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Direct numerical simulations of turbulent channels with artificially prescribed velocity
profiles are discussed, using both natural and purposely incorrect profiles. It is found
that turbulence develops correctly when natural profiles are prescribed, but that even
slightly incorrect ones modify the Reynolds stresses substantially. That is used to study
the dynamics of the energy-containing velocity fluctuations. The stronger (weaker)
structures generated by locally stronger (weaker) mean shears have essentially correct
isotropy coefficients but they are out of energy equilibrium, with the energy imbalance
compensated by turbulent diffusion. The velocity scale in smooth profiles changes
with the distance to the wall, and is best described by a friction velocity derived
from the local total tangential stress. The behaviour across sharper shear jumps is
more consistent with non-equilibrium eddies that relax over wall-normal distances
of the order of the distance to the wall, suggesting that the energy equilibrium in
the logarithmic layer is not local to a given height, but applies to extended layers
homogenized by wall-normal fluxes. Examples of that non-local character are the
large-scale inactive fluctuations near the wall, whose velocities do not scale with the
local shear stress, but with that of their active ‘cores’ farther away from the wall.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
This paper discusses direct numerical simulations of turbulent channels in which

the instantaneous wall-parallel-averaged velocity is artificially prescribed. The rest of
the flow, including all the fluctuations, is computed in the standard manner. For
brevity, and since that procedure may be considered the inverse of Reynolds-averaged
Navier–Stokes simulations in which the fluctuations are modelled while the mean
profile is computed, we will refer to it as ‘inverse RANS’, or IRANS. Our original
motivation, later abandoned, was to shorten the inflow length of direct simulations
of turbulent boundary layers (Simens et al. 2009) by keeping the mean velocity
profile artificially fixed to some empirical approximation over an upstream fraction

† Email address for correspondence: jimenez@torroja.dmt.upm.es
‡ Present address: Laboratorio de Fluidodinámica, Facultad de Ingenierı́a, Universidad de
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of the simulation box. The idea was to give the turbulent fluctuations some fetch in
a ‘correct’ environment before the flow was fully released, but the experiment failed.
The Reynolds stresses became substantially different from their ‘natural’ values, and,
although they returned to their correct levels upon release of the mean profile, the
inflow was not shortened.

Irrespective of its merits as a method for generating inflow conditions, the reasons
why the Reynolds stresses grew when the profile was kept fixed remained interesting
and unclear, and are the subject of this paper. The two possibilities examined by us are
that the growth of the fluctuations was due to fixing the mean profile, instead of letting
it evolve according to its own equation of motion, or that the fluctuations are sensitive
to relatively small deviations of the imposed velocity from its ‘correct’ shape, and that
the approximation used in our tests (Nagib, Chauhan & Monkewitz 2006) was slightly
incorrect.

Both results would be interesting, and provide opportunities to explore the dynamics
of turbulence. A central problem of wall-bounded turbulence is how the relative
intensities of structures of different sizes, associated with different wall distances,
adjust themselves so that the mean momentum transfer along the wall-normal direction
remains in balance. We will examine two models. Consider first local equilibrium. It
is not difficult to construct feedback models in which locally weak structures with
insufficient Reynolds stresses result in a local acceleration of the mean velocity, which
in turn leads to the enhancement of the velocity gradient and to the strengthening
of the local fluctuations. It is conceivable that fixing the mean profile disrupts that
mechanism.

For example, consider a open channel between a no-slip wall at y = 0, where the
tangential stress is τw = 1, and a free-slip surface at y = 1. The wall-parallel-averaged
momentum equation can be written as,

∂tS= ∂yyτ, (1.1)

where S is the mean shear and τ is the total tangential stress. Equilibrium requires
that τ = 1 − y, but the stability of small perturbations about that state depends on the
relation between τ and S. In the simplest assumption that τ = τ(S), the equation for
stress fluctuations, τ̃ , is

∂tτ̃ = (dτ/dS) ∂yyτ̃ , (1.2)

and stability requires that (dτ/dS) > 0 everywhere. The experiments in this paper
can be understood as a way of exploring the relation between the total stress and
the velocity profile by perturbing the latter. In general, they involve modifying the
equations of motion, but, as stressed in previous works, that is one of the strengths of
numerical simulations (Jiménez & Pinelli 1999).

A second model, not necessarily inconsistent with the first one, is that the
momentum balance is a property of the correct mean velocity profile as a whole.
The classical theory, as represented by the logarithmic-layer argument of Townsend
(1976), is that the turbulent energy production, which is proportional to the mean
shear and to the tangential Reynolds stress, balances the local dissipation, which
is proportional to the cube of the fluctuation intensities. That would explain why
changing the mean profile, and therefore the production, modifies the intensities, but
it would also suggest that the latter are determined by the local mean shear, with
an interesting lack of interaction among structures at different wall distances. The
present experiments would then be useful in differentiating between local and global
contributions to the equilibrium of energy and momentum, by allowing us to consider
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profiles that differ from the canonical one in different ways at different distances from
the wall. In fact, one of the results of this paper will be that energy equilibrium of
the Reynolds-stress-bearing scales has to be understood in terms of production and
dissipation integrated over ‘attached’ layers extending to the wall, in agreement with
the models of Townsend (1961), Perry & Abell (1975) or Perry, Henbest & Chong
(1986), rather than holding at individual wall distances. It will also turn out that the
near-wall ‘inactive’ motions, which carry energy but no tangential stress, derive their
velocity scales from their detached ‘active’ parts, also in agreement with Townsend
(1961) model.

Effects similar to those discussed here had been observed by P. Moin (private
communication) and Jarrin (2007), associated in both cases with attempts to shorten
the initial transient in large-eddy simulations of channels, but they were not analysed
in detail. A distant precursor can also be found in the ‘constrained Euler’ simulations
of isotropic turbulence with prescribed spectra, used to study the energy transfer and
the behaviour of large-eddy simulations by Shtilman & Chasnov (1992), Jiménez
(1993), She & Jackson (1993) and Zhou (1993), among others.

The organization of the paper is as follows. The numerical experiments are
described in § 2, followed in § 3 by the presentation and discussion of the results, and
by conclusions in § 4. Additional details can be found in earlier reports by Jiménez
(2010) and Tuerke (2011).

2. The numerical experiments
The simulations are performed in doubly periodic computational channels with a

half-height h, and streamwise and spanwise periodicities 2πh and πh, as in Moser,
Kim & Mansour (1999). It was shown by del Álamo et al. (2004) that even smaller
boxes have little effect on the spectral energy distribution of the resolved scales, and
that scales longer or wider than the box, which are represented in the simulations
by wavevectors with zero streamwise or spanwise wavenumbers, carry the correct
Reynolds stresses. Flores & Jiménez (2010) showed later that the mean and fluctuating
velocities of channel turbulence remain normal up to a wall distance approximately
one-third of the spanwise periodicity, which would include the whole present channels.
We will concern ourselves with the behaviour of the flow above the viscous layer,
and, as a safeguard against possible effects of the box size, mostly centre on the
region below y/h ≈ 0.6. We use u, v and w for the streamwise, wall-normal and
spanwise components of the velocity vector u, and x, y and z for the respective spatial
coordinates. Capital and primed symbols respectively represent mean and root-mean-
squared quantities with respect to the average 〈 〉, defined over the two homogeneous
directions and time. Instantaneous wall-parallel averages, which are equivalent to the
(0, 0) modes of the two-dimensional (x, z) Fourier expansions of the corresponding
quantities, are denoted, for example, by û00. The ‘+’ superscript refers to quantities
normalized with the friction velocity uτ and with the kinematic viscosity ν. Density is
assumed unity and dropped from the equations. Most of the simulations in this paper
have friction Reynolds numbers h+ ≈ 950. A second set of simulations was run at
h+ ≈ 550, with similar results. They are not emphasized, because of their limited scale
separation. but they are occasionally used to differentiate between inner and outer
length scalings.

Note that even if the Reynolds number is marginal from the point of view of scale
separation, the range between y+ ≈ 100 and y/h ≈ 0.5 (y+ ≈ 500) can be considered
as relatively free from both viscous and outer effects. We will loosely refer to that
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range as ‘logarithmic’, in the spectral sense that the wavelength of the peak of the
premultiplied velocity spectrum grows linearly with y (see, for example, figure 1 in
Jiménez 2012). A more conservative definition of the logarithmic layer, in terms of
the mean velocity profile, only extends to y/h ≈ 0.15, especially in boundary layers
(Nagib et al. 2006), but that outer limit is mostly due to the relatively strong ‘wake’
component of the mean velocity profile in external flows, which is a consequence of
the rotational–irrotational intermittency along the edge of the boundary layer (Jiménez
& Hoyas 2008). The wake is much weaker in internal flows, and it was shown
by Mizuno & Jiménez (2011) that the logarithmic fit of the mean profile can be
extended in channels to y/h ≈ 0.5 by a simple modification of the classical law.
Moreover, neither the logarithmic mean profile nor the linear spectral scaling will be
particularly important in most of the following. We will basically only require that
viscous effects be negligible (y+ � 100), which is easily satisfied for most of the
h+ = 950 simulations.

The numerical code integrates the incompressible Navier–Stokes equations for the
wall-normal vorticity and for the Laplacian of the wall-normal velocity, as in Kim,
Moin & Moser (1987), with the mass flux kept constant. The spatial discretization
is dealiased Fourier in the homogeneous wall-parallel directions, and Chebychev in
the wall-normal one, using 768 × 385 × 768 collocation points along x, y and z.
The collocation resolution is 1+x = 7.8, 1+z = 3.9 and 1+y = 0.03–7.7, and time
advancement is third-order semi-implicit Runge–Kutta (Spalart, Moser & Rogers
1991). The simulations were run for 10 eddy-turnover times, h/uτ , and statistics were
accumulated over the last 6h/uτ . The initial condition for all the simulations was the
same statistically converged field of a standard simulation at the same h+.

In all but the reference numerical experiments, or in the case F92 discussed
below, the evolution equations for the (0, 0) Fourier modes of the three velocity
components are substituted by fixed prescribed mean profiles. Their evolution equation,
e.g. ∂tû00 = N̂x,00, where N̂00 is the wall-parallel-averaged right-hand side of the
Navier–Stokes equation, is therefore substituted by

∂tû00 = ∂yτ̂x,00 − ∂̂xp00 + fx = N̂x,00 + fx, (2.1)

where τx = ν∂yu− uv is the total streamwise shear stress. Requiring

∂tû00 = 0, (2.2)

defines a body force per unit mass,

fx = f̂x,00 =−N̂x,00, (2.3)

that depends only on y and on time. Since the net effect of (2.3) is to enforce (2.2),
and therefore to keep û00 identical to its initial condition, (2.1) is implemented in the
code by prescribing û00 at each time step, using (2.3) to compute fx. The spanwise
component is similarly set to ŵ00(y, t) = 0, while v̂00(y, t) vanishes from continuity.
Note that the only direct effect of û00 on the stress N̂x,00 is through the viscous
term ν∂yyû00, which is negligible above the buffer layer. Its direct contribution to
the Reynolds stress, 〈û00v〉 = 〈û00v̂00〉, vanishes identically. The force in (2.3) is only
defined up to a constant, which can be absorbed into the mean pressure gradient, ∂̂xp00,
which is adjusted every time step to maintain a constant mass flux. From now on, we
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Turbulent channels with prescribed profiles 591

Symbol β yb/h h+ Ubh/ν Prescribed

C90 –4– 0 N/A 934 18518 Profile
C91 —— +0.5 N/A 950 20012 Profile
C92 – – – −1 N/A 950 17654 Profile
F92 - ◦ - - −1 N/A 950 17654 Force
B9L –H– −1 0.25 931 18518 Profile

TABLE 1. Parameters of the IRANS profiles. The mixing parameter β is defined in (2.5),
and yb is the centre of the blending layer.

will assume that ∫ 2h

0
fx dy= 0. (2.4)

In the simplest IRANS case C90, the streamwise mean velocity is fixed to the long-
term average, Un(y), of a standard simulation in a similar computational box, which is
assumed to be ‘correct’, and that will be denoted from now on as ‘natural’. It agrees
with the larger channel at the same Reynolds number by del Álamo et al. (2004).

The IRANS experiments, C91 and C92, summarized in the upper part of table 1, use
a mixed mean profile

û00 = U(y;β)= (1− β)Un(y)+ βUC(y), (2.5)

where UC is the profile obtained by integrating ∂yUC = u2
τ (1 − Y)/νt, where Y = y/h,

and the total viscosity,

νt

ν
= 1

2
+ 1

2

{
1+ κ

′2h+2

9

[
2Y − Y2

]2[
3− 4Y + 2Y2

]2
[

1− exp
(−y+

A

)]2
}1/2

, (2.6)

depends on κ ′ and A (Cess 1958). The best fit to the natural profile at h+ = 950
is κ ′ = 0.438 and A = 27.76, but the IRANS mean profiles are constructed using
(2.5)–(2.6) with the ‘unnatural’ values A = 51.5 and κ ′ = 0.5, which tend to increase
the shear near the wall if β > 0, and near the centreline if β < 0. The friction velocity
and the molecular viscosity are adjusted to fix h+, and to keep the same mass flux as
the natural simulations.

A second set of profiles was constructed from C90 and C92, blending β = 0 near
the wall to β =−1 away from it, using a cubic spline in |y− yb|6 0.075h, continuous
and with continuous first derivatives at its two end points (see figure 1). The profiles
were later made symmetric with respect to the channel centreline. Three blending
locations were used to represent the buffer, logarithmic, and outer layers, but only the
‘logarithmic’ blend B9L is discussed here (yb = 0.25h, see table 1). The viscosity and
mass flux of these simulations are kept the same as in the natural one, which requires
rescaling uτ and h+ slightly.

The mean velocity and shear profiles for the IRANS simulations are shown in
figure 1. The wall-scaled profiles in figure 1(a) differ appreciably from each other,
mostly because uτ is changed by (2.5), but figure 1(b), where the velocities are
normalized with the natural profile, shows that the difference is never more than 5%.
Note the closer agreement in figure 1(a) of C90 and B9L, which share the same wall
shear; the slight mismatch in figure 1(b) between the inner parts of C90 and B9L
is due to the rescaling of the friction velocity mentioned at the end of the previous
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(a) (b) (c)
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0 0.5 1.0 0
0.6

1.0

1.4

0.5 1.0

FIGURE 1. Prescribed profiles for the IRANS simulations. (a) Mean velocity in wall units.
(b) Velocity and (c) shear, normalized with the unconstrained profiles. Symbols as in table 1.
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1

2

(a) (b)

FIGURE 2. (a) Average body force 〈fx〉, obtained from (2.3). The solid dots are obtained
from the overall momentum balance in (3.3), as a test for the statistical equilibrium of the
simulation. (b) Root-mean-squared body force fluctuations. Symbols for C90–C92 are as in
table 1.

paragraph, but is difficult to appreciate in either figures 1(a) or 1(c) because their
vertical scales are respectively 100 and 10 wider than in figure 1(b). Figure 1(c) shows
that the shear ∂yU varies more than the velocity, ∼20 %, although the changes are
still an order of magnitude weaker than the natural vorticity fluctuations, which can be
estimated from the energy dissipation to be |ω′| ≈ (κy+)1/2 ∂yU, where κ is the Kármán
constant, and are therefore at least 4–6 stronger than ∂yU above the buffer layer.

Figure 2(a) presents the time-averaged IRANS force, Fx = 〈fx〉, obtained from (2.3).
Comparing figures 1(c) and 2(a) suggests that Fx is more closely related to the
difference between the natural and prescribed mean shears, which intersect one another
near Y = 0.1, than to the mean velocities, which intersect near Y = 0.5. That was
confirmed by testing a case whose shear intersects the natural one at a different
location from the ones above. The sign of the force tracks approximately the excess
in shear with respect to the natural profile. We will briefly return to this point when
discussing figure 4.

3. Results
The first interesting result is that fixing the mean velocity profile to its natural

value, as in case C90, does not change the intensity of the fluctuations, showing that a
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1

2

3

0 0.5 1.0

0 0.5 1.0 0 0.5 1.0

(a) (b)

(c) (d)

0.6

0.8

1.0

1.2

0 0.5 1.0

1

2

3

4

0.5

1.0

1.5

FIGURE 3. (a) Streamwise, (b) wall-normal, and (c) spanwise velocity, and (d) pressure
fluctuation intensities, for the simulations in table 1. Symbols as in the table.

feedback cycle between the mean profile and the fluctuations, such as the one in the
example (1.1), is not required for the stability of the flow, and that any effect of the
fluctuations on the mean profile can be replaced by a hard prescription. Note that this
is not a trivial result. Figure 2(a) shows that the mean IRANS force vanishes in C90,
but its instantaneous value does not. Figure 2(b) shows that the root-mean-squared
temporal fluctuations of the force, f ′x , are of the same order as the driving pressure
gradient u2

τ/h over most of the channel, and substantially higher near the wall.
On the other hand, the velocity fluctuation intensities are very sensitive to minor

variations of the mean profile. Figure 3 shows intensity profiles for the IRANS
simulations. The ‘flat’ case C91, which has a stronger shear near the wall than the
natural one, has stronger intensities in the buffer layer and slightly weaker ones above
it. The ‘round’ profile C92 which has a stronger shear in the central part of the
channel and a milder one near the wall, shows the opposite trend, and the same is true
for the pressure fluctuations in figure 3(d).

Figure 3 also includes the blended profile B9L, which will be discussed later,
and case F92, which was run by adding to the right-hand side of (2.1) a constant
volumetric force equal to the mean Fx computed for C92, instead of fixing the mean
velocity. That simulation is also included among the mean profiles of figure 1(a) and
there, as well as in figure 3, the results are close enough to C92 for the lines to
overlap and to be hard to distinguish visually. The prescribed-force simulation has
also been added to figure 1(b,c), where the differences are more visible, suggesting
a slightly stronger wake component in F92 than in C92. However, note again the
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0

1

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.000

1

(a) (b)

FIGURE 4. (a) Tangential Reynolds stress. (b) Total stress. Symbols as in table 1.

different vertical scales of figure 1(a–c). The similarity between fixing the force and
the velocity is consistent with the previous observation that fixing the natural IRANS
profile, which involves a force with zero average and large temporal fluctuations, gives
similar results to the unconstrained simulations, in which the forcing is kept fixed to
the same (zero) average.

Those results suggest that the forcing acts mostly through the effect of the mean
profile on the fluctuations, rather than by injecting energy directly into them. That this
is the case can be shown from the equation for the fluctuating kinetic energy,

∂t〈|u|2〉/2− 〈u ·N〉 = 〈u · f 〉. (3.1)

The right-hand side is the energy injected by the IRANS force directly into the
fluctuations. It vanishes identically because f is spatially uniform over wall-parallel
planes. It only has a (0, 0) Fourier mode, and is instantaneously orthogonal under
spatial averaging to all but the (0, 0) Fourier component of the velocity, so that

〈u · f 〉 = 〈û00 · f 〉. (3.2)

The average in the right-hand side of this equation involves only time, but, in each
of the two types of simulations mentioned above, constant-velocity or constant-force,
one of the two factors is constant in time, and can be taken out of the average, while
the other one has zero mean. The direct effect of the force on the fluctuating energy
therefore vanishes.

Figure 4(a) shows that the tangential Reynolds stresses, −〈uv〉, of the IRANS
simulations differ significantly from one another, and figure 4(b) shows that those
differences are not compensated by the viscous stress. In natural simulations, the
gradient of the total stress 〈τx〉 = u2

τ (1 − Y) balances the mean pressure gradient
(Townsend 1976, p. 133), and it follows from (2.1) that the deviation of the observed
〈τx〉 from that linear law is due to the averaged IRANS force. Averaging (2.1)
over time, integrating over y to eliminate the mean pressure gradient, and using
the normalizing condition (2.4), one obtains

h〈fx〉/u2
τ =−1− ∂Y〈τ+x 〉, (3.3)

which can be used as a check on the average force computed directly from (2.3). The
results are included as heavy dots in figure 2(a). Note that, after integrating (3.3),
figure 4(b) can be interpreted as the total force exerted over a layer extending from
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FIGURE 5. (a) Stress correlation coefficient, −〈uv〉/u′v′. (b) Streamwise, (c) wall-normal,
and (d) spanwise velocity fluctuation intensities, normalized with the local friction velocity
(3.4). Symbols as in table 1.

the wall to a given distance, and therefore as the contribution of the forcing to the
momentum flux τx. Comparing it with figure 1 shows even more clearly than figure 2
that the IRANS force follows the mean shear, rather than the velocity.

3.1. Active and inactive motions
Figure 5(a) reveals that, even with the differences just discussed, the correlation
coefficient of the fluctuations, cuv = −〈uv〉/u′v′, is very similar for all the cases,
including the natural one, especially above the buffer layer. Since cuv can be
interpreted as a measure of the efficiency of the turbulent eddies in transporting
momentum, this suggests that the structure of the Reynolds-stress-bearing eddies in
the IRANS channels, or at least the way that they transfer momentum, is not very
different from those in natural ones. It also suggests that the fluctuation profiles of
the different simulations should collapse better when normalized with a ‘local’ friction
velocity defined as

u∗(Y)= [〈τx〉/(1− Y)]1/2, (3.4)

which takes into account the stresses introduced by the IRANS force, instead of with a
single uτ . That is confirmed by figure 5(b–d), which includes flat and rounded IRANS
profiles, as well as the blended case B9L, whose stresses have an almost discontinuous
jump near y = 0.25h. Some non-equilibrium effects visible in figure 5 within and
above the blending layer of B9L will be analysed in more detail in the next section,
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596 F. Tuerke and J. Jiménez

but, even in that extreme case, the collapse is much better than the classical scaling in
figure 3.

It is interesting that the collapse with the local stress degrades near the wall for the
wall-parallel intensities and for cuv. That behaviour is consistent with the influence of
the ‘inactive’ motions proposed by Townsend (1961), who noted that the intensities
of the wall-parallel velocity components do not need to decay as they approach
the wall, except within the viscous layer, but that v and the tangential Reynolds
stress are blocked by the impermeability condition. Therefore, flow structures with
wall-parallel dimensions O(λ) would be inactive from the point of view of momentum
transfer below some y ∼ O(λ), carrying energy but no tangential stress. Townsend
(1961) also proposed that structures that are inactive near the wall are maintained by
Reynolds stresses further up, so that inactive motions are the ‘roots’ of detached active
structures. Spectra of an attached (u) and a detached (−uv) variable are represented in
figure 6(a,b) as context for the discussion below. The attached spectrum Euu extends
all the way to the wall, even for the longest scales of the large computational boxes,
Lx = 8πh, in figure 6(a), but Euv is restricted to wavelengths λ∼ y, leaving an inactive
‘wedge’ of long structures near the wall (Perry & Abell 1975; Perry et al. 1986). A
recent compilation of similar data over a wide range of Reynolds numbers can be
found in Jiménez & Hoyas (2008).

The classical theory (Townsend 1976, pp. 135–139) for the scaling of the
velocity fluctuations with uτ is that they have to carry the tangential stresses,
τ ≈ u2

τ ≈ −〈uv〉 ∼ u′2. That argument would not seem to apply to inactive structures,
but is restored if those structures are the roots of detached active ones, and inherit
their scaling from them. The progressive accumulation near the wall of increasingly
long and wide inactive scales as the Reynolds number increases, each of them with
intensities proportional to u2

τ , is behind the well-known observations of logarithmic
intensity profiles of attached velocity fluctuations, (Townsend 1961; Jiménez & Hoyas
2008; Hultmark et al. 2012) of the logarithmic growth of the near-wall maximum of
u′2+ (deGraaff & Eaton 2000; Metzger & Klewicki 2001; Hoyas & Jiménez 2006), and
of the k−1 spectrum of the streamwise velocity (Perry & Abell 1975; Perry et al. 1986;
Perry & Li 1990). Recent reviews are Smits, MacKeon & Marusic (2011) and Jiménez
(2012).

In natural flows, it is difficult to distinguish between active and inactive motions
from their intensities because, as we have just seen, they share the same velocity scale,
but the fluctuations in IRANS simulations scale differently near and far from the wall,
and active motions, whose scale is determined locally, can be easily separated from
inactive ones, whose velocity scales are determined by their remote active cores. That
is seen in figure 6(c), which is an enlargement of the near-wall region of figure 5(a),
with added cases at different Reynolds numbers. All the correlation coefficients cuv

have minima below y+ ≈ 100, where u′ does not scale well with the tangential stress,
partly because viscosity carries some of the total stress, but mainly because of the
inactive component just discussed. The minima of the two IRANS cases, both of
which correspond to ‘rounded’ profiles with stronger outer fluctuations, are deeper than
in the natural cases, and it is tempting to interpret that observation as evidence that
the inactive components of those cases scale with their stronger outer u∗ instead of
with the local ones. That the effect is confined to the inactive wedge of wavelengths
is confirmed by figure 6(d), which presents the difference between the streamwise
spectra Euu(λx, y) of the IRANS simulation C92 and the natural one C90. Both are
normalized with their local u∗, which works well in the active core that includes most
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FIGURE 6. (a) Normalized premultiplied spectrum, kxEuu/u′2 of natural channels, against
the streamwise wavelength. Wall scaling. Contours are 0.08(0.04)0.2. ——, h+ = 934 (del
Álamo et al. 2004); – – –, h+ = 2003 (Hoyas & Jiménez 2006). (b) Same as (a) but
for −kxEuv/u′v′. Contours are 0.05(0.02)0.11. (c) Stress correlation coefficient, −〈uv〉/u′v′.
——, Natural channels; – – –, IRANS with β = −1. Lines with circles are h+ = 550 and
those without are h+ ≈ 950. –O– natural channel at h+ = 2003, included for comparison.
(d) Premultiplied spectrum of the excess streamwise velocity, in local friction scaling,
kx(E∗uu,C92 − E∗uu,C90). Contours are −0.05(0.05)0.5. The thicker contour is 1Euu = 0, and the
dashed one is negative. The dashed diagonal in (a,b,d) is λx = 9y. (e) Mean-squared intensity
of the large-scale streamwise-velocity fluctuations for wavelengths λx > 2h and λz > h, in
local friction scaling. Symbols as in table 1. (f ) As in (e) but normalized with the local
friction velocity measured at y/h= 0.4.
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598 F. Tuerke and J. Jiménez

of the energy, but fails in the large-scale inactive wedge, where the IRANS normalized
spectrum exceeds the natural one.

That this is due to the scaling of the inactive motions with the stress of the outer
fluctuations is tested in figure 6(e,f ), which presents the behaviour of the large-scale
velocity fluctuations near the wall. Those streamwise fluctuations have been filtered
to include only wavelengths longer and wider than λx = 2h and λz = h, and are only
plotted below y+ = 100. The figures therefore only include contributions from the
inactive wedge. In figure 6(e) they are scaled with their local u∗, and the collapse is
poor. Inspection of figure 6(b) suggests that the active cores of structures with those
wavelengths are located at y/h ≈ 0.4–0.5, whose stresses would provide their velocity
scales. Figure 6(f ) includes the same data as figure 6(e), but scaled with u∗(0.4h). The
scaling is much better, and the same is true when u∗ is taken at y = 0.5h. Note that
the almost discontinuous stress jump in the blended case B9L, which lies between the
intensities in the figure and their assumed scaling velocities, constitutes a particularly
stringent test for the non-local scaling of the inactive motions.

Bradshaw (1967) used a similar technique to test the influence of the intensity of the
outer velocity fluctuations on the near-wall inactive motions, modifying the outer shear
of his boundary layer by means of a pressure gradient.

3.2. Energy balance
The plateau of cuv over y/h ≈ 0.1–0.6 is usually associated with the equilibrium
logarithmic layer. We saw in the previous section that the part of the classical
theory linking the velocity fluctuations with the tangential Reynolds stress holds in
the IRANS simulations. On the other hand, the argument stating that the mean profile
adjusts itself so that the production of turbulent energy, Π = −〈uv〉∂yU, balances the
dissipation, ε does not hold. Figure 7(a–c) shows the production, the dissipation, and
the ratio Π/ε. In the natural case, production exceeds dissipation in the buffer layer,
and both are roughly in equilibrium across the logarithmic layer. Above y ≈ 0.5h, the
production decreases as both 〈uv〉 and the mean shear approach zero at the centreline,
while the dissipation does not vanish. The resulting energy deficit is compensated by
the gradient of a turbulent diffusion flux, ∂y〈vK〉, where K is the kinetic energy, whose
ultimate source is the production excess near the wall (figure 7d). Other contributions,
such as the pressure and viscous diffusion terms, are negligible except very close to
the wall (Mansour, Kim & Moin 1988; Hoyas & Jiménez 2008; Tuerke 2011).

Figure 7(a–c) shows that the same general balance applies to the IRANS simulations
C91 and C92, although the details are different. The production and the dissipation
follow trends similar to the intensities; both are stronger where the shear is higher
than normal, and lower where it is weaker, but those changes do not cancel each
other everywhere. The ratio Π/ε in figure 7(c) deviates more from equilibrium in
the IRANS simulations than in the natural one, specially below y ≈ 0.3h and in
the blended case. The turbulent diffusion fluxes change to compensate the imbalance
(figure 7d), to the point that their gradients occasionally switch sign with respect to
their natural values. The overall flux, 〈vK〉, remains positive in all our simulations.

The importance of the advective energy fluxes argues against local equilibrium
models, which was one of the questions posed in the introduction, and supports a
more distributed view of the energy balance. For example, the ratio Ladv = 〈vK〉/ε is
a ‘diffusion length’ representative of the thickness of the layer whose dissipation could
be fully accounted for by the advective energy flux, and figure 7(e) shows that Ladv is
of the order of or larger than y across the equilibrium layer. The implication is that
the energy of the turbulent structures does not dissipate locally, but is advected over
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FIGURE 7. (a) Compensated turbulent energy production. (b) Compensated dissipation. (c)
Ratio of the turbulent kinetic energy production to the dissipation. (d) Turbulent transport
contribution to the energy budget. (e) Turbulent diffusion energy length. Symbols in (a–e) as
in table 1. (f ) Transition in the blended case B9L, from the natural profile C90 below the
blend, to C92 above it, in terms of the fractional coefficient defined in (3.5). –◦–, kinetic
energy production; – – –, streamwise fluctuations, u′2; ——, transverse fluctuations, v′2 + w′2;
–O–, dissipation. The dashed horizontal lines are φ = 0, C90 and φ = 1, C92.

layers of the order of their distance to the wall before equilibrating. That advection is
what appears as a turbulent diffusion flux. It was shown by Flores & Jiménez (2010)
that individual eddies, marked in their case by a particularly strong tangential stress,
move towards and away from the wall with wall-normal advection velocities of the
order of uτ , which agrees with the observed values of v′, and, since the plane-averaged
wall-normal velocity v̂00 vanishes at all times, the flux 〈vK〉 is a weighted average of
the energy being advected upwards and downwards. The positive fluxes in figure 7(e)
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600 F. Tuerke and J. Jiménez

imply that the eddies moving away from the wall are stronger on average than those
moving towards it, which is consistent with the shape of the intensity profiles. In
natural channels such processes are difficult to disentangle because all eddies share
a common velocity scale, but IRANS simulations provide a way of manipulating the
fluxes by imposing different velocity scales at different wall distances.

The blended IRANS simulation B9L was undertaken for that purpose. As described
in § 2, it is constructed from the natural profile C90 near the wall and the rounded one
C92 above the blend, with a sharp increase in the shear across the blending layer. Its
energy budget near the wall is essentially normal, presumably because the time scales
in the vicinity of the buffer layer are fast enough to equilibrate the flow. Above the
‘discontinuity’, both the production and the dissipation increase, but it is interesting
that, while the production in figure 7(a) adapts almost immediately to that of C92,
the change of the dissipation in figure 7(b) is more gradual. In particular, note that
the dissipation profile does not show any trace of the dip in the energy production
within the blending layer. As a result of those different adaptation rates, the ratio Π/ε
increases sharply above the blend (figure 7c), and the diffusion fluxes in figure 7(d)
change accordingly.

Figure 7(f ) compares the different relaxation rates by means of the ratio

φξ = ξ
+
B9L − ξ+C90

ξ+C92 − ξ+C90

, (3.5)

which is plotted for different (ξ) quantities, and which changes from φ = 0 for C90 to
φ = 1 for C92. It is difficult not to interpret that plot as an evolution from left to right.
The generation and transfer of turbulent energy in parallel shear flows starts with the
tangential Reynolds stress, which feeds energy into the streamwise velocity component,
from where it is redistributed by pressure to the transverse velocities, and finally to
viscous dissipation across the inertial energy cascade (Pope 2000, pp. 315–317). Each
of those steps takes a fraction of an eddy-turnover time (Kolmogorov 1941; Kerr
1990), which is O(y/uτ ) in wall turbulence.

The simplest interpretation of figure 7(f ) is that, as the eddies move across the blend
into the region of stronger shear, their energy production rate and streamwise velocity
fluctuations, u′2, increase almost immediately. After a lag, which can be estimated
from the figure as 1y ≈ y/3, the transverse components, v′2 + w′2, begin to receive
energy and grow, and it is only after a further lag of the same magnitude that the
dissipation begins to adjust. Note that the velocities, which start to receive energy
before the dissipation has been fully established, overshoot their asymptotic values,
and only decay towards it after the viscous dissipation has had time to act. That is
especially clear in u′2, while the transverse velocities never have time to start decaying
in this particular simulation. Note that the spatial offsets just mentioned are consistent
with temporal lags of the order of an eddy turnover with an advection velocity of
the order of uτ , as discussed above. Note also that an alternative interpretation
emphasizing the advection of fluid particles instead of coherent eddies would result
in essentially the same observations. In that sense, the two interpretations could be
considered equivalent, although the long relaxation lengths in figure 7(f ) probably
require that the energy of the particles stays ‘unmixed’ for some time.

4. Conclusions
We have shown that simulations of plane turbulent channels with prescribed mean

velocity profiles can be used to study the physics of turbulent fluctuations above the
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buffer layer. In the first place, we have shown that fixing the mean velocity to its
correct value does not change the magnitude of the velocity fluctuations, while even
slightly incorrect profiles have a large effect on the intensities, following the local
mean shear rather than the mean velocity. Fixing the velocity profile is equivalent
to applying a volumetric force, uniform over wall-parallel planes, but with relatively
strong temporal fluctuations. Only the temporally averaged force appears to matter, and
a simulation in which the fixed velocity profile was substituted by an equivalent fixed
force gave similar results. We have interpreted those results as disproving models, such
as the one discussed in the introduction, in which the feedback of the fluctuations
on the mean profile, or more generally of the velocity profile averaged over relatively
large regions, is essential to the stability of the equilibrium of the flow.

Nevertheless, the most interesting results refer to the dynamics of the smaller eddies,
rather than to the mean velocity profile. The equilibrium of the latter requires the
interplay of relatively weak forces, such as the mean viscous force or the Reynolds
stresses, and evolves over correspondingly slow time scales. In most of the present
experiments, the mean profile is simply fixed. The fluctuations have faster time scales,
and respond to stronger local forces, mainly pressure. Consider an eddy, defined in
the sense of Obukhov (1941) as a fluid parcel of characteristic size λ and internal
velocity differences uλ, which stays identifiable over a turnover time of order λ/uλ.
It undergoes accelerations of order u∇u ∼ u2

λ/λ, implying forces per unit mass of
the same magnitude. Assuming inertial scaling, uλ ∼ (ελ)1/3 ≈ uτ (λ/y)

1/3, the implied
forces are of order u2

τ (y
2λ)
−1/3, and are stronger than the Reynolds stress gradient,

O(u2
τ/h), as long as λ/y < (h/y)3. A similar argument shows that the eddy forces are

stronger than the mean viscous force, ν∂yU ∼ νuτ/y2, if λ/y < y+3. Both are easily
satisfied for all reasonably isotropic scales in the overlap region, for which λ . y.
That is probably the reason why we find that the details of how the mean profile is
modified are irrelevant to the behaviour of the fluctuations, which only feel its effect
when integrated over an eddy turnover.

The experiments in this paper have been designed to explore the internal structure of
eddies, in the sense just defined, by creating profiles that interact with them differently
at different heights, such as with higher shear near or far from the wall, or with sharp
shear changes. That allows us to untangle internal energy-redistribution paths which
are difficult to separate otherwise, without necessarily tracking the eddies individually.

Consistent with the decoupling predicted by the previous arguments, the isotropy
coefficients of the eddies weakened or strengthened by the profile-fixing experiments
are similar to those of natural channels above the buffer layer, even if the intensities
are incorrect. In particular, the correlation coefficient between u and v changes little,
and the intensity profiles collapse well when normalized with a y-dependent friction
velocity that takes into account the extra stresses introduced by fixing the profile.

The correlation coefficient near the wall is lower than normal in simulations that
have a higher shear in the central part of the channel, and vice versa, reflecting the
effect of the inactive motions carrying energy but no tangential stresses, as originally
hypothesized by Townsend (1961). In particular, we have shown that those inactive
eddies are restricted to a spectral ‘wedge’ of large scales near the wall, whose
intensities are not controlled by the local shear stress, but by the stresses in ‘active’
cores located farther from the wall at the same wall-parallel scales.

The production and dissipation of the kinetic energy are not in local equilibrium,
with the imbalance being compensated by turbulent diffusion, suggesting that it is due
to the different rates at which the various properties adjust to the shear when the fluid
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is advected towards or away from the wall. Particularly instructive are simulations in
which the shear increases relatively sharply above a blending layer. The tangential
Reynolds stress is the fastest to respond to the higher shear, followed closely by the
energy of the streamwise fluctuations, then by that of the transverse fluctuations, and
finally by the dissipation, in agreement with the classical understanding of the energy
transfer in shear flows. The offsets between the evolution of the different variables
are of the order of the wall distance, strongly suggesting that the equilibrium between
production and dissipation in the inertial region has to be understood in terms of
the integrated energy over wall-attached layers, rather than locally at a single wall
distance.

If the offsets are interpreted as temporal delays in the evolution of eddies advected
with wall-normal velocities of the order of uτ , as suggested both by the v′ profile and
by previous eddy-tracking studies (Flores & Jiménez 2010), the implied lags are of
the order of the local eddy-turnover time, in agreement with the classical Kolmogorov
(1941) cascade model.
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