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Abstract

The Session Initiation Protocol (SIP) is the multimedia communication pro-
tocol of the future. Used for Voice-over-IP (VolIP), Internet Multimedia
Subsystem (IMS) and Internet Protocol Television (IPTV), its concepts are
based on mature and open standards and its use is increasing rapidly within
recent years. However, with its acceptance as a mainstream communica-
tion platform, security concerns become ever more important for users and
service providers. In this thesis we identify different attacks on SIP-based
networks with the focus on Denial-of-Service attacks (DoS) flooding attacks.
We evaluate SIP infrastructure for DoS attack possibilities and demonstrate
a completely new attack which utilises a combination of the SIP and Domain
Name Service (DNS) system. We propose three different DoS detection and
mitigation schemes, including one to handle this particular SIP DNS attack.
We also provide a first step into Distributed DoS mitigation by introducing
a firewall pinholing scheme. Distributed DoS mitigation is only marginally
addressed by current research works. We also evaluate the requirements for a
self-sufficient and scalable SIP security framework, where attack countermea-
sures can be evaluated and tested. We use this framework for our solutions
and validate their effectiveness for DoS mitigation. With these solutions, gen-
eral SIP networks will be more robust against flooding DoS and Distributed
DoS attacks.
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Deutsche Zusammenfassung

Fiir Multimedia Kommunikation spielt das Session Initiation Protocol (SIP)
eine immer wichtigere Rolle. SIP ist ein ausgereifter, offener Standard fiir In-
ternet Telefonie (Voice-over-1P, VoIP), Internet Multimedia Subsystem (IMS)
oder IP-basiertes Fernsehen (IPTV), dessen Verbreitung in den letzten Jahr-
en stark angestiegen ist. Mit der breiten Akzeptanz von SIP als etabliertem
Internetprotokoll werden Sicherheitsaspekte fiir Anwender und Serviceanbie-
ter immer bedeutender. Diese Dissertation behandelt verschiedene Angriffe
auf SIP-basierte Netzwerke mit dem Schwerpunkt Uberlaufangriffe (Denial-
of-Service, DoS). Wir evaluieren SIP-Infrastrukturen auf mogliche Angriffs-
punkte und stellen zudem einen komplett neuen DoS Angriff auf SIP-Netz-
werke vor. Dieser nutzt eine Schwachstelle bei der Zusammenarbeit von
SIP mit dem Domain Name Service (DNS) aus. Wir fithren auBlerdem
drei verschiedene Sicherheitsmethoden zur Erkennung und teilweisen Ab-
schwéachung von DoS-Angriffen ein, inklusive einer Methode als Gegenmaf3-
nahme gegen den angefithrten SIP-DNS Angriff. Weiter prasentieren wir
einen ersten Schritt zur Sicherung vor ”Verteilten DoS-Angriffen”. Dieses
Thema wurde bislang nur in ersten Anséatzen von der Forschergemeinschaft
behandelt. Zusatzlich erortern wir die Anforderungen an ein autarkes und
skalierbares SIP-Sicherheitsframework zum Evaluieren, Testen und Validier-
en der vorgeschlagenen Sicherheitsmethoden. Durch die Anwendung dieser
Methoden kann in Zukunft ein SIP-Netzwerk besser gegen DoS-Angriffe ab-
gesichert werden.

il



v



Acknowledgements

This thesis was hard work, and definitely not possible without the help of
others. In particular:

My supervisors Prof. Dr. Thomas Magedanz and Prof. Dr. Erwin
Rathgeb

My girlfriend Trine
My family
My colleagues Dorgham Sisalem, Jens Fiedler and Yacine Rebahi

My students Ge Zhang, Chengjian Wang, Andreea-Ancuta Onofrei,
Erkan Giiler, and Martin Becker

You know what you did — a big thanks!



vi



Contents

1 Introduction
1.1 Motivation . . . . . . . . .

1.2
1.3
1.4

1.5
1.6
1.7

1.11
1.1.2
1.1.3

Importance of SIP for Communication Networks . . . .
Complexity of SIP Networks . . . . . .. .. ... ...
SIP Challenges . . . . . .. ... ... . ... .....

PhD Scope . . . . . . . ..
Threat Impact and Requirements . . . . . . . ... ... ...
Related Works . . . . . . . . .. ...

141
1.4.2

General SIP Security Related Work . . . . . . . . . ..
SIP DoS Related Work . . . . . .. ... .. ... ...

Methodology . . . . . . . . ...
Major Contribution . . . . . . . .. . ... ...
Thesis Structure . . . . . . . ...

Background Information

2.1 Multimedia Communication with SIP . . . . . . . . . . .. ..

2.2

2.3

2.1.1
2.1.2
2.1.3
214
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

SIP Entities . . . . . . ... ... ... ... ...
SIP Structure . . . . . .. ... ... ... ...
SIP Message Format . . . . . ... ... ... .....
Dialogs and Transactions . . . . . . . . ... ... ...
Protocol Operation . . . . . ... ... ... ... ..
SIP Security Mechanisms . . . . . . . .. .. ... ...
Session Description Protocol . . . . . . . ... ... ..
Real-time Transport Protocol . . . . .. ... ... ..
SIP Alternatives . . . . . . . .. .. ... ... ....

SIP Network Application . . . . . . .. .. .. ... ... ...

2.2.1
2.2.2

[P-based Telephony Networks . . . . ... ... ....
Next Generation Networks . . . . . . . . . . . .. ...

Denial of Service Attacks . . . . . . . . .. ...

2.3.1
2.3.2

Motivation for DoS Attacks . . . . . . . .. ... ...
DoS Targets . . . . . . . . ...

vil



viil

CONTENTS

2.3.3 Distributed Denial of Service Attack . . . . . ... ..
2.3.4 Mitigation Countermeasure Analysis . . . .. ... ..
2.4 Intrusion Detection Systems . . . . . . .. ... .. ... ...
2.4.1 General Overview of Intrusion Detection . . . . . . ..
2.4.2 Intrusion Detection System Types . . . . . . . . .. ..
2.4.3 Detection Strategies . . . . .. .. ... ... ... ..
2.5 Relevant Tools . . . . . . .. ... ...
2.5.1 Netfilter / I[Ptables . . . . ... ... ... ... ....
252 SER . ...
2.5.3 PROTOS Suite . . . . ... ... ... ... ......
254 SIPp . . ..o

SIP Security Threats with Focus on DoS

3.1 General Threats and Related Works . . . . . . . ... ... ..

3.2 SIP DoS Introduction . . . . . . . ... .. ... ... ... ..

3.3 SIP DoS by Message Payload Tampering . . . . . . .. .. ..
3.3.1 Example: SIP Message Tampering with SQL . . . . . .

3.4 SIP DoS by Message Flow Tampering . . . . . . .. .. .. ..
3.4.1 REGISTER Attack . . . . . ... ... ... ......
3.4.2 INVITE Attack . . . . ... ... ... ... ... ...
343 BYE Attack . . . . ... ...
3.44 CANCEL Attack . . . ... ... ... ... ......
3.45 UPDATE Attacks . . . . . . ... ... ... ... ...
3.46 REFER Requests . . . . ... .. ... ... ......

3.5 SIP DoS by Message Flooding . . . . ... ... .. ......
3.5.1 Exploitable SIP Resources . . . . . .. ... ... ...
3.5.2  Overview of SIP Flooding Attack Scenarios . . . . ..
3.5.3 Attack Amplification . . . . ... ...
3.5.4 SPIT and Denial of Service (DoS) Attacks . . .. ...

DoS Protection Requirement Analysis

4.1 Requirements for Payload Tampering Protection . . . . . . . .

4.2 Requirements for Message Flow Tampering Protection

4.3 Requirements for Message Flooding Protection . . . . . . . ..
4.3.1 Possible Countermeasures Against Memory Exploita-

tion Attacks . . . . ...

4.3.2 Countermeasures Against CPU Attacks . . . . . . . ..

4.4  Summary of Operational Guidelines . . . . . .. .. ... ...

4.5 Requirements for External Monitoring . . . .. ... .. ...



CONTENTS ix

5 Security Solution Specification 99
5.1 General Protection Framework . . . . . . . ... ... .. ... 99
5. 1.1 Overview . . . . . . ... 99
5.1.2  Filter- and Scanner Node ("Filter”) . . . . . ... ... 100
5.1.3 Analysis Node ("Analyzer”) . . . ... ... ... ... 101
5.1.4 Decision Node ("Decider”) . . . . . . . ... ... ... 102
5.1.5  User Interaction . . . . . . . .. ... ... ... .... 102
5.2  General SIP DoS Attack Protection . . . . . . . .. ... ... 103
5.2.1 Background: The SIP State model . . . . ... .. .. 103
5.2.2  Solution Approach: Finite Server Transaction State
Machines . . . . . .. ... 104
5.2.3  Attack Detection and Mitigation . . . . . ... .. .. 107
5.3 Distributed SIP DoS Attack Protection . . . . . . . . ... .. 109
5.3.1 Background: Greylisting . . . . . .. .. .. ... ... 110
5.3.2  Solution Approach: Firewall Pinholing . . . . . . . .. 110
5.3.3 Pinholing Parameters . . . . . . . .. .. ... ... .. 111
5.4 Combined SIP-DNS DoS Attack Protection . . . . . ... .. 113
5.4.1 Background: Domain Name Service . . . . . . . . . .. 114
5.4.2 DNS Usage in SIP Infrastructures . . . . . . . .. ... 115
5.4.3 Scope of the Attack . . . . . . ... ... ... .. ... 115
5.4.4 Basic Prevention Possibilities . . . . .. ... .. ... 117
5.4.5 DNS Implementations with SIP Servers . . . . . . . .. 118
5.4.6  Solution Approach: Intelligent Unblocking DNS Cache 119
6 Implementation 123
6.1 VoIP Defender Architecture . . . . .. .. ... .. .. .... 123
6.1.1 Filter. . . . . .. .. .. 123
6.1.2 Analyzer . . . . . . ... 125
6.1.3 Decider . . . .. ... ... 126
6.1.4 Component Interaction . . . . . . ... ... ... ... 127
6.2 The State Machine Module . . . . . . . ... ... ... .... 128
6.3 The Pinholing Module . . . . . .. ... ... ... .. .... 131
6.4 The DNS Cache . . . . . . .. ... ... . ... ... ..... 131
7 Validation and Optimisation 133
7.1 VoIP Defender Validation . . ... ... ... . ... ..... 133
7.1.1 Test Bed Setup . . . .. ... ... ... ... ..., 133
7.1.2 Round Trip Time Delay . . . . ... ... ... .... 134
7.1.3 Throughput . . . . ... . ... o 134
7.2 The State Machine . . . . .. ... ... .. .. ... ..... 135

721 Test Bed . . . . . . . . . ... 135



CONTENTS

7.2.2  Testing Scenario Setup . . . . . . . ... ... .. 136
723 Results. . . .. .. ... 138
7.2.4 Latency Time and CPU, Memory Usage . . .. .. .. 140
7.3 Pinholing Validation . . . . . ... ... ... ... ... ... 141
7.3.1 Operation Evaluation Scenario. . . . . ... ... ... 141
7.3.2 Performance Evaluation Scenario . . . ... ... ... 142
7.4 DNS Cache Validation . . . . ... ... ... ... ...... 144
74.1 Test Bed Setup . . . . ... .. ... ... ... ... 144
7.4.2 Feasibility of the Attack . . . . ... ... ... .... 146
7.4.3 FEvaluation . . . . . ... ... L 146
7.5 Performance Optimisation . . . . . . ... ... .. ... ... 153

7.5.1 Reducing the Number of Rule Updates in the Pinholing
Module . . . . .. .. ... 153

7.5.2  Generally Reducing the Number of Generated Firewall
Rules. . . . . . . . . 156
Comparison with Other Approaches 169
8.1 Evaluation Criteria for DoS Defence Systems . . . . . . . . .. 169
8.1.1 Algorithm-related Evaluation Criteria . . . . . . . . .. 170
8.1.2 Framework-related Evaluation Criteria . . . . . . . .. 171
8.2 Survey of SIP DoS Countermeasure Solutions . . . . . .. .. 172
8.2.1 Tancu03 . . . . ... ... ... . ... 172
8.2.2 Reynolds03 . . . .. ... ... ... . 173
823 Wuld . ... .. .. 174
8.2.4 GeneiatakisOd . . . . ... ... 175
825 Markl05 . . . . ... 175
826 Chen06 . . ... .. ... .. ... 176
8.2.7 Niccolini06 . . . . . . .. . . . ... ... 176
8.2.8 Sengar06-1. . . . .. .. . ... ... ... 177
8.2.9 Sengar06-2. . . . . . . . ... 178
8.2.10 Nassar06 . . . . . . . . . . . . ... 179
8.2.11 RebahiO7 . . . . . . .. ... ... ... 180
8.2.12 Ding07 . . . . . . .. 180
8.2.13 NassarO7 . . . . . . . . . . . . 181
8.2.14 Barry07 . . . . . . . 182
8.2.15 BouzidaO8 . . . . . . .. . ... ... 182
8.2.16 RieckO8 . . . . . . . . . . ... 183
8.2.17 Nagpal08 . . . . .. .. ... ... 184
8.3 Rating of SIP Flooding Countermeasures . . . . . . .. .. .. 185
8.4 Discussion of SIP DoS Protection . . . . . ... ... .. ... 187

8.4.1 Payload Attacks . . . . . . ... ... L 187



CONTENTS xi

8.4.2 Flow Tampering Attacks . . . . . . ... ... .. ... 187

8.4.3 Flooding Attacks . . . . . .. ... ... ... 191

8.4.4 Frameworks . . . .. ... oo 192

9 Conclusions 195
9.1 Summary and Impact . . . . .. ... 195

9.2 Outlook . . . . . . . 198



xii

CONTENTS



List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22
2.23

SIP is the basis of most future IP communication networks . . 4
Taxonomy of SIP DoS attacks (Scope of this work highlighted) 7
The workflow within this PhD . . . . . . ... .. ... .. .. 10
Placement of our SIP security framework within a common

SIP network . . . . . . . . ... 11
Registration and invitation process . . . . . . .. ... .. .. 17
Request redirection . . . . . . .. ..o 18
Entities forming a SIP communication network. . . . . . . .. 19
UAC / UAS transaction relationships . . . . . . .. ... ... 23
INVITE client (left) and server (right) transactions . . . . . . 24
Non-INVITE client (left) and server (right) transactions . . . 25
SIP session establishment and call termination . . . . . . . .. 26
Call proxying scenario . . . . . . . . . .. ... ... 27
Hop-by-hop vs end-to-end security . . . . . . .. ... ... .. 29
Overview of a SIP-based VoIP network . . . . . ... ... .. 33
Overview of an IMS network . . . . . . ... ... ... .... 35
Example DoS attack on authentication . . . . . ... .. ... 41
Overview of the TLS session establishment . . . . . . . .. .. 42
Different attacking topologies of DDoS networks . . . . . . .. 44
Propagation with central repository . . . . . .. ... .. ... 46
Propagation with back chaining . . . . . . ... .. ... ... 46
Autonomous propagation . . . . . . ... ... 46
DDoS network control architecture . . . . ... .. ... ... 47
Ingress filtering . . . . . . ... oL 50
Stateful vs. stateless protocol operation . . . . . . . ... ... 51
Difference between IDS systems. Top: Network IDS (NIDS).

Middle: Host IDS (HIDS). Down: Extension Module . . . . . 56
NIDS architecture . . . . . . .. .. ... ... o7
General architecture of SER . . . . . . . ... ... L. 60

xiii



X1iv

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

5.1
5.2
5.3

5.4

9.5
5.6

5.7
0.8
5.9

5.10
5.11

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3

LIST OF FIGURES

Classification of SIP DoS attacks. . . . . . . .. ... ... .. 66
Normal register flow . . . . .. ... .. ... 69
Normal session termination . . . . . . . ... ... ... ... 70
Spoofed session termination . . . . .. ... ... ... 71
Normal CANCEL flow . . . . ... ... ... ... ... ... 72
CANCEL attack . . . . . ... ... 73
Distinction problem in a DDoS attack scenario . . . . . . . .. 74
SIP message flooding using REGISTER messages . . . . . .. 79
Normal flow of INVITE message . . . . . . . .. .. ... ... 80
Flood with INVITE messages . . . . .. .. ... ... .... 81
Alternative flood with INVITE messages . . . . . .. .. ... 82
Multiple header placement possibilities . . . . . . . . .. ... 84
Design scheme of a parallel SIP server. . . . .. .. ... ... 96
VoIP Defender overview . . . . . ... ... ... ... .... 101
UAS / UAC transaction relationships . . . . . . ... ... .. 103
SIP transaction state models. Left: UAS INVITE, right: UAS

Non-INVITE . . . .. .. . .. . .. . ... 105
Detection and mitigation of attacks from misconfigured or bro-

ken user agents. . . . . .. ... oL 109
Pinholing process overview . . . . . . . . ... ... ... ... 111
Pinholing overview, all new requests are blocked until message

re-transmission. . . . ... ..o 113
A procedure of DNS recursive request . . . . . . ... .. ... 114
Example SIP message with unresolvable URIs . . . . . . . .. 116

Attacking scenario by blocking SIP proxy with messages con-
taining unresolvable URIs with a default BIND DNS setup . . 117

Parallel process design of the SIP proxy . . . . . . . . .. ... 119
Procedure in an asynchronous scaling design . . . . . . . . .. 120
Filter entities . . . . . . . . . . . ... 124
Analyzer architecture . . . . . . .. ..o 126
Decider architecture . . . . . . .. ... oL 127
Pinholing setup . . . . . . . .. ... oo 130
DNS cache implementation overview . . . . . ... ... ... 131
VoIP Defender performance test bed setup . . . . . . .. ... 134
VoIP Defender state machine test bed setup . . . . . .. ... 136

State machine latency time for detection and mitigation at
different sampling intervals (flooding rate: 500 INVITE Msg/s) 140



LIST OF FIGURES

7.4
7.5
7.6
7.7
7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

State machine CPU load and memory usage (Intel Xeon CPU
3.2Ghz, Memory 512 MB, inside Xen Virtual Machine). . . . .
Time to install 10000 rules at the pinholing firewall . . . . . .
DNS cache test bed architecture . . . . . . . . ... ... ...
Processing performance of the local proxy for different pro-
cessing queues n and varying attacking intervals . . . . . . . .
Message processing capabilities with different parallel process-
ing queues (n =2,4,16,32) . . . ... ... ... ... ...
Message processing capabilities with different parallel process-
ing queues (n = 64,128,256), and the DNS cache applied
(M=2). . .
Performance of SIP proxies equipped with different cache re-
placement policies under attack (n=4) . . . . ... ... ...
Performance of SIP proxies equipped with different cache re-
placement policies under attack (n=32) . . ... ... .. ..
Proxy performance with different number of cache entries un-
der attack . . . . . . ...
Time to install 10000 rules at the pinholing firewall (optimised
VETSION) . o v v v s e e e
Time to install 50000 rules at the pinholing firewall (optimised
VEISION) . o v v v e
An optimiser re-constructs the firewall ruleset generated by an
IDS to enhance throughput of the IDS . . . . ... ... ...
Overview of the ruleset optimiser . . . . . . .. .. ... ...
Example process of the optimisation algorithm - here, the four
similar rules a; — a4 are merged into one new rule and rules
with lesser frequency are dropped. . . . . . . .. .. ... ...
The inaccuracy index of outcome ruleset varies according to
threshold x for ruleset A and B, when 1 = 20, 0,4, = 20

The inaccuracy index of outcome ruleset varies according to
threshold x for ruleset C, when n = 20,040, =20 . . . . . ..

XV



xvi LIST OF FIGURES



List of Tables

2.1
2.2
2.3
24

3.1
3.2
3.3

6.1
6.2

7.1
7.2
7.3

74

7.5

7.6
7.7
7.8
7.9
7.10

8.1
8.2

SIP request methods . . . . . . . ... .. ... ... ... .. 21
SIP response codes . . . . . . . ... ... L. 21
Common header fields . . . ... ... ... ... ... ... . 23
Types defined by SDP . . . .. ... . ... ... 31
Network and application security issues . . . . . . . . . . . .. 64
Example subscriber table entry . . . .. .. ..o 68
Forwarding to non-existent TCP receivers . . . .. ... ... 87
Condition types . . . . . . . . ... 125
Measurement variables for the state machine module . . . . . 129
Measured round trip times (inms) . . . ... ... ... ... 135
Filter throughput . . . . . . . . . .. .. ... ... ... ... 136

State machine measurements showing maximum value for sam-
pling interval, B = background traffic (80 msg/s), A = attack
traffic (80 msg/s) . . . . . ... 137
State machine measurements showing maximum value for sam-
pling interval, B = background traffic (80 msg/s), A = attack
traffic (500 msg/s) . . . . . ... 138
State machine measurements showing maximum value for sam-
pling interval, B = background traffic (80 msg/s), A = attack

traffic (2000 msg/s) . . . . . ... 139
DNS Cache test bed parameters . . . . . . .. ... ... ... 146
Cache replacement strategies and their operating key . . . . . 149
Worst case rule adding capacities . . . . . . ... ... ... 155
Introduced variables . . . . ... ... 162
Calculation time comparison of the algorithms, T2 with GSS

applied . . . . . .. 167
Rating of flooding countermeasures . . . . . . . .. ... ... 186
Comparison of evaluated approaches, part I . . . . . . .. .. 188

XVvii



LIST OF TABLES

8.3 Comparison of evaluated approaches, part II



LIST OF TABLES



Chapter 1

Introduction

1.1 Motivation

The communication world is changing as technology progresses over time.
In recent years' two highly successful innovations have dominated communi-
cation patterns and habits in people’s daily lives: The Internet and mobile
communication over cellular networks.

These technologies have been developed independently of each other, and
are based on completely opposite media transportation systems. The Inter-
net is deployed over a best-effort, packet-based channel-access system, while
cellular networks establish a fixed bandwidth between users (circuit switch-
ing) so that they have a dedicated link for communication.

However, we can observe the trend that different communication plat-
forms are converging together. The goal is here to deliver one all-IP based
network platform combining the feature set of the Internet, mobile cellu-
lar networks and public switched telephone networks in one single platform.
Voice-over-IP (VoIP) is a first step into this direction, as it allows stan-
dard telephony services over IP networks. In a further step, so-called Next-
Generation-Networks (NGN) will provide the necessary infrastructure for
converging communication networks. International standards for IP-based
converged networks are being developed with the aim that these will be used
worldwide in a way the Internet is already used today. VolIP is currently de-
fined by the Internet Engineering Task Force (IETF), and a particular NGN
in form of the Internet Multimedia Subsystem (IMS) [22] is being standard-
ised for worldwide use. IMS is still under active development from a world-
wide alliance, called the 3rd Generation Partnership Project (3GPP), and
built on standardised IETF core protocols from the Internet world. Telecom-

!The press date of this document is January 31th, 2009



4 CHAPTER 1. INTRODUCTION

munication providers are changing their basic infrastructures to use VoIP and
IMS as the core for their future networks. Worldwide providers are running
field tests with IP-based converged networks.

1.1.1 Importance of SIP for Communication Networks

The main building block of NGN is the Session Initiation Protocol (SIP) [23]
as the core protocol to establish, modify, and terminate the actual sessions
between users. A session can be any network connection a user initiates that
lasts for some time, e.g. a voice call or a live video stream.

Moreover, SIP is also the dominant protocol for VoIP today. Initially
specified in 1999, SIP can be used for any session control between multi-
ple participants. VoIP gained in popularity in recent years; more and more
providers are offering VoIP services based on SIP. As a first step to establish
future NGNs, telecommunication providers are exchanging their old circuit-
switched PSTN infrastructure with all-IP, SIP-based voice networks. Even
when the end-device at the customer might still be the same analogue phone
from 20 years ago, the new underlying network has changed completely to
an [P-based packet switched network using SIP. Some years ago, the domi-
nant VoIP signalling protocol was H.323 [24], however in 2008 SIP usage has
overtaken H.323 usage by far.

Next Generation
Networks e.g.,
IP Multimedia Subsyste
(NGN-IMS)

Voice Over IP
(VolP)

IP Television
(IPTV)

Session Initiation Protocol
(SIP)

Figure 1.1: SIP is the basis of most future IP communication networks

SIP is also constantly extended for newer use cases [25], and is now widely
deployed as the core protocol for Internet Protocol Television (IPTV) offer-
ings. Hence, in future years it is likely that most users will uses communica-
tion technology which is at least partly built on top of SIP (Figure 1.1).
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1.1.2 Complexity of SIP Networks

With different projected use cases and its claim to be the building block
for all-encompassing communication networks, the complexity of SIP-based
networks increase. Understanding SIP networks becomes thus ever more dif-
ficult, especially under two aspects: Complexity of the core SIP specification
and complexity of SIP-based networks. This has a direct impact on network
security.

SIP core specification complexity. If the document length of a protocol
specification is an indication for the complexity of a protocol, then SIP ranges
at 3rd place of all IETF protocol specifications. Counting 256 pages, only the
specification for Internet Open Trading Protocol [26] (276 p.) and Network
File System v4 [27] (262 p.) are longer documents. This huge document size
is necessary to explain SIP’s multi-layered session control mechanism, i.e.
it distinguishes between transactions, dialogs and sessions between partici-
pants, and for each layer individual parameters and procedures are defined,
like the time-to-live value of a session or the re-transmission procedure for
transaction messages. Additionally, SIP defines its own reliable transport
mode over UDP connections, including four full state machine specifications.
SIP is already defined in its 2nd revision, changing some core functional-
ity (e.g. multiple request transaction matching), while still remaining fully
compatible to the first published version. It can easily be extended through
further additions, and more of 100 have already been specified [25], leading
to an even complexer specification.

SIP network complexity. Combining the convolute SIP specification
with a composite network of multiple entities serving different roles adds
another level of complexity. Generally, SIP-networks are based on multiple
different entities, e.g. in a VoIP setup, there are multiple different proxies,
gateways to legacy networks and multiple end devices for users. Projecting
this to a general NGN, it becomes even more challenging to distinguish be-
tween the different roles and connections between all involved SIP entities
(see, for example, Figure 2.11) like network border gateways, home and visit-
ing proxies, application or conversation servers. On top of that, components
can be combined from different vendors, which might differ in implementa-
tion and might not support the same set of extensions.
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1.1.3 SIP Challenges

To deploy SIP-based networks, it becomes also necessary to guarantee the
correct operation of these networks. Multiples steps are necessary to achieve
this, beginning from correct and standard compliant implementation for in-
teroperability, over to a scalable design to handle higher loads of traffic and
ultimately deploying redundancy systems to guarantee high service availabil-
ity. Especially with more complex network setups a significant task will be
network monitoring, to easily detect network errors, to anticipate network
bottleneck conditions or to detect security breaches. It will only be a question
of time until attacks will be actively directed towards the increasing num-
ber of SIP servers. As outlined, SIP is not straight-forward to setup. This
increases the chance to have open security issues in the network, and with
components available from different vendors, theses components are differ-
ently hardened against attacks.

Especially Denial-of-Service (DoS) attacks have been a major threat in
the Internet world now for many years. Several widely known attacks have
been successfully launched at popular Internet services, including DNS root
server attacks and WWW server attacks. These attacks are rather easy to
mount through the help of so-called Bot-networks (in the form of a Distributed
Denial of Service, DDoS), which generate a large amount of traffic that the
service under attack is unable to handle. Hence SIP, like any other IP-
based protocol is also vulnerable to these common IP-based DoS attacks
(like SYN flooding, link flooding) [28]. On top of that, possibilities exist
to launch attacks that target directly SIP relevant methods and functions,
which cannot be dealt with common DoS defence strategies. To counter
such attacks, new algorithms tailored directly for SIP environments have to
be deployed.

1.2 PhD Scope

The goal of this thesis is to illustrate common SIP network vulnerabilities,
to indicate ways how to exploit these vulnerabilities and to present solutions
to detect and mitigate attacks on SIP networks.

Security for SIP architectures encompasses a wide field, including privacy
concerns, cryptography, unsolicited message handling (the spam problem),
fraud or intrusion detection.

In this work we focus on DoS attacks at the SIP protocol layer.
The SIP specification gives multiple opportunities to launch attacks. Fol-
lowing the taxonomy shown in Figure 1.2, we concentrate on flooding at-
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tacks, both intentional and unintentional. Payload attacks can be handled
by signature-based message checkers like [29], while flow tampering attacks
can be prevented by applying message encryption (see Chapter 8). Flooding
DoS attacks however, are still an unsolved problem.

4‘ Type F—{ Message Flooding ‘

L{ Exploited Vulnerability }7 Limitation of
Bandwidth
CPU
Memory

Helper Service

Exploited Vulnerability }7 Lack of Authentication / Encryption
Implementation Errors

| Source|—{single Source (DoS)

Multiple Source (DDoS) / Spoofed IP Addresses

W Malicious

Unintentional

Figure 1.2: Taxonomy of SIP DoS attacks (Scope of this work highlighted)

Prevention has to be physically established within the network, but inde-
pendent of other components. This is handled by a dedicated security com-
ponent of the network, which monitors relevant network traffic. We analyse
the requirements for such network security solutions for high flooding attacks,
upon which a prototype security solution will be based.

As security threats vary for different setups with varying protocols, we
concentrate on the SIP protocol and its dependencies. The defined solutions
presented within are specially targeted at SIP networks, however, they might
also be applicable to other types of networks. Also, the scope is directed to
the SIP network level: Implementation errors or user errors are not consid-
ered. We focus on dedicated SIP related DoS attacks, and do not consider
common IP-based attacks — such attacks and countermeasures have already
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been extensively studied in computer science literature, for example see the
work of Peng et al. [30].

1.3 Threat Impact and Requirements

Already in the specification of SIP [23] the possibilities of DoS attacks are
mentioned. In 2005, the U.S. National Institute of Standards and Technology
[31] and also analysts at DataMonitor [32] have determined DoS flooding to
be a serious threat for SIP VoIP infrastructures. This is re-affirmed by threat
predictions for 2009 from Georgia Tech [33]. Also, this topic is currently
being evaluated and discussed in current conferences and trade shows (e.g.
34, 35]).

The European Telecommunications Standards Institute (ETSI) has re-
leased the technical specification describing the requirements for their SIP-
based TISPAN NGN. This includes the requirement to provide mechanisms
to mitigate DoS attacks [36]. In a threat analysis for ETSI TISPAN, two
kinds of DoS attacks are identified. DoS attacks on publicly available inter-
faces are considered a critical risk. The authors rate the attack potential to
be highly likely with a high impact on the attacked network. Also a minor
risk are DoS attacks on non-publicly addressable interfaces. While such an
attack is possible, only a low impact on the infrastructure is expected [37].

Arcor is a major German communication service provider. They are
currently deploying large-scale SIP-based communication NGNs. Arcor also
postulates DoS protection to be a requirement for service providers. They
propose the usage of Session Border Controllers as the first line of defence
with DoS protection features [38]. Sprint, a US provider is arguing similarly.
They postulate that general IP-based DDoS detection methods should be
enhanced to handle SIP VoIP attacks [39].

A report from 2008 shows that DoS attacks are already encountered in
provider networks [40]. Currently, most attacks are still unintentional attacks
due to configuration or setup errors. These attacks already had a severe
impact on the infrastructure. Sipera, a developer of VoIP security tools rates
DoS attacks to be the most important threat, followed by server hacking and
service fraud [41].

Providers are already reacting to the new threat. Session Border Con-
trollers, the combined security and firewall solutions of VoIP/IMS networks
are gaining rapidly in popularity, according to iLocus studies [42], with rev-
enues from SBC sells also climbing.
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1.4 Related Works

1.4.1 General SIP Security Related Work

In the field of SIP security research, a lot research is being conducted on
different fields. Although the work here focuses on security aspects, their
scope is completely different from the work presented in this PhD.

VoIP spam handling has received a lot of attention. For example, Croft
et al. [43] present a new approach to prevent voice spam by extending the
call setup procedure. They include an anonymous mediator into the call path
that manages the session setup. Mathieu et al. [44] present a new approach to
detect and mitigate spam through a network-level entity. The basic function
of the specific entity is to capture, filter and analyse the network traffic,
passed from the equipment located in the edges of the network, in order to
detect and mitigate voice spam calls. Rebahi et al. [45] present a reputation-
based spam prevention scheme. Only callers that have been identified by
trusted sources as legal one are allowed to call the destination.

As SIP is extensively used in IMS networks, security research has been
provided, e.g. by protecting IMS application servers [46] or through security
analysis of the provided authentication schemes [47].

On the field of cryptography, Salsano et al. [48] analysed the process-
ing overhead of SIP authentication procedures. A new topic are SIP Fraud
threats that are being discussed [49], but no general solution has yet been
proposed. Zhang et al. continue this by presenting billing attacks on SIP
VoIP systems [50].

1.4.2 SIP DoS Related Work

The general SIP DoS threat has been published in different works [51, 52, 19,
20]. Until now, a lot of research has been conducted to detect and prevent
message flow tampering DoS attacks (from Figure 1.2). Such attacks include
the disruption of an ongoing session by injecting false signalling messages, i.e.
specially crafted BYE, REGISTER or CANCEL SIP messages. Wu et al. [53]
have proposed a correlation framework to detect such attacks. They correlate
SIP traffic with RTP traffic and by stateful monitoring they can detect e.g. if
after a sent BYE message the media session correctly terminates. Advanced
methods are proposed by Sengar et al. [54] and Bouzida et al. [55] which
model a RTP traffic state machine. Luo et al. [56] examine the effects of the
load that is generated at a SIP DoS target if the target itself incorporates
DoS countermeasure methods (Self-inflicting DoS). Other research focuses
on statistical analysis to differentiate flooding from regular traffic [57, 58, 59].
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For SIP flooding detection, the common detection and prevention mech-
anism is to limit the number of requests during a given time interval to
a fixed maximum value. This very basic method is the standard preven-
tion mechanism for most available setups (e.g. the PIKE [60] extension for
the common SIP Express Router (SER) [61]) and is also the general DoS
protection method available in currently available commercial SIP security
solutions like [62, 63].

A quantitative and qualitative analysis of related work is placed in Chap-
ter 8.

Differentiation. When this work was started, there was only limited work
in the SIP DoS area available (basically only [51, 57, 53]). Some of this PhD
work was later the basis for an international SIP DoS security research project
[64].

To differentiate from concurrent research efforts, this work gives a deep
analysis of the threat situation with countermeasures [19, 20]. Also, we
extend basic countermeasure methods [13, 7] to increase their effectiveness.
We consider new attacks and countermeasures that have not been covered
elsewhere [16, 14]. Also, especially when considering DDoS SIP attacks, there
are currently only some methods to detect these attacks (e.g. [57, 59]), but
no real mitigation methods have been established. We propose a first step
to handle DDoS attacks [3].

Detection Analysis
- characteristics
- correlation to SIP

Needs: Detection and
Mitigation Intelligence
- Algorithms -

_|Mitigation Analysis
|- infrastructure health

Design

- Detection and
- Mitigation solution

DoS
Security

Attacks
To Counter:

g Requirement Analysis
_p |- Scalability
- protection

- visibility

Needs: Scalable Security and
Mitigation Framework
-Implementation-

v

" Design / Implementation
Tested and verified - VolIP Defender

FOKUS Security Lab - Security Framework

Implementation

Figure 1.3: The workflow within this PhD
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1.5 Methodology

To provide a DoS mitigation solution, a SIP infrastructure is analysed for
possible weaknesses that could be exploited by an attacker. Based on this
analysis, we model different potential DoS attacks that target exactly those
weaknesses. Building upon existing defence solutions available in literature
we utilise them where possible and advance them or redefine new methods
targeted for the defined attacks. As there are many different possibilities to
launch a DoS attack on SIP servers, several different countermeasures have
to be considered, as it is unlikely to define one solution to defend against all
possible attacks.

Flooding attacks are targeting resource depletion. Likewise, for counter-
ing these attacks one can not assume infinite resources. We therefore analyse
the requirements for a dedicated DoS prevention system, especially under
scalability concerns and implement a prototype system to test the defined
monitoring and prevention solutions. All security solutions are then tested
and verified within this security architecture.

A key point for successful network security is to know the actual status
of the network, e.g. where do bandwidth problems and where does latency
occur, etc. For this we design and implement a SIP network monitoring and
visualisation tool.

Figure 1.3 visualises the necessary workflow steps. Figure 1.4 visualises
the designed components within a SIP network.

Attack Detection and Mitigation
at SIP Application Layer

\J

VolP Defender Modules

SIP Network
VolIP Defender Framework

External network Internal network

Figure 1.4: Placement of our SIP security framework within a common SIP
network
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1.6 Major Contribution

The major contributions of this thesis are the analysis of the SIP DoS threat
model and the definition of three countermeasure algorithms for DoS / DDoS
detection and mitigation. Within the threat analysis, we outline possible
weaknesses, attack points and protection strategies in a SIP infrastructure
with regard to DoS [19, 20, 4]. We later present different methods to overcome
some of the threats. The mechanisms are in short:

1. A specification-based detection scheme that detects variations from reg-
ular traffic [13, 7].

2. A lightweight Distributed DoS prevention scheme based on firewall pin-
holing [3].

3. A DoS mitigation scheme for attacks on SIP helper services, especially
on DNS servers. This is a new attack that has not been covered in
literature before [16, 14, 6].

For the first two algorithms patents haven been applied at the European
Patent Office.

Then, we deliver the requirements for a scalable SIP protection and mon-
itoring solution, which is used to implement the previous algorithms?. We
demonstrate this concept with a fully tested reference implementation that is
actively being used in the Fraunhofer FOKUS network test beds. The frame-
work is built for extensibility and can be used also for non-security related
tasks [17, 11]. We prove this by using the framework as a SIP management
solution. This solution is being actively used in the current FOKUS IMS
Management solution OMACO, and already sold as a testbed to an Asian
provider. Besides the SIP DoS research project, the research of of this work
led to another closely related VoIP security project [65], which deals with a
different type of message flooding, i.e. spam flooding.

All research efforts have been evaluated through experts in the field, as
all steps of the work have been submitted to international conferences and
journals (see the bibliography). Altogether, 19 publications have been al-
ready published or submitted for publication related to this work. Among
these publications, six journal publications have been accepted for publica-
tion and two publications have been accepted at the major annual NGN
security conference, IPTCOMM.

Relevant parts of this work are now cited by researchers in the field, in-
cluding H. Schulzrinne, the inventor of SIP [66], T. Peng, one of the main DoS

2This part has been co-developed with Jens Fiedler
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researchers [30], IBM Research [67], University of Tiibingen [68], University
of Texas [69] and others.

1.7 Thesis Structure

The thesis is structured in four parts. The first part gives an overview of the
relevant technologies and where we are placed.

The second part is about the theoretical problem analysis. The require-
ments for protection are analysed. A main requirement will be a scalable
monitoring framework. Vulnerabilities of SIP are elaborated and the attacks
classified. Based on this we define our protection solution, with the archi-
tecture of the protection framework and the definition of countermeasure
algorithms. We present three different methods that handle multiple DoS
attack scenarios.

The third part is about the actual implementation of the security solution
and its evaluation in our test bed.

Finally, in the last part we put our work into perspective in regard to
related works by other researchers in the field, and give hints for future work
for a full DoS prevention strategy based on multiple security algorithms.
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Chapter 2

Background Information

2.1 Multimedia Communication with SIP

The Session Initiation Protocol (SIP) is an internet communication protocol
designed to establish, maintain and terminate a session among two or more
partners. A session here refers to any communication connection between
partners that lasts some time. Examples are Voice-over-IP (VoIP) commu-
nication, video conferencing, instant messaging, interactive gaming or call
forwarding.

SIP was first standardised by the Internet Engineering Task Force (IETF)
in 1996 (RFC 2543 [70]) and was revised again in 2002 (RFC 3261 [23]), which
is the current version until now.

According to the common IP paradigm SIP is an end-to-end signalling
protocol [71] with all logic and state data solely stored in end devices, with-
out support from the network. SIP is a text-based request-response protocol
influenced mainly by the Hypertext Transport Protocol (HTTP) [72] and
Simple Mail Transfer Protocol (SMTP) [73] of which it has borrowed some
of its functionalities, e.g. Uniform Resource Identifiers (URIs) and many
message header fields such as "To” and ”"From”. It is highly extensible, and
multiple RFCs and other documents define new extensions to the SIP spec-
ification [25]. Several books have been published explaining SIP in general
and multiple communication applications using SIP [74, 75, 76].

SIP’s target is session control, and not the transmission of actual ses-
sion content. Description and transport of content are managed by other
protocols, which are running in conjunction with SIP.

15
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2.1.1 SIP Entities

A STP communication network as defined by RFC 3261 is at least composed of
four general types of logical SIP entities. Each entity has specific functions
and can take a client role (initiates requests), a server role (responds to
requests), or both. Logical entities can be implemented in one single physical
device. For example, a network server working as a SIP proxy server can also
function as a SIP registrar at the same time.

Following are the four types of logical SIP entities, which we will illustrate
in more detail:

e User agent
e Proxy server
¢ Redirect server

e Registrar

User Agents

In SIP, a user agent (UA) is the endpoint entity. User agents initiate and
terminate sessions by exchanging requests and responses. RFC 3261 defines
the user agent as an application which contains both an user agent client and
user agent server:

e User agent client (UAC) as a client application that initiates SIP
requests.

e User agent server (UAS) as a server application that contacts the
user when a SIP request is received and that returns a response on
behalf of the user.

Some of the devices that can have UA functionality in a SIP network
are: general workstations, dedicated devices like IP-phones or smartphones,
network gateways or automatic operation devices like answering machines.

SIP Servers

SIP Servers are essential network elements that enable SIP endpoints to
exchange messages, register their user location, and pass signalling traffic
seamlessly between networks. SIP servers enable network operators to install
routing and security policies, authenticate users and manage user locations.
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Figure 2.1: Registration and invitation process

The SIP standard defines three general types of server functionality -
proxy, redirect and registrar servers. These standard functionalities can be
used according to the needs of the specific implementation, and further ap-
plications are possible.

With the advance of SIP, server logic has become increasingly complex.
SIP servers need to deal with varying network topologies (such as public In-
ternet networks, cellular networks, broadband residential networks), complex
routing policies, security and SIP extensions. SIP servers therefore are often
required to handle high throughput rates and yield real-time performance
and scalability with low delay.

Registrar server A registrar server accepts requests from a user who
wants to make himself available to the network. It processes its registra-
tion information and stores it into a location service for further reference.

The registrar processes user requests for a specific set of domains. It
uses a location service — an abstract location database — in order to store
and retrieve location information. The location service may run on a remote
machine and may be contacted using any appropriate protocol, see Figure
2.1. The SIP standard leaves this decision to the implementation. Some
implementations may co-locate the location service and the registrar server
on the same machine.

Redirect server A redirect server receives SIP requests and responds with
redirection responses, thus directing the client to contact an alternate set of
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Figure 2.2: Request redirection

SIP addresses.

The scenario in Figure 2.2 illustrates a redirection scenario. Redirection
allows servers to push back routing information for a request in a response to
the client, thereby aiding in locating the target of the request, while taking
themselves out of the loop of further messaging for this transaction. Redirect
servers typically are not aware of the state of dialogs (calls, subscriptions),
only of the state of the individual transactions they are handling, making
them transaction-stateful elements. Redirection is designed as a simple and
quick procedure, allowing for redirect servers to be highly scalable and to
yield high-performance.

Proxy server SIP proxies perform general routing operation in the net-
work by forwarding SIP requests to user agent servers and SIP responses to
user agent clients.

SIP proxies can thus bee seen as general IP routers, albeit at the SIP
application level. However, SIP proxies employ routing logic that is typically
more sophisticated than just automatically forwarding messages based on a
routing table. The SIP standard allows proxies to perform actions such as
request validation, user authentication, request forking, address resolving, or
to cancel pending sessions.
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The versatility of SIP proxies allows the network administrator to use
proxies for different purposes and in different locations in the network (such
as edge proxy or core proxy). With this versatility a variety of proxy policies
are possible, such as allowing calls only for authenticated users that have no
debt to the network service provider.

A proxy server is designed to be mostly transparent to UAs. Proxy servers
are allowed to change messages only in specific and limited ways. For exam-
ple, a proxy is not allowed to modify the body of a session initiation request.
Apart from a few exceptions, proxies cannot generate requests on their own
initiative.

Figure 2.3 depicts SIP entities and their relationships.

7. INVITE 5. INVITE
alice@piano.hamburg.de alice@hamburg.de
UA piano . Proxy UA
sip. hamburg de
1. REGISTER 6. Query 4. REDIRECT 3.INVITE
Response alice@hamburg.de alice@berlin.de
 —  e—
= =< Loc. DB = Proxy berlin.d
— Registrar - j/ ocC. (==} roxy pberlin.ae
_* | hamburg.de = _° |

2. Store

Figure 2.3: Entities forming a SIP communication network.

2.1.2 SIP Structure

SIP is structured as a layered protocol. The protocol behaviour is described
by four layers:

1. Syntax and encoding
2. Transport layer

3. Transaction layer

4. Application layer

The lowest layer of SIP is its syntax and encoding, as explained in the
following section.



20 CHAPTER 2. BACKGROUND INFORMATION

The second layer is the transport layer. It defines how a client or server
sends requests and receives responses over the network. All SIP elements
contain a transport layer.

The third layer is the transaction layer, where sent messages and responses
are correlated. The transaction layer is further outlined in Section 2.1.4.

The highest layer is the transaction user (TU). Most of the SIP entities,
except some passive proxies implement one. A TU creates client transaction
instances and passes requests down to them.

2.1.3 SIP Message Format

SIP messages are encoded in plain text, using the UTF-8 charset [77]. A
message can either be a request (SIP method) or a response (SIP state code).
A SIP message consists of three parts:

e Start line - Every SIP message begins with a start line. The start line
conveys the message type (method type in requests, and response code
in responses) and the protocol version. For requests, the start line is
called Request-Line and Status-Line for responses.

The Request-Line includes a Request URI, which indicates the user
or service to which this request is being addressed. There are six basic
SIP methods defined in the core SIP protocol specification, as visible
in Table 2.1.

The Status-Line holds the numeric Status-Code and its associated
textual phrase, as visible in Table 2.2.

e Headers - SIP header fields are used to convey message attributes and
to modify message meaning. They are similar in syntax and semantics
to HTTP and SMTP header fields and always take the format (name) :

(value).

e Body (content) - A message body is used to describe the session to be
initiated (for example, in a multimedia session this may include audio
and video codec types, sampling rates, etc.), or alternatively it may be
used to contain opaque textual or binary data of any type which relates
in some way to the session. Message bodies can appear both in request
and in response messages. SIP makes a clear distinction between sig-
nalling information, conveyed in the SIP start line and headers, and
the session description information, which is outside the scope of SIP.
Common body types are, e.g. Session Description Protocol (SDP, see



2.1. MULTIMEDIA COMMUNICATION WITH SIP 21

Table 2.1: SIP request methods

Method Description

INVITE Initiates a call, changes call parameters (re-INVITE)
ACK Confirms a final response for INVITE

BYE Terminates a call

CANCEL Cancels searches and ringing
OPTIONS  Queries the capabilities of the other side
REGISTER Registers with the location service

Table 2.2: SIP response codes

Class Description

1xx Provisional messages - used by the server to indicate progress,
but they do not terminate SIP transactions (searching, ringing,
queuing, etc).

2xx Success answers

3xx Redirection, forwarding messages

4xx Request failure (client mistakes)

5XX Server failures.

6xx Global failures (busy, refusal, not available anywhere)

Section 2.1.7) or Multipurpose Internet Mail Extensions (MIME) [78§]
bodies.

SIP Message Headers

SIP requests and responses contain headers following the request or status
lines. Those headers are used to transport the information to the SIP entities,
some of which are specific to requests and some of which to responses. A
header is composed of the header name, followed by a colon and a header
value. The main header fields are:

e To : the address of the recipient of the request.

e From : the global address of the caller.
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e Contact : the current URI where the sender can be contacted.

e CSeq : an integer and a method name, where the integer part of this
header is used to detect the non-delivery of the message or out-of-order
delivery messages. At the beginning of a transaction, it is randomized
and upon arrival of a new message it is incremented by one.

e Call-ID : a unique identifier for each call and contains the host address.
This header identifies a particular invitation and is the same for all of
the messages within one transaction.

e Via : used to store all entities where this request has passed so far.
It contains the transport protocol, such as UDP and TCP, and also
the request route in order to detect the routing loops and to route the
responses towards the client who generated the request.

e Route : set of hosts a messages has to pass before reaching its final
destination.

¢ Record-Route : set by intermediate entities to indicate that they will
be included in further message passes.

Table 2.3 gives examples for common SIP header fields.

2.1.4 Dialogs and Transactions

In the SIP session context, two events are defined that last a certain amount
of time, which are dialogs and transactions.

A dialog is a peer-to-peer SIP relationship between two UAs that persists
for some time. A dialog is established by SIP messages, such as a 2xx response
to an INVITE request. Such a dialog can be terminated with a BYE message
at a later time. Depending on the type of a session, dialogs can exist for a
considerable amount of time, e.g. during a voice call or a video transmission.

SIP transactions consist of a single request and any responses to that
request, which include zero or more provisional responses and one or more
final responses. As such, any dialog is created from individual transactions.

The relationship between SIP UAC/UAS transactions is pictured in Fig-
ure 2.4.

Transactions are modelled within the SIP RFC through state machines.
The state machine defines which events are valid and what and how the
state will change if a certain event occurs. State machines are defined both
for a UAC and a UAS. Additionally, they are different for INVITE messages
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Table 2.3: Common header fields

Header Name

Examples

Authorization

Proxy-Authorization

Authorization: Digest username="alice”,
realm="example.org”,
nonce="4684b75c60e0378¢c25b2419b94defbHa”
uri="sip:example.org”,
response="3bcbd89de1bf5049bf618e047d”,
algorithm=MD5

Call-ID Call-ID: f81d4fa-a765-00a0@example.com

Contact m Contact: <sip:alice@atlanta.ccom>;expires=3600
Content-Length Content-Length: 320

CSeq CSeq: 98

Expires Expires: 3600

From From: ” Alice” <sip:Alice@example.org>;tag=clzba
To

Max-Forwards
Record-Route

Route

Max-Forwards: 70

Record-Route: <sip:serverl0.biloxi.com;lr> |
<sip:bigbox3.sited.atlanta.com;lr>

Route: < sip:bigbox3.site3.atlanta.com;lr> ,
< sip:server10.biloxi.com;lr>

Proxy-Authenticate

WWW-Authenticate

WWW-Authenticate: Digest realm="example.org”,
nonce="4684b75c60e0378960c25988b3dbdef5a”

Via v Via: SIP/2.0/UDP 213.192.59.75;
rport;branch=2z9hG4bKsjlhytns
Request Request
=|5 gl |s 15|
5|3 8|3 815
o 8 2 %8 2l S
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G Response | & G [Response | &
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Figure 2.4: UAC / UAS transaction relationships
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and Non-INVITE messages, thus resulting in altogether four different state

machines:

1. UAS INVITE state machine

2. UAS Non-INVITE state machine

3. UAC INVITE state machine

4. UAC Non-INVITE state machine

INVITE from TU
Timer A fires INVITE sent Timer B fires
Reset A, or Transport Err.
INVITE sent Inform TU
L g ;
2xx
300-699 2xxto TU
ACK sent !
resp. to TU W
Ixxto TU
Ixx
Ixxto TU 1

300-699
ACK sent,

300-609 'ep-00TU

|: Proceeding

ACK sent

2xxto TU

Transport Err

— Inform TU
I: Completed 1

Timer D fires

Terminated

-

INVITE from TU
pass INV to TU

INVITE
send response
] e
Proceeding
W fomty | en TV
=69 from TU send response
send response
INVITE Timer G fires
send response I send response
I: Completed —
Timer H fires
ACK, or Transport Err
Inform TU

@—>

Timer I fires

send 100 if TU won’t in 200 ms

101-199 from TU
send response

Transport Err
Inform TU

Figure 2.5: INVITE client (left) and server (right) transactions

Figure 2.5 and 2.6 present the state diagrams of the four state machines
as specified in RFC 3261.

SIP proxy servers may serve in stateless, stateful mode or in a mixed form
of these two modes. A stateful proxy is also known as transaction stateful
proxy. In stateless mode a proxy simply forwards every request it receives
downstream and every response it receives upstream, while a stateful proxy
must maintain the client and server transaction state machines during the
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Figure 2.6: Non-INVITE client (left) and server (right) transactions

processing of a request. After receiving a new request a transaction context
will be created by a stateful proxy. After forwarding the request the context
retains in the server and the following requests and responses will be handled
based on this context.

2.1.5 Protocol Operation

SIP’s purpose is to manage sessions between users. This includes the man-
agement of user location, availability and capabilities and also session setup,
handling and termination. We give some examples to illustrate this.
Session Establishment and Interaction

Figure 2.7 shows the interaction between a user agent client (UAC) and a

user agent server (UAS) during trivial session establishment and termination.

Session Establishment — Call Flow
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Figure 2.7: SIP session establishment and call termination

. The calling User Agent Client sends an INVITE message to Bob’s

SIP address: sip:bob@acme.com. This message also contains an SDP
packet describing the media capabilities of the calling terminal.

. The UAS receives the request and immediately responds with a 100

(Trying) response message.

. The UAS starts "ringing” to inform Bob of the new call. Simultane-

ously a 180 (Ringing) message is sent to the UAC.

. The UAS sends a 182 (Queued) call status message to report that the

call is behind one other call in the queue.

. Bob picks up the call and the UAS sends a 200 (OK) message to the

calling UA. This message also contains an SDP packet describing the
media capabilities of Bob’s terminal.
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Figure 2.8: Call proxying scenario

6. The calling UAC sends an ACK request to confirm that the 200 (OK)
response was received.

Session Termination — Call Flow

1. The caller decides to end the call and ”"hangs-up”. This resultsina BYE
request being sent to Bob’s UAS at SIP address sip:bob@lab.acme.com.

2. Bob’s UAS responds with a 200 (OK) message and notifies Bob that

Session Proxying

the conversation has ended.

Figure 2.8 shows the call set-up between two user agents with the assistance
of an intermediate proxy server.

1.

An INVITE message is sent to bob@acme.com, but finds the proxy
server sip.acme.com along the signalling path.

respoinse.

. The proxy server immediately responds with a 100 (Trying) provisional
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The proxy server looks-up Bob’s current location in a location service,
e.g. by database look up.

. The location service returns sip:bob@lab.acme.com i.e. Bob’s current

location.

The proxy server decides to proxy the call and creates a new INVITE
message based on the original INVITE message, but with the request
URI in the start line changed to bob@lab.acme.com. The proxy server
sends this request to the UAS at lab.acme.com.

The UAS responds first with a 100 (Trying).

The UAS responds with a 180 (Ringing) response.

. The proxy server forwards the 180 (Ringing) response back to the call-

ing UA.

. When the call is accepted by the user (for example, by picking up the

handset) the UAS at lab.acme.com sends a 200 (OK) response. In this
example, Bob’s UAS inserts a Contact header into the response with
the value bob@lab.acme.com. Further SIP communication will be sent
directly to it and not via the proxy server. This action is optional.

The proxy forwards the 200 (OK) response back to the calling UAC.

The calling UA sends an ACK directly to Bob’s UA at the lab (accord-
ing to the Contact header it found in the 200 (OK) response).

2.1.6 SIP Security Mechanisms

The SIP specification does not define its own specific security mechanisms.
Instead, it utilized other well-known internet security mechanisms. Secu-
rity mechanisms can be provided in a hop-to-hop or end-to-end fashion (see
Figure 2.9). RFC 3261 defines four security mechanisms:

e HTTP digest authentication

e Transport Layer Security (TLS)

e [P Security (IPsec)

e Secure MIME (S/MIME)

An end-user has the ability to choose its security mechanism according
to its current needs [79].
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Figure 2.9: Hop-by-hop vs end-to-end security

User Authentication Using HTTP Digest

SIP utilizes HTTP digest authentication [80] to verify the identity of users.
Based on the configuration of the SIP server, a server can enforce sender
authentication before processing SIP requests. This authentication can be
applied to certain requests only, certain users or requests coming from certain
proxies or redirect servers.

General proxies generate slightly different authentication requests than
registrar servers:

e Proxies generate a 407 (Proxy Authentication Required) response with
an additional Proxy-Authenticate header.

e Registrars and redirect servers use 401 (Authentication Required) re-
sponses with a WWW-Authenticate header.

A SIP server manages information about users eligible for using this
server. The information is in the form of user login name and password,
which is checked using hashing algorithms.

Hop-by-Hop Encryption Using TLS and IPsec

SIP messages can be encrypted hop-by-hop with the use of Transport Layer
Security protocol (TLS) [81]. Authentication for the corresponding network
elements during the handshake procedure is possible by exchanging their
certificates. TLS is a widely adopted protocol, especially for secure web traf-
fic. It runs above TCP/IP and below higher-level protocols such as HTTP,
FTP or SIP and consequently the TCP header is not encrypted. TLS does
not run over UDP, which is currently the predominant transport protocol
for SIP. Also, keeping up many TCP connections simultaneously causes ad-
ditional load on SIP servers. SIP provides a notation to request a secure
connection with the SIPS URI, e.g. sips:user@siphome.net.
Support for TLS in SIP UAs is increasing in recent years.
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Alternatively to TLS IPsec may be used to encrypt messages in SIP. The
[P Security (IPsec) [82] suite provides a set of services to protect IP packets
from such attacks. IPsec can provide confidentiality, integrity, data origin au-
thentication services as well as traffic analysis protection. Introducing IPsec
in Internet telephony can safeguard signalling and data from network vulner-
abilities provided that some sort of trust (e.g. pre-shared keys, certificates)
has been established a-priori between the communicating parties.

End-to-end Encryption Using S/MIME

SIP messages are capable of carrying MIME bodies, and the MIME standard
includes mechanisms for securing MIME contents to ensure either integrity
or confidentiality by means of the multipart/signed and application/pkes7-
mime MIME types [83]. S/MIME provides a set of functionalities and SIP
utilizes two of them: Integrity plus authentication tunneling and tunneling
encryption. However, this solution mandates the deployment of a global
S/MIME Public Key Infrastructure (PKI). Such an infrastructure has not
been established until today.

Even with S/MIME, no fully end-to-end encryption is possible. Some
headers like VIA and Route are needed for Routing purposes in the network
and thus cannot be encrypted.

2.1.7 Session Description Protocol

Session Description Protocol (SDP) [84] is commonly used to describe the
multimedia sessions in real time in conjunction with the SIP protocol. De-
spite its name, it does not actually define a network protocol, as it does not
have a transport mechanism or any kind of parameter negotiation. Instead
it defines a simple message format. The usage of SDP in SIP message bodies
allows for an ”Offer-Answer” mechanism to transfer the description of the
multimedia session and the negotiation of the necessary parameters required
for this multimedia session.

SDP is also a text-based protocol like SIP and having a set of lines of
text of the form type = value. The types are identified by a single letter
and the format of the value depends on the type. Table 2.4 lists the types
defined in the SDP protocol.

As a SIP example, if a user wants to start a multimedia session with a
participant, then the caller sends an INVITE message including the session
description in its payload. Upon receipt of the invitation together with the
session description, the callee looks for the offered session description and
decides if it accepts the sent offers in the session description and returns
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Table 2.4: Types defined by SDP

Type

Description

E R &0 N T OT 02 —n 0 <

Protocol version

Owner of the session and session identifier

Session name

Session information

URL containing a description of the session

E-mail address to obtain information about the session
Phone number to obtain information about the session
Connection information

Bandwidth

Time zone adjustments

Encryption key

Attributes

Time interval when the session is active

Repetition time

Transport protocol information (media line)
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a 200 OK response to the caller including its own offers. In this fashion
with an offer-answer mechanism, the parameters of the multimedia session
is negotiated between the participants.

2.1.8 Real-time Transport Protocol

The Real-time Transport Protocol (RTP) [85] provides a standardized packet

format for the delivery of audio, video or simulation data over the Internet.
The real-time data is broken into pieces and encapsulated into packets to
be delivered. The receiver of those packets has to put them in the correct
order, so that the original data is recovered. For this, the protocol provides
the following functionalities:

e Payload type identification : It indicates what kind of media con-
tent is carried.

e Sequence numbering : It enables the receiver to order the received
RTP packets.

e Time stamping : It enables the recovery of the original timing re-
lationship of the data contained in the payload, implicating that the
synchronization between the video and audio data is performed if they
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both co-exist in a multimedia session. It also handles the delays (jitters)
of the packets within a same stream.

Besides the functionalities listed above, a control protocol, namely Real-
time Transport Control Protocol (RTCP), enables monitoring of the RTP
packets and controls the synchronization of the streams with the help of the
timestamps in the RTP packets. The RTP protocol does not ensure any
resource reservation and does not guarantee any Quality of Service (QoS),
this has to be handled by other means.

As a SIP example, if a user wants to start a multimedia session with
another participant, the parameters required for the RTP transmission is
negotiated and carried in the payload of the SIP message before a media
communication between the the caller and the callee.

2.1.9 SIP Alternatives

Besides SIP, there exist different alternatives for session (especially voice)
handling over IP networks.

The most common standard is H.323 [24] from the International Telecom-
munication Union - Telecommunication Standardization Sector (ITU-T), it
is implemented in various devices for voice and video conferencing. However,
due to SIP’s popularity, H.323 support is declining.

Skype [86] is a proprietary protocol used in the popular VoIP application
with the same name. It provides voice, chat and video service over an en-
crypted protocol between two hosts. It is based on the Kazaa Peer-to-Peer
(P2P) file transfer protocol. Much of Skype’s popularity is gained from its
ease of use and simple configuration. The protocol specification is disclosed,
so several attempts have been conducted to reverse-engineer the protocol
87, 18].

Other, less-known protocols are Inter-Asterisk Exchange (IAX) [88] used
in the free Asterisk PBX, or Cisco’s proprietary Skinny Call Control Protocol
(SCCP) [89].

2.2 SIP Network Application

The SIP specification does not define a specific application for the protocol.
Currently, the most prominent applications are VoIP networks and so-called
Next Generation Networks.
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Figure 2.10: Overview of a SIP-based VoIP network

2.2.1 1IP-based Telephony Networks

The most prominent usage of SIP is currently in IP-based telephony systems
(Voice-over-1P, VoIP). Using standard SIP components, users can place voice
calls between each other using common IP networks. There are a lot of dif-
ferent voice user agents available, both in hardware and software (softphone)
for all major operation systems. Besides 2-party voice communication, of-
ten further features are available, like gateway functionality to interconnect
with the Public Switched Telephony Network (PSTN), multi-party confer-
encing, instant messaging or presence information. A common setup of a
VoIP network can be seen in Figure 2.10.

In Germany, multiple providers are currently offering SIP-based VolP
services, including Sipgate, 1&1, freenet and T-Online. VoIP networks are
also more and more replacing legacy PBX setups in enterprises.

2.2.2 Next Generation Networks

Since some recent years one can observe the trend that different mobile
and fixed communication platforms are converging together. The goal is
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here to deliver one all-IP based network platform combining the feature set
of the Internet, mobile cellular networks and PSTN networks in one sin-
gle platform (Fixed-Mobile Convergence, FMC). So-called Next-Generation-
Networks (NGN) will provide the necessary infrastructure for such converging
communication networks. International standards for NGN are being devel-
oped with the aim that NGN are to be used worldwide in a way the Internet
is already used today. The Internet Multimedia Subsystem (IMS) [22] is such
a standardized NGN for worldwide use. It is still under active development
from a worldwide alliance, called the 3rd Generation Partnership Project
(3GPP).

The key features of IMS are multimedia session management, guaranteed
Quality-of-Service (QoS), secure network access and service control.

IMS is based on core IP protocols, with the fundament on SIP for ses-
sion control. Other important protocols in IMS are Diameter [90] for AAA
(Authentication, Authorization, and Accounting) service, or RTP for media
transport.

A core IMS setup is depicted in Figure 2.11. IMS defines many different
roles, with the most prominent ones are:

e CSCF (Call Session Control Function). This is the core component
of an IMS network and manages all sessions in the network. Its role
is subdivided into the parts: The Proxy-, Serving, and Interrogating-
CSCF (P-, S-, I.CSCF), which roughly correspondent to the SIP terms
incoming proxy, registrar, and outgoing proxy.

e HSS (Home Subscription Server). This is the main user database of
IMS subscribers (user location database).

e AS (Application Server). The actual services, like VoIP, instant mes-
saging or media streaming are located here.

e MRF (Media Resource Function). Provides media-related functions,
e.g. playing announcement tones, or voice stream mixing.

e GF (Gateway Function). Generic term to enclose gateways to other
networks, e.g. to the PSTN.

IMS is defined in revisions to adopt to new scenarios and changing re-
quirements. It first appeared in 3GPP Release 5, the most current revision
is Release 8.

The European Telecommunications Standards Institute (ETSI) is defin-
ing the European View of NGN in its Telecoms & Internet converged Ser-
vices & Protocols for Advanced Networks (TISPAN) standardization body.
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TISPAN [91] is based on the IMS specification, and extends it among other
to DSL access, non SIP-based applications and IPTV services. TISPAN’s
specifications are also updated over time. The currently active specification
is Release 2.

2.3 Denial of Service Attacks

Denial-of-Service (DoS) attacks [28] are a class of network attacks performed
to interrupt or terminate applications, servers, or even whole networks, with
the aim of disrupting legitimate users’ communication. Disruption targets
are web browsing, listening to online radio, or even interrupting essential
communication, e.g. power plant network control traffic. DoS attacks are
commonly performed intentionally and in most cases difficult to counter. In
many cases it is only possible to mitigate, but not to completely prevent the
attack.

2.3.1 Motivation for DoS Attacks

DoS attacks can have different forms, and they can also be differently moti-
vated. Generally, users might like the feeling of having power to force their
will onto others by disrupting some sort of their communication. This is
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common among younger internet users that just take available DoS tools
and launch attacks on different servers (so called script-kiddies).

Another motivation can be to disturb the business model of internet com-
panies. For example, a well-known attack launched in 2000 against the Yahoo
web site caused it to be unavailable for several hours. During this time no
one was able to access the Yahoo web site. Yahoo lost around US$ 500.000
during this outage, as nobody was able to click on the Yahoo web banners
92].

Only recently have DoS attacks reached the level of international secu-
rity. The huge attack launched on Estonian web pages in 2007 caused several
critical service outages [92]. With the continuing growth of Internet com-
munication in essential state services (e-voting, e-government, power plant
control, traffic control, ...) whole state operations might be at risk from DoS
attacks in the future.

2.3.2 DoS Targets

There are two common strategies to launch a DoS attack, by either exploiting
a software vulnerability or by depleting resources at the target host.

Vulnerabilities in Application, Protocol Stack or Operating System

One common way to achieve a DoS attack is to exploit vulnerabilities in a
software component on the target machine. This includes vulnerabilities in
application servers, network stacks, or general operating system vulnerabili-
ties. Vulnerabilities in huge projects are a common case, as it is impossible
to predict every situation where software is deployed.

To exploit the vulnerability, an attacker sends a messages crafted in a
specific way that takes advantage of that given vulnerability. By launching
a Nuke attack on e.g. the TCP/IP stack, the whole system might crash
eventually.

Examples. One popular example of such an attack is the Ping of Death
attack [93], which is performed by sending an oversized Internet Control
Message Protocol (ICMP) [94] echo request packet to the victim host. ICMP
messages are sent within IP datagrams and de-multiplexed by IP for further
handling by ICMP. Regular echo request packets only have a length of 64
octets, but no formal size limitation exists. Thus, an ICMP message can
be transported in two or more IP packets using fragmentation and thus will
be reassembled before passed to ICMP. In this way it is possible to send an
echo request whose content comprises more than the maximum allowed size
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of 65507 octets. Depending on the OS implementation this may result in
a system crash, reboot, kernel dump, etc. This kind of attack can also be
performed on other protocols.

A fragmentation attack is realised by an attack tool named Teardrop [95]
that uses the vulnerability of some operating systems of ”overlapping” IP
fragments. When IP splits data into fragments and sends the fragments in
different packets to a destination host, it uses the More Fragments (MF) and
the Fragment Offset fields in the IP header to indicate still pending fragments.
The destination host uses this information to reassemble the fragments into
a complete packet.

There are plenty of other attack tools that use similar mechanisms to
bring down destination hosts, with names such as Targa, SYNdrop, Boink,
Nestea Bonk, TearDrop2 and NewTear [28].

Such vulnerabilities are easy exploited by an attacker, but also easily
eliminated. As soon as the vulnerability is detected, it can be fixed by mod-
ifying the source code. Usually, vendors provide patches for their software
soon after a new exploit has become known. The local system administrator
then has to install the patch to prevent further attacks.

Attacking a Resource

The second common DoS attack is to overwhelm a resource at the target.
The attack tries to overwhelm resources at the target by generating more
requests than the target can handle. There are three common resources an
attacker can exploit:

1. Memory
2. CPU power

3. bandwidth

The exploitation is possible because all these three resources are finite.

Given a sufficiently large number of agents, it is possible to simply send
any type of packets as fast as possible from each machine and consume all
available network bandwidth at the victim. This is a bandwidth consumption
attack. The victim cannot defend against this attack on its own, since the
legitimate packets get dropped on the upstream link, between ISP and the
victim network. Thus, frequently the victim requests help from its ISP to
filter out offending traffic.

However, in order to realise a "maximum DoS gain” even with low rate
attack traffic, most resource depletion attacks try to bind more resources than
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just consuming bandwidth in the network. Therefore, those attack packets
are crafted in a way to not only consume as much resources as possible while
in transmission, but also to consume as much resources as possible directly
at the destination entity while it evaluates them.

Such attacks can be made on algorithms, such as hash functions that
would normally perform its operations in linear time for each subsequent
entry. By injecting values that yield worst-case conditions in the algorithm,
such as all values hashing into the same bucket, the attacker can cause the
application to perform their functions in exponential time for each subsequent
entry, thus causing a CPU power consumption attack.

As long as the attacker can freely send data to the server that is processed
using the vulnerable hash function, it can overload CPU utilisation of the
server. In the worst case it could degrade a request what would normally
be a sub-second operation into one that takes several minutes to complete.
The victim might be able to immunise the host from this kind of attacks by
changing the middleware to remove the vulnerability.

Examples. A common example for a memory exhaustion attack is the
TCP SYN attack [96] with which the attacker tries to exhaust the memory
available at a victim host for storage of new incoming TCP-connections.
The attacker sends a stream of TCP SYN packets to a victim’s listening
TCP port. Each request originates from a different source by forging the IP
source address field, which is commonly referred to as IP spoofing.

For each incoming packet the destination host must search through exist-
ing connections. If the incoming packet does not match any connection, the
host has to allocate a new data structure for the connection. Finally it will
send a TCP SYN/ACK packet back to what it believes is the originator of
the packet. The resulting situation after sending this packet is often called
"TCP - half open”.

If the forged source address of the TCP SYN packet refers to an actually
running system, this system will receive a TCP SYN/ACK packet for which
it did not send a SYN packet. Consequently, it will most likely send a
TCP RST packet to the victim of the DoS attack, which will delete the
corresponding entry of its internal connection database. If, however the
forged source address does not reference a running system, the victim host
will wait for an answer until a TCP timeout expires, so that the memory
allocated for this connection is occupied for a longer period of time.

By using forged source addresses in attacking packets other hosts become
secondary victims of the attack. The phenomenon of receiving unsolicited
packets as a result of a DoS attack is sometimes also referred to as ”backscat-
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ter”. This effect can be used for a rough estimation of the amount of flooding
attacks in the Internet [97].

Additionally, there are several possibilities to misuse the fragmentation
ability of IP. For example, it is easy to send a sequence of fragments without
the first fragment. While the IP processing entity of the destination system
waits for the arrival of all fragments, is not able to re-assemble the fragments
and pass them up to the next layer, to free its own buffer memory. This
attacking technique can exhaust the memory of systems that perform re-
assembly of IP packets.

Most attacks work because of an inherent asymmetry in certain protocols.
This asymmetry enables the attacker to create a large amount of work and
consume substantial resources at the server, while sparing its own resources.
Generally, the only fix that works against protocol attacks is creating a pro-
tocol patch that balances the asymmetry in the server’s favour. If the fix
requires changing the protocol, both the sender and receiver must use the
new version of the protocol. Changing commonly used Internet protocols for
any reason is normally not possible.

DoS CPU Attacks on the Authentication Mechanism. For client au-
thentication, cryptographic mechanisms are generally used, which is a main
security service in many Internet protocols. However, the involvement of
computationally expensive operations that are inherent to cryptographic pro-
tocols are a common target for CPU exhaustion attacks.

Authentication. Authentication, the proof of the identity of an entity
or the origin of a message, is the most fundamental security service as most
other security services build upon it. There are basically two variants of
authentication: Data origin authentication, i.e. to ensure that data has not
been altered, and entity authentication, i.e. to verify the identity of an entity.

As in communication networks direct verification of the above is difficult
or insecure, authentication of peer entities is usually established by running
a cryptographic protocol. Like any other protocol, a cryptographic protocol
must fulfil the following requirements:

e Everyone involved in the protocol must know the protocol and all of
the steps to follow in advance,

e Everyone involved in the protocol must agree to follow it,

e The protocol must be unambiguous, that is every step is well defined
and there is no chance of misunderstanding, and



40 CHAPTER 2. BACKGROUND INFORMATION

e The protocol must be complete, i.e. there is a specified action for every
possible situation.

e As an additional property a cryptographic protocol has to ensure that
it should not be possible to do or learn more than what is specified in
the protocol.

While the last issue has received a lot of attention during the past 20 years
in research on design and analysis of cryptographic protocols, the aspect of
guaranteeing that every involved entity agrees to follow the protocol has not
been questioned extensively. However, recent attacks show the vulnerabili-
ties of cryptographic protocols against DoS attacks: cryptographic protocols
require a server to execute computationally expensive cryptographic algo-
rithms.

The cryptographic algorithms [98] that are generally used in authentica-
tion protocols can be classified according to the following scheme:

e Encryption algorithms, which may be further divided into:

— Symmetric encryption algorithms, that uses a single key for en-
cryption and decryption of data. This key has to be kept secret
between two entities participating in a secure exchange, explain-
ing the common term secret key encryption for this class of al-
gorithms. Prominent algorithms in this category are the Data
Encryption Standard (DES) [99] and the Advanced Encryption
Standard (AES) [100].

— Asymmetric encryption algorithms, that uses two different keys for
encryption and decryption of data. Each entity possesses a pair
of keys: one private key which is only known to the issuer and
one public key which is publicly announced. The sender encrypts
messages with the public key of the receiver. As the correspond-
ing private key is only known to the receiver, he is the only one
able to decrypt the message. Prominent examples for asymmet-
ric encryption algorithms are the Rivest-Shamir-Adleman (RSA)
algorithm [101] and the ElGamal algorithm [102].

e Integrity check values, that may be further subdivided into:

— Modification Detection Codes (MDC), which are computed using
a class of algorithms called Cryptographic Hash Functions. An
MDC alone does not protect a message, it represents a digital
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fingerprint which needs to be signed using either a secret or a
private key in order to ensure that the message originated from a
specific sender. Common algorithms in this class are the Message
Digest 5 (MD5) [103] and the Secure Hash Algorithm (SHA-1)
[104].

— Message Authentication Codes (MAC) which are computed over
a message using also public key algorithms. The sender encrypts
the message or message digest with his private key. Knowing the
sender’s public key this allows every other entity to verify, that the
message actually did originate by the sender, as only the sender
knows the corresponding private key. A prominent example for

this is HMAC [105].

Regarding the potential DoS threats arising of the usage of these algo-
rithms, it turns out that asymmetric cryptographic algorithms inhibit the
highest DoS risk as they require an additional processing overhead, with a
factor of 100 - 1000 in terms of primitive operations in comparison to symmet-
ric encryption algorithms. Cryptographic hash functions can be computed
even faster than symmetric encryption algorithms and therefore inhibit the
lowest DoS risk.

Examples for DoS Attacks on Authentication Protocols. DoS
attacks on authentication protocols make use of the fact that the protocols
use up a lot of the server’s resources. These resources are in the form of
expensive computation power and server memory to store data relevant to the
connection, i.e. identities, nonces and similar state data. Figure 2.12 shows
an example of a malicious client launching a DoS attack on the authentication
function of a server.

Client Server
Request connection
>
Ask for authentication I
C—1
Send false signature —

>

Sewer wasting resources L |

Figure 2.12: Example DoS attack on authentication

Other scenarios to spend server resources are for example an attacker
starting an authentication procedure and then leaving the server at an inter-
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mediate stage. If the attacker can convince the target server to perform a
large amount of computations, e.g. through the verification of many dummy
signatures, legitimate client request to access the server are processed with
a lower priority. Another possibility is to stimulate the server to generate
digital signatures. In case public keys with short exponents are used, the gen-
eration of RSA signatures, for example, requires much more computational
effort than verification due to the deployment of a relatively larger exponent
in the signature generation.

Many protocols including SIP make use of Transport Layer Security
(TLS) [81] for securing the exchange of signalling messages between SIP
entities. The TLS authentication protocol offers a wide variety of crypto-
graphic options. Figure 2.13 shows the principal message exchange during
TLS session establishment.

Client Server
ClientHello >
ServerHello
[ServerCertificate]
[CertificateRequest]
[ServerKeyExchange]

ServerHelloDone

A

[ClientCertificate]
ClientKeyExchange

[CertificateVerify]
ChangeCipherSpec
Finished >
ChangeCipherSpec
< Finished

[...] denotes optional messages

Figure 2.13: Overview of the TLS session establishment
SSL supports three methods for establishing session keys:

1. RSA: a so-called pre-master-secret is randomly generated by the client
and sent to the server encrypted with the servers public key.

2. Diffie-Hellman (DH): a standard Diffie-Hellman exchange [106] is per-
formed and the established shared secret is taken as pre-master-secret,
and
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3. Reuse of previously negotiated security state: if a previously established
session allows resuming, the pre-master-secret can be used to generate
fresh session keys without requiring expensive asymmetric computa-
tions.

A DoS attacker will likely use the first two cases to create load during
the decryption process.

2.3.3 Distributed Denial of Service Attack

Over the time DoS attacking strategies have become more elaborate with one
of the most severe forms being Distributed Denial of Service (DDoS) attacks.
In case of DDoS, attackers make use of the joint power of multiple systems
when launching an attack. Therefore, even servers with a high amount of
resources and high bandwidth connections are vulnerable to such attacks.

Distributed Denial of Service attacks can be realised using different topolo-
gies. The so-called Master-Slave-Victim Topology is illustrated in Figure 2.14
on the left hand side. The master either directly represents the attacker or is
controlled by the attacker while slaves represent terminals being controlled
by the master system. In this topology each slave terminal attempts to flood
the victim with a massive amount of packets using forged source addresses
so that the victim is unable to detect the real source of the flood.

The Master-Slave-Reflector-Victim Topology depicted on the right hand
side of Figure 2.14 is characterised by the use of amplifying networks to
increase the damage. The attacker commands each slave to send spoofed
echo request packets to the broadcast address of an amplifying network. The
source address is spoofed and equal to the address of the victim. Every
host of the amplifying network will reply to the victim. Note that with this
topology the source address of actual attacking traffic arriving at the victim is
not spoofed, because reflectors send with their real source address, assuming
that they received an echo request from the victim.

This construction of DDoS networks has a lot of advantages: the identity
of the attacker is concealed and the stability of such attacking networks
is greater, because the masters do not know all of the clients, so that the
attacking network can handle partial failure caused by detection of some
master and slave systems. To increase the power of attacks, slaves can be
installed on systems with high bandwidth connections.

DDoS Procedure
A DDoS attack has to be diligently organised by the attacker.
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Figure 2.14: Different attacking topologies of DDoS networks

Firstly, it recruits the agent army. For a sussesful attack, multiple hosts
have to be put into the agent army. There are special tools for this procedure
available, e.g. Trinoo, Tribe, Bagle and more [107].

To recruit an army, the attacker needs to look for vulnerable machines,
breaking into them, and installing its attack code using an attack tool. An
example program that employs scanning to identify vulnerable hosts is an
Internet worm. Internet worms are automated programs that propagate from
one vulnerable host to another, in a manner similar to biological viruses. A
worm has three distinct primary functions:

e scanning, to look for vulnerable machines

e exploitation, which compromises machines and establishes remote
control

e payload, code they execute upon compromise to achieve some attack
function

The worm will install its control or DoS code on the machine and attempts
to duplicate its code on other victim machines. The attacker needs to exploit
a vulnerability in the machines that it is intending to recruit in order to gain
access to them. The vast majority of vulnerabilities provide an attacker with
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administrative access to the system, and it can add/delete/change files or
system settings at will.
Exploits typically follow a vulnerability exploitation cycle:

1. A new vulnerability has been discovered in attacker circles and is being
exploited in a limited fashion.

2. The vulnerability makes it outside of this circle and gets exploited at
a wider scale.

3. Automated tools appear, and non-experts (script kiddies) are running
the tools.

4. A patch for the vulnerability appears and gets applied.
5. Exploits for a given vulnerability decline.

One vulnerability that is not mitigated by patching, is weak passwords.
Some exploits contain a list of common passwords. They try these passwords
in a brute-force or iterative manner, one after another. All too many times,
these exploits succeed in finding a weak login /password combination and gain
unauthorised access to the system.

The attacker next establishes communication channels between machines,
so that they can be controlled and engaged in a coordinated manner. This
is done using either a handler/agent architecture or an IRC-based command
and control channel. Once the DDoS network is build, it can be used to
attack as many times as desired against various targets.

The attacker needs to decide on a propagation model for installing his
malware. A simple model is the central repository, or cache, approach: The
attacker places the malware in a file repository (e.g. an FTP server) or a web
site, and each compromised host downloads the code from this repository.
One advantage of the caching model for the defender is that such central
repositories can be easily identified and removed. Figure 2.15 illustrates
propagation with a central repository.

Another model is back-chaining, or pull-approach, wherein the attacker
carries his tools from an initially compromised host to subsequent machines
that this host compromises. Figure 2.16 illustrates propagation with back-
chaining.

Finally, the autonomous, push, or forward propagation approach com-
bines propagation and exploit into one process. The difference between this
approach and back chaining is that the exploit itself contains the malware to
be propagated to the new site, rather than performing a copy of that mal-
ware after compromising the site. The worm carries a DDoS tool as payload,
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code

attacker M» victim M» next victim

Figure 2.15: Propagation with central repository

2 copy code

attacker M» victim M next victim

Figure 2.16: Propagation with back chaining

and plants it on each infected machine. Figure 2.17 illustrates autonomous
propagation.

When the agent army has been recruited in sufficiently large numbers,
the attacker communicates with the agents using special ”many-to-many”
communication tools. The purpose of this communication is twofold:

1. The attacker commands the beginning/end and specifics of the attack.
2. The attacker gathers statistics on agent behaviour.

An example are handler/agent networks, where the attacker controls the
network by issuing commands to the handler, which in turn relays com-
mands to the agents, as shown in Figure 2.18. Commands may consist of
unencrypted text, obfuscated or encrypted text, or numeric (binary) byte
sequences. Analysis of the command and control traffic between handlers
and agents can give insight into the capabilities of the tools without having
access to the malware executable or its source code.

1 exploit

attacker & copy codd

victim M» next victim

Figure 2.17: Autonomous propagation
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Attacker Master
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Attack Traffic
Victim

Figure 2.18: DDoS network control architecture

2.3.4 Mitigation Countermeasure Analysis

Both DoS and DDoS are a huge threat to the operation of the Internet
sites, but the DDoS problem is more complex and harder to solve. First,
it uses a very large number of machines. This yields a powerful weapon as
nearly any target, regardless of how well-provisioned it is, can be taken offline.
Gathering and engaging a large army of machines has become trivially simple,
because of the previously described, widely available DDoS tools. The second
characteristic of some DDoS attacks that increases their complexity is the use
of seemingly legitimate traffic. Resources are consumed by a large number
of legitimate-looking messages; when comparing the attack message with a
legitimate one, there are frequently no telltale features to distinguish them.

How can one defend against the difficult problems raised by distributed
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denial-of-service attacks? There are two classes of victims of DDoS attacks:
the owners of machines that have been compromised to serve as DDoS agents
and the final targets of DDoS attacks. Defending against the former attack
is the same as defending against any other attempt to compromise your
machine.

DDoS Defences Challenges

The main problem that permits effective DDoS handling is the problem of
large scale. DDoS is a distributed threat that requires a myriad of overlapping
"solutions” for various aspects of the DDoS problem, which must be spread
across the Internet because attacking machines may be spread all over the
Internet. The following is a list of challenges for DDoS defence [28].

e Uncertainty of defence placement. Ideally, a defence solution
should be located close to the attacker, to allow fast reaction to the at-
tack. Unfortunately, it is seldom known where the attacker is located.
Also, network closely to the attacker might not be under control of the
target, so it is mostly not even possible to locate defences there. Hence,
most defences are placed close to the target, with the main drawback
that there the defence mechanisms also can be overwhelmed by large-
scale DDoS traffic. Ideally, the defence should be located a different
places.

e Lack of detailed attack information. It is widely believed that
reporting occurrences of attacks damages the business reputation of
the victim network. Therefore, very limited information exists about
various attacks, and incidents are reported only to government organi-
sations under obligation to keep them secret.

e Lack of defence system benchmarks. Many vendors make bold
claims that their solution completely handles the DDoS problem. There
is currently no standardised approach for testing DDoS defence systems
that would enable their comparison and characterisation.

e Difficulty of large-scale testing. DDoS defences need to be tested in
a realistic environment. This is currently impossible due to the lack of
large-scale test beds, safe ways to perform live distributed experiments
across the Internet, or detailed and realistic simulation tools that can
support several thousand nodes.

It is an impossible task to devise a solution targeting the listed challenges.
The sheer size of the Internet renders any complete solution ineffective. The
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goal should therefore be to devise protection methods compromise between
completeness and effectiveness.

DDoS Defence Goals

Whether the DDoS defence strategy is preventive, reactive, or a combination
of both, there are some basic goals it wants to achieve:

e Effectiveness. A good DDoS defence should actually defend. It
should provide either effective prevention that really makes attacks
impossible or effective reaction ensuring that the DoS effect goes away.

e Completeness. A good DDoS defence should handle all possible at-
tacks. If that degree of perfection is impossible, it should at least handle
a large number of them.

e Provide service to all legitimate traffic. As mentioned earlier, the
core goal of DDoS defence is not to stop DDoS attack packets, but to
ensure that the legitimate users can continue to perform their normal
activities despite the presence of a DDoS attack.

e Minimum false-positive rates. Good DDoS defence mechanisms
should target only true DDoS attacks. Preventive mechanisms should
not have the effect of hurting other forms of network traffic.

¢ Low deployment and operational costs. DDoS defences are meant
to allow systems to continue operations during DDoS attacks, which,
despite being very harmful, occur relatively rarely. The costs associ-
ated with the defence system must be compensated with the benefits
provided by it. Other operational costs relate to overheads imposed by
the defence system.

Countermeasures

As DDoS are difficult to counter, there does not exist one single solution
to prevent against these attacks. Instead multiple different solutions have
been developed that target different aspects of the attacks. We give some
examples here.

Ingress filtering. A very effective measure against flooding attacks is
called ingress filtering. It primarily counters IP spoofing as used in flooding
attacks. The usage of ingress filtering for defeating DoS attacks is described
by Ferguson and Senie in [108]. The main idea is depicted in Figure 2.19.
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Figure 2.19: Ingress filtering

In the example depicted in Figure 2.19 an attacker with IP address
9.23.122.4 resides within the subnetwork 9.0.0.0/8, which provides Internet
connectivity by the ISP via a router. The input link of that router must be
observed, so that only packets with source addresses within 9.0.0.0/8 may
pass the router. All other packets should be dropped since their source ad-
dress is not correct (because of spoofing or false configuration). Additionally,
information on suspicious packets can be logged. Likewise, ISPs that provide
connectivity to single end users (e.g. dial-up connections) would allow only
one possible correct source address.

There are also some disadvantages of this method. First, it is a big effort
to implement these filtering rules Internet-wide. Then, an attacker may forge
the address to an address of another host in the own network. Nevertheless,
it is much easier to trace the true source since the possible address range is
reduced.

Furthermore, there are some specific services (e.g. Mobile IP) which are
affected by ingress filtering, because the source address of packets sent from
visiting mobile hosts does not match with the network where the station
is attached. Possibilities like reverse tunneling are examined to solve this
incompatibility.

Packet filtering. As a basic packet filtering measure, it is already very
useful to restrict traffic sent to or from special IP addresses (at least at
border routers between networks, e.g. a router connected to an ISP):

e incoming or outgoing packets with broadcast addresses like 0.0.0.0 and
255.255.255.255

e incoming packets with addresses from the (internal) local network itself
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e incoming or outgoing reserved addresses (private address space):

— 10.0.0.0 - 10.255.255.255 (10/8, reserved)

— 127.0.0.0 - 127.255.255.255 (127/8, loopback)

— 172.16.0.0 - 172.31.255.255 (172.16/12, reserved)

— 192.168.0.0 - 192.168.255.255 (192.168/16, reserved)

Stateless Operation. The idea of using stateless protocols at the begin-
ning of an authentication protocol and its benefits were recognised by Yung
et al. in [109]. Aura and Nikander generalised the approach to create state-
less servers that maintain connections by passing the state data to the clients
[110].

The overall goal of this approach is to relief the server from storing state
information before an anonymous DoS attack can be ruled out. Aura and
Nikander therefore suggested that the first few steps of an authentication
protocol should be stateless until client authenticity has been successfully
checked or the client has in some other way clearly shown its commitment
to honest use of the service.

As illustrated in Figure 2.20 the basic idea of stateless protocols is not
to store state at a server that represents a target for potential DoS attacks,
but to send the session state back to the client. In order to ensure the
confidentiality and integrity of the state data, however, appropriate security
measures (encryption and integrity protection) should be provided to it. As
only the server needs to be able to read and check the state information,
symmetric cryptography can be used for this purpose allowing for a relatively
efficient implementation.

Stateful Operation Stateless Operation
1. C—> S: Msg, 1. C— S: Msg,
2. S5 C: Msg, S Sstores States 2. S — C: Msg,, Stateg,
3. C— S: Msg, 3. C— S: Msg,, Stateg,

S stores Stateg,

4. S— C: Msg, 4. S — C: Msg,, Stateg,

Figure 2.20: Stateful vs. stateless protocol operation

While stateful protocols are vulnerable to memory exhaustion attacks,
making them stateless results in protocols being more resistant against at-
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tacks and allows them to recover faster after an attack. Stateless protocols
are in particular more resistant to attacks that leave connections in a half-
open state as they pass the task of storing state data to the client and the
network. However, one drawback of this approach is that it increases storage
and bandwidth requirements on the client side and in the network.

Cookies. A cookie is a data structure which is generated by a server and
given to a client at the start of a protocol run, requesting that the client
stores and returns this data structure with subsequent protocol messages.

The Photuris key management protocol by Karn and Simpson [111] was
probably the first protocol to implement a cookie exchange so that the server
could check if the initiator of a key management dialogue is actually on the
route between the server and the source address given in the initial request.
The Photuris specification lists the following requirements for cookies:

e the cookie must depend on the addresses of the communicating parties,

¢ nobody else must be able to forge a cookie that will be accepted by the
server,

e the cookie generation and verification must be fast enough so that they
will not represent a target for DoS attacks, and

e the server must not keep per-client state until the clients IP address
has been verified (i.e. it has received a cookie generated by itself)

The recommended cookie generation method is based on a cryptographic
hash function (such as MD5). It is also recommended that the cookie be
calculated over a secret value only known to the server, the IP source and
destination addresses, and the transport layer source and destination ports.

A protocol that makes use of the cookie idea usually proceeds as follows:
when a client wants to connect to a server, the server will send a cookie con-
taining information that is unique to that particular request and a hash value
computed over this information and over a secret known only to the server.
The client must then return the cookie in the next message. Only if the
cookie is verified and accepted by the server, subsequent protocol processing
will continue.

Summarising, the cookie measure enables countering simple address spoof-
ing attacks as in this case the attacker will most likely not be able to receive
the cookie and is thus not able to force the server to continue with the proto-
col execution. However, if the attacker is able to eavesdrop the servers first
reply containing the cookie, e.g. because it is located close to the server and
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can eavesdrop on the servers communication lines, the cookie mechanism can
not provide any protection.

Furthermore, the cookie idea can be realised together with the idea of
stateless protocol operation without requiring additional computations. In
this case the connection state can be sent back to a requestor which already
contains information specific to a particular request and is as well integrity
protected.

Client Puzzles. The idea of using client puzzles to slow down the sending
rate of a potential attacker was first presented by Dwork and Noar [112] who
proposed to ask the sender of an email to solve a so-called client puzzle for
each message, thereby increasing the cost of junk mailing. Juels and Brainard
[113] presented a simpler puzzle that may be given to a client during TCP’s
connection setup phase in order to counter TCP-SYN attacks. Aura et al.
[114] further developed this idea to cover attacks on cryptographic protocols.
The following discussion is mainly based on the last reference.

The idea behind client puzzles is that a client puzzle can be easily gen-
erated and verified by a server, while clients must use a significant amount
of computational resources in order to solve it. Furthermore, the puzzles’
difficulty can be easily scaled based on factors such as server load or server
trust of the client.

The idea can be illustrated with a simple example: a server generates
two random numbers NS and X’ and computes a cryptographic hash value
h=H(NS, X') of them. The server then provides the client with one of the
random numbers NS and k bits (for example 8 bit) of the hash value. The
client must then guess random numbers and compute cryptographic hash
values until k bit of a resulting hash value match the value that has been
supplied by the server. As cryptographic hash functions can not be inverted,
the client on the average has to try 2k — 1 different random numbers until
he finds one number X so that 8 bit of H(N.S, X)) match the value provided
by the server. However, in order to generate and check the client puzzle,
the server just needs to compute the cryptographic hash function two times.
This effort on the server side can be further reduced by just generating and
sending one random number N S and the parameter £ to the client and always
requiring the first £ bit of H(N.S, X) to be of a fixed value, e.g. 0.

The basic properties of a client puzzle as required by Aura et al. are as
follows:

e the creation and verification of a puzzle is inexpensive to a server,

e the server can adjust the cost of solving a puzzle (from zero to impos-
sible),
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e the puzzle can be solved on most types of client hardware,
e the pre-computation of solutions is impossible,

e the server does not need to store any client-specific data while a client
solves the puzzle (The server does not know X at the time it creates
the puzzle as in order to know it, it would have to solve the puzzle
itself, additionally the client also generates an own nonce, so the server
can not know this particular puzzle at this moment. In order to check
a client puzzle, the server needs to be able to recognise its own random
numbers to ensure freshness of the puzzle. Note, that NS is not client-
specific and therefore does not imply a growing storage need when DoS
attacks occur. This protects against memory depletion as the server
does not store client-specific data before (!) the client has successfully
solved a puzzle.),

e the same puzzle may be given to several clients, while ensuring that
knowing the solution of one or more clients does not help a new client
in solving the puzzle, and

e a client can reuse a puzzle by creating several instances of it, however,
the solution to a puzzle should not be reusable (this may in fact require
storage of solved puzzle instances for a given period of time).

Client puzzles provide an effective means to significantly slow down po-
tential DoS attackers while at the same time only minimally increasing the
length of messages (about one byte for parameter k and up to eight bytes
for the solution X). The overall concept is to make the client commit its
resources before the server commits its resources. It protects servers at the
early stage of a normal authentication where the computations are the most
CPU intensive.

2.4 Intrusion Detection Systems

2.4.1 General Overview of Intrusion Detection

Intrusion detection systems (IDS) are software- or hardware systems intended
for the automation of monitoring and analysis of events occurring in computer
systems or networks with the aim of indicating potential security problems.
IDSs can be generic in nature to be customised with detection rules specific
to the environment in which they are deployed (e.g. Snort [115] and Prelude
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[116]), while others are specifically targeted towards particular environments
or specific classes of intrusion incidences.

In the last two decades, IDS have been an active research area in the
computer security field due to the fact that the usage of computing tools and
networking all over the world have grown rapidly, and in parallel the security
violations caused by the users of computing tools and networking facilities
have also increased.

There are three fundamental functionalities of an IDS: monitoring, de-
tecting and responding. In order to realise those three functionalities, an
IDS is composed of:

e Sensors: generate security events.
e Console: monitors events and controls sensors.

e Engine: records events logged by sensors in a database, uses a system
of rules to generate alerts from security events received and informs the
responsible authority.

Today, intrusion detection systems are not only able to alert an admin-
istrator if something irregular occurred in the network but can even prevent
from intrusion attacks. They also may provide the capability of stopping
malicious attackers by dropping respective packets or by applying other ap-
propriate countermeasures (e.g. unregistering of malicious users).

Intrusion detection systems do not guarantee a complete security; on the
contrary, when it is used in conjunction with other security tools such as
firewalls, access control, security policies, data encryption and user authen-
tication, the security of the system to be protected is enhanced.

2.4.2 Intrusion Detection System Types

There exists three general concepts of IDS, as shown in Figure 2.21, and
outlined in the following paragraphs.

Network-based IDS

Network Intrusion Detection Systems (NIDS) are placed at strategic points
within the network in order to monitor traffic to and from all devices of
the network. Ideally, a NIDS scans all inbound and all outbound traffic.
The network-based IDS can scan network packets at the router- or host-
level, verifying packet information, and logging suspicious packets by adding
supplementary information.
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Figure 2.21: Difference between IDS systems. Top: Network IDS (NIDS).
Middle: Host IDS (HIDS). Down: Extension Module

Based on this collection of suspicious packets, a network-based IDS can
scan its own database of known network attack signatures and assign a sever-
ity level to each packet. If the severity level exceeds certain thresholds, an
alarm is raised.

Although network-based systems are able to simultaneously monitor nu-
merous hosts, they may suffer from performance problems, especially in case
of increasing network speeds. Many network-based systems simplify assump-
tions about network properties, e.g. about packet fragmentation and can
suffer from resource exhaustion problems when they have to maintain attack-
state information for many attacked hosts over a long period of time.

Despite of these deficiencies, they are popular because they are easy to
deploy and manage as standalone components, and they have in the ideal
case only little or no impact on the protected system’s performance.

Generally, NIDS fail if the traffic is encrypted. This is because the NIDS
requires access to the data part of the packets, not just the headers in or-
der to detect intrusion attempts. If in the future encrypted traffic is used
throughout all networks, this is expected to become a very serious problem
for network-based systems. NIDS also cannot be used to defend switched
networks unless the IDS is incorporated into the switch itself. This is true
because the NIDS needs to put the network interface into promiscuous mode
to capture all packets in the network, not just the ones addressed to the
system on which the NIDS is running. Switched networks cannot be used in
this way.

Snort [115] is a prominent open source NIDS.



2.4. INTRUSION DETECTION SYSTEMS o7

Signature-based

: Read —
Signature | "~ | Signature
Detection Engine Database

Anomaly-based

Data Structures —

[

Anomaly read Standard
Network Tap Detection Engine| -~ ypdate Traffic Model Detection,
4 o Operator
Console

Network Wire ‘

Figure 2.22: NIDS architecture

Host-based IDS

A Host Intrusion Detection System (HIDS) analyses several areas in order
to determine misuse (malicious or abusive activity inside the network) or
intrusion (breaches from the outside). HIDS consult several types of log files
(kernel, system, server, network, firewall, and more), and compare the logs
against an internal database of common signatures for known attacks. The
HIDS filters log entries, analyses them, re-tags anomalous messages using
its own severity rating scale, and collects them in its own specialised log for
further administrator-based analysis.

A HIDS can also verify the data integrity of important files and executa-
bles. It checks a database of sensitive files (and any files that one may want
to add) and creates a checksum of each file. If any of the file checksums are
altered in an irregular way, an alert is raised.

Examples for HIDS are Tripwire [117] or the Simpler WATCHer [118].

Hybrid IDS

Hybrid Intrusion Detection Systems combine capabilities of network based
IDS and host based IDS. Thus these systems are on the one side capable
of monitoring network trafficlike network based IDS and on the other side
to monitor different application and system logs like host-based IDS at the
same time. Prelude is an example of a hybrid IDS [116].
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2.4.3 Detection Strategies

Commonly, detection can be classified in misuse based detection and anomaly
based detection [119].

Signature- or Misuse-based Detection

In order to be able to detect attacks a signature-based IDS requires specific
attack descriptions. These can be as simple as a specific pattern matching
a portion of a network packet or as complex as a state machine or neural
network description that maps multiple sensor outputs onto abstract attack
representations. If an appropriate abstraction can be found, signature-based
systems can identify previously unknown attacks which are abstractly equiv-
alent to known patterns. Signature based IDS are inherently unable to detect
truly novel attacks and suffer from false alarms when signatures match both
intrusive and non-intrusive sensor outputs. Signatures can be developed in
a variety of ways, ranging from hand translation of attack manifestations to
automatic training or learning using labelled sensor data. Because a given
signature is associated with a known attack abstraction, often names (such
as Smurf or Ping-of-Death) are assigned to attacks.

Anomaly-based Detection

An anomaly based IDS monitors network traffic and compares it against
an established baseline. The baseline identifies what is "normal” for that
network, i.e. what sort of bandwidth is generally used, which protocols are
used, which ports and devices generally connect to each other and alert the
administrator or user when supposedly anomalous traffic is detected, or sig-
nificantly different in comparison with the baseline. Baseline characterisation
approaches range from statistical models of component or system behaviour,
neural networks and other Al techniques, to approaches inspired by the hu-
man immune system. The primary strength of anomaly detection is its ability
to recognise novel attacks. Its drawbacks include the necessity of training the
system on noise with the difficulties of tracking natural changes in the noise
distribution. Changes can cause false alarms, while intrusive activities which
appear to be normal activity can lead to detection failures. Anomaly-based
systems have difficulties classifying or naming attacks.

Anomaly based detection was first proposed by Dorothy E. Denning. In
her work ([120]), she presented the idea of creating profiles out of the audit
data for every subject on a system, where a subject may be a user, a process
or a host. After profiling the behaviors, the subsequent behaviors of those
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subjects are compared with the profiles using statistical metrics in order to
find the anomalous ones.

2.5 Relevant Tools

We describe in this section the most relevant tools we use in our work.

2.5.1 Netfilter / IPtables

Netfilter and iptables [121] are building blocks of a framework inside the
Linux kernel. This framework enables packet filtering, Network Address
Translation (NAT) and other packet mangling. Netfilter is a set of hooks
inside the Linux kernel that allows kernel modules to register callback func-
tions with the network stack. A registered callback function is then called
back for every packet that traverses the respective hook within the network
stack. Iptables is a generic table structure for the definition of rule sets. Each
rule within an IP table consists of a number of classifiers (iptables matches)
and one connected action (iptables target).

2.5.2 SER

The SIP Express Router (SER) [61] is an open-source SIP server, published
under the GNU Public License. SER’s architecture has been designed for
high scalability to serve thousands of calls per seconds, and flexibility due to
a modular plugin-approach and a highly configurable routing language. SER
is already in widespread use at many VolP providers.

SER was designed in a highly modular manner as depicted in Figure 2.23,
it consists of an efficient core that is responsible for receiving, parsing SIP
and forwarding messages.

The core is also responsible for invoking certain procedures that are pro-
vided as extension modules. These modules are dedicated to providing cer-
tain features. Such modules include:

e Registration and user location: This part is responsible for handling
registration requests and managing the user location database.

e Transaction management: When acting in a stateful mode SER must
maintain per transaction state, generate replies, match replies to re-
quests and deal with forking.
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SER Core Modules
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Figure 2.23: General architecture of SER

e User authentication: SIP utilising HT'TP digest for authenticating user
requests. This part of SER interacts with the database, which main-
tains the users identity and password and is responsible for checking
the credentials of the users.

e SIP handling: While the core deals with message processing, the trans-
action management deals with state handling and taking the appropri-
ate SIP actions, this type of modules deal with additional processing

logic such as handling of record-route headers, loop detection or sup-
port for ENUM.

Each module exports a set of functional procedures and utilises proce-
dures exported by other modules. The integration between the different
modules and the core is realised through a configuration language. The SER
Configuration Language (SCL) is a rich and flexible scripting language. In
this context SCL is similar to shell languages with support for regular ex-
pressions and allowing the administrator to specify certain rules whenever a
specific event occurs, in the manner of

If (event) then (action);



2.5. RELEVANT TOOLS 61

In the figure below, the administrator specifies that after receiving a reg-
istration request, the core should invoke the authentication module before
handing the registration by the registration module

If (method==REGISTER)
www_challenge(sip.org/*realm*/, 0);
break;

To enable the extension of the functionality of SER it provides an open
programming interface to utilise the current and novel functionalities of SER
and add novel ones.

This is achieved by implementing a new module that provides these new
features. Such a new module would use the exported procedures of the other
modules as well as functionalities of the core. The new module in its turn
exports new procedures that could be invoked by the core and other modules
as well.

The SCL is then used for integrating the new functionalities in the general
functionality of SER. Using SCL, the administrator of the SER platform can
define the exact behaviour of the platform based on available modules and
needed actions.

2.5.3 PROTOS Suite

PROTOS [122] describes a method to assess the robustness of SIP imple-
mentation by describing a general test suite to find vulnerabilities. The test
suite sets a baseline to determine vulnerabilities in SIP products focusing on
SIP parser abilities, and can be used during in-house testing or as part of
regression testing. PROTOS has proven to be efficient in testing for soft-
ware vulnerabilities by using a black-box testing method based on syntax
testing. In syntax testing, test cases are generated from the corresponding
input specification. The test suite is written in Java and is freely available.

2.5.4 SIPp

SIPp [123] is an open source SIP traffic simulation and testing tool. Multiple
scenarios can be defined in XML scenario description files, both for UAS and
UAC. SIPp can handle advanced scenarios with multiple calls, IPv6, TLS,
SIP authentication, injecting of variable data and media playback. Some
simple scenarios are already hard-coded into the application.

SIPp can be used to test SIP equipments like SIP proxies, B2BUAs, IMS
CSCF and user terminals.
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Chapter 3

SIP Security Threats with
Focus on DoS

With SIP’s multiple application possibilities combined with the complexity
of the protocol as introduced in Chapter 2, several security weaknesses have
already been discovered. Listing and analysing a full SIP threat model would
already justify another separate document. Hence, in this chapter we start
with a general SIP threat introduction and introduce three main SIP security
threats - message fraud, spam and Denial of Service. We elaborate partly
on the first two topics and give pointers to further relevant work for the
interested reader. In the remainder of this chapter we introduce the SIP DoS
security threat in great detail. We introduce the three main SIP DoS forms
message payload tampering, message flow tampering and general message
flooding.

3.1 General Threats and Related Works

Security and privacy requirements! in a SIP communication environment
are expected to be equivalent to the currently predominant communication
platform, the PSTN. Contrary to the PSTN, SIP networks are commonly
deployed over the open Internet, which complicates the provision of security
and privacy in SIP networks.

SIP messages may contain information that a user or provider wishes to
keep private. For example, message headers may reveal confidential infor-
mation about the communicating parties. The SIP message body may also
contain user information (addresses, telephone number, etc.) that must not
be exposed to third parties. The open and distributed nature of the SIP

'Results of this chapter have been published in [19, 20, 64].
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Table 3.1: Network and application security issues

Issues Impact

Eavesdropping: unauthorised intercep- Loss of privacy and confiden-
tion and decoding of signalling mes- tiality, message fraud

sages

Viruses and software bugs DoS / unauthorised access
Replay: retransmission of genuine mes- DoS, SPIT

sages for reprocessing

Spoofing: impersonation of a legitimate Unauthorised access, fraud
user

Message tampering / integrity loss of integrity, DoS, SPIT
Prevention of access to network services DoS

e.g. by flooding SIP proxy servers /

registrars

SIP-enabled IP phones: Trivial File Loss of confidentiality, Unau-
Transfer Protocol (TFTP) eavesdrop- thorised access, DoS

ping, Dynamic Host Configuration Pro-

tocol (DHCP) spoofing, Telnet access

networks, especially SIP VoIP architectures, in conjunction with the variety
of subsystems (like DNS, AAA, Application Servers) further complicates the
task to secure the network.

The potential SIP threats can be divided into external and internal ones.
External ones are attacks launched by someone who does not participate
in a SIP-based communication and usually occur when signalling and data
packets traverse untrustworthy network realms. Because of this, SIP suffers
from all known attacks associated with any Internet application or subsystem.
Internal threats originate from within the SIP network. Table 3.1 illustrates
some of the identified threats and attacks, and their impact on the overall
SIP security.

The most severe threat in a VoIP environment is probably the easy access
to the communication channel. For instance, the existence of several internet
tools for analysing VolP traffic makes eavesdropping a simple task for any
potential perpetrator. Furthermore, the text-based nature of SIP messages
gives more opportunities for attacks like spoofing, hijacking and message
tampering as opposed to closed network communication. The results are
three classes of SIP attacks, which are
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1. SIP message fraud
2. Unsolicited messages, i.e. spam

3. Denial of Service

The content of a STP message can be altered during its way through the
Internet. This is mostly done in a harmful way to gain an advantage over the
party whose messages are tampered with, which is generally called message
fraud [49]. This could be done to gain free access to monetary systems, e.g.
hacking into the PSTN gateway. Another possibility is to steal confidential
information by eavesdropping on the communication channel. Research in
this direction is still in its infancy. Tools have been developed to probe for
vulnerabilities in SIP devices that can be exploited for message fraud attacks
[124]. Wang et al show that leading US VoIP services are vulnerable to
multiple fraud attacks [125]. Also, possibilities to launch billing attacks are
evaluated [50]. It is expected that message fraud attacks will be increasing in
the following years. The upcoming European research project SCAMSTOP
[126] will be addressing SIP message fraud.

In general, spam refers to any unsolicited communication and in tele-
phony, traditional or IP-based, it usually refers to unsolicited bulk call at-
tempts. In that case the denomination Spam over IP Telephony (SPIT) is
common.

SPIT is considered also a problem for SIP [127]. Multiple handling strate-
gies have been defined. For example, Croft et al. [43] present an approach
to prevent voice spam by extending the call setup procedure. They include
an anonymous mediator into the call path that manages the session setup.
Mathieu et al. [44] present an approach to detect and mitigate spam through
a network-level entity. The basic function of the specific entity is to capture,
filter and analyse the network traffic, passed from the equipment located in
the edges of the network, in order to detect and mitigate spit calls. Quittek
et al. [128] propose a method to apply hidden Turing tests to detect spam
calls. The IETF proposes a strong authentication system to make life harder
for potential SPIT-senders. [129, 15]. A novel approach is the detection on
Mailbox spam using audio analysis [12]. These and other approaches have
also been addressed in the European research project SPIDER [65].

The SIP DoS Threat is outlined in more detail in the following sections.

3.2 SIP DoS Introduction

The goal of a Denial-of-Service attack is to render the service or system
inoperable. Hence an attack can be directed toward different entities in the
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network, depending on the attacker’s intent. If the aim is to render the
service as a whole inoperable, the main target will be the core servers in the
SIP infrastructure. These can be all SIP proxies, but also other servers on
which the SIP infrastructure depends: DNS, RTP proxies, gateways to other
networks, etc. Direct attacks on the user agent are also possible, however
they will have a lesser impact, i.e. the attack’s effect will only be noticed by
the user agent itself.

We will distinguish between three different types of SIP DoS attacks.
They are SIP Message Payload Tampering, SIP Message Flow Tampering
and SIP Message Flooding. A classification, to be illustrated in the following
text, is depicted in Figure 3.1. The most relevant class and main topic of
this document (message flooding) is highlighted.

—‘ Type F—{ Message Flooding‘

Exploited Vulnerability}f Limitation of
Bandwidth
CPU
Memory

Helper Service

—‘ Flow Tampering

—{ Exploited Vulnerability}f Lack of Authentication / Encryption
Implementation Errors

UA only
—‘ Message Tampering

—{ Exploited VuInerabiIityH Implementation Errors

Proxy
UA
—‘M’i Single Source (DoS)

Multiple Source (DDoS) / Spoofed IP Addresses

W Malicious

Unintentional

Figure 3.1: Classification of SIP DoS attacks.

3.3 SIP DoS by Message Payload Tampering

The first class of attacks is based on tampering with the actual SIP message or
more specifically, the SIP payload. SIP is a text-based protocol and messages
are transported usually with clear text. Attackers can try to inject harmful
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content into a message, e.g. by entering meaningless or wrong information
with the goal of creating a buffer overflow at the target. Also, such messages
can be used to probe for vulnerabilities in the target. Harmful code that will
be executed in an unforeseen context can be introduced into the payload.
An example is SQL code injection [130], which allows the attacker to execute
SQL code in a database.

Such attacks can target both proxies and UAs. Unintentional attacks are
possible due to poor SIP implementations. Especially with probing requests
it is likely that these messages will have been launched from different sources.

3.3.1 Example: SIP Message Tampering with SQL

SQL Injection is a well known attack in the internet world. The goal of this
attack is to inject harmful SQL code in web page data entry forms, that will
be executed by the authentication database [131].

Similarly, SIP servers rely on SQL databases (e.g. MySQL [132]) and
utilise SQL statements in order to store and administer users credentials and
appropriate data for providing services. For example, the SER proxy provides
build-in modules in order to support MySQL and other databases. Here,
Subscriber and Location tables provide relevant service-related information.
In detail, the Subscriber table stores the user-related data such as user name,
domain, password etc. (see Table 3.2) for SIP authorised users, while the
Location table stores all the data representing the current available contact
addresses for all legitimate subscribers.

SQL injection in SIP can be triggered every time a SIP network entity
(e.g. SIP UA, SIP Proxy) is asking for authentication. So, in case a SIP
network element requests authentication, the UA on behalf of the autho-
rised user computes the appropriate credentials based on the HT'TP Digest
mechanism [80]. The result of this computation (credentials) is included in
the messages authorisation header. Then the message is forwarded to the
proxy server, which has to authenticate the received message. Thus, it re-
calculates user credentials using the user’s password stored in the Subscriber
table as presented in Table 3.2. To accomplish this task, it generates an SQL
statement of the following syntax:

SELECT password FROM subscriber
WHERE username=’joe’ AND realm=’black.net’

In case a malicious user tries to launch an SQL injection attack in the
SIP architecture, he spoofs the SIP message and inserts malicious SQL code
in its Authorization header, like the following:
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Table 3.2: Example subscriber table entry

Username Domain Password First LastName URI

joe test.net 12345 joe user joe.user@test.net

Authorization:Digest username="joe’;
UPDATE subscriber SET first=’malicious’
where username=’joe’--",
realm="black.net", algorithm="md5",
uri="sip:black.net",
nonce="41352a56632c7b3d382b5£98b9fal03b",
response="a6466dce70e7b098d127880584cdb7

This message can be any SIP message requiring authentication by a SIP
server. The code can be embodied either in the username or in realm fields
in the Authorization header. As soon as the proxy receives such a tampered
SIP message, it generates and executes the following SQL statement:

SELECT password FROM subscriber WHERE username= ’joe’;
UPDATE subscribe SET first’malicious’ WHERE username=’joe’--

As a result, message authentication fails, but the second command man-
ages to change joe’s ’first’ to 'malicious’. It is also possible for a malicious
user to attempt to employ other SQL commands, with the aim of making
the database useless and cause a DoS to the provided service.

3.4 SIP DoS by Message Flow Tampering

A special case of DoS attacks in real time communication networks are at-
tacks that disturb the ongoing communication between users. Common inter-
net services like web browsing or email communication have an asynchronous
time model, e.g. a requested web page is delivered directly to a user. The
user will read it without further communication with the web server. The
same applies to email — a user downloads the email and studies it indepen-
dently of a server connection. In contrast, in SIP real time communication
networks two communicating users establish a constant connection with each
other whereby content is transmitted continuously between both parties.

An attacker can now target this connection by introducing fake or mod-
ified signalling messages into the communication channel. Several different
SIP signalling messages can be misused for this task.
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Figure 3.2: Normal register flow

The attacker needs to know the session parameters in order for these
attacks to function correctly. The parameters can be sniffed from the net-
work. Tests have shown that multiple implementations do not follow the SIP
specification correctly, thus proving the feasibility of such attacks [133].

Flow tampered attacks are mostly targeted at SIP UAs.

3.4.1 REGISTER Attack

REGISTER requests add, remove, and query bindings. A REGISTER re-
quest can add a new binding between an address-of-record and one or more
contact addresses. Figure 3.2 depicts a common registration procedure: A
legitimate user builds a REGISTER message and sends it to its proxy server.
The SIP server generally requires authentication for incoming REGISTER
messages, thus it sends a response to the user with an unauthorised mes-
sage including a random number that must be used by the UA to create the
corresponding credentials. The legitimate user re-constructs the previous
REGISTER message by including the appropriate credentials and re-sends
it again. After this, the user is registered with the service.

The registration procedure can also be accomplished by a suitably autho-
rised third party, which has the appropriate privileges to perform registration
on behalf of a particular address-of-record. A client can also remove previous
bindings or query which bindings are currently in place for an address-of-
record by setting the expires header-field tag to zero.
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An attacker may now de-register all existing contacts for a URI and then
register his own device as the appropriate contact, thereby directing all re-
quests for the affected user towards the attacker’s device. An attacker may
for example register his own device as the contact address of the victim and
deregister all old contacts, thereby preventing these users from being invited
to new sessions.

user 1 proxy user 2
invite o
invite -
h request
arp
) response
P trying
L ringing
- ringing
> OK
- OK
ACK -
ACK -
P MEDIA o
| BYE
P BYE

Figure 3.3: Normal session termination

Moreover, it is possible to launch a DoS attack by the modification of a
register request that contains more than one Contact address which utilises
7q values” to classify the corresponding priority of these addresses. The ”q
value” indicates a relative preference for the particular Contact field. If these
values are set to zero, it is possible that the user can not receive an incoming
SIP INVITE. Equivalent to the previous attack is the malicious modification
of the Expires header whenever a malicious user sets the value of this header
to zero. In addition, a malicious user may modify not only the ”q values” but
add his contact address and changes the corresponding ”q values” to receive
all incoming calls.
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3.4.2 INVITE Attack

Once a dialog-session has been established by initial messaging, subsequent
requests can be sent that attempt to modify the state of the dialog-session.
Thus, any unauthorised modification with a forged re-INVITE of a dialog-
session by a potential attacker may cause a DoS.

3.4.3 BYE Attack

Another attack that can tear down a session is the BYE attack. The BYE
request is used to terminate an established session as depicted in Figure 3.3.

An attacker in possession of the correct session parameters is now able
to tear down another session, as depicted in Figure 3.4. Depending on the
implementation, the BYE acknowledgement responses might not even be
routed to the original session participants. In a phone setup, this could be
very annoying for the participants. The end of the conversation would thus
only be discernible because no voice answers are routed back.

user 1 proxy user 2 attacker
invite o
invite o
- arp
- request
arp
) response
P trying
P ringing
. ringing
L OK
. OK
ACK _
ACK _
. MEDIA o
‘ BYE

Figure 3.4: Spoofed session termination

3.4.4 CANCEL Attack

A CANCEL request is sent to prematurely cancel an ongoing INVITE re-
quest. More specifically, it asks the UAS to cease processing the request
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and to generate an error response designating that request, as depicted in
Figure 3.5.

The attacker may utilise the CANCEL method to cancel a legitimate
third party INVITE request as shown in Figure 3.6.

user 1 proxy user 2
invite >
arp -
request
- arp
response
invite >
< trying
< ringing
< ringing
CANCEL >
200 OK
YO MORE PENDINGS

Figure 3.5: Normal CANCEL flow

However, CANCEL requests can only be used in conjunction with IN-
VITE requests. Thus, when a SIP proxy receives a CANCEL request for
any other message type (than INVITE) it must not process this message
but rather produce an appropriate error response. Also incoming CANCEL
requests must not be processed if the original request has already generated
a final response. This limits the time window to place a CANCEL attack.

However, contrary to most other SIP messages, CANCEL messages are
transmitted hop-by-hop and can not be re-submitted. As a result, they
can not be challenged by the server in order to get proper credentials in an
Authorization header field. Because of this, CANCEL attacks might still be
a suitable method for attackers.

3.4.5 UPDATE Attacks

The SIP UPDATE method gives to end users various capabilities such as
muting incoming calls, identification of QoS service and negotiation of other
session attributes. Forged UPDATE messages can thus be utilised e.g. to
degrade QoS, so that a user cannot communicate properly with other parties.
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Figure 3.6: CANCEL attack

3.4.6 REFER Requests

The REFER method [134] is specified in an extension that provides a mech-
anism where one party (the referrer) provides a second party (the referee)
with an arbitrary URI to reference. Assuming that this URI is a SIP URI,
the referee will send a SIP request (usually a SIP INVITE) to that URI (the
refer target). As a result, REFER can be used to enable new applications,
including call transfer. RFC 3892 [135] extends this method, allowing the
referrer to provide information about the REFER request to the refer target
using the referee as an intermediary. The refer target can use this informa-
tion to decide whether to accept the referenced request from the referee. This
scheme enables the referee to act as an eavesdropper, giving him the ability
to launch man-in-the-middle attacks. For example, the referee can forge the
Referred-By header or/and eavesdrop on the referred-by information. The
referee may also copy all the related information into future unrelated re-
quests. Although the specification uses an S/MIME based mechanism to
enable the refer target to detect possible manipulation of the Referred-By
header data, this protection is completely optional.

3.5 SIP DoS by Message Flooding

The most common incarnation of a DoS attack is where an adversary sends a
huge amount of messages to a target with the goal to overwhelm the target’s
processing capabilities, and hence rendering the target inoperable. Such at-
tacks are generally hard to detect, as the utilised attack messages are usually
valid messages and thus not easily distinguishable from regular messages (see
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Figure 3.7).

Regular SIP
DoS SIP

Figure 3.7: Distinction problem in a DDoS attack scenario

In the first place, the main SIP proxy (especially the registrar) would be
the predominant target for an attack. However, the whole SIP ecosystem
can be severely jeopardised if another component of the network (e.g. STUN
server, RTP proxy or DNS server) is being attacked.

A DoS attack can focus on the depletion of three different resources,
which are memory, CPU usage and network bandwidth. Many depletion
attacks can already be defeated by intelligent implementation (e.g. parallel
processing, avoiding blocking conditions) combined with powerful hardware
for the proxy and the coherent usage of the SIP authentication mechanism.
However, sophisticated attacks can still breach such a prepared system. Here
begins the hard work of defence, as such intelligent attacks generally cannot
be detected by the proxy itself, but only by an intelligent network monitoring
solution. This detection mechanism must operate at network line speed to
handle the enormous traffic generally involved in a DoS attacks. Also it needs
to have clear metrics to distinguish between legitimate traffic and potential
dangerous (DoS) traffic. If the monitor fails here, false alarms will be raised
or in the worst case legitimate users will be falsely denied access to the
service.

A Denial-of-Service is not necessarily triggered by a malicious attack.
Unintentional attacks can additionally occur by misconfigured end devices
or wrong user implementations.
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3.5.1 Exploitable SIP Resources

The majority of DoS attacks are based on exhausting some of a server’s
resources and causing the server not to operate properly due to lack of re-
sources. With SIP servers, there are three resources needed for operation:
memory, CPU and bandwidth.

Memory

A SIP server needs to copy each incoming request into its internal buffers to
be able to process the message. The amount of buffered data and the time
period the server is supposed to keep the buffered data varies depending on
whether the server is working in a stateful or stateless mode. In any case,
the server will at least need to maintain the buffered data while contacting
another entity such as an AAA, DNS server or a database for example. The
size of a SIP message might range from a few hundreds of bytes up to a few
thousands.

Stateless servers: Stateless servers need only to maintain a copy of the
received messages while processing those messages. As soon as the destina-
tion to which a message is to be sent to is determined and the message is
sent out, the server can delete the buffered data.

Stateful servers: In general we can distinguish between two types of
state in SIP:

1. Transaction state: This is the state that a server maintains between
the start of a transaction, i.e., receiving a request and the end of the
transaction, i.e. receiving a final reply for the request. A transaction
stateful server needs to keep a copy of the received request as well as
the forwarded request. Typically, transaction context consumes about 3
kilobytes (depending on message size, forking and memory management
overhead) lasting about one to tens of seconds if users interaction is
involved.

2. Session state: In some scenarios servers may need to maintain some
information about the session throughout the lifetime of the session.
This is especially the case for communication involving firewall or NAT
traversal, for accounting purposes or security reasons as is the case for
the 3GPP architecture[22].

CpPU

After receiving a SIP message, the SIP server needs to parse the message,
do some processing (e.g. authentication), perform transaction mapping and
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forward the message. Depending on the content and type of the message and
server policies the actual amount of CPU resources might vary. Whereas
the CPU capacity of a well engineered and configured proxy should be able
to process SIP messages up to link capacity, there are many server opera-
tions which can cause blocking. Such operations may be misused to quickly
paralyse the server’s operation.

In terms of the actions taken by a SIP server which consume time, memory
and processing power and are thus exposable for attacks we can distinguish
the following actions:

e Message parsing: The content of SIP messages is coded as plain text.
The SIP standard allows for a great level of freedom in setting the
order of the message headers, using small or capital letters, including
line breaks and so on. Thereby the time taken to parse a message
depends very much on the efficiency of the message parser as well as
the content of the message.

e Security check: SIP might use secure protocols providing state-of-the-
art security (TLS, S/MIME, IPSec). However, very few implementa-
tions actually do that. The most widely deployed security protocol
is still digest authentication. Possibly, one of the reasons is the cost-
factor: Vendors attempt to keep prices of end-devices low and build
devices with limited memory capacity (typically less than 1 Megabyte)
leaving themselves few space for cryptographical protocols. Aspects of
DoS attacks on SSL and IPsec are independent of SIP itself.

e Supporting services: In the context if this document a supporting ser-
vice is a service that is used by a SIP server in order to fulfil its task
of forwarding a received SIP message to the correct destination. Such
services include but are not restricted to:

— AAA servers: Such entities are required to check the identity of a
user, its eligibility for using a certain service and collecting infor-
mation about used services.

— DNS servers: A SIP server needs to contact DNS servers to resolve
the SIP addresses included in the SIP messages.

— Application server: To execute user specified routing rules a SIP
server might need to contact a CPL server or some other form of an
application server. This interaction is realised in general over some
form of inter-process communication and involves in general the
generation of appropriate requests, exchanging those requests over
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the network and analysing the reply. Especially when contacting a
remote server, as is often the case when contacting a DNS server,
this operation can be time consuming and is such a good candidate
for exploitation.

Bandwidth

This involves overloading the access links connecting a SIP server to the
Internet to such a level as to cause congestion losses. By overloading the
servers access links one could cause the loss of SIP messages which causes
longer session setup times or even the failure of session setups. Protection
of bandwidth is a general transport-layer issue unspecific to SIP and is thus
considered out of scope in this work.

3.5.2 Overview of SIP Flooding Attack Scenarios

While in general DoS attacks are assumed to be mounted on purpose, one
should also be aware of the so-called unwanted DoS attack potential.
These usually stem from client implementations of poor quality. An ex-
ample of such an unwanted attack is broken digest authentication; invalid
clients calculate wrong digest values, they are challenged to submit a correct
value and continue re-submitting the broken digest value in an infinite loop.
Whereas such ”careless attacks” are not mounted on purpose, they are not
any less harmful than malicious attacks. While such attacks are less massive
compared to real attacks, they occur more frequent and should thus not be
forgotten.

Besides attacks on SIP itself, as will be described in this section of this
document, it is possible to attack the transport protocols such as TCP, TLS
or IPSec which might be used by SIP. Therefore one should not forget security
of supporting protocols either. Even if signalling is made sufficiently secure,
security of the whole system may be compromised by a gap in any supporting
protocol. An example is the STUN protocol [136] used to accomplish NAT
traversal. Its address translation discovery mechanism relies on NAT boxes
in the middle of the media path to change IP addresses. This reliance is an
inherent vulnerability, which can be misused by malicious parties to change
the discovered values and corrupt SIP signalling indirectly.

Manipulating DNS entries is a similar case. By maliciously changing the
DNS resolution of a SIP server, one can redirect the traffic intended to a
certain user or SIP proxy to another one.

While in general attacks can be mounted against user agents, i.e. end
users and gateways, we will mostly refer to a SIP server as represented by
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a SIP proxy as the attacked entity. This stems mainly from the fact that
proxies are in general the most valuable assets of a service provider. Note
however, that most of the described attacks could also be directed at user
agents.

DoS Attacks Based on Exhaustion of Memory

State maintenance in SIP servers is one of the easier targets for DoS at-
tacks. Measurements indicate that a stateful server flooded with a contin-
uous stream of requests belonging to different transactions will run out of
memory very quickly.

Brute force attacks: The simplest method for mounting an attack on
the memory of a SIP server is to initiate a large number of SIP sessions
with different session identities. Different SIP messages can be used for
message flooding, e.g. REGISTER, INVITE, or OPTIONS. An example
using REGISTER messages is shown in Figure 3.8.

Brute force attacks from inside the SIP infrastructure can be launched
with messages that contain unrecognised content like e.g. requesting exotic
extension or message bodies of unknown type. A SIP entity has to pro-
cess these requests and generate error messages, but there exist other, more
resource-consuming attacks.

Brute force attack with multiple varying messages can be even more harm-
ful for the target if the attacker uses a special variation procedure: The
attacker send mostly the same message with only minimal in the Call-ID
header. Here, he can put multiple different SIP URIs that all map to the
same device, e.g. by adding the port number to one request and leaving it at
other requests, or by using the direct address of the domain or the IP deci-
mal address, ... In such cases receiving SIP elements would still handle each
request independently, increasing the processing overhead. Such attacks can
be launched especially with REGISTER, INVITE and OPTION messages.

DoS attackers might modify the Route header field values found in re-
quests that identify a target host and then send the forged request to a
large number of SIP network elements. Record-Route could also be used to
produce similar situations when the attacker is certain that the SIP dialog
initiated by the requester will result in numerous transactions originating
from the backwards direction.

Relaying attacks can be launched by attackers when they create bogus
requests that contain a fake source IP address and a corresponding Via header
field that identifies a targeted host as the originator of the request, and then
send this request to a large number of SIP network elements (i.e. SIP phones).
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user proxy

register
expires=1200

>

unauthorized

Register+credentials
expires=1200

nauthoriz
- unauthorized

Register+credentials

expires=1200 >

unauthorized

-

Register+credentials

expires=1200 >

Figure 3.8: SIP message flooding using REGISTER messages

Broken sessions: With brute force attacks memory is only consumed for
the duration of a transaction and is released afterwards. To intensify the
effects of memory usage, the attackers might infer only parts of a session.
This could be done for example by sending INVITE messages to a cooperating
receiver. The attacked stateful SIP proxy maintains the session state and
awaits the response of the receiver. In case the receiver does not reply, the
SIP proxy would need to maintain the state for at least three minutes, where
it still tries to retransmit the message.

A SIP element is most vulnerable if it has to keep state for a longer time,
which is the case in the INVITE process. After forwarding an INVITE, the
proxy sets a timer of minimally three minutes only after which a callee is
considered to be not capable of providing a final response, i.e. a response
between 200 and 699. Also, after forwarding a final non 200 response, i.e. a
response between 300 and 699, the server needs to wait for the ACK message
and re-transmits the response for a period of up to 64 % T'1 seconds with T'1
set usually to 500 msec. In case the server has forked a request to different
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user 1 proxy user 2
invite > —
-
< arp
request
arp
i response
< rying
< ringing
< ringing
< OK
< OK
ACK >
ACK >
< MEDIA >

Figure 3.9: Normal flow of INVITE message

destinations, the server needs to maintain a copy of the incoming request as
well as a copy of all forked requests. In case the server receives a response
indicating a redirect situation, the server might initiate the redirect trans-
action by itself. In this case the server will need to maintain the state until
the redirect transaction is replied as well. The UAS has to re-transmit a 2xx
response periodically as it cannot guarantee an all-reliable connection. Also,
during the INVITE transaction, UA capabilities are exchanged. Generally,
the UAC sends its capabilities first using an SDP payload included in the
INVITE message. However, the client can also wait for the UAS to offer its
capabilities, delegating this work task to the other side. This can be utilised
by an attacker.

General UA behaviour for keeping state is as follows (the timer names
are those taken from RFC 3261):

e UAC clients have to re-transmit unreliable INVITEs if they do not re-
ceive an answer within a maximum of 32s (Timer C). They also need to

keep state for another 32s after they have forwarded a 3xx-6xx (Timer
D).

e UAC will continuously re-send non-Invite messages for up to 32s (Timer
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F), even after receiving a 1xx response. After receiving a 2xx response,
they still need to keep state for another 5s (Timer K).

e UAS has to re-sent any 1xx messages for INVITEs if a re-request ar-
rives. Any 3xx to 6xx responses need to be re-send up to 32s (Timer

H).

e UAS after receiving an ACK need to keep state for another T4 sec
before abandoning.

e UAS only re-sends responses for non-INVITES after a query for up to
32s (Timer J).

As an example, consider end user devices that have been designed mainly
to respond under normal conditions. This means that they are able to process
a few incoming messages simultaneously. Figure 3.9 presents a normal flow
of INVITE message.

Considering the situation that an attacker impersonates himself as a valid
user 1 he will possibly generate numerous INVITES as depicted in Figure
3.10. Under this situation the attacker builds up INVITESs only, without any
respond message.

attacker proxy target
invite > o
target invite
P
target
< arp
request
arp |
vin response
< rying
invite
target > invite >
A target
invite
-
target invite
..
target
invite >
target invite
>
target

Figure 3.10: Flood with INVITE messages
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Another scenario that an attacker could possibly exploit is depicted in
Figure 3.11. In this scenario the attacker tries to ”behave” like a legitimate
UA. It is likely that the attacker will deploy different INVITE scenarios to
cause a DoS in the proxy or in the end-terminal device.

attacker proxy target
invite (1) >
target
invite (1)
target >
- arp
- request
. arp
- trying response >
invite (2)
target > invite (2) .
invite (3) target
target > L.
9 invite (3) >
: target
invite - .
target invite
-
target
ringing
ingi (response invite 1)
ringing
(response invite 1)
ack
> ack >
| trying
busy
busy (response invite 2)
(response invite 2)

Figure 3.11: Alternative flood with INVITE messages

CPU Attacks

CPU resources are required for the following tasks:

Message Parsing In order to figure out how to handle an incoming mes-
sage the server needs to parse at least a small part of the message and check
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its consistency. However, due to the free text format of the SIP protocol
even a perfectly valid SIP message can be constructed in a way to hamper
proper parsing. Here we give a list of possibilities how to complicate message
parsing:

e An attacker can create unnecessary long messages in a simple way by
adding additional headers (like informative header fields, e.g. Sup-
ported) in conjunction with a large message-body. Many SIP messages
may include bodies, even when they are not needed in every message.
Instead of only depleting processor power, longer messages also increase
network utilisation and memory usage. For an attacker to be effective
with this method, he has to utilise only well-formed header fields, as
other header fields should be ignored by a well implemented parser.
Server implementations should thus check messages for a certain size
limit and reject messages exceeding this limit with a 413 (Request En-
tity Too Large) message.

e Under certain conditions clients have to send messages using a conges-
tion controlled protocol, which generally results in the usage of TCP.
To avoid fragmentation, the condition is met if a request is within 200
bytes of the path MTU, or if it is larger than 1300 bytes and the path
MTU is unknown. By forcing a server to accept TCP connections, it
becomes vulnerable to general TCP DoS attacks, as additional state
is created, even in a stateless proxy. As a countermeasure SIP entities
could be configured to not support TCP messages; however this would
not be compliant to the SIP specification.

e Poor parser implementations can be rendered inoperable by including
message bodies of a size that does not match the one indicated in the
Content-Length header.

e Additionally, the SIP standard mandates that headers that have mul-
tiple values can be separated into individual header fields so that each
only contains one value. If multiple message headers of the same field
are included in a message where theses headers are spread all over
the message, this will further complicate the parsing. Figure 3.12 il-
lustrated three possibilities to compose a message with multiple Con-
tact fields. Especially the following header fields can be distributed in
such a way in a SIP message: Accept-Encoding, Accept-Language,
Alert-Info, Allow, Authentication-Info, Call-Info, Contact, Content-
Encoding, Content-Language, Error-Info, In-Reply-To, Proxy-Require,
Record-Route, Require, Route, Supported, Unsupported, User-Agent,
Via, and Warning.
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From:
To:

Contact:
Contact:
Contact:
Contact:
Call-ID:

CSeq:
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<sip:user4@sip.
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To: ...
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Contact:
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CSeq:

userl1@sip.
user20sip.
user3@sip.

user4@sip.

org>

org>

org>

org>

<sip:userl@sip.
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Figure 3.12: Multiple header placement possibilities

org>,
org>,
org>,
org>

e Some message headers are more vital for processing than other ones.
Vital header fields are all routing-specific fields, like To, Via, Route, etc.
So, messages with these fields placed towards the end of the message
require more processing power to parse. One way to accomplish this is
by inserting multiple informative header fields, e.g. Allow or Supported,
in front of the routing fields.

e SIP as defined in RFC 3261, is a refined version of the previous stan-
dard as defined in RFC 2543 [70]. Some of the newer design decisions
are made to simplify certain operations. However, any RFC 3261 com-
pliant SIP element must be able to handle RFC 2543 messages, which
can complicate processing. As such, this can be used by an attacker.
Among these modifications are:

— VIA headers. Via header fields contain a branch parameter. If this
branch parameter does not start with the magic cookie "z9hGbK”
the message is considered to be pre-RFC 3261. This would indi-
cate a fallback to the more complex RFC 2543 message handling
routine.

— Missing tag field: Messages with a To and From header field, but
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without a tag field need to be checked by the UAS against all
ongoing transactions, thus requiring more processing overhead.

Security Checks For verifying the identity of a user, a SIP server needs
to generate a nonce and then check the credentials of the user. This checking
uses hashing schemes such as MDb5 which require a relatively low calculation
overhead. Thereby a server exhibiting signs of overload due to security checks
is a good indication of a bad implementation or under-dimensioned hardware.

Application Execution A SIP server might need to execute a certain
application, i.e. a CPL or CGI script or some other kind of application, after
receiving a request. The amount of the used CPU resources depends on the
application type and its complexity. In case the application server is located
on the same hardware platform as the SIP server, then the CPU resources
used for the execution of the applications is no longer available for processing
SIP messages. In case the application server is located on a different hardware
platform then some form of remote communication between the SIP server
and the application server is needed. Thereby attacks on the application
server result in blocking of the SIP server after requesting the execution
of an application and until the application server generates a reply. This
could be used by an attacker by sending requests with varying From headers
to users which have registered with the attacked SIP server some sort of
applications to be executed whenever receiving a request. To make sure that
such users exist, the attacker might register himself as a legal user and ask for
the execution of a complicated application whenever a request is addressed to
this registered identity. The attacker can now send requests to the registered
user and overload the server this way.

Interaction with External Servers As already indicated a SIP proxy
might need to contact an external server to fetch some information or realise
a service. This not only consumes processing time but also can cause the
server to block and reject new incoming messages while the SIP proxy is
awaiting an answer from the contacted server. Several external servers can be
considered for attack, e.g. through constantly querying the user’s credentials
at an AAA server, or incurring increased load by issuing requests that require
the execution certain complex application logic at an application server.

Forwarding to non-existent TCP Receivers Another form of attack
that can cause a server to block is to cause a server to attempt to communi-
cate with an unresponsive server by forcing it to contact that server’s address
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using a TCP connection. That is, a caller that has indicated his wish to use
TCP as the transport protocol can force the SIP proxy to initiate a TCP
connection to a certain destination. If the contacted callee does not respond,
SIP processing may be blocked until a failure timeout expires. A SIP proxy
can be forced to forward a message to an unresponsive address by adding the
unresponsive address to any number of headers such as the Via, Route, Con-
tact or Request-URI. Attempting to protect SIP infrastructure against these
threats is inherently difficult, as DoS attacks are generally difficult to distin-
guish from legitimate use. Risks are high: even with an unwanted attack,
a single transaction (for example, an invitation to a destination served by
a temporarily failed DNS server) may temporarily disable servers operation
for several seconds.

By adding addresses that might be irresolvable or unresponsive, a SIP
proxy can be forced to forward a message to an unresponsive address by
adding the unresponsive address to one of the following headers as depicted
in Table 3.3.

3.5.3 Attack Amplification

In the previous section we have outlined general attack possibilities. An
attacker will use these attacks in combination with other possibilities to in-
crease the harm caused by the described attacks.

Loops and Forks

SIP unfortunately provides excellent means for attack amplification. Specif-
ically, SIP’s ability to loop and fork requests may account for exhausting a
server’s memory and CPU with a single originating attack message.

In the loop-amplification scenario, the attacker needs to convince a proxy
server to rewrite a request to a location, which resolves to the server it-
self, thus incurring high load at the server itself. The SIP specification pro-
vides several means to mitigate infinite loops by using a header named Max-
Forwards, which is decremented for each traversed proxy. Similar to IP’s
Time-To-Live, the packet is dropped after reaching the value of 0. Further a
483 (Too Many Hops) response will be generated.

The other amplification mechanism is forking. An attacker can easily
register IV locations with an address resulting in N-times higher overhead
during every request sent to the address. That is, we consider an attacker
having registered N + 1 accounts at N + 1 providers. At each provider the
attacker registers N contact addresses pointing to the other accounts. With
such a scenario a request would make each of the SIP servers at each of the
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providers to be involved in the routing of NMer—Forwards yegqaoes In addi-
tion to the overload due to message processing, using forking to amplify an
attack is especially attractive, as forking proxies need to be stateful. Thereby,
this attack combines both CPU and memory exhaustion attacks.

To reduce the effects of this attack, the proxy might limit the value of
Max-Forwards. That is the proxy might set a maximum limit for the value
Max-Forwards that it might accept. If a request was received with Max-
Forwards set to a higher value, the proxy would reset this value to its defined
limit.

Distributed DoS Attacks

Attacks mentioned so far have a single source, which may be easily detected.
Detection of attacker is much harder if an attacker manipulates many devices
on the network to strike a victim. A well-described use of this mechanism is so
called ”Reflection Distributed DoS attack”. In this attack, an attacker sends
forged TCP connection requests to innocent public Internet hosts (attack
reflectors) and forges its source IP address. In reply to these requests, all
approached hosts flood a victim with replies. The victim is then hit by a
flood of replies coming from a variety of hosts, making it difficult to detect
presence of an attack and its originator. Such attacks can be replicated at
the SIP level by forcing a proxy to forward messages to some victims. Here
we can distinguish two possible attack methods:

Reply forwarding: An attacker can force a SIP proxy to act as a reflec-
tor by including the victim’s address in the top-most Via header of requests
sent to different reflectors. The reflectors will send back a reply (not found,
authentication challenge, call does not exist, etc.) The reflectors may be any
SIP servers including registrars, proxy servers and SIP phones. Servers may
attempt to discard requests coming from other IP addresses than advertised
in Via. Unfortunately, this mechanism has many limitations: It can be fooled
by spoofed IP addresses and it disqualifies SIP clients behind NAT.

Request forwarding: Similarly, innocent proxy servers may be misused
to route requests to a victim. SIP headers such as Route, VIA or Request-
URI may be used to force a proxy server to route a request to a victim.

3.5.4 SPIT and Denial of Service (DoS) Attacks

In this section we briefly discuss the difference between SPIT (as introduced
in Section 3.1) and DoS, as they have several properties in common.

Both SPIT and DoS attacks have a negative impact on SIP networks,
however they express completely different goals and objectives. SPIT aims
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at passing some sort of information (related to money, medicine, jobs, etc.) to
the recipients without their consent. On the other side, DoS attacks are gen-
erated with the intent of disturbing legitimate traffic, potentially rendering
any given network-based service useless. As SPIT is also sent (or generated)
in bulk, it might be possible that this huge volume of SPIT might reach a
level where it becomes also a kind of DoS attack.

Although SPIT has not yet been dispersed in professional environments
with financial and marketing motives, it is likely that in the future variations
of DoS attacks are encountered, caused by SPITters. One likely candidate
could be the early media phenomena: Sending high volume of pre-recorded
messages to the destinations will result in high bandwidth consumption,
choking network resources, and then expeditiously causing loss of service.

Early media attacks can be either targeted directly at the recipients or
at proxies, utilising wrong server configurations or implementation faults.

Another possibility we might encounter could be SIP transactions being
manually crafted into templates, and then used for automated outbound
calls. If we make the assumption that not all these transactions are correctly
implemented according to the SIP standard and applicable extensions, CPU
cycles in end-points or proxies might experience a considerable increase, again
causing loss of service.
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Chapter 4

DoS Protection Requirement
Analysis

In the previous chapter we have shown the vulnerabilities of SIP against DoS
attacks and other threats. A SIP infrastructure needs dedicated protection
features to reduce the risk of falling prey to any of these attacks. In this
chapter we list protection requirements® for the three main classes of DoS
attacks as established in Chapter 3.

We assume that protection is first and foremost required for server com-
ponents. This analysis is to a limited degree also applicable to UAs.

4.1 Requirements for Payload Tampering Pro-
tection

SIP is a text-based protocol, thus messages are human readable. A sophis-
ticated parser is necessary to translate the human-readable message payload
into a machine-readable representation. As experience has shown, flaws in
such an implementation like buffer overflows or missing integrity checking
can result into serious security breaches. It is therefore highly important to
protect against payload attacks.

SIP is now a mature standard and the technique to prevent payload
attacks is a well-tested and robust implementation. To help developers,
there are different tools to check SIP implementations for correct operations
[122, 124], thus any well-established SIP agent should generally be hardened
against payload attacks. However, many different parser implementations
exist and with SIP’s popularity new implementations are constantly becom-

'Results of this chapter have been published in [19, 4, 17].
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ing available. As it is difficult to check each implementation for correct
operation, a viable option for the network operator would be to add another
payload attack prevention system in the form of a well-specified and tested
message integrity checker within an external monitoring tool or as a security
extension for the server software, like the examples proposed in [29, 137] (see
Chapter 8). Such a setup is also necessary if network operators are aware of
implementation flaws in their devices, but there is no software or firmware
update available to fix these flaws. The overhead of an additional message
check is generally low as no state information needs to be maintained.

4.2 Requirements for Message Flow Tamper-
ing Protection

Several message types can be used to disrupt individual SIP sessions, these
attacks have been introduced in Section 3.4 and are known as Re-INVITE,
CANCEL or BYE attacks, depending on the utilised message type. Many
researchers have addressed this problem with dedicated protection methods,
like [53, 54, 138] (see Chapter 8). However, effective protection can also
be achieved through SIP’s dedicated security mechanisms, i.e. by message
encryption:

Flow tampering attacks are only possible if an attacker can sniff necessary
network parameters. If the signalling flow is encrypted it is nearly impossible
to launch this type of attack. SIP already defines mature and established
encryption methods, like Transport Layer Security (TLS) [81] or IPSec [82].
Instead of countering the effects of an attack, encryption would actually
prevent the attack itself. Note that while encryption is an advisable option
against flow tampering attacks, it does not help against payload attacks or
flooding attacks.

Regarding the security of the defined protocols, IPSec assumes pre-esta-
blished trust among the communicating parties and it can only be utilised
in a hop-by-hop fashion. Since IPSec is implemented at the operating sys-
tem level, most SIP clients do not implement this protocol yet, however
support is increasing. For this reason, IPSec can only protect the traffic
between the corresponding network servers. Moreover, the SIP specification
does not suggest any framework for key administration, which is required by
[PSec. In contrast to IPSec, TLS does not assume any trust relation among
communicating parties. TLS can be utilised either for one-way or mutual
authentication schemes and maybe it is more suitable for inter domain au-
thentication. Of course, there is always the risk that the message can be
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intercepted inside the recipients network if the last hop is not encrypted.
Additionally, TLS is used by the SIPS scheme to offer an end-to-end secu-
rity. However, TLS fails to deliver end-to-end security and protects only
connection-oriented protocols.

4.3 Requirements for Message Flooding Pro-
tection

From the three DoS attack types, protection against flooding attacks is the
most difficult task.

4.3.1 Possible Countermeasures Against Memory Ex-
ploitation Attacks

Monitoring and filtering: Similar to web and mail servers SIP proxies need
to maintain lists of suspicious users and deny those users from establishing
sessions. These lists can be established by monitoring the transactions served
by the proxy and logging user behaviour, e.g. users that cause a sudden
increase in the number of served transactions or users involved in broken
transactions.

Authentication: In general verifying the identity of a user before for-
warding his messages would prevent malicious behaviour as the user would
be easily traceable — naturally, this is only true if it is not possible for an
attacker to presume the identity of a valid user. Like HTTP, SIP uses digest
authentication, which requires state maintenance at the server by storing the
issued challenge. This can be misused for a broken session attack, if attackers
ignore or falsely respond to authentication requests and start another session
instead.

A solution to this problem could have been the usage of predictive nonces
[139] that allow for stateless authentication and introduce limited message
integrity. The construct is based on nonces being calculated in such a way
which makes them valid only for validated messages within a time-window.
When a challenge-response pair arrives at a server, the nonce is first verified
to be correct, followed by the verification of the response. This method
works without any changes to the protocol. However, it was never officially
standardised for SIP.

Stateless proxy: There is a certain computational expense associated
with each SIP transaction at each proxy server and this cost is much greater
for stateful proxy operation. Thus, an obvious protective measure for re-
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ducing the risk of memory exhaustion attacks is to perform as much of the
server’s functionality in stateless mode before going stateful. The "stateless
barrier” should be used to perform as many security checks as possible —
these may include

e Stateless authentication of users, forgoing the normal re-transmission
algorithm. (By re-transmitting the 401 (unauthorised) or 407 (proxy
authentication required) status response it amplifies the problem of an
attacker using a falsified header field value, like Via, to direct traffic to
a third party.

e Checks of unauthorised 3-rd party registrations,
e Detection of replay attacks,

e Presence of virus bodies,

e Filtering of well-known spam sources.

This functionality may be located in a separate server fronting stateful
servers (and perhaps taking care of load distribution). The other alternative
is to have the stateless logic executed in the same server but to proceed to
stateful execution only after all stateless checks succeed. For this purpose,
the concept of a stateless UAS can be utilised. In this mode, a server gener-
ates a reply to a request, sends it out and immediately forgets the request,
its computational result and resulting reply. Request retransmissions are
processed as brand-new requests. After all the stateless checks, transactional
state may be established. Some functions such as static forwarding (e.g.
least-cost gateway routing) may be easily executed statelessly. The following
list iterates well-known functionality which inherently requires stateful mode:

e Request forking to avoid confusion of upstream clients unaware of fork-
ing.

e Accounting to report on the results of transactions as opposed to re-
porting on all individual messages.

e Re-transmission buffer, particularly important if a SIP path is known
to include a wireless hop to absorb too rush re-transmissions.

e Some services such as ”forward_on_event” forward to voice mail on busy.
In this case the original request needs to be kept for the new request
instantiation.
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e Servers using a registration database as the basis for the routing de-
cision need to be at least conditionally stateful to preserve forwarding

coherency throughout a session and avoid thereby routing inconsistency
due to REGISTER updates.

4.3.2 Countermeasures Against CPU Attacks

Server design: The first line of defence against any DoS attack is achieved
by using well-dimensioned hardware with fast CPUs and large memory and
high speed network connections. Additionally, the software itself needs to be
designed with security, speed and attack possibility in mind. This implies
deploying some or all of the following server design options:

1. Clean and efficient implementation: Implementers need especially
to use efficient and fast memory allocation schemes, event handling and
parsing mechanisms.

2. Parallel processing: In order to avoid blocking incoming messages
while the server is busy processing a message or while waiting for an
answer from an external server (e.g. AAA) a SIP proxy should be
implemented using threads or parallel processes with each process or
thread responsible for processing one message at a time. Here a core
part only acts as a message scheduler distributing incoming messages
between the processes. Each process is then responsible for parsing the
message, initiating any DNS requests or requesting the execution of an
application and finally forwarding the message. State information can
be shared among the processes using some form of shared memory (see
Figure 4.1). Note however, that even with a thread based server, server
blocking is still a danger. If an attacker generates a higher number of
messages that cause the server to block than the available number of
threads the server will still block.

4.4 Summary of Operational Guidelines

As a general summary of techniques to deploy in order to reduce the risks of
DoS attacks we recommend the following processing order after receiving a
request:

1. Check if there is already an established transaction for the incoming
request and if so, absorb it; proceed to the next step otherwise.
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Figure 4.1: Design scheme of a parallel SIP server.

2. If a request has a DNS name in topmost Via, ignore it and use the

packet’s source IP address to avoid DNS resolution overhead on sending
replies.

3. If deployment scenario allows it then authenticate statelessly to avoid
memory exhaustion attack

4. make routine checks:

(a) Check for presence of viruses
(b) Scan for well-known attack patterns including parser attacks

(¢) If max-forwards higher than local policy mandates, rewrite it to a
lower value to prevent a request from exhausting server resources
by loops

(d) Drop all suspicious packets.

5. Optionally, establish transaction state. That helps to avoid burdening
the server’s resources with executing potentially expensive service logic
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for each retransmission received; however, do not establish the state
if the request was not authenticated as this would allow anonymous
attackers to exhaust memory quickly.

Additional considerations apply to processing REGISTER requests:

1. Consider using a technology like predictive nonces to assure that Con-
tacts in REGISTERs are not forged.

2. Use a quota for number of contacts per address of record to prevent
escalation of forking amplification.

3. Deny suspicious contact addresses; these may include private IP ad-
dresses for a public server (accepting them would allow an attacker to
route requests to the private networks to which the SIP server is con-
nected to) or DNS names (they might cause a blocking server to block
and a non-blocking server to run out of memory).

4.5 Requirements for External Monitoring

An integral part for DoS protection is thus a well-tested and effective imple-
mentation plus additional monitoring. Monitoring can be deployed directly
at the server itself or at a dedicated security device. Integrated monitoring
at the server has the drawback that the additional monitoring checks might
well lead to a self-induced DoS attack by itself: In case of only a light flood-
ing attack, the server’s resources are quickly exhausted due to the additional
overhead of message monitoring [56].

Thus, we have here defined strict requirements for an external monitor-
ing point to achieve the goal of fast, reliable and effective protection of the
service.

1. Transparency: The monitoring point must be completely invisible
from the networking point of view. It must not be possible to gain
knowledge about the existence of it by analysing the network traffic. If
the monitoring point is visible by some means, it can be identified and
possibly circumvented or even attacked.

e No IP routing. If the monitoring point acts as a router it modifies
IP packets, its existence can be guessed from the outside.

e No SIP prozying. A very easy way to intercept SIP traffic is to act
as a proxy and use the Record-Route feature from SIP to stay in



98 CHAPTER 4. DOS PROTECTION REQUIREMENT ANALYSIS

the message path. This, of course, announces the monitoring point
to every SIP user, regardless whether it is doing proxying or acts as
Back-to-Back (B2B) User Agent. Even here, the monitoring point
can be circumvented by addressing the protected proxy directly,
e.g. by its [P address. Common SIP SBC protection solutions are
generally implemented as a B2BUA. From a security perspective,
this is not a wise move.

2. Line speed: All traffic must be dealt with in real time. This means
that no buffering is allowed. Incoming packets must be handled imme-
diately after they are encountered. Otherwise it would be possible to
detect the monitoring point by analysis of network delays.

3. Scalability: Flooding attacks cause a high bandwidth utilisation. In
order to analyse this stream, the architecture must be capable to handle
this stream. Therefore it must be possible to deploy new capacities
into the monitoring point easily. DDoS attacks can easily reach into
the gigabit per second area of bandwidth.

4. Independence: To be as usable as possible, the monitoring point
cannot rely on a special SIP proxy implementation. Hence, no direct
communication channel is established between the monitoring point
and the SIP servers. As a consequence, the monitoring point needs to
implement a subset of the SIP logic to successfully follow the operation
within the network (e.g. session state changes). As such, the monitor-
ing point needs to monitor not only incoming traffic from the outside
world, but also responses from SIP servers.

5. Extensibility: As it is possible that new types of attacks are dis-
covered, the architecture must be open to allow new algorithms for
detection to be integrated rapidly. New functionality should be added
or dropped without changing the monitoring point’s architecture.



Chapter 5

Security Solution Specification

In Chapter 3 we have introduced the DoS threat on SIP architectures, with
the most severe threat being DoS flooding attacks. In Chapter 4 we have
introduced the basic requirements for protection. While to some degree the
threat can be minimised by deploying a robust and hardened implementa-
tion (efficient parser, parallel processing, consequent authentication, ...), this
would not be able to cover the full scope of of the DoS threat. Eventually,
there is no other way than intelligent, external monitoring of the SIP traffic
flow. In the end, this is how we want to target the DoS threat with our
solution approach: we develop individual monitoring algorithms', with
each algorithm concentrating on a narrow scope of the DoS problem, and
thus developing a strategy how this problem can be mitigated by monitoring
network traffic flows. All algorithms analyse the network traffic to detect a
certain DoS pattern. Whenever a DoS is detected, an alarm is raised and, if
possible, malicious traffic is blocked. The algorithms are deployed in security
test beds: Two algorithms require high performance capabilities, and are
deployed in a scalable security architecture called VoIP Defender. The third
algorithm, which is not dependent on high throughput performance and deals
with SIP DNS requests is deployed as an enhancement to an available DNS
cache.

5.1 General Protection Framework

5.1.1 Overview

In Section 4.5 we have defined general requirements for DoS protection in STP
networks. For our work, there was no solution available that met all defined

'Results of this chapter have been published in [17, 7, 13, 3, 16].
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requirements. We therefore introduce a general security framework called
VoIP Defender that complies to those requirements and which is the basis
of our protection work. The VoIP Defender architecture has the following
characteristics:

Multi-layered architecture For scalability reasons, the task of traffic mon-
itoring has been split into individual and independent components. At
the lowest layer, the filter- and scanner node (”Filter”) intercepts all
raw traffic and outputs re-assembled SIP messages. The actual anal-
ysis of the traffic for malicious requests is done in the analysis layer
(" Analyzer”). It includes a SIP parser and performs local operations.
Multiple Analyzers can operate in parallel, with the Filter forwarding
only a subset of the traffic data to each Analyzer. To combine the in-
put from multiple Analyzers, the decision node (”Decider”) takes the
input from all local Analyzers and decides on a global action, e.g. a
user notification or a change in the firewall configuration. The firewall
is part of the Filter.

Delayed reaction Also, for scalability reasons, the Filter does not take
immediate actions whenever a packet is encountered. Running through
the full stack of all nodes, i.e. Filter, Analyzer, Decider and firewall
update would result in increased processing delays. Instead, whenever
a packet is encountered, it is duplicated. One instance is forwarded to
the Analyzer, while the other instance is passed on in the network.

Infrastructure independence VoIP Defender works independent of the
protected SIP infrastructure, i.e. it contains all intelligence by its own.
It is placed in front of the entity to be protected and does gather all
necessary information solely by sniffing from the network traffic.

A basic overview of the VoIP Defender setup is visible in Figure 5.1.

5.1.2 Filter- and Scanner Node (”Filter”)

The Filter is probably the most crucial component of the whole architecture
for delivering real time behaviour. Its primary purpose is to fork incoming
and outgoing traffic towards the Analyzers (scanning). Its second task is
to apply filtering rules to all incoming traffic. For outgoing traffic from the
protected SIP proxy forking is also applied, with one copy as input for the
Analyzers, and another copy send out to the internet, where it is routed
normally. Filtering is not applied to outgoing traffic.



5.1. GENERAL PROTECTION FRAMEWORK 101

Decider

Component 1
Analyzer g 2

Analyser Analyser
Component 1 Component n

Access Control

Service
Incoming / Filter /

Outgoing =" Scanner
Traffic

Figure 5.1: VoIP Defender overview

Traffic forking is a requisite to gain high scalability in combination with
intelligent detection algorithms. Otherwise, if traffic would be completely
analysed before being forwarded towards the protected SIP proxy, high delays
would be introduced, especially during flooding attacks.

The Filter also contains scalability features. It might have multiple Ana-
lyzers assigned to it, to which it can forward SIP traffic. Analyzers rely on a
consistent feed of SIP messages, therefore it must be assured that messages
belonging to the same SIP session are processed by the same Analyzer. The
Filter distributes them according to their transaction ID. Here the Filter
node acts as a load balancer.

Passing messages also undergo inspection by the firewall. The firewall is
controlled by rules generated at the Decider. Rules consist of conditions and
an action to be taken, if the conditions are met. A condition can be any IP,
UDP, TCP or ICMP property. Additionally, a condition may be a regular
expression, which is applied to a SIP message. Thus, it is possible to decide
about a message by its SIP properties.

5.1.3 Analysis Node (” Analyzer”)

The Analyzer is the bottom half of the intelligence of the detection architec-
ture. It analyses incoming traffic from the internet and outgoing traffic from
the protected SIP proxy. It is necessary to keep track of both incoming and
outgoing traffic because SIP is a stateful network protocol.
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An Analyzer includes the low level functions for each detection algorithm
in the system. A low level function is the part of a detection algorithm which
must deal directly with the message flow, e.g. the SIP messages parser.
Low level functions are expected to produce a result which can be used
along with the results of other Analyzers to decide about the start of an
attack, its status and its end. Analyzers are running in parallel to allow easy
scaling of the analysis load, which depends on the number and complexity of
the deployed detection algorithms, as well as on the expected network load
situation. Results of the analysis run are forwarded towards the Decider.

5.1.4 Decision Node (”Decider”)

The Decider is the top half of the intelligence of the security architecture. It
gathers the output from all Analyzers and decides about the actual attack
situation. It hosts an entity for each detection algorithm, which is capable
of correlating the output of its specific Analyzer bottom half function. The
Decider itself can also be scaled up, by deploying a dedicated Decider for
each algorithm.

The Decider receives incoming reports from the Analyzers and delivers
them to the corresponding algorithm-specific Decider modules. Modules de-
cide whether an attack has been launched, and what can be done to counter
it. Countering here means to create rules for the Filter, which will block all
malicious traffic to the SIP proxy matching the rules created by a Decider
module. In an attack situation, all traffic is still delivered to the Analyzers.
Thus it is possible to decide when the attack is over, and to remove the
previously created rules.

As an example for Analyzer and Decider co-operation, take DoS detec-
tion with the CUSUM algorithm [57]. In short, CUSUM monitors incoming
sources, and detects if within a certain time frame a flow of unrecognised
sources appear. For the implementation of CUSUM in VoIP Defender, only
the source (IP address) and the reply type from the SIP proxy (Acknowledge
/ Deny) are of importance. The Analyzer module for the CUSUM algorithm
only extracts this information from the stream of SIP messages and forwards
only this essential information to the Decider. The actual CUSUM algorithm
implementation is located at the Decider.

5.1.5 User Interaction

The administrative console is the central interaction point for the user. Here
the status of each component is delivered to the user. Monitoring, detection
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and prevention messages and alarms can be gathered at this point for user
inspection.

5.2 General SIP DoS Attack Protection

In this section we present a method to detect high-traffic flooding attacks
on SIP-based architectures using the introduced VoIP Defender framework.
This method is based on an adapted model of the SIP state machine spec-
ification and is thus able to detect deviation from any normal operation.
Through communication with the VoIP Defender firewall, this scheme allows
blocking of offending traffic and thus keeping the service alive even under
attack conditions. This method is especially effective for unintentional DoS
attacks.

5.2.1 Background: The SIP State model

In the SIP communication context, two concepts are defined to describe a
communication session between entities, that last a certain amount of time.
These are Dialogs and Transactions.

A dialog is a peer-to-peer SIP relationship between two UAs that persists
for some time. A dialog is established by SIP messages, such as a 2xx response
to an INVITE request. Such a dialog can be terminated with a BYE message
at a later time. Depending on the type of the session, dialogs can exist for a
considerable amount of time, e.g. during a voice call or a video transmission.

A SIP transaction consists of a single request and any responses to that
request, which include zero or more provisional responses and one or more
final responses. As such, any dialog is comprised of individual transactions.
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Figure 5.2: UAS / UAC transaction relationships

Transactions are modelled within the SIP RFC through a state machine.
The state machine defines which events are valid and what and how the state
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will change if a certain event occurs. State machines are defined both for a
User Agent Client (UAC) and a User Agent Server (UAS). Additionally, they
are different for INVITE messages and Non-INVITE messages, thus resulting
in altogether four different state machines:

1. UAS INVITE state machine
2. UAS Non-INVITE state machine
3. UAC INVITE state machine
4. UAC Non-INVITE state machine

The relationship between UAC / UAS transactions is pictured in Fig-
ure 5.2.

5.2.2 Solution Approach: Finite Server Transaction
State Machines

Specification

As the goal of a protection scheme is to analyse high traffic flows common to
Denial-of-Service attacks, the solution being developed has to be resource-
aware in order to not become a subject of a DoS attack itself [56]. Hence, to
conserve memory, only SIP states which are absolutely necessary for analysis
should be modelled. We refrain from dialog state modelling, as dialogs can
potentially have unlimited durations.

We model the proxy’s server transactions with the state machine only.
With this modelling we can follow the protected server’s operation for every
incoming SIP message. We would not gain additional information by mod-
elling proxy client transactions, as they are only triggered at the proxy by
previous incoming messages. Furthermore, it would require additional re-
sources for our implementation, which we try to avoid for scalability reasons.

Our SIP state machine model closely follows the SIP state machine for
server transactions, including the same naming conventions. The two state
machines (UAS INVITE and UAS Non-INVITE state machine) have six dif-
ferent states altogether - Idle, Trying (only for Non-INVITESs), Proceeding,
Completed, Confirmed (only for INVITEs), and Terminated. State transi-
tions are indicated by message events (SIP requests or responses) and time-
out events (Timer C, F, H, I, and J according to RFC 3261). The schematic
state machines are depicted in Figure 5.3.

However, the state model varies from the SIP state machine in order
to be suitable for anomaly detection. The most notable difference is the
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inclusion of 2xx replies into the model. As specified in RFC 3261, an ACK
is only considered part of the transaction if the final response was not a 2xx
response. For our purpose, this differentiation is not necessary, hence we
consider every ACK a part of the INVITE transaction.

As a second addition, state information is eventually released, hence each
transaction will always be terminated. Otherwise, this could become a source
for a self-inflicted DoS.

Finally, we explicitly model events that are not allowed within any state,
e.g. an ACK should not arrive during the Proceeding state of an INVITE
transaction and the server should not send provisional responses within the
Completed state after sending the final response.

Application and Measurements Features

The modelled state machine implementation must have access to incom-
ing and outgoing SIP messages as they are seen by the SIP proxy. This is
achieved by VoIP Defender’s passive network monitoring capabilities. An-
other possibility would be to implement this model directly at the SIP proxy,
at the cost of increasing the proxy load.

With the application we are able to place each incoming message and
corresponding proxy replies in context within the modelled state machine.
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The state machine delivers detailed statistics of the current internals of the
monitored proxy. By measuring different values we get an accurate picture
of the ongoing traffic process. For each type of transaction (INVITE or
non-INVITE) we maintain a set of features.

o Active transactions. We count the number of active transactions that
are being processed at any specific time.

o Active Replies. A good hint as to the general status of the proxy are the
types of replies it sends, especially the error replies > 3xx. Combined in
its response class (1xx, 2xx, 3xx, 4xx, 5xx, 6xx), we count the number
of replies within each class.

e New transactions. We measure the amount of new transactions that are
created within the proxy over time. A new server transaction begins
when a new request from an outside client arrives (I/dle— Proceeding
or Idle— Trying). Client transactions started by the server are not
taken into account. Each transaction has only one such transition.
By differentiating new and currently active transactions, we can easily
detect peak message flows to the proxy.

e Transaction Termination. It is similarly important to measure how a
server transaction is terminated. Every transaction is terminated with
a timeout event. We focus on timers C' and H for INVITE transactions
and timer F' for non-INVITE transactions. Timers I and J are not
considered, as they are always part of any regular SIP operation.

e [ntrastate events. Different events that do not lead to a state change
can occur within a transaction state. We measure the time required
by the proxy to generate the first 1xx provisional response to an IN-
VITE transaction, for example. The re-transmission messages within
each state are also counted. Of special interest are out-of-specification
events, i.e. events that are not valid for the SIP state model (as
shown in Figure 5.3), including Proceeding AiK Proceeding, Completed,
Confirmed INZTE Confirmed and Confirmed 12( Confirmed state

changes.

e State transition. Whenever the state machine proceeds from one state
to another we measure how long the transaction has stayed in the
previous state and which event causes the state transition. Proceed-
ing— Completed and Trying— Completed are especially important as
they result from final responses (>200) from the proxy. We distinguish
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between them on the response class level (i.e. transition due to a 2xx
or 5xx reply).

5.2.3 Attack Detection and Mitigation
Attack Detection

Through the gathering of statistical data, the state machine is able to detect
anomalous behaviour, even though the monitored traffic complies to the SIP
specification. The measurements are applied on three different levels i.e. each
monitored message is evaluated within three different scopes.

e Transaction Level. Within this scope we follow the operation within
each single transaction.

e Sender Level. We evaluate all the transactions that are from the same
device based on its IP address.

e Global Level. With statistical summaries of all recent ongoing transac-
tions, this allows us to give feedback on the current system state.

Transaction Level State Changes. The transaction state machine can
follow and verify message flows generated within one single transaction. As it
has information about the full SIP specification, it can detect non-conforming
behaviour within each active transaction. Multiple transactions can be ini-
tiated by the same user agent.

The main target for this monitoring level is to detect unnecessary message
flows within an ongoing transaction. Two cases are common:

e Pending open INVITE transactions. After a UA has sent an initial
INVITE message to the proxy, it waits for provisional 1xx messages
and / or a final answer from the proxy. An INVITE can take a consid-
erable amount of time, depending on the callee’s reaction. During this
time the server transaction remains in the Proceeding state. While the
UA is allowed to re-send his INVITE in this state in case it has not
received a previous provisional 1xx-response, multiple re-sent INVITEs
at this stage are generally a sign of an improperly configured UA or the
beginning of a single-source message flow. Such messages can generate
considerable traffic at the SIP proxy.

o Closed transactions. After a server transaction has moved to the Con-
firmed state, the proxy is required to maintain transaction state for
several seconds (Timers I and J) to match any re-submitted messages
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to previous transactions. Again, if multiple re-submitted messages are
encountered, this is generally a sign of an improperly configured UA or
a part of a single message flow, generating overhead traffic at the SIP

proxy.

Sender Level State Changes. In the most basic case, a single IP address
corresponds to a single user (one SIP phone connected to the proxy). There
are exceptions to this rule, which are mostly PBXs which manage multiple
users. Session Border Controllers (SBC) or NAT Gateways can also be a
single source for multiple different senders, which are distinguishable by their
port number. If a malicious user launches an attack from a single source,
he or she is likely to generate different transactions during their flood to
increase the processing overhead at the proxy, and thus the attack would
not be recognised at the single transaction monitoring level. By evaluating
the combined statistics of each single IP address, we are able to detect such
anomalies.

Global Level State Changes. At the final level, we extend the moni-
toring of the local level to include all ongoing transactions. This becomes
necessary if attacks are launched concurrently from different sources, which
would be the case in a DDoS attack, for example.

At this level we can also gain knowledge of the health of the system. If,
for example, the average measured time in the Proceeding state increases,
this could be a sign that the SIP proxy is under heavy load. Combined with
a high rate of measured session termination events through timer time-outs
or a high response rate of 4xx error codes from the proxy, this is a good
indication of a flooding attack.

Attack Mitigation

If a flooding attack is detected due to measurements at the transaction or
sender level, the offending source can be identified as the transaction ID or
sender (i.e. its IP address) are associated with the individual measurements.
This information gained from the state model can be used to control a net-
work firewall. Then we can set rules at the firewall to let some requests
pass through or to reject them. Offending users can be distinguished on the
transaction level or sender level, i.e. to prevent single messages of a certain
type or all messages from one IP address.

Redundant requests can be selectively rejected by the filter using trans-
action level filtering, this is especially useful for an incorrectly configured
UA sending redundant requests which disturb the proxy server (as outlined
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in the previous section). All transactions with redundant requests can be
identified using transaction-level monitoring. The traffic flow at the proxy is
thus reduced while the ongoing transaction is undisturbed (see Figure 5.4).
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Figure 5.4: Detection and mitigation of attacks from misconfigured or broken
user agents.

Global level state changes are monitored for attack detection. As it is
not possible to directly distinguish between malicious and regular users at
the global level, there is no direct way to use this information for attack
mitigation. A possible mitigation possibility is outlined in the next section.

5.3 Distributed SIP DoS Attack Protection

From the current research point-of-view, there is no one definite solution
to prevent all types of DoS attacks on SIP servers. In this section we pro-
pose a first step towards Distributed Denial-of-Service protection. We are
introducing a lightweight security mechanism based on firewall pinholing,
that effectively prevents many DDoS attacks on SIP servers. Pinholing is a
common firewall technique, where the configuration of the border firewall of
the protected network is dynamically updated depending on current network
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traffic. The firewall is initially configured to block most incoming traffic,
but allows some exceptions (”pinholes”), so that traffic with special char-
acteristics can pass the firewall barrier. The proposed mechanism controls
a firewall to generate pinholes that are necessary to effectively protect SIP
servers. The approach shares some similarities with greylisting [140] used in
email spam prevention, i.e. all incoming requests are initially held back by
the firewall (they are ”greylisted”), and only forwarded to the destination if
the sending entity follows the SIP specification correctly. Hence, with our
mechanism we can deny access to all distributed flooding bots that do not
meticulously follow the specification.

The mechanism cannot handle all types of DDoS attacks, however it is
especially effective against flooding bots that utilise spoofed IP addresses, a
common technique that attackers use to evade detection. Spoofed addresses
are difficult to handle with all current prevention mechanisms.

5.3.1 Background: Greylisting

Greylisting [140] is a complementary mechanism to white and black lists used
in email spam prevention. When a message is received by an email server
from a sender that is not listed on a white or a black list then the message
is rejected temporarily. Senders that implement the Simple Mail Transfer
Protocol (SMTP) [73] specification would hence correctly retry sending the
message later. The re-transmitted message would then be accepted by the
server and forwarded to the client. Thus greylisting is based on the assump-
tion that SPAM software is rather simple and is optimised to send a lot of
messages but does not care about re-transmissions. This way, messages from
legal users would never be dropped unnecessarily and would always be for-
warded to the receivers, albeit a bit delayed, while messages from spammers
are dropped with very little effort.

5.3.2 Solution Approach: Firewall Pinholing

Our proposed mechanism works as follows: a firewall with pinholing capabil-
ities is positioned in front of any SIP server that should be protected. The
firewall is initially configured to block all incoming requests destined to the
proxy, i.e. no pinholes are established.

Any arbitrary but regular UA sending a SIP request to the proxy (for
example an INVITE or a REGISTER request) will have this request dis-
carded at the firewall. However, afterwards the firewall establishes a pinhole
so that further requests with a relation to this UA shall pass the firewall
unhindered. Thus, further communication of this UA will not be affected.
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Because of SIP’s defined re-transmission algorithm, it is guaranteed that the
UA will automatically re-transmit all SIP messages that have been initially
blocked by the pinholing firewall. Consequently, the UA’s re-transmission
message will thus pass through the created pinhole to the SIP server, thus
the communication channel is established. After some time of inactivity (i.e.
no traffic passing through this pinhole) the generated pinhole is closed at the
firewall. The schematic overview is depicted in Figure 5.5.

A DoS attack on the other hand strives for effective binding of all resources
at the SIP server, e.g. through the establishment of as many different trans-
actions as possible (for example by launching a memory depletion attack as
described above). Hence, for effective resource depletion the attacker needs
to initiate multiple different transactions, which will all be blocked by the
access firewall. Only if the attacker UA conforms to the SIP specification and
re-sends all previous requests (meaning, it also implements a message timeout
detection scheme), will it be able to pass through the pinholing firewall.
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Figure 5.5: Pinholing process overview

5.3.3 Pinholing Parameters

A key component of this mechanism for successful prevention will be the
method for creating pinhole rules at the perimeter firewall, e.g. which pa-
rameters should be considered for specifying the pinholes. Here we are con-
sidering different possibilities for the pinhole parameter.
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If we consider a basic attack tool, it is likely that it will generate attack
traffic with spoofed source IP addresses. This is necessary, as otherwise the
attack will be filtered out by common security solutions. Most commercial
SIP security products (e.g. Borderware SIP Assure [62]) use threshold-based
prevention mechanisms against DoS. This is achieved by allowing only a lim-
ited number of requests from one source within a given time frame. However,
such a mechanism is not effective against messages with spoofed IP addresses.

For the pinholing algorithm to be effective against such attacks, the pin-
hole parameter can simply be the source IP address, i.e. every first message
from one given IP address will be dropped, while further requests from this
same address will pass through (see Figure 5.6).

With this pinhole parameter, prevention is also possible for DDoS attacks
with real IP addresses if the attack generation tools does not implement the
correct SIP re-transmission method.

However, with the IP address as the only pinhole parameter, it would
be ineffective if attackers were to initiate multiple requests with their real
IP address or with random but fixed spoofed IP addresses. In this case
only the first request would be blocked while all further requests could pass
unhindered through the newly generated pinhole.

To cope with this situation, the pinhole parameter can also be modified
to consider the transaction or session ID (i.e. evaluating the relevant Via, or
Call-ID header fields and tags in the SIP message) as the pinhole parameter,
thus only allowing messages from the same context to pass the firewall.

It is possible for an intelligent attacker to circumvent this method. How-
ever, to achieve this the attack tool needs to be more complex, and and thus
becomes less effective: Instead of using the full given bandwidth capacity
to generate different requests, it has to re-send previous messages. As an
attacker will not know how many requests have to be sent to finally pass
the prevention mechanism, its individual attack power decreases with every
re-send: Assuming an attacker can generate 1000 attack requests per second,
it would only be able to pass 500 individual requests if all of them have to be
repeated. This number would further decrease if the attacker had to repeat
requests more than two times.

The generated pinholes should later be removed from the firewall to free
up resources and to speed up firewall performance. Note that for DoS pro-
tection it is not absolutely necessary to close the pinholes immediately: an
attack can only "hit” an open pinhole by coincidence, and a more sophis-
ticated attack would also pass an already closed pinhole. Also, if pinholes
are closed too early, regular users are also affected, as they have to re-open
the pinhole. As REGISTER messages are recurring messages sent by the
UA, the pinhole should be at least open for the common register refresh time
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Figure 5.6: Pinholing overview, all new requests are blocked until message
re-transmission.

(which defaults to one hour).

Note: The pinholing mechanism works for UDP transport, which is the
dominant form of SIP transportation and likely to be used in attack scenarios.
SIP does not use its own re-transmission feature when sending over a reliable
protocol like TCP, here the re-transmission feature of TCP is used instead.

5.4 Combined SIP-DNS DoS Attack Protec-
tion

In this section we present a new kind of SIP DoS attack that is launched
by utilising the Domain Name Service [141], on which SIP heavily relies on,
which we call a SIP DNS attack. This a completely new type of attack, and
it is easy to launch and slows down message processing at the target SIP
proxy by a fair amount. We present a mitigation scheme specification which
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is based on a non-blocking cache design.

5.4.1 Background: Domain Name Service

The Domain Name Service (DNS) is the basis for most current internet ser-
vices available today, including web and email. It is a completely globally
distributed and managed database, providing an essential service for Inter-
net applications and users, i.e. name resolution, which is the mapping from
human readable textual domain names (e.g. www.berlin.de) to a numerical
IP address (e.g. 62.50.41.196). Whenever a user requests a domain resolve,
there are generally two cases to distinguish:

1. The DNS server knows the name mapping. The name server might
know the mapping because it is the authoritative name server for this
domain. As such, all mappings for the domain are preconfigured for
this domain server. The server might also know the name because it has
resolved this address previously. Generally, in this case the mapping is
still stored in the server’s internal cache.

2. The DNS server does not know the name mapping. In this case the
server will issue a recursive request to other name servers that might
be able to provide an answer. The server will eventually receive a
response, either containing the valid mapping or an error message that
no mapping is possible. In the former case, the mapping will be stored
in the server’s internal cache for a limited period of time. The name
server can also set a time limit for the query. If no answer is received
within this limit, the address is considered unresolvable.

Client

Configured Name Server

P —

F s — Root Name Server
‘ 2. use resolved 1. Sequential pa—
address requests .org Name Server
J—
[ —| ~
= . S
===] sip.iptel.org iptel.org Name Server
°

Figure 5.7: A procedure of DNS recursive request

In Figure 5.7, an example is given where an end user issues a DNS request
of "sip.iptel.org”. The name server will execute a series of recursive requests
until finding the authoritative server of this domain (iptel.org). Finally, the
authoritative name server will reply with the IP address of ”sip.iptel.org”.
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5.4.2 DNS Usage in SIP Infrastructures

The Domain Name Service plays a key role in every SIP network at three
following aspects [142].

1. Many of the header fields in a SIP message contain Fully Qualified
Domain Names (FQDN) that need to be resolved for further processing
from a SIP entity, especially when forwarding requests to other SIP
entities. Relevant SIP message headers include for example, Contact,
Request-URI, Via and Route.

2. To interconnect the PSTN with a SIP network, ENUM telephone num-
ber mapping [143] is used. In short, this allows the mapping of a PSTN
telephone number (e.g. +1 234 567) to a valid SIP address.

3. SIP can utilise different transport level protocols (e.g. UDP or TLS).
To find its right contact server in regard to the used transport layer
protocol, a SIP entity will issue a DNS SRV request for the domain of
the regarding SIP URI [144]. The response will contain one or more
destination hosts that provide the required service.

In short, a SIP entity might query the DNS subsystem up to three times
(ENUM mapping, server locations and address resolution) before it can ac-
tually process and forward a message.

5.4.3 Scope of the Attack

The goal of a DoS attack is to render a SIP server inoperable for as long
as possible. While all kinds of SIP servers are affected by DNS attacks to
some degree, such attacks are especially fatal for P-CSCF's in IMS networks
and so called outbound proxies. In the context of IMS networks, a P-CSCF
is responsible for receiving traffic from roaming users and forwarding it to
the home domain of the users. While outbound proxies provide a similar
functionality they are mainly used for NAT traversal reasons [22].

Whenever a SIP server encounters a fully qualified URI in a header field
necessary for routing (e.g. Via or Route field), it issues a query to the local
name server to receive a valid address mapping. On average it takes 1.3 DNS
queries to receive an answer with the mean resolution latency less than 100
ms. However, due to configuration errors, these numbers can be considerably
higher [145].

The SIP DNS attack targets this relatively high processing time. It is
possible to disturb server operation with specially crafted SIP messages con-
taining URIs that will cause an even higher processing time at the DNS
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server by using a URI in a routing header (Via, Route and To headers or
in the Request-URI) of which the attacker is sure that its mapping will not
be in the cache of a name server or will trigger a request to an authorita-
tive name server that has a common low response time, e.g. because of low
bandwidth connection. The former case is easy to generate by adding ran-
dom host names to the left side of a address domain. The latter case can be
discovered by an attacker by querying different name servers and measuring
reply times. As an example for such a crafted SIP message see Figure 5.8.

INVITE: SIP:ul@2d4fww.hard-to-resolve.domain SIP/2.0
Via: SIP/2.0/UDP unresolv.domain; branch=z9hG4bk29FE738
CSeq: 16466 INVITE

To: sip:ul@2d4fww.hard-to-resolve.domain
Content-Type: application/sdp

From: SIP: unknownuser@host.com; tag=24564

Call-ID: 1163525243@10.147.65.91

Subject: Message

Content-Length: 184

Contact: SIP: unknownuser@host.com

<SDP Part not shown>

Figure 5.8: Example SIP message with unresolvable URIs

Such a message is a well formatted message that complies with the SIP
standard in every respect and as such cannot easily be filtered out by a SIP
server or an IDS. Issuing SIP queries with a variation of such URI’s will stop
operation at a SIP server depending on implementation and configuration
for a considerable time, as the SIP server can only continue its operation
after having received an answer from the DNS server. A DNS proxy searches
for a limited time for a name mapping. When using BIND DNS server [146]
this value of the time out is set by default to 5 seconds. If it does not
receive any answer from the BIND DNS server within the timeout period,
a negative reply is generated. The whole processing is shown in Figure 5.9.
During the name resolve request, some of the SIP server resources will be
blocked. Depending on the servers architecture this could be either memory
OT a process.

These attack can also be launched in combination with the SIP Authen-
tication framework [129], which we show at another place [6].
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Generally timeout after 5 s.

Message
Resolve request:
Via: unresolvable.domain.org unresolvable.domain.org
From: ...

To: ... Proxy

Blocked for 5 s.

Figure 5.9: Attacking scenario by blocking SIP proxy with messages contain-
ing unresolvable URIs with a default BIND DNS setup

5.4.4 Basic Prevention Possibilities

A preventive measure for reducing the effects of DNS attacks is to reduce the
amount of DNS requests issued by the server. This can be achieved in one
of the following ways:

Receive in VIA. The VIA list in SIP requests indicate the path taken by
the request so far. That is, the caller adds its URI as the first entry
in the VIA list. Each proxy that receives this request adds its URI to
the list. The receiver of the request adds the VIA list to its replies and
then sends the reply to the topmost VIA entry. Each proxy receiving
the reply removes the VIA entry indicating its URI and forwards the
reply to the new topmost entry. For the case of multi-homed proxies
or user agents or for the case of traversing a network address translator
the address indicated in the VIA entry might differ from the IP address
of the entity that forwarded the request to a proxy. For this proxy to
exactly identify the IP address to which to forward the replies to, a
proxy can add a receive parameter to the topmost VIA entry in the
received request. When receiving the reply to this request, the proxy
does not forward the reply to the URI indicated in the VIA entry but to
the address it had previously added in the receive parameter. To avoid
the need for resolving a URI included in a VIA entry of a reply, one can
always add a receive parameter to the VIA entry of the request with
the IP address of the sending entity. While this behaviour is optional
in case the IP address of the sender and the URI in the VIA entry, it is
very helpful in avoiding issuing a DNS request after receiving a reply.

Restricted contacts. Another approach is to restrict the form of the con-
tact addresses in the registration message to IP addresses and not to
host names. This avoids the need to resolve the contact address when
forwarding a request.



118 CHAPTER 5. SECURITY SOLUTION SPECIFICATION

DNS caching. DNS caches save the results of the latest DNS queries and
can be used for answering future queries. Different operating systems
like SUN’s Solaris already include this feature. In case this is not
included then the server should implement its own DNS cache.

5.4.5 DNS Implementations with SIP Servers

The basic options for using DNS in a SIP proxy are either synchronous or
asynchronous usage:

o Synchronous DNS implementation: In this case the SIP proxy sends
a DNS request and waits for an answer. While waiting the process
that has issued the request would be blocked and would not be able to
process new requests.

o Asynchronous DNS implementation: In this case the SIP proxy would
issue a DNS request and continue processing new requests. Once the
reply to the DNS request arrives or a timeout expires the proxy would
be notified.

DNS and Synchronous SIP Servers

With a synchronous design, a SIP proxy would block in between sending
the DNS request and receiving a reply to it. To reduce blocking effects,
synchronous SIP proxies use parallel message processing by using multiple
processes or threads with each process or thread responsible for processing
one message synchronously. Such a design is depicted in Figure 5.10, similar
to that presented in Figure 4.1. Here a core part only acts as a message
scheduler distributing incoming messages between the processes. Each pro-
cess is then responsible for parsing the message, initiating any DNS requests
or requesting the execution of an application and finally forwarding the mes-
sage. State information can be shared among the processes using some form
of shared memory.

DNS and Asynchronous SIP Servers

Another option to design SIP servers is to use asynchronous processing. That
is, after issuing a DNS request the server would not wait until an answer for
the request was received but would queue the request in an event queue, save
the data of the transaction, set the current operation on hold and move on to
process the next request. When a reply for the request arrives the main pro-
cess is notified and the waiting transaction is scheduled for continuation, thus
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Process 1 Process 2 Process n

Message Forward

Figure 5.10: Parallel process design of the SIP proxy

eliminating a DNS blocking scenario. The procedure is shown in Figure 5.11.
However, since the states of all unfinished domain name resolving requests
need to be saved, the implementation complexity and memory requirements
increase considerably. The server must support effective state suspend and
resume capabilities, as each new DNS requests requires complete storing of
the actual state into memory, and returning this state upon DNS resolve
notification.

5.4.6 Solution Approach: Intelligent Unblocking DNS
Cache

Neither design of the two design options can handle a SIP-DNS DoS attack.
We therefore evaluate other protection methods.

The source of the described attack is the usage of fully qualified domain
name addresses (FQDN) in SIP messages. Hence, FQDN should not be used
unless necessary. To reduce the need to resolve DNS names in Via headers,
RFC 3261 [23] suggests that each proxy that receives a request adds a received
parameter to the Via entry of the request with the numeric IP address of the
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Figure 5.11: Procedure in an asynchronous scaling design

sending entity, thus eliminating the need to resolve this URI after receiving
a reply.

However, the effectiveness of this mechanism is limited to reduce the usage
of DNS when routing replies and can not be used for other SIP headers such
as the Request-URI or Route headers.

Another approach for mitigating the effects of a DNS attack is to reduce
the timeout value of DNS. While this would surely delay the collapse of the
server it will not hinder it.

In the following we describe a scheme that is based on caching the results
of successful DNS queries. This scheme is implemented for a synchronous
working server. The choice of the synchronous servers stems mainly to the
higher vulnerability of such servers to DNS attacks and hence the higher need
for effective prevention mechanisms.

With the solution scheme we aim at minimising the time spent by a SIP
server waiting for a DNS reply.

With this in mind, the SIP server is extended with a DNS cache. When-
ever the SIP server requires the resolution of a DNS name it first checks if
the name already exists in the DNS cache. If yes then it uses the cached in-
formation otherwise it issues a DNS request and caches the DNS reply with
its TTL (Time to Live). According to the SIP environment, only successfully
resolved A and SRV records will be cached. The records will remain in cache
until their TTL expire or the capacity of cache is exceeded.

While different operating systems already provide DNS caches, they lack
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dedicated features for optimal usage in a SIP network. As described, a SIP
entity uses additional DNS records to locate other proxies, including NAPTR
/ SRV records [142], while a general operation system DNS cache does not
consider such records for caching. Furthermore, a dedicated SIP DNS cache
might need a different replacement policy than a general usage cache.

To ensure that a SIP server continues functioning even under a DNS
attack, we define a blocking threshold. This threshold represents a certain
parameter in the SIP server. Once the value of this parameter is above the
blocking threshold, the SIP server stops issuing new DNS requests and relies
solely on the content of the DNS cache for resolving DNS names. Hence,
in this case, the SIP server will only be able to serve requests that contain
already known DNS names. While this presents a limitation on the servers
performance, it does ensure that under a DNS attack, the SIP server will
continue to serve running sessions and new sessions destined to popular VoIP
providers which are very likely to be cached. This threshold can be defined
as follows: Assume a SIP proxy S processing messages in a synchronous
manner, with n parallel processes as described in section 5.4.5. We define:

1 a domain resolve call in process queue g
Sq(t) = but not returned at time ¢, (5.1)

0 otherwise.

We also define H as an indicator how many processes are concurrently
resolving a domain name in time ¢, with

H= Z S, (t) (5.2)

Hence the proxy will absolutely be blocked when H = n. To guarantee
non blocking proxy operation, the following relation has to be met: H < n
at any time ¢t. To achieve this we define a minimum operation threshold
m, where m is reasonably small and m < n. While H < R, where R =
n — m, the SIP server will function normally and issue a DNS request for
each non-resolvable DNS name. Further, the SIP server will cache the results
of successful DNS queries. Whenever H > R, the proxy is informed that
further DNS resolve request will have a high possibility to cause a DoS due
to proxy blocking. As a consequence, the proxy will not try to resolve any
domain names that are not included in the cache. Instead, the proxy assumes
these addresses to be unresolvable, and continues its operation. As soon as
H < R, the proxy will again perform DNS lookups.
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For the case of a SIP server designed to process messages in an asyn-
chronous manner (see Sec. 5.4.5), the blocking threshold (R) could represent
a percentage of the memory used by the server. Hence, once the percentage
of the memory used by the server (H) exceeds a certain percentage of the
overall available memory (R) to the server, the same behaviour as described
above will be used. Combining the blocking threshold with a dedicated SIP
DNS cache will effectively counter DNS attacks while keeping negative side
effects for regular users to a minimum:

e Aslong as H < R there should be no visible effect for regular users.

e In case of an ongoing attack, many regular users will not be affected:
Current connections will be kept, REGISTER updates are executed
without delay. Also, often new requests could still be served as long as
the destination address is available in the cache.

e Only requests to destinations not currently in the cache will be dropped.
These requests can not be handled at the moment.

As a result, this solution allows reduced operability under attack condi-
tions. The amount of negative side effects for regular users mainly depends
on the implementation of the caching replacement policy.



Chapter 6

Implementation

Following the specification of protection countermeasures as described in
Chapter 5, we present in this chapter details how the specification is to be
implemented in a prototype defence tool. The defence tool consists mainly
of the VoIP Defender security architecture, which is used as a basis for two
protection mechanisms: The state machine module to protected against gen-
eral DoS attacks and the pinholing module to protect against DDoS attacks.
The third module, the DNS cache operates individually from VoIP Defender;
it is based on an available DNS caching solution.

6.1 VoIP Defender Architecture

The main security framework, VoIP Defender is implemented in C/C++ on
top of the Linux Operating System on general PC hardware, i.e. it is a pure
software-based solution. All three components (Filter, Analzyer, Decider)
are self-contained and individually operating entities. Thus, all components
can be deployed on one PC or distributed on different PCs.

6.1.1 Filter

The Filter is the core element of the VoIP Defender architecture. To improve
performance, it is directly implemented in the Linux kernel. Its structure
and the distribution of the entities over kernel and user space are depicted
in Figure 6.1.

To achieve network transparency the Filter is acting as an Ethernet
bridge, which intercepts all traffic on the MAC layer, and does not change
network packets at all. If packets are allowed to leave the Filter, they leave
exactly as they entered it. This also includes all MAC layer information.

123
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Figure 6.1: Filter entities

A packet which has been received by the bridge is stored in kernel space.
It is then replicated and one copy is sent to the protocol reconstruction
facility, another copy of the frame is stored in a frame cache, awaiting its
verdict from the filter rule application.

As packets from the bridge are Ethernet frames, IP de-fragmentation
has to be performed in order to gain full IP packets. After this step, UDP
and TCP streams are reconstructed. During this process, references to the
involved frames in the kernel queue are stored along with the reconstructed
streams. From them, the actual SIP messages are obtained, which are fed
into rule processing and sent to an Analyzer node as well, along with protocol
meta data, like IP source addresses, number of fragments, timing information,
ete.

Load balancing features are achieved as the Filter identifies the Call-1ID,
To and From fields from each SIP message and extracts the tags to form a
unique session identifier for matching messages to sessions. In order to chose
an Analyzer, it applies a hashing function to the Call-ID and the From-tag,
computes a=hash mod n with n being the number of Analyzers available.

The extracted messages undergo inspection by the kernel space rule chains,
as well as possible user space decision. For this purpose, a dedicated ker-
nel/user space interface feeds a custom user space daemon with messages,
which in turn sends back verdicts.
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Rules are uploaded to the Filter via a user space daemon, which interacts
with the kernel and the user space rule message inspection daemon.

Table 6.1: Condition types

Kernel User Space

IP yes yes
UDP yes yes
TCP yes yes
ICMP yes yes
regexp yes yes
scripts no yes

Table 6.1.1 opposes the condition types and possible execution points.
The verdict of an applied rule is one of:

1. Accept: The message is harmless, pass it on.
2. Drop: The message is malicious, drop it.

3. Continue: Apply further rules until one produces a final decision
about the message.

6.1.2 Analyzer

Figure 6.2 depicts the components of a single Analyzer node.

Incoming messages are centrally parsed by a high performance SIP parser.
The parsed SIP message along with all received meta information and the
original message buffer is then presented to all loaded detection algorithms.
They can now apply their detection techniques and produce an algorithm-
specific output. The Analyzer algorithm contains the scalable part of each
algorithm. The output that an algorithm generates is relevant for the re-
spective Decider module only, and has no meaning outside of this context. It
describes the current attack situation, according to that specific algorithm.
Therefore it is possible that an algorithm A detects a possible attack, while
algorithm B does not. The results of each algorithm are then send to the
Decider.
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Figure 6.2: Analyzer architecture

6.1.3 Decider

Figure 6.3 shows the components of the Decider node.

The Decider receives incoming reports from the Analyzers and delivers
them to the corresponding algorithm-specific Decider modules. These mod-
ules contain the non-scalable part of each detection algorithm. These mod-
ules decide, whether an attack has been launched, and what can be done to
counter it. Countering means to create rules for the Filter, which will block
all malicious incoming traffic toward the SIP proxy matching the rules cre-
ated by a Decider module. In an attack situation, all traffic is still delivered
to the Analyzers. Thus it is possible to decide when the attack is over, so
the created rules can be removed.

The rule cache entity features static rules, which are created by human
beings, or were taken from other systems, to suppress certain static types
of attacks (pre-set rules). Rules consist of protocol-specific conditions, like
addresses for IP, or port numbers for UDP/TCP, but can also be regular
expressions for SIP-related content matching, or even complex scripts for
user space based filtering engines.
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Figure 6.3: Decider architecture

6.1.4 Component Interaction

In this section we address the traffic flow between the individual components.

Filter Traffic reaches the Filter in the form of unmodified Ethernet frames.
Incoming traffic is potentially filtered (packets are dropped), outgoing traf-
fic is not suppressed. The observed SIP traffic is sent over multiple TCP
connections to the Analyzers along with the following meta information:

e Time stamp when the first frame has been received

e Duration for reception of the whole SIP message

e [P information (source, destination, etc.)

e TCP information (ports, flags, etc.)

The traffic bandwidth sent out by the Filter is at least the sum of incoming
and outgoing traffic, plus the meta information.
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Analyzer It receives the Filter’s SIP traffic plus meta information. Each
Analyzer is connected to at least one Decider over a TCP connection. The
information exchanged is specific for the installed algorithms. The protocol
just allows dispatching of the algorithms.

Decider The Decider itself has an open TCP connection to the Filter node.
The Decider may create firewall rules, consisting of conditions and a resulting
verdict. These text-based messages are sent back to the Filter node as soon as
a Decider module installs a rule. The same applies for rule removal. Protocol
operations for rules are:

Install /remove rules

Set a default policy

Query rules

Wildcard delete rules

User Interface The Decider is able to send out REST messages [147]
to give status updates for the user. Also, the central user console may be
connected to each other layer through a telnet-based command interface to
control VoIP Defender. Commands can be issued from a command line or
generated through a GUIL.

6.2 The State Machine Module

The state machine detection module is implemented using the VoIP Defender
architecture. It monitors all incoming and outgoing SIP messages and up-
dates its internal state with each intercepted message according to the SIP
transaction model introduced in Section 5.2.2f. State changes can be trig-
gered by an intercepted SIP message or by a timer event. The key part of
successful attack detection and mitigation is the definition of appropriate
measurement parameters, which are learned during test runs. Of particu-
lar interest are threshold values that differentiate attack traffic from regular
traffic provided from the background traffic model. To define this, we have
launched the system with the background traffic model only, and defined the
attack threshold value for each measured parameter as 10 times higher than
the normal measured value to minimise the false positive rate. In the end,
this value should reflect the proxy’s processing capabilities, i.e. flooding at-
tacks need only be prevented if the proxy would not be able to process them
otherwise.
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According to specification, we gather and measure statistical data. Ta-
ble 6.2 shows the measurement capabilities of our state machine.

For comparison reasons and to conserve memory, at the local and global
monitoring level, measured integer counters are combined into a histogram.
So, to get an answer to the question, how often an event z occurred, the
monitor would produce an interval range instead of the exact answer. Defined
interval ranges are 1,2,[3,4],[5,8],]9,16],[17,0c]. Likewise, interval ranges
are [0,274),[274,273),...,[23,2%),[2%, 00) for float values.

Sampling calculation is done at regular sampling intervals s, with the
basic sampling rate to calculate statistics s, is set to 1 s. To get a broader
overview, statistical calculations are also individually done at s, * 10 and
sy * 100.

Again, to not exceed memory at the monitoring entity, sampling data at
user level is stored in a chained hash table with a fixed size. To free space
in the hash table we have implemented a Least Recently Used (LRU) [148]
replacement strategy.

We present an example of the meaning of the measurement features
as introduced in Table 6.2: At the sender level for INVITE transactions,
Intrastatecompietedrequest Would give us the number of requests during one
sampling interval that occurred from the same sender while any of this
sender’s transactions are currently in the completed state. In this case only
another INVITE method is allowed. At the global level for any transac-
tion, Retrans ompicted,repiy,5,5) would show us how many transactions had 5 to
8 replies in the completed state before the transaction changes to another
state.

VolP Defender

Pinholing Algorithm

Traffic Receiver ‘ ‘ FW Controller

Control Traffic

External Interface Packet Capture |..| Packet Firewall |, | Internal Interface

Figure 6.4: Pinholing setup
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DNS Cache

Caching Record: A, SRV

Cache Replacement Policies

FIFO LRU LFU TC

Cache entries

Figure 6.5: DNS cache implementation overview

6.3 The Pinholing Module

The Pinholing module is also implemented using the VoIP Defender archi-
tecture. For the pinholing mechanism, VoIP Defender captures all traffic to
and from the SIP proxy and forwards it to the pinholing algorithm module.
The pinhole database from Figure 5.5 is managed directly there. The VoIP
Defender firewall controller is then responsible for installing and removing
pinholing rules at the used firewall (see Figure 6.4). Rules are updated at
the firewall as soon as the incidents occur.

Note, that while tests have only been conducted with VoIP Defender, the
actual pinhole mechanism should also work in other security frameworks like
IDS or SBC.

6.4 The DNS Cache

The Non-blocking cache design from Section 5.4.6 was prototyped on top of
the Dnsmasq [149] DNS cache tool. The developed prototype operates with
SER. As seen in Figure 6.5, the prototype supports:

e An "emergency process”, which will only look up DNS records inter-
nally instead of forwarding requests to external DNS servers whenever
H < n—1. In a pretest, we found that m did not affect the performance
of the cache. Therefore, in the experiment, we set m fixed to 1. As
seen in Figure 6.5, the cache could handle n requests in the same time

while mostly, only n — 1 requests could be forwarded to an external
DNS server.

e Caching both regular DNS entries (DNS A records) and DNS SRV

records.
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e Different cache replacement policies such as first in first out (FIFO),
least recently used (LRU), least frequently used (LFU) and time cost
to replace old records [150, 148]. These algorithms are evaluated in the
following chapter.



Chapter 7

Validation and Optimisation

In this chapter we show the feasibility of the specified methods. By running
multiple tests under laboratory conditions with the prototype tools described
in Chapter 6, we validate the correct operation of each proposed method.
Our focus lies on the validation of of the correct operation of each protection
module, as specified in Chapter 5, however, correct operation alone is not
enough to successfully counter the DoS attacks introduced in Chapter 3.
We therefore begin this chapter with performance tests of the basic VoIP
Defender architecture. We conclude with optimisation possibilities in the
case where test runs show lower than expected performance. Unless noted
otherwise, all performance measurements show the mean values of multiple
test runs.

7.1 VolP Defender Validation

The limiting factor for performance in the VoIP Defender architecture is the
Filter, as this is the point where massive load in terms of network traffic (SIP
streams) and processing power (rule application) is expected. We therefore
concentrate on testing the limits of the Filter node.

7.1.1 Test Bed Setup

VoIP Defender is deployed as a prototype implementation in a private se-
curity network. We do performance measurements deliberately in a private
network to ensure that only generated testing traffic is processed and no
other traffic falsifies test results. The performance test bed setup is depicted
in Figure 7.1.

'Results of this chapter have been published in [17, 16, 11, 7, 3].
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 E—  —  —

[ — > | — - | —
| —  e— | | —
— — — )
o | ° °
Message VD Filter node Message
generator (Rule application) generator

Figure 7.1: VoIP Defender performance test bed setup

A message generator can generate UDP messages of preset contents and
measure the delay between sending them out and receiving them back from
the target machine. For ICMP measurements we use the standard UNIX
command ping, which uses ICMP echo requests and echo responses (message
type 0 and 8) for delay measurements. The testing machines are connected
with a Gigabit Ethernet network with switches between them.

7.1.2 Round Trip Time Delay

Table 7.1 lists round trip times for ICMP echo/response (ping) and UDP ping
cycles. Measurement times are first given without VoIP Defender installed
as reference, followed by setup times with the VoIP Defender Filter deployed
with different numbers of installed rules at two different sending speeds. The
rules are chosen not to trigger ever, thus it is made sure that for each packet
the whole list of rules have to be applied. This test shows that even high
numbers of rules influence the delay of network frames through the Filter
node only marginally. Opposing that the number and complexity of regular
expression, applied to UDP packet content, raises latency dramatically, as
regular expression processing consumes much CPU power.

7.1.3 Throughput

Table 7.2 lists the recorded throughput rates along with the observed CPU
load at the Filter. The data source sends out a 170 Mbit /s SIP stream, which
passes the Filter on its way to the SIP server.

It turns out that simple, IP properties based rules are processed with
minimal overhead, and yielding a high throughput rate. On the other hand
regular expressions are turning down throughput much more than IP based
rules, as they require much more CPU power. We cover regular expression
based rules and performance improvements in more detail in Section 7.5.2.
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Table 7.1: Measured round trip times (in ms)

Setup 1 Packet/s 10 Packets/s
ICMP 8/0 UDP ping ICMP 8/0 UDP ping
bare wire 0.2 0.28 0.19 0.25
Filter, 0 rules 0.31 0.33 0.26 0.34
10 rules IP 0.28 0.36 0.31 0.29
100 rules 1P 0.31 0.4 0.34 0.39
1000 rules 1P 0.4 0.51 0.37 0.47
5000 rules IP 0.54 0.55 0.51 0.54
10000 rules IP 1.03 0.92 0.95 0.81
17000 rules IP 1.7 1.64 1.6 1.52
2500 rules IP/UDP 0.47 0.59 0.47 0.57
5000 rules IP/UDP 0.55 0.91 0.53 0.94
regexp = “.*23[a|b].*”
10 regexp n.a. 107.03 n.a. 112.73
100 regexp n.a. 1131.4 n.a. -
regexp = “abc[a|b].*”
10 regexp n.a. 0.73 n.a. 0.8
100 regexp n.a. 2.92 n.a. 2.8

7.2 The State Machine

7.2.1 Test Bed

The state machine runs in the VoIP Defender security architecture. For this
test, VoIP Defender operating with the state machine module are deployed
within a security test bed consisting of multiple Dell Xeon servers running
the Linux operating system. For the tests the components share workstation
space inside Xen virtual machines. Incoming traffic and internal connections
are routed over Gigabit Ethernet lines and switches. For the target proxy we
again use SER. See Figure 7.2 for a schematic overview.

We use an enhanced version of the SIPp traffic generator tool to create
background or "normal” SIP traffic to the proxy. Our enhancements to
SIPp include the possibility to create random events in the scenario and
diversifying reply messages using regular expressions. The background traffic
generator consists of a caller group, a callee group and a register group. The
register group is responsible for registering the other groups. The caller group
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Table 7.2: Filter throughput

Setup Throughput Average CPU Load
no rules 170Mbit /s 0.00
100 rules IP 170Mbit /s 0.50
1000 rules IP 130Mbit /s 1.06
1 regexp rule 170Mbit /s 0.03
10 regexp rules  110Mbit/s 0.96
20 regexp rules  70Mbit/s 1.11

Operator
Console
State Machine Additional Detection
Specification Algorithms
Access Control
Background
Traffic Model
SIP
(SIPp) VolIP Defender SIP Service

Scalable

Infrastruct
Network Bridge rzsr:rs Prlrlgxl;/;e
Incoming / Outgoing
Traffic

Figure 7.2: VoIP Defender state machine test bed setup

initiates random calls to users in the callee group. Calls are either accepted
after a random time period by the callee group and finally terminated by one
entity, cancelled by the caller or failed for some random reason.

We use both SIPp and a developed tool that is able to generate SIP
messages with spoofed IP addresses to simulate DoS attacks. This traffic is
also directed towards the proxy with the aim of disturbing proxy operation.

7.2.2 Testing Scenario Setup

To validate the specification-based SIP anomaly detection and mitigation
approach, we create three testing scenarios. Within each scenario, the back-
ground traffic generator is configured to launch and respond to 40 REGIS-
TER messages and 80 INVITE messages per second. Then we launch three
different attacks against the protected SIP proxy.

1. Simulated broken UA attack (Attack 1). Within this scenario, a valid
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user continuously generates and re-sends a valid and fixed INVITE mes-
sage. As such, the transaction ID does not change with new messages.
The responses are not acknowledged.

2. Single source flooding (Attack 2). This attack overwhelms the target
proxy with multiple invitation requests to an unregistered user, aiming
to degrade server operation. As such, the transaction ID does change
with each new message.

3. DDoS INVITE attack (Attack 3). The same as the previous attack,
however, through our IP spoofing tool each new message seems to orig-
inate from a different sender.

Table 7.3: State machine measurements showing maximum value for sam-
pling interval, B = background traffic (80 msg/s), A = attack traffic
(80 msg/s)

Sender Level Global Level

B Al A2 A3 B Al A2 A3
Active 258 1 2560 4177
New 82 1 82 1 82 1 82 79
Repliessqx 32 1 82 1 32 1 82 74
Repliessza 0 0 0 0 0 0 0 0
Terminatet;mer, 0 0 0 1 0 0 0 31
Terminatei;mery, 0 1 161 1 0 1 161 144
Intrastatecompieted,request 0 82 0 0 0 82 0 0
Intrastatecompieted,reply 1 82 648 1 1 82 648 564
Retranscompieted,request 1 2727 0 0 0 2719 0 0
Retranscompieted,reply 1 2727 8 8 1 2727 8 8
Retrans.ompieted,reply,[5,8] 0 0 161 1 0 0 161 144
Time 0 1 82 1 0 1 82 74

'proceeding,(0,2—4)

We run the tests in several different configurations. First, we launch
background traffic and attack traffic individually (at 80 INVITEs/s) to show
how they both differ (see Table 7.3).

Then we perform flooding tests in combination with the background
model running at 80 INVITEs/s. Flooding scenarios are conducted with
a significantly higher network load (500 and 2000 INVITEs/s) to reflect a
real DoS threat (see Tables 7.4 and 7.5). To differentiate between normal
and attack conditions, we deactivate the firewall filter and alarm logic at
first, then activate it for attack detection and mitigation.
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Table 7.4: State machine measurements showing maximum value for sam-
pling interval, B = background traffic (80 msg/s), A = attack traffic
(500 msg/s)

Sender Level Global Level

B B+Al1 B+A2 B+A3 B B+Al1 B+A2 B+A3
Active 2358 2327 16761 27041
New 82 52 532 84 82 82 616 608
Repliesqza 32 28 136 16 32 28 139 386
Repliess g 0 0 423 78 0 0 490 506
Terminate¢imer,. 0 0 1 1 0 0 0 0
Terminatetimer,, 0 1 1009 1 0 1 1009 893
Intrastatecompieted,request 0 509 0 0 0 509 0 0
Intrastatecompieted,reply 1 509 946 1 1 509 946 973
Retranscompieted,request 0 16999 0 0 0 16999 0 0
Retranscompieted,reply 1 17007 8 8 1 17007 8 8
Retrans;ompieted,reply,[5,8] 0 0 245 1 0 0 245 870
Time 0 1 531 78 0 1 594 536

proceeding, (0,2~ %)

7.2.3 Results

At first, we run each attack independently, in order to see its ”signature”.
Table 7.3 shows clearly that regular SIP traffic (B) generates a completely
different pattern at the state machine model than malicious traffic (A1-A3),
even when the traffic is generated in both cases with the same amount of mes-
sages. Several measurement variables show zero or very low values for normal
traffic, while the same variables show high values under attack conditions.
Thus, attacks can easily be differentiated from normal traffic by moni-
toring these variables. As seen in Table 7.3, normal traffic does not gen-
erate an abundance of timeouts (7Terminate events), redundant messages
that keep a transaction within one state (Intrastate events), redundant re-
transmissions (Retrans events) or different processing times (7ime events).
On the contrary, each tested attack produces a large value of at least one
measurement variable, either at the sender or global level. In particular,
the clearest indication for attack 1 would be the high amount of request
retransmissions which trigger a high flood of server reply retransmissions
(sender level, Retranscompictedrequest: 1 Vs 2727 occurrences). A clear indi-
cation for attack 2 is the large amount of server replies, due to the open
transactions generated by this attack (sender level, Intrastate ompieted repiy: 1
vs 648 occurrences). Also a lot of time-outs are generated here (sender level,
Terminatesimer,: 0 vs 161 occurrences). The pattern for attacks 3 is similar
to that of attack 2, albeit only at the global measurement level (global level,
Intrastatecompietedrepiy: 1 Vs 564 occurrences; global level, Terminatemey, :
0 vs 144 occurrences). If more measurements are taken into account, the
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Table 7.5: State machine measurements showing maximum value for sam-
pling interval, B = background traffic (80 msg/s), A = attack traffic
(2000 msg/s)

Sender Level Global Level

B B+Al B+A2 B+A3 B B+Al1 B+A2 B+A3
Active 2358 2328 64674 105981
New 82 82 2142 105 82 82 2227 2722
Repliesqza 32 32 1351 6 32 32 1354 947
Repliess g 0 0 2052 101 0 0 2134 2349
Terminate¢;imer,. 0 0 0 1 0 0 0 567
Terminatet;mer, 0 1 4003 1 0 1 4003 3557
Intrastatecompieted,request 0 2044 0 0 0 2044 0 0
Intrastatecompieted,reply 1 2044 1360 1 1 2044 1360 1699
Retranscompieted,request 0 67994 0 0 0 67994 0 0
Retranscompieted,reply 1 68005 8 8 1 68005 8 8
Retranscompieted,reply,[5,8] 0 1 1865 1 0 0 1865 1602
Time 0 1 2136 101 0 1 2218 2397

proceeding,(0,2~4)

accuracy of the detection would increase further.

Thus, both attacks 1 and 2 can be detected at the sender level, while at-
tack 3 can only reliably be detected at the global level. As outlined already
in Section 5.2.3 mitigation is possible for attacks Al + A2 by temporar-
ily blocking offending senders or by just blocking single messages from one
sender. Comparing the measurements from the transaction level with those
at the sender level, we can even differentiate between offending malicious
hosts and regular high-traffic hosts like NAT Gateways or SBCs.

Table 7.3 only shows figures where either normal traffic or attack traffic
is run separately. The combination of background traffic with high volume
flooding at the same time confirms the signature (Tables 7.4 (500 msg/s
flooding), 7.5 (2000 msg/s flooding)). Again, a huge amount of intrastate
and retransmission events clearly distinguish offenders from normal traffic at
the sender level for attacks 1 and 2. With the VoIP Defender firewall, these
offenders can easily be blocked after detection. Particularly interesting is the
high amount of Repliess,,, showing an overload at the SIP proxy. While the
proxy refuses to process further messages, our scalable state machine keeps
track of the current network condition even under load.

This range of tests have a focus on DoS flooding attacks. It is likely that
our proposed method will be able to detect other kinds of intrusions, too.
For example, probing attacks will also generate open sessions at the proxy.
These will be visible at the state machine, albeit with a lower intensity as
with flooding attacks.
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Attack3(Detection)

7] Attack 2(Detection, Mitigation)

————— =

Attack 1(Detection, Mitigation)
B s e e L ma s s S S

Figure 7.3: State machine latency time for detection and mitigation at dif-
ferent sampling intervals (flooding rate: 500 INVITE Msg/s)

7.2.4 Latency Time and CPU, Memory Usage

For performance evaluation, we also measure latency time, CPU load and
memory usage of the state machine implementation. Latency is defined by
the time after the attack is launched until the VoIP Defender state machine
has detected the attack and blocked the offender, if possible. Latency times
for attack detection and attack mitigation are shown in Figure 7.3. For
latency calculation, the beginning of the attack has to be determined by
the Filter node, while the reaction to the attack is determined at the Decider
node, which leads to synchronisation problems. Thus the measurement values
might not be completely accurate.

Obviously, latency time depends on the setting of the basic sampling rate
sp. With the default value for s, = 1, the latency time is always below 1 s.
Only in the case that the attack is launched exactly after a new measurement
period is started, will the latency be close to 1 s. This shows the immediate
response capabilities of our implementation. After experiments with different
values for s;, we see that attacks 1, 2 and 3 are detectable with a minimum
latency time of under 0.3 s if s; is set to 0.1 s. Mitigation for attacks 1 and
2 becomes effective within 0.3 s. With s, < 0.1 s we are usually not able
to gather enough data to reliably detect an attack in one sampling period,
hence the latency time increases. With the increase of s, > 1 s, the detection
latency time also increases.

While a low sampling interval s, is thus advisable for fast attack detection,
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it increases the IDS load considerably as more calculations have to be made
during the same interval.

For resource utilisation testing, we set up a simple INVITE flooding
model, to test the limits of our implementation. CPU load and memory
usage are shown in Figure 7.4. From the figure we can see that the CPU
processing power is the limiting factor, and not RAM usage. The state ma-
chine in this set up can process around 2800 msg/s. Note, that the testing
system is inside a virtual machine, and performance is expected to be higher
if physical hardware is used.

Figure 7.4: State machine CPU load and memory usage (Intel Xeon CPU
3.2Ghz, Memory 512 MB, inside Xen Virtual Machine).

7.3 Pinholing Validation

The pinholing testing is done using the same test bed as described in the
previous section. We create an operation evaluation scenario and a perfor-
mance evaluation scenario. In the operation evaluation scenario we proof the
general operation of the mechanism, whereas in the performance scenario we
push the implementation to its limits.

7.3.1 Operation Evaluation Scenario

For the operation evaluation scenario, we launch the SIPp background gen-
erator from multiple hosts to register different UAs at the SIP proxy and
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initiate random SIP INVITE requests. Then we start an attack with the at-
tacker tool, by generating random requests with spoofed IP addresses starting
at a rather low rate of 20 calls / second. During the entire attack the goal is
to establish all user-initiated requests from SIPp (i.e. no false positives) and
to block all attack-generated requests (i.e. no false negatives) at the firewall.
Rules are generated at VoIP Defender’s firewall controller in real-time: As
soon as a new SIP request is encountered, a new firewall pinholing rule is
created and forwarded to the firewall to be installed there.

The test shows that all regular users are able to successfully pass the
protection solution. In the next step we measure the delay in processing a
regular user’s call, i.e. by taking the time between the initial request from
the UA and the received answer from the proxy. Without the protection
solution established, this delay is on average 0.11 s in the test bed. With
the protection solution established, this delay increases to an average value
of 0.61 s. This delay is of course due to the first request being blocked by the
firewall, and only the second re-transmission request being able to pass the
firewall pinhole. The SIP specification states that the first re-transmission
message should be generated after T'1 s, where T'1 is the calculated RTT or
500 ms, which is exactly what we witness in the test (Note, that SIPp does
not seem to do an RTT calculation and just uses the default value of 500 ms
for T'1).

7.3.2 Performance Evaluation Scenario

In the second test we measure the performance of the mechanism and its
influence on latency. From the previous test we know already that the system
works correctly. Hence, it is sufficient to launch the attack alone to generate
a high load of requests. We evaluate if the firewall can handle all requests,
i.e. dynamically update the firewall table in real-time as requests arrive.

In this test, we configure the attack generator to emit 10000 SIP requests
at a rate of 500 msg/s, as such a rate would already put a provider system
under high stress. Note that the limiting factor here for the proxy is mainly
processing speed and memory consumption, and not bandwidth usage. All
tests are repeated 10 times, to minimise measurement errors.

The results from this scenario can be seen in Figure 7.5. The figure shows
that VoIP Defender indeed generates all 10000 firewall pinholes as expected,
i.e. there are no false negatives.

However, as more rules are added to the firewall, rule adding latency
increases considerably. In a real-time scenario, rules should be effective as
soon as new SIP requests are encountered. In the introduced scenario with
10000 SIP requests at a rate of 500 msg/s, ideally after about 20 seconds
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all rules should have been installed at the firewall. However, the tests show
that the last rule is added nearly 3 minutes after the last attack request was
generated. This is a considerable delay and would have grave consequences
for network traffic. In the theoretical case that only one regular user would
contact the SIP proxy just after these 10000 attack messages have been gen-
erated, it would take the client three minutes before a contact with the SIP
proxy would have been established. This is however a theoretical value — ac-
cording to the SIP specification, a calling UA terminates an INVITE request
after around 30 s (depending on RTT, and given that the calling human
operator would not have given up before). During this time the UA would
also have generated ca. 7 re-transmission requests. Evidently, this is not an
acceptable use case, and due to the additionally generated re-transmission
requests, the load on the defence node would even be increased.

Upon examining the setup, we identify the iptables-based firewall engine
controlled by VoIP Defender as the performance bottleneck. While rules are
generated without delay at the firewall controller in VoIP Defender, iptables
cannot process these requests in real-time. The standard Linux firewall ipt-
ables works considerably well with a small set of static rules, but has known
performance problems with an increasing rule set size and rules that are dy-
namically updated [151, 152, 153]. We investigate optimisation strategies in
Section 7.5.1.

Within our test runs, there is no great difference in latency performance
between different iterations of the test, i.e. derivation from the average case
was minimal. This further confirms that the encountered low performance is
not due to network problems and indeed results from iptables’ rule processing.

10000

8000

6000

# Applied Rules

4000
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==Min
= = Max
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0 20 40 60 80 100 120 140 160 180
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Figure 7.5: Time to install 10000 rules at the pinholing firewall
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7.4 DNS Cache Validation

7.4.1 Test Bed Setup

We create a new test bed for the DNS Cache evaluation, as it is not an
integral part of the VoIP Defender architecture. Within this test bed we
show the effectiveness of the attack and evaluate countermeasures against it.
The DNS Cache test bed consists of five main components.

SIP providers
DNS
serler unresolvable
SER (outgoiﬂg proxy)
T L Attacking
UA (SIPp) tool

Figure 7.6: DNS cache test bed architecture

1. A SIP proxy as the main target of the attack. In the test scenario the
attacked server acts as an outbound SIP proxy. Hence, all messages to
or from a caller have to go though this proxy. We have again used SER

for this task.

2. A local DNS server. The SIP proxy is configured to contact this server

for DNS requests.

3. A self-implemented attack tool generating SIP messages containing un-
resolvable domain names. This tool can continuously send SIP mes-
sages with different hard to resolve domain names to the proxy.
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4. User agents (UA) representing legal users that register themselves on
remote SIP servers. The UAs are realised using the SIPp message gen-
erating tool. We use SIPp to simulate regular SIP REGISTER traffic,
consisting of REGISTER requests with different kinds of responses from
remote servers.

5. External SIP providers. We choose 100 different SIP providers from
all over the world, mostly located in Europe and North America. The
user agents are registered there. Every external SIP provider is located
at a different domain.

The test bed (proxy, user agent, and attack tool) is established on Pen-
tium D double processor machines with 1 GB RAM running on Linux Oper-
ating System, equipped with 100 Mbit Internet access.

The logical structure of the test bed is shown in Figure 7.6. We perform
testing with the following steps.

e The outbound SIP proxy can be configured to have different parallel
processing queues n, with 2 < n < 64.

e We configure our UA to send continuously REGISTER messages from
our local network to external SIP proxies. The external SIP register
addresses are given to the UA in textual representation, hence the proxy
has to resolve the domain before it can forward any request.

e The attacking tool is configured to send crafted messages containing
hard resolvable domain names to the local outgoing SIP proxy. It
is configurable by the attacking interval i (in seconds) between two
attacking messages.

To measure the proxy performance, we send out 5000 REGISTER mes-
sages from the attack tool and count the number of responses (r) the local
proxy can process. If we can get any kind of response from a remote SIP
server, the domain name of the server is successfully processed by the proxy.
Ideally, all 5000 messages can be processed at the local SIP server. 50 IN-
VITE messages to different external SIP servers which are chosen randomly
are sent in 1 second and every outgoing message from the UA is routed
through the local SIP proxy. Table 7.6 shows the variables of the experi-
ment.

All measurements are the average value of 10 runs of the tests.
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Table 7.6: DNS Cache test bed parameters

Variable description Variable symbol
Parallel processing queues of the proxy under attack. n

Time interval between two attacking messages sent from 1

the attacking tool to the local proxy.

Number of reply messages received by the UA r

7.4.2 Feasibility of the Attack

To evaluate the performance of parallel processing under an attack, we per-
form an experiment based on our test bed with different parallel processing
queues n and different attack intervals .

The result is shown in Figure 7.7. With few parallel processing queues
(n < 8) less than 20% of all potential messages can be processed, even with
only one attack message per second. 64 processing queues are needed to
adequately cope with the same attack speed of one malicious message per
second. However, decreasing the attacking interval down to 0.001 seconds
(1000 attack message per second), even 64 parallel processing queues are
completely starved.

Generating 1000 messages per second is easily achieved with a DDoS
attack, where an attacker controls hundreds of slave machines [28]. For ex-
ample, Hussain et al. [154] demonstrated an attack scenario with 100.000
malicious messages per second. With that setup, even a proxy with 64 or
more processing queues would be totally blocked. On the other side, config-
uring even more parallel processes costs more memory and CPU resources,
possibly leading to system overload and hence another type of DoS.

We have found out that a SIP attack launched at a SIP proxy with asyn-
chronous processing, running on a machine with 8GB of RAM all memory
can be depleted in about 30 seconds, resulting in a complete lock-down of
the machine [155].

7.4.3 Evaluation

Performance Evaluation

In order to verify the efficiency of the caching scheme, we run several en-
durance tests. In these tests 10,000 SIP REGISTER messages are sent over a
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Figure 7.7: Processing performance of the local proxy for different processing
queues n and varying attacking intervals

period of 140 seconds. These messages contain non-resolvable domain names
with 10 ms delay between each message. We measure the number of mes-
sages the proxy can process during this test. In the optimum case, all 10.000
messages are be handled by the proxy. In case of an attack however, the
proxy is not able to process all messages within time without dropping some.

Figures 7.8 and 7.9 show the number of resolved messages over time at
the SIP proxy (n = 2,4, 16, 32 (Figure 7.8), 64,128,256 (Figure 7.9)) without
a DNS cache, and also with the cache applied (n = 2 only, Figure 7.9). Every
test case is run for about 140 seconds.

Looking at Figures 7.8 and 7.9, we can see that overall performance de-
pends on the number of available processes for the uncached setup; with
n = 256 showing the best results with about 4300 of the 10.000 messages
processed. This value goes down to 50 successfully processed messages with
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Figure 7.8: Message processing capabilities with different parallel processing
queues (n = 2,4,16,32)

n = 2. Hence, even with 256 processes, the performance of the proxy is still
very limited in case of an attack. After deploying our cache solution the
proxy answers nearly all 10,000 requests. We further observe that the result
is independent of the number of activated processing queues n.

Furthermore, we can also see from the picture that without deploying the
cache, the SIP server will stop working for several seconds during the test
run, e.g. at 90s < t < 110s with n = 16. During this time the proxy is
blocked completely, as all 16 queues are waiting for a response from the DNS
server. When the cache is used, the SIP server is still functioning and can
continue serving running sessions as well as new sessions destined to cached
destination.

Cache Replacement Policies Evaluation

The efficiency of a cache is usually measured by its hit rate. A high hit rate
indicates that the cache contains a high percentage of the entries the SIP
server is trying to resolve. The hit rate is mainly influenced by the number
of entries in the cache. The higher this number, the lower the probability
of a cache miss and the higher the hit rate. However, the size of the cache
will have to be limited. Otherwise, an attacker might deplete the system’s
memory by issuing a large number of DNS requests and hence continuously
increase the size of the cache. Once the cache is filled some existing cache
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Figure 7.9: Message processing capabilities with different parallel processing
queues (n = 64,128,256), and the DNS cache applied (n = 2).

entry will have to be deleted whenever a new entry is to be added.

Within our solution we cache only successful requests. If we choose to
cache also unresolvable names, this might lead to a direct DoS situation on
the cache with the described attack, as the cache will endlessly be flooded
by unresolvable entries.

We consider four cache update policies; First-in, First-out (FIFO), Least
Recently Used (LRU), Least Frequently Used (LFU) are well-known cache
replacement strategies for paging and web scenarios. Considering that the
time cost of looking up different domain names may be different, we consider
also a Time Cost (TC) strategy (see Table 7.7).

Table 7.7: Cache replacement strategies and their operating key

Name Primary Key

FIFO Entry Time of Object in Cache
LRU  Time Since Last Access

LFU  Frequency of Access

TC Request Time Cost

Generally, all replacement strategies are applied on a queue of cache en-
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tries. The newest record is inserted into the head of the cache queue, while
entries are deleted from the tail of the cache queue when the size of the cache
storage is exceeded.

e For the FIFO policy, except for newest and oldest entities, all records
are moved towards the tail by one when a new record enters the queue.

e LRU policy is similar to FIFO, with the difference that whenever one
record within the cache is accessed, it is moved directly to the head of
the queue.

e With LFU policy the DNS records are arranged by the frequency of
their usage of DNS records. The higher the frequency, the closer are
the entries located toward the head of the queue.

e With TC policy the queue is ordered by the time cost of the DNS
lookup time of an entry. The goal is to keep entry with a higher lookup
time available in the cache. The higher the lookup time cost of an
entry, the closer it is to the head of the queue.

We repeat the experiment from Section 5.4.5 with these four caching
strategies twice, one time with n = 4 parallel processing queues at the proxy
and then again with n = 32. With a test run we observe that within our
experiment we need e = 270 entries in our DNS cache to hold all domain
names of the 100 contacted SIP proxies. The reason for this higher number
is that sometimes root name servers have to be contacted first before the
actual proxy name can be resolved. (e.g. ns2.mydyndns.org will be contacted
automatically before looking up iptel.org). Cache replacement strategies can
only be tested if the number of possible entries is lower than the total number
looked up in the experiment.

While 270 entries for our test bed will require only a small memory over-
head, in a real-life scenario the size have to be considerably higher.

To compare the effectiveness of the replacement strategies we arbitrarily
set the entry number of our cache (e) to 80 which is reasonably lower than
the possible 270 entries. The result can be seen in Figures 7.10 (n = 4) and
7.11 (n = 32).

For n = 4 we can see clearly that DNS caching with any caching strategy
yields better performance than without DNS caching. The improvements
vary depending on the attack interval and the used replacement policy, with
Least Frequently Used (LFU) algorithm giving best results, which confirms to
other performance tests with different setups [156]. The figure shows for LFU
from 17% successful responses out of 5000 (at ¢ = 0.1 s) up to 61% successful
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Figure 7.10: Performance of SIP proxies equipped with different cache re-
placement policies under attack (n = 4)

responses (i = 1 s). In comparison, figures for the uncached experiment are
from 0.4% (i = 0.1 8) up to 6% (i =1 s).

Considering n = 32, we can see a different result. Especially from attack-
ing interval ¢ > 0.5 s, the performance of all four algorithms are generally
equal. This seems to be due to the increased processing capabilities of the
proxy with n = 32, as also in the uncached experiment we see a clear increase
in successful resolve requests. In this case, the attack simply does not consist
of enough messages to slow down the proxy. However, with increased attack
speed again LFU shows best results. We measure 44% successful responses
(1 = 0.1 s) up to nearly 100% successful responses (i = 1 s), in comparison
to 6% (i = 0.1s) / 60% (i = 1 s) for the uncached experiment.

Furthermore, we further increase the attacking speed to 0.02s, which to-
tally blocks the proxy without cache (0% successful responses). In contrast,
with the assistance of the LFU cache the proxy still manages to process 1936
(38%) messages.

In the last experiment, we survey the relationship of caching performance
in relation to caching entries e. As mentioned, the number of cache entries
is limited while the amount of the domain names in the real world is almost
unlimited so that it an attempt to accommodate all possible domain names
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placement policies under attack (n = 32)

in the world will lead to a out-of-memory lockdown. To investigate how the
number of cache entries affects the performance of the cache, we set n = 4
and the attacking interval ¢ = 0.5 s, and evaluate with different numbers of
cache entries based on the test bed. The result is shown in Figure 7.12.

From the figure, we can see that even if there are only 5 entries in the
cache (minimum value measured in the experiment), the proxy still processes
more messages than without a cache. The more cache entries, the better the
performance of the proxy increases. When the number of cache entries is less
than 150, the number of replied messages grows sharply with the increasing
of cache entries while the growth becomes negligible when the number of
cache entries is among 150 and 270. Finally, the curve reaches a steady
state when the cache owns more than 270 entries, which matches the 270
different domain names involved in the test, Furthermore, we also increase
cache entries to 500, 600 until 2000 and see that the result do not vary any
more.
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attack

7.5 Performance Optimisation

Tests with the prototype, especially in Sections 7.1 and 7.3.2 show that per-
formance of VoIP Defender degrades under certain conditions. We therefore
evaluate the cause of this bottleneck and propose two methods how to over-
come some of the limitations. One method is targeted especially at increasing
performance of the pinholing module, while the other one is targeted at in-
creasing performance in general.

7.5.1 Reducing the Number of Rule Updates in the
Pinholing Module

The low performance of the pinholing module (see Section 7.3.2) is caused
by the use of iptables as the firewall. Iptables shows limited performance
mainly due to its costly memory copy operation. As already described, VoIP
Defender sends a rule update request in real time, i.e. as soon as the pinhole
mechanism decides that a rule update (rule insert / delete) is necessary.
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However, for each new rule that is modified at the iptables firewall, the
whole current firewall rule set has to be copied from kernel-space to user-
space, where the rule set is updated. Then, the new rule set is copied back
to kernel-space where it is installed in the actual iptables firewall to become
effective. Kernel-space to user-space copy operations in Linux are a costly
operation. Hence, such a process would be acceptable for static rule entries,
however it is not feasible in our case with dynamic rule updates in real time.

We therefore propose another solution: Instead of updating rules imme-
diately after they are generated by VoIP Defender, they are accumulated at
VoIP Defender for a short time, so that a collection of rule update requests
can be transferred to the firewall in one control message. These update re-
quests are scheduled periodically, e.g. every second. As a consequence, the
iptables firewall can avoid multiple costly memory copy operations, as it can
update multiple rule set entries in just one memory copy operation.

This method however has an effect on regular users as the pinholes for
regular users are not established immediately after the user’s initial request,
but only after a scheduled rule update push occurred. However, this effect
only affects the signalling path and in effect might cause both a short and
acceptable delay at the sender side before the caller hears the waiting tone.

We therefore modify the VoIP Defender firewall controller to accumulate
individual rules and send out combined update control messages in 1 sec-
ond intervals. New tests are conducted in the same way as introduced in
Section 7.3. The performance increase with the same scenario is depicted
in Figure 7.13. As can be seen in the figure, the update process is close to
the optimum case — the best-case scenario actually matches the optimum
case. Even the worst test run is only slightly behind schedule: While 10000
messages are generated within 20 s, all rules are installed at VoIP Defender
after just about 21 s, in comparison to the nearly 200 s delay in the original
setup.

As the optimised version works reasonably well, we run another attack
with 50000 attack messages. The results are shown in Figure 7.14.

With this setup, we can see that iptables can handle up to around 18000
rules in real-time. If further rules are added, latency increases, resulting now
in a rule installation delay of 68 s in the worst case. Clearly this test shows
that iptables is not the perfect tool to be used as the firewall component, even
after applying optimisation strategies. For comparison we summarise the
rule-adding speed of the three tests in Table 7.8. This table shows iptables’
rule-adding capabilities at the beginning of each test (without any previous
rules established at iptables) and again at the end of each test. The figures
are calculated from the lowest performing test run to indicate a worst-case
scenario.
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Figure 7.13: Time to install 10000 rules at the pinholing firewall (optimised
version)

Table 7.8: Worst case rule adding capacities

initial speed final speed

real-time rule addition, 10000 rules 191 r/s 28 r/s
1 s delay addition, 10000 rules 500 r/s 433 r/s
1 s delay addition, 50000 rules 499 r/s 184 r/s

While we have shown that the mechanism works as expected, it is evident
that iptables cannot cope with the generated traffic load. To circumvent this,
one option could be to replace iptables with another firewall solution with
better performance (e.g., software iptables replacements like ipset [157] or
nf-HIPAC [158] or even a hardware-based solution). On the other hand,
other optimisation options exist that could work even with an iptables based
solution.

One option would be to create the pinhole not after the first request,
but after the first re-transmission message is encountered. In this case, the
amount of generated firewall rules would be significantly reduced; for the
target case of spoofed message attack prevention it is very likely that no
firewall rules would be generated at all. On the other hand, regular users
would encounter a minimal delay in message processing. Given an arbitrary
UA sending an INVITE to such a protected proxy, its first re-transmission
message would be generated after T'1 s. After this message, the pinhole
would be generated, so that the second re-transmission message after 2 x T'1
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Figure 7.14: Time to install 50000 rules at the pinholing firewall (optimised
version)

s could reach the proxy unhindered by the firewall. Hence, given a responsive
proxy the user would experience a delay usually shorter than 2 s, before its
request would be processed regularly. Such a delay is not uncommon for a
voice scenario, e.g. in mobile call establishments, and thus would likely not
irritate the user.

7.5.2 Generally Reducing the Number of Generated
Firewall Rules

The used iptable firewall has an impact on performance in the VoIP Defender
setup. Changing iptables against another, higher performing firewalls might
alleviate the impact. However, as there are no endless resources, every solu-
tion will eventually come to its limits. We therefore examine a more general
solution, which might not only be beneficial for our VoIP Defender setup,
but also for other IDS solutions in general.

General Problem Space

In any IDS setup, there is the threat for a self-inflicting DoS. Given a high
load of malicious traffic to the service, the IDS will continuously add new
rules to the firewall to prevent this traffic from reaching the service. As
the size of the firewall ruleset increases, the performance of the firewall will
decrease, due to two factors: Searching for matching rules becomes more
complex as the firewall ruleset grows. And, especially for SIP Application
Layer Gateways (ALG), each passing SIP message needs to be parsed before
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a decision can be made. As shown in Section 7.1, with VoIP Defender, the
throughput rate of a firewall decreases with an increasing number of rules.
Given a constant traffic flooding rate of about 170 Mbit/s, the rate drops
to 130Mbit/s after the introduction of 100 IP-layer firewall rules, and drops
further to 70 MBit/s after the insertion of SIP ALG rules. Other authors
witness similar decrease in performance of protection systems [159] [56].

Hence, security solutions are faced by the following dilemma, which holds
true especially in high-traffic scenarios: If no flooding protection is applied,
the service’s performance will degrade due to the attack; however, applying
IDS protection might also degrade service’s performance due to limited fire-
wall throughput rates.

There a several possibilities to address this conflict in high-flooding sce-
narios:

1. Define more intelligent protection algorithms for the IDS. Ideally, the
protection algorithm should generate as few firewall rules as possible
but still provide effective protection. This would increase the complex-
ity of the detection scheme and hence introduce a new performance
penalty. Additionally, algorithm optimisations have to be developed
separately for each new threat.

2. Design and implement a high-performance firewall. Different designs
for firewalls exist [160] to increase firewall performance. However,
adding additional features like SIP ALG processing, reduces perfor-
mance again.

3. Limit the number of rules at the firewall, independent of the used IDS
detection algorithm. This is the scope of this work in the context of
flooding attacks. By applying a maximum size limit of the ruleset, a
certain operating level of the firewall is guaranteed.

Each of the solutions have certain advantages and drawbacks. Most im-
portantly, there is likely no ultimate solution that allows optimum security
together with maximum performance. Hence, a solution to this problem is
likely a trade-off between these two factors.

We have already proposed a possibility of an intelligent protection al-
gorithm in the previous Section 7.5.1. Now, we evaluate the possibility of
limiting the number of rules at the firewall.

Researchers have already proposed mechanism to reduce the overall rule-
set size. Gupta [161] introduces forward or backward redundant rules that
can be eliminated from the ruleset. A backward redundant rules is defined
as an existing rule r appearing earlier than r’, which is a subset of . On
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the other hand, if there exists a rule r appearing after r’, which is a subset
of r, it is forward redundant. Liu [162] proposes further methods to elimi-
nate backward and forward redundant rules. Similar to our work, Yoon et
al. [163] propose an aggressive reduction algorithm to find a group of rules
and replace it with a smaller new group. However, their work does not to
allow the space of the generated ruleset to differ from the original one, hence
it is not guaranteed that the generated ruleset will be significantly smaller.
All of these propositions work only at the network level and would also need
further enhancements to work in SIP ALGs.

Firewall Ruleset Optimiser

Firewall
Optimiser

SIP Service

°
IDS with Firewall —I

Figure 7.15: An optimiser re-constructs the firewall ruleset generated by an
IDS to enhance throughput of the IDS

Algorithm Overview To reduce the size of the ruleset at the SIP firewall
we define 0,4, as an upper maximum bound for the number of rules the
SIP firewall will accept. Its value depends on the performance of the used
firewall and on the traffic scenario of the VoIP network. A higher performance
firewall can tolerate a higher value for ,,,,. The value can, e.g. determined
by stress tests of the firewall. The value should be set in such a way that
whenever |Ruleset| < 0,4, (Where |Ruleset| indicates the size of the firewall’s
rules), the firewall will yield acceptable performance for the defined setup and
scenario.

We introduce a ruleset optimiser which constantly translates the input
ruleset R;, generated by an IDS, to the output ruleset R,, which strictly
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satisfies the requirement |Ruleset| < opaz. R, will then be applied at the
firewall (see Figure 7.15).

By limiting the maximum ruleset size, the firewall’s effectiveness will
likely degrade by a certain degree e.g., rules might not be deployed at the
firewall because the maximum size has been reached. We accept this lesser
accuracy for flooding scenarios as an unwanted, but necessary side condi-
tion, as this at least provides partial service protection, in comparison to no
protection at all. Also, for DoS attacks, it is acceptable to let some DoS
packets pass through, as they will only increase the load at the proxy, but
not degrade its performance, if most other packets will be blocked.

The basic idea of our algorithm depends on the three steps ruleset merg-
ing, rule dropping, and accuracy calculation for optimisation, as seen in Fig-
ure 7.16.

Start Merge redundant rules
into one new rule

v

Drop less import rules
from the ruleset

|

v

Calculate accuracy of
new rulest

continue until optimum
accuracy found

|

Figure 7.16: Overview of the ruleset optimiser

Firstly, we assume that most rules generated by the IDS will be single-
mapped. For example, considering IP addresses, there will be IPv4 address
field ruleset conditions for entries ”781.1.0.17, 794.7.56.1”, and ”81.1.0.79”.
Looking at SIP vendor names there might be SIP user-agent header field
conditions like ”Cisco ATA 186 v2.16.1 atal8x”, " Twinkle/1.1”, and ” Cisco
ATA 186 v2.16.2 atal8x”. We merge several single-mapped rules into one
multi-mapped rule using a redundancy metric.

Secondly, if after this step |R,| > 0maz, additional rules will be dropped
until |R,| < 0pmae. We define a metric to select more relevant rules for
merging and less relevant ones for dropping.

Using both ruleset merging and dropping, the accuracy of the ruleset
changes during the transition. For example, by combining multiple single-
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mapped rules into one multi-mapped rule, additional targets might be in-
cluded in the matching ruleset. Contrary, by dropping rules from the ruleset,
targets are excluded from the matching ruleset. Hence, we finally apply a
metric to calculate a minimum change in accuracy from R; to R,.

To meet both performance and security requirements, the optimiser has
to ensure, that

1. |R,| < Oymas during operation, and

2. the accuracy change through the generation of R, from R; is minimal.
Algorithm Details

Redundancy Metric Within the merging step, multiple single-mapped
rules will be merged into one multi-mapped rule. The actual process depends
on the scope of the firewall rule, and has to be defined for each examined
field individually. We demonstrate this here with two examples, which can
easily be extended for other fields of interest.

IPv4 Address Field The most common use in firewalls is the matching
of IP address fields. We apply merging at the subnet level i.e., several single-
mapped address rules are mapped into one multi-mapped rule covering one
whole subnet. Ideally, if there are 254 single-mapped address rules covering
e.g., the address range from 84.1.0.1 to 84.1.0.254 in R;, we can replace these
254 rules with one multi-mapped rule 84.1.0.* in R,.

Admittedly, this example covers an ideal situation: there are exactly 254
[Pv4 addresses in the same subnet in R;, so one can simply use the subnet
address in R, instead of 254 individual IPv4 addresses. However, merging
with less than those 254 rules would change the accuracy of the resulting
R,. We introduce the variable xy to determine the threshold after which
single-mapped rules are replaced by a multi-mapped one. Rules in R; can
be merged into a multi-mapped rule only if the number of mergeable rules
is greater than y. For example, if there are three address rules 784.1.0.17,
784.1.0.20” and 784.1.0.113” from the same subnet, and given that y = 3,
they will be merged into ”84.1.0.%”. However, if Y = 4, they will not be
merged. The value of x will be computed in the optimisation step.

SIP User Agent Header Field Many SIP header-fields are free-from
text fields, e.g. the user agent string that denotes the generator of the SIP
message. Its usage in SIP firewall would be highly beneficial to filter ill-
configured user agents. Entries vary considerably due to the diversity of
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vendors and versions. We have observed a common pattern how the string is
generated, consisting of three parts, UA name, sub-name and version usually
in left to right order, commonly separated by whitespace. Based on this
observation, single-mapped UA string rules can be merged into one multi-
mapped one.

As an example, we can separate a UA string into two parts by the last
non-alphabet, non-numeric character. We call the left part name part and
the right part version part. Firstly, we subgroup the rules which share the
same name part. For example, ”Zultys ZIP 2 3.43” and ”Zultys ZIP 2 3.47”
can be subgrouped because they share the same name part ”Zultys ZIP 2
3.7, however "sipsak 0.8.11”7 and ”sipura/SPA” can not be subgrouped as
their name parts are different. Again, y indicates how many different UA
strings can be merged into a new one. Only if more than y rules can be
found sharing the same name part, a new merged rule is created for it.

Significance Metric We define a significance value [}, as the number of
times a rule is matched within the IDS. For instance, given a rule that allows
incoming traffic from IP address 710.8.0.1” which is matched at the IDS by
incoming traffic 10 times since the last optimisation, we set F,, = 10. Using
a Most Frequently Used (MFU) policy, we are able to order the rules in R; by
significance. This ensures that at least the offenders which the most overhead
traffic will be denied access to the network.

Accuracy Changes We introduce the term space to indicate how many
entities are mapped to possible targets. For example, the space of a single-
mapped [Pv4 rule is always 1, while it is higher for multi-mapped rules (i.e.,
it is 254 for the above defined subnet rules). For UA strings we look at the
size of the UA string. We can then define S, .5t as the space of all rules in
a ruleset combined. Ideally, Sg, should be close to Sg, as this would indicate
an accurate conversion.

Now we can calculate false positives and false negatives within the two
rule sets. We define F), as the increase of space through rule merging in R,:

F,=> i,Vi € Sk, i ¢ Sk, (7.1)

Similarly, we can define F;, as the number of false negatives:

F, =) i,Vi€ Sg,i¢ Sk, (7.2)

Both merging and dropping will decrease accuracy in the target ruleset
R,, either by the introduction of false-positives (caused by merging) or false-
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negatives (caused by dropping). Hence, with the conversion from R; to R,,
the target space will change, causing R, to become less reliable.

Table 7.9: Introduced variables

R; original ruleset consisting of a list of single-mapped
rules
R, output ruleset after optimising, consisting of a list of

single- and multi-mapped rules
Omaz Size constraint of R,

F, false positive index introduced by optimisation
E, false negative index introduced by optimisation
X a threshold number to indicate the minimum number of

single-mapped rules needed before they can be merged
into one multi-mapped rule

n a weighting factor to indicate the importance of F,
compared to F,

For example, given R; with 600 rules and setting ¢, to 20 and con-
sidering only single-mapped rules, only 20 rules with the highest F,, can
be considered for R, and information contained in the 580 lower significant
remaining rules would be lost, so Sk, = 600 and S, = 20, and the false
negative index F,, = Sg, — Sg, = 580.

The change in accuracy can be denoted by a (preliminary) inaccuracy
indez, as the sum of F, and F),. The higher this index gets, the more infor-
mation is lost during the conversion from Sg, to Sk, .

However, I, and F),, will generally not be considered equally in all sit-
uations. For example, if in a DoS scenario it would be acceptable to let a
certain degree of malicious traffic pass, but regular users should rather not be
affected, F}, should be rather low, while higher values for F), are acceptable
for a firewall in blacklisting mode. Other scenarios might require a different
setup. To reflect this, we introduce a weighting factor n and define

p=Fp,+nk, (7.3)

where p is the final inaccuracy index, which should be as low as possible.

All defined variables are listed in Table 7.9.

Formal Specification The formal specification of the algorithm is
listed as Algorithm 1. Given the input values R;, 0,4, and x the algorithm
calculates the optimised ruleset R, using a temporary ruleset R,,,. R; will be
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Input: R;,0maz, X
Output: R,
R, = ¢7
Rtmp = ¢7
SubGroup(Ri): RZ = Ril U Ri2 U Rw U...u Rin;
foreach j(j € {1,...,n}) do
if ‘lel > X then
Tmulti = Merge(Rij);
Rtmp = Rtmp U Tmalti;
end
else
‘ Rtmp = Rtmp U R’L]7
end

© 00 O ks W

-
o

=
=

end
SortByFrqAcend(Rimp);
while |R,| < 042 do

‘ R,=R,U Pop(Rtmp);
end

e e s
D TR W N

Algorithm 1: Converting R; to R,

separated into subsets with each subset containing its own mergeable rules.
Then, the size of each subset is calculated, and if the size is greater or equal
than y, all rules will be merged into a multi-mapped rule, which in turn is
inserted into Ry,,. Otherwise, the rules in the subnet will not be merged,
and will be inserted into Ry, independently. F,, of a multi-mapped rule is
calculated as the sum of each single-mapped rule’s F},. Finally, rules in the
Ry are sorted according to their £, and the top o,q, rules with highest F,
are selected to generate R,. The methods ”SubGroup” and ”Merge” depend
on the rule type (e.g. IPv4 address rule, UA header string).

We call the procedure in code lines 3 to 12 "merging” and the procedure
in code lines 13 to 15 "dropping”.

Finally, we formalise the optimisation model as follows.

min : p = F,+nkF, (7.4)
st.: R, = f(Rza Omazx X) (75)
|Ro| < Opmaa (7.6)

Here, (7.4) is the minimisation objective function to achieve, indicating
the goal to find an optimal result with the inaccuracy index p minimised.
(7.5) and (7.6) are constraint functions, with (7.5) showing how to reach the
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Ruleset R Ruleset R Ruleset R Ruleset R Ruleset R
R | F, R | F, R | F, R | F, R | F,
ar |12 ar |12 L a |26 a |26 a |26
b1 |23 az |3 b1 |23 b1 |23 b1 |23
ci |7 as |10 b2 | 3 ci |7
az | 3 as | 1 ci |7 b | 3 Omax =2
as |10 b: |23 x=3
bz | 3 b2 | 3
as | 1 ci |7
Ormax =2,
x=3

R,-.lgf:::x » SubGroup »  Merge »  Sort »  Drop Ou;zut

Figure 7.17: Example process of the optimisation algorithm - here, the four
similar rules a; — a4 are merged into one new rule and rules with lesser
frequency are dropped.

output ruleset R, using algorithm 1 as f, and constraint (7.6) indicating that
the size of output R, must be less than o,,4;.

Example Run The general optimisation process using a concrete ex-
ample can be seen in Figure 7.17. Here, different rules (a,, b,, ¢,) with their
frequency are shown. First, similar rules are subgrouped, so that, e.g. all
a, rules are put together. Then, similar rules a; — a4 are merged into one
new rule, as there are 4 individual a-rules here, passing the threshold value
x = 3. However, the b-rules are not merged, as there are only two of them.
The four new rules are sorted by their frequency, and finally the two rules
with the lowest frequency are dropped to satisfy 0,4, = 2.

Application

Testing with Real-Life Traffic For testing and verification, we apply
the ruleset optimiser to test-traffic from different real-life SIP VoIP providers.
Traffic is recorded for several hours, resulting altogether in about four GByte
of tracefile data. As a simple test, we generate for each traffic sample an input
ruleset R; that matches every single packet.

We generate 6 different samples from that traffic to be used as R;: ruleset
A - C containing each 450, 600, and 1034 IPv4 address rules, respectively.
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Furthermore, rule sets D - F with 51, 86, 107 SIP UA rules. We use a
prototype optimiser written in Perl to input these 6 samples as R;. The
program optimises the ruleset and generates R,, including the calculation of
F, and F,,. The optimiser runs on a 1 Ghz Linux machine with 512 MByte
RAM.

For the tests, we arbitrarily set o,,.. = 20 and n = 20. The result is
shown in Figure 7.18. The inaccuracy index p is calculated for each values
for x ranging from 1 to 254. Here, we can clearly see the optimum value for
x as a local minimum. For example, for ruleset A, the optimum value for x
is around 38. Setting the wrong value for y, either by setting it to low or
to high causes the accuracy to degrade. Moreover, the optimum value for y
changes for different rule sets.

E | | Ruleset A
Sl FAR RulesetB ------- .
Ruleset C =-------

22000

20000 fhi — . e — g

T FITTITED

18000 [ S— S R — S .

L S S -

Inaccuracy index

14000 v

12000 f

10000

8000

Threshold X

Figure 7.18: The inaccuracy index of outcome ruleset varies according to
threshold x for ruleset A and B, when 1 = 20, 0,4, = 20

To calculate the false positive F, for the SIP UA rules, we arbitrarily as-
sume that each multi-mapped rule contains 50 entries at most. For instance,
if a group of 5 single-mapped UA rules are merged into one multi-mapped
rule, the false positive is 50 - 5 = 45. In this way, we can calculate F}, for
the given R,. Figure 7.19 shows our test result with ruleset D, E and F. The
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result is similar to the previous one.

2000 T T T T T T T T T
: : : : 1 s s Ruleset D
RulesetE -------
RulesetF --------
1800 |- .
1600 |-zt : ' » .
)
g 1400 |- .
£ H
> [ Gt S LR LR PR PP R Rt
8 : ;!
3 ! !
8 1200 oy : -
2 [ /
1000 |- , , : ' .
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Threshold X

Figure 7.19: The inaccuracy index of outcome ruleset varies according to
threshold x for ruleset C, when n = 20, 0,4, = 20

Optimisation

To find the optimum value for x, we loop over each value of y to find out
the local minimum. This is a very time-consuming process and finding the
right value for x is an NP-hard problem [164]. We therefore apply a high
efficient heuristic algorithm to calculate the best value for x in reasonable
time. Here, we employ Golden Section Search (GSS) [165] to solve this
problem. GSS is a simple and efficient 1-dimensional optimisation method
which does not require derivatives. It can deal with our unimodal objective
by rapidly narrowing our search interval and still finding the optimum result.

We run several calculations of the optimisation process both with the full
loop search and with GSS optimisation applied. Visible in Table 7.10, we can
see that GSS can improve calculation time by around 90% with our script
prototype. While reducing calculation time, the accuracy of the resulting u
is not influenced by the application of GSS.
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Table 7.10: Calculation time comparison of the algorithms, T2 with GSS
applied

Ruleset T1 (s) T2 (s) Solution with GSS

51.51  3.31  Xoptimat = 38
95.69 629  Xoptimai = 46
229.04 17.71  Xoptimar = 97
023  0.04  Xoptimal = 3
0.49 0.13  Xoptima = 5
0.76 018  Xoptimal = 3

HEHOQW >

Integration into VoIP Defender

The firewall ruleset optimiser is not yet integrated into VoIP Defender. How-
ever, the implementation and integration into VoIP Defender should not be
difficult to achieve, and would be a further step in validating the correctness
of the algorithm. The reason is is not yet integrated is solely the lack of
resources.
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Chapter 8

Comparison with Other
Approaches

DoS protection for SIP-based networks is a wide research field. More than 20
different research works have already been published to address the threats
introduced in Chapter 3. In this chapter we survey different DoS protec-
tion approaches from other researchers that have been published in scientific
literature and compare them to our own protection solution as specified in
Chapter 5'. We define different criteria on which we base the comparison,
and summarise how well the research community has addressed the DoS
threat.

8.1 Evaluation Criteria for DoS Defence Sys-
tems

Multiple countermeasure schemes have been proposed to target SIP related
DoS attacks. They are necessary as general [P-based DoS protection systems
do not address dedicated SIP DoS attacks. For example, SIP messages can
use different transport protocols to deliver messages to the destination (like
UDP, TCP or even SCTP). General IP-based DoS flooding protection mech-
anisms would not be able to detect an attack flow using different transport
protocols, as they cannot take the actual message payload into account. SIP
message flow tampering detection systems are also only possible if they have
SIP knowledge. SIP DoS countermeasure systems can thus be seen as an
additional layer of security to be deployed in conjunction with general 1P
DoS protection mechanisms.

'Results of this chapter have been published in [4].

169



170 CHAPTER 8. COMPARISON WITH OTHER APPROACHES

For comparative purposes we will evaluate these methods using different
criteria as they target different attacks, use different countermeasure algo-
rithms or have performance differences. We define two main criteria groups:
algorithm-related and framework-related criteria. The former is related to the
theoretical idea of the countermeasure solution. It covers the mathematical
principle the method is based on. The latter covers the actual implementation
of the theoretical algorithm including setup, architecture and performance.

8.1.1 Algorithm-related Evaluation Criteria

Algorithm Principle This is the core of the defence method, the basic
mathematical principle of how the author would handle the envisaged
attacks. This could be a statistical model, a data mining approach,
etc. As SIP is based on a complex state machine specification, many
authors use this specification as a basis for their defence solution.

Attack Classes We indicate what kind of attack class is addressed. Here we
consider the three main attack groups identified in Chapter 3, especially
visible in Figure 3.1: payload tampering, flow tampering, and flooding.
Especially for flooding attacks, we evaluate if the method considers
single-source flooding or multiple-source flooding. If other, non DoS-
related attack types are addressed (e.g. SPIT detection), they will be
mentioned. However, these attacks are not the focus of this comparison.

Victim While most proposals are concerned with the protection of the main
servers (which would be the SIP proxy or the P-CSCF in IMS net-
works), some are targeted at SIP client (UA) protection.

Protocol Our focus in this work lies on specific STP-based attacks. However,
RTP also plays an important role in SIP-based networks. We mention if
the discussed method also considers RTP-relevant attacks. This would
be mostly the case for RTP flooding attacks.

Reaction This defines what reaction is achieved by the defence method.
All algorithms are targeted for attack detection, however not all algo-
rithms can later classify the attack traffic, which is needed for attack
prevention. Other ones might not be able to prevent the attack, but
could propose a method for attack mitigation, i.e. a method to sustain
the attack.

Detection Strategy To detect an attack, the algorithm has to have some
knowledge of the attack. Basically, there are two possible principles.
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Either the attack is described (e.g. using signatures), which is called
pattern-based detection or by defining some type of "normal” network
traffic. Attacks are then detected by deviation from this norm, which
is called anomaly-based detection.

8.1.2 Framework-related Evaluation Criteria

Setup The security mechanism has to be employed in a security framework
as introduced in Section 2.4. The common case would be a Network-
based IDS (NIDS). A host-based IDS (HIDS) is deployed directly by the
same host as the target SIP proxy, and evaluates information from this
host, e.g. application log files. Another option would be to implement
the defence solution as an extension module of the target proxy.

Implementation Details about the actual implementation, if any. This
includes the programming language used and the framework used.

Placement The placement of the framework within the network has an
effect on what information the framework will have for evaluation, es-
pecially in NIDS-setups. A common placement would be at the ingress
point of the network, so that all incoming passing traffic can be seen.
Some setups are based on distributed systems, with multiple different
monitoring points.

Reactive Measure This means the reactive measure against a classified
attack, if a method provides one. This could be firewall control to
block certain requests, for example.

Performance Test Results If an implementation exists we will present
performance results as described by the authors. Noteworthy features
include detection latency, i.e. the time after attack launch needed be-
fore it can be accurately detected; processing latency i.e. the delay nor-
mal users encounter because this method is deployed in the network and
processing capabilities i.e. how many messages the framework can pro-
cess in one second. Note that these results cannot directly be compared
between different implementations — there are too many variations be-
tween test setups, test configurations and testing hardware.

Scalability Especially for high-message flooding attacks it is important that
the framework can scale for higher bandwidths. Here we will provide
information if the authors have considered this, e.g. by limiting the
memory requirements for their solution or introducing the possibility
of using multiple detection machines.
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8.2 Survey of SIP DoS Countermeasure So-
lutions

Here we present the actual countermeasure solutions that have been pro-
posed by various researchers. The countermeasures are presented in order
of publication. Each proposal is summarised according to the aspects of the
evaluation criteria introduced in the previous section and separated into an
algorithm-section and a framework-section.

We base this summary on available facts from the publication and do
not judge any of the proposed ideas here. This is especially important with
regard to measurements because of different testing conditions. Thus neither
of the given performance measurements can be used directly for performance
comparisons between different ideas.

A comparison and discussion of the presented ideas will follow in a later
section.

With the exception of Inacu03, the survey covers proposals that have
been described in scientific publications. There are already several commer-
cial SIP security solutions (e.g. from Borderware [62] or AcmePacket [63])
targeting the same threats. However, information on and specifications of
these systems are restricted, and thus cannot be evaluated here.

8.2.1 Iancu03
Algorithm

Tancu [60] developed a DoS flooding mitigation mechanism dubbed ”Pike”
that rate-limits incoming traffic on a per-host basis.

This method is listed as an example for the various rate-limiting software
mechanisms available as add ons for SIP servers or in commercial security
solutions. The algorithm counts all incoming requests per IP address in a
defined time frame. Whenever a fixed upper limit is reached, further messages
from the offending IP address are not processed for a limited time.

Framework

Pike is distributed with SER. It runs as an extension module within the
proxy and operates only on that proxy. This is a common DoS mitigation
algorithm that is also deployed in similar forms in other security frameworks,
including in commercial setups like [62].
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8.2.2 Reynolds03

Algorithm

Reynolds and Ghosal [57] propose a DoS flooding counter-measure mech-

anism by detecting open SIP sessions using the cumulative sum method
(CUSUM) [166].

Attack detection is based on the observation that the ratio of connection
setup messages (INVITE) and positive replies (200 OK) should be roughly
equal at any given time. Hence, when this ratio suddenly changes, this is
likely to be an indication of a DoS flooding attack, as such an attack would
yield a lot of open connections that are not closed immediately. This prin-
ciple was first proposed to detect general TCP SYN flooding attacks [167].
To determine the actual moment when the flooding begins (and stops), the
non-parametric cumulative sum is applied. CUSUM is a sequential analysis
technique which is used for monitoring change detection. This method is an
anomaly-based mechanism, where threshold values have to be set to raise
correct alarms.

This method is targeted to protect the end-user terminals (UAs) only; the
authors do not consider the main SIP proxy to be the target of an attack.
Under this assumption their method can also be used for attack prevention.
In case of a detected attack against a UA, traffic to the identified UA can be
throttled down or temporarily disabled by the SIP proxy.

Framework

The authors suggest implementing their mechanism within a NIDS (dubbed
7 Application Layer Attack Sensor”) placed in front of the SIP proxy of the
network to be protected. For attack mitigation, the sensor has a connection
to the SIP proxy, to instruct it when it should throttle down or temporarily
block requests. The framework has not been implemented, however its oper-
ation has been simulated with the author’s "emulation toolkit” which is not
further specified.

The authors simulate different flooding attacks to multiple UAs in the SIP
network. As only UAs are considered to be victims, the attack rate was set
rather low, ranging from 1-200 msg/min within the simulation. All attacks
could be detected with the simulation, however due to the low attack rates
it took up to 8 min to detect the attack with less than one attack message
per minute.
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8.2.3 Wul4

Algorithm

Wu et al. [53] present a stateful data mining IDS dubbed "SCIDIVE” to
detect SIP message flow tampering and DoS flooding attacks by correlating
SIP and RTP network traffic events.

Both SIP and RTP traffic is monitored and individual events are gener-
ated from the monitored packets. Events are predefined characteristics that
can be extracted from received messages e.g. a session tear down event (when
a BYE message is intercepted), or an RTP jitter event (when two out of order
packets are observed). Detection signatures can be applied for these events.
For message flow tampering this would be, for example, a tear down event
preceding the corresponding RTP stream stop event. Generally, it would be
the other way around. For flooding detection this would be to detect a large
number of unchallenged 401 reply events from the proxy. Thus, this is a
stateful approach: to determine if an attack is under way, the previous state
if the system is considered alongside the currently encountered messages.

While the authors provide some hints for proxy protection, their focus
lies on UA attack detection. This mechanism does not provide mitigation
features.

Framework

For cross-protocol correlation to work properly, SCIDIVE has to be deployed
at a place where it can monitor both SIP and RTP traffic. As RTP is
generally routed end-to-end, the IDS cannot be deployed in the SIP provider
network, except if the provider forces RTP traffic to pass its network (e.g. by
enforcing the usage of an RTP proxy). However, the authors do not assume
this scenario. Instead, they propose to place the IDS directly at all relevant
UAs. It is unclear if it is their intent to place the IDS in front of users that
are likely to be the target of an attack or in front of malicious users. In the
test setup the IDS is placed in front of all users i.e. also in front of malicious
users. They hint at the possibility of extending the framework that would
allow multiple IDS instances to communicate with each other.

The framework has been implemented as a non-specified prototype NIDS.
The need for efficient state handling is mentioned for scalability reasons but
not evaluated any further. A theoretical performance projection is given.
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8.2.4 Geneiatakis05

Algorithm

Geneiatakis et al. [168, 29] present a signature-based solution to protect SIP
network elements from message payload tampering attacks.

They suggest the employment of signature patterns (based on the SIP
grammar) to distinguish well formed messages from malformed ones, simi-
lar to computer virus signature descriptions. Specifically, any SIP message
which does not correctly conform to the SIP grammar is identified as mal-
formed. Two types of signatures are defined. The first type describes a
general signature structure, to be applied to any SIP message, whereas the
second type defines signatures that are applied only to specific SIP messages.
The signatures are created using Perl Regular Expressions [169]. Any mes-
sage classified as malformed is dropped and thus will not be processed by the
target entity.

Framework

The authors have outlined an implementation either in any SIP network
element as a pre-filtering mechanism before incoming messages are passed to
the actual SIP parser or the solution can be incorporated into a General NIDS
setup. For testing purposes the authors have implemented their solution
in the core of the SER SIP proxy. They performed measurements for the
introduced processing overhead in various testing scenarios and the false
alarm ratios. The results show that the delay introduced on the server side
is about 120 ps, while no false alarms have been raised.

8.2.5 Markl05
Algorithm

Markl et al. [155] propose a signature-based message integrity checker and
DoS flooding preventing mechanisms based on the Snort IDS [115].

Passing SIP messages are checked for known malicious content, e.g. SQL
code injection.[130]. Similarly to Iancu03, single-source message flooding is
detected by a threshold message counter, and further messages below this
threshold are dropped. Additionally, signatures for general IP-based attacks
not related to SIP are applied.
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Framework

This method is supposed to be a lightweight complimentary prevention sys-
tem to be deployed together with the previous prevention system (Geneia-
takis05) [14]. The attack signatures are fed into the Snort IDS. Snort works
as a network bridge and captures all passing traffic and is thus best placed
at the network ingress point. It controls the network firewall through the use
of the SnortSam [170] firewall controller, different firewalls can be used to
block offending senders. Prelude [116] is used to gather intrusion alerts from
multiple sources and present alerts to the operator. Tests have been con-
ducted with flooding rates of 3000 msg/s. As no modification to Snort has
been done, performance and scalability are dependent on Snort’s abilities.

8.2.6 Chen06
Algorithm

Chen [171] proposes a SIP state machine specification to detect multiple
source message flooding attacks.

The author models the four defined transaction state machines specified in
the SIP RFC (INVITE and non-INVITE transaction state machine, both for
the client and server part). For each transaction, the according state machine
is updated, whenever a new SIP message is encountered. This idea was first
introduced for TCP/IP intrusion detection [172]. For flooding detection Chen
adds an error state to each state machine and defines how this error-state
can be reached. An attack is indicated if the number of error states in one
sampling interval surpasses a threshold. The threshold for attack detection
is network dependent. This method is for detection only.

Framework

This is a theoretical concept. The author proposes to place his mechanism
in an external IDS at the network ingress point.

8.2.7 Niccolini06

Niccolini et al. [137] present a multi-layered IDS to counter different types
of attacks.
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Algorithm 1

The first countermeasure mechanism is a SIP message integrity checker to
prevent SIP message payload tampering, similar to Geneiatakis05.

The mechanism checks that all incoming SIP messages are well-formatted
by ensuring that all header-field sizes are correct, for example. Non-conforming
messages can be discarded.

Algorithm 2

The second countermeasure mechanism is a basic SIP dialog state machine
to detect out-of band message flow tampering and DoS message flooding.

A basic SIP Dialog state machine guarantees that messages within one
dialog have the correct order, e.g. that a BYE message follows after the
appropriate INVITE message. Out-of-order messages can be discarded. A
rate-limiting counter is applied to throttle the number of transactions one
user can initiate during one sampling interval.

Framework

The countermeasure modules have been implemented as C extension modules
to the Snort IDS [115], which is supposed to be placed at the network ingress
point. The authors see the implementation as a prototype and suggest the
deployment of these countermeasure mechanisms in higher performing sys-
tems for real life setups. The prototype can process up to 860 malformed
requests/s and introduces minimal delay. However, it crashes at higher flood-
ing speeds in the test bed.

8.2.8 Sengar06-1
Algorithm

Sengar et al. [173, 59] propose a statistical flooding detection method dubbed
"vFDS” based on Hellinger Distance calculation [174].

This work extends the detection principle of Reynolds03 by not only
correlating the amount of INVITE and 200 OK messages in one sampling
interval, but also extending this to ACK and BYE/CANCEL messages. The
distribution of these four message types in normal traffic is compared to a
distribution under attack conditions. For the comparison and computation
of similarity, the Hellinger distance is calculated. It is an intrinsic way to
estimate the distance between probability measures, and closely related to
total variation distance. The attack threshold, i.e. which calculated Hellinger
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distance value indicates an attack, is dynamically adapted based on previous
monitored network parameters.

The authors also apply this method for general TCP SYN and RTP mes-
sage flooding detection. This work does not provide mitigation features.

Framework

For attack detection, vFDS should be placed at the ingress network point.
The authors have implemented vFDS as an add on to the Linux netfilter
kernel, which is used for testing. The implementation works well to detect
flooding rates of 500 INVITE messages/s or 2500 RTP messages/s. Generally,
vEDS can detect attacks within several seconds; during tests with a sampling
interval of 10 s, the average flooding detection time was 18 s. The addition
of vFDS in the Linux router adds only a marginal delay to call setup.

8.2.9 Sengar(06-2
Algorithm

Sengar et al. [54] propose an IDS dubbed ”vIDS” based on interacting pro-
tocol state machines to detect message flow tampering and DoS flooding
attacks.

It is based on the same cross-protocol detection approach as Wu04 and
therefore targets the same attacks. While Wu04 monitors pre-defined events
for correlation, vIDS is using a full state machine specification similar to
Chen06. Compared to pre-defined events a state-machine specification al-
lows more flexibility in attack detection, however the actual attack detection
methods presented by the authors are the same: INVITE message flooding is
detected by checking if the number of INVITES exceeds a defined threshold.
The BYE message flow tampering attack is detected by synchronising the
SIP and RTP state machines. The SIP state machine informs the RTP state
machine when its call tear down state is reached. The RTP state machine
continues then to the RTP close state. Hence, later arriving RTP packets
are an indication of the attack.

To detect these attacks, attack signatures need to be defined that describe
the state flow in the state machines. Theoretical, anomaly-based detection
is possible if deviation in the state-flow is indicated by the state machines.
Also like Wu04, they target only attack detection on UAs and not on the
SIP proxy. The authors have not considered attack mitigation.

To avoid the problem that UA end-to-end RTP streams might not be
visible, they propose vIDS use only for enterprise networks i.e. it is assumed
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that all SIP UAs to be protected are in the same network as the main SIP
Proxy.

Framework

VIDS is placed at the ingress point of the network to protect where it moni-
tors all passing traffic and evaluates it within its state machines. The authors
claim an implementation of vIDS which is not further specified. VIDS has
been simulated in a VoIP network using the OPNET network simulator [175].
Simulation with 20 different communicating UAs with an unspecified amount
of messages shows only marginal traffic latency overheads of about 100 ms.
Also, CPU processing overheads for running vIDS are marginal for the sim-
ulation scenario. Thus, the authors extrapolate that vIDS might be able to
monitor ”thousands of calls at the same time”. For performance optimisa-

tion, vIDS conserves memory by deleting state information as soon as a call
is finished.

8.2.10 Nassar06
Algorithm

Nassar et al. [176] present an IDS concept based on a Bayes inference model
[177] for detecting multiple types of attacks.

The IDS considers SIP signalling attack classes, including multiple-source
DoS flooding, SPIT, password cracking and vulnerability scans. Bayesian in-
ference, as used in this work, is a statistical inference in which posterior
observations are used to update the probability that a prior hypothesis may
be true. Here the authors have developed a Bayes network tree where mon-
itored network events relate to posterior observations. The prior hypothesis
states that the traffic belongs to one of the introduced attack classes.

The authors define multiple monitoring parameters, like the number of
ACK messages in waiting state, request and response distribution in one
sampling interval, etc. Each defined parameter is given a probabilistic value
for each attack class, e.g. for the DoS attack class they set P(number of ACK
messages in Waiting state > 10) = 0.9.

Using the Bayes network tree, the actual monitored traffic is evaluated
according to these parameters and the attack class is estimated. The defined
probabilities are given as reasonable defaults, however the authors propose
to define them from previous SIP traffic observations.
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Framework

This is a theoretical concept only.

8.2.11 RebahiO7
Algorithm

Rebahi et al. [58, 178] present a method to detect DDoS flooding attacks on
VoIP and IMS Systems based on Change-Point Detection with the CUSUM
algorithm.

Similar to Reynolds03 the authors use the CUSUM algorithm for DoS
flooding detection. While Reynolds correlates the number of INVITE and
200 OK messages, here only the number of INVITE messages are used and
analysed whenever a sudden rise of INVITE messages are encountered at
the proxy (i.e. the determination of the change-point, where the INVITE
rate suddenly increases). Contrary to threshold-based counters, this method
takes the current network condition into account. The authors correlate the
parametric with the non-parametric application of the algorithm.

Framework

The authors have verified their method with an offline-analysis of SIP traffic
captured from a SIP VoIP provider. They show that constant-rate flooding
attacks are clearly marked as attacks and that, depending on the configu-
ration, attacks with an increasing flooding rate are mostly discernible from
regular traffic.

8.2.12 Ding07
Algorithm

Ding et al. [179] present a timed Hierarchical Coloured Petri Net IDS that
is built from the work of Wu04 and Sengar(06-2.

The authors incorporate both works into their IDS without any modifica-
tions. Besides the referenced work the authors only present two ”methods”
to handle CANCEL message flow tampering attacks. The first proposal is
that the callee should simply callback the caller, while in the second one
INVITEs should be re-sent after a timeout.?

2This "method” however, is based on limited assumptions. The authors assume that
after an injected CANCEL by a third party the original sender would not not be notified.
However, as the injected CANCEL has to share the same VIA header as the original
request, the 200 OK acknowledgement will be sent back to the original sender and not to
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Framework

The authors propose a NIDS-based setup at the ingress point. It is unclear
if in case of the mentioned CANCEL attack the NIDS is supposed to inject
packets on behalf of the attacked UA or the UA should re-send packets itself.
The authors claim to have conducted simulations, however the setup is not
described.

8.2.13 Nassar07
Algorithm

Nassar et al. [138] present a holistic multilayer IDS system to detect multiple
different attacks based on a honeypot setup and network event correlation.

A honeypot SIP setup is deployed to lure malicious users with the inten-
tion of conducting SPIT or phishing attempts to use this setup. Once in the
honeypot, senders are classified and cannot access the real SIP network later
on.

An event correlator is used for DoS message flooding, and message flow
tampering detection. The event correlator is the same pattern-based setup
as proposed by Wu04. Likewise, attacks are detected with similar signatures.
Additionally, the authors propose anomaly-based detection by generating in-
dividual SIP user profiles and detecting deviation from this profile. Flooding
attacks are detected by monitoring for short inter-arrival times of requests,
or by detecting open sessions by monitoring for missing ACK messages.

This method does not provide prevention features, however the authors
recommend blocking identified users in the honeypot or flooding requests
detected by the event correlator.

Framework

This approach proposes a distributed protection approach by deploying a
fully operational but fake honeypot SIP in conjunction with the real SIP
network protected by the event correlator. The authors propose a distributed
IDS i.e. security events should be monitored at multiple places of interest like
proxies, gateways or UAs. Instead of monitoring network traffic, events are
generated directly by each call agent (e.g. by parsing log messages). Events
are correlated at one central controlling instance.

the injecting party. Besides, the original sender will also receive a 487 Request Terminated
response code in regard to its initial INVITE request. So, the "method” would only be
applicable if nodes that are not fully RFC3261-compliant are involved. These possibilities
have not been analysed by the authors.
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The authors have implemented a prototype using the Simple Event Cor-
relator SEC [180] as a correlator control instance. Attack patterns are fed as
SEC signatures written in Perl. One event monitor has been developed for
the OpenSer SIP proxy, a fork of SER. The prototype implementation only
operates as a local IDS.

The performance has not been tested, however due to SEC’s compact
signature format the authors are expecting good scalability.

8.2.14 Barry07
Algorithm

Barry et al [181] present a combination of the work of Geneiatakis05 and
Sengar(06-2.

They use a layered approach with two layers. The first countermeasure
layer consists of a message checker as proposed by Geneiatakis05. The second
layer consists of a cross-protocol state machine specification as proposed by
Sengar06-2. The authors use this system to target the same threats with the
same methods.

Framework

Contrary to Sengar06-2 the authors propose a host-based intrusion detection
system like Wu2004 to successfully detect BYE attacks. The authors have
tested their framework with a Java implementation. This implementation
was able to detect all message tampering, message flow and flooding attacks.
Performance measurements are not presented.

8.2.15 Bouzida08
Algorithm

Bouzida et al. [55] present a datamining NIDS to detect multiple SIP intru-
sion attacks.

This work can be seen as an extension of Wu04. The authors monitor net-
work traffic statefully and gather several attributes from it. Here attributes
are finer-grained events than those introduced by Wu04. Gathered attributes
can be message header fields and their values (To, From, Nonce ... ), mes-
sage reply codes or gathered statistical data such as the number of INVITE
requests per sampling interval, for example. These attributes are correlated
into profile classes (normal, known attack, new condition). In the learning
phase profiles are generated using decision trees which can then be applied
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to actual monitored traffic. If no profile matches (new condition), this can
be an indication of a potential new attack. Hence, this work contains both
signature-based and anomaly-based detection.

The authors have mostly concentrated on information-gathering attacks
(user enumeration) and the usage of this information for fraud attacks (pass-
word cracking). DoS flooding attacks against individual users are detected
at the proxy by threshold-based counters of different flows to each UA.

Framework

The algorithm should be implemented in a standard NIDS. The only require-
ment for the placement is that is sees all relevant network traffic. Testing has
been done offline with an unspecified testing tool with a 2 hour traffic trace
file from a real VoIP operator. The detection rate of the reviewed attacks
was 99%.

8.2.16 Rieck08
Algorithm

Rieck et al. [182] present an anomaly-based self-learning system to protect
against message payload tampering attacks and other potential network in-
trusion attacks.

Contrary to the work of Geneiatakis05 and Niccolini06-1, the goal of this
method is to protect against novel attacks and so-called zero-day exploits. As
an anomaly-based system, the authors train their system with normal traffic
and detect deviations from this model. The feature set used for anomaly
detection is made up from text strings extracted from each monitored SIP
message. All text fragments are concatenated to form a new string over
which a sliding window of length n (a so-called n-gram) is moved and at
each position in the string the n-gram formed there is saved. The occurrence
of each n-gram in a message defines the feature vector. The authors calculate
the Euclidean distance of the feature vector from a "normal” feature vector.
With a higher distance the probability of a message payload tampering attack
or another potential intrusion increases.

The authors have taken heterogeneous SIP network setups into consid-
eration. In such a setup a comparison to one normal vector might not be
sufficient, and thus they propose different normal vectors for comparison. To
protect their system from (re-)training set poisoning, they propose the com-
bination of their system with other attack detection tools. This is especially
important in the case of DoS flooding attacks as accidental re-training during
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a DoS attack will yield an inaccurate normal vector.

Framework

The authors have not introduced a framework for the deployment of their
algorithm. Instead, they have provided performance results with an off-
line analysis of the traces captured in their test beds and from providers.
Attacks are generated with a SIP traffic generator. Their unspecified off-line
implementation showed good detection of the generated attacks. The false-
positive rate was up to 1 %. The off-line tool was able to process 70 Mbit /s
of STP messages on ”AMD Opteron Servers”.

8.2.17 Nagpal08

Nagpal et al. [66] present a framework dubbed ”Secure SIP” to protect
against multiple DoS attacks on the proxy.

Algorithm 1

Their first line of defence is a return-routability check to detect proxy flood-
ing from sources with spoofed addresses. The authors use a feature of the
SIP specification i.e. each request can be challenged before being served.
An initial request will only be served if the challenge is correctly handled
by the sender. Thus simple flooding bots that do not implement the SIP
specification correctly or use spoofed IP addresses cannot pass this test.

Algorithm 2

Their second line of defence is a state-machine specification to trace individ-
ual requests. It is aimed at detecting BYE flow tampering attacks caused
by spurious BYE requests launched with invalid contact header fields. By
following the state-machine specification it can also detect and suppress re-
dundant messages flows, e.g. from misconfigured devices. Finally, in a similar
manner to Chen06, it is also able to detect messages that do not follow the
SIP state specification.

Simple DoS message flooding is detected through a standard threshold
based counter as described by lancu03. If the sending rate of one sender
exceeds an upper limit, the rate is limited for following requests from that
source.
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Framework

The framework consists of a SIP proxy that has been enhanced to control a
firewall at the ingress point through a firewall control protocol. The authors
have implemented their framework with the sipd SIP proxy [183] and the
hardware firewall Cloudshield CS-2000 [184]. The hardware firewall in par-
ticular was chosen for scalability reasons, as the handling of dynamic firewall
rules can limit the usability of any protection mechanism. The test bed has
been extensively tested with an array of 17 SUN servers serving as simulta-
neous attack generators. While the used SIP proxy could only handle up to
700 requests/s, the hardware firewall could handle more than 17.000 flooding
requests/s.

8.3 Rating of SIP Flooding Countermeasures

The goal of this PhD work is to develop countermeasures against flooding-
based DoS attacks on SIP infrastructures. The related work we present in this
chapter target different DoS attacks. For a rating in comparison to our work
we limit the related work to those that also address SIP flooding attacks. As a
consequence, for the rating we leave out the works Geneiatakis05, Niccolini06-
1 and Rieck08.

We give marks in four categories. For the novelty of the idea we consider
a work that describes a completely new approach for DoS protection (++), a
known DoS approach but new for SIP DoS protection (+), an enhancement
of an already known approach (o), a variation of a known approach (-) or a
plagiarism (- -).

For the effectiveness we distinguish between single-source and multiple-
source flooding approaches. Single-source flooding is a rather straightforward
approach and all approaches can handle those. The difficulty lies in multiple-
source flooding detection where most of the incoming requests have different
origins. To gain a (+) rating, a method must provide detection and some
sort of mitigation. Accurate detection but no mitigation yields a (o) rating,
approaches with a (-) can only address multiple-source floodings with a very
limited number of sources.

Finally, we rate how well the method was tested, and thus the claims
of the authors are wvalidated, ranging from no validation at all (- -), some
theoretical projections (-), simulations (o), implementation with test bed
(+) and real-life tests (++).

All ratings are visible in Table 8.1.

From the table we can see that only two concepts are based on completely
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Table 8.1: Rating of flooding countermeasures

Novelty  Effectiveness Effectiveness ~ Validation
(Single-Source)  (Multi-Source)
Tancu03 0 + - ++
Reynolds03 + ++ 0 0
Wu04 + + - - 0
Markl05 - + - +
Chen06 + + - - -
Niccolini06-2 - + - +
Sengar(06-1 + ++ 0 +
Sengar(6-2 0 + - +
Nassar06 0 + - - -
Rebahi07 0 ++ 0 -
Ding07 - - + - -
Nassar(07 + + - 0
Barry07 - - + - 0
Bouzida08 0 + - 0
Nagpal08-1 ++ + + +
Nagpal08-2 - - + - +
Ehlert-State 0 ++ - +
Ehlert-PH + + + +
Ehlert-DNS ++ o) + +

new ideas. The return-routability check and our non-blockable DNS cache
have never been proposed for DoS protection before, as far as we can judge.
All other works are variations from previous works in the DoS-countering
field. This comes to no surprise, as general TCP /IP attacks have been known
already for a much longer time than SIP-based DoS attacks.

For the effectiveness only multiple-source attacks pose a real challenge
for researchers, and here only the work of Nagpal et al. goes in a similar
direction as our work. This is analysed further in the next section.

All three of our mechanisms have been validated in test beds, which we
see as the bare minimum to show the validity of an approach. Only half of
the related works are validated with implementation results.
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8.4 Discussion of SIP DoS Protection

Together with our work, over 20 different DoS related countermeasure mech-
anisms have been presented by researchers, which we have all aligned in
Tables 8.2 and 8.3 for comparison®. We will discuss progress in the research
area by considering the different DoS threats from Chapter 3 individually.

8.4.1 Payload Attacks

SIP is a text-based protocol, thus messages are human readable. A sophis-
ticated parser is necessary to translate the human-readable message payload
into a machine-readable representation. As experience has shown, flaws in
such an implementation like buffer overflows or missing integrity checking
can result into serious security breaches. It is therefore highly important to
protect against payload attacks.

SIP is now a mature standard and the techniques used to prevent pay-
load attacks are well known. Additionally, there are now different tools to
check SIP implementations for correct operations [122, 124], thus any well-
established SIP agent should generally be hardened against payload attacks.
However, many different parser implementations exist and with SIP’s pop-
ularity new implementations are constantly becoming available. As it is
difficult to check each implementation for correct operation, a viable option
for the network operator would be to add another payload attack prevention
system in the form of a well-specified and tested message integrity checker as
proposed by Geneiatakis05 and Niccolini06-1. This setup is also necessary
if network operators are aware of implementation flaws in their devices, but
there is no software or firmware update available to fix these flaws. The over-
head of an additional message check is generally low as no state information
needs to be maintained.

The previously mentioned proposals are signature-based and will detect
attacks on known security flaws, like buffer overflows or SQL injection at-
tacks. However, this cannot protect against new security holes. Rieck(08
targets this with an anomaly-based payload checker. It is a promising ap-
proach and it would be very interesting to evaluate its efficiency in a real
provider network.

8.4.2 Flow Tampering Attacks

Several message types can be used to disrupt individual SIP sessions and
these attacks are known as Re-INVITE, CANCEL or BYE attacks, depend-

3 Acronyms used in the tables: SS — Single-Source; MS — Multiple-Source
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ing on the utilised message type. As shown in this survey, multiple researchers
have addressed these attacks, but in the end they are all based on the same
cross-protocol stateful correlation work that was first presented by Wu04 and
later used by Sengar(06-2 and Nassar07. We see several problems with this
method.

Monitoring Requirements This method relies on cross-protocol SIP /
RTP event correlation, i.e. an IDS needs to monitor both SIP and
RTP traffic. In a general SIP network, RTP traffic is routed end-to-
end, hence it would not be visibly to a NIDS at the ingress point. This
is either addressed by placing multiple monitoring points at all rele-
vant network entities (Wu04, Nassar07) or by limiting protection to
devices in the same domain (Sengar06-2). A third option would be to
use RTP proxies, especially for NGN infrastructures. However, these
options increase either administrative or network overheads or limit the
protection to one domain.

Reactive measures The cross-protocol correlation method can only detect
an attack, but until now there have been no proposals for preventing
these types of attacks. The benefit of a complex detection-only system
that has to be placed at every end devices is not well motivated, con-
sidering that its sole purpose would be to state information (an attack
was detected) that is immediately visible in the end device itself (the
session is terminated).

Alternatives Flow tampering attacks are only possible if an attacker can
sniff necessary network parameters. If the signalling flow is encrypted
it is nearly impossible to launch this type of attack. SIP already de-
fines mature and established encryption methods, like Transport Layer
Security (TLS) [81] or IPSec [82], and support for these methods is in-
creasing in end devices. Instead of countering the effects of an attack,
encryption would actually prevent the attack itself. Note that while
encryption is an advisable option against flow tampering attacks, it
does not help against payload attacks or flooding attacks.

Nagpal08-2 proposes a similar flow integrity checking method to detect
such attacks. While it is less accurate than the cross-protocol detection
schemes, it only relies on SIP monitoring and thus does not have the RTP
monitoring problem. As long as SIP traffic continues to be sent unencrypted,
then this seems to be a more viable option. It addresses the UA devices flawed
transaction matching algorithms as described by [133].
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While a cross-protocol correlator thus has only limited benefits for DoS
flow tampering attacks, is is nonetheless a viable option for other flow tam-
pering attacks, especially enumeration and fraud attacks. In fact, Bouzida0O8
considers these attacks in particular and not DoS flow tampering attacks in
his correlation solution.

8.4.3 Flooding Attacks

Flooding attacks are the predominate form of DoS attacks. This is reflected
by the research papers listed, where the majority of researchers present meth-
ods for handling flooding attacks. In this discussion we will consider only
attacks directed at the main proxy and not at user agents, as the protection
of the latter can easily be controlled by the proxy if the proxy itself is not
attacked.

The currently established method is the threshold-based rate-limiting
method, introduced by Iancu03 and used in variations in Wu04, Markl05,
Niccolini06-2, Nassar06, BouzidaO8 and Nagpal08-2. In its simplest form
is can be used for flooding detection by counting all incoming messages,
regardless of its source. For reactive measures, this mechanism needs to sep-
arate counters by considering each source individually. This causes a larger
processing overhead and is still only effective against single source flooding
attacks.

This method depends on the correct setting of the flooding threshold, as
there are variations in the traffic load, especially in real time communication
scenarios. Firstly, traffic patterns change at different times of the day and on
different days of the week as communication during the night is less likely, for
example. Secondly, sudden increases in traffic can occur (”flash crowds”) that
are not necessarily caused by a DoS attack. For instance, breaking news can
cause a sudden increase in communication. These conditions should be taken
into consideration when the threshold is set. Currently, most works consider
only a static threshold. Some authors hint at the necessity of dynamic up-
dates of these thresholds. But care has to be taken with traffic poisoning
attacks: an attacker can slowly increase its traffic generation load to update
a dynamic threshold without raising an alarm. These remain unaddressed
questions.

The methods that use change-point detection (Reynolds03, Sengar(6-
1, Rebahi07) already take dynamic network conditions into account. Both
Hellinger-distance calculation and CUSUM computation seem to be viable
and resource-friendly ways to detect malicious flooding conditions. This prin-
ciple has been also used in general IP-based flooding detection, bus has some
limitation in that case because of the diversity of the different protocols used
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[30]. This is, however, not the case in homogeneous SIP environments. The
biggest drawback of this method is that it can handle only attack detection.

Another alternative to the threshold-based counters is the evaluation of
state machine operations (Chen06, and our Statemachine solution). Through
the analysis of a state machine it should be possible to detect attacks more
accurately. However, the resource overheads increase considerably, as a lot
of state information has to be maintained. Attack mitigation features are
limited in the same way as the initial threshold method.

So while attack detection is working sufficiently, attack mitigation work
is still limited if multiple source flooding attacks are considered.

There are currently only three approaches that address multiple source
flooding mitigation. Our SIP DNS cache is able to mitigate flooding attacks
with a non-blocking DNS cache solution. This method is successfully, be-
cause is takes only one special type of multiple source flooding attack into
consideration. It cannot be applied to a general multiple-source flooding
scenario.

Our pinholing approach and the work from Nagpal08-2 are a first step
towards general multiple-source flooding attack mitigation by eliminating
floods from spoofed sources. We present a firewall pinholing algorithm while
Nagpal et al. introduce a return-routability checker i.e. both actively use a
dedicated SIP feature for attack mitigation. It has been reported [185] that
general IP DDoS attacks with spoofed IP addresses are declining in favour
of distributed attacks using zombie botnets. It remains to be seen if this will
also be the case in SIP environments.

So the challenge remains be to devise even better mitigation schemes
against SIP DDoS flooding attacks.

8.4.4 Frameworks

A protection mechanism has only limited applicability if it does not scale
with the amount of traffic encountered in real life attacks. DoS attacks, es-
pecially distributed flooding attacks, can generate a high load of traffic at the
server which a protection framework should be able to process. Currently
only with our VoIP Defender and with Secure SIP by NagpalO8 a dedicated
protection infrastructure for protection is considered. Most of the remain-
ing ideas have been tested using prototype implementations that have only
limited scalability support. Some are also considering protection mechanism
deployed directly at the to be secured host. However, this can easily lead
to a self-inflicted DoS, as shown by [56]. A NIDS based-setup has better
scalability.

VoIP Defender is a multi-layered architecture. Each security algorithm
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which uses this framework is split into a scalable part and a non-scalable
part. The framework can be deployed on multiple different hosts. It is a
software-based solution with its protection based on the Linux iptables fire-
wall component. However, this component has performance limitations with
dynamic firewall rule updates. Contrarily, Secure SIP is a hardware-based
solution. Thus, the firewall is easily able to dynamically update multiple
thousand firewall rules per seconds. However, the algorithm intelligence is
provided by one SIP proxy instance installed on the firewall. There is no way
to scale the algorithm controller.

An interesting idea would thus be to combine the scalable VoIP Defender
framework with the high-performance Secure SIP firewall.
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Chapter 9

Conclusions

9.1 Summary and Impact

SIP is a complex protocol and also a SIP network setup can become complex
as multiple different entities, probably from different providers, have to inter-
act with each other. Here, security aspects are becoming important. What
are possible attacks on SIP networks? What are the deficiencies in the SIP
specification that can be exploited by malicious users? How can systems be
hardened against attacks?

In this PhD work we have illuminated SIP Denial-of-Service threats with
its three dominating forms payload attacks, message flow tampering attacks
and plain flooding attacks.

SIP payload attacks can be easily handled by a correct and fail-resistant
parser implementation. Together with signatures for known intrusions (like in
virus protection) this proves to be an effective protection mechanism against
known attacks. The best practice to counter flow tampering attacks seems
to be plain message encryption. This is likely to be more effective than dedi-
cated protection methods that have several shortcomings (see Chapter 8). If
encryption is not an option, a simple SIP flow sanity checker helps prevent-
ing attacks which target implementation flaws in end devices. Unfortunately,
many end devices still suffer from poor SIP implementations.

The hardest challenge are SIP DoS flooding attacks. These attacks are
easy to launch, especially when the target machine is running unoptimised
software that does not pay attention to possible resource depletion attacks.
Thus, a first way to protect against DoS attack is to design software with
depletion attacks in mind, e.g. prevent blocking states by implementing
parallel operation or do not allocate unnecessarily memory until it is really
needed. It is important for a network operator to make himself familiar with
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the threats described in this thesis and assess the used software with the
guidelines published herein.

However, hardening the software is just one step in an effective DoS coun-
termeasure setup. Several attacks cannot be handled by the attack target
itself, either while the target lacks the knowledge to detect such attacks or
because the involved prevention mechanisms further increase the load at the
target under attack and thus create a self-inflicting DoS attack.

It it therefore necessary to deploy external monitoring and mitigation
schemes to target different DoS attack types. We have prototyped a scal-
able security framework called VoIP Defender that can handle a high
message load common in DoS attacks. With the right detection methods,
many attacks can be handled by this framework without the attack target
being involved.

One problem of high flood Denial-of-Service is that the attacks may con-
sist of seemingly valid messages. In this case it is difficult to differenti-
ate malicious DoS flooding attacks from valid random traffic flash crowds,
which at first sight share the same characteristics. With our proposed state-
machine detection scheme, we have shown that a difference does indeed
exist between traffic flash crowds and DoS attacks, and this difference can be
made visible. As such, in contrast to common DoS detection solutions based
on counting incoming messages over time, this solution has a very low false
error rate. Given the right firewall setup like our VoIP Defender framework,
malicious traffic flows can be selectively blocked, and hence the SIP proxy
protected. Furthermore, the state machine is especially capable of detecting
out-of-band redundant messages, which are common when broken user agents
are in use. When multiple broken or misconfigured user agents are deployed
in a network, redundant message flooding caused by such user agents can
generate serious overhead load at the target proxy. A solution based on the
specification-based scheme has been submitted to to the European Patent
Office for patent application.

Distributed DoS attacks can only be reliably detected but not automat-
ically prevented with the specification-based scheme. Here, another of our
solutions does a much better job. Especially, when considering DDoS attack
mitigation, there have no real mitigation schemes proposed in the research
community until now. With our pinholing algorithm, the first step of an
effective DDoS prevention mechanism has been established. It is a simple
but effective solution to defend against special kinds of distributed Denial-of-
Service attacks on SIP networks. The solution adds a marginally longer delay
for regular users, but keeps the proxy safe from overhead traffic, caused by
DDoS attacks. Because this solution is a lightweight scheme, it can be eas-
ily combined with other protection modules. Also for this solution a patent
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application has been submitted to the European Patent Office.

Additionally, we have shown that there are multiple further attack possi-
bilities to launch DoS attacks on SIP networks different from pure message
flooding. We have especially evaluated attacks on SIP servers that utilise un-
resolvable DNS names in STP messages. Such attacks might be interesting for
malicious users, as such SIP messages can easily be crafted and already a low
amount of such message can reduce server operation by far. Our experiments
show that over-provisioning the servers with massive parallel operation and
asynchronous DNS lookup capabilities as well as reducing the usage of DNS
names in the SIP messages can not successfully counter such attacks. That
is while such measures can improve the performance under attack a severe
attack will also manage to block the server at some point. By combining
DNS caching with a blocking threshold after which no new DNS requests
are issued, we have shown that a SIP server can continue working even under
heavy attack. Additionally, in case the used cache can not accommodate all
possible DNS names, our experiments suggest that using a least frequently
used replacement strategy for the cache has resulted in the highest hit rate
and thus the best possible performance under attack.

We have validated the applicability of the presented methods by testing
them within the VoIP Defender framework. The deployment in the VoIP
Defender framework however is just one application. Additionally, they could
be easily adopted to be implemented in commercial SIP security solutions
like SBCs. Especially the pinholing algorithm would be a valuable addition
to any current SBC, as it would provide a first line of defence against DDoS
flooding attacks with only a limited implementation overhead.

The algorithms developed in this thesis have been the fundament of an
international research project [64]. In this project, several different protection
schemes against DoS attacks have been evaluated in the SIP network of
a SIP VoIP service provider. Besides the mentioned patent applications
for the algorithms, this work is also now cited by other researchers in the
field, including H. Schulzrinne, the inventor of SIP [66], T. Peng, one of the
main DoS researchers [30], IBM Research [67], University of Tiibingen [68],
University of Texas [69] and others.

The VoIP Defender framework has shown its usability as a SIP DoS pro-
tection framework. Additionally, the framework is completely open for exten-
sion and can easily be utilised for non-security related topics. It is currently
actively being used in the FOKUS IMS Management framework where it pas-
sively checks the health status of the monitored network. This framework
is currently deployed as a test bed at a third party SIP service provider.
Furthermore, this framework will be the basis of an upcoming international
research project which will deal with STP message fraud [126].
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9.2 Outlook

Together with the introduced related works, the methods presented in this
thesis are a first but necessary step for a DoS resistant SIP infrastructure.
Especially when it comes to DDoS mitigation solutions, the research work
is still in its infancy. More research is needed in this direction, but this is
probably a very difficult topic to handle. Researchers have struggled for years
to prevent general IP based DDoS attacks with only limited success.

In fact, if there would be a chance to turn back time, it could have been
advisable to limit the focus only on the DDoS mitigation topic. Simple DoS
flooding detection and prevention has not turned out to be such a big obsta-
cle to handle than anticipated. Thus, following work should focus entirely
on advancing DDoS mitigation. Our pinholing method could be used as a
starting point, together with the Null-authentication scheme from Nagpal et
al. as introduced in Chapter 8.

The challenge will be then to devise even better mitigation schemes
against SIP DDoS flooding attacks. This is a daunting task, and much re-
search has already been conducted to handle general IP-based DDoS flooding
attacks. However, chances are that mitigation might be more easily handled
for SIP networks, as there is much more information available if the SIP
payload is also considered by security solutions. This increases the chance to
correctly classify flooding SIP traffic.

For example, in IP protection [186] it is argued that legitimate traffic
tends to have different properties, while malicious flooding attacks seem to
be highly correlated because traffic generators can generate the same pack-
ets to the same destination. They propose a Kolomogorov complexity-based
algorithm to detect correlated traffic, i.e. DoS attack traffic. However one
cannot depend on correlated DoS attacks any more if one takes the intro-
duction of bot nets into account as they control different types of hosts with
different types of captured attack generators.

Contrarily, in SIP networks, even if bot nets are involved, SIP clients to
be captured and controlled are not (yet) common in the infected host. Thus
the attack still has to be generated by common attack generators and thus
the attack traffic is likely to be highly similar. As SIP is a text-based protocol
with multiple header fields it allows easy classification of different message
classes (so called finger-printing of SIP message generators). Rieck et al.
[182] demonstrates such a payload attack detection method by extracting all
text information from a SIP message for correlation.

Another method was proposed by Yan et al. [187] for SPIT prevention.
They combine all SIP-message header fields to form a unique fingerprint of
the sender. Such methods could also be easily adopted for SIP flooding
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protection, by only allowing hosts with a known fingerprint class to access
the service. Such methods would be a feasible option, especially for providers
that also provide a standard SIP client with a known fingerprint class with
their service.

Ultimately, protection should only be enforced if an attack condition is
actually detected. For example, under low traffic conditions Nagpal’s return
routability check would unnecessarily increase latency for all users, and a
fingerprinting sensor could falsely deny access to regular users even if no
flooding attack is under way. Thus, it is advisable to install a lightweight
detection algorithm, like a change point detection algorithm (as shown in
Chapter 8), and only activate the mitigation feature if server load increases
considerably due to detected flooding traffic.

Also more research is advisable to examine the interaction of different
protection mechanisms. As mentioned, SIP DoS protection requires different
protection methods to handle variations of the DoS threat. In this work we
have already demonstrated three different possibilities to mitigate against dif-
ferent instances of DoS attacks. There are multiple other mitigation schemes
developed by other researchers. The effects when these methods are all de-
ployed in one IDS setup need to be further evaluated, e.g. what happens if
one protection scheme indicates a DoS attack while another one does not?
Also, it is still undefined how the controlling IDS should react when it receives
contradicting orders how it should update its access security policy.

Another direction that should be further examined are tests in real life
scenarios with very high flooding storms. If SIP’s popularity continues to
increase in future years, and attacks become more common, the demand
for high scale tests should also raise. The VoIP Defender framework was
designed with scalability in mind and should be well prepared for further
tests — maybe with a new firewall engine, as the used iptables solution has
some performance problems.

During the years of this research we did indeed witness a large increase in
SIP usage. However, its scope has also changed during these years. Now it is
becoming ever more unlikely that SIP will become the ubiquitous VolIP stan-
dard in an open Internet in a similar fashion as email. While STP’s adaptation
rate is high, providers are building SIP ”isles” that cannot connect to other
"isles” without the help of gateways. Unhindered communication is as such
not easily possible if one wants to interconnect to other SIP networks. The
advent of SIP IMS has further introduced the concept of separate gated net-
works for communication. Maybe in such independent SIP networks Denial of
Service attacks will not be the main threat in the future. Instead, billing and
fraud attacks might become a much bigger threat further on. Such attacks
share some characteristics with those that our specification-based approach is
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able to detect, as fraud attacks often consist of flooding (albeit generally with
lower intensity) attempts. Our specification-based scheme would therefore
be a likely basis to counter fraud attacks.

Finally, the gained insight about SIP DoS protection will be beneficial for
further researchers addressing DoS attacks on other protocols. Most network
protocols utilise state-machines, so our specification-based scheme might be
applicable to other protocols. Similarly, protocols that define its own mes-
sage re-transmission method might benefit from the pinholing scheme, and
protocols that have a high dependency on DNS systems would benefit from
a dedicated DNS caching scheme.
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