly chosen links are sequentially exchanged such
that the network stays connected and acyclic, while the control messages which
are necessary to update the brokers’ routing tables are counted.

Figure 4.14 shows the number of control messages as a function of the length
of the reconfiguration cycle. The message complexity increases for both al-
gorithms because (un)subscriptions have to be forwarded to more brokers to
update their routing tables if the reconfiguration cycle grows in size. Since the
advanced coordinated reconfiguration algorithm limits filter forwarding to the
reconfiguration cycle, it clearly outperforms the strawman approach especially
for smaller sizes. Although the number of control messages increases due to
additional messages needed for coordination, the advanced coordinated recon-
figuration algorithm remains more efficient even for bigger reconfiguration cycles.
Please note that the overhead induced by the strawman approach is only lim-
ited by the size of the topology and can, thus, grow with a growing number of
brokers—independent of the length of reconfiguration cycle. In contrast to this,
the overhead of the advanced coordinated reconfiguration algorithm is limited
by the size of the reconfiguration cycle. The overhead of both algorithms, of
course, also depends on the number of (un)subscriptions issued by the clients.

The results of this experiment show that the advanced coordinated reconfig-
uration algorithm is especially well suited to shorter reconfiguration cycles since
the message overhead is reasonably low then. The additional overhead of the
strawman approach also increases with the length of the reconfiguration cycle
although no extra messages for coordination are induced. This is due to the
fact that with a growing reconfiguration cycle length, it takes longer to send
(un)subscriptions from the endpoints of a to the endpoints of r which increases
the chance of (un)subscriptions leaving the reconfiguration cycle and causing
additional overhead thereby.
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Figure 4.14: Number of control messages versus length of reconfiguration cycle

Message Loss and Duplicates

The prevention of message loss and duplicates during reconfiguration is one of
the most important features that distinguishes our advanced coordinated re-
configuration algorithm from the other reconfiguration algorithms in literature.
The second important feature our algorithm offers is that of providing order-
ing guarantees during reconfiguration. Before we continue with an experiment
which measures the message delay that is induced by our algorithm in order
to give ordering guarantees, we present some results regarding lost notifications
and duplicates received when using the strawman approach. Our aim is to
illustrate the quantity of notifications that are lost or received more than once
by a broker depending on the reconfiguration cycle length.

The experiment builds on the same settings as the previous experiment. The
number of notifications lost and duplicates received increases with a growing
reconfiguration cycle as shown in Figure 4.15, where the number of duplicates
received and the number of notifications lost is approximately linear in the num-
ber of brokers on the reconfiguration cycle. The number of lost notifications is
far from being negligible, showing that this is a severe issue in the strawman

approach.
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Figure 4.15: Number of notifications lost and number of duplicates received with
the strawman approach

Message Delay

The advanced coordinated reconfiguration algorithm prevents message loss dur-
ing reconfiguration, but introduces a delay as notifications are queued after pass-
ing the new link a, in case a certain ordering has to be guaranteed. The delay
depends on the type of ordering (FIFO-publisher or causal) and on the length of
the reconfiguration cycle. The goal of this experiment is to explore the impact
of the type of ordering guarantees and the size of the reconfiguration cycle on
the average delay of a notification.

Figure 4.16 shows the average delay induced by 100 random link exchanges
measured as the mean time an affected notification is queued at the brokers on
the new link. The delay increases linearly with the length of the reconfigura-
tion cycle. This is due to the fact that separator messages have to travel over
the reconfiguration cycle before queued notifications are released again. Causal
ordering introduces more delay than FIFO-publisher ordering because notifica-
tions are queued until separator messages have arrived from both sides of the
reconfiguration cycle in this case. With FIFO-publisher ordering, however, noti-
fications are already dequeued on the receipt of one separator message from the
opposite side of the reconfiguration cycle.
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Figure 4.16: Average delay caused by ordering versus length of reconfiguration
cycle

4.4.4 Discussion

The results of the experiments show that the issue of notification loss and reduc-
tion of message overhead are handled well by the advanced coordinated recon-
figuration algorithm. If, however, ordering guarantees are needed, an additional
delay is introduced which grows with the size of the reconfiguration cycle. By
comparing it with the strawman solution, we follow a common approach in lit-
erature [50, 64, 131] although a comparison is difficult because the strawman

approach produces duplicates and notification loss. Similarly, all other discussed
reconfiguration algorithms for publish/subscribe systems may produce notifica-
tion loss and do not provide any ordering guarantees at all. In [64], Frey presents
a comparison of the algorithms discussed in Section 4.4.1 with the strawman

approach regarding message loss and overhead.

The results also show that the advanced coordinated reconfiguration algo-
rithm produces the least overhead for short reconfiguration cycles. This is due
to the forwarding of (un)subscriptions from the brokers connected to r and a,
respectively.

Our algorithm needs to lock the reconfiguration cycle before the actual recon-
figuration can start because parallel overlapping reconfigurations are not sup-
ported. If multiple parallel overlapping reconfigurations all start locking their
reconfiguration cycle with an unfavorable timing and, thus, encounter them-
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selves at different brokers, it is possible that a livelock is produced if all brokers
restart the reconfiguration over and over again. This problem can be avoided
probabilistically if restarts are delayed for a random time period.

4.5 Reconfiguring Self-Stabilizing Publish/Sub-

scribe Systems

In the previous section, we presented an algorithm for reconfiguring broker over-
lay networks in conventional publish/subscribe systems, where a fault-free envi-
ronment is assumed and brokers have direct access to the topology management.
Besides efficiency, we focused on the prevention of message loss and duplicates,
and the provision of ordering guarantees. In this section, we tie up to Chapter 3,
where we introduced self-stabilizing content-based routing for publish/subscribe
systems. In this section, we complement self-stabilizing routing with a self-
stabilizing broker overlay network to create a self-stabilizing publish/subscribe
system with respect to content-based routing and the broker overlay layer. Ac-
cording to the reconfiguration algorithm for conventional publish/subscribe sys-
tems, we focus on elementary reconfigurations as introduced in Section 4.2.2.
We propose an algorithm which is capable of reconfiguring the broker topol-
ogy without message loss. The layered algorithm stack we present is able to
cope with several problems regarding the reconfiguration of a self-stabilizing
publish/subscribe system.

We start with a short survey how reconfigurations of self-stabilizing systems
are handled in related work in Section 4.5.1 and point out some of the basic
problems in this context. Then, we discuss the general challenges which have to
be solved when reconfiguring layered self-stabilizing publish/subscribe systems
in Section 4.5.2. Section 4.5.3 presents our solution in detail. In Section 4.5.4, we
present extensions to incorporate causal and FIFO-publisher ordering. Further
extensions and other issues are discussed in Section 4.5.5.

4.5.1 Related Work

The power of self-stabilizing systems lies in their ability to bring themselves
into a legitimate state when started in an arbitrary configuration without any
manual intervention if no fault occurs for a long-enough time period. This ability
results from the convergence property of self-stabilizing algorithms. The closure
property further provides the guarantee that a system in a legitimate state stays
there as long as no fault occurs. However, during stabilization, no guarantees
on system behavior are given.

When a system is reconfigured, i.e., it is transformed from one legitimate
configuration to another one, it is intuitively expected that certain service guar-
antees hold. This is in contrast to the situation in which a sudden fault makes
it necessary to reconfigure the system. In the following, we show that this
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expectation is not always fulfilled for self-stabilizing systems due to subtle diffi-
culties. We start with an overview of different approaches to reconfiguration of
self-stabilizing systems in literature.

Handling Reconfigurations as Faults

The naive approach which is implicitly taken by many layered self-stabilizing
systems that do not consider reconfigurations explicitly, is to handle reconfigu-
rations as faults from which the system recovers eventually. For a publish/sub-
scribe system this could mean that changes in the topology of the broker overlay
network result in inconsistencies on the routing layer because it is closely related
to the topology of the broker overlay. Due to the self-stabilizing mechanism used,
the routing tables of the brokers stabilize eventually as described in Chapter 3.

This approach does not need any coordination efforts on the cost of possible
message loss or duplicates because the broker overlay network is reconfigured re-
gardless of the routing tables of the brokers. Figure 4.17(a) depicts how a layered
self-stabilizing system is expected to react in case of a reconfiguration on one
layer, while Figure 4.17(b) depicts what may actually happen (as demonstrated
in the example) if special care has not been taken.

Legitimate States

Configuration 1
Configuration 2

(a)

Legitimate States

Configuration 2
Configuration 1

(b)

Figure 4.17: Effect of reconfigurations in a self-stabilizing system as (a) expected
and (b) possible without special treatment

This problem does not only occur in layered self-stabilizing systems although
the problems are obvious here. In many self-stabilizing systems that do not han-
dle reconfigurations explicitly, a reconfiguration may also lead to an illegitimate
state from which the system will recover eventually if the reconfiguration rate
does not pass a given frequency threshold. This can happen, for example, if a
single reconfiguration like a link exchange in a topology may demand for other
reconfigurations that are caused as a side-effect by the self-stabilizing algorithm.
In these cases, special measures have to be taken to not interrupt the service of
a self-stabilizing system due to reconfigurations. We discuss this issue in greater
depth in the following and in Section 4.5.3.
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Fault Containment

As already mentioned, a serious problem with the naive approach is that re-
configuring a self-stabilizing system may lead to diverse side-effects because re-
configuring a lower layer may affect all upper layers. Take a spanning tree, for
example, which is self-stabilizing and aligns its structure according to the node
IDs. In this case, a reconfiguration of the topology by adding a new node with
the highest (or lowest) ID can lead to a change of the whole tree topology in the
worst case which again may demand for a reconfiguration of the routing tables
of the brokers.

Ghosh et al. propose a way to limit the side effects of certain faults in a self-
stabilizing system by introducing the concept of fault containment [69]. However,
the goals of fault containment and self-stabilization are conflicting in general
since adding fault containment to a self-stabilizing protocol may increase the
stabilization time [70]. Although fault containment limits the side-effects of
reconfigurations which may lead a fault on an upper layer, it does not prevent
service interruption which may constitute in lost messages. This is due to the fact
that still no special care is taken of reconfigurations. However, fault containment
may reduce the impact of a reconfiguration on the system during convergence.

Superstabilization

Dolev and Herman [58] propose the class of superstabilizing protocols which are
self-stabilizing and explicitly designed to cope with topology dynamics. Super-
stabilization builds on the idea that a topology undergoes “typical” changes
which are subsumed in the class Λ of change events. A passage predicate is in-
troduced which is weaker than the predicate specifying the legitimate states but
still useful. In case a topology change event defined in Λ happens, the passage
predicate provides certain guarantees defined in the passage predicate until the
system is back in a legitimate state.

As an example, the authors propose a superstabilizing spanning tree algo-
rithm, where the removal of network links that are not part of the spanning tree
and link exchanges do not lead to a rebuild of the topology. This algorithm is still
self-stabilizing and cycles in the topology are detected and corrected eventually.

Superstabilization represents an effort which explicitly addresses the issue of
reconfiguration. Although very interesting, it does not provide a general solution
to create superstabilizing protocols. Moreover, the case of layered self-stabilizing
algorithms is not discussed, thus, limiting its usefulness for our problem domain.

4.5.2 Challenges

The conventional approaches to reconfigure a (layered) self-stabilizing system
presented above already indicated the challenges that are inherent when recon-
figuring the broker overlay topology of a self-stabilizing publish/subscribe sys-
tem. In the following, we describe them in detail with respect to self-stabilization
and, thus, supplement the challenges already described in Section 4.3. Thereby,
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we assume that a reconfiguration transforms a broker overlay topology in con-
figuration T1 into another configuration T2.

No Service Interruption

During and after reconfiguration, the system must stay in a legitimate state given
that no fault occurs. For a self-stabilizing publish/subscribe system this means
that the correctness of the publish/subscribe system according to Definition 5
must be maintained which implies that messages must not be lost and clients
must not receive notifications more than once.

Containment of Changes

A reconfiguration must not result in unintended additional reconfigurations that
are not desired by the administrator executing the reconfiguration by purpose.
For the broker overlay network this means that one elementary reconfiguration
(e.g., a link exchange) must not result in an unwanted link exchange that was
not explicitly requested.

At this point, it might appear sensible at first sight to simply apply the
advanced coordinated reconfiguration algorithm from Section 4.4.2 for the su-
perstabilizing spanning tree algorithm described above together with the self-
stabilizing content-based routing algorithms presented in Section 3. However,
this results in problems because the reconfiguration algorithm results in a cyclic
broker overlay topology for a limited time period during reconfiguration (cf. Al-
gorithm 2 on page 99, line 29) which would be handled as a fault by the su-
perstabilizing algorithm. Besides that, the superstabilizing algorithm requires a
“neighborhood” between the brokers in terms of brokers that can act as neighbor
brokers which is not available by default.

Persistence of Changes

Many self-stabilizing algorithms imply a certain structure that is legitimate and
towards which the algorithm “pushes” the system. If the reconfiguration does
not comply with this structure, it is “repaired” and possibly undone thereby.

An illustrative example is the case, where a self-stabilizing spanning tree
algorithm is used for maintaining the broker overlay network. Let us assume
that the self-stabilizing tree algorithm by Afek, Kutten, and Yung is used [3].
Its aim is to build a spanning tree, where every node has a unique identifier (ID)
and eventually the node with the biggest ID becomes the root. Every other node
connects either directly to the root node or, if this is not possible, to the node
which is closest to the root (in terms of hops) with the biggest ID (if more than
one node has the minimum distance to the root).

An example graph with all possible overlay links is depicted in Figure 4.18(a).
Here, every node runs the self-stabilizing tree algorithm. After a while, the
topology stabilizes to the configuration depicted in Figure 4.18(b). If we now
reconfigure the topology in way such that the link between the nodes 8 and 3
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is exchanged with the link between nodes 3 and 2 (Figure 4.18(c)), this will be
considered as a fault by the self-stabilizing tree algorithm since node 3 is not
connected to the root node by the shortest path anymore. Thus, the topology
will stabilize again to the one depicted in Figure 4.18(b) and the reconfiguration
is lost.

10

4 123

8 5

(a) Initial configuration, where the num-
bers resemble the node IDs and the
dashed lines depict communication links
between nodes

10

4 123

8 5

(b) Configuration after the algorithm
stabilized (the solid lines depict the links
of the spanning tree)

10

4 123

8 5

(c) Configuration after exchanging the
link 83 with 32.

Figure 4.18: Example for reconfiguring a self-stabilizing spanning tree topology
according to [3]

In this example, it is obviously not possible to integrate arbitrary reconfigu-
rations without adapting the broker IDs accordingly. It is hence a good example
for the subtle problems that can arise when trying to integrate reconfiguration
into self-stabilizing systems.

4.5.3 Coordinated Reconfiguration with Layered Self-
Stabilization

In Chapter 3, we presented algorithms that render the content-based routing
layer self-stabilizing. Thereby, we assumed that the broker overlay network is
either static or self-stabilizing. Although a static broker overlay makes the whole
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system self-stabilizing it is not feasible in practice because reconfigurations of
the topology might become necessary due to system dynamics. We already
argued that reconfiguring a self-stabilizing publish/subscribe system is different
from reconfiguring a regular one. Thus, we propose a self-stabilizing broker
overlay network in this section on which self-stabilizing content-based routing is
layered upon and introduce a coordination mechanism between the overlay and
the routing layer to cope with the challenges described above.

Systems which are layered like in our case can be made self-stabilizing by
making all layers individually self-stabilizing. This transparent stacking of self-
stabilizing layers is a standard technique which is referred to as fair composi-
tion [57]. It is easy to combine self-stabilizing algorithms this way to create a
new and more powerful self-stabilizing mechanism as long as no cyclic depen-
dencies exist among their states. Taking this approach, it is sensible to layer
self-stabilizing routing in publish/subscribe systems on top of a self-stabilizing
broker topology which employs a self-stabilizing tree algorithm like the ones
given in literature (cf. Gärtner’s survey [67] for a good overview). However, this
approach has its drawbacks as already discussed.

Our approach in the following is, hence, to realize a self-stabilizing overlay
topology which maintains an arbitrary tree structure and to layer self-stabilizing
routing on top of it in a way, such that reconfigurations of the overlay topology
can be processed without service interruption (i.e., message loss or duplication).
Two problems have to be tackled to solve this problem: (i) designing a self-
stabilizing broker overlay network which does not necessarily impose a certain
structure on the resulting tree and accepts all correct trees and (ii) coupling
the self-stabilizing mechanisms on the overlay and the routing layer to allow for
atomic topology switches without message loss.

Coloring Scheme

Before we continue with the description of the self-stabilizing broker overlay
network, we introduce a coloring scheme which we use to synchronize recon-
figurations on the overlay layer with reconfigurations on the routing layer. To
achieve this, selected data structures are marked with a color attribute. On
the overlay topology layer this concerns the child and parent broker pointers,
while on the routing layer the routing entries are affected. Thus, each color may
represent a different topology.

To make atomic switches between different colors (and, thus, topologies)
possible, every broker maintains data structures for three different colors which
can be accessed on the respective layer and are stored in the following variables.
The variable ccur stores the color of the topology that is currently used, cold

stores the color of the topology that has been used last, and cnew stores the
color of the topology that will be used when the color changes for next time.
The values of these variables are rotated regularly. We require three different
colors because the communication and processing delays in the network can lead
to a situation, where messages are still forwarded although the topology has
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changed meanwhile. If the value of ccur becomes the value of cold, for example,
there may still be messages on the network that are colored with cold. To be able
to deliver these messages, the topology for cold has to be kept sufficiently long.
In the following, we assume without loss of generality that the routing entries
are stored in separate routing tables for each color although a tag on each entry
suffices in the implementation.

It is the task of the root broker R to regularly recolor all brokers in the tree.
To accomplish this, a timeout runs on R. In order to realize self-stabilization, the
timeout also runs on every broker B 6= R. The actions taken on a timeout are
described in Algorithm 9 and will be explained in the following. After resetting
the timer (line 2), the root broker rotates its colors and initializes the child broker
pointers Ccnew

, the parent broker pointer Pcnew

, and the routing table T cnew

(lines 5 and 6). Then, the new color is disseminated in a recolor message RECmsg

to all child brokers in the topology with the current color. If a child broker does
not acknowledge this message, it will be removed (procedure sendToChildren()
in Algorithm 12).

Algorithm 9 Procedure onTimeout() which is called regularly on every broker

1 procedure onTimeout()
2 resetTimer()
3 if B = R then

4 // root broker starts a new coloring period

5 cold ← ccur; ccur ← cnew; cnew ← ccur + 1 mod 3

6 Ccnew

← Cccur

; Pcnew

← null; T cnew

← init
7 m← new RECmsg(c

new, R)
8 applyReconfig(R)
9 R← ∅

10 sendToChildren(m)
11 else // every other broker reconnects to the tree

12 joinTree ()
13 endif

If another broker that is not the root broker runs into a timeout, this is related
to a fault because the timers are chosen in a way such that every broker except for
the root broker will never experience a timeout if no fault happens. The broker
hence tries to reconnect to the tree (line 12). Here, the coloring mechanism
is used to realize a self-stabilizing overlay topology. Details on this topic are
presented in the following section. The variable R carries the reconfigurations
to be implemented. They are disseminated together with the recolor message
and will be explained in detail later.

When a broker B 6= R receives a recolor message as described in Algo-
rithm 10, it resets its timer, replies with an acknowledge message ACKmsg,
rotates its colors (and changes the value of its current color ccur thereby), and
forwards the message to its child brokers.
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Algorithm 10 Procedure onReceiveRec() which is called when a recolor message
is received

1 procedure onReceiveRec(RECmsg m)

2 if sender = Pcnew

then

3 resetTimer()
4 Send ACKmsg to sender

5 cold ← ccur; ccur ← nColor; cnew ← m.c

6 Ccnew

← Cccur

; Pcnew

← Pccur

; T cnew

← init
7 applyReconfig(m.R)
8 sendToChildren(m)
9 endif

The broker accepts the recolor message only if it has been sent by the bro-
ker Pcnew

points to (line 2). This test is needed to detect cycles that may result
from faults. It might happen that the parent/child pointers of some brokers are
perturbed in a way such that a cycle is created in the tree, for example, if the
parent pointer of a broker B points to an ancestor broker B′, which also has
a child pointer to B. In this case it is not obvious from the local view of the
brokers that a cycle exists and recolor messages would be forwarded in the cycle
forever if B′ would accept recolor messages from B. Since B′ does not accept
and acknowledge a recolor message from B, B will eventually remove B′ from his
set of child brokers as described in Algorithm 12. Tree partitions are detected
since recolor messages are not received in the partitions which do not contain R.
Thus, the brokers in the partition will eventually run in a timeout. The rest of
the procedure is similar to the procedure onTimeout() in Algorithm 9 except for
replying with an acknowledge message to the sender to indicate that the broker
is alive (line 4).

The receiver of an acknowledge message sets a flag for the sending broker as
described in Algorithm 11.

Algorithm 11 Procedure onReceiveAck()

1 procedure onReceiveAck(ACKmsg m)

2 if sender ∈ Cccur

then

3 Set flag (sender)
4 endif

This flag is used for a second chance algorithm in the procedure sendToChil-
dren() to remove faulty child broker pointers as previously discussed for the case
of cycles (Algorithm 12, lines 3–8).
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Algorithm 12 Procedure sendToChildren()

1 procedure sendToChildren(RECmsg m)

2 foreach B′ ∈ Cccur

do

3 if flag (B′) is set then

4 Send m to B′

5 Unset flag (B′)
6 else

7 Remove child broker B′

8 endif

9 endfor

Timeouts on the Broker Overlay Layer

We already discussed the dissemination of recolor messages and introduced parts
of the overlay network management, where faulty child broker pointers are de-
tected and discarded. In this section, we further specify timeouts and present
the integration of brokers which were disconnected from the overlay due to a
fault.

The self-stabilizing mechanism of the broker overlay network is based on
timeouts regarding the receipt of recolor messages. On R, a timeout triggers a
new recolor message to be sent to all its child brokers. On every other broker,
a timeout occurs if it does not receive a correct recolor message in time. As
recolor messages are forwarded recursively down the tree, the last leaf broker
receives the message at the latest after time h · δmax, where h is the maximum
height of the tree (i.e., the diameter d of the graph is at most 2 · h) and δmax

(δmin) is the maximum (minimum) delay for processing and sending a message
to a child broker. As the tree may degenerate arbitrarily h can be at most equal
to the maximum number of brokers η in the system (which we assume is known
and stored in ROM for convenience). Given that the timeout on R occurs every
time period ξ, a timeout ξ′ with

ξ′ = ξ + h · (δmax − δmin) (4.1)

is necessary on every broker B distinct from R, which is resetted every time a
new recolor message is received from its parent broker (Algorithm 10, line 3).
Algorithm 13 describes the details of the resetTimer() procedure.

When B 6= R runs into a timeout, it took more than ξ′ to receive the next
recolor message after the last one. This can only be due to a fault, since for-
warding a message from R to B cannot take more than h · δmax. In this case, B
tries to rejoin the tree which is described in Algorithm 14.

There are many ways to find a new parent broker for B depending on the
topology requirements. One is to look for an arbitrary broker which has less
than b child brokers down the tree and use it as a new parent for a request-
ing broker. This way, the broker is integrated as a leaf into the tree and the
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Algorithm 13 Procedure resetTimer()

10 procedure resetTimer()
11 if B = R then

12 timer← ξ

13 else

14 timer← ξ + h · (δmax − δmin)
15 endif

Algorithm 14 Procedure joinTree()

16 procedure joinTree()
17 nxtParent← R

18 do // ask recursively for a new parent

19 tryParent← nxtParent
20 nxtParent← tryParent.askForPlaceOrPointer()
21 until nxtParent = tryParent
22 Connect to tryParent

degree of the broker topology can be maintained, however, it does not prevent
the degeneration of the tree deterministically. An example for the procedure
askForPlaceOrPointer() is depicted in Algorithm 15.

Algorithm 15 Example for procedure askForPlaceOrPointer() which maintains
the broker degree b

23 procedure askForPlaceOrPointer()

24 if |Ccnew

| < b then

25 return B

26 else

27 return random C ∈ Ccnew

28 endif

The broker overlay is in a correct state if the parent and child broker re-
lation between every broker in the system is consistent for the data structures
colored with the values of cold and ccur at R (for the value of cnew at R the
pointers may be inconsistent due to message propagation delays) and the tree

which is defined by Pcold

and Ccold

, and Pccur

and Cccur

, respectively, is not par-
titioned (i.e., there is exactly one way from one broker to another). The value
of Ccnew

and Pcnew

is treated differently as explained in the next section about
reconfiguration. Partitions or cycles are detected as explained in the context of
procedure onReceiveRec() (Algorithm 10).
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Reconfiguration

The focus so far laid on the overlay network management and how to handle con-
trol messages and notification routing. The attribute color has been introduced
to synchronize actions on the overlay network layer with the publish/subscribe
routing layer. All this was preparatory to incorporate reconfiguration into self-
stabilizing publish/subscribe systems which we present in this section.

Whenever a leaf broker wants to join or leave the overlay network or a link
has to be replaced by another one, the topology of the broker network changes.
When a reconfiguration should be implemented, the intended changes are sent
to R, which collects them in the set R and disseminates them in the next recolor
message. Every broker that receives a recolor message carrying reconfiguration
data that affects it implements the change into its Pcnew

and Ccnew

pointers (pro-
cedure call applyReconfig() on line 7 of procedure onReceiveRec(), Algorithm 10).
The recolor message serves as a synchronizer to prevent race conditions when
switching from one topology to another. Recolor messages are routed using Cccur

of every broker B which receives a recolor message (where the value of ccur of B
equals the value of ccur of R). Thus, reconfigurations take two recolor messages
to become active: one to disseminate the reconfiguration and one to activate it.

Figure 4.19 shows an example reconfiguration scenario (without faults),
where B2 shall be moved as a child broker from B1 to R. The solid lines depict
the parent/child relations for ccur while the dashed lines depict the parent/child
relation for cnew (Figure 4.19(a)). White brokers turn gray when they have
received the recolor message and rotated their colors. The reconfiguration re-
quest is sent to R which incorporates it into its child broker pointers before
sending it with the next recolor message in the set R to B1 over Cccur

(Fig-
ure 4.19(b)). On receiving the recolor message, B1 updates its parent/child
pointers Pcnew

and Ccnew

, i.e., R stays the parent of B1 and B1 will have no
child brokers anymore (Figure 4.19(c)). Then, the recolor message is forwarded
to B2 which removes B1 as the next parent broker and sets its Pcnew

pointer
to R (Figure 4.19(d)). The new parent/child pointers become active with the
next recolor message disseminated by R.

As mentioned earlier, a change in the topology in general implies a change
in the routing tables on the publish/subscribe routing layer. As the routing
tables are regularly rebuilt from an initial routing configuration, the reconfigu-
ration of the overlay topology can be incorporated by delaying the switch to the
new topology in Pcnew

and Ccnew

long enough, such that they have been rebuilt
completely when the switch to the new topology is executed. In the following,
we describe the self-stabilizing routing algorithm that is layered on top of the
self-stabilizing broker topology.

Integration of Self-Stabilizing Routing

Recolor messages are used on the topology layer to trigger timeouts and coor-
dinate reconfigurations. To achieve the latter, three topologies are held in form
of colored parent/child pointers. On the routing layer, the color is used for two
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Figure 4.19: Example reconfiguration of the self-stabilizing publish/subscribe
broker overlay topology

different purposes: (i) to rebuild the routing tables periodically and (ii) to avoid
notification loss and duplicates.

It is necessary to periodically rebuild the routing tables as we assume that
they can be perturbed arbitrarily. Therefore, we use the leasing mechanism de-
scribed in Section 3.3: clients regularly refresh their subscriptions and brokers
use a second chance algorithm to remove stale entries from their routing tables.
To incorporate reconfigurations into this mechanism, we require that control
messages (subscriptions and unsubscriptions) are colored with cnew, while noti-
fications are colored with ccur. Notifications and control messages are then for-
warded and applied to the routing tables T ccur

and T cnew

, respectively. Thereby,
we ensure that notifications will be routed over the topology, the publishing
broker belonged to at publication time. This way, we prevent duplicates, i.e.,
notifications sent multiple times to the same broker, which could only happen
if a notification can be colored with multiple colors and takes different paths to
the same broker in case of reconfigurations. The second chance algorithm is im-
plemented through rotating the colors and initializing T cnew

with a legal initial
routing configuration init (Algorithm 9 on page 120, line 6, and Algorithm 10,
line 6, respectively).

The algorithm has to take care that the routing table T cnew

on every broker
in the system is complete when the next recolor message is sent by R. Otherwise,
notifications might get lost. Therefore, the refresh period ρ for every subscriber
has to be chosen according to the values determined in Section 3.3:

ξ > ρ + 2 · h · δmax (4.2)

A notification is colored with ccur of the publishing broker. It may happen
that a notification encounters a recolor message on its way to R. In this case,
the following brokers already rotated their colors such that the color of the
notification is now different from ccur of those brokers. To be able to route the
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Figure 4.20: A new subscription encounters a recolor message on its way to R

notification until it reached all intended receivers, the brokers also store the data
structures colored with cold, where cold is the value of ccur before the last recolor
message has been received.

New (un)subscriptions are sent out immediately. Since a subscription may
also encounter a recolor message on its way to R, control messages are colored

with cnew of the issuing broker to avoid that subscriptions are present in T cold

and later T cnew

but not in T ccur

. Figure 4.20 depicts a situation, where a new
subscription is issued shortly before a new recolor message is received. Before the
subscription has reached every relevant broker, it encounters a recolor message
which rotates the colors of the brokers. Due to the FIFO property of the com-
munication channels, the color of the subscription equals the value of color ccur

of every subsequently reached broker, because it “follows” the recolor message
afterwards. At time tr, when the subscription and the recolor message have
reached every broker in the system, the new subscription is consistently incor-
porated into the routing tables of every affected broker. Due to the choice of the
timeout ρ, the new subscription will also be incorporated into the routing table
of every broker when the next recolor message is sent by R.

If the color of the subscription would have been the value of ccur of B in this

example, the subscription would have been incorporated into T cold

of every bro-
ker in the system from time tr until time t0+2·ξ. In this period, the subscription
would not be present in T ccur

of the brokers such that “old” notifications would
be routed to B but not the current ones. Thus, notifications could be lost.

Self-Stabilization

A self-stabilizing system is guaranteed to eventually reach a legitimate state in
case no fault occurs for a long enough time period. In this section, we discuss
the different states the systems can end up in due to faults. The state is defined
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by the contents of the variables stored in RAM a broker uses. These comprise
the following values a broker holds:

(1) The values of its color variables

(2) Its child and parent pointers (overlay network layer)

(3) Its routing table entries

A corruption of these values may lead to the following faults:

(1) On the overlay network layer:

(1a) Network partitioning

(1b) Cycles

(2) On the routing layer:

(2a) Messages not forwarded or delivered although they should be

(2b) Messages forwarded or delivered although they should not be

In addition to that, brokers and links may crash and come up again due to
transient faults. Since we assume that broker crashes and link failures are only
transient, we can concentrate on the time after the transient faults, when the
brokers or links are up again—with a possibly corrupted state. Messages inserted
due to faults can be modeled as faults that manifest in the state of the broker
or as messages delivered although they have never been published. However,
message inserted due to faults may be forwarded for at most time h · δmax until
they have left the system. In the following, we discuss all faults which may
happen and how the system stabilizes itself afterwards.

Network Partitioning. If the network becomes partitioned, for example, be-
cause the parent and child broker pointers of two brokers are perturbed ac-
cordingly, the brokers in the part of the network which does not include R will
eventually run into a timeout because they will not receive recolor messages any
more. This case is handled in Algorithm 9, where a regular broker that runs
into a timeout tries to rejoin the tree by contacting R.

Cycles. Cycles in the broker overlay topology may result from perturbed par-
ent/child broker pointers, for example, if an ancestor B′ of broker B is at the
same time a child of B. In this case, B will send a recolor message to B′ who
has already received it. Due to the checks done in Algorithm 10, B′ will not
accept the recolor message. Accordingly, it will also not reply with an acknowl-
edge message. Thus, B will remove B′ eventually from his child brokers set
(Algorithm 11 and Algorithm 12).

Cycles in the topology, where all parent/child broker pointers are consistent,
are handled as network partitions because this case can only happen if the net-
work is partitioned and the root broker of the partition without R additionally
has a parent broker.
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Perturbed Routing Tables. Regarding the routing tables, we follow the
same approach as presented in Chapter 3 which relies on a precautionary reset.
This guarantees that routing table entries which have been modified or inserted
due to a fault will vanish eventually and that routing table entries that have
been removed due to a fault will be inserted again.

Colors. The colors of a broker are stored in the variables cnew, ccur, and cold

and can be perturbed arbitrarily. However, every recolor message rotates all
color values and sets the value of cnew to the color stored in the recolor message
(cf., Algorithm 10). Thus, the colors are eventually consistent with those of R.

Root Broker. The root broker R plays a central role in this algorithm because
it functions as the synchronizer as well as the central contact which is responsible
for coordinating reconfigurations. For the whole system being self-stabilizing it
is therefore necessary to implement R in a self-stabilizing fashion. Although, R
is already self-stabilizing according to the timeout mechanism, it can be imple-
mented more robust by using a root group. Such a root group consists of several
brokers that take over R’s task in a predefined, globally known order in case the
previous root broker fails. Details on the this topic can be found in [60].

Stabilization Time

Every corrupted routing table entry will be removed after at most

3 · ξ + h · (δmax − δmin)

Assume that in the worst case the table colored with cnew is corrupted by
inserting a bogus entry right after a recolor message has been received. In this
case it will take at most three recolor messages until the wrong routing table

entry has vanished from T cold

at that time. A recolor message is sent every ξ,
and will take at least h · δmin and at most h · δmax until it has reached the last
broker. Thus, a recolor message may arrive at most h · (δmax − δmin) after the
last recolor message received before.

(Un)subscriptions are colored with cnew of the issuing broker. If a bogus
unsubscription message ¬s is induced into the system, it may arrive in the
worst case right after a respective subscription s arrived at a broker, but less
than ρ + h · (δmax − δmin) before the next recolor message arrives such that the
unsubscription is not overridden by a refreshing subscription before the next
recolor message arrives. Thus, the routing table misses the subscription in the
following which is active until the color of the broker turns the value of cnew

to the value of the corrupted routing table again and initializes it subsequently.
This takes no more than two recolor messages or time 2 · ξ + h · (δmax − δmin).
In this case is takes at most time

2 · ξ + 2 · h · (δmax − δmin) + ρ
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until the system is stabilized again.
A partitioning of the network forces brokers to rejoin the tree. It takes at

most ξ + h · δmax (cf. Equation 4.1) until a broker B recognizes a partitioning.
The time needed for re-integrating B into the overlay network depends on the
algorithm used. It is reasonable to assume that finding a parent broker for B
takes no more than time ξ. It takes at most another time ξ until a recolor
message is sent out by the root broker that carries the reconfiguration which
integrates B into the system. Finally, it takes at most ξ + h · (δmax− δmin) until
every broker has incorporated the new configuration into its state and the new
configuration is active, i.e., the new configuration is implemented in the variables
colored with ccur of R. Thus, the system is stabilized after at most

ξ + h · δmax + 2 · ξ + ξ + h · (δmax − δmin) = 4 · ξ + h · (2 · δmax − δmin)

Thus, the stabilization time ∆r of the self-stabilizing algorithm is given by

∆r = 4 · ξ + h · (2 · δmax − δmin) (4.3)

4.5.4 Ordering

In contrast to the advanced coordinated reconfiguration algorithm, the coor-
dinated reconfiguration algorithm for layered self-stabilizing publish/subscribe
systems does not respect notification ordering yet. However, it is also possible
to incorporate FIFO-publisher and causal ordering into this algorithm. In the
following, we sketch two extensions that are able to provide notification ordering
guarantees in the face of reconfigurations.

Causal Ordering. In general, it is save to queue all notifications for one
recolor period after a reconfiguration has been implemented. Doing this, it is
guaranteed that all notifications that have been published in the old topology
have reached their destinations when disseminating the notifications in the new
topology after the reconfiguration. This way, we are able to provide causal
ordering guarantees.

FIFO-Publisher Ordering. The FIFO-publisher ordering of notifications
can only be disturbed if a notification passes a link that was part of a reconfigu-
ration, i.e., which has been added to the topology. We can, thus, provide a more
optimized solution than that presented for causal ordering. Here, it suffices to
delay notifications for one recolor period which are going to be sent over a link
that has been added to the topology due to a reconfiguration. Such a link can
be detected by simply comparing the neighbor broker pointers colored with ccur

and cold. This way, reconfigurations do not affect all notifications disseminated
but only those which are directly affected by it.

Both mechanisms can be easily integrated into the algorithm but induce a
notification delay similar to the advanced coordinated reconfiguration algorithm.
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Another option would be to follow the approach presented by Zhao et al. [171]
which applies vector clocks. This approach requires more effort for integration
but may lower the average notification delay due to reconfigurations.

4.5.5 Discussion

The coordinated reconfiguration algorithm presented for layered self-stabilizing
publish/subscribe systems is the first algorithm for self-stabilizing publish/sub-
scribe systems that allows for reconfiguration at runtime without message loss.
Using this algorithm, it is possible to incorporate reconfigurations at runtime
without service interruption.

Advertisements

The algorithm discussed does not support advertisements. It is easy to support
advertisement by following the same approach as discussed in Section 3.4.2.
Therefore, the value of ξ could be increased such that there is enough time
to (i) disseminate the recolor message to all brokers and incorporate necessary
reconfigurations, (ii) to build the subscription routing tables, and (iii) to build
the notification routing tables accordingly.

Subscription Activation Delay

New subscriptions are colored with cnew of the issuing broker. This may in-
crease the delay for a subscription to become active. An option to reduce the
delay would be to send new subscriptions additionally using the topology col-
ored with ccur of the issuing broker. The price would be an increased message
overhead.

Parallel Reconfigurations

Parallel reconfiguration requests can be handled by R. If they are interfering or
contradicting they can be rejected. If it is obvious that they can be executed in
parallel, they are disseminated. Otherwise, they need to be serialized. However,
R may not be able to oversee the consequences of every combination of reconfig-
urations. If reconfigurations are sent to R which lead to an incorrect topology,
this may lead to a fault from which the system will recover eventually.

Scalability

In large-scale heterogeneous scenarios, the algorithm proposed may lead to long
stabilization times and long average delays for the implementation of reconfig-
urations. In these cases, it is beneficial to not use one big dissemination tree
but a tree which consists of several subtrees in a hierarchical fashion: the sub-
trees are viewed as leaves represented by the root of the subtree in the main
tree and all trees are self-stabilizing using the proposed algorithms. This way,
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longer communication delays over wide-area connections would have less impact
on the stabilization time and reconfiguration delays in subtrees of the system.
However, this approach restricts reconfigurations to subtrees which is sensible
in many scenarios, where administrative domains do not overlap.

4.6 Related Work

Most of the important related work has already been discussed in Section 4.4.1
and Section 4.5.1. In this section, we discuss related work not covered yet.

Self-Stabilization. The possibility of exploiting self-stabilization to create
systems that are able to manage themselves to a certain degree has recently
gained interest in the growing research communities that work on ad hoc and
sensor networks [75]. In these scenarios, (huge) numbers of nodes are deployed
without any infrastructure like central access points or routers and it is expen-
sive (if not impossible sometimes) to manage them manually. However, these
scenarios are subject to dynamic changes that may lead to changes of the topol-
ogy and it cannot be expected that all reconfigurations of the topology do not
hurt the safety properties of the system.

Kakugawa and Yamashita introduce the class of dynamic reconfiguration tol-
erant (DRT) algorithms, where a system that is in a legitimate state is guar-
anteed to not leave this state given that no faults or certain network reconfig-
urations occur [94]. The goals of their work are very similar to those of super-
stabilizing protocols with the difference that the passage predicate that must
hold during reconfiguration of a superstabilizing system equals the correctness
predicate of the self-stabilizing system itself [74]. Along with their definition,
the coordinated reconfiguration algorithm for self-stabilizing publish/subscribe
systems belongs to the class of DRT self-stabilizing algorithms. However, the
authors do not generalize their approach beyond the example given for a DRT
self-stabilizing token reconfiguration algorithm.

Message Ordering. The advanced coordinated reconfiguration algorithm is
able to guarantee FIFO-publisher or causal ordering of delivered events. Or-
dering is also an issue for systems with mobile clients, where notification or-
dering may also get mixed up due to wandering clients (and implicit recon-
figurations that are triggered thereby). Lwin et al. discuss the case of causal
ordering in mobile environments assuming a simplified model, where clients are
removed and added only as leafs and no brokers join and leave the system [110].
They use a vector clock like mechanism to ensure a FIFO-publisher ordering
for (un)subscriptions and notifications and use queues to delay messages. The
authors do not discuss the case, where the broker network is reconfigured.

A distributed approach is taken by Lumezanu et al. by subdividing the task of
message ordering into sequencing atoms which assign sequence numbers to mes-
sages [109]. Their approach does not rely on one acyclic broker overlay topology
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with FIFO channels for notification delivery (which guarantees causal ordering
given that the brokers process messages in FIFO-publisher order) as we do. In-
stead, the notion of groups of subscribers is introduced together with dedicated
mechanisms for message ordering between different groups of subscribers.

4.7 Discussion

In this chapter, we discussed and analyzed the general problem of reconfiguring
the broker overlay topology of a publish/subscribe system at runtime without
service interruption. Our notion of reconfiguration implies that reconfigurations
can be delayed for a finite time period. Moreover, they transform the broker over-
lay topology from one legal topology to another one. This marks an important
difference between a fault and a reconfiguration. We identified and analyzed the
main challenges in implementing reconfigurations and presented our algorithms
which are the first to support the reconfiguration of acyclic broker topologies
for conventional and self-stabilizing publish/subscribe systems without message
loss while keeping message orderings, thus enabling seamless reconfigurations at
runtime.

The advanced coordinated reconfiguration algorithm for conventional broker
overlay networks presented is able to maintain FIFO-publisher and causal order-
ing of notifications. Besides that, it always ensures FIFO-publisher ordering for
(un)subscriptions which is required to maintain the correctness of a publish/sub-
scribe system in face of reconfigurations. The algorithm relies on the coloring
of messages and additional queues for (un)subscriptions and notifications (if an
ordering of notifications is required). It is the first algorithm that realizes the
reconfiguration of an acyclic publish/subscribe broker overlay topology at run-
time without message loss. Even more, it is able to provide ordering guarantees
for messages no other reconfiguration algorithm supports yet. The integration
into the general publish/subscribe model showed that the required changes are
reasonably small and, thus, feasible in a wide range of publish/subscribe sys-
tems. Furthermore, we showed in a simulation study that our algorithm out-
performs the naive strawman approach with respect to message overhead and
delay—although our approach relies on additional messages that are needed for
coordination purposes. Our algorithm requires a fault-free scenario and is, thus,
an important supplement to the algorithms presented in related work which are
designed for error-prone environments, where reconfigurations are triggered by
unpredictable link failures.

Reconfiguring arbitrary self-stabilizing systems with respect to certain guar-
antees implies some subtle problems and requires further research efforts. We
analyzed these problems and concluded that simply layering self-stabilizing algo-
rithms on the topology and the routing layer is not feasible in publish/subscribe
systems because the contents of the routing tables are depending on the bro-
ker overlay topology. Our approach relies on a combination of self-stabilizing
content-based routing as introduced in Chapter 3 with a self-stabilizing bro-
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ker overlay network that accepts arbitrary acyclic broker topologies in case no
fault occurs. In order to meet the dependencies between both layers, we intro-
duced a coloring mechanism that coordinates actions on them. We were, thus,
able to prevent message loss during reconfiguration and guarantee causal and
FIFO-publisher ordering. The coloring mechanism described is not limited to
self-stabilizing publish/subscribe systems. It is a general principle which can be
used to realize seamless reconfigurations in other layered self-stabilizing systems
as well. However, our approach currently requires a dedicated root broker that is
responsible of coordinating reconfigurations. We proposed to realize this broker
in form of a cluster to prevent a bottleneck or to take a modular approach for
an improved scalability. Both issues require more research and remain open for
future work.

The algorithms presented in this chapter are a necessary prerequisite to com-
bine the (self-stabilizing) routing layer with an adaptive reconfiguration mech-
anism which runs on top of the publish/subscribe layer and issues reconfigu-
ration stimuli. These reconfigurations can be implemented by the lower lay-
ers as described in this chapter. Thus, the algorithms are building blocks for
self-managing notification services in general. Using them, it is now possible
to manage publish/subscribe systems at runtime without service interruption
which improves the applicability in dynamic environments that are often faced
in practice.
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5.1 Introduction

Many applications that build on the publish/subscribe communication paradigm
like multiplayer online games [21], the dissemination of news articles [130, 140],
security network monitoring [66], and online auctions [26, 107] are subject to
dynamic behavior of the system’s publishers and subscribers. For example, the
interest in certain news topics may vary in time and region as well as the number
of notifications published that belong to these topics. This behavior may change
arbitrarily due to the free will of the users. Moreover, not only the message
flows change over time. The processors and the communication links are shared
by various applications such that the properties of the communication links as
well as the processing capabilities available for serving the publish/subscribe
system on the individual brokers may change over time. Thus, according to
the performance function applied, a broker overlay topology that takes care of
message forwarding may be “better” than another one or not—depending on the
current setting.

In this chapter, we present an approach to enable publish/subscribe systems
to optimize their broker overlay topologies according to a performance model
which takes processing and communication costs into account. The goal is to
render the broker topology of a publish/subscribe system self-optimizing, i.e.,
to enable it to adapt to dynamic changes without human intervention in order
to increase its performance. This ability is of great value in large and complex
systems, where human administrators are not able to manually administer the
system anymore. It is also useful for systems, where no administrator is avail-
able but a good performance is still required or useful, for example, in small-scale
e-home scenarios. Besides automated fault management as described in Chap-
ter 3, self-optimization is one key component of self-managing publish/subscribe
systems.

In the next section, we introduce our system model together with the cost
model used. We then give a formal specification of our problem statement in
Section 5.3. We show that the problem of finding an optimal broker overlay
network topology for a given distribution of clients is NP-complete and conclude
that it is sensible to use a heuristic to approach this problem. Two heuristics
that have been proposed in literature to approximate a solution for the optimal
broker overlay network topology problem are discussed in Section 5.4. We show
that they both rely on assumptions that do not hold in general. Accordingly,
we propose a new heuristic in Section 5.5 together with a framework that can
also be used to easily integrate other heuristics into publish/subscribe systems
that rely on acyclic broker overlay topologies. With the new heuristic, brokers
have a limited view on the network and try to optimize the topology of their
neighborhood according to common traffic as well as communication and pro-
cessing costs. The goal is that the local optimizations carried out by each broker
emerge in a good (in terms of costs) overall broker topology. To evaluate the
performance of the new heuristic, we compare it to the two exemplary heuristics
in Section 5.6. The simulation-based evaluation comprises various aspects like
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the total performance, the ability to adapt to changes, the resulting topology
characteristics, and the flexibility with respect to the distribution of cost.

5.2 System Model

In the system model used, the notification service that takes care of forward-
ing notifications from publishers to interested subscribers consists of a set of
brokers V . We start with a connected network graph G = (V , E). This graph
consists of the brokers V and the potential overlay network links E . Usually,
each broker v ∈ V can potentially connect to every other broker in V . However,
some edges might be omitted, for example, due to administrative reasons.

All notifications N published are distributed using a single spanning tree T
of G, where each n ∈ N is published by a dedicated broker P (n) ∈ V and must
be delivered to a respective set of brokers S(n) ⊆ V . In the following, we call T
the broker overlay (network). An example for a broker overlay network that is
embedded in a general graph is shown in Figure 5.1.

Overlay T
Broker

Network
Graph G

B7

B5

B8

B2
B4

B3
B6

B1

Figure 5.1: Example graph with an embedded broker overlay

5.2.1 Cost Model

To measure the performance of a publish/subscribe system, we introduce a cost
model that comprises processing costs and communication costs. For every
link e ∈ E , we define the communication costs ce. Accordingly, for every bro-
ker v ∈ V , we define the processing costs pv. The communication costs occur
when a notification is sent over a link, while the processing costs occur when a
notification is processed by a broker.

The cost metric is abstract and can comprise arbitrary aspects depending on
the application or the desired goals. The communication costs may correlate,
for example, with the delay or the bandwidth of a link or a combination of both.
The processing costs may correlate with the processor speed of a broker its main
memory or, again, a combination of both, for example. Every message that is
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forwarded in the broker overlay network causes costs at each broker and link
it passes. In the following, we assume that those costs do only change with a
moderate speed, because it would otherwise be hard to adapt the topology in
time. Analogous, it is not our aim to be able to adapt to sudden load spikes
which would require an extremely fast adaptation mechanism. Moreover, this
would require sophisticated application specific prediction mechanisms because
a sudden load spike may need to be predicted in advance in order to be able to
react adequately.

We use the cost model in the following to measure the “performance” of a
broker overlay network topology with respect to a given client behavior. The
model is simple but very powerful because both metrics can be a combination
of various other metrics and be normalized and combined arbitrarily, being able
to capture a wide range of optimization targets for the broker overlay topology
of a publish/subscribe system. The cost model allows judging the quality of a
broker topology with respect to the underlying physical network topology.

In contrast to other approaches, our model takes processing costs into ac-
count. This is sensible because advanced matching algorithms, e.g., for XML
documents, need non-negligible periods of time for drawing routing decisions for
incoming messages [7, 36].

Our cost model implicitly assumes that the processing costs of messages do
not vary too much for different messages because we assume that the processing
costs do not depend on the individual message. Moreover, it assumes that the
number of neighbors of a broker does not have a significant influence on the
processing costs. Both assumptions may not hold in general. However, we
believe that working with average values for the processing costs per message is
sufficient for many scenarios.

5.3 Problem Statement

Our goal is to improve the performance of a publish/subscribe system by adapt-
ing the structure of the broker overlay network. To measure the performance,
we consider communication and processing costs which accumulate per message.

In static environments, where client behavior and network structure do not
vary over time, it is sufficient to construct the broker overlay network only once
in order to optimize the performance of the whole system.

In the following, we first consider this static publish/subscribe overlay opti-
mization problem in our system model and show that it is NP-hard, even if the
notification flows are known in advance. For large-scale settings, this means that
heuristics must be used to find an acceptable solution in a reasonable time for
this problem. We then argue that the problem is even harder in dynamic envi-
ronments. To keep the system within good working conditions, we additionally
have to adapt the system to unpredictable changes at runtime.
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5.3.1 Basics

Figure 5.1 depicts an example of a broker overlay network in a graph consisting
of eight brokers. Instead of using the whole spanning tree for the distribution of
a notification n, only the minimal connected subtree of T is used which contains
the publisher and the subscribers of n. This subtree is called the delivery tree
of n and is defined as follows.

Definition 10 (Delivery Tree). For a given broker overlay tree T and a notifi-
cation n the delivery tree Dn

T of n with respect to T is defined by

Dn
T := (Vn

T , En
T ) (5.1)

where Vn
T is the set of brokers and En

T is the set of overlay links contained in the
minimal subtree of T that connects the brokers hosting the subscribers S(n) and
the publisher P (n).

According to the definition of the delivery tree and since n is sent over all
links in En

T and is processed by all brokers in Vn
T , the cost for distributing n is

given by

cost(n, T ) :=
∑

∀v∈Vn
T

pv +
∑

∀e∈En
T

ce (5.2)

The delivery tree of n ∈ N is determined by the set of brokers which consists
of the brokers hosting the publisher and the subscribers of n. We define this
set as V (n) := {P (n)} ∪ S(n). Vn

T and V (n) can differ significantly. Assume
that in the example broker overlay depicted in Figure 5.1, broker B2 publishes a
notification n in which only B5 is interested. In this case, Vn

T = {B2, B3, B4, B5}
includes B3 and B4 even though they are not interested in n because V (n) =
{B2, B5}.

Obviously, the total cost of forwarding one specific notification in the broker
overlay strongly depends on its delivery tree and, thus, on the spanning tree.
The overall cost for distributing all notifications in N using one spanning tree T
is then given by

cost(N, T ) :=
∑

n∈N

cost(n, T ) (5.3)

5.3.2 Static Case

In our model, we use a single spanning tree T for distributing all notifica-
tions. To optimize the costs we, thus, look for the spanning tree which min-
imizes cost(N, T ). We now formally define the static optimization problem.

Definition 11. (Publish/Subscribe Overlay Optimization Problem (PSOOP))
Given a graph G = (V , E), communication costs ce for all e ∈ E, processing
costs pv for all v ∈ V, a set of notifications N , and a function V : N → 2V ,
determine the spanning tree T of G which minimizes cost(N, T ).
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Complexity

In the following, we show that the decision problem which corresponds to the
PSOOP is NP-complete. We then show that PSOOP is NP-hard and that it is
sensible to apply heuristics to solve the problem.

Definition 12. (Publish/Subscribe Overlay Decision Problem (PSODP)) Given
a graph G = (V , E), communication costs ce for all e ∈ E, processing costs pv

for all v ∈ V, a set of notifications N , a function V : N → 2V , and a bound
Cmax ∈ N+, is there a spanning tree T of G with cost(N, T ) ≤ Cmax?

PSODP is a generalization of the optimum communication spanning tree
(OCST) problem [81] which deals with the efficient construction of telecommu-
nication networks interconnecting cities. In the OCST problem, each link e ∈ E
of the graph G = (V , E) is labeled with communication costs we (e.g., with
the length of the connecting wire). Additionally, the communication require-
ments r({u, v}) between any two vertices u, v ∈ V are known. The problem
consists of finding a spanning tree T for G with costs that lie below an upper
cost bound Cmax.

Let W ({u, v}) be the function which returns the sum of the link costs of
those links that make up the path connecting u and v in the spanning tree T .
Then, the overall costs of a spanning tree T are

cost(T ) :=
∑

u,v∈VT

r({u, v}) ·W ({u, v}) (5.4)

Definition 13. (OCST Decision Problem) Given a graph G = (V , E), commu-
nication costs ce for all e ∈ E, communication requirements r : V × V → N+, a
bound Cmax ∈ N+, is there a spanning tree T of G with cost(T ) ≤ Cmax?

The OCST decision problem has been proven to be NP-complete in 1978 [92].
We can easily show that an instance of the OCST decision problem can be
transformed into an instance of the PSODP problem using restriction: we set
the processing costs of the nodes to 0 and only consider the communication
costs. Thus, PSODP is NP-hard. PSODP is also in NP because a deterministic
Turing machine can verify a guessed solution in polynomial time, i.e., compute
the actual overall costs of an overlay. Thus, PSODP is NP-complete. Hence, in
order to solve this problem efficiently, we need to apply heuristics. A brute force
search for an optimal spanning tree would result in trying all nn−2 spanning
trees that can be created in a fully connected graph with n nodes according to
Cayley’s formula [40].

Approximation Algorithms

Please note that heuristics for approximating the OCST optimization problem
in an efficient way already exist. However, they all rely on global knowledge.
In [129], Peleg and Reshef propose an algorithm that approximates the optimal



5.3. PROBLEM STATEMENT 141

solution for the OCST problem in time O(log2 |V|) with bound O(log3 n). How-
ever, to be able to apply the solution, W (u, v) must be conform to the triangle
inequality which is not necessarily true on the Internet.

The minimum routing cost spanning tree (MRCST) problem is a special
case of the OCST problem, where all nodes u and v have the same commu-
nication requirements (i.e., r({u, v}) = 1). For this case, a polynomial ap-
proximation scheme exists [164]. Two further special cases of the OCST prob-
lem that additionally consider vertex weights are the product requirement op-
timum communication spanning tree (PROCT) and the sum-requirement opti-
mum communication spanning tree (SROCT) problem which can be solved with
a 1.557- (PROCT) and 2-approximation (SROCT) in O(n3) and O(n5), respec-
tively [163]. For the PROCT problem, the communication requirement between
two nodes equals the product of the weights of both nodes, while for the SROCT
problem, the communication requirement between two nodes equals the sum of
their weights. Both models do not fit for our scenario because we also consider
processing costs which are not regarded here.

In [106], Li and Bouchebaba present a heuristic based on a genetic algorithm.
This heuristic can lead to optimal or near-optimal solutions but requires global
knowledge, too.

All approximation algorithms presented so far require global knowledge and
are, thus, not suited for a large-scale distributed publish/subscribe system, where
global knowledge is not feasible. Another severe limitation with using these ap-
proximation algorithms in a distributed publish/subscribe system is the anony-
mous communication style. It decouples publishers and subscribers and makes it
hard to determine the mutual communication requirements between all brokers
which are required for applying the approximation algorithms discussed. More-
over, the mutual communication requirements are not predetermined because
they do not only depend on the interests of the brokers (in terms of subscrip-
tions) but also on the notifications published.

5.3.3 Dynamic Case

In the previous section, we formalized the problem of finding an optimal broker
overlay network in a static setting, where all parameters are known (the notifi-
cations, their respective publishing/consuming brokers, as well as the processing
and communication costs of brokers and links, respectively). However, in many
scenarios this setting is not realistic due to a number of reasons. The set of
notifications that brokers publish and subscribe for may vary over time. This
affects the number of notifications to be forwarded and the parts of the over-
lay network through which they flow. The network topology may also change
including processing as well as communication costs.

The above changes can, to a great extent, affect not only the operating
costs at any point in time, but also the accumulated overall costs. In these
cases, better results (i.e., lower costs), can be achieved by adapting the overlay
network whenever a significant advantage may be gained. Since the changes are
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in general not known in advance, we are facing a typical on-line problem. Thus,
in order to adapt, we have to rely on gathered data about the past for predicting
the future. Our approach constantly gathers data about notifications published
and consumed as well as about processing and communication costs in order to
derive potential adaptations that lower the operating costs.

Since our solution is targeted at large-scale systems, an algorithm based
on global knowledge is not feasible. Consequently, our heuristic presented in
Section 5.5 adapts the overlay network based on local knowledge only. It assumes
that the overall setting changes with a moderate speed such that sophisticated
(and application dependent) prediction mechanisms are not required.

5.4 Example Heuristics

We showed in the previous section that the problem of finding an optimal bro-
ker overlay topology for a dynamic publish/subscribe system is hard. In this
section, we present two heuristics that try to optimize the broker overlay topol-
ogy. They rely on greedy algorithms and global knowledge and have both their
individual drawbacks since they do not consider processing costs. Decentral-
ized versions based on local knowledge will serve as a benchmark later in the
evaluation section.

5.4.1 Minimum Spanning Tree

The minimum spanning tree heuristic (MST) performs best if the consumption
of notifications is uniformly distributed between all brokers and the processing
costs of all brokers are equal. In this case, a minimum spanning tree with respect
to the communication costs is a good choice for the broker overlay network
topology. The problem of building a minimum spanning tree is well researched
and is, thus, not further discussed here [100, 136].

5.4.2 Maximum Associativity Tree

The maximum associativity tree heuristic or maximum interest tree heuristic
(MIT) is based on one of the first approaches targeted at the optimization of
publish/subscribe broker overlay topologies and has been published by Baldoni
et al. [15, 16]. It focuses only on the notifications consumed by brokers and leaves
network metrics aside and is discussed in the following before we introduce the
maximum interest tree heuristic.

Associativity Metric Based on Subscriptions

The original approach by Baldoni et al. explicitly concentrates on tuning the
performance of the notification service by exploiting structural similarities of
brokers and clustering them accordingly. The authors propose a distributed al-
gorithm which considers the interest of each broker and builds an associativity
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metric from the intersection of these interests. Based on this metric, the algo-
rithm tries to connect brokers with a high mutual associativity value to increase
the overall associativity of the system. Thereby, the algorithm aims at decreas-
ing the latency of notifications by reducing the average number of hops they
travel through the system.

The authors derive a broker’s zone of interest from the size of the notifi-
cation space covered by the broker’s local subscriptions [16]. Assuming that
notifications are distributed uniformly, larger overlapping zones of interest re-
sult in a greater number of identical notifications being consumed by the brokers.
To avoid extremely degenerated topologies a very limited network awareness is
added by simply introducing a manually chosen upper bound for the costs a
new overlay link can have. On this level of abstraction, it is not taken into
account that even brokers exhibiting a low associativity value can be success-
fully deployed to decrease the network traffic and, thus, increase the system’s
performance.

The implicit assumption for using the associativity metric which is based
on the comparison of filters is that notifications are distributed uniformly in
the notification space. In this case, larger overlapping zones of interest result
in a greater number of identical notifications consumed. However, this limits
the applicability of the algorithm. Apart from this, the computation of the
associativity is quite costly and difficult. This is why the authors proposed
another application layer metric to derive the associativity value from.

The basic algorithm works as follows. It is triggered when a broker Bi believes
that it is possible to increase the associativity of the system, i.e., when it seems
likely that there is another broker behind a neighbor broker Bj that shares more
interest with Bi than Bj does. To reason about this, every broker needs to know
the local routing entries of every neighboring broker (which is not discussed in
greater detail in the papers). If Bi manages a significantly bigger zone of interest
in its routing table for Bj than Bj does for its local clients, a request message is
sent that tries to find a broker that has a bigger associativity with Bi than Bj

has. If such a broker Bk is found, a link on the path from Bi to Bk has to be
removed to prevent a cycle when Bi and Bk are directly connected. The link
connecting two brokers with the minimum associativity is chosen to be removed,
if this associativity is smaller than the associativity between Bi and Bk.

Associativity Metric Based on Common Traffic

To circumvent the problem of determining overlapping zones of interests using
filters, the authors introduce a history of the local events consumed or published
by each broker to calculate the associativity based on the intersection of the
set of messages consumed by two brokers [15]. Thereby, they try to become
independent of the distribution of notifications and consider only the actual
notification flow, which is similar to our basic approach. In recent work, the
authors propose the use of a special request message which carries the history
of a broker. This message is sent out regularly and is evaluated by all brokers it
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reaches in order to determine the associativity of the receiving broker with the
sender [17]. Finally, the metric focuses solely on the application layer and does
not take processing load and costs for links on lower layers into account (apart
from limiting the costs of new overlay links as discussed above). This is due to
the main goal of the authors to minimize the number of pure forwarding brokers
(i.e., brokers that only forward messages and do not have any local clients that
issue subscriptions). It is, thus, still not taken into account that forwarders
can be successfully used to decrease network traffic and, thus, increase system
performance.

Maximum Interest Tree Heuristic

The example heuristic that creates maximum associativity trees assumes that it
knows the set of notifications consumed by every broker in the system. Then, it
reconfigures the network until all brokers with common interest are “close” to
each other. Therefore, the link between every pair of brokers is labeled with the
number of notifications they share. The maximum associativity tree is then built
by using a modified minimum spanning tree algorithm such that a maximum
spanning tree is built with respect to the labels of the links.

In the following, we use the terms “common traffic” and “common interest”
of a set of brokers, when we talk about identical notifications consumed by all
brokers in this set.

5.4.3 Disadvantages

As already mentioned above, both heuristics rely on implicit assumptions regard-
ing the distribution of notifications in the notification space and the processing
costs of the brokers. In this section, we show an example case, where both
heuristics do not manage to find an optimal spanning tree for notification dis-
semination in a simple broker overlay network topology. This example motivates
our heuristic presented in the following section.

Let us assume that the broker overlay network consists of three brokers B1,
B2, and B3 as depicted in Figure 5.2(a) on the next page. The link labels depict
the communication costs and the node labels depict the processing costs of each
broker. Broker B2 has a client that publishes notifications for which clients
at B2 and B3 subscribed. Of ten notifications published by the publisher at B1,
B2’s client is interested in five notifications, while B3’s client is interested in
all ten notifications published at B1, i.e., B1 and B3 share a common traffic of
I1,3 = 10. In addition to that, a publisher at B1 publishes one notification for
which only one client at B2 is subscribed. Thus, B1 and B3 share a common
traffic (or interest) of 6 notifications (I1,2 = 6).

Minimum Spanning Tree. Using the MST heuristic the topology depicted
in Figure 5.2(b) on the facing page is created because link B1B3 is the most
expensive one. However, the total cost of this topology is determined not only
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Figure 5.2: Example topology showing topologies created by the MIT and MST
heuristic (B1 is not interested in any of 10 notifications published by B2 and
consumed by B3)

by the communication costs of the links but also by the processing costs of the
brokers. Thus, the cost of the topology under the given traffic sums up to

cost(MST) = 10 · (p2 + c1,2 + p1 + c1,3 + p3)

+1 · (p1 + c1,2 + p2) = 129 (5.5)

Maximum Interest Tree. The MIT heuristic only considers the common
traffic shared by brokers. Thus, the topology that results from applying the
MIT heuristic looks like the one depicted in Figure 5.2(c). The cost of this
topology under the given traffic sums up to

cost(MIT) = 10 · p2 + 10 · (c2,3 + p3) + 5 · (c1,2 + p1)

+1 · (p1 + c1,2 + p2) = 119 (5.6)

Optimal Topology. From the calculations carried out above it is obvious that
the topology created by the MIT heuristic is cheaper than the one created by
the MST heuristic. However, it is not the cheapest possible topology which is
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depicted in Figure 5.2(d) and causes the following costs:

cost(opt) = 10 · (p2 + c2,3 + p3) + 5 · (c1,3 + p1)

+1 · (p1 + c1,3 + p3 + c2,3 + p2) = 113 (5.7)

Conclusions. The example shows the possible disadvantages of using both
heuristics. However, both are an important benchmark for our solution pre-
sented in the next section. A minimum spanning tree is for example used
when implementing publish/subscribe communication over multicast [124] and
the MIT heuristic is related to the first approach published to enable broker
overlay networks to optimize themselves.

5.5 Cost and Interest Heuristic

The previous sections showed that the problem of optimizing the broker overlay
topology in a publish/subscribe system regarding communication and processing
costs is hard. Existing solutions have several drawbacks and are expected to only
provide a good solution for special cases (e.g., if the processing costs are negligible
or if global knowledge is available). Approximation algorithms exist for the
OCST problem, however, they do not consider processing costs. In this section,
we present our approach to tackle the PSOOP which is based on a heuristic. It
is decentralized such that it does not require global knowledge. Sections 5.5.1
explains the basic idea and basic mechanisms used. Section 5.5.2 and 5.5.3
explain two important phases of the algorithm followed by a description of how
to integrate the algorithm into the publish/subscribe broker model introduced
in Chapter 3, Section 5.5.4 (cf. Figure 4.9 on page 95).

5.5.1 Basic Idea

In reasonably large systems it is not realistic to assume that global knowledge
is feasible. Thus, we follow a decentralized approach that is based on local
knowledge only. It follows the principle of local optimizations which are ex-
pected to emerge in a “good” global structure with respect to the performance
of the system in whole. Therefore, each broker in the system gains knowledge
about a reasonably large set of brokers in its neighborhood and optimizes this
neighborhood by reconfiguring the topology it overlooks.

To provide the brokers with knowledge about their neighborhood, every
broker B regularly broadcasts a message mK

B to all brokers in its neighbor-
hood Nη(B). This neighborhood consists of all brokers that are no more than
η hops away from B in the broker overlay network. To not overload the network,
it is sensible to use only small values for η. The information contained in mK

B is
then used by every receiving broker to obtain and update knowledge about its
neighborhood and B in particular.

The size of mK should be kept small in order to not overburden the network
and, thus, decrease the performance of the publish/subscribe system. Similarly,
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the time period between sending two subsequent broadcast messages by a broker
should be kept reasonably small.

To estimate the common traffic of two brokers (i.e., the notifications both
consume or publish), we introduce a cache on every broker. Using this cache,
we are able to track the notifications a broker delivers to or receives from its
local clients. By comparing their caches, brokers can, hence, reason about the
amount of common traffic they share. The contents of the cache is then included
in mK

B broadcasted by B. Based on this information, the brokers in Nη(B) are
able to gather and maintain up-to-date information about B’s traffic.

Bloom Filters

In order to reduce the amount of exchanged data, we use a Bloom filter [25]
to represent the contents of a broker’s cache (more precisely, the identifiers of
cached notifications). A Bloom filter is a space-efficient probabilistic data struc-
ture that supports time-efficient membership queries for stored items. Queries
might return false positives, but the probability for them can be reduced by
increasing the size of the Bloom filter in combination with the number of hash
functions used. Thus, there is an inherent trade-off between space and accuracy.
Using Bloom filters, it is not possible to deterministically specify the identities of
notifications shared by different brokers. Only their number may be estimated
which is sufficient for our purposes.

Bloom filters are often used in network applications because they can sig-
nificantly reduce the amount of data sent over the network [117, 156, 167]. A
Bloom filter is represented by an array of bits A. The length n of A is called the
size of the Bloom filter. Initially, all bits of A are set to zero. Besides the bit
array, a Bloom filter uses k independent random hash functions h1, h2, . . . , hk

which map each element to be stored or searched in the Bloom filter to a random
number uniformly distributed over the range 0, . . . , n. An element e is added
to a Bloom filter by hashing it with each hash function hi and setting the bit
on position hi(e) of A to 1. The check whether an element is contained in a
Bloom filter works similarly: the element is hashed with each hash function and
if any of the bits A[hi(e)] equals 0, the resulting number is not contained in the
Bloom filter, otherwise it is; Algorithm 16 details the procedures for inserting
an element into a Bloom filter and testing if an element is contained in a Bloom
filter which is also illustrated in Figure 5.3.

Due to collisions it is possible that Hash functions set bits of A to 1 for dif-
ferent input values. Thus, false positive results from the containment test are
possible, for example, if all the bits that are set to 1 for a particular element e
have been set when inserting other elements into the Bloom filter without e hav-
ing been inserted. Moreover, if more elements are stored in a Bloom filter the
number of bits set to 1 increases, raising the probability of false positives thereby.
It is obvious that the choice of n and k affects both, processing complexity as
well as the probability of false positives in containment tests. Given the num-
ber m of elements to be stored in a Bloom filter and the size n of the Bloom
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Algorithm 16 Bloom filter operations

Contains a bit array A of length n, set of Elements E , and k independent hash
functions h1, . . . , hk with

hi : E → {0, . . . , n− 1} ∀i = 1, . . . , k.

1 procedure addElement(Element e)
2 for i in {0, . . . , k} do

3 A[hi(e)]← 1
4 endfor

5 procedure checkElement(Element e)
6 for i in {0, . . . , k} do

7 if A[hi(e)] 6= 1 then

8 return false
9 endif

10 endfor

11 return true

filter, Mitzenmacher and Upfal provided a way to calculate the best choice for
the number of hash functions k in order to minimize the probability of false
positives [118].

Using Bloom filters in our scenario might appear as an implementation detail
that is not important for the overall concept. However, broadcast messages are
the basic mechanism our heuristic builds upon and it is, thus, sensible to keep the
influence introduced by our heuristic on the system as small as possible. To reach
this goal, it is important to minimize the message size of broadcast messages
and Bloom filters are an excellent choice here. Besides our application, Bloom
filters have also been proposed for building hierarchical subscription summaries
in publish/subscribe research [156, 167].

Phases of the Algorithm

Brokers regularly broadcast their processing costs and a Bloom filter containing
their cache as part of mK in their neighborhood.

Evaluation Phase. When a broker Bi receives the Bloom filter of another
broker Bj , it starts the evaluation phase. In this phase, Bi tries to figure out
whether it is beneficial from its perspective to connect directly to Bj . This is
the case, if Bi and Bj have a significant common traffic, such that the total cost
of forwarding and processing notifications is decreased after reconfiguration.

Consensus Phase. If Bi comes to the conclusion that it is sensible to con-
nect directly to Bj , it has to coordinate its request for reconfiguration with the
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Figure 5.3: The example shows the insertion of elements e1 and e2 into a Bloom
filter of size 10 using 3 hash functions. Afterwards it is tested whether e3 and
e4 are contained in the Bloom filter (this test results in a false positive for e4)

other brokers affected by this reconfiguration. This so-called consensus phase
is important due to the limited knowledge of the individual brokers. It might
happen, for example, that Bi decides for a reconfiguration that is beneficial for
itself but raises unacceptable costs for other brokers. In this phase, Bi asks the
directly affected brokers about their estimation of the upcoming costs after the
reconfiguration and about which link is to be removed in favor of the new link
between Bi and Bj in order to keep the topology acyclic.

Reconfiguration Phase. If the reconfiguration still seems sensible after the
consensus phase and a link to remove has been identified, the reconfiguration
phase starts. In this phase, the actual reconfiguration is executed by exchanging
the two links in the broker topology, while avoiding notification losses and main-
taining message ordering. The mechanism for the reconfiguration has already
been described in Section 4.4 and will, thus, not be described here.

In the following, we explain the evaluation and consensus phase in detail for
our heuristic called Cost and Interest heuristic (CI heuristic).

5.5.2 Phase 1: Evaluation

Based on the information gathered about their local environments, brokers evalu-
ate alternative overlay connections to nodes in their neighborhood. The brokers
use a heuristic to determine whether it is beneficial to establish a direct link
instead of routing notifications indirectly via intermediate brokers. The heuris-
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tic builds upon a basic case involving three brokers, which we describe in the
following and extend subsequently to larger numbers of nodes.

This phase starts when broker Bi receives a broadcast message mK
Bj

which
stems from another broker Bj . To illustrate how the heuristic evaluates if a
direct connection between Bi and Bj is sensible, we start with a simple example
consisting of three brokers Bi, Bj , and Bk.

Basic Case

Bk

Bi

pi

Bj

pj

pk

ci,j

ck,jci,k

Figure 5.4: Basic case for the heuristic with three brokers

The setup of the basic case is composed of the brokers Bi, Bj , and Bk as
shown in Figure 5.4. Let T1 be the spanning tree (as indicated by the solid lines)
which represents the current overlay topology, where Bi and Bj are connected
indirectly via Bk. Let T2 be a possible alternative tree (indicated by the dashed
lines) containing a link which directly connects them. Furthermore, we assume
that Bi received a Bloom filter representing Bj ’s cache entries, whereon Bi

starts the evaluation phase. Let I(S) be the number of identical notifications all
brokers in a set S consume (i.e., each broker in S has a local client that either
published or subscribed for each notification counted). Using the Bloom filter,
Bi can determine I({Bi, Bj}) probabilistically. In the following, we denote Bi’s
approximation as Ii,j and use the same notation for analogous estimations.

Given Ii,j , Bi has to evaluate whether it is sensible to directly connect to Bj .
This is the case if the estimated costBi

(T2) of the alternative tree T2 is lower
than costBi

(T1) caused by the current topology. From Bi’s point of view, the
cost of a tree is calculated as the sum of the communication and processing costs
that are caused by routing the notifications both consume (or publish). For the
current topology this is

costBi
(T1) = Ii,k · (pi + ci,k + pk)

︸ ︷︷ ︸

(a)

+ Ii,j · (pi + ci,k + pk + ck,j + pj)
︸ ︷︷ ︸

(b)

− Ii,k,j · (pi + ci,k + pk)
︸ ︷︷ ︸

(c)

(5.8)
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In Equation 5.8, term (a) describes the costs that are caused by the notifi-
cations Bi and Bk both consume. This includes the communication costs of the
link they share and the processing costs at both brokers. Term (b) represents
the costs of the common traffic of Bi and Bj . As the notifications are routed
via Bk, the processing costs at Bk as well as the costs of the links connecting Bi

with Bk and Bk with Bj are added. With term (c) we subtract the costs for for-
warding notifications from Bi to Bj via Bk that all brokers consume (otherwise,
they would be counted twice). We calculate the cost of the alternative topology
analogous:

costBi
(T2) = Ii,k · (pi + ci,k + pk) + Ii,j · (pi + ci,j + pj)− Ii,k,j · pi (5.9)

Since a direct connection is only beneficial if it reduces Bi’s costs, we compare
the costs caused by the trees of the alternative and current topology (T2 and T1,
respectively).

Given that Bi and Bj share common traffic (i.e., Ii,j > 0), we come to a
decision criteria Bi that we can use to evaluate the link:

costBi
(T2) < costBi(T1)

⇔ ci,j <
Ii,j − Ii,k,j

Ii,j
· (ci,k + pk) + ck,j (5.10)

The link’s communication costs are compared to the costs for routing a no-
tification via an intermediate broker reduced by a fraction proportional to the
amount of traffic the intermediate broker also consumes. Hence, the right side of
Equation 5.10 can also be interpreted as the communication costs of an indirect
connection. If Bi and Bj do not share any traffic (i.e., Ii,j = 0), the evaluation
phase is aborted.

The result is quite intuitive, saying that it is sensible to directly connect Bi

with Bj if the costs for forwarding the notifications Bi and Bj both consume is
lower when directly connecting Bi with Bj than routing them over Bk. Doing
this it is considered that Bk might also consume a subset of these notifications.

But how can Bi calculate Ii,j,k if it only knows its own cache contents Ii

and the Bloom filters of Ij and Ik? Fortunately, it is possible to create a Bloom
filter of the intersection of two sets each represented by a Bloom filter by simply
ANDing the bit vectors of both Bloom filters. This way, Bi can compare its
local cache against the newly created Bloom filter to calculate Ii,j,k. The new
Bloom filter of the intersection of two sets does not introduce any additional
false positives because the resulting bit vector has only bits set that belong
to elements in the intersection of both sets. Moreover, the probability of false
positives is even reduced this way [115].

Generalization

Up to now, we only considered the basic case which is limited to one intermediate
broker. However, in general, other brokers might be more than two hops away
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in the overlay topology. To evaluate, whether a direct link to such a broker is
beneficial, we use the right side of Equation 5.10 to define the costs Ci,j of an
indirect connection recursively, based on the path Bi, . . . , Bk, Bj with i 6= j:

Ci,j =







ci,j , Bi ∈ N1(Bj)

Ii,j − Ii,k,j

Ii,j
· (Ci,k + pk) + ck,j , otherwise.

(5.11)

Thereby, estimating the costs of an indirect connection of length n is reduced
to calculating the costs of a path of length n − 1 until we reach the basic case
with one intermediate broker. Additionally, we also obtain a general decision
criteria: a broker Bi prefers a direct link to another broker Bj (that is more than
one hop away), if the direct communication costs are less than the calculated
indirect costs, i.e., ci,j < Ci,j .

5.5.3 Phase 2: Consensus

In the previous section, we described how a single broker evaluates whether
it is sensible to establish a direct link to another broker in its neighborhood.
This decision is based on its own local cost-benefit analysis. However, this local
decision may lead to an overall increase in costs. To avoid this, the broker seeks
a consensus with the other brokers lying on the cycle which would be created
by adding the proposed link. We call this reconfiguration cycle R = (VR, ER)
(cf. Section 4.2.1). Since one edge of the cycle must be removed in order to
keep the topology acyclic, all brokers on R are directly affected by a subsequent
reconfiguration. Choosing only this subset of brokers limits the overhead for
finding a consensus.

After broker B decided to propose to directly connect to another broker with
the new link en, it asks every broker on the reconfiguration cycle to estimate
the costs of the topology that would result from removing a single edge from R.
We define the costs of the reconfiguration cycle R from the perspective of one
broker Bi when removing edge e as follows.

costR(e, Bi) =
∑

Bj∈VR

Ii,j · C
\e
i,j (5.12)

where the cost C
\e
i,j is calculated on R without e. Accordingly, the aggregated

costs of the topology is given by

costR(e) =
∑

Bi∈VR

costR(e, Bi) (5.13)

Having calculated costR(e) for all edges on R, we determine the edge er that
shall be removed such that

costR(er) = min
e∈ER

{costR(e)} (5.14)
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Since er is chosen as the edge whose removal leads to a topology causing
the least costs, we gain the maximum benefit for the affected brokers when
replacing er by the proposed new link en. However, if both links are identical
(i.e., en = er), the consensus phase is aborted as it then seems to be unfavorable
to add en to the topology at all.

5.5.4 Integration

In this section, we describe the integration of the heuristics presented in Sec-
tion 5.4 ff. into the publish/subscribe broker model. This covers the dissemina-
tion of the Bloom filters as well as the protocol for the consensus phase.

Cache

Every broker maintains a cache, where it stores the notifications it consumes,
i.e., the notifications that match the subscription of a local client or that have
been published by a local client. The integration of the cache into the pub-
lish/subscribe broker model introduced in Figure 4.9 on page 95 is depicted in
Figure 5.5.

Broker B

Input

Output

handleMsg()

receiveMsg()

sendMsg()

Cache

heuristic
added for

Figure 5.5: Integration of the notification cache needed for the heuristic into the
publish/subscribe broker model

To find out about common traffic of a set of brokers it suffices to store only
the IDs of the notifications. If notification IDs do not already exist it is fairly
simple to implement them. For example, the publishing broker could use a
timestamp together with its own unique ID to create a message ID and append
it to the notification.

We use a ring buffer to implement the cache. This way, it is guaranteed
that the size of the cache is limited. However, it is possible, that the amount
of notifications to be stored exceeds the size of the cache. In this case, the
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oldest messages added to the cache are discarded. Thus, the size of the cache
is a compromise between accuracy of the broker’s traffic and the storage space
needed for the cache.

Broadcast Messages

Every broker B regularly broadcasts the Bloom filter of its cache in the time
interval ∆t to the brokers in its neighborhood Nη(B). Therefore, B sends a
broadcast message mK

B to all its direct neighbors, it shares a link with. The
broadcast contains a time-to-live (TTL) counter initialized with η and the Bloom
filter representing B’s cache entries. Additionally, it stores the path including the
brokers and links the message has already passed together with the processing
and communication costs, respectively.

On receiving a broadcast message, broker B handles it as described in Algo-
rithm 17. First, B determines its common traffic with the sender by comparing
its cache contents to the Bloom filter stored in the message (cf. line 6). Then,
it updates its knowledge about its neighborhood regarding the communication
costs, the processing costs, and the Bloom filter stored in mK (lines 9–20). In
the following, B estimates if it is beneficial to directly connect to the originator
of the broadcast message. If this is the case, it sends a request message to the
brokers on the path from itself to the originator (lines 23–26). The method used
to estimate the benefit of a direct connection depends on the heuristic used. De-
tails for the different algorithms were already described in the previous sections.
Finally, B forwards the message to all neighbor brokers that are not already
listed in the path stored in the broadcast message given that the TTL is not
already zero, i.e., the length of path is smaller than η (lines 29–37). Before doing
this, B updates the message by appending itself to the path, the communication
costs of the link the broadcast was received over, and its processing costs.

With every broadcast message a broker receives, it learns about its envi-
ronment (i.e., the processing and communication costs as well as the common
traffic). Information about brokers in the neighborhood of a broker B may be-
come obsolete when reconfigurations changed the topology in a way such that
these brokers do not belong to the neighborhood anymore. Therefore, stale in-
formation is removed by a garbage collection algorithm based on a configurable
update interval .

In the beginning or due to a reconfiguration, the information about the neigh-
borhood may not be sufficient for Bi to calculate Ci,k for every broker Bk on the
path to Bj it receives a broadcast message from. In this case, Bi cannot decide
whether a reconfiguration is sensible and, thus, has to wait until it has gathered
enough information about its neighborhood. Meanwhile, broadcast messages
are still forwarded regularly, but subsequent evaluation or consensus phases are
aborted.
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Algorithm 17 Handle broadcast message mK

1 Set procedure handleBroadcastMsg(Broker Bsender, BroadcastMsg mK)
2 begin

3 M← ∅

4 path← mK
path

5 // determine and store common traffic

6 IBthis,path[0] ← |{n ∈ cache|n ∈ mK
BloomFilter}|

7 i← 0
8 // update knowledge about brokers in the neighborhood

9 while i < |path| do

10 B ← path[i]
11 env← env ∪B // add broker to environment

12 env(B)BloomFilter ← BBloomFilter // store Bloom filter of broker

13 env(B)p ← B.p // store processing costs of broker

14 env(B)lastUpdate ← now // store time of last update

15 // store communication costs

16 if i < |path| − 1 then

17 env(cB,path[i+1])← mK
cB,path[i+1]

18 endif

19 i← i + 1
20 endwhile

21 // request reconfiguration if beneficial (according to the heuristic used)

22 if directConnectionBeneficial(path) then

23 mQ ← new RequestMsg()

24 m
Q

path ← 〈Bthis, path[n− 1], . . . , path[0]〉

25 m
Q
cost ← 〈0, . . . , 0〉

26 handleMsg(mQ)
27 endif

28 // forward message to neighbors

29 if |path| < η then

30 // append to path and add processing and communication costs to mK

31 mK
path ← append(path, Bthis)

32 mK
p ← 〈path[0].p, . . . , path[n− 1].p, Bthis.p〉

33 mK
c ← append(mK

c , cpath[|path|−1],Bthis
)

34 forall B ∈ N \ {path[0], . . . , path[n− 1]} do

35 M←M∪ (B, mK)
36 endfor

37 endif

38 return M
39 end
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Request Messages

While broadcast messages serve to gain knowledge about the local environment
and are, thus, a prerequisite for the evaluation phase, request messages coor-
dinate the consensus phase to finally decide whether the introduction of a new
link is beneficial and which link has to be removed in turn. When broker Bi

decides to add a new link connecting it with broker Bj , its decision is based on
the last broadcast message it has received from Bj . Thus, the reconfiguration
cycle R consists of the path the broadcast message was forwarded along and the
new link which directly connects Bi and Bj.

Broker Bi starts the consensus phase by sending a request message to Bj

along the reverse path of the broadcast message. The request message consists
of a cost vector containing an element for every link in R. After receiving the
request message, each broker on R adds its own costs for every link on R it
has calculated according to the heuristic used (lines 5–7; cf. to Equation 5.12
for the formula of the CI heuristic). Then, the request is forwarded to the next
neighbor broker on R until it reaches Bj (lines 9–12). After adding its calculated
costs, Bj examines the resulting cost vector to determine the “most expensive”
edge, whose removal leads to the best solution for all brokers on R. If this
is the proposed new link between Bi and Bj , Bj discards the reconfiguration.
Otherwise, Bj starts the reconfiguration phase (cf. Section 4.4) (lines 14–21).

It is possible that the next broker on the path in the request message is not a
neighbor of Bj anymore. This can happen because of parallel reconfigurations.
In this case, Bj simply drops the request message (line 10).

5.6 Evaluation

We take a simulation-based approach to compare our CI heuristic with the other
two heuristics presented in the previous sections. The advantage of simulation in
contrast to formal analysis is that the complexity of the scenarios do not have to
be simplified to a great extend. On the downside, running simulations is time-
consuming and it is cumbersome to study the effects of parameter variations.
For the simulation, we used a discrete event simulator. We decided to implement
our own simulator for various reasons. The most important reason was that most
available simulators still need a considerable amount of programming to make it
suit to our needs [123]. Another reason was that having our own simulator we
were aware of everything happening inside the simulator which is important for
interpreting simulation results.

We implemented our CI heuristic and chose decentralized versions of the
MST and the MIT heuristic (called ℓMST and ℓMIT ) described in Section 5.4
for comparison. Like the CI heuristic, they both rely on broadcast and request
messages. While ℓMST only considers communication costs, ℓMIT concentrates
solely on the notification traffic and is, thus, close to the approach by Baldoni
et al. [15]. We conducted several experiments to compare the three heuristics.
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Algorithm 18 Handle request message mQ

1 Set procedure handleRequestMsg(Broker Bsender, RequestMsg mQ)
2 begin

3 M← ∅ ; path← m
Q

path ; n← |path| ; i← 0

4 R←< {B0, B1}, . . . , {Bn−2, Bn−1}, {Bn−1, B0} > with Bi = path[i]
5 forall e ∈ R do // add cost for removing one edge from R

6 m
Q

cost[i] ← m
Q

cost[i] + costR(e, Bthis)

7 endfor

8 if path[n− 1] 6= Bthis then // forward request message along the path

9 B ← path[i] with Bthis = path[i− 1 mod n]
10 if B ∈ N then // check if topology has not changed meanwhile

11 M← (B, mQ)
12 endif

13 else // evaluation finished

14 min← i with m
Q

cost[i] is minimal

15 if min 6= n− 1 then

16 // consensus about removing old edge {Bi, Bi+1 mod n}

17 ml ← new LockMsg()

18 ml
path ← 〈Bn−1, . . . , B0〉 with Bi = path[i]

19 ml
edge ← 〈Bi, Bi+1 mod n〉

20 handleMsg(Bthis, m
l)

21 endif

22 endif

23 return M
24 end
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The goal of the experiments is to evaluate the following properties of the
heuristics:

• the relation between the costs caused by the CI heuristic and the savings
gained by reconfigurations (cost-benefit analysis),

• their ability to adapt to changes in the system,

• the performance of the CI heuristic compared to ℓMST and ℓMIT and the
lower bound that is theoretically possible,

• the effectiveness with varying heterogeneity regarding how many clients
connect to each broker,

• the characteristics of the resulting topologies,

• the number of reconfigurations carried out by the heuristics,

• the effect on the performance of the different heuristics when changing the
weights of the communication and processing costs, and

• the influence of locality of subscribers with respect to their publishers.

Some plots of the results show the theoretical lower bound for the costs where
sensible. Since it is hard to find an optimal solution for a given distribution of
clients and broker overlay network, we decided to calculate the minimum costs
that are necessary to distribute the notifications published. We determine the
minimum spanning tree in the broker overlay network consisting only of the
affected brokers for each notification n published (i.e., V (n)) and sum up the
costs. This lower bound is purely theoretical because it assumes that every
notification published is disseminated over its very own broker sub-topology
leaving aside the fact that we assume that there is only one single broker tree
which is responsible of disseminating all notifications. However, this gives us a
rough estimate about the lower bounds that are possible.

If not stated otherwise, we conducted measurements every 1000 simulation
ticks. Each point in a plot is the result of 50 simulation runs to achieve reason-
ably small confidence intervals. Reconfigurations were carried out without any
ordering guarantees. Since ordering guarantees do not induce any additional
traffic, this has no effect on the results.

5.6.1 Simulation Settings

This section discusses two sets of parameters. The first set describes the sce-
nario which serves as a testbed for the heuristics. The second set describes the
parameters of the heuristics.
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Simulation Scenario

We evaluate the proposed heuristics by conducting simulation experiments. For
creating physical network topologies that are needed to gain the communication
costs we use the transit-stub model which produces Internet-like topologies. We
used Brite [113] to create 50 different realistic Internet-like topologies, each with
100 domains and over 10, 000 nodes for the experiments (the parameterization
of Brite is described in Appendix A). In all simulations we place 100 brokers
randomly on each network topology. This number is restricted by the capacity
of the computers that ran the simulation. We decided to model the publish/sub-
scribe behavior by introducing 50 different types of notifications or jobs, each
produced by one publisher and subscribed to by subscribers connected to 9 dif-
ferent brokers. It is important to note, that we prevent that two subscribers
of one notification type are assigned to the same node. From the system per-
spective it does not matter if there is one or more subscribers connected to one
broker, since a notification is routed there only once. We took this approach to
create reasonably complex message flows by superposition and model a realistic
usage scenario this way.

The distribution of clients to brokers is chosen probabilistically according
to a load-value that is either fixed (“uniformly distributed clients” in the first
experiment) or randomly chosen. The rationale behind assigning different load
values is that it is quite common that some brokers attract more clients than
others. Introducing this notion of structure or pattern to the system using
different load values also gives an impression which algorithms can exploit or
adapt to it in order to improve the system performance. A broker is chosen as
the local broker for a client with a probability of its load divided by the sum of
the loads of all brokers in the system.

Publishers produce on average one notification in five simulation ticks and the
publications are exponentially distributed. Broadcast messages are sent every
250 simulation ticks. Thus, every job produces on average 50 notifications per
broadcast period.

Table 5.1 gives a concise overview of the scenario parameters used and their
default values. In the following experiments, these default values will be used if
not mentioned otherwise.

Algorithm Parameters

For the experiments, it is necessary to parameterize the algorithms. The configu-
ration of the algorithm is determined by the following configuration parameters:

• broadcastInterval (the time period between issuing two consecutive broad-
cast messages by one broker)

• updateInterval (the time period after which information of a broker about
brokers in the neighborhood becomes stale and is removed)
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Parameter Name Description Default Value

numberOfBrokers Number of brokers in the net-
work topology

100

numberOfJobs Number of jobs distributed to
the brokers

50

numberOfSubscribers Number of subscribers per job
(does not include the pub-
lisher)

9

publicationInterval Average time interval be-
tween two publications

5

publicationDistribution Distribution of the publica-
tions

Exponential

reassignmentInterval Average time interval be-
tween reassigning a job

2500

reassignmentDistribution Distribution of the reassign-
ment of jobs

Exponential

minProcessingCosts
(maxProcessingCosts)

Minimum (maximum) pro-
cessing costs of one message

0 (10)

minCommunicationCosts
(maxCommunicationCosts)

Minimum (maximum) com-
munication costs per link for
one message

0 (10)

minLoad, maxLoad Minimum (maximum) load of
a broker, determining its at-
tractiveness to clients

〈1, 1〉 (〈0.1, 1〉)
for a (non-)uni-
form placement
of clients

Table 5.1: Overview of simulation scenario parameters
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• environmentSize (the TTL of broadcast messages, i.e., the maximum num-
ber of hops a broadcast message is flooded in the broker overlay network)

• cacheSize (maximum number of notification IDs consumed or produced by
local clients a broker stores to determine common traffic)

• filterSize (size in bits of the Bloom filter which is used to disseminate the
cache contents of a broker in a broadcast message)

• numberOfHashs (number of hash functions used for the Bloom filter)

Finding values for these parameters is often a trade-off. A low value
for broadcastInterval, for example, allows smaller caches and Bloom filters and
enables faster reaction to changes on the cost of an increased message complex-
ity. The value of upadateInterval has to be chosen with respect to the value
of broadcastInterval. It is sensible to set it to a value of broadcastInterval plus
the maximum communication and processing delays of a message with respect
to the value of environmentSize because we assume that no message will get
lost. Thus, it is assumed that a broker will receive a broadcast message from
each broker in its neighborhood in a time period of length broadcastInterval plus
an upper limit of the expected time needed for processing and forwarding a
message. We decided to choose broadcastInterval = 250 and updateInterval =
broadcastInterval + enironmentSize · 10 + 1. Both values fit well for our setting.

Determining a good value for environmentSize is more difficult because it
depends on the scenario and changing it has a significant impact on the overhead
induced by the heuristic. We, thus, decided to determine a good value for this
parameter in a separate experiment (Experiment 1).

The same reasoning applies to determining a good value for cacheSize and
the respective parameters related to the Bloom filter. Details are discussed in
Experiment 2 in the next section.

5.6.2 Determining Heuristic Parameters

Experiment 1: TTL of Broadcast Messages

The TTL of the broadcast messages sent out by every broker is a crucial value
for the performance of the heuristics. Increasing this value gives every broker
knowledge about a bigger part of the whole network on the cost of an increased
message complexity because broadcast messages are forwarded to every neighbor
except for the sender. Its value will be chosen according to this experiment,
where we evaluate the reconfiguration costs and the forwarding costs for different
values of environmentSize to find out about the influence of this parameter on
the results.

We use the setting described in Table 5.1 but assign clients only once in
the beginning and use a non-uniform placement of clients. At the beginning
of each simulation run, we create a random acyclic broker topology. In the
first 1000 simulation ticks, we leave the broker topology unchanged and measure
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the costs of message forwarding. Then, we start the CI heuristic and, after a
time period of 29, 000 ticks, we measure the costs which were produced in the
next 1000 ticks. We measure the costs of regular message forwarding, the costs
for forwarding broadcast messages, and the costs induced by reconfigurations
separately. We only assign the clients to the network once in the beginning
because we want to prevent additional costs introduced by the reassignment of
jobs to clients which would influence the costs measured in a misleading way.
We repeated each simulation run 50 times for one setting of environmentSize
(ranging from 3 to 12). We set cacheSize = 8192 (and filterSize = 98, 304 to
achieve a low false positive probability of approximately 0.0033). As we will
see in the next experiment, this value is much higher than actually needed.
By choosing such a big cache size we avoid side-effects due to false-positives in
Bloom filters. The update interval was set to updateInterval = broadcastInterval+
environmentSize · 10 + 1, to enable brokers to timely remove information about
brokers that vanished from their neighborhood due to reconfigurations.

Figure 5.6 shows that the CI heuristic performs best for a TTL of 3. For
values bigger than that, the resulting costs grow and the performance increase
drops. This is due to the increased cost caused by the heuristic—mainly due to
broadcast messages that are forwarded further in the broker topology. The costs
caused by reconfigurations remain very low and are negligible.
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Figure 5.6: Distribution of costs for the CI heuristic with different values of
environmentSize

We decided to set environmentSize = 3 in the following experiments because
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the results for this value proved best. Accordingly, we set updateInterval = 281.

Experiment 2: Cache Size

Every broker maintains a cache which it regularly distributes in a broadcast
message as a Bloom filter. Choosing a sensible size of the cache depends on the
publication rate and the distribution of the clients. If it is chosen too small,
then the estimation of the heuristic becomes inaccurate. If it is chosen too
big, then bandwidth is wasted. In this experiment, we vary the cache size and
the Bloom filter size, accordingly. To obtain a low false positive probability of
approximately 0.0033, we use 7 hash functions and set the size of the Bloom
filter to twelve times the size of the cache (filterSize = 12 · cacheSize).

We use the same settings as in the previous experiment: we start the
CI heuristic and, after a time period of 29, 000 ticks, we measure the costs
that were produced in the next 1000 ticks. To test different cache sizes, we
set cacheSize(x) = x · 256. By varying x from 1 to 35 and measuring the cost
improvement, we can observe how the overall performance increase develops.

To find out about variations in the results of the experiments, we used the
same seeds for the random number generators for different cache sizes. To find
out about the effect of the cache size on the results, we then calculate the dif-
ference between two consecutive runs with a cache size difference of 256. We
repeat this 50 times and look for the first cache size, where the difference in the
results is 0 for every run.

Figure 5.7 shows for size x on the x-axis the absolute difference of the results
obtained when running the algorithm with a cache size of x and x + 256. An
optimal value for our scenario is reached when the curve hits the x-axis for the
first time. This is achieved for x = 18 · 256, i.e., a cache size of cacheSize = 4608
and, thus, filterSize = 55, 296.

In the following experiments, we use the values for cacheSize, filterSize, and
numberOfHashs determined in these experiments. Since those values are smaller
than the ones chosen for the previous experiments, it is for sure that this choice
does not have an influence on the results gained in the experiments. Table 5.2
gives an overview of the parameters used for the heuristics in the following
experiments if not mentioned otherwise.

5.6.3 Performance

The experiments in this section deal with the system costs produced when ap-
plying the heuristics. We compare the resulting costs to the costs produced by
a random static broker overlay. The experiments comprise uniform and non-
uniform distributed clients as well as sudden and slow changes of the costs in
the network to find out about the ability of the heuristics to adapt the broker
overlay to changes in order to lower the overall costs.
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Figure 5.7: Difference in the resulting costs between two consecutive simulation
runs with a cache size difference of 256

Experiment 3: Performance With Uniformly Distributed Clients

The goal of the heuristics is to lower the total cost of the system. Therefore,
all heuristics reconfigure the broker overlay topology based on their own local
estimations. In this experiment, we explore the performance of the heuristics in
terms of lowering the costs of message forwarding.

We set up 50 different topologies, each with 100 brokers randomly placed on
nodes in the topology. Clients and processing costs are assigned to brokers with
a uniform distribution. For the assignment of the communication costs, we use
the costs provided by the underlying topology which we scaled to the same factor
as the processing costs (i.e., minProcessingCosts = minCommunicationCosts = 0
and maxProcessingCosts = maxCommunicationCosts = 10). Thus, processing
costs have approximately the same impact on the message forwarding costs as
communication costs.

Figure 5.8 shows that the costs of the static randomly generated topologies
are very high and relatively constant. In contrast to this, all three heuristics are
able to lower the costs significantly. The ℓMIT heuristic performs worst because
it tries to connect brokers according to the traffic they share. Although this
heuristic is able to lower the costs it cannot reach a performance as good as
the other heuristics in this case, because it does not exploit the structure of the
communication costs which would be beneficial in this scenario with a uniform
placement of clients. This is the reason, why the ℓMST heuristic performs better
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Parameter Name Description Default Value

broadcastInterval Time between two broadcast messages
sent by one broker

250

updateInterval Time period after which information
about brokers in the neighborhood gets
stale and is removed

281

environmentSize Size of the neighborhood in terms of
hops

3

cacheSize Maximum number of notification IDs
that can be stored in the cache

4608

filterSize Number of bits used for the Bloom Fil-
ter

55, 296

numberOfHashs Number of hash functions used in the
Bloom filter

7

Table 5.2: Overview of algorithm parameters for simulation

than the ℓMIT heuristic. In contrast to this, the CI heuristic is able to improve
the costs even more by considering both, communication and processing costs.
It reaches the lowest costs of all three heuristics around t = 12, 000.

This experiment shows that all heuristics are able to significantly reduce
the costs of the system in whole. The CI heuristic performs best although the
ℓMST heuristic is able to adapt faster than the other heuristics. The CI heuristic
is able to lower the total costs to nearly half of the costs of the random static
network.

Experiment 4: Performance With Non-Uniformly Distributed Clients

In this experiment, we change the distribution of clients compared to the preced-
ing experiment. Therefore, we introduce a pattern with respect to the number
of clients connected. Our goal is to find out about the ability of the heuristics
to exploit this structure to lower the costs of message forwarding in whole.

We randomly assigned a load value between minLoad = 0.1 and maxLoad = 1
to each broker. The load value determines the probability that a client is assigned
to this broker. This way, “hotspots” are created, i.e., brokers that attract more
clients than others. The other settings are equal to the preceding experiment.

The plot of the results of this experiment in Figure 5.9 shows that both the
CI and the ℓMIT heuristic are able to exploit the non-uniform distribution of
clients to brokers in order to optimize system costs. This is due to the fact that
some brokers host more clients than others. Those brokers are likely to share a
lot of traffic. Thus, it is beneficial to connect these brokers, which both heuristics
strive for. The results of the ℓMST heuristic is not significantly affected by the
changed client distribution because it does not take common traffic into account
and optimizes only based on the communication costs. Accordingly, the results
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Figure 5.8: Performance of the heuristics in comparison to the static case and
the lower bound with uniformly distributed clients

do not differ significantly from the results of the previous experiment.

Again, the CI heuristic performs best in comparison with the other heuristics
although the ℓMST heuristic is still able to adapt faster than the other heuristics.
The CI heuristic is able to lower the forwarding costs to even more than half of
the costs of the random static network. This is possible because the clients are
not distributed uniformly and the CI heuristic (as well as the ℓMIT heuristic)
is able to exploit this structure in client distribution, where some brokers share
more common traffic than others, by directly connecting them.

It is very likely that the distribution of clients to brokers is not uniform in
real-world setting. Thus, we use the non-uniform client distribution according
the load value as introduced in this experiment in the following experiments.

Adaptivity

The results of Experiment 3 and 4 show to what extend the heuristics were able
to adapt the topology in order to lower the costs of forwarding notifications. As
stated earlier in this chapter, we are especially concerned about network dynam-
ics. Thus, it is interesting to evaluate how the heuristics react to changes in the
costs and if they are able to cope with the new scenario after they optimized
the topology for the previous cost setting. We decided to focus on two different
scenarios: in the first (Experiment 5), the costs and client structure are changed
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Figure 5.9: Performance of the heuristics in comparison to the static case and
the lower bound with non-uniformly distributed clients

suddenly while changes in the second one (Experiment 6) are executed slowly
over time.

Experiment 5: Abrupt Changes. To find out about the ability of the heuris-
tics to react to changes in the cost and load values of the brokers, we start
with a dedicated physical topology T0 with given communication costs. At
time t1 = 25, 000 and t2 = 50, 000, we completely change the underlying phys-
ical topology (i.e., the costs of links) and brokers together with the randomly
assigned load values. We change the topology to T1 and T2 at time t1 and t2,
respectively, for all simulation runs. Each of the 50 simulation runs per heuristic
is initialized with different random seeds such that everything is varied besides
the communication costs between the brokers which stem from the underlying
physical network topology (i.e., T0, T1, and T2).

Again, all heuristics are able to significantly lower the costs by adapting
the broker overlay topology according to the results depicted in Figure 5.10.
However, changing the communication costs at t1 and t2 results in a spike of
the cost-curves of the ℓMST and CI heuristic. The reason for this is that both
heuristics take the communication costs into account and optimize the topology
accordingly. On the downside, the resulting topology is tailored to the particular
communication costs according to the underlying physical network. Changing
these costs accordingly, thus, leads to higher forwarding costs.
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Figure 5.10: Performance of the heuristics in the face of sudden changes in
comparison to the static case

It is an interesting result that changing the costs and client structure in the
network has only a limited impact on the costs that result when applying the
ℓMIT heuristic. Obviously, this heuristic does a good job in adapting the topol-
ogy to lower the costs which is not very sensible to changes in the environment.
On the downside, the performance of the ℓMIT heuristic is worse than that of
the others or at most as good as the ℓMST heuristic.

Experiment 6: Slow Changes. Since it is not expected to happen that all
costs and load values change from one moment to the other, we performed
another experiment similar to Experiment 5, where we changed the costs linearly
from the initial situation to the new one starting at tick 25, 000 and stopping at
tick 55, 000. Thereby, we changed each cost and load value every 1000 ticks with
a constant amount such that we finally reached the new cost and load values
at tick 55, 000. In this experiment, we also used T0 at the beginning of the
experiment and changed the topology (i.e., the communication costs) slowly to
T2 while the other values were chosen randomly as described in Experiment 5.

The results of the experiment depicted in Figure 5.11 show that all heuristic
are also able to adapt to slow changes. Interestingly, the slow change for this
combination of cost changes is more favorable for the ℓMIT heuristic such that
it is able to lower the cost to a value below the one it reaches at the end of the
previous experiment (cf. Figure 5.10). At that point, the limited visibility of the
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Figure 5.11: Performance of the heuristics in the face of slow changes in com-
parison to the static case

broker overlay that may state a problem for the ℓMST heuristic in the experiment
with sudden changes, may be compensated by the slow gradual changes.

Conclusions. All three heuristics are able to cope with dynamic changes in the
environment. Their ability to lower the costs depends on the concrete underlying
network topology. The topologies created by the ℓMST and the CI heuristic
are to a high degree tailored to the underlying network topology because they
both take communication costs into account when drawing their reconfiguration
decisions. The ℓMIT heuristic performs worst but its cost curve is rather stable
against changes in the network.

It is important to note that these experiment have been conducted with only
three (two) different physical network topologies. It may, thus, happen that the
results are different for other concrete topologies. The goal of this experiment
was to explore if the heuristics are able to cope with changes in the network.
For comparing the total performance of the heuristics it is more sensible to refer
to Experiment 3 and 4, where each simulation run based on a different physical
network topology (50 in total).
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5.6.4 Characteristics

The experiments in this section deal with characteristics of the heuristics and
the resulting topologies. In the first experiment (Experiment 7), we measure
topology characteristics in terms of broker degrees in order to get an impression
of the structure of the broker overlay topologies that are created when applying
the heuristics. In the second experiment (Experiment 8), we measure the number
of reconfigurations carried out by the heuristic to find out if they are able reach
a stable topology.

Experiment 7: Broker Overlay Topology Characteristics

The previous experiments showed that the heuristics were able to significantly
improve the costs. It is, however, unclear how the structure of the resulting
topologies looks like. We, thus, explore the broker degrees in this experiment
which gives us an insight in the general structure of the topologies.

For this experiment, we dumped the broker degrees at the end of each simu-
lation run of Experiment 4. We then calculated the average number of brokers
for each broker degree and heuristic.

The distribution of the broker degrees as plotted in Figure 5.12 shows that all
heuristics create a topology, where few brokers have a high degree and the vast
majority has a small number of neighbors (i.e., 1 or 2). The topology structure
that results from applying the ℓMST heuristic correlates to the structure of the
underlying physical network which we generated using Brite. This network
follows a heavy tail distribution as stated in Table A.1 on page 194.

The CI heuristic creates topologies with the highest maximum broker degree
(21), while the ℓMIT heuristic results in the lowest maximum broker degree
(18). The ℓMST heuristic, however, lies between both heuristic regarding the
maximum broker degree (19).

The results go in line with the insight that star topologies (or 2-star topologies
with at most 2 internal nodes) are in general good solutions for some special cases
of the OCST problem like the PROCT problem which are close but not equal
to our problem [163].

Experiment 8: Convergence

All three heuristics try to reconfigure the broker overlay topology in order to
lower the costs. Although we assume a dynamic environment (e.g., clients that
are rearranged every reassignmentInterval and publications that are randomly
distributed), where parameters change unpredictably, it is interesting, whether
the heuristics enter a stable state, where only few to no reconfigurations are
executed. In this experiment, we, thus, measure the number of reconfigurations
carried out by the heuristics, in order to explore their behavior with respect to
a stable configuration.

We use the same setting as in Experiment 5, where the configuration is
changed abruptly at t1 = 25, 000 and t2 = 50, 000. Every 1000 simulation ticks,
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Figure 5.12: Broker degree distribution for the different heuristics and the static
network

the number of reconfigurations are measured.

Figure 5.13 shows that the ℓMST heuristic is able to quickly enter a stable
state—even after abrupt changes in the costs and client distribution at t1 and t2.
This is due to the fact that this heuristic focuses solely on the communication
costs which are constant in the time periods [0, t1] and [t1, t2]. It is, thus, able
to quickly enter a stable state.

The CI and the ℓMIT heuristics do not converge to a stable state with re-
spect to the topology and, thus, reconfigurations are permanently carried out.
While the CI heuristic shows spikes in the number of reconfigurations at time t1
and t2, the number of reconfigurations remain rather constant around 83. The
ℓMIT heuristic does not react significantly to the changes in the network but also
keeps a rather constant number of reconfigurations around about the half of the
configurations carried out by the CI heuristic. This behavior is conform with
results gained from measuring reconfigurations in Experiment 5 and 6, where
the ℓMIT heuristic proved robust with respect to changes.

It is, however, not a disadvantage in our scenario to constantly adapt the
topology as we can see in Experiment 5 and 6, where the performance of the
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CI heuristic is significantly better than that of the ℓMST heuristic and the
ℓMIT heuristic.
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Figure 5.13: Number of reconfigurations in the adaptivity experiment with
abrupt changes

Figure 5.14 on the next page shows the reconfigurations carried out by the
heuristics for Experiment 6, where the costs are changed in small steps over
a time period of 30, 000 simulation ticks starting at time 25, 000. The cost
changes affect the ℓMST heuristic most since the minimum spanning tree changes
permanently. The CI heuristic also exhibits a slight increase in the number
of reconfigurations. Only the ℓMIT heuristic remains relatively stable. This
behavior is similar to the results gained from Experiment 5 with abrupt changes
depicted in Figure 5.13.

Regarding stability, the ℓMST heuristic outperforms the other two heuris-
tics. This is no wonder because it relies on stable data which is not changed
by the heuristic itself. The CI and ℓMIT heuristic take changing parameters
into account like the messages exchanged. Moreover, they work and rely on es-
timations, where decisions may result in unpredictable consequences. Both are,
thus, not able to reach a stable state and permanently perform reconfigurations,
where the amount of reconfigurations at the CI heuristic is about twice as high
as the number of reconfigurations of the ℓMST heuristic. Although these recon-
figurations produce additional costs, both heuristics perform from reasonably
well to very well.
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Figure 5.14: Number of reconfigurations in the adaptivity experiment with slow
changes

5.6.5 Scenario Variations

Most experiments carried out so far were parameterized according to the values
described in Table 5.1 on page 160. In this section, we explore how the heuris-
tics react to different cost weights (Experiment 9) and investigate the influence
of locality between publishers and subscribers on the resulting costs (Experi-
ment 10).

Experiment 9: Cost Weights

The previous settings assumed equal weights for communication and pro-
cessing costs, i.e., minCommunicationCosts = minProcessingCosts = 0 and
maxCommunicationCosts = maxProcessingCosts = 10. However, it might be the
case that the communication costs dominate the total forwarding costs while the
processing costs are negligible or vice versa.

We parameterized this experiment as described in Tables 5.1 on page 160
and 5.2 on page 165 with minLoad = 0.1 and maxLoad = 1. To model
different cost weights, we set maxCommunicationCosts(α) = (1 − α) · Γ and
maxProcessingCosts(α) = α · Γ for Γ = 20. By varying α from 0 to 1 and
measuring the cost improvement, we can observe how the overall costs develop
as the processing costs increasingly dominate the forwarding costs and the im-
pact of the communication costs decreases. As in Experiment 1, we measure
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the cost of message forwarding in a random topology for the first 1000 ticks and
start the heuristic then. At tick 29, 000 we measure the costs for message for-
warding that accumulate in the following 1000 ticks and calculate the percentage
of improvement.

The result of the experiment plotted in Figure 5.15 shows that the
ℓMST heuristic performs worse with a growing α, which reflects the fact that it
does only take communication costs into account which are less important with
a growing α. The ℓMIT heuristic only concentrates on common interest and
performs constantly and even better than the ℓMST heuristic if the processing
costs outweigh the communication costs. The CI heuristic performs equally or
better than the other heuristics for all values of α as it considers both costs.
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Figure 5.15: Performance of the heuristics for different varying weights of com-
munication and processing costs

This experiment shows that the CI heuristic is superior with respect to dif-
ferent weights regarding the communication and processing costs. It is, thus,
more flexible regarding the scenario, where it can be applied. Obviously, the
ℓMST heuristics performs well in a scenario, where processing costs are negligi-
ble. However, even in this case, the CI heuristic does not perform significantly
worse.
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Experiment 10: Locality

The experiments regarding the performance of the heuristic for different dis-
tributions of clients to brokers already showed that both, the ℓMIT and the
CI heuristic, were able to exploit the structure introduced by different client
distributions. The non-uniform client distribution thereby modeled the common
case that clients are not evenly distributed to brokers. Another factor that has
an impact on the distribution of clients that might often be relevant in practice is
that of locality. In scenarios that exhibit locality, subscribers are located “close”
to the publishers which publish the notifications the subscriber subscribed for.
The distance metric used in this case often builds on the communication costs
between the publisher and the client hosting brokers since this reflects a geo-
graphical proximity in many settings.

The setting we assume is similar to the previous experiment with minLoad =
0.1 and maxLoad = 1 and equal weights of processing and communication costs
as described in Table 5.1. In addition to that, we introduce a new parameter
which controls the locality called locality. The procedure of assigning the clients
of a job to the broker network is changed as follows. The publisher of a job is
assigned according to the load values of the brokers. The subscribers, however,
are assigned according to a combination of the load value and the locality prob-
ability that is determined by the following locality specification, where Bi is the
publisher hosting broker and pl(i, j) is the probability that Bj is chosen as a
subscriber hosting broker:

pl(i, j) =
c−2
i,j

∑NB

k=1,k 6=1 c−2
i,j

(5.15)

The probability that a broker is chosen to host a subscriber for a job, where
the publisher is connected to Bi, thus, decreases quadratically with increasing
communication costs. In this experiment, the parameter locality is used to con-
trol the impact of locality on the probability ps(i, j) that Bj is chosen as the
subscriber hosting broker when the respective publisher is connected to Bj in
the following way:

ps(i, j) = locality · load(Bj) + (1− locality) · pl(i, j) (5.16)

By varying locality from 0 to 1, we can explore the whole spectrum ranging
from no locality to a subscriber distribution that relies solely on locality.

The percentage of improvement depicted in Figure 5.16 shows that all heuris-
tics exploit the additional structure in the client distribution added due to lo-
cality in order to gain only little performance increase. The ℓMST and the
ℓMIT heuristic perform about the same and the CI heuristic gains results that
are about 10% better. In contrast to our expectations, none of the heuristics
was able to gain a significant improvement by exploiting locality.

The results show that the ℓMIT and the CI heuristic are both able to exploit
the structure induced by locality. The ℓMST heuristic does also benefit from an
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Figure 5.16: Performance of the heuristics for varying locality

increase in locality since the resulting minimum spanning tree topologies connect
publisher with subscriber hosting brokers more directly.

5.7 Related Work

Optimizing the publish/subscribe broker overlay topology is important in many
scenarios. Moreover, it has an application beyond publish/subscribe systems
because the optimization of overlay networks with respect to forwarding and
processing costs can also lead to a performance increase for general peer-to-peer
systems which often build on overlay networks.

Publish/Subscribe Systems

In recent but preliminary work, Migliavacca and Cugola present an approach
that is similar to ours [116]. They base their work on one of our earlier publi-
cations [84] but take a different route to solve the PSOOP than we did in [87].
In their approach, every broker optimizes its immediate one-hop neighborhood
using an optimization mechanism that builds on the local search technique called
Tabu. Similar to our approach, they hope to improve the performance of the
system in whole by executing local optimizations. The results are, however,
preliminary and solid simulation results are still missing.
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Interest Clustering. Recently, there has been an increasing interest in opti-
mizing publish/subscribe systems. Baldoni et al. and Querzoni published more
details about their maximum associativity trees approach which we discussed
in Section 5.4.2 [17, 137]. The downsides of their approach remain. Moreover,
the brokers in their approach exploit the contents of routing tables to exchange
common traffic with neighbor brokers which means that their approach is more
difficult to integrate into a publish/subscribe system than ours which is inde-
pendent of the routing algorithm used.

Anceaume et al. present a similar approach which they coin “semantic over-
lay” [8]. The idea is quite interesting: subscribers cooperatively build dissemi-
nation trees according to their subscriptions. As in the previous approach, the
basic assumption is that notifications are uniformly distributed in the subscrip-
tion space and, thus, brokers with large overlapping subscriptions share more
common traffic.

Recent work by Baldoni et al. [14] and Chockler et al. [43] considers topic-
based publish/subscribe. In contrast to our model which builds on one single
broker overlay tree for event dissemination, they use one dedicated dissemina-
tion tree for each topic. In addition to that, a general overlay network (or
membership service) is necessary to route events to their respective dissemina-
tion tree. The idea is promising because it is now possible to simply optimize
the individual topic trees with respect to their communication costs (i.e., using a
minimum spanning tree). However, this approach is only suitable for topic-based
routing similar to the approach by Juninger and Lee which relies on a multiple
ring topology [93]. Chockler et al. discuss the problem of minimizing the num-
ber of pure forwarding brokers for topic-based publish/subscribe systems while
maintaining a maximum broker degree [42]. They name this problem Minimum
Topic-Connected Overlay (Min-TCO) and show that it is NP-hard. Moreover,
they present a centralized algorithm that relies on global knowledge and ap-
proximates the optimal solution within a logarithmic factor. They prove that
no polynomial algorithm can approximate Min-TCO within a constant factor.

Voulgaris et al. present an approach which is very similar to the early work
of Baldoni et al. [158, 159]. They cluster brokers based on common interest with
respect to similarity in the local subscriptions they manage (a similar approach is
taken by Anceaume et al. [9]). The downside of this approach is that it assumes
a uniform distribution of events over the event space (or at least of the event
space covered by all subscriptions in the system). This assumption does not hold
in general as discussed previously.

Quality of Service Management. Our work can be seen as part of Qual-
ity of Service (QoS) management in publish/subscribe systems [20]. In [31],
Caporuscio et al. present an approach, where they apply Lira (Light-weight
Infrastructure for Reconfiguring Applications) to the Siena publish/subscribe
system in order to provide QoS guarantees. The approach builds on a separate
monitoring component for each broker and client in the system and one central-
ized application manager component. Threshold values trigger the migration
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of clients and changes in the broker overlay network topology. The goal is to
meet guarantees negotiated previously between participants. Reconfigurations
are, thus, triggered when the system may fail to provide certain guarantees.
The paper focuses on the architectural implications of integrating QoS manage-
ment into the Siena publish/subscribe system. It provides a centralized solution
which has obvious shortcomings in large-scale systems.

A distributed approach is taken in INDIQoS, a publish/subscribe System
that builds on top of a peer-to-peer routing substrate similar to Pastry [32]. Its
goal is to support QoS, particularly regarding latency and bandwidth, in pub-
lish/subscribe communication by enhancing advertisements and subscriptions
with adequate extensions. Therefore, brokers in the overlay topology collect
QoS information from immediate neighbor brokers and collectively try to pro-
vide the requested QoS for subscribers and publishers, respectively. The main
benefit is that a significant amount of signaling traffic can be saved in com-
parison to well-known techniques applied to direct communication, where every
node tries to gain up-to-date knowledge of the network or where subscriptions
are flooded in order to find an admissible path. Although the system is able to
give QoS guarantees this way, there is no mechanism for optimizing the broker
topology which is built according to the DHT used.

Peer-to-Peer Routing Substrates

Structured Peer-to-Peer Networks. Peer-to-peer routing substrates like
Can [138], Pastry [141], and Chord [149] build on distributed hash tables
(DHT) [95] and provide a simple interface and a scalable way to lookup objects
and route to them in a distributed fashion. There have been several efforts to
deploy publish/subscribe communication on top of these routing substrates like
Hermes [133] and PastryStrings [2] based on Pastry, Meghdoot based on
CAN [71], and other approaches based on Chord [154, 155]. Baldoni et al.
propose a solution which is even independent of the routing substrate used [18].
Most of these approaches focus on the implementation of powerful matching op-
erations and leave overlay topology issues to the peer-to-peer routing substrate.

In the area of peer-to-peer routing substrates there have been several efforts
to adapt the overlay topology to the underlying physical network [39, 44, 96].
However, these approaches mainly concentrate on communication delays which
are only one aspect of the underlying network. The authors of [38] even ar-
gue that structured peer-to-peer overlays may not be a good choice in dynamic
environments. The main problem inherent to all these solutions is that they de-
couple the optimizations from the actual network traffic in the overlay network
that is generated by the application. One approach to combine both is discussed
in [114], where the authors try to optimize the overlay topology with respect
to communication costs. This approach is a special case of the OCST problem
and has been introduced earlier as the MRT problem. The solution proposed is
based on local search and builds on a tree structure. Although very interesting,
this approach is restricted with respect to the assumptions taken and not suit-
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able to solve the PSOOP in general since processing costs are not considered,
for example.

Unstructured Peer-to-Peer Networks. Besides the implementation of
publish/subscribe systems on top of structured peer-to-peer networks, there is
also work on using unstructured peer-to-peer networks. Unstructured peer-to-
peer systems often rely on flooding which can introduce high message com-
plexity. Thus, solutions that build on probabilistic approaches have been pro-
posed [48, 49]. The basic idea is to flood subscriptions only in a limited neigh-
borhood of the subscribers. Notifications are routed according to subscription
information if available at the brokers or are disseminated in a random walk if
not. This approach forgoes a single broker overlay topology and the maintenance
that comes with it on the cost of only probabilistic delivery guarantees.

Multicast

Publish/Subscribe Over IP Multicast. It is an appealing approach to
realize the notification service by a collection of IP multicast trees which, for
example, each correspond to a topic. For topic-based routing with a number of
topics much larger than the number of available multicast groups, it is in general
hard to find an optimal match between the set of brokers and the multicast
groups with respect to resource usage (channelization problem) [1]. For content-
based routing this problem becomes even harder because it is more difficult to
cluster brokers into groups. Several approaches have been proposed that try
to do an imperfect mapping of interest clusters to multicast groups [162]. In
publish/subscribe research, Orpychal et al. published work on the mapping of
broker clusters according to their subscriptions to IP multicast groups in a way
such that notifications that reach brokers with no subscribed local clients have
to drop them [124]. A similar approach is taken by Riabov et al. [139].

Applying IP multicast for publish/subscribe systems works well as long as it
is possible to determine distinct groups of brokers that all share a dedicated set of
messages which is easy for topic-based routing but in general hard for content-
based routing. Accomplishing this perfect mapping can lead to an explosion
of the number of groups for content-based routing up to 2n, where n is the
number of clients [124]. Thus, the number of groups has to be bounded such
that messages are sent to brokers with no subscribed client as in the approach
with only one broker overlay network. In addition to this overhead, extra work
must be invested in the maintenance of the multicast groups.

Application-Layer Multicast. Kwon and Fahmy present an algorithm that
constructs topology-aware overlay networks for multicast groups [102]. They
focus on communication and bandwidth constraints and propose a distributed
algorithm that achieves low latency multicast trees. In contrast to our approach,
where many implicit multicast groups share one broker overlay topology, their
approach considers a unique broker overlay for each multicast group. Besides
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this, the authors do not consider processing costs which may add additional
delay to message forwarding.

Banerjee et al. take another approach to find minimum average-latency
degree-bounded spanning trees for building efficient multicast overlay net-
works [19]. Their architecture called Omni comprises a set of multicast ser-
vice nodes (MSNs) that are distributed in the network. Clients connect to these
MSNs and there is only one publisher connected to an MSN called “root”. MSNs
form an acyclic overlay network for notification forwarding. To optimize the av-
erage latency of notification delivery, the authors exploit the fact that MSNs
with more clients have a bigger influence on the average latency. Their dis-
tributed approach relies on basic operations in the tree like swapping of MSN
positions (parent-child swap) or promoting child MSNs up the tree if an MSN
has not yet reached its maximum degree. The distributed approach exploits the
hierarchical structure of the dissemination tree. In contrast to our approach, the
authors focus only on latency and do not take peer-to-peer routing with several
publishers into account.

Papaemmanouil et al. extend the approach by Banerjee et al. by adding
profile-related as well as cost-related extensibility [125]. The result is a very
flexible system which can be configured for various usage scenarios. However,
the focus is still on hierarchical routing which is necessary for the algorithm to
decide if a certain reconfiguration is beneficial.

The Kyra publish/subscribe systems takes another approach to optimize
notification dissemination by using multiple broker trees, each responsible for
parts of the notification space and organized related to their network proxim-
ity [30]. The partitioning of the notification space is done according to popularity
(with respect to subscriptions), the number of notifications published and the
resources a notification consumes when being processed. This approach is very
promising but not feasible with one single broker overlay topology for notification
dissemination.

There are various other approaches that optimize dissemination trees for
application-layer multicast, especially with respect to data streaming [172, 173].
They all bear the same basic problem of mapping publish/subscribe communi-
cation to multicast systems which have already been discussed in the context of
IP multicast above.

Other Approaches to Overlay Optimization

Besides the optimizations discussed so far, there are other approaches that try
to optimize a publish/subscribe system with respect to different goals. An ap-
proach that builds on top of a model that comprises utility functions for con-
sumers is presented by Lumezanu et al. [108]. The optimizer presented adjusts
the publication rates for different consumer classes and determines the number
of consumers for each consumer class in order to improve the utility of the sys-
tem in whole measured with the utility function. The problem is hard to solve,
because there are upper limits for different resources (i.e., CPU power and net-
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work bandwidth). The optimization is performed according to a “price” which
is calculated for each resource and introduces a market-like mechanism.

The availability aspect of overlay optimization has not been discussed so far.
A first approach for fault-resilient publish/subscribe broker overlay topologies is
presented in [101]. The authors propose an algorithm which creates overlay net-
works that are able to cope with k independent failures of overlay links between
any two brokers. The solution is based on a central and globally known set of
stellar nodes around which the network is grown. In this network, every broker
holds at least k connections to other different brokers. The approach is interest-
ing and introducing fault tolerance considering the physical underlay network is
important. Unfortunately, the authors do not discuss the implications on the
publish/subscribe layer, for example, on the publish/subscribe routing layer.

5.8 Discussion

In this chapter, we discussed the problem of finding an optimal broker overlay
topology for publish/subscribe systems in a cost model that comprises communi-
cation as well as processing costs. We showed that this problem is NP-complete
and that using a heuristic to approximate a good topology is a viable option. We
discussed the shortcomings of two heuristics proposed in the past and presented
our CI heuristic which takes processing and communication costs into account
in order to improve the performance of the system in whole. We proposed a
framework, where brokers exchange information in a bounded neighborhood to
create a limited local view of the network. This view is then used in order to
optimize the topology of the neighborhood of each broker. The framework is
independent of the routing algorithm used and is, thus, easy to integrate into
any publish/subscribe system that builds on an acyclic broker overlay topology.

In the evaluation, we showed in several experiments that the CI heuristic is
superior in most of the experiments to the other two heuristics ℓMST and ℓMIT.
The results show, that all heuristics are able to improve system performance with
respect to a random topology which would be created when a publish/subscribe
system grows naturally by adding and removing brokers as leafs. The simple
localized approach presented emerges in an improved broker topology with lower
costs according to our cost model. The additional overhead is reasonably small
and negligible with respect to the performance gain.

The algorithm framework used for the three heuristics builds on messages
broadcasted which are sent out regularly. This produces a constant basic load
on the network even if no publish/subscribe messages are forwarded. An alter-
native approach would be to send broadcast messages after a threshold has been
reached in the number of notifications a broker consumed as proposed by the
authors of [17]. This, however, poses the question of the minimum and maxi-
mum broadcast interval and degrades the reactivity of the system in case of a
low publication rate. Moreover, it does not allow the system to react to changes
in the communication costs quickly since the optimization algorithm is triggered
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by the arrival of a broadcast message. Thus, further work would be necessary
here. It is in general dependent on the requirements of the application which
approach is more suitable.

Some issues remain open for future work. Although the CI heuristic per-
forms very well, it does not reach a stable state with respect to the reconfigura-
tions. Experiment 8 shows that neither the ℓMIT heuristic nor the CI heuristic
were able to reach a stable topology, where no reconfigurations are executed
anymore—in contrast to the ℓMST heuristic which quickly reaches a stable state.
The reasons for that have already been discussed and go back to the estimations
carried out by the brokers and the complex dependencies between reconfigura-
tions and the notification flows. Thus, further work is needed to improve the
CI heuristic to be able to reach a stable topology.

A general issue is that all heuristics were evaluated and designed with respect
to the average message forwarding costs. This may not fit to every application
domain, where it is conceivable that the topology may need to be optimized
with respect to the maximum costs for forwarding one message (e.g., if the costs
relate to some fault tolerance metric). We also assumed that all messages cause
about the same cost when being sent or processed. This may not hold in general.
We leave these issues for future work.

The parameters of the algorithm framework were determined in separate
experiments. They depend on the scenario in different degrees which means
that the parameters we used for the experiments are not optimal in general.
Generally speaking, this affects all parameters described in Table 5.2 on page 165,
where filterSize and numberOfHashs can be determined using cacheSize as already
discussed in Experiment 2. The situation is similar for updateInterval which
depends on broadcastInterval. Thus, it remains to determine broadcastInterval
as well as environmentSize and cacheSize. For example, it could be sensible to
increase the broadcast interval in case of low notification traffic. Similarly, it may
be beneficial to increase the cache size in face of a growing number of notifications
consumed. In both cases it is necessary that brokers in the neighborhood adapt
accordingly. For example, it would be necessary to increase updateInterval for
the values of a broker which increased its broadcastInterval. Similarly, brokers
must be able to handle different sizes of Bloom filters when calculating the
common traffic. Finding these parameters automatically or even adapting them
at runtime is an interesting issue for future work.

Finally, we assumed that changes of the overlay network topology do not
affect the underlying topology such as processing capacity of the nodes running
the broker and communication links. It is currently an interesting general issue
how optimizations on the overlay network can be carried out in a way such that
they are not counterproductive to optimizations carried out in the underlying
physical network topology [5, 145].



Chapter 6

Conclusions and
Future Work

6.1 Summary

The objective of this thesis is to approach the goal of rendering publish/subscribe
systems self-managing. This issue is of particular interest since most of today’s
publish/subscribe systems are manually managed which more and more becomes
the limiting factor regarding the growth of these systems. Besides this problem of
scale, often termed as the complexity crisis [97] and frequently mentioned as the
driving force behind research on self-X systems, new applications also demand
for self-management features. These systems often reside on the other end of the
scale and comprise (small) distributed systems that run in an environment, where
administrative support is generally not available. Self-management is inevitable
in those scenarios which comprise the consumer market (e.g., the e-home) as
well as systems that have to operate autonomously (e.g., for monitoring remote
areas).

Our analysis of related work showed that research on self-management of pub-
lish/subscribe systems has just started and that there are still many interesting
open problems and opportunities. We focused on general management issues like
reconfiguring the notification service at runtime without service interruption as
well as automated fault handling with recovery guarantees and adapting the no-
tification service with respect to the usage patterns of the clients. The desire
for self-management features in publish/subscribe systems becomes even more
important because the event-based computing paradigm including publish/sub-
scribe research gains growing interest in industry as well as academia. This is
demonstrated, for example, by a growing range of professional software products
and the first conference dedicated to this area [83].

With our work, we contribute in various ways to support self-management
in publish/subscribe systems. Our contributions range from basic mechanisms

183
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like seamless reconfiguration of broker overlay networks, which are often used
for a distributed implementation of the notification service, to fault manage-
ment in form of self-stabilization. We presented ways to render the notification
service self-optimizing and tools to formally analyze the performance of a given
publish/subscribe system.

Self-Stabilizing Publish/Subscribe Systems

Chapter 3 presented algorithms for rendering content-based routing in pub-
lish/subscribe systems self-stabilizing. The algorithms are based on the concept
of leasing, where the soft state held in the routing tables of the brokers is regu-
larly refreshed. This way, it is possible to remove stale routing table entries and
correct arbitrary perturbations of the routing tables’ contents. In Chapter 4, we
complement the self-stabilizing content-based routing layer with a self-stabilizing
broker overlay network. It is also possible to combine it with other algorithms
which would also render the broker overlay network self-stabilizing. However,
our overlay maintenance algorithm has the advantage that it supports reconfig-
uration and maintains arbitrary correct broker overlay networks.

Besides algorithms that are dedicated to specific routing algorithms (and
are, thus, able to exploit their characteristics for an improved performance),
we presented a generalized algorithm which supports arbitrary routing algo-
rithms which comply our definition of a correct routing algorithm. Furthermore,
we discussed the question whether the overhead induced by self-stabilization is
worthwhile and identified those scenarios in which filtering outperforms flood-
ing. In general, content-based routing does not perform better than flooding, for
example, if every broker has a local client that is interested in all notifications
published. However, notification filtering often does not pay off in those scenario
anyway.

One main benefit of self-stabilization lies in the guarantee that the system
recovers from arbitrary transient perturbations of soft state as well as links or
brokers that crash and come up again. Some self-stabilizing systems are even
able to cope with permanent faults if they are able to find back into a correct
state like our self-stabilizing broker overlay network. The convergence property
of self-stabilizing systems implies that they are guaranteed to find back into
a legal state if possible when started in an arbitrary state. This feature is of
particular interest in the aforementioned application scenarios, where manual
administration is not feasible or the system should be put into operation by
non-experts.

Seamless Broker Overlay Topology Reconfiguration

It is expected that operating a publish/subscribe system in a dynamic environ-
ment requires reconfiguring the notification service for maintenance, growth, or
performance optimizations, for example. Although the publish/subscribe com-
munication paradigm is well suited to dynamic environments the issue of recon-
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figuration at runtime has mostly been tackled from the perspective of faults in
the past. Here, changes are unpredictable making it hard to prevent message
loss. We complemented the existing algorithms with a new algorithm in Chap-
ter 4 that not only prevents message loss in fault-free scenarios but is also able
to maintain message orderings which no other algorithm supports yet. It sup-
ports various routing algorithms but may need to be adapted for others. This
contribution is significant since it allows reconfigurations to be implemented in
a transparent manner for the clients.

Moreover, we presented a self-stabilizing publish/subscribe stack in Chap-
ter 4 which comprises a self-stabilizing broker overlay network as well as self-
stabilizing content-based routing and is able to seamlessly implement reconfigu-
rations at runtime. We identified basic problems inherent to reconfiguring self-
stabilizing systems. As a consequence, we could not follow the same approach
presented for regular publish/subscribe systems. We, thus, introduced a central
mechanism which relies on a coloring scheme that coordinates actions on the dif-
ferent layers. This way, we are able to prevent message loss and provide ordering
guarantees during reconfiguration without losing the self-stabilizing property of
the system.

Self-Optimizing Broker Overlay Topology

The topology of the broker overlay network which provides the notification ser-
vice has a significant influence on the performance of the publish/subscribe sys-
tem. In the past, most research has concentrated on creating minimum spanning
trees and using them for the broker overlay topology. Recently, it has been iden-
tified that it could be favorable for the performance (in terms of latency) to
minimize the number of overlay hops when distributing a notification. We pre-
sented a cost model in Chapter 5 which incorporates communication as well as
processing costs. Then, we formalized the optimization problem of finding an
optimal broker overlay topology and showed that it is NP-complete for the static
case, where global knowledge is available. In a dynamic scenario, where global
knowledge is not feasible, the problem becomes even more difficult. We, thus,
decided to use a heuristic to approximate a good solution and presented the Cost
and Interest heuristic, where the brokers use local knowledge gained from their
neighborhood in order to optimize their neighborhood’s topology. The rationale
behind this approach is that these local optimizations will hopefully eventually
emerge in a good global broker topology.

A comprehensive simulation study showed that our heuristic is flexible with
respect to the costs distribution and dynamic changes, and that is able to signif-
icantly reduce the total cost compared to random static broker topologies. We
compared it to the classical minimum spanning tree approach and a heuristic
which tries to minimize the number of overlay hops. Although both heuristics
were able to improve the performance of the system, our heuristic almost always
outperformed them. Moreover, the experiments showed that they were not as
flexible as our heuristic because they did not consider communication or pro-
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cessing costs. For the implementation of the reconfigurations proposed by the
heuristic, we relied on the reconfiguration algorithm presented in Chapter 4.

Formal Analysis

Models and formal analysis are important to create a deeper understanding of
the inner workings of systems. This is especially true for research on publish/sub-
scribe systems, where the vast majority of performance evaluations is based on
experimental evaluations. In the context of the evaluation of self-stabilizing pub-
lish/subscribe systems in Chapter 3, we presented a stochastic analysis based
on Markov chains which is applicable in a wide range of scenarios. For scenarios
which build on complete trees and hierarchical routing, where subscribers are
uniformly distributed to the leaf brokers and identity-based routing is used, we
were able to provide closed formulas. For more complex scenarios with arbitrary
tree structures, and clients connecting to any broker in the system with config-
urable probabilities, we provided a formalism based on recursive formulas. The
formalism covers a wide range of scenarios and allows to analytically determine
the performance of publish/subscribe systems, for example, in face of locality.

6.2 Conclusions

We live in a world, where the pace of change increases permanently. Modern
computer systems are on the one hand a driving force behind this development
but, on the other hand, also have to keep pace with it. Dealing with dynam-
ics requires rethinking the architecture of today’s computer systems over and
over again. When taking a closer look at our day-to-day life we realize that our
actions are often triggered by events rather than a strict schedule planned in
advance—in contrast to conventional computer systems, where a procedure call
results in planned actions which finally lead to the effect that was intended by
the caller [80]. It is, thus, no wonder that there is a movement towards event-
based programming, where the event serves as the central abstraction around
which systems are built to better support parallel processing in distributed sys-
tems as well as multiprocessor and multi-core processor systems [53]. Realizing
event-driven systems on the basis of a publish/subscribe middleware is a sensible
decision. During our work on this thesis, we learned the following.

Reconfigurability

Research on publish/subscribe systems in the past has often neglected dynamic
environments with respect to reconfiguration. In Chapter 4, we argued in favor
of integrating seamless reconfiguration of the broker overlay topology into the
publish/subscribe middleware. This, however, is only one aspect of reconfigura-
bility. In general, reconfiguration is vital for running publish/subscribe systems
in dynamic environments because it allows for adapting the system to changes
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in the environment. Adaptation is part of (self-)management and crucial in or-
der to gain an optimal performance. Since reconfiguration should not have a
negative impact on the service provided by the middleware, it is important that
it happens transparently for the clients. This task is far from being trivial as we
have seen in the case of topological reconfigurations. Nevertheless, it is worth-
while since it broadens the class of scenarios, where publish/subscribe systems
can be applied.

Usage-Driven Self-Optimization

The middleware layer sits between the operating system and the application
and provides transparency to the latter in form of abstract services. Since the
middleware is “close” to the application, it is a reasonable place to invest in op-
timizations that are not application-specific but driven by application demands.
In the case of distributed publish/subscribe systems, where an own network
routing infrastructure is maintained in form of a broker overlay network and
the interface operations are relatively simple, there are lots of possibilities for
performance optimizations according to the application behavior. The decision
of when and how to optimize the system can thereby rely on many different
approaches. One could be, for example, to forecast behavior if it correlates with
time, or to learn from the past using techniques from machine learning. In the
thesis at hand, we assumed that the near future will be similar to the near past,
which is certainly true in many scenarios. One important insight is, that event-
based systems, which are loosely coupled in general, need a flexible infrastructure
because client behavior may change significantly and unpredictably over time.
In an enterprise application integration scenario, for example, one event (like a
purchase order) may result in a lot of other events (like billing, issuing related
orders, etc.) which can be created in kind of a domino effect. In order to cope
with sudden changes in the communication behavior, it is important to quickly
react to the behavior at the interfaces which can easily be monitored.

Faults

Besides performance optimization, fault handling is another vital issue for the
deployment of publish/subscribe systems in practice. In the past, several re-
searchers worked on fault masking which is certainly one important facet of
fault handling. With our work, we enriched the fault tolerance mechanisms
presented in related work with self-stabilization. Besides the guaranteed stabi-
lization in the face of transient faults, self-stabilization also provides automated
initialization. The latter is a management task which may not only be needed
when starting the system for the first time, but also in the face of power outages
or maintenance. Self-stabilization is, thus, a feature of great value not only with
respect to fault handling.

We already recognized in Chapter 4 that self-stabilization might come with
restrictions which have to be tackled in the context of reconfiguration. However,
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although it is not easy to integrate reconfiguration into a self-stabilizing system,
it is useful in many scenarios and a valuable supplement.

Modeling and Analysis

Most publish/subscribe systems have been evaluated in the past with simulation-
based studies. Thereby, a large body of different simulation tools has been used
like ns2, JSim, PeerSim, ChordSim, not to forget the simulation platforms de-
veloped from scratch by individual researchers. Besides this variety of simulation
platforms, the datasets used for the simulations are often described insufficiently
due to spatial restrictions. Both issues make it hard to compare results gained
from different systems. At this point, formal analysis can help to generate a
deeper understanding because implementation details can be neglected or must
be included into the formalism. Besides that, a formalism provides a dedicated
space for modeling systems making it easier to understand the differences be-
tween various approaches. On the other hand, formal analysis often requires
simplifications in the model to be able to formally describe a system. This
can be challenging in complex scenarios like the one described in Chapter 5.
We believe that formal analysis is an important tool, especially in the area of
publish/subscribe systems, where it has yet only been used rarely. However, it
cannot substitute simulations in every case.

6.3 Outlook

In this thesis, we present approaches which can be employed to render pub-
lish/subscribe systems self-managing with respect to certain aspects. The top-
ics overlay reconfiguration, self-stabilization, and overlay optimization, however,
only represent selected facets in the area of self-managing publish/subscribe sys-
tems. Our findings leave room for further research in this field. In the following,
we discuss research questions which result from our work.

Analysis and Modeling

The formal analysis introduced in Chapter 3 lays the foundation for further
work. We restricted the analysis to identity-based hierarchical routing. Dropping
these restrictions would significantly increase the scope of systems that can be
analyzed with the formalism. Moreover, it could be sensible to add processing
and communication costs to the analysis instead of solely counting the number
of messages produced. This extension is rather straightforward and easy to
integrate, similar to the integration of advertisements and peer-to-peer routing.

Extending the analysis goes hand in hand with the question of how to model
publish/subscribe systems. This regards aspects like locality, faults, and costs.
Having a general model makes it possible to instantiate a concrete system that
consists of a broker topology and a set of distributions to be analyzed. Thus, it
is easier to study the effects of different scenarios and design decisions.
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Modeling and analysis opens doors for performance prediction and adapta-
tion. Data collected by monitoring a publish/subscribe system could be used to
derive a model which can be analyzed subsequently. Based on the analysis and
the model it is possible to derive performance predictions and adapt the system
accordingly.

Simulation and Comparability

Besides the analysis, simulation is still an important tool to evaluate and com-
pare implementations of different concepts. However, the research community
is still missing widely accepted standard benchmarks concerning cost models as
well as subscription and publication distributions. Different application scenar-
ios have different requirements and it is of significant importance to formulate
them in order to be able to evaluate and compare different systems similar to
benchmarks used in industry, like SPECjms [142]. Identifying scenarios and
modeling them accordingly would be of great benefit for the publish/subscribe
research community.

Low Layer Publish/Subscribe

In this thesis, we considered the publish/subscribe communication paradigm
from the middleware perspective, where the broker overlay network is layered on
top of a physical network topology. Taking a step back and looking at the big pic-
ture it is only consequent to push content-based addressing as in content-based
routing further down the network stack in order to realize what is sometimes
called a content-based network [35]. Companies like Solace Systems1 already
provide content-aware routing in hardware—however, this topic has essentially
been neglected in academic publish/subscribe research yet. Using content-based
networking as a basic networking paradigm could ease the development, deploy-
ment, and integration of distributed applications which often enough rely on
dedicated overlay networks.

Broker Overlay Management

We relied on an architecture, where the notification service consists of one ded-
icated acyclic broker overlay network. With a large set of diverse applications
it might not be sensible to use only one topology for notification dissemination
because a large set of superposed message streams may leave only little room for
optimizations. Various approaches previously discussed as related work present
solutions that rely on multiple trees for the dissemination of notifications. This
approach raises new problems in dealing with duplicates and ordering issues.
However, it could leave more room for optimizations in the different broker trees,
where it could again be sensible to apply the CI heuristic presented in Chap-

1http://www.solacesystems.com (last visit: 2008-09-29)

http://www.solacesystems.com
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ter 5, for example. Finding a good partitioning into different trees is another
interesting problem which depends on the application scenario.

Adaptation and Reconfiguration

Seamless reconfiguration is a prerequisite for self-management and self-
optimization which are of increasing importance because of a growing de-
mand for applications that can cope with dynamic scenarios. The middle-
ware layer is a promising place for realizing reconfiguration because it makes
reconfiguration transparent for the application developer and provides means for
adding self-management and adaptation features in an application-independent
way [68]. Thus, the application developer does not need to be an expert in self-
management anymore but can rely on self-management features offered by the
middleware.

In this thesis, we concentrated on the reconfiguration of the broker overlay
topology for a certain class of routing algorithms. The next step would be to gen-
eralize the reconfiguration mechanism for arbitrary correct routing algorithms.
Moreover, it would be interesting to not only dynamically reconfigure the topol-
ogy but also the routing algorithm used. This would open up the possibility to
switch between different routing algorithms on the fly, depending on the message
flows. First steps in this direction have been undertaken by Bittner and Hinze
recently [24].

The integration of reconfiguration and self-optimization in Chapters 4 and 5
already showed that a modular architecture of the publish/subscribe system is a
necessary prerequisite in order to be able to implement dynamic reconfigurations.
Baldoni et al. [15] and Cugola and Picco [51] already presented flexible architec-
tures that support limited reconfiguration at runtime. However, more research
is necessary in this direction regarding, for example, the dynamic growth of the
notification service (i.e., starting and stopping brokers on-the-fly), reconfiguring
the routing algorithm used, and flow control.
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Appendix A

Parameters Used for
Topology Generation

We used Brite [113] to generate Internet-like topologies for the experiments
conducted in Section 5.6 and Section 4.4.3. The parameterization of Brite is
displayed in Table A.1 on the following page.
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Topology Type 2 Level: TOP-DOWN
AS

HS: 1000
N: 100
LS: 100
Model: Waxman
Node Placement: Heavy Tailed
alpha: 0.15
Growth Type: Incremental
beta: 0.2
Pref. Conn.: None
m: 2

Route
HS: 1000
N: 100
LS: 100
Model: Waxman
Node Placement: Heavy Tailed
alpha: 0.15
Growth Type: Incremental
beta: 0.2
Pref. Conn.: None
m: 2

Top Down
Edge Connection Model: Random
Inter BW Distr.: Heavy Tailed
Max BW: 1024
Min BW: 10
Intra BW Distr.: Heavy Tailed
Max BW: 1024
Min BW: 10

Table A.1: Parameters used for topology generation with Brite



Appendix B

Example Topologies
Generated by the Heuristics

Figures B.1, B.2, and B.3 on the following pages show topologies as generated
by the different heuristics in the Experiment 4 on page 165 with non-uniformly
distributed clients. Figure B.4 shows the static random topology generated at
the beginning of the experiment. The layout of the depicted topologies is done
automatically and does not respect any cost values. The size of the circles that
represent a broker illustrate different load values (the bigger the size, the higher
the load value). Gray, box-shaped nodes represent brokers without any clients.

The simulation runs were seeded with the same values such that the load
values as well as the communication and processing costs are the same in all
topologies.
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Figure B.1: Topology created by the CI heuristic
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Figure B.2: Topology created by the ℓMIT heuristic
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Figure B.3: Topology created by the ℓMST heuristic
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Figure B.4: Random topology created at the beginning of the experiment
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[87] Jaeger, M. A., Mühl, G., Werner, M., and Parzyjegla, H. Re-
configuring self-stabilizing publish/subscribe systems. In Proceedings of
the 17th IFIP/IEEE International Workshop on Distributed Systems: Op-
erations and Management (DSOM’06) (Oct. 2006), R. State, S. van Meer,
D. O’Sullivan, and T. Pfeifer, Eds., vol. 4269 of Lecture Notes in Computer
Science (LNCS), Springer-Verlag, pp. 233–238.

[88] Jaeger, M. A., Parzyjegla, H., Mühl, G., and Herrmann, K. Self-
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