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ZUSAMMENFASSUNG

Die Arbeit liefert einen Beitrag zur theoretischen Analyse linearer differentiell-
algebraischer Gleichungen (DAEs) héherer Ordnung sowie der Regularitét und
Singularitiat von Matrixpolynomen.

Fiir Systeme von linearen DAEs hoherer Ordnung mit variablen und konstanten
Koeffizienten werden Invarianten und kondensierte Formen unter angemessenen
Aquivalenztransformationen angegeben. Ausgehend von den kondensierten Formen
kann das urspriingliche DAE-System induktiv durch Differentiations- und Elimination-
sschritte in ein strangeness-freies System transformiert werden, aus dem das Losungs-
verhalten (u.a die Konsistenz der Anfangsbedingungen und die Eindeutigkeit der Losung)
direkt ablesbar ist.

Fir quadratische DAE-Systeme mit konstanten Koeffizienten wird gezeigt, dass
genau dann zu jeder konsistenten Anfangsbedingung und jeder rechten Seite f(t) €
CH([to,t1],C) eine eindeutige Losung existiert, wenn das zugehorige Matrixpolynom
regular ist. Dabei ist pu der Strangeness-Index des Systems.

Es werden einige notwendige und hinreichende Bedingungen fiir die Zeilen-und Spal-
tenregularitat und -singularitat allgemeiner rechteckiger Matrixpolynome angegeben.
Eine geometrische Charakterisierung singularer Matrixbiischel wird ebenfalls hergeleitet.
Dartiber hinaus wird ein Algorithmus vorgestellt, durch den man mittels Rang-
Informationen iiber die Koeffizientenmatrizen und Determinantenberechnungen bestim-
men kann, ob ein gegebenes quadratisches Matrixpolynom regular ist.

Ein weiteres Thema der Arbeit ist die Bestimmung des Abstands eines reguléren
Matrixpolynoms von der Menge der singularen Matrixpolynome. Es wird gezeigt, dass
dieses Problem &quivalent zu der Aufgabe ist, in einer gewissen strukturierten Menge
von Matrizen die nachstgelegene Matrix mit niedrigerem Rang zu finden. Fiir Ma-
trixbiischel wird eine Charakterisierung des Abstands zur Singularitat mit Hilfe von
Matrixsingularwerten angegeben. Schliellich werden einige untere Schranken fiir den
Abstand zur Singularitiat hergeleitet.
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ABSTRACT

This thesis contributes to the theoretical analysis of linear differential-algebraic
equations (DAEs) of higher order as well as of the regularity and singularity of ma-
trix polynomials.

Some invariants and condensed forms under appropriate equivalent transformations
are given for systems of linear higher-order DAEs with constant and variable coefficients.
Inductively, based on condensed forms the original DAE system can be transformed by
differentiation-and-elimination steps into an equivalent strangeness-free system, from
which the solution behaviour (including consistency of initial conditions and unique
solvability) of the original DAE system and related initial value problem can be directly
read off. It is shown that the following equivalence holds for a DAE system with
strangeness-index p and square and constant coefficients. For any consistent initial
condition and any right-hand side f(t) € CH([to, 1], C") the associated initial value
problem has a unique solution if and only if the matrix polynomial associated with the
system is regular.

Some necessary and sufficient conditions for column- and row- regularity and sin-
gularity of rectangular matrix polynomials are derived. A geometrical characterization
of singular matrix pencils is also given. Furthermore, an algorithm is presented which -
using rank information about the coefficients matrices and via computing determinants
- decides whether a given matrix polynomial is regular.

Another subject of the thesis is the determination of the distance of a regular matrix
polynomial to the set of singular matrix polynomials. It is shown that this nearness
problem is equivalent to a rank-deficiency problem for a certain class of structured and
constrained perturbations. In addition, a characterization, in terms of the singular
values of matrices, of the distance to singularity for matrix pencils is obtained. Finally,
some lower bounds for the distance of a matrix polynomial to singularity are established.
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Chapter 1

Introduction

There are two parts in this thesis. In its first part, consisting of Chapters 2 and 3,
we shall study linear [th-order differential-algebraic equations (DAEs) with constant
coeflicients

A O (t) + A0 (@) + - + Ag(t) = f(1), t € [to, 1] (‘U(k) () = 5_;%@) (1)

and linear [th-order DAEs with variable coefficients
A2 ) + A () (@) + - Ag()x(t) = f(1), t € [to, 1], (1.2)

where A; € C™" ¢ =0,1,...,1, 1 € Ny, A; # 0, t is a real variable on the interval
[to, t1], A;(t) € C([to,t1],C™ ™), i = 0,1,...,1, Ay(t) £ 0, z(t) is an unknown vector-
valued function in C([to,¢;],C™), and the right-hand side f(t) is a given vector-valued
function in C*([to,t1],C™). Here C*([to,t1],C™*™), n € Ny, denotes the set of all u-
times continuously differentiable matrix-valued functions mapping from the real interval
[to, t1] to the complex vector space C"*".

As the name "DAE” indicates, a system of DAEs is a system that consists of ordinary
differential equations (ODESs) coupled with purely algebraic equations; in other words,
DAEs are everywhere singular implicit ODEs (cf., for example, E. Griepentrog, M.
Hanke and R. Mérz [16]). Based on this notion, in this thesis we always call (1.1)
and (1.2) systems of DAEs if m # n, and if m = n it is always assumed that the
leading coefficient matrix A; in the system (1.1) and the leading coefficient matrix-
valued function A;(t) in the system (1.2) are singular, namely,

rank(A;) <n, and rank(A4,(t)) <n, t € [to,t1].
Here, the rank of a matrix-valued function A(t) on the interval [to, ¢1] is defined as

rank (A(t)) = max {rank(A(v))}. (1.3)

to<v<ti

1



Often, we will refer to linear DAEs with order greater than one simply as linear
higher-order systems.
Systems of linear first-order DAEs with constant coefficients

All‘(t) + AofL'(t) = f(t), t e [to, tl], (14)

where #(t) denotes the derivative of « with respect to ¢, and systems of linear first-order
DAEs with variable coefficients

A (t)x(t) + Ao(t)x(t) = f(t), t € [to, ], (1.5)
as well as general nonlinear first-order DAEs
F(t,z(t),2(t)) =0, t € [to, t1], (1.6)

where F' and z(t) are vector-valued, play a key role in the modelling and simulation
of constrained dynamical systems in numerous applications. Such systems have been
intensively studied, theoretically as well as numerically, in the past two decades. For
systematic and comprehensive exposition of important aspects regarding the theory and
the numerical treatment of first-order DAESs, see, for example, the monographs of S. L.
Campbell [7, 8] (1980, 1982), E. Griepentrog and R. Mérz [18] (1986), K. E. Brenan,
S. L. Campbell, and L. R. Petzold [3] (1996), P. Kunkel and V. Mehrmann [34] (in
manuscript), and the references therein.

However, the systems (1.1) and (1.2) of linear higher-order DAEs also arise naturally
and frequently in many mathematical models. Take, for example, a model for controlled
multibody systems in R. Schiipphaus [51] ( p. 9) which can be formulated in the
following system of linear second-order DAEs with constant coefficients:

M 000 0 2(t) 0P O0O0O 2(t)
0000 A(t) 0 0 000 A(t)
0 0000 pd®) | + |0 G 0 0 0 w(t)
J 0000 v(t) 0 L 00O v(t)
0 0000 (t) [0 Y 0 0 0 £(t)
[ Q —FT -¢T —JT -Z 2(t) Su(t)

F 0 0 0 0 A(t) 0

+ | H 0 0 0 0 u(t) | = 0

K 0 0 0 0 v(t) 0

| X 0 0 0 Z £(t) 0

where M, P,Q € C», J LK € C**, G,H € C™, Y,X,Z € Cv, F € Cr*v,
Z € Cvv, S e C, 2(t) € C([ty, t1],C*), A(t) € C([to,t1],CP), u(t) € C([to, 1], CY),
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v(t) € Cl[to, t1],C*), £(t) € C([to, 1], CY), u(t) € C([to,t1],C"), and (-)(t) denotes the
second derivative of () with respect to ¢.

Usually, as in the well-known classical theory of ordinary differential equations, the
method employed to treat systems (1.1) and (1.2) of higher-order DAEs is to transform
them into first-order systems by introducing the derivative, the second derivative, .. .,
the (I—1)th derivative of the unknown vector-valued function as a part of a new enlarged
unknown vector-valued function, and then to solve the first-order systems of DAEs
associated. Nonetheless, if the degree of differentiability of the right-hand side f(¢) in
the higher-order systems is limited, such transformation may be nonequivalent in the
sense that there may not exist any continuous solution to the first-order system after
transformation, whereas there exist continuous solutions to the original higher-order
system. In Section 2.2, Chapter 2 we will give a definition of so-called strangeness-index
and present an example to demonstrate this nonequivalence in terms of strangeness-
index which can also be regarded as one of the key aspects in which DAEs differ from
ODEs. The reason for the nonequivalence is due to the fact that systems of higher-
order DAEs may essentially consist of not only ordinary differential equations in a
classical sense, but also purely algebraic equations and further strange parts which
arise from the couplings between differential and algebraic equations. Therefore, to
get continuous solutions to the systems (1.1) and (1.2), introducing the derivative, the
second derivative, .. ., the ({—1)th derivative of the unknown vector-valued function x(t)
as a part of a new enlarged unknown may require more times continuous differentiability
of the right-hand side f(t) than that required in the original higher-order systems.

Observing the above nonequivalence, we see that it is not thoroughly satisfactory
to convert higher-order systems of DAEs to first-order systems in order to solve them.
Thus, the need to directly treat higher-order systems of DAEs provides a major motiva-
tion for our study. It is the aim of the first part of this thesis to directly investigate the
mathematical structure of linear higher-order systems of DAEs and to lay a theoretical
foundation for a better understanding of such systems.

The results of Chapters 2 and 3 are obtained mainly by a procedure of changing coor-
dinates under equivalent transformations, differentiating the strange part of unknowns,
and then eliminating through insertions the coupled strange part of the systems. Such
techniques have been introduced and used by P. Kunkel and V. Mehrmann [28, 29], [34]
(Chapters 2 and 3) to deal with linear first-order systems of DAEs, especially those
with variable coefficients. The work in Chapters 2 and 3 is very close in spirit to the
work done by P. Kunkel and V. Mehrmann, and the theory developed here is a natu-
ral extension of that of linear first-order systems to the systems of linear higher-order
DAEs.

In outline, in Chapters 2 and 3 we first develop condensed forms, under appropriate
equivalent transformations, for linear higher-order systems, whereupon we decouple the



system concerned into ordinary-differential-equation part, ’strange’ coupled differential-
algebraic-equation part, and algebraic-equation part. Then we eliminate the strange
part by differentiations and insertions, and repeat this process of decoupling and elim-
inating, until finally we transform the system into a so-called strangeness-index zero
or strangeness-free normal form of the system of DAEs which has an equivalent solu-
tion set to that of the original system. Hence, based on the final normal form we can
investigate the solution behaviour of the original system, and obtain results on solv-
ability, uniqueness of solutions of the system, consistency of initial conditions (possibly
given together with the system), and existence and uniqueness of solutions of the initial
value problem possibly associated with the system. In such context, we will see that
the major difference between the constant coefficient case and the variable coefficient
case is that in the latter case, the variable coefficients must be sufficiently smooth and
satisfy a set of reqularity conditions, so that we can get the condensed form and pass
the system through the inductive process to obtain the final normal form; (cf. Sections
3.1 and 3.2); whereas in the former case, the constant coefficients naturally satisfy such
restrictive conditions.

Since the idea here is quite definite, for convenience and brevity of expression,
our work in Chapters 2 and 3 will be mainly concentrated on the systems of linear
second-order DAEs with constant and variable coefficients. The key results obtained
for second-order systems can be extended without difficulty to linear high-order systems.

As we shall see in Sections 2.4 and 2.5, in the case of a constant coefficient system
of DAEs, the solution behaviour of an initial value problem for the system of DAEs is
closely related to the properties of regularity and singularity of the matrix polynomial
associated with the system. This close relatedness provides us one of the major moti-
vations to study regularity and singularity of matrix polynomials. This study will be
conducted in the second part of this thesis, namely Chapter 4.

In Chapter 4 we shall study, from the point of view of the theory of matrices,
regularity and singularity of m x n matrix polynomials of degree [

!
AN =D NA = NA + N A+ A+ Ay, (1.7)
i=0
where A\ € C and the matrices A, € C™" i = 1,...,l. Here, we call a matrix

polynomial A(\) column-singular (or row-singular, respectively) if rank(A(X)) < n (or
rank(A(N)) < m, respectively), otherwise it is column-regular (or row-regular, respec-
tively).

Apart from the subject matter of DAEs mentioned as above, in the case of m = n,
the study of polynomial eigenvalue problems (PEPs) provides another major motivation
for our investigation (for theoretical and numerical analysis of PEPs, see, for example,
(35, 17, 44, 46, 26, 41, 21, 56, 13, 57, 22, 23, 24, 9], and the references therein). In
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the monograph of Gohberg, Lancaster, and Rodman [17], a spectral theory for regular
matrix polynomials has been developed. Nonetheless, for singular matrix polynomials,
especially those of degrees greater than or equal to 2, the general theoretical analysis has
been largely ignored. For this reason and the numerical concerns related, the second
part of this thesis is aimed at theoretically analyzing characterizations of the column-
and row- regularity and singularity of matrix polynomials, detecting the regularity
or singularity of a given square matrix polynomial, and investigating the nearness to
singularity problem for square matrix polynomials.

In Section 4.2, we shall prove sufficient and necessary conditions for the singularity
of matrix polynomials, which means, put simply in the column case, that a matrix
polynomial A()) is column-singular if and only if there exists a vector polynomial z()),
which is not identically equal to zero, such that A(A)z(\) = 0. More essential, we
shall also give an attainable upper bound on the least possible degree of such nonzero
vector polynomials x(\). This main result of Section 4.2 will lead to other sufficient
and necessary conditions, in terms of the matrix coefficients, for the singularity and
reqularity of matrix polynomials. In particular, as direct applications of such sufficient
and necessary conditions, a geometrical characterization of singular matrix pencils and
a canonical form, under equivalence transformations (defined by (2.17) in Section 2.3),
for 2 x 2 singular quadratic matrix polynomials are presented.

Since, in many DAE problems and in all polynomial eigenvalue problems, square
matrix polynomials are involved, we restrict the study conducted in Sections 4.3 and 4.4
to the square case. As we shall see in Section 2.5, in the setting of DAE problems (1.1), if
the matrix polynomial associated is singular, then either the homogeneous initial value
problem associated with (1.1) has a nontrivial solution, or there exist arbitrary smooth
inhomogeneities f(t) for which the system (1.1) is not solvable. While, in the setting of
polynomial eigenvalue problems, if the matrix polynomial associated is singular, then it
is immediate that every complex number can be regarded as an eigenvalue. Even if the
matrix polynomial associated with a DAFE problems or a polynomial eigenvalue problem
is regular but nearly singular, a high sensitivity of the solutions of these problems to
perturbations of the matrix coefficients may be expected. Therefore, in view of such
singular or nearly singular phenomena, to detect the regularity or singularity of square
matrix polynomials and to tackle the related nearness to singularity problem become
very important from both the theoretical and numerical viewpoint.

Section 4.3 is devoted to detecting whether or not a given square matrix polynomial
A(A) is regular. We shall present a natural approach to detection via rank information
of the matrix coefficients and, if necessary, a finite number of computing determinants
of matrices, where the finite number is an attainable upper bound on the number of
nonzero roots of det(A(A)), if we suppose that A()) is regular.

Section 4.4 deals with the nearness to singularity problem for square and regular



matrix polynomials. First, we give an example to demonstrate a possibly high sen-
sitivity of a regular but nearly singular polynomial eigenvalue problem if its matrix
coefficients are perturbed. Then, we shall give a definition of nearness in terms of the
spectral and Frobenius matrix norms and some properties of the distance to the nearest
singular square matrix polynomials. Based on the sufficient and necessary conditions of
the regularity of matrix polynomials proved in Section 4.2, we shall also present a gen-
eral theoretical characterization of the nearest distance, which shows that the nearness
problem is in fact a perturbation-structured and constrained rank-deficiency problem.
In addition, on the basis of the result obtained in [4], we shall give a sharper character-
ization, in terms of singular values of matrices, of the nearness to singularity for matrix
pencils, which coincides with a geometrical characterization for singular matrix pencils
obtained in Section 4.2. Subsection 4.4.3 contains two special cases of matrix polyno-
mials, for which we give explicit formulae for the nearest distance to singularity. At the
end of Section 4.4, two types of lower bounds on the nearest distance to singularity for
general regular matrix polynomials are also presented, which are generalizations of the
results for matrix pencils obtained in [4].

Finally, in Chapter 5 we draw some conclusions and give an outlook for future work
and investigations.



Chapter 2

Linear Higher-Order DAEs with
Constant Coefficients

2.1 Introduction

In this chapter, we consider systems of linear [th-order (I > 2) differential-algebraic
equations with constant coefficients of the form

A () + Az (@) + - 4 Agz(t) = (1), t € [to, ta], (2.1)
where A; € C"™*" §=0,1,...,1, A, #0, f(t) € C*([to, t1], C™), possibly together with
initial conditions

x(to) = o, ..., 212 (to) = xg_ﬂ, x(l_l)(to) = :E[Ol_l], Zo, - .. ,:E[OI_Q], :E[Ol_” e C".
(2.2)

Here, the nonnegative integer p is the strangeness-index of the system (2.1), i.e., to get
continuous solutions of the (2.1), the right-hand side f(¢) has to be p-times continuously
differentiable (later, in Section 2.2 we shall give an explicit definition of the strangeness-
index).

First, let us clarify the concepts of solution of the system (2.1), solution of the initial
value problem (2.1)-(2.2), and consistency of the initial conditions (2.2).

x,(t)]F € C([to,tl],(C") is

Definition 2.1 A wvector-valued function x(t) := [x1(t), .
1 =0,. ..,l,j—l ,m, exist and

called SOLUTION OF (2.1) if >, A;(j, k)z ()( t),
for 5 =1,...,m the following equations are satisfied:

ZAJJ, +ZA1 104, k JrZAo], Jzi(t) = f;(1),



where A;(j,k) denotes the element of the matriz A; lying on the jth row and the kth
column of A; and f(t) == [fi(t),..., fm(t)]T.
A wvector-valued function xz(t) € C([to, 1], C") is called SOLUTION OF THE INITIAL
VALUE PROBLEM (2.1)-(2.2) if it is a solution of (2.1) and, furthermore, satisfies (2.2).
Initial conditions (2.2) are called CONSISTENT with the system (2.1) if the associated
initial value problem (2.1)-(2.2) has at least one solution.

It should be noted that, since the system (2.1) of DAEs possibly contains purely alge-
braic equations, we are here interested in the weakest possible solution space C([tg, 1], C"),
rather than C!([tg, 1], C"). The differential operators d'/dt',d'~'/dt'=, ... d/dt in the
system (2.1) are so far only symbols, which do not definitely mean that the un-
known vector-valued function z(¢) should be i-times continuously differentiable, i =
[,l—1,...,1. Later, in Section 2.2 we will see an example to demonstrate this point.
Based upon these concepts, we are naturally interested in the following questions:

1. Does the behaviour of the system (2.1) differ from that of a system of first-order
DAEs into which (2.1) may be transformed in the same way as in the classical
theory of ODEs?

2. Does the system (2.1) always have solutions? If it has, how many solutions do
exist? Under which conditions does it have unique solutions?

3. If the system (2.1) has solutions, how smooth is the right-hand side f(t) required
to be?

4. Which conditions are required of consistent initial conditions?

5. Under which conditions does the initial value problem (2.1)-(2.2) have unique
solutions?

In the following sections we shall answer the above questions one by one. In Sec-
tion 2.2 we present an example to show the difference that may occur, in terms of
strangeness-index, between the higher-order system (2.1) and a system of first-order
DAEs into which the original system is converted. In Section 2.3 we shall give a
condensed form, under strong equivalence transformations, for matrix triples that are
associated with systems of second-order DAEs. Then, in Section 2.4, based on the
condensed form, we partially read off the the properties of the corresponding system of
second-order DAEs, and by differentiation-and-elimination steps reduce the system to
a simpler but equivalent system. After an inductive procedure of this kind of reduction,
we shall present a final equivalent strangeness-free system by which we can answer the
questions posed in the above. Finally, in Section 2.5, the main results of second-order



systems obtained in Section 2.4 are extended to general higher-order systems, and more-
over, the connection between the solution behaviour of a system of DAEs and reqularity
or singularity of the matrix polynomial associated with the system is presented.

2.2 An Example

It is well known that one of the key aspects in which a system of DAEs differs from a
system of ODEs is that, to get the solutions of DAEs, only continuity of the right-hand
side f(t) may not be sufficient and therefore higher derivatives of f(¢) may be required.
Later, in Section 2.4, we will clearly see the reason for this difference. Furthermore, as
we have mentioned in Chapter 1, another different point between higher-order DAEs
and higher-order ODEs is that, in order to get continuous solutions, different degrees
of differentiation of the right-hand side of the system of higher-order DAEs may be
required than of the system of first-order DAEs into which the original higher-order
system is converted; whereas in the case of ODEs the solution behaviour keeps com-
pletely invariant after such kind of conversion. To show this difference, we need the
following definition of the sufficient and necessary degrees of differentiation required of
the right-hand side of systems of DAEs, which is introduced in [28, 30, 34].

Definition 2.2 Provided that the system (2.1) has solutions, the minimum number
p of times that all or part of the right-hand side f(t) in the system (2.1) must be
differentiated in order to determine any solution x(t) as a continuous function of t is
the STRANGENESS-INDEX of the system (2.1) of DAEs.

Obviously, according to Definition 2.2, both a system of ODEs and a system of purely
algebraic equations have a zero strangeness-index.

In the following, we present an example of an initial value problem for linear second-
order DAEs to demonstrate the possible difference of strangeness index of the original
system from that of the converted first-order system of DAEs.

Example 2.3 We investigate the initial value problem for the linear second-order con-
stant coefficient DAEs

{ o ] (1) + { o ] i(t) + { . ]x(t} —f(), teltot]  (23)
where z(t) = [z1(t), 22(1)]T, and f(t) = [fi(t), fo(t)]T is sufficiently smooth, together
with the initial conditions

w(to) = zo,  #(to) = 2}, (2.4)



where ¢ = [zo1, z02]T € C?, IL‘O = [x[oll},xm] € C2. A short computation shows that
system (2.3) has the unique solution

z1(t) = fo(t),
{ va(t) = f1(t) — fo(t) — fo(t). (2.5)

Moreover, (2.5) is the unique solution of the initial value problem (2.3)-(2.4) if the
initial conditions (2.4) are consistent, namely,

vor = fa(to),

zo2 = filto) — falto) — falto),

el = alto) (26)
= filto) = falto) — T

If we let

v(t) = [oi(t), ()] = [21(), 22(0)]", y(8) = [va(8), va(t), 22(1), 22(1)]",

then we have the following initial-value problem for the linear first-order DAEs

1 00 0 1 0 01 fi(t)
000 O0]. 0 0 10 fa(t)
t t) = 2.7
001 0| g oY 0 | (2.7)
0001 0 -1 0 0 0
together with the initial condition
y(to) = [$([)11]> x([)z], o1, Toa] - (2.8)

It is immediate that the system (2.7) of first-order DAEs has the unique solution

21(t) = folt),

wa(t) = i) — fo(t) — folt),

ui(t) = falt) (2.9)
w(t) = filt) = fa(t) — £2(0).

In this form, (2.9) is the unique solution of the initial value problem (2.7)-(2.8) if the
initial condition (2.8) is consistent, i.e.,

ror = falto),

ro2 = fi(to) — fz() f2(t0)

5531] = fato), (2.10)
i = filte) = falto) — 15 (to).
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Remark 2.4 Example 2.3 shows that the second-order system (2.3) has a unique con-
tinuous solution (2.5) if and only if the right-hand side satisfies f(t) € C*([to, t1], C?),
whereas the converted first-order system (2.7) has a unique continuous solution if and
only if f(t) € C*([to, 1], C?); or in other words, the strangeness-index of the converted
first-order system (2.7) is larger by one than that of the original second-order system
(2.3). For a general system of [-th-order DAEs, it is not difficult to find similar exam-
ples.

Not unobviously, the reason for the above difference in terms of strangeness-index is
that, in the converted first-order system the enlarged set of unknown functions includes
not only the unknowns of the original higher-order system but also their derivatives,
and that to get the solutions of such "new” unknowns, higher degree of the smoothness
of the right-hand side function f(¢) may be required. Therefore, unlike the classical
theory of ODEs (see, for example, E. A. Coddington and N. Levinson [10]), a direct
transformation of a system of higher-order DAEs into an associated system of first-order
DAESs is not always equivalent in the sense that higher degree of the smoothness of the
right-hand side f(¢) may be involved in the solutions of the latter. O

It should be noted that Example 2.3 also shows that, to obtain continuous solutions
of a system of DAEs, some parts of the right-hand side f(¢) may be required to be
more differentiable than other parts which may be only required to be continuous; for
a detailed investigation, we refer to, for example, [2, 37, 38]. Nonetheless, in order to
simplify algebraic forms of a system of DAEs, we usually apply algebraic equivalence
transformation to its matrix coefficients. For this reason and to avoid becoming too
technical, we always consider the differentiability of the right-hand side vector-valued
function f(t) as a whole, and do not distinguish the degrees of smoothness required of
its components from each other.

Now that a direct reduction of a system of higher-order DAEs to a first-order system
may be nonequivalent in terms of the strangeness-index, we have to find another ap-
proach to enable us to investigate more deeply the behaviour of systems of higher-order
DAEs. In the following sections, we will see that through purely algebraic techniques,
like the treatment of systems of linear first-order DAEs with constant coefficients, we
can get a thorough understanding of the behaviour of systems of linear higher-order
constant coefficient DAEs.

2.3 Condensed Form for Matrix Triples

As we have mentioned in Chapter 1, for convenience of notation and expression, in this
section we shall work mainly with systems of linear second-order DAEs with constant

11



coefficients
Mi(t) + Cx(t) + Kx(t) = f(t), t € [to, t1], (2.11)

with M,C, K € C™*"  f(t) € C*([to,t1],C™), possibly together with initial conditions
x(to) = 20, (to) = :cgl], xo,x([)l] e C". (2.12)

It is well-known that the nature of the solutions of the system of linear first-order
constant coefficient DAEs

Ei(t) = Ax(t) + f(t), t € [to, 1],

with E; A € C™™ and f(t) € C*([t,t1],C™), can be determined by the properties of
the corresponding matrix pencil AE — A. Furthermore, the algebraic properties of the
matrix pencil A\E — A can be well understood through studying the canonical forms for
the set of matrix pencils

ANPEQ) — (PAQ), (2.13)

where P € C™*™ ) € C"*" are any nonsingular matrices; see, for example, [3] (Section
2.3) and [34] (Section 2.1). In particular, among those canonical forms for (2.13) are the
well-known Weierstrass canonical form for regular matrix pencils ([55], Chapter VI) and
the Kronecker canonical form for general singular matrix pencils ([15], Chapter XII),
from which one can directly read off the solution properties of the corresponding DAEs.

Similarly, as we will see later in this chapter, the behaviour of solutions of the system
(2.11), as well as the initial value problem (2.11)-(2.12), depends on the properties of
the quadratic matrix polynomial

AN) = MM +\C + K. (2.14)

If we let z(t) = Qy(t), and premultiply (2.11) by P, where P € C™*™ @ € C"*" are
nonsingular matrices, we obtain an equivalent system of DAEs

(PMQ)ij(t) + (PCQ)y(t) + (PKQ)y(t) = P[(t), (2.15)
and a new corresponding quadratic matrix polynomial
AN) = XM +XMC + K := X(PMQ) + A\(PCQ) + (PKQ). (2.16)

Here, by equivalence we mean not only that the relation z(t) = Qy(t) (or y(t) =
Q'xz(t)) gives a one-to-one correspondence between the two corresponding solution
sets of the system (2.11) and the system (2.15), but also that, in order to get continuous
solutions of the systems (2.15) and (2.11), the smoothness conditions required of P f(t)
in (2.15) are equal to those required of the right-hand side f(¢) in (2.11).

12



However, it is also well-known that it is an open problem to find a canonical form
for quadratic matrix polynomials (2.16), let alone higher-degree matrix polynomials,
from which we can directly read off the solution properties of the corresponding system
of DAEs. Nonetheless, inspired by the work of [28, 29] (though the papers mainly deal
with linear first-order DAEs with wvariable coefficients), we shall in this section give
an equivalent condensed form for quadratic matrix polynomials (2.14) through purely
algebraic manipulations and coordinate changes. Based on the condensed form we can
partially decouple the system into three parts, namely, an ordinary-differential-equation
part, an algebraic part and a coupling part, and therefore pave the way for the further
treatment of the system in the following section.

Sometimes, we will use the notation (A, ..., Ay, Ag) of a matrix (I+1)-tuple instead
of the matrix polynomial A'A; + --- + \A; + Ay of Ith degree which is associated with
the general [th-order system (2.1) of DAEs. By the following definition, we make the
concept of equivalence between two general matrix (I 4+ 1)-tuples clear.

Definition 2.5 Two (I+1)-tuples (Ay, ..., A1, Ag) and (By, ..., By, By), A;, B; € C™*",
i=0,1,...,1, 1 € Ny, of matrices are called (STRONGLY) EQUIVALENT if there are non-
singular matrices P € C™™ and Q € C™*" such that

Bi= PAQ, i=01,... 1 (2.17)
If this is the case, we write (A, ..., A1, Ag) ~ (By,..., By, By).

It is obvious that relation (2.17) is an equivalence relation, in other words, it is reflexive,
symmetric, and transitive. In the remainder of this section we shall look for a condensed
form for matrix triples under the equivalence relation (2.17). Before embarking on this,
let us first review the canonical form for a matrix and a condensed form for a matrix
pair under the equivalence relation (2.17).

The result on the canonical form for a single matrix under equivalence relation (2.17)
is well-known:

Lemma 2.6 ([36], p. 51) Let A € C"™*". Then there are nonsingular matrices
P
P = l ! ] e C™™ and Q := [Q1, Q2] € C™™ such that

Py
I, 0
PAQ = " 2.1
o=|7 o] (2.18)
where P, € C™*™, Q)1 € C™*". Moreover, we have
r =rank(A), N(A) = R(Qy), N(AT) = R(P]), (2.19)

where N (+) denotes the null space of a matriz, and R(-) the column space of a matriz.
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The condensed form for a matrix pair (E, A) under equivalence relation (2.17) has
been implicitly given in [28].

Lemma 2.7 Let E, A € C™*", and let

(a) Z; € C™*"=") be a matriz whose columns form a basis for N'(ET)

2.20
(b) Zy € C™("=)  be a matriz whose columns form a basis for N'(E). (2:20)
Then, the matrixz pair (E, A) is equivalent to a matriz pair of the form
[T, 0 0 0] [0 A 0 Ay |\ s
0 I; 00 0 A» 0 Ay d
0 000|,]0 0 I, 0 a, (2.21)
0 0 0O I, 0 0 O S
o 0oo00] Lo 0o 0 0]/ w

where s,d,a,v € Ny, A1y € C*", u € Ny, and the quantities (in the following we use
the convention rank(0) =0)

(a) r=rank(F)

(b) a=rank(Z] AZ,)

3 Lo
(e) v=m—-r—a—s

(f) u=n—r—a

are invariant under equivalence relation (2.17).

For completeness, we give a proof of this lemma.

Proof of Lemma 2.7. In the following, the word "new” on top of the equivalence
operator denotes that the subscripts of the entries are adapted to the new block struc-
ture of the matrices. Using Lemma 2.6, we obtain the following sequence of equivalent
matrix pairs.

[r 0 0 All A12 A13
I Aq A new
(E,A>~<{58},[A” AHDN 000, | An L 0
Ao 0 0 0 As; 00
I, 00 A A Agg I, 00 A 0 A
R 0o 00]|,] 0 I, 0 ~ 0o 001(,] 0 I, 0
0 0 0 Ay 0 0 0 0 0 Ay 0 0

14



Pll P12 O 0 All A12 O A14

P21 P22 O 0 A21 A22 O A24

= O 0 o0O0Of|,|l 0 0 I, O
0 0 00 I, 0 0 0

0 0 00| [ 0O 0 0 0 |

P, P
<Where the matrix [ oo } is nonsingular)

P21P22
(I, 0 0 0] [0 A 0 Ay
0 I, 0 0 0 Ay 0 Aoy
= 0 00O0O|,l0 0 I, O
0 0 00 I, 0 0 0
0 00O0] O 0 0 0 |

It remains to show that such quantities r, s, d, a, v, u are well-defined by (2.22) and
invariant under the equivalence relation (2.17). In the case of r = rank(F), this is
clear. For the other quantities, indeed, we only need to show two quantities a and s
are well-defined and invariant under equivalence relation (2.17). Since we have proved

Py
(2.21), let P := { P,
where P, € C™*™ @)1 € C™*", such that

€ C™™ and @ = [Q1,Q2] € C™" be nonsingular matrices,

[ I, 0 0 0] [0 A, 0 Ay
0 I; 0O 0 Ay 0 Ay
Py Py

{PZ]E[Ql,QQ]— 0 0 00|, {PZ]A[QMQQ]— 0 0 I, 0

0O 0 00 I, 0 0 O

0O 0 00 0O 0 0 O
i i i (2.23)

By Lemma 2.6, we have

N(E") =R(P)), N(E)=TR(Q), (2.24)

namely, the columns of PJ span N(ET), and the columns of @, span N (E). From
(2.23) it immediately follows that

s]
s]

0 0 I, 00 I, 0 0

PBAQ=|1, 0 0 0 0|, PAQa=|0 0 0 |. (2.25)
00 0 00 0 00

Hence, by (2.25), we have

a =rank (PoAQ2), s =rank (PAQ)— a =rank (PA) —a. (2.26)
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From (2.20) and (2.24) it follows that there exist nonsingular matrices T} € Cm=")*(m=r)
and Ty, € C»=)*x(=7) guch that

P2T - Z1T17 QQ - Z2T2. (227)
Then, from (2.26) and (2.27) it follows that
a = rank (PyAQ») = rank (T Z{ AZ,T5) = rank(Z] AZ,), and
s = rank (PA) —a = rank (I)' Z] A) — a = rank(Z] A) — a.

Thus, a and s are indeed well-defined by (2.22) and therefore so are the quantities d, v
and u.

At last, we shall prove that a and s are invariant under the equivalence relation.
Let (E;, A;), i = 1,2, be equivalent, and let Zfi), Zéi) be bases associated with (£;, A;),
1=1,2, i.e., let

(a) Z}i) be a matrix whose columns form a basis for N'(E!)

(0) Z{ be a matrix whose columns form a basis for N'(E;).

Since there exist nonsingular matrices P € C™*™ and ) € C™"*" such that F; = PE>,Q
and A, = PA,Q, from ETZ" =0 and B, Z8" = 0 it follows that

QUESPTZ{) =0, PEQZ =0,
and therefore
E'PTZz0 =0, EQZMY =o.

Thus, the columns of PTZ" from a basis for V(ET) and the columns of QZ" from
a basis for N'(E;). Therefore, there exist nonsingular matrices Ty € Cn=x(m=r) and
TQ e C=m)x(=7) guch that

PTzY = 297, Qz{" = 7T,
Then, we can complete the proof of the invariance of a and s with the fact that
T
rank(Zfl) Ay) = 1"ank(Zf2
T
rank(Zfl) AlZél)) = 1"ank(Zf2

)T

P'PAQ) = rank(Z2? 4,Q) = rank(Z®" A,),

PP AQQ ZPTy) = rank(22 4,22).

O

Using the condensed form (2.21) for matrix pairs and similar algebraic techniques

utilized in the proof of Lemma 2.7, we can then derive a condensed form for matrix
triples, which is the main result of this section.
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Lemma 2.8 Let M,C, K € C™". Then, (M,C,K) is equivalent to a matriz triple
(M,C, K) of the following form

[ I, (McK) 0
0 I (vmco)y
0

~
o
2
o o o

~

[= =Nl ool oo oo
oo ooo

By
N

0
I (mck)

a
=

OO0OO0OO0O0C OO0~ OO0 OO0

T

s

o)

coococoocoocoocoo00QQQ
coocococoocoocoQQQQQ

coococoocooocoQ oocoo
coocoocoocoocoooQQQqQ
coocococoocoocoo00QQ

Co0o0co0co0oR oo ocoooo

coocoococococococ o oo
Coocooco00O0O0 OO OO0
Coocooco0o0O0O0 OO OO0
Coocooco0o00O0 0O OO

[=NeleloBoBoBoNolol=h -}
[=NeloloBoBoBoRoRol=]
oo ooo o

S(MCK)
s(MC)
S(MK)
42
$(CK)
PSS
S(MCK)
S(MO)

3

COO0OO0O0O0O0O0 CoO0OO0OCOOOCOO OO O O

~
~
e

@

O OO0 00000000

a

S(CK)
S(MK)
S(MCK)

~

)

COOCOCORAARARRR
©cc% cococoocoooo
OO OORARRARNRR
cooQ ocoococooooco0o
OCOOCOCORAARARAR
OO OORARRARNRR

o © o o

I (mck)
0

r
L
<

(2.28)

where the quantities sMCK) = s(MC) = (MEK) = ((CK) = q() () ¢ and v are nonnegative

inlegers.

It should be noted that, for convenience of expression, in this lemma and in the fol-
lowing proof we drop the subscripts of the elements of block matrices unless they are
needed for clarification.

Proof of Lemma 2.8. The proof in the following will proceed from the condensed
form for matrix pair (M, C) obtained in Lemma 2.7. And, the canonical form (2.18) for
matrices shown in Lemma 2.6 will be repeatedly employed in the course of the proof.

(M, C, K)

rl 0 0 0 0 C 0 C K K K K

0 I 0 0 0 C 0 C K K K K
~]ll0o o0 o0 o0of,]l0 0o I o0],|] Kk K K K

0 0 0 O I 0 0 0 K K K K

LO 0 0 O 0 0 0 0 K K K K

(7T 0 0 0 O 0o ¢ 0 C C K K K K K
0 I 0 0 O 0o C 0 C C K K K K K
00 0 0 O 0 0 I 0 0 K K K K K
“{]lo 0o o0 o0 of|’|T 0 0 o0 0| |K K K K K
0 0 0 0 O 0 0 0 0 O K K K I 0
L0 0 0 0 0 0 0 0 0 O K K K 0 0



—
\|/-|_\|/
L — | L — |
Moo SNXXSS Luicroo
O O O O ~NO eeeo~e O OO O ~NO
Wi SNNEOX Livrox
Wik SNNEOX Livxox
M SNEEOX Livrox
| ~ |
| — | | ——
OV oocoo SESIE I OV ocoocoo
OO0 ocoocoo SESIE I OV ocoocoo
VO ocoocoo COeoocoo VO oocoo
coo~OoO VDV o~o0oo coo~O0OO
O O O O OO (el e B e B e B en B @n ] OO O O oo
O O O O o O O O O O oo OO O O oo
O O O O o O O O O O oo OO O O oo
O ~N O O O O O ~N O O O O O N O O O O
~N O O O O O N O O O O O N O O O O O

—

KKK Kooo

S O O oo

S
S
A
S

~

o

o

o

o

o

O e

0

o

0
0
P
Pao
0

0
0
Py
Poy
0

C
C
0
0
0

0
0
0
0
I

)

I 0 0 0 0 O
0 I 0 0 0 O
0 0 0 0 0 O
0 0 00 0 O
0 0 0 0 0 O
0 0 0 0 0 O
0 0 00 0 O
0 0 0 0 0 O

:| is nonsingular)

Py
Pao

Py
Py

(where the matrix {

r . r 1
MMM ooo NXXXKOoOoO
coccocomMon OO0OO0COOONOO
MNXXNXooo NXXXKOoOoO
coccococomMe OOO0COOOCONO
K kKXKokkx NEXXKOOoX
Kk KiKokk NXXKXXKooX
L . L |
T - 1 r - 1
V0Qoocoooo LVloocoooo
V0Qoocoooo LVloocoooo
coo~NO0O0OCO o o~NO0OOO
comMocococoo OO~NO0OOCOOO
Vloocococooo OLLOLooooo
cocoocoo~o0O0O colDo~o0co0oO0
L L )
T - 1 r - 1
Coococoo0oo0coo0oo oocoocooocoooo
Coococoo0oo0co0oo oocoocooocoooo
OCoococo0oo0o0oo oocoocooocoocoo
OCoococoo0oo0oo oocoocooocoooo
O~NOOCOOOCOOO O~NOoOOOCOCOO
~N0OO0OO0OO0OO0OO0OO0O ~NOOOOCOOOO

18



D ——

KKK Kooo

S OO OO MN~NOO

KKK ooo

S OO OO OoOMNO

Mg K KXo
MoK X X o

[=eleoleol=h =]

0
0

o © o o

0o ¢ 0o 0 C C
o ¢ o o0 C C

0 C I 0
0
0
0
0
0

)

I 0 0 0 0 O
0 I 0 0 0 O
0 0 0 0 0 O
0 0 00 0 O
0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O

KO K KK

oo oo
cCooco0o0oOoO~NOOO
KKK XXX oooo
CoOo0co0Oo0O0OoO~NOO
KK XXX oooo
KKK XK KXY OOo~O
KoK K K OO KX
L )
T 1
VDOV ocoocoococooco
VDOV ocooococoo o
cCooco~NOOO OO
cCoo~NO0OO0C OO OO
VDOV oococooco
VDOV Voococooco
CoOoco0OOoO~NOOOO
L )
T ]
NN eNoNNoleloNelo)
el -NeNoNoNoleloNelo)
cCooco0oocoo0coo oo
cCoocoocoo0coo oo
R
o coocoocoo
e e
z A
o coocooocoo
S
cooco0oocoo oo

I

Mg KXo

o oo
OCoooo0o0OoO~NOOCO
MKKNMNMMKoooo
OO0 o0O0O0CO~NOO

"

= KKNMNMMKoooo

&n

k= oo o000 OoO~NO

12}

=]

2 MMM XKoo XKX

12 L 1

A

L— -

38 _

oo ocoooo

38 Lo

- DOV oocoococoo

=

SN cCooo~NOCOQOOOO

—_

Ra] OCoOoO~NOOOOOO

i)

m VOV Voooooo

2

= VDOV VOV oocococoo

g

5] cCooooo~NOQCOOO

e . )

Nt -

r 1
OCooo0o0o0o0oO0QCO
NNl NeN-N-N-N- N}
=N-NellcNeN-N-N-E=R=
=N-NellcNeN-N-N-E=R=
OCo~NO0OO0OOCOOOCO
O~NOOCOOCOCOOCOOO
~Noooooo0ooo0oo
L

| KK XXXKO

S OO OO OMN

Mg K K KXo

S OO OO oo

MoK K KXo

S OO o oo

o

o

o

0

0

0

r¢ ¢ C 0 0 C C1]

¢c ¢ ¢ o 0 C C
¢c ¢ ¢ o o0 C C
¢ ¢ C 1 0

0

o

o

0

0 0 0 0 0 017

I

M I 0 0 0 0 O

0 I 0 0 0 O

0

0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O
0 0 00 0 O
0 0 0 0 0 O
0 0 00 0 O

0

MO M MK o

S OO O OO N

MoK K XX O

S O OO oo o

Mg KK KXo

S OO o oo

MO K XXX

o

o

0

0

~

0

ro ¢ C 0 0 C C1

o ¢ ¢ o o0 C C
o ¢ ¢ o o0 C C

o C C I o

0

o

o

)

7 0 0 0 0 0 01

0 I 0 0 0 0 O
0 0 I 0 0 O0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
0 0 0 0 0 0 O
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MMM KKK

OO OO0 OO OOMN

MMM KKK

oo ocococoooo

MMM KXO

cooooocooo0
MMM KXO
MMM XO

VOVVoococoo

VDV LVVoocococo
coococo~N0OQO

ocooco~NOOCOo

VOVVLLVoocoo

VOVVLVoocoo

S OO0 OO0 g

Ri2
Rao

Ry
Roy

o

\w\NeNeNe e NeNeNel

Sl
[l =N=}

r R
Ra1

:| is nonsingular)

Ri2
Ra2

R
Ro1

(where the matrix {

© XMXXNXNXXO

o KKK NXXXXX

MK KKEKEKKNK oOooo o oo oo ooo
OO 00000 O~NOOOO cccoc oo oMo oo o OO OO0 OMNOOOO
KKK OoOooooo MM NXMNMXNMNMNNMoooOO MK KKK EE Koo ooo
OO 000000 O~NOOO cccocococooOMOOo o CO0OO0OO0O0O0OO0OONOOO
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Each of the quantities in Lemma 2.8 has an expression in terms of dimension of
column spaces or rank of matrices, and is invariant under equivalence relation (2.17),
as the next lemma shows.

Lemma 2.9 Let M,C, K € C™"™ and

a) Zy be a matriz whose columns form a basis for N(MT)

( (
(b) Zy be a matriz whose columns form a basis for N'(M)
. ‘ , o (2.29)
(¢) Zs be a matriz whose columns form a basis for N(M*) NN (CT)
(d) Zy be a matriz whose columns form a basis for N(M) NN (ZEC)

Then the quantities

(a) r=rank(M) (rank of M)

(b) a=rank(ZIKZ,) (algebraic part)

(c) sMCK) =dim (R(MT) N R(CTZ) NR(KT Z5)) (strangeness due to M, C, K)
(d) s'9K) =rank(Z¥ K Z5) —a (strangeness due to C, K)

(e) dM) =rank(Z]CZ,) — s(©K) (Ist-order differential part)
(f) sMO) = rank(ZL'C) — s(MCK) _ 5(CK) _ g(1) (strangeness due to M, C)
(9) sME) = rank(ZTK) — a — s(MCK) _ 5(CK) (strangeness due to M, K)
(h) d® =y — sMCK) _ 5(MC) _ s(MK) (2nd-order differential part)
(1) v=m—r—2sCK —q) _95(MCK) _ ((MC) _ g _ (MK) (yanishing equations)

(j) u=n—r—sCK gl _q (undetermined part)

(2.30)

are invariant under the strong equivalence relation (2.17) and (M, C, K) is (strongly)
equivalent to the condensed form (2.28).

It should be pointed out that the meanings of the invariants indicated in the parenthe-
ses in (2.30) stem from the context of the system (2.11) of DAEs, which we will explain
in the next section. Lemma 2.9 will be used in the next chapter.

Proof of Lemma 2.9. The proof can be carried out along the same lines of the proof
of Lemma 2.7.
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Step 1. First, we show that the quantities in (2.30) are well-defined with respect to
the choices of the bases in (2.29). We take a = rank(ZI KZ,) as an example. Every
change of basis can be represented by

Zy=Z3Q1, Zi= Z4Q2
with nonsingular matrices @)1, Q2. From
rank(ZT K Z,) = rank(QT ZI K Z,Q,) = rank(ZL' K Z,),
it then follows that rank(Z7 C'Z,) is well-defined. Similarly, we can prove that the other
quantities in (2.30) are also well-defined.

Step 2. Next, we show that the quantities in (2.30) are invariant under the equiv-
alence relation (2.17). Here, we just take sM“%) as an example. Let (M,C, K) and
(M, C, K) be equivalent, namely, there are nonsingular matrices P and ) such that

M =PMQ, C=PCQ, K=PKQ. (2.31)

Let the columns of Z; form a basis for N’ (M7), and let the columns of Z3 form a basis
for N(MTYNN(CT). Then, from (2.31) it follows that the columns of Z; := PTZ; form
a basis for N'(MT), and the columns of Zs := PT Zs form a basis for N'(MT) NN (CT).
Thus, the invariance of s(MCK) follows from
SMCK) = dim (R(MT) NR(CTZy) N R(R%))
— dim (R(QTMTPTY N R(QTCTPT Z,) mR(QTKTPT23)>
— dim (R(MTPT) A R(CTPTZ,) ﬂR(KTPTZ3))
= dim (R(MT)NR(CTZ) N R(KT Z5))
_  g(MCK)
Similarly, the invariance of the other quantities in (2.30) can be proved.

Step 3. Finally, we shall show that the quantities in the equivalent form (2.28) of
(M, C, K) are identical with those defined in (2.30). Let P € C™*™ @ € C"*" be
nonsingular matrices such that

(M,C,K) = (PMQ, PCQ, PKQ)

where (M, C, K) is of the form (2.28). Furthermore, let P and Q be partitioned as

P .= [PlT, PE ... Pﬁ;}T and @ := [Q1, Qa, . . ., Qs] conformally with the row structure
and column structure of the block matrices in (2.28), respectively. Then, by (2.28), we
have

[PT,...,PE]" M =
M[Q57"'7Q8] =
(PT,...,PE] C =
[PT,....PE]" CQ7,Qs] =
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namely, the columns of PT(:,5 : 13) := [Pf,..., Pf] form a basis for N'(M7T), the
columns of Q(:,5 : 8) := [Qs, ..., Qs] form a basis for N (M), the columns of PT(:,9 :
13) := [P, ..., PL] form a basis for N(MT) N N(CT), and the columns of [Q7, Qs]
form a basis for N (M) NN ((PT(:,5:13))TC). Observing that, by (2.28),

I, 0
Py 0 0
(PT(,9:13)) K[Qn Q= | : | K[QnQsd=1]0 0],
Pis 0 0
0 0

we have a = rank ((PT(:, 9: 13))T K [Q7, Qg]) which is equal to a = rank(Z1 K Z,) de-
fined in (2.30) (since a is well-defined). Similarly, we can prove that the other quantities
in the equivalent form (2.28) are equal to those defined in (2.30). O

Remark 2.10 Using the same techniques developed in Lemmas 2.7, 2.8, and 2.9, we
can see that for (I+1)-tuples (A, ..., Ay, Ag) of matrices of size m x n, there also exists
a similar kind of condensed form via strong equivalence transformations, with which a
set of invariant quantities are associated. For the sake of convenience of expression, we
do not here explicitly present the condensed form for (I 4 1)-tuples of matrices. O

Thus, we have prepared the way for further analyzing the systems (2.11) and (2.1)
of DAEs, which will be presented in the next two sections.

2.4 Linear Second-Order DAEs with Constant Co-
efficients

In this section, we discuss the system (2.11) of DAEs, and answer those questions raised
at the beginning of this chapter.
Let us start by writing down the system of differential-algebraic equations

~

Mij(t) + Cy(t) + Ky(t) = f(t) (2.32)
where

M = PMQ, C = PCQ, K = PKQ, z(t) = Qy(t), f(t)=Pf(t) (2.33)

~ ~ A~

with P, @ nonsingular matrices, and the matrix triple (M,C, K) is of the condensed
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form (2.28), as follows.

in(t) + Zi:3,4,7,8 Chagi(t) + Ei:2,4,6,8 Kyyi(t) = f} (t)
Got) + 2078 Coithi(t) + Xio s ]A(Q,iyi(t) = f2(f)
Ja(t) + D imza78 Citli(t) + D20 468 K K3i0i(1) = fa(t)
Ga(t) + 25478 Caithi(t) + 220468 K4,gyi<t) = fa(t)
05 4Ya(t) + Us(t) + X icna6s lfs,iyi(t) = f5(t)
Ye(t) + Zz 2,4,6,8 Koyi(t) = ]i6(t)
yl o+ 2468K72y2< )= Ji7<t) (2.34)
) + Zz 2468K872y2< ) = f5(1)
) = folt )
) =
) =
1(t) =

<. .
= ERIOIIICIO)

-~
\_/\_/
<
ot -~
N N N N
~

o~
~—

Fia(t)
m) 0 = fis(t).

Immediately, we recognize a consistency condition (2.34-m) for the inhomogeneity (van-

AN N N N N N N N N N N N

ishing equations) and a possible free condition of choice in ys(t) (undetermined un-
knowns). In addition, (2.34-i) may include purely algebraic equations (algebraic part),
and, (2.34-f) (1st-order differential part) and (2.34-d) (2nd-order differential part) look
like first-order differential equations and second-order differential equations, respec-
tively. What is more essential to DAEs is the coupling (strangeness due to M, C, K) be-
tween the algebraic equations (2.34-1) and the differential equations (2.34-g) and (2.34-
a), the coupling (strangeness due to M, K) between the algebraic equations (2.34-k)
and the differential equations (2.34-c), the coupling (strangeness due to C, K') between
the algebraic equations (2.34-j) and the differential equations (2.34-e), the coupling
(strangeness due to M, C) between the differential equations (2.34-h) and the differ-
ential equations (2.34-b), and the possible coupling between the algebraic equations
(2.34-1) and the differential equations (2.34-a) - (2.34-d).

Our direct objective now is the reduction of the system (2.34) to a simpler but
equivalent system by means of decoupling those equations coupled to each other in the
system (2.34). Here, by equivalence we mean that, given any sufficiently and necessarily
smooth right-hand side f(t) (i.e. f(t) is p-times continuously differentiable, where u
is the strangeness-index of the system (2.11)), there is a one-to-one correspondence
between the solution sets of the two systems via a nonsingular matrix. As a natural
extension of the theory of [28], [34] (Chapter III) for linear first-order variable coefficient
DAESs, the technique of decoupling consists in several differentiation-and-elimination
steps. In detail, with respect to the system (2.34), we

1. differentiate equation (2.34-1) and insert it in (2.34-g) to eliminate 3 (¢);
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2. differentiate equation (2.34-1) twice and insert it in (2.34-a) to eliminate §j (¢);
3. differentiate equation (2.34-k) twice and insert it in (2.34-c) to eliminate §j3(t);
4. differentiate equation (2.34-j) and insert it in (2.34-e) to eliminate ¥s5(t);

5. differentiate equation (2.34-h) and insert it in (2.34-b) to eliminate §j2(); and

6. differentiate the whole of or some parts of equation (2.34-1) and insert the deriva-
tives in (2.34-a) - (2.34-d) to eliminate possibly existent 7(t).

The above differentiation-and-elimination steps correspond to transforming the sys-
tem (2.32) into an equivalent second-order system of DAEs

MG+ CVg(0) + KVy(t) = FO ) (235

with (MM, CW | KW, 1) being of the following form

o000 0 00O0O0O7TTJO0O O CCO0 0 0C]
000 O 0O0O0O o Cc C CcCo C 0C
000 O 0O0O0O o 0 C Co0 0 0C
000 Iywy 0000 o 0 C Co0 0 0C
000 0O 0O0O00O O 0 0 CO0 0 00
000 O 0O0O0O 0O 0 0 0 0 Ijm 0 0
000 O 0O0O0OO|,]0O 0 ©0O0O0 0 0 0],
000 0O 0O0O00O 0 Iowuey 0O 0 O O 0 0
000 0O 0O0O0O O 0 0 00 0 00
000 0O 0O0O0O O 0 0 00 0 00
000 O 0O0O0O O 0 0 00 0 00
000 O 0O0O00O O 0 0 00 0 00
Lo 00 0 00O0OJ] [0O O O0O0OO0O 0 0 0]
0 K o K o K o k7 |f0O-fe0) s(MCK) (230
0 K 0 K 0 K 0 K fa(t) — fs(t) 5(MC)
o K o0 K 0 K 0 K F3(t) = fuu(t) s(MEK)
0 K 0 K 0 K 0 K fa(t) d®
o &K 0 K 0 K 0 K F5(8) = fro(t) ()
0 K 0 K 0 K 0 K fs () dW
0 K 0 K 0 K 0 K| i s(MOK)
o K 0 K 0 K 0 K T e s(MO)
0 o 0 0 0 0 I, 0 fs(?) a
0 0 0 0 Igwx 0 0 0 fo(t) s(CK)
0 0 Iy 0 0 0 0 0 Fro(t) s(MK)
ILowery 0 0 0 0 0 0 0 () s(MOK)
. o0 o0 o0 o0 0 0 0 0| Fr2(t) v
L J13(2) i

[\]
ot



It is clear and should be stressed that the above procedure of differentiation and
elimination only involves the sufficient and necessary order derivatives of the right-hand
side f(t). Moreover, after the transformation from the system (2.32) to the system
(2.35), the solution sets of the two systems are the same.

Then, a natural question arises, namely, what is the relation between the quadratic
matrix polynomial associated with the system (2.32) and its counterpart which is asso-
ciated with the equivalent system (2.35)7 The following lemma gives an answer to this
question.

Lemma 2.11 Let A(\) = A\2M 4+ A\C + K, and let AV(\) = X2MD + O + KO,
where M,C and K are as in (2.32), and MV, O and K™Y are as in (2.35). Then,

AN = E(VA(N), (2.37)

where E(N) is a unimodular matriz polynomial, i.e., the determinant of E(\) is a
nonzero constant.

Proof. Observe that, in terms of elementary row operations for matrix polynomials
(cf. Subsection 4.2.2, p.63), the differentiation-and-elimination steps 1-6 (on pages

24-25) with respect to A()\) correspond to premultiplying A()\) by elementary ma-
trix polynomial Ej()), premultiplying El(A)A(A) by elementary matrix polynomial
E5()), premultiplying FEy(A\)Ey(A)A(N) by elementary matrix polynomial Es()\), pre-
multiplying E3()\) El()\)fl()\) by elementary matrix polynomial Fy(\), premultiply-

ing E4()\) ( )A ( ) by elementary matrix polynomial E5(\), and premultiplying
Es(\) - ( )JA(M) by elementary matrix polynomial Fg(\), respectively, where
rr 1 S(MCK) rr7 ... A2 1 s(MCK)
B = I oM S By = ! _ S
f .s(A/ICK) . [ ;(JWCK)
I]| v L I | v
cr 7 §(MCK) rJ 1 s(MCK)
I - =A?r S(MK) - I - =)l $(CK)
E3(A) = : : yBa(A) = ER : ,
I S(Z\JK) I S(CK)
I v I v
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N e SACL7 7 sMCK)
i 1 s(MCK) ) S =ACa2r s(MC)
I - =) s(MC) I - 0 —XC37 s(MK)
. : : I - —ACur 4
Es()) = o ey Bs(N) = :
I a
I | v
I | v

and FE;(t), i = 1,...,6 are partitioned conformally with the block matrices in (2.28).
Let E(A\) = Eg(A)--- Ey(\). Then we have A(X) = E(A)A(N). Since the determi-
nant of each F;(t), i =1,...,6, is a nonzero constant, the determinant of £(\) is also
a nonzero constant. ([l

Let us now turn back to the new matrix triple (M, G K1) in (2.36) obtained
after the differentiation-and-elimination steps. We can again transform it to the con-
densed form (2.28), and apply the differentiation-and-elimination steps to pass it to
the form (2.36). In this way, therefore, we can conduct an inductive procedure to get
a sequence of triples of matrices (M@, C® K@) i € Ny, where (M, CO KO =
(M,C,K) and (MY O+ KDY is derived from (M9, C® K@) by bringing it
into the form (2.28) and then applying the differentiation-and-elimination steps.

Comparing M in (2.28) with M® in (2.36), we have

rank(M™) = rank(M) — SEQ;ICK) — SES;IK) — SES;IC)

MCK MK McC
= rank(M?) — 520) ) 8§0> ) 8§0> ), (2.38)

where SEQ;ICK), sgé\;”(), and sgé\fc) denote the strangeness due to M(® C© KO the

strangeness due to M), KO and the strangeness due to M(? C respectively. Since
after the differentiation-and-elimination step 4 (on page 25), equation (2.34-j) becomes
uncoupled purely algebraic equation, it follows that

rank(K) > aqy > (a<0> + SEOC;K)) ’ (2.39)
where a1y, a(), and sggm denote the number of algebraic part of (MM, CV K1) the
number of algebraic part of (M® C© K@) and the strangeness due to C{0 K0
respectively. Hence, the relations in (2.38) and (2.39) guarantee that after a finite
number (say ¢q) of steps, the strangeness SES;ICK) due to M0 C9 K9 the strangeness
SEKK) due to M@ K9 the strangeness sgé\fc) due to M@, C@ and the strangeness
sggK) due to C9 K@ must vanish. If this is the case, then we arrive at a final equiv-

alent second-order system of DAEs with a very special structure (we call the system
strangeness-free). Note that, by the above procedure, there may exist many ways in
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which the original system can be transformed into an equivalent strangeness-free sys-
tem. But since in each way the strangeness-free system obtained is equivalent to the
original system, here we just take any one of them, and assume that i € Ny is given
by the number of necessary differentiations of f(¢) in (2.11) that is required in the
given way to obtain an equivalent strangeness-free system. Thus, we have the following
essential result of this section.

Theorem 2.12 Let f(t) € C*([tg,t1],C™), it € Ng. Then, the system (2.11) is equiv-
alent (in the sense that there is a one-to-one correspondence between the solution sets
of the two systems via a nonsingular matriz) to a system of second-order differential-
algebraic equations ME(t) + Ci(t) + Kz(t) = f(t) of the form

(a) Z1(t) + Crada(t) + Q1,4SLC4(15) + f{l,ljﬁ(t) + [~(~1,23~72<t) + Ky aZa(t) = fi(D),
(b)  Za(t) + Kand1(t) + Kaofia(t) + KouZu(t) = fo(t),

() I3 t) = fs(t),

(d) 0= fu(t),

(2.40)
. . N T
where the inhomogeneity f(t) = [flT(t), e ff(t)] is determined by fO(t), ...,

f@ ). In particular, d®, dY and @ are the number of second-order differential, first-
order differential, and algebraic components of the unknown Z(t) := [Z] (1), .. mf(t)}T
in (2.40-a), (2.40-b), and (2.40-c) respectively, while @ is the dimension of the unde-
termined vector T4(t) in (2.40-a) and (2.40-b), and v is the number of conditions in

(2.40-d).

Proof. In the given way, inductively transforming (M, C, K) to the condensed form
(2.28) in Lemma 2.8 and then converting it by differentiation-and-elimination steps into
the form in (2.36) until (M%) = $M = JME) — (€ — ¢ vield a triple (M, C, K)
of matrices of the form

I 000 11 00 Crg K Kip 0 Ky

0000 7 0O I 0 0 ’ Koy Koo 0 Koy 7 (2.41)
0 0 0O 0 00 O 0 0O I 0

00 00 0O 00 O 0 0O 0 O

with block sizes d®,d™, a, v for the rows and d®,d™, a, @ for the columns. By (2.33),
we know that the transformatlon from (M, C, K) to (M ,C,K) in the condensed form
(2.28) establishes, via a nonsingular matrix, a one-to-one correspondence between the
solution sets of the two corresponding systems of DAEs. We also note that by (2.35),
the differentiation-and-elimination steps do not change the solution sets at all. Hence,
there exists a nonsingular matrix Q such that for any solution z(t) of the system (2.11)
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(if existent), there corresponds a solution Z(t) of the system (2.40) satisfying

2(t) = Qi(t), (2.42)

and vice versa. O

Now, we can answer the questions at the beginning of this chapter, which are con-
cerned with the existence and uniqueness of solutions and consistency of initial condi-
tions.

Corollary 2.13 Under the assumption of Theorem 2.12, the following statements hold.
1. The system (2.11) is solvable if and only if one of the following two cases happens.
(i) v =0.
(i1) If © > 0, then the 4 functional consistency conditions
fit) =0 (2.43)
are satisfied.

2. If the system (2.11) is solvable, then it is uniquely solvable without providing any
initial condition if and only if the conditions

d? =dY =a=0 (2.44)
hold.

3. If the system (2.11) is solvable, then initial conditions (2.12) are consistent if and
only if one of the following two cases happens.

(i) @=0.

(i1) If @ > 0, then the a conditions

Z3(to) = fa(to), s(to) = (2.45)

are implied by (2.12).

4. If the initial value problem (2.11)-(2.12) is solvable, then it is uniquely solvable if
and only if
i=0 (2.46)

holds.
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Proof. The results are direct consequences of Theorem 2.12. O]

In order to write down explicit solutions of the coupled but strangeness-free second-
order and first-order differential equations (2.40-a) and (2.40-b), we need the following
result on linear ordinary differential equations from E. A. Coddington and N. Levinson

10] (p. 78).

Lemma 2.14 The inhomogeneous system of linear ordinary differential equations
x(t) = Az(t) + b(t), t € [to, t1], (2.47)

together with an initial condition

has a unique solution
t
x(t) = elt=0) 4z, +/ e =4p(s) ds. (2.49)
to

Corollary 2.15 Under the assumption of Theorem 2.12, the system (2.40) together
with initial conditions
1 (to) = T1,0, T1(to) = if[ll,}o, Ty(to) = a0,

15 equivalent to the following system

7 710 0 1 I 00 T1o
o (2L e [B]- (o8 e ] s

Ty 0 0 I = 0 - g
2 Z2.0
(b) Zs(t) = f3(t),
(c) 0= fult),
(2.50)
where
0 I 0 T1,0 Z1(to)
A= | —Kiy —Ciy —Kip |, 5[11}0 = | :(to) |, (2.51)
—K3, 0 =Ky T To(to)
0
b(t) = | fi(t) — Craa(t) — K1 4Z4(t) | . (2.52)

folt) — KoaZu(t)
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Proof. We transform the system (2.40-a), (2.40-b) of second-order ODEs into an
equivalent system of linear first-order ODEs

1 5?1
Pol=Al | o),
To To

where A, b(t) are as in (2.51), (2.52) respectively. Then, by Lemma 2.14, the result is
immediate. [

Now, we can turn our attention to the strangeness-index p of the system (2.11)
which has been introduced in Definition 2.2, and obtain the following result.

Corollary 2.16 Under the assumption of Theorem 2.12, assume that the system (2.11)
is solvable. Let p € Ny be the strangeness-index of the system (2.11). Then,

= fi. (2.53)

Proof. By Theorem 2.12, there is a one-to-one correspondence (2.42), via a nonsingular
matrix, between the solution sets of the two systems (2.11) and (2.40). Therefore, the
system (2.11) is solvable if and only if the system (2.40) is solvable. Thus, by Corollaries
2.13 and 2.15, we can see that, provided that initial conditions are necessary and con-
sistent, the right-hand side f(¢) in (2.11) must be fi-times continuously differentiable in
order to determine Z(t) as a continuous function of ¢, and therefore by the one-to-one
correspondence (2.42), to determine z(¢) as a continuous function of ¢. By Definition
2.2 of strangeness-index, (2.53) immediately follows. O

Of special interest is the case of the system (2.11) of DAEs with which a regular
quadratic matrix polynomial is associated. Here, we call a matrix polynomial A(\) of
size m X n a regular matrix polynomial if m = n and the determinant of A(\) is not
identically equal to zero; otherwise, it is called singular (for more details, cf. Chapter
4).

As in the case of linear first-order constant coefficient system of DAEs, regularity
of the quadratic matrix polynomial associated with the system (2.11) is closely related
to the solution behaviour of the system (2.11). Indeed, regularity of the quadratic
matrix polynomial is a sufficient and necessary condition for the property that for every
inhomogeneity f(t) € C*([to,t1],C™), where u is the strangeness-index of the system
(2.11), there are initial conditions such that the initial value problem associated with
(2.11) has a unique solution. In the following two theorems, we show the sufficiency
and the necessity respectively.
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Theorem 2.17 Let M,C, K € C™", and let the matriz polynomial A(\) := \>M +
AC + K be regular. Let f(t) € C*([to,t1], C™), where p is the strangeness-index of the
system (2.11) associated with A(X\). Then, there is a unique solution of the initial value
problem (2.11)-(2.12), provided that the given initial conditions (2.12) are necessary
and consistent.

Proof. Let fl()\) = \2M + \C + K, where M,C, K € C™™ are associated with the
system (2.40). Then, inductively by (2.33) and Lemma 2.11, we have

A(/\) = Er()‘)PrEr—l()\)Pr—l T El()\)PlA()\)QlQQ e Qr, (254)

) 1 =1,...,r, are
1) = Ldet(A(),
where ¢ is a nonzero constant. Since det(A(\)) # 0, we have det(A(\)) # 0, in other
words, A()) is regular. This immediately implies that in the system (2.40),

where P; and Q;, i = 1,...,r, are nonsigular matrices, and F;(\
unimodular matrix polynomials. From (2.54) it follows that det(A

=0, 7=0.

Then, under the condition that the given initial conditions (2.12) are consistent, the
existence and uniqueness of solutions of the initial value problem (2.11)-(2.12) directly
follows from Corollaries 2.13, 2.15 and 2.16. U

Theorem 2.18 Let M,C, K € C™ "™ and suppose that the matriz polynomial A(\) :=
AN2M + \C + K is singular.

1. Ifrank(A(N)) < n for all X € C, then the homogeneous initial value problem
Mi(t) + Ci(t) + Kz(t) = 0, z(ty) = &(to) =0 (2.55)
has a nontrivial solution.

2. If rank(A(X)) = n for some A € C and hence m > n, then there exist arbitrary
smooth inhomogeneities f(t) for which the the corresponding system (2.11) of
DAFs is not solvable.

Proof.

1. Suppose that rank(A(N)) < n forall A € C. Let A\;, i =1,...,n+ 1, be pairwise
different complex numbers. Then, for each A;, there exists a nonzero vector v; €
Cn satisfying (A2M + \;,C + K)v; = 0, and clearly the vectors v;, i = 1,...,n+ 1,
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are linearly dependent. Hence, there exist o; € C, 7 = 1,...,n + 1, not all of
them being zero, such that
n+1

E a;0; = 0.
i=1

For the function x(t) defined by
n+1

x(t) = Z agvgetit=to),
i=1

we then have x(ty) = 0 as well as
n+1
Mi(t) + Ci(t) + Kx(t) = Y ai(XM + NC + K)ve 1) = 0.
i=1
Since z(t) is not the zero function, it is a nontrivial solution of the homogeneous
initial value problem (2.55).

. Suppose that there is a A € C such that rank(A())) = n. Because A()) is assumed
to be singular, we have m > n. We set
z(t) = eMi(t),
and therefore
B(t) = eM (2(t) + Ai(t)), &(t) = M (2(t) + 222(t) + N*3(1)) |
such that (2.11) is transformed to
M (2(t) +2)2(t)) + Ca(t) + (N*M + \C + K) #(t) = e M f(1).

Since A2M + AC + K has full column rank, there exists a nonsingular matrix
P € C™™ such this equation premultiplied by P gives

M, O Z Cl:|L [[:|~ [f1<t>:|
z(t) + 2 x(t)) + z(t) + z(t) = :
A O B EU R EUR ok
Obviously the matrix polynomial £2M; + & (2AM; + C}) + I in £ is regular. By
Theorem 2.17, the initial value problem
MyE(t) + (2AM, + C) & (1) + 2(t) = fi(t), E(to) = To, i(to) = Tf

has a unique solution for every sufficiently smooth inhomogeneity fi(¢) and for
every consistent initial value. But then

fo(t) = Mo (2(t) 4+ 222(t)) + Coii(t)

is a consistency condition for the inhomogeneity fo(t) that must hold for a solution
to exist. This immediately shows that there are arbitrary smooth functions f(t)
for which this consistency condition is not satisfied. O
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2.5 Linear [th-Order DAEs with Constant Coeffi-
cients ([ > 3)

In this section we shall extend the main results of the last section to the case of general
systems (2.1) of linear [th-order (I > 3) DAEs with constant coefficients.

As we mentioned in Section 2.3, by induction one can get a condensed form via
strong equivalence transformations for (I 4+ 1)-tuples (A, ..., A, Ag) of matrices which
is similar to (2.21) and (2.28) for matrix pairs and triples respectively. Clearly, with
the condensed form a set of invariant quantities are associated. In the context of the
corresponding system (2.1), among the invariant quantities, especially, are those which

can be used to characterize algebraic part, 1st-order, 2nd-order, ..., and [th-order
differential parts, and strange parts due to each two, each three, ..., each [, and [ + 1
matrices out of A;, ..., Ay, and Ay, respectively.

Then, based on the condensed form for (I 4+ 1)-tuples of matrices, one can write
down the system of differential-algebraic equations after the strong equivalence trans-
formations. Analogous to the treatment of systems of second-order DAEs in Section 2.4,
one can design differentiation-and-elimination steps in order to decouple those equations
coupled to each other in the system and to reduce it to a simpler but equivalent system,
which can be again transformed to the condensed form. Inductively, by this procedure
one can get a sequence of (I 4 1)-tuples of matrices, and after a finite number of steps,
it can be expected that all strange parts of the corresponding system will vanish, in
other words, in the final the system becomes strangeness-free. Here, for convenience of
expression, we only state the essential results which are parallel to Theorem 2.12 and
its main consequences in the last section.

Clearly, there may exist many ways in which the original system can be transformed
into an equivalent strangeness-free system. But, as we mentioned in the last section,
since in each way the strangeness-free system obtained is equivalent to the original
system, here we just take any one of them, and assume that fi € Ny is given by the
number of necessary differentiations of f(¢) in (2.1) that is required in the given way to
obtain an equivalent strangeness-free system. Later, as in the case of the second-order
systems, we will see that i € Ny is in fact the strangeness-index of the /th-order system
(2.1), provided that the system is solvable.
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Theorem 2.19 Let f(t) € C*([t,t1],C™), it € Ng. Then, the system (2.1) is equiva-
lent (in the sense that there is a one-to-one correspondence between the solution sets of
the two systems via a nonsingular matriz) to a system of lth-order differential-algebraic

equations
ADFO@) 4 AVZED @) 4o+ A5 = F(1)
of the form
), D dam S ) diEea®) _ f
(1) dtz +;)JZZA1 —j T ar +;)A1,l+2 a = h(t),
—21-2 )
a1z i 1yt
@) O TS Af]
1=0 ] =1
i) d'Eia(t r
Z( A 5) -
I—ki—k ~ (2.56)
di—k+1g (t ATy a1 (t
(k) —)+22A e
1=0 j=i

- Z Z AR A/i%ﬁ;tf“)) = filh), 1< k<)

(+1) Gl = fina (D),
(l + 2) 0= J?l+2<t)7

where qu, 1<p<(I1+2),1<q<(I+2), denotes a submatriz of AW, i=0,1,...,1,
- T .
and the inhomogeneity f(t) == | fL(t),..., fl+2(t)] is determined by fO(t), ..., f(¢).

In particular, dV, ..., dY, and a are the number of lth-order differential, . .., first-order
differential, and algebraic components of the unknown &(t) := [Z1(t),.. maz(t)}T in
(2.56-1), ..., and (2.56-(1+1)) respectively, while @ is the dimension of the undeter-

mined vector T o(t) in (2.56-1), ..., (2.56-1), and ¥ is the number of conditions in
(2.56-(1+2)).

Proof. The proof is analogous to the proof of Theorem 2.12 and follows by induction. [

The following corollary answers question 2, questions 4 and 5 that were posed at
the beginning of this chapter.
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Corollary 2.20 Under the assumption of Theorem 2.19, the following statements hold.

1. The system (2.1) is solvable if and only if one of the following two cases happens.

(i) 5 =0.

(i1) If © > 0, then the 4 functional consistency conditions
ﬁ+2(t) =0 (2.57)
are satisfied.

2. If the system (2.1) is solvable, then it is uniquely solvable without providing any
initial condition if and only if the conditions

dO = ...=d@ =gV =gz =0 (2.58)
hold.

3. If the system (2.1) is solvable, then initial conditions (2.2) are consistent if and
only if one of the following two cases happens.

(i) @=0.

(i1) If @ > 0, then the a conditions

flﬂ(to) = JElJrl(tO)a
(2.59)

‘%l—f—l(to) _ dfia(®) d g (o) _ dTN ()
- ... l—l p— l_l
dt tot ) 5 dt at s

are implied by (2.2).

4. If the initial value problem (2.1)-(2.2) is solvable, then it is uniquely solvable if

and only if
u=20 (2.60)
holds.
Proof. The results are direct consequences of Theorem 2.19. U

To answer question 3, namely, to determine the strangeness-index of the system
(2.1), we have the following corollary.

Corollary 2.21 Under the assumption of Theorem 2.19, assume that the system (2.1)
is solvable. Let u € Ny be the strangeness-index of the system (2.1). Then,

i = pu. (2.61)
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Proof. The proof is analogous to the proof of Corollary 2.16. 0

Finally, let us turn to the special case of the system (2.1) with which a regular matrix
polynomial A(\) = Zli:O MNiA;, A € C, of degree of [ is associated. As we presented
in the last section, regularity of the matrix polynomial A(\) = le‘:o NiA; is closely
related to existence and uniqueness of the solutions of the initial value problem which
is assocaited with the system (2.1).

Theorem 2.22 Let A; € C™", i =0,1,...,1, and let the matriz polynomial A(\) :=
Eizo NiA; be regular. Let f(t) € C*([to, t1], C"), where u is the strangeness index of the
system (2.1) associated with A(X). Then, there is a unique solution of the initial value
problem (2.1)-(2.2), provided that the given initial conditions (2.2) are consistent.

Proof. The proof is analogous to the proof of Theorem 2.17. U

Theorem 2.23 Let A; € C™*", i =0,1,...,1, and suppose that the matrixz polynomial
A(N) = Eizo NiA; is singular.

1. Ifrank(A(N)) < n for all X € C, then the homogeneous initial value problem

A () + A2V (@) - 4 Agz(t) = 0, 2(ty) = @(tg) = - =2 D(t) =0
(2.62)
has a nontrivial solution.

2. If rank(A(N)) = n for some A € C and hence m > n, then there exist arbitrary
smooth inhomogeneities f(t) for which the the corresponding system (2.1) of DAEs
s not solvable.

Proof. The proof is analogous to the proof of Theorem 2.18. O

Remark 2.24 It should be pointed out that the importance of regularity and singu-
larity of matrix polynomials in the context of the solution behaviour of systems of
differential-algebraic equations, which we have seen from the above theorems, provides
one of the major motivations for our later study carried out in the second part of this
thesis. O

In the next chapter, we shall generalize the techniques employed and the results
obtained in this chapter to the case of higher-order systems of DAEs with variable
coefficients.
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Chapter 3

Linear Higher-Order DAEs with
Variable Coefficients

In this chapter, we study linear [th-order differential-algebraic equations with variable
coefficients

A)zW () + A ()2 (@) + -+ Ag(t)z(t) = (1), t € [to, t], (3.1)

where A;(t) € C([to, t1],C™™), i =0,1,...,1, A(t) Z0, f(t) € C([to, 1], C™), possibly

together with initial conditions

z(ty) =z, ..., 272 (t) = xg_ﬂ, 2V (t) = ZL‘g_l], Zo, - .. ,x{f‘”, :Eg_” e C".

(3.2)
As in the case of constant coefficients, we shall apply very similar techniques (trans-
forming, differentiating, and inserting) to the system (3.1) with variable coefficients, and
obtain parallel results on the system (3.1), and on the initial value problem (3.1)-(3.2).

Analogous to Section 2.3, in Section 3.1 we concentrate on the treatment of linear
second-order DAEs with variable coefficients. We shall prove that the quantities de-
veloped in Section 2.3 are still invariant under local equivalence transformations, and
present a condensed form under a set of regular conditions. Later, in Section 3.2, based
on the results of Section 3.1, we describe the solution behaviour (solvability, uniqueness
of solutions and consistency of initial values) of the higher-order system (3.1) and of
the initial value problem (3.1)-(3.2).

It should be pointed out that the work in this chapter is carried out along the lines of
the work with respect to linear first-order DAEs with variable coefficients in [28, 29, 34];
for a comprehensive exposition, we refer to [34], Chapter 3.
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3.1 Condensed Form for Triples of Matrix-Valued
Functions

In this section, we shall mainly treat systems of linear second-order DAFEs with variable
coefficients

M)z(t) + Ct)x(t) + K(t)x(t) = f(t), tE€ [to,t], (3.3)
where M(t), C(t), K(t) € C([to, t1], C™*™), f(t) € C([to,t1], C™), possibly together with

initial value conditions
x(to) = xo, T(ty) = :cgl], xo,x([)l] e C". (3.4)

Using similar techniques as those employed in Section 2.3, our main objective in this
section is to develop a set of invariants and a condensed form under (global) equiva-
lence transformations for the triple (M (t), C(t), K(t)) of matrix-valued functions which
satisfy certain regularity conditions in terms of the set of invariants.

First, let us make clear the concept of (global) equivalence relation between time
varying systems of DAEs. Instead of the constant transformations in the case of con-
stant coefficient system (2.11), in the case of variable coefficient system (3.3) we consider
the time varying coordinate transformations given by z(¢) = Q(¢)y(t) and premultipli-
cation by P(t), where Q(t) € C*([to, t1], C"*™) and P(t) € C([to, 1], C™*™) are pointwise
nonsingular matrix-valued functions. These changes of coordinates transform (3.3) to
an equivalent system of DAEs

N()ii() + C0)i(t) + K (t)y(0) |
= POMMQWIH + (POCHRW) +2POMNQ()) (1) (3.5)

+ (POEOQE) + POICHQW) + POMEEW) ) y(t) = P()F (1)

Obviously, the relation z(t) = Q(t)y(t) (or y(t) = QL(t)z(t)) gives a one-to-one cor-
respondence between the two corresponding solution sets of the system (3.3) and the

system (3.5). If we use the notation of triples (M (t), C(t), K(t)) and (M(t), C(t), K(t))
to represent the systems (3.3) and (3.5) respectively, then we can write the equivalent
relation in terms of matrix multiplications:
- Q) 20(t) Oft)
[M(¢),C(t), K(1)] = PO[M@),C@), K@) | 0 Q@) Q1) |. (3.6
0 0 QW
In the general case of Ith-order system (3.1), if we make use of the notation of an
(I+1)-tuple (A;(t),..., A1(t), Ap(t)) of matrix-valued functions to represent the system

(3.1), we have the following definition of equivalence of variable coefficient systems via
time varying transformations.
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Definition 3.1 Two (I+1)-tuples (Ai(t), ..., A1(t), Ao(t)) and (Bi(t), ..., Bi(t), Bo(t))
of matriz-valued functions with A;(t), B;(t) € C([to, t1],C™*™), i =0,1,...,1, are called
(GLOBALLY) EQUIVALENT if there are pointwise nonsingular matriz-valued functions
P(t) € C([to, t1],C™™) and Q(t) € C'([to, t1], C™™) such that

[By(t), ..., Bo(t)]

= P()[Ai(t), ..., Ao(t)] : ;

where (Z) = jl/(j—10)li! denotes a binomial coefficient, i,7 € N, i < j. If this is the case
and the context is clear, we still write (A;(t), ..., A1(t), Ao(t)) ~ (By(t), ..., Bi(t), Bo(t)).

As already suggested by the definition, the following proposition shows that relation
(3.7) is an equivalence relation.

Proposition 3.2 Relation (3.7) introduced in Definition 3.1 is an equivalence relation
on the set of (I + 1)-tuples of matriz-valued functions.

Proof. We shall show relation (3.7) has the three properties required of an equivalence
relation.

1. Reflexivity: Let P(t) = I,, and Q(t) = I,,. Then, we have (A;(¢),..., A1(t), Ao(t)) ~
(Al(t)a SR Al(t)v AO(t )

2. Symmetry: Assume that (A;(¢),..., Ai(t), Ao(t)) ~ (Bi(t),..., Bi(t), Bo(t)) with
pointwise nonsingular matrix-valued functions P(t) and Q(t) that satisfy (3.7).
We shall prove that (By(t),...,Bi(t), Bo(t)) ~ (Ai(t),...,Ai(t), Ao(t)). Note
that, from the identity Q(¢+)Q~*(t) = I it follows that any order derivative of
Q(t)Q1(t) with respect to ¢ is identically zero. Then, by this fact, it is immediate
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to verify that

QW) ()&e® - ()i Q)
Q) (4w () 4=Q()
QW) ()M
Q) |
Q') (HEe™'® o ()@mQT)
Q' (Ee'® (i) =@ (®)
. : =1.
Q) ()2l
Q7\(t)
(3.8)
Hence, by (3.7) and (3.8), we have
[A(D), -, Ao()] = PTH®)BI(B), ..., Bo (1)
Q) (gQ'w o Qaee
Q' (PEe® - (C)E=eT®)

namely, (By(t), ..., Bi(t), Bo(t)) ~ (Ai(t),. ... Ai(t), Ao(t)).

. Transitivity: Assume that (A;(¢),..., Ao(t)) ~ (Bi(t),..., Bo(t)) with pointwise
nonsingular matrix-valued functions P (¢) and @1 (¢) and that (By(t), ..., Bo(t)) ~
(Ci(t),...,Co(t)) with pointwise nonsingular matrix-valued functions P(t) and
(Q)2(t), which satisfy (3.7), respectively. We shall prove that (A;(t),..., Ao(t)) ~
(Ci(t),...,Co(t)). By the product rule and Leibnitz’s rule (cf. [6], p. 203) for
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differentiation, we can immediately verify that

X ORROF U (F 230
) (g - (Z )C’ftz rQ1(1)
Al (a0
Q1(t)
Q2(t) (1) ZQ2(1) ()dtlngQ( )
Q) ()EQW - () i)
g (3.9)
Q:0t) (1) %92 (t)
) Q2(t)
Q) (1) (@u(DQ2(1) - ()dtlz (@1(1)Q2(1)
Qi) - (D)) g (@H)Q2(1))
(1) (Qi(1)Q2(1))
Q1(t)Q2(t)
Thus, by the assumptions and (3.9), we have
[Ci(t),...,Co(t)] = Pi(t)Pa(t)[Ai(t), ..., Ao(t)]
[ Q@) () (@O@:0) - () (@) ]
Q1(t)Q2(1) - (i2h L (Q1()Q2(1))
(1) (@ (1Q:(1)
L Q1(1)Q2(t)
namely, (A;(t),..., A1(t), Ag(t)) ~ (Ci(t), ..., Ci(t), Co(t)). O

In order to introduce a set of reqularity conditions under which we can get a con-
densed form via (global) equivalence transformations (3.6) for the triple (M(t), C(t), K(t))
n (3.3), we need the concept of (local) equivalence relation between two triples of ma-
trices.

Two triples (M,C, K) and (M,C,K), M,C,K,M,C,K € C™", of matrices are
called (LOCALLY) EQUIVALENT if there exist matrices P € C™*™ and @, A, B € C"*",
P, @) nonsingular, such that

M =PMQ, C=PCQ+2PMA, K =PKQ+ PCA+ PMB. (3.10)

In general, we have the following definition of (local) equivalence relation between
two tuples of matrices.
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Definition 3.3 Two (I+1)-tuples (Ay, ..., A1, Ag) and (By, ..., By, By), A;, B; € C™*",

i=0,1,...,1, 1 € Ny, of matrices are called (LOCALLY) EQUIVALENT if there ezist ma-
trices P € C™™ @, Ry, ..., R, € C"", P, Q nonsingular, such that
[ Q (i)R1 (ﬁ)Rz T
Q (A - (D) R
[By,...,By] = P[A,, ..., A : , (3.11)
Q ()R
i Q@

Again, we write (A, ..., A1, Ag) ~ (B, ..., By, By) if the context is clear.

Proposition 3.4 Relation (3.11) introduced in Definition 3.3 is an equivalence relation
on the set of (I + 1)-tuples of matrices.

Proof. The proof can be immediately carried out along the lines of the proof of Propo-
sition 3.2. ]

Recalling the condensed form and the invariants for matrix triples obtained under
(strong) equivalence transformations in Section 2.3, we can introduce a set of invari-
ants for matrix triples under local equivalence transformations, as the following lemma
shows.

Lemma 3.5 Under the same assumption and the same notation as in Lemma 2.9, the
quantities defined in (2.30) are invariant under the local equivalence relation (3.10) and
(M, C, K) is locally equivalent to the form (2.28).

Proof. Since the strong equivalence relation (2.17) is the special case of the local
equivalence relation (3.11) by setting R; = 0,7 = 1,...,(, by Lemma 2.9, it is immediate
that (M, C, K) is locally equivalent to the form (2.28).

In view of the proof of Lemma 2.9, it remains to show that the quantities defined
in (2.30) are invariant under the local equivalence relation (3.10). Here, again, we just
take sMCK) as an example. Indeed, let (M, C, K) and (M, C, K) be locally equivalent,
namely, identity (3.10) holds. Let the columns of Z; form a basis for N'(MT), and let
the columns of Zs form a basis for N'(M7T) NN (CT). Then, from (3.10) it follows that
the columns of Z; := PTZ; form a basis for N'(MT). Since, for any z € Zs,

QTMTPTz=0, QTCTPTz+24TMTPT2 =0,
if and only if
MT'PTy =0, CTPTz=0,
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it follows that the columns of Z3 := PTZs form a basis for N (MT) NN (CT). Thus,
the invariance of sMSK) follows from

SMCK) = qim (R(MT) N R(CTZ:) N R(KTZ;»,))
= dim (R(QTMTPTYNR(QTCTPTZ, + 2AT MT PT 7))
N R(QTKTPTZy + ATCTPT 7, + BTMTPTZ3)>
= dim (R(QTMTPTYNR(QTCTPTZ,) N R(QTKTPT23)>
— dim (R(MTPT) A R(CTPTZ;) N R(KTPTZg))
= dim (R(MT)NR(CTZ) N R(KT Z5))

_ GMCK)

Similarly, the invariance of the other quantities in (2.30) can be proved. U

Now, from the matrix triple (M, C, K) passing to the triple (M (t),C(t), K(t)) of
matrix-valued functions, we can calculate, based on Lemma 3.5, the characteristic quan-
tities in (2.30) for (M(t),C(t), K(t)) at each fixed value t € [to,t1]. Then, we obtain
nonnegative-integer valued functions

7, a, sMOK) SCK) ) (MO) (MK q(2) 4 4y - [tg, t,] — Ny.

For the triple (M(t), C(t), K(t)) of matrix-valued functions, in order to derive a con-
densed form which is similar in form to the condensed form (2.28) for the matrix triple

(M, C, K), we introduce the following assumption of reqularity conditions for the triple
(M(t),C(t), K(t)) on [to, ta]:

r(t) =7, a(t) = a, sMOE) (1) = sMOK) | 5(CK) (1) = 5(CK)

y S ’
dV(t) = dW, sMO)(¢) = sMO) | sMK) (1) = (MK, (3.12)

By (2.30) and (3.12), it immediately follows that d®(t), v(t), u(t) are also constant on
[to, t1].

We can see that the regularity conditions (3.12) imply that the sizes of the blocks
in the condensed form (2.28) do not depend on t € [to, t1]. Then, the assumption (3.12)
allows for the application of the following property of a matrix-valued function with a
constant rank, which may be regarded as a generalization of the property of a matrix
shown in Lemma 2.6.

Lemma 3.6 (/3/], p. 71) Let A(t) € C'([to,t1],C™"), | € NgU{oo}, and rank A(t) =
r, r € No, for all t € [to,t1]. Then there exist pointwise unitary (and therefore non-
singular) matriz-valued functions U(t) € C'([to, t1], C™™) and V (t) € C'([to, t1], C™*"),
such that

UM () AV (£) = [ () 0 ] , (3.13)



where $(t) € C([to, t1], C™*") is nonsingular for all t € [ty,t1].

Using Lemma 3.6 we can then obtain the following global condensed form for triples
of matrix-valued functions via global equivalence transformations (3.6). For convenience
of expression, in the following condensed form and its proof, we drop the subscripts of
the blocks and omit the argument ¢ unless they are needed for clarification.

Lemma 3.7 Let M(t),C(t), K(t) € C([to, t1], C™*™) be sufficiently smooth, and sup-
pose that the reqularity conditions (3.12) hold for the local characteristic values of
(M(t),C(t), K(t)). Then, (M(t),C(t), K(t)) is globally equivalent to a triple

(M (t),C(t), K(t)) of matriz-valued functions of the following condensed form

[ I k) 0 0 0 0 0 0 01 0 0 c cC 0 0 c c
0 IS(MC) 0 0 0O 0 0 o 0 0 c C 0 0 c cC
0 0 I (mK) 0 0 0 0 o g 8 g g 8 8 g g
0 0 0 I 0 0 0 0 o 0 0 o 1 0 0 0
0 0 0 0 0 0 0 o0 s(CK)

0 0 0 0 0O 0 0 O 0 0 0 0 0 Tyy 00
0 0 0 0 0 0 0 0 I (MCK) 0 0 0 0 0 0 0
0 0 0 0 0O 0 0 O 0 Imcy 0 0 0 0 0o o0
0 0 0 0 0 0 0 O 0 0 0o 0 0 0 0 o0
0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0 o0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o0
0 0 0 0 o o o ol L 0 0 0 0 0 0 0 0
0 K 0 K 0 K 0 K Szng()
0 K 0 K 0 K 0 K s
0 K 0 K 0 K 0 K S(MEK)
0 K 0 K 0 K 0 K a2
0 K 0 K 0 K 0 K S(CK)
0 K 0 K 0 K 0 K e,
0 K 0 K 0 K 0 K S(MCOK) |
0 K 0 K 0 K 0 K LMO)
0 0 0 0 0 0o I, © .
0 0 0 0 Ix) 0 0 0 Yo
0 0 I uk)y O 0 o o0 o LMK

I (mckxy O 0 0 0 0o 0 o0 L(MCOK)
0 0 0 0 0 o o0 o

(3.14)

All blocks except the identity matrices in (3.14) are again matriz-valued functions on
[tO; tl] .

Note that C54(t) = 0 in (3.14) whereas C5 4 in (2.28) may be a nonzero matrix, which is
the only difference in form between condensed forms (3.14) and (2.28). This difference
is due to the equivalence relation (3.5) via time varying transformations. C54(t) =0 is
obtained by solving an initial value problem for ordinary differential equations; see the
details of the proof at the end of page 48.

Proof. The proof of Lemma 3.7 is given in Appendix (on page 48) to this chapter. [
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3.2 The Solution Behaviour of Higher-Order Sys-
tems of DAEs

In this section, we shall briefly discuss the solution behaviour (solvability, uniqueness
of solutions and consistency of initial conditions) of higher-order systems of DAEs with
variable coefficients and of the initial value problems associated with them.

First, using the results obtained in Section 3.1, we discuss the solution behaviour of
the second-order system (3.3) and of its associated initial value problem (3.3)-(3.4).

For the triple (M(t), C(t), K(t)) of matrix-valued functions associated with (3.3), we
assume that M(t), C(t), K (t) are sufficiently smooth and the regularity conditions (3.12)
hold. Thus, based on the condensed form (3.14) for (M(t), C(t), K(t)) which is obtained
in Lemma 3.7, it is clear that, as in the case of constant coefficients (Section 2.4), we can
write down the system of differential-algebraic equations corresponding to (3.14), and
apply those differentiation-and-elimination steps (on pages 24-25) to it. Then, we can
again compute the characteristic values r,a, sMCK) (CK) qh) (MC) (ME) q(2) 4 4
and the condensed form and then proceed inductively to the final stage. Here, the
only difference of the case of variable coefficients from the constant case is that, in
order to carry out the procedure to the final stage, we must assume that at every stage
of the inductive procedure, the regularity conditions (3.12) hold. If this is the case,
then it is immediate that we can obtain, finally, a theorem which is parallel to Theorem
2.12. From the final theorem we can directly read off the solution behaviour of (3.3) and
of (3.3)-(3.4), and obtain a consequence which is parallel to Corollary 2.13. Clearly,
there is no difference in form between the final theorem and Theorem 2.12 if in the
former case we omit the argument ¢ in the variable coefficients, nor is there between
the consequence and Corollary 2.13. Therefore, here, for the sake of space of writing
we do not state them again.

In addition, it should be pointed out that, at this writing, since we do not know
whether two different but globally equivalent triples of matrix-valued functions, after
the differentiation-and-elimination steps are applied to them respectively, will lead to
new triples with same characteristic values r, a, stMCK) s(CK) q(1) (MC) ((MK) q(2) 4,
and u, we can not guarantee that these values obtained in every step of the above
inductive procedure are globally characteristic for the triple (M (t),C(t), K(t)).

Analogously, in the general case of higher-order systems of DAEs with variable
coefficients, we can obtain a final theorem which is similar in form to Theorem 2.19,
and its consequence similar to Corollary 2.20, which can show the solution behaviour
of (3.1) and of (3.1)-(3.2). For the same reason, we omit them here.
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Appendix: Proof of Lemma 3.7. By the global equivalent relation (3.6) and

Lemma 3.6, we obtain the following sequence of globally equivalent triples of matrix-

valued functions.

(M,C,K)

c
c Ufcov }”{

c

([ o]

//
g
XX
=
g 1
— KO X K
- I/
oo MK KN NN Siaialals
KO XK
omo —— NXKNMNENX ik XXXXKX
) KO X K
R M NEXNMEK vk KXXXX
TN — -
1 i MEMEM ik KKXKXX
N M oo o VO ooco
. : . i X
KK NN 1 [N NN
~ o o - CLese vuooo - ~
NN NN _|_2 oo co~o0oo oo —~o o LU oo o C%OOO
- ) + o~ o COooo VO ooco com~OO Oﬂ
Voo Yoo Yoo @ COe~e ocoo~o UUooo ©
VO ~©° o~ O o~ O COHC _ R _ : R _ oo o—~o eee~e
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: — —_— ! — - cocoooo coocoo oo oo o eeeee
_000_ _000_ _000_ °ee T 8o oo S 8o oo cococoo °e°ees
o o o = = .
coo ooco oo o o~o oo egeee
~ o o ~ o o ~ o o Loo Syeee Syeee ~ococoo ~o oo o
. - - L D L L L )

{

(where pointwise nonsingular matrix-valued function Q1(t) is chosen as the solution of

)

C2,2(4)Q1(t), t € [to,t1], Q1(to)

_1
2

the initial value problem Q1(t)
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Chapter 4

Regularity and Singularity of
Matrix Polynomials

4.1 Introduction

Now let us turn to the second part of this thesis, in which we shall study the properties
of reqularity and singularity of matrix polynomials.

A polynomial with matrix coefficients is called a matriz polynomial, or a polynomial
matriz if we regard it as a matrix whose elements are polynomials. It is well known
that matrix polynomials play an important role in the analytical theory of elementary
divisors, i.e., the theory by which a square matrix can be reduced to some normal
forms (esp. the Smith canonical form and Jordan canonical form) of which important
applications have been made to the analysis of differential and difference equations; see,
for example, Gantmacher [14] (Chapter VI), Lancaster and Tismenetsky [36] (Chapter
7).

The motivation for our study of regularity and singularity of matrix polynomials
comes mainly from two sources. One is the study of differential-algebraic equations,
which is due to the close connection, as we have presented in Chapter 2, between
regularity and singularity of a matrix polynomial and the properties of the solutions of
the system of DAEs which is associated with the matrix polynomial; the other is the
study of the polynomial eigenvalue problems:

ANz =0, z£0; y"AN) =0, y #0;

where A(\) = 22:0 N A; is an n X n matriz polynomial of degree I, A; € CV", i =
0,1,...,1, Ay # 0, the nonzero vector x € C" (respectively, y € C") is the right
(respectively, left) eigenvector associated with the eigenvalue .

For regular matrix polynomials, a spectral theory has been well established (see
Lancaster [35], Gohberg, Lancaster, and Rodman [17], and Lancaster and Tismenetsky
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[36], Chapter 14). This theory allows us to solve, at least theoretically, many poly-
nomial eigenvalue problems which arise not only as the underlying algebraic problems
of the analysis and numerical solution of higher order systems of ordinary differential
equations and difference equations, but also in linear algebra problems (for example,
the constrained least squares problems and signal processing problems; cf. Meerbergen
and Tisseur [44]). However, for non-regular, or in another term, singular matrix poly-
nomials, especially those of degrees greater than or equal to 2, the general theoretical
analysis has been largely ignored; see, for example, the concluding remark by P. Van
Dooren and P. Dewilde [59] (pp. 575-578).

Traditionally, for polynomial eigenvalue problems, especially those of degrees greater
than or equal to 2, most research results including spectral analysis, canonical forms,
linearization, Jordan pairs, etc., and numerical methods such as numerical algorithms,
model reduction, and perturbation analysis (conditioning, backward error, pseudospec-
tra), etc., are mainly based on the reqularity assumption that the matriz polynomial
A(N) is regular, namely, it is square and its determinant det(A(X)) is not identically
equal to zero. For more details, see, for example, [17] and [44]. There are two major
reasons for the regularity assumption. The first is that the regular case frequently oc-
curs in applications. Take, for example, the quadratic eigenvalue problem associated
with a gyroscopic system (cf. [44] and the references therein):

Q) = N’M + \C + K,

where M,C, K € C™", M = M" positive definite, C = —C¥, and K = K. Since
the leading coefficient matrix M is nonsingular, the determinant of the quadratic ma-
trix polynomial Q(\) is a polynomial in A of degree 2n, and therefore Q(\) is regular.
Such regular polynomial eigenvalue problems with a nonsingular leading coefficient ma-
trix frequently arise from the analysis of structural mechanical and acoustic systems,
electrical circuit simulation, fluid mechanics, and modelling microelectronics mechani-
cal systems; see [44] and the references therein. The second reason for the regularity
assumption is that the study of regular matrix polynomials clearly shows the main fea-
tures of spectral theory. Take, for instance, the monograph of Lancaster [35], as well as
that of Gohberg, Lancaster, and Rodman [17], which has regular matrix polynomials
as its whole subject.

However, there are applications from which singular polynomial eigenvalue problems
of degrees greater than or equal to 2, not to mention singular generalized eigenvalue
problems, arise, as the following examples show.

Example 4.1 (Signal processing) [/4/ Consider the symmetric quadratic eigenvalue
problem

A()\)U = ()\2142 + )\Al + A())’U = 0,
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where Ay, Ay, Ay € R+ 7 and

0
A= AT >0, A =AT, A= |2 Y.
0 I,
Since the leading coefficient matrix A, is singular and the last coefficient matrix A
may also be singular, the determinant of the quadratic matrix polynomial A(\) may
be identically equal to zero. Therefore, A(A) may be a singular matrix polynomial. ¢

Example 4.2 (Vibration of rail tracks) [/1]/Consider the complex quadratic eigen-
value problem

1
—(M[" + £My + K*M)y =0,

where k # 0, My, My € C"" and M, is singular. Since the leading coefficient matrix
M, and the last M7 of the corresponding matrix polynomial A(X) := A\ M; +AMy+ M

are singular, A(\) may be singular. O

In addition, although the study of singular matrix pencils, which can be regarded
as matrix polynomials of degree 1, has a long history (see, for example, Gantmacher
[15], Chapter XII), some related theoretical and numerical aspects have not yet been
completely clarified or solved, such as geometrical characterization of singular matrix
pencils (we shall return to this topic in Subsection 4.2.4), detecting the regularity or
singularity, and the nearness to singularity problem for regular matrix pencils (see Byers,
He, and Mehrmann [4]).

Thus, from a theoretical and/or numerical point of view, the following tasks natu-
rally arise:

1 To obtain characterizations of the reqularity and singularity of matrix polynomials.
2 To detect whether or not a given matrix polynomial is reqular.

3 To find a solution of or a useful characterization for the nearness to singularity
problem for a regular matrix polynomial.

The investigations of the above tasks will be carried out in this chapter. In Section
4.2 we present sufficient and necessary conditions for the singularity and regularity of
matrix polynomials, which lay a theoretical foundation for the investigations conducted
in the subsequent sections 4.3 and 4.4. In addition, we will present a simple sufficient
and necessary geometrical characterization of the column-singularity of rectangular ma-
trix pencils, as well as a canonical form, under equivalence transformations (2.17), for
2 x 2 singular quadratic matrix polynomials. In Section 4.3 we will present a natural
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approach to detect the regularity or singularity of a given square matrix polynomial
via the rank information of its coefficient matrices. At last, Section 4.4 deals with the
nearness to singularity problem for square and regular matrix polynomials. We will give
a definition, some general properties, and theoretical characterizations of the nearest
distance to singularity, and derive two types of lower bounds on the nearest distance.

4.2 Sufficient and Necessary Conditions for Regular
and Singular Matrix Polynomials

In this section, after giving definitions and examples and stating our main idea in
Subsection 4.2.1, we will present in Subsection 4.2.2 the main contribution of our in-
vestigation — Theorem 4.32 — which describes sufficient and necessary conditions for
the singularity of matrix polynomials. In Subsection 4.2.3, Theorem 4.32 will lead to
corollaries which give sufficient and necessary conditions for the singularity and reqular-
ity of matrix polynomials. Finally, Subsection 4.2.4 deals with column-singular matrix
pencils and 2 x 2 singular quadratic matrix polynomials.

4.2.1 Definitions and Main Idea

To set notation, we begin with the definition of matrix polynomials.

Definition 4.3 A MATRIX POLYNOMIAL A()) over C (or R) is a polynomial in \ with
matrix coefficients:

!
AN =D NA = NA+ N TA L 4+ M+ A, (4.1)
i=0
where X € C and the matrices A;, i = 1,...,1, are from C™*™ (or R™*"™).

If m = n, then the matriz polynomial A(\) is called SQUARE, and the number n is
called the ORDER of the matrix polynomial.

The number [ is called the DEGREE of the matriz polynomial if A; # 0.

If m = 1 (respectively, n = 1), then the matriz polynomial A(X) is also called a
ROW- (respectively, COLUMN-) VECTOR POLYNOMIAL.

Remark 4.4 We may represent the matrix polynomial A(\) in the form of a POLY-
NOMIAL MATRIX , i.e., in the form of an m x n matrix whose elements are polynomials
in A:

A(N) = [ai,j(k)]m»’n = [aﬁ?Al + agfj*l))\l*l +-- a(q)]

— )
i,j=1 Y 1 5=1
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where [ is the degree of the matrix polynomial. If m = 1 (respectively, n = 1), then the
polynomial matrix A(\) is also called a POLYNOMIAL ROW- (respectively, COLUMN-)
VECTOR. {

In order to introduce the concepts of reqularity and singularity of matrix polyno-
mials, we need the concepts of the minor and rank of a matrix polynomial which are
natural generalizations of those of the minor and rank of a matrix, as follows.

Definition 4.5 Let A(\) be an m x n rectangular matriz polynomial. A MINOR OF
ORDER p (1 < p < min(m,n)) of A(N) is defined to be the determinant of a p X p
sub-matriz polynomial of A(X\) obtained from A(N) by striking out m —p rows and n—p
columns. If the retained rows and columns are given by subscripts

1<y << <3, <m, 1< <p<---<g<n,

respectively, then the corresponding p-th-order minor is denoted by

i Gy e i
AN oo Po) i=det [a;, , (M]P_, .
W (1) e det o

Definition 4.6 ([14], p.139; [36], p.259) An integer r is said to be the RANK of a
matrix polynomial if it is the order of its largest minor that is not identically equal to
zero.

Remark 4.7 By Definition 4.6, the rank r of a matrix polynomial A(\) can be repre-
sented as:

r = rank(A()\)) = maxrank(A(v)).

veC
Obviously, » < min{m, n}. O
Example 4.8 We consider the following matrix polynomials:
1 2 1 0 A+1 2X
(@) Let AN :=X|3 0|+|0o0of=]| 3x o0 |.
11 0 0 A A
Then, rank(A;()\)) = 2.

(A—1)2 A—1

2 0
(b) Let Aa(N) := \? { 1 0
10 AN —1) A

| |
+
>
—
I o
= N
— = N
| |
+
—
\
O»—lw
Oll\D
=
| |
I

{ 2A+1)(A—1) 200 +1)

Then, rank(As(A)) = 1.
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(0) LetAg(/\):A[g H+[8 H[g 23:21].

Then, rank(As(\)) = 1.

(d) LetA4(/\):)\2{(2) g]JrAH g}at[g ?}{222 23].

Then, rank(A4(A\)) = 1.
O

The idea involved in our investigation is in essence quite simple and natural, and
can be regarded as a direct generalization of the corresponding concept for matrices.
Let us first recall the definition and a basic property of reqularity and singularity of
matrices.

Definition 4.9 A matriz A € C"™*" is said to be COLUMN-REGULAR, or to have FULL
COLUMN RANK, if rank(A) = n; otherwise, it is said to be COLUMN-SINGULAR, or
COLUMN-RANK DEFICIENT. A is said to be ROW-REGULAR, or to have FULL ROW
RANK, if rank(A) = m; otherwise, it is said to be ROW-SINGULAR, 0or ROW-RANK
DEFICIENT.

Proposition 4.10 A matriz A € C"™*" is column-regular (respectively, column-singular)
if and only if its conjugate transpose A" € C™™ (or transpose AT € C"™) is row-
reqular (respectively, row-singular).

Similarly, we give the following definition and propositions of regularity and singu-
larity of matrix polynomials.

Definition 4.11 Let A(\) = 22:0 N A; be an m x n matriz polynomial of degree I,
where m,n € N, [ € Ng, A; € C™*" i =0,...,l. Let r be the rank of A(\).

If r < n, then A(X) is said to be COLUMN-SINGULAR; otherwise, if r = n then the
matrix polynomaial is said to be COLUMN-REGULAR.

If r < m, then A(X) is said to be ROW-SINGULAR; otherwise, if r = m, then A(\)
is satd to be ROW-REGULAR.

If A(N) is both column- and row-regular, i.e., ¥ = m = n, then it is said to be
REGULAR; if r < m = n, then it is said to be SINGULAR.

Remark 4.12 In order to be consistent with the concepts of the regularity and singu-
larity of matrix pencils (cf. Section 2.4 and Gantmacher [15], p. 25, Def. 2), we always
call a non-square matrix polynomial SINGULAR, though by Definition 4.11 it may be
column-regular or row-regular. O
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By Definition 4.11, it is clear that a square matrix polynomial is column-regular if
and only if it is row-regular. Proceeding from Definition 4.11, the following proposition
describes, in terms of determinants, the regularity and singularity of a square matrix
polynomial.

Proposition 4.13 Let A(\) = Zli:O N A; be an n x n matriz polynomial of degree I,
wheren € N, 1 € Ng, A; € C"*" i =0,...,l. Then A(X) is singular if and only if

YA€ C: det(A(N)) = det(MNA + NP4 +---+ Ay) = 0.
Proof. By Definition 4.11, the proof follows from the fact that

A(\) is singular
<= rank(A(\)) = max rank(A(v)) <n
ve

< VYA€ C: det(AN) =det(\NA + X714 +---+ Ag) = 0.

O

In Example 4.8, we can see by Definition 4.11 that the matrix polynomial A;(A) is

column-regular and at the same time row-singular, As(A) is not only column-singular
but row-singular, and A;()), ¢ = 3,4, are singular.

Remark 4.14 From the point of view of polynomial eigenvalue problems, most of the
related literature agree on the definition of singularity of square matrix polynomials
described in Proposition 4.13, which is in essence consistent with Definition 4.11; see,
for example, Gantmacher [15] (Chapter XII), Gohberg, Lancaster, and Rodman[17],
Lancaster and Tismenetsky [36] (Chapter 7 and 14), Van Dooren and Dewilde [59], and
Meerbergen and Tisseur [44], etc. However, form the point view of matrix polynomials
themselves, there may be different definitions of regularity and singularity of matrix
polynomials with respect to different objectives of study. Take, for example, the one
in Gantmacher [14] (Chapter IV), namely, a matrix polynomial is called regular if it
is square and its leading coefficient matrix is nonsingular. This definition, which is a
special case of Definition 4.11 and used in [14] in studying the right and left division
of matrix polynomials, also appears in the earlier monograph of Lancaster [35] which
concentrates on the study of polynomial eigenvalue problems that arise in dynamic
vibrating systems. In this chapter, since the motivation for our study proceeds mainly
from polynomial eigenvalue problems which arise in a wide variety of applications, we
naturally prefer Definition 4.11 to the one in [14] and [35]. O

From Definition 4.6 it immediately follows that the rank of a matrix polynomial
is equal to that of its conjugate transpose (or of its transpose). Hence, the following
statement is plain.
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Proposition 4.15 A matriz polynomial A(N) of size m X n is column-reqular (re-
spectively, column-singular) if and only if its conjugate transpose A™(\) (or transpose
AT(X)) is row-regqular (respectively, row-singular) .

Thus, throughout this chapter we shall mainly concentrate our discussion on the
column-regularity and column-singularity of rectangular matrix polynomials, since the
results of the column cases can be parallelly extended by Proposition 4.15 to those of
the row cases.

Now let us recall a fundamental result of the relation between a linear subspace and
its matrix representation whose columns (or rows) span the whole linear subspace.

Proposition 4.16 (/36/, pp.93-4) A matriz A € C™*" is column-singular if and only
if its column vectors are linearly dependent in C™, or in other words, there exists a
nonzero vector x € C" such that Ax = 0.

Along the same lines, our main idea is to prove that a matrix polynomial A(\)
is column-singular if and only if there exists a vector polynomial z()\), which is not
identically equal to zero, such that A(A\)x(A) = 0. As far as singular matrix pencils are
concerned, in Chapter XII of [15], in order to prove the Kronecker canonical form, it is
asserted that the equation (A; A + Ag)x(A) = 0 has a nonzero vector polynomial x(\)
as its solution for any given singular matrix pencil A1\ + Ay. However, this result is
not proved; see [15] p.29. In the next subsection, we shall generalize this statement to
the cases of higher-degree singular matrix polynomials and prove it. More important,
we shall give an attainable upper bound on the least possible degree of such nonzero
vector polynomials z(\). The upper bound is expressed in terms of the rank, or the
minimum of the row and column dimensions, of the related singular matrix polynomial,
and conversely, it can be regarded as a criterion for determining or detecting in finite
steps whether a given matrix polynomial is column-regular or column-singular.

4.2.2 Sufficient and Necessary Conditions for Singularity I

For any given column-singular matrix polynomial A(\), our main objective in this
section is to construct a nonzero vector polynomial x(A) such that A(A)z(\) = 0 and,
at the same time to obtain an upper bound on the least possible degree of such z(\).
In order to achieve this objective, we will conduct our investigation in three stages.
First, we will reduce, via left-equivalence transformations, a given matrix polynomial
A(A) to a matrix polynomial B()) in an upper-triangular form. Then, we will estimate
upper bounds of the degrees of some minors of the upper-triangular matrix polynomial
B(A). Finally, we will construct by Cramer’s rule a nonzero vector polynomial z(\)
such that B(A)z(A) = 0, which is equivalent to A(A)z(A) = 0, and we will, based on the
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estimates presented in the second stage, give an attainable upper bound to the least
possible degree of such x(\).

Since the main results required in the first stage have been obtained in the literature
(cf., for example, [14] (Chapter VI), [36] (Chapter 7)), here, for the sake of completeness
and coherence, we just present a review of some definitions and results which will be
used in the later stages.

We start by defining elementary row and column operations for a matrix polynomial
and the corresponding elementary matrix polynomials that are to be applied to reduce
the matrix polynomial to an upper- (or lower-) triangular form by means of equivalence
transformations.

Definition 4.17 (Elementary operations) (/14], pp.130-1; [36], p.253) The follow-
ing operations are referred to as ELEMENTARY ROW and COLUMN OPERATIONS on a
matrix polynomaial:

(1) multiply any row (column) by a nonzero ¢ € C;
(2) interchange any two rows (columns);

(8) add to any row (column) any other row (column) multiplied by an arbitrary poly-
nomial b(\) over C,

where row elementary operations are also called LEFT elementary operations, and col-
umn elementary operations are also called RIGHT elementary operations.

Definition 4.18 (Elementary matrix polynomials) (/14/, pp.131-2; [36], pp.25}-
5) The following square matriz polynomials EY, E®?) and E®()\) are called ELEMEN-
TARY MATRIX POLYNOMIALS OF TYPES 1, 2, AND 3, respectively:

1 -
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E®(\) = DU or E®()) =

where ¢ € C, ¢ # 0, and b(\) is an arbitrary polynomial over C.

Remark 4.19 The elementary matrix polynomials of types 1 and 2 are also called
ELEMENTARY MATRICES OF TYPES 1 and 2; as for the elementary matrix polynomials
of types 3, if b(\) is a nonzero number, then E® degenerates into an ELEMENTARY
MATRIX OF TYPE 3. O

Remark 4.20 From Definitions 4.17 and 4.18 it immediately follows that perform-
ing an elementary row (respectively, column) operation on an m X n matrix polyno-
mial is equivalent to premultiplication (respectively, postmultiplication) of the matrix
polynomial by an m x m (respectively, n X n) elementary matrix polynomial of the
corresponding type. O

Some simple but important properties of elementary matrix polynomials should be
mentioned, such as: the determinant of every elementary matrix polynomial is a nonzero
constant, and, the inverse of every elementary matrix polynomial is also an elementary
matriz polynomial. Here, a matrix polynomial B(\) is called the inverse of a matrix

polynomial A(\), and vice versa, if B(A\)A(A) = A(\)B(A) = 1.

Definition 4.21 (/36], p.247.) An n x n square matriz polynomial A(X) with nonzero
constant determinant is referred to as UNIMODULAR matriz polynomial.

Clearly, from Definition 4.21 it follows that elementary matrix polynomials are uni-
modular.

Making use of the concepts of left and right elementary operations, we can give the
following definition of equivalence transformations.

Definition 4.22 ([14], p.132.) Two m x n matriz polynomials A(X\) and B(\) are
said to be 1) LEFT-EQUIVALENT, 2) RIGHT-EQUIVALENT, 3) EQUIVALENT, or to be
connected by 1) a LEFT-EQUIVALENCE TRANSFORMATION, 2) a RIGHT-EQUIVALENCE
TRANSFORMATION, 3) an EQUIVALENCE TRANSFORMATION, if one of them can be
obtained from the other by means of a finite sequence of 1) left elementary 2) right
elementary, 3) left or right elementary operations, respectively.
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It follows from the equivalence of elementary operations and operations with elemen-
tary matrix polynomials that, A(\) and B(\) are 1) left-equivalent, 2) right-equivalent,
3) equivalent, if and only if there are elementary matrix polynomials Ej(\), Ea()),
ooy Ek(N), Exg1(N), ..., Eg(XA) such that 1) B(A) = P(M\)A(N), 2) B(A) = A(N)Q(N),
3) B(A) = P(A)AMN)Q(N), respectively, where P(\) = Ei(A)--- Ei(A\), and Q(\) =
Eri1(A) -+ Es(N).

Proposition 4.23 (/36], pp.259-60.) The rank of a matriz polynomial is invariant
under a) left-equivalence, b) right-equivalence, or c) equivalence transformations, re-
spectively.

Proof. The result follows directly from Definition 4.6 of the rank of matrix polynomials
and the fact that the determinant of every elementary matrix polynomial is a nonzero
constant. Ul

Proposition 4.24 The column-regularity (or column-singularity, or row-regularity, or
row-singularity) of a matriz polynomial is invariant under a) left-equivalence, b) right-
equivalence, or c) equivalence transformations, respectively.

Proof. The result follows directly from Definition 4.11 and Proposition 4.23. OJ

Through left elementary operations only, we may reduce a rectangular matrix poly-
nomial A(X) to an upper-triangular form B(\) as described in the following theorem.
In the second stage of our investigation we will estimate the degrees of some minors of
B(A). These minors will be used in the third stage to construct a nonzero vector polyno-
mial 2(\) which satisfies the equation B(A)z(A) = 0, where B(\) = P(A)A()A) and A(N)
is column-singular. Since P(\) is invertible, the equation B(A)z(A) = 0 is equivalent to
the equation A(A\)xz(A) = 0. Here, the reason why we apply only left-equivalence trans-
formation to matrix polynomials is that in this way we can, in the third stage, estimate
the degree of z(\) which remains unaltered, using only left-equivalence transformations
of A(X), from B(A)z(A) =0 to A(N)z(N) =0.
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Theorem 4.25 ([14], p.135; [36], p.259) An arbitrary m X n rectangular matriz poly-
nomial A(\) = [a; j(N)]]72, of degree | can be transformed via left elementary operations
into an m xn upper-triangular matriz polynomial B(\) that is described in the following
form (4.2), where the polynomials by j(N), baj(N), ..., bj_1j(A) are of degree less than
that of b; j(N), provided b; ;(\) is not identically equal to zero, and all are identically

equal to zero if bj ; = const. #0 (j =2,3,...,min(m,n)).

[ b1\ bia(\) o bia(N)

0 bao(A) -+ bon(A

b)) i) e bu(A) b)) O B e
Sk PO IR

000 b)) SR

(m < n)
0 0 0 |
(m >n)

(4.2)
Proof. See, for example, Gantmacher [14], pp. 134-135. O

As an application of Theorem 4.25, the following corollary sheds light on the nature
of unimodular matrix polynomials.

Corollary 4.26 ([14], p.136; [36], p.256) An n X n square matriz polynomial A(N) is
unimodular if and only if it can be decomposed into a product of elementary matrices.

Proof. See, [14], p. 136. O

Remark 4.27 ([14], p.133) By Corollary 4.26 we can restate the equivalence of matrix
polynomials in terms of unimodular matrix polynomials, as follows.

Two rectangular matriz polynomials A(X) and B(\) are 1) LEFT-EQUIVALENT, 2)
RIGHT-EQUIVALENT, 3) EQUIVALENT, if and only if 1) B(A) = P(A\)A(N), 2) B(\) =
AN)Q(N), 3) B(A) = P(A)A(N)Q(N), respectively, where P(X) and Q(\) are unimod-
ular matriz polynomials. Moreover, all these equivalences between matriz polynomials
are equivalence relations. O

In order to estimate the degrees of some minors of matrix polynomial B(\) in (4.2),
we need the following lemmas.
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Lemma 4.28 Let A(\) be an m x n rectangular matriz polynomial of degree 1, and let
A(N) be left-equivalent to an m X n matriz polynomial B(\). If

B(\) = Bl’éw 2285 : (4.3)

where the polynomial matriz By 1(\) is of dimension p x p, p € N, 1 < p < min{m,n},
and det(By1(X)) is not identically equal to zero, then

deg (det(By1()))) < pl. (4.4)

Proof. Since the matrix polynomial A(\) is left-equivalent to B(\), by Remark 4.27,
there exists a unimodular matrix polynomial P(\), such that

AN) = POV)B(N). (4.5)

Let A(\) = [A1(X), A2(N\)], where the matrix polynomial A;(\) is of dimension m X p.
Then, by (4.5) and (4.3), we have

AN = POV { Bl } , (46)

namely, A;()\) is left-equivalent to [By1()\),0]7. Since det(By1(\)) is not identically
equal to zero, by Definition 4.6, we have

rank([B; 1(\), 0]7) = rank(B;(\)) = p. (4.7)
Because A;()) is left-equivalent to [By 1()), 0]7, by Proposition 4.23 and (4.7), we have
rank(A;(\)) = p. (4.8)

By Definition 4.6, there exists a permutation matrix E of dimension m x m, such that
the leading principal submatrix A;;(\) of EA;(\) has full rank p, where A;;()\) is of
dimension p x p. Hence, by (4.6), we get

) Rt ] S

where Ay (M) is of dimension (m — p) x p. We rewrite (4.9) in the following form:

e l= T e[ ] @
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_ Pii(A) Pia()
where EP()\) = Poi(N) Poa(N)

sion p X p; then we have

, and the matrix polynomials P;()) is of dimen-

A (N) = fﬁ,l()\)BLl(}\), (4.11)
and therefore, it follows that
det(A;1(N\)) = det(Pr1(N)) det(By1(N)). (4.12)

Note that Aj;;(\) has full rank, or in other words, det(A;;())) is a polynomial in A
which is not identically equal to zero. By (4.12), it follows that det(F;1())) is not
identically equal to zero, and therefore also

0 < deg (det(B11()))) < deg (det(flm()\))) . (4.13)

Since EA;(A) is obtained from A;(\) through interchanges of rows, every entry of the
submatrix polynomial 121171()\) of EA;()\) is either a polynomial in A\ with its degree less
than or equal to [, or zero. Thus, we have

deg (det(ALl()\))> < pl. (4.14)
And finally, from (4.13) and (4.14), it follows that deg (det(B;1(\))) < pl. O
Lemma 4.29 Let B()\) be left-equivalent to an m x n matriz polynomial A(X) of degree

of I, and let E = [ej,, €j,, ..., ¢€5,] be a permutation matriz. If

BO\E = (4.15)

0 Bss(N)

Bia()\) ?1,20\) ]

where the polynomial matriz él,l()\) is of dimension p x p, p € N, 1 < p < min{m,n},
with its determinant det(By1(\)) being not identically equal to zero, then

e

o
V=N

deg(det(By1(N))) = deg | det | BN)[ejis e, €, < pl. (4.16)

g e

(&

Proof. Note that A(\)E, which is left-equivalent to B(A)E, is still a matrix polynomial

of degree [. Thus, by Lemma 4.28, we immediately have deg (det(Bl,l()\))> < pl. Then
the result follows by the fact that

el

Bl,l()\) = B()\) [6]'1, 6]'2, ey €jp} . |:|

%
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We will now derive upper bounds on the degree of the minors of the matrix poly-
nomial B(\) in (4.2) which are required in the third stage of our investigation to con-
struct a nonzero vector polynomial z(\) such that B(A)x(A) = 0, provided that B(\)
is column-singular.

Proposition 4.30 Under the same assumption and the same notation as in Theorem
4.25, let k = min{m,n}. If there exists p € N, 1 < p < k, such that every diagonal
element b; ;(A\) in (4.2), 1 < j <p, is not identically equal to zero, then we have

e (B0 (177 5))=Zp;deg<bjm>sm. (4.17

Proof. Note that B()) in (4.2) is upper-triangular; then the result follows directly
from Lemma 4.28. 0

Proposition 4.31 Under the same assumption and the same notation as in Theo-
rem 4.25, let k = min{m,n}. For any p € N, 1 < p < k, and j; € N, 1 <

Ji < n, 1 =1,...,p, which are pairwise distinct from each other, if the determinant
el
€3
det : B(XN)ej,, ey, 1 e5,] | s not identically equal to zero, then
T
p
el
€3
deg | det Tl BN)[ejs ey e, < pl. (4.18)
T
p

Proof. Let {j1, 2,1 Jps Jpt1s---»Jn} ={1,...,n}, and let E = [ej,, e, ..., €;,] be a
permutation matrix. Since B(A) in (4.2) is upper-triangular, we have

Bii(\) Bia())

B(\E = ’ L , 4.19

(A) 0 B\ (4.19)
et

R el R

where Bi1(A) = | | B(A)[ej,, €, ---,€5,]. If det(By,1())) is not identically equal to
¢

zero, then from Lemma 4.29 the result follows. U

Now we have paved the way for the final stage. The main result of this section is
as follows.
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Theorem 4.32 Let A(\) = le‘:o N A; be an m x n matriz polynomial of degree I,
where myn € N, | € Nog, A; € C™", i = 0,...,l. Let k = min(m,n), and let
r be the rank of A(N). If A(X\) is column-singular, i.e., v < n, then there exists a
nonzero vector polynomial x(\) = E?:o N, where x; € C", i =1,....d, x4 # 0, and
0<d<rl<(k—1)l, such that

YAeC: (NA+ N4+ + Ag)z(A) = 0. (4.20)

Conversely, if there exists an n-dimensional nonzero vector polynomial x(\) which is a
solution of (4.20), then A(X) is column-singular.

Proof.

1. From Theorem 4.25 it follows that A()) is left-equivalent to an upper-triangular
matrix polynomial B(\) in the form (4.2). Hence, by Remark 4.27, there is a unimodular
matrix polynomial P(A) such that A(X\) = P(A)B(\). If A(\) is column-singular with
rank r < n, by Propositions 4.23 and 4.24, B()\) is also column-singular with rank 7.

The next step is to prove that there exists an n-dimensional nonzero vector polyno-
mial z(\) = Z?:o Nex;, where 24 # 0, 0 < d < rl, such that for all A € C, B(A\)z(\) = 0.

i) If m > n, then from the upper-triangular form and column-singularity of B(\),
it follows that there exists at least one diagonal element by x(\) of B(X) such that
bik(A) is identically equal to zero. Let kg € N, 1 < kg < (r + 1), be the smallest
such index.

(a) If kg =1, then by 1(A\) = 0. Let (\) = xp = e;. Then we have B(A\)z(\) = 0.

(b) If kg > 2, we will, in virtue of Cramer’s rule, construct
z(\) = [21(N\), ..., 2,(N)]T in such a way that

et

€3
.Z’]()\) = —det . B()\)[el,...,ej_l,eko,ej+1,...,eko_l] y

T

€ko—1

j=1,... ko —1; (4.21)

Tro(A) = b1,1(A) - brg—1,k—1(A);
SCJ(A) = 07 ]:k0+1,,n
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Since b; ;(A\) 0,7 =1,...,ky— 1, we have xy,(\) # 0, and therefore z(\) is
not identically equal to zero. And, from Cramer’s rule it follows that

B(A)z(A)
[ bl,l(/\) e b17k0,1(>\) bl,ko (>‘) e bl,n(/\) 1r 1,1()\) ]
bko—l,lf-o—l()‘) bko—lzko ()‘) bko—lﬂl()‘) T
. 0
bn.n(A) :
0 e e e e 0 IR 0 .

Now we estimate the degree of z(\). For any j, 1 < j < ko — 1, if z;(\) in
(4.21) is not identically equal to 0, then by Proposition 4.31 we have

ef
€3
deg(z;(N)) = deg | det : B(A)[e1, -, €j—1,€kgs €j41s- - Chp—1] < (ko—1)I.
‘3%071
(4.22)
Regarding the degree of xy, () in (4.21), by Proposition 4.30 we have
ko—1
deg(zy, (A)) = Z deg(b;i(A)) < (ko — 1)L (4.23)
i=1

If we rewrite the polynomial vector z(\) in the form of a vector polynomial
Z?:o ANx;, where x4 # 0, then, from (4.22) and (4.23) it follows that

deg(z(N\)) =d < (kg — DI <7l <(n—1)L (4.24)

ii) If m < n, then we have the following cases:

(a) If there exists a diagonal element by () of B(X) such that by x(\) is iden-
tically equal to zero, then the proof is analogous to the proof in the case of

m > n.

(b) If for every k € N, 1 < k < m, by () is not identically equal to zero, then
let kg = m+1. We can construct, by (4.21), an n-dimensional nonzero vector
polynomial x(\), such that B(A)z(A) = 0. Analogously, we also have

deg(z(N)) =d < (ko — 1)l =rl =ml. (4.25)
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Finally, the proof of necessity ends with the fact that

2. We prove the second part of the theorem by contradiction. Suppose that A(\) is
column-regular, namely, » = n. Then, by Definition 4.6, there exists an n-order minor
A(N) ( 211 222 T ), which is not identically equal to zero. Therefore, since the

... n
minor is a polynomial in A, there are infinitely many values for A, such that the minor
at those values is not zero. However, note that there are at most finitely many values
for A\, such that xz(\) at those values is zero; therefore, by (4.20), there are at most
finitely many values for A, such that A(\) at those values has a full column rank. In
other words, there are at most finitely many values for A, such that any of the minors
of order n of A(\) at those values is not zero, which is a contradiction. O

Remark 4.33 With respect to row-singularity, by Proposition 4.15 and Theorem 4.32,
we have:

A(N) is row-singular, i.e., r < m, if and only if there exists a nonzero vector polyno-
mial y(\) = Z?:o Ny, where y; € C™ i =1,...,d, ya#0, and 0 < d < rl < (k — 1)1,
such that

vAeC: yH()\)(/\lAl + )\l_lAl_l + -+ Ao) =0. (426)

O

4.2.3 Sufficient and Necessary Conditions for Singularity and
Regularity II

From Theorem 4.32 we deduce the following corollary which presents a geometric de-
scription of the column-singularity of matrix polynomials.
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Corollary 4.34 Under the same assumptions and the same notation as in Theorem
4.82, A(N) is column-singular if and only if there exists a tuple (xo, x1, ..., xq) of vectors,
r, €Ci=1,....d, 20 #0, 24 #0, and 0 < d <rl < (k — 1)l, where k = min(m,n)
and 1 is the rank of A(\), such that

( AQ.%'O = O,
Ale + onl = O,
Aiizg + Ajaxy + - + Aoz = 0,
Ay + Aioim + - + Aoy = 0,
A A A _
121 + Aiixo + + Aozt 0, (4.27)
Aiwgy + Axggpn + o + Aozg = 0,
Aiwgr1 + Ai1Tagye + oo + Aizg = 0,
Aiwg 1 + Apqzg = 0,
Aig = 0,

where x; =0, 1 € Z, for any 1 < 0 ori > d.

Proof.
”=" From Theorem 4.32, it follows that there exists an n-dimensional nonzero
vector polynomial
2(N) = 2\ + 24 AT g, (4.28)

where 24 # 0, 0 < d < (k — 1)l, such that

VAeC: ()\lAl + )\lilAl_l + -+ Ao)l‘()\) = 0. (429)
Let i € Ny, 0 < ¢ < d, be such an index that x; # 0 while ; 1 = x; o = -+ = 29 = 0.
We define an n-dimensional nonzero vector polynomial
A
z(A) = % =z A g N g, (4.30)

where d := d — 14, ©; == x5, j = 0,1,...,d —i. Thus, (4.29) still holds. If we
substitute (4.30) in (4.29) and equate to zero the coefficients of every power of A, then
we immediately obtain the system of equations (4.27).

”<" From the given tuple of vectors, we construct a nonzero vector z(\) as in the
form of (4.28). Then (4.29) follows from the given system of equations (4.27). Hence,
by Theorem 4.32, the matrix polynomial A()\) is column-singular. U

Remark 4.35 Parallelly, in the case of row-singularity, we have:
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A(X) is row-singular if and only if there exists a tuple (Yo, v1,...,y;) of vectors,
where y; € C™, i =1,....d, Yo #0,y;#0, and 0 < d<rl< (k — 1)I, such that

( yé{AO = O’
yév{Al + y{{AO = O’
vl A 4+ oy A + - + ylA = 0,
Yo' Ar + oyl A + + y'4y = 0,
yi' Ay + A + - + yHA =0, (431)
H H H _
ycIZ{—lAl + y%_l_HAlfl + + y%AO = 0,
Vi T Y + o g A =0,
vy A+ oyl AL =0,
yilA =0,
where y; =0, i € Z, for any i <0 ori > d. O

Remark 4.36 In the next subsection we shall, in virtue of Corollary 4.34, investigate
more deeply the geometrical characteristic of column-singular matrix pencils and 2 x 2
quadratic matrix polynomials. O

By the rank information of the leading or the last coefficient matrix of a matrix
polynomial, sometimes, as the following corollary shows, we can directly judge whether
the matrix polynomial is column-regular (or row-regular).

Corollary 4.37 Under the same assumptions and the same notation as in Theorem
4.32, A(X) is column-regular if its leading coefficient matriz Ay, or its last coefficient
matriz Ao, has full column rank n.

Proof. If the leading coefficient matrix A; of the matrix polynomial A(A) has full
column rank n, then there does not exist a nonzero vector z of dimension n, such that
Ajxz = 0. Therefore, there does not exist such a tuple (zg, z1,...,2z4) of n-dimensional
vectors, where xy # 0, x4 # 0, and 0 < d < rl < (k — 1)l, such that (4.27) can be
established. Then, from Corollary 4.34 it follows that A(\) is column-regular.

In the case that the last coefficient matrix Ay has full column rank, the proof is
analogous to that in the above case of leading coefficient matrix. 0

Remark 4.38 Parallelly, we have:
A(N) is row-regular if its leading coefficient matriz A;, or its last coefficient matrix
Ag, has full row rank m. O
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From Theorem 4.32 and Corollary 4.34 we obtain the following corollary which
presents an algebraic description of the column-regularity of matrix polynomials.

Corollary 4.39 Under the same assumptions and the same notation as in Theorem
4.52, if A(\) is column-regular, then for all s € N, the (s + 1)-by-s block matriz with
m-by-n blocks

Ag
A Ag
Ay A2 o Ao
A Ay o AL Ao
WA, Ay, ..., Ag) = (4.32)
Ay A - A A
A o Ay A
A A
Ay

has full column rank ns; conversely, if for all s € N, s < (rl+1) < ((k—1){+1), where
k = min(m,n) and r is the rank of A(N), Ws(A;, Ai_1, ..., Ag) has full column rank ns,
then A(X) is column-regular.

Proof.

1. If A(X) is column-regular, we prove the first part of the corollary by contradiction.
Suppose that there exists s € N such that the column rank of the (s + [)-by-s block
matrix Wi (A;, Ai_1, ..., Ap) in (4.32) is deficient, then there exists z € C"*, x # 0, such
that

Wi(A;, A, ..., Ag)z = 0. (4.33)

Let © = [z, 27,27 |7, 2; € C", i = 0,1,...,(s — 1), and let z(\) = S27°) Na;.
Since x # 0, #(\) # 0. From (4.33) it follows that (4.27) holds, where d := s. By
(4.27) we obtain A(A\)z(A) = 0. Then from Theorem 4.32 we get the conclusion that
the matrix polynomial A(\) must be column-singular, which is a contradiction.

2. Ifforall s e N, s < (rl+1) < (=1l +1), We(A, A1, ..., Ap) has full
column rank ns, then we prove the second part of the corollary also by contradiction.
Suppose that the matrix polynomial A()\) is column-singular, then from Corollary 4.34
it follows that there is a tuple (xg,x1,...,x4) of vectors, where x; € C", i = 1,...,d,
xg # 0, 24 # 0, and 0 < d < rl < (k — 1)l, such that the system of equations
(4.27) is satisfied. Let s := d + 1, and let = =: [¢,27,... 2T |]7. Then we have

y Fs—1
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1 <s<(rl+1) < ((k—=1)+1), and x # 0. Thus, we can rewrite the system of
equations (4.27) in the following form:

Ws<Al7 Al*lu DR AO)'T = O?
which is a contradiction. O

Remark 4.40 Parallelly, we have:
Under the same assumptions and the same notation as in Theorem 4.32, if A(\) is
row-reqular, then for all s € N, the s-by-(s + 1) block matriz with m-by-n blocks

[ Ay AL - A
Ag - A1 A
Wo(Ap, Ai1, -, Ao) = o Al (4.34)
i Ao 0 A A

has full row rank ms; conversely, if for all s € N, s < (rl +1) < ((k — 1)l + 1),
Wi(Ai, Ay, ..., Ao) has full row rank ms, then A(N) is row-reqular. O

Remark 4.41 By the second part of Corollary 4.39 we know that, given any matrix
polynomial A()), we can judge within a finite number of steps of computation whether
or not A()) is column-regular. In Section 4.3, we shall present another way by which
we can numerically detect whether a square matrix polynomial is regular or singular.

O

The following example shows that the upper bound (rl + 1) or ((k— 1)l + 1) on s
in Corollary 4.39 is attainable.

Example 4.42 We consider the quadratic matrix polynomial A(X) = A2 Ay + A A; + Ao,
where

1 00 010
A=10 10|, A =0, Ay=1]0 0 1
000 000
Here, m=n=3,k=3,r=2,1=2,and rl = ((k—1)l+1) = 5. Since det(A(\)) =0,
A()) is singular. If we investigate the column ranks of W (A, A1, Ag), s =1,...,5, we
find that
Ao
A jo ) A A
rank Aq =3, rank ! 0 =6, rank Ay Al Ag =9,
Ay Ay
Ay 4 Ay Ay
2 i 4 |
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-4 - Ap
AO 4 Ay Ag
Al AO A Ay A1 Ao
rank 2 Lo =12, rank Ay A1 Ay =14 < 15,
Ay Al A A A Ay
Ay Ay A A
i Ao ] A,
(s =4) ) (s=5)

which shows that, not until s = rl+1 = ((k—1)I+1) = 5, the rank of the block matrix
Wi(Ag, Aq, Ap) is deficient. O

Remark 4.43 If a matrix polynomial A()) is column-singular, then by Theorem 4.32
we know that there exists a nonzero vector polynomial z(\) such that

AN)z(\) = 0. (4.35)

Let dmin be the least possible degree of such solutions () of (4.35). By Corollaries
4.34 and 4.39, we know that d;n = Smin — 1, where s,,;, is the least integer s such that
the column rank of Wi(A;, A;—1,..., Ap) in (4.32) is deficient. From Example 4.42 we
know that rl or (k — 1)l is an attainable upper bound on d;,. O

4.2.4 Singular Matrix Pencils and Quadratic Matrix
Polynomials

In Subsection 4.2.3 we have seen that Corollary 4.34 describes the relations between the
column spaces of the coefficient matrices of a given column-singular matrix polynomial.
From Corollary 4.34 we now proceed to investigate more deeply and obtain a geometrical
characterization of singular matrix pencils, as the following theorem presents.

Theorem 4.44 A matriz pencil Ay + AA1, Ag, A1 € C™*™ is column-singular if and
only if there exists a subspace X of C" such that

dim(AgX + A, X) < dim(X), (4.36)

where AX .= {Az 2 € X} if Aec C"™" and X CC", and X +Y ={zx+y:z €
X,yelhif X,y CCm
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Proof.
”=" Since the matrix pencil Ag+ \A; is column-singular, by Corollary 4.34 we have

( Aoﬂfo = 0,
Alﬂfo + Aoﬂfl = 0,
Alxl + A0$2 = 07 (4 37)

Azgr +  Agzg = 0,

Alxd = 0,

\

where z; € C", i =0,1,...,d,d € Ny, 0 < d <min{m,n} — 1, 29 # 0, and z4 # 0. Let
X = span{xg, z1, ..., 24}, Xy = span{zy, ..., x4}, and let Xy = span{xzg, x1,...,Tq-1}.
From (4.37) it follows that

ApX = Aoy = A1 Xy = AL X. (4.38)
Since ¢ # 0 and Agzo = 0, we have AgX & X. Thus,
dim(ApX) < dim(X). (4.39)

Then, (4.38) and (4.39) imply (4.36).
7<" We conduct the proof of sufficiency in the following two cases.

i) In the case m < n, clearly, by Definition 4.11, Ay + AA; is column-singular.

ii) In the case m > n, let Z := [Z}, Z5] be a nonsingular matrix with Z; € C™!,
R(Z,) = X, and let | = dim(X). From the given inequality (4.36), we see that
both AgX and A; X lie in a k-dimensional subspace ) of C™, where k < [. If we
let Q := [Q1, Q2] be a unitary matrix with Q, € C"** R(Q,) = ), then we have

l n—1

Q"AZ = &k Q' Az QA Z
kEk I—k n-—1
k * * * .
= . 0 o .| oi=on (4.40)
m—1 0 0 *

From (4.40) it follows that any minor of order n of the matrix polynomial Q¥ (Ay+
AA1)Z is 0. Hence, the rank of Qf(Ay + MA;)Z is strictly less than n. By
Definition 4.11, Q¥ (Ag+MA;)Z is column-singular. Since ) and Z are nonsingular
matrices, it follows that Ay + AA; is column-singular. O
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Remark 4.45 By Theorem 4.44, we can see from the point of view of generalized
eigenvalue problems that, for a regular matrix pencil Ay + AA;, A, € C**", i =0,1, a
subspace X is a DEFLATING SUBSPACE if and only if

For more details about deflating subspaces for a matrix pencil, such as properties of
them and perturbation analysis of them, see, for example, [54], [55] (Chapter VI). ¢

Remark 4.46 Later, in Subsection 4.4.2, we will see that in the special case of square
matrix pencils, the geometrical characterization (4.36) coincides with the algebraic char-
acterization of the nearest distance to singularity for matrix pencils. The algebraic
characterization will be given in Theorem 4.82. O

For a singular matrix polynomial other than a matrix pencil, the relations between
the column spaces of its coefficient matrices become, as Corollary 4.34 indicates, very
complicated. The reason for the complexity is the nonlinearity which comes from the
higher degree (greater than 1) of the matrix polynomial. Nevertheless, based on Corol-
lary 4.34, we can explore the simplest case of singular quadratic matrix polynomials,
and obtain the following theorem.

Theorem 4.47 Let matrices Ay, Ay, Ag € C**2. Then, the quadratic matriz polyno-
mial N> Ay + NA; + Ay is singular if and only if one of the following three cases happens:

1. N(As) NN (Ay) NN (Ag) # 0.
2. N(AHY N N(AH) A N (AH) £ 0.

3. There exist nonsingular matrices X,Y € C**2, such that:

1 1
Y1AX = 00 Y TIAX = 0 Y TIANX = 0 .
10 0 1 00
Proof.
”=" Since \2A, + AA; + Ay is singular, by Corollary 4.34, there exists a tuple of
vectors (xog, 1, ..., %q), where xg # 0, x4 # 0, 0 < d < 2, such that

p

A()ZL‘Q = 0,

All’o + A(].lel = 0,

AQZL’Q + All’l + AQ.TQ = 0,
AQZL’l + All’g + AQ.Tg = 0, (441)

Asxgo + Axgr + Aoxg 0,

Agl’dfl + Alxd = 0,

L Agﬂj‘d = 0.
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According to different values of d in (4.41), we conduct the proof in the following three
cases.

i) If d = 0, then by (4.41) there exists xg # 0 such that Ayzg = Ajxg = Agzg = 0,
in other words, N'(As) NN (A1) NN (Ag) # 0, which is Case 1.

ii) If d =1, then by (4.41) there exist xo # 0 and z; # 0, such that

Aol’o = O,
Al.CL’Q + Aoﬂfl = O,
4.42
Ay + Ay = 0, ( )
Agl‘l = 0.

(a) If o and z; are linearly dependent, then Ayzg = Ajxg = Agxe = 0, which is
Case 1.

(b) If xy and x; are linearly independent, and A;zy and A;z; are linearly de-
pendent, then there exists y € C?, y # 0, such that y? Azq = y? Az, = 0.
From (4.42) it follows that y" Ayxg = y Aszy = 0 and y Agzg = y? Ay =
0. Since xy and z; are linearly independent, we obtain y7A, = y A,
y" Ag = 0, namely, N (A) NN (A) N N (AL) # 0, which is Case 2.

(¢) If zp and z; are linearly independent, and A;z and A;x; are linearly inde-

pendent, then we have, by setting X := [—x¢,x1] and Y := [— Ao, Ar14],
AQX:Y O O 5 A1X:Y 1 0 5 AoX:Y O 1 y
10 0 1 00

which is Case 3, because X and Y are nonsingular.

iii) If d = 2, then by (4.41) there exist xg # 0, z1, and x5 # 0, such that,

(Ao = 0,

Az + Aory = 0,
Asxg + Ay + Agry = 0, (4.43)

Ay + Ajze = 0,

Asxy = 0.

\

(a) If dim(span{zo,x1,22}) = 1, then from (4.43) it is derived that Asxy =
Aixg = Apxrg = 0, which is Case 1.

(b) If dim(span{zg,x1,z2}) = 2, and dim(span{A;xg, Ajz1, Ajxe}) < 1, then
there exists y € C2%, y # 0, such that y? Ajzg = y"TAjz, = yH Az, = 0.
From (4.43) it follows that y" Ay = y" Aoz = yH Aoy = 0 and y? Agzg =
yH Agzy =y Agwy = 0. Since dim(span{xg, z1,z2}) = 2, we obtain y Ay =
yHA; =y Ay = 0, namely, N (A NN (AT)NN(AL') # 0, which is Case 2.
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(c) If dim(span{xg,z1,22}) = 2, and dim(span{A;xg, Ajx1, Ajx2}) = 2, then

it is clear that A; is nonsingular. We shall prove via contradiction that x
and xy are linearly independent. Suppose that xo = axg, a # 0. Then
Ayzy = aAjxg, and Agzg = Agxe = Asxg = Asxe = 0; therefore, by (4.43),
Ajzy = 0. Thus, it follows that dim(span{A;xg, A;x1, Ajx2}) < 2, which is
a contradiction.
Let z1 := axg + bxy. We prove via contradiction that a # 0 and b # 0.
Supposing a = 0, we get ;7 = bxrs. From (4.43) it follows that Asx; =
bAsx, and therefore Ajxzo = 0, which is a contradiction to the fact that
Aj in nonsingular and z, # 0. Similarly, supposing b = 0, we also get a
contradiction.

Thus, substituting axg + bxs for x; in (4.43), we obtain

1
Aoﬂfo = 0, AQ.TQ = —EAl.iL’(], (444)
1 1
(CL — g) Alﬂfo —+ <b — —) All’z = O, (445)
a
AQ(—CMEQ) = All‘g, AQIL‘Q = 0. (446)

Since Ajxg and Ajxs are linearly independent, from (4.45) it is derived that
ab = 1. Therefore, setting X := [—axg, z5] and Y := [—adixg, A12s], we
have, by (4.44) -(4.46),

0 0

AQX:Y[
10

, L1 X =Y L0 , ApX =Y 01 ,
01 0 0

which is Case 3, because X and Y are nonsingular.

7«<" The statement is straightforward. O

4.3 Detecting Regularity/Singularity of Square
Matrix Polynomials by Rank Information

4.3.1 Introduction

As we have pointed out in Section 4.1, one of the major motivations for studying the
regularity and singularity of matrix polynomials comes from the analysis of problems in
which square matrix polynomials are involved. Numerically speaking, it is reasonable
for a mathematical software developed for solving polynomial eigenvalue problems to
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be able to determine the regularity or singularity of any square matrix polynomial
involved, and the distance to singularity if it is regular. However, this is not the case
with classical commercial software packages. For instance, let us use MATLAB (Version
6.0.0.88 Release 12) to analyze the following example.

Example 4.48 We consider the matrix pencil:

a-ap=|1 1 |=a5 1]
11 21

Evidently, for any A € C, we have det(A — AE) = 0; therefore, the matrix pencil is
singular, and the corresponding generalized eigenvalue problem Az = AFEx has infinitely
many eigenpairs (\, z), where

A—1
reC, x_{—Q/\Jrl}'

Nevertheless, if we use the following Matlab function:
[V, D] = eig(A, E),

which produces a diagonal matrix D of generalized eigenvalues and a full matrix V'
whose columns are the corresponding eigenvectors so that AV = EV D (cf. the "MAT-
LAB Function Reference” [39]), then we get the following output [V, D] which, unfor-
tunately, does not indicate any information about the singularity of A — AE:

Y —1.0000 —0.3385 } . D= { 0.5000 0 } .

0  1.0000 0 2.0482
O

It is the purpose of this section to derive methods to detect the regularity and
singularity of square matrix polynomials. We will in the following subsection present
a natural approach to detect the regularity or singularity of a given square matrix
polynomial, provided that the rank information of its coefficient matrices is known.
And later, in Section 4.4 we will define and discuss the nearness to singularity problem
for square matrix polynomials.

4.3.2 Testing for Regularity and Singularity

In Section 4.2 we have presented general sufficient and necessary conditions for reg-
ularity and singularity of rectangular matrix polynomials. Among those conditions is
Corollary 4.37, by which we can directly determine the column-regularity of a matrix
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polynomial as long as either its leading or its last coefficient matrix has full column
rank. The question of interest here is how we can test whether or not a given matrix
polynomial is column-regular if the column ranks of both its leading and last coefficient
matrices are deficient and the rank information of its coefficient matrices is assumed
to be known beforehand. The following proposition gives a sufficient condition for a
matrix polynomial to be column-singular, provided that the sum of the ranks of its
coefficient matrices is sufficiently small.

Proposition 4.49 Let A(\) = Eizo M A; be an m x n matriz polynomial of degree [,
where m,n € N, | € Ny, A; € C™" i =0,...,l. Then A()\) is column-singular if
S rank(A4;) < (n —1).

Proof. Noting that

Ao
A l
1
rank _ < Zrank(Ai) <(n-1),
: i=0
A
Ao
Ay
we know that the column rank of the matrix Wi(A;, A;_1,..., Ap) = ) is defi-
A
cient. Therefore, by Corollary 4.39, A(A) is column-singular. O

Remark 4.50 Similarly, in the case of row-singularity, we have:
Under the same assumption and the same notation as in Proposition 4.49, A(\) is
row-singular if 22:0 rank(A;) < (m—1). O

Corollary 4.37 and Proposition 4.49 show that, under specified rank conditions for
the coefficient matrices of a matrix polynomial in Corollary 4.37 and Proposition 4.49,
we can immediately judge whether it is column-singular. A natural question then arises,
namely, under other rank conditions than those in Corollary 4.37 and Proposition 4.49,
how do we make use of the beforehand rank information to test for column-regularity
or column-singularity?

For square matrix polynomials we can answer the above question. First, let us recall
Proposition 4.13 in Subsection 4.2.1, which can be regarded, from the point of view of
polynomial eigenvalue problems, as an equivalent definition for the singularity of square
matrix polynomials. By Proposition 4.13, the determinant of any regular square matrix
polynomial A(X), or regarded from the point of view of eigenvalue problems as the
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characteristic polynomial of A()), is a nonzero polynomial in A, and therefore has only
a finite number of roots. Our objective in this subsection is to analyze the determinant
det(A(A)) with the use of the rank information of the coefficient matrices of A(\), and
to derive an attainable upper bound on the finite number of nonzero roots of det(A(\)).
Then, the upper bound will lead to a stopping criterion of an algorithm which we will
present at the end of this subsection to detect the regularity or singularity of any given
square matrix polynomial.

In order to conduct the analysis, we need the following lemma which shows, roughly
speaking, that the determinant of the sum of matrices can be represented as a certain
sum of products of the minors of the matrices.

Lemma 4.51 Let matrices Ay = [a(k)] eCm™ k=0,1,...,1, 1l € N. Then,
ij=1

1]
det ZAk = Z {(_1)8141 ( 1 P ) A ( P+l i1 ) .
k=0 0<p<n o Im Jptl 0 Ipa
s
..A1<i‘p2+1 i‘pl),A0<7{pl+1 i.n)},(4'47)
Jp2+1 0 Ip; IJpi+1 0 Jn

where p:pl+"'+p17pq€N07 q:17"'7l7 nglgplflgéplgna
= (01, e hpys Byl e - s Bpy_ys e -2 Bpi41s- -+, 0n) 15 @ permutation of {1,2,...,n},
1 < < <yl <o < gy ey Uil <lpgo < e <lpj

J =1y Ips Jpyt1s - s Jpyys -+ » Jpit1s- -+ Jn) s a permutation of {1,2,...,n},

jl <j2 < <jpl7jpz+1 <jpl+2 < <jpl—17 R jpl—l—l <jp1+2 <. <jn§
Pl Pi—-1 p1 D1 Pi—-1 p1
s= Y ig+ > gt D g | D de+ D det+ D g
q=1 q=pi+1 q=p2+1 q=1 q=pi+1 q=p2+1
Proof. We conduct the proof by induction on [.
0 nl"
L l=1 Let B=[b];,_, == A+ A = [a;j) + a’(’j]z‘jf Then, by the definition

of the determinant of a matrix (cf., for example, [36] p. 26.) we have

det(B) = Y (=1 by g bypy - bk,
k

= S (), +all) (o +all) - (0 a0 ) (aw
k

where k := (ki,...,k,) is any of the permutations of 1,2,...,n, and t(k) is the
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number of inversions in the permutation k. Throughout the proof we denote
by t(i), where i is a permutation of 1,2,... ,n, the number of inversions in the
permutation i, and i is called odd or even according to whether the number #(7)
is odd or even.

Decomposing each term in the sum in (4.48) and rearranging the terms obtained
after the decomposition, we have

1 1 1 0 0 0
det(B) = Z (_1)t(k)agl,)kila§2,)ki2 "'agp,)kip az('pil,kipﬂaz('p)ﬁ,kipﬂ "'agn),kin’ (4.49)
0<p<n
k,i
where p € Ny and the permutation i 1= (iy,...,0,), 1 < f2 < -+ < ip, lpp1 <
ipra < -+ < i,. Let j := (j1,...,Jn), where j, = k;,, m = 1,...,n. Note
that, to get the permutation j from the permutation k&, we can interchange two
: : : P, _ pletD) 4 :
neighbouring elements in k£ by altogether ( g=1% — T) times. Since every

time of interchanging two neighbouring elements in a permutation changes it from
odd to even or vice versa (cf. [36] p. 26.), we have

(—1)i) — (—1)(tO+Tfyia—25) (4.50)
Thus, by (4.49) and (4.50) we have
(t(3>+ > m—“?”)
_ =1 1 1) 1 _(0) (0)
det(B) = Z (-1) A T TR e S SR e (4.51)
0<p<n
ki
Let
Jam ::jm, m=1,2,...,n;
Jip = (gis Jaar - -2 Jap) = (51,32 . ,jp) be a permutation of {ji, ja,...,Jp},
where j; < jo < -+ < Jp;
Jprtin = (Gapers Japror - -+ Jan) = (Jpt1,Jps2 - - - Jn) be a permutation of
{pt1s dpr2s -+ 5 Jnts Where jpi1 < jpro <0 < Ji;
.j = (.j17.j27 s 7.]”)
Note that, to get the permutation j from the permutation (1,2,...,n), we can
interchange two neighbouring elements in (1,2,...,n) by altogether

( Zil Jg — @) times; therefore, we have

p(p2+1))

(1)) = (—1)(Z5=1da- (4.52)
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Note further that the number of inversions in the permutation j is larger than
that in the permutation j by (t(j1.p) + t(Jp+1:n)), namely,

t(5) = t(rp) + t0ptan) +1(7). (4.53)

Thus, by (4.51)-(4.53), we have

1 1 1 0 0 0
det(B) = Z (71)ta7(;1 ?jq1 aZ(lZv)jqz o az(.llv)jqp agpllajqp+1 a7(;193»27jf1p+2 o aZ(ln?jGn’ (454)
0<p<n
Jst

where t = t(j1,5) +(Jps1n) +D oy ig— z@ +> 1 Ja— @. Note that p(p+1)
is even, and

N\t , (D (D (1) _ i G2 e dp
Eq (—1) @iy Vizrday " Yiprday Ay ( PN (4.55)
_1\tUUpt1:n) (0) ) (O) ‘ o (0) _ ierl ip+2 AN Zn
Z( 1) a1p+17jqp+1 a1p+21Jqp+2 alndqn AO ( jp+1 jp+2 .. ]n . (456)

q

Rearranging the terms of the sum in (4.54) and substituting (4.55) and (4.56) in
(4.54), we obtain that

det(Ag + A1) = Z (1)SA1< 11 g - z.p >A0< Ipy1 Gpy2 - Zn ),

0<p<n Jv o J2 o Jp Jp+1 Jp+2  In

I
(4.57)

where s = Y/ 4.+ 1_; Jg- Thus, we have finished the first step of the induction
proof.

. 1 — 1= 1: Suppose that we have already proved (4.47) for all m, where 1 < m <

(I—1), 1 > 2; we shall prove that (4.47) also holds for I. Let B = 22;10 Ay. Since
(4.57) has been proven for the determinant of the sum of two matrices, we have

det(B +Al> — Z (71)§Al < 1 12 - /[’.pl ) B < tpi+1 lpp42 Zn ) ,

0<m<n Jr gz o Up Jo+1 Ip+2 0 n
372
(4.58)
where § = > i, + > I, jg, the permutation i = (i1, ..., i,), i1 < iz < -+ <y,
ipt1 < Ipy2 < -+ <1y, and the permutation j = (ji,...,jn), J1 <J2 <+ < Jp,

T+l < Jpt2 < -+ < jn. Since we have supposed that (4.47) holds for [ — 1, for
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Jpy4+1  Jpj+2 Jn

each term of B < gt ez ) in the sum in (4.58) we have

B( ipi1 g2 o ) - % {(—1>5Al_1( prt )
Jpi+1 Ipi+2 0 Jn 0<p<n-p Ipi+1 0 Ipiea
i, 7
Al—Q( L A )---AO( ikt i )} (4.59)
jpzf1+1 jplfz j;D1+1 o Jn

where p:pl—1+"'+plapq€NOa q:]-?"'al_la Oﬁpl—lﬁﬁplﬁn,
i

2= (Ul - sdpy_yse s dpi4ls---,0n) is a permutation of {ip,41,%p,4+2,---,in},
ipl+1 < ’L'pl+2 < < iplfl’ cey ip1+1 < ip1+2 < < g
J 5= Upit1r-- s Jprvsr- > Jpi+1s---+Jn) is a permutation of {jp,+1, Jp+2,---»Jn};
Joitl < Jpt2 < <Jp_is ooy I+l <Jpi+2 <+ < Jn;
Pi—1 P1 Pi—1 P1
s=| Do dgtet D | H | D datet Y da
g=p;+1 g=p2+1 g=pi+1 g=p2+1
Let
p = ptp; (4.60)
s = 5§+ (4.61)
’i = (ilu---viplaipﬂrlw--7Z.pl,17---aip1+17---7in); (462)
j = (jla"'7jp17jpl+17"'7jpl_17'"7jp1+17"'7jn)' (463)

Then, substituting (4.59) in (4.58) and rewriting the sum in (4.58) in terms of
D, S, 1, defined by (4.60)-(4.63), we finally obtain that (4.47) also holds for [. [

Now in virtue of Lemma 4.51 we proceed to analyze the characteristic polynomials
of square matrix polynomials and to derive attainable upper bounds on the number
of nonzero roots of the characteristic polynomials if they are not identically equal to

zero. The upper bounds are presented in terms of the ranks of the coefficient matrices
of matrix polynomials.

Theorem 4.52 Let A(\) = AA; + Ao, A1, Ag € C™™, be a regular matriz pencil, and
let Ay, ..., Am, m € Ny, be all the nonzero roots of det(A(N)) (in which repetitions may
be included, and m = 0 means that all its roots are zero). Then,

0 <m < (rank(A;) +rank(A4y) —n). (4.64)
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Proof. From (4.47) in Lemma 4.51 it follows that the characteristic polynomial of
AA; 4+ Ay can be computed via the following minor expansions:

det()\Al —|— AQ)

= > (—1)8(&41)(i1 o ?p)Ao(ip+1 tpr2 ’")

0<p< JuoJz o Jp Jp+1 Jp+2 0 Jn
<p<n
j?i
= ¥ (1)5A1<Z_1 2o Z.”)AO<Z?“ 2 T Z.”)Ap, (4.65)
0<p< Jv o Jz2 o Jp IJp+1 Jp+2  Jn
<p<n
Ji %

where the permutations i = (i1,...,in), j = (j1,-..,Jn), and s = 320 i, + >0 .
Now based on (4.65) we calculate the highest and lowest possible orders of A in det(A(\)).
Since the rank of a matrix is equal to the order of its largest nonzero minor, we have

Ay ( ot ) =0, if p > rank(A,;); (4.66)
]1 jZ e ]p
Ay ( Wl lpr2 Tt ) =0, if p < (n —rank(Ay)). (4.67)
Jp+1 Jp+2 7 n

Hence, from (4.65) and (4.66) it follows that the highest possible order of A in det(A(\))
is rank(A;), and from (4.65) and (4.67) it follows that the lowest possible order of A
in det(A(N)) is (n — rank(Ap)). Since A(N) is regular, its characteristic polynomial
det(A()N)) is not identically equal to zero. Therefore, det(A())) can have at most
rank(A;) — (n —rank(Ap)) = rank(A;) 4+ rank(Ay) — n nonzero roots, or in other words,
m < (rank(A;) + rank(Ag) — n). O

Remark 4.53 From the above proof of Theorem 4.52, it immediately follows that for
a regular matrix pencil AA; + Ay, where A, Ag € C"*", the corresponding generalized
eigenvalue problem Agx = —AA;x has eigenvalue co with algebraic multiplicity greater
than or equal to (n — rank(A;)), and eigenvalue 0 with algebraic multiplicity greater
than or equal to (n — rank(Ay)). O

As a straightforward consequence of Theorem 4.52, we have the following corollary.

Corollary 4.54 Let Ay, Ag € C™™. Then the matrix pencil NA, + Ay is singular
if there exist at least m distinct nonzero numbers \;, © = 1,...,m, such that all the
matrices \iA1+ Ao, i = 1,...,m, are singular, where m := rank(A;)+rank(Ay) —n+1.

Proof. The result follows directly from Theorem 4.52 via contradiction. U
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Remark 4.55 If m in Corollary 4.54 is not greater than 0, i.e.,
rank(A;) + rank(Ag) —n+ 1 <0,
then, by Proposition 4.49 or Theorem 4.52, the matrix pencil AA; + A is singular. ¢

With respect to a given regular and square quadratic matrix polynomial, we analyze
via Lemma 4.51 its characteristic polynomial in a similar way in which we analyze
regular and square matrix pencils, and the following result is obtained.

Theorem 4.56 Let A(\) = AN?Ay + MA| + Ay, A; € C™" 4 = 0,1,2, be a regular
quadratic matrix polynomial, and let A\i,..., A, m € Ny, be all the nonzero roots of
det(A(N)) (in which repetitions may be included, and m = 0 means all its roots are
zero). Then,

0 <m < (rank(As) +rank(4y) + min{rank(As) + rank(A;) —n,0}
+ min{rank(A4,) 4+ rank(Ay) — n,0}). (4.68)

Proof. By (4.47) in Lemma 4.51, the characteristic polynomial of A\2A; + AA; + Ag
can be computed via the following minor expansions:

det (A(\)
= > {(nsumz)( )
0<p+g<n . T
(]
.(/\A1)< i_P+1 i‘p-‘rq >'A0< i.p+q+1 ln )}
Jp+1 Jp+tq Jpt+g+1 "0 Jn
S fewa(h )
0<p+g<n . T
(]
A ( it kg ) -Ao< Iprott ) -)\2”“}, (4.69)
Jp+1 7 Jptq Iptg+1l 0 In
where p,q € Ny, the permutations i = (i1,..., %, lpt1,- - s bptrgs bptgrls - - -50n), J =

(jlu s 7jp7jp+17 s 7.jp+q7.jp+q+17 s 7.jn)7 and s = f:{] it + Ei);rlq jt- Let Oh7 Ol denote

the highest and lowest possible orders of A in det(A(\)), respectively. Now according
to the minor expansions (4.69) we calculate O, in the following two cases.

(a) In the case (rank(Ay) 4+ rank(A4;)) < n, let p; = rank(Ay) and let ¢; = rank(A4,).
It follows that p; + ¢; < n; therefore, it is possible that there exist permutations
7 and 7 so that

O6d) .— A2< @'.1 i.pl >-A1< i.p1+1 i‘p1+q1 >'A0< i‘p+q+1 Z:n > £0.
Juro Ips Jpi+1 0 Ipitaa IJp4+q+1  °  In
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Moreover, it is also possible that the sum of the terms >~ C#J) \?P1a1 =£ (. Hence,
1,7
by (4.69), it is possible that det(A(\)) has the term A\*1T% with nonzero coefficient

S"C69), Since the rank of a matrix is equal to the order of its largest nonzero
i,J

minor, and p; = rank(Ay) and ¢; = rank(A;), it is obvious that the highest
possible degree of det(A(\)) is 2p; + ¢1, namely,

On = 2p1 + q1 = 2rank(As) + rank(A4;). (4.70)

(b) In the case (rank(As)+rank(A;)) > n, let po = rank(As) and let go = n—rank(As).
It follows that ps 4+ g2 = n; therefore, it is possible that there exist permutations
7 and j so that

C(i,j):A2<il i'm).Al(isz i.n)#o'

B Jpt1 o dn

Moreover, it is also possible that the sum of the terms >~ C#9) \?P2%42 =£ (). Hence,
0,

by (4.69), it is possible that det(A(\)) has the term A*27% with nonzero coefficient

S"C69), Since the rank of a matrix is equal to the order of its largest nonzero

0,

Ir,liIlOI', and py = rank(As) and ¢go = n — rank(Asy), it is obvious that the highest
possible degree of det(A())) is 2py + go, namely,

On = 2ps + ¢ = 2rank(As) + n — rank(A4;) = rank(Ay) + n. (4.71)
For conciseness of expression, we rewrite (4.70) and (4.71) into a single formula:
O, = rank(As) + min{rank(As) + rank(A;), n}. (4.72)

Analogously, according to (4.69) we calculate O; in the following two cases.

(a) In the case (rank(A;) 4 rank(Ap)) < n, we have
O, = 2(n—rank(A;) —rank(Ap))+rank(A;) = 2n—rank(A;) —2rank(Ay). (4.73)
(b) In the case (rank(A;) + rank(Ap)) > n, we have
O, = n —rank(Ay). (4.74)
We also rewrite (4.73) and (4.74) into the following formula:
O, = n — rank(Ap) + max{n — rank(A,) — rank(A,), 0}. (4.75)
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Since A(\) is regular, its characteristic polynomial det(A())) is not identically equal to
zero. Therefore, det(A())) can have at most O, — O; nonzero roots, namely, in terms
of m given in the condition, we have m < (O, — O;). Finally, the proof ends with the
following calculation of Oy — O:

On —O; = rank(As) + min{rank(As) + rank(A;),n}
—(n — rank(Ap)) — max{n — rank(A4;) — rank(Ap),0}
= rank(As) + min{rank(As) 4+ rank(4;) — n,0}
+rank(Ap) — max{n — rank(A4;) — rank(A4p),0}
= rank(Ay) + rank(Ap) + min{rank(As) + rank(A4;) — n,0}
+ min{rank(A4;) + rank(Ag) — n, 0}.

0

Remark 4.57 From the proof of Theorem 4.56, it immediately follows that, for a
regular quadratic matrix polynomial A\2A, + MA; + Ay, where Ay, A, Ay € C™ ", the
corresponding quadratic eigenvalue problem (A2Ay + AA; + Ag)z = 0 has eigenvalue co
with algebraic multiplicity

Moo > (n — rank(As) — min{rank(Ay) + rank(A;) — n,0}) (4.76)
and eigenvalue 0 with algebraic multiplicity
mo > (n — rank(Ag) — min{rank(A;) + rank(Ay) —n,0}). (4.77)

O

From Theorem 4.56 it is straightforward to obtain the following corollaries.

Corollary 4.58 Let Ay, Ay, Ag € C™". Then the quadratic matriz polynomial \*> Ay +

AA1 + Ay is singular if there exist at least m distinct nonzero numbers N,i=1,...,m,
such that all the matrices \? Ay + N\;Ay + Ao, 1 = 1,...,m, are singular, where

m :=rank(A,) + rank(4y) + min{rank(As) + rank(A4;) —n,0}
+ min{rank(A4,) 4+ rank(A4y) — n,0} + 1. (4.78)

Corollary 4.59 Under the same assumption and the same notation as in Corollary
4.58, if m <0, then the quadratic matriz polynomial N2 Ay + A, + Ay is singular.
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Remark 4.60 It should be noted that the sufficient condition m < 0 for the singu-
larity in Corollary 4.59 is equivalent to the sufficient condition for the singularity in
Proposition 4.49, since

rank(Ay) + rank(Ay) min{rank(Ay) + rank(A4;) — n,0}
min{rank(A4;) + rank(A4g) —n,0} +1 <0
rank(As) + rank(A;) — n

rank(A;) + rank(4g) —n+1<0

<= rank(A;) + rank(A4)

<= rank(As) + rank(A;) )

rank(Ag) —n+1 <0. O

+ + 4+ + o+

(A1)
rank(Ag) —n + ! <0
<= rank(A;) + rank(A;) (Ao)

To illustrate how to make use of Corollary 4.37, Proposition 4.49, and Corollary
4.58 to detect the regularity or singularity of square quadratic matrix polynomials, we
give the following example.

Example 4.61 Consider a quadratic matrix polynomial A(\) = A\2Ay + AA; + Aj,
where

000 110 0 01
Ay=1000]|,A=]110],andA=1]00 0]. (4.79)
100 000 000
We carry out the test for regularity or singularity of A()) in the following three steps.

1. Check the rank information of the leading and last coefficient matrices of A(\):
since rank(As) = rank(Ay) = 1 < 3, by Corollary 4.37, A(\) may be singular.

2. Check the sum of the ranks of all coefficient matrices of A(\): since rank(A,) +
rank(A;) +rank(Ag) =3 > 2 = 3—1, by Proposition 4.49, the matrix polynomial
A(M) may be regular.

3. Compute m defined by (4.78) in Corollary 4.58 and test for regularity or singu-
larity: sincem =1+1—1—1+1=1, by Corollary 4.58, we need only to test,
for any one nonzero number )y, whether A();) is singular. If we randomly let
A = 1, clearly, A(l) = As + Ay + Ap is nonsingular; therefore, it is concluded
that the quadratic matrix polynomial A(\) is regular.

Moreover, it is immediate from (4.79) that det(A(\)) = —A3, and therefore det(A(\))
has no nonzero root, which shows that the upper bound m — 1 = 0 obtained in (4.68)
in Theorem 4.56 is attainable. O
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Similar to Theorem 4.52 and Theorem 4.56, we have the following general theo-
rem which sets an attainable upper bound on the numbers of nonzero roots of the
characteristic polynomials of square and regular matrix polynomials of degree (.

Theorem 4.62 Let A(\) = Ei‘:o MNA;, Ay e C™n i =0,1,...,1, 1l €N, be a regqular
matriz polynomial of degree I, and let Ay, ..., A\, m € Ny, be all the nonzero roots of

det(A(N)) (in which repetitions may be included, and m = 0 means all its roots are
zero). Then,

0<m < (rank(A4;)+rank(Ag) + (I —2)n

-1 l -1 l
+ Zmin {Zrank(Ak) - n, O} + Zmin {Zrank(Al_k) —n, O}) . (4.80)

k=j j=1 k=j

Proof. Since the proof is similar to that of Theorem 4.56, we only present a brief sketch
of the facts which lead to the result, as follows.

(a) By Lemma 4.51, the minor expansions of the characteristic polynomial of A(\)
1s:

Ju.oc0 ] Ipi+1 .7,
0<p<n Y4 2 Pi-1

"()\Al) ( i.p2+1 i.pl ) 'AO ( 7{?14’1 Zn )}
Ip2+1 0 Ipy Ipi+1 0 In

- Z {(1)5/11 < o iy > “A ( Ikt ) .
Jro I I+l 0 Jpia

oAy ( ’L'P2+1 ’L'pl ) 'AO ( Z’P1+1 Z.n ))\d}7 (481)
Jp2+1 0 Ipa Jpi+l 0 n

det(A(N) = > {(—1)5()\1Al)<i_1 e >,(A11Al_1)<i'pl+1 i, >

where  p=p+---+p1,pg €No, ¢=1,...,0, 0<p <p1 <~ <p1 <
©:= (i1, Upyspyt1s -y pypqsr- > lpi1s- -5 0n) IS @ permutation of {1,2,...,n},
il<i2<"'<iplaipl+1<ipl+2<"'<ipl,1a ey ip1+1 <Z'p1+2<"'<in;

J =1y Jpys Jpi41s -2 Jpi1r---sJpr+1s- - -+ Jn) I8 @ permutation of {1,2,...,n},

J1<J2 < <Jppdp+l <Ip+2 < <Ipi_1s -5 Iprtl <Ipit+2 <0 < Jnj
¥4 Pr—1 pP1 ¥4 Pi—1 P1
e IR S S R P S o
g=1 q=p;+1 g=p2+1 g=1 q=p;+1 g=p2+1

and d = Ip;+ (I = V)pr—1+ -+~ + p1.
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(b) Based on (4.81), we calculate the highest possible order of A in det(A(M)):

-1 !
O, = rank(4;) + Z min {Z rank(Ay), n}

J=1 k=j

= rank(4;) 4+ ( —1)n+ Z min {Z rank(Ag) — n, O} . (4.82)

k=3

(c) Analogously, we calculate the lowest possible order of A in det(A(M)):

-1 !
O, = n—rank(Ag) + Z max {n — Z rank(A;_x), O}

Jj=1 k=j

= n —rank(4p) — Zl min {Z rank(A;_x) —n O} (4.83)

Jj=1 J

(d) By (4.82) and (4.83), we derive an upper bound on the number m:

l
m<Op—0; = rank(4;)+ l—ln—i—me{ZrankAk)—n O}

k=j
l
— (n—rank (Ap) — Zmln{Zrank (Aj—) — n, O})
k=j
= (rank(Al) + rank(Ag) + (I — 2)n

1 -1 1
Jerm {Zrank (Ag) —n 0} +Zm1n {Zrank(Alk) n,()}) . O

k=j j=1 k=j

Remark 4.63 From (4.82) and (4.83) in the proof of Theorem 4.62, it follows that
for a regular matrix polynomial A(\) = Zli:o N A; of degree [, where A; € C™", § =
0,1,...,1, 1 € N, the corresponding polynomial eigenvalue problem (Ei‘:o )\"AZ-> =0

has eigenvalue co with algebraic multiplicity

-1 !
Moo > (n —rank(A4;) — Z min {Z rank(Ax) — n, O}) , (4.84)

=1 k=j

and eigenvalue 0 with algebraic multiplicity

mo > (n —rank(A4y) — Zl min {Zrank(Alk) —n, O}) . (4.85)

k=j
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Also, Theorem 4.62 directly implies the following corollaries.

Corollary 4.64 Let A; € C™", wherei =0,1,...,1, 1 € N. Then the matriz polyno-
maial 22:0 N A; of degree | is singular if there exist at least 1 distinct nonzero numbers

Ai, i =1,...,m, such that all the matrices 22:0 NA;, i=1,...,m, are singular, where
m: = (rank(Al) +rank(Ag) + (I — 2)n
-1 !
—|—me {Zrank Ap)—n O} + me {Zrank(Al_k) — n,O}) +1. (4.86)
k=j j=1 k=j

Corollary 4.65 Under the same assumption and the same notation as in Corollary
4.64, if m <0, then the matriz polynomial Ei‘:o N A; is singular.

Remark 4.66 The sufficient condition m < 0 for singularity in Corollary 4.65 is equiv-
alent to the sufficient condition for singularity in Proposition 4.49, since

(rank(A;) 4+ rank(A4p) + (I — 2)n

-1 l -1 l
+Zmin {Zrank(Ak) -n O} —|—Zm1n {Zrank(Al_k) —n,O}) +1<0

k=j j=1 k=j
< (rank(A;) + rank(Ag) + (I — 2)n

-1 1 -1 1
+ZZ (rank(Ag) — n +ZZ (rank(A;_g —n)) +1<0

Jj=1k=j Jj=1k=j

rank(A;) — n + % <0

!
M-

~
~ 1
o

= rank(4;) —n+1<0. O

1=

(=)

Although it is a widely known fact that it is possible to study pth (p > 2) degree
square matrix polynomials, or more precisely, their corresponding polynomial eigenvalue
problems, via a linearization method (see [17]), it should be noted that, for a regular
pth (p > 2) degree polynomial eigenvalue problem, the upper bound of the number of
its nonzero eigenvalues derived in (4.80) in Theorem 4.62 may be much sharper than
that derived, after a linearization, in (4.64) in Theorem 4.52, as the next remark shows.

Remark 4.67 Given a square and regular matrix polynomial A(\) = Zizo NA; of
degree | > 2, where A; € C"*" ¢ =0,1,...,l, we can linearize A(\) in the classical
way into its companion polynomial Ca(\) (cf. [17], p. 186):

I 0 --- 0 O o -I 0 --- 0

01 - 0 0 0 0 —I -~ 0
CaN) = A +Ag= | + 1 & 0 PAF| 0 (4.87)

0 0 I 0 0 0 -1

L0 0 0 A Ay A A |
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Since C'a(A) is a linearization of A(\), we have
ENCANF() = diaglAQN), L ). (458)

where E(A) and F'(X\) are nl x nl unimodular matrix polynomials, or in other words,
the determinants of F(\) and F'(\) are nonzero constants. From (4.88) it follows that

det(Ca(N)) = co - det(A(N)),

with ¢g € C\{0}. Therefore, det(C'4()\)) has exactly the same roots as det(A(\)). If we
apply Theorem 4.52 to the linearization C'4 () as a matrix pencil to bound the number
m of its nonzero roots, we obtain that

0 <m < rank(A;) + rank(Ag) — In = rank(A4,;) + rank(Ag) + (I — 2)n, (4.89)

since by (4.87) we have

rank(A;) = (I —1)n + rank(4,), (4.90)
rank(Ag) = (I —1)n + rank(Ay), (4.91)
which do not take account of the rank information of Ai,..., A;_;. However, if we

directly apply Theorem 4.62 to A(\), we can derive a much sharper upper bound on
m shown in (4.80) than that in (4.89). Take, for instance, Example 4.61, where | = 2.
By the upper bound in (4.89) derived after linearization, we have m < 1+ 1+0 = 2,
whereas by Theorem 4.62, we have m < 0.

The same result, as above, can also be available in the case of the so-called de-
composable linearization T4(\), which preserves the full spectral information including
spectrum at infinity of the original matrix polynomial A(A). The reason is due to
the following relation between the companion polynomial C'4(A) and the decomposable
linearization T4(\):

Ca(N)S1 = SoTa(N),

where S;, S, € C"™™ are nonsingular matrices. For more details of linearizations and
spectral properties of regular matrix polynomials, we refer to [17] (Chapter 7), and
more recently, [41] which deals with structure-preserved linearizations. O

Finally, we conclude this section with the following formal procedure which summa-
rizes the results obtained in Proposition 4.13, Corollary 4.37, and Corollaries 4.64 and
4.65 to test regularity or singularity for any given square matrix polynomial.
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Algorithm 4.68 Given a matriz polynomial A(\) = ZZi:O N A; of degree |, where A; €
Crn i =0,1,...,1, and |l € N, this algorithm determines whether or not the matrix
polynomial is reqular.

1. Check the rank information of the leading and last coefficient matrices of A(N).

If  rank(A;) =n or rank(A4p) =n
A()) is regular (by Corollary 4.37), return
end

2. Compute m defined by (4.86) in Corollary 4.64.

3. Test for reqularity or singularity by using m.

It m<o
A()) is singular (by Corollary 4.65), return
else
randomly choose distinct nonzero numbers Mo A
for i=1:m
if  det(A()\;)) #0
A()) is regular (by Proposition 4.13), return
end
end
A()) is singular (by Corollary 4.64)
end

O

It should be noted that, if the rank of some coefficient matrix A;, ¢ # 0, [, is not exactly
known, it is also valid to substitute its upper bound, if we know, or even n for rank(A;)
in (4.86) to compute 7.

4.4 Nearness to Singularity Problem for Matrix Poly-

nomials

4.4.1 Introduction

In this section we investigate the distance to the nearest singular square matrix polyno-
mial, i.e., for a square and regular matrix polynomial we are interested in by how much
its coefficient matrices must be perturbed for the regularity to be lost. This question
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of interest mainly arises, as we have pointed out in the last section, from polynomial
eigenvalue problems. For a nearly singular but regular matrix polynomial, the eigenval-
ues and eigenvectors of its corresponding polynomial eigenvalue problem may become
very sensitive to perturbations of the coefficient matrices even if the matrix polynomial
after perturbation is still regular, as the following example illustrates.

Example 4.69 We consider quadratic matrix polynomials

0 € 10 01
A = \A A+ Ay = N2
()\) A 2—|—)\ 1—|—0 )\[10]+)\[01]+[00],and

- - - x 0 0 10 01
A = M\A A+ Ay = N2
(A) AN Ag + AA + A )\{10}4—)\[01}—1—[00],

where || < 1. From Theorem 4.47 it follows that A()) is singular, and A()) is regular
if and only if € # 0. If € # 0, it is immediate that the quadratic eigenvalue problem
ANz = (AN2Az + AA; + Ap)x = 0 has eigenvalues

)\1 - )\2 - )\3 = )\4 = O (492)

with the sole eigenvector = = [1,0]7. If we perturb the coefficient matrices of A()) to
get the following perturbed quadratic matrix polynomial

i - } - o 0 1 0 0 1
AN) = A As + AA; + Ap == A {1 —a]Jﬂ\{O 1]+{_ﬁ 0]’

then, by Theorem 4.47, A(\) is regular if and only if a # 0 or § # 0. If o # 0
and 3 # 0, a short computation shows that the regular quadratic eigenvalue problem
AN)Z = (AN2Ag + AA; + Ap)Z = 0 has eigenvalues

- varel _ 1 T
)\i:—e _1017 WheI‘e GZ: — ar +Ii'_7 izl?"'747 493
Vil 1) T "

with corresponding eigenvectors

T
4
i‘i — 1’ o /|B‘€\/7129i VvV ‘6|e\/710i

ci=1,...,4, (4.94)
Vlal
respectively. Clearly, if
1>1¢l >0, 1> |a] >0, and 1 > |B] > 0, (4.95)
then the distance between A(\) and A())
2
dis (A(N), AN)) = | D (14 — A2 = |¢] (4.96)
i=0
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is very small, and therefore A()) is nearly singular. Also, under the condition (4.95),
the distance between A(A) and A(\)

dis (A(N), AW)) = Z 14 = Ailly = Vel + 2|af? + |52 (4.97)

is very small. However, if we let, in addition to the condition (4.95), | 3| = |«/|, then, by
(4.93) and (4.94), the perturbed eigenvalues \;, i = 1, ..., 4, may vary from 0 drastically,
and so may the perturbed eigenvectors z;, i = 1,...,4, from =x. O

The distance to the nearest non-regular square matrix pencils has been investigated
by Byers, He, and Mehrmann in [4]. In Subsection 4.4.2, we will give a definition and
some properties of the distance to the nearest singular square matrix polynomials, and,
based on the results obtained in Subsection 4.2.3, we will present a general theoretical
characterization for the distance. Both the definition and the characterization can be
regarded as natural generalizations of those given in [4]. We will also show that the
nearness problem is in fact a perturbation-structured and -constrained rank-deficiency
problem which appears to be an open problem. Moreover, at the end of Subsection
4.4.2, a characterization of the nearness for matrix pencils will be given, which implies
a coincidence with the geometrical characterization (4.36) for singular matrix polyno-
mials obtained in Subsection 4.2.4. Subsection 4.4.3 deals with two special cases of
matrix polynomials. For each of the two, an explicit formula for the nearest distance
is determined. In particular, an example, in which the nearest distance in the spectral
norm can be strictly less than that in the Frobenius norm, is given. Finally, in Subsec-
tion 4.4.4, in terms of the smallest singular value of a matrix, we will derive two types
of lower bounds on the nearest distance for general regular matrix polynomials, which
are the generalizations of the results for matrix pencils obtained in [4].

4.4.2 Properties and Theoretical Characterizations of
the Nearness to Singularity

First of all, we give a definition of the nearness to singularity for matrix polynomials.

Definition 4.70 Given a square matriz polynomial A(N) = Eizo N A; of degree I,
where A; € C"" 1 =0,1,...,1, and | € Ny, the distance to the nearest singular matriz
polynomial is defined by

!
dp(A(N)) == min{|[AAl, A4, | AN + AA(N) s singular, AA(N) == Z )\iAAz} . (4.98)
=0

where ||(+)||, denotes the matriz 2-norm (spectral norm) if p = 2, or, the Frobenius
matriz norm if p = F.
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Let A = {[AA;,...,AA] | A(\) + AA()) is singular} be a subset of C**(+U»  Ob-
viously, [—A;,...,—Ay] € A; therefore, A is not empty. Since, by Proposition 4.13,
the singularity of square matrix polynomials can be derived in terms of a determinant
which is a continuous function in the entries of a matrix, the property of singularity of
matrix polynomials makes A a closed subset of C**(*+*)" Hence, the distance function
dp(A(N)) in (4.98) is well-defined.

We call a matrix polynomial AA()\) = Zi‘:o MNAA;, AA; € CV 4 =0,...,1, a
minimum p-norm de-reqularizing perturbation of A(N), if A(A) + AA(N) is singular and
5(AN) = A4, .., A4,
any given A(A), there exists at least one minimum p-norm de-regularizing perturbation
of A(N).

, p = 2,F. From the above analysis, we know that for

Some Properties of the Nearness

The distances in the spectral norm and in the Frobenius norm are equivalent to each
other, as the following Proposition 4.71 shows.

Proposition 4.71

or(AN) = 62(A(N)) >

~0p(A(N).

Si-

Proof. Assume that matrix polynomial AA(X) = Zizo NAA; is a minimum F-norm
de-regularizing perturbation of A()A). Since A(A) + AA(A) is singular, by Definition
4.70, we have

02(AN) < [AA;, - AAdll, < ([[AA ..., Al p = 51 (A(N))-

Similarly, we assume that matrix polynomial AA()\) = Zizo NAA; is a minimum
2-norm de-regularizing perturbation of A(X). Since A(\) + AA()) is singular, by Defi-
nition 4.70, we have

Sr(AN) < A4 .., AAG] |y < Vi [AAy .., AAGll, = v G(AN)).

U
In the next subsection, we will give an example in which d5(A(N)) is (strictly) less
than dp(A(N)).
Like the spectral and Frobenius matrix norms, 6,(A(X)) is unitarily invariant, as
the following proposition shows.

Proposition 4.72 For any unitary matrices U,V € C**" and p = 2, F,

Gp(UTANV) = 5,(A(N).
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Proof. The proof follows from the fact that UH(A(X) + AA(N))V is singular if and
only if A(A\) + AA()) is singular, and the fact that

| [UTAAV,... . UTAAV] Hp
174
= ||UF[AA, ..., AA]

p

— [AA, .., AAl,, p=2,F.

U

The following proposition which describes the relation between the F-norm distance
of A(X) to the nearest singular matrix polynomial and that of its conjugate transpose.

Proposition 4.73
Ir(AN) = dr(AT(N)). (4.99)

Proof. The proof follows from the fact that A(\) + AA()\) is singular if and only if
AH(N) + (AA)T () is singular, and the fact that

A4, Al = | [(ad)”,... (aa0)"]|

F

g

To investigate the relation between do(A(X)) and do( A7 (N)), we need the following
lemma.

Lemma 4.74 Let B; € C™*", i=1,...,l. Then

B
I[Bi, ..., Bi]ll, < min {\/Z, ﬂ} : 'l : , (4.100)
B, )

and
B,
: < min {ﬂ, \/ﬁ} B, Billl,- (4.101)
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Proof. The proof of inequality (4.100) follows from the following two inequalities
(4.102) and (4.103):

B!
I[B,-. . Bl = Amax | [Bi,-..,Bi]- |
B!
= Amax (BB" +---+ B1B")
< Amax(BiB) 4 -+ -+ Amax(B1 B
= Mmax(BIB) + 4+ Amax (B By)
< l')\max(BlHBl-l-‘“—i-Bf{Bl)
By
= 1 Amax | [B,....B] |
By
B 1|
= I : : (4.102)
B |||,
B 1 B 1|
I[Bi,..., Bl <|I[Bi, ..., Bi]l5 = : < min {Im,n} - : . (4.103)
By By

F 2

Since, for any A € C™*", || Al = | A2, inequality (4.101) immediately follows from
inequality (4.100). O

In inequalities (4.100) and (4.101), equality can be attained, as the following example
shows.

1
Example 4.75 Let B; := l (1] 8 ] and let By := l 8 0 ] Then [ =n = 2, and

0 0
01 10 1 01 10 10

By, B — - I%lax :
B2 2l = | g o o ][, = M || |10
0 0



whereas,

5]

2

oSO = O O
oS O O
o = O O
o O O

:)\éax 0010
1 00
2

()

Therefore, equality in inequality (4.100) can be attained, and so can equality in in-

equality (4.101) if we let B; := l (1) 8 } and let By := l (1] 8 ] O

Proposition 4.76
5o (AT (X)) < min {\/z Y \/ﬁ} L ,(AN)). (4.104)

Proof. We assume that AA(\) = 22:0 MNAA; is a minimum 2-norm de-regularizing
perturbation of A(\), i.e., A(X)+AA(N) is singular and d5(A(N)) = ||[[AA,, ..., AA]]],.
Then A7 (X\) 4+ (AA)" () is singular. Therefore, by Definition 4.70 and Lemma 4.74,

we have

AA;

(4" ) < ||[aa)".. a4 | :
Ado |,
< min{\/l+ 1,@} AA,. .., A4,

- min{\/l+—1, \/ﬁ} L 53(AN)).

A General Characterization for the Nearness to Singularity

In order to determine a characterization for d,(A(X)), p = 2, F, let us recall the nec-
essary and sufficient conditions for regularity of matrix polynomials which have been
presented in terms of coefficient matrices in Corollary 4.39 and Remark 4.40. Observing
the special forms of Wi(A;, Ai—1, ..., Ap) in (4.32) and of /WS(AZ, Aiq,...,Ap) in (4.34),
we immediately have the following proposition.
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Proposition 4.77 Let A(\) = le‘:o N A; be a matriz polynomial of degree I, where
A, eCv™ ¢=0,1,...,1, and l € Ng. Then the following statements are equivalent:

1. A(X) is regular.

2. The block matriz W, _1y41(Ar, Ai—1, - .., Ag) has full column rank n((n—1)1+1),
where Win_1y41 (A1, Ai—1, ..., Ao) is defined as in (4.32) in Corollary 4.39.

3. The block matriz W(n_l)lH(Al,Al_l, ...y, Ag) has full row rank n((n — 1)l + 1),
where Win_1yi41 (A, Ai—1, ..., Ao) is defined as in (4.34) in Remark 4.40.

Proof. 1. = 2.: By Corollary 4.39, the proof is immediate.

2. = 1.: Observe that if the block matrix Wy(A;, A;_1,...,Ap) in (4.32) has full
column rank, then for every s € N, s < (n — 1), the block matrix W,(A4;, A;_1, ..., Ao)
has also full column rank. Thus, by Corollary 4.39, A()) is column-regular and therefore
regular.

The proofs of 1. = 3. and 3. = 1. are analogous to those of 1. = 2. and 2. = 1.,
respectively. O

From the regularity conditions given in Corollary 4.39, Remark 4.40 and Proposition
4.77, we directly derive a characterization for the distance d,(A(X)), as follows.

Proposition 4.78 Let A(\) = 22:0 N A; be a matriz polynomial of degree I, where
A, eCv™ ¢=0,1,...,1, and l € Nyg. Then,
p(A(A)) = minmin{|[[Ady,..., Ado]]lp |

rank (WS (Al + AAL A1+ AA ..., Ay + AAO)) < TLS} (4105)
= min{[[[AA;,..., AAo] |, |

rank (Wg (Al + AAL A1+ AA ..., Ay + AAO)) < TL§} (4106)
= minmjn {4, Adg] |, |

rank </VI75 (A + AA A1+ AA ..., Ao+ AA0)> < ns} (4.107)
= min{[[[AA;,..., AAo] |, |

rank </VI7§ (A1 + AA A1 +AA ..., Ao+ AA0)> < n§} (4.108)

where s e N: 1 < s < (n—1)+1, §:=(n—1)I]+1, the (s + [)-by-s block matriz
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Wo(Ai+ AAL A+ AAq, ..., Ao+ AAy) is given by

Ws(Ap +AAL, A1 +AA ..., Ao + AAp)

Ao+ AAg
A1+ AA; Ao + AAO
Al +AA L A+ AA Ao + AAp
A+ AA Aj_1 +AA 4 AL+ AA Ao + AAg
Al +AA A+ AA, AL+ AA Ao + AAg

A+ AA; cee Ao+ AAs A1+ AA;

A+ AA Al +AA,
A+ AA,

(4.109)

and the s-by-(s + 1) block matriz Ws(Al + AAL A+ AAL, . Ag+ AA) is given
by

Wa(Ay + AAL Ay + AA_1, ..., Ag + AAy)

Ao+ AAy A1+ AAL - A+ AA
Ag+AAy - A1 +AA A+ AA

Ao +AAy - A1 +AA A+ AA
(4.110)

Remark 4.79 Note that if [ = 0 then A(\) = Ay, and therefore the nearness problem
degenerates into the rank-deficiency problem for a general matrix, which has well-
known classical result in terms of singular values of the matrix (see, for example, [20],
or Subsection 4.4.3); whereas, if [ > 1, Proposition 4.78 shows that the nearness problem
becomes a perturbation-structured and constrained rank-deficiency problem, for which
we still do not know how to determine a general explicit formula, except in some
cases in which both the order and degree of A(\) are very small (see Proposition 4.88
in Subsection 4.4.3), or, the coefficient matrices of A(\) have very special forms or
properties (e.g. they are scalar multiples of one another). For a very brief survey of
rank-deficiency nearness problem for matrices, see also [20]. O

A Characterization of the Nearness to Singularity for Matrix Pencils

In the case of matrix pencils, another kind of characterization for dz(A(\)) is, in the
light of the generalized Schur form ([53, 45, 55, 19, 4]), obtained in [4]. Before extending
the result to the 2-norm case, let us recall the generalized Schur form for matrix pencils.
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Theorem 4.80 (Generalized Schur form) [53, 45] For every matriz pencil NA; +
Ag, A1, Ag € C™™ ", there exist unitary matrices QQ, Z € C"*™ such that

Q"(AAL + Ag)Z = AR+ S, (4.111)
where R, S € C™*" are upper-triangular matrices.

In the following lemma, we restate the Frobenius norm result in [4] and extend it
to the 2-norm case.

Lemma 4.81 (/4/, Theorem 8) Let A(\) = AA; + Ay, where Ay, Ag € C"*". Then, for
p=2F,
9p(A(N)) = min min min_ [[[Qn—k+141Zk, Qn-rr140Zk]|], -

1<k<n Qn_ri1 € Clr—k+)xn 7 Cnxk,
Qn7k+1Q£I_k+1 =1 ZHZ, =1

(4.112)

Proof. In the case of the Frobenius norm dz(A(\)), see the proof given in [4].

In the case of the 2-norm, the part which proves that do(A())) is bounded from above
by the right-hand-side of (4.112) is the same as that in the case of the Frobenius norm.
Next, we will prove that the right-hand-side of (4.112) is, conversely, also bounded
from above by d9(A(X)). Assume that AA(N) = AMAA; + AAp is a minimum 2-norm
de-regularizing perturbation of A()), where AA;, AAy, € C"*™. Since A(N) + AA(N)
is singular, the generalized Schur form of A(\) + AA(A) must have the following zero
structure for some index k, 1 < k < n:

k n—k
QA(AL +AAN)+ (Ag+AAY)) Z = 1 { ARy 4 S ARy + Sh2 } ,
n—k+1 0 ARgs + S1o

(4.113)

where ), Z € C™"™ are unitary matrices. We partition ) as ) = [ QQk_l } Crxn. 7
n—k+1

as Z = [Zx, Zn—x), and QA1 Z and QAyZ conformally with (4.113) as

k n—k k n—k
QAZ = | AY AR ], Qaz= A A (4.114)
n—k+1 A;ll) A;12) n—k+1 Agi) A;g)

We also partition QAA;Z and QAAyZ conformally with (4.113) as

k n—=k
AAlY Aty
aa) Al

k n—k
A4 AAY
VGG

QAAZ =
n—k+1

) QAAOZ = k—1
n—k+1

(4.115)
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Noting the zero structure in the right-hand-side of (4.113) and by (4.114) and (4.115),
we have

AAY = —AY = —Q, 11412k, AAY = —AD = —Q, 411407, (4.116)

Since AA()) is a minimum 2-norm de-regularizing perturbation of A(\), by (4.115) and
(4.116), we have
HQ

62(A(N)) = |[[AAL AAll, = [[[QAAZ QAAZ],
AAY A4 AAlD A4
AAY AAY AAl A4

> | [aaR), aa@, aaR, a4l
L 2

AAL aA) aal) aag] |

s [aa2a2]|
L 2
| [=Qn—r4+141Z, —Qn-r1+140Z1]|l5

= |[[Qn-r+141Zk, Qn-r1140Z1]|, - (4.117)
Hence, the right-hand-side of (4.112) is bounded from above by d5(A(A)). Thus, finally,
we obtain the formula (4.112). O

We investigate further the characterization presented in Lemma 4.81, and obtain
another simplified characterization in terms of the singular values of a family of matrices,
as the following theorem shows.

Theorem 4.82 Let A(N\) = My + Ay, where Ay, Ag € C"*™. Then

d2(A(N)) = 12}%1” Zglér{lxk, o ([A1Z, Ao Z]) (4.118)
ZHz =1
and
Se(AN) = min - min,f(oF +- 4 02) (47, A7), (4.119)
ZHz =1

where o (B) denotes the k-th singular value of an m X n matriz B with singular values
in the descending order

0120922 Omin{m,n} > Omin{mn}+1 = ' ° = Omax{m,n} = 07 (4120)

and (o3 + -+ -+ 02) (B) denotes the sum of the squares of singular values of an m x n
matriz B from the k-th to the n-th if the singular values of the matrix B are in the
descending order as in (4.120).
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The proof of Theorem 4.82 will make use of the Wielandt’s Theorem and the
Courant-Fischer Theorem ([55]) for simplifying the characterization in (4.112).

Theorem 4.83 (Wielandt) (/55], p. 199-201) Let A € C"*™ be a Hermitian matriz
with eigenvalues Ay > Ao > -+ > A\, and let 1 < i1 <ig < --- <1, <n, 1 <k < n.

Then
iy F iy +-+ N, = max min trace(XHAX),
X, CCn X = [@iy, Tig, T4y ), @iy € Xy
Xy, C Xy, C - C Xy, XHEX =1
dln’l(XZ]) = ij
(4.121)
and
iy F iy -+ N, = min max trace(XHAX).
X, CCn X = [@iy, Tig, T4y, ), @iy € Xy
Xi, DX, DDA, XX =1
dim(X;;) =n—i; +1
(4.122)

The Courant-Fischer Minimax Theorem, which is a direct consequence of Wielandt’s

Theorem, is as follows.

Theorem 4.84 (Courant-Fischer) (/55/, p. 201) Let A € C"™ be a Hermitian
matrix with eigenvalues \y > Xy > - > \,. Then

and

A, = max min 7 Az
xccecr reX
dim(X) =i 2Hz=1

A= min max zAzx.
X ccn e X
dim(X)=n—-i+1 zfz=1

Proof of Theorem 4.82. By Lemma 4.81, for p = 2, F', we have

) = min min min  [[[QAZ, QA Z]||, - (4.123)

lgkgn Q c (C(n—k-kl)xn7 Z e (Cnxk7
QR =1 ZH7 =1
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If p=2, by (4.123), we have

05(A(N))

) . . 2
min min min A Z QAL
1<k<n Qe(c(n—k-kl)xn’ ZEC”Xk, ”[Q 1 7Q 0 ]”2
QR =1 ZHz =
) . . 1
min min min A A7, QAL -
1<k<n Qe (C(nfchrl)Xn7 Zc (Cnxlc7 max ([Q ? Q ] ZHAé‘IQH
QQRH =1 ZHz =1
min min min - Apax (Q (A1 ZZ7 AT + Ay ZZ7 A]) QM)
1<k<n Qe (C(n*kJrl)Xn7 7 c (Cnxlc7
QQRH =1 ZHz =1
min min min
ISkSn Q c (C(n—k+1)><n’ A= (CnXk,
QR =1 ZHz =

max z1Q (AlZZHA{{ +A0ZZHA6{) Qx
x € Cnk+l

2Hr=1

(by Courant-Fischer’s Theorem 4.84)

min min
1<k<n z ¢ cnxk,

ZHz =1
min max  (Qz)" (A ZZ" A + AgZZM AY) QM
Qe (c(n—k-kl)xn7 = (Cn—k+17
QRH =1 iz =1

min min
1<k<n z ¢ cnxk,

ZHz =1
min max y' (AlZZHA{{ +AOZZHA6{) Y
yccen, y €,

dim(Q)=n—-k+1 yHy=1

min ~ min Ay (A ZZ7 A + AgZzZM AY)
I<k<n gz ¢ gnxk,
ZHz =

(again by Courant-Fischer’s Theorem 4.84)

. . ZH AT
12}6121 Zén(clrlblxk’ Tk <[AIZ’ AoZ]- l ZH Al })
ZHz =]

(4.124)
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= min  min o} ([A1Z, AZ]), (4.125)

1<k<n z ¢ cnxk,
ZHz7 =]

where A\ (+) denotes the k-th eigenvalue of an n x n Hermitian matrix with eigenvalues
in descending order Apax = A1 > Ag > -+ > A\,

If p=F, by (4.123), we have

2 o . . . 2
Op(A(Y) = min pecin o min, I[QA:1Z, QA Z]| %
QQHE =1 ZHZ =
: : : ZH AT QM
= @ min . min, trace ([@Alzv QAZ] { 2 AT
QQH =1 ZHZ =
= min min min
1<k<n @ e cln—k+l)xn 7 c Cnxk
QQRE =1 zHz7 =
{trace (Q (A1 ZZ" A + AgZzZ" A) Q™) } . (4.126)

Since the trace of a square matrix is equal to the sum of all its eigenvalues, from (4.126)
it follows that

6#(A()\)) = min  min min
1<k<n 7z ¢ cxk Qe (C(n—kJrl)xn,
ZHz = | QQRE =1

{On+ X+ + Nminr) (Q (A ZZP AT + AgZzZ" AY) Q™))

= min min min
1<k<n 7z ¢ (CnXk7 Qe (C(nkarl)Xn’
ZHz = | QR =1
min max
X, CCrhtlj=1,... n—k+1, X=Iz1,22, ,Th_kt1),3; € X},
X1 DXoD DXyt XHX =1

dim(X;)=(n—-k+1)—j+1
trace (X7Q (A1 ZZ" AT + AgZzZ" AT Q" X) }
(by Wielandt’s Theorem 4.83)
(4.127)

110



= min min
1<k<n z e cnxk,

ZHz7 =
min min max
Qe Chkthxn  y,Ccrhtl j=1,..., n—k+1, X=[z1,22,,Tp_pt1],2; € Xj,
QR =1 X1 DXoD DXyt XHX =171

dim(X;)=(n—k+1)—j+1

trace ((QX)" (41227 A + Ay22" AY) QX ) |

= min min
1<k<n z e Cnxk,

ZHz =1
min max
Y; CCrj=k,..., n, Y =[yk, Yr+1, ", Yn) Y5 € V),
Vi D Vig1 D+ D Vn, YHY =7

dim(Y;) =n—j5+1

trace (Y7 (41227 A + AgZZ"AJ) Y) }

= min  min A+ +N) (AZZTAT + AgZZT AT

1<k<n z e Ccrxk,
ZHz =1

(again by Wielandt’s Theorem 4.83)

H AH
= min min (A 4+ A\) ([AlZ, ApZ) - l Z A })

1<k<n gz e Ccnxk, ZHAé{
ZHz =1

= min min (o} 4 +0.) ([AiZ, AZ)), (4.128)

1<k<n z e cnxk,
ZHz =1

where (A; + -+ A,) (B) denotes the sum of the eigenvalues of the Hermitian matrix
B from the k-th to the n-th if the eigenvalues of B are in the descending order.
Thus, with (4.125) and (4.128), we have finished the proof. d

Remark 4.85 By the classical result on the distance to the nearest rank-deficient
matrix (see Theorem 4.87 in Subsection 4.4.3), we can interpret the quantities o (and
dr, respectively) in (4.118) (and in (4.119), respectively) as the nearest distance, in
terms of 2-norm (and F-norm, respectively), by which rank ([A1Z, AgZ]) < k over all
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k and all Z € C™* with orthonormal columns. Thus, it is clear that the algebraic
characterizations for the nearest distances given by (4.118) and (4.119) coincide with
the geometrical characterization of square and singular matrix pencils which is presented
in Theorem 4.44. O

Remark 4.86 Let k € N, 1< k < n, and let 7c (C"X’A“, ZH7 — I;, be a test matrix.
Then, from Theorem 4.82 it immediately follows that for any @ € C*** QQ¥ = I, we
have the following upper bounds on the nearest distance to singularity.

S(AN)) < a,;([AlZA,AOZAD:a,;([AlZQ,AOZAQD;

(a0 < (2 4+ 2) ([0z,202]) = (o2 4+ 02) (20 2020] ).
0

4.4.3 Special Cases

In this subsection we discuss two special cases of matrix polynomials (in particular, of
matrix pencils) in each of which an explicit formula for §(A()\)) can be determined.

First, let us recall the classical result on the distance to the nearest rank-deficient
matrix for a general rectangular matrix.

Theorem 4.87 [19, 20] Let A € C™ ™ have the singular value decomposition (SVD)

A = UH{?; 8]‘/, where

Y = diagloy,...,0.], 01 > 09>+ >0, >0, r =rank(A),

and let k <r. Then, forp=2,F,

i A= By = A- A, ={ P2 (4.129)
min — = — = - .
rank(B)=k P ki E@':kJrl o}, p=F,
where
S0
Ak:UH[ Ok 0:|‘/, Ek:diag[al,...,ak].
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Case I: A(\) = (N + a;_ N7+ -+ ag) A, where A € C™".

In this trivial case, the coefficient matrices of A(\) are scalar multiples of one an-
other. It is immediate that if AA is a minimum p-norm (p = 2 or F) perturba-
tion of the matrix A such that A + AA is singular, then the minimum p-norm de-
regularizing perturbation of the matrix polynomial A(\) is AA(N) = le‘:o NAA; =
(N +a; N1+ - -+ag)AA. By Theorem 4.87, for p = 2, ', we have || AA||, = ouin(A),
and therefore, we have

5 (AO) = IAA .., DA, = /laul + lai s + -+ lao - Guin(A), p = 2, F

Case II: 2-by-2 Matrix Pencils.

In this case, we restate the Frobenius norm result in [4] and present upper and lower
bounds on the distance in the spectral norm.

Proposition 4.88 (//], Corollary 3) Let Ay, Ay € C**%. Then

&ﬂAAl%AO):Inhl{mmn<[:i;}),omm(ph,Ad)}.

Proof. See [4]. O

Proposition 4.89 Let A, Ay € C**2. Then

min {Umin ([Ar, Ao) , g"mm q j(l) D}

da(AA1 + Ap)

VAN

< min {amin ([A1, Ag]) , Omin ({ j; D} : (4.130)

Proof. Assume that AAA; + AAg is a minimum 2-norm de-regularizing perturbation
of )\Al -+ Ao, where AAl, AAO € (C2><2, and that A (Al —+ AAl) -+ (AO -+ AA()) has the
following generalized Schur form (cf. Theorem 4.80)

(%MA+A&)H%+A%»Z:APM7h}+{% m}. (4.131)

0 T929 0 S99

Since A (A1 + AA;)+ (Ao + AAp) is singular, we have that in (4.131) either r1; = s1; = 0
or Ty = S99 = 0. It follows that either the left null spaces, or the (right) null spaces,
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or both of A; + AA; and Ay + AAg have a nontrivial intersection; or in other words,

either A+ A, ,or [A; + AA;, Ag + AAg], or both are rank deficient. Hence, we
Ao+ AAg
have
52(AA1 + Ag) = [[[AAr, AAo,
1 AA;
> — .
> \/ﬁ’HAAo} 2 (by Lemma 4.74)
2
> iamin 4 (by Theorem 4.87) (4.132)
2 Ao
if l il) 1 iil) ] is rank deficient, and similarly, by Theorem 4.87, we have

Sa(AAL + Ag) = [[[AAL AAg][ly > i ([A1, Ao)) (4.133)

if [A] + AAy, Ag + AAp] is rank deficient. From (4.132) and (4.133) it follows that

52(AA; + Ag) > min {amin ([A1, Ag)) gamm ({ j; D } .

As for the upper bound of d5(AA; + Ap) in (4.130), the proof follows immediately from
Proposition 4.71 and Proposition 4.88. 0

Unlike the classical result — Theorem 4.87 in the case of k = (r — 1) — on the
distance to the nearest rank-deficient matrix for matrices, the nearest distance to sin-
gularity for matrix polynomials in the spectral norm may be (strictly) less than the
nearest distance to singularity in the Frobenius norm, as the following example demon-
strates.

Example 4.90 We investigate the regular matrix pencil

1 0 10
AN) = NA + A = :
(A) = A + A )\lo _1}4—[01}
Applying Theorem 4.82 to A(\), we have

5(AN) = min  min oy, ([A1Z, ApZ]) . (4.134)

k=12 7 e c2x¥,
ZHz =]

And applying Proposition 4.88 to A(\), we have

5#(A(N)) = min {amin ([ ﬁ; D , Omin ([A1, AO])} — min {ﬂ ﬁ} = V2. (4.135)
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Let Z = g [1,1]" € C2 Then Z7Z =1, and by (4.134) we have
0 (AN) < o1 ([A1Z, AgZ))

I ESIBEIIR)
- (F[40]) "

Applying Proposition 4.89 to do(A(N)), we have

62(14()\)) Z min {Jmin ([Al, Ao]) N \/7§O-min (

Ay
A

)} = min {\/5 ? : ﬂ} =1. (4.137)

Hence, from (4.136) and (4.137) it follows that d2(A(\)) = 1. Therefore, by (4.135), we
have

52(A(N) =1 < V2 =6p(A(N)).

4.4.4 Lower Bounds on §,(A(\))

Since the nearest distance is analogous to the stability radius in control theory, we are
here only interested in deriving lower bounds on the nearest distance.

Lower Bounds Using o, (o/Al +aTIBA -+ ﬁle)

We note that the determinant of a square singular matrix polynomial is identically
equal to zero. It is natural to use this information and make use of Theorem 4.87 to
obtain lower bounds on the nearest distance d,(A(X)), p = 2, F. During the process of
deduction, we need Lemma 4.92 (below), which describes a relationship between the
2-norm and unitarily invariant norms. For the sake of completeness, we first restate
the definition of unitarily invariant norms from Stewart and Sun [55].

Definition 4.91 (/55]/ p. 74.) Given a norm ||-|| on C™*™, it is UNITARILY INVARIANT
if for any A € C™", and any unitary U € C™*™ and V € C™*", it satisfies

U AV = ||A].

Lemma 4.92 (/55] p. 80. Theorem 3.9.) Let || - || be a family of unitarily invariant
norms, and let A € C™*" and B € C"*?, where m,n,q € N. Then

|AB|| < [[A[lIBllz  and [[AB]|| < [[All2[| Bl
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We conduct our analysis as follows. Assume that AA(\) = le:o NAA; is a min-
imum p-norm de-regularizing perturbation of A(X), p = 2, F. Since A(\) + AA()) is
singular, we have, for any \y € C,

det(A(Xg) + AA(N)) = det (i Mo (A; + AAZ-)> =0. (4.138)

1=0

Let Ao = v/ S0, where ag, By € C, By # 0, and
!
> lag Bil7 = lagl® + lag Bof* + -+ a5 1P + |65 = 1. (4.139)
i=0

If we substitute GyAg for y in the normalization equation (4.139), then (4.139) implies

that
ol { 21/ + 1) if |Ao| = 1 (4140)

V(= oP)/(1 = [MPHD) i [Ao] # 1.

Obviously, there exist infinitely many pairs (ag, By) such that ag/By = Ao and (4.139)
is satisfied, provided that |3y satisfies (4.140). Substituting ag/fGy for Ao in (4.138), we
have

! ! !
det (Z b B As + AAZ-)> = det <Z QB A; + Z aéﬁ(l)_iAAi> =0. (4.141)
i=0 =0 =0

Thus, by Theorem 4.87, (4.141) implies that

! !
Omin (Z Oé(i)ﬁ(l)iAz) < Z Oéf)ﬁ(l)ﬂ'AAz’
=0 =0

p
abl
Ozlo_lﬁoj
= (A4, AAL, ... A4 _
ol 1
abl
o ' Bo
S H[AAEAAI*D s '7AA0]Hp : ) (4142)
Byl ,

where p = 2, F, and the inequality (4.142) holds due to Lemma 4.92 and the fact
that the 2-norm and Frobenius norm are unitarily invariant norms. Note that, by the
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normalization equation (4.139), we have

abl . abl
-1 -1 1
oy ol g Pol Z s
] ) = lag By 7L =1, (4.143)
: : i=0
Bl g1
and therefore,
abl
-1
@ 1
0 ,ﬁo = 1. (4.144)
gl 1,

From (4.142) and (4.144) it follows that

l
Tumin <Z aéﬁé‘%i> <NAAL AA - AAL, = 6,(AN), p=2,F. (4.145)

1=0

Note that, if |ag] = 1 and Gy = 0, then (4.139) still holds, and, by Corollary 4.37,
so does (4.145). Since the inequality in (4.145) holds for any pair (ag,3) € C x C,
immediately, we have the following proposition on a family of lower bounds on ¢,(A(\)).

Proposition 4.93 LetS = {(«o,5) € Cx C | a and ( satisfy (4.139)}, andletT C S
be some test set of pairs (a, 3). Then,

(a,8)€S

!
dp(A(N)) > max omn <Z aiﬁl_iAi> : (4.146)
=0

(a,B)ETCS

l
> max  oum (Z o/ﬁliAZ) . p=2F. (4.147)
=0

In practical computations, we may let the pair (1,0) be always included in the test set
7T, and for other elements of 7, we can randomly choose distinct numbers A, Ao, .. .,
and let o; := \;3;, 1 =1,2, ..., where

ﬁ,:{ /10 + 1) i =1

Y= P PO it ol £1, T DR

It should be noted that, given two pairs (a7, 41) and (as, 2) which satisfy the normal-
ization equation (4.139) and a4 8y = anfy, if |51| = |F2], then

l l a g ) .
Omin (Z 0/1/8{_1141> = Omin <Z Oé;ﬁé_ZAz> = |/81|lo-min (Zio (E) AZ) if /61 7& 07
=0 =0

Umin<Al) lf Bl = 0
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For a regular matrix polynomial A()), if the number of elements test set 7 in Propo-
sition 4.93 is sufficiently large, then the lower bound in (4.147) is positive (a zero lower
bound is trivial for regular matrix polynomials), as the following remark shows.

Remark 4.94 Let m € 7Z be defined as in (4.86) in Corollary 4.64. If the matrix
polynomial A(\) = le:o A'A; is regular, then, by Theorem 4.62, the number of nonzero
roots of det(A(X)) is strictly less than m. Therefore, if A()) is regular, and if the test
set 7 contains the pair (0, 1) and greater than or equal to m pairs (a, 3), a # 0, which
are distinct in the sense that for any two pairs (ay, £1) and (ag, B2), 182 # a1, then
the lower bound in (4.147) is positive. O

Byers, He, and Mehrmann show in [4] that in the case of regular matrix pencils,
it is not difficult to find an example where the lower bound in (4.146) is attainable.
In the case of regular matrix polynomials of higher degrees, it is not either. Take, for
instance, A(A) in Example 4.69, in which we assume 0 < |¢| < 1. On the one hand, if
we let AA(N) = N2AA; + AAA; + AAy, where

0 —e
0 0

then A(X\) +AA(N) is singular. By Definition 4.70, 0,(A(X)) < || [AA2, AA1, AA] ||, =
le|, where p = 2, F'. On the other hand, if we let (o, ) = (1,0) and use the lower bound

in (4.147), then we have 0,(A(X)) > Omin(A2) = Omin <{ 0 }) = |e|, since |¢| < 1.

AAQ:{ ],AAleA():O,

10
Hence, 0,(A(X)) = |e|, and therefore by (4.146), we obtain

(mﬁz;xs Omin (07 As + AL + 3 Ag) = 6,(A(N)) = |e|, p=2, F,
a,p)e

where S = {(a,3) € Cx C | |a|* + |o|?|B]? + |8]* = 1}. Inequality (4.146) also be-
comes an equality in the case that the coefficient matrices of A(\) are scalar multiples
of one another.

We can also find cases where inequality (4.146) holds strictly in the case of Frobenius
norm, or in other words, the lower bound in (4.146) is a genuine bound for p = F, as
the next example demonstrates.

Example 4.95 We investigate the regular matrix pencil

1 0 10
A(A)_/\A1+AO._/\[O _1]+[0 1}.

By Proposition 4.88, we have

54 = min fon ([ 41]) o (10,200}
= min{v2,v2} = V2
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For any (o, 3) € S = {(o, 8) € C x C | |a|? + |B]* = 1}, we have

Umin(aA1+ﬁA0) = Umin([ﬁga /8904:|)

= min{|f+al,|f—al}. (4.148)
Since |3+ al - |8 — a| = |8? — a?| < |al® + |B]* = 1, we have
min {6+ ol 16— al} < VIF T al [F—al < L (4.149)
Therefore, by (4.148) and (4.149), we obtain that

RAX O (@A) + BA)) <1< V2=26p(AN).
a,p)e

O

In the case of spectral norm, at this writing, we still do not know of an example in
which Inequality (4.146) strictly holds.

Lower Bounds Using o, (W(A;, A1, ..., A)) and o (WS(Al, Al_q, ... ,A0)>

Another natural way to obtain lower bounds on d,(A(\)) is to make use of the charac-
terization described in Proposition 4.78, ignoring that the perturbation required should
have the structure and be constrained as in (4.109) and (4.110). In the course of
derivation, we need the following lemma, which relates the eigenvalues of a principal
submatrix to the eigenvalues of the original Hermitian matrix.

Lemma 4.96 (/55] p. 198. Corollary 4.3.) Let A € C™™ be a Hermitian matriz with
eigenvalues Ay > \o > --- > X\, and let B be a principal submatriz of order n —k of A
with eigenvalues j; > g > -+ > fin_. Then

)\’LZMZZ)\Z-F]C’ z:1,2,,n—k

We carry out our deduction as follows. Assume that AA(N\) = Eizo NAA; is a
minimum p-norm de-regularizing perturbation of A(\), p =2, F'. Then, by Proposition
4.78, the block matrix

W (A + AA A + AA Ly, . Ag + AA)
(= We(A,A1,...,A) + W (AA, AA 4, ..., AA))

is rank deficient for some s, where 1 < s < (n— 1)l + 1. Thus, if we allow unstructured
and unconstrained perturbations of Wy (A;, A;_1,..., Ap), then, by Theorem 4.87, we
have

O min (Ws (Al, Al*h e ,Ao)) S ||Ws (AAh AAlfh ey AAO)Hp , p= 2, F. (4150)
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Analogously, by Proposition 4.78 and Theorem 4.87, we have

Onin (Ws (A, Ar-a ., A)) < [ (AL AL, -, Adg)

,p=2F  (4.151)
p

for some §, 1 <§<(n—1)l+1.
To get the relation between ||[Ws(AA;, AA;_,...,AAy)|r and dp(A(N)), we note
that

W (Ady AA 1, Adg) = V5 DAy - Aol = V5 - Gr(AQY). (4.152)
Therefore, from (4.150) and (4.152) it follows that

Omin (Ws (Al7 Al*lu sy AO))
7

where 1 < s < ((n — 1)l + 1). Note that for any s1,s0 € N, if 1 < 57 < 59 < ((n —
1)l + 1), then Wy, (A, Aj—1,. .., Ap) is a principal submatrix of Wy, (A;, 4,1, ..., Ap)
(cf. (4.32)), and therefore, WH (A, ..., Ag) - Wy, (As,..., Ap) is a principal submatrix
of WH (A, ..., Ay) - Wy, (A1, ..., Ap). Thus, by Lemma 4.96, we have

< dp(A(N)), for some s, (4.153)

Omin (ng (Ala Al—17 B 7A0)) < Omin (Wsl (Ala Al—17 s 7A0)) . (4154)
Therefore, by (4.153) and (4.154), we finally have

min Omin (WS (A17 Al—la ey AO)) _ Omin (W§ (Ala Al—17 cee 7A0)) S 5F(A()\>>, (4155)
s Vs V3
where 1 <s < ((n—1)l+1),and §=(n— 1)l + 1.
Along the same lines, we obtain that

i (W (A Ay, A)) o (W (A Avss . Ad))
mgm NG - V3

where 1 <§<((n—1)l+1),and § = (n — 1)l + 1.
Combining (4.155) and (4.156), we immediately have the following proposition.

< dr(A(N),
(4.156)

Proposition 4.97 Let §:= (n— 1)+ 1. Then

%max{amin (Ws (A Ar, . A0)) 0w (Wi (A Ay, A0)) } < 8r(AV), (4157)

where W5 (A, A1, ..., Ag) and W (Ai, Ai_q, ..., Ag) are defined as in (4.52) and (4.34),
respectively.
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Since it appears that we can not get a ” <” relation of |W (AA;, AA;_1, ..., AAo)],,
or of HWS (AA,AA 4, ..., AAO)H , to ¢ 92(A(N)) (where ¢ is a constant), we do not,
2

at this writing, obtain a reasonable lower bound on d2(A(X)) which is similar to that
on dp(A(N)) in (4.157).

Examples in [4] show that the lower bound in (4.157) is usually coarser than that
on 6r(A(N)) obtained in (4.147), which may be regarded as the cost of our disregarding
the structure and constraint of the perturbation of Wy (A;, A;_1,..., Ap). As a matter
of fact, at this writing, we still do not know of an example, except for the simplest cases
n = 1 (in which A()\) degenerates into a scalar polynomial) or [ = 0 (in which A(\)
degenerates into a constant matrix), in which the lower bound in (4.157) is attainable.
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Chapter 5

Conclusions and Outlook

In this thesis we have presented the theoretical analysis of two interrelated topics:
linear differential-algebraic equations of higher-order and the regularity and singularity
of matrix polynomials.

In the first part of this thesis, we have directly investigated the mathematical struc-
tures of general (including over- and underdetermind) linear higher-order systems of
DAEs with constant and variable coefficients. Making use of the algebraic techniques
devised in [28, 29, 34] and taking linear second-order systems of DAEs as examples,
we have given condensed forms, under strong equivalence transformations, for triples of
matrices and triples of matrix-valued functions which are associated with the systems
of constant and variable coefficients respectively. It should be noted that in the case
of variable coefficients, we have developed a system of invariant quantities and a set
of regularity conditions to ensure that the condensed form can be obtained. Based on
the condensed forms, we have converted the systems into ordinary-differential-equation
part, ‘strange’ coupled differential-algebraic-equation part, and algebraic-equation part,
and designed the differentiation-and-elimination steps to partially decouple the strange
part. Inductively conducting such process of transformation and decoupling, we have,
finally, converted the original systems into equivalent strangeness-free systems, from
which the solution behaviour with respect to solvability, uniqueness of solutions and
consistency of initial conditions can be directly read off.

In addition, we have shown that the strangeness-index of systems of DAEs with
constant coefficients is well-defined, and can be determined from the right-hand side of
the final strangeness-free system. We have also presented that, in the case of a square
constant coefficient system of DAEs of higher-order, given necessary and consistent
initial conditions, the initial value problem for the system of DAEs is solvable and has
a unique solution for any right-hand side f(t) € C*([to,t1], C™) with the strangeness
index p of the system if and only if the matrix polynomial associated with the system
is regular. Note that if one works with such higher-order problems in the traditional
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theoretical framework of first-order systems of DAEs, then, to get the solvability and
uniqueness of solutions, more smoothness of the right-hand side f(¢) may be required,
namely, f(t) € C*([to,t1],C"), where i > p (cf. for example, [17], Chapter 8 and
Subsection S1.3.). Whereas, in the case of variable coefficient systems of DAEs of
higher-order, it is expected that sufficient and necessary conditions for the existence of
the strangeness-index will be investigated in the future.

On the basis of presented theoretical results on linear systems of DAEs of higher-
order, we also expect that numerical methods and software packages for the deter-
mination of consistent initial conditions and for the computation of solutions to the
associated initial value problems will be developed in the future (for numerical treat-
ment of first-order systems, cf. [31, 32, 33, 34]).

In the second part of this thesis, from the point of view of both the theory of ma-
trices and matrix computations, we have discussed the regularity and singularity of
matrix polynomials. Several sufficient and necessary conditions for the column- and
row- regularity and singularity of rectangular matrix polynomials have been presented.
Such conditions have laid a theoretical foundation for the subsequent related investi-
gations. For instance, we have used them to present a geometrical characterization of
singular matrix pencils, by which, conversely, the definition of deflating subspaces of a
regular matrix pencil has been clarified. We have also presented a canonical form, un-
der equivalence transformations, for 2 x 2 singular quadratic matrix polynomials, which
clearly demonstrates the geometrical relations between the row (and column) spaces of
the coefficient matrices of a 2 x 2 singular quadratic matrix polynomial.

In the case of square matrix polynomials, we have investigated the problems of de-
tecting the regularity and singularity and of nearness to singularity for regular matrix
polynomials. We have presented an algorithm to check whether or not a given matrix
polynomial is regular via the rank information of its matrix coefficients. As a by-product
in our investigation, we have also given attainable lower bounds on the algebraic mul-
tiplicity of eigenvalues co and 0 of a polynomial eigenvalue problem (22:0 )\iAi> x=0
if the corresponding matrix polynomial 22:0 M\ A; is regular.

For square and regular matrix polynomials, we have given a definition of the dis-
tance, in terms of the spectral and Frobenius matrix norms, to the nearest singular
matrix polynomials. Several basic and interesting properties of the distance have been
presented. Based on the sufficient and necessary conditions of the regularity of matrix
polynomials obtained, a general theoretical characterization of the nearest distance to
singularity has been also presented. From the characterization it turns out that the near-
ness problem is in essence a perturbation-structured and constrained rank-deficiency
problem, for which to determine an explicit computable formula appears to be an open
problem. Nonetheless, in the case of matrix pencils we have developed a useful char-

124



acterization, in terms of the singular values of matrices, of the nearest distance, which
directly coincides with the obtained geometrical characterization for singular matrix
pencils. We have also investigated the nearness problem for two special cases of matrix
polynomials, and in particular, presented an example in which the nearest distance to
singularity in terms of the spectral norm is less than that in terms of the Frobenius
norm. At last, two types of lower bounds on the nearest distance for general regular
matrix polynomials have been presented.

In the future we expect that detecting the regularity and singularity and providing
information on the nearness to singularity will be realized in those software packages
which deal with systems of linear differential-algebraic equations with constant coeffi-
cients and polynomial eigenvalue problems.
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