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Zusammenfassung

Diese Arbeit beschäftigt sich mit der theoretischen Untersuchung und Beschreibung
des nichtlinearen elektronischen Transports durch gekoppelte Quantenpunktsyste-
me mit Hilfe verschiedener Modelle. Wesentlich hierbei ist zum einen die Berück-
sichtigung der Coulomb-Wechselwirkung zwischen den Ladungsträgern und zum an-
deren die Quantenkohärenz im resonanten Tunnelprozess. Beide sorgen für zeitliche
Korrelationen im Tunnelstrom, die sich auf charakteristische Weise in den Strom-
fluktuationen offenbaren. D.h. für ein tieferes Verständnis des Transportprozesses
ist es notwendig, nicht nur den mittleren Strom, sondern auch das Stromrauschen
zu studieren.

Charakteristisch für Strom-Spannungs-Kennlinien von gekoppelten Quanten-
punktsystemen ist das Auftreten von Peaks. Deren physikalischer Ursprung und
die Abhängigkeit von systemspezifischen Parametern wird ausführlich in einem
Mastergleichungsmodell diskutiert. Darüberhinaus werden systematisch Szenari-
en für Sub-Poisson- und Super-Poisson-Rauschen aufgezeigt und analysiert. Da-
bei tritt das Wechselspiel zwischen Coulomb-Wechselwirkung und Pauli-Prinzip in
den zeitlichen Korrelationen des Tunnelprozess deutlich zutage. Für die quanten-
kohärente Beschreibung des Transports unter der Berücksichtigung der Coulomb-
Wechselwirkung wird die Hartree-Fock-Näherung betrachtet. Es zeigt sich, dass sie
zwar für den nichtlinearen Strom zuverlässige Ergebnisse liefert, aber auf Grund
der Vernachlässigung von Quantenfluktuationen das Rauschen nicht hinreichend
wiedergibt.

Um die Verbindung zwischen sequentiellem und kohärentem Tunneln herzustel-
len, wird der Mechanismus der Dephasierung des kohärenten Transports unter-
sucht. Im Vordergrund steht hierbei der Vergleich verschiedener Modellansätze ohne
Coulomb-Wechselwirkung. Im Speziellen zeigt sich, dass der mittlere Strom durch
zwei seriell gekoppelte Quantenpunkte unabhängig ist vom Grad der Kohärenz im
Transportprozess. Für schwache und starke Kopplung zwischen den Quantenpunk-
ten gilt dies auch für das Nullfrequenz-Stromrauschen. Demgegenüber ist es für
mittlere Kopplungen sensitiv auf Kohärenz. Dephasierung durch elastische Streu-
ung im Streumatrixformalismus führt in diesem Bereich zwar zum Verschwinden
der kohärenten Merkmale, im Limes hinreichend starker Dephasierung weicht es
allerdings vom Rauschverhalten des sequentiellen Tunnelns ab.

Um in diesem Zusammenhang den Transportprozess vollständig zu charakterisie-
ren, wird das moderne Konzept der Elektronen-Zählstatistik benutzt. Insbesondere
zeigt die Kumulante dritter Ordnung ein qualitativ ähnliches Verhalten bezüglich
des Dephasierens wie das Schrotrauschen.
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Abstract

This work deals with the theoretical investigation and description of nonlinear elec-
tronic transport through coupled quantum dot systems by means of various ap-
proaches. The essential aspects are the consideration of the Coulomb interaction
between the carriers and the quantum coherence during the resonant tunneling pro-
cess. Both provide temporal correlations in the tunneling current which manifest
themselves in a characteristic manner in the current fluctuations. This means that
for a deeper understanding of transport processes it is necessary not only to consider
the average current, but also the shot noise behavior.

Typical for current-voltage characteristics of coupled quantum dot systems is the
emergence of peaks. Their physical origin and dependencies on the system param-
eters is elaborately discussed by means of a master equation model. Furthermore,
scenarios of sub-Poissonian and super-Poissonian noise are systematically presented
and analyzed. Therein, the interplay between the Coulomb interaction and Pauli’s
exclusion principle clearly emerges. For the quantum coherent description of trans-
port with Coulomb interaction the Hartree-Fock approximation is considered. It
provides reasonable results for the average current, but due to the neglect of quan-
tum fluctuations the noise proves to be inadequate.

In order to establish the connection between sequential and coherent tunneling,
the mechanism of dephasing of the coherent transport process is investigated. The
main focus here is on the comparison of different approaches without Coulomb
interaction. In particular, the average current through two quantum dots coupled
in series turns out to be independent of the degree of quantum coherence in the
transport process. For weak and strong coupling between the quantum dots this
also holds for the zero-frequency shot noise. However, for intermediate coupling
strengths the noise is sensitive to coherence. Dephasing by elastic scattering in the
framework of scattering matrix formalism indeed leads to the loss of the coherent
features in the noise, but for sufficiently strong dephasing the limit of sequential
tunneling cannot be reached within this approach.

In order to fully characterize the transport process in this context the modern
concept of full counting statistics is utilized. Particularly the third order cumulant
shows a qualitatively similar dephasing behavior as the shot noise.
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1. Introduction

1.1. General context

Nanotechnology deals with the manufacturing of functional materials, devices and
systems through control of matter on the nanometer length scale (1-100 nanome-
ters), and exploitation of novel phenomena and properties (physical, chemical, bi-
ological, mechanical, ...) at that length scale. In particular, computational nano-
electronics is probably one of the most prominent and quickly developing areas. In
the meantime a large variety of nanostructures serve as basic modules for electronic
or opto-electronic devices in this field. Most of them are made up of semiconductor
materials. Very new technologies which certainly will come into commercial opera-
tion in the very near future even use single organic or anorganic molecules as the
active part of devices and electronic circuits.

The smallest mesoscopic nanostructure in use is typically termed quantum dot
(QD) - therein “quantum”refers to the specific physical properties of electrons caged
in all three spatial dimensions on the nanometer length scale. This spatial confine-
ment gives rise to the term ”dot”. These structures are frequently denoted as
”artificial”atoms since their electronic structure very much resembles those of real
atoms [MCE97, REI02]. Primarily the discrete density of states (DOS) implies such
an analogy, but moreover shell-filling effects as an important property of real atoms
described by Hund’s rules can be found in QDs as well [TAR96].

The electronic transport through QDs is based on the mechanism of resonant
tunneling. Since the pioneering work of Esaki a huge amount of scientific work has
considered this fascinating phenomenon mainly in the so-called resonant tunneling
diode which consists of a double barrier heterostructure with an electronic confine-
ment in transport direction. The negative differential conductance (NDC) in the re-
spective current-voltage characteristic (CVC) is the fingerprint of resonant tunneling
[CHA74]. In contrast to the resonant tunneling diode, semiconductor QDs provide a
countable number of electronic states energetically separated by up to tens of meV.
Moreover, the typically small spatial extension of QDs causes a strong Coulomb
interaction strength in the order of meV which yields the striking effect of Coulomb
blockade in transport through QDs and the corresponding phenomenon of single
electron tunneling [MEI95a]. Experimentally this becomes manifest in the Coulomb
blockade oscillations of the linear response conductance by tuning the electrostatic
potential of the QD1 or in the Coulomb staircase i.e. the step-like increase of the

1This is realized by changing the voltage applied to a metallic gate capacitively coupled to the
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1. Introduction

CVC (first measurement in Ag nanoparticles 2 [BAR87]). For single QDs the theo-
retical description of these experimental facts concerning the stationary current is
well-elaborated in the 1990s: in the regime of weak coupling between the QD and the
contacts (sequential tunneling regime) for linear response e.g. in [BEE91a, MEI91]
and for nonlinear transport e.g. in [AVE91, HEN94, KLI94a, STA96b]; at very low
temperatures Kondo correlations between contact and QD electrons take place as
considered theoretically for nonlinear transport e.g. in [MEI93, SWI03].

The fabrication of single semiconductor QDs typically comes about in a sophis-
ticated combination of growth techniques, lithographical and etching methods (for
some details see Chap. 2). But there are also technologies available which are based
on the effect of self-organization, i.e. the QDs are formed by themselves during the
growth process [BIM99, STA04]. Ensemble of millions of more or less homogeneous
QDs in a small volume can be obtained in this manner and naturally systems of
coupled QDs arise. This predestines them for a wide range of optical applications,
including diode lasers, optical amplifiers, infrared detectors, mid-IR lasers, and
quantum-optical single-photon emitters [GRU02]. Their optimal performance can
be guaranteed by the fundamental understanding of the interplay between the elec-
tronic properties and the morphology of individual QDs [STI01] but also ensemble
effects e.g. caused by Coulomb interaction can play a role. Spectroscopy by means of
electronic transport measurements is one of the successful diagnostic facilities espe-
cially if the QDs are buried within a device. For instance the average position of QD
levels and broadening mechanisms due to Coulomb interaction can be revealed by
capacitance-voltage spectroscopy [WET03, WET03a, WET03b, WET04b] (and ref-
erences therein). Beyond this, by means of the resonant tunneling current through
a QD ensemble individual QDs can be addressed and the respective wave function
can be mapped [EAV02]. The CVCs of a layer of self-organized QDs [NAR97]
and self-organized QD stacks [BOR01] can exhibit multiple peaks with pronounced
NDC. Their origin is not fully understood yet. In the present work, the sequen-
tial tunneling description [AVE91, BEE91a] is generalized to coupled QDs, either
tunnel-coupled in series or electrostatically in parallel, and the emergence of NDC
in the CVC of such systems will be examined. In this context it will turn out that
the Coulomb interaction plays a crucial role.

Beyond the characterization of QDs via the average tunneling current the con-
sideration of current fluctuations can provide additional information e.g. about
tunneling barrier geometries of buried self-organized QDs [NAU02, KIE03a]. Since
the beginning of the 1990s the consideration of current fluctuations has been a
very active field of research on transport through mesoscopic conductors (for a
representative snapshot of the current state see [NAZ03]). The granular nature of
particles (or quasi-particles) and the stochasticity of transport processes where they

QD - single electron transistor.
2Note that pure Coulomb staircases are only observable in metallic QDs with asymmetric barriers.

In semiconductor QDs the steplike CVC is due to the complicated interplay of the discrete
level spectrum and charging effects.

2



1.1. General context

are involved in are responsible for the so-called shot noise3 (for a brilliant review see
[BLA00, BEE03]). It turns out that it contains detailed information about temporal
correlations in the stochastic transport process caused by e.g.

• (Quasi)4 particle statistics (e.g. for fermions: Pauli’s exclusion principle)

• Coulomb interaction

• Scattering processes, e.g. electron-phonon scattering

• Quantum coherence - decoherence

which cannot be extracted from the stationary current alone. The first measure-
ments of shot noise in tunneling through a single metallic QD were examined in
Ref. [BIR95] with the respective theoretical analysis in [HER93], for semiconductor
QDs the first shot noise experiments were published in [NAU02] which mainly trig-
gered the theoretical investigations of current fluctuations in the present work. A
comprehensive analysis of the shot noise behavior in semiconductor QDs with the
emphasis on the effect of Coulomb interaction is presented here.

At the moment a very controversial debate is taking place concerning the influence
of quantum coherence on the current fluctuations in tunneling through QDs, i.e. the
link between quantum and classical noise. Particularly there is no consensus about
the emergence of Fano factors below one half for tunneling through a symmetric QD
which is believed to be an indicator of coherent transport [ALE03, ALE04, BLA04b].
This issue will be addressed in this work.

Furthermore, the transport through tunnel-coupled QDs (”artificial”molecule) is
strongly governed by quantum coherent effects (for a review see [WIE03]). There-
fore, it can serve as an ideal system to study the effect of dephasing which provides
the link between quantum coherent and incoherent transport (sequential tunnel-
ing). From the point of view of applications two tunnel-coupled QDs can be used
for quantum computation according to the proposal of Loss et al. [LOS98]: they can
constitute a two-level quantum system prepared in a pure state |Ψ〉 = c1|1〉 + c2|2〉
which provides the basic memory unit of quantum computers called ”qubit”. The
maintenance of this superposition over large times requires a very high degree of
quantum coherence so that the investigation of decoherence mechanisms is indis-
pensable. For this purpose it turns out that the analysis of the current fluctuations
in the tunneling current can serve as a very convenient tool as it will be shown in
this work.

However, shot noise is not the only feature of current fluctuations. The transport
through a conductor is basically a stochastic process where electrons arrive at a

3This term traces back to W. Schottky who called the noise caused by the random emission of
electrons from the hot cathode in a vacuum tube “Schrotrauschen” [SCH18].

4e.g. fractional Quantum Hall effect - fractions of elementary charges directly measurable in shot
noise signal [GRI00] (and references therein)
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1. Introduction

certain contact randomly in time. Hence, for a fixed measuring time interval this
electron number is a random variable and the transport process is fully characterized
by its probability distribution (the average electron number gives the current and
the variance is connected to the shot noise.) Its determination is the aim of full
counting statistics (FCS). Levitov adopted this concept for electronic transport from
quantum optics where the temporal correlations of emitted photons are investigated
[LEV93]. In recent years there has been an increasing interest in FCS in mesoscopic
conductors. Several systems have been addressed theoretically (for a review see
[NAZ03]) and the corresponding statistics yield the complete insight into the nature
of transport. However, the measurement of cumulants higher than second order (i.e.
beyond shot noise) is a difficult task and up to now there is only one measurement
of the third-order cumulant in transport through a tunnel junction [REU03] so that
at the moment most theoretical results have predictive character. Here, the FCS is
utilized to fully characterize the process of tunneling through tunnel-coupled QDs
with respect to quantum coherence and the mechanism of dephasing.

1.2. This work

The goal of this work is the systematic investigation of tunneling processes through
coupled QD systems. Two main questions will be addressed in this context: How
does the Coulomb interaction, which is crucial in QDs, affect the nonlinear trans-
port? What is the influence of quantum coherence on the transport process and
particularly on the current fluctuations? For that purpose, parallel QDs coupled via
an electrostatic potential due to the Coulomb interaction or tunnel-coupled QDs in
series are considered. These systems will be connected to two electron reservoirs
(emitter and collector) with different chemical potentials given by an applied bias
voltage which can drive the QD system into a non-equilibrium state - electrons can
enter and leave this state by means of resonant tunneling as the basic transport
mechanism. Throughout this thesis QD systems with at most four levels will be
studied in order to elaborate and discuss the physical effects in a clear and explicit
manner.

In particular, the occurrence of NDC and multiple peaks as observed experimen-
tally in self-organized QD systems is examined. Triggered by the experiments of A.
Nauen et al. [NAU02] we focus on the shot noise and systematically investigate the
possibilities of super- and sub-Poissonian noise.

In principle, there are two different ways to treat transport through QD sys-
tems depending on the degree of quantum coherence whilst the tunneling process:
sequential and coherent tunneling. The crossover between them is accomplished
by dephasing. In order to treat their connection systematically different methods
will be applied: master equation technique (ME), density matrix approach, non-
equilibrium Green’s functions (NEGF), scattering matrix formalism5(SMF) (see

5also widely called Landauer-Büttiker formalism

4



1.2. This work

Fig. 1.1). Here special attention will be laid on the question, how these methods
relate to each other.

Chapter

3. Sequential 
Tunneling

7. Full Counting
Statistics

6. Dephasing5. Coherent
Tunneling

4. Sequential
Tunneling - 
Shot noise

Master equation
(ME)

non-equilibrium
Green’s function

(NEGF)

Scattering matrix
formalism

(SMF)

density matrix
approach

Used formalisms

Figure 1.1.: Appearance of the used formalisms in the chapters.

This thesis is organized as follows: Chap. 2 introduces the manufacturing of
semiconductor QDs and transport experiments conducted on these. Particulary
the fabrication of self-organized QDs and nonlinear transport through ensemble of
self-organized QDs is considered. The important features of transport regarding
the experimental average current and shot noise will be outlined. Chap. 3 contains
the theoretical analysis of sequential tunneling through capacitively coupled QDs
and tunnel-coupled QDs with respect to the average current. The shot noise within
sequential tunneling is considered in Chap. 4. Chap. 5 provides an elaborate analysis
of coherent tunneling through single and coupled QDs and within the framework
of nonequilibrium Green’s functions. The link between sequential and coherent
tunneling will be tried to be established in Chap. 6 for tunneling through single and
coupled QDs namely the influence of dephasing on the current and the shot noise.
In the last Chap. 7 the full information about the transport process through QDs
is obtained by means of FCS. The transport statistics of sequential and coherent
tunneling through tunnel-coupled noninteracting QDs is compared and the concept
of pure dephasing in FCS is discussed.
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2. Semiconductor Quantum Dots

Quantum dots (QDs) are mesoscopic objects where electrons or holes can be con-
fined in all three spatial dimensions. If the spatial extension of the confinement
potential is of the order of the Fermi wavelength of the carriers or even smaller a
discrete DOS results. Depending on the level spacing one distinguishes between
semiconductor QDs and metallic QDs. Throughout this thesis we will focus on
semiconductor QDs where the level spacing is such that we can deal with a small
number of states in the energy range of interest. In contrast, for metallic QDs there
is an infinite number of possible many-particle states of the QD which are relevant
due to the very dense level spectrum.

There exist several technologies to manufacture semiconductor QDs. In general,
lateral and vertical structures are available [KOU97]. The starting point for the
former is the growth of a two-dimensional electron gas (2DEG). On top of the wafer,
metallic gates are patterned using electron beam lithography. Biasing them leads to
a depletion of the electron gas underneath and defines the potential landscape of the
QD. Limited by the resolution of the lithographical process the extension of such a
QD is in order of ∼ 100nm. One advantage of this method is the external calibration
of the confinement potential of the QD by tuning the gate voltages. Furthermore,
the QD can be coupled to the rest of the electron-gas via point contacts so that
carriers can enter the QD and transport measurements in the plane of the 2DEG
are conducted. The list of references which consider such a type of QDs is far too
large to be given here. For an overview see e.g. [KOU97, KOU97a].

The transport through vertical QDs is parallel to the growth direction of the
2DEG. Here, the heterostructure containing the 2DEG is etched down so that a
pillar with a diameter in order of tens of nm remains. In contrast to lateral QDs,
the vertical QD can contain a very small number of electrons so that e.g. shell-filling
effects in transport measurements can be studied [TAR96]. A very prominent type
of vertical QD structures are self-organized grown QDs. A large part of this thesis
deals with transport through such systems. Consequently, we dedicate the next
section to the technology of self-organized QDs and their experimental transport
properties.

2.1. Self-organized quantum dots

The growth of two semiconductor materials with different lattice constants on top
of each other provides strain at the interface of both constituents [BIM99, SHC03].

7



2. Semiconductor Quantum Dots

Figure 2.1.: AFM measurement of InAs islands on AlAs substrate for various InAs
coverages. Source [HAP02]

Figure 2.2.: AFM measurement of 1.8 ML InAs quantum dots on (a) GaAs substrate
and (b) AlAs substrate. Source [HAP02]

8



2.2. Transport experiments

Widely used combinations of such materials are InAs on AlAs or InAs on GaAs
with a lattice mismatch of almost 7 %. In the Stranski-Krastanov growth mode
first a wetting layer emerges which can be considered as a disordered 2DEG. With
increasing layer thickness the strain energy increases and leads to the formation of
islands wherein the strain is relaxed. One obtains an array of randomly distributed
self-organized grown QDs as one can observe in the AFM images in Fig. 2.1 (taken
from [HAP02] by the courtesy of I. Hapke-Wurst). Increasing coverages of InAs on
AlAs are depicted from a) to d). Remarkable is that for low coverage the density of
QDs is higher than for high coverage. Further growth parameters such as deposition
rate and temperature strongly influence the QD density, the size distribution and the
spatial distribution of the islands. A thorough theoretical study by kinetic Monte-
Carlo simulations of the growth kinetics can be found in [MEI02b, MEI03a]. Note,
in Fig. 2.1a there are a few QDs visible which are larger than a most others. As it
will outlined in the next section a few individual QDs can be selected by resonant
tunneling through the QD ensemble which may be caused by this heterogeneity of
the QD array.

A closer AFM look at the QDs is presented in Fig. 2.2 (taken from [HAP02]) for
InAs on GaAs (a) and InAs on AlAs (b). From these pictures one can extract the
QD densities: 2.5 × 1010cm−2 for GaAs and 1 × 1011cm−2 for AlAs. The height
of the almost pyramidal shaped islands is in both cases almost 4 nm. The lateral
extension of InAs islands on GaAs is approximately 20 -30 nm whereas for the AlAs
substrate it is almost a factor one half smaller.

2.2. Transport experiments

For the measurement of an electronic current through the QD ensemble considered
in the previous section the layer of self-organized QDs is embedded in a diode
structure as schematically shown in Fig. 2.3a [KIE03a]. Here the active region
consists of InAs QDs surrounded by AlAs which acts as tunneling barriers. A 15 nm
undoped GaAs spacer layer and a GaAs buffer with graded doping on both sides
of the tunneling structure provide three-dimensional emitter and collector contacts.
In Fig. 2.3b the respective conduction band edge without an applied bias voltage
can be seen. It forms a double-barrier structure where resonant tunneling through
the zero-dimensional QD states can take place.

2.2.1. Current-voltage characteristics

2.2.1.1. Single layer quantum dot array

Applying a bias voltage V between the ohmic contacts (Fig. 2.3a) induces a dif-
ference in chemical potentials of the contacts and therefore the band scheme tilts
as shown in inset b) of Fig. 2.4. Electronic states in the QDs then shift energet-
ically downwards with increasing bias voltage. For InAs QDs in AlAs the ground

9



2. Semiconductor Quantum Dots
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Figure 2.3.: a) Growth scheme of a diode comprising a layer of self-organized quan-
tum dots of InAs. b) The band structure of the sample with Fermi
energy EF for zero-bias. Taken from [KIE03a].
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Figure 2.4.: Current-voltage characteristic of an InAs quantum dot array measured
at T =1.7 K. The current for bias voltages below 130 mV is magnified
by a factor of 10. The dotted line is a guide of the eye representing the
expected current (see text). Insets: a) Principal sample structure of a
single InAs quantum dot (black) embedded in a AlAs barrier (white).
b) Schematic band profile at positive bias with quantum dot level ED.
Taken from [NAU02].

10



2.2. Transport experiments

Figure 2.5.: Measured current voltage characteristic at T =4.2 K. Inset: I(V ) and
dI/dV (V ) for higher bias voltages. Taken from [NAR97].

state energies lie above the emitter chemical potential for zero-bias, i.e. one starts
with empty QDs and at a certain bias voltage the ground states pass the emitter
chemical potential so that electrons can enter the QDs1. The typical diameter of
diodes in experiments of microns allow to have millions of QDs in the active region.
Due to the statistical size distribution of the QDs their ground state energies are
almost continuously distributed over a certain energy range. This is confirmed e.g.
by photoluminescence measurements [HAP02]. Therefore, one would expect a con-
tinuous increase of the current by increasing the bias voltage since more and more
QDs contribute to the current flow. Experimentally this is not the case. In Fig. 2.4
a typical current-voltage characteristic (CVC) is shown [NAU02]. There is a sharp
current onset at about 78 mV followed by a current staircase with non-equidistant
steps. This result suggests that the QD ground state energy spectrum has gaps
corresponding to constant current plateaus. An estimation of the current through a
single QD ground state reveals that each step corresponds to tunneling through an
individual QD with slightly different ground state energies. This very counterintu-
itive behavior was also found in the CVCs of many other samples [HAP99, HAP02]
and the comparison with a reference sample without QDs relates this effect uniquely
to QD tunneling. Obviously there is a selection mechanism which only allows the
tunneling through few individual QDs for low bias. Even though it is not fully clar-
ified which mechanism is responsible there are some explanations on the market.
One will be discussed in Sec. 3.2 and is based on the Coulomb interaction between
electrons in different QDs and inhomogeneities in the collector coupling of the QDs.
This can lead to negative differential conductance and consequently to peaks in

1This mechanism is widely termed as resonant tunneling.
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2. Semiconductor Quantum Dots

the CVC as observed e.g. by [NAR97] shown in Fig. 2.5 and in [ITS96]2, [SUZ97].
Another explanation is proposed in [VDO00, LEV01]. The authors investigated
samples with a 50 nm spacer layer (in contrast to Fig. 2.3a). Caused by a locally
inhomogeneous emitter the local DOS is strongly fluctuating so that only QDs are
selected which are close to regions with a high DOS. Nevertheless, for a small spacer
layer this argument is not very convincing.

As shown in [LIU89] tunneling from a three-dimensional emitter to a zero-dimens-
ional QD state generates a linear decrease of the current plateaus in the CVC: In a
simple picture they consider the conservation of total energy during the tunneling
process which leads to the condition k2

1 + k2
2 + k2

3 = k2
r with ki (i = 1, 2, 3) being

the momenta of electrons in the emitter and kr corresponds to the energy of the
resonant QD state as Er = ~

2k2
r/(2m∗). By increasing the bias voltage the resonant

level Er is decreased so that the radius kr of the hemisphere reduces. The current
is proportional to the number of states on this sphere i.e. on its surface area
I ∝ 4πk2

r ∝ Er. Hence, the current linearly decreases with increasing the bias
voltage. This behavior can be clearly seen on the first current plateau in Fig. 2.4.
In the theoretical investigations of the following chapter this effect is not included
since we assume bias-independent tunneling rates.

At the second current step an overshoot is visible which is known as the Fermi edge
singularity. It is caused by the influence of the Coulomb interaction between emitter
electrons and QD electrons on the tunneling process which is very pronounced at
the Fermi edge and for low temperatures [MAT92a]. In all theoretical discussions
throughout this work we neglect this effect and assume ideal contacts.

2.2.1.2. Stacked quantum dots

In [BOR01, BRY02, BRY03] the tunneling through two layers of self-organized QDs
were reported. Due to the effect of strain the QDs in the second layer tend to form
on top of a QD in the first layer [MEI02b, MEI03] so that a QD stack emerges where
both QDs are separated by a small tunnel barrier. Astonishingly, the authors of
[BOR01, BRY02, BRY03] are able to fabricate samples with a very low density of
QD stacks so that the macroscopic contact covers only a few stacks. The respective
CVC is shown in Fig. 2.6 [BOR01]. A sharp current peak with a high peak-to-valley
ratio can be observed in the low-bias region. The emergence of such a current peak
can be simply understood by the fact that energy levels or excitations of different
QDs in one stack energetically align. If these resonances take place in the range of
the emitter Fermi sea electrons are able to enter the first QD and can further tunnel
through the stack. An elaborate discussion of the influence of the tunnel coupling
between the QDs and their coupling to the contacts on the CVC of a single stack

2In contrast to the other mentioned experiments here a 2DEG in front of the emitter barrier
forms due to charge accumulation. Hence, resonant tunneling occurs if an electronic state of a
QD is resonant with a state in the 2DEG. If the QD state passes the subband ground energy
of the 2DEG a sharp current drop is caused.
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2.2. Transport experiments

Figure 2.6.: Measured current voltage characteristic at T = 7K of an InAs quantum
dot stack. Inset: I(V ) for a larger bias voltage range. Taken from
[BOR01].

will be done in Sec. 3.3. The Lund group also reports on the frequent observation
of double current peaks as can be seen in Fig. 2.6. As we show in Sec. 3.3.3 they
are caused by the Coulomb interaction.

2.2.2. Current fluctuations - Shot noise measurements

In Refs. [NAU02, KIE03a, NAU03] measurements of the low-frequency3 spectral
power density (SPD) SP of the tunneling current through self-organized QDs were
reported. The current fluctuations contain information about correlations in the
tunneling current. For uncorrelated tunneling (e.g. through a single barrier, Pois-
sonian statistics of tunneling events - for details see Chap. 4 and Chap. 7) the SPD
is given by the charge e and the stationary current 〈I〉 as 2e〈I〉. Normalizing the
actual SPD by this value yields the Fano factor α (for the definition see also
(4.1.9)) which gives a measure for correlations in the current. In Fig. 2.7 the CVC

3I.e. in the range of few kHz where the spectrum of the power density is flat apart from 1/f noise
far below frequencies of the order of the tunneling rates (Sec. 4.1.3).
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Figure 2.7.: Upper trace: measured current voltage characteristic. Lower trace:
Fano factor α vs. bias voltage V . Temperature T = 1.6 K. Taken from
[KIE03a].

and the respective Fano factor vs. bias voltage is presented [NAU02, KIE03a]. The
CVC (upper trace) shows steps as already discussed with respect to Fig. 2.4. The
Fano factor is always reduced below unity, i.e. there are only negative correlations
present. They are caused by Pauli’s exclusion principle as we discuss in detail in
Chap. 4 and the corresponding average Fano factor of around 0.8 then gives infor-
mations about the barrier geometry. The enhancement of the Fano factor at the
current steps is also an effect of Pauli’s exclusion principle [KIE03a] which we are
going to discuss analytically in Sec. 4.2.1. Its temperature dependence could pro-
vide information about the spatial distribution of QDs which are active in transport
at this bias voltage (Sec. 4.2.1).

With the recent improvement of the equipment, the measurement of the SPD for
currents of the order of pA became feasible so that the noise at the current onset of
the CVC can be resolved [MAI03, NAU04a]. It turns out that the linear decrease of
the current plateau (Fig. 2.4) is accompanied by a linear increase of the Fano factor
underlining the effect of 3D-0D tunneling of the electrons. Furthermore, the first
current plateau corresponds to tunneling through a Coulomb correlated state since
the ground state of the QD is spin-degenerate. This causes an additional correlation
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2.2. Transport experiments

in the tunneling current and consequently to a modified Fano factor as considered in
Sec. 4.2.1. The lifting of the spin-degeneracy by a magnetic field (Zeeman splitting)
was considered in [MAI03] and the Fano factor vs. bias voltage at the current onset
is shown in Fig. 2.8. Below the current onset the Fano factor is unity due to the
tunneling of thermally activated emitter electrons which happens rarely. Hence the
corresponding statistics of tunneling events is Poissonian. Each step in the Fano
factor corresponds to an increasing step in the current. At the first step one QD
spin state becomes occupied. The Fano factor of 0.67 is given by Pauli’s exclusion
principle and determines the ratio of the collector to the emitter tunneling rate.
At the next step the second spin state gets filled. But now, a Coulomb correlated
state emerges since double occupation of the ground state is forbidden because of
the Coulomb repulsion (Coulomb blockade). Due to the additional correlations the
Fano factor is reduced (see Sec. 4.2.1).
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Figure 2.8.: Measured Fano factor vs. bias voltage for quantum dots in a magnetic
field B = 12T and temperature T = 1.5K (tunnel rates Θ0

E/K = Γe/c in

our notation). Taken from [MAI03].

In Ref. [BAR04] the noise of tunneling through QD stacks was measured. Inter-
estingly, super-Poissonian noise corresponding to a Fano factor larger than unity
was found close to the peaks in the CVC. Unfortunately the experimental data does
not exclusively refer to shot noise4 so that we just give a description of predictive

4There are probably also 1/f noise contributions.
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2. Semiconductor Quantum Dots

character in Sec. 4.2.2.2 for the observation of super-Poissonian noise in tunneling
through coupled QDs.
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3. Sequential Tunneling - Stationary

Current

3.1. Theoretical framework: Master equation

A large class of stochastic processes in physics are characterized by the Markov
property. A Markov process is defined as a stochastic process where the transitions
in successive time intervals are statistically independent or in other words the tran-
sition between two states does not take into account the prehistory of the process.
Defining the conditional probability for a transition from state ν to a state ν ′ at
times t and t′, respectively: p(ν ′t′|νt), the Markov property can be quantified as
[KAM81, ROE87]

p(ν3t3|ν1t1) =
∑

ν2

p(ν3t3|ν2t2)p(ν2t2|ν1t1) (3.1.1)

(t1 < t2 < t3) which is the famous Chapman-Kolmogorov equation. From (3.1.1)
a differential form can be derived which is called Master equation (ME)1

∂

∂t
Pν(t) =

∑

ν′ 6=ν

[Wνν′Pν′(t) − Wν′νPν(t)] (3.1.2)

for the occupation probabilities Pν of state ν. The Wνν′ are the rates for the
transition from state ν ′ to state ν per unit time. This equation is the basis for the
considerations in this chapter and can be interpreted quite easily: the first term in
(3.1.2) describes the “gain” of state ν due to transitions from other states ν ′ and
the second term is due to the loss from state ν into other states ν ′ (therefore the
minus sign).

The concept of a ME description for sequential or single electron tunneling
through QDs was introduced in [BEE91a, AVE91] and will be briefly outlined in
the next section.

3.1.1. Single electron tunneling

The QD system is described by a Fock state ν = (n1, . . . , nN) with the occupation
numbers ni ∈ {0, 1} and N single particle states. The single particle states i may

1This term may occur in several contexts, e.g. sometimes for the Liouville equation. Throughout
this thesis it is used in the way introduced here.
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3. Sequential Tunneling - Stationary Current

correspond to different energy levels in the same QD, or in different QDs. The time
evolution of these occupation probabilities Pν is determined by sequential or single
electron tunneling of an electron into or out of the emitter/collector contact. We
use the ME (3.1.2) and write it in the compact matrix form as2

Ṗ = MP (3.1.3)

The diagonal elements Mνν of the transition matrix M contains the loss term
and the non-diagonal elements correspond to the gain term in (3.1.2). In order to
fulfill the probability normalization

∑

ν Pν = 1 the sum of the matrix elements in a
column of M has to be zero. This guarantees that at least one vanishing eigenvalue
of this matrix always exists so that a steady state solution of (3.1.3) can be found
by

MP0 = 0 (3.1.4)

The matrix M entering the ME (3.1.3) contains the transition rates Mνν′ between
the Fock states ν ′ → ν. Since we are dealing with single electron tunneling all
elements Mνν′ are zero if the total particle number N(ν) =

∑

i ni(ν) differs by
more than one from N(ν ′). This leads to a structure of M which is not completely
reducible or decomposable [KAM81] so that only one stationary state can occur.

The central quantity of interest in the following Sects. 3.2 and 3.3 is the mean
current through the respective QD system. With (3.1.4) and current operators j

e/c

for the emitter and collector barriers, respectively, the stationary mean current is

〈I〉 =
∑

ν

[j
c
P0]ν =

∑

ν

[j
e
P0]ν (3.1.5)

In the stationary limit the mean current at the collector barrier equals the mean
current at the emitter barrier. For the calculation of the stationary current in (3.1.5)
the current operators j

e/c
can be either defined in diagonal or in non-diagonal

matrix form without changing the result (3.1.5). As shown later on in Chap. 4
for the determination of the current-current correlator the exact definition of the
current operators j

e/c
becomes crucial: there these operators project the occupation

probability to the state after an electron has traversed the barrier. An explicit non-
diagonal form of these operators is presented in (3.2.2).

2Note that this approach holds only for QDs which are weakly coupled to the contacts such that
Γ ≪ kBT (Γ is the largest tunneling rate which enters the transition rates Mνν′), and cannot
account for co-tunneling processes [GRA92a], i.e. coherent tunneling which we discuss in detail
in Chap. 5.
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3.1. Theoretical framework: Master equation

3.1.2. Coupled quantum dots: Notations

The transition matrix elements Mνν′ in the ME (3.1.3) contain the tunneling rates
Γi

e/c to the emitter/collector, respectively, and the occupations of the contacts.
These are assumed to be in local equilibrium characterized by Fermi functions
fe/c(E) = 1/(1 + exp((E − µe/c)/kBT )) with chemical potentials µe/c, respectively,
and temperature T . An applied bias voltage V = (µe −µc)/e drives the QD system
out of equilibrium. For a transition which increases the total particle number by one,
i.e. an electron enters the QD single particle state i via the emitter/collector barrier,

respectively, the transition rate reads Mνν′ = Γ
(i)
e/cfe/c(∆Eνν′) where ∆Eνν′ = E(ν)−

E(ν ′) is the difference of total energies (see below). For the inverse tunneling

processes the transition rate is Mνν′ = Γ
(i)
e/c[1−fe/c(∆Eν′ν)]. Throughout this thesis

we choose the sign of the elementary charge e > 0 so that V > 0 means µe > µc and
I > 0 describes a net particle current from emitter to collector. The single particle
energies εi in the QDs are assumed to shift linearly with respect to the bias voltage
V : εi(V ) = εi − eηiV with the leverage factor ηi (0 < ηi < 1) for the i-th QD. The
leverage factor is one half for symmetric barrier structures. The total energy of the
state ν is

E(ν) =
∑

i

ni(ν)(εi − eηiV ) + U(ν) (3.1.6)

where ni(ν) is the occupation number of the i-th single particle state for state ν
and U(ν) is the charging energy for state ν which is given by

U(ν) =
e2

2

∑

i,j

ni(ν)
[

C−1
]

ij
nj(ν) − e2

2

∑

i

[

C−1
]

ii
ni(ν) (3.1.7)

with the inverse of the capacitance matrix C, where the last term subtracts the
self-interaction.3 For states in different QDs i and j at positions ri and rj the
inverse capacitance matrix can be written as [WHA96]

[C−1]ij =
1

4πǫrij
(3.1.8)

with rij ≡ |ri − rj | and ǫ is the dielectric constant. (3.1.8) is simply the electro-
static potential between two point charges at ri and rj. In experiments the contacts
are typically highly-doped and nearby to the layer of QDs so that they screen the
Coulomb potential in the array of QDs. If a is the distance of the QD array to both

3Since the ni enter the Fermi functions via the charging energy the transition rates depend
strongly nonlinear on the occupation numbers. For that reason it is not possible to obtain
rate equations for 〈ni〉 starting from the ME in the presence of Coulomb interaction. For
noninteracting electrons it will be shown in Sec. 3.3.2.
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Figure 3.1.: Scheme of the tunneling structure with rates Γ
(i)
e/c (i = 1, 2) between

two QDs and the emitter/collector, respectively; single particle levels
ε1/2, and Coulomb interaction energy U . Taken from [KIE03b].

contacts the inverse capacitance matrix then has to be modified. For rij ≫ a it
becomes (for details see Appendix A)

[C−1]sij =
1

4πǫ

exp
(

−rij

2a

)

√
πarij

(3.1.9)

Note, that the screened potential is not simply (3.1.8) multiplied by an expo-
nential of −λrij with a screening parameter λ. The electrostatic interaction of
carriers in states of the same QD can be treated in first-order perturbation in the
Coulomb potential considering the QD wave functions [WAR98]. This and the effect
of screening is elaborately discussed in [KIE02b, KIE03] regarding bipolar transport
through QD arrays. The impact of the Coulomb interaction on the unipolar CVC
of large QD arrays is studied in [KIE02, KIE02a]. There the emergence of NDC
caused by Coulomb interaction between different QDs was shown. In the following
section we examine the generic case of two parallel QD states capacitively coupled
to each other in order to give the physical picture of the mechanism leading to the
NDC.

3.2. Parallel quantum dots: negative differential

conductance

We consider two single particle states ε1/2 which are connected to the emit-
ter/collector contact and are coupled electro-statically by a Coulomb interaction
of strength U (see Fig. 3.1). This could either correspond to the spins of the QD
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3.2. Parallel quantum dots: negative differential conductance

ground state (compare Secs. 5.2 and 5.3) or to two spatially separated QD states
without spin degeneracy. In this sense the following considerations are generic for
any larger QD array considered in [KIE02, KIE02a]. Then the vector of the occu-
pation probabilities is P = (P(0,0), P(1,0), P(0,1), P(1,1))

T and the transition matrix in
(3.1.3) reads

M =











−Γ
(1)
e f

(1)
e − Γ

(2)
e f

(2)
e Γ

(1)
e (1 − f

(1)
e ) + Γ

(1)
c

Γ
(1)
e f

(1)
e −Γ

(1)
e (1 − f

(1)
e ) − Γ

(1)
c − Γ

(2)
e f

(2,U)
e

Γ
(2)
e f

(2)
e 0

0 Γ
(2)
e f

(2,U)
e

Γ
(2)
e (1 − f

(2)
e ) + Γ

(2)
c 0

0 Γ
(2)
e (1 − f

(2,U)
e ) + Γ

(2)
c

−Γ
(1)
e f

(1,U)
e − Γ

(2)
e (1 − f

(2)
e ) − Γ

(2)
c Γ

(1)
e (1 − f

(1,U)
e ) + Γ

(1)
c

Γ
(1)
e f

(1,U)
e Γ

(1)
e f

(1,U)
e + Γ

(2)
e f

(2,U)
e − Γ











(3.2.1)

with Γ ≡ Γ
(1)
c + Γ

(2)
c + Γ

(1)
e + Γ

(2)
e and the Fermi functions in the emitter f

(i)
e =

(1 + exp ((εi − eηV )/(kBT )))−1 and f
(i,U)
e = (1 + exp ((εi + U − eηV )/(kBT )))−1.

V is the bias voltage, ηV is the voltage drop across the emitter barrier, and f
(i,U)
e

includes the Coulomb interaction energy U of the occupied QDs. For eV ≫ kBT we
neglect tunneling from the collector into the QDs, setting the collector occupation
probability f

(i)
c = f

(i,U)
c = 0.

The current operators at the collector barrier and at the emitter barrier, respec-
tively, are given by

j
c

= e











0 Γ
(1)
c Γ

(2)
c 0

0 0 0 Γ
(2)
c

0 0 0 Γ
(1)
c

0 0 0 0











j
e

= e











0 −Γ
(1)
e (1 − f

(1)
e ) −Γ

(2)
e (1 − f

(2)
e ) 0

Γ
(2)
e f

(2)
e 0 0 −Γ

(1)
e (1 − f

(1,U)
e )

Γ
(1)
e f

(1)
e 0 0 −Γ

(2)
e (1 − f

(2,U)
e )

0 Γ
(1)
e f

(1,U)
e Γ

(2)
e f

(2,U)
e 0











(3.2.2)

For the following examination we assume ε1 = ε2 and set Γ
(1)
e = Γ

(1)
c = Γ

(2)
e ,

i.e. both single particle states have the same energy, the single particle state i = 1
is symmetrically coupled to the emitter and collector contact, and the collector
tunneling rate Γ

(2)
c of the single particle state i = 2 we will allow to vary. For
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3.2. Parallel quantum dots: negative differential conductance

that purpose we introduce the ratio γ2 ≡ Γ
(2)
c /Γ

(1)
e . In Fig. 3.2a the normalized

stationary current vs. bias voltage is shown for various ratios γ2 (kBT/U = 0.03).
For both single particle states symmetrically coupled to the reservoirs (γ2 = 1, red
curve) the CVC exhibits two steps whose shape is defined by the thermal occupation
of the emitter states. The current step at low bias voltage arises from the tunneling
through the single particle states (1, 0) or (0, 1) - in the same time only one electron
can be in the system (single electron tunneling). In order to fill the two-particle state
(1, 1) the Coulomb repulsion given by the charging energy U has to be overcome by
the emitter electrons so that a second step occurs for (eηV − ε1/2)/U = 1. This is
known as the Coulomb blockade effect and the red curve in Fig. 3.2a represents the
simplest example for a Coulomb staircase [CHE91a]. The tunneling current through
one single particle state i is the series connection of the resistances arising from the
emitter/collector tunneling barrier which are proportional to the inverse tunneling

rates Γ
(i)
e/c, respectively. I.e. 〈Ii〉 = e[(Γ

(i)
e )−1 + (Γ

(i)
c )−1]−1. The total current

one obtains by 〈I〉 =
∑

i〈Ii〉 = 2eΓ
(1)
e Γ

(1)
c /(Γ

(1)
e + Γ

(1)
c ) which corresponds to the

second current plateau in Fig. 3.2a. The current in the Coulomb-blockade regime
(first plateau, red curve) becomes 〈I〉 = e2Γ

(1)
e Γ

(1)
c /(2Γ

(1)
e + Γ

(1)
c ) which takes into

account that only the single particle channels are open (this will also be discussed in
Sec. 4.2.1.3) so that it appears to be a factor of 1/3 smaller than the total current on
the second plateau. Now, let us decrease the collector coupling of the single particle
state i = 2. The ratio γ2 = 0.1 results in the green CVC in Fig. 3.2a. The first
current plateau drops with respect to the total current on the second plateau. For
electrons which enter the single particle state i = 2 from the emitter the tunneling
into the collector is delayed so that electrons spend a longer time in this state.
During this time interval the other single particle state is blocked, i.e. electrons
cannot enter this state. Therefore the current is reduced. For a very low γ2 the
current can be even exponentially small as can be seen in the black CVC of Fig. 3.2
(γ2 = 0.001). At the onset of the first plateau a peak develops for decreasing γ2 and
consequently a pronounced NDC becomes observable in the CVC (also observed
in [HET02]). For its explanation in Fig. 3.2b the occupation probabilities Pν for
ν = (0, 0) (dashed line), ν = (1, 0) (solid line), ν = (0, 1) (dash-dotted line) vs.
bias voltage for γ2 = 0.001 are shown. At the current onset the occupations of the
single particle states (1, 0) and (0, 1) start to increase for increasing bias voltage
due to the tunneling of thermally activated emitter electrons. Since the state (1, 0)
is only partially filled its Coulomb blocking effect on state (1, 0) is less effective so
that P(1,0) can also increase but weaker as P(0,1). As soon as P(0,1) exceeds a certain
value, the state (1, 0) gets blocked and P(1,0) starts to drop. For those reasons the
pronounced precursor peak in the black CVC of Fig. 3.2 and the corresponding
NDC are caused by the effect of mutual Coulomb blocking of the single particle
states in the QD system and by tunneling of thermally activated emitter electrons
into these states. In Sec. 4.2.2.1 it will be shown that this Coulomb blocking effect is
accompanied with bunching of tunneling events, i.e. positive temporal correlations
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3. Sequential Tunneling - Stationary Current

Γe

Γ inter

emitter

collector

QD2

QD1

Γc

Figure 3.3.: Scheme of the quantum dot stack connected to an emitter/collector
contact with tunneling rates Γe/c, respectively, and tunneling rate Γinter

between the quantum dots.

in the tunneling current.

Note that NDC in nonlinear transport through QDs can also be caused by spin
blockade as investigated by Weinmann et al. [WEI95].

The NDC in the CVC of double barrier resonant tunneling diodes can come
along with the phenomenon of bistability. Due to the probabilistic nature of the
ME approach used here, bistability should become manifest in a bimodal distribu-
tion e.g. of the particle number in the system Such a behavior was not found for
the unipolar tunneling through coupled QDs as considered above. But for bipolar
transport through large QD arrays [KIE02b, KIE03] the author observed bimodal
distributions which are accompanied with NDC behavior.
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3.3. Stacked quantum dots

3.3. Stacked quantum dots

The results of this section are published in [SPR04]. In the following we investi-
gate the tunneling current through a single QD stack as mentioned in Sec. 2.2.1.2
regarding the experiment. In Fig. 3.3 the double QD system is sketched: QD1 is
connected to an emitter contact with a tunneling rate Γe, QD2 is connected to a col-
lector contact with a tunneling rate Γc, and both QDs are tunnel-coupled mutually
with a rate Γinter (for the definition see below). We consider one spin degenerate
single particle state per QD. Then the many-particle (Fock-) states of the QD stack

are characterized by occupation numbers n
(ν)
iσ ∈ {0, 1}, where i = 1, 2 labels the QD

and σ =↑, ↓ labels the spin degree of freedom. Thus ν = (n
(ν)
1↑ , n

(ν)
1↓ , n

(ν)
2↑ , n

(ν)
2↓ ) gives

16 different Fock states.

3.3.1. Fermi’s golden rule

Setting up the transition matrix M in (3.1.3) for tunneling processes into or from
the emitter/collector contacts is performed in the same manner as in the previous
section. Here we additionally deal with transitions which do not change the total
particle number in the QD system - they describe tunneling between QD1 and QD2:
Taking into account the broadening of the transition due to the finite lifetime in
the QDs, Fermi’s golden rule provides us with

Mνν′ =2π|Ω|2
[

1

π

Γ/2

(∆Eνν′)2 + (Γ/2)2

]

=Γinter L(∆Eνν′ , Γ)

(3.3.1)

Here Ω is the tunneling matrix element and Γ ≡ Γe+Γc. The maximum tunneling
rate is Γinter = 4|Ω|2/Γ and L(x, w) ≡ [1 + (2x/w)2]−1 is a Lorentzian function in x
with a full-width-half-maximum (FWHM) of w. For convenience we measure rates
and energies in the same units in this section, i.e. we set ~ = 1.

3.3.2. Noninteracting quantum dots: The width of current

resonances

If the energies of single particle states in two different QDs are resonant, a current
flows through the QD stack and a peak arises in the CVC. In this section we give
an analytical derivation of the current for noninteracting electrons, i.e. setting
U(ν) ≡ 0 in Eq. (3.1.6). Then both spin directions decouple and we can restrict
ourselves to a single spin direction here. For the single particle levels in QD1 and
QD2 it is assumed that ε1 − µe ≫ kBT and µc − ε2 ≫ kBT such that fe ≈1 and
fc ≈0. With P 0 = (P 0

(0,0), P
0
(0,1), P

0
(1,0), P

0
(1,1))

T the matrix M explicitly reads
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3. Sequential Tunneling - Stationary Current

M =









−Γe Γc 0 0
0 −(Γe + Γc + Z) Z 0
Γe Z −Z Γc

0 Γe 0 −Γc









(3.3.2)

with Z ≡ ΓinterL(∆E(1,0)(0,1), Γ). The stationary ME can be rewritten in a rate
equation for the average occupation numbers 〈n1〉 and 〈n2〉 which results in the
following stationary solution

(

〈n1〉
〈n2〉

)

=
Γe

ΓeΓc + ΓZ

(

Γc + Z
Z

)

(3.3.3)

The current (3.1.5) then becomes

I = e

[

1

Γe
+

1

Γc
+

1

Z

]−1

(3.3.4)

which can be physically interpreted quite easily: the three barriers in the QD
stack act as a series connection of resistors corresponding to the inverse of tunneling
rates. After a straightforward transformation of (3.3.4) one obtains

I = eΓw L



∆E, Γ

√

1 +
4|Ω|2
ΓeΓc



 (3.3.5)

with Γw ≡
[

1
Γe

+ 1
Γc

+ 1
Γinter

]−1

. Due to the assumption of a linear dependence

of the single particle levels on the bias voltage it follows for the energy difference
∆E = ε1 − eη1V − (ε2 − eη2V ) = e(η2 − η1)(V − VR) with the bias voltage for the
resonance between the levels eVR ≡ ε2−ε1

η2−η1
. Substituting this in Eq. (3.3.5) leads to

I(V ) = eΓw L



V − VR,
Γ

e(η2 − η1)

√

1 +
4|Ω|2
ΓeΓc



 (3.3.6)

As expected, the CVC shows a Lorentzian peak at the bias voltage VR. Interest-
ingly, its broadening is not just given by the tunnel-coupling to the contacts Γ, but

by a line width modified by the correction factor
√

1 + 4|Ω|2

ΓeΓc
. This factor provides

a significant increase of the FWHM for the current peak if the tunneling matrix
element |Ω| is larger than the geometric mean

√
ΓeΓc of the contact tunneling rates.

To discuss Eq. (3.3.6) let us assume that Γc > |Ω| > Γe: the current is limited
by the lowest rate ΓinterL(∆E, Γ) for bias voltages V far away from VR. If the bias
approaches VR this rate is increased until it equals the emitter coupling Γe. Now,
the emitter barrier starts to limit the current, i.e. the current flattens close to the
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3.3. Stacked quantum dots

resonance so that the FWHM value of the current is reached for larger distances
from the resonance voltage VR. The smaller the ratio of Γe/|Ω| the broader the
current peak.

The peak (maximum) current is given by I(VR) = eΓw. It has a non-monotonic
dependence on the collector tunneling rate Γc: for weak collector coupling the peak
current increases linearly, it shows a maximum at Γc = 2|Ω| which corresponds to
the highest transparency through the triple-barrier structure and drops as 1/Γc for
strong collector coupling. (The same holds for the emitter coupling.) On the basis
of the coherent description this was interpreted in Ref. [WEG99] as a competition
between enhanced tunneling for weak collector coupling and destructive interference
in the opposite limit 4 . Hence, it is worth to note that one obtains the same effect in
a Fermi’s golden rule treatment where no interference is taken into account. In this
picture increasing Γc enhances the transport over the collector barrier but limits
the transport between the dots by broadening the transition.

The expression (3.3.5) for the stationary current was also found in [GUR96c,
GUR96d, GUR98, WEG99] where a density matrix approach was used. In the next
Sec. 3.3.2.1 we show that both approaches give identical results in the stationary
state if electron-electron interaction is neglected.

3.3.2.1. Link to coherent tunneling: Density matrix approach

We start with the modified Liouville equation for the double QD system (Fig. 3.3)
derived in [GUR96c]. The following abbreviations for the Fock states |ν〉 will be
used: |a〉 ≡ |0, 0〉, |b〉 ≡ |1, 0〉, |c〉 ≡ |0, 1〉, and |d〉 ≡ |1, 1〉. Then the time evolution
of the corresponding density-matrix elements is given by

ρ̇aa = −Γeρaa + Γcρcc

ρ̇bb = Γeρaa + Γcρdd + iΩ(ρbc − ρcb)

ρ̇cc = −Γρcc − iΩ(ρbc − ρcb)

ρ̇dd = −Γcρdd + Γeρcc

ρ̇bc = i∆Eρbc + iΩ(ρbb − ρcc) −
1

2
Γρbc (3.3.7)

with ∆E ≡ ε2 − ε1 and Γ ≡ Γe + Γc. Additionally, probability conservation is
demanded:

∑

ν ρνν = 1 and ρcb = ρ∗bc holds. Eq. (3.3.7) can be transformed into a

matrix equation of the form u̇ = A · u with u ≡ (ρaa, ρbb, ρcc, ρdd, Re(ρbc), Im(ρbc))
T

and

4The interference mechanism can be applied e.g. for anti-reflection coating in ballistic transport
through superlattices [PAC01].
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3. Sequential Tunneling - Stationary Current

A ≡

















−Γe Γc 0 0 0 0
0 −Γ 0 0 0 −2Ω
Γe 0 0 Γc 0 2Ω
0 Γe 0 −Γc 0 0
0 0 0 0 −1

2
Γ −∆E

0 Ω −Ω 0 ∆E −1
2
Γ

















(3.3.8)

In order to derive the ME for the occupation probabilities Pν = ρνν one has to get
rid of the non-diagonal elements ρbc in (3.3.7) by truncating the 6×6 matrix (3.3.8)
to the 4×4 matrix (3.3.2). This can be accomplished by setting the time derivatives
of Re(ρbc) and Im(ρbc) to zero. Then one can solve the algebraic equations for
ρstat

bc = Ω(ρcc − ρbb)/(∆E + iΓ/2) and substitute this expression in the equations

for ρ̇bb and ρ̇cc. This immediately leads to the terms Z = Ω2Γ
∆E2+(Γ/2)2

in (3.3.2) as
introduced by Fermi’s golden rule in Sec. 3.3.1.

The necessary assumption ρ̇bc = 0 is justified if one of two conditions is met: (i)
In the limiting case Ω ≪ Γ the relaxation of ρbc(t) to ρstat

bc occurs on a fast time
scale. This is the condition for sequential tunneling which underlies our derivation
of the ME. (ii) In the stationary case ρ̇bc = 0 holds independently of the magnitude
of Ω. Therefore, the ME provides reliable results also in the strong coupling limit
if one restricts oneself to the stationary current.

0.2

0.25

0.3 ρ(1,0)(1,0)

ρ(0,1)(0,1)

ME

0 1 2 3 4 5 6 7 8

|Ω|/Γe/c=5
Γe=Γc

Γe/c t

Figure 3.4.: Time evolution of the occupation of QD1 (blue curve) and of QD2 (red
curve) with density matrix approach and with master equation (black
curves). Initial conditions are given by the stationary occupations and
Re(ρbc)(t = 0) = Im(ρbc)(t = 0) = 0.
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3.3. Stacked quantum dots

Nevertheless, the time evolution of the occupations in the density matrix approach
is governed by Rabi oscillations [KIE98] which are missing in the description by the
ME as shown in Fig. 3.4. This essential difference is revealed e.g. in the noise
behavior as studied in Sec. 5.4 or more fundamentally in the full counting statistics
considered in Chap. 7.

3.3.3. Coulomb interaction: Appearance of double current

peaks

Now, our considerations will be extended to the more realistic situation of Coulomb
interacting electrons. We describe the interaction of electrons inside QD1 and
QD2 with charging energies e2[C−1]11 = U1 and e2[C−1]22 = U2, respectively. The
Coulomb interaction strength of electrons in different QDs is given by e2[C−1]12 =
Uinter.

3.3.3.1. Current dependence on emitter Fermi energy

50
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65

70

70 75 80 85 90 95

Energy[meV]

Bias voltage V[mV]

R2
ε(R2)

ε(R1)+U

ε(R1)

QD1

QD2

R1

R3

Figure 3.5.: Linear bias voltage dependence of the single particle energy levels in
QD1 (η1 =0.26, ε1(V = 0) =79.5 meV) and in QD2 (η2 =0.68, ε2(V =
0) =118.7 meV). Dashed lines: addition energies for doubly occupied
QD states (U = U1 = U2 =8meV, Uinter =0). Taken from [SPR04].

In Fig. 3.5 the bias voltage dependence of the QD energies are depicted. The
zero-bias single particle energies εi and leverage factors ηi were obtained from the
calculation of the transmission through a two-dimensional geometry as depicted
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3. Sequential Tunneling - Stationary Current

in Fig. 3.5 without scattering processes [SPR04] (method very similar to [KIE99a]
where the transmission through a quantum wire geometry was examined). In order
to describe the experiment, we use the geometry in [BRY03] which gives η1 =0.26,
ε1 =79.5 meV, and η2 =0.68, ε2 =118.7 meV.

Due to the different slopes, the single particle levels of QD1 and QD2 (full lines
in Fig. 3.5) intersect at the point R1. Further resonances can occur by considering
the double occupancy of the QDs. Assuming equal charging energies for both QDs
(U = U1 = U2 = 8meV) parallel lines with the additional charging energy U emerge
(dashed lines in Fig. 3.5). The resonance R2 is due to the intersection of the energies
of the doubly occupied QD1 and the singly occupied QD2. The resonance of the
doubly occupied states R3 occurs at the same bias voltage as for R1 if the charging
energies for both QDs are equal.
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Figure 3.6.: Contour plot: current I vs. emitter chemical potential µe and bias
voltage V for U = U1 = U2 = 8meV, Uinter = 0, Γe = Γc = 100µeV,
|Ω| =10µeV, T = 4.2 K. Taken from [SPR04].

A current flow through the QD system is possible at the resonance energies ε(R1)
and ε(R2) providing that electron states in the emitter contact are occupied at
these energies. (Typically, these resonances occur at energies far above the chemical
potential of the collector, so that the electrons can always leave the QD system via
the collector barrier.) In Fig. 3.6 the dependence of the current on the emitter
chemical potential µe and the bias voltage V is shown as a contour plot. Here we
assume that the tunnel coupling between the dots is rather weak, i.e. |Ω| ≪ Γe, Γc,
so that the occupation of the dots is determined by the respective reservoirs. The
conduction band edge in the emitter is the zero-point of the energy scale. Different
scenarios for the stationary current depending on µe arise:
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3.3. Stacked quantum dots

(i) µe < ε(R1): there is only an exponentially small current due to thermally
activated electrons in the emitter.

(ii) ε(R1) < µe < ε(R1) + U = ε(R3): in this case the current shows a peak due
to the resonance R1 of the single particle levels, the second resonance R2 is
energetically available for thermally activated electrons from the emitter and
gives rise to an additional current peak at lower bias voltage which increases
with increasing temperature (this scenario was experimentally investigated in
[BRY03] and was used to determine the charging energy U).

(iii) ε(R1)+U < µe < ε(R2): no current peak appears. In this regime it is possible
to add a second electron in QD1. Since the coupling between the QDs is
weaker than the coupling to the emitter contact, QD1 is mostly occupied
with two electrons. They leave QD1 with the energy ε1 + U so that they
cannot fulfill the resonance condition for R1.

(iv) µe > ε(R2): a current peak due to the resonance R2 occurs with twice the peak
height than in the case (ii) because two electrons contribute to the current
here. A current peak for resonance R1 is suppressed for the same reasons as
in (iii).

3.3.3.2. Current dependence on tunnel coupling

Now we want to study the behavior with increasing tunnel coupling |Ω|. In partic-
ular we consider the regime (iv) of the last section but now we allow the tunneling
rates to the contacts to be different (Γe = 17µeV, Γc = 400µeV).

Fig. 3.7 shows the bias voltage dependent current for varying couplings |Ω| be-
tween the QDs. For low |Ω| one observes a current peak at V = 75mV corresponding
to the resonance R2 in Fig. 3.5 (compare regime (iv) in the last section). According
to Eq. (3.3.6) the current peak broadens with increasing |Ω| but one has to consider
the double occupancy of QD1 which modifies the current peak width such that the

correction factor becomes now
√

1 + 2 · 4|Ω|2

ΓeΓc
. With increasing |Ω| a second current

peak at the bias voltage of R1 appears in Fig. 3.7. Due to the stronger coupling
between the QDs single occupancy of QD1 becomes more likely, since the second
electron in QD1 can tunnel into QD2 off-resonantly because of the finite line-width
of the levels. Hence, electrons with energy E1 can leave QD1 and contribute to
resonance R1 which generates a current peak at V (R1). Hence, the possibility of
the observation of a double current peak in the experiment depends mainly on the
tunnel matrix element Ω between states in different QDs. Its sensitivity on the spa-
tial separation of the QDs within the stack could explain the frequent observation
of the double current peaks [BOR01].

Note that for |Ω| ≥ 260µeV a small third current peak at almost 110 mV appears
due to the resonance of the energies of the doubly occupied QD2 and single occupied
QD1 (out of the bias range depicted in Fig. 3.5).
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Figure 3.7.: Current I vs. bias voltage V for varying coupling between QDs |Ω|.
Γe = 17µeV, Γc = 400µeV, T = 4.2K, U = U1 = U2 = 8meV, Uinter =
0, µe = 90meV. Taken from [SPR04].

Underlining the corresponding mechanisms which lead to the current peaks in
Fig. 3.7 we show the current-voltage characteristics for different charging energies
U1 with fixed U2 = 8meV in Fig. 3.8a (the other parameters are the same as for
the full curve in Fig. 3.7). As one can see, with decreasing U1 the low bias current
peak shifts to higher bias voltages and the second current peak remains at the
same bias voltage position: Reducing U1 leads to a parallel shift of the dashed line
with smaller slope in Fig. 3.5 so that the intersection point R2 shifts to higher bias
voltages and the resonance R1 is left unchanged. In Fig. 3.8b the values of Γe and Γc

were interchanged so that a different physical situation emerges. Here, both current
peaks shift to higher bias voltages by the same amount with decreasing U1, i.e. the
resonance R3 is now mainly responsible for the current peak at higher bias voltage.
Due to the weaker collector coupling the double occupancy of both QDs becomes
more likely.

Note that for equal charging energies in QD1 and QD2 the current-voltage char-
acteristics are invariant with respect to an interchange of Γe and Γc. This is due to
the electron-hole symmetry in the considered QD system. The necessary condition
for this symmetry is that the resonances occur at energies deep in the Fermi sea on
one contact side and unoccupied states on the other side.

32



3.3. Stacked quantum dots

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120

Bias voltage V[mV]

cu
rr

en
t[n

A
]

cu
rr

en
t[n

A
]

a)

b)

U1=8meV

U1=7meV

U1=6meV

U1=8meV

U1=7meV

U1=6meV

Figure 3.8.: Current I vs. bias voltage V for different charging energies of QD1:
∆Uintra ≡ U2 − U1; U2 = 8meV; other parameters are the same as for
the full curve in Fig. 3.7. Taken from [SPR04].
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Figure 3.9.: Current I vs. bias voltage V for different Coulomb interaction strengths
between QD1 and QD2: Uinter, other parameters are the same as for
the full curve in Fig. 3.7. Taken from [SPR04].

3.3.3.3. Coulomb interaction between neighbouring quantum dots

The self-organized QDs within one stack grown in [BOR01, BRY02, BRY03] have
a spatial separation of few nm so that the Coulomb interaction between electrons
in different QDs is a crucial ingredient in a theoretical examination. Fig. 3.9 shows
the CVC for different interaction strengths Uinter = 0, 2, 4meV.

Again a double peak appears whereas the distance of the maxima diminishes with
increasing Uinter. If QD1 is filled with one electron the single particle level of QD2
is shifted by Uinter so that the low-bias resonance R2 moves to higher bias voltages.
The resonance R1 stays at the same bias voltage since QD2 filled with one electron
generates a shift of the single particle level of QD1 by the same amount Uinter. This
leads to the current peak separation

∆V =
U − Uinter

e(η2 − η1)
(3.3.9)

Another feature can be seen in the dotted curve in Fig. 3.9: if ∆V becomes
smaller, the height of the high-bias peak increases. This peak structure is quite
similar to that observed in the experiment (Fig. 4 in Ref. [BOR01]).
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4. Current Fluctuations within

Sequential Tunneling - Shot Noise

“The noise is the signal” [LAN98]

Due to the granularity of the electron charge in units of the elementary charge,
tunneling through barriers is a discrete stochastic process. Therefore the tunneling
current is a fluctuating quantity and this gives rise to shot noise [SCH18]. In
the previous chapter we considered the stationary current through QD systems in
the sequential tunneling regime. Even though important aspects of the physics of
transport through coupled QDs is provided by this quantity, a lot of information is
missing, but can be revealed by the consideration of the current fluctuations. In this
chapter, the shot noise for double-barrier and triple-barrier QD geometries will be
investigated in the sequential tunneling regime, i.e. by utilizing the ME technique
introduced in Sec. 3.1. First, we will show how one can obtain the autocorrelation
function of the tunneling current through an arbitrary QD system starting from the
ME. The frequency dependent shot noise intensity, i.e. the spectral power density
(SPD) is then obtained from the autocorrelation function by means of the Wiener-
Khinchin theorem. Beside shot noise an additional source of fluctuations is thermal
noise which predominatly exhibits in the linear response regime. We will briefly
discuss its relevance for nonlinear transport. While a lot of information for temporal
correlations in nonlinear transport is already contained in the low-frequency SPD
which is one of the central observables throughout this work, we nevertheless give
a short characterization of the full SPD spectrum for double-barrier tunneling.

In this chapter, one particular aim is the investigation of the temporal correlations
in the tunneling current through QDs caused by the interplay of Pauli’s exclusion
principle and the Coulomb interaction. This will be examined for a generic two-level
QD system. It will turn out that the shot noise is able to reveal detailed information
about tunneling barrier geometries and Coulomb interactions in coupled QDs.

Furthermore, it will be examined how Coulomb repulsion can cause positive cor-
relations (super-Poissonian noise) in the tunneling current through QDs which in
some cases can be accompanied by NDC as discussed in Sec. 3.2.
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4. Current Fluctuations within Sequential Tunneling - Shot Noise

4.1. Current fluctuations

4.1.1. Correlation function and spectral power density

The SPD of the current fluctuations is related to the autocorrelation function of
the current by the Wiener-Khinchin theorem ( for a = b see Appendix B):

Sab(ω) = 2

∫ ∞

−∞

dt eiωt [〈Ia(t)Ib(0)〉 − 〈Ia〉〈Ib〉] (4.1.1)

where a, b = e, c (emitter/collector) and 〈·〉 denotes the ensemble average. To
obtain the autocorrelation function of the current entering Eq. (4.1.1) the explicit
time evolution of the occupation probabilities given by the ME (3.1.3) is needed. It
can be obtained by the time propagator T(t) which is introduced as follows:

T(t) ≡ exp (Mt) with P(t) = T(t)P(0) (4.1.2)

Note, that the elements of the time propagator (4.1.2) are transition probabilities
from a state at time t = 0 to a state at time t.

With the stationary solution of the ME (3.1.4) and the time propagator (4.1.2)
the current-current correlator in (4.1.1) can be defined as [HER93]

Cab(t) ≡ 〈Ia(t)Ib(0)〉 = θ(t)
∑

ν

[j
a
T(t) j

b
P0]ν +

+θ(−t)
∑

ν

[j
b
T(−t) j

a
P0]ν +

+eδabδ(t)
∑

ν

∣

∣

∣

∣

[j
a/b

P0]ν

∣

∣

∣

∣

(4.1.3)

(θ(t) is the Heaviside function). The current operators j
a/b

used here project

each initial state to the possible final states after an electron has traversed the
junction a weighted with the corresponding tunneling rate and taking into account
a positive/negative sign depending on the electron flow. Thus the current operators
are essentially non-diagonal. An explicit representation of these operators can be
found in Eq. (3.2.2) for a two-level system. The first two terms of the right-hand side
in (4.1.3) contain the correlation between tunneling events at different times. The
appearance of the term defined for negative times ensures the symmetry property
of the correlation function (4.1.3):1 Cab(t) = Cba(−t). The last term describes the

1Proof : defining the correlation function with the help of time average Cab(t) = 〈Ia(t′+t)Ib(t
′)〉t′

then (presuming the equivalence of time and ensemble average) Cab(−t) = 〈Ia(t′− t)Ib(t
′)〉t′ =

〈Ia(τ)Ib(τ + t)〉τ = Cba(t)
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4.1. Current fluctuations

self-correlation of a tunneling event at the same barrier (for further discussions of
(4.1.3) see also Refs. [DAV92, HER93, KOR94]). Note that for frequencies ω much
smaller than any other inverse time-scale of the stochastic process (here the inverse
tunneling rates Γ) which is the typical experimental regime (e.g. in Refs. [NAU02,
NAU03, NAU04, NAU04a]), the absolute value of correlations does not depend on
the barriers where they are measured, i.e. See(ω → 0) = Scc(ω → 0) = −Sec(ω →
0) = −Sce(ω → 0) holds (follows from flux conservation for low frequencies [BUE92,
BLA00], for finite frequencies see Sec. 4.1.3).

For uncorrelated tunneling events one obtains Poissonian noise. For a brief
derivation of its SPD we consider the time-dependent current as a series of delta-
like pulses at random distributed2 times tk:

I(t) = e
∑

k

δ(t − tk) (4.1.4)

We utilize the time average in the definition of the autocorrelation function and
with (4.1.4) it is

〈I(t′ + t)I(t′)〉t′ − 〈I〉2 = e2 lim
T→∞

1

T

∫ T

0

dt′
∑

k,l

δ(t′ + t − tk)δ(t
′ − tl) − 〈I〉2

(4.1.5)

Carrying out the integration on the r.h.s leads to

e2 lim
T→∞

1

T

∑

k,l

δ(t + tl − tk) − 〈I〉2 (4.1.6)

Now, the sum can be split up in one part for k 6= l which cancels (after a further
time averaging in order to get rid of the delta-functions in the summation) with the
〈I〉2-term. There remains the k = l-part which becomes

lim
T→∞

e2 K

T
δ(t) (4.1.7)

where K is the number of events in the time interval T . Hence, the quotient
times e gives the stationary current for large T and we obtain the autocorrelation
function3: e〈I〉δ(t). According to the Wiener-Khinchin theorem (4.1.1) the Fourier
transform of this function yields the SPD for Poissonian noise [SCH18]

2Obeying the definition of a Poisson process.
3This is equivalent to the last term in (4.1.3)
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4. Current Fluctuations within Sequential Tunneling - Shot Noise

SPoisson = 2e〈I〉 (4.1.8)

Note here that the SPD SPoisson does not depend on frequency. This is caused
by the assumption of delta-like events in the stochastic process (4.1.4). In reality
the finite width of pulses given e.g. by the time of traversing a barrier provides a
high-frequency cut-off which prevents the divergence of the full power.

As a measure of deviation from the Poissonian value of noise the dimensionless
Fano factor α is introduced [FAN47]:

α(ω) ≡ SP (ω)

SPoisson











< 1 sub-Poissonian noise

= 1 Poissonian noise

> 1 super-Poissonian noise

(4.1.9)

4.1.2. Thermal noise

There is another important source of fluctuations in conductors which is dominant
in thermal equilibrium and caused by random fluctuations of particles at finite
temperature T : thermal noise or the so-called Johnson-Nyquist noise. Naively one
would expect that the full noise is a simple superposition of thermal and shot noise.
By means of the introduced way to obtain the correlation function in the last section
a double-barrier system with a single level is considered. Here, thermal noise is a
consequence of thermal fluctuations in the reservoirs.

In the linear-response regime the conductance defined as G = lim
V→0

I/V is an

equilibrium quantity given by G = e2

4kBT
ΓeΓc

Γe+Γc
[BEE91a] for on-resonance transport

(the level has the same energy as the chemical potentials).
The zero-frequency4 SPD vs. current is shown in Fig. 4.1. For V → 0 or I → 0

the SPD approaches a constant value which can be associated with the fluctuation-
dissipation theorem: SP (0) = 4kBTG. It relates the equilibrium fluctuations to
the generalized susceptibility, in this case the conductance G. Interestingly, if
one inserts the equilibrium conductance for the double-barrier system into the
fluctuation-dissipation theorem one obtains a SPD which is independent of tem-
perature: SP (0) = e2 ΓeΓc

Γe+Γc
. This is specific to tunneling through double-barrier

system in this semi-classical ME description5.
For high bias-voltages V ≫ kBT the SPD becomes proportional to the current

which is the regime of shot noise. The proportionality factor is given by 2eα. In
Fig. 4.1 the system is chosen to be symmetric so that the Fano factor α is one half.

4I.e. ~ω ≪ eV , for higher frequencies the thermal noise is proportional to ~|ω| [BLA00]. This
so-called zero-point noise cannot be obtained by the ME approach as a semi-classical technique.

5Note that in a purely quantum mechanical description (Chap. 5) the noise vanishes for zero
temperature and symmetric barriers.
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Figure 4.1.: Zero-frequency spectral power density vs. average current I, Eq. 4.1.10
(red curve). Low bias: fluctuation-dissipation theorem S = 4kBTG;
high bias: shot noise S ∝ I (Fano factor α = 0.5). Dashed line is a
guide for the eye.

The noise behavior depicted in Fig. 4.1 can be represented analytically over the
whole range of bias-voltages [BLA00]

S(0) = αSPoisson coth

(

eI

2GkBT

)

(4.1.10)

Hence, there is a cross-over from thermal to shot noise for eV ≃ kBT . In the
strong nonlinear regime eV ≫ kBT considered throughout this work thermal noise
gives no contribution.

4.1.3. Finite-frequency noise

The total SPD SP (ω) has to be calculated from the correlation function of the
total current I(t), i. e. particle plus displacement current [BLA00]. The current
conservation (see Sec. 3.1) and the Ramo-Shockley theorem [SHO38] gives the total
time-dependent current as I(t) = leIe(t) + lcIc(t) (le ≡ Ce

Ce+Cc
and lc ≡ Cc

Ce+Cc
with

the barrier capacitances Ce/c, le + lc = 1). Then, one can express the total SPD in
terms of the spectra of particle currents (4.1.1)

SP (ω) = l2eSee(ω) + l2cScc(ω) − lelc[Sec(ω) + Sce(ω)] (4.1.11)

Note, that since the cross-correlation functions (4.1.3) Cab(t) for a 6= b are not
symmetric with respect to t = 0 the respective spectra have non-vanishing imaginary
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Figure 4.2.: Frequency-dependent Fano factor vs. frequency for the total current
(red curve) and particle currents (black curves) for a double-barrier
system, le = lc = 0.5.

parts for ω 6= 0. But in the last term of the r.h.s. of (4.1.11) they cancel out. In
Fig. 4.2 the full spectrum for tunneling through a single level in a double-barrier
system (red curve) together with the spectra of particle currents (black curves) are
shown. As already outlined, all absolute values of spectral densities match at ω = 0
due to current conservation. There, the Fano factor depends on the symmetry of

the barriers Γc/Γe only (here chosen to be 10): α(0) = Γ2
e+Γ2

c

(Γe+Γc)2
as a consequence

of Pauli’s exclusion principle. This important relation will be discussed in a more
detail with respect to Eq. (4.2.1) in the following section.

For large |ω| the spectra tend towards different values. The correlations at the
same barrier (See and Scc) approach the Poissonian value because on a very short
time scale there are no correlations between different tunneling events. The re-
spective correlation functions are negative for all times t due to Pauli’s exclusion
principle so that the respective Lorentzian in Fig. 4.2 has a negative sign (compare
Sec. 4.2.2 where also positive correlations will be discussed). The noise at different
barriers (Sec and Sce) approaches zero for large |ω|. Finally, the full noise S(ω)
for |ω| ≫ Γe/c is determined by the ratio of barrier capacitances le/lc = Ce/Cc:

α(ω) = C2
e +C2

c

(Ce+Cc)2
. In the case of Fig. 4.2 le/lc is chosen to be unity. Then, the Fano

factor approaches one half, i.e. for a simultaneous symmetry of tunneling rates
Γe/Γc = 1 the full noise would appear frequency independent [BLA00].

Further literature on frequency-dependent noise: sequential tunneling through
metallic QDs is investigated in [HAN93] in a similar approach; coherent tunneling
through coupled QDs is studied in [SUN99]. Very recently asymmetric noise spectra
were studied in [ENG04] and the shot noise spectrum of an open dissipative quantum
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4.2. Application to coupled quantum dots with Coulomb interaction

two-level system (coupled QDs) was investigated in [AGU04]. In Ref. [BLA00] a
Langevin equation technique is used to obtain the frequency-dependent noise for
double-barrier tunneling.

4.2. Application to coupled quantum dots with

Coulomb interaction

4.2.1. Sub-Poissonian noise - parallel quantum dots

The results presented in this section are published in [KIE03a, KIE03b]. We con-
sider two single particle states ε1/2 which are connected to the emitter/collector
contact and are coupled electro-statically by a Coulomb interaction of strength U
(see Fig. 3.1). The transition matrix M entering the ME (3.1.3) is explicitly given
by (3.2.1). For the current operators at the collector and emitter barrier entering
the autocorrelation function (4.1.3) and the average current (3.1.5) we use (3.2.2).

In contrast to the considerations in Sec. 3.2 here we allow for a finite energy
difference between the single particle levels: ∆E ≡ ε2 − ε1 > 0. The coupling
to the emitter and collector contact is assumed to be the same for both states:
Γe ≡ Γ

(1)
e = Γ

(2)
e and Γc ≡ Γ

(1)
c = Γ

(2)
c .

In the following we discuss the average current and the Fano factor for three cases
for the Coulomb interaction energy U : U = 0, U < ∆E, and U > ∆E.

4.2.1.1. Noninteracting states: U = 0

In Figs. 4.3 and 4.5 the results of a calculation for variation of U in the range of
a few kBT are shown (for fixed kBT = ∆E/23 and γ = Γc/Γe =5). The mean
current 〈I〉 vs. bias voltage V is plotted in Fig. 4.3a. For U = 0 there are two steps
due to tunneling through the respective states. The width of the current steps is
determined by the Fermi distribution of the emitter electrons. Note that typical
energy scales are as follows: the bias voltage V is of the order of tens of mV, ∆E
can be of the order of a few meV, kBT is of the order of tens of µeV for temperatures
in the range of a few Kelvin.

The corresponding Fano factor α (4.1.9) is shown in Fig. 4.3b. On the first plateau
in the current-voltage curve of Fig. 4.3a where only tunneling through one single
particle state occurs the Fano factor becomes

αi ≡ αi(0) = 1 − 2

γi + 2 + 1
γi

f (i)
e (4.2.1)

with γi ≡
Γ

(i)
c

Γ
(i)
e
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Figure 4.3.: a) Normalized mean current 〈I〉 vs. bias voltage V . b) Fano factor
α vs. bias voltage V for different values of the Coulomb interaction
energy U . c) Occupation probabilities P(1,0), P(0,1), and P(1,1) vs. bias
voltage V for U/kBT =16. Parameters: kBT = ∆E/23, γ = Γc/Γe =5.
Taken from [KIE03b].
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where i = 1 denotes the energetically lowest single particle state. For f
(1)
e =

1 Eq. (4.2.1) is the well-known relation derived by L. Y. Chen et al. [CHE91].
It reflects the sensitivity of the Fano factor to Pauli’s exclusion principle: If an
electron has just passed the emitter barrier, the QD state is filled, so that no further
electron can pass the barrier. This leads to an anti-correlation of the tunneling
events, corresponding to a suppression of noise. As shown in Fig. 4.6a (black curve)
the Fano factor α is equal to one half for symmetric tunneling barriers (γ = 1)
and approaches unity for strong asymmetry. In the latter case the barrier with
large Γ is effectively transparent so that the QD state is in equilibrium with the
respective contact. The thicker barrier is then effectively a single tunnel barrier
yielding Poissonian noise. For bias voltages below the current onset where f

(1)
e ≈ 0

the tunneling current becomes uncorrelated so that α1 = 1. At the second step
where the second single particle state is filled the Fano factor (Fig. 4.3b) has a
peak which is also an effect of Pauli’s exclusion principle: A new channel for the
current opens, where electrons can fill both states (1, 0) and (0, 1). In this case,
the Pauli blocking becomes less effective for the partially filled second state and the
shot-noise suppression given by (4.2.1) is weaker. We obtain a simple analytical
expression for an arbitrary number of noninteracting QD states which can account
for the Fano factor behavior at the current steps (for a derivation for two states see
Appendix C):

α =

∑

i〈Ii〉αi

〈I〉 (4.2.2)

with αi from Eq. (4.2.1), where the current through the single particle state i

is: 〈Ii〉 = e Γ
(i)
c

1+γi
f

(i)
e , and the net current is 〈I〉 =

∑

i〈Ii〉. Eq. (4.2.2) was applied
to the measured Fano factor modulation of tunneling through self-organized QDs
(Fig. 2.7, [NAU02]) in a bias regime where only a few QD ground states are active
in transport. It can qualitatively reproduce the measured Fano factor dependence
on the bias voltage as shown in Fig. 4.4. For details, we refer the reader to [KIE03a].

4.2.1.2. U < ∆E

With increasing Coulomb interaction U 6= 0 the Fano factor peak at the onset of the
second resonance vanishes (see Fig. 4.3b) while the current changes only slightly.
This underlines again the strong sensitivity of shot noise to correlations.

Further increase of U leads to an additional step whose bias voltage is propor-
tional to U . The respective occupation probabilities P(1,0), P(0,1), and P(1,1) for
U = 16kBT are shown in Fig. 4.3c: at the first plateau the electrons tunnel through
the energetically lowest state (1, 0); the second plateau is generated by tunneling
through both single particle states with different probabilities and with lower prob-
ability through the two-particle state which is determined by the coupling to the
collector. This correlated state originates from aligning the emitter Fermi energy
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first current plateau in Fig. 4.5; red curve: second current plateau; blue
curve: third current plateau. U = 37kBT . Taken from [KIE03b]. b)
see text.

with the energy ε1 + ∆E of the second single particle state which can then be
filled. If the system is in state (0, 1), a second electron may enter the i = 1 level,
as U < ∆E. In contrast, the level i = 2 is not accessible from the state (1, 0) as
long as ηV < ε1 + ∆E + U . This explains the asymmetry between the occupation
probabilities P(1,0) and P(0,1). The height of this second plateau depends on the
ratio of the tunneling rates: ∝ (1 + γ)−1 with γ := Γc/Γe.

At the second plateau in the CVC the Fano factor differs from the case of U = 0,
where only Pauli’s exclusion principle plays a role. The Coulomb interaction pre-
vents double occupancy and therefore it can lead to additional negative correlations
in the tunneling current. For the considered case, the state (1, 1) can be occupied
from the state (0, 1) by adding an electron in the level i = 1 because U < ∆E.
The transition from (0, 1) to (1, 1) is energetically not possible, i.e. one current
channel is blocked by the Coulomb interaction. This is sketched in the blue box of
Fig. 4.6b).

46



4.2. Application to coupled quantum dots with Coulomb interaction

F
an

o 
fa

ct
or

 α
F

an
o 

fa
ct

or
 α

0.73

0.74

0.75

0.76

0.77

1

0.73

0.74

0.75

0.76

0.90.8 1.1 1.2

(eηV-ε1)/∆E

(a)

(b)

kBT=∆E/11.5
     =∆E/15
     =∆E/23
     =∆E/46

kBT=∆E/11.5
     =∆E/15
     =∆E/23
     =∆E/46
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The dependence on the ratio of tunneling rates γ in the range of V , given by
∆E < eηV − ε1 < ∆E + U , corresponding to the second plateau in Fig. 4.3, is
shown by the blue curve in Fig. 4.6a. In contrast to the noninteracting regime
the minimum is now at γ = 2 so that the Fano factor becomes asymmetric with
respect to an interchange of Γe and Γc. This clearly demonstrates the influence of
the Coulomb interaction on the current direction. An analytical expression for the
Fano factor in this regime was recently obtained in [THI03] and gives α = 5/9 at
the minimum in Fig. 4.6:

α =
Γ3

e + Γ3
c + 3Γ2

eΓc

(Γe + Γc)3
(4.2.3)

In the experiment of Ref. [NAU02] the question arises whether the QD states
which are contributing to transport are Coulomb interacting. One way of deter-
mining this question would be the analysis of the Fano factor dependence upon the
tunneling rate ratio γ as shown in Fig. 4.6a. However, in the experimental setup of
Ref. [NAU02] these rates are determined by the growth procedure. Therefore, they
cannot be varied in the same sample.
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Instead, we propose a method on how to obtain the information about Coulomb
correlations via the temperature dependence of the Fano factor. In Fig. 4.7 the
Fano factor α vs. bias voltage V for different temperatures T in the bias range
of the second current step of Fig. 4.3 is plotted. For noninteracting QD states
(Fig. 4.7a) the Fano factor peak gets broader and experiences a slight shift to lower
bias voltages for increasing temperature. A qualitatively different picture results for
interacting QD states in Fig. 4.7b even for small Coulomb energies 6 (U = ∆E/46):
with increasing temperature the peak increases and also shifts to lower voltages.
Hence, a unique fingerprint of Coulomb interaction of QD states even for very
small U shows up in the temperature dependence of the Fano factor peaks. As
temperature can be easily varied in experiment, the role of Coulomb interaction
can be determined in this manner.

4.2.1.3. U > ∆E

For U > ∆E a fourth step arises in the current vs. bias voltage characteristic in
Fig. 4.5a). Now, the second current plateau corresponds to a different state as in the
previous section. Due to U > ∆E only the two single particle states can be filled
with the same probability (compare Fig. 4.5c) and the occupancy of the doubly-
occupied state is forbidden (red box in Fig. 4.6b) so that a Coulomb correlated
state emerges. The respective Fano factor dependence upon γ is (as also discussed
in Ref. [NAZ96])

α = 1 − 2Γ̃eΓc

(Γ̃e + Γc)2
with Γ̃e = 2Γe (4.2.4)

and is shown by the red curve in Fig. 4.6. The effect of Coulomb correlation on
the Fano factor consists of substituting Γe by 2Γe in Eq. (4.2.1) since the two single
particle states are independently available [GLA88c] and leads to a shift of the
minimum of the full curve in Fig. 4.6 by γ = 2. For γ =1 the Fano factor is α =5/9.
Note, that tunneling through such a correlated state was found experimentally
(Fig. 2.8).

Related literature: In [THI03] the authors start with an Anderson Hamilto-
nian (5.1.21) and apply a diagrammatic technique [KOE98] to obtain the current
and the SPD in first-order perturbation in the contact couplings. It turns out that
their results fully agree with ours. I.e. our method of simply setting-up a ME for
the occupation probabilities of the Fock states is well-founded by a microscopic con-

6A spatial separation of 100 nm leads to U =1meV (This corresponds to U = kBT with T =10
K). A distance of 1 µm gives 0.1 meV (T =1K). Screening of the nearby highly-doped contacts
can reduce these values significantly as shown in Appendix A. This can give fairly small
interaction strengths even for QDs which are nearest neighbours.

48



4.2. Application to coupled quantum dots with Coulomb interaction

sideration. In Refs. [EGU94, THI04] the additional influence of inelastic scattering
on the noise is considered.

4.2.2. Super-Poissonian noise

So far we have only addressed negative correlations in the tunneling current due
to Pauli’s exclusion principle and Coulomb interaction. Another fascinating phe-
nomenon in electronic tunneling is the effect of positive correlations which is ac-
companied by bunching of tunneling events [BUE03]. In Ref. [IAN98] it was ex-
perimentally shown for the first time that in the bias regime of negative differential
conductance of a double-barrier resonant tunneling diode the respective noise be-
comes super-Poissonian7. In contrast, superlattices which also provide negative
differential conductance do not exhibit super-Poissonian noise [SON03]. Therein
the authors conclude that charge accumulation rather than a system instability is
responsible for the noise enhancement. We can also show that the Coulomb inter-
action is crucial for the observation of super-Poissonian noise in tunneling through
QDs. In the following we discuss in a simple and generic picture the emergence of
super-Poissonian noise caused by Coulomb blocking.

4.2.2.1. Parallel quantum dots

The content of this section is published in [KIE04]. We consider the case where
both energies of the single particle states of the QD system (Fig. 3.1) are equal:

ε1 = ε2, the tunneling rates to the emitter are equal: Γ
(1)
e = Γ

(2)
e ≡ Γe , and a

bias voltage V is applied such that both single particle states (1, 0) and (0, 1) can
be occupied but the occupancy of the doubly-occupied state (1, 1) is energetically
forbidden (red box in Fig. 4.6b)8. Then the zero-frequency Fano factor is derived
analytically to be

α(0) = 1 +
2 [γ2

1 + γ2
2 − γ1γ2(2 + γ1 + γ2)]

(γ1 + γ2 + γ1γ2)
2 (4.2.5)

with the ratios of collector and emitter tunneling rates γi ≡ Γ
(i)
c /Γe (i = 1,2). The

dependence of the Fano factor on γ1 and γ2 is depicted in Fig. 4.8. The Fano factor
is symmetric with respect to an interchange of γ1 and γ2. Two different regions
corresponding to α ≤ 1 and α > 1 are labeled by N and P , respectively. The region
N indicates negative correlations in the tunneling current for γi ≥ 1 (i = 1,2). In
this regime, mutual Coulomb blocking of the single particle states (1, 0) and (0, 1)
is negligible since the levels are mostly empty in time average due to the stronger
collector coupling. If either one ratio or both ratios become smaller than unity the

7Applying a magnetic field can also cause super-Poissonian noise in double barrier resonant
tunneling diodes [KUZ98].

8This can be accompanied with NDC as considered in Sec. 3.2 and [KIE03b]
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4.2. Application to coupled quantum dots with Coulomb interaction

tunneling is positively correlated (region P in Fig. 4.8) except for γ1 ≃ γ2 where
α approaches unity. Hence, the conditions for positive correlations are: γ1 < 1 or
γ2 < 1, and γ1 6= γ2. For the inverse ratios δi ≡ Γ

(i)
e /Γc (Γc = Γ

(1)
c = Γ

(2)
c ) the Fano

factor is shown in Fig. 4.9. As can be seen the Fano factor is always below unity.
To illustrate the effect of positive correlations we consider a realization of time-

dependent currents I1(t) and I2(t) through the levels 1 and 2, respectively, in
Fig. 4.10b. There, it is assumed that γ1 ≪ γ2 =1. If an electron jumps from
the emitter into level 1 (black peak) this level becomes occupied. Until the level
becomes empty by tunneling of the electron out in the collector (grey peak) no elec-
trons can jump in level 2 (Coulomb blocking). Only if level 1 is empty, a current I2

is flowing. Hence, a bunching of tunneling events in current I2(t) occurs.
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Figure 4.10.: a) Fano factor α vs. frequency ω for γ1 = 1 and γ2 = 1 (dashed curve),
γ1 = 0.4 (dotted curve), and γ1 = 0.2 (full curve). Insets: current-
current correlation functions at the emitter barrier Cee vs. time t (full
curves); dashed curve: negative part of Cee, dotted curve: positive
part of Cee. b) Schematic realisations of current Ii vs. time t through
level i = 1 (upper plot) and i = 2 (lower plot) for γ1 ≪ γ2 =1. Taken
from [KIE04].

In Fig. 4.10 the frequency-dependent Fano factor α(ω) and in the insets of
Fig. 4.10 the current-current correlation function Cee(t) at the emitter barrier are
shown. The dashed curve α(ω) represents the case γ1 = γ2 =1. It exhibits a min-
imum at ω =0 and approaches unity for ω → ±∞. The corresponding correlation
function in the left inset is negative for all times, i.e. only negative correlations are
present (region N in Fig. 4.8). By lowering γ1 below one a maximum at ω = 0
and two minima symmetric to ω =0 arise (dotted curve: γ1 =0.4, γ2 =1; full curve:
γ1 =0.2, γ2 =1). The correlation function (full curve in the right inset of Fig. 4.10)
belonging to the full curve α(ω) (α >1, P -region in Fig. 4.8) now has two contri-
butions with different signs: positive (dotted curve) and negative (dashed curve).
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4. Current Fluctuations within Sequential Tunneling - Shot Noise

The positive part of the correlation function is due to the bunching of tunneling
events as discussed with respect to Fig. 4.10b and the negative part is due to anti-
bunching caused by Pauli’s exclusion principle which is still present in the bunches
of tunneling through the current carrying level. Therefore, the frequency-dependent
Fano factor in Fig. 4.8 consists of a sum of two Lorentzians with positive and neg-
ative sign and different FWHM corresponding to the two time scales related to the
respective collector tunneling rates.

Note that there are several recent publications which address super-Poissonian
noise in tunneling through QDs: theory of coupled metallic QDs [GAT02], exper-
iment in a single electron transistor setup[SAF03], theory for three ferromagnetic
terminal QD setup [COT04], and Ref. [THI04] which is closely related to the present
considerations and the additional study of relaxation effects.

Before we will continue with super-Poissonian noise in tunnel-coupled QDs in the
next section the following analogy it is worth to emphasize: As already mentioned
there is the observation of super-Poissonian noise in the double-barrier resonant
tunneling diode [IAN98]. At first glance there might be no connection to the super-
Poissonian noise behavior in QDs as shown here. But, by closer inspection we
can identify some similarities: first of all in both cases the positive correlations
occur in the NDC region of the CVC. Although the underlying mechanism for the
occurrence of NDC is different, the bunching effect in both systems is caused by
Coulomb repulsion. For the QD system it was elaborately explained above. For
the tunneling diode it will be shown in a rather heuristic picture as follows: If
the lowest sub-band energy of the 2DEG in the quantum well passes the emitter
conduction band edge at a certain bias voltage the current starts to decrease by
further increasing the bias - NDC occurs. The potential in the well region depends
on the number of electrons there due to the Coulomb repulsion, i.e. the more
electrons enter the well states the higher the potential. Consequently, there can be
two different currents in the NDC region depending on the charging state of the
well: (i) low current for the uncharged well and (ii) high current for charged well.
This leads to the well-known bistability behavior. Bunching of tunneling events as
the necessary condition for the occurrence of super-Poissonian noise arise whenever
the device is in the high current state which is interrupted by random switching9

to the low current state.

4.2.2.2. Quantum dot stack

The results of this section will be published in [KIE05c]. Inspired by recent exper-
iments [BAR04] we want to discuss here under which circumstances it is possible
to observe positive correlations in the tunneling current through vertically coupled
QDs - a system which we already considered in detail in Sec. 3.3 with respect to

9Random telegraph noise [GAR02]
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Figure 4.11.: Sketches of possible resonances which lead to a current peak (see text).
U1 = U2.

the average current. As introduced there, the model is based on the ME where we
treat the coupling between the QDs with Fermi’s golden rule. Even though in this
framework any effects due to coherence were neglected the average current for non-
interacting electrons provides full agreement with the coherent result. Additionally
in this section the SPD is calculated along the lines of Sec. 4.1.1.

We use the notations introduced in Sec. 3.3: The emitter/collector contact is
treated in local equilibrium with temperature T and chemical potentials µe/c, re-
spectively. The difference in the chemical potentials is the applied bias voltage
eV = µe − µc. We assume that both QD1 and QD2 contain one spin-degenerate
state, e.g. the ground state. The respective energy levels are bias voltage depen-
dent: ε1/2(V ) = ε1/2(0) + eη1/2V with constant leverage factors η1/2. Electrons
can enter QD1/QD2 from the emitter/collector contact with rate Γe/c, respectively.
The Coulomb interaction energy for two electrons in QD1/QD2 is U1/2, respectively.
Electrons in different QDs repel each other with the energy Uinter. The rate for tun-
neling between the QDs is Γinter = 4|Ω|2/(Γe + Γc) with the tunnel matrix element
Ω.

Let us first sketch different experimentally relevant scenarios for resonances which
can lead to a peak in CVC. We neglect Uinter for simplicity.
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4. Current Fluctuations within Sequential Tunneling - Shot Noise

Three important situations are depicted in Fig. 4.11a-c. The solid lines corre-
spond to the single particle level in QD1 (small slope) and QD2 (large slope). The
dashed lines are the addition energies due to double-occupancy (compare Fig. 3.5).
Important for the emergence of a current peak is that the intersection point (circle)
of a line of QD1 and a line of QD2 lies in the energy region where the emitter
can provide electrons (shaded regions) while the collector states are empty. In this
range empty collector states exist so that electrons can leave the QD system. We
consider the following cases:

a) R1: The single particle levels intersect. The respective CVC and the Fano fac-
tor are shown in Fig. 4.12. Here, the Fano factor indicates sub-Poissonian noise
around the resonance and Poissonian noise far from the resonance. To ensure
that an electron can travel unhindered through the structure the contributing
states have to be empty. This induces negative correlations by Pauli’s prin-
ciple. Furthermore, since double-occupancy of each QD is impossible there is
an additional source of negative correlations due to Coulomb blockade. This
effect was pointed out by Elattari and Gurvitz in [ELA02]. Interestingly, for
an asymmetric coupling to the collector and emitter there is a local maximum
of the Fano factor vs. bias voltage at the current peak maximum which is
not present for symmetric coupling. This behavior can also be obtained in a
noninteracting coherent description which is considered in Sec. 5.4.

R2: This resonance is not active for tunneling since the single particle state
in QD2 is below the band edge in the emitter and therefore the two-particle
state in QD2 cannot be occupied.

b) R1: Resonance of two-particle state in QD1 and the single particle state in
QD2. Here, a quite similar mechanism to a) takes place. Since the single par-
ticle state in QD1 can be occupied from the emitter electrons can tunnel into
the doubly-occupied state of QD1 and subsequently into the single particle
state in QD2. The tunneling events are negatively correlated since the occu-
pation of QD2 is ruled by Pauli’s principle. Additional negative correlations
stem from the forbidden double-occupancy in QD2.

R2: not active for the same reasons as in a).

c) R1: Resonance of single particle levels. R2: Resonance of two-particle levels.

U1 6= U2: current peaks at different bias voltages occur with noise behaviors
as already discussed in a) and b).

U1 ≈ U2: (as depicted in Fig. 4.11c) The CVC and the Fano factor for such a
regime is shown in Fig. 4.13. The parameters were estimated with respect to
the experiment [BAR04]. Two transport channels contribute in one current
peak: R1 and R2 (Fig. 4.13a). Since R2 lies slightly below µe the current peak
broadens with increasing temperature. The Fano factor shows all quantitative
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Figure 4.12.: a) Current vs. bias voltage. b) Fano factor vs. bias volt-
age. Parameters: Γe =40µeV, Γc =1.5µeV ,Ω =10µeV, ε1(0) =48
meV,ε2(0) =104.025 meV, η1 =0.25, η2 =0.55, U1 = U2 = Uinter =0,
µe =11.7 meV, T=1.4 K.

features of the experimental data: super-Poissonian noise at the edges of
the current peak, Poissonian noise at the current peak maximum, and the
observed temperature dependence.

How can one understand this behavior? For this purpose we look at the time
evolution of the occupations in QD1 and QD2 and the current given by the jumps
of electrons into the collector. To obtain a realisation for the stochastic process we
apply a Monte-Carlo simulation with the same parameters leading to the ME results
in Fig. 4.13 (for details of the Monte-Carlo simulation see [KIE02b]). Sections of
the realisation are shown in Fig. 4.14a) for a bias voltage V =186.75 mV (at the
voltage of current peak maximum in Fig. 4.13a) and b) V =186.9 mV (at the
voltage of right Fano factor maximum in Fig. 4.13b). The upper graphs correspond
to the occupation in QD1, the middle graph shows the occupation of QD2, and the
lower graph contains the jumps of electrons into the collector. For both voltages
it can be seen that QD1 is mostly occupied with one electron. Therefore QD1 can
easily be occupied with two electrons. Crucial for the occurrence of a tunneling
current is the occupation of the single particle state in QD2. This aspect yields
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Figure 4.13.: a) Calculated current vs. bias voltage. b) Fano factor vs. bias volt-
age. Parameters: Γe =40µeV, Γc =1µeV ,Ω =15µeV, ε1(0) =48
meV,ε2(0) =104.025 meV, η1 =0.25, η2 =0.55, U1 = U2 =10 meV,
Uinter =0, µe =11.7 meV, T=1.4 K (solid line), T=2.8K (dashed line).

the main difference in the processes at both voltages. The probability that one
electron can enter the single particle level in QD2 is highest when the levels are
exactly aligned (V =186.75 mV) - this becomes apparent in the time series of the
QD2 occupation and consequently in the respective current: the tunneling events
are statistically distributed in time and the noise is Poissonian. In contrast, for a
slight misalignment of the levels the probability for entering QD2 with one electron
decreases. Such events are more rare now. But, whenever one electron enters QD2
the R2 channel is opened which results in a bunching of tunneling events (shaded
regions in Fig. 4.13b). In order to obtain a Fano factor larger than unity it is
necessary that the average time between bunches is larger than the average time
between tunneling events within such bunch [KIE04]. This is due to the unavoidable
presence of Pauli’s principle.

Far from the resonance the occupation of the single particle state in QD2 as
well as the occupation of the two-particle state in QD2 are very unlikely. Techni-
cally, the electrons tunnel via the tails of the Lorentzian which is contained in the
Fermi’s golden rule treatment. Therefore the Fano factor becomes unity far from
the resonance.
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Figure 4.14.: Monte-Carlo simulation of the occupations in QD1 and QD2 and the
electron jumps in the collector (current). a) bias voltage V =186.75
mV, b) V =186.9 mV. Parameters are the same as in Fig. 4.13

The temperature dependence of the Fano factor can be understood as follows:
As already mentioned the R2 resonance lies slightly below µe. For increasing tem-
peratures the occupation of the emitter at the energy of R2 decreases. I.e. the
contribution of the R2 channel to the tunneling current decreases. Hence, the elec-
trons are primarily transmitted through the R1 channel. This corresponds to the
regime a), where the noise was shown to be sub-Poissonian (Fig. 4.12b). Thus,
negative correlations rise and the Fano factor reduces.

So far, the Coulomb repulsion Uinter between electrons in different QDs was not
taken into account. We observe that for Uinter > 0 the discussed effects in Fig. 4.13
become less pronounced already for relatively small Uinter.

Several ad-hoc assumptions had to be made whose validity concerning an exper-
imental realisation has to be checked:

1. ε2(0) − ε1(0) ≈50 meV and U1 = U2:

The large difference of the single particle levels in QD1 and QD2 under flat-
band condition could be due to different QD sizes assuming both states are the
ground states. Then the charging energies would be expected to be different.
As known from the growth of selforganized QDs the composition of QDs, i.e.
the amount of matrix material (AlAs) in the QD (InAs), can be quite different
even if individual QDs have the same extension. Then the binding energies
would be different but the charging energy remains the same.
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Another possibility may be that the level in QD2 is an excited state, e.g. with
p-symmetry. Then the QDs could have the same size. But, tunneling between
such states is very unlikely due to selection rules which forbid such transition
[SPR03].

2. Ui =10 meV (i = 1, 2):

In our model we presume that the single particle resonance and the two-
particle resonance contribute in the same current peak. Therefore the charging
energies have to be smaller than the chemical potential in the emitter (typical
values are around 10 meV). The Coulomb charging for ground states of InAs
QDs in GaAs matrix is about 20 meV (Tab. I in [KIE03]). InAs QDs in AlAs
are typically smaller [HAP02] so that the charging is expected to be even
larger. But, the highly doped contacts are close to the layer of QDs (few nm)
so that screening effects can strongly reduce the Coulomb matrix elements
(see Appendix A).

To conclude we have proposed a mechanism to observe super-Poissonian noise
in tunneling through two coupled QDs. The crucial ingredient is the Coulomb
interaction of electrons in individual QDs within one QD stack, i.e. the tunneling of
electrons through the resonance of single particle states and the two-particle states
at the same bias voltage. We have discussed several aspects of the experimental
realization. Unfortunately the experimental data [BAR04] are not reliable enough
at the moment to serve as a basis for further investigations.
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In this chapter we will investigate the nonlinear electronic transport through a sin-
gle QD and through tunnel-coupled QDs with the emphasis on quantum effects and
scattering. The starting point is defined by the Hamiltonian of the whole system
including the contact regions (electron reservoirs) and the interacting QD system
which are coupled to each other so that a complicated many-particle problem can
arise. In order to derive the stationary current and the zero-frequency SPD (shot
noise) as the essential observables throughout this thesis we will use the technique
of nonequilibrium Green’s functions (NEGF). The advantage of introducing Green’s
functions is the determination of expectation values or correlation functions of ob-
servables without the explicit knowledge of the partition function. There are two
different but equivalent formulations for the equation-of-motion of the NEGF: the
Kadanoff-Baym method [KAD62] and the Keldysh method [KEL65]. In the fol-
lowing section we will briefly review the latter and the reader is referred to the
textbooks [HAU96, MAH00] for a detailed study. It further contains the derivation
of expressions for the stationary current along the lines of [JAU94, HAU96] and for
the zero-frequency SPD [SOU04, SOU04a].

The main focus of our considerations is the impact of the Coulomb interaction
on the current and noise behavior. For that purpose we utilize the Anderson model
[AND61] which describes a single spin degenerate state with Coulomb repulsion
coupled to electron reservoirs: in Sec. 5.2 we will consider the limits of this model
which are exactly solvable: a noninteracting QD and an isolated interacting QD.
Beyond that, we discuss the lowest-order approximation of the Anderson model,
the Hartree-Fock approximation. Two different schemes will be examined regarding
their applicability for the description of nonlinear transport.

In the end of this chapter, the tunneling through a noninteracting QD stack with
respect to its shot noise behavior is considered which we directly compare with the
noise obtained in a sequential tunneling picture (Chap. 4).

5.1. Theoretical framework: Non-equilibrium Green’s

functions

Before we define the Green’s functions required in the following sections terms like
contour-ordering etc. have to be clarified. For that purpose let us consider the
following Hamiltonian in a general form
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5. Coherent Tunneling

H = H0 + V (5.1.1)

where H0 describes the unperturbed part of the system and V can include any
kind of interaction (electron-electron, electron-phonon, electron-impurity etc.). It is
assumed that H can be explicitly time-dependent, e.g. by time-varying potentials.

5.1.1. General treatment and definitions

The consideration of non-equilibrium processes in many-particle physics brings the
following expectation value into the theory

〈a†α(t2)aβ(t1)〉 = Tr
{

ρ(t0)a
†
Hα(t2)aHβ(t1)

}

= Tr
{

ρ(t0)U
−1
D (t2, t0)a

†
Dα(t2)UD(t2, t1)aDβ(t1)UD(t1, t0)

}

(5.1.2)

where the annihilation and creation operators aHα(t) and a†Hα(t), respectively, of
the single particle state α are treated at different times t1/2. On the right-hand
side in the first line of (5.1.2) the expectation value is expressed with the density
operator ρ(t0). By setting t0 → −∞ the density operator ρ(−∞) is given by
|Ψ0〉〈Ψ0| where |Ψ0〉 is the ground state of the unperturbed Hamiltonian1 H0. The
time dependence of a†Hα(t2) and aHβ(t1) is defined in the Heisenberg picture. In
the last line of (5.1.2) these Heisenberg operators are replaced by the respective
operators in the Dirac picture2. The time evolution operator in the Dirac picture is

UD(t, t′) = U−1
0 (t, t0)US(t, t′)U0(t

′, t0) (5.1.3)

where U0(t, t0) = exp
[

− i
~
H0(t − t0)

]

describes the free evolution. The time evo-
lution in the Schrödinger picture is

i~|Ψ̇S(t)〉 = H|ΨS(t)〉 ⇒ |ΨS(t)〉 = US(t, t0)|ΨS(t0)〉

with US(t, t0) = exp

[

− i

~
H(t − t0)

]

(5.1.4)

and US(t, t0) can be expanded in a Born series3:

1It is usually bilinear in the operators, but not always.
2AH(t) = U−1

D (t, t0)AD(t)UD(t, t0)
3The index t on Ht denotes the explicit time-dependence.
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US(t, t0) = 1 +
1

i~

∫ t

t0

dt1Ht1 +
1

(i~)2

∫ t

t0

dt1

∫ t

t1

dt2Ht2Ht1 +

+
1

(i~)3

∫ t

t0

dt1

∫ t

t1

dt2

∫ t

t2

dt3Ht3Ht2Ht1 + · · ·

= 1 +
−i

~

∫ t

t0

dt1Ht1 +
(−i)2

2~2
T̂

∫ t

t0

dt1

∫ t

t0

dt2Ht2Ht1 +

+
(−i)3

3!(~)3
T̂

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3Ht3Ht2Ht1 + · · ·

= T̂ exp

(

− i

~

∫ t

t0

dt′Ht′

)

(5.1.5)

with the time-ordering operator T̂ (operation rules: (i) “late goes left”, (ii) adds a
minus sign if two fermionic operators change the sequence, and (iii) for equal times
the annihilation operator goes to the right).

The equation of motion for the Dirac time evolution operator (5.1.3) is

d

dt
UD(t, t2) = − i

~
VD(t)UD(t, t2) (5.1.6)

and one obtains

UD(t1, t2) = T̂ exp

(

− i

~

∫ t1

t2

dt′VD(t′)

)

for t1 > t2 (5.1.7)

In Eq. (5.1.2)the inverse of the Dirac time evolution operator U−1
D (t2, t0) appears,

which contains the anti-time ordering operator:

U−1
D (t2, t0) = T̂ anti exp

(

− i

~

∫ t0

t2

dt′VD(t′)

)

(5.1.8)

Now one defines the contour-ordered operator on the contour C (see Fig. 5.1)
[KEL65, HAU96]

T̂C ≡
{

T̂ for Im(τ) > 0

T̂ anti for Im(τ) < 0
(5.1.9)

with τ ∈ C. This is necessary since in the non-equilibrium situation the state
of the system for t → ∞ is not known. The interactions can generally drive the
system into a different state than the initial state in contrast to the equilibrium
theory. Technically, one only knows the S-matrix for t → −∞. Therefore, the state
is first evolved forward and then backwards in time. In order to distinguish between
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Im τ

Re τ = t

τ1

τ2

C

Figure 5.1.: Contour ordering

these two branches one introduces the contour where the sign of the imaginary part
labels the branch.

Hence, the expectation value in (5.1.2) can be written as

〈a†α(τ2)aβ(τ1)〉 = 〈Ψ0|T̂Ca†Hα(τ2)aHβ(τ1)|Ψ0〉
= 〈Ψ0|T̂Ce[−i/~

R

C
dτVD(τ)]a†Dα(τ2)aDβ(τ1)|Ψ0〉 (5.1.10)

Now we can define the contour-ordered Green’s function which is the central quan-
tity of the non-equilibrium formalism (analog to the time-ordered Green’s functions
in the equilibrium theory)

GC
αβ(τα, τβ) ≡ −i〈T̂Ca†Hα(τα)aHβ(τβ)〉 (5.1.11)

With the second line in (5.1.10) an expansion in the interaction term V of (5.1.1)
becomes possible. In literature (e.g. in [MAH00]) the time evolution operator in
the Dirac picture given by the contour-ordered exponential in (5.1.10) is usually
called S-matrix4 and consequently, an S-matrix expansion can be carried out:

〈SCa†Dα(τα)aDβ(τβ)〉 = 〈T̂Ca†Dα(τα)aDβ(τβ)〉 +

+

∫

dτ1〈T̂C
−i

~
VD(τ1)a

†
Dα(τβ)aDβ(τβ)〉 +

+
1

2

∫

dτ1

∫

dτ2〈T̂C

(−i

~

)2

VD(τ1)VD(τ2)a
†
Dα(τβ)aDβ(τβ)〉 + · · ·

(5.1.12)

with SC ≡ T̂C exp [−i/~
∫

C
dτVD(τ)].

Depending on the special form of VD expectation values of more than two oper-
ators are generated in (5.1.12). These can be factorized by using Wick’s theorem
[WIC50] provided that the Dirac operators have an exponential time dependence5.
Utilizing diagrammatic techniques for the resulting perturbation expansion (5.1.12)
and by clever regrouping of diagrams one can obtain the Dyson equation

4Note that in Chap. 6 and 7 we also deal with objects called S-matrices.
5This only holds for a H0 which is bilinear in the creation/annihilation operators.
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GC
αβ(τα, τβ) = GC0

αβ(τα, τβ) +

∫

C

∫

C

dτ1dτ2

∑

ρσ

GC0
αρ (τα, τ1)Σ

C
ρσ(τ1, τ2)G

C
σβ(τ2, τβ)

(5.1.13)

with the self-energy functional ΣC
ρσ(τ1, τ2) which contains the interactions and

the free Green’s function GC0
αβ(τα, τβ) ≡ −i〈T̂Ca†DαaDβ

〉. Note, that it is not always
possible to find a self-energy functional for the interaction under consideration, e.g.
the Coulomb interaction.

In physical problems only real times should occur. Hence, one has to introduce
real-time Green’s functions. The following important functions are defined in the
formalism

G>
αβ(tα, tβ) ≡ GC

αβ(tα − i0+, tβ + i0+) = −i〈aHα(tα)a†Hβ(tβ)〉
G<

αβ(tα, tβ) ≡ GC
αβ(tα + i0+, tβ − i0+) = i〈a†Hβ(tβ)aHα(tα)〉 (5.1.14)

which gives for α = β the occupation of the states and for α 6= β the transition
current from state α to β (for equal times).

Gret
αβ(tα, tβ) ≡ Θ(tα − tβ)

[

G>
αβ(tα, tβ) − G<

αβ(tα, tβ)
]

= −iΘ(tα − tβ)〈{aHα(tα), a†Hβ(tβ)}〉
Gadv

αβ (tα, tβ) ≡ Θ(tβ − tα)
[

G<
αβ(tα, tβ) − G>

αβ(tα, tβ)
]

= iΘ(tβ − tα)〈{aHα(tα), a†Hβ(tβ)}〉 (5.1.15)

where {·, ·} is the anti-commutator. The retarded and advanced Green’s functions
Gret

αβ and Gadv
αβ , respectively, in (5.1.15) describe the evolution of an excitation in state

β at tβ forward and backward in time, respectively.
With the help of Langreth’s rules [LAN76a] (see below, Eq. (5.1.31)) the Dyson

equation for the contour-ordered Green’s function (5.1.13) can be transformed in
Dyson equations for the real-time Green’s functions (5.1.14),(5.1.15):

Gret
αβ(tα, tβ) = Gret,0

αβ (tα, tβ) +

∫ ∫

dt1 dt2
∑

ρσ

Gret,0
αρ (tα, t1)Σ

ret
ρσ (t1, t2)G

ret
σβ(t2, tβ)

(5.1.16)

G<
αβ(tα, tβ) = G<0

αβ(tα, tβ) +

∫ ∫

dt1 dt2
∑

ρσ

[

Gret,0
αρ (tα, t1)Σ

ret
ρσ (t1, t2)G

<
σβ(t2, tβ)

+Gret,0
αρ (tα, t1)Σ

<
ρσ(t1, t2)G

adv
σβ (t2, tβ)

+G<0
αρ (tα, t1)Σ

adv
ρσ (t1, t2)G

adv
σβ (t2, tβ)

]

(5.1.17)
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(analogously for G> and Gadv). Throughout this chapter we want to discuss
stationary quantities. I.e. the defined functions in (5.1.14) and (5.1.15) only depend
on time differences: G(t1, t2) = G(t1 − t2). Then a Fourier transform can be carried
out

G̃αβ(ε) =
1

~

∫

dt exp

(

i

~
εt

)

Gαβ(t) with t ≡ t1 − t2 (5.1.18)

so that an energy ε is obtained which is independent of all intrinsic energy scales
(e.g. levels or level widths) and therefore it can be used to probe the DOS in the
system. Fourier transforming Eq. (5.1.16) and bringing it in matrix notation yields

Gret(ε) = Gret,0(ε) + Gret,0(ε)Σret(ε)Gret(ε) (5.1.19)

(This form of Dyson’s equation will be used in Sec. 5.3.2.)

The Dyson equation for the lesser Green’s function (5.1.17) yields in the Keldysh
formulation [KEL65, HAU96]

G<(ε) = Gret(ε)Σ<(ε)Gadv(ε) (5.1.20)

An alternative way for calculating the Green’s functions is the equation-of-motion
(EOM) technique where the time derivative of the time-ordered Green’s functions
are taken. This will be demonstrated explicitly in Sec. 5.2.

5.1.2. Transport observables

The aim is the modeling of tunneling through a QD system coupled to noninteract-
ing electron reservoirs e/c (emitter/collector, respectively). Both will be treated in
local equilibrium with temperature T , i.e. their occupation is ruled by the Fermi dis-
tributions fe and fc with the chemical potentials µe and µc, respectively. Different
chemical potentials in the reservoirs induced by an applied bias voltage eV = µe−µc

can drive the QD system out of equilibrium. This is the regime we are interested
in and where we want to calculate the observables: average current and spectral
power density in the framework of NEGF introduced in the last section.

In the following we consider a single QD with two energy levels (e.g. two spin-
states σ ∈ {↑, ↓}). But it can easily be extended to a QD system with an arbitrary
number of states.

The respective Hamiltonian reads

H = HQD + HR + HT (5.1.21)

The Hamiltonian for the QD splits into a noninteracting part and a part which
includes the Coulomb interaction with charging energy U :
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HQD = H0
QD + HU

QD

with H0
QD =

∑

σ

εσd†σdσ

and HU
QD = Un↑n↓ (5.1.22)

εσ is the energy level of the single-particle state σ in the QD. d†σ (dσ) creates
(annihilates) an electron in the QD state σ, and n↑ = d†↑d↑, n↓ = d†↓d↓ are occupation
number operators.

The Hamiltonian for the reservoirs reads

HR =
∑

kση

εkσηc
†
kσηckση (5.1.23)

εkση is the single-particle energy of an electron in the emitter/collector reservoir

η = e, c in state kσ with wavevector k and spin σ. c†kση (ckση) is the respective
creation (annihilation) operator.

The tunneling Hamiltonian in (5.1.21) can be written as

HT =
∑

kση

(tkσηc
†
kσηdσ + t∗kσηd

†
σckση) (5.1.24)

with the matrix elements tkση which couple a QD state σ to a state kσ in the
reservoir η = e, c.

The Hamiltonian (5.1.21) with all presented terms is known as the famous An-
derson model [AND61]. Basically, it describes the coupling of delocalized electron
states to a localized electron state which can be met e.g. in the consideration of
magnetic impurites in metals. The related Kondo effect which shows up for very
small temperatures can also be observed in the tunneling through QDs (for a nice
introduction see e.g. [KOU01]).

5.1.2.1. Stationary current

In this section a general form of the tunneling current from the leads through the QD
is derived in terms of the Green’s functions (5.1.14) and (5.1.15) for the QD system
(replacing the operators a by d and a† by d†) [JAU94, HAU96]. The definition
of the current from the emitter into the QD is Ie(t) = 〈Îe(t)〉 with the current
operator Îe(t) = −eṄe = − i

~
e[H, Ne] and the number operator in the emitter

contact Ne =
∑

kσ c†kσeckσe. Calculating the commutator [H, Ne] with (5.1.21) and
taking the average one obtains the current in the form6

Ie = −Ic = 2eRe
∑

kσ

tkσG<
σ,kσe(t, t) (5.1.25)

6Note here that Ne commutes with HR and HQD
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(Re denotes the real part)
with the lesser Green’s function G<

σ,kσe(t, t) = i〈c†kσe(t)dσ(t)〉 which has to be
determined in the following. Under the assumption of a bilinear Hamiltonian for
the reservoirs HR (5.1.23) a general expression for the contour-ordered Green’s
function can be derived. Following the lines of the last section it reads

GC
σ,kσe(τ, τ

′) = −i〈SCdDσ(τ)c†Dkσe(τ
′)〉 (5.1.26)

where

SC = T̂C exp

[

− i

~

∫

C

dτ1H̃T(τ1)

]

(5.1.27)

is the contour-ordered S-matrix and H̃T is the tunneling Hamiltonian (5.1.24) in
the Dirac picture. Now, the expansion (5.1.12) can be carried out (all creation and
annihilation operators are in the Dirac picture so that we can omit the index D):

GC
σ,kσe(τ, τ

′) = −i

〈

T̂Cdσ(τ)c†kσe(τ
′)

∞
∑

n=0

(−i)n+1

(n + 1)!

×
[

∫

C

dτ1

∑

k1,σ1,η1

(

tk1σ1c
†
k1σ1η1

(τ1)dσ1(τ1) + t∗k1σ1
d†σ1

(τ1)ck1σ1η1(τ1)
)

]n+1〉

(5.1.28)

The zeroth order term does not contribute because annihilation and creation
operators have to pair each other to give a nonzero expectation value. The only
assumption of our further procedure is based on noninteracting leads (i.e. a bilin-
ear Hamiltonian HR). Then, Wick’s theorem [WIC50] can be applied to contract
c†kσe(τ

′) with one of the (n+1) operators ck1σ1η1(τ1) under the integral. The (n+1)
possible choices cancel a factor (n+1) in the factorial in the denominator of (5.1.28).
This leads to

GC
σ,kσe(τ, τ

′) =
∑

k1σ1η1

t∗k1σ1

∫

C

dτ1(−i)
〈

T̂Cc†kσe(τ
′)ck1σ1η1(τ1)

〉

×(−i)
〈

SCdσ(τ)d†σ1
(τ1)

〉

(5.1.29)

The first average in (5.1.29) gives δkσe,k1σ1η1 so that the sum disappears and it
follows

GC
σ,kσe(τ, τ

′) = t∗kσ

∫

C

dτ1G
C
σσ(τ, τ1)g

C
kσe(τ1, τ

′) (5.1.30)
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with gC
kσe(τ1, τ

′) ≡ −i
〈

T̂Cckσe(τ1)c
†
kσe(τ

′)
〉

and GC
σσ(τ, τ1) ≡ −i

〈

SCdσ(τ)d†σ(τ1)
〉

.

Now, Langreth’s analytic continuation rules [LAN76a, HAU96] can be applied to
(5.1.30), i.e. the contour-ordered Green’s functions will be analytical continued to
the real time axis (see appendix A in [JAU94] for a motivation) in order to obtain
G<

σkσe(t, t) in (5.1.25). For the generic expression A =
∫

BC as in (5.1.30) with
the integration taken on the contour, the lesser component on the real time axis is
given by:

A<(t, t′) =

∫

dt1
[

Bret(t, t1)C
<(t1, t

′) + B<(t, t1)C
adv(t1, t

′)
]

(5.1.31)

Then the current (5.1.25) can be written as

Ie = 2eRe

∫

dt1
∑

σ

[

Gret
σσ(t, t1)Σ

e<
σσ(t1, t) + G<

σσ(t, t1)Σ
e,adv
σσ (t1, t)

]

(5.1.32)

where Σ
e(<,adv)
σσ (t1, t) ≡

∑

k |tkσ|2g(<,adv)
kσe (t1, t) with the lesser and advanced Green’s

functions for the uncoupled emitter contact obtained by using the Fermi distribution
fe in the emitter and (5.1.24)

g<
kσe(t1, t) ≡ i

〈

c†kσe(t)ckσe(t1)
〉

= ife(εkσe) exp

[

− i

~
εkσe(t1 − t)

]

gadv
kσe(t1, t) ≡ iΘ(t − t1)

〈

{ckσe(t1), c
†
kσe(t)}

〉

= iΘ(t − t1) exp

[

− i

~
εkσe(t1 − t)

]

(5.1.33)

({·, ·} denotes the anti-commutator and the time dependence of the operators is
in the Dirac picture).

Assuming the stationary limit so that the Green’s functions depends only on
t − t1, using the Fourier transform of the right-hand side of (5.1.32) by means of
(5.1.18) with the energy ε yields

Ie = 2eRe

∫

dε

2π

∑

σ

[

Gret
σσ(ε)Σe<

σσ(ε) + G<
σσ(ε)Σe,adv

σσ (ε)
]

(5.1.34)

This can be rearranged by introducing the coupling matrix

Γe =

(

Γ
(↑)
e 0

0 Γ
(↓)
e

)

(5.1.35)
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with Γ
(σ)
e = 2π

∑

k |tkσ|2δ(ε − εkσe) and the Fourier transform of the Green’s

functions (5.1.33) gadv
kσe(ε) = (ε − εkσe − i0+)

−1
, gret

kσe(ε) =
(

gadv
kσe(ε)

)∗
, and g<

kσe(ε) =
2πife(ε)δ(ε − εkσe):

Ie = ie

∫

dε

2π
Tr
{

Γe
[

(Gret −Gadv)fe + G<
]}

(5.1.36)

with the matrices [Gret/adv]σσ′ = G
ret/adv
σσ′ and Tr being the trace taken over the

spin index σ, and the Fermi function fe(ε). The advantage of using Eq. (5.1.36)
instead of Eq. (5.1.25) is that one only needs to know the Green’s functions for the
QD itself. The contacts enter by means of the Fermi functions and the coupling
matrix (5.1.35). Note that the only approximation which led to (5.1.36) is the
assumption of noninteracting contacts.

5.1.2.2. Spectral power density

The starting point for the calculation of noise is the auto-correlation function with
the operator for current fluctuations around the average current ∆Îη(t) ≡ Îη(t)−〈Iη〉
at the time t (Eq. (49) in Ref. [BLA00] except for a factor of one half)

Cηη′(t, t′) =
〈

{∆Îη(t), ∆Îη′(t′)}
〉

=
〈

{Îη(t), Îη′(t′)}
〉

− 2I2
η (5.1.37)

({·, ·} is the anti-commutator) with Iη = Iη′ in the stationary limit t → ∞.
Note this is the symmetrized version of current-current correlations. Additionally
for finite frequencies, asymmetric shot noise can also be detected since the noise
frequency ω corresponds to an energy quantum ~ω being transferred from the mea-
surement apparatus to the system. This was considered recently in [ENG04].

Substituting the current operator from Sec. 5.1.2.1

Îη(t) = ie
∑

kσ

[

tkσc†kση(t)dσ(t) − t∗kσd
†
σ(t)ckση(t)

]

(5.1.38)

in Eq. (5.1.37) yields7

7along the lines of [SOU04]
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Cηη′(t, t′) = (ie)2
∑

kk′σσ′

[

tkσtk′σ′

〈

c†kση(t)dσ(t)c
†
k′σ′η′(t

′)dσ′(t′)
〉

−tkσt∗k′σ′

〈

c†kση(t)dσ(t)d†σ′(t
′)ck′σ′η′(t′)

〉

−t∗kσtk′σ′

〈

d†σ(t)ckση(t)c
†
k′σ′η′(t

′)dσ′(t′)
〉

+ t∗kσt∗k′σ′

〈

d†σ(t)ckση(t)d
†
σ′(t

′)ck′σ′η′(t′)
〉]

+h.c. − 2I2
η (5.1.39)

The expectation values in (5.1.39) can be defined as real time Green’s functions
as in (5.1.14) so that (5.1.39) can be rewritten as

Cηη′(t, t′) = (e)2
∑

kk′σσ′

[

tkσtk′σ′g(1)>(t, t′)

−tkσt∗k′σ′g(2)>(t, t′)

−t∗kσtk′σ′g(3)>(t, t′)

+ t∗kσt∗k′σ′g(4)>(t, t′)
]

+h.c. − 2I2
η (5.1.40)

Now, we define the contour-ordered Green’s functions in order to carry out the
S-matrix expansion as in (5.1.12):

g(1)C(τ, τ ′) = i2
〈

T̂Cc†kση(τ)dσ(τ)c†k′σ′η′(τ
′)dσ′(τ ′)

〉

g(2)C(τ, τ ′) = i2
〈

T̂Cc†kση(τ)dσ(τ)d†σ′(τ
′)ck′σ′η′(τ ′)

〉

g(3)C(τ, τ ′) = i2
〈

T̂Cd†σ(τ)ckση(τ)c†k′σ′η′(τ
′)dσ′(τ ′)

〉

g(4)C(τ, τ ′) = i2
〈

T̂Cd†σ(τ)ckση(τ)d†σ′(τ
′)ck′σ′η′(τ ′)

〉

(5.1.41)

We carry out the expansion exemplarily for g(1)C(τ, τ ′) which reads in the Dirac
picture (denoted by a tilde):

g(1)C(τ, τ ′) = i2
〈

SC c̃†kση(τ)d̃σ(τ)c̃†k′σ′η′(τ
′)d̃σ′(τ ′)

〉

(5.1.42)

with

SC = T̂C exp

(

− i

~

∫

C

dτ1H̃T (τ1)

)

(5.1.43)

The S-matrix expansion in (5.1.42) similar to (5.1.28) reads
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g(1)C(τ, τ ′) = i2
∞
∑

n=0

(−i)n+2

(n + 2)!

×
〈

T̂C c̃†kση(τ)d̃σ(τ)c̃†k′σ′η′(τ
′)d̃σ′(τ ′)

×
[

∫

C

dτ1

∑

k1σ1η1

tk1σ1 c̃
†
k1σ1η1

(τ1)d̃σ1(τ1) + tk1σ1 d̃
†
σ1

(τ1)c̃k1σ1η1(τ1)

]n+2〉

(5.1.44)

The zero and first order term in the expansion (5.1.44) give no contribution.
Due to the bilinear form of the Hamiltonian of the leads Wick’s theorem can be
applied in order to contract c̃†kση(τ) with one of the (n+2) operators c̃kiσiηi

(τi). The

remaining (n + 1) operators c̃kjσjηj
(τj) (i 6= j) must be contracted with c̃†k′σ′η′(τ ′).

The number of all possible contractions is then (n + 2)(n + 1). Each of them gives
the same result by changing the labels. Then, one finds

g(1)C(τ, τ ′) = t∗kσt
∗
k′σ′

∫

C

∫

C

dτ1dτ2g
C
kση(τ1, τ)gC

k′σ′η′(τ ′, τ2)

×
〈

SC d̃σ(τ)d̃σ′(τ ′)d̃†σ(τ1)d̃
†
σ′(τ2)

〉

(5.1.45)

with the Green’s function for the contacts η and η′: gC
kση(τ1, τ) ≡ −i〈T̂C c̃kση(τ1)c̃

†
kση(τ)〉.

Finally we arrive at an expression for the contour-ordered Green’s function where
the contact and QD degrees of freedom are apparently decoupled. Here a four-
operator Green’s function (two-particle Green’s function) for the QD occurs, which
essentially differs from the current formula in the previous section where only single-
particle Green’s functions enter. Due to the Coulomb interaction in the QD the
Hamiltonian is not bilinear in the operators. Therefore Wick’s theorem can only be
applied without Coulomb interaction, i.e. U = 0 or in the Hartree-Fock approxi-
mations which will be discussed in detail in Sec. 5.3. According to Wick’s theorem
then the four-operator Green’s function can be factorized as

〈

SC d̃σ(τ)d̃σ′(τ ′)d̃†σ(τ1)d̃
†
σ′(τ2)

〉

= Gσσ(τ, τ1)Gσ′σ′(τ ′, τ2) − Gσσ′(τ, τ2)Gσ′σ(τ ′, τ1)

(5.1.46)

with Gσσ(τ, τ1) = −i
〈

T̂Cdσ(τ)d†σ(τ1)
〉

.

The other Green’s functions in (5.1.41) are obtained in the same manner and
read
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g(2)C(τ, τ ′) = −δkση,k′σ′η′gC
kση(τ

′, τ)Gσσ′(τ, τ ′) +

+t∗kσtk′σ′

∫ ∫

dτ1 dτ2 gC
kση(τ1, τ)gC

k′σ′η′(τ ′, τ2) ×

×{Gσσ(τ, τ1)Gσ′σ′(τ2, τ
′) − Gσσ′(τ, τ ′)Gσ′σ(τ2, τ1)}

g(3)C(τ, τ ′) =
[

g(2)C(τ, τ ′)
]∗

g(4)C(τ, τ ′) =
[

g(1)C(τ, τ ′)
]∗

(5.1.47)

The first term in the integrand of g(1)C(τ, τ ′) and g(2)C(τ, τ ′) correspond to dis-
connected diagrams and cancel exactly with 2I2

η in (5.1.37) as proven in [SOU04].
The remaining terms correspond to connected diagrams and contribute to the noise.
From Eqs. (5.1.45),(5.1.47) the auto-correlation function (5.1.37) can now be writ-
ten as (the superscript C is skipped for clarity)

Cηη′(t, t′) = e2
∑

kσ

|tkσ|2δηη′ [g>
kση(t, t

′)G<
σσ(t′, t) + G>

σσ(t, t′)g<
kση(t

′, t)] −

−e2
∑

kk′σσ′

|tkσ|2|tk′σ′ |2
∫

C

∫

C

dτ1 dτ2 ×

×{Gσσ′(t, τ2)gk′σ′η′(τ2, t
′)Gσ′σ(t′, τ1)gkση(τ1, t)

−Gσσ′(t, t′)gk′σ′η′(t′, τ2)Gσ′σ(τ2, τ1)gkση(τ1, t)

−gkση(t, τ1)Gσσ′(τ1, τ2)gk′σ′η′(τ2, t
′)Gσ′σ(t′, t)

+gkση(t, τ1)Gσσ′(τ1, t
′)gk′σ′η′(t′, τ2)Gσ′σ(τ2, t)}> + h.c. (5.1.48)

Here, the first two terms are already analytically continued with respect to Lan-
greth’s rules8, e.g. one presented in Eq. (5.1.31). In the term containing the contour
integrals the analytical continuation to the real time axis still has to be carried out,
which is indicated by the superscript >. In particular, the products of at most
three contour-ordered Green’s function have to be evaluated since there are only
two contours. The detailed straightforward calculation will be skipped here. Af-
ter the analytical continuation a Fourier transform has to performed and with the
Wiener-Khinchin theorem (Appendix B) the spectral power density (SPD), which
is the Fourier transform of the autocorrelation function, in the zero-frequency limit
then becomes

See(0) = 2e2

∫

dε

2π
Tr {i[feΓeG

> − (1 − fe)ΓeG
<]

+G>ΓeG
<Γe + (Gret − Gadv)Γe[feG

> − (1 − fe)G
<]Γe

−fe(1 − fe)[G
advΓeG

advΓe + GretΓeG
retΓe]

}

(5.1.49)

8In this special case, the last line of Tab. 4.1. in [HAU96] is used.
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This expression for the DC noise was independently derived in Ref. [ZHU02]9 and
in a scalar form in [DON02]. Noise conservation holds here, i.e. See(0) = Scc(0) =
−Sec(0) = −Sce(0), as already discussed in Sec. 4.1.1.

5.2. Exactly solvable limits of the Anderson Model

There is no exact solution for the problem given by the Anderson Hamiltonian
(5.1.21). One has to rely on approximations depending on the physical situation
one wishes to model.

Nevertheless there are two limits where one can find exact results which will be
demonstrated in the following two sections.

5.2.1. Noninteracting quantum dot

Let us assume there is no Coulomb interaction in the QD: U = 0 so that the
Hamiltonian (5.1.21) becomes bilinear in the operators. To obtain the retarded
Green’s function the EOM technique is used. For this reason the time evolution of
the operators appearing in the Green’s function is needed in the Heisenberg picture:

i

~
ḋσ = [H, dσ] = εσdσ +

∑

kη

t∗kσηckση (5.2.1)

i

~
ċkση = [H, ckση] = εkσηckση + tkσηdσ (5.2.2)

Then, the EOM for the time-ordered Green’s function

Gt
σσ′(t, t′) ≡ −i〈T̂ dσ(t)d†σ′(t

′)〉 (5.2.3)

with the time ordering operator T̂ introduced in Sec. 5.1.1 is

(

i

~

∂

∂t
− εσ

)

Gt
σσ′(t, t′) = δσσ′δ(t − t′) +

∑

kη

t∗kσηG
t
kση,σ′(t, t′) (5.2.4)

with the QD-contact Green’s function Gt
kση,σ′(t, t′) = −i〈T̂ ckση(t)d

†
σ′(t′)〉. For this

function we also set up an EOM

(

i

~

∂

∂t
− εkση

)

Gt
kση,σ′(t, t′) = tkσηG

t
σσ′(t, t′) (5.2.5)

9Therein the authors claim that “it can take into account the many-body effects conveniently”
which is doubtful in general regarding the approximation (5.1.46), i.e. the Hartree-Fock ap-
proximation.

72



5.2. Exactly solvable limits of the Anderson Model

with the formal solution

Gt
kση,σ′(t, t′) =

∫

dt1 Gt
σσ′(t, t1)tkσηg

t
kση(t1, t

′) (5.2.6)

with the contact Green’s function gt
kση = ( i

~

∂
∂t

− εkση)
−1 [HAU96]. Inserting

(5.2.6) in (5.2.5), transformation to contour-ordered Green’s functions, and Fourier
transformation yields a Dyson equation for the QD Green’s function of the form
(the energy argument is skipped)

GC
σσ′ = GC0

σσ′ +
∑

αβ

GC0
σα

∑

kη

(

t∗kαηtkβηg
C
kβη

)

GC
βσ′ (5.2.7)

By comparison of Eq. (5.2.7) with Eq. (5.1.13) we can identify the self-energy
due to the coupling of the QD to the reservoirs

ΣC
αβ =

∑

kη

t∗kαηtkβηg
C
kβη (5.2.8)

Then, the retarded/advanced self-energy for a single level can be written as

Σret/adv(ε) =
∑

kη

|tkη|2gret/adv
kη (ε) =

∑

kη

|tkη|2
ε − εkη ∓ 0+

= Λ(ε) ∓ i

2
Γ(ε) (5.2.9)

The real part of the self-energy Λ(ε) = Λe(ε) + Λc(ε) is typically incorporated
in the eigen-energies of the uncoupled system and the imaginary part Γ(ε) =
Γe(ε) + Γc(ε) is often considered as energy-independent, which is called the wide-
band approximation. The lesser/greater self-energy reads

Σ<(ε) =
∑

kη

|tkη|2g<
kη(ε) = i[Γe(ε)fe(ε) + Γc(ε)fc(ε)]

Σ>(ε) =
∑

kη

|tkη|2g>
kη(ε) = −i[Γe(ε)(1 − fe(ε)) + Γc(ε)(1 − fc(ε))]

(5.2.10)

with the distribution functions fe/c in the emitter/collector reservoir, respectively.
For a many-level QD these self-energies can easily be generalized to matrices.

In the following, the current (5.1.36) and the noise (5.1.49) in tunneling through
a single spin-degenerate QD level in the high-bias regime (fc = 0) and wide-band
approximation is considered. The spin-degeneracy is lifted for instance by a mag-
netic field B so that ∆E ≡ ε↓ − ε↑ = g∗µBB (Zeeman-splitting; g∗ . . . effective
Landé factor, µB . . . Bohr’s magneton). Fig. 5.2 shows the current (upper panel)
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Figure 5.2.: a) Normalized current vs. bias voltage ∝ (ε↑ − µe). b) Fano factor
α vs. bias voltage for various temperatures kBT , ∆E = ε↓ − ε↑, and
symmetric barriers Γe = Γc.

and the Fano factor (lower panel) defined by (4.1.9) vs. bias voltage (∝ ε↑ − µe,
where the emitter chemical potential µe is given by the applied bias voltage) for var-
ious temperatures. The barriers are assumed to be symmetric: Γe = Γc = 0.1∆E.
The current shows two steps of same height since for noninteracting electrons the
current is the simple superposition of its components. For zero-temperature the
shape of the current steps is determined by the antiderivative of the DOS, here
Lorentzians with FWHM: Γe + Γc. Analytically, the current for N noninteracting
levels i coupled to emitter/collector by Γ

(i)
e/c vs. bias voltage (V ∝ εi − µe) can be

expressed as
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5.2. Exactly solvable limits of the Anderson Model

I(V ) =
∑

i

Ii(V ) with Ii(V ) =
e

π

Γ
(i)
e Γ

(i)
c

Γ
(i)
e + Γ

(i)
c

[

arctan

(

2(εi − µe)

Γ
(i)
e + Γ

(i)
c

)

+
π

2

]

(5.2.11)

For increasing temperatures the current steps further smear out due to the ther-
mal excitations of emitter electrons. For kBT ≫ Γe/c the intrinsic level broadening
does not play any role and the sequential tunneling limit is reached (Chap. 3) where
the shape of the current steps is fully determined by the thermal occupation of the
reservoirs.

Really interesting behavior is provided by the noise at the respective current steps
as shown by the Fano factor vs. bias voltage in Fig. 5.2b. For both levels far above
the emitter chemical potential µe tunneling of electrons are rare events so that its
statistics becomes Poissonian with a Fano factor of unity. For zero-temperature (red
curve) the Fano factor is one half when the levels exactly pass the emitter chemical
potential. This value corresponds to the symmetric barrier geometry and is given
by Eq. (4.2.1) for arbitrary ratios of emitter to collector coupling. Close to these
bias points correlations beyond Pauli’s exclusion principle occur which result in a
Fano factor even below one half on the higher bias side10. The simple picture of
sequential transfer of electrons through two barriers is not sufficient to understand
these correlations. While one can relate the sequential tunneling to classical noise
even though Pauli’s principle is involved11 one can attribute these new correlations
to quantum noise. The zero-temperature Fano factor vs. bias voltage (V ∝ εi−µe)
for tunneling through a single level εi yields analytically12

αi(V ) = 1 − 2Γ
(i)
e Γ

(i)
c

(Γ
(i)
e + Γ

(i)
c )2















1 +
(Γ

(i)
e + Γ

(i)
c )(εi − µe)

[

(

Γ
(i)
e +Γ

(i)
c

2

)2

+ (εi − µe)2

]

[

π + 2 arctan
(

2(εi−µe)

Γ
(i)
e +Γ

(i)
c

)]















(5.2.12)

(red curve in Fig. 5.2a). From (5.2.12) it can be recognized that the Fano fac-
tor cannot be separated in a contribution caused by Pauli’s principle alone and a
quantum noise contribution. Using (5.2.11) and (5.2.12) the full Fano factor for the

10A Fano factor below 0.5 was also observed theoretically in [WEI99] for double-barrier tunnel-
ing, but therein it is discussed as an artefact of the wide-band approximation. Nevertheless,
respective experimental evidence for α < 0.5 in double-barrier resonant tunneling diodes can
be found in [ALE03]. The question whether the observation of a Fano factor below one half is
a signature of coherent tunneling is subject of a controversial debat [BLA04b, ALE04].

11The double-barrier tunneling can be treated successfully by means of a Langevin equation
technique[BLA00].

12A similar expression was published in [ALE03].
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tunneling through several levels is given by (4.2.2) which produces the peculiar bias
dependence at the second current step (red curve) in Fig. 5.2. Increasing tempera-
ture leads to a bias dependence of the Fano factor (blue and black curves) which is
already known from the discussions in Sec. 4.2.1.1 in the sequential tunneling limit
Γec ≪ kBT .

Remark: For zero-temperature and noninteracting electrons the general noise
expression (5.1.49) can be rewritten as

∫

dε Tec(ε)[1 − Tec(ε)](fe − fc)
2 with the

transmission function from emitter to collector Tec = Tr[ΓeG
retΓcG

adv]. This equa-
tion appears in Sec. 6.2 and it will be considered from a more fundamental point of
view in Sec. 7.1.

5.2.2. Isolated interacting quantum dot

Although no electronic transport would occur without coupling to the contacts,
i.e. |tkση| = 0 in (5.1.24) the following consideration is necessary on the one hand
because it gives insight into the nature of Coulomb interaction and on the other hand
the resulting Green’s function will needed for further investigations in Sec. 5.3.2.

The Heisenberg EOM for the QD annihilation operator is

i

~
ḋσ = εσdσ + Udσnσ′ (5.2.13)

The EOM for the time-ordered Green’s function (5.2.3) then yields

(

i

~

∂

∂t
− εσ

)

Gt
σσ(t, t′) = δ(t − t′) + UGt(2)(t, t′) (5.2.14)

with the higher-order Green’s function Gt(2)(t, t′) ≡ −i〈T̂ dσ(t)nσ′(t)d†σ′(t′)〉. For
this function generated by the Coulomb interaction the EOM yields (ṅσ′ = 0)

(

i

~

∂

∂t
− εσ − U

)

Gt(2)(t, t′) = δ(t − t′)〈nσ′〉 (5.2.15)

with σ′ = −σ. Note, that the second-order Green’s function does not further
couple to higher-order functions so that an exact result for (5.2.3) can be obtained
here. Fourier transforming Eqs. (5.2.14), (5.2.15) and eventually putting them
together leads to

Gt
σσ(ε) =

〈nσ′〉
ε − εσ − U

+
1 − 〈nσ′〉
ε − εσ

(5.2.16)

The retarded Green’s function is then obtained from (5.2.16) with the replacement
ε → ε + i0+:

76



5.3. Hartree-Fock approximations

Gret
σσ(ε) =

〈nσ′〉
ε − εσ − U + i0+

+
1 − 〈nσ′〉

ε − εσ + i0+
(5.2.17)

The DOS is given as the imaginary part of the retarded Green’s function (5.2.17)
and has a nice and simple interpretation in this example: it consists of poles at εσ

and εσ +U which are weighted by the occupation of the opposite spin state; as soon
as the opposite spin state gets more occupied (〈nσ′〉 > 0) the DOS at εσ looses its
weight taking into account the effect of Coulomb repulsion. Before we start with
the considerations of both the contact coupling and the Coulomb interaction in the
following section it is worth to emphasize that any approximation should provide
the mentioned DOS behavior for weak contact coupling.

5.3. Hartree-Fock approximations

In this section we study the lowest-order approximation for the Anderson model
(5.1.21) considering all terms therein. There are different approximation schemes
available which are termed Hartree-Fock approximation in the literature. They have
in common that the part of the Hamiltonian describing the Coulomb interaction
(5.1.22) is transformed into a bilinear Hamiltonian. This can either be done directly
as considered in Sec. 5.3.1 or implicitly as described in Sec. 5.3.2. Both approxima-
tions lead to different results, whereas we show that the former is not convenient
to describe nonlinear transport. In contrast, the latter provides reasonable results
for the current but not for the noise as will be discussed in detail.

5.3.1. Factorization of the Coulomb term

The Coulomb interaction term in the Anderson Hamiltonian (5.1.22) can be decou-
pled as follows

HU
QD = Un↑n↓ = U(n↑ + 〈n↑〉 − 〈n↑〉)(n↓ + 〈n↓〉 − 〈n↓〉)

= U [(n↑ − 〈n↑〉)(n↓ − 〈n↓〉) + n↑〈n↓〉 + n↓〈n↑〉 − 〈n↑〉〈n↓〉]
≈ U(n↑〈n↓〉 + n↓〈n↑〉) (5.3.1)

The approximation (wich provides a special form of mean-field approximation)
which leads to the last line in (5.3.1) neglects the fluctuations of the level occupa-
tions around their average values (first term in second line) and the last term which
does not affect the EOM since it is a c-number. Hence, the Hamiltonian (5.1.22)
becomes bilinear and with the substitution εσ → εσ + U〈n−σ〉 one can directly use
the results for a noninteracting QD in Sec. 5.2.1. The retarded Green’s function
obtained from the Dyson equation (5.1.19) with the retarded self-energy for the
contact coupling (5.2.9) reads
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Gret(ε) = Diag

[

1

ε − ε↑ − U〈n↓〉 + iΓ
(↑)
e +Γ

(↑)
c

2

,
1

ε − ε↓ − U〈n↑〉 + iΓ
(↓)
e +Γ

(↓)
c

2

]

(5.3.2)

The average densities 〈nσ〉 which enter this function have to be calculated from
the lesser Green’s function as

〈nσ〉 = −i

∫

dε

2π
G<

σσ(ε, 〈n−σ〉) (5.3.3)

The lesser Green’s function itself depends on the retarded Green’s function via
the Keldysh relation (5.1.20) and thus on the densities which then have to be
determined self-consistently. Explicitly, the lesser Green’s function reads

G<
σσ(ε) = i[Γ(σ)

e fe + Γ(σ)
c fc(ε)]|Gret

σσ|2 (5.3.4)

This can be cast into a more convenient form as

G<
σσ(ε) = −Γ

(σ)
e fe(ε) + Γ

(σ)
c fc(ε)

Γ
(σ)
e + Γ

(σ)
c

[Gret
σσ(ε) − Gadv

σσ (ε)]

= iFσ(ε)Aσ(ε) (5.3.5)

with Fσ(ε) ≡ Γ
(σ)
e fe(ε)+Γ

(σ)
c fc(ε)

Γ
(σ)
e +Γ

(σ)
c

and Aσ(ε) = −i[Gret
σσ(ε) − Gadv

σσ (ε)]. I.e. the lesser

Green’s function is the product of the (non-equilibrium) distribution Fσ(ε) and the
spectral function Aσ(ε) 13 very similar to the equilibrium situation where Fσ has to
be replaced by the equilibrium occupation. Then, the integral in (5.3.3) takes the
form for high bias (fc = 0)

Iσ(x) =

∫

dε

2π

Γ
(σ)
e

1 + exp
(

ε−µe

kBT

)

1

(ε − x)2 +
(

Γ
(σ)
e +Γ

(σ)
c

2

)2 (5.3.6)

Hence, with (5.3.6) the self-consistency equations for 〈n↑/↓〉 are

〈n↑〉 = I↑(ε↑ + U〈n↓〉)
〈n↓〉 = I↓(ε↓ + U〈n↑〉) (5.3.7)

This is a coupled set of strongly nonlinear equations and there might exist more
than one solution. The graphical solution of (5.3.7) for symmetric barriers Γ

(↑)
e =

13This relation takes the form of the fluctuation-dissipation theorem where G< contains informa-
tion about fluctuations and the spectral function quantifies dissipation in the system [HAU96].
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Γ
(↑)
c = Γ

(↓)
e = Γ

(↓)
c and ε↑ = ε↓ in the bias regime where only one spin state can be

occupied due to Coulomb repulsion (Coulomb blockade) ε↑/↓ < µe < U is shown
in Fig. 5.3. Indeed, three crossing points as the possible solutions for the densities
appear: there are two polarized solutions which correspond to unphysical situations
since only one spin state can be occupied in the considered regime and there is one
unpolarized solution which is physical correct 14.

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

〈n↑〉

〈n↓〉
Figure 5.3.: Graphical solution of Eqs. (5.3.7) for Γ

(↑)
e = Γ

(↑)
c = Γ

(↓)
e = Γ

(↓)
c , ε↑ = ε↓,

and ε↑/↓ < µe < U

These different density configurations correspond to two different coexisting
currents through the system which can lead to bistability effects in the current-
voltage characteristic as discussed e.g. in [MII96, MAK96, MII97, NAT98, KIE99a,
SPR03]15. By a slight lifting of the spin degeneracy or choosing proper initial values
for the self-consistent loop in the numerical calculation one can exclude the unphysi-
cal solution and hence one gets rid of the artificial bistability. Another more crucial

14In this Coulomb blockade regime both single-particle states are occupied with the same prob-
ability since they are equally coupled to the reservoirs and the two-particle state cannot be
occupied, i.e. 〈n↑〉 = P10 + P11 = P01 + P11 = 〈n↓〉.

15With respect to the analysis in the present section it can be assumed that in all these references
the bistability effect is artificial and caused by the mean-field approximation.
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problem is connected to the DOS. In the Sec. 5.2.2 it was pointed out that the
DOS should exhibit poles fixed at εσ and εσ + U . In the mean-field approximation
considered here there are also poles at εσ but the poles caused by the Coulomb
repulsion U shift linearly with the occupation of the opposite spin state which is in
obvious conflict to the mentioned results. Furthermore, for symmetric coupling the
occupations can approach maximally one half (only in the high-bias limit fc = 0)
which would give a repulsion with half the Coulomb energy. To conclude, the mean-
field approximation investigated here is not suitable to describe high-bias transport
through QDs and the appearing bistability effects in the average current are purely
artificial.

Nevertheless, for weak-bias transport (linear-response regime) the mean-field ap-
proximation is applicable and yields results in agreement with the experimentally
observed Coulomb blockade oscillations. In this regime the QD is in equilibrium
with the reservoirs so that the physically correct solution for the occupations can
be found by minimizing the free energy of the QD: F = 〈ε〉 − TS (〈ε〉 is the total
energy of the system, S is the entropy) [BAL99].

5.3.2. Truncation of the hierarchy

The following EOM procedure is adopted from [LAC81, HAU96] and can be re-
traced there in detail. Here only a brief sketch of the derivation will be given.
For the derivation of the Heisenberg operators now the full Anderson Hamiltonian
(5.1.21) without any approximation therein is considered. The EOM for the relevant
operators are

iḋσ = εσdσ + Udσnσ′ +
∑

kη

t∗kσηckση

iḋ†σ′ = −εσ′d†σ′ − Unσd
†
σ′ −

∑

kη

tkσ′ηc
†
kσ′η

iċkση = εkηckση + tkσηdσ

iċ†kσ′η = −εkηc
†
kσ′η − t∗kσ′ηdσ′

iṅσ′ =
∑

kη

[−tkσ′ηc
†
kσ′ηdσ′ + t∗kσ′ηd

†
σ′ckσ′η] (5.3.8)

This leads to the following Fourier transformed EOM equations for the time-
ordered Green’s functions defined in Sec. 5.2.1

(ε − εσ)G
t
σσ(ε) = 1 + UGt(2)(ε) +

∑

kη

t∗kσηΞ
σσ
kη (ε) (5.3.9)

where Ξσσ
kη (ε) is the Fourier transform of Ξσσ

kη (t, t′) ≡ −i〈T̂ ckση(t)d
†
σ(t′)〉. Its EOM

reads
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(ε − εkση)Ξ
σσ
kη (ε) = tkσηG

t
σσ(ε) (5.3.10)

Putting this back in (5.3.9) leads to

[ε − εσ − Σ(ε)]Gt
σσ(ε) = 1 + UGt(2)(ε) (5.3.11)

where Σ(ε) is the self-energy due to the coupling to the contacts. In the end, the
EOM for Gt(2) is needed and with (5.3.8) it becomes

(ε − εσ − U)Gt(2)(ε) = 〈nσ′〉 +
∑

kη

[

t∗kσηΞ
1
kη(ε) + tkσηΞ

2
kη(ε) − t∗kσηΞ

3
kη(ε)

]

(5.3.12)

with the Fourier transforms of the following correlation functions

Ξ1
kη(t, t

′) ≡ −i〈T̂ ckση(t)nσ′(t)d†σ(t
′)〉

Ξ2
kη(t, t

′) ≡ −i〈T̂ c†kσ′η(t)dσ(t)dσ′(t)d†σ(t′)〉
Ξ3

kη(t, t
′) ≡ −i〈T̂ ckσ′η(t)d

†
σ′(t)dσ(t)d

†
σ(t′)〉 (5.3.13)

Continuation of the EOM scheme for these new functions would generate higher-
order Green’s functions so that an infinite number of equations occur. In order
to truncate this infinite hierarchy, we carry out an approximation (Hartree-Fock
approximation) at this step of the hierarchy, such that the Fourier transform of the
first function in (5.3.13) is factorized and the others are neglected

Ξ1
kη(ε) ≈ 〈nσ′〉Ξσσ

kη (ε)

Ξ2
kη = 0

Ξ3
kη = 0 (5.3.14)

Finally, this yields

Gt
σσ(ε) =

ε − εσ − U(1 − 〈nσ′〉)
(ε − εσ)(ε − εσ − U) − Σ(ε)[ε − εσ − U(1 − 〈nσ′〉)] (5.3.15)

with σ′ = −σ. This function exhibits fixed poles at εσ and εσ + U which leads to
the correct form of the DOS in agreement with the considerations in Sec. 5.2.2. Note
that there is another way to obtain (5.3.15) (i.e. its retarded version) [GRO91]: one
utilizes Dyson’s equation (5.1.19) where (5.2.17) enters as the ”free”Green’s function
and (5.2.9) enters as the self-energy for the contact coupling16.

16In Ref. [HAU96] the authors claim that the Hartree-Fock approximation which leads to (5.3.15)
corresponds to replacing 0+ by the self-energy (5.2.9) in (5.2.17). This is only valid for 〈nσ′〉 ≈
1, but not in general.
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5. Coherent Tunneling

Before the nonlinear current and noise is discussed within the approximation
(5.3.14) it is necessary to show that this description is equivalent to a treatment
with a bilinear Hamiltonian as demanded for the applicability of the noise expression
(5.1.49) [SOU04a]. For that purpose, one can rewrite the Dyson equation (5.1.19)
in the form (the energy argument is skipped in the following)

Gret = [(G̃ret,0)−1 − Σret,T ]−1 (5.3.16)

where G̃ret,0 is given by (5.2.17) containing the Coulomb interaction and Σret,T is
the self-energy due to tunneling (5.2.9). In order to define a total self-energy Σret

which contains both the Coulomb interaction and the coupling to the contacts a
”zero”is added in (5.3.16)

Gret = [(Gret,0)−1 − (Gret,0)−1 + (G̃ret,0)−1 −Σret,T ]−1 (5.3.17)

Then, the self-energy contribution due to Coulomb interaction is defined by
Σret,C ≡ (G̃ret,0)−1 − (Gret,0)−1 and the Dyson equation becomes

Gret = [(Gret,0)−1 − Σret]−1 (5.3.18)

with the total self-energy Σret ≡ Σret,C + Σret,T , and

Σret,C = Diag[ε − ε↑, ε − ε↓] − Diag

[

(ε − ε↑)(ε − ε↑ − U)

ε − ε↑ − U(1 − 〈n↓〉)
,
(ε − ε↓)(ε − ε↓ − U)

ε − ε↓ − U(1 − 〈n↑〉)

]

= Diag

[

U〈n↓〉(ε − ε↑)

ε − ε↑ − U(1 − 〈n↓〉)
,

U〈n↑〉(ε − ε↓)

ε − ε↓ − U(1 − 〈n↑〉)

]

(5.3.19)

This self-energy due to Coulomb interaction can be obtained by a bilinear Hamil-
tonian as shown in the following. The starting point is to replace the non-quadratic
part of the Hamiltonian (5.1.21) namely HU

QD = Un↑n↓ by

HU
QD =

∑

σ

χσd†σdσ +
∑

σ

νσv
†
σvσ +

∑

σσ′

(tUσσ′v
†
σ′dσ + h.c.) (5.3.20)

The parameters χσ,νσ, and tUσσ′ have to be determined. The so-introduced bi-
linear Hamiltonian describes the Coulomb interaction of the QD with annihila-
tion/creation operators dσ/d

†
σ, resp., as tunneling between the QD and a virtual

QD with annihilation/creation operators vσ/v†σ, respectively. With the new Hamil-
tonian for the full system the respective self-energy is then obtained by EOM fol-
lowing the lines of Sec. 5.2.1. Comparing the resulting self-energy with (5.3.19)
gives [SOU04a]
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5.3. Hartree-Fock approximations

χσ = U〈n−σ〉
νσ = εσ + U(1 − 〈n−σ〉)

|tUσσ|2 = U2〈n−σ〉(1 − 〈n−σ〉) (5.3.21)

and finally for the Hamiltonian (5.3.20)

HU
QD =

∑

σ

U〈n−σ〉d†σdσ +
∑

σ

[εσ + U(1 − 〈n−σ〉)]v†σvσ

+
∑

σ

U
√

〈n−σ〉(1 − 〈n−σ〉(eiϕd†σvσ + h.c.) (5.3.22)

with an arbitrary phase factor eiϕ. The first term in (5.3.22) corresponds to the
mean-field approximation of the last section and the remaining terms give linear cor-
rections. Summarizing these considerations we note that the approximation (5.3.14)
is equivalent to a description with a bilinear Hamiltonian so that Eq. (5.1.49) can
be used to calculate the noise.

The lesser Green’s function is given by (5.3.5) as derived in [CHE90a]. The den-
sities 〈nσ〉 have to be determined self-consistently by (5.3.3) since the lesser Green’s
function depends on the densities via the retarded Green’s function. Even though
the coupled equations for the densities are strongly nonlinear similar to (5.3.7) it
turns out that there is always one unique solution of this system of equations in
contrast to the the previous section.

Now the current (5.1.36) and the zero-frequency noise (5.1.49) for tunneling
through a single level where the spin-degeneracy is lifted by a magnetic field (∝ ∆E)
and in the high-bias regime (fc = 0) is discussed. Fig. 5.4 shows the respective re-
sults vs. bias voltage (∝ ε↑−µe) for symmetric contact coupling Γe = Γc = 0.1∆E,
temperature kBT = Γe/c, and with Coulomb interaction strength U/∆E = 3. The
normalized average current (a) shows four steps due to the alignment of ε↑, ε↑+∆E,
ε↑+U , and ε↑+∆E+U with the emitter chemical potential µe. The current plateau
heights depend only on the couplings Γe/c and for the i-th plateau in Fig. 5.4a they
are

1. ΓeΓc

Γe+Γc

2. 2ΓeΓc

2Γe+Γc

3. ΓeΓc(Γe+2Γc)
(Γe+Γc)2

4. 2ΓeΓc

Γe+Γc
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Figure 5.4.: a) Normalized current vs. bias voltage ∝ ε↑−µe. b) Electron densities
〈n↑/↓〉 vs. bias voltage. c) Fano factor α vs. bias voltage. ∆E = ε↓−ε↑.
Charging energy U = 3∆E. Temperature kBT = 0.1∆E. Symmetric
barriers: Γe = Γc = 0.1∆E.
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5.3. Hartree-Fock approximations

This current plateau behavior and the step positions are in agreement with the
results of the sequential tunneling model in Sec. 4.2.1, particularly Fig. 4.5, just like
the self-consistently determined densities 〈n↑/↓〉 shown in the middle panel of Fig. 4.5
which can be compared with the sequential treatment by 〈n↑〉 = P(1,0) + P(1,1) and
〈n↑〉 = P(0,1) +P(1,1). Up to now, we notice that the algorithm to describe nonlinear
coherent transport through a QD considered in this section is the approximation
scheme one has to deal with in lowest-order to obtain reasonable results for the
densities and consequently for the current for kBT ≃ Γ. The respective Fano factor
vs. bias voltage is shown in Fig. 5.4c. We already noticed that on the plateaus
the sequential (Sec. 4.2.1) and coherent description provide identical results for the
current. We conjecture without a proof that this should also hold for the noise. We
recall the results for the Fano factor from Sec. 4.2.1 (Fig. 4.5b) for the i-th plateau

1. Γ2
e+Γ2

c

(Γe+Γc)2

2. 4Γ2
e+Γ2

c

(2Γe+Γc)2

3. Γ3
e+Γ3

c+3Γ2
eΓc

(Γe+Γc)3

4. Γ2
e+Γ2

c

(Γe+Γc)2

The Fano factor on the first and fourth plateau in Fig. 5.4c is one half which is
obviously correct since symmetric coupling was assumed. The second and third
plateau corresponds to Coulomb correlated tunneling (compare discussions in
Sec. 4.2.1). In Fig. 5.4c the Fano factor appears to be one half in these bias
regions which conflicts with the sequential tunneling result. Although we ensured
that the approximations which lead to the noise expression (5.1.49) and the approx-
imation (5.3.14) are consistent with each other, the actual reason for the observed
discrepancy is unclear yet. A very likely explanation could be that the approxi-
mation (5.3.14) neglects quantum fluctuations due to the Coulomb interaction (In
fact, the Fano factor on the second and third plateau in Fig. 5.4 refers only to
Pauli’s exclusion principle.). In the mean-field approximation (5.3.1) in Sec. 5.3.1
the fluctuations of the occupations were explicitly removed. We expect something
similar here. Hence, in order to avoid this difficulty we believe one has to go
beyond approximation (5.3.14), e.g. one applies the EOM technique to the second-
order Green’s functions (5.3.13) and factorizes the generated third-order functions
[HAU96]. But then, the question arises which lesser Green’s function to calcu-
late the densities has to be used - (5.3.5) does not work here anymore. E.g. in
[MEI93] the authors take the densities from a completely different approach. A
better substantiated procedure is proposed by Niu et al. [NIU99] who apply the
EOM to obtain the lesser Green’s function. Furthermore, it is not clear whether the
noise formula (5.1.49) with approximation (5.1.46) is then still applicable. Zhu et
al.[ZHU02, ZHU03] claim that (5.1.49) has a bigger range of validity than (5.1.46)
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5. Coherent Tunneling

would imply. In order to avoid the approximation (5.1.46) one has to carry out the
analytical continuation of the two-particle Green’s function in (5.1.48). This is a
really cumbersome and tedious task. The two-particle Green’s function which then
enters the final noise expression can be obtained e.g. by the EOM as elaborately
performed above.
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5.4. Tunnel-coupled noninteracting quantum dots

Related literature:

• [HER92a]: The authors derive an expression for the noise starting from the
Anderson Hamiltonian (5.1.21) by means of the Keldysh formalism which is
valid for arbitrary interaction in the QD as they claim. For its evaluation
they use the approximation scheme for the Green’s functions we discussed in
Sec. 5.3.1 which is not convenient for the description of nonlinear transport as
we showed there. It would be very interesting to utilize the approximation of
the present section to calculate the noise within the framework of [HER92a].

• [YAM94]: The current and the noise are derived in second-order tunnel cou-
pling to the contacts (5.1.24). The noise is discussed separately for its equilib-
rium (Johnson-Nyquist noise) and non-equilibrium components (shot noise).
A direct comparison with our method due to the perturbative character of
their results cannot be drawn.

• [WAN98a]: The authors calculate the noise in the frame of Keldysh formal-
ism for a one-dimensional double-barrier structure which one can associate
with a QD coupled to a quantum wire. They also use the Hartree approx-
imation (5.3.1) considering the noise in the linear response regime with the
typical Coulomb oscillations in the resulting current. At the current peaks
the equilibrium noise vanishes for zero temperature and symmetric barriers
in contrast to the consideration of equilibrium noise for double barrier tun-
neling in Sec. 4.1.2. In a simple noninteracting picture where the noise is
proportional to T (1 − T ) with the transmission function T being unity for
symmetric barriers the noise vanishes. Nevertheless for zero temperature the
Hartree approximation cannot be applied since Kondo correlations take place.
Furthermore, their nonlinear transport results are questionable because of the
already mentioned problems.

• A very recent work uses a diagrammatic technique [KOE98] which allows to
calculate the current and the noise perturbatively order by order. The first-
order perturbation agrees with our results presented in Sec. 4.2.1 [THI03]
and the second-order results can be found in [THI04a] which provide really
interesting behavior: They consider a situation where they start from an
initially occupied QD (not considered here). Then the transport below the
current onset is governed by co-tunneling processes and the shot noise is super-
Poissonian there.

5.4. Tunnel-coupled noninteracting quantum dots

In this section we consider the noise for tunneling through a stack of coupled QDs
which we already discussed in Sec. 3.3. Thereby we concentrate on the noninter-
acting case. The consideration of the Coulomb interaction for this system in the
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5. Coherent Tunneling

approximation scheme of Sec. 5.3.2 is an extensive task and still in progress - first
steps can be found in [GNO04]. One of the difficulties is the calculation of the lesser
Green’s function. It turns out that (5.3.5) which worked for the single QD system
cannot be utilized here since the non-equilibrium occupation function F of the QDs
is unknown17.

For noninteracting electrons the Green’s functions read in particular

Gret/adv(ε) =
[

ε1− H − Σret/adv
]−1

(5.4.1)

being Dyson’s equation with the Hamiltonian for the coupled QDs without cou-
pling to any contacts as

H =

(

ε1 Ω∗

Ω ε2

)

(5.4.2)

For simplicity we consider non-degenerate single-particle levels ε1/ε2 for QD1/QD2,
respectively, and their mutual coupling Ω. The retarded/advanced selfenergy for
the contact coupling in (5.4.1) is then given by (5.2.9)

Σret/adv =

(

±iΓe/2 0
0 ±iΓc/2

)

(5.4.3)

In order to obtain the lesser/greater Green’s function by means of the Keldysh
relation (5.1.20) G</>(ε) = Gret(ε)Σ</>(ε)Gadv(ε) the lesser/greater selfenergies
are for high-bias fe = 1 and fc = 0 (5.2.10)

Σ<(ε) =

(

iΓe 0
0 0

)

Σ>(ε) =

(

0 0
0 −iΓc

)

(5.4.4)

The average current provides the same result as the ME and the density matrix
description (3.3.5) outlined in Sec. 3.3.2.1. Utilizing Eq. (5.1.49) we obtain the
SPD which is shown in Fig. 5.5a as a function of the coupling between the QDs |Ω|
(red curve) for on-resonance transport ε1 = ε2 and symmetric coupling Γe = Γc. A
pronounced local minimum in SP is present at Ω ≈ Γ/2. This value corresponds to
the highest transparency for electrons traversing the QD system18. This can be seen
in the inset of Fig. 5.5 where the transmission function Tmax

ec (first line in Eq. (6.4.8))

17In Ref. [PAL96] such a function was proposed without a derivation which yields wrong results
for the densities.

18In some sense it corresponds to the phenomenon of critical damping in the damped harmonic
oscillator.
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Figure 5.5.: a) Zero-frequency spectral power density SP , b) Fano factor α vs. tun-
nel coupling Ω with ME (blue curves) and NEGF (red curves), Inset
in a): Transmission function at ε = 0. Symmetric contact coupling
Γe = Γc, on-resonance ε1 = ε2. Inset of b) see text.
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5. Coherent Tunneling

is plotted. We compare this with the noise calculated for sequential tunneling along
the lines of Sec. 4.1.1 (blue curve in Fig. 5.5). For small and large Ω the sequential
and coherent tunneling noise merge. In those regimes the zero-frequency SPD is not
able to give information about coherence in the tunneling current. For intermediate
couplings the noise in both descriptions deviates - the sequential tunneling SPD is
monotonically increasing for all |Ω|. This result is very interesting for two reasons:

i) The SPD for small frequencies which is associated with the long time behav-
ior of the auto-correlation function is already sensitive to coherence in the
tunneling process. In [SUN99] and [AGU04] the full spectrum of tunneling
through a coupled QD system was studied19 - at the frequency of the coherent
Rabi oscillations 2|Ω| an additional noise suppression in form of a dip occurs
which is a clear indication of coherence. Nevertheless the low-frequency noise
is easier to measure in experiments and therefore worth to analyze in this
respect.

ii) Zero-frequency current fluctuations can serve as a sensitive indicator for the
investigation of decoherence in the tunneling process. This statement provides
the base for the considerations in Chap. 6 and 7

The corresponding Fano factors were obtained analytically for symmetric coupling
Γ ≡ Γe = Γc and on-resonance transport ε1 = ε2 as

αNEGF =
Γ4 − 2Γ2|Ω|2 + 8|Ω|4

(4|Ω|2 + Γ2)2
(5.4.5)

for coherent tunneling (in agreement with [KOH04] where the authors used
Eq. (6.2.6)) and

αME =
Γ4 + 2Γ2|Ω|2 + 8|Ω|4

(4|Ω|2 + Γ2)2
(5.4.6)

for sequential tunneling. Both are plotted as a function of tunnel coupling |Ω| in
Fig. 5.5b. For |Ω| ≪ Γ the tunneling through the QDs follows Poissonian statistics
corresponding to α = 1, i.e. for weak coupling the transport is well described by
sequential tunneling (see discussion in Sec. 3.3.2.1). For increasing |Ω| negative
correlations take place so that the Fano factors decrease. At 2|Ω| = Γ (correspond-
ing to Γinter = Γ/2) the Fano factor for sequential tunneling is one half and for
coherent tunneling it becomes one quarter. Associating the Fano factor with the
charge which is effectively transferred through the system [ELA02] this corresponds
to tunneling of half and quarter elementary charges, respectively. For the latter we
will show in Sec. 7.3.2 that the respective statistics of tunneling events becomes

19They did not study the zero-frequency SPD in detail.
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5.4. Tunnel-coupled noninteracting quantum dots

even Poissonian. There is a minimum of the sequential tunneling Fano factor at
some higher coupling |Ω|/Γ =

√
3/2 which gets slightly below one half20.

For coherent tunneling the strong suppression of the Fano factor below one half
clearly refers to quantum noise 21.

For |Ω| ≫ Γ the Fano factor of one half is approached in both descriptions. In the
coherent picture the coupled QD system (triple-barrier system) behaves as a double-
barrier system with the two extended states being the eigenstates of the Hamiltonian
(5.4.2) with the separation energy 2|Ω|. For large Ω there are two independent
channels which are available for transport and Pauli’s exclusion principle induces
the corresponding negative correlations for them.

For asymmetric contact couplings Γe 6= Γc there is an interesting effect which
we already noticed in the noise of sequential tunneling in Fig. 4.12. For symmetric
coupling the maximum noise suppression appears for on-resonance transport ∆E =
0. It turns out that at a certain ratio of the contact couplings Γc/Γe < 1 the
maximum suppression starts to exhibit at the edges of the resonance so that a local
maximum of the Fano factor for ∆E = 0 arises as it can be seen in Fig. 5.6. This
ratio depends on the tunnel coupling between the QDs |Ω|: for |Ω| = Γe it is around
0.3 (Fig. 5.6a) and for |Ω| = 0.5Γe it is almost 0.2 (Fig. 5.6b). I.e. the larger |Ω| the
larger the respective treshold ratio is. This behavior also emerges in the sequential
tunneling description (Fig. 4.12) which should provide us a picture to understand
this effect at least qualitatively. This will be addressed in the future.

20This was also observed in [EGU94] in a similar context.
21H. Sprekeler proposed to utilize a description by piecewise deterministic processes [BRE02]

wherein one could consider the tunneling between the QDs as deterministic and the coupling
to the contacts as stochastic process. The combination should give a better understanding of
quantum noise.
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Figure 5.6.: Fano factor vs. level separation ∆E = ε1 − ε2 for various asymmetric
contact couplings. a) Ω/Γe = 1, b)Ω/Γe = 0.5.
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6. Dephasing

In this chapter the influence of dephasing on the average current and the noise in
tunneling through single and tunnel-coupled QDs is studied. In the previous chap-
ters the limits of fully incoherent (sequential) and fully coherent transport through
QDs were examined. In particular, for tunnel-coupled QDs without Coulomb inter-
action it was observed that the average current turns out to be the same in both
descriptions (see Sec. 3.3.2). In contrast, the shot noise is different for intermediate
couplings between the QDs (see Sec. 5.4). One of the aims of the present chapter is
to examine the possibility of a continuous transition from the coherent to the inco-
herent tunneling noise. For that purpose, we will mainly utilize the SMF. Within
this approach dephasing can be treated phenomenologically by attaching additional
fictitious terminals to the QD system. The underlying escape model will be briefly
reviewed. For the consideration of the shot noise we will show that it is very crucial
how to implement the fictitious terminals in the calculation. The corresponding
results will be compared with the findings of other formalisms.

6.1. Escape model

e c

ϕ1 ϕ2
Iϕ1=0 Iϕ2=0

Γe Ω

Γϕ1 Γϕ2

Γc

QDe

ϕ
Iϕ=0

Γe

Γϕ

c
Γc

fictitious voltage probes

Coupled QDs Single QD

QD1 QD2

Figure 6.1.: Coupled QD system and single QD with fictitious voltage probes.

Here, the dephasing is introduced by fictitious voltage probes [BUE86a, BUE88,
DAT95] as depicted in Fig. 6.1. QDs 1/2 (left picture) and the single QD (right
picture) are coupled to (e)mitter/(c)ollector contacts with constant rates Γe/c, re-
spectively, and QDs 1/2 are mutually coupled with the tunnel matrix element Ω.
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6. Dephasing

Furthermore, QD 1/2 and the single QD are connected to fictitious terminals ϕ1/ϕ2
and ϕ, respectively, with dephasing rates Γϕ1/ϕ2 and Γϕ. The key concept is that
a particle can be scattered out from the current carrying state into these fictitious
terminals and gets reinjected. This justifies the term “escape model”. During this
scattering process the phase information gets lost and the actual coherent process
of particle transfer through the QD system ”dephases”partially depending on the
dephasing rate Γϕ. At first glance this seems purely phenomenological. But, as
shown later in this chapter, it can be substantiated by real electron-phonon scatter-
ing processes at least in lowest order perturbation theory. Conceptionally important
is the fact that the particle exchange of the QDs with those terminals only takes
place under the condition that the respective net current vanishes: Iϕ1/ϕ2 = 0 and
Iϕ = 0.

6.2. Scattering matrix approach: Current and noise

In order to calculate the current fluctuations we use the scattering matrix formalism
(SMF) introduced by Büttiker [BUE92, BLA00]. The expression for the average
current at terminal α is

〈Iα〉 =
e

h

∑

βγ

∑

mn

∫

dε Amn
βγ (α, ε)δβγδmnfβ(ε) (6.2.1)

with the spectral function

Amn
βγ (α, ε) ≡ δmnδαβδαγ − s†αβ(m, ε)sαγ(n, ε) (6.2.2)

where sαβ(n, ε) denotes an element of the S-matrix s and describes the energy
dependent scattering of a mode n from terminal α to terminal β; fβ denotes the
distribution function in terminal β. The zero-frequency spectral power density reads

Sαβ(0) =
2e2

h

∑

γδ

∑

mn

∫

dε Amn
γδ (α, ε)Amn

δγ (β, ε)fγ(ε)[1 − fδ(ε)] (6.2.3)

Before we study the influence of dephasing let us consider a two-terminal QD
system, i.e. without fictitious voltage-probes. Then the S-matrix is simply given
by (single-mode: m = n = 1)

s =

(

r t
t r

)

(6.2.4)

where r/t is the reflection/transmission coefficient, respectively, for the full QD
system (chosen to be equal for forward and backward scattering). Using (6.2.1) one
obtains the current
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6.2. Scattering matrix approach: Current and noise

〈Ie〉 =
e

h

∫

dε [Aee(e, ε)fe(ε) + Acc(e, ε)fc(ε)]

=
e

h

∫

dε [Tec(ε)(fe(ε) − fc(ε))] (6.2.5)

(Tec(ε) ≡ tt∗). The noise (6.2.3) becomes

See(0) =
2e2

h

∫

dε
{

Aee(e, ε)
2fe(ε)[1 − fe(ε)] + Aec(e, ε)Ace(e, ε)fe(ε)[1 − fc(ε)]

+Ace(e, ε)Aec(e, ε)fc(ε)[1 − fe(ε)] + Acc(e, ε)
2fc(ε)[1 − fc(ε)]

}

=
2e2

h

∫

dε {Tec(ε)[fe(ε)(1 − fe(ε)) + fc(ε)(1 − fc(ε))]+

+Tec(ε)[1 − Tec(ε)][fe(ε) − fc(ε)]
2
}

(6.2.6)

This is the well-known zero-frequency spectral power density for a two terminal
conductor with transmission Tec(ε) [BLA00]. Here, the first two terms correspond
to equilibrium noise (thermal noise, see also Sec. 4.1.2) and the third term is the
non-equilibrium or shot noise contribution. Due to its structure1 T (1 − T ) or TR
with the reflection R = 1 − T it is also called partition noise since the scatterer
divides the incident carrier stream in two streams: the reflected and the transmitted
one.

6.2.1. Scattering matrix for quantum dot systems

Here we consider the S-matrix for the system with dephasing, i.e. we include the
fictitious voltage-probes (Fig. 6.1).

A preliminary discussion for the implementation of dephasing in the S-matrix
approach is necessary. Caution has to be taken since the reinjection of a dephased
particle in the conductor from a fictitious terminal also randomizes the momentum,
i.e. the particle can go in different directions with the same probability. This mo-
mentum relaxation provides an additional resistance in the conductor which is not
desired. One can introduce phase-relaxation without introducing any momentum-
relaxation by using a unidirectional pair of fictitious voltage probes (see Fig. 6.2) as
outlined in Refs. [BUE88, DAT95]. The idea is that those probes reinject particles
in the opposite direction from where they came from in order to preserve the sense
of current flow.

The S-matrix for such a twin-probe configuration can be written as [BUE88]

1More fundamentally discussed in Sec. 7.1.
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6. Dephasing

emitter collector

P2

P1

r1 t1

t1 r1

r2 t2

t2 r2

A B

Figure 6.2.: Twin-probe configuration for dephasing in a double-barrier system
[DAT95].

sdephas =









0
√

1 − ǫ
√

ǫ 0√
1 − ǫ 0 0

√
ǫ√

ǫ 0 0 −
√

1 − ǫ
0

√
ǫ −

√
1 − ǫ 0









(6.2.7)

This matrix connects the four incoming amplitudes with the four outgoing am-
plitudes at the terminals A, B, P1 and P2 (for a double-barrier system shown in
Fig. 6.2). The parameter ǫ ∈ [0, 1] characterizes the coupling strength of the termi-
nals P1, P2 to the conductor and is later related to the inelastic scattering rate Γϕ.
It ranges from complete coherence ǫ = 0 to complete incoherence ǫ = 1. Note, that
the signs of the matrix elements are chosen such that the S-matrix is unitary.

In order to obtain the full S-matrix of the double-barrier system with dephasing
as sketched in Fig. 6.2 connecting the emitter, collector, P1 and P2 terminals one
has to combine the S-matrices of the barriers i = 1, 2

si =

(

ri ti
ti ri

)

(6.2.8)

(ri is the reflection coefficient, ti is the transmission coefficient) and the S-matrix
(6.2.7) such that the terminals A and B are eliminated. After a lengthy straight-
forward calculation one obtains
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6.2. Scattering matrix approach: Current and noise

s =
1

Z









r1Z + α2r2t1t1 αt1t2 βt1 αβr2t1
αt1t2 r2Z + α2r1t2t2 αβr1t2 βt2
βt1 αβr1t2 β2r1 −α(1 − r1r2)

αβr2t1 βt2 −α(1 − r1r2) β2r2









(6.2.9)

with Z ≡ 1 − α2r1r2, α ≡
√

1 − ǫ, and β ≡ √
ǫ. Then, the transmission from

terminal m to n can be calculated by

Tmn = |smn|2 (6.2.10)

The full transmission through the system (Fig. 6.2) can be separated into the
coherent part and the incoherent part (sequential tunneling) [BUE86a]:

T = Tcoh + Tincoh (6.2.11)

Using (6.2.9) the coherent part yields

Tcoh = |s12|2 =
(1 − ǫ)T1T2

|Z|2 (6.2.12)

with T1/2 ≡ |t1/2|2. The incoherent part can be formulated with the help of
rates for forward and backward scattering due to the fictitious probes: Sf and Sb,
respectively, [BUE86a]

Tincoh =
SbSf

Sb + Sf

(6.2.13)

Sb is the transmission probability for an electron emerging from the inelastic
scatterer to traverse the conductor backward against the direction of carrier flow.
Sf is the transmission probability for a carrier emerging form the inelastic scatterer
to traverse the sample forward in the direction of current flow. Hence, Sb is given
by

Sb = TP2e + TP1e = |s31|2 + |s41|2

=
ǫT1

|Z|2 [1 + (1 − ǫ)R2] (6.2.14)

Analogously for Sf :

Sf = TP2c + TP1c = |s42|2 + |s32|2

=
ǫT2

|Z|2 [1 + (1 − ǫ)R1] (6.2.15)
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6. Dephasing

with Ri = 1 − Ti (i = 1, 2).
For ǫ = 0 one recovers the well-known result for the coherent transmission through

two barriers

Tǫ=0 =

∣

∣

∣

∣

t1t2
1 − r1r2

∣

∣

∣

∣

2

=
T1T2

1 + R1R2 − 2
√

R1R2 cos (Φ)
(6.2.16)

Here, Φ is the phase shift acquired in one round-trip between the barriers.
For T1/2 ≪ 1 and the assumption of energies ε only close to the resonances

(Φ(εr) = 2πn) this can be rewritten in a Breit-Wigner form:

Tec(ε) =
ΓeΓc

(ε − εr)2 +
(

Γe+Γc

2

)2 (6.2.17)

with Γe/c = ~νT1/2 where ν is the attempt frequency defined by ~ν = dε
dΦ

(for
a square well it is ν = v

2w
with the electron velocity v given by the confinement

energy and the well width w).
Now, the question arises whether it is possible to obtain such an expression for ǫ >

0 and whether one can relate the parameter ǫ to the dephasing rate Γϕ. Following
the lines of the Appendices in Ref. [BUE88] one allows for a complex Φ (complex
energy). Then the amplitude Z vanishes at the complex energy ε = εr − i(Γe +Γc +
Γϕ)/2. Here, the elastic width is given by

Γe + Γc = −~ν log (R1R2) (6.2.18)

and the dephasing width becomes

Γϕ = −2~ν log (1 − ǫ) (6.2.19)

In the limit O(ǫ) = O(T1) = O(T2) ≪ 1 the Breit-Wigner formula yields generally
(Appendix C in [BUE88])2

m 6= n:

|smn|2 =
ΓmΓn

(ε − εr)2 + Γ2

4

(6.2.20)

m = n:

|smn|2 =
(ε − εr)

2 + (Γ
2
− Γn)2

(ε − εr)2 + Γ2

4

(6.2.21)

with Γ =
∑

n Γn enclosing the inelastic width Γϕ = ~νǫ (consistent with (6.2.19)
for ǫ ≪ 1).

2Note, that Eq. (6.2.21) corrects Eq. (C5) in [BUE88] where a prefactor 2 is missing.
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6.3. Single quantum dot

6.3. Single quantum dot

Here we calculate the current and noise for the single QD geometry shown in Fig. 6.1:
The current (6.2.1) is

〈Ie〉ϕ =
e

h

∫

dε
{

[1 − |see|2]fe(ε) − |seϕ|2fϕ − |sec|2fc(ε)
}

(6.3.1)

where the second term stems from the fictitious voltage probe ϕ. Using (6.2.20)
and (6.2.21) one obtains

〈Ie〉ϕ =
e

h

∫

dε











ΓeΓc

(ε − εr)2 +
(

Γe+Γc+Γϕ

2

)2 [fe(ε) − fc(ε)]

+
ΓeΓϕ

(ε − εr)2 +
(

Γe+Γc+Γϕ

2

)2 [fe(ε) − fϕ(ε)]











(6.3.2)

or more clearly arranged

〈Ie〉ϕ =
e

h

∫

dε {Tec(ε)[fe(ε) − fc(ε)] + Teϕ[fe(ε) − fϕ(ε)]} (6.3.3)

What does the noise (6.2.3) look like? The (lengthy) answer for zero-temperature
is
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6. Dephasing

Sϕ
ee(0) =

2e2

h

∫

dε

{Aeϕ(e, ε)Aϕe(e, ε)fe(ε)[1 − fϕ(ε)]

+Aϕe(e, ε)Aeϕ(e, ε)fϕ(ε)[1 − fe(ε)]

+Acϕ(e, ε)Aϕc(e, ε)fc(ε)[1 − fϕ(ε)]

+Aϕc(e, ε)Acϕ(e, ε)fϕ(ε)[1 − fc(ε)]

+Aϕϕ(e, ε)2fϕ(ε)[1 − fϕ(ε)]

+Aec(e, ε)Ace(e, ε)fe(ε)[1 − fc(ε)]

+Ace(e, ε)Aec(e, ε)fc(ε)[1 − fe(ε)]} (6.3.4)

=
2e2

h

∫

dε
{

|see|2|seϕ|2[fe(ε)(1 − fϕ(ε)) + fϕ(ε)(1 − fe(ε))]

+|sec|2|seϕ|2[fc(ε)(1 − fϕ(ε)) + fϕ(ε)(1 − fc(ε))]

+|seϕ|2|seϕ|2fϕ(ε)[1 − fϕ(ε)]

+|see|2|sec|2[fe(ε)(1 − fc(ε)) + fc(ε)(1 − fe(ε))]
}

(6.3.5)

=
2e2

h

∫

dε

{Teϕ(ε)[1 − Tec(ε) − Teϕ(ε)][fe(ε)(1 − fϕ(ε)) + fϕ(ε)(1 − fe(ε))]

+Teϕ(ε)Tec(ε)[fc(ε)(1 − fϕ(ε)) + fϕ(ε)(1 − fc(ε))]

+Teϕ(ε)2fϕ(ε)[1 − fϕ(ε)]

+Tec(ε)[1 − Tec(ε) − Teϕ(ε)][fe(ε)(1 − fc(ε)) + fc(ε)(1 − fe(ε))]}
(6.3.6)

Before we are going to discuss numerically the average current (6.3.3) and the
noise (6.3.6) one important issue of this formalism has to be stressed. In the begin-
ning of this chapter it was emphasized that the net current at the fictitious terminal
has to vanish: Iϕ = 0. In order to fulfill this condition one can either set iϕ(ε) = 0
or
∫

dε iϕ(ε) = 0. The former means that electrons which are removed from an en-
ergy channel have to be reinjected in the same channel - one calls this quasi-elastic
scattering [JON97]. The latter allows the electrons to reshuffle their energy which
justifies the term inelastic scattering. This adjusts self-consistently the distribution
function of the fictitious terminal fϕ.

We consider a single non-degenerate level εr in the QD and symmetric barriers
Γe = Γc. The collector chemical potential is chosen such that fc = 0 (high-bias
limit). The temperature is assumed to be zero so that fe(ε) = Θ(ε − µe).

This results in an average current (upper graph) and Fano factor (lower graph)
as depicted in Fig. 6.3. The solid lines correspond to the situation without fictitious
voltage probe (Γϕ = 0): the current shows a step whose derivation is given by the
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Figure 6.3.: Average normalized current (upper graph) and Fano factor (lower
graph) vs. bias voltage for a single QD with voltage probe. Solid lines:
without voltage probe. Dashed lines: with voltage probe Γϕ/Γ = 1
(quasi-elastic scattering). Dotted lines: with voltage probe Γϕ/Γ = 1
(inelastic scattering). Right inset of lower graph: High-bias Fano factor
vs. dephasing rate Γϕ.

101



6. Dephasing

Lorentzian function centered around εr (5.2.11). The corresponding Fano factor is
unity for a bias far below the resonance and reaches 0.5 for on-resonance transport
due to Pauli’s exclusion principle (see Sec. 4.2.1). Around the resonance an addi-
tional suppression is present which leads to a Fano factor below 0.5 on the r.h.s. of
the resonance. This effect is discussed in Sec. 5.2.1.

The essential effect for Γϕ > 0 is a broadening and decaying of the transmission
function resonance. Hence, the current step in Fig. 6.3 gets softened (dashed and
dotted curves). But, the high-bias current value is unaffected by dephasing. As we
already outlined the demand of a zero net-current at the fictitious voltage probe can
be satisfied either by strict energy conservation (quasi-elastic scattering: dashed
curves) or by enabling energy reshuffling during the scattering process (inelastic
scattering: dotted curve). Although one would expect the same current for both,
the latter leads to a slightly different behavior: the resonance is not symmetric with
respect to εr. For zero-temperature an electron cannot be reinjected in states above
µe because no absorption of e.g. phonons is present3. The Fano factor is again unity
for biases below the resonance. In contrast to the case without dephasing now the
Fano factor is above 0.5 for fully on-resonance transport (high-bias), i.e. the current
becomes less correlated. This can be understood by the fact that the additional
voltage probe takes out a particle and reinjects it after a certain time range given
by Γ−1

ϕ . During this time interval the current carrying state is unoccupied and
Pauli’s exclusion principle is less effective. We obtain an analytical expression for
the high-bias Fano factor

α =
See(0)

2e〈Ie〉
= 1 − 2ΓeΓc

Γe + Γc

(

1

Γe + Γc + Γϕ

)

(6.3.7)

Technically, the dependence of the high-bias Fano factor on Γϕ (6.3.7) is caused
by the change of the occupation statistics of the ”transport channels”whereon the
noise is sensitive.

In the following section we compare the result (6.3.7) with the results of other
formalisms.

6.3.1. Relation to other formalisms

Formula (6.3.7) agrees with Eq. (11) in Ref. [DAV95]. Therein, the authors use a
Fabry-Pèrot picture where they add a small random phase to the wave function on
each round trip between the barriers. To obtain the noise they use

∫

dεT (1 − T )
(see Eq. (6.2.6) for zero-temperature and high-bias). Putting in an phase-averaged
〈T 〉 leads directly to (6.3.7). Nevertheless, it is argued in [DAV95] that the correct
average should be taken as 〈T (1 − T )〉 which leads to a factor of one half in front
of Γϕ in (6.3.7). For a discussion see Sec. II D in [DAV95]. Note, that their form

3For this we multiplied the energy-independent fϕ by fe. Without this assumption the DC noise
becomes super-Poissonian for biases below the resonance.
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6.3. Single quantum dot

of decoherence also broadens and lowers the resonant transmission function while
conserving its area in agreement with our approach.

Next we return to NEGF which we introduced in Chap. 5. For a single QD with
one state the Green’s functions are scalar functions. In [DAT95] the dephasing rate
Γϕ is introduced for electron-phonon scattering in lowest-order perturbation theory.
The average current is calculated with Eq. (5.1.25) and the zero-frequency SPD
derived in Sec. 5.1.2.2 with Eq. (5.1.49). It turns out that the NEGF provides the
same results as our fictitious terminal approach (Fig. 6.3). Hence the phenomeno-
logical dephasing approach we use is substantiated by electron-phonon scattering
by means of a microscopic scattering model. For details of the electron-phonon
scattering in tunneling through QDs see Ref. [GNO04].

Hence, we found the agreement with respect to the noise and the average current
between three different approaches where dephasing in tunneling through a single
QD is introduced:

(i) Fictitious terminal with vanishing net-current 〈Iϕ〉 = 0. The Fano factor
(6.3.7) is obtained by means of Eqs. (6.3.3),(6.3.6) - SMF.

(ii) Phase-randomization in Fabry-Pèrot picture. The noise is obtained via
∫

dε〈T 〉(1 − 〈T 〉) [DAV95].

(iii) Electron-phonon scattering in lowest-order perturbation theory and energy-
independent scattering rate Γϕ. The Fano factor (6.3.7) is obtained by
Eqs. (5.1.25),( 5.1.49) - NEGF [DAT95]

The physical picture behind the observation that phase-breaking elastic scatter-
ing can bring the noise towards its classical value is not clearly understood yet
regarding items (ii) and (iii). In both pictures the occupation statistics of the
current-carrying state is not apparently changed by the scattering, although Pauli’s
exclusion principle becomes less effective with increasing Γϕ (6.3.7).

So far we found that internal elastic scattering which is accompanied by phase
randomization changes the high-bias Fano factor for tunneling through a single
QD.

In contrast, there is the crucial observation that the high-bias Fano factor inde-
pendently calculated in the limits of pure sequential tunneling (e.g. by Langevin
equation [BLA00] or by the ME discussed in Chap. 4) and pure coherent tunneling
(e.g. NEGF discussed in Sec. 5.2.1) appear to be identical given by Eq. (4.2.1)4.
Taking this into account in the fictitious terminal scheme (SMF) for the noise calcu-
lation one has to ensure that the occupation statistics of the current carrying states
is not changed by taking out a particle. This can be guaranteed by the additional
demand of the instantaneous reinjection of a particle in the current carrying channel
as it will be shown in the following section.

4for i = 1 and f1
e = 1.
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6. Dephasing

6.3.2. Instantaneous reinjection - Pure dephasing

Here we demand that the net-current for any energy (quasi-elastic) and at any
instant of time vanishes iϕ(t) = 0 so that the occupation statistics of the ”transport
channels”is not changed by dephasing - pure dephasing 5:

The energy-resolved currents are (the energy-arguments are skipped in the fol-
lowing)

ie = −(1 − fϕ)Teϕ − Tec

ic = Tec + Tcϕfϕ

iϕ = (1 − fϕ)Teϕ − Tcϕfϕ (6.3.8)

There are two sources of fluctuations if we consider that the distribution function
fϕ fluctuates: fϕ + δfϕ - the ”bare”fluctuations δiα and fluctuations due to δfϕ.
The total fluctuations ∆iα become

∆ie = δie + δfϕTeϕ

∆ic = δic + δfϕTcϕ

∆iϕ = δiϕ − δfϕ(Teϕ + Tcϕ) (6.3.9)

The idea behind the introduction of a fluctuating distribution in the fictitious
terminal is to ensure that an removed electron will be instantaneously reinjected in
the current-carrying state. Therefore, zero-fluctuations at the fictitious probe are
demanded and one gets

∆iϕ = 0 =⇒ δfϕ =
δiϕ

Teϕ + Tcϕ

(6.3.10)

This is inserted back in the expression ∆ie. Then, the current correlations (per
unit energy) are

SP (ε) = 〈(∆ie)
2〉 = See + 2

Teϕ

Teϕ + Tcϕ
Seϕ +

(

Teϕ

Teϕ + Tcϕ

)2

Sϕϕ (6.3.11)

with the ”bare”noise correlations Sαβ = 〈δiαδiβ〉 obtained within the standard
technique (6.2.3). See is given by Eq. (6.3.6), Seϕ and Sϕϕ can be obtained analo-
gously 6:

See(ε) = [Tec + Teϕ(1 − fϕ)][1 − Tec − Teϕ(1 − fϕ)]

Seϕ(ε) = −(1 − fϕ)Teϕ + [Tec + Teϕ(1 − fϕ)][Teϕ(1 − fϕ) − Tcϕfϕ]

Sϕϕ(ε) = (1 − fϕ)Teϕ + Tcϕfϕ − [Teϕ(1 − fϕ) − Tcϕfϕ]2 (6.3.12)

5The following procedure is adopted from [SAM04].
6For the cross-correlations α 6= β the property

∑

δ sαδs
†
βδ = 0 is used such that the products of

S-matrices can be replaced by transmission functions.
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6.3. Single quantum dot

Using the generalized Breit-Wigner resonances (6.2.20)

Tec =
ΓeΓc

(ε − εr)2 + Γ2/4
, Teϕ =

ΓeΓϕ

(ε − εr)2 + Γ2/4
, Tcϕ =

ΓcΓϕ

(ε − εr)2 + Γ2/4

(6.3.13)

with Γ ≡ Γe + Γc + Γϕ, Eqs. (6.3.12) can be simplified to

See(ε) = [Tec + Teϕ(1 − fϕ)][1 − Tec − Teϕ(1 − fϕ)]

Seϕ(ε) = −(1 − fϕ)Teϕ

Sϕϕ(ε) = (1 − fϕ)Teϕ + Tcϕfϕ (6.3.14)

As one can see in (6.3.14), the current correlations at the same terminal are pos-
itive and the cross-correlation is negative. This holds generally following Büttiker
who states that in the absence of interactions the zero-frequency cross-correlations
are always negative [BUE92, BLA00]. This is a consequence of the fermionic statis-
tics of electrons. With Coulomb interactions inside the QD the cross-correlations
can also be positive which is not necessarily accompanied by super-Poissionian noise
(Sec. 4.2.2,[KIE04]) as shown for a three-terminal QD in [COT04].

The distribution function fϕ reads for elastic scattering fϕ(ε) = Teϕ(ε)
Teϕ(ε)+Tcϕ(ε)

and

is energy-dependent; for inelastic scattering it becomes fε = Γe

Γe+Γc
which is energy-

independent.

Performing the energy integration for both gives

SP =
2e2

h

∫

dε S(ε) =
2e2

~

ΓeΓc(Γ
2
e + Γ2

c)

(Γe + Γc)3
(6.3.15)

which turns out to be independent on the dephasing strength Γϕ. This is in
agreement with the observation that purely sequential and coherent descriptions
provide the same Fano factor in the high bias regime.

To conclude, we considered dephasing by elastic scattering and pure dephasing.
For the former, the shot noise goes towards its Poissonian value by increasing the
dephasing rate due to the change of the occupation statistics of the current carrying
states. This is in contradiction to the key observation, that the high-bias Fano factor
is independent of the degree of quantum coherence. Pure dephasing as considered
here accounts for this fact.
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6.4. Tunnel-coupled quantum dots

6.4.1. Current

In [DAT95] the equivalence of the SMF and NEGF approach was shown. In order to
set up the link to the discussions in Sec. 5.4 the current through the tunnel-coupled
QDs will be calculated by means of the NEGF approach. The retarded/advanced
self energy is now extended by the coupling of both QDs to the fictitious terminals
and is given by

Σret/adv =

(

±i(Γe + Γϕ)/2 0
0 ±i(Γc + Γϕ)/2

)

(6.4.1)

where we assumed equal dephasing rates in both QDs Γϕ ≡ Γϕ1 = Γϕ2. The
lesser/greater selfenergies are (high-bias limit: fe = 1 and fc = 0)

Σ<(ε) = Σ<
ϕ1(ε) + Σ<

ϕ2(ε) + Σ<
C

with

Σ<
ϕ1(ε) =

(

iΓϕfϕ1(ε) 0
0 0

)

, Σ<
ϕ2(ε) =

(

0 0
0 iΓϕfϕ2(ε)

)

(6.4.2)

and

Σ>(ε) = Σ>
ϕ1(ε) + Σ>

ϕ2(ε) + Σ>
C

with

Σ>
ϕ1(ε) =

(

−iΓϕ(1 − fϕ1(ε)) 0
0 0

)

, Σ>
ϕ2(ε) =

(

0 0
0 −iΓϕ(1 − fϕ2(ε))

)

(6.4.3)

where the functions describing the emitter/collector coupling Σ
</>
C are given by

(5.4.4). The occupations of the fictitious terminals fϕ1/ϕ2(ε) have to be determined
by the demand of vanishing net-currents at these terminals. The average current
at terminal α is

〈Iα〉 =
e

h

∫

dε iα(ε)

with iα(ε) = Tr [Σ<
α (ε)G>(ε) − Σ>

α (ε)G<(ε)] (6.4.4)

Eq. (6.4.4) can be rewritten in a form which can also be obtained in SMF. For
that purpose we use Σ< − Σ> = iΓ. After some basic algebra this yields
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6.4. Tunnel-coupled quantum dots

ie =
e

h
[Teϕ1(ε)(1 − fϕ1(ε)) + Teϕ2(ε)(1 − fϕ2) + Tec(ε)] (6.4.5)

with the transmission functions defined by

Tαβ(ε) = Tr[ΓαGretΓβGadv] α, β = e, c, ϕ1, ϕ2

Γe =

(

Γe 0
0 0

)

, Γc =

(

0 0
0 Γc

)

Γϕ1 =

(

Γϕ 0
0 0

)

, Γϕ2 =

(

0 0
0 Γϕ

)

(6.4.6)

In Eq. (6.4.5) the total current is now split into a non-coherent part (first two
terms) and a coherent part (last term). This is one of the advantages of the SMF.

For quasi-elastic and inelastic scattering the on-resonance (∆E ≡ ε1 − ε2 = 0)
current vs. dephasing rate Γϕ is shown in Fig. 6.4 (the inset depicts the current vs.
∆E for various Γϕ).
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Figure 6.4.: On-resonance current vs. dephasing Γϕ with NEGF and ME (6.4.7).
Inset: NEGF current vs. level separation ∆E = ε1 − ε2 for different
Γϕ.

107



6. Dephasing

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

|Ω|/Γ

Imax/(eΓ)

Γϕ/Γ=1

elastic voltage probe

master equation
inelastic voltage probe

Figure 6.5.: On-resonance current vs. tunnel coupling |Ω| for Γϕ/Γ =1. blue curve:
master equation (6.4.7) and inelastic scattering. red curve: elastic scat-
tering.

We compare the current with the current obtained by the ME in Sec. 3.3.1 wherein

we replace Γinter = 4|Ω|2

Γe+Γc
by 4|Ω|2

Γe+Γc+2Γϕ
which means that each of both QD levels is

additionally broadened by Γϕ. The on-resonance ME current is then

IME
e =

4eΓeΓc|Ω|2
ΓeΓc(Γe + Γc + 2Γϕ) + 4(Γe + Γc)|Ω|2

(6.4.7)

Astonishingly, it turns out that the on-resonance current with inelastic scattering
fully agrees with the ME result for all Γϕ (full line in Fig. 6.4) and all |Ω| (blue line
in Fig. 6.5). This peculiar issue will be the subject of future investigations. In the
remainder of this chapter we deal with dephasing by quasi-elastic scattering. The
corresponding on-resonance current turns out to be smaller (dashed line in Fig. 6.4).
In a rather heuristic view we understand the difference for both cases as follows. If
the electrons can reshuffle their energy during the scattering back and forth to the
voltage probe they can more easily find a free channel to tunnel through. If strict
energy conservation is demanded the channel has to be free before an electron can
travel through the system. Hence, for this case the current should appear smaller.

Importantly, for small tunnel couplings |Ω|/Γ ≪1 Fermi’s golden rule current
(6.4.7) can also provide a good approximation for the elastic scattering current as
shown in Fig. 6.5. We will see in the next chapter that the full statistics of charge
transfer in the presence of elastic scattering and for small interdot coupling can
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6.4. Tunnel-coupled quantum dots

be approximated by the simple Fermi’s golden rule treatment and appears to be
Poissonian.

6.4.2. Shot noise

The transmission functions for the coupled QD system sketched in Fig. 6.1 are (the
same dephasing rate Γϕ for both QDs is assumed.)

Tec(ε) = |sec(ε)|2 =
1

|Z|2ΓeΓc|Ω|2

Teϕ1(ε) = |seϕ1(ε)|2 =
1

|Z|2ΓeΓϕ

[

(ε − ε2)
2 +

(

Γc + Γϕ

2

)2
]

Teϕ2(ε) = |seϕ2(ε)|2 =
1

|Z|2ΓeΓϕ|Ω|2

Tcϕ1(ε) = |scϕ1(ε)|2 =
1

|Z|2ΓcΓϕ|Ω|2

Tcϕ2(ε) = |scϕ2(ε)|2 =
1

|Z|2ΓcΓϕ

[

(ε − ε1)
2 +

(

Γe + Γϕ

2

)2
]

Tϕ1ϕ2(ε) = |sϕ1ϕ2(ε)|2 =
1

|Z|2Γ2
ϕ|Ω|2 (6.4.8)

with

Z ≡
(

ε − ε1 + i
Γe + Γϕ

2

)(

ε − ε2 + i
Γc + Γϕ

2

)

− |Ω|2 (6.4.9)

The energy-resolved currents at the terminals read (high-bias: fe = 1, fc = 0),
suppressing the energy arguments,

ie = −Tec − Teϕ1(1 − fϕ1) − Teϕ2(1 − fϕ2)

ic = Tec + Tcϕ1fϕ1 + Tcϕ2fϕ2

iϕ1 = Teϕ1(1 − fϕ1) − Tcϕ1fϕ1 + Tϕ2ϕ1(fϕ2 − fϕ1)

iϕ2 = Teϕ2(1 − fϕ2) − Tcϕ2fϕ2 + Tϕ1ϕ2(fϕ1 − fϕ2) (6.4.10)

Note, that current-conservation demands
∑

α iα = 0 where the current is taken
positive if it flows from the reservoir towards the conductor. The condition of no
net-current at the fictitious terminals gives
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6. Dephasing

iϕ1 = 0 =⇒ fϕ1 =
Teϕ1(Teϕ2 + Tcϕ2) + Tϕ1ϕ2(Teϕ1 + Teϕ2)

(Teϕ1 + Tcϕ1)(Teϕ2 + Tcϕ2) + Tϕ1ϕ2(Teϕ1 + Tcϕ1 + Teϕ2 + Tcϕ2)

(6.4.11)

iϕ2 = 0 =⇒ fϕ2 =
Teϕ2(Teϕ1 + Tcϕ1) + Tϕ1ϕ2(Teϕ1 + Teϕ2)

(Teϕ1 + Tcϕ1)(Teϕ2 + Tcϕ2) + Tϕ1ϕ2(Teϕ1 + Tcϕ1 + Teϕ2 + Tcϕ2)

(6.4.12)

Here, in contrast to the single QD the distributions fϕ1/2 are energy-dependent.
The evaluation of the total current at the emitter barrier 〈Ie〉 = e

h

∫

dε ie(ε) leads
to the dashed curve in Fig. 6.4. Note, that the total current through coupled QDs
is not independent on the strength of dephasing Γϕ. The zero-frequency SPD is
calculated by means of Eq. (5.1.49). The numerical results for the on-resonance
(ε1 = ε2) and high-bias (fe = 1) Fano factor vs. interdot-coupling for various Γϕ

are shown in Fig. 6.6
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Figure 6.6.: On-resonance (ε1 = ε2) Fano factor vs. interdot-coupling |Ω| for various
dephasing rates Γϕ. Fictitious terminals fϕ1/fϕ1 without fluctuations.
High-bias limit fe = 1, fc = 0.

The Fano factor also goes towards unity with increasing Γϕ for |Ω| ≫ Γe/c as
already discussed with respect to the preceding noise analysis of a single QD with
voltage probe. What happens if we implement the voltage probe model with in-
stantaneous vanishing net-currents iϕ1/iϕ2 as in Sec. 6.3.2?

We introduce fluctuations of the distribution functions: fϕ1 → fϕ1 + δfϕ1 and
fϕ2 → fϕ2 + δfϕ2. Then, we obtain the total fluctuations ∆iα
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6.4. Tunnel-coupled quantum dots

∆ie = δie + δfϕ1Teϕ1 + δfϕ2Teϕ2

∆ic = δic + δfϕ1Tcϕ1 + δfϕ2Tcϕ2

∆iϕ1 = δiϕ1 − δfϕ1(Teϕ1 + Tcϕ1 + Tϕ2ϕ1) + δfϕ2Tϕ2ϕ1

∆iϕ2 = δiϕ2 − δfϕ2(Teϕ2 + Tcϕ2 + Tϕ1ϕ2) + δfϕ1Tϕ1ϕ2 (6.4.13)

We demand zero-fluctuations at the fictitious terminals

∆iϕ1 = 0 =⇒ δfϕ1 =
δiϕ2Tϕ1ϕ2 + δiϕ1(Tcϕ2 + Teϕ2 + Tϕ1ϕ2)

(Teϕ1 + Tcϕ1)(Teϕ2 + Tcϕ2) + Tϕ1ϕ2(Teϕ1 + Tcϕ1 + Teϕ2 + Tcϕ2)

∆iϕ2 = 0 =⇒ δfϕ2 =
δiϕ1Tϕ1ϕ2 + δiϕ2(Tcϕ1 + Teϕ1 + Tϕ1ϕ2)

(Teϕ1 + Tcϕ1)(Teϕ2 + Tcϕ2) + Tϕ1ϕ2(Teϕ1 + Tcϕ1 + Teϕ2 + Tcϕ2)

(6.4.14)

Inserting these expressions in ∆ie the total current correlations (per unit energy)
at the emitter barrier becomes

SP (ε) = 〈(∆ie)
2〉 = See +

C1

A
Seϕ1 +

C2

A
Seϕ2 +

C3

A2
Sϕ1ϕ2 +

C4

A2
Sϕ1ϕ1 +

C5

A2
Sϕ2ϕ2

(6.4.15)

with the constants

A ≡ (Teϕ1 + Tcϕ1)(Teϕ2 + Tcϕ2) + Tϕ1ϕ2(Teϕ1 + Tcϕ1 + Teϕ2 + Tcϕ2)

C1 = 2[Teϕ1(Tcϕ2 + Teϕ2 + Tϕ1ϕ2) + Teϕ2Tϕ1ϕ2]

C2 = 2[Teϕ2(Tcϕ1 + Teϕ1 + Tϕ1ϕ2) + Teϕ1Tϕ1ϕ2]

C3 = 2{T 2
eϕ1Tϕ1ϕ2(Tcϕ2 + Teϕ2 + Tϕ1ϕ2) + T 2

eϕ2Tϕ1ϕ2(Tcϕ1 + Teϕ1 + Tϕ1ϕ2)

+Teϕ1Teϕ2[T
2
ϕ1ϕ2 + (Tcϕ2 + Teϕ2 + Tϕ1ϕ2)(Tcϕ1 + Teϕ1 + Tϕ1ϕ2)]}

C4 = T 2
eϕ1(Tcϕ2 + Teϕ2 + Tϕ1ϕ2)

2 + T 2
eϕ2T

2
ϕ1ϕ2

+2Teϕ1Teϕ2Tϕ1ϕ2(Tcϕ2 + Teϕ2 + Tϕ1ϕ2)

C5 = T 2
eϕ2(Tcϕ1 + Teϕ1 + Tϕ1ϕ2)

2 + T 2
eϕ1T

2
ϕ1ϕ2

+2Teϕ1Teϕ2Tϕ1ϕ2(Tcϕ1 + Teϕ1 + Tϕ1ϕ2) (6.4.16)

The ”bare”current correlations Sαβ = 〈δiαδiβ〉 (per unit energy) in Eq. (6.4.15)
follow from (6.2.3) for α = β:
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6. Dephasing

See = [Tec + Teϕ1(1 − fϕ1) + Teϕ2(1 − fϕ2)][1 − Tec − Teϕ1(1 − fϕ1) − Teϕ2(1 − fϕ2)]

Sϕ1ϕ1 = (1 − Tϕ1ϕ2fϕ2 − Teϕ1)(Teϕ1 + Tϕ1ϕ2fϕ2) − (Tϕ1ϕ2 + Tcϕ1 + Teϕ1)
2f 2

ϕ1

+fϕ1{Tcϕ1 + Tϕ1ϕ2[1 − 2fϕ2(1 − Tϕ1ϕ2 − Tcϕ1)] − Teϕ1

+2(Tϕ1ϕ2 + Tϕ1ϕ2fϕ2 + Tcϕ1)Teϕ1 + 2T 2
eϕ1}

Sϕ2ϕ2 = −T 2
ϕ1ϕ2f

2
ϕ1 + Teϕ2(1 − Teϕ2) − f 2

ϕ2(Teϕ2 + Tcϕ2 + Tϕ1ϕ2)
2

+fϕ2[Tϕ1ϕ2 + Tcϕ2 − Teϕ2 + 2Tϕ1ϕ2Teϕ2 + 2Teϕ2(Teϕ2 + Tcϕ2)]

+fϕ1Tϕ1ϕ2[1 − 2Teϕ2 − 2fϕ2(1 − Tϕ1ϕ2 − Tcϕ2 − Teϕ2)] (6.4.17)

For the cross-correlations between different terminals α 6= β it turns out that the
appearing products of S-matrices in (6.2.3) cannot be fully transferred to products of
transmission functions Tαβ = |sαβ|2 in contrast to the analysis of the three-terminal
single QD (Sec. 6.3.2):

Seϕ1 = s†eeseϕ1s
†
ϕ1ϕ1seϕ1(1 − fϕ1) + s†eeseϕ2s

†
ϕ1ϕ2seϕ1(1 − fϕ2)

+s†eϕ1secs
†
ϕ1csϕ1ϕ1fϕ1 + s†eϕ2secs

†
ϕ1csϕ1ϕ2fϕ2

−|seϕ1|2[1 − |sϕ1ϕ1|2]fϕ1(1 − fϕ1) + |seϕ2|2|sϕ1ϕ2|2fϕ2(1 − fϕ2)

+s†eϕ1seϕ2s
†
ϕ1ϕ2sϕ1ϕ1fϕ1(1 − fϕ2) + s†eϕ2seϕ1s

†
ϕ1ϕ1sϕ1ϕ2fϕ2(1 − fϕ1)

+s†eesecs
†
ϕ1csϕ1e

Seϕ2 = s†eeseϕ1s
†
ϕ2ϕ1seϕ2(1 − fϕ1) + s†eeseϕ2s

†
ϕ2ϕ2seϕ2(1 − fϕ2)

+s†eϕ1secs
†
ϕ2csϕ2ϕ1fϕ1 + s†eϕ2secs

†
ϕ2csϕ2ϕ2fϕ2

−|seϕ2|2[1 − |sϕ2ϕ2|2]fϕ2(1 − fϕ2) + |seϕ1|2|sϕ1ϕ2|2fϕ1(1 − fϕ1)

+s†eϕ1seϕ2s
†
ϕ2ϕ2sϕ1ϕ2fϕ1(1 − fϕ2) + s†eϕ2seϕ1s

†
ϕ2ϕ1sϕ2ϕ2fϕ2(1 − fϕ1)

+s†eesecs
†
ϕ2csϕ2e

Sϕ1ϕ2 = s†ϕ1esϕ1ϕ1s
†
ϕ2ϕ1seϕ2(1 − fϕ1) + s†ϕ1esϕ1ϕ2s

†
ϕ2ϕ2seϕ2(1 − fϕ2)

+s†ϕ1ϕ1sϕ1cs
†
ϕ2csϕ2ϕ1fϕ1 + s†ϕ1ϕ2sϕ1cs

†
ϕ2csϕ2ϕ2fϕ2

−|sϕ1ϕ2|2[1 − |sϕ2ϕ2|2]fϕ2(1 − fϕ2) − [1 − |sϕ1ϕ1|2]|sϕ1ϕ2|2fϕ1(1 − fϕ1)

+s†ϕ1ϕ1sϕ1ϕ2s
†
ϕ2ϕ2sϕ1ϕ2fϕ1(1 − fϕ2) + s†ϕ1ϕ2sϕ1ϕ1s

†
ϕ2ϕ1sϕ2ϕ2fϕ2(1 − fϕ1)

+s†ϕ1esϕ1cs
†
ϕ2csϕ2e (6.4.18)

Following the discussion of the cross-correlations in a four-terminal geometry in
Ref. [BLA00] these terms refer to the quantum (Fermi) statistics of the electrons.
They are called exchange-interference terms and reflect the fact that one is not able
to distinguish from which of the two fictitious terminals a carrier was incident. This
”lack of knowledge”gives rise to additional noise contributions. One may associate
this with a kind of two-particle stochastic process. To deal with the exchange-
interference terms on has to characterize the entire scattering matrix of the system.
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6.4. Tunnel-coupled quantum dots

Typically some ”ad-hoc”phases [BUE91] of the scattering matrix elements must
be introduced which may enter the results (see e.g. the discussions considering
the Hanbury-Brown-Twiss effect in Sec. II F 9. in Ref. [BLA00]). As we show in
the Appendix D, the S-matrix of our QD system is independent of these phases
[SAM04].
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Figure 6.7.: On-resonance (ε1 = ε2) Fano factor (Eq. (6.4.15)) vs. interdot-coupling
|Ω| for various dephasing rates Γϕ. Fictitious terminals fϕ1/fϕ1 with
fluctuations δfϕ1/δfϕ1, respectively. Dashed curve: master equation
(ME) result for comparison. High-bias limit fe = 1, fc = 0

In Fig. 6.7 the resulting Fano factor calculated by Eq. (6.4.15) is shown. Here, in
contrast to Fig. 6.6 the Fano factor approaches one half for large interdot-coupling
|Ω| ≫ Γ and for any amount of Γϕ. Hence, the occupation statistics of the current
carrying states is not changed by the fictitious terminals as it is expected for pure
dephasing. The local minimum in the Fano factor for Γϕ = 0 increases and shifts
to larger |Ω| with increasing Γϕ. The Fano factor minimum goes towards one half.
The zero-frequency SPD SP (0) is shown in Fig. 6.8. The local minimum for Γϕ = 0
at Γ = 2|Ω| which we identified as the fingerprint of quantum noise in Sec. 5.4
disappears with increasing Γϕ.

By comparison with the SPD obtained for sequential tunneling through coupled
QDs (blue curve in Fig. 5.5) we notice that this sequential tunneling limit cannot be
approached by pure dephasing from coherent tunneling via an escape model. As a
main reason we identify the decreasing of the current by increasing the decoherence
which is accompanied by a reduction of the SPD (Fig. 6.8).

113



6. Dephasing

0 1 2 3 4 5

S
P
(0

) 
[a

rb
. u

ni
ts

]

|Ω|/Γ

Γϕ/Γ=0

Γϕ/Γ=1

Γϕ/Γ=2

Figure 6.8.: On-resonance spectral power density (zero frequency) vs. interdot-
coupling |Ω| for dephasing rates Γϕ/Γ = 0 (solid line), Γϕ/Γ = 1
(dashed line), and Γϕ/Γ = 2 (dotted line). High-bias limit fe = 1,
fc = 0
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7. Current Fluctuations - Full

Counting Statistics

Electronic transport through mesoscopic conductors mostly deals with time aver-
aged currents. But, it turned out that the analysis of the accompanying current
fluctuations can reveal a deeper insight in the transport mechanism. In the classical
regime, the discreteness of the particles leads to the so-called shot noise which is
sensitive to temporal correlations of the particle flow caused by Pauli’s exclusion
principles or the Coulomb interaction and their mutual interplay as elaborately dis-
cussed in Chap. 4. In the quantum limit the shot noise can also be influenced by
electron correlations or entanglement.

Naturally the question arises whether it is possible to obtain even more informa-
tion by considering higher-order correlators. Unfortunately, their calculation is a
really hard task and even the second-order (shot noise) becomes quite cumbersome,
e.g. by dealing with Coulomb interaction in the quantum limit (see Sec. 5.1.2.2).
The adoption of the concept of full counting statistics (FCS) in mesoscopic electron
transport from quantum optics allows to characterize comprehensively the statistics
of the particle current, i.e. all moments of its distribution function are available in
an elegant manner. The crucial quantity is the distribution function of the number
N of transferred charges during the time interval t0: P (N, t0). As soon as one
knows this function one knows everything about the underlying stochastic process.
This is equivalent to the determination of the characteristic function F (χ) (or the
so-called cumulant generating function) which is defined by

exp [−F (χ)] =
∑

N

P (N, t0) exp [iNχ] (7.0.1)

Note that is the definition for the two-terminal case, in which only the number
N of transferred charges in one terminal matters. In the other terminal it is given
by −N due to charge conservation in the stationary case. In this chapter we also
deal with more than two terminals. The generalization of (7.0.1) to this case can
be found e.g. in Ref. [NAZ03]. From (7.0.1) it follows directly F (0) = 0 which
ensures the probability normalization. From the characteristic function (7.0.1) the
cumulants of k-th order can be obtained

Ck ≡ 〈〈Nk〉〉 = −(−i)k ∂k

∂χk
F (χ)

∣

∣

∣

∣

χ=0

(7.0.2)
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7. Current Fluctuations - Full Counting Statistics

Their meaning with respect to the distribution function P (N, t0) is illustrated in
Fig. 7.1.

P(N,t0)

NC1

C2

C4

C3

C1...average
C2...width (noise)
C3...skewness
C4...sharpness

Figure 7.1.: An example of a probability distribution function P (N, t0) illustrating
the meaning of different cumulants (7.0.2).

The first two cumulants are related to the average current 〈I〉 and zero-frequency
SPD SP of current fluctuations as

〈I〉 = − e

t0
C1 (7.0.3)

SP =
2e2

t0
C2 (7.0.4)

where 〈I〉 = e〈N〉/t0 has been used.

7.1. Single barrier tunneling: Binomial and

Poissonian statistics

Let us consider a single potential barrier and assume that all states in both adjacent
reservoirs e/c are either filled or empty at T = 0, i.e. there is no thermal noise
present (see Sec. 4.1.2). Then, current fluctuations arise from scattering events
in the barrier that connects both reservoirs. In the energy interval given by the
difference of the chemical potentials in the reservoirs induced by a bias voltage
V , the transmission probability Tec is assumed to be independent of energy for
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7.2. Double barrier tunneling: Single quantum dot

simplicity. In this case particle transfer is a Bernoulli process [LEV93, LEV96]:
K = t0eV/h particles try to pass the barrier independently of each other in a time
interval t0 and each of them succeeds with the probability Tec. The number N of
transmitted particles for a given number of trials K obeys binomial statistics with
the distribution

Pbinomial(N, t0) =

(

K
N

)

TN
ec (1 − Tec)

K−N (7.1.1)

The respective cumulant generating function (7.0.1) is

Fbinomial(χ) = K ln[1 + Tec(e
iχ − 1)] (7.1.2)

The first three cumulants (7.0.2) are

C1 = KTec

C2 = KTec(1 − Tec)

C3 = KTec(1 − Tec)(1 − 2Tec) (7.1.3)

Using the relations (7.0.3),(7.0.4) on can easily reproduce the expressions for
the current (6.2.5) and the last term in the SPD (6.2.6) under the assumption of
energy-independent transmission.

In the limit Tec ≪ 1, the transfer of a particle is a rare event. In this limit and
under the condition KTec → 〈N〉 the quantum statistics becomes irrelevant and the
FCS follows a Poissonian distribution with the characteristic function

FPoissonian = t0Γ(eiχ − 1) (7.1.4)

where the average transferred particle number 〈N〉 is replaced by t0Γ with the
tunneling rate Γ which is widely used with respect to sequential tunneling in Chap-
ter 3.

Note that all of these distributions tend to a Gaussian distribution for K → ∞,
as a consequence of the central limit theorem. Then, all cumulants higher than
second order are suppressed. Therefore the measurement of higher-order cumulants
is complicated. Nevertheless, in Refs. [REU03, BOM05] the third-order cumulant
of a single tunnel junction was measured very recently.

7.2. Double barrier tunneling: Single quantum dot

Before we start with the consideration of the coupled QD system (triple barriers)
let us briefly review the well-established results for the tunneling through a double
barrier system [JON96, NAZ03]. Without performing the full derivation (where the
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7. Current Fluctuations - Full Counting Statistics

ingredients can be found in the following sections) we just give the characteristic
function for high-bias noninteracting transport

F (χ) =
t0
2

(

Γe + Γc −
√

(Γe + Γc)2 − 4ΓeΓc(1 − e−iχ)
)

(7.2.1)

Note that (7.2.1) holds regardless whether sequential or coherent tunneling is
considered [BAG03a]. The normalized second and third cumulant namely the Fano
factor and the normalized skewness, respectively, show minima at Γe = Γc which
corresponds to a generating function

F (χ) = t0Γe/c(e
iχ/2 − 1) (7.2.2)

I.e. by comparison with (7.1.4) we can associate this with the Poissonian statistics
of the transfer of ”half charges”. As outlined in Sec. 4.2.1 the Fano factor is one
half for symmetric coupling without Coulomb interaction and caused by Pauli’s
exclusion principle which already gave a hint to half elementary charges. However,
the detailed nature of the charge transfer was not accessible there. Now, we are
in the position to identify it with a Poissonian process. For strong asymmetric
couplings Γe ≪ Γc or Γe ≫ Γc Poissonian charge transfer appears, but with full
charges so that the characteristic function is of the form (7.1.4) in which the smaller
rate enters.

7.3. Triple barrier tunneling: Tunnel-coupled

quantum dots

The specific aim of this section is the investigation of transport through two cou-
pled QDs in series. It was shown in Sec. 3.3.2 and Ref. [SPR04] that the av-
erage (stationary) current through such system in the high-bias limit is identical
in a coherent or sequential description if one presumes noninteracting electrons.
The former approach is based on a reduced density matrix for the QD system
(Sec. 3.3.2.1,[GUR96c]) which yields the same results as the SMF (Chap. 6) under
the given assumptions, and the latter stems from a ME approach (Chap. 3). The
main difference between both techniques can be seen in the time evolution of occu-
pations in Fig. 3.4. While the coherent transients are governed by Rabi oscillations
with a decay to the stationary occupations those oscillations are missing in the
sequential treatment. In the long-time limit the occupations in both descriptions
coincide which leads to the same average current as already mentioned. Interest-
ingly, the zero-frequency SPD SP is sensitive to this difference in time evolutions
as discussed with respect to Fig. 5.5 in Sec. 5.4.

In the following, we want to apply the methods of FCS in order to obtain more
information than contained in the first- and second-order cumulants. First, we
address the FCS for the sequential tunneling using a ME technique. After that, the
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7.3. Triple barrier tunneling: Tunnel-coupled quantum dots

FCS with SMF, and density matrix description for coherent transport is considered.
Their results will be compared by means of the third-order cumulants. The last
section of this chapter addresses the question how is the statistics influenced if pure
dephasing (Chap. 6) is introduced in the coherent tunneling through coupled QDs
and is it possible to reach the limit of sequential tunneling for strong dephasing.

7.3.1. Master equation approach - Sequential tunneling

In order to obtain the characteristic function we go along the lines of Refs. [BAG03,
BAG03a]:

We have a ME1 of the form ∂t|p〉 = −M̂ |p〉 with the matrix elements of M̂ :

Mij = δijγi − Γi←j , γi =
∑

i6=j

Γi←j (7.3.1)

where i and j denote the many-particle states of the QD system. For the following
it is useful to present the M̂ operator in the form:

M̂ = γ̂ − Γ̂ , Γ̂ =
M
∑

k=1

(

Γ̂
(+)
k + Γ̂

(−)
k

)

(7.3.2)

where γ̂ is the diagonal operator in the basis |n〉 = |n1 . . . nM〉 (nα ∈ { 0, 1}) and

Γ̂
(±)
k refers to electron transfers with the transition labeled by k = (α, β) (α and β

denote single particle states in the QD system)

γ̂ =
∑

{n}

|n〉γ(n)〈n| , Γ̂
(±)
k =

∑

{n}

|n′〉Γ(±)
k 〈n| (7.3.3)

The state |n′〉 = |n1 . . . n′α . . . n′β . . . nM〉 results from the state |n〉 by changing
the corresponding occupation numbers n′α = nα −σk, n′β = nβ +σk ,where σk = ±1
denotes the direction of the transition. Now, one introduces the χ-dependent linear
operator Mχ as

M̂χ(t) = γ̂ − Γ̂χ(t) (7.3.4)

Γ̂χ(t) =
N
∑

k=1

(

Γ̂
(+)
k eiχk(t) + Γ̂

(−)
k e−iχk(t)

)

+
M
∑

k=N+1

(

Γ̂
(+)
k + Γ̂

(−)
k

)

(7.3.5)

Each operator Γ̂
(±)
k that corresponds to a transition through an external junction

(k = 1 . . .N) is multiplied by an extra χ-dependent factor e±iχk(t). The diagonal
part and the operators for internal transitions with k > N remains unchanged.

1Here we use the notation of Refs. [BAG03, BAG03a] which differs from the ME description in
Chap. 3.
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7. Current Fluctuations - Full Counting Statistics

For the low frequency limit ω ≪ Γ one can set χk(t) = χk during the time interval
of measurement 0 ≤ t ≤ t0 and χk(t) = 0 otherwise. Then, the minimum eigenvalue
mmin({χi}) of the operator (7.3.4) gives the characteristic function

F ({χi}) = t0mmin({χi}) (7.3.6)

For the QD stack (Sec. 3.3) the operator (7.3.4) becomes (probability vector
(P(0,0), P(0,1), P(1,0), P(1,1))

T )

Mχ =









Γe −Γce
−iχ2 0 0

0 Γe + Γc + Z −Z 0
−Γee

iχ1 −Z Z −Γce
−iχ2

0 −Γee
iχ1 0 Γc









(7.3.7)

For Γe = Γc ≡ Γ, χ ≡ χ1 − χ2, and Z ≡ 2Ω2/Γ we obtain (Mathematica) the
characteristic function:

F (χ) =
t0
6

{

(6Γ + 4Z) − (1 + i
√

3)(3Γ2 + 4Z2)

G(χ)
+ (1 − i

√
3)G(χ)

}

(7.3.8)

with

G(χ) =
{

8Z3 + 9Γ2Z(1 − 3e−iχ)+

+
1

2

√

[16Z3 + 18Γ2Z(1 − 3e−iχ)]2 − 4(3Γ2 + 4Z2)3

}
1
3

(7.3.9)

With the characteristic function (7.3.8) all cumulants (7.0.2) of the distribution
function can be calculated now and reproduce the current (3.3.6) for ∆E = 0 and
Γe = Γc and the noise behavior depicted in Fig. 5.5 (blue curve).

Regarding Eq. (7.0.1) the probability for N electrons traversing the left or right
barrier during the measurement time t0 yields

P (N, t0) =

∫ π

−π

dχ

2π
exp [−F (χ) − iNχ] (7.3.10)

For the evaluation of the integral (7.3.10) one can use the saddle point approxi-
mation [BAG03a]: The saddle-point χ∗ of the function Ω(χ) = F (χ)+ iχIt0/e with
the current I(χ) = (ie/t0)∂χF (χ) (Eq. (7.0.3) taken at arbitrary χ) turns out to
be purely imaginary. Within this approximation the probability for measuring a
current during the time interval t0 simply becomes P (I) ≈ exp [−Ω(χ∗)] with I(χ)
(see above) regarded as parametric relation between I and χ∗.
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7.3. Triple barrier tunneling: Tunnel-coupled quantum dots
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Figure 7.2.: Current statistics with ME for the double-dot system [SPR04] for dif-
ferent tunnel couplings Ω and symmetric coupling Γ = Γe = Γc on
resonance.

The statistics for the double-dot system is shown in Fig. 7.2 for different inter-dot
couplings Ω. For all curves the unity probability occurs at the resonance current
I0 = eΓ0 with the effective rate Γ0 = 2ΓΩ2/(4Ω2 + Γ2). The solid line corresponds
to an almost uncorrelated current due to small Ω and therefore to a Poissonian
process.

7.3.2. Coherent approach

7.3.2.1. Levitov’s formula - S-matrix description

The characteristic function (known as Levitov’s formula [LEV93, LEV96]) for a
mesoscopic conductor with n terminals is given as

F ({χi}) = t0

∫

dε

2π~
Fε({χi}) (7.3.11)

with

Fε({χi}) = lnDet
[1− f̂ + f̂ s†χ̂sχ̂−1

]

(7.3.12)

with f̂ ≡ Diag[f1, . . . , fn] and χ̂ ≡ Diag[eiχ1, . . . , eiχn ], where fi and χi are the
distribution functions and counting fields of the terminal i, respectively. s is the
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7. Current Fluctuations - Full Counting Statistics

n × n scattering matrix2 (S-matrix: already introduced in Chap. 6).

For our double-dot system (7.3.11) becomes explicitly (χ = χ2 − χ1)

F (χ) = −t0
π

∫

dε ln {1 + Tec(ε)[exp (iχ) − 1]} (7.3.13)

This is the generalization of the characteristic function of binomial statistics
(7.1.2) for energy-dependent transmission. We assume the high-bias limit such
that the contact occupations are fe = 1 and fc = 0. With the transmission function

Tec(ε) =
ΓeΓcΩ

2

|(ε − ε1 + iΓe/2)(ε − ε2 + iΓc/2) − Ω2|2
(7.3.14)

for tunneling through the double QDs with one level εi for the i-th QD, for
symmetric coupling Γ = Γe = Γc, and on-resonance transport (ε1 = ε2 = 0) we
obtain the characteristic function

F (χ) =
t0
2

[

2Γ −
√

Γ2 − 4iΓΩ exp (−iχ/2) − 4Ω2 −
√

Γ2 + 4iΓΩ exp (−iχ/2) − 4Ω2
]

(7.3.15)

Now, the distribution function of the tunneling current can be calculated in the
same manner as in the last section. For different Ω they are displayed in Fig. 7.3.

In the limits of small and large Ω the statistics for sequential tunneling (Fig. 7.2)
and coherent tunneling (Fig. 7.3) fully coincide. For intermediate Ω deviations are
present as already outlined with respect to the noise (Sec. 5.4). The third-order
cumulant (skewness) vs. Ω is shown in Fig. 7.4.

For very small Ω the skewness approaches zero for both sequential and coherent
tunneling. Further, it can be seen that for all Ω the skewness of coherent tunnel-
ing is closer to zero than for sequential tunneling. In the region 0 < |Ω|/Γ < 1 the
skewness of the coherent tunneling shows more structure than that of the sequential
tunneling. A better interpretation can be obtained by considering the normalized
skewness c3 ≡ C3/〈I〉 in Fig. 7.4b where the third cumulant is divided by the aver-
age current. For |Ω| → 0 this value becomes unity in both approaches which refers
to Poissonian statistics where all higher cumulants equal the average value of the
distribution. There are three distinct extrema in the normalized skewness of coher-
ent tunneling. Using its characteristic function (7.3.15) and putting Γ2/4|Ω|2 ≡ x
we get the normalized third cumulant

c3 =
1 − 8x + 21x2 − 14x3 + 4x4

4(1 + x)4
(7.3.16)

The extrema are found to be

2For simplicity we consider single-mode conductors.
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Figure 7.3.: Current statistics with coherent approach for the double-dot system
[SPR04] for different tunnel couplings Ω and symmetric coupling Γ =
Γe = Γc on resonance.

x1 = 1, x2 =
1

10

(

9 −
√

41
)

≈ 0.26, x3 =
1

10

(

9 +
√

41
)

≈ 1.54 (7.3.17)

which corresponds to

|Ω|
Γ

=

{

0.40,
1

2
, 0.98

}

(7.3.18)

From Fig. 7.4b) we see that |Ω|/Γ =0.4 and 0.98 correspond to local minima and
|Ω|/Γ =1/2 is the local maximum. Inserting these extreme points back into the
generating function we find for the local maximum, x = 1

F (χ) = t0Γ
(

eiχ/4 − 1
)

(7.3.19)

This is the characteristic function of the Poissonian transfer of ”quarter charges”.
Note that the Fano factor which can be considered as the fraction of effectively
transferred charges is 0.25 at this point (Fig. 5.5b) [KIE05b].

Unfortunately, the two local minima do not correspond to any particularly ”sim-
ple”function. Thus, there is no simple explanation of the statistics at these two
points.

In the large coupling limit |Ω| ≫ Γ for both sequential and coherent tunneling
approach the same limit value of 1/4 of the normalized skewness is reached which
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Figure 7.4.: a) Third-order cumulant of the distribution (”skewness”) vs. tunnel
coupling Ω, b) Normalized skewness in the ME approach: dashed curve;
in the coherent approach (SMF): solid curve. Γ = Γe = Γc.
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7.3. Triple barrier tunneling: Tunnel-coupled quantum dots

we also directly can read off from Eq. (7.3.16) setting x = 0. The corresponding
transfer of charges is also Poissonian but here with ”half charges”in agreement with
the result for tunneling through a symmetric single QD.

7.3.2.2. Density matrix description

In this section we will show an alternative way to obtain the FCS for coherent
tunneling through a QD system. Gurvitz et al. [GUR96c, GUR98] provide transport
equations in terms of the dynamics of the elements of the reduced density matrix
in Fock-space of the QD system. Such equations were already used in Sec. 3.3.2
regarding the noninteracting transport through coupled QDs. To illustrate the
approach, we first consider a single QD with a single level. Keeping the notation of
[GUR96c] the recurrency equations are

ρ̇(n)
aa (t) = −Γeρ

(n)
aa (t) + Γcρ

(n−1)
bb (t)

ρ̇
(n)
bb (t) = Γeρ

(n)
aa (t) − Γcρ

(n)
bb (t) (7.3.20)

with the Fock states |a〉 ≡ |0〉 (unoccupied level) and |b〉 ≡ |1〉 (occupied level).
The index n is the number of electrons that have been transferred to the collector
reservoir during the time t. These equations must be supplemented by the initial
conditions. To obtain the equations for the total probabilities (compare with the

ME in Chap. 3) one just has to sum up Eqs. (7.3.20) ρaa/bb =
∑

n ρ
(n)
aa/bb. As a

consequence, we can immediately find the probability of transferred charges n in
time t

P (n, t) = ρ(n)
aa + ρ

(n)
bb (7.3.21)

or the cumulant generating function by using its definition (7.0.1)

eF (χ) =
∑

n

[

ρ(n)
aa + ρ

(n)
bb

]

einχ (7.3.22)

We note that for χ = 0, we have eF (χ) = 1 directly from probability conservation
∑

n[ρ
(n)
aa + ρ

(n)
bb ] = 1. An expression for F (χ) one obtains in the following way. One

first introduces the (discrete) Fourier transformed quantities

ρaa(χ, t) =
∑

n

ρ(n)
aa (t)einχ, ρbb(χ, t) =

∑

n

ρ
(n)
bb (t)einχ (7.3.23)

which gives the generating function

eF (χ) = ρaa(χ, t) + ρbb(χ, t) (7.3.24)

Fourier transforming Eqs. (7.3.20) leads to
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7. Current Fluctuations - Full Counting Statistics

ρ̇aa(χ, t) = −Γeρaa(χ, t) + Γce
−iχρbb(χ, t)

ρ̇bb(χ, t) = Γeρaa(χ, t) − Γcρbb(χ, t) (7.3.25)

Here, we note that the counting field term e−iχ appears naturally from the trans-
formation. Importantly, it appears at the place in the recurrency equations which
describes the transfer of one electron out into the collector reservoir. In order to find
the characteristic function one has to solve a coupled set of first order differential
equations. We write Eqs. (7.3.25) on a vector form. We then have

ρ̇(χ, t) = A(χ) · ρ(χ, t), ρ(χ, t) =

(

ρaa(χ, t)
ρbb(χ, t)

)

A(χ) =

(

−Γe Γce
−iχ

Γe −Γc

)

(7.3.26)

Diagonalizing A gives

A = U ΛU−1, Λ =

(

λ1 0
0 λ2

)

(7.3.27)

with

λ1/2 =
1

2

[

Γe + Γc ±
√

(Γe + Γc)2 − 4ΓeΓc(1 − e−iχ)
]

(7.3.28)

Introducing the rotated vector τ (χ, t) ≡ U−1ρ(χ, t) we get the equation

τ̇ (χ, t) = Λ(χ)τ (χ, t) (7.3.29)

which has the homogeneous solution

τ1(χ, t) = c1e
λ1t, τ2(χ, t) = c2e

λ2t (7.3.30)

with the constants c1 and c2. To get the solution for ρ(χ, t) we have to transform
back with U . The characteristic function is obtained by adding the solutions for
ρaa(χ, t) and ρbb(χ, t) as in (7.3.24). In general, the result will be of the form

ρaa(χ, t) + ρbb(χ, t) = ceλ1t + deλ2t (7.3.31)

where c and d are constants to be determined from the initial conditions. However,
we can now make use of the normalization condition that tells us that ρaa(χ =
0, t) + ρbb(χ = 0, t) = 1 for any t. As a consequence, we see that in general only the
term with the eigenvalue λi which is zero for χ = 0 can contribute. In our example,
this means λ2. One can thus directly write (d = 0)
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7.3. Triple barrier tunneling: Tunnel-coupled quantum dots

eF (χ) = ρaa(χ, t) + ρbb(χ, t) = ceλ2t (7.3.32)

The characteristic function is then given by

F (χ) = tλ2 + ln c (7.3.33)

where we in the long time limit of interest can neglect the second, time indepen-
dent term and only keep the first term that grows linearly in time. We thus end up
with the characteristic function

F (χ) = t
1

2

[

Γe + Γc −
√

(Γe + Γc)2 − 4ΓeΓc(1 − e−iχ)
]

(7.3.34)

which is the “standard” solution for tunneling through double barriers comprising
a single level [NAZ03, BAG03, BAG03a]. This generating function we already
introduced in Sec. 7.2 to characterize the statistics of charge transfer (7.2.1).

Now, we simply can apply this approach to the coupled QD system which provides
the simplest nontrivial example. The respective transport equations for the elements
of the reduced density matrix were already given in (3.3.7). As shown above we
simply have to put the factor e−iχ at the place which describes the transfer of one
electron into the collector reservoir and use the Fourier transformed density matrix
elements. Then, these equations reads (suppressing the χ- and t-arguments)

ρ̇aa = −Γeρaa + e−iχΓcρcc

ρ̇bb = Γeρaa + e−iχΓcρdd + iΩ(ρbc − ρcb)

ρ̇cc = −Γρcc − iΩ(ρbc − ρcb)

ρ̇dd = −Γcρdd + Γeρcc

ρ̇bc = i∆Eρbc + iΩ(ρbb − ρcc) −
1

2
(Γe + Γc)ρbc (7.3.35)

with the abbreviations for the Fock states: |a〉 ≡ |0, 0〉, |b〉 ≡ |1, 0〉, |c〉 ≡ |0, 1〉,
and |d〉 ≡ |1, 1〉 and ρcb = ρ∗bc. Note again that in contrast to the example of a single
QD coherence now plays a important role since the off-diagonal elements of the den-
sity matrix appear in the transport equations (7.3.35). Writing these equations in
a vector form and working with separate equations for the real and imaginary parts
of ρbc gives the χ-dependent matrix A (3.3.8) and putting e−iχ at the corresponding
place. Diagonalizing this 6×6-matrix one gets the same generating function (i.e.
the eigenvalue that goes to zero for χ = 0) as obtained in the preceding section
by Levitov’s formula (7.3.15). Hence, the density matrix approach introduced by
Gurvitz et al. and the S-matrix approach provide the same statistics of noninter-
acting charge transfer through the coupled QDs. However, we did not address any
additional interactions in the statistics of charge transfer so far. One of the strengths
of the density matrix description is the incorporation of scattering starting from a

127



7. Current Fluctuations - Full Counting Statistics

detailed microscopic picture, e.g. electron-phonon or electron-electron interactions.
In contrast, the S-matrix approach has to rely mainly on a phenomenological treat-
ment of interactions. For instance, phase-breaking scattering can be implemented
by an escape model which was elaborately discussed in Chap. 6.

7.3.3. Pure dephasing - Stochastic Path Integral method

As shown in the considerations of Chap. 6, the ”pure”dephasing in tunneling
through localized states can be realized by attaching fictitious voltage probes which
can destroy the phase of electrons by escaping. There was the difficulty that the
noise goes towards its Poissonian value since the current carrying states are empty
for the time range of escape. To avoid that fluctuating occupations of the additional
terminals were assumed such that the electron is instantaneously reinjected in the
system. This leads to a complicated structure for the noise expression which also
contains cross-correlations which are fortunately phase insensitive. For the calcu-
lation of the FCS the fictitious terminal distributions and the respective counting
fields have to be fluctuating quantities now. To solve this highly nontrivial prob-
lem one can use a Stochastic Path Integral approach (SPI) recently developed by
S. Pilgram et al. [PIL03, JOR04]. A detailed description of this method would go
beyond the scope of this thesis so that we refer the reader to [PIL03, JOR04].

The generating function for a given energy is given by (7.3.12) with

f̂ =









1 0 0 0
0 fϕ1 0 0
0 0 fϕ2 0
0 0 0 0









, χ̂ =









1 0 0 0
0 eiχ1 0 0
0 0 eiχ2 0
0 0 0 eiχ









(7.3.36)

for the coupled QD system depicted in Fig. 6.1. The S-matrix for this system is
calculated by means of (D.0.2). The resulting generating function is a cumbersome
object even if one assumes Γ = Γe = Γc, Γϕ = Γϕ1 = Γϕ2, and on-resonance trans-
port ∆E = ε1 − ε2 =0 and we will skip its explicit form here. The quantities fϕ1,
fϕ2, χ1, and χ2 are fluctuating in time. The distribution of transmitted charges can
be formulated as a classical path integral over all possible fluctuation configurations.
This integral is maximal at the ”saddle point” where the fluctuations are small, i.e.
where the derivative of the generating function with respect to fϕ1, fϕ2, χ1, and χ2

is zero. This gives the nonlinear coupled saddle point equations:

dFε

dfϕ1

= 0,
dFε

dfϕ2

= 0,
dFε

dχ1

= 0,
dFε

dχ2

= 0 (7.3.37)

for the solutions fϕ1, fϕ2, χ1, and χ2. Unfortunately, these equations cannot be
solved analytically. To obtain the cumulants of the distribution of the transmitted

128



7.3. Triple barrier tunneling: Tunnel-coupled quantum dots

charges we insert the χ-dependent quantities in the generating function, differentiate
with respect to χ at χ = 0 and perform the energy integration numerically. The
dependencies of fϕ1,fϕ2, exp [iχ1], and exp [iχ2] on χ turn out to be quite simple:
the real parts depend quadratically and the imaginary parts linearly on χ. For
χ = 0 the imaginary parts vanish, the real parts of fϕ1 and fϕ2 provide the average
occupations of QD1 and QD2, and the real parts of exp [iχ1] and exp [iχ2] are unity.
Hence, the χ = 0-result of (7.3.37) provides us with the statistics for the dephasing
model where only the net charge transfer to the fictitious terminals is demanded
to be zero. We indeed recover the previous result for the Fano factor presented in
Fig. 6.6 where the strong coupling value went towards unity with increasing Γϕ.
The noise calculated by means of the SPI approach fully agrees with the results
obtained by the direct calculation of the SPD (6.4.15) presented in Fig. 6.8. Hence,
the saddle-point approximation in the SPI approach is substantiated by reproducing
the first and second cumulant within an independent calculation. Now, we are
pretty confident that the computation of the next-order cumulants reveals reliable
results. The third-order cumulant namely the skewness of the distribution function
of transmitted electrons is shown in Fig. 7.5 for the SPI-approach with fluctuating
fϕ1,fϕ2, exp [iχ1], and exp [iχ2].

The skewness vs. interdot coupling |Ω| is shown for various increasing Γϕ‘s. For
Γϕ = 0 the result of coherent tunneling in Fig. 7.4 is reproduced. The distinct
local extrema which we already discussed with respect to Fig. 7.4b) vanish and
the normalized skewness increases. Only one global minimum survives and shifts
to higher |Ω|-values with increasing Γϕ. In the large coupling limit |Ω| ≫ Γ the
normalized skewness value of 1/4 is independent on the dephasing strength Γϕ in
the same manner as the Fano factor (Fig. 6.7). For small coupling |Ω| ≪ Γ the
skewness approaches the first cumulant which again refers to Poissonian statistics
of the tunneling process in this limit. To obtain an analytical result for the statistics
in the low-coupling limit we introduce the small parameter γ ≡ |Ω|/Γ ≪ 1. Then,
we can expand the quantities fϕ1,fϕ2, exp [iχ1], and exp [iχ2] to second order as

fϕ1 = f
(0)
ϕ1 + γf

(1)
ϕ1 +

γ2

2
f

(2)
ϕ1

fϕ2 = f
(0)
ϕ2 + γf

(1)
ϕ2 +

γ2

2
f

(2)
ϕ2

eiχ1 = Θ
(0)
1 + γΘ

(1)
1 +

γ2

2
Θ

(2)
1

eiχ2 = Θ
(0)
2 + γΘ

(1)
2 +

γ2

2
Θ

(2)
2 (7.3.38)

Inserting these equations into the saddle point equations (7.3.37), we can solve
them by order in γ. This gives to zeroth order

f
(0)
ϕ1 = 1, f

(0)
ϕ2 = 0, Θ

(0)
1 = 1 Θ

(0)
2 = eiχ (7.3.39)
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Figure 7.5.: Skewness and normalized skewness vs. tunnel coupling |Ω| for various
Γϕ by means of saddle point approximation in SPI approach.

which is the result for decoupled QDs as expected. To first order one finds the
”trivial”result

f
(1)
ϕ1 = 0, f

(1)
ϕ2 = 0, Θ

(1)
1 = 0 Θ

(1)
2 = 0 (7.3.40)

Inserting the expansion (7.3.38) into the generating function (7.3.12) with the
obtained values in (7.3.39) and (7.3.40), and expanding the generating function to
second order in γ, we get

Fε =
|Ω|2(Γ + Γϕ)2

[(ε1 − ε)2 + (Γ + Γϕ)2/4][(ε2 − ε)2 + (Γ + Γϕ)2/4]
(eiχ − 1) (7.3.41)
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which is independent on f
(2)
ϕ1 , f

(2)
ϕ2 , Θ

(2)
1 , and Θ

(2)
2 . Performing the energy integra-

tion, the total generating function becomes (on-resonance ε1 = ε2)

F (χ) =
2|Ω|2

(Γ + Γϕ)
(eiχ − 1) (7.3.42)

We see that the statistics thus becomes Poissonian with the tunneling rate given
by Fermi‘s Golden rule [SPR04] containing an additional effective broadening by
Γϕ of both QD levels due to dephasing.
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8. Summary

The electronic transport through mesoscopic conductors with a discrete level spec-
trum, namely systems of QDs, was the subject of the present work. In particular,
parallel QDs coupled via an electrostatic potential due to the Coulomb interaction
or tunnel-coupled QDs in series were studied theoretically. They were connected
to two electron reservoirs (emitter and collector) which are treated in local equilib-
rium. The difference of their chemical potentials given by an applied bias voltage
drives the QD system out of equilibrium. The central observables for the trans-
port characterization were the stationary current and the zero-frequency spectral
power density. In addition, the skewness as the third-order cumulant of transport
processes was considered.

Different approaches to describe the nonlinear transport through these systems
were used and have been reviewed in detail: master equation (ME) approach,
non-equilibrium Green’s function (NEGF) technique, scattering matrix formalism
(SMF), and density matrix description.

The emergence of multiple peaks in the current voltage characteristic of coupled
QD systems was systematically elaborated in the sequential tunneling regime. As
a major advantage, the Coulomb interaction can be implemented without approx-
imations in this regime. For parallel QDs a negative differential conductance in
the current-voltage characteristic can be caused by the mutual blocking of single
particle states due to Coulomb interaction. Whereas for QDs in series current-
voltage characteristic peaks are caused by the energetic alignment of excitations in
both QDs. There, the Coulomb interaction can yield a multiple peak structure as
frequently observed in experiments.

We further systematically discussed the shot noise behavior in the sequential
tunneling regime. Scenarios for sub- and super-Poissonian noise, corresponding
to negative and positive temporal correlations in the tunneling current, respec-
tively, were presented. Particularly, we proposed an experimental setup to indicate
Coulomb correlations in an ensemble of self-organized QDs by means of shot noise.
A clear physical picture for bunching of tunneling events leading to super-Poissonian
noise was drawn and a guidance for experimentalists to observe this phenomenon
in tunnel-coupled QDs was provided.

In the framework of non-equilibrium Green’s functions the quantum coherent
description with Coulomb interaction beyond sequential tunneling was studied.
For that purpose, lowest-order perturbation theory for the solution of the single-
impurity Anderson model was considered. Two schemes of the Hartree-Fock ap-
proximation were reviewed. As an important result, we explicitly showed that the
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8. Summary

factorization of the Coulomb interaction term in the Hamiltonian is generally not an
appropriate starting point to describe nonlinear transport. In contrast, the factor-
ization in the Green’s function hierarchy yields a reasonable result for the average
current, but the shot noise behavior turns out to be not sufficient by comparison
with the sequential tunneling noise.

For noninteracting QDs analytical expressions for the current and the zero-
frequency spectral power density were obtained: The Fano factor for coherent
tunneling through a noninteracting symmetric QD becomes below one half in con-
trast to the sequential tunneling Fano factor, so that we attribute this to a signature
of coherent tunneling.

A sequential (incoherent) and quantum coherent description of transport through
two noninteracting QDs tunnel-coupled in series provide the same average current.
In contrast to this key finding, we found that the zero-frequency spectral power
density is different for intermediate coupling strengths between the QDs reflecting
its sensitivity to quantum coherence in the tunneling process.

Starting from this observation, the continuous transition between the coherent
and incoherent tunneling limit in the current fluctuations was tried to establish.
For that purpose, we analyzed the effect of decoherence on the quantum coherent
tunneling within a phenomenological escape model based on the scattering matrix
formalism. Therein we considered dephasing by elastic scattering of particles from
the current carrying state into fictitious terminals and back again, which completely
randomizes their phase. Importantly, we found that decoherence by this elastic scat-
tering changes the occupation-statistics of the current carrying states visible in the
noise for large coupling between the QDs since it goes towards its Poissonian value.
There are some indications that this also holds for electron-phonon interaction, as
we discussed in the framework of non-equilibrium Green’s functions in lowest-order
Born approximation. But, this is not proven yet. Nevertheless, this finding contra-
dicts with the result for the large coupling noise in the sequential tunneling limit.
To get rid of this discrepancy we applied a scheme where the distributions in the
fictitious terminals are allowed to fluctuate - for that reason we call this ”pure”
dephasing. In this scheme, we found that strong decoherence indeed smears out
the coherent features in the noise for intermediate couplings between the QDs, but
however, the incoherent tunneling limit is not reached within this framework1.

In this context we utilized the concept of full counting statistics for a complete
characterization of the sequential and coherent tunneling limits without Coulomb
interaction. For the latter we provided the derivation of the full counting statistics
by means of the density matrix description as an alternative to the scattering matrix
description based on Levitov’ formula. In both approaches the same statistics is
obtained. As a result, we compared the third-order cumulant of the distribution of
transferred charges (skewness) within the incoherent master equation and coherent

1Recently we found a way to achieve the continous transition between the coherent and incoherent
tunneling limit in all cumulants of the transport process [KIE05a].
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density matrix approach and found a very similar behavior by comparison with the
shot noise (corresponding to the second-order cumulant). Moreover, we are able
to identify Poissonian transfers of fractional charges for certain coupling strengths
between the QDs. In the end, the stochastic path-integral method was applied to
study the effect of pure dephasing on the full counting statistics. As well as the shot
noise the skewness does not approach the sequential tunneling limit for intermediate
couplings between the QDs for sufficient strong decoherence.

Finally to summarize, this work addressed the influence of Coulomb interaction
and quantum coherence on the nonlinear transport through coupled QD systems.
In order to obtain a detailed insight into the underlying physics we considered not
only the stationary current, but also the corresponding current fluctuations. For
simple few-level QD systems various models were compared with respect to the
first three cumulants of the transport process. Explanations for some recent ex-
perimental observations were proposed and various intriguing physical effects in
electronic transport were elaborately discussed as e.g. negative differential con-
ductance, super-Poissonian shot noise, quantum noise, decoherence. The content
of this thesis started from the sequential tunneling description which provides a
handy and clear entrance into the subject of transport phenomena. It covered such
sophisticated concepts as the non-equilibrium Green’s function approach and ended
with the current ”hot”topic full counting statistics. In this sense, the present work
offers a review of state-of-the-art concepts for the modeling of electronic transport
through QDs and their mutual connections.

Brief review of the most important new results:

• Explanation and detailed discussion of the measured peak structure in the
current-voltage characteristics of coupled QD systems

[KIE02, KIE02a, KIE03, SPR04]

• Complete understanding of the interplay between Pauli’s exclusion principle
and Coulomb interaction in sequential tunneling through QDs by means of
the shot noise behavior and quantitative explanation of experiments

[KIE03a, KIE03b, NAU04a]

• Various mechanisms for the emergence of super-Poissonian noise in coupled
QDs were elaborated in detail

[KIE03b, KIE04, KIE05c]

• Systematic comparison and review of lowest-order approximations for Coulomb
interaction in the framework of non-equilibrium Green’s functions and their
applicability for the calculation of current and zero-frequency noise
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8. Summary

• Detailed examination of the impact of decoherence on the zero-frequency
current fluctuations (current, shot noise, skewness of the distribution of trans-
ferred charges) of tunnel-coupled QDs by means of the scattering matrix for-
malism (escape model) and comparison with some other models

[KIE05a, KIE05b]

Some important features of the used formalisms:

• Master equation approach (ME): incoherent description, works only for
weak coupling between QDs and to the contacts kBT ≫ Γi/e/c, exact treat-
ment of Coulomb interaction possible, clear and transparent approach

• Non-equilibrium Green’s functions (NEGF): coherent description, in
principle any kind of scattering processes (e.g. electron-electron, electron-
phonon) can be implemented, but approximations necessary

• Scattering matrix formalism (SMF): coherent description, microscopic
interactions only can be treated phenomenologically, best suited for the de-
scription of e.g. metallic, diffusive systems

• Density matrix approach: like the NEGF, but better linked to the ME
approach
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A. Screened Coulomb potential by

highly-doped contacts

emitter collector

x

y

image charges image charges

a a 2a 4a2a4a

Figure A.1.: Sketch of a point charge between two infinite, parallel plates with its
image charges. (z-coordinate perpendicular to x − y plane).

A point charge e is symmetrically placed between two infinite, parallel, and
grounded plates with distance a as sketched in Fig. A.1. What is the Coulomb
potential of this charge in the y − z-plane? Using the method of images an infinite
series of image charges at positions x = ±2na (n ∈ N0) appear. Then, the potential
in the y − z-plane reads

φ(r) =
e

4πǫ

[

∞
∑

−∞

(−1)n

√

r2 + (2na)2

]

(A.0.1)

with r ≡
√

y2 + z2. We rewrite (A.0.1) in the following form

φ(r) =
e

4πǫr
f(x) (A.0.2)

with x ≡ a/r and
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A. Screened Coulomb potential by highly-doped contacts

f(x) =
∞
∑

n=−∞

(−1)n

√

1 + (2nx)2

=
∞
∑

n=−∞

Fn(x) (A.0.3)

Now, we are able to apply the Poisson summation formula:

∑

n

gn =
∑

n

ĝn (A.0.4)

with ĝ being the Fourier transform with respect to n of a once-differentiable,
square integrable function g.

Hence, we just need the Fourier transform of Fn(x) with respect to n which reads

F̂n(x) =

∫

dteint (−1)n

√

1 + (2tx)2
= (−1)n K0

(

n
2x

)

x
(A.0.5)

with the modified Bessel function of zeroth order K0. It follows for the potential
(A.0.1)

φ(r) =
e

4πǫa

∞
∑

n=−∞

(−1)nK0

(nr

2a

)

(A.0.6)

This result is shown in Fig. A.2 (black curve) by comparison with the unscreened
potential (∝ 1/r) (red curve). In the limit r

a
≫ 1 the potential (A.0.6) becomes

φr≫a(r) =
1

4πǫ

exp
(

− r
2a

)

√
πra

(A.0.7)

which is represented by the blue curve in Fig. A.2.
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Figure A.2.: Screened Coulomb potential (A.0.6) vs. r
a

(black curve) by compari-
son with the unscreened potential 1/r (red curve) and the expression
(A.0.7) for r ≫ a (blue curve).
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B. Proof: Wiener-Khinchin theorem

Let x(t) be a stationary random process, and let R(τ) be its autocorrelation func-
tion, i.e.:

R(τ) := 〈x(t)x(t + τ)〉 − 〈x〉2 (B.0.1)

One assumes that R(τ) is absolutely integrable. Then, the Fourier transform
R̂(ω) exists

R̂(ω) :=

∫ ∞

−∞

R(τ)e−iωτdτ (B.0.2)

For each sample function x(t), one defines its T -truncated Fourier transform
XT (ω) as

XT (ω) :=

∫ T/2

−T/2

(x(t) − 〈x〉)e−iωtdt (B.0.3)

The corresponding truncated spectral power density is then 1
T
〈|XT (ω)|2〉. Since

x(t) is a random process, for each ω, the truncated spectral power density will be
an ordinary random variable, and so one considers its expectation ST (ω):

ST (ω) :=
1

T
〈|XT (ω)|2〉 (B.0.4)

The spectral power density S(ω) of the random process is then defined as

S(ω) := lim
T→∞

ST (ω) (B.0.5)

Wiener-Khinchin Theorem: For all ω the limit in (B.0.5) exists, and

S(ω) = R̂(ω) (B.0.6)

Proof: (see also [SCH01] p.21)

〈|XT (ω)|2〉 =

〈∣

∣

∣

∣

∣

∫ T/2

−T/2

(x(t) − 〈x〉)e−iωtdt

∣

∣

∣

∣

∣

2〉

=

〈

∫ T/2

−T/2

∫ T/2

−T/2

(x(t)x(t′) − 〈x〉2)e−iω(t−t′)dtdt′

〉

(B.0.7)
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B. Proof: Wiener-Khinchin theorem

But since 〈x(t)x(t′)〉 − 〈x〉2 = R(t − t′) and expectation is a linear operator, the
last integral in (B.0.7) is

∫ T/2

−T/2

∫ T/2

−T/2

R(t − t′)e−iω(t−t′)dtdt′ (B.0.8)

It holds with τ = t − t′ and γ = t + t′

∫ T/2

−T/2

∫ T/2

−T/2

f(t − t′)dtdt′ =

∫ T

−T

(T − |τ |)f(τ)dτ (B.0.9)

Using this, the integral in (B.0.8) becomes

∫ T

−T

(T − |τ |)R(τ)e−iωτdτ (B.0.10)

Thus, combining (B.0.7)-(B.0.8)

1

T
〈|XT (ω)|2〉 =

∫ T

−T

(1 − |τ |
T

)R(τ)e−iωτdτ

=

∫ ∞

−∞

RT (τ)e−iωτdτ (B.0.11)

where

RT (τ) :=

{

(1 − |τ |
T

)R(τ) if |τ | ≤ T

0 if |τ | ≥ T
(B.0.12)

Since |RT (τ)| ≤ |R(τ)| and since R(τ) is absolutely integrable, it follows from
the Lebesgue dominated convergence theorem [BRO81] that

lim
T→∞

∫ ∞

−∞

RT (τ)e−iωτdτ =

∫ ∞

−∞

(

lim
T→∞

RT (τ)e−iωτ
)

dτ

=

∫ ∞

−∞

R(τ)e−iωτdτ

= R̂(ω) (B.0.13)

�
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C. Analytical evaluation of the Fano

factor for two noninteracting

states

The stationary probability that level i is occupied is pi ≡ Γ
(i)
e f

(i)
e

Γ(i) or unoccupied 1−pi

(Γ(i) := Γ
(i)
e +Γ

(i)
c ). Then the stationary occupation probability of the noninteracting

two-level system given by (3.1.4) reads

P0 =









(1 − p1)(1 − p2)
p1(1 − p2)
p2(1 − p1)

p1p2









(C.0.1)

since in the uncorrelated case the occupation probability for each state factorizes
into the occupation probabilities of the single levels. By inserting this vector into
(3.1.5) one immediately sees that terms with pipj cancel and the current is the sum

of the currents through each level i: 〈Ii〉 = eΓ
(i)
c pi. This also holds for an arbitrary

number of levels: 〈I〉 =
∑

i〈Ii〉.
Now, let us consider the time propagator (4.1.2): its matrix elements Tνµ(t)

describe the conditional probability to have state ν at time t under the condition
of state µ at t = 0. The matrix element Tνµ(t) ≡ Tµ→ν(t) can be factorized for each
level i with the following conditional probabilities:

ni = 0 → 1 : pi(1 − e−Γ(i)t)

ni = 1 → 0 : (1 − pi)(1 − e−Γ(i)t)

ni = 0 → 0 : 1 − pi(1 − e−Γ(i)t)

ni = 1 → 1 : pi + e−Γ(i)t(1 − pi) (C.0.2)

Due to the form of the current operator at the collector barrier in (3.2.2) the
first row and last column of the matrix T(t) does not enter in the calculation of
the current-current correlator (4.1.3). Carrying out the sum in (4.1.3) for two levels
leads to
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C. Analytical evaluation of the Fano factor for two noninteracting states

〈Ic(t)Ic(0)〉 = 2eΓ
(1)
c

{

[〈I1〉p1(1 − p2) + 〈I2〉p2(1 − p1)][T(0,0)→(1,0) + T(0,0)→(1,1)]

+〈I2〉p1[T(1,0)→(1,0) + T(1,0)→(1,1)] + 〈I1〉p2[T(0,1)→(1,0) + T(0,1)→(1,1)]
}

+2eΓ
(2)
c

{

[〈I1〉p1(1 − p2) + 〈I2〉p2(1 − p1)][T(0,0)→(0,1) + T(0,0)→(1,1)]

+〈I2〉p1[T(1,0)→(0,1) + T(1,0)→(1,1)] + 〈I1〉p2[T(0,1)→(0,1) + T(0,1)→(1,1)]
}

+e〈I〉δ(t) (C.0.3)

Replacing the Tµ→ν in (C.0.3) by using the rules (C.0.2) the correlator becomes

〈Ic(t)Ic(0)〉 = − 2〈I1〉2e−Γ(1)t − 2〈I2〉2e−Γ(2)t + 〈I〉2

+ e〈I〉δ(t) (C.0.4)

which can be generalized for an arbitrary number of levels

〈Ic(t)Ic(0)〉 = − 2
∑

i

〈Ii〉2e−Γ(i)t + 〈I〉2

+ e〈I〉δ(t) (C.0.5)

The time-independent term in (C.0.4) and (C.0.5) cancels out in the calculation
of the spectral power density (4.1.1) and we obtain

S(0) = 2e〈I〉 − 4
∑

i

〈Ii〉2
Γ(i)

(C.0.6)

Dividing Eq. (C.0.6) by 2e〈I〉 and using the Fano factor for tunneling through a

single level i, i.e. αi = 1 − 2〈Ii〉

eΓ(i) (4.2.1), the Fano factor for an arbitrary number of
noninteracting levels Eq. (4.2.2) is derived.
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D. Phase independence of the

S-matrix for coupled quantum

dots with voltage probes

A QD system with m QDs coupled to n terminals, including also ”fictitious”voltage
probes, is considered. Each QD is connected to one terminal only. The system
is described by a n × n scattering matrix s. Then the energy-resolved cumulant-
generating function for charge transfer in the system is given by Levitov’s formula
(7.3.12). This function is invariant under unitary transformations (rotations) of the
S-matrix

s → UsU † with U ≡ diag(eiφ1, . . . , eiφn) (D.0.1)

with arbitrary phases φi For our specific consideration, the S-matrix can be writ-
ten as

s = 1− iŴ †GretŴ (D.0.2)

where Gret is the retarded Green’s function (m×m-matrix) of the system (com-
pare Eq. (5.4.1)) and Ŵ describes the coupling of the QD system to the reservoirs.

For our QD system with ”fictitious”terminals ϕ1/ϕ2 depicted in Fig. 6.1 we have

Gret =

[1− Ĥ − i

2
ŴŴ †

]−1

, Ĥ =

(

ε1 Ω
Ω∗ ε2

)

(D.0.3)

and

Ŵ =

( √
Γe

√

Γϕ1 0 0

0 0
√

Γϕ2

√
Γc

)

(D.0.4)

All Γ’s can in principle be complex. However, the Green’s function (D.0.3) de-
pends only on the modulus of the Γ’s and Ω. Performing the rotation (D.0.1), the
phases φi can be choosen such that all phases of the Γ’s in Ŵ cancel out. Therefore,
one can work right from the beginning with only real couplings Γi and the ”phase
problem”hence is solved.
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[KIE03] G. Kießlich, A. Wacker, E. Schöll, S. A. Vitusevich, A. E. Belyaev, S. V.
Danylyuk, A. Förster, N. Klein, and M. Henini. Nonlinear charging effect
of quantum dots in a p-i-n diode. Phys. Rev. B 68, 125331 (2003).

[KIE03a] G. Kießlich, A. Wacker, E. Schöll, A. Nauen, F. Hohls, and R. J. Haug.
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Yu. V. Dubrovskii, M. Henini, and G. Hill. Magneto-Tunnelling for Spatial
Mapping of Orbital Wavefunctions of the Ground and Excited Electronic
States in Self-Assembled Quantum Dots. phys. status solidi (b) 224, 715
(2001).

[LIU89] H. C. Liu and G. C. Aers. Resonant Tunneling through one-, two-, and
three-dimensionally confined quantum wells. J. Appl. Phys. 65, 4908
(1989).

[LOS98] D. Loss and D. P. Vincenzo. Quantum computation with quantum dots.
Phys. Rev. A 57, 120 (1998).

[MAH00] G. D. Mahan. Many-Particle Physics. (Plenum, New York, 2000).

[MAI03] N. C. Maire. Schrotrauschen von InAs-Quantenpunkten. (diploma thesis,
Universität Hannover, 2003).

[MAK96] K. Makoshi and T. Mii. Nonequilibrium Anderson model, Coulomb block-
ade and scanning tunneling spectroscopy. Surface Science 357, 335 (1996).

[MAT92a] K. A. Matveev and A. I. Larkin. Interaction-induced singularities in
tunneling via localized levels. Phys. Rev. B 46, 15337 (1992).

[MCE97] P. L. McEuen. Artificial Atoms: New Boxes for Electrons. Science 278,
1729 (1997).

[MEI91] Y. Meir, N. S. Wingreen, and P. A. Lee. Transport through a strongly
interacting electron system: Theory of periodic conductance oscillations.
Phys. Rev. Lett. 66, 3048 (1991).

[MEI93] Y. Meir, N. S. Wingreen, and P. A. Lee. Low-Temperature Trans-
port through a Quantum Dot: The Anderson Model Out of Equilibrium.
Phys. Rev. Lett. 70, 2601 (1993).

154



Bibliography

[MEI95a] U. Meirav and E. B. Foxman. Single-electron phenomena in semiconduc-
tors. Semicond. Sci. Technol. 10, 255–284 (1995).

[MEI02b] M. Meixner. Simulation of self-organized growth kinetics of quantum dots.
(Ph.D. Thesis, TU Berlin, 2002).
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G. Kießlich, and E. Schöll. Anti-reflection coating for miniband
transport and Fabry-Perot resonances in GaAs/AlGaAs superlattices.
Appl. Phys. Lett. 79, 1486 (2001).

[PAL96] P. Pals and A. MacKinnon. Coherent tunnelling through two quantum
dots with Coulomb interaction. J. Phys. Cond. Mat. 8, 5401 (1996).

[PIL03] S. Pilgram, A.N. Jordan, E.V. Sukhorukov, and M. Büttiker. Stochastic
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Geometry effects at conductance quantization in quantum wires
phys. stat. sol. (b) 216, R5 (1999)

• G. Kießlich, A. Wacker and E. Schöll
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Nonlinear transport through an ensemble of quantum dots
Physica B 314, 459 (2002)

• G. Kießlich, A. Wacker and E. Schöll
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