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List of Notations and Conventions

N set of natural numbers

N0 N ∪ {0}
C field of complex numbers

Cn space of all n-dimensional column vectors with components in C
Cm×n space of complex matrices of size m × n

Cq([t0, t1], Cn) set of all q-times continuously differentiable vector-valued functions

mapping from the real interval [t0, t1] to Cn, where q ∈ N0

Cq([t0, t1], Cm×n) set of all q-times continuously differentiable matrix-valued functions

mapping from the real interval [t0, t1] to Cm×n, where q ∈ N0

λ complex conjugate of λ ∈ C
arg(·) argument of a complex number

[ai,j]
m,n
i,j=1 matrix of dimension m × n

I or In identity matrix of size n × n

ei i-th unit vector

A(i, j) element of matrix A lying on the ith row and the jth column of A

A(:, i) i-th column of matrix A

A(:, i : (i + k)) submatrix of A including its columns from the i-th to the (i + k)-th

A(i, :) i-th row of matrix A

A(i : (i + k), :) submatrix of A including its rows from the i-th to the (i + k)-th

AT transpose of matrix A

AH conjugate transpose of matrix A

A−1 inverse of matrix A

A−T inverse of the transpose of matrix A

A−H inverse conjugate transpose of matrix A

λmax(·) largest eigenvalue of a Hermitian matrix

σmin(·) smallest singular value of a matrix

diag[A1, . . . , Am]




A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am




R(·) column space of a matrix

N (·) null space of a matrix

rank(·) rank of a matrix, a matrix-valued function, or a matrix polynomial

det(·) determinant of a square matrix
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trace(·) trace of a matrix

span{x1, . . . , xm} subspace spanned by vectors x1, . . . , xm ∈ Cn

deg(·) degree of a polynomial

dim(·) dimension of a subspace

X u Y, X ,Y ⊆ Cn {x + y : x ∈ X , y ∈ Y}
AX , A ∈ Cm×n, X ⊆ Cn {Ax : x ∈ X}
:= equals by definition

� end of proof

♦ end of an example or remark or algorithm
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ZUSAMMENFASSUNG

Die Arbeit liefert einen Beitrag zur theoretischen Analyse linearer differentiell-

algebraischer Gleichungen (DAEs) höherer Ordnung sowie der Regularität und

Singularität von Matrixpolynomen.

Für Systeme von linearen DAEs höherer Ordnung mit variablen und konstanten

Koeffizienten werden Invarianten und kondensierte Formen unter angemessenen

Äquivalenztransformationen angegeben. Ausgehend von den kondensierten Formen

kann das ursprüngliche DAE-System induktiv durch Differentiations- und Elimination-

sschritte in ein strangeness-freies System transformiert werden, aus dem das Lösungs-

verhalten (u.a die Konsistenz der Anfangsbedingungen und die Eindeutigkeit der Lösung)

direkt ablesbar ist.

Für quadratische DAE-Systeme mit konstanten Koeffizienten wird gezeigt, dass

genau dann zu jeder konsistenten Anfangsbedingung und jeder rechten Seite f(t) ∈
Cµ([t0, t1], C) eine eindeutige Lösung existiert, wenn das zugehörige Matrixpolynom

regulär ist. Dabei ist µ der Strangeness-Index des Systems.

Es werden einige notwendige und hinreichende Bedingungen für die Zeilen-und Spal-

tenregularität und -singularität allgemeiner rechteckiger Matrixpolynome angegeben.

Eine geometrische Charakterisierung singulärer Matrixbüschel wird ebenfalls hergeleitet.

Darüber hinaus wird ein Algorithmus vorgestellt, durch den man mittels Rang-

Informationen über die Koeffizientenmatrizen und Determinantenberechnungen bestim-

men kann, ob ein gegebenes quadratisches Matrixpolynom regulär ist.

Ein weiteres Thema der Arbeit ist die Bestimmung des Abstands eines regulären

Matrixpolynoms von der Menge der singulären Matrixpolynome. Es wird gezeigt, dass

dieses Problem äquivalent zu der Aufgabe ist, in einer gewissen strukturierten Menge

von Matrizen die nächstgelegene Matrix mit niedrigerem Rang zu finden. Für Ma-

trixbüschel wird eine Charakterisierung des Abstands zur Singularität mit Hilfe von

Matrixsingulärwerten angegeben. Schließlich werden einige untere Schranken für den

Abstand zur Singularität hergeleitet.
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ABSTRACT

This thesis contributes to the theoretical analysis of linear differential-algebraic

equations (DAEs) of higher order as well as of the regularity and singularity of ma-

trix polynomials.

Some invariants and condensed forms under appropriate equivalent transformations

are given for systems of linear higher-order DAEs with constant and variable coefficients.

Inductively, based on condensed forms the original DAE system can be transformed by

differentiation-and-elimination steps into an equivalent strangeness-free system, from

which the solution behaviour (including consistency of initial conditions and unique

solvability) of the original DAE system and related initial value problem can be directly

read off. It is shown that the following equivalence holds for a DAE system with

strangeness-index µ and square and constant coefficients. For any consistent initial

condition and any right-hand side f(t) ∈ Cµ([t0, t1], Cn) the associated initial value

problem has a unique solution if and only if the matrix polynomial associated with the

system is regular.

Some necessary and sufficient conditions for column- and row- regularity and sin-

gularity of rectangular matrix polynomials are derived. A geometrical characterization

of singular matrix pencils is also given. Furthermore, an algorithm is presented which -

using rank information about the coefficients matrices and via computing determinants

- decides whether a given matrix polynomial is regular.

Another subject of the thesis is the determination of the distance of a regular matrix

polynomial to the set of singular matrix polynomials. It is shown that this nearness

problem is equivalent to a rank-deficiency problem for a certain class of structured and

constrained perturbations. In addition, a characterization, in terms of the singular

values of matrices, of the distance to singularity for matrix pencils is obtained. Finally,

some lower bounds for the distance of a matrix polynomial to singularity are established.
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Chapter 1

Introduction

There are two parts in this thesis. In its first part, consisting of Chapters 2 and 3,

we shall study linear lth-order differential-algebraic equations (DAEs) with constant

coefficients

Alx
(l)(t) + Al−1x

(l−1)(t) + · · ·+ A0x(t) = f(t), t ∈ [t0, t1]

(
x(k)(t) =

dk

dtk
x(t)

)
(1.1)

and linear lth-order DAEs with variable coefficients

Al(t)x
(l)(t) + Al−1(t)x

(l−1)(t) + · · ·+ A0(t)x(t) = f(t), t ∈ [t0, t1], (1.2)

where Ai ∈ Cm×n, i = 0, 1, . . . , l, l ∈ N0, Al 6= 0, t is a real variable on the interval

[t0, t1], Ai(t) ∈ C([t0, t1], Cm×n), i = 0, 1, . . . , l, Al(t) 6≡ 0, x(t) is an unknown vector-

valued function in C([t0, t1], Cn), and the right-hand side f(t) is a given vector-valued

function in Cµ([t0, t1], Cm). Here Cµ([t0, t1], Cm×n), µ ∈ N0, denotes the set of all µ-

times continuously differentiable matrix-valued functions mapping from the real interval

[t0, t1] to the complex vector space Cm×n.

As the name ”DAE” indicates, a system of DAEs is a system that consists of ordinary

differential equations (ODEs) coupled with purely algebraic equations; in other words,

DAEs are everywhere singular implicit ODEs (cf., for example, E. Griepentrog, M.

Hanke and R. März [16]). Based on this notion, in this thesis we always call (1.1)

and (1.2) systems of DAEs if m 6= n, and if m = n it is always assumed that the

leading coefficient matrix Al in the system (1.1) and the leading coefficient matrix-

valued function Al(t) in the system (1.2) are singular, namely,

rank(Al) < n, and rank(Al(t)) < n, t ∈ [t0, t1].

Here, the rank of a matrix-valued function A(t) on the interval [t0, t1] is defined as

rank (A(t)) = max
t0≤ν≤t1

{rank(A(ν))}. (1.3)
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Often, we will refer to linear DAEs with order greater than one simply as linear

higher-order systems.

Systems of linear first-order DAEs with constant coefficients

A1ẋ(t) + A0x(t) = f(t), t ∈ [t0, t1], (1.4)

where ẋ(t) denotes the derivative of x with respect to t, and systems of linear first-order

DAEs with variable coefficients

A1(t)ẋ(t) + A0(t)x(t) = f(t), t ∈ [t0, t1], (1.5)

as well as general nonlinear first-order DAEs

F (t, x(t), ẋ(t)) = 0, t ∈ [t0, t1], (1.6)

where F and x(t) are vector-valued, play a key role in the modelling and simulation

of constrained dynamical systems in numerous applications. Such systems have been

intensively studied, theoretically as well as numerically, in the past two decades. For

systematic and comprehensive exposition of important aspects regarding the theory and

the numerical treatment of first-order DAEs, see, for example, the monographs of S. L.

Campbell [7, 8] (1980, 1982), E. Griepentrog and R. März [18] (1986), K. E. Brenan,

S. L. Campbell, and L. R. Petzold [3] (1996), P. Kunkel and V. Mehrmann [34] (in

manuscript), and the references therein.

However, the systems (1.1) and (1.2) of linear higher-order DAEs also arise naturally
and frequently in many mathematical models. Take, for example, a model for controlled
multibody systems in R. Schüpphaus [51] ( p. 9) which can be formulated in the

following system of linear second-order DAEs with constant coefficients:




M 0 0 0 0

0 0 0 0 0

0 0 0 0 0

J 0 0 0 0

0 0 0 0 0




¨


z(t)

λ(t)

µ(t)

ν(t)

ξ(t)




+




0 P 0 0 0

0 0 0 0 0

0 G 0 0 0

0 L 0 0 0

0 Y 0 0 0




˙


z(t)

λ(t)

µ(t)

ν(t)

ξ(t)




+




Q −F T −GT −JT −Ẑ

F 0 0 0 0

H 0 0 0 0

K 0 0 0 0

X 0 0 0 Z







z(t)

λ(t)

µ(t)

ν(t)

ξ(t)




=




Su(t)

0

0

0

0




where M, P, Q ∈ Cu×u, J, L, K ∈ Cs×u, G, H ∈ Cq×u, Y, X, Ẑ ∈ Cv×u, F ∈ Cp×u,

Z ∈ Cv×v , S ∈ Cu×r, z(t) ∈ C([t0, t1], Cu), λ(t) ∈ C([t0, t1], Cp), µ(t) ∈ C([t0, t1], Cq),
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ν(t) ∈ C([t0, t1], Cs), ξ(t) ∈ C([t0, t1], Cv), u(t) ∈ C([t0, t1], Cr), and (̈·)(t) denotes the

second derivative of (·) with respect to t.

Usually, as in the well-known classical theory of ordinary differential equations, the

method employed to treat systems (1.1) and (1.2) of higher-order DAEs is to transform

them into first-order systems by introducing the derivative, the second derivative, . . .,

the (l−1)th derivative of the unknown vector-valued function as a part of a new enlarged

unknown vector-valued function, and then to solve the first-order systems of DAEs

associated. Nonetheless, if the degree of differentiability of the right-hand side f(t) in

the higher-order systems is limited, such transformation may be nonequivalent in the

sense that there may not exist any continuous solution to the first-order system after

transformation, whereas there exist continuous solutions to the original higher-order

system. In Section 2.2, Chapter 2 we will give a definition of so-called strangeness-index

and present an example to demonstrate this nonequivalence in terms of strangeness-

index which can also be regarded as one of the key aspects in which DAEs differ from

ODEs. The reason for the nonequivalence is due to the fact that systems of higher-

order DAEs may essentially consist of not only ordinary differential equations in a

classical sense, but also purely algebraic equations and further strange parts which

arise from the couplings between differential and algebraic equations. Therefore, to

get continuous solutions to the systems (1.1) and (1.2), introducing the derivative, the

second derivative, . . ., the (l−1)th derivative of the unknown vector-valued function x(t)

as a part of a new enlarged unknown may require more times continuous differentiability

of the right-hand side f(t) than that required in the original higher-order systems.

Observing the above nonequivalence, we see that it is not thoroughly satisfactory

to convert higher-order systems of DAEs to first-order systems in order to solve them.

Thus, the need to directly treat higher-order systems of DAEs provides a major motiva-

tion for our study. It is the aim of the first part of this thesis to directly investigate the

mathematical structure of linear higher-order systems of DAEs and to lay a theoretical

foundation for a better understanding of such systems.

The results of Chapters 2 and 3 are obtained mainly by a procedure of changing coor-

dinates under equivalent transformations, differentiating the strange part of unknowns,

and then eliminating through insertions the coupled strange part of the systems. Such

techniques have been introduced and used by P. Kunkel and V. Mehrmann [28, 29], [34]

(Chapters 2 and 3) to deal with linear first-order systems of DAEs, especially those

with variable coefficients. The work in Chapters 2 and 3 is very close in spirit to the

work done by P. Kunkel and V. Mehrmann, and the theory developed here is a natu-

ral extension of that of linear first-order systems to the systems of linear higher-order

DAEs.

In outline, in Chapters 2 and 3 we first develop condensed forms, under appropriate

equivalent transformations, for linear higher-order systems, whereupon we decouple the
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system concerned into ordinary-differential-equation part, ’strange’ coupled differential-

algebraic-equation part, and algebraic-equation part. Then we eliminate the strange

part by differentiations and insertions, and repeat this process of decoupling and elim-

inating, until finally we transform the system into a so-called strangeness-index zero

or strangeness-free normal form of the system of DAEs which has an equivalent solu-

tion set to that of the original system. Hence, based on the final normal form we can

investigate the solution behaviour of the original system, and obtain results on solv-

ability, uniqueness of solutions of the system, consistency of initial conditions (possibly

given together with the system), and existence and uniqueness of solutions of the initial

value problem possibly associated with the system. In such context, we will see that

the major difference between the constant coefficient case and the variable coefficient

case is that in the latter case, the variable coefficients must be sufficiently smooth and

satisfy a set of regularity conditions, so that we can get the condensed form and pass

the system through the inductive process to obtain the final normal form; (cf. Sections

3.1 and 3.2); whereas in the former case, the constant coefficients naturally satisfy such

restrictive conditions.

Since the idea here is quite definite, for convenience and brevity of expression,

our work in Chapters 2 and 3 will be mainly concentrated on the systems of linear

second-order DAEs with constant and variable coefficients. The key results obtained

for second-order systems can be extended without difficulty to linear high-order systems.

As we shall see in Sections 2.4 and 2.5, in the case of a constant coefficient system

of DAEs, the solution behaviour of an initial value problem for the system of DAEs is

closely related to the properties of regularity and singularity of the matrix polynomial

associated with the system. This close relatedness provides us one of the major moti-

vations to study regularity and singularity of matrix polynomials. This study will be

conducted in the second part of this thesis, namely Chapter 4.

In Chapter 4 we shall study, from the point of view of the theory of matrices,

regularity and singularity of m × n matrix polynomials of degree l

A(λ) =

l∑

i=0

λiAi = λlAl + λl−1Al−1 + · · ·+ λA1 + A0, (1.7)

where λ ∈ C and the matrices Ai ∈ Cm×n, i = 1, . . . , l. Here, we call a matrix

polynomial A(λ) column-singular (or row-singular, respectively) if rank(A(λ)) < n (or

rank(A(λ)) < m, respectively), otherwise it is column-regular (or row-regular, respec-

tively).

Apart from the subject matter of DAEs mentioned as above, in the case of m = n,

the study of polynomial eigenvalue problems (PEPs) provides another major motivation

for our investigation (for theoretical and numerical analysis of PEPs, see, for example,

[35, 17, 44, 46, 26, 41, 21, 56, 13, 57, 22, 23, 24, 9], and the references therein). In

4



the monograph of Gohberg, Lancaster, and Rodman [17], a spectral theory for regular

matrix polynomials has been developed. Nonetheless, for singular matrix polynomials,

especially those of degrees greater than or equal to 2, the general theoretical analysis has

been largely ignored. For this reason and the numerical concerns related, the second

part of this thesis is aimed at theoretically analyzing characterizations of the column-

and row- regularity and singularity of matrix polynomials, detecting the regularity

or singularity of a given square matrix polynomial, and investigating the nearness to

singularity problem for square matrix polynomials.

In Section 4.2, we shall prove sufficient and necessary conditions for the singularity

of matrix polynomials, which means, put simply in the column case, that a matrix

polynomial A(λ) is column-singular if and only if there exists a vector polynomial x(λ),

which is not identically equal to zero, such that A(λ)x(λ) = 0. More essential, we

shall also give an attainable upper bound on the least possible degree of such nonzero

vector polynomials x(λ). This main result of Section 4.2 will lead to other sufficient

and necessary conditions, in terms of the matrix coefficients, for the singularity and

regularity of matrix polynomials. In particular, as direct applications of such sufficient

and necessary conditions, a geometrical characterization of singular matrix pencils and

a canonical form, under equivalence transformations (defined by (2.17) in Section 2.3),

for 2 × 2 singular quadratic matrix polynomials are presented.

Since, in many DAE problems and in all polynomial eigenvalue problems, square

matrix polynomials are involved, we restrict the study conducted in Sections 4.3 and 4.4

to the square case. As we shall see in Section 2.5, in the setting of DAE problems (1.1), if

the matrix polynomial associated is singular, then either the homogeneous initial value

problem associated with (1.1) has a nontrivial solution, or there exist arbitrary smooth

inhomogeneities f(t) for which the system (1.1) is not solvable. While, in the setting of

polynomial eigenvalue problems, if the matrix polynomial associated is singular, then it

is immediate that every complex number can be regarded as an eigenvalue. Even if the

matrix polynomial associated with a DAE problems or a polynomial eigenvalue problem

is regular but nearly singular, a high sensitivity of the solutions of these problems to

perturbations of the matrix coefficients may be expected. Therefore, in view of such

singular or nearly singular phenomena, to detect the regularity or singularity of square

matrix polynomials and to tackle the related nearness to singularity problem become

very important from both the theoretical and numerical viewpoint.

Section 4.3 is devoted to detecting whether or not a given square matrix polynomial

A(λ) is regular. We shall present a natural approach to detection via rank information

of the matrix coefficients and, if necessary, a finite number of computing determinants

of matrices, where the finite number is an attainable upper bound on the number of

nonzero roots of det(A(λ)), if we suppose that A(λ) is regular.

Section 4.4 deals with the nearness to singularity problem for square and regular

5



matrix polynomials. First, we give an example to demonstrate a possibly high sen-

sitivity of a regular but nearly singular polynomial eigenvalue problem if its matrix

coefficients are perturbed. Then, we shall give a definition of nearness in terms of the

spectral and Frobenius matrix norms and some properties of the distance to the nearest

singular square matrix polynomials. Based on the sufficient and necessary conditions of

the regularity of matrix polynomials proved in Section 4.2, we shall also present a gen-

eral theoretical characterization of the nearest distance, which shows that the nearness

problem is in fact a perturbation-structured and constrained rank-deficiency problem.

In addition, on the basis of the result obtained in [4], we shall give a sharper character-

ization, in terms of singular values of matrices, of the nearness to singularity for matrix

pencils, which coincides with a geometrical characterization for singular matrix pencils

obtained in Section 4.2. Subsection 4.4.3 contains two special cases of matrix polyno-

mials, for which we give explicit formulae for the nearest distance to singularity. At the

end of Section 4.4, two types of lower bounds on the nearest distance to singularity for

general regular matrix polynomials are also presented, which are generalizations of the

results for matrix pencils obtained in [4].

Finally, in Chapter 5 we draw some conclusions and give an outlook for future work

and investigations.
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Chapter 2

Linear Higher-Order DAEs with

Constant Coefficients

2.1 Introduction

In this chapter, we consider systems of linear lth-order (l ≥ 2) differential-algebraic

equations with constant coefficients of the form

Alx
(l)(t) + Al−1x

(l−1)(t) + · · · + A0x(t) = f(t), t ∈ [t0, t1], (2.1)

where Ai ∈ Cm×n, i = 0, 1, . . . , l, Al 6= 0, f(t) ∈ Cµ([t0, t1], Cm), possibly together with

initial conditions

x(t0) = x0, . . . , x(l−2)(t0) = x
[l−2]
0 , x(l−1)(t0) = x

[l−1]
0 , x0, . . . , x

[l−2]
0 , x

[l−1]
0 ∈ Cn.

(2.2)

Here, the nonnegative integer µ is the strangeness-index of the system (2.1), i.e., to get

continuous solutions of the (2.1), the right-hand side f(t) has to be µ-times continuously

differentiable (later, in Section 2.2 we shall give an explicit definition of the strangeness-

index).

First, let us clarify the concepts of solution of the system (2.1), solution of the initial

value problem (2.1)-(2.2), and consistency of the initial conditions (2.2).

Definition 2.1 A vector-valued function x(t) := [x1(t), . . . , xn(t)]T ∈ C([t0, t1], Cn) is

called solution of (2.1) if
∑n

k=1 Ai(j, k)x
(i)
k (t), i = 0, . . . , l, j = 1, . . . , m, exist and

for j = 1, . . . , m the following equations are satisfied:

n∑

k=1

Al(j, k)x
(l)
k (t) +

n∑

k=1

Al−1(j, k)x
(l−1)
k (t) + · · ·+

n∑

k=1

A0(j, k)xk(t) = fj(t),
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where Ai(j, k) denotes the element of the matrix Ai lying on the jth row and the kth

column of Ai and f(t) := [f1(t), . . . , fm(t)]T .

A vector-valued function x(t) ∈ C([t0, t1], Cn) is called solution of the initial

value problem (2.1)-(2.2) if it is a solution of (2.1) and, furthermore, satisfies (2.2).

Initial conditions (2.2) are called consistent with the system (2.1) if the associated

initial value problem (2.1)-(2.2) has at least one solution.

It should be noted that, since the system (2.1) of DAEs possibly contains purely alge-

braic equations, we are here interested in the weakest possible solution space C([t0, t1], Cn),

rather than C l([t0, t1], Cn). The differential operators dl/dtl, dl−1/dtl−1, . . . , d/dt in the

system (2.1) are so far only symbols, which do not definitely mean that the un-

known vector-valued function x(t) should be i-times continuously differentiable, i =

l, l − 1, . . . , 1. Later, in Section 2.2 we will see an example to demonstrate this point.

Based upon these concepts, we are naturally interested in the following questions:

1. Does the behaviour of the system (2.1) differ from that of a system of first-order

DAEs into which (2.1) may be transformed in the same way as in the classical

theory of ODEs?

2. Does the system (2.1) always have solutions? If it has, how many solutions do

exist? Under which conditions does it have unique solutions?

3. If the system (2.1) has solutions, how smooth is the right-hand side f(t) required

to be?

4. Which conditions are required of consistent initial conditions?

5. Under which conditions does the initial value problem (2.1)-(2.2) have unique

solutions?

In the following sections we shall answer the above questions one by one. In Sec-

tion 2.2 we present an example to show the difference that may occur, in terms of

strangeness-index, between the higher-order system (2.1) and a system of first-order

DAEs into which the original system is converted. In Section 2.3 we shall give a

condensed form, under strong equivalence transformations, for matrix triples that are

associated with systems of second-order DAEs. Then, in Section 2.4, based on the

condensed form, we partially read off the the properties of the corresponding system of

second-order DAEs, and by differentiation-and-elimination steps reduce the system to

a simpler but equivalent system. After an inductive procedure of this kind of reduction,

we shall present a final equivalent strangeness-free system by which we can answer the

questions posed in the above. Finally, in Section 2.5, the main results of second-order
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systems obtained in Section 2.4 are extended to general higher-order systems, and more-

over, the connection between the solution behaviour of a system of DAEs and regularity

or singularity of the matrix polynomial associated with the system is presented.

2.2 An Example

It is well known that one of the key aspects in which a system of DAEs differs from a

system of ODEs is that, to get the solutions of DAEs, only continuity of the right-hand

side f(t) may not be sufficient and therefore higher derivatives of f(t) may be required.

Later, in Section 2.4, we will clearly see the reason for this difference. Furthermore, as

we have mentioned in Chapter 1, another different point between higher-order DAEs

and higher-order ODEs is that, in order to get continuous solutions, different degrees

of differentiation of the right-hand side of the system of higher-order DAEs may be

required than of the system of first-order DAEs into which the original higher-order

system is converted; whereas in the case of ODEs the solution behaviour keeps com-

pletely invariant after such kind of conversion. To show this difference, we need the

following definition of the sufficient and necessary degrees of differentiation required of

the right-hand side of systems of DAEs, which is introduced in [28, 30, 34].

Definition 2.2 Provided that the system (2.1) has solutions, the minimum number

µ of times that all or part of the right-hand side f(t) in the system (2.1) must be

differentiated in order to determine any solution x(t) as a continuous function of t is

the strangeness-index of the system (2.1) of DAEs.

Obviously, according to Definition 2.2, both a system of ODEs and a system of purely

algebraic equations have a zero strangeness-index.

In the following, we present an example of an initial value problem for linear second-

order DAEs to demonstrate the possible difference of strangeness index of the original

system from that of the converted first-order system of DAEs.

Example 2.3 We investigate the initial value problem for the linear second-order con-

stant coefficient DAEs

[
1 0

0 0

]
ẍ(t) +

[
1 0

0 0

]
ẋ(t) +

[
0 1

1 0

]
x(t) = f(t), t ∈ [t0, t1] (2.3)

where x(t) = [x1(t), x2(t)]
T , and f(t) = [f1(t), f2(t)]

T is sufficiently smooth, together

with the initial conditions

x(t0) = x0, ẋ(t0) = x
[1]
0 , (2.4)
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where x0 = [x01, x02]
T ∈ C2, x

[1]
0 = [x

[1]
01 , x

[1]
02 ]

T ∈ C2. A short computation shows that

system (2.3) has the unique solution

{
x1(t) = f2(t),

x2(t) = f1(t) − ḟ2(t) − f̈2(t).
(2.5)

Moreover, (2.5) is the unique solution of the initial value problem (2.3)-(2.4) if the

initial conditions (2.4) are consistent, namely,




x01 = f2(t0),

x02 = f1(t0) − ḟ2(t0) − f̈2(t0),

x
[1]
01 = ḟ2(t0),

x
[1]
02 = ḟ1(t0) − f̈2(t0) − d3f2(t)

dt3

∣∣∣
t0+

.

(2.6)

If we let

v(t) = [v1(t), v2(t)]
T = [ẋ1(t), ẋ2(t)]

T , y(t) = [v1(t), v2(t), x1(t), x2(t)]
T ,

then we have the following initial-value problem for the linear first-order DAEs



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


 ẏ(t) +




1 0 0 1

0 0 1 0

−1 0 0 0

0 −1 0 0


 y(t) =




f1(t)

f2(t)

0

0


 , (2.7)

together with the initial condition

y(t0) = [x
[1]
01 , x

[1]
02 , x01, x02]

T . (2.8)

It is immediate that the system (2.7) of first-order DAEs has the unique solution




x1(t) = f2(t),

x2(t) = f1(t) − ḟ2(t) − f̈2(t),

v1(t) = ḟ2(t),

v2(t) = ḟ1(t) − f̈2(t) − f
(3)
2 (t).

(2.9)

In this form, (2.9) is the unique solution of the initial value problem (2.7)-(2.8) if the

initial condition (2.8) is consistent, i.e.,





x01 = f2(t0),

x02 = f1(t0) − ḟ2(t0) − f̈2(t0),

x
[1]
01 = ḟ2(t0),

x
[1]
01 = ḟ1(t0) − f̈2(t0) − f

(3)
2 (t0).

(2.10)
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Remark 2.4 Example 2.3 shows that the second-order system (2.3) has a unique con-

tinuous solution (2.5) if and only if the right-hand side satisfies f(t) ∈ C2([t0, t1], C2),

whereas the converted first-order system (2.7) has a unique continuous solution if and

only if f(t) ∈ C3([t0, t1], C2); or in other words, the strangeness-index of the converted

first-order system (2.7) is larger by one than that of the original second-order system

(2.3). For a general system of l-th-order DAEs, it is not difficult to find similar exam-

ples.

Not unobviously, the reason for the above difference in terms of strangeness-index is

that, in the converted first-order system the enlarged set of unknown functions includes

not only the unknowns of the original higher-order system but also their derivatives,

and that to get the solutions of such ”new” unknowns, higher degree of the smoothness

of the right-hand side function f(t) may be required. Therefore, unlike the classical

theory of ODEs (see, for example, E. A. Coddington and N. Levinson [10]), a direct

transformation of a system of higher-order DAEs into an associated system of first-order

DAEs is not always equivalent in the sense that higher degree of the smoothness of the

right-hand side f(t) may be involved in the solutions of the latter. ♦

It should be noted that Example 2.3 also shows that, to obtain continuous solutions

of a system of DAEs, some parts of the right-hand side f(t) may be required to be

more differentiable than other parts which may be only required to be continuous; for

a detailed investigation, we refer to, for example, [2, 37, 38]. Nonetheless, in order to

simplify algebraic forms of a system of DAEs, we usually apply algebraic equivalence

transformation to its matrix coefficients. For this reason and to avoid becoming too

technical, we always consider the differentiability of the right-hand side vector-valued

function f(t) as a whole, and do not distinguish the degrees of smoothness required of

its components from each other.

Now that a direct reduction of a system of higher-order DAEs to a first-order system

may be nonequivalent in terms of the strangeness-index, we have to find another ap-

proach to enable us to investigate more deeply the behaviour of systems of higher-order

DAEs. In the following sections, we will see that through purely algebraic techniques,

like the treatment of systems of linear first-order DAEs with constant coefficients, we

can get a thorough understanding of the behaviour of systems of linear higher-order

constant coefficient DAEs.

2.3 Condensed Form for Matrix Triples

As we have mentioned in Chapter 1, for convenience of notation and expression, in this

section we shall work mainly with systems of linear second-order DAEs with constant
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coefficients

Mẍ(t) + Cẋ(t) + Kx(t) = f(t), t ∈ [t0, t1], (2.11)

with M, C, K ∈ Cm×n, f(t) ∈ Cµ([t0, t1], Cm), possibly together with initial conditions

x(t0) = x0, ẋ(t0) = x
[1]
0 , x0, x

[1]
0 ∈ Cn. (2.12)

It is well-known that the nature of the solutions of the system of linear first-order

constant coefficient DAEs

Eẋ(t) = Ax(t) + f(t), t ∈ [t0, t1],

with E, A ∈ Cm×n and f(t) ∈ Cµ([t0, t1], Cm), can be determined by the properties of

the corresponding matrix pencil λE − A. Furthermore, the algebraic properties of the

matrix pencil λE −A can be well understood through studying the canonical forms for

the set of matrix pencils

λ(PEQ) − (PAQ), (2.13)

where P ∈ Cm×m, Q ∈ Cn×n are any nonsingular matrices; see, for example, [3] (Section

2.3) and [34] (Section 2.1). In particular, among those canonical forms for (2.13) are the

well-known Weierstrass canonical form for regular matrix pencils ([55], Chapter VI) and

the Kronecker canonical form for general singular matrix pencils ([15], Chapter XII),

from which one can directly read off the solution properties of the corresponding DAEs.

Similarly, as we will see later in this chapter, the behaviour of solutions of the system

(2.11), as well as the initial value problem (2.11)-(2.12), depends on the properties of

the quadratic matrix polynomial

A(λ) = λ2M + λC + K. (2.14)

If we let x(t) = Qy(t), and premultiply (2.11) by P , where P ∈ Cm×m, Q ∈ Cn×n are

nonsingular matrices, we obtain an equivalent system of DAEs

(PMQ)ÿ(t) + (PCQ)ẏ(t) + (PKQ)y(t) = Pf(t), (2.15)

and a new corresponding quadratic matrix polynomial

Â(λ) = λ2M̂ + λĈ + K̂ := λ2(PMQ) + λ(PCQ) + (PKQ). (2.16)

Here, by equivalence we mean not only that the relation x(t) = Qy(t) (or y(t) =

Q−1x(t)) gives a one-to-one correspondence between the two corresponding solution

sets of the system (2.11) and the system (2.15), but also that, in order to get continuous

solutions of the systems (2.15) and (2.11), the smoothness conditions required of Pf(t)

in (2.15) are equal to those required of the right-hand side f(t) in (2.11).
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However, it is also well-known that it is an open problem to find a canonical form

for quadratic matrix polynomials (2.16), let alone higher-degree matrix polynomials,

from which we can directly read off the solution properties of the corresponding system

of DAEs. Nonetheless, inspired by the work of [28, 29] (though the papers mainly deal

with linear first-order DAEs with variable coefficients), we shall in this section give

an equivalent condensed form for quadratic matrix polynomials (2.14) through purely

algebraic manipulations and coordinate changes. Based on the condensed form we can

partially decouple the system into three parts, namely, an ordinary-differential-equation

part, an algebraic part and a coupling part, and therefore pave the way for the further

treatment of the system in the following section.

Sometimes, we will use the notation (Al, . . . , A1, A0) of a matrix (l+1)-tuple instead

of the matrix polynomial λlAl + · · · + λA1 + A0 of lth degree which is associated with

the general lth-order system (2.1) of DAEs. By the following definition, we make the

concept of equivalence between two general matrix (l + 1)-tuples clear.

Definition 2.5 Two (l+1)-tuples (Al, . . . , A1, A0) and (Bl, . . . , B1, B0), Ai, Bi ∈ Cm×n,

i = 0, 1, . . . , l, l ∈ N0, of matrices are called (strongly) equivalent if there are non-

singular matrices P ∈ Cm×m and Q ∈ Cn×n such that

Bi = PAiQ, i = 0, 1, . . . , l. (2.17)

If this is the case, we write (Al, . . . , A1, A0) ∼ (Bl, . . . , B1, B0).

It is obvious that relation (2.17) is an equivalence relation, in other words, it is reflexive,

symmetric, and transitive. In the remainder of this section we shall look for a condensed

form for matrix triples under the equivalence relation (2.17). Before embarking on this,

let us first review the canonical form for a matrix and a condensed form for a matrix

pair under the equivalence relation (2.17).

The result on the canonical form for a single matrix under equivalence relation (2.17)

is well-known:

Lemma 2.6 ([36], p. 51) Let A ∈ Cm×n. Then there are nonsingular matrices

P :=

[
P1

P2

]
∈ Cm×m and Q := [Q1, Q2] ∈ Cn×n such that

PAQ =

[
Ir 0

0 0

]
, (2.18)

where P1 ∈ Cr×m, Q1 ∈ Cn×r. Moreover, we have

r = rank(A), N (A) = R(Q2), N (AT ) = R(P T
2 ), (2.19)

where N (·) denotes the null space of a matrix, and R(·) the column space of a matrix.
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The condensed form for a matrix pair (E, A) under equivalence relation (2.17) has

been implicitly given in [28].

Lemma 2.7 Let E, A ∈ Cm×n, and let

(a) Z1 ∈ Cm×(m−r) be a matrix whose columns form a basis for N (ET )

(b) Z2 ∈ Cn×(n−r) be a matrix whose columns form a basis for N (E).
(2.20)

Then, the matrix pair (E, A) is equivalent to a matrix pair of the form







Is 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,




0 A12 0 A14

0 A22 0 A24

0 0 Ia 0

Is 0 0 0

0 0 0 0







s

d

a

s

v

, (2.21)

where s, d, a, v ∈ N0, A14 ∈ Cs×u, u ∈ N0, and the quantities (in the following we use

the convention rank(0) = 0)

(a) r = rank(E)

(b) a = rank(ZT
1 AZ2)

(c) s = rank(ZT
1 A) − a

(d) d = r − s

(e) v = m − r − a − s

(f) u = n − r − a

(2.22)

are invariant under equivalence relation (2.17).

For completeness, we give a proof of this lemma.

Proof of Lemma 2.7. In the following, the word ”new” on top of the equivalence

operator denotes that the subscripts of the entries are adapted to the new block struc-

ture of the matrices. Using Lemma 2.6, we obtain the following sequence of equivalent

matrix pairs.

(E, A) ∼
([

Ir 0

0 0

]
,

[
A11 A12

A21 A22

])
new∼






Ir 0 0

0 0 0

0 0 0


 ,




A11 A12 A13

A21 Ia 0

A31 0 0






new∼






Ir 0 0

0 0 0

0 0 0


 ,




A11 A12 A13

0 Ia 0

A31 0 0




 ∼






Ir 0 0

0 0 0

0 0 0


 ,




A11 0 A13

0 Ia 0

A31 0 0





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new∼







P11 P12 0 0

P21 P22 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,




A11 A12 0 A14

A21 A22 0 A24

0 0 Ia 0

Is 0 0 0

0 0 0 0







(
where the matrix

[
P11 P12

P21 P22

]
is nonsingular

)

new∼







Is 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,




0 A12 0 A14

0 A22 0 A24

0 0 Ia 0

Is 0 0 0

0 0 0 0







.

It remains to show that such quantities r, s, d, a, v, u are well-defined by (2.22) and

invariant under the equivalence relation (2.17). In the case of r = rank(E), this is

clear. For the other quantities, indeed, we only need to show two quantities a and s

are well-defined and invariant under equivalence relation (2.17). Since we have proved

(2.21), let P :=

[
P1

P2

]
∈ Cm×m and Q := [Q1, Q2] ∈ Cn×n be nonsingular matrices,

where P1 ∈ Cr×m, Q1 ∈ Cn×r, such that

[
P1

P2

]
E[Q1, Q2] =




Is 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,

[
P1

P2

]
A[Q1, Q2] =




0 A12 0 A14

0 A22 0 A24

0 0 Ia 0

Is 0 0 0

0 0 0 0




.

(2.23)

By Lemma 2.6, we have

N (ET ) = R(P T
2 ), N (E) = R(Q2), (2.24)

namely, the columns of P T
2 span N (ET ), and the columns of Q2 span N (E). From

(2.23) it immediately follows that

P2AQ =




0 0 Ia 0 0

Is 0 0 0 0

0 0 0 0 0


 , P2AQ2 =




Ia 0 0

0 0 0

0 0 0


 . (2.25)

Hence, by (2.25), we have

a = rank (P2AQ2) , s = rank (P2AQ) − a = rank (P2A) − a. (2.26)
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From (2.20) and (2.24) it follows that there exist nonsingular matrices T1 ∈ C(m−r)×(m−r)

and T2 ∈ C(n−r)×(n−r) such that

P T
2 = Z1T1, Q2 = Z2T2. (2.27)

Then, from (2.26) and (2.27) it follows that

a = rank (P2AQ2) = rank
(
T T

1 ZT
1 AZ2T2

)
= rank(ZT

1 AZ2), and

s = rank (P2A) − a = rank
(
T T

1 ZT
1 A
)
− a = rank(ZT

1 A) − a.

Thus, a and s are indeed well-defined by (2.22) and therefore so are the quantities d, v

and u.

At last, we shall prove that a and s are invariant under the equivalence relation.

Let (Ei, Ai), i = 1, 2, be equivalent, and let Z
(i)
1 , Z

(i)
2 be bases associated with (Ei, Ai),

i = 1, 2, i.e., let

(a) Z
(i)
1 be a matrix whose columns form a basis for N (ET

i )

(b) Z
(i)
2 be a matrix whose columns form a basis for N (Ei).

Since there exist nonsingular matrices P ∈ Cm×m and Q ∈ Cn×n such that E1 = PE2Q

and A1 = PA2Q, from ET
1 Z

(1)
1 = 0 and E1Z

(1)
2 = 0 it follows that

QT ET
2 P T Z

(1)
1 = 0, PE2QZ

(1)
2 = 0,

and therefore

ET
2 P T Z

(1)
1 = 0, E2QZ

(1)
2 = 0.

Thus, the columns of P T Z
(1)
1 from a basis for N (ET

2 ) and the columns of QZ
(1)
2 from

a basis for N (E2). Therefore, there exist nonsingular matrices T̂1 ∈ C(m−r)×(m−r) and

T̂2 ∈ C(n−r)×(n−r) such that

P TZ
(1)
1 = Z

(2)
1 T̂1, QZ

(1)
2 = Z

(2)
2 T̂2.

Then, we can complete the proof of the invariance of a and s with the fact that

rank(Z
(1)
1

T
A1) = rank(Z

(2)
1

T
P−1PA2Q) = rank(Z

(2)
1

T
A2Q) = rank(Z

(2)
1

T
A2),

rank(Z
(1)
1

T
A1Z

(1)
2 ) = rank(Z

(2)
1

T
P−1PA2QQ−1Z

(2)
2 T̂2) = rank(Z

(2)
1

T
A2Z

(2)
2 ).

�

Using the condensed form (2.21) for matrix pairs and similar algebraic techniques

utilized in the proof of Lemma 2.7, we can then derive a condensed form for matrix

triples, which is the main result of this section.
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Lemma 2.8 Let M, C, K ∈ Cm×n. Then, (M, C, K) is equivalent to a matrix triple

(M̂, Ĉ, K̂) of the following form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

I
s(MCK) 0 0 0 0 0 0 0

0 I
s(MC) 0 0 0 0 0 0

0 0 I
s(MK) 0 0 0 0 0

0 0 0 I
d(2) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 0 C I
s(CK) 0 0 0

0 0 0 0 0 I
d(1) 0 0

I
s(MCK) 0 0 0 0 0 0 0

0 I
s(MC) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0

0 0 0 0 I
s(CK) 0 0 0

0 0 I
s(MK) 0 0 0 0 0

I
s(MCK) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a

s(CK)

s(MK)

s(MCK)

v

,

(2.28)

where the quantities s(MCK), s(MC), s(MK), s(CK), d(2), d(1), a and v are nonnegative

integers.

It should be noted that, for convenience of expression, in this lemma and in the fol-

lowing proof we drop the subscripts of the elements of block matrices unless they are

needed for clarification.

Proof of Lemma 2.8. The proof in the following will proceed from the condensed
form for matrix pair (M, C) obtained in Lemma 2.7. And, the canonical form (2.18) for
matrices shown in Lemma 2.6 will be repeatedly employed in the course of the proof.

(M, C,K)

∼

0
BBBB@

2
66664

I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
77775

,

2
66664

0 C 0 C

0 C 0 C

0 0 I 0

I 0 0 0

0 0 0 0

3
77775

,

2
66664

K K K K

K K K K

K K K K

K K K K

K K K K

3
77775

1
CCCCA

∼

0
BBBBBBB@

2
66666664

I 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

0 C 0 C C

0 C 0 C C

0 0 I 0 0

I 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

K K K K K

K K K K K

K K K K K

K K K K K

K K K I 0

K K K 0 0

3
77777775

1
CCCCCCCA
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∼

0
BBBBBBB@

2
66666664

I 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

0 C 0 C C

0 C 0 C C

0 0 I 0 0

I 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

K K K 0 K

K K K 0 K

K K K 0 K

K K K 0 K

K K K I 0

K K K 0 0

3
77777775

1
CCCCCCCA

∼

0
BBBBBBB@

2
66666664

I 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

C C C C C

C C C C C

0 0 I 0 0

I 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

K K K 0 K

K K K 0 K

K K K 0 K

K K K 0 K

0 0 0 I 0

K K K 0 0

3
77777775

1
CCCCCCCA

∼

0
BBBBBBB@

2
66666664

I 0 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

0 C 0 C C

0 C 0 C C

0 0 I 0 0

I 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777775

,

2
66666664

K K K 0 K

K K K 0 K

K K K 0 K

K K K 0 K

0 0 0 I 0

K K K 0 0

3
77777775

1
CCCCCCCA

∼

0
BBBBBBBBBBB@

2
666666666664

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

0 C 0 0 C C

0 C 0 0 C C

0 0 P11 P12 0 0

0 0 P21 P22 0 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

K K K K 0 K

K K K K 0 K

K K K K 0 K

K K K K 0 K

K K K K 0 K

0 0 0 0 I 0

K K I 0 0 0

K K 0 0 0 0

3
777777777775

1
CCCCCCCCCCCA

(where the matrix

»
P11 P12

P21 P22

–
is nonsingular)

∼

0
BBBBBBBBBBB@

2
666666666664

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

0 C 0 0 C C

0 C 0 0 C C

0 0 I 0 0 0

0 0 0 I 0 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

0 0 0 0 I 0

K K I 0 0 0

K K 0 0 0 0

3
777777777775

1
CCCCCCCCCCCA

∼

0
BBBBBBBBBBB@

2
666666666664

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

0 C 0 0 C C

0 C 0 0 C C

C C I 0 0 0

0 0 0 I 0 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

0 0 0 0 I 0

0 0 I 0 0 0

K K 0 0 0 0

3
777777777775

1
CCCCCCCCCCCA
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∼

0
BBBBBBBBBBB@

2
666666666664

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

0 C 0 0 C C

0 C 0 0 C C

0 C I 0 0 0

0 0 0 I 0 0

I 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777775

,

2
666666666664

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

K K 0 K 0 K

0 0 0 0 I 0

0 0 I 0 0 0

K K 0 0 0 0

3
777777777775

1
CCCCCCCCCCCA

∼

0
BBBBBBBBBBBBBBB@

2
6666666666666664

I 0 0 0 0 0 0

0 Q11 Q12 0 0 0 0

0 Q21 Q22 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

0 C C 0 0 C C

0 C C 0 0 C C

0 C C 0 0 C C

0 C C I 0 0 0

0 0 0 0 I 0 0

I 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

K K K 0 K 0 K

K K K 0 K 0 K

K K K 0 K 0 K

K K K 0 K 0 K

K K K 0 K 0 K

K K K 0 K 0 K

0 0 0 0 0 I 0

0 0 0 I 0 0 0

K I 0 0 0 0 0

K 0 0 0 0 0 0

3
7777777777777775

1
CCCCCCCCCCCCCCCA

(where the matrix

»
Q11 Q12

Q21 Q22

–
is nonsingular)

∼

0
BBBBBBBBBBBBBBB@

2
6666666666666664

I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

0 C C 0 0 C C

0 C C 0 0 C C

0 C C 0 0 C C

0 C C I 0 0 0

0 0 0 0 I 0 0

I 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

0 0 0 0 0 I 0

0 0 0 I 0 0 0

K I 0 0 0 0 0

K 0 0 0 0 0 0

3
7777777777777775

1
CCCCCCCCCCCCCCCA

∼

0
BBBBBBBBBBBBBBB@

2
6666666666666664

I 0 0 0 0 0 0

M I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

C C C 0 0 C C

C C C 0 0 C C

C C C 0 0 C C

C C C I 0 0 0

0 0 0 0 I 0 0

I 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

0 0 0 0 0 I 0

0 0 0 I 0 0 0

0 I 0 0 0 0 0

K 0 0 0 0 0 0

3
7777777777777775

1
CCCCCCCCCCCCCCCA

∼

0
BBBBBBBBBBBBBBB@

2
6666666666666664

I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

0 C C 0 0 C C

0 C C 0 0 C C

0 C C 0 0 C C

0 C C I 0 0 0

0 0 0 0 I 0 0

I 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777777777775

,

2
6666666666666664

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

K 0 K 0 K 0 K

0 0 0 0 0 I 0

0 0 0 I 0 0 0

0 I 0 0 0 0 0

K 0 0 0 0 0 0

3
7777777777777775

1
CCCCCCCCCCCCCCCA
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∼

0
BBBBBBBBBBBBBB@

2
666666666666664

R11 R12 0 0 0 0 0 0

R21 R22 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
777777777777775

,

2
666666666666664

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C I 0 0 0

0 0 0 0 0 I 0 0

R11 R12 0 0 0 0 0 0

R21 R22 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
777777777777775

,

2
666666666666664

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 I 0 0 0 0 0

I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
777777777777775

1
CCCCCCCCCCCCCCA

(where the matrix

»
R11 R12

R21 R22

–
is nonsingular)

∼

0
BBBBBBBBBBBBBBBBBBBBBB@

2
66666666666666666666664

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C I 0 0 0

0 0 0 0 0 I 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

K K 0 K 0 K 0 K

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 I 0 0 0 0 0

I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCA

∼

0
BBBBBBBBBBBBBBBBBBBBBB@

2
66666666666666666666664

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C I 0 0 0

0 0 0 0 0 I 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 I 0 0 0 0 0

I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCA

∼

0
BBBBBBBBBBBBBBBBBBBBBB@

2
66666666666666666666664

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 0 C I 0 0 0

0 0 0 0 0 I 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 I 0

0 0 K 0 I 0 0 0

0 0 I 0 0 0 0 0

I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCA
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∼

0
BBBBBBBBBBBBBBBBBBBBBB@

2
66666666666666666666664

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 0 C I 0 0 0

0 0 0 0 0 I 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

,

2
66666666666666666666664

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 I 0 0 0 0 0

I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777777777777777777775

1
CCCCCCCCCCCCCCCCCCCCCCA

. �

Each of the quantities in Lemma 2.8 has an expression in terms of dimension of

column spaces or rank of matrices, and is invariant under equivalence relation (2.17),

as the next lemma shows.

Lemma 2.9 Let M, C, K ∈ Cm×n and

(a) Z1 be a matrix whose columns form a basis for N (MT )

(b) Z2 be a matrix whose columns form a basis for N (M)

(c) Z3 be a matrix whose columns form a basis for N (MT ) ∩ N (CT )

(d) Z4 be a matrix whose columns form a basis for N (M) ∩ N (ZT
1 C)

(2.29)

Then the quantities

(a) r = rank(M) (rank of M)

(b) a = rank(ZT
3 KZ4) (algebraic part)

(c) s(MCK) = dim
(
R(MT ) ∩ R(CT Z1) ∩R(KT Z3)

)
(strangeness due to M, C, K)

(d) s(CK) = rank(ZT
3 KZ2) − a (strangeness due to C, K)

(e) d(1) = rank(ZT
1 CZ2) − s(CK) (1st-order differential part)

(f) s(MC) = rank(ZT
1 C) − s(MCK) − s(CK) − d(1) (strangeness due to M, C)

(g) s(MK) = rank(ZT
3 K) − a − s(MCK) − s(CK) (strangeness due to M, K)

(h) d(2) = r − s(MCK) − s(MC) − s(MK) (2nd-order differential part)

(i) v = m − r − 2s(CK) − d(1) − 2s(MCK) − s(MC) − a − s(MK) (vanishing equations)

(j) u = n − r − s(CK) − d(1) − a (undetermined part)
(2.30)

are invariant under the strong equivalence relation (2.17) and (M, C, K) is (strongly)

equivalent to the condensed form (2.28).

It should be pointed out that the meanings of the invariants indicated in the parenthe-

ses in (2.30) stem from the context of the system (2.11) of DAEs, which we will explain

in the next section. Lemma 2.9 will be used in the next chapter.

Proof of Lemma 2.9. The proof can be carried out along the same lines of the proof

of Lemma 2.7.
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Step 1. First, we show that the quantities in (2.30) are well-defined with respect to

the choices of the bases in (2.29). We take a = rank(ZT
3 KZ4) as an example. Every

change of basis can be represented by

Z̃3 = Z3Q1, Z̃4 = Z4Q2

with nonsingular matrices Q1, Q2. From

rank(Z̃T
3 KZ̃4) = rank(QT

1 ZT
3 KZ4Q2) = rank(ZT

3 KZ4),

it then follows that rank(ZT
1 CZ2) is well-defined. Similarly, we can prove that the other

quantities in (2.30) are also well–defined.

Step 2. Next, we show that the quantities in (2.30) are invariant under the equiv-

alence relation (2.17). Here, we just take s(MCK) as an example. Let (M, C, K) and

(M̃, C̃, K̃) be equivalent, namely, there are nonsingular matrices P and Q such that

M̃ = PMQ, C̃ = PCQ, K̃ = PKQ. (2.31)

Let the columns of Z̃1 form a basis for N (M̃T ), and let the columns of Z̃3 form a basis

for N (M̃T )∩N (C̃T ). Then, from (2.31) it follows that the columns of Z1 := P T Z̃1 form

a basis for N (MT ), and the columns of Z3 := P T Z̃3 form a basis for N (MT )∩N (CT ).

Thus, the invariance of s(MCK) follows from

s̃(MCK) = dim
(
R(M̃T ) ∩ R(C̃T Z̃1) ∩R(K̃T Z̃3)

)

= dim
(
R(QT MT P T ) ∩ R(QT CT P T Z̃1) ∩ R(QT KT P T Z̃3)

)

= dim
(
R(MT P T ) ∩R(CT P T Z̃1) ∩ R(KT P T Z̃3)

)

= dim
(
R(MT ) ∩ R(CT Z1) ∩R(KT Z3)

)

= s(MCK).

Similarly, the invariance of the other quantities in (2.30) can be proved.

Step 3. Finally, we shall show that the quantities in the equivalent form (2.28) of

(M, C, K) are identical with those defined in (2.30). Let P ∈ Cm×m, Q ∈ Cn×n be

nonsingular matrices such that

(M̂, Ĉ, K̂) = (PMQ, PCQ, PKQ)

where (M̂, Ĉ, K̂) is of the form (2.28). Furthermore, let P and Q be partitioned as

P :=
[
P T

1 , P T
2 , . . . , P T

13

]T
and Q := [Q1, Q2, . . . , Q8] conformally with the row structure

and column structure of the block matrices in (2.28), respectively. Then, by (2.28), we

have
[
P T

5 , . . . , P T
13

]T
M = 0,

M [Q5, . . . , Q8] = 0,
[
P T

9 , . . . , P T
13

]T
C = 0,

[
P T

5 , . . . , P T
13

]T
C [Q7, Q8] = 0,
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namely, the columns of P T (:, 5 : 13) :=
[
P T

5 , . . . , P T
13

]
form a basis for N (MT ), the

columns of Q(:, 5 : 8) := [Q5, . . . , Q8] form a basis for N (M), the columns of P T (:, 9 :

13) :=
[
P T

9 , . . . , P T
13

]
form a basis for N (MT ) ∩ N (CT ), and the columns of [Q7, Q8]

form a basis for N (M) ∩ N ((P T (:, 5 : 13))TC). Observing that, by (2.28),

(
P T (:, 9 : 13)

)T
K [Q7, Q8] =




P9

...

P13


K [Q7, Q8] =




Ia 0

0 0

0 0

0 0

0 0




,

we have a = rank
((

P T (:, 9 : 13)
)T

K [Q7, Q8]
)

which is equal to a = rank(ZT
3 KZ4) de-

fined in (2.30) (since a is well-defined). Similarly, we can prove that the other quantities

in the equivalent form (2.28) are equal to those defined in (2.30). �

Remark 2.10 Using the same techniques developed in Lemmas 2.7, 2.8, and 2.9, we

can see that for (l+1)-tuples (Al, . . . , A1, A0) of matrices of size m×n, there also exists

a similar kind of condensed form via strong equivalence transformations, with which a

set of invariant quantities are associated. For the sake of convenience of expression, we

do not here explicitly present the condensed form for (l + 1)-tuples of matrices. ♦

Thus, we have prepared the way for further analyzing the systems (2.11) and (2.1)

of DAEs, which will be presented in the next two sections.

2.4 Linear Second-Order DAEs with Constant Co-

efficients

In this section, we discuss the system (2.11) of DAEs, and answer those questions raised

at the beginning of this chapter.

Let us start by writing down the system of differential-algebraic equations

M̂ÿ(t) + Ĉẏ(t) + K̂y(t) = f̂(t) (2.32)

where

M̂ = PMQ, Ĉ = PCQ, K̂ = PKQ, x(t) = Qy(t), f̂(t) = Pf(t) (2.33)

with P, Q nonsingular matrices, and the matrix triple (M̂, Ĉ, K̂) is of the condensed
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form (2.28), as follows.

(a) ÿ1(t) +
∑

i=3,4,7,8 C1,iẏi(t) +
∑

i=2,4,6,8 K1,iyi(t) = f̂1(t)

(b) ÿ2(t) +
∑

i=3,4,7,8 C2,iẏi(t) +
∑

i=2,4,6,8 K2,iyi(t) = f̂2(t)

(c) ÿ3(t) +
∑

i=3,4,7,8 C3,iẏi(t) +
∑

i=2,4,6,8 K̂K3,iyi(t) = f̂3(t)

(d) ÿ4(t) +
∑

i=3,4,7,8 C4,iẏi(t) +
∑

i=2,4,6,8 K4,iyi(t) = f̂4(t)

(e) C5,4ẏ4(t) + ẏ5(t) +
∑

i=2,4,6,8 K5,iyi(t) = f̂5(t)

(f) ẏ6(t) +
∑

i=2,4,6,8 K6,iyi(t) = f̂6(t)

(g) ẏ1(t) +
∑

i=2,4,6,8 K7,iyi(t) = f̂7(t)

(h) ẏ2(t) +
∑

i=2,4,6,8 K8,iyi(t) = f̂8(t)

(i) y7(t) = f̂9(t)

(j) y5(t) = f̂10(t)

(k) y3(t) = f̂11(t)

(l) y1(t) = f̂12(t)

(m) 0 = f̂13(t).

(2.34)

Immediately, we recognize a consistency condition (2.34-m) for the inhomogeneity (van-

ishing equations) and a possible free condition of choice in y8(t) (undetermined un-

knowns). In addition, (2.34-i) may include purely algebraic equations (algebraic part),

and, (2.34-f) (1st-order differential part) and (2.34-d) (2nd-order differential part) look

like first-order differential equations and second-order differential equations, respec-

tively. What is more essential to DAEs is the coupling (strangeness due to M, C, K) be-

tween the algebraic equations (2.34-l) and the differential equations (2.34-g) and (2.34-

a), the coupling (strangeness due to M, K) between the algebraic equations (2.34-k)

and the differential equations (2.34-c), the coupling (strangeness due to C, K) between

the algebraic equations (2.34-j) and the differential equations (2.34-e), the coupling

(strangeness due to M, C) between the differential equations (2.34-h) and the differ-

ential equations (2.34-b), and the possible coupling between the algebraic equations

(2.34-i) and the differential equations (2.34-a) - (2.34-d).

Our direct objective now is the reduction of the system (2.34) to a simpler but

equivalent system by means of decoupling those equations coupled to each other in the

system (2.34). Here, by equivalence we mean that, given any sufficiently and necessarily

smooth right-hand side f(t) (i.e. f(t) is µ-times continuously differentiable, where µ

is the strangeness-index of the system (2.11)), there is a one-to-one correspondence

between the solution sets of the two systems via a nonsingular matrix. As a natural

extension of the theory of [28], [34] (Chapter III) for linear first-order variable coefficient

DAEs, the technique of decoupling consists in several differentiation-and-elimination

steps. In detail, with respect to the system (2.34), we

1. differentiate equation (2.34-l) and insert it in (2.34-g) to eliminate ẏ1(t);
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2. differentiate equation (2.34-l) twice and insert it in (2.34-a) to eliminate ÿ1(t);

3. differentiate equation (2.34-k) twice and insert it in (2.34-c) to eliminate ÿ3(t);

4. differentiate equation (2.34-j) and insert it in (2.34-e) to eliminate ẏ5(t);

5. differentiate equation (2.34-h) and insert it in (2.34-b) to eliminate ÿ2(t); and

6. differentiate the whole of or some parts of equation (2.34-i) and insert the deriva-

tives in (2.34-a) - (2.34-d) to eliminate possibly existent ẏ7(t).

The above differentiation-and-elimination steps correspond to transforming the sys-

tem (2.32) into an equivalent second-order system of DAEs

M 〈1〉ÿ(t) + C〈1〉ẏ(t) + K〈1〉y(t) = f 〈1〉(t) (2.35)

with (M 〈1〉, C〈1〉, K〈1〉; f 〈1〉) being of the following form







0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 Id(2) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




,




0 0 C C 0 0 0 C

0 C C C 0 C 0 C

0 0 C C 0 0 0 C

0 0 C C 0 0 0 C

0 0 0 C 0 0 0 0

0 0 0 0 0 Id(1) 0 0

0 0 0 0 0 0 0 0

0 Is(MC) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




,




0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0

0 0 0 0 Is(CK) 0 0 0

0 0 Is(MK) 0 0 0 0 0

Is(MCK) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




;




f̂1(t) − ¨̂
f12(t)

f̂2(t) − ˙̂
f8(t)

f̂3(t) − ¨̂
f11(t)

f̂4(t)

f̂5(t) − ˙̂
f10(t)

f̂6(t)

f̂7(t) − ˙̂
f12(t)

f̂8(t)

f̂9(t)

f̂10(t)

f̂11(t)

f̂12(t)

f̂13(t)







s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a

s(CK)

s(MK)

s(MCK)

v

.

(2.36)
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It is clear and should be stressed that the above procedure of differentiation and

elimination only involves the sufficient and necessary order derivatives of the right-hand

side f̂(t). Moreover, after the transformation from the system (2.32) to the system

(2.35), the solution sets of the two systems are the same.

Then, a natural question arises, namely, what is the relation between the quadratic

matrix polynomial associated with the system (2.32) and its counterpart which is asso-

ciated with the equivalent system (2.35)? The following lemma gives an answer to this

question.

Lemma 2.11 Let Â(λ) = λ2M̂ + λĈ + K̂, and let A〈1〉(λ) = λ2M 〈1〉 + λC〈1〉 + K〈1〉,

where M̂, Ĉ and K̂ are as in (2.32), and M 〈1〉, C〈1〉 and K〈1〉 are as in (2.35). Then,

A〈1〉(λ) = E(λ)Â(λ), (2.37)

where E(λ) is a unimodular matrix polynomial, i.e., the determinant of E(λ) is a

nonzero constant.

Proof. Observe that, in terms of elementary row operations for matrix polynomials
(cf. Subsection 4.2.2, p.63), the differentiation-and-elimination steps 1-6 (on pages

24-25) with respect to Â(λ) correspond to premultiplying Â(λ) by elementary ma-

trix polynomial E1(λ), premultiplying E1(λ)Â(λ) by elementary matrix polynomial

E2(λ), premultiplying E2(λ)E1(λ)Â(λ) by elementary matrix polynomial E3(λ), pre-

multiplying E3(λ) · · · E1(λ)Â(λ) by elementary matrix polynomial E4(λ), premultiply-

ing E4(λ) · · ·E1(λ)Â(λ) by elementary matrix polynomial E5(λ), and premultiplying

E5(λ) · · ·E1(λ)Â(λ) by elementary matrix polynomial E6(λ), respectively, where

E1(λ) =

2
66666666664

I

. . .

I · · · −λI

. . .
...

I

I

3
77777777775

s(MCK)

.

..

s(MCK)

...

s(MCK)

v

,E2(λ) =

2
66666666664

I · · · · · · −λ2I

. . .
.
..

I

. . .
...

I

I

3
77777777775

s(MCK)

.

..

s(MCK)

...

s(MCK)

v

,

E3(λ) =

2
66666666666664

I

. . .

I · · · −λ2I

. . .
.
..

I

. . .

I

3
77777777777775

s(MCK)

...

s(MK)

.

..

s(MK)

...

v

,E4(λ) =

2
66666666666664

I

. . .

I · · · −λI

. . .
.
..

I

. . .

I

3
77777777777775

s(MCK)

...

s(CK)

.

..

s(CK)

...

v

,
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E5(λ) =

2
66666666664

I

I · · · −λI

. . .
..
.

I

. . .

I

3
77777777775

s(MCK)

s(MC)

..

.

s(MC)

...

v

,E6(λ) =

2
666666666666664

I · · · · · · −λC1,7

I · · · · · · −λC2,7

I · · · · · · −λC3,7

I · · · −λC4,7

. . .
...

I

. . .

I

3
777777777777775

s(MCK)

s(MC)

s(MK)

d(2)

..

.

a

...

v

,

and Ei(t), i = 1, . . . , 6 are partitioned conformally with the block matrices in (2.28).

Let E(λ) = E6(λ) · · · E1(λ). Then we have A〈1〉(λ) = E(λ)Â(λ). Since the determi-

nant of each Ei(t), i = 1, . . . , 6, is a nonzero constant, the determinant of E(λ) is also

a nonzero constant. �

Let us now turn back to the new matrix triple (M 〈1〉, C〈1〉, K〈1〉) in (2.36) obtained

after the differentiation-and-elimination steps. We can again transform it to the con-

densed form (2.28), and apply the differentiation-and-elimination steps to pass it to

the form (2.36). In this way, therefore, we can conduct an inductive procedure to get

a sequence of triples of matrices (M 〈i〉, C〈i〉, K〈i〉), i ∈ N0, where (M 〈0〉, C〈0〉, K〈0〉) =

(M, C, K) and (M 〈i+1〉, C〈i+1〉, K〈i+1〉) is derived from (M 〈i〉, C〈i〉, K〈i〉) by bringing it

into the form (2.28) and then applying the differentiation-and-elimination steps.

Comparing M̂ in (2.28) with M 〈1〉 in (2.36), we have

rank(M 〈1〉) = rank(M̂) − s
(MCK)
〈0〉 − s

(MK)
〈0〉 − s

(MC)
〈0〉

= rank(M 〈0〉) − s
(MCK)
〈0〉 − s

(MK)
〈0〉 − s

(MC)
〈0〉 , (2.38)

where s
(MCK)
〈0〉 , s

(MK)
〈0〉 , and s

(MC)
〈0〉 denote the strangeness due to M 〈0〉, C〈0〉, K〈0〉, the

strangeness due to M 〈0〉, K〈0〉, and the strangeness due to M 〈0〉, C〈0〉, respectively. Since

after the differentiation-and-elimination step 4 (on page 25), equation (2.34-j) becomes

uncoupled purely algebraic equation, it follows that

rank(K) ≥ a〈1〉 ≥
(
a〈0〉 + s

(CK)
〈0〉

)
, (2.39)

where a〈1〉, a〈0〉, and s
(CK)
〈0〉 denote the number of algebraic part of (M 〈1〉, C〈1〉, K〈1〉), the

number of algebraic part of (M 〈0〉, C〈0〉, K〈0〉), and the strangeness due to C〈0〉, K〈0〉,

respectively. Hence, the relations in (2.38) and (2.39) guarantee that after a finite

number (say q) of steps, the strangeness s
(MCK)
〈q〉 due to M 〈q〉, C〈q〉, K〈q〉, the strangeness

s
(MK)
〈q〉 due to M 〈q〉, K〈q〉, the strangeness s

(MC)
〈q〉 due to M 〈q〉, C〈q〉, and the strangeness

s
(CK)
〈q〉 due to C〈q〉, K〈q〉 must vanish. If this is the case, then we arrive at a final equiv-

alent second-order system of DAEs with a very special structure (we call the system

strangeness-free). Note that, by the above procedure, there may exist many ways in
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which the original system can be transformed into an equivalent strangeness-free sys-

tem. But since in each way the strangeness-free system obtained is equivalent to the

original system, here we just take any one of them, and assume that µ̃ ∈ N0 is given

by the number of necessary differentiations of f(t) in (2.11) that is required in the

given way to obtain an equivalent strangeness-free system. Thus, we have the following

essential result of this section.

Theorem 2.12 Let f(t) ∈ C µ̃([t0, t1], Cm), µ̃ ∈ N0. Then, the system (2.11) is equiv-

alent (in the sense that there is a one-to-one correspondence between the solution sets

of the two systems via a nonsingular matrix) to a system of second-order differential-

algebraic equations M̃ ¨̃x(t) + C̃ ˙̃x(t) + K̃x̃(t) = f̃(t) of the form

(a) ¨̃x1(t) + C̃1,1
˙̃x1(t) + C̃1,4

˙̃x4(t) + K̃1,1x̃1(t) + K̃1,2x̃2(t) + K̃1,4x̃4(t) = f̃1(t),

(b) ˙̃x2(t) + K̃2,1x̃1(t) + K̃2,2x̃2(t) + K̃2,4x̃4(t) = f̃2(t),

(c) x̃3(t) = f̃3(t),

(d) 0 = f̃4(t),
(2.40)

where the inhomogeneity f̃(t) :=
[
f̃T

1 (t), . . . , f̃T
4 (t)

]T
is determined by f (0)(t), . . .,

f (µ̃)(t). In particular, d̃(2), d̃(1), and ã are the number of second-order differential, first-

order differential, and algebraic components of the unknown x̃(t) :=
[
x̃T

1 (t), . . . , x̃T
4 (t)

]T
in (2.40-a), (2.40-b), and (2.40-c) respectively, while ũ is the dimension of the unde-

termined vector x̃4(t) in (2.40-a) and (2.40-b), and ṽ is the number of conditions in

(2.40-d).

Proof. In the given way, inductively transforming (M, C, K) to the condensed form

(2.28) in Lemma 2.8 and then converting it by differentiation-and-elimination steps into

the form in (2.36) until s
(MCK)
i = s

(MC)
i = s

(MK)
i = s

(CK)
i = 0 yield a triple (M̃, C̃, K̃)

of matrices of the form






I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 ,




C̃1,1 0 0 C̃1,4

0 I 0 0

0 0 0 0

0 0 0 0


 ,




K̃1,1 K̃1,2 0 K̃1,4

K̃2,1 K̃2,2 0 K̃2,4

0 0 I 0

0 0 0 0





 , (2.41)

with block sizes d̃(2), d̃(1), ã, ṽ for the rows and d̃(2), d̃(1), ã, ũ for the columns. By (2.33),

we know that the transformation from (M, C, K) to (M̂, Ĉ, K̂) in the condensed form

(2.28) establishes, via a nonsingular matrix, a one-to-one correspondence between the

solution sets of the two corresponding systems of DAEs. We also note that by (2.35),

the differentiation-and-elimination steps do not change the solution sets at all. Hence,

there exists a nonsingular matrix Q̃ such that for any solution x(t) of the system (2.11)
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(if existent), there corresponds a solution x̃(t) of the system (2.40) satisfying

x(t) = Q̃x̃(t), (2.42)

and vice versa. �

Now, we can answer the questions at the beginning of this chapter, which are con-

cerned with the existence and uniqueness of solutions and consistency of initial condi-

tions.

Corollary 2.13 Under the assumption of Theorem 2.12, the following statements hold.

1. The system (2.11) is solvable if and only if one of the following two cases happens.

(i) ṽ = 0.

(ii) If ṽ > 0, then the ũ functional consistency conditions

f̃4(t) = 0 (2.43)

are satisfied.

2. If the system (2.11) is solvable, then it is uniquely solvable without providing any

initial condition if and only if the conditions

d̃(2) = d̃(1) = ũ = 0 (2.44)

hold.

3. If the system (2.11) is solvable, then initial conditions (2.12) are consistent if and

only if one of the following two cases happens.

(i) ã = 0.

(ii) If ã > 0, then the ã conditions

x̃3(t0) = f̃3(t0), ˙̃x3(t0) =
df̃3(t)

dt

∣∣∣∣∣
t0+

(2.45)

are implied by (2.12).

4. If the initial value problem (2.11)-(2.12) is solvable, then it is uniquely solvable if

and only if

ũ = 0 (2.46)

holds.
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Proof. The results are direct consequences of Theorem 2.12. �

In order to write down explicit solutions of the coupled but strangeness-free second-

order and first-order differential equations (2.40-a) and (2.40-b), we need the following

result on linear ordinary differential equations from E. A. Coddington and N. Levinson

[10] (p. 78).

Lemma 2.14 The inhomogeneous system of linear ordinary differential equations

ẋ(t) = Ax(t) + b(t), t ∈ [t0, t1], (2.47)

together with an initial condition

x(t0) = x0 (2.48)

has a unique solution

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Ab(s) ds. (2.49)

Corollary 2.15 Under the assumption of Theorem 2.12, the system (2.40) together

with initial conditions

x̃1(t0) = x̃1,0, ˙̃x1(t0) = x̃
[1]
1,0, x̃2(t0) = x̃2,0,

is equivalent to the following system

(a)

[
x̃1

x̃2

]
=

[
I 0 0

0 0 I

]


x̃1

˙̃x1

x̃2


 =

[
I 0 0

0 0 I

]
e(t−t0)A




x̃1,0

x̃
[1]
1,0

x̃2,0


+

∫ t

t0
e(t−s)Ab(s) ds,

(b) x̃3(t) = f̃3(t),

(c) 0 = f̃4(t),
(2.50)

where

A =




0 I 0

−K̃1,1 −C̃1,1 −K̃1,2

−K̃2,1 0 −K̃2,2


 ,




x̃1,0

x̃
[1]
1,0

x̃2,0


 =




x̃1(t0)
˙̃x1(t0)

x̃2(t0)


 , (2.51)

b(t) =




0

f̃1(t) − C̃1,4
˙̃x4(t) − K̃1,4x̃4(t)

f̃2(t) − K̃2,4x̃4(t)


 . (2.52)
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Proof. We transform the system (2.40-a), (2.40-b) of second-order ODEs into an

equivalent system of linear first-order ODEs

˙


x̃1

˙̃x1

x̃2


= A




x̃1

˙̃x1

x̃2


 + b(t),

where A, b(t) are as in (2.51), (2.52) respectively. Then, by Lemma 2.14, the result is

immediate. �

Now, we can turn our attention to the strangeness-index µ of the system (2.11)

which has been introduced in Definition 2.2, and obtain the following result.

Corollary 2.16 Under the assumption of Theorem 2.12, assume that the system (2.11)

is solvable. Let µ ∈ N0 be the strangeness-index of the system (2.11). Then,

µ = µ̃. (2.53)

Proof. By Theorem 2.12, there is a one-to-one correspondence (2.42), via a nonsingular

matrix, between the solution sets of the two systems (2.11) and (2.40). Therefore, the

system (2.11) is solvable if and only if the system (2.40) is solvable. Thus, by Corollaries

2.13 and 2.15, we can see that, provided that initial conditions are necessary and con-

sistent, the right-hand side f(t) in (2.11) must be µ̃-times continuously differentiable in

order to determine x̃(t) as a continuous function of t, and therefore by the one-to-one

correspondence (2.42), to determine x(t) as a continuous function of t. By Definition

2.2 of strangeness-index, (2.53) immediately follows. �

Of special interest is the case of the system (2.11) of DAEs with which a regular

quadratic matrix polynomial is associated. Here, we call a matrix polynomial A(λ) of

size m × n a regular matrix polynomial if m = n and the determinant of A(λ) is not

identically equal to zero; otherwise, it is called singular (for more details, cf. Chapter

4).

As in the case of linear first-order constant coefficient system of DAEs, regularity

of the quadratic matrix polynomial associated with the system (2.11) is closely related

to the solution behaviour of the system (2.11). Indeed, regularity of the quadratic

matrix polynomial is a sufficient and necessary condition for the property that for every

inhomogeneity f(t) ∈ Cµ([t0, t1], Cn), where µ is the strangeness-index of the system

(2.11), there are initial conditions such that the initial value problem associated with

(2.11) has a unique solution. In the following two theorems, we show the sufficiency

and the necessity respectively.
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Theorem 2.17 Let M, C, K ∈ Cn×n, and let the matrix polynomial A(λ) := λ2M +

λC + K be regular. Let f(t) ∈ Cµ([t0, t1], Cn), where µ is the strangeness-index of the

system (2.11) associated with A(λ). Then, there is a unique solution of the initial value

problem (2.11)-(2.12), provided that the given initial conditions (2.12) are necessary

and consistent.

Proof. Let Ã(λ) := λ2M̃ + λC̃ + K̃, where M̃, C̃, K̃ ∈ Cn×n are associated with the

system (2.40). Then, inductively by (2.33) and Lemma 2.11, we have

Ã(λ) = Er(λ)PrEr−1(λ)Pr−1 · · ·E1(λ)P1A(λ)Q1Q2 · · ·Qr, (2.54)

where Pi and Qi, i = 1, . . . , r, are nonsigular matrices, and Ei(λ), i = 1, . . . , r, are

unimodular matrix polynomials. From (2.54) it follows that det(Ã(λ)) = 1
c
det(A(λ)),

where c is a nonzero constant. Since det(A(λ)) 6≡ 0, we have det(Ã(λ)) 6≡ 0, in other

words, Ã(λ) is regular. This immediately implies that in the system (2.40),

ũ = 0, ṽ = 0.

Then, under the condition that the given initial conditions (2.12) are consistent, the

existence and uniqueness of solutions of the initial value problem (2.11)-(2.12) directly

follows from Corollaries 2.13, 2.15 and 2.16. �

Theorem 2.18 Let M, C, K ∈ Cm×n, and suppose that the matrix polynomial A(λ) :=

λ2M + λC + K is singular.

1. If rank(A(λ)) < n for all λ ∈ C, then the homogeneous initial value problem

Mẍ(t) + Cẋ(t) + Kx(t) = 0, x(t0) = ẋ(t0) = 0 (2.55)

has a nontrivial solution.

2. If rank(A(λ)) = n for some λ ∈ C and hence m > n, then there exist arbitrary

smooth inhomogeneities f(t) for which the the corresponding system (2.11) of

DAEs is not solvable.

Proof.

1. Suppose that rank(A(λ)) < n for all λ ∈ C. Let λi, i = 1, . . . , n + 1, be pairwise

different complex numbers. Then, for each λi, there exists a nonzero vector vi ∈
Cn satisfying (λ2

i M + λiC +K)vi = 0, and clearly the vectors vi, i = 1, . . . , n +1,
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are linearly dependent. Hence, there exist αi ∈ C, i = 1, . . . , n + 1, not all of

them being zero, such that

n+1∑

i=1

αivi = 0.

For the function x(t) defined by

x(t) =

n+1∑

i=1

αivie
λi(t−t0),

we then have x(t0) = 0 as well as

Mẍ(t) + Cẋ(t) + Kx(t) =

n+1∑

i=1

αi(λ
2
i M + λiC + K)vie

λi(t−t0) = 0.

Since x(t) is not the zero function, it is a nontrivial solution of the homogeneous

initial value problem (2.55).

2. Suppose that there is a λ ∈ C such that rank(A(λ)) = n. Because A(λ) is assumed

to be singular, we have m > n. We set

x(t) = eλtx̃(t),

and therefore

ẋ(t) = eλt
(
˙̃x(t) + λx̃(t)

)
, ẍ(t) = eλt

(
¨̃x(t) + 2λ ˙̃x(t) + λ2x̃(t)

)
,

such that (2.11) is transformed to

M
(
¨̃x(t) + 2λ ˙̃x(t)

)
+ C ˙̃x(t) +

(
λ2M + λC + K

)
x̃(t) = e−λtf(t).

Since λ2M + λC + K has full column rank, there exists a nonsingular matrix

P ∈ Cm,m, such this equation premultiplied by P gives
[

M1

M2

] (
¨̃x(t) + 2λ ˙̃x(t)

)
+

[
C1

C2

]
˙̃x(t) +

[
I

0

]
x̃(t) =

[
f1(t)

f2(t)

]
.

Obviously the matrix polynomial ξ2M1 + ξ (2λM1 + C1) + I in ξ is regular. By

Theorem 2.17, the initial value problem

M1
¨̃x(t) + (2λM1 + C1) ˙̃x(t) + x̃(t) = f1(t), x̃(t0) = x̃0, ˙̃x(t0) = x̃

[1]
0

has a unique solution for every sufficiently smooth inhomogeneity f1(t) and for

every consistent initial value. But then

f2(t) = M2

(
¨̃x(t) + 2λ ˙̃x(t)

)
+ C2

˙̃x(t)

is a consistency condition for the inhomogeneity f2(t) that must hold for a solution

to exist. This immediately shows that there are arbitrary smooth functions f(t)

for which this consistency condition is not satisfied. �
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2.5 Linear lth-Order DAEs with Constant Coeffi-

cients (l ≥ 3)

In this section we shall extend the main results of the last section to the case of general

systems (2.1) of linear lth-order (l ≥ 3) DAEs with constant coefficients.

As we mentioned in Section 2.3, by induction one can get a condensed form via

strong equivalence transformations for (l + 1)-tuples (Al, . . . , A1, A0) of matrices which

is similar to (2.21) and (2.28) for matrix pairs and triples respectively. Clearly, with

the condensed form a set of invariant quantities are associated. In the context of the

corresponding system (2.1), among the invariant quantities, especially, are those which

can be used to characterize algebraic part, 1st-order, 2nd-order, . . ., and lth-order

differential parts, and strange parts due to each two, each three, . . ., each l, and l + 1

matrices out of Al, . . . , A1, and A0, respectively.

Then, based on the condensed form for (l + 1)-tuples of matrices, one can write

down the system of differential-algebraic equations after the strong equivalence trans-

formations. Analogous to the treatment of systems of second-order DAEs in Section 2.4,

one can design differentiation-and-elimination steps in order to decouple those equations

coupled to each other in the system and to reduce it to a simpler but equivalent system,

which can be again transformed to the condensed form. Inductively, by this procedure

one can get a sequence of (l + 1)-tuples of matrices, and after a finite number of steps,

it can be expected that all strange parts of the corresponding system will vanish, in

other words, in the final the system becomes strangeness-free. Here, for convenience of

expression, we only state the essential results which are parallel to Theorem 2.12 and

its main consequences in the last section.

Clearly, there may exist many ways in which the original system can be transformed

into an equivalent strangeness-free system. But, as we mentioned in the last section,

since in each way the strangeness-free system obtained is equivalent to the original

system, here we just take any one of them, and assume that µ̃ ∈ N0 is given by the

number of necessary differentiations of f(t) in (2.1) that is required in the given way to

obtain an equivalent strangeness-free system. Later, as in the case of the second-order

systems, we will see that µ̃ ∈ N0 is in fact the strangeness-index of the lth-order system

(2.1), provided that the system is solvable.
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Theorem 2.19 Let f(t) ∈ C µ̃([t0, t1], Cm), µ̃ ∈ N0. Then, the system (2.1) is equiva-

lent (in the sense that there is a one-to-one correspondence between the solution sets of

the two systems via a nonsingular matrix) to a system of lth-order differential-algebraic

equations

A〈l〉x̃(l)(t) + A〈l−1〉x̃(l−1)(t) + · · ·+ A〈0〉x̃(t) = f̃(t)

of the form

(1) dlx̃1(t)
dtl

+
l−1∑
i=0

l−1∑
j=i

A
〈i〉
1,l−j

dix̃l−j(t)

dti
+

l−1∑
i=0

A
〈i〉
1,l+2

dix̃l+2(t)

dti
= f̃1(t),

(2) dl−1x̃2(t)
dtl−1 +

l−2∑
i=0

l−2∑
j=i

A
〈i〉
2,l−1−j

dix̃l−1−j(t)

dti

+
l−2∑
i=0

(
A

〈i〉
2,1

dix̃1(t)
dti

+ A
〈i〉
2,l+2

dix̃l+2(t)
dti

)
= f̃2(t),

...
...

(k)
dl−k+1x̃l−k+1(t)

dtl−k+1 +
l−k∑
i=0

l−k∑
j=i

A
〈i〉
k,l−k+1−j

dix̃l−k+1−j(t)

dti

+
l−k∑
i=0

(
k∑

j=1

A
〈i〉
k,j

dix̃1(t)
dti

+ A
〈i〉
k,l+2

dix̃l+2(t)

dti

)
= f̃k(t), (1 ≤ k ≤ l)

...
...

(l + 1) x̃l+1(t) = f̃l+1(t),

(l + 2) 0 = f̃l+2(t),

(2.56)

where A
〈i〉
p,q, 1 ≤ p ≤ (l + 2), 1 ≤ q ≤ (l + 2), denotes a submatrix of A〈i〉, i = 0, 1, . . . , l,

and the inhomogeneity f̃(t) :=
[
f̃T

1 (t), . . . , f̃T
l+2(t)

]T
is determined by f (0)(t), . . ., f (µ̃)(t).

In particular, d̃(l), . . ., d̃(1), and ã are the number of lth-order differential, . . ., first-order

differential, and algebraic components of the unknown x̃(t) :=
[
x̃T

1 (t), . . . , x̃T
l+2(t)

]T
in

(2.56-1), . . ., and (2.56-(l+1)) respectively, while ũ is the dimension of the undeter-

mined vector x̃l+2(t) in (2.56-1), . . ., (2.56-l), and ṽ is the number of conditions in

(2.56-(l+2)).

Proof. The proof is analogous to the proof of Theorem 2.12 and follows by induction. �

The following corollary answers question 2, questions 4 and 5 that were posed at

the beginning of this chapter.
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Corollary 2.20 Under the assumption of Theorem 2.19, the following statements hold.

1. The system (2.1) is solvable if and only if one of the following two cases happens.

(i) ṽ = 0.

(ii) If ṽ > 0, then the ũ functional consistency conditions

f̃l+2(t) = 0 (2.57)

are satisfied.

2. If the system (2.1) is solvable, then it is uniquely solvable without providing any

initial condition if and only if the conditions

d̃(l) = · · · = d̃(2) = d̃(1) = ũ = 0 (2.58)

hold.

3. If the system (2.1) is solvable, then initial conditions (2.2) are consistent if and

only if one of the following two cases happens.

(i) ã = 0.

(ii) If ã > 0, then the ã conditions

x̃l+1(t0) = f̃l+1(t0),

˙̃xl+1(t0) =
df̃l+1(t)

dt

∣∣∣
t0+

, . . . ,
dl−1x̃l+1(t0)

dtl−1 =
dl−1f̃l+1(t)

dtl−1

∣∣∣
t0+

(2.59)

are implied by (2.2).

4. If the initial value problem (2.1)-(2.2) is solvable, then it is uniquely solvable if

and only if

ũ = 0 (2.60)

holds.

Proof. The results are direct consequences of Theorem 2.19. �

To answer question 3, namely, to determine the strangeness-index of the system

(2.1), we have the following corollary.

Corollary 2.21 Under the assumption of Theorem 2.19, assume that the system (2.1)

is solvable. Let µ ∈ N0 be the strangeness-index of the system (2.1). Then,

µ̃ = µ. (2.61)
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Proof. The proof is analogous to the proof of Corollary 2.16. �

Finally, let us turn to the special case of the system (2.1) with which a regular matrix

polynomial A(λ) =
∑l

i=0 λiAi, λ ∈ C, of degree of l is associated. As we presented

in the last section, regularity of the matrix polynomial A(λ) =
∑l

i=0 λiAi is closely

related to existence and uniqueness of the solutions of the initial value problem which

is assocaited with the system (2.1).

Theorem 2.22 Let Ai ∈ Cn×n, i = 0, 1, . . . , l, and let the matrix polynomial A(λ) :=∑l

i=0 λiAi be regular. Let f(t) ∈ Cµ([t0, t1], Cn), where µ is the strangeness index of the

system (2.1) associated with A(λ). Then, there is a unique solution of the initial value

problem (2.1)-(2.2), provided that the given initial conditions (2.2) are consistent.

Proof. The proof is analogous to the proof of Theorem 2.17. �

Theorem 2.23 Let Ai ∈ Cm×n, i = 0, 1, . . . , l, and suppose that the matrix polynomial

A(λ) :=
∑l

i=0 λiAi is singular.

1. If rank(A(λ)) < n for all λ ∈ C, then the homogeneous initial value problem

Alx
(l)(t) + Al−1x

(l−1)(t) + · · ·+ A0x(t) = 0, x(t0) = ẋ(t0) = · · · = x(l−1)(t0) = 0

(2.62)

has a nontrivial solution.

2. If rank(A(λ)) = n for some λ ∈ C and hence m > n, then there exist arbitrary

smooth inhomogeneities f(t) for which the the corresponding system (2.1) of DAEs

is not solvable.

Proof. The proof is analogous to the proof of Theorem 2.18. �

Remark 2.24 It should be pointed out that the importance of regularity and singu-

larity of matrix polynomials in the context of the solution behaviour of systems of

differential-algebraic equations, which we have seen from the above theorems, provides

one of the major motivations for our later study carried out in the second part of this

thesis. ♦

In the next chapter, we shall generalize the techniques employed and the results

obtained in this chapter to the case of higher-order systems of DAEs with variable

coefficients.

37



38



Chapter 3

Linear Higher-Order DAEs with

Variable Coefficients

In this chapter, we study linear lth-order differential-algebraic equations with variable

coefficients

Al(t)x
(l)(t) + Al−1(t)x

(l−1)(t) + · · ·+ A0(t)x(t) = f(t), t ∈ [t0, t1], (3.1)

where Ai(t) ∈ C([t0, t1], Cm×n), i = 0, 1, . . . , l, Al(t) 6≡ 0, f(t) ∈ C([t0, t1], Cm), possibly

together with initial conditions

x(t0) = x0, . . . , x(l−2)(t0) = x
[l−2]
0 , x(l−1)(t0) = x

[l−1]
0 , x0, . . . , x

[l−2]
0 , x

[l−1]
0 ∈ Cn.

(3.2)

As in the case of constant coefficients, we shall apply very similar techniques (trans-

forming, differentiating, and inserting) to the system (3.1) with variable coefficients, and

obtain parallel results on the system (3.1), and on the initial value problem (3.1)-(3.2).

Analogous to Section 2.3, in Section 3.1 we concentrate on the treatment of linear

second-order DAEs with variable coefficients. We shall prove that the quantities de-

veloped in Section 2.3 are still invariant under local equivalence transformations, and

present a condensed form under a set of regular conditions. Later, in Section 3.2, based

on the results of Section 3.1, we describe the solution behaviour (solvability, uniqueness

of solutions and consistency of initial values) of the higher-order system (3.1) and of

the initial value problem (3.1)-(3.2).

It should be pointed out that the work in this chapter is carried out along the lines of

the work with respect to linear first-order DAEs with variable coefficients in [28, 29, 34];

for a comprehensive exposition, we refer to [34], Chapter 3.
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3.1 Condensed Form for Triples of Matrix-Valued

Functions

In this section, we shall mainly treat systems of linear second-order DAEs with variable

coefficients

M(t)ẍ(t) + C(t)ẋ(t) + K(t)x(t) = f(t), t ∈ [t0, t1], (3.3)

where M(t), C(t), K(t) ∈ C([t0, t1], Cm×n), f(t) ∈ C([t0, t1], Cm), possibly together with

initial value conditions

x(t0) = x0, ẋ(t0) = x
[1]
0 , x0, x

[1]
0 ∈ Cn. (3.4)

Using similar techniques as those employed in Section 2.3, our main objective in this

section is to develop a set of invariants and a condensed form under (global) equiva-

lence transformations for the triple (M(t), C(t), K(t)) of matrix-valued functions which

satisfy certain regularity conditions in terms of the set of invariants.

First, let us make clear the concept of (global) equivalence relation between time

varying systems of DAEs. Instead of the constant transformations in the case of con-

stant coefficient system (2.11), in the case of variable coefficient system (3.3) we consider

the time varying coordinate transformations given by x(t) = Q(t)y(t) and premultipli-

cation by P (t), where Q(t) ∈ C2([t0, t1], Cn×n) and P (t) ∈ C([t0, t1], Cm×m) are pointwise

nonsingular matrix-valued functions. These changes of coordinates transform (3.3) to

an equivalent system of DAEs

M̃(t)ÿ(t) + C̃(t)ẏ(t) + K̃(t)y(t)

:= P (t)M(t)Q(t)ÿ(t) +
(
P (t)C(t)Q(t) + 2P (t)M(t)Q̇(t)

)
ẏ(t)

+
(
P (t)K(t)Q(t) + P (t)C(t)Q̇(t) + P (t)M(t)Q̈(t)

)
y(t) = P (t)f(t).

(3.5)

Obviously, the relation x(t) = Q(t)y(t) (or y(t) = Q−1(t)x(t)) gives a one-to-one cor-

respondence between the two corresponding solution sets of the system (3.3) and the

system (3.5). If we use the notation of triples (M(t), C(t), K(t)) and (M̃(t), C̃(t), K̃(t))

to represent the systems (3.3) and (3.5) respectively, then we can write the equivalent

relation in terms of matrix multiplications:

[M̃(t), C̃(t), K̃(t)] = P (t)[M(t), C(t), K(t)]




Q(t) 2Q̇(t) Q̈(t)

0 Q(t) Q̇(t)

0 0 Q(t)


 . (3.6)

In the general case of lth-order system (3.1), if we make use of the notation of an

(l+1)-tuple (Al(t), . . . , A1(t), A0(t)) of matrix-valued functions to represent the system

(3.1), we have the following definition of equivalence of variable coefficient systems via

time varying transformations.
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Definition 3.1 Two (l+1)-tuples (Al(t), . . . , A1(t), A0(t)) and (Bl(t), . . . , B1(t), B0(t))
of matrix-valued functions with Ai(t), Bi(t) ∈ C([t0, t1], Cm×n), i = 0, 1, . . . , l, are called

(globally) equivalent if there are pointwise nonsingular matrix-valued functions
P (t) ∈ C([t0, t1], Cm×m) and Q(t) ∈ C l([t0, t1], Cn×n) such that

[Bl(t), . . . , B0(t)]

= P (t)[Al(t), . . . , A0(t)]




Q(t)
(

l
1

)
d
dt

Q(t) · · · · · ·
(
l
l

)
dl

dtl
Q(t)

Q(t)
(
l−1
1

)
d
dt

Q(t) · · ·
(
l−1
l−1

)
dl−1

dtl−1 Q(t)
. . .

. . .
...

Q(t)
(1
1

)
d
dt

Q(t)

Q(t)




,
(3.7)

where
(

j

i

)
= j!/(j− i)!i! denotes a binomial coefficient, i, j ∈ N, i ≤ j. If this is the case

and the context is clear, we still write (Al(t), . . . , A1(t), A0(t)) ∼ (Bl(t), . . . , B1(t), B0(t)).

As already suggested by the definition, the following proposition shows that relation

(3.7) is an equivalence relation.

Proposition 3.2 Relation (3.7) introduced in Definition 3.1 is an equivalence relation

on the set of (l + 1)-tuples of matrix-valued functions.

Proof. We shall show relation (3.7) has the three properties required of an equivalence

relation.

1. Reflexivity: Let P (t) = Im and Q(t) = In. Then, we have (Al(t), . . . , A1(t), A0(t)) ∼
(Al(t), . . . , A1(t), A0(t)).

2. Symmetry: Assume that (Al(t), . . . , A1(t), A0(t)) ∼ (Bl(t), . . . , B1(t), B0(t)) with

pointwise nonsingular matrix-valued functions P (t) and Q(t) that satisfy (3.7).

We shall prove that (Bl(t), . . . , B1(t), B0(t)) ∼ (Al(t), . . . , A1(t), A0(t)). Note

that, from the identity Q(t)Q−1(t) = I it follows that any order derivative of

Q(t)Q−1(t) with respect to t is identically zero. Then, by this fact, it is immediate
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to verify that




Q(t)
(

l

1

)
d
dt

Q(t) · · · · · ·
(

l

l

)
dl

dtl
Q(t)

Q(t)
(

l−1
1

)
d
dt

Q(t) · · ·
(

l−1
l−1

)
dl−1

dtl−1 Q(t)
. . .

. . .
...

Q(t)
(
1
1

)
d
dt

Q(t)

Q(t)




·




Q−1(t)
(

l

1

)
d
dt

Q−1(t) · · · · · ·
(

l

l

)
dl

dtl
Q−1(t)

Q−1(t)
(

l−1
1

)
d
dt

Q−1(t) · · ·
(

l−1
l−1

)
dl−1

dtl−1 Q
−1(t)

. . .
. . .

...

Q−1(t)
(
1
1

)
d
dt

Q−1(t)

Q−1(t)




= I.

(3.8)
Hence, by (3.7) and (3.8), we have

[Al(t), . . . , A0(t)] = P−1(t)[Bl(t), . . . , B0(t)]

·




Q−1(t)
(

l
1

)
d
dt

Q−1(t) · · · · · ·
(
l
l

)
dl

dtl
Q−1(t)

Q−1(t)
(
l−1
1

)
d
dt

Q−1(t) · · ·
(
l−1
l−1

)
dl−1

dtl−1 Q−1(t)
. . .

. . .
...

Q−1(t)
(1
1

)
d
dt

Q−1(t)

Q−1(t)




,

namely, (Bl(t), . . . , B1(t), B0(t)) ∼ (Al(t), . . . , A1(t), A0(t)).

3. Transitivity: Assume that (Al(t), . . . , A0(t)) ∼ (Bl(t), . . . , B0(t)) with pointwise
nonsingular matrix-valued functions P1(t) and Q1(t) and that (Bl(t), . . . , B0(t)) ∼
(Cl(t), . . . , C0(t)) with pointwise nonsingular matrix-valued functions P2(t) and
Q2(t), which satisfy (3.7), respectively. We shall prove that (Al(t), . . . , A0(t)) ∼
(Cl(t), . . . , C0(t)). By the product rule and Leibnitz’s rule (cf. [6], p. 203) for
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differentiation, we can immediately verify that



Q1(t)
(

l
1

)
d
dt

Q1(t) · · · · · ·
(
l
l

)
dl

dtl Q1(t)

Q1(t)
(
l−1
1

)
d
dt

Q1(t) · · ·
(
l−1
l−1

)
dl−1

dtl−1 Q1(t)
. . .

. . .
...

Q1(t)
(
1
1

)
d
dt

Q1(t)

Q1(t)




·




Q2(t)
(

l

1

)
d
dt

Q2(t) · · · · · ·
(
l

l

)
dl

dtl Q2(t)

Q2(t)
(
l−1
1

)
d
dt

Q2(t) · · ·
(
l−1
l−1

)
dl−1

dtl−1 Q2(t)
. . .

. . .
...

Q2(t)
(
1
1

)
d
dt

Q2(t)

Q2(t)




=




Q1(t)Q2(t)
(

l

1

)
d
dt

(Q1(t)Q2(t)) · · ·
(
l

l

)
dl

dtl (Q1(t)Q2(t))

Q1(t)Q2(t) · · ·
(
l−1
l−1

)
dl−1

dtl−1 (Q1(t)Q2(t))
. . .

...
. . .

(
1
1

)
d
dt

(Q1(t)Q2(t))

Q1(t)Q2(t)




.

(3.9)

Thus, by the assumptions and (3.9), we have

[Cl(t), . . . , C0(t)] = P1(t)P2(t)[Al(t), . . . , A0(t)]

·




Q1(t)Q2(t)
(

l
1

)
d
dt

(Q1(t)Q2(t)) · · ·
(
l
l

)
dl

dtl
(Q1(t)Q2(t))

Q1(t)Q2(t) · · ·
(
l−1
l−1

)
dl−1

dtl−1 (Q1(t)Q2(t))
. . .

...
. . .

(1
1

)
d
dt

(Q1(t)Q2(t))

Q1(t)Q2(t)




,

namely, (Al(t), . . . , A1(t), A0(t)) ∼ (Cl(t), . . . , C1(t), C0(t)). �

In order to introduce a set of regularity conditions under which we can get a con-

densed form via (global) equivalence transformations (3.6) for the triple (M(t), C(t), K(t))

in (3.3), we need the concept of (local) equivalence relation between two triples of ma-

trices.

Two triples (M, C, K) and (M̃, C̃, K̃), M, C, K, M̃, C̃, K̃ ∈ Cm×n, of matrices are

called (locally) equivalent if there exist matrices P ∈ Cm×m and Q, A, B ∈ Cn×n,

P, Q nonsingular, such that

M̃ = PMQ, C̃ = PCQ + 2PMA, K̃ = PKQ + PCA + PMB. (3.10)

In general, we have the following definition of (local) equivalence relation between

two tuples of matrices.
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Definition 3.3 Two (l+1)-tuples (Al, . . . , A1, A0) and (Bl, . . . , B1, B0), Ai, Bi ∈ Cm×n,

i = 0, 1, . . . , l, l ∈ N0, of matrices are called (locally) equivalent if there exist ma-

trices P ∈ Cm×m, Q, R1, . . . , Rl ∈ Cn×n, P, Q nonsingular, such that

[Bl, . . . , B0] = P [Al, . . . , A0]




Q
(

l

1

)
R1 · · · · · ·

(
l

l

)
Rl

Q
(

l−1
1

)
R1 · · ·

(
l−1
l−1

)
Rl−1

. . .
. . .

...

Q
(
1
1

)
R1

Q




, (3.11)

Again, we write (Al, . . . , A1, A0) ∼ (Bl, . . . , B1, B0) if the context is clear.

Proposition 3.4 Relation (3.11) introduced in Definition 3.3 is an equivalence relation

on the set of (l + 1)-tuples of matrices.

Proof. The proof can be immediately carried out along the lines of the proof of Propo-

sition 3.2. �

Recalling the condensed form and the invariants for matrix triples obtained under

(strong) equivalence transformations in Section 2.3, we can introduce a set of invari-

ants for matrix triples under local equivalence transformations, as the following lemma

shows.

Lemma 3.5 Under the same assumption and the same notation as in Lemma 2.9, the

quantities defined in (2.30) are invariant under the local equivalence relation (3.10) and

(M, C, K) is locally equivalent to the form (2.28).

Proof. Since the strong equivalence relation (2.17) is the special case of the local

equivalence relation (3.11) by setting Ri = 0, i = 1, . . . , l, by Lemma 2.9, it is immediate

that (M, C, K) is locally equivalent to the form (2.28).

In view of the proof of Lemma 2.9, it remains to show that the quantities defined

in (2.30) are invariant under the local equivalence relation (3.10). Here, again, we just

take s(MCK) as an example. Indeed, let (M, C, K) and (M̃, C̃, K̃) be locally equivalent,

namely, identity (3.10) holds. Let the columns of Z̃1 form a basis for N (M̃T ), and let

the columns of Z̃3 form a basis for N (M̃T ) ∩N (C̃T ). Then, from (3.10) it follows that

the columns of Z1 := P T Z̃1 form a basis for N (MT ). Since, for any z ∈ Z̃3,

QT MT P Tz = 0, QT CT P Tz + 2AT MT P Tz = 0,

if and only if

MT P Tz = 0, CT P T z = 0,
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it follows that the columns of Z3 := P T Z̃3 form a basis for N (MT ) ∩ N (CT ). Thus,

the invariance of s(MCK) follows from

s̃(MCK) = dim
(
R(M̃T ) ∩ R(C̃T Z̃1) ∩R(K̃T Z̃3)

)

= dim
(
R(QT MT P T ) ∩ R(QT CT P T Z̃1 + 2AT MT P T Z̃1)

∩ R(QT KT P T Z̃3 + AT CT P T Z̃3 + BT MT P T Z̃3)
)

= dim
(
R(QT MT P T ) ∩ R(QT CT P T Z̃1) ∩ R(QT KT P T Z̃3)

)

= dim
(
R(MT P T ) ∩R(CT P T Z̃1) ∩ R(KT P T Z̃3)

)

= dim
(
R(MT ) ∩ R(CT Z1) ∩R(KT Z3)

)

= s(MCK).

Similarly, the invariance of the other quantities in (2.30) can be proved. �

Now, from the matrix triple (M, C, K) passing to the triple (M(t), C(t), K(t)) of

matrix-valued functions, we can calculate, based on Lemma 3.5, the characteristic quan-

tities in (2.30) for (M(t), C(t), K(t)) at each fixed value t ∈ [t0, t1]. Then, we obtain

nonnegative-integer valued functions

r, a, s(MCK), s(CK), d(1), s(MC), s(MK), d(2), v, u : [t0, t1] → N0.

For the triple (M(t), C(t), K(t)) of matrix-valued functions, in order to derive a con-

densed form which is similar in form to the condensed form (2.28) for the matrix triple

(M, C, K), we introduce the following assumption of regularity conditions for the triple

(M(t), C(t), K(t)) on [t0, t1]:

r(t) ≡ r, a(t) ≡ a, s(MCK)(t) ≡ s(MCK), s(CK)(t) ≡ s(CK),

d(1)(t) ≡ d(1), s(MC)(t) ≡ s(MC), s(MK)(t) ≡ s(MK).
(3.12)

By (2.30) and (3.12), it immediately follows that d(2)(t), v(t), u(t) are also constant on

[t0, t1].

We can see that the regularity conditions (3.12) imply that the sizes of the blocks

in the condensed form (2.28) do not depend on t ∈ [t0, t1]. Then, the assumption (3.12)

allows for the application of the following property of a matrix-valued function with a

constant rank, which may be regarded as a generalization of the property of a matrix

shown in Lemma 2.6.

Lemma 3.6 ([34], p. 71) Let A(t) ∈ C l([t0, t1], Cm×n), l ∈ N0 ∪{∞}, and rank A(t) ≡
r, r ∈ N0, for all t ∈ [t0, t1]. Then there exist pointwise unitary (and therefore non-

singular) matrix-valued functions U(t) ∈ C l([t0, t1], Cm×m) and V (t) ∈ C l([t0, t1], Cn×n),

such that

UH(t)A(t)V (t) =

[
Σ(t) 0

0 0

]
, (3.13)
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where Σ(t) ∈ C l([t0, t1], Cr×r) is nonsingular for all t ∈ [t0, t1].

Using Lemma 3.6 we can then obtain the following global condensed form for triples

of matrix-valued functions via global equivalence transformations (3.6). For convenience

of expression, in the following condensed form and its proof, we drop the subscripts of

the blocks and omit the argument t unless they are needed for clarification.

Lemma 3.7 Let M(t), C(t), K(t) ∈ C([t0, t1], Cm×n) be sufficiently smooth, and sup-
pose that the regularity conditions (3.12) hold for the local characteristic values of
(M(t), C(t), K(t)). Then, (M(t), C(t), K(t)) is globally equivalent to a triple

(M̃(t), C̃(t), K̃(t)) of matrix-valued functions of the following condensed form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

I
s(MCK) 0 0 0 0 0 0 0

0 I
s(MC) 0 0 0 0 0 0

0 0 I
s(MK) 0 0 0 0 0

0 0 0 I
d(2) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 C C 0 0 C C

0 0 0 0 I
s(CK) 0 0 0

0 0 0 0 0 I
d(1) 0 0

I
s(MCK) 0 0 0 0 0 0 0

0 I
s(MC) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 K 0 K 0 K 0 K

0 0 0 0 0 0 Ia 0

0 0 0 0 I
s(CK) 0 0 0

0 0 I
s(MK) 0 0 0 0 0

I
s(MCK) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

s(MCK)

s(MC)

s(MK)

d(2)

s(CK)

d(1)

s(MCK)

s(MC)

a

s(CK)

s(MK)

s(MCK)

u

.

(3.14)

All blocks except the identity matrices in (3.14) are again matrix-valued functions on

[t0, t1].

Note that C5,4(t) ≡ 0 in (3.14) whereas C5,4 in (2.28) may be a nonzero matrix, which is

the only difference in form between condensed forms (3.14) and (2.28). This difference

is due to the equivalence relation (3.5) via time varying transformations. C5,4(t) ≡ 0 is

obtained by solving an initial value problem for ordinary differential equations; see the

details of the proof at the end of page 48.

Proof. The proof of Lemma 3.7 is given in Appendix (on page 48) to this chapter. �
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3.2 The Solution Behaviour of Higher-Order Sys-

tems of DAEs

In this section, we shall briefly discuss the solution behaviour (solvability, uniqueness

of solutions and consistency of initial conditions) of higher-order systems of DAEs with

variable coefficients and of the initial value problems associated with them.

First, using the results obtained in Section 3.1, we discuss the solution behaviour of

the second-order system (3.3) and of its associated initial value problem (3.3)-(3.4).

For the triple (M(t), C(t), K(t)) of matrix-valued functions associated with (3.3), we

assume that M(t), C(t), K(t) are sufficiently smooth and the regularity conditions (3.12)

hold. Thus, based on the condensed form (3.14) for (M(t), C(t), K(t)) which is obtained

in Lemma 3.7, it is clear that, as in the case of constant coefficients (Section 2.4), we can

write down the system of differential-algebraic equations corresponding to (3.14), and

apply those differentiation-and-elimination steps (on pages 24-25) to it. Then, we can

again compute the characteristic values r, a, s(MCK), s(CK), d(1), s(MC), s(MK), d(2), v, u

and the condensed form and then proceed inductively to the final stage. Here, the

only difference of the case of variable coefficients from the constant case is that, in

order to carry out the procedure to the final stage, we must assume that at every stage

of the inductive procedure, the regularity conditions (3.12) hold. If this is the case,

then it is immediate that we can obtain, finally, a theorem which is parallel to Theorem

2.12. From the final theorem we can directly read off the solution behaviour of (3.3) and

of (3.3)-(3.4), and obtain a consequence which is parallel to Corollary 2.13. Clearly,

there is no difference in form between the final theorem and Theorem 2.12 if in the

former case we omit the argument t in the variable coefficients, nor is there between

the consequence and Corollary 2.13. Therefore, here, for the sake of space of writing

we do not state them again.

In addition, it should be pointed out that, at this writing, since we do not know

whether two different but globally equivalent triples of matrix-valued functions, after

the differentiation-and-elimination steps are applied to them respectively, will lead to

new triples with same characteristic values r, a, s(MCK), s(CK), d(1), s(MC), s(MK), d(2), v,

and u, we can not guarantee that these values obtained in every step of the above

inductive procedure are globally characteristic for the triple (M(t), C(t), K(t)).

Analogously, in the general case of higher-order systems of DAEs with variable

coefficients, we can obtain a final theorem which is similar in form to Theorem 2.19,

and its consequence similar to Corollary 2.20, which can show the solution behaviour

of (3.1) and of (3.1)-(3.2). For the same reason, we omit them here.
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Appendix: Proof of Lemma 3.7. By the global equivalent relation (3.6) and
Lemma 3.6, we obtain the following sequence of globally equivalent triples of matrix-
valued functions.
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(where pointwise nonsingular matrix-valued function Q1(t) is chosen as the solution of

the initial value problem Q̇1(t) = − 1
2
C2,2(t)Q1(t), t ∈ [t0, t1], Q1(t0)=I)
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Chapter 4

Regularity and Singularity of

Matrix Polynomials

4.1 Introduction

Now let us turn to the second part of this thesis, in which we shall study the properties

of regularity and singularity of matrix polynomials.

A polynomial with matrix coefficients is called a matrix polynomial, or a polynomial

matrix if we regard it as a matrix whose elements are polynomials. It is well known

that matrix polynomials play an important role in the analytical theory of elementary

divisors, i.e., the theory by which a square matrix can be reduced to some normal

forms (esp. the Smith canonical form and Jordan canonical form) of which important

applications have been made to the analysis of differential and difference equations; see,

for example, Gantmacher [14] (Chapter VI), Lancaster and Tismenetsky [36] (Chapter

7).

The motivation for our study of regularity and singularity of matrix polynomials

comes mainly from two sources. One is the study of differential-algebraic equations,

which is due to the close connection, as we have presented in Chapter 2, between

regularity and singularity of a matrix polynomial and the properties of the solutions of

the system of DAEs which is associated with the matrix polynomial; the other is the

study of the polynomial eigenvalue problems:

A(λ)x = 0, x 6= 0; yHA(λ) = 0, y 6= 0;

where A(λ) =
∑l

i=0 λiAi is an n × n matrix polynomial of degree l, Ai ∈ Cn×n, i =

0, 1, . . . , l, Al 6= 0, the nonzero vector x ∈ Cn (respectively, y ∈ Cn) is the right

(respectively, left) eigenvector associated with the eigenvalue λ.

For regular matrix polynomials, a spectral theory has been well established (see

Lancaster [35], Gohberg, Lancaster, and Rodman [17], and Lancaster and Tismenetsky
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[36], Chapter 14). This theory allows us to solve, at least theoretically, many poly-

nomial eigenvalue problems which arise not only as the underlying algebraic problems

of the analysis and numerical solution of higher order systems of ordinary differential

equations and difference equations, but also in linear algebra problems (for example,

the constrained least squares problems and signal processing problems; cf. Meerbergen

and Tisseur [44]). However, for non-regular, or in another term, singular matrix poly-

nomials, especially those of degrees greater than or equal to 2, the general theoretical

analysis has been largely ignored; see, for example, the concluding remark by P. Van

Dooren and P. Dewilde [59] (pp. 575-578).

Traditionally, for polynomial eigenvalue problems, especially those of degrees greater

than or equal to 2, most research results including spectral analysis, canonical forms,

linearization, Jordan pairs, etc., and numerical methods such as numerical algorithms,

model reduction, and perturbation analysis (conditioning, backward error, pseudospec-

tra), etc., are mainly based on the regularity assumption that the matrix polynomial

A(λ) is regular, namely, it is square and its determinant det(A(λ)) is not identically

equal to zero. For more details, see, for example, [17] and [44]. There are two major

reasons for the regularity assumption. The first is that the regular case frequently oc-

curs in applications. Take, for example, the quadratic eigenvalue problem associated

with a gyroscopic system (cf. [44] and the references therein):

Q(λ) = λ2M + λC + K,

where M, C, K ∈ Cn×n, M = MH positive definite, C = −CH , and K = KH . Since

the leading coefficient matrix M is nonsingular, the determinant of the quadratic ma-

trix polynomial Q(λ) is a polynomial in λ of degree 2n, and therefore Q(λ) is regular.

Such regular polynomial eigenvalue problems with a nonsingular leading coefficient ma-

trix frequently arise from the analysis of structural mechanical and acoustic systems,

electrical circuit simulation, fluid mechanics, and modelling microelectronics mechani-

cal systems; see [44] and the references therein. The second reason for the regularity

assumption is that the study of regular matrix polynomials clearly shows the main fea-

tures of spectral theory. Take, for instance, the monograph of Lancaster [35], as well as

that of Gohberg, Lancaster, and Rodman [17], which has regular matrix polynomials

as its whole subject.

However, there are applications from which singular polynomial eigenvalue problems

of degrees greater than or equal to 2, not to mention singular generalized eigenvalue

problems, arise, as the following examples show.

Example 4.1 (Signal processing) [44] Consider the symmetric quadratic eigenvalue

problem

A(λ)v = (λ2A2 + λA1 + A0)v = 0,
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where A0, A1, A2 ∈ R(p+1)×(p+1), p ∈ Z, and

A0 = AT
0 ≥ 0, A1 = AT

1 , A2 =

[
0 0

0 Ip

]
.

Since the leading coefficient matrix A2 is singular and the last coefficient matrix A0

may also be singular, the determinant of the quadratic matrix polynomial A(λ) may

be identically equal to zero. Therefore, A(λ) may be a singular matrix polynomial. ♦

Example 4.2 (Vibration of rail tracks) [41] Consider the complex quadratic eigen-

value problem

1

κ
(MT

1 + κM0 + κ2M1)y = 0,

where κ 6= 0, M1, M0 ∈ Cn×n, and M1 is singular. Since the leading coefficient matrix

M1 and the last MT
1 of the corresponding matrix polynomial A(λ) := λ2M1+λM0+MT

1

are singular, A(λ) may be singular. ♦

In addition, although the study of singular matrix pencils, which can be regarded

as matrix polynomials of degree 1, has a long history (see, for example, Gantmacher

[15], Chapter XII), some related theoretical and numerical aspects have not yet been

completely clarified or solved, such as geometrical characterization of singular matrix

pencils (we shall return to this topic in Subsection 4.2.4), detecting the regularity or

singularity, and the nearness to singularity problem for regular matrix pencils (see Byers,

He, and Mehrmann [4]).

Thus, from a theoretical and/or numerical point of view, the following tasks natu-

rally arise:

1 To obtain characterizations of the regularity and singularity of matrix polynomials.

2 To detect whether or not a given matrix polynomial is regular.

3 To find a solution of or a useful characterization for the nearness to singularity

problem for a regular matrix polynomial.

The investigations of the above tasks will be carried out in this chapter. In Section

4.2 we present sufficient and necessary conditions for the singularity and regularity of

matrix polynomials, which lay a theoretical foundation for the investigations conducted

in the subsequent sections 4.3 and 4.4. In addition, we will present a simple sufficient

and necessary geometrical characterization of the column-singularity of rectangular ma-

trix pencils, as well as a canonical form, under equivalence transformations (2.17), for

2 × 2 singular quadratic matrix polynomials. In Section 4.3 we will present a natural
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approach to detect the regularity or singularity of a given square matrix polynomial

via the rank information of its coefficient matrices. At last, Section 4.4 deals with the

nearness to singularity problem for square and regular matrix polynomials. We will give

a definition, some general properties, and theoretical characterizations of the nearest

distance to singularity, and derive two types of lower bounds on the nearest distance.

4.2 Sufficient and Necessary Conditions for Regular

and Singular Matrix Polynomials

In this section, after giving definitions and examples and stating our main idea in

Subsection 4.2.1, we will present in Subsection 4.2.2 the main contribution of our in-

vestigation – Theorem 4.32 – which describes sufficient and necessary conditions for

the singularity of matrix polynomials. In Subsection 4.2.3, Theorem 4.32 will lead to

corollaries which give sufficient and necessary conditions for the singularity and regular-

ity of matrix polynomials. Finally, Subsection 4.2.4 deals with column-singular matrix

pencils and 2 × 2 singular quadratic matrix polynomials.

4.2.1 Definitions and Main Idea

To set notation, we begin with the definition of matrix polynomials.

Definition 4.3 A matrix polynomial A(λ) over C (or R) is a polynomial in λ with

matrix coefficients:

A(λ) =

l∑

i=0

λiAi = λlAl + λl−1Al−1 + · · ·+ λA1 + A0, (4.1)

where λ ∈ C and the matrices Ai, i = 1, . . . , l, are from Cm×n (or Rm×n).

If m = n, then the matrix polynomial A(λ) is called square, and the number n is

called the order of the matrix polynomial.

The number l is called the degree of the matrix polynomial if Al 6= 0.

If m = 1 (respectively, n = 1), then the matrix polynomial A(λ) is also called a

row- (respectively, column-) vector polynomial.

Remark 4.4 We may represent the matrix polynomial A(λ) in the form of a poly-

nomial matrix , i.e., in the form of an m×n matrix whose elements are polynomials

in λ:

A(λ) = [ai,j(λ)]m,n

i,j=1 =
[
a

(l)
i,jλ

l + a
(l−1)
i,j λl−1 + · · · + a

(0)
i,j

]m,n

i,j=1
,
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where l is the degree of the matrix polynomial. If m = 1 (respectively, n = 1), then the

polynomial matrix A(λ) is also called a polynomial row- (respectively, column-)

vector. ♦

In order to introduce the concepts of regularity and singularity of matrix polyno-

mials, we need the concepts of the minor and rank of a matrix polynomial which are

natural generalizations of those of the minor and rank of a matrix, as follows.

Definition 4.5 Let A(λ) be an m × n rectangular matrix polynomial. A minor of

order p (1 ≤ p ≤ min(m, n)) of A(λ) is defined to be the determinant of a p × p

sub-matrix polynomial of A(λ) obtained from A(λ) by striking out m−p rows and n−p

columns. If the retained rows and columns are given by subscripts

1 ≤ i1 < i2 < · · · < ip ≤ m, 1 ≤ j1 < j2 < · · · < jp ≤ n,

respectively, then the corresponding p-th-order minor is denoted by

A(λ)

(
i1 i2 · · · ip
j1 j2 · · · jp

)
:= det [aik,jk

(λ)]p
k=1 .

Definition 4.6 ([14], p.139; [36], p.259) An integer r is said to be the rank of a

matrix polynomial if it is the order of its largest minor that is not identically equal to

zero.

Remark 4.7 By Definition 4.6, the rank r of a matrix polynomial A(λ) can be repre-

sented as:

r = rank(A(λ)) = max
ν∈C

rank(A(ν)).

Obviously, r ≤ min{m, n}. ♦

Example 4.8 We consider the following matrix polynomials:

(a) Let A1(λ) := λ




1 2

3 0

1 1


+




1 0

0 0

0 0


 =




λ + 1 2λ

3λ 0

λ λ


 .

Then, rank(A1(λ)) = 2.

(b) Let A2(λ) := λ2




2 0

1 0

1 0


+ λ




0 2

−2 1

−1 1


+




−2 2

1 −1

0 0


 =




2(λ + 1)(λ − 1) 2(λ + 1)

(λ − 1)2 λ − 1

λ(λ − 1) λ


 .

Then, rank(A2(λ)) = 1.
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(c) Let A3(λ) := λ

[
0 2

0 1

]
+

[
0 1

0 2

]
=

[
0 2λ + 1

0 λ + 2

]
.

Then, rank(A3(λ)) = 1.

(d) Let A4(λ) := λ2

[
2 0

0 0

]
+ λ

[
0 2

1 0

]
+

[
0 0

0 1

]
=

[
2λ2 2λ

λ 1

]
.

Then, rank(A4(λ)) = 1.

♦

The idea involved in our investigation is in essence quite simple and natural, and

can be regarded as a direct generalization of the corresponding concept for matrices.

Let us first recall the definition and a basic property of regularity and singularity of

matrices.

Definition 4.9 A matrix A ∈ Cm×n is said to be column-regular, or to have full

column rank, if rank(A) = n; otherwise, it is said to be column-singular, or

column-rank deficient. A is said to be row-regular, or to have full row

rank, if rank(A) = m; otherwise, it is said to be row-singular, or row-rank

deficient.

Proposition 4.10 A matrix A ∈ Cm×n is column-regular (respectively, column-singular)

if and only if its conjugate transpose AH ∈ Cn×m (or transpose AT ∈ Cn×m) is row-

regular (respectively, row-singular).

Similarly, we give the following definition and propositions of regularity and singu-

larity of matrix polynomials.

Definition 4.11 Let A(λ) =
∑l

i=0 λiAi be an m × n matrix polynomial of degree l,

where m, n ∈ N, l ∈ N0, Ai ∈ Cm×n, i = 0, . . . , l. Let r be the rank of A(λ).

If r < n, then A(λ) is said to be column-singular; otherwise, if r = n then the

matrix polynomial is said to be column-regular.

If r < m, then A(λ) is said to be row-singular; otherwise, if r = m, then A(λ)

is said to be row-regular.

If A(λ) is both column- and row-regular, i.e., r = m = n, then it is said to be

regular; if r < m = n, then it is said to be singular.

Remark 4.12 In order to be consistent with the concepts of the regularity and singu-

larity of matrix pencils (cf. Section 2.4 and Gantmacher [15], p. 25, Def. 2), we always

call a non-square matrix polynomial singular, though by Definition 4.11 it may be

column-regular or row-regular. ♦
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By Definition 4.11, it is clear that a square matrix polynomial is column-regular if

and only if it is row-regular. Proceeding from Definition 4.11, the following proposition

describes, in terms of determinants, the regularity and singularity of a square matrix

polynomial.

Proposition 4.13 Let A(λ) =
∑l

i=0 λiAi be an n × n matrix polynomial of degree l,

where n ∈ N, l ∈ N0, Ai ∈ Cn×n, i = 0, . . . , l. Then A(λ) is singular if and only if

∀λ ∈ C : det(A(λ)) = det(λlAl + λl−1Al−1 + · · · + A0) = 0.

Proof. By Definition 4.11, the proof follows from the fact that

A(λ) is singular

⇐⇒ rank(A(λ)) = max
ν∈C

rank(A(ν)) < n

⇐⇒ ∀λ ∈ C : det(A(λ)) = det(λlAl + λl−1Al−1 + · · ·+ A0) = 0.

�

In Example 4.8, we can see by Definition 4.11 that the matrix polynomial A1(λ) is

column-regular and at the same time row-singular, A2(λ) is not only column-singular

but row-singular, and Ai(λ), i = 3, 4, are singular.

Remark 4.14 From the point of view of polynomial eigenvalue problems, most of the

related literature agree on the definition of singularity of square matrix polynomials

described in Proposition 4.13, which is in essence consistent with Definition 4.11; see,

for example, Gantmacher [15] (Chapter XII), Gohberg, Lancaster, and Rodman[17],

Lancaster and Tismenetsky [36] (Chapter 7 and 14), Van Dooren and Dewilde [59], and

Meerbergen and Tisseur [44], etc. However, form the point view of matrix polynomials

themselves, there may be different definitions of regularity and singularity of matrix

polynomials with respect to different objectives of study. Take, for example, the one

in Gantmacher [14] (Chapter IV), namely, a matrix polynomial is called regular if it

is square and its leading coefficient matrix is nonsingular. This definition, which is a

special case of Definition 4.11 and used in [14] in studying the right and left division

of matrix polynomials, also appears in the earlier monograph of Lancaster [35] which

concentrates on the study of polynomial eigenvalue problems that arise in dynamic

vibrating systems. In this chapter, since the motivation for our study proceeds mainly

from polynomial eigenvalue problems which arise in a wide variety of applications, we

naturally prefer Definition 4.11 to the one in [14] and [35]. ♦

From Definition 4.6 it immediately follows that the rank of a matrix polynomial

is equal to that of its conjugate transpose (or of its transpose). Hence, the following

statement is plain.
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Proposition 4.15 A matrix polynomial A(λ) of size m × n is column-regular (re-

spectively, column-singular) if and only if its conjugate transpose AH(λ) (or transpose

AT (λ)) is row-regular (respectively, row-singular) .

Thus, throughout this chapter we shall mainly concentrate our discussion on the

column-regularity and column-singularity of rectangular matrix polynomials, since the

results of the column cases can be parallelly extended by Proposition 4.15 to those of

the row cases.

Now let us recall a fundamental result of the relation between a linear subspace and

its matrix representation whose columns (or rows) span the whole linear subspace.

Proposition 4.16 ([36], pp.93-4) A matrix A ∈ Cm×n is column-singular if and only

if its column vectors are linearly dependent in Cm, or in other words, there exists a

nonzero vector x ∈ Cn such that Ax = 0.

Along the same lines, our main idea is to prove that a matrix polynomial A(λ)

is column-singular if and only if there exists a vector polynomial x(λ), which is not

identically equal to zero, such that A(λ)x(λ) = 0. As far as singular matrix pencils are

concerned, in Chapter XII of [15], in order to prove the Kronecker canonical form, it is

asserted that the equation (A1λ + A0)x(λ) = 0 has a nonzero vector polynomial x(λ)

as its solution for any given singular matrix pencil A1λ + A0. However, this result is

not proved; see [15] p.29. In the next subsection, we shall generalize this statement to

the cases of higher-degree singular matrix polynomials and prove it. More important,

we shall give an attainable upper bound on the least possible degree of such nonzero

vector polynomials x(λ). The upper bound is expressed in terms of the rank, or the

minimum of the row and column dimensions, of the related singular matrix polynomial,

and conversely, it can be regarded as a criterion for determining or detecting in finite

steps whether a given matrix polynomial is column-regular or column-singular.

4.2.2 Sufficient and Necessary Conditions for Singularity I

For any given column-singular matrix polynomial A(λ), our main objective in this

section is to construct a nonzero vector polynomial x(λ) such that A(λ)x(λ) = 0 and,

at the same time to obtain an upper bound on the least possible degree of such x(λ).

In order to achieve this objective, we will conduct our investigation in three stages.

First, we will reduce, via left-equivalence transformations, a given matrix polynomial

A(λ) to a matrix polynomial B(λ) in an upper-triangular form. Then, we will estimate

upper bounds of the degrees of some minors of the upper-triangular matrix polynomial

B(λ). Finally, we will construct by Cramer’s rule a nonzero vector polynomial x(λ)

such that B(λ)x(λ) = 0, which is equivalent to A(λ)x(λ) = 0, and we will, based on the
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estimates presented in the second stage, give an attainable upper bound to the least

possible degree of such x(λ).

Since the main results required in the first stage have been obtained in the literature

(cf., for example, [14] (Chapter VI), [36] (Chapter 7)), here, for the sake of completeness

and coherence, we just present a review of some definitions and results which will be

used in the later stages.

We start by defining elementary row and column operations for a matrix polynomial

and the corresponding elementary matrix polynomials that are to be applied to reduce

the matrix polynomial to an upper- (or lower-) triangular form by means of equivalence

transformations.

Definition 4.17 (Elementary operations) ([14], pp.130-1; [36], p.253) The follow-

ing operations are referred to as elementary row and column operations on a

matrix polynomial:

(1) multiply any row (column) by a nonzero c ∈ C;

(2) interchange any two rows (columns);

(3) add to any row (column) any other row (column) multiplied by an arbitrary poly-

nomial b(λ) over C,

where row elementary operations are also called left elementary operations, and col-

umn elementary operations are also called right elementary operations.

Definition 4.18 (Elementary matrix polynomials) ([14], pp.131-2; [36], pp.254-
5) The following square matrix polynomials E (1), E(2), and E(3)(λ) are called elemen-
tary matrix polynomials of types 1, 2, and 3, respectively:

E(1) =




1
. . .

1

c

1
. . .

1




, E(2) =




1
. . .

0 · · · 1

1
...

. . .
...

1

1 · · · 0
. . .

1




,
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E(3)(λ) =




1
. . .

1 · · · b(λ)
. . .

...

1
. . .

1




or E(3)(λ) =




1
. . .

1
...

. . .

b(λ) · · · 1
. . .

1




,

where c ∈ C, c 6= 0, and b(λ) is an arbitrary polynomial over C.

Remark 4.19 The elementary matrix polynomials of types 1 and 2 are also called

elementary matrices of types 1 and 2; as for the elementary matrix polynomials

of types 3, if b(λ) is a nonzero number, then E(3) degenerates into an elementary

matrix of type 3. ♦

Remark 4.20 From Definitions 4.17 and 4.18 it immediately follows that perform-

ing an elementary row (respectively, column) operation on an m × n matrix polyno-

mial is equivalent to premultiplication (respectively, postmultiplication) of the matrix

polynomial by an m × m (respectively, n × n) elementary matrix polynomial of the

corresponding type. ♦

Some simple but important properties of elementary matrix polynomials should be

mentioned, such as: the determinant of every elementary matrix polynomial is a nonzero

constant, and, the inverse of every elementary matrix polynomial is also an elementary

matrix polynomial. Here, a matrix polynomial B(λ) is called the inverse of a matrix

polynomial A(λ), and vice versa, if B(λ)A(λ) = A(λ)B(λ) = I.

Definition 4.21 ([36], p.247.) An n× n square matrix polynomial A(λ) with nonzero

constant determinant is referred to as unimodular matrix polynomial.

Clearly, from Definition 4.21 it follows that elementary matrix polynomials are uni-

modular.

Making use of the concepts of left and right elementary operations, we can give the

following definition of equivalence transformations.

Definition 4.22 ([14], p.132.) Two m × n matrix polynomials A(λ) and B(λ) are

said to be 1) left-equivalent, 2) right-equivalent, 3) equivalent, or to be

connected by 1) a left-equivalence transformation, 2) a right-equivalence

transformation, 3) an equivalence transformation, if one of them can be

obtained from the other by means of a finite sequence of 1) left elementary 2) right

elementary, 3) left or right elementary operations, respectively.
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It follows from the equivalence of elementary operations and operations with elemen-

tary matrix polynomials that, A(λ) and B(λ) are 1) left-equivalent, 2) right-equivalent,

3) equivalent, if and only if there are elementary matrix polynomials E1(λ), E2(λ),

. . ., Ek(λ), Ek+1(λ), . . ., Es(λ) such that 1) B(λ) = P (λ)A(λ), 2) B(λ) = A(λ)Q(λ),

3) B(λ) = P (λ)A(λ)Q(λ), respectively, where P (λ) = Ek(λ) · · ·E1(λ), and Q(λ) =

Ek+1(λ) · · ·Es(λ).

Proposition 4.23 ([36], pp.259-60.) The rank of a matrix polynomial is invariant

under a) left-equivalence, b) right-equivalence, or c) equivalence transformations, re-

spectively.

Proof. The result follows directly from Definition 4.6 of the rank of matrix polynomials

and the fact that the determinant of every elementary matrix polynomial is a nonzero

constant. �

Proposition 4.24 The column-regularity (or column-singularity, or row-regularity, or

row-singularity) of a matrix polynomial is invariant under a) left-equivalence, b) right-

equivalence, or c) equivalence transformations, respectively.

Proof. The result follows directly from Definition 4.11 and Proposition 4.23. �

Through left elementary operations only, we may reduce a rectangular matrix poly-

nomial A(λ) to an upper-triangular form B(λ) as described in the following theorem.

In the second stage of our investigation we will estimate the degrees of some minors of

B(λ). These minors will be used in the third stage to construct a nonzero vector polyno-

mial x(λ) which satisfies the equation B(λ)x(λ) = 0, where B(λ) = P (λ)A(λ) and A(λ)

is column-singular. Since P (λ) is invertible, the equation B(λ)x(λ) = 0 is equivalent to

the equation A(λ)x(λ) = 0. Here, the reason why we apply only left-equivalence trans-

formation to matrix polynomials is that in this way we can, in the third stage, estimate

the degree of x(λ) which remains unaltered, using only left-equivalence transformations

of A(λ), from B(λ)x(λ) = 0 to A(λ)x(λ) = 0.
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Theorem 4.25 ([14], p.135; [36], p.259) An arbitrary m × n rectangular matrix poly-
nomial A(λ) = [ai,j(λ)]m,n

i,j=1 of degree l can be transformed via left elementary operations

into an m×n upper-triangular matrix polynomial B(λ) that is described in the following
form (4.2), where the polynomials b1,j(λ), b2,j(λ), . . . , bj−1,j(λ) are of degree less than
that of bj,j(λ), provided bj,j(λ) is not identically equal to zero, and all are identically
equal to zero if bj,j = const. 6= 0 (j = 2, 3, . . . , min(m, n)).




b1,1(λ) b1,2(λ) · · · · · · b1,m(λ) · · · b1,n(λ)

0 b2,2(λ) · · · · · · b2,m(λ) · · · b2,n(λ)

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 bm,m(λ) · · · bm,n(λ)


 ,

(m ≤ n)




b1,1(λ) b1,2(λ) · · · b1,n(λ)

0 b2,2(λ) · · · b2,n(λ)

· · · · · · · · · · · ·
0 0 · · · bn,n(λ)

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0




.

(m ≥ n)

(4.2)

Proof. See, for example, Gantmacher [14], pp. 134-135. �

As an application of Theorem 4.25, the following corollary sheds light on the nature

of unimodular matrix polynomials.

Corollary 4.26 ([14], p.136; [36], p.256) An n × n square matrix polynomial A(λ) is

unimodular if and only if it can be decomposed into a product of elementary matrices.

Proof. See, [14], p. 136. �

Remark 4.27 ([14], p.133) By Corollary 4.26 we can restate the equivalence of matrix

polynomials in terms of unimodular matrix polynomials, as follows.

Two rectangular matrix polynomials A(λ) and B(λ) are 1) left-equivalent, 2)

right-equivalent, 3) equivalent, if and only if 1) B(λ) = P (λ)A(λ), 2) B(λ) =

A(λ)Q(λ), 3) B(λ) = P (λ)A(λ)Q(λ), respectively, where P (λ) and Q(λ) are unimod-

ular matrix polynomials. Moreover, all these equivalences between matrix polynomials

are equivalence relations. ♦

In order to estimate the degrees of some minors of matrix polynomial B(λ) in (4.2),

we need the following lemmas.
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Lemma 4.28 Let A(λ) be an m× n rectangular matrix polynomial of degree l, and let

A(λ) be left-equivalent to an m × n matrix polynomial B(λ). If

B(λ) =

[
B1,1(λ) B1,2(λ)

0 B2,2(λ)

]
, (4.3)

where the polynomial matrix B1,1(λ) is of dimension p× p, p ∈ N, 1 ≤ p ≤ min{m, n},
and det(B1,1(λ)) is not identically equal to zero, then

deg (det(B1,1(λ))) ≤ pl. (4.4)

Proof. Since the matrix polynomial A(λ) is left-equivalent to B(λ), by Remark 4.27,

there exists a unimodular matrix polynomial P (λ), such that

A(λ) = P (λ)B(λ). (4.5)

Let A(λ) = [A1(λ), A2(λ)], where the matrix polynomial A1(λ) is of dimension m × p.

Then, by (4.5) and (4.3), we have

A1(λ) = P (λ)

[
B1,1(λ)

0

]
, (4.6)

namely, A1(λ) is left-equivalent to [B1,1(λ), 0]T . Since det(B1,1(λ)) is not identically

equal to zero, by Definition 4.6, we have

rank([B1,1(λ), 0]T ) = rank(B1(λ)) = p. (4.7)

Because A1(λ) is left-equivalent to [B1,1(λ), 0]T , by Proposition 4.23 and (4.7), we have

rank(A1(λ)) = p. (4.8)

By Definition 4.6, there exists a permutation matrix E of dimension m ×m, such that

the leading principal submatrix Ã1,1(λ) of EA1(λ) has full rank p, where Ã1,1(λ) is of

dimension p × p. Hence, by (4.6), we get

EA1(λ) =

[
Ã1,1(λ)

Ã2,1(λ)

]
= EP (λ)

[
B1,1(λ)

0

]
, (4.9)

where Ã2,1(λ) is of dimension (m − p) × p. We rewrite (4.9) in the following form:

[
Ã1,1(λ)

Ã2,1(λ)

]
=

[
P̃1,1(λ) P̃1,2(λ)

P̃2,1(λ) P̃2,2(λ)

] [
B1,1(λ)

0

]
, (4.10)

67



where EP (λ) =

[
P̃1,1(λ) P̃1,2(λ)

P̃2,1(λ) P̃2,2(λ)

]
, and the matrix polynomials P̃1,1(λ) is of dimen-

sion p × p; then we have

Ã1,1(λ) = P̃1,1(λ)B1,1(λ), (4.11)

and therefore, it follows that

det(Ã1,1(λ)) = det(P̃1,1(λ)) det(B1,1(λ)). (4.12)

Note that Ã1,1(λ) has full rank, or in other words, det(Ã1,1(λ)) is a polynomial in λ

which is not identically equal to zero. By (4.12), it follows that det(P̃1,1(λ)) is not

identically equal to zero, and therefore also

0 ≤ deg (det(B1,1(λ))) ≤ deg
(
det(Ã1,1(λ))

)
. (4.13)

Since EA1(λ) is obtained from A1(λ) through interchanges of rows, every entry of the

submatrix polynomial Ã1,1(λ) of EA1(λ) is either a polynomial in λ with its degree less

than or equal to l, or zero. Thus, we have

deg
(
det(Ã1,1(λ))

)
≤ pl. (4.14)

And finally, from (4.13) and (4.14), it follows that deg (det(B1,1(λ))) ≤ pl. �

Lemma 4.29 Let B(λ) be left-equivalent to an m×n matrix polynomial A(λ) of degree

of l, and let E = [ej1 , ej2, . . . , ejn
] be a permutation matrix. If

B(λ)E =

[
B̂1,1(λ) B̂1,2(λ)

0 B̂2,2(λ)

]
, (4.15)

where the polynomial matrix B̂1,1(λ) is of dimension p× p, p ∈ N, 1 ≤ p ≤ min{m, n},
with its determinant det(B̂1,1(λ)) being not identically equal to zero, then

deg(det(B̂1,1(λ))) = deg


det







eT
1

eT
2
...

eT
p


B(λ)[ej1 , ej2, · · · , ejp

]





 ≤ pl. (4.16)

Proof. Note that A(λ)E, which is left-equivalent to B(λ)E, is still a matrix polynomial

of degree l. Thus, by Lemma 4.28, we immediately have deg
(
det(B̂1,1(λ))

)
≤ pl. Then

the result follows by the fact that

B̂1,1(λ) =




eT
1
...

eT
p


B(λ)

[
ej1, ej2 , . . . , ejp

]
. �
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We will now derive upper bounds on the degree of the minors of the matrix poly-

nomial B(λ) in (4.2) which are required in the third stage of our investigation to con-

struct a nonzero vector polynomial x(λ) such that B(λ)x(λ) = 0, provided that B(λ)

is column-singular.

Proposition 4.30 Under the same assumption and the same notation as in Theorem

4.25, let k = min{m, n}. If there exists p ∈ N, 1 ≤ p ≤ k, such that every diagonal

element bj,j(λ) in (4.2), 1 ≤ j ≤ p, is not identically equal to zero, then we have

deg

(
B(λ)

(
1 · · · p

1 · · · p

))
=

p∑

j=1

deg(bj,j(λ)) ≤ pl. (4.17)

Proof. Note that B(λ) in (4.2) is upper-triangular; then the result follows directly

from Lemma 4.28. �

Proposition 4.31 Under the same assumption and the same notation as in Theo-

rem 4.25, let k = min{m, n}. For any p ∈ N, 1 ≤ p ≤ k, and ji ∈ N, 1 ≤
ji ≤ n, i = 1, . . . , p, which are pairwise distinct from each other, if the determinant

det







eT
1

eT
2
...

eT
p


B(λ)[ej1, ej2 , · · · , ejp

]


 is not identically equal to zero, then

deg


det







eT
1

eT
2
...

eT
p


B(λ)[ej1 , ej2, · · · , ejp

]





 ≤ pl. (4.18)

Proof. Let {j1, j2, . . . , jp, jp+1, . . . , jn} = {1, . . . , n}, and let E = [ej1, ej2, . . . , ejn
] be a

permutation matrix. Since B(λ) in (4.2) is upper-triangular, we have

B(λ)E =

[
B̂1,1(λ) B̂1,2(λ)

0 B̂2,2(λ)

]
, (4.19)

where B̂1,1(λ) =




eT
1

eT
2
...

eT
p


B(λ)[ej1, ej2, . . . , ejp

]. If det(B̂1,1(λ)) is not identically equal to

zero, then from Lemma 4.29 the result follows. �

Now we have paved the way for the final stage. The main result of this section is

as follows.
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Theorem 4.32 Let A(λ) =
∑l

i=0 λiAi be an m × n matrix polynomial of degree l,

where m, n ∈ N, l ∈ N0, Ai ∈ Cm×n, i = 0, . . . , l. Let k = min(m, n), and let

r be the rank of A(λ). If A(λ) is column-singular, i.e., r < n, then there exists a

nonzero vector polynomial x(λ) =
∑d

i=0 λixi, where xi ∈ Cn, i = 1, . . . , d, xd 6= 0, and

0 ≤ d ≤ rl ≤ (k − 1)l, such that

∀λ ∈ C : (λlAl + λl−1Al−1 + · · · + A0)x(λ) = 0. (4.20)

Conversely, if there exists an n-dimensional nonzero vector polynomial x(λ) which is a

solution of (4.20), then A(λ) is column-singular.

Proof.

1. From Theorem 4.25 it follows that A(λ) is left-equivalent to an upper-triangular

matrix polynomial B(λ) in the form (4.2). Hence, by Remark 4.27, there is a unimodular

matrix polynomial P (λ) such that A(λ) = P (λ)B(λ). If A(λ) is column-singular with

rank r < n, by Propositions 4.23 and 4.24, B(λ) is also column-singular with rank r.

The next step is to prove that there exists an n-dimensional nonzero vector polyno-

mial x(λ) =
∑d

i=0 λixi, where xd 6= 0, 0 ≤ d ≤ rl, such that for all λ ∈ C, B(λ)x(λ) = 0.

i) If m ≥ n, then from the upper-triangular form and column-singularity of B(λ),

it follows that there exists at least one diagonal element bk,k(λ) of B(λ) such that

bk,k(λ) is identically equal to zero. Let k0 ∈ N, 1 ≤ k0 ≤ (r + 1), be the smallest

such index.

(a) If k0 = 1, then b1,1(λ) ≡ 0. Let x(λ) = x0 = e1. Then we have B(λ)x(λ) = 0.

(b) If k0 ≥ 2, we will, in virtue of Cramer’s rule, construct
x(λ) = [x1(λ), . . . , xn(λ)]T in such a way that





xj(λ) = − det







eT
1

eT
2
...

eT
k0−1


B(λ)[e1, . . . , ej−1, ek0 , ej+1, . . . , ek0−1]


 ,

j = 1, . . . , k0 − 1;

xk0(λ) = b1,1(λ) · · · bk0−1,k0−1(λ);

xj(λ) = 0, j = k0 + 1, . . . , n.

(4.21)
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Since bi,i(λ) 6≡ 0, i = 1, . . . , k0 − 1, we have xk0(λ) 6≡ 0, and therefore x(λ) is
not identically equal to zero. And, from Cramer’s rule it follows that

B(λ)x(λ)

=




b1,1(λ) · · · b1,k0−1(λ) b1,k0(λ) · · · b1,n(λ)
. . .

...
... · · ·

...

bk0−1,k0−1(λ) bk0−1,k0(λ) · · · bk0−1,n(λ)

0 · · · bk0,n(λ)
. . .

...

bn,n(λ)

0 · · · · · · · · · · · · 0

0 · · · · · · · · · · · · 0







x1(λ)
...

xk0−1(λ)

xk0(λ)

0
...

0




= 0.

Now we estimate the degree of x(λ). For any j, 1 ≤ j ≤ k0 − 1, if xj(λ) in
(4.21) is not identically equal to 0, then by Proposition 4.31 we have

deg(xj(λ)) = deg


det







eT
1

eT
2
...

eT
k0−1


B(λ)[e1, . . . , ej−1, ek0 , ej+1, . . . , ek0−1]





 ≤ (k0−1)l.

(4.22)

Regarding the degree of xk0(λ) in (4.21), by Proposition 4.30 we have

deg(xk0(λ)) =

k0−1∑

i=1

deg(bi,i(λ)) ≤ (k0 − 1)l. (4.23)

If we rewrite the polynomial vector x(λ) in the form of a vector polynomial∑d
i=0 λixi, where xd 6= 0, then, from (4.22) and (4.23) it follows that

deg(x(λ)) = d ≤ (k0 − 1)l ≤ rl ≤ (n − 1)l. (4.24)

ii) If m < n, then we have the following cases:

(a) If there exists a diagonal element bk,k(λ) of B(λ) such that bk,k(λ) is iden-

tically equal to zero, then the proof is analogous to the proof in the case of

m ≥ n.

(b) If for every k ∈ N, 1 ≤ k ≤ m, bk,k(λ) is not identically equal to zero, then

let k0 = m+1. We can construct, by (4.21), an n-dimensional nonzero vector

polynomial x(λ), such that B(λ)x(λ) = 0. Analogously, we also have

deg(x(λ)) = d ≤ (k0 − 1)l = rl = ml. (4.25)
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Finally, the proof of necessity ends with the fact that

A(λ)x(λ) = P (λ)B(λ)x(λ) = 0.

2. We prove the second part of the theorem by contradiction. Suppose that A(λ) is

column-regular, namely, r = n. Then, by Definition 4.6, there exists an n-order minor

A(λ)

(
i1 i2 · · · in
1 2 · · · n

)
, which is not identically equal to zero. Therefore, since the

minor is a polynomial in λ, there are infinitely many values for λ, such that the minor

at those values is not zero. However, note that there are at most finitely many values

for λ, such that x(λ) at those values is zero; therefore, by (4.20), there are at most

finitely many values for λ, such that A(λ) at those values has a full column rank. In

other words, there are at most finitely many values for λ, such that any of the minors

of order n of A(λ) at those values is not zero, which is a contradiction. �

Remark 4.33 With respect to row-singularity, by Proposition 4.15 and Theorem 4.32,

we have:

A(λ) is row-singular, i.e., r < m, if and only if there exists a nonzero vector polyno-

mial y(λ) =
∑d

i=0 λiyi, where yi ∈ Cm, i = 1, . . . , d, yd 6= 0, and 0 ≤ d ≤ rl ≤ (k − 1)l,

such that

∀λ ∈ C : yH(λ)(λlAl + λl−1Al−1 + · · ·+ A0) = 0. (4.26)

♦

4.2.3 Sufficient and Necessary Conditions for Singularity and

Regularity II

From Theorem 4.32 we deduce the following corollary which presents a geometric de-

scription of the column-singularity of matrix polynomials.
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Corollary 4.34 Under the same assumptions and the same notation as in Theorem
4.32, A(λ) is column-singular if and only if there exists a tuple (x0, x1, . . . , xd) of vectors,

xi ∈ Cn, i = 1, . . . , d, x0 6= 0, xd 6= 0, and 0 ≤ d ≤ rl ≤ (k − 1)l, where k = min(m, n)
and r is the rank of A(λ), such that





A0x0 = 0,

A1x0 + A0x1 = 0,

· · · · · ·
Al−1x0 + Al−2x1 + · · · + A0xl−1 = 0,

Alx0 + Al−1x1 + · · · + A0xl = 0,

Alx1 + Al−1x2 + · · · + A0xl+1 = 0,

· · · · · · · · · · · ·
Alxd−l + Al−1xd−l+1 + · · · + A0xd = 0,

Alxd−l+1 + Al−1xd−l+2 + · · · + A1xd = 0,

· · · · · ·
Alxd−1 + Al−1xd = 0,

Alxd = 0,

(4.27)

where xi = 0, i ∈ Z, for any i < 0 or i > d.

Proof.

”⇒” From Theorem 4.32, it follows that there exists an n-dimensional nonzero

vector polynomial

x(λ) = xdλ
d + xd−1λ

d−1 + · · ·+ x0, (4.28)

where xd 6= 0, 0 ≤ d ≤ (k − 1)l, such that

∀λ ∈ C : (λlAl + λl−1Al−1 + · · · + A0)x(λ) = 0. (4.29)

Let i ∈ N0, 0 ≤ i ≤ d, be such an index that xi 6= 0 while xi−1 = xi−2 = · · · = x0 = 0.

We define an n-dimensional nonzero vector polynomial

x(λ) :=
x(λ)

λi
= xdλ

d + xd−1λ
d−1 + · · ·+ x0, (4.30)

where d := d − i, xj := xi+j, j = 0, 1, . . . , d − i. Thus, (4.29) still holds. If we

substitute (4.30) in (4.29) and equate to zero the coefficients of every power of λ, then

we immediately obtain the system of equations (4.27).

”⇐” From the given tuple of vectors, we construct a nonzero vector x(λ) as in the

form of (4.28). Then (4.29) follows from the given system of equations (4.27). Hence,

by Theorem 4.32, the matrix polynomial A(λ) is column-singular. �

Remark 4.35 Parallelly, in the case of row-singularity, we have:
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A(λ) is row-singular if and only if there exists a tuple (y0, y1, . . . , yd̂) of vectors,

where yi ∈ Cm, i = 1, . . . , d̂, y0 6= 0, yd̂ 6= 0, and 0 ≤ d̂ ≤ rl ≤ (k − 1)l, such that





yH
0 A0 = 0,

yH
0 A1 + yH

1 A0 = 0,

· · · · · ·
yH
0 Al−1 + yH

1 Al−2 + · · · + yH
l−1A0 = 0,

yH
0 Al + yH

1 Al−1 + · · · + yH
l A0 = 0,

yH
1 Al + yH

2 Al−1 + · · · + yH
l+1A0 = 0,

· · · · · · · · · · · ·
yH

d̂−l
Al + yH

d̂−l+1
Al−1 + · · · + yH

d̂
A0 = 0,

yH

d̂−l+1
Al + yH

d̂−l+2
Al−1 + · · · + yH

d̂
A1 = 0,

· · · · · ·
yH

d̂−1
Al + yH

d̂
Al−1 = 0,

yH

d̂
Al = 0,

(4.31)

where yi = 0, i ∈ Z, for any i < 0 or i > d̂. ♦

Remark 4.36 In the next subsection we shall, in virtue of Corollary 4.34, investigate

more deeply the geometrical characteristic of column-singular matrix pencils and 2× 2

quadratic matrix polynomials. ♦

By the rank information of the leading or the last coefficient matrix of a matrix

polynomial, sometimes, as the following corollary shows, we can directly judge whether

the matrix polynomial is column-regular (or row-regular).

Corollary 4.37 Under the same assumptions and the same notation as in Theorem

4.32, A(λ) is column-regular if its leading coefficient matrix Al, or its last coefficient

matrix A0, has full column rank n.

Proof. If the leading coefficient matrix Al of the matrix polynomial A(λ) has full

column rank n, then there does not exist a nonzero vector x of dimension n, such that

Alx = 0. Therefore, there does not exist such a tuple (x0, x1, . . . , xd) of n-dimensional

vectors, where x0 6= 0, xd 6= 0, and 0 ≤ d ≤ rl ≤ (k − 1)l, such that (4.27) can be

established. Then, from Corollary 4.34 it follows that A(λ) is column-regular.

In the case that the last coefficient matrix A0 has full column rank, the proof is

analogous to that in the above case of leading coefficient matrix. �

Remark 4.38 Parallelly, we have:

A(λ) is row-regular if its leading coefficient matrix Al, or its last coefficient matrix

A0, has full row rank m. ♦
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From Theorem 4.32 and Corollary 4.34 we obtain the following corollary which

presents an algebraic description of the column-regularity of matrix polynomials.

Corollary 4.39 Under the same assumptions and the same notation as in Theorem
4.32, if A(λ) is column-regular, then for all s ∈ N, the (s + l)-by-s block matrix with
m-by-n blocks

Ws(Al, Al−1, . . . , A0) :=




A0

A1 A0
...

...
. . .

Al−1 Al−2 · · · A0

Al Al−1 · · · A1 A0

. . .
. . .

. . .
. . .

. . .

Al Al−1 · · · A1 A0

Al · · · A2 A1

. . .
...

...

Al Al−1

Al




(4.32)

has full column rank ns; conversely, if for all s ∈ N, s ≤ (rl+1) ≤ ((k−1)l+1), where

k = min(m, n) and r is the rank of A(λ), Ws(Al, Al−1, . . . , A0) has full column rank ns,

then A(λ) is column-regular.

Proof.

1. If A(λ) is column-regular, we prove the first part of the corollary by contradiction.

Suppose that there exists s ∈ N such that the column rank of the (s + l)-by-s block

matrix Wk(Al, Al−1, . . . , A0) in (4.32) is deficient, then there exists x ∈ Cns, x 6= 0, such

that

Ws(Al, Al−1, . . . , A0)x = 0. (4.33)

Let x = [xT
0 , xT

1 , . . . , xT
s−1]

T , xi ∈ Cn, i = 0, 1, . . . , (s − 1), and let x(λ) =
∑s−1

i=0 λixi.

Since x 6= 0, x(λ) 6= 0. From (4.33) it follows that (4.27) holds, where d := s. By

(4.27) we obtain A(λ)x(λ) = 0. Then from Theorem 4.32 we get the conclusion that

the matrix polynomial A(λ) must be column-singular, which is a contradiction.

2. If for all s ∈ N, s ≤ (rl + 1) ≤ ((k − 1)l + 1), Ws(Al, Al−1, . . . , A0) has full

column rank ns, then we prove the second part of the corollary also by contradiction.

Suppose that the matrix polynomial A(λ) is column-singular, then from Corollary 4.34

it follows that there is a tuple (x0, x1, . . . , xd) of vectors, where xi ∈ Cn, i = 1, . . . , d,

x0 6= 0, xd 6= 0, and 0 ≤ d ≤ rl ≤ (k − 1)l, such that the system of equations

(4.27) is satisfied. Let s := d + 1, and let x =: [xT
0 , xT

1 , . . . , xT
s−1]

T . Then we have
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1 ≤ s ≤ (rl + 1) ≤ ((k − 1)l + 1), and x 6= 0. Thus, we can rewrite the system of

equations (4.27) in the following form:

Ws(Al, Al−1, . . . , A0)x = 0,

which is a contradiction. �

Remark 4.40 Parallelly, we have:
Under the same assumptions and the same notation as in Theorem 4.32, if A(λ) is

row-regular, then for all s ∈ N, the s-by-(s + l) block matrix with m-by-n blocks

Ŵs(Al, Al−1, . . . , A0) =




A0 A1 · · · Al

A0 · · · Al−1 Al

. . .
. . .

. . .
. . .

A0 · · · Al−1 Al

. . .
. . .

. . .
. . .

A0 · · · Al−1 Al




(4.34)

has full row rank ms; conversely, if for all s ∈ N, s ≤ (rl + 1) ≤ ((k − 1)l + 1),

Ŵs(Al, Al−1, . . . , A0) has full row rank ms, then A(λ) is row-regular. ♦

Remark 4.41 By the second part of Corollary 4.39 we know that, given any matrix

polynomial A(λ), we can judge within a finite number of steps of computation whether

or not A(λ) is column-regular. In Section 4.3, we shall present another way by which

we can numerically detect whether a square matrix polynomial is regular or singular.

♦

The following example shows that the upper bound (rl + 1) or ((k − 1)l + 1) on s

in Corollary 4.39 is attainable.

Example 4.42 We consider the quadratic matrix polynomial A(λ) = λ2A2+λA1+A0,

where

A2 =




1 0 0

0 1 0

0 0 0


 , A1 = 0, A0 =




0 1 0

0 0 1

0 0 0


 .

Here, m = n = 3, k = 3, r = 2, l = 2, and rl = ((k− 1)l +1) = 5. Since det(A(λ)) ≡ 0,
A(λ) is singular. If we investigate the column ranks of Ws(A2, A1, A0), s = 1, . . . , 5, we

find that

rank







A0

A1

A2





 = 3, rank







A0

A1 A0

A2 A1

A2





 = 6, rank







A0

A1 A0

A2 A1 A0

A2 A1

A2







= 9,

(s = 1) (s = 2) (s = 3)
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rank







A0

A1 A0

A2 A1 A0

A2 A1 A0

A2 A1

A2







= 12, rank







A0

A1 A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

A2 A1

A2







= 14 < 15,

(s = 4) (s = 5)

which shows that, not until s = rl+1 = ((k−1)l+1) = 5, the rank of the block matrix

Ws(A2, A1, A0) is deficient. ♦

Remark 4.43 If a matrix polynomial A(λ) is column-singular, then by Theorem 4.32

we know that there exists a nonzero vector polynomial x(λ) such that

A(λ)x(λ) ≡ 0. (4.35)

Let dmin be the least possible degree of such solutions x(λ) of (4.35). By Corollaries

4.34 and 4.39, we know that dmin = smin − 1, where smin is the least integer s such that

the column rank of Ws(Al, Al−1, . . . , A0) in (4.32) is deficient. From Example 4.42 we

know that rl or (k − 1)l is an attainable upper bound on dmin. ♦

4.2.4 Singular Matrix Pencils and Quadratic Matrix

Polynomials

In Subsection 4.2.3 we have seen that Corollary 4.34 describes the relations between the

column spaces of the coefficient matrices of a given column-singular matrix polynomial.

From Corollary 4.34 we now proceed to investigate more deeply and obtain a geometrical

characterization of singular matrix pencils, as the following theorem presents.

Theorem 4.44 A matrix pencil A0 + λA1, A0, A1 ∈ Cm×n is column-singular if and

only if there exists a subspace X of Cn such that

dim(A0X u A1X ) < dim(X ), (4.36)

where AX := {Ax : x ∈ X} if A ∈ Cm×n and X ⊆ Cn, and X u Y := {x + y : x ∈
X , y ∈ Y} if X ,Y ⊆ Cm.
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Proof.

”⇒” Since the matrix pencil A0 +λA1 is column-singular, by Corollary 4.34 we have





A0x0 = 0,

A1x0 + A0x1 = 0,

A1x1 + A0x2 = 0,

· · · · · ·
A1xd−1 + A0xd = 0,

A1xd = 0,

(4.37)

where xi ∈ Cn, i = 0, 1, . . . , d, d ∈ N0, 0 ≤ d ≤ min{m, n}− 1, x0 6= 0, and xd 6= 0. Let

X = span{x0, x1, . . . , xd}, X0 = span{x1, . . . , xd}, and let Xd = span{x0, x1, . . . , xd−1}.
From (4.37) it follows that

A0X = A0X0 = A1Xd = A1X . (4.38)

Since x0 6= 0 and A0x0 = 0, we have A0X $ X . Thus,

dim(A0X ) < dim(X ). (4.39)

Then, (4.38) and (4.39) imply (4.36).

”⇐” We conduct the proof of sufficiency in the following two cases.

i) In the case m < n, clearly, by Definition 4.11, A0 + λA1 is column-singular.

ii) In the case m ≥ n, let Z := [Z1, Z2] be a nonsingular matrix with Z1 ∈ Cn×l,
R(Z1) = X , and let l = dim(X ). From the given inequality (4.36), we see that
both A0X and A1X lie in a k-dimensional subspace Y of Cm, where k < l. If we
let Q := [Q1, Q2] be a unitary matrix with Q1 ∈ Cn×k, R(Q1) = Y, then we have

QHAiZ =

l n − l

k

m − k

[
QH

1 AiZ1

0

QH
1 AiZ2

QH
2 AiZ2

]

=

k l − k n − l

k

l − k

m − l




∗
0

0

∗
0

0

∗
∗
∗


 , i = 0, 1. (4.40)

From (4.40) it follows that any minor of order n of the matrix polynomial QH(A0+

λA1)Z is 0. Hence, the rank of QH(A0 + λA1)Z is strictly less than n. By

Definition 4.11, QH(A0+λA1)Z is column-singular. Since Q and Z are nonsingular

matrices, it follows that A0 + λA1 is column-singular. �
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Remark 4.45 By Theorem 4.44, we can see from the point of view of generalized

eigenvalue problems that, for a regular matrix pencil A0 + λA1, Ai ∈ Cn×n, i = 0, 1, a

subspace X is a deflating subspace if and only if

dim(A0X u A1X ) = dim(X ).

For more details about deflating subspaces for a matrix pencil, such as properties of

them and perturbation analysis of them, see, for example, [54], [55] (Chapter VI). ♦

Remark 4.46 Later, in Subsection 4.4.2, we will see that in the special case of square

matrix pencils, the geometrical characterization (4.36) coincides with the algebraic char-

acterization of the nearest distance to singularity for matrix pencils. The algebraic

characterization will be given in Theorem 4.82. ♦

For a singular matrix polynomial other than a matrix pencil, the relations between

the column spaces of its coefficient matrices become, as Corollary 4.34 indicates, very

complicated. The reason for the complexity is the nonlinearity which comes from the

higher degree (greater than 1) of the matrix polynomial. Nevertheless, based on Corol-

lary 4.34, we can explore the simplest case of singular quadratic matrix polynomials,

and obtain the following theorem.

Theorem 4.47 Let matrices A2, A1, A0 ∈ C2×2. Then, the quadratic matrix polyno-

mial λ2A2 +λA1 +A0 is singular if and only if one of the following three cases happens:

1. N (A2) ∩N (A1) ∩ N (A0) 6= ∅.

2. N (AH
2 ) ∩N (AH

1 ) ∩N (AH
0 ) 6= ∅.

3. There exist nonsingular matrices X, Y ∈ C2×2, such that:

Y −1A2X =

[
0 0

1 0

]
, Y −1A1X =

[
1 0

0 1

]
, Y −1A0X =

[
0 1

0 0

]
.

Proof.

”⇒” Since λ2A2 + λA1 + A0 is singular, by Corollary 4.34, there exists a tuple of

vectors (x0, x1, . . . , xd), where x0 6= 0, xd 6= 0, 0 ≤ d ≤ 2, such that




A0x0 = 0,

A1x0 + A0x1 = 0,

A2x0 + A1x1 + A0x2 = 0,

A2x1 + A1x2 + A0x3 = 0,

· · · · · ·
A2xd−2 + A1xd−1 + A0xd = 0,

A2xd−1 + A1xd = 0,

A2xd = 0.

(4.41)
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According to different values of d in (4.41), we conduct the proof in the following three

cases.

i) If d = 0, then by (4.41) there exists x0 6= 0 such that A2x0 = A1x0 = A0x0 = 0,

in other words, N (A2) ∩ N (A1) ∩N (A0) 6= ∅, which is Case 1.

ii) If d = 1, then by (4.41) there exist x0 6= 0 and x1 6= 0, such that




A0x0 = 0,

A1x0 + A0x1 = 0,

A2x0 + A1x1 = 0,

A2x1 = 0.

(4.42)

(a) If x0 and x1 are linearly dependent, then A2x0 = A1x0 = A0x0 = 0, which is

Case 1.

(b) If x0 and x1 are linearly independent, and A1x0 and A1x1 are linearly de-

pendent, then there exists y ∈ C2, y 6= 0, such that yHA1x0 = yHA1x1 = 0.

From (4.42) it follows that yHA2x0 = yHA2x1 = 0 and yHA0x0 = yHA0x1 =

0. Since x0 and x1 are linearly independent, we obtain yHA2 = yHA1 =

yHA0 = 0, namely, N (AH
2 ) ∩ N (AH

1 ) ∩N (AH
0 ) 6= ∅, which is Case 2.

(c) If x0 and x1 are linearly independent, and A1x0 and A1x1 are linearly inde-

pendent, then we have, by setting X := [−x0, x1] and Y := [−A1x0, A1x1],

A2X = Y

[
0 0

1 0

]
, A1X = Y

[
1 0

0 1

]
, A0X = Y

[
0 1

0 0

]
,

which is Case 3, because X and Y are nonsingular.

iii) If d = 2, then by (4.41) there exist x0 6= 0, x1, and x2 6= 0, such that,




A0x0 = 0,

A1x0 + A0x1 = 0,

A2x0 + A1x1 + A0x2 = 0,

A2x1 + A1x2 = 0,

A2x2 = 0.

(4.43)

(a) If dim(span{x0, x1, x2}) = 1, then from (4.43) it is derived that A2x0 =

A1x0 = A0x0 = 0, which is Case 1.

(b) If dim(span{x0, x1, x2}) = 2, and dim(span{A1x0, A1x1, A1x2}) ≤ 1, then

there exists y ∈ C2, y 6= 0, such that yHA1x0 = yHA1x1 = yHA1x2 = 0.

From (4.43) it follows that yHA2x0 = yHA2x1 = yHA2x2 = 0 and yHA0x0 =

yHA0x1 = yHA0x2 = 0. Since dim(span{x0, x1, x2}) = 2, we obtain yHA2 =

yHA1 = yHA0 = 0, namely, N (AH
2 )∩N (AH

1 )∩N (AH
0 ) 6= ∅, which is Case 2.
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(c) If dim(span{x0, x1, x2}) = 2, and dim(span{A1x0, A1x1, A1x2}) = 2, then

it is clear that A1 is nonsingular. We shall prove via contradiction that x0

and x2 are linearly independent. Suppose that x2 = ax0, a 6= 0. Then

A1x2 = aA1x0, and A0x0 = A0x2 = A2x0 = A2x2 = 0; therefore, by (4.43),

A1x1 = 0. Thus, it follows that dim(span{A1x0, A1x1, A1x2}) < 2, which is

a contradiction.

Let x1 := ax0 + bx2. We prove via contradiction that a 6= 0 and b 6= 0.

Supposing a = 0, we get x1 = bx2. From (4.43) it follows that A2x1 =

bA2x2 and therefore A1x2 = 0, which is a contradiction to the fact that

A1 in nonsingular and x2 6= 0. Similarly, supposing b = 0, we also get a

contradiction.

Thus, substituting ax0 + bx2 for x1 in (4.43), we obtain

A0x0 = 0, A0x2 = −1

b
A1x0, (4.44)

(
a − 1

b

)
A1x0 +

(
b − 1

a

)
A1x2 = 0, (4.45)

A2(−ax0) = A1x2, A2x2 = 0. (4.46)

Since A1x0 and A1x2 are linearly independent, from (4.45) it is derived that

ab = 1. Therefore, setting X := [−ax0, x2] and Y := [−aA1x0, A1x2], we

have, by (4.44) -(4.46),

A2X = Y

[
0 0

1 0

]
, A1X = Y

[
1 0

0 1

]
, A0X = Y

[
0 1

0 0

]
,

which is Case 3, because X and Y are nonsingular.

”⇐” The statement is straightforward. �

4.3 Detecting Regularity/Singularity of Square

Matrix Polynomials by Rank Information

4.3.1 Introduction

As we have pointed out in Section 4.1, one of the major motivations for studying the

regularity and singularity of matrix polynomials comes from the analysis of problems in

which square matrix polynomials are involved. Numerically speaking, it is reasonable

for a mathematical software developed for solving polynomial eigenvalue problems to
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be able to determine the regularity or singularity of any square matrix polynomial

involved, and the distance to singularity if it is regular. However, this is not the case

with classical commercial software packages. For instance, let us use MATLAB (Version

6.0.0.88 Release 12) to analyze the following example.

Example 4.48 We consider the matrix pencil:

A − λE =

[
1 1

1 1

]
− λ

[
2 1

2 1

]
.

Evidently, for any λ ∈ C, we have det(A − λE) ≡ 0; therefore, the matrix pencil is

singular, and the corresponding generalized eigenvalue problem Ax = λEx has infinitely

many eigenpairs (λ, x), where

λ ∈ C, x =

[
λ − 1

−2λ + 1

]
.

Nevertheless, if we use the following Matlab function:

[V, D] = eig(A, E),

which produces a diagonal matrix D of generalized eigenvalues and a full matrix V

whose columns are the corresponding eigenvectors so that AV = EV D (cf. the ”MAT-

LAB Function Reference” [39]), then we get the following output [V, D] which, unfor-

tunately, does not indicate any information about the singularity of A − λE:

V =

[ −1.0000 −0.3385

0 1.0000

]
, D =

[
0.5000 0

0 2.0482

]
.

♦

It is the purpose of this section to derive methods to detect the regularity and

singularity of square matrix polynomials. We will in the following subsection present

a natural approach to detect the regularity or singularity of a given square matrix

polynomial, provided that the rank information of its coefficient matrices is known.

And later, in Section 4.4 we will define and discuss the nearness to singularity problem

for square matrix polynomials.

4.3.2 Testing for Regularity and Singularity

In Section 4.2 we have presented general sufficient and necessary conditions for reg-

ularity and singularity of rectangular matrix polynomials. Among those conditions is

Corollary 4.37, by which we can directly determine the column-regularity of a matrix
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polynomial as long as either its leading or its last coefficient matrix has full column

rank. The question of interest here is how we can test whether or not a given matrix

polynomial is column-regular if the column ranks of both its leading and last coefficient

matrices are deficient and the rank information of its coefficient matrices is assumed

to be known beforehand. The following proposition gives a sufficient condition for a

matrix polynomial to be column-singular, provided that the sum of the ranks of its

coefficient matrices is sufficiently small.

Proposition 4.49 Let A(λ) =
∑l

i=0 λiAi be an m × n matrix polynomial of degree l,

where m, n ∈ N, l ∈ N0, Ai ∈ Cm×n, i = 0, . . . , l. Then A(λ) is column-singular if∑l
i=0 rank(Ai) ≤ (n − 1).

Proof. Noting that

rank







A0

A1

...

Al





 ≤

l∑

i=0

rank(Ai) ≤ (n − 1),

we know that the column rank of the matrix W1(Al, Al−1, . . . , A0) :=




A0

A1

...

Al


 is defi-

cient. Therefore, by Corollary 4.39, A(λ) is column-singular. �

Remark 4.50 Similarly, in the case of row-singularity, we have:

Under the same assumption and the same notation as in Proposition 4.49, A(λ) is

row-singular if
∑l

i=0 rank(Ai) ≤ (m − 1). ♦

Corollary 4.37 and Proposition 4.49 show that, under specified rank conditions for

the coefficient matrices of a matrix polynomial in Corollary 4.37 and Proposition 4.49,

we can immediately judge whether it is column-singular. A natural question then arises,

namely, under other rank conditions than those in Corollary 4.37 and Proposition 4.49,

how do we make use of the beforehand rank information to test for column-regularity

or column-singularity?

For square matrix polynomials we can answer the above question. First, let us recall

Proposition 4.13 in Subsection 4.2.1, which can be regarded, from the point of view of

polynomial eigenvalue problems, as an equivalent definition for the singularity of square

matrix polynomials. By Proposition 4.13, the determinant of any regular square matrix

polynomial A(λ), or regarded from the point of view of eigenvalue problems as the
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characteristic polynomial of A(λ), is a nonzero polynomial in λ, and therefore has only

a finite number of roots. Our objective in this subsection is to analyze the determinant

det(A(λ)) with the use of the rank information of the coefficient matrices of A(λ), and

to derive an attainable upper bound on the finite number of nonzero roots of det(A(λ)).

Then, the upper bound will lead to a stopping criterion of an algorithm which we will

present at the end of this subsection to detect the regularity or singularity of any given

square matrix polynomial.

In order to conduct the analysis, we need the following lemma which shows, roughly

speaking, that the determinant of the sum of matrices can be represented as a certain

sum of products of the minors of the matrices.

Lemma 4.51 Let matrices Ak =
[
a

(k)
i,j

]n
i,j=1

∈ Cn×n, k = 0, 1, . . . , l, l ∈ N. Then,

det

(
l∑

k=0

Ak

)
=

∑

0 ≤ p ≤ n

i, j

{
(−1)sAl

(
i1 · · · ipl

j1 · · · jpl

)
· Al−1

(
ipl+1 · · · ipl−1

jpl+1 · · · jpl−1

)
·

· · · · A1

(
ip2+1 · · · ip1

jp2+1 · · · jp1

)
· A0

(
ip1+1 · · · in

jp1+1 · · · jn

)}
, (4.47)

where p = pl + · · · + p1, pq ∈ N0, q = 1, . . . , l, 0 ≤ pl ≤ pl−1 ≤ · · · ≤ p1 ≤ n;

i := (i1, . . . , ipl
, ipl+1, . . . , ipl−1

, . . . , ip1+1, . . . , in) is a permutation of {1, 2, . . . , n},
i1 < i2 < · · · < ipl

, ipl+1 < ipl+2 < · · · < ipl−1
, . . . , ip1+1 < ip1+2 < · · · < in;

j := (j1, . . . , jpl
, jpl+1, . . . , jpl−1

, . . . , jp1+1, . . . , jn) is a permutation of {1, 2, . . . , n},
j1 < j2 < · · · < jpl

, jpl+1 < jpl+2 < · · · < jpl−1
, . . . , jp1+1 < jp1+2 < · · · < jn;

s =




pl∑

q=1

iq +

pl−1∑

q=pl+1

iq + · · · +
p1∑

q=p2+1

iq


+




pl∑

q=1

jq +

pl−1∑

q=pl+1

jq + · · · +
p1∑

q=p2+1

jq


 .

Proof. We conduct the proof by induction on l.

1. l = 1: Let B = [bi,j]
n

i,j=1 := A0 + A1 =
[
a

(0)
i,j + a

(1)
i,j

]n
i,j=1

. Then, by the definition

of the determinant of a matrix (cf., for example, [36] p. 26.) we have

det(B) =
∑

k

(−1)t(k)b1,k1b2,k2 · · · bn,kn

=
∑

k

(−1)t(k)
(
a

(0)
1,k1

+ a
(1)
1,k1

)(
a

(0)
2,k2

+ a
(1)
2,k2

)
· · ·
(
a

(0)
n,kn

+ a
(1)
n,kn

)
, (4.48)

where k := (k1, . . . , kn) is any of the permutations of 1, 2, . . . , n, and t(k) is the
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number of inversions in the permutation k. Throughout the proof we denote

by t(i), where i is a permutation of 1, 2, . . . , n, the number of inversions in the

permutation i, and i is called odd or even according to whether the number t(i)

is odd or even.

Decomposing each term in the sum in (4.48) and rearranging the terms obtained
after the decomposition, we have

det(B) =
∑

0 ≤ p ≤ n

k, i

(−1)t(k)a
(1)
i1,ki1

a
(1)
i2,ki2

· · · a(1)
ip,kip

a
(0)
ip+1,kip+1

a
(0)
ip+2,kip+2

· · · a(0)
in,kin

, (4.49)

where p ∈ N0 and the permutation i := (i1, . . . , in), i1 < i2 < · · · < ip, ip+1 <

ip+2 < · · · < in. Let j̃ := (j̃1, . . . , j̃n), where j̃m = kim , m = 1, . . . , n. Note

that, to get the permutation j̃ from the permutation k, we can interchange two

neighbouring elements in k by altogether
(∑p

q=1 iq − p(p+1)
2

)
times. Since every

time of interchanging two neighbouring elements in a permutation changes it from

odd to even or vice versa (cf. [36] p. 26.), we have

(−1)t(k) = (−1)(t(j̃)+
Pp

q=1 iq− p(p+1)
2 ). (4.50)

Thus, by (4.49) and (4.50) we have

det(B) =
∑

0 ≤ p ≤ n

k̃, i

(−1)

 

t(j̃)+
p
P

q=1
iq−

p(p+1)
2

!

a
(1)

i1,j̃1
a
(1)

i2,j̃2
· · · a(1)

ip,j̃p
a
(0)

ip+1,j̃p+1
· · ·a(0)

in,j̃n
. (4.51)

Let

jqm
:= j̃m, m = 1, 2, . . . , n;

j1:p := (jq1, jq2 , . . . , jqp
) = (j̃1, j̃2 . . . , j̃p) be a permutation of {j1, j2, . . . , jp},
where j1 < j2 < · · · < jp;

jp+1:n := (jqp+1, jqp+2, . . . , jqn
) = (j̃p+1, j̃p+2 . . . , j̃n) be a permutation of

{jp+1, jp+2, . . . , jn}, where jp+1 < jp+2 < · · · < jn;

j := (j1, j2, . . . , jn).

Note that, to get the permutation j from the permutation (1, 2, . . . , n), we can

interchange two neighbouring elements in (1, 2, . . . , n) by altogether(∑p

q=1 jq − p(p+1)
2

)
times; therefore, we have

(−1)t(j) = (−1)(
Pp

q=1 jq− p(p+1)
2 ) (4.52)
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Note further that the number of inversions in the permutation j̃ is larger than

that in the permutation j by (t(j1:p) + t(jp+1:n)), namely,

t(j̃) = t(j1:p) + t(jp+1:n) + t(j). (4.53)

Thus, by (4.51)-(4.53), we have

det(B) =
∑

0 ≤ p ≤ n

j, i

(−1)ta
(1)
i1,jq1

a
(1)
i2,jq2

· · · a(1)
ip,jqp

a
(0)
ip+1,jqp+1

a
(0)
ip+2,jqp+2

· · · a(0)
in,jqn

, (4.54)

where t = t(j1:p)+t(jp+1:n)+
∑p

q=1 iq− p(p+1)
2

+
∑p

q=1 jq− p(p+1)
2

. Note that p(p+1)
is even, and

∑

q

(−1)t(j1:p)a
(1)
i1,jq1

a
(1)
i2,jq2

· · ·a(1)
ip,jqp

= A1

(
i1 i2 · · · ip

j1 j2 · · · jp

)
, (4.55)

∑

q

(−1)t(jp+1:n)a
(0)
ip+1,jqp+1

a
(0)
ip+2,jqp+2

· · · a(0)
in,jqn

= A0

(
ip+1 ip+2 · · · in

jp+1 jp+2 · · · jn

)
. (4.56)

Rearranging the terms of the sum in (4.54) and substituting (4.55) and (4.56) in
(4.54), we obtain that

det(A0 + A1) =
∑

0 ≤ p ≤ n

j, i

(−1)sA1

(
i1 i2 · · · ip

j1 j2 · · · jp

)
A0

(
ip+1 ip+2 · · · in

jp+1 jp+2 · · · jn

)
,

(4.57)

where s =
∑p

q=1 iq+
∑p

q=1 jq. Thus, we have finished the first step of the induction

proof.

2. l − 1 ⇒ l: Suppose that we have already proved (4.47) for all m, where 1 ≤ m ≤
(l− 1), l ≥ 2; we shall prove that (4.47) also holds for l. Let B =

∑l−1
k=0 Ak. Since

(4.57) has been proven for the determinant of the sum of two matrices, we have

det(B + Al) =
∑

0 ≤ pl ≤ n

ĵ, î

(−1)ŝAl

(
i1 i2 · · · ipl

j1 j2 · · · jpl

)
B

(
ipl+1 ipl+2 · · · in

jpl+1 jpl+2 · · · jn

)
,

(4.58)

where ŝ =
∑pl

q=1 iq +
∑pl

q=1 jq, the permutation î = (i1, . . . , in), i1 < i2 < · · · < ipl
,

ipl+1 < ipl+2 < · · · < in, and the permutation ĵ = (j1, . . . , jn), j1 < j2 < · · · < jpl
,

jpl+1 < jpl+2 < · · · < jn. Since we have supposed that (4.47) holds for l − 1, for
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each term of B
(

ipl+1 ipl+2 · · · in

jpl+1 jpl+2 · · · jn

)
in the sum in (4.58) we have

B

(
ipl+1 ipl+2 · · · in

jpl+1 jpl+2 · · · jn

)
=

∑
0 ≤ p̄ ≤ n − pl

ī, j̄

{
(−1)s̃Al−1

(
ipl+1 · · · ipl−1

jpl+1 · · · jpl−1

)
·

Al−2

(
ipl−1+1 · · · ipl−2

jpl−1+1 · · · jpl−2

)
· · ·A0

(
ip1+1 · · · in

jp1+1 · · · jn

)}
, (4.59)

where p̄ = pl−1 + · · · + p1, pq ∈ N0, q = 1, . . . , l − 1, 0 ≤ pl−1 ≤ · · · ≤ p1 ≤ n;

ī := (ipl+1, . . . , ipl−1
, . . . , ip1+1, . . . , in) is a permutation of {ipl+1, ipl+2, . . . , in},

ipl+1 < ipl+2 < · · · < ipl−1
, . . . , ip1+1 < ip1+2 < · · · < in;

j̄ := (jpl+1, . . . , jpl−1
, . . . , jp1+1, . . . , jn) is a permutation of {jpl+1, jpl+2, . . . , jn};

jpl+1 < jpl+2 < · · · < jpl−1
, . . . , jp1+1 < jp1+2 < · · · < jn;

s̄ =




pl−1∑

q=pl+1

iq + · · · +
p1∑

q=p2+1

iq


+




pl−1∑

q=pl+1

jq + · · · +
p1∑

q=p2+1

jq


 .

Let

p := pl + p̄; (4.60)

s := ŝ + s̄; (4.61)

i := (i1, . . . , ipl
, ipl+1, . . . , ipl−1

, . . . , ip1+1, . . . , in); (4.62)

j := (j1, . . . , jpl
, jpl+1, . . . , jpl−1

, . . . , jp1+1, . . . , jn). (4.63)

Then, substituting (4.59) in (4.58) and rewriting the sum in (4.58) in terms of

p, s, i, j defined by (4.60)-(4.63), we finally obtain that (4.47) also holds for l. �

Now in virtue of Lemma 4.51 we proceed to analyze the characteristic polynomials

of square matrix polynomials and to derive attainable upper bounds on the number

of nonzero roots of the characteristic polynomials if they are not identically equal to

zero. The upper bounds are presented in terms of the ranks of the coefficient matrices

of matrix polynomials.

Theorem 4.52 Let A(λ) = λA1 + A0, A1, A0 ∈ Cn×n, be a regular matrix pencil, and

let λ1, . . . , λm, m ∈ N0, be all the nonzero roots of det(A(λ)) (in which repetitions may

be included, and m = 0 means that all its roots are zero). Then,

0 ≤ m ≤ (rank(A1) + rank(A0) − n) . (4.64)
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Proof. From (4.47) in Lemma 4.51 it follows that the characteristic polynomial of
λA1 + A0 can be computed via the following minor expansions:

det(λA1 + A0)

=
∑

0 ≤ p ≤ n

j, i

(−1)s(λA1)

(
i1 i2 · · · ip

j1 j2 · · · jp

)
A0

(
ip+1 ip+2 · · · in

jp+1 jp+2 · · · jn

)
,

=
∑

0 ≤ p ≤ n

j, i

(−1)sA1

(
i1 i2 · · · ip

j1 j2 · · · jp

)
A0

(
ip+1 ip+2 · · · in

jp+1 jp+2 · · · jn

)
λp, (4.65)

where the permutations i = (i1, . . . , in), j = (j1, . . . , jn), and s =
∑p

q=1 iq +
∑p

q=1 jq.

Now based on (4.65) we calculate the highest and lowest possible orders of λ in det(A(λ)).

Since the rank of a matrix is equal to the order of its largest nonzero minor, we have

A1

(
i1 i2 · · · ip
j1 j2 · · · jp

)
= 0, if p > rank(A1); (4.66)

A0

(
ip+1 ip+2 · · · in
jp+1 jp+2 · · · jn

)
= 0, if p < (n − rank(A0)). (4.67)

Hence, from (4.65) and (4.66) it follows that the highest possible order of λ in det(A(λ))

is rank(A1), and from (4.65) and (4.67) it follows that the lowest possible order of λ

in det(A(λ)) is (n − rank(A0)). Since A(λ) is regular, its characteristic polynomial

det(A(λ)) is not identically equal to zero. Therefore, det(A(λ)) can have at most

rank(A1)− (n− rank(A0)) = rank(A1)+ rank(A0)−n nonzero roots, or in other words,

m ≤ (rank(A1) + rank(A0) − n). �

Remark 4.53 From the above proof of Theorem 4.52, it immediately follows that for

a regular matrix pencil λA1 + A0, where A1, A0 ∈ Cn×n, the corresponding generalized

eigenvalue problem A0x = −λA1x has eigenvalue ∞ with algebraic multiplicity greater

than or equal to (n − rank(A1)), and eigenvalue 0 with algebraic multiplicity greater

than or equal to (n − rank(A0)). ♦

As a straightforward consequence of Theorem 4.52, we have the following corollary.

Corollary 4.54 Let A1, A0 ∈ Cn×n. Then the matrix pencil λA1 + A0 is singular

if there exist at least m̃ distinct nonzero numbers λ̃i, i = 1, . . . , m̃, such that all the

matrices λ̃iA1 +A0, i = 1, . . . , m̃, are singular, where m̃ := rank(A1)+rank(A0)−n+1.

Proof. The result follows directly from Theorem 4.52 via contradiction. �
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Remark 4.55 If m̃ in Corollary 4.54 is not greater than 0, i.e.,

rank(A1) + rank(A0) − n + 1 ≤ 0,

then, by Proposition 4.49 or Theorem 4.52, the matrix pencil λA1 + A0 is singular. ♦

With respect to a given regular and square quadratic matrix polynomial, we analyze

via Lemma 4.51 its characteristic polynomial in a similar way in which we analyze

regular and square matrix pencils, and the following result is obtained.

Theorem 4.56 Let A(λ) = λ2A2 + λA1 + A0, Ai ∈ Cn×n, i = 0, 1, 2, be a regular

quadratic matrix polynomial, and let λ1, . . . , λm, m ∈ N0, be all the nonzero roots of

det(A(λ)) (in which repetitions may be included, and m = 0 means all its roots are

zero). Then,

0 ≤ m ≤ (rank(A2) + rank(A0) + min{rank(A2) + rank(A1) − n, 0}
+ min{rank(A1) + rank(A0) − n, 0}) . (4.68)

Proof. By (4.47) in Lemma 4.51, the characteristic polynomial of λ2A2 + λA1 + A0

can be computed via the following minor expansions:

det (A(λ))

=
∑

0 ≤ p + q ≤ n

i, j

{
(−1)s(λ2A2)

(
i1 · · · ip

j1 · · · jp

)

·(λA1)

(
ip+1 · · · ip+q

jp+1 · · · jp+q

)
· A0

(
ip+q+1 · · · in

jp+q+1 · · · jn

)}

=
∑

0 ≤ p + q ≤ n

i, j

{
(−1)sA2

(
i1 · · · ip

j1 · · · jp

)

·A1

(
ip+1 · · · ip+q

jp+1 · · · jp+q

)
· A0

(
ip+q+1 · · · in

jp+q+1 · · · jn

)
· λ2p+q

}
, (4.69)

where p, q ∈ N0, the permutations i = (i1, . . . , ip, ip+1, . . . , ip+q, ip+q+1, . . . , in), j =

(j1, . . . , jp, jp+1, . . . , jp+q, jp+q+1, . . . , jn), and s =
∑p+q

t=1 it +
∑p+q

t=1 jt. Let Oh, Ol denote

the highest and lowest possible orders of λ in det(A(λ)), respectively. Now according

to the minor expansions (4.69) we calculate Oh in the following two cases.

(a) In the case (rank(A2) + rank(A1)) ≤ n, let p1 = rank(A2) and let q1 = rank(A1).
It follows that p1 + q1 ≤ n; therefore, it is possible that there exist permutations
i and j so that

C(i,j) := A2

(
i1 · · · ip1

j1 · · · jp1

)
· A1

(
ip1+1 · · · ip1+q1

jp1+1 · · · jp1+q1

)
· A0

(
ip+q+1 · · · in

jp+q+1 · · · jn

)
6= 0.
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Moreover, it is also possible that the sum of the terms
∑
i,j

C(i,j)λ2p1+q1 6= 0. Hence,

by (4.69), it is possible that det(A(λ)) has the term λ2p1+q1 with nonzero coefficient∑
i,j

C(i,j). Since the rank of a matrix is equal to the order of its largest nonzero

minor, and p1 = rank(A2) and q1 = rank(A1), it is obvious that the highest

possible degree of det(A(λ)) is 2p1 + q1, namely,

Oh = 2p1 + q1 = 2rank(A2) + rank(A1). (4.70)

(b) In the case (rank(A2)+rank(A1)) > n, let p2 = rank(A2) and let q2 = n−rank(A2).
It follows that p2 + q2 = n; therefore, it is possible that there exist permutations
i and j so that

C(i,j) := A2

(
i1 · · · ip2

j1 · · · jp2

)
· A1

(
ip2+1 · · · in

jp2+1 · · · jn

)
6= 0.

Moreover, it is also possible that the sum of the terms
∑
i,j

C(i,j)λ2p2+q2 6= 0. Hence,

by (4.69), it is possible that det(A(λ)) has the term λ2p2+q2 with nonzero coefficient∑
i,j

C(i,j). Since the rank of a matrix is equal to the order of its largest nonzero

minor, and p2 = rank(A2) and q2 = n − rank(A2), it is obvious that the highest

possible degree of det(A(λ)) is 2p2 + q2, namely,

Oh = 2p2 + q2 = 2rank(A2) + n − rank(A1) = rank(A2) + n. (4.71)

For conciseness of expression, we rewrite (4.70) and (4.71) into a single formula:

Oh = rank(A2) + min{rank(A2) + rank(A1), n}. (4.72)

Analogously, according to (4.69) we calculate Ol in the following two cases.

(a) In the case (rank(A1) + rank(A0)) ≤ n, we have

Ol = 2(n−rank(A1)−rank(A0))+rank(A1) = 2n−rank(A1)−2rank(A0). (4.73)

(b) In the case (rank(A1) + rank(A0)) > n, we have

Ol = n − rank(A0). (4.74)

We also rewrite (4.73) and (4.74) into the following formula:

Ol = n − rank(A0) + max{n − rank(A1) − rank(A0), 0}. (4.75)
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Since A(λ) is regular, its characteristic polynomial det(A(λ)) is not identically equal to
zero. Therefore, det(A(λ)) can have at most Oh − Ol nonzero roots, namely, in terms

of m given in the condition, we have m ≤ (Oh − Ol). Finally, the proof ends with the
following calculation of Oh − Ol:

Oh − Ol = rank(A2) + min{rank(A2) + rank(A1), n}
−(n − rank(A0)) − max{n − rank(A1) − rank(A0), 0}

= rank(A2) + min{rank(A2) + rank(A1) − n, 0}
+rank(A0) − max{n − rank(A1) − rank(A0), 0}

= rank(A2) + rank(A0) + min{rank(A2) + rank(A1) − n, 0}
+min{rank(A1) + rank(A0) − n, 0}.

�

Remark 4.57 From the proof of Theorem 4.56, it immediately follows that, for a

regular quadratic matrix polynomial λ2A2 + λA1 + A0, where A2, A1, A0 ∈ Cn×n, the

corresponding quadratic eigenvalue problem (λ2A2 + λA1 + A0)x = 0 has eigenvalue ∞
with algebraic multiplicity

m∞ ≥ (n − rank(A2) − min{rank(A2) + rank(A1) − n, 0}) (4.76)

and eigenvalue 0 with algebraic multiplicity

m0 ≥ (n − rank(A0) − min{rank(A1) + rank(A0) − n, 0}) . (4.77)

♦

From Theorem 4.56 it is straightforward to obtain the following corollaries.

Corollary 4.58 Let A2, A1, A0 ∈ Cn×n. Then the quadratic matrix polynomial λ2A2 +

λA1 +A0 is singular if there exist at least m̃ distinct nonzero numbers λ̃i, i = 1, . . . , m̃,

such that all the matrices λ̃2
i A2 + λ̃iA1 + A0, i = 1, . . . , m̃, are singular, where

m̃ := rank(A2) + rank(A0) + min{rank(A2) + rank(A1) − n, 0}
+ min{rank(A1) + rank(A0) − n, 0} + 1. (4.78)

Corollary 4.59 Under the same assumption and the same notation as in Corollary

4.58, if m̃ ≤ 0, then the quadratic matrix polynomial λ2A2 + λA1 + A0 is singular.
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Remark 4.60 It should be noted that the sufficient condition m̃ ≤ 0 for the singu-

larity in Corollary 4.59 is equivalent to the sufficient condition for the singularity in

Proposition 4.49, since

rank(A2) + rank(A0) + min{rank(A2) + rank(A1) − n, 0}
+ min{rank(A1) + rank(A0) − n, 0} + 1 ≤ 0

⇐⇒ rank(A2) + rank(A0) + rank(A2) + rank(A1) − n

+ rank(A1) + rank(A0) − n + 1 ≤ 0

⇐⇒ rank(A2) + rank(A1) + rank(A0) − n +
1

2
≤ 0

⇐⇒ rank(A2) + rank(A1) + rank(A0) − n + 1 ≤ 0. ♦

To illustrate how to make use of Corollary 4.37, Proposition 4.49, and Corollary

4.58 to detect the regularity or singularity of square quadratic matrix polynomials, we

give the following example.

Example 4.61 Consider a quadratic matrix polynomial A(λ) = λ2A2 + λA1 + A0,

where

A2 =




0 0 0

0 0 0

1 0 0


 , A1 =




1 1 0

1 1 0

0 0 0


 , and A0 =




0 0 1

0 0 0

0 0 0


 . (4.79)

We carry out the test for regularity or singularity of A(λ) in the following three steps.

1. Check the rank information of the leading and last coefficient matrices of A(λ):

since rank(A2) = rank(A0) = 1 < 3, by Corollary 4.37, A(λ) may be singular.

2. Check the sum of the ranks of all coefficient matrices of A(λ): since rank(A2) +

rank(A1)+rank(A0) = 3 > 2 = 3−1, by Proposition 4.49, the matrix polynomial

A(λ) may be regular.

3. Compute m̃ defined by (4.78) in Corollary 4.58 and test for regularity or singu-

larity: since m̃ = 1 + 1 − 1 − 1 + 1 = 1, by Corollary 4.58, we need only to test,

for any one nonzero number λ̃1, whether A(λ̃1) is singular. If we randomly let

λ̃1 = 1, clearly, A(1) = A2 + A1 + A0 is nonsingular; therefore, it is concluded

that the quadratic matrix polynomial A(λ) is regular.

Moreover, it is immediate from (4.79) that det(A(λ)) = −λ3, and therefore det(A(λ))

has no nonzero root, which shows that the upper bound m̃ − 1 = 0 obtained in (4.68)

in Theorem 4.56 is attainable. ♦
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Similar to Theorem 4.52 and Theorem 4.56, we have the following general theo-

rem which sets an attainable upper bound on the numbers of nonzero roots of the

characteristic polynomials of square and regular matrix polynomials of degree l.

Theorem 4.62 Let A(λ) =
∑l

i=0 λiAi, Ai ∈ Cn×n, i = 0, 1, . . . , l, l ∈ N, be a regular
matrix polynomial of degree l, and let λ1, . . . , λm, m ∈ N0, be all the nonzero roots of
det(A(λ)) (in which repetitions may be included, and m = 0 means all its roots are
zero). Then,

0 ≤ m ≤ (rank(Al) + rank(A0) + (l − 2)n

+

l−1∑

j=1

min





l∑

k=j

rank(Ak) − n, 0



+

l−1∑

j=1

min





l∑

k=j

rank(Al−k) − n, 0






 . (4.80)

Proof. Since the proof is similar to that of Theorem 4.56, we only present a brief sketch

of the facts which lead to the result, as follows.

(a) By Lemma 4.51, the minor expansions of the characteristic polynomial of A(λ)
is:

det(A(λ)) =
∑

0 ≤ p ≤ n

i, j

{
(−1)s

(
λlAl

)( i1 · · · ipl

j1 · · · jpl

)
·
(
λl−1Al−1

)( ipl+1 · · · ipl−1

jpl+1 · · · jpl−1

)
·

· · · · (λA1)

(
ip2+1 · · · ip1

jp2+1 · · · jp1

)
· A0

(
ip1+1 · · · in

jp1+1 · · · jn

)}

=
∑

0 ≤ p ≤ n

i, j

{
(−1)sAl

(
i1 · · · ipl

j1 · · · jpl

)
· Al−1

(
ipl+1 · · · ipl−1

jpl+1 · · · jpl−1

)
·

· · · · A1

(
ip2+1 · · · ip1

jp2+1 · · · jp1

)
· A0

(
ip1+1 · · · in

jp1+1 · · · jn

)
λd

}
, (4.81)

where p = pl + · · · + p1, pq ∈ N0, q = 1, . . . , l, 0 ≤ pl ≤ pl−1 ≤ · · · ≤ p1 ≤ n;

i := (i1, . . . , ipl
, ipl+1, . . . , ipl−1

, . . . , ip1+1, . . . , in) is a permutation of {1, 2, . . . , n},
i1 < i2 < · · · < ipl

, ipl+1 < ipl+2 < · · · < ipl−1
, . . . , ip1+1 < ip1+2 < · · · < in;

j := (j1, . . . , jpl
, jpl+1, . . . , jpl−1

, . . . , jp1+1, . . . , jn) is a permutation of {1, 2, . . . , n},
j1 < j2 < · · · < jpl

, jpl+1 < jpl+2 < · · · < jpl−1
, . . . , jp1+1 < jp1+2 < · · · < jn;

s =




pl∑

q=1

iq +

pl−1∑

q=pl+1

iq + · · · +
p1∑

q=p2+1

iq


+




pl∑

q=1

jq +

pl−1∑

q=pl+1

jq + · · · +
p1∑

q=p2+1

jq


 ;

and d = lpl + (l − 1)pl−1 + · · · + p1.

93



(b) Based on (4.81), we calculate the highest possible order of λ in det(A(λ)):

Oh = rank(Al) +

l−1∑

j=1

min

{
l∑

k=j

rank(Ak), n

}

= rank(Al) + (l − 1)n +

l−1∑

j=1

min

{
l∑

k=j

rank(Ak) − n, 0

}
. (4.82)

(c) Analogously, we calculate the lowest possible order of λ in det(A(λ)):

Ol = n − rank(A0) +

l−1∑

j=1

max

{
n −

l∑

k=j

rank(Al−k), 0

}

= n − rank(A0) −
l−1∑

j=1

min

{
l∑

k=j

rank(Al−k) − n, 0

}
. (4.83)

(d) By (4.82) and (4.83), we derive an upper bound on the number m:

m ≤ Oh − Ol = rank(Al) + (l − 1)n +

l−1∑

j=1

min





l∑

k=j

rank(Ak) − n, 0





−


n − rank(A0) −

l−1∑

j=1

min





l∑

k=j

rank(Al−k) − n, 0








= (rank(Al) + rank(A0) + (l − 2)n

+

l−1∑

j=1

min





l∑

k=j

rank(Ak) − n, 0



+

l−1∑

j=1

min





l∑

k=j

rank(Al−k) − n, 0






 . �

Remark 4.63 From (4.82) and (4.83) in the proof of Theorem 4.62, it follows that

for a regular matrix polynomial A(λ) =
∑l

i=0 λiAi of degree l, where Ai ∈ Cn×n, i =

0, 1, . . . , l, l ∈ N, the corresponding polynomial eigenvalue problem
(∑l

i=0 λiAi

)
x = 0

has eigenvalue ∞ with algebraic multiplicity

m∞ ≥
(

n − rank(Al) −
l−1∑

j=1

min

{
l∑

k=j

rank(Ak) − n, 0

})
, (4.84)

and eigenvalue 0 with algebraic multiplicity

m0 ≥
(

n − rank(A0) −
l−1∑

j=1

min

{
l∑

k=j

rank(Al−k) − n, 0

})
. (4.85)

♦
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Also, Theorem 4.62 directly implies the following corollaries.

Corollary 4.64 Let Ai ∈ Cn×n, where i = 0, 1, . . . , l, l ∈ N. Then the matrix polyno-
mial

∑l
i=0 λiAi of degree l is singular if there exist at least m̃ distinct nonzero numbers

λ̃i, i = 1, . . . , m̃, such that all the matrices
∑l

i=0 λ̃iAi, i = 1, . . . , m̃, are singular, where

m̃ : = (rank(Al) + rank(A0) + (l − 2)n

+

l−1∑

j=1

min





l∑

k=j

rank(Ak) − n, 0



+

l−1∑

j=1

min





l∑

k=j

rank(Al−k) − n, 0






+ 1. (4.86)

Corollary 4.65 Under the same assumption and the same notation as in Corollary

4.64, if m̃ ≤ 0, then the matrix polynomial
∑l

i=0 λiAi is singular.

Remark 4.66 The sufficient condition m̃ ≤ 0 for singularity in Corollary 4.65 is equiv-
alent to the sufficient condition for singularity in Proposition 4.49, since

(rank(Al) + rank(A0) + (l − 2)n

+

l−1∑

j=1

min





l∑

k=j

rank(Ak) − n, 0



+

l−1∑

j=1

min





l∑

k=j

rank(Al−k) − n, 0






+ 1 ≤ 0

⇐⇒ (rank(Al) + rank(A0) + (l − 2)n

+
l−1∑

j=1

l∑

k=j

(rank(Ak) − n) +
l−1∑

j=1

l∑

k=j

(rank(Al−k) − n)


+ 1 ≤ 0

⇐⇒
l∑

i=0

rank(Ai) − n +
1

l
≤ 0

⇐⇒
l∑

i=0

rank(Ai) − n + 1 ≤ 0. ♦

Although it is a widely known fact that it is possible to study pth (p ≥ 2) degree

square matrix polynomials, or more precisely, their corresponding polynomial eigenvalue

problems, via a linearization method (see [17]), it should be noted that, for a regular

pth (p ≥ 2) degree polynomial eigenvalue problem, the upper bound of the number of

its nonzero eigenvalues derived in (4.80) in Theorem 4.62 may be much sharper than

that derived, after a linearization, in (4.64) in Theorem 4.52, as the next remark shows.

Remark 4.67 Given a square and regular matrix polynomial A(λ) =
∑l

i=0 λiAi of

degree l ≥ 2, where Ai ∈ Cn×n, i = 0, 1, . . . , l, we can linearize A(λ) in the classical

way into its companion polynomial CA(λ) (cf. [17], p. 186):

CA(λ) := A1λ+A0 =




I 0 · · · 0 0

0 I · · · 0 0
...

...
...

...
...

0 0 · · · I 0

0 0 · · · 0 Al




λ+




0 −I 0 · · · 0

0 0 −I · · · 0
...

...
...

...
...

0 0 · · · · · · −I

A0 A1 · · · · · · Al−1




. (4.87)
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Since CA(λ) is a linearization of A(λ), we have

E(λ)CA(λ)F (λ) = diag[A(λ), In(l−1)], (4.88)

where E(λ) and F (λ) are nl × nl unimodular matrix polynomials, or in other words,

the determinants of E(λ) and F (λ) are nonzero constants. From (4.88) it follows that

det(CA(λ)) = c0 · det(A(λ)),

with c0 ∈ C\{0}. Therefore, det(CA(λ)) has exactly the same roots as det(A(λ)). If we

apply Theorem 4.52 to the linearization CA(λ) as a matrix pencil to bound the number

m of its nonzero roots, we obtain that

0 ≤ m ≤ rank(A1) + rank(A0) − ln = rank(Al) + rank(A0) + (l − 2)n, (4.89)

since by (4.87) we have

rank(A1) = (l − 1)n + rank(Al), (4.90)

rank(A0) = (l − 1)n + rank(A0), (4.91)

which do not take account of the rank information of A1, . . . , Al−1. However, if we

directly apply Theorem 4.62 to A(λ), we can derive a much sharper upper bound on

m shown in (4.80) than that in (4.89). Take, for instance, Example 4.61, where l = 2.

By the upper bound in (4.89) derived after linearization, we have m ≤ 1 + 1 + 0 = 2,

whereas by Theorem 4.62, we have m ≤ 0.

The same result, as above, can also be available in the case of the so-called de-

composable linearization TA(λ), which preserves the full spectral information including

spectrum at infinity of the original matrix polynomial A(λ). The reason is due to

the following relation between the companion polynomial CA(λ) and the decomposable

linearization TA(λ):

CA(λ)S1 = S2TA(λ),

where S1, S2 ∈ Cnl×nl are nonsingular matrices. For more details of linearizations and

spectral properties of regular matrix polynomials, we refer to [17] (Chapter 7), and

more recently, [41] which deals with structure-preserved linearizations. ♦

Finally, we conclude this section with the following formal procedure which summa-

rizes the results obtained in Proposition 4.13, Corollary 4.37, and Corollaries 4.64 and

4.65 to test regularity or singularity for any given square matrix polynomial.
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Algorithm 4.68 Given a matrix polynomial A(λ) =
∑l

i=0 λiAi of degree l, where Ai ∈
Cn×n, i = 0, 1, . . . , l, and l ∈ N, this algorithm determines whether or not the matrix

polynomial is regular.

1. Check the rank information of the leading and last coefficient matrices of A(λ).

If rank(Al) = n or rank(A0) = n

A(λ) is regular (by Corollary 4.37), return

end

2. Compute m̃ defined by (4.86) in Corollary 4.64.

3. Test for regularity or singularity by using m̃.

If m̃ ≤ 0

A(λ) is singular (by Corollary 4.65), return

else

randomly choose distinct nonzero numbers λ̃1, . . . , λ̃m̃

for i = 1 : m̃

if det(A(λ̃i)) 6= 0

A(λ) is regular (by Proposition 4.13), return

end

end

A(λ) is singular (by Corollary 4.64)

end

♦

It should be noted that, if the rank of some coefficient matrix Ai, i 6= 0, l, is not exactly

known, it is also valid to substitute its upper bound, if we know, or even n for rank(Ai)

in (4.86) to compute m̃.

4.4 Nearness to Singularity Problem for Matrix Poly-

nomials

4.4.1 Introduction

In this section we investigate the distance to the nearest singular square matrix polyno-

mial, i.e., for a square and regular matrix polynomial we are interested in by how much

its coefficient matrices must be perturbed for the regularity to be lost. This question
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of interest mainly arises, as we have pointed out in the last section, from polynomial

eigenvalue problems. For a nearly singular but regular matrix polynomial, the eigenval-

ues and eigenvectors of its corresponding polynomial eigenvalue problem may become

very sensitive to perturbations of the coefficient matrices even if the matrix polynomial

after perturbation is still regular, as the following example illustrates.

Example 4.69 We consider quadratic matrix polynomials

A(λ) = λ2A2 + λA1 + A0 := λ2

[
0 ε

1 0

]
+ λ

[
1 0

0 1

]
+

[
0 1

0 0

]
, and

Â(λ) = λ2Â2 + λÂ1 + Â0 := λ2

[
0 0

1 0

]
+ λ

[
1 0

0 1

]
+

[
0 1

0 0

]
,

where |ε| � 1. From Theorem 4.47 it follows that Â(λ) is singular, and A(λ) is regular

if and only if ε 6= 0. If ε 6= 0, it is immediate that the quadratic eigenvalue problem

A(λ)x = (λ2A2 + λA1 + A0)x = 0 has eigenvalues

λ1 = λ2 = λ3 = λ4 = 0 (4.92)

with the sole eigenvector x = [1, 0]T . If we perturb the coefficient matrices of A(λ) to

get the following perturbed quadratic matrix polynomial

Ã(λ) = λ2Ã2 + λÃ1 + Ã0 := λ2

[
α 0

1 −α

]
+ λ

[
1 0

0 1

]
+

[
0 1

−β 0

]
,

then, by Theorem 4.47, Ã(λ) is regular if and only if α 6= 0 or β 6= 0. If α 6= 0

and β 6= 0, a short computation shows that the regular quadratic eigenvalue problem

Ã(λ)x̃ = (λ2Ã2 + λÃ1 + Ã0)x̃ = 0 has eigenvalues

λ̃i =
4
√

|β|√
|α|

e
√
−1θi, where θi =

1

4
arg(

β

α2
) + i · π

2
, i = 1, . . . , 4, (4.93)

with corresponding eigenvectors

x̃i =

[
1,−

√
|β|e

√
−12θi −

4
√

|β|√
|α|

e
√
−1θi

]T

, i = 1, . . . , 4, (4.94)

respectively. Clearly, if

1 � |ε| > 0, 1 � |α| > 0, and 1 � |β| > 0, (4.95)

then the distance between A(λ) and Â(λ)

dis (A(λ), Â(λ)) :=

√√√√
2∑

i=0

‖Ai − Âi‖2
F = |ε| (4.96)
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is very small, and therefore A(λ) is nearly singular. Also, under the condition (4.95),

the distance between A(λ) and Ã(λ)

dis (A(λ), Ã(λ)) =

√√√√
2∑

i=0

‖Ai − Ãi‖2
F =

√
|ε|2 + 2|α|2 + |β|2 (4.97)

is very small. However, if we let, in addition to the condition (4.95), |β| ≈ |α|, then, by

(4.93) and (4.94), the perturbed eigenvalues λ̃i, i = 1, . . . , 4, may vary from 0 drastically,

and so may the perturbed eigenvectors x̃i, i = 1, . . . , 4, from x. ♦

The distance to the nearest non-regular square matrix pencils has been investigated

by Byers, He, and Mehrmann in [4]. In Subsection 4.4.2, we will give a definition and

some properties of the distance to the nearest singular square matrix polynomials, and,

based on the results obtained in Subsection 4.2.3, we will present a general theoretical

characterization for the distance. Both the definition and the characterization can be

regarded as natural generalizations of those given in [4]. We will also show that the

nearness problem is in fact a perturbation-structured and -constrained rank-deficiency

problem which appears to be an open problem. Moreover, at the end of Subsection

4.4.2, a characterization of the nearness for matrix pencils will be given, which implies

a coincidence with the geometrical characterization (4.36) for singular matrix polyno-

mials obtained in Subsection 4.2.4. Subsection 4.4.3 deals with two special cases of

matrix polynomials. For each of the two, an explicit formula for the nearest distance

is determined. In particular, an example, in which the nearest distance in the spectral

norm can be strictly less than that in the Frobenius norm, is given. Finally, in Subsec-

tion 4.4.4, in terms of the smallest singular value of a matrix, we will derive two types

of lower bounds on the nearest distance for general regular matrix polynomials, which

are the generalizations of the results for matrix pencils obtained in [4].

4.4.2 Properties and Theoretical Characterizations of

the Nearness to Singularity

First of all, we give a definition of the nearness to singularity for matrix polynomials.

Definition 4.70 Given a square matrix polynomial A(λ) =
∑l

i=0 λiAi of degree l,
where Ai ∈ Cn×n, i = 0, 1, . . . , l, and l ∈ N0, the distance to the nearest singular matrix
polynomial is defined by

δp(A(λ)) := min

{
‖[∆Al, . . . , ∆A0]‖p | A(λ) + ∆A(λ) is singular, ∆A(λ) :=

l∑

i=0

λi∆Ai

}
, (4.98)

where ‖(·)‖p denotes the matrix 2-norm (spectral norm) if p = 2, or, the Frobenius

matrix norm if p = F .
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Let ∆ := {[∆Al, . . . , ∆A0] | A(λ) + ∆A(λ) is singular} be a subset of Cn×(l+1)n. Ob-

viously, [−Al, . . . ,−A0] ∈ ∆; therefore, ∆ is not empty. Since, by Proposition 4.13,

the singularity of square matrix polynomials can be derived in terms of a determinant

which is a continuous function in the entries of a matrix, the property of singularity of

matrix polynomials makes ∆ a closed subset of Cn×(l+1)n. Hence, the distance function

δp(A(λ)) in (4.98) is well-defined.

We call a matrix polynomial ∆A(λ) =
∑l

i=0 λi∆Ai, ∆Ai ∈ Cn×n, i = 0, . . . , l, a

minimum p-norm de-regularizing perturbation of A(λ), if A(λ)+∆A(λ) is singular and

δp(A(λ)) = ‖[∆Al, . . . , ∆A0]‖p, p = 2, F . From the above analysis, we know that for

any given A(λ), there exists at least one minimum p-norm de-regularizing perturbation

of A(λ).

Some Properties of the Nearness

The distances in the spectral norm and in the Frobenius norm are equivalent to each

other, as the following Proposition 4.71 shows.

Proposition 4.71

δF (A(λ)) ≥ δ2(A(λ)) ≥ 1√
n
· δF (A(λ)).

Proof. Assume that matrix polynomial ∆A(λ) =
∑l

i=0 λi∆Ai is a minimum F -norm

de-regularizing perturbation of A(λ). Since A(λ) + ∆A(λ) is singular, by Definition

4.70, we have

δ2(A(λ)) ≤ ‖[∆Al, . . . , ∆A0]‖2 ≤ ‖[∆Al, . . . , ∆A0]‖F = δF (A(λ)).

Similarly, we assume that matrix polynomial ∆A(λ) =
∑l

i=0 λi∆Ai is a minimum

2-norm de-regularizing perturbation of A(λ). Since A(λ) + ∆A(λ) is singular, by Defi-

nition 4.70, we have

δF (A(λ)) ≤ ‖[∆Al, . . . , ∆A0]‖F ≤ √
n ‖[∆Al, . . . , ∆A0]‖2 =

√
n · δ2(A(λ)).

�

In the next subsection, we will give an example in which δ2(A(λ)) is (strictly) less

than δF (A(λ)).

Like the spectral and Frobenius matrix norms, δp(A(λ)) is unitarily invariant, as

the following proposition shows.

Proposition 4.72 For any unitary matrices U, V ∈ Cn×n and p = 2, F ,

δp(U
HA(λ)V ) = δp(A(λ)).

100



Proof. The proof follows from the fact that UH(A(λ) + ∆A(λ))V is singular if and

only if A(λ) + ∆A(λ) is singular, and the fact that

∥∥[UH∆AlV, . . . , UH∆A0V
]∥∥

p

=

∥∥∥∥∥∥∥
UH [∆Al, . . . , ∆A0]




V
. . .

V




∥∥∥∥∥∥∥
p

= ‖[∆Al, . . . , ∆A0]‖p , p = 2, F.

�

The following proposition which describes the relation between the F -norm distance

of A(λ) to the nearest singular matrix polynomial and that of its conjugate transpose.

Proposition 4.73

δF (A(λ)) = δF (AH(λ)). (4.99)

Proof. The proof follows from the fact that A(λ) + ∆A(λ) is singular if and only if

AH(λ) + (∆A)H (λ) is singular, and the fact that

‖[∆Al, . . . , ∆A0]‖F =
∥∥∥
[
(∆Al)

H , . . . , (∆A0)
H
]∥∥∥

F
.

�

To investigate the relation between δ2(A(λ)) and δ2(A
H(λ)), we need the following

lemma.

Lemma 4.74 Let Bi ∈ Cm×n, i = 1, . . . , l. Then

‖[Bl, . . . , B1]‖2 ≤ min
{√

l,
√

n
}
·

∥∥∥∥∥∥∥




Bl

...

B1




∥∥∥∥∥∥∥
2

, (4.100)

and ∥∥∥∥∥∥∥




Bl

...

B1




∥∥∥∥∥∥∥
2

≤ min
{√

l,
√

n
}
· ‖[Bl, . . . , B1]‖2 . (4.101)
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Proof. The proof of inequality (4.100) follows from the following two inequalities

(4.102) and (4.103):

‖[Bl, . . . , B1]‖2
2 = λmax


[Bl, . . . , B1] ·




BH
l
...

BH
1







= λmax

(
BlB

H
l + · · ·+ B1B

H
1

)

≤ λmax(BlB
H
l ) + · · · + λmax(B1B

H
1 )

= λmax(B
H
l Bl) + · · · + λmax(B

H
1 B1)

≤ l · λmax

(
BH

l Bl + · · ·+ BH
1 B1

)

= l · λmax



[
BH

l , . . . , BH
1

]
·




Bl

...

B1







= l ·

∥∥∥∥∥∥∥




Bl

...

B1




∥∥∥∥∥∥∥

2

2

. (4.102)

‖[Bl, . . . , B1]‖2
2 ≤ ‖[Bl, . . . , B1]‖2

F =

∥∥∥∥∥∥∥




Bl

...

B1




∥∥∥∥∥∥∥

2

F

≤ min {lm, n} ·

∥∥∥∥∥∥∥




Bl

...

B1




∥∥∥∥∥∥∥

2

2

. (4.103)

Since, for any A ∈ Cm×n, ‖A‖2 = ‖AH‖2, inequality (4.101) immediately follows from

inequality (4.100). �

In inequalities (4.100) and (4.101), equality can be attained, as the following example

shows.

Example 4.75 Let B1 :=

[
1 0

0 0

]
and let B2 :=

[
0 1

0 0

]
. Then l = n = 2, and

‖[B2, B1]‖2 =

∥∥∥∥
[

0 1 1 0

0 0 0 0

]∥∥∥∥
2

= λ
1
2
max




[
0 1 1 0

0 0 0 0

]
·




0 0

1 0

1 0

0 0







= λ
1
2
max

([
2 0

0 0

])
=

√
2;
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whereas,

∥∥∥∥
[

B2

B1

]∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥




0 1

0 0

1 0

0 0




∥∥∥∥∥∥∥∥∥
2

= λ
1
2
max




[
0 0 1 0

1 0 0 0

]
·




0 1

0 0

1 0

0 0







= λ
1
2
max

([
1 0

0 1

])
= 1.

Therefore, equality in inequality (4.100) can be attained, and so can equality in in-

equality (4.101) if we let B1 :=

[
1 0

0 0

]
and let B2 :=

[
0 0

1 0

]
. ♦

Proposition 4.76

δ2(A
H(λ)) ≤ min

{√
l + 1,

√
n
}
· δ2(A(λ)). (4.104)

Proof. We assume that ∆A(λ) =
∑l

i=0 λi∆Ai is a minimum 2-norm de-regularizing

perturbation of A(λ), i.e., A(λ)+∆A(λ) is singular and δ2(A(λ)) = ‖[∆Al, . . . , ∆A0]‖2.

Then AH(λ) + (∆A)H (λ) is singular. Therefore, by Definition 4.70 and Lemma 4.74,

we have

δ2(A
H(λ)) ≤

∥∥∥
[
(∆Al)

H , . . . , (∆A0)
H
]∥∥∥

2
=

∥∥∥∥∥∥∥




∆Al

...

∆A0




∥∥∥∥∥∥∥
2

≤ min
{√

l + 1,
√

n
}
· ‖[∆Al, . . . , ∆A0]‖2

= min
{√

l + 1,
√

n
}
· δ2(A(λ)).

�

A General Characterization for the Nearness to Singularity

In order to determine a characterization for δp(A(λ)), p = 2, F , let us recall the nec-

essary and sufficient conditions for regularity of matrix polynomials which have been

presented in terms of coefficient matrices in Corollary 4.39 and Remark 4.40. Observing

the special forms of Ws(Al, Al−1, . . . , A0) in (4.32) and of Ŵs(Al, Al−1, . . . , A0) in (4.34),

we immediately have the following proposition.

103



Proposition 4.77 Let A(λ) =
∑l

i=0 λiAi be a matrix polynomial of degree l, where

Ai ∈ Cn×n, i = 0, 1, . . . , l, and l ∈ N0. Then the following statements are equivalent:

1. A(λ) is regular.

2. The block matrix W(n−1)l+1(Al, Al−1, . . . , A0) has full column rank n((n− 1)l +1),

where W(n−1)l+1(Al, Al−1, . . . , A0) is defined as in (4.32) in Corollary 4.39.

3. The block matrix Ŵ(n−1)l+1(Al, Al−1, . . . , A0) has full row rank n((n − 1)l + 1),

where Ŵ(n−1)l+1(Al, Al−1, . . . , A0) is defined as in (4.34) in Remark 4.40.

Proof. 1. ⇒ 2.: By Corollary 4.39, the proof is immediate.

2. ⇒ 1.: Observe that if the block matrix Ws(Al, Al−1, . . . , A0) in (4.32) has full

column rank, then for every s ∈ N, s ≤ (n− 1)l, the block matrix Ws(Al, Al−1, . . . , A0)

has also full column rank. Thus, by Corollary 4.39, A(λ) is column-regular and therefore

regular.

The proofs of 1. ⇒ 3. and 3. ⇒ 1. are analogous to those of 1. ⇒ 2. and 2. ⇒ 1.,

respectively. �

From the regularity conditions given in Corollary 4.39, Remark 4.40 and Proposition

4.77, we directly derive a characterization for the distance δp(A(λ)), as follows.

Proposition 4.78 Let A(λ) =
∑l

i=0 λiAi be a matrix polynomial of degree l, where
Ai ∈ Cn×n, i = 0, 1, . . . , l, and l ∈ N0. Then,

δp(A(λ)) = min
s

min
∆

{‖ [∆Al, . . . ,∆A0] ‖p |
rank (Ws (Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)) < ns} (4.105)

= min
∆

{‖ [∆Al, . . . ,∆A0] ‖p |
rank (Ws̃ (Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)) < ns̃} (4.106)

= min
s

min
∆

{‖ [∆Al, . . . ,∆A0] ‖p |

rank
(
Ŵs (Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)

)
< ns

}
(4.107)

= min
∆

{‖ [∆Al, . . . ,∆A0] ‖p |

rank
(
Ŵs̃ (Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)

)
< ns̃

}
,(4.108)

where s ∈ N : 1 ≤ s ≤ (n − 1)l + 1, s̃ := (n − 1)l + 1, the (s + l)-by-s block matrix
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Ws(Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0) is given by

Ws(Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)

=

2
66666666666666666666664

A0 + ∆A0

A1 + ∆A1 A0 + ∆A0

.

.

.

.

.

.

.

.

.

Al−1 + ∆Al−1 Al−2 + ∆Al−2 · · · A0 + ∆A0

Al + ∆Al Al−1 + ∆Al−1 · · · A1 + ∆A1 A0 + ∆A0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Al + ∆Al Al−1 + ∆Al−1 · · · A1 + ∆A1 A0 + ∆A0

Al + ∆Al · · · A2 + ∆A2 A1 + ∆A1

.

.

.

.

.

.

.

.

.

Al + ∆Al Al−1 + ∆Al−1

Al + ∆Al

3
77777777777777777777775

,

(4.109)

and the s-by-(s + l) block matrix Ŵs(Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0) is given
by

cWs(Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)

=

2
66666664

A0 + ∆A0 A1 + ∆A1 · · · Al + ∆Al

A0 + ∆A0 · · · Al−1 + ∆Al−1 Al + ∆Al

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A0 + ∆A0 · · · Al−1 + ∆Al−1 Al + ∆Al

3
77777775

.

(4.110)

Remark 4.79 Note that if l = 0 then A(λ) ≡ A0, and therefore the nearness problem

degenerates into the rank-deficiency problem for a general matrix, which has well-

known classical result in terms of singular values of the matrix (see, for example, [20],

or Subsection 4.4.3); whereas, if l ≥ 1, Proposition 4.78 shows that the nearness problem

becomes a perturbation-structured and constrained rank-deficiency problem, for which

we still do not know how to determine a general explicit formula, except in some

cases in which both the order and degree of A(λ) are very small (see Proposition 4.88

in Subsection 4.4.3), or, the coefficient matrices of A(λ) have very special forms or

properties (e.g. they are scalar multiples of one another). For a very brief survey of

rank-deficiency nearness problem for matrices, see also [20]. ♦

A Characterization of the Nearness to Singularity for Matrix Pencils

In the case of matrix pencils, another kind of characterization for δF (A(λ)) is, in the

light of the generalized Schur form ([53, 45, 55, 19, 4]), obtained in [4]. Before extending

the result to the 2-norm case, let us recall the generalized Schur form for matrix pencils.
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Theorem 4.80 (Generalized Schur form) [53, 45] For every matrix pencil λA1 +

A0, A1, A0 ∈ Cn×n, there exist unitary matrices Q, Z ∈ Cn×n such that

QH(λA1 + A0)Z = λR + S, (4.111)

where R, S ∈ Cn×n are upper-triangular matrices.

In the following lemma, we restate the Frobenius norm result in [4] and extend it

to the 2-norm case.

Lemma 4.81 ([4], Theorem 8) Let A(λ) = λA1 +A0, where A1, A0 ∈ Cn×n. Then, for

p = 2, F ,

δp(A(λ)) = min
1≤k≤n

min
Qn−k+1 ∈ C(n−k+1)×n,

Qn−k+1QH
n−k+1 = I

min
Zk ∈ Cn×k,

ZH
k

Zk = I

‖[Qn−k+1A1Zk, Qn−k+1A0Zk]‖p .

(4.112)

Proof. In the case of the Frobenius norm δF (A(λ)), see the proof given in [4].

In the case of the 2-norm, the part which proves that δ2(A(λ)) is bounded from above

by the right-hand-side of (4.112) is the same as that in the case of the Frobenius norm.

Next, we will prove that the right-hand-side of (4.112) is, conversely, also bounded

from above by δ2(A(λ)). Assume that ∆A(λ) = λ∆A1 + ∆A0 is a minimum 2-norm

de-regularizing perturbation of A(λ), where ∆A1, ∆A0 ∈ Cn×n. Since A(λ) + ∆A(λ)

is singular, the generalized Schur form of A(λ) + ∆A(λ) must have the following zero

structure for some index k, 1 ≤ k ≤ n:

Q (λ (A1 + ∆A1) + (A0 + ∆A0))Z =
k n−k

k−1

n−k+1

[
λR11 + S11

0

λR12 + S12

λR22 + S12

]
,

(4.113)

where Q, Z ∈ Cn×n are unitary matrices. We partition Q as Q =

[
Qk−1

Qn−k+1

]
Cn×n, Z

as Z = [Zk, Zn−k], and QA1Z and QA0Z conformally with (4.113) as

QA1Z =

k n−k

k−1

n−k+1

[
A

(1)
11

A
(1)
21

A
(1)
12

A
(1)
22

]
, QA0Z =

k n−k

k−1

n−k+1

[
A

(0)
11

A
(0)
21

A
(0)
12

A
(0)
22

]
. (4.114)

We also partition Q∆A1Z and Q∆A0Z conformally with (4.113) as

Q∆A1Z =

k n−k

k−1

n−k+1

[
∆A

(1)
11

∆A
(1)
21

∆A
(1)
12

∆A
(1)
22

]
, Q∆A0Z =

k n−k

k−1

n−k+1

[
∆A

(0)
11

∆A
(0)
21

∆A
(0)
12

∆A
(0)
22

]
.

(4.115)
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Noting the zero structure in the right-hand-side of (4.113) and by (4.114) and (4.115),

we have

∆A
(1)
21 = −A

(1)
21 = −Qn−k+1A1Zk, ∆A

(0)
21 = −A

(0)
21 = −Qn−k+1A0Zk. (4.116)

Since ∆A(λ) is a minimum 2-norm de-regularizing perturbation of A(λ), by (4.115) and

(4.116), we have

δ2(A(λ)) = ‖[∆A1, ∆A0]‖2 = ‖[Q∆A1Z, Q∆A0Z]‖2

=

∥∥∥∥∥

[
∆A

(1)
11 ∆A

(1)
12 ∆A

(0)
11 ∆A

(0)
12

∆A
(1)
21 ∆A

(1)
22 ∆A

(0)
21 ∆A

(0)
22

]∥∥∥∥∥
2

≥
∥∥∥
[
∆A

(1)
21 , ∆A

(1)
22 , ∆A

(0)
21 , ∆A

(0)
22

]∥∥∥
2

=
∥∥∥
[
∆A

(1)
21 , ∆A

(0)
21 , ∆A

(1)
22 , ∆A

(0)
22

]∥∥∥
2

≥
∥∥∥
[
∆A

(1)
21 , ∆A

(0)
21

]∥∥∥
2

= ‖[−Qn−k+1A1Zk,−Qn−k+1A0Zk]‖2

= ‖[Qn−k+1A1Zk, Qn−k+1A0Zk]‖2 . (4.117)

Hence, the right-hand-side of (4.112) is bounded from above by δ2(A(λ)). Thus, finally,

we obtain the formula (4.112). �

We investigate further the characterization presented in Lemma 4.81, and obtain

another simplified characterization in terms of the singular values of a family of matrices,

as the following theorem shows.

Theorem 4.82 Let A(λ) = λA1 + A0, where A1, A0 ∈ Cn×n. Then

δ2(A(λ)) = min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I

σk ([A1Z, A0Z]) (4.118)

and

δF (A(λ)) = min
1≤k≤n

min
Z ∈ Cn×k ,

ZHZ = I

√
(σ2

k + · · ·+ σ2
n) ([A1Z, A0Z]), (4.119)

where σk(B) denotes the k-th singular value of an m×n matrix B with singular values

in the descending order

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ σmin{m,n}+1 = · · · = σmax{m,n} = 0, (4.120)

and (σ2
k + · · ·+ σ2

n) (B) denotes the sum of the squares of singular values of an m × n

matrix B from the k-th to the n-th if the singular values of the matrix B are in the

descending order as in (4.120).
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The proof of Theorem 4.82 will make use of the Wielandt’s Theorem and the

Courant-Fischer Theorem ([55]) for simplifying the characterization in (4.112).

Theorem 4.83 (Wielandt) ([55], p. 199-201) Let A ∈ Cn×n be a Hermitian matrix

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and let 1 ≤ i1 < i2 < · · · < ik ≤ n, 1 ≤ k ≤ n.

Then

λi1 + λi2 + · · · + λik = max
Xij

⊆ Cn

Xi1 ⊂ Xi2 ⊂ · · · ⊂ Xik

dim(Xij
) = ij

min
X = [xi1 , xi2 , · · · , xik

], xij
∈ Xij

XHX = I

trace(XHAX),

(4.121)

and

λi1 + λi2 + · · · + λik = min
Xij

⊆ Cn

Xi1 ⊃ Xi2 ⊃ · · · ⊃ Xik

dim(Xij
) = n − ij + 1

max
X = [xi1 , xi2 , · · · , xik

], xij
∈ Xij

XHX = I

trace(XHAX).

(4.122)

The Courant-Fischer Minimax Theorem, which is a direct consequence of Wielandt’s

Theorem, is as follows.

Theorem 4.84 (Courant-Fischer) ([55], p. 201) Let A ∈ Cn×n be a Hermitian

matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λi = max
X ⊆ Cn

dim(X ) = i

min
x ∈ X

xHx = 1

xHAx

and

λi = min
X ⊆ Cn

dim(X ) = n − i + 1

max
x ∈ X

xHx = 1

xHAx.

Proof of Theorem 4.82. By Lemma 4.81, for p = 2, F , we have

δp(A(λ)) = min
1≤k≤n

min
Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k,

ZHZ = I

‖[QA1Z, QA0Z]‖p . (4.123)
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If p = 2, by (4.123), we have

δ2
2(A(λ)) = min

1≤k≤n
min

Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k,

ZHZ = I

‖[QA1Z, QA0Z]‖2
2

= min
1≤k≤n

min
Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k,

ZHZ = I

λmax

(
[QA1Z, QA0Z] ·

[
ZHAH

1 QH

ZHAH
0 QH

])

= min
1≤k≤n

min
Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k,

ZHZ = I

λmax

(
Q
(
A1ZZHAH

1 + A0ZZHAH
0

)
QH
)

= min
1≤k≤n

min
Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k,

ZHZ = I





max
x ∈ Cn−k+1,

xHx = 1

xHQ
(
A1ZZHAH

1 + A0ZZHAH
0

)
QHx





(by Courant-Fischer’s Theorem 4.84)

= min
1≤k≤n

min
Z ∈ Cn×k ,

ZHZ = I



min
Q ∈ C(n−k+1)×n,

QQH = I

max
x ∈ Cn−k+1,

xHx = 1

(QHx)H
(
A1ZZHAH

1 + A0ZZHAH
0

)
QHx





= min
1≤k≤n

min
Z ∈ Cn×k ,

ZHZ = I



min
Y ⊆ Cn,

dim(Y) = n − k + 1

max
y ∈ Y ,

yHy = 1

yH
(
A1ZZHAH

1 + A0ZZHAH
0

)
y





= min
1≤k≤n

min
Z ∈ Cn×k ,

ZHZ = I

λk

(
A1ZZHAH

1 + A0ZZHAH
0

)

(again by Courant-Fischer’s Theorem 4.84)

= min
1≤k≤n

min
Z ∈ Cn×k ,

ZHZ = I

σk

(
[A1Z, A0Z] ·

[
ZHAH

1

ZHAH
0

])

(4.124)
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= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I

σ2
k ([A1Z, A0Z]) , (4.125)

where λk(·) denotes the k-th eigenvalue of an n× n Hermitian matrix with eigenvalues

in descending order λmax = λ1 ≥ λ2 ≥ · · · ≥ λn.

If p = F , by (4.123), we have

δ2
F (A(λ)) = min

1≤k≤n
min

Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k ,

ZHZ = I

‖[QA1Z, QA0Z]‖2
F

= min
1≤k≤n

min
Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k ,

ZHZ = I

trace

(
[QA1Z, QA0Z] ·

[
ZHAH

1 QH

ZHAH
0 QH

])

= min
1≤k≤n

min
Q ∈ C(n−k+1)×n,

QQH = I

min
Z ∈ Cn×k ,

ZHZ = I

{
trace

(
Q
(
A1ZZHAH

1 + A0ZZHAH
0

)
QH
)}

. (4.126)

Since the trace of a square matrix is equal to the sum of all its eigenvalues, from (4.126)

it follows that

δ2
F (A(λ)) = min

1≤k≤n
min

Z ∈ Cn×k,

ZHZ = I

min
Q ∈ C(n−k+1)×n,

QQH = I

{
(λ1 + λ2 + · · ·+ λn−k+1)

(
Q
(
A1ZZHAH

1 + A0ZZHAH
0

)
QH
)}

= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I

min
Q ∈ C(n−k+1)×n,

QQH = I





min
Xj ⊆ Cn−k+1, j = 1, . . . , n − k + 1,

X1 ⊃ X2 ⊃ · · · ⊃ Xn−k+1,

dim(Xj ) = (n − k + 1) − j + 1

max
X = [x1, x2, · · · , xn−k+1], xj ∈ Xj ,

XHX = I

trace
(
XHQ

(
A1ZZHAH

1 + A0ZZHAH
0

)
QHX

)}

(by Wielandt’s Theorem 4.83)

(4.127)
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= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I





min
Q ∈ C(n−k+1)×n,

QQH = I

min
Xj ⊆ Cn−k+1, j = 1, . . . , n − k + 1,

X1 ⊃ X2 ⊃ · · · ⊃ Xn−k+1,

dim(Xj ) = (n − k + 1) − j + 1

max
X = [x1, x2, · · · , xn−k+1], xj ∈ Xj ,

XHX = I

trace
((

QHX
)H (

A1ZZHAH
1 + A0ZZHAH

0

)
QHX

)}

= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I





min
Yj ⊆ Cn, j = k, . . . , n,

Yk ⊃ Yk+1 ⊃ · · · ⊃ Yn,

dim(Yj) = n − j + 1

max
Y = [yk, yk+1, · · · , yn], yj ∈ Yj ,

Y HY = I

trace
(
Y H

(
A1ZZHAH

1 + A0ZZHAH
0

)
Y
)}

= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I

(λk + · · ·+ λn)
(
A1ZZHAH

1 + A0ZZHAH
0

)

(again by Wielandt’s Theorem 4.83)

= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I

(λk + · · ·+ λn)

(
[A1Z, A0Z] ·

[
ZHAH

1

ZHAH
0

])

= min
1≤k≤n

min
Z ∈ Cn×k,

ZHZ = I

(
σ2

k + · · · + σ2
n

)
([A1Z, A0Z]) , (4.128)

where (λk + · · · + λn) (B) denotes the sum of the eigenvalues of the Hermitian matrix

B from the k-th to the n-th if the eigenvalues of B are in the descending order.

Thus, with (4.125) and (4.128), we have finished the proof. �

Remark 4.85 By the classical result on the distance to the nearest rank-deficient

matrix (see Theorem 4.87 in Subsection 4.4.3), we can interpret the quantities δ2 (and

δF , respectively) in (4.118) (and in (4.119), respectively) as the nearest distance, in

terms of 2-norm (and F -norm, respectively), by which rank ([A1Z, A0Z]) < k over all
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k and all Z ∈ Cn×k with orthonormal columns. Thus, it is clear that the algebraic

characterizations for the nearest distances given by (4.118) and (4.119) coincide with

the geometrical characterization of square and singular matrix pencils which is presented

in Theorem 4.44. ♦

Remark 4.86 Let k̂ ∈ N, 1 ≤ k̂ ≤ n, and let Ẑ ∈ Cn×k̂, ẐHẐ = Ik̂, be a test matrix.

Then, from Theorem 4.82 it immediately follows that for any Q ∈ Ck̂×k̂, QQH = Ik̂, we

have the following upper bounds on the nearest distance to singularity.

δ2(A(λ)) ≤ σk̂

([
A1Ẑ, A0Ẑ

])
= σk̂

([
A1ẐQ, A0ẐQ

])
;

δF (A(λ)) ≤
√(

σ2
k̂

+ · · ·+ σ2
n

)([
A1Ẑ, A0Ẑ

])
=

√(
σ2

k̂
+ · · · + σ2

n

)([
A1ẐQ, A0ẐQ

])
.

♦

4.4.3 Special Cases

In this subsection we discuss two special cases of matrix polynomials (in particular, of

matrix pencils) in each of which an explicit formula for δ(A(λ)) can be determined.

First, let us recall the classical result on the distance to the nearest rank-deficient

matrix for a general rectangular matrix.

Theorem 4.87 [19, 20] Let A ∈ Cm×n have the singular value decomposition (SVD)

A = UH

[
Σ 0

0 0

]
V, where

Σ = diag[σ1, . . . , σr], σ1 ≥ σ2 ≥ · · · ≥ σr > 0, r = rank(A),

and let k < r. Then, for p = 2, F ,

min
rank(B)=k

‖A − B‖p = ‖A − Ak‖p =

{
σk+1, p = 2,√∑r

i=k+1 σ2
i , p = F,

(4.129)

where

Ak = UH

[
Σk 0

0 0

]
V, Σk = diag[σ1, . . . , σk].
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Case I: A(λ) = (alλ
l + al−1λ

l−1 + · · · + a0)A, where A ∈ Cn×n.

In this trivial case, the coefficient matrices of A(λ) are scalar multiples of one an-

other. It is immediate that if ∆A is a minimum p-norm (p = 2 or F ) perturba-

tion of the matrix A such that A + ∆A is singular, then the minimum p-norm de-

regularizing perturbation of the matrix polynomial A(λ) is ∆A(λ) =
∑l

i=0 λi∆Ai =

(alλ
l+al−1λ

l−1+· · ·+a0)∆A. By Theorem 4.87, for p = 2, F , we have ‖∆A‖p = σmin(A),

and therefore, we have

δp(A(λ)) = ‖[∆Al, . . . , ∆A0]‖p =

√
|al|2 + |al−1|2 + · · · + |a0|2 · σmin(A), p = 2, F.

Case II: 2-by-2 Matrix Pencils.

In this case, we restate the Frobenius norm result in [4] and present upper and lower

bounds on the distance in the spectral norm.

Proposition 4.88 ([4], Corollary 3) Let A1, A0 ∈ C2×2. Then

δF (λA1 + A0) = min

{
σmin

([
A1

A0

])
, σmin ([A1, A0])

}
.

Proof. See [4]. �

Proposition 4.89 Let A1, A0 ∈ C2×2. Then

min

{
σmin ([A1, A0]) ,

√
2

2
σmin

([
A1

A0

])}

≤ δ2(λA1 + A0)

≤ min

{
σmin ([A1, A0]) , σmin

([
A1

A0

])}
. (4.130)

Proof. Assume that λ∆A1 + ∆A0 is a minimum 2-norm de-regularizing perturbation

of λA1 + A0, where ∆A1, ∆A0 ∈ C2×2, and that λ (A1 + ∆A1) + (A0 + ∆A0) has the

following generalized Schur form (cf. Theorem 4.80)

Q (λ (A1 + ∆A1) + (A0 + ∆A0))Z = λ

[
r11 r12

0 r22

]
+

[
s11 s12

0 s22

]
. (4.131)

Since λ (A1 + ∆A1)+(A0 + ∆A0) is singular, we have that in (4.131) either r11 = s11 = 0

or r22 = s22 = 0. It follows that either the left null spaces, or the (right) null spaces,
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or both of A1 + ∆A1 and A0 + ∆A0 have a nontrivial intersection; or in other words,

either

[
A1 + ∆A1

A0 + ∆A0

]
, or [A1 + ∆A1, A0 + ∆A0], or both are rank deficient. Hence, we

have

δ2(λA1 + A0) = ‖[∆A1, ∆A0]‖2

≥ 1√
2

∥∥∥∥
[

∆A1

∆A0

]∥∥∥∥
2

(by Lemma 4.74)

≥
√

2

2
σmin

([
A1

A0

])
(by Theorem 4.87) (4.132)

if

[
A1 + ∆A1

A0 + ∆A0

]
is rank deficient, and similarly, by Theorem 4.87, we have

δ2(λA1 + A0) = ‖[∆A1, ∆A0]‖2 ≥ σmin ([A1, A0]) (4.133)

if [A1 + ∆A1, A0 + ∆A0] is rank deficient. From (4.132) and (4.133) it follows that

δ2(λA1 + A0) ≥ min

{
σmin ([A1, A0]) ,

√
2

2
σmin

([
A1

A0

])}
.

As for the upper bound of δ2(λA1 + A0) in (4.130), the proof follows immediately from

Proposition 4.71 and Proposition 4.88. �

Unlike the classical result — Theorem 4.87 in the case of k = (r − 1) — on the

distance to the nearest rank-deficient matrix for matrices, the nearest distance to sin-

gularity for matrix polynomials in the spectral norm may be (strictly) less than the

nearest distance to singularity in the Frobenius norm, as the following example demon-

strates.

Example 4.90 We investigate the regular matrix pencil

A(λ) = λA1 + A0 := λ

[
1 0

0 −1

]
+

[
1 0

0 1

]
.

Applying Theorem 4.82 to A(λ), we have

δ2(A(λ)) = min
k=1,2

min
Z ∈ C2×k,

ZHZ = I

σk ([A1Z, A0Z]) . (4.134)

And applying Proposition 4.88 to A(λ), we have

δF (A(λ)) = min

{
σmin

([
A1

A0

])
, σmin ([A1, A0])

}
= min

{√
2,
√

2
}

=
√

2. (4.135)
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Let Z =
√

2
2

[1, 1]T ∈ C2. Then ZHZ = 1, and by (4.134) we have

δ2(A(λ)) ≤ σ1 ([A1Z, A0Z])

= σ1

([√
2

2

[
1 0

0 −1

] [
1

1

]
,

√
2

2

[
1 0

0 1

] [
1

1

]])

= σ1

(√
2

2

[
1 1

−1 1

])
= 1. (4.136)

Applying Proposition 4.89 to δ2(A(λ)), we have

δ2(A(λ)) ≥ min

{
σmin ([A1, A0]) ,

√
2

2
σmin

([
A1

A0

])}
= min

{
√

2,

√
2

2
·
√

2

}
= 1. (4.137)

Hence, from (4.136) and (4.137) it follows that δ2(A(λ)) = 1. Therefore, by (4.135), we

have

δ2(A(λ)) = 1 <
√

2 = δF (A(λ)).

♦

4.4.4 Lower Bounds on δp(A(λ))

Since the nearest distance is analogous to the stability radius in control theory, we are

here only interested in deriving lower bounds on the nearest distance.

Lower Bounds Using σmin

(
αlAl + αl−1βAl−1 + · · ·+ βlA0

)

We note that the determinant of a square singular matrix polynomial is identically

equal to zero. It is natural to use this information and make use of Theorem 4.87 to

obtain lower bounds on the nearest distance δp(A(λ)), p = 2, F . During the process of

deduction, we need Lemma 4.92 (below), which describes a relationship between the

2-norm and unitarily invariant norms. For the sake of completeness, we first restate

the definition of unitarily invariant norms from Stewart and Sun [55].

Definition 4.91 ([55] p. 74.) Given a norm ‖·‖ on Cm×n, it is unitarily invariant

if for any A ∈ Cm×n, and any unitary U ∈ Cm×m and V ∈ Cn×n, it satisfies
∥∥UHAV

∥∥ = ‖A‖.

Lemma 4.92 ([55] p. 80. Theorem 3.9.) Let ‖ · ‖ be a family of unitarily invariant

norms, and let A ∈ Cm×n and B ∈ Cn×q, where m, n, q ∈ N. Then

‖AB‖ ≤ ‖A‖‖B‖2 and ‖AB‖ ≤ ‖A‖2‖B‖.
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We conduct our analysis as follows. Assume that ∆A(λ) =
∑l

i=0 λi∆Ai is a min-

imum p-norm de-regularizing perturbation of A(λ), p = 2, F . Since A(λ) + ∆A(λ) is

singular, we have, for any λ0 ∈ C,

det(A(λ0) + ∆A(λ0)) = det

(
l∑

i=0

λi
0(Ai + ∆Ai)

)
= 0. (4.138)

Let λ0 = α0/β0, where α0, β0 ∈ C, β0 6= 0, and

l∑

i=0

|αl−i
0 βi

0|2 = |αl
0|2 + |αl−1

0 β0|2 + · · · + |α0β
l−1
0 |2 + |βl

0|2 = 1. (4.139)

If we substitute β0λ0 for α0 in the normalization equation (4.139), then (4.139) implies

that

|β0| =

{
2l
√

1/(l + 1) if |λ0| = 1
2l
√

(1 − |λ0|2)/(1 − |λ0|2(l+1)) if |λ0| 6= 1.
(4.140)

Obviously, there exist infinitely many pairs (α0, β0) such that α0/β0 = λ0 and (4.139)

is satisfied, provided that |β0| satisfies (4.140). Substituting α0/β0 for λ0 in (4.138), we

have

det

(
l∑

i=0

αi
0β

l−i
0 (Ai + ∆Ai)

)
= det

(
l∑

i=0

αi
0β

l−i
0 Ai +

l∑

i=0

αi
0β

l−i
0 ∆Ai

)
= 0. (4.141)

Thus, by Theorem 4.87, (4.141) implies that

σmin

(
l∑

i=0

αi
0β

l−i
0 Ai

)
≤

∥∥∥∥∥
l∑

i=0

αi
0β

l−i
0 ∆Ai

∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥∥
[∆Al, ∆Al−1, . . . , ∆A0]




αl
0I

αl−1
0 β0I

...

βl
0I




∥∥∥∥∥∥∥∥∥
p

≤ ‖[∆Al, ∆Al−1, . . . , ∆A0]‖p

∥∥∥∥∥∥∥∥∥




αl
0I

αl−1
0 β0I

...

βl
0I




∥∥∥∥∥∥∥∥∥
2

, (4.142)

where p = 2, F , and the inequality (4.142) holds due to Lemma 4.92 and the fact

that the 2-norm and Frobenius norm are unitarily invariant norms. Note that, by the
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normalization equation (4.139), we have




αl
0I

αl−1
0 β0I

...

βl
0I




H 


αl
0I

αl−1
0 β0I

...

βl
0I


 =

l∑

i=0

|αi
0β

l−i
0 |2I = I, (4.143)

and therefore, ∥∥∥∥∥∥∥∥∥




αl
0I

αl−1
0 β0I

...

βl
0I




∥∥∥∥∥∥∥∥∥
2

= 1. (4.144)

From (4.142) and (4.144) it follows that

σmin

(
l∑

i=0

αi
0β

l−i
0 Ai

)
≤ ‖[∆Al, ∆Al−1, . . . , ∆A0]‖p = δp(A(λ)), p = 2, F. (4.145)

Note that, if |α0| = 1 and β0 = 0, then (4.139) still holds, and, by Corollary 4.37,

so does (4.145). Since the inequality in (4.145) holds for any pair (α0, β0) ∈ C × C,

immediately, we have the following proposition on a family of lower bounds on δp(A(λ)).

Proposition 4.93 Let S = {(α, β) ∈ C × C | α and β satisfy (4.139)}, and let T ⊂ S
be some test set of pairs (α, β). Then,

δp(A(λ)) ≥ max
(α,β)∈S

σmin

(
l∑

i=0

αiβl−iAi

)
, (4.146)

≥ max
(α,β)∈T ⊂S

σmin

(
l∑

i=0

αiβl−iAi

)
, p = 2, F. (4.147)

In practical computations, we may let the pair (1, 0) be always included in the test set

T , and for other elements of T , we can randomly choose distinct numbers λ1, λ2, . . .,

and let αi := λiβi, i = 1, 2, . . ., where

βi =

{
2l
√

1/(l + 1) if |λi| = 1;
2l
√

(1 − |λi|2)/(1 − |λi|2(l+1)) if |λ0| 6= 1,
i = 1, 2, . . . .

It should be noted that, given two pairs (α1, β1) and (α2, β2) which satisfy the normal-

ization equation (4.139) and α1β2 = α2β1, if |β1| = |β2|, then

σmin

(
l∑

i=0

αi
1β

l−i
1 Ai

)
= σmin

(
l∑

i=0

αi
2β

l−i
2 Ai

)
=





|β1|lσmin

(∑l
i=0

(
α1

β1

)i

Ai

)
if β1 6= 0;

σmin(Al) if β1 = 0.
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For a regular matrix polynomial A(λ), if the number of elements test set T in Propo-

sition 4.93 is sufficiently large, then the lower bound in (4.147) is positive (a zero lower

bound is trivial for regular matrix polynomials), as the following remark shows.

Remark 4.94 Let m̃ ∈ Z be defined as in (4.86) in Corollary 4.64. If the matrix

polynomial A(λ) =
∑l

i=0 λiAi is regular, then, by Theorem 4.62, the number of nonzero

roots of det(A(λ)) is strictly less than m̃. Therefore, if A(λ) is regular, and if the test

set T contains the pair (0, 1) and greater than or equal to m̃ pairs (α, β), α 6= 0, which

are distinct in the sense that for any two pairs (α1, β1) and (α2, β2), α1β2 6= α2β1, then

the lower bound in (4.147) is positive. ♦

Byers, He, and Mehrmann show in [4] that in the case of regular matrix pencils,

it is not difficult to find an example where the lower bound in (4.146) is attainable.

In the case of regular matrix polynomials of higher degrees, it is not either. Take, for

instance, A(λ) in Example 4.69, in which we assume 0 < |ε| < 1. On the one hand, if

we let ∆A(λ) = λ2∆A2 + λ∆A1 + ∆A0, where

∆A2 =

[
0 −ε

0 0

]
, ∆A1 = ∆A0 = 0,

then A(λ) + ∆A(λ) is singular. By Definition 4.70, δp(A(λ)) ≤ ‖ [∆A2, ∆A1, ∆A0] ‖p =

|ε|, where p = 2, F . On the other hand, if we let (α, β) = (1, 0) and use the lower bound

in (4.147), then we have δp(A(λ)) ≥ σmin(A2) = σmin

([
0 ε

1 0

])
= |ε|, since |ε| < 1.

Hence, δp(A(λ)) = |ε|, and therefore by (4.146), we obtain

max
(α,β)∈S

σmin

(
α2A2 + αβA1 + β2A0

)
= δp(A(λ)) = |ε|, p = 2, F,

where S = {(α, β) ∈ C × C | |α|4 + |α|2|β|2 + |β|4 = 1}. Inequality (4.146) also be-

comes an equality in the case that the coefficient matrices of A(λ) are scalar multiples

of one another.

We can also find cases where inequality (4.146) holds strictly in the case of Frobenius

norm, or in other words, the lower bound in (4.146) is a genuine bound for p = F , as

the next example demonstrates.

Example 4.95 We investigate the regular matrix pencil

A(λ) = λA1 + A0 := λ

[
1 0

0 −1

]
+

[
1 0

0 1

]
.

By Proposition 4.88, we have

δF (A(λ)) = min

{
σmin

([
A1

A0

])
, σmin ([A1, A0])

}

= min
{√

2,
√

2
}

=
√

2.
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For any (α, β) ∈ S = {(α, β) ∈ C × C | |α|2 + |β|2 = 1}, we have

σmin (αA1 + βA0) = σmin

([
β + α 0

0 β − α

])

= min {|β + α| , |β − α|} . (4.148)

Since |β + α| · |β − α| = |β2 − α2| ≤ |α|2 + |β|2 = 1, we have

min {|β + α| , |β − α|} ≤
√

|β + α| · |β − α| ≤ 1. (4.149)

Therefore, by (4.148) and (4.149), we obtain that

max
(α,β)∈S

σmin (αA1 + βA0) ≤ 1 <
√

2 = δF (A(λ)).

♦

In the case of spectral norm, at this writing, we still do not know of an example in

which Inequality (4.146) strictly holds.

Lower Bounds Using σmin (Ws(Al, Al−1, . . . , A0)) and σmin

(
Ŵs(Al, Al−1, . . . , A0)

)

Another natural way to obtain lower bounds on δp(A(λ)) is to make use of the charac-

terization described in Proposition 4.78, ignoring that the perturbation required should

have the structure and be constrained as in (4.109) and (4.110). In the course of

derivation, we need the following lemma, which relates the eigenvalues of a principal

submatrix to the eigenvalues of the original Hermitian matrix.

Lemma 4.96 ([55] p. 198. Corollary 4.3.) Let A ∈ Cn×n be a Hermitian matrix with

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and let B be a principal submatrix of order n− k of A

with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn−k. Then

λi ≥ µi ≥ λi+k, i = 1, 2, . . . , n − k.

We carry out our deduction as follows. Assume that ∆A(λ) =
∑l

i=0 λi∆Ai is a

minimum p-norm de-regularizing perturbation of A(λ), p = 2, F . Then, by Proposition

4.78, the block matrix

Ws (Al + ∆Al, Al−1 + ∆Al−1, . . . , A0 + ∆A0)

(= Ws (Al, Al−1, . . . , A0) + Ws (∆Al, ∆Al−1, . . . , ∆A0))

is rank deficient for some s, where 1 ≤ s ≤ (n− 1)l + 1. Thus, if we allow unstructured

and unconstrained perturbations of Ws (Al, Al−1, . . . , A0), then, by Theorem 4.87, we

have

σmin (Ws (Al, Al−1, . . . , A0)) ≤ ‖Ws (∆Al, ∆Al−1, . . . , ∆A0)‖p , p = 2, F. (4.150)
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Analogously, by Proposition 4.78 and Theorem 4.87, we have

σmin

(
Ŵŝ (Al, Al−1, . . . , A0)

)
≤
∥∥∥Ŵŝ (∆Al, ∆Al−1, . . . , ∆A0)

∥∥∥
p
, p = 2, F, (4.151)

for some ŝ, 1 ≤ ŝ ≤ (n − 1)l + 1.

To get the relation between ‖Ws (∆Al, ∆Al−1, . . . , ∆A0)‖F and δF (A(λ)), we note

that

‖Ws (∆Al, ∆Al−1, . . . , ∆A0)‖F =
√

s · ‖[∆Al, . . . , ∆A0]‖F =
√

s · δF (A(λ)). (4.152)

Therefore, from (4.150) and (4.152) it follows that

σmin (Ws (Al, Al−1, . . . , A0))√
s

≤ δF (A(λ)), for some s, (4.153)

where 1 ≤ s ≤ ((n − 1)l + 1). Note that for any s1, s2 ∈ N, if 1 ≤ s1 < s2 ≤ ((n −
1)l + 1), then Ws1 (Al, Al−1, . . . , A0) is a principal submatrix of Ws2 (Al, Al−1, . . . , A0)

(cf. (4.32)), and therefore, W H
s1

(Al, . . . , A0) · Ws1 (Al, . . . , A0) is a principal submatrix

of W H
s2

(Al, . . . , A0) · Ws2 (Al, . . . , A0). Thus, by Lemma 4.96, we have

σmin (Ws2 (Al, Al−1, . . . , A0)) ≤ σmin (Ws1 (Al, Al−1, . . . , A0)) . (4.154)

Therefore, by (4.153) and (4.154), we finally have

min
s

σmin (Ws (Al, Al−1, . . . , A0))√
s

=
σmin (Ws̃ (Al, Al−1, . . . , A0))√

s̃
≤ δF (A(λ)), (4.155)

where 1 ≤ s ≤ ((n − 1)l + 1), and s̃ = (n − 1)l + 1.

Along the same lines, we obtain that

min
ŝ

σmin

(
Ŵs (Al, Al−1, . . . , A0)

)

√
ŝ

=
σmin

(
Ŵs̃ (Al, Al−1, . . . , A0)

)

√
s̃

≤ δF (A(λ)),

(4.156)

where 1 ≤ ŝ ≤ ((n − 1)l + 1), and s̃ = (n − 1)l + 1.

Combining (4.155) and (4.156), we immediately have the following proposition.

Proposition 4.97 Let s̃ := (n − 1)l + 1. Then

1√
s̃

max
{

σmin (Ws̃ (Al, Al−1, . . . , A0)) , σmin

(
Ŵs̃ (Al, Al−1, . . . , A0)

)}
≤ δF (A(λ)), (4.157)

where Ws̃ (Al, Al−1, . . . , A0) and Ŵs̃ (Al, Al−1, . . . , A0) are defined as in (4.32) and (4.34),

respectively.
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Since it appears that we can not get a ”≤” relation of ‖Ws (∆Al, ∆Al−1, . . . , ∆A0)‖2,

or of
∥∥∥Ŵs (∆Al, ∆Al−1, . . . , ∆A0)

∥∥∥
2
, to c · δ2(A(λ)) (where c is a constant), we do not,

at this writing, obtain a reasonable lower bound on δ2(A(λ)) which is similar to that

on δF (A(λ)) in (4.157).

Examples in [4] show that the lower bound in (4.157) is usually coarser than that

on δF (A(λ)) obtained in (4.147), which may be regarded as the cost of our disregarding

the structure and constraint of the perturbation of Ws (Al, Al−1, . . . , A0). As a matter

of fact, at this writing, we still do not know of an example, except for the simplest cases

n = 1 (in which A(λ) degenerates into a scalar polynomial) or l = 0 (in which A(λ)

degenerates into a constant matrix), in which the lower bound in (4.157) is attainable.
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Chapter 5

Conclusions and Outlook

In this thesis we have presented the theoretical analysis of two interrelated topics:

linear differential-algebraic equations of higher-order and the regularity and singularity

of matrix polynomials.

In the first part of this thesis, we have directly investigated the mathematical struc-

tures of general (including over- and underdetermind) linear higher-order systems of

DAEs with constant and variable coefficients. Making use of the algebraic techniques

devised in [28, 29, 34] and taking linear second-order systems of DAEs as examples,

we have given condensed forms, under strong equivalence transformations, for triples of

matrices and triples of matrix-valued functions which are associated with the systems

of constant and variable coefficients respectively. It should be noted that in the case

of variable coefficients, we have developed a system of invariant quantities and a set

of regularity conditions to ensure that the condensed form can be obtained. Based on

the condensed forms, we have converted the systems into ordinary-differential-equation

part, ’strange’ coupled differential-algebraic-equation part, and algebraic-equation part,

and designed the differentiation-and-elimination steps to partially decouple the strange

part. Inductively conducting such process of transformation and decoupling, we have,

finally, converted the original systems into equivalent strangeness-free systems, from

which the solution behaviour with respect to solvability, uniqueness of solutions and

consistency of initial conditions can be directly read off.

In addition, we have shown that the strangeness-index of systems of DAEs with

constant coefficients is well-defined, and can be determined from the right-hand side of

the final strangeness-free system. We have also presented that, in the case of a square

constant coefficient system of DAEs of higher-order, given necessary and consistent

initial conditions, the initial value problem for the system of DAEs is solvable and has

a unique solution for any right-hand side f(t) ∈ Cµ([t0, t1], Cn) with the strangeness

index µ of the system if and only if the matrix polynomial associated with the system

is regular. Note that if one works with such higher-order problems in the traditional
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theoretical framework of first-order systems of DAEs, then, to get the solvability and

uniqueness of solutions, more smoothness of the right-hand side f(t) may be required,

namely, f(t) ∈ C µ̂([t0, t1], Cn), where µ̂ > µ (cf. for example, [17], Chapter 8 and

Subsection S1.3.). Whereas, in the case of variable coefficient systems of DAEs of

higher-order, it is expected that sufficient and necessary conditions for the existence of

the strangeness-index will be investigated in the future.

On the basis of presented theoretical results on linear systems of DAEs of higher-

order, we also expect that numerical methods and software packages for the deter-

mination of consistent initial conditions and for the computation of solutions to the

associated initial value problems will be developed in the future (for numerical treat-

ment of first-order systems, cf. [31, 32, 33, 34]).

In the second part of this thesis, from the point of view of both the theory of ma-

trices and matrix computations, we have discussed the regularity and singularity of

matrix polynomials. Several sufficient and necessary conditions for the column- and

row- regularity and singularity of rectangular matrix polynomials have been presented.

Such conditions have laid a theoretical foundation for the subsequent related investi-

gations. For instance, we have used them to present a geometrical characterization of

singular matrix pencils, by which, conversely, the definition of deflating subspaces of a

regular matrix pencil has been clarified. We have also presented a canonical form, un-

der equivalence transformations, for 2×2 singular quadratic matrix polynomials, which

clearly demonstrates the geometrical relations between the row (and column) spaces of

the coefficient matrices of a 2 × 2 singular quadratic matrix polynomial.

In the case of square matrix polynomials, we have investigated the problems of de-

tecting the regularity and singularity and of nearness to singularity for regular matrix

polynomials. We have presented an algorithm to check whether or not a given matrix

polynomial is regular via the rank information of its matrix coefficients. As a by-product

in our investigation, we have also given attainable lower bounds on the algebraic mul-

tiplicity of eigenvalues ∞ and 0 of a polynomial eigenvalue problem
(∑l

i=0 λiAi

)
x = 0

if the corresponding matrix polynomial
∑l

i=0 λiAi is regular.

For square and regular matrix polynomials, we have given a definition of the dis-

tance, in terms of the spectral and Frobenius matrix norms, to the nearest singular

matrix polynomials. Several basic and interesting properties of the distance have been

presented. Based on the sufficient and necessary conditions of the regularity of matrix

polynomials obtained, a general theoretical characterization of the nearest distance to

singularity has been also presented. From the characterization it turns out that the near-

ness problem is in essence a perturbation-structured and constrained rank-deficiency

problem, for which to determine an explicit computable formula appears to be an open

problem. Nonetheless, in the case of matrix pencils we have developed a useful char-
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acterization, in terms of the singular values of matrices, of the nearest distance, which

directly coincides with the obtained geometrical characterization for singular matrix

pencils. We have also investigated the nearness problem for two special cases of matrix

polynomials, and in particular, presented an example in which the nearest distance to

singularity in terms of the spectral norm is less than that in terms of the Frobenius

norm. At last, two types of lower bounds on the nearest distance for general regular

matrix polynomials have been presented.

In the future we expect that detecting the regularity and singularity and providing

information on the nearness to singularity will be realized in those software packages

which deal with systems of linear differential-algebraic equations with constant coeffi-

cients and polynomial eigenvalue problems.

125



126



Bibliography

[1] U. M. Ascher, L. R. Petzold. Projected collocation for higher-order higher-index

differential-algebraic equations. J. Comp. Appl. Math. 43 (1992) 243–259.

[2] K. Balla, R. März. A unified approach to linear differential algebraic algebraic

equations and their adjoints. Z. Anal. Anwendungen, 21(2002)3, 783-802.

[3] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solutions of Initial-

Value Problems in Differential-Algebraic Equations. Classics in Applied Mathe-

matics, Vol. 14, SIAM, 1996.

[4] R. Byers, C. He, V. Mehrmann. Where is the nearest non-regular pencil? Lin. Alg.

Appl., 285: 81-105, 1998.

[5] E. A. Coddington, R. Carlson. Linear Ordinary Differential Equations. SIAM.

Philadelphia. 1997.

[6] R. Courant, F. John. Introduction to Calculus and Analysis I. Springer-Verlag,

New York, Inc. 1989.

[7] S. L. Campbell. Singular Systems of Differential Equations. Pitman, Boston, 1980.

[8] S. L. Campbell. Singular Systems of Differential Equations II. Pitman, Boston,

1982.

[9] E. K.-W. Chu. Perturbation of eigenvalues for matrix polynomials via the Bauer–

Fike theorems. SIAM J. Matrix Anal. Appl. 25(2003), pp. 551-573.

[10] E. A. Coddington, N. Levinson. Theory of Ordinary Differential Equations.

McGraw-Hill Book Company, Inc. 1955.

[11] C. De Boor, H. O. Kreiss. On the condition of the linear systems associated with

discretized BVPs of ODEs. SIAM J. Numer. Anal., Vol 23, 1986, pp. 936-939.

[12] J. Demmel. Applied Numerical Linear Algebra. SIAM Press. 1997.

127



[13] J. -P. Dedieu, F, Tisseur. Perturbation theory for homogeneous polynomial eigen-

value problems. Lin. Alg. Appl., 358: 71-74, 2003.

[14] F. R. Gantmacher. The Theory of Matrices. Vol. I. Chelsea Publishing Company,

New York, 1959.

[15] F. R. Gantmacher. The Theory of Matrices. Vol. II. Chelsea Publishing Company,

New York, 1959.

[16] E. Griepentrog, M. Hanke and R. März. Toward a better understanding of dif-

ferential algebraic equations (Introductory survey). Seminar Notes Edited by E.

Griepentrog, M. Hanke and R. März, Berliner Seminar on Differential-Algebraic

Equations, 1992.

http://www.mathematik.hu-berlin.de/publ/SB-92-1/s dae.html

[17] I. Gohberg, P. Lancaster, L. Rodman. Matrix Polynomials. Academic Press. 1982.

[18] E. Griepentrog, R. März. Differential-Algebraic Equations and Their Numerical

Treatment. Teubner-Texte zur Mathematik, Band 88, 1896.

[19] G. H. Golub, C. F. Van Loan. Matrix Computations, Third Edition. The Johns

Hopkins University Press. 1996.

[20] N. J. Higham. Matrix nearness problems and applications. In M. J. C. Gover and

S. Barnett, editors, Applications of Matrix Theory, pages 1-27, Oxford University

Press, 1989.

[21] D. J. Higham, N. J. Higham. Structured backward error and condition of generalized

eigenvalue problems. SIAM J. Matrix Anal. Appl. 20 (2) (1998) 493-512.

[22] N. J. Higham, F. Tisseur. More on pseudospectra for polynomial eigenvalue prob-

lems and applications in control theory. Lin. Alg. Appl., 351-352: 435-453, 2002.

[23] N. J. Higham, F. Tisseur. Bounds for Eigenvalues of Matrix Polynomials. Lin. Alg.

Appl., 358: 5-22, 2003.

[24] N. J. Higham, F. Tisseur, and P. M. Van Dooren. Detecting a definite Hermit-

ian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated

nearness problems. Lin. Alg. Appl., 351-352: 455-474, 2002.

[25] R. A. Horn, C. R. Johnson. Matrix Analysis. Cambridge University Press, July,

1990.

128



[26] T.-M. Hwang, W.-W. Lin and V. Mehrmann. Numerical solution of quadratic

eigenvalue problems with structure-preserving methods. SIAM J. Sci. Comput.

24:1283-1302, 2003.

[27] P. Kunkel and V. Mehrmann. Smooth factorizations of matrix valued functions and

their derivatives. Numer. Math. 60: 115-132, 1991.

[28] P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equa-

tions with variable coefficients. J. Comp. Appl. Math. 56(1994), 225-251.

[29] P. Kunkel and V. Mehrmann. A new look at pencils of matrix valued functions.

Lin. Alg. Appl., 212/213: 215-248, 1994.

[30] P. Kunkel and V. Mehrmann. Local and global invariants of linear differential-

algebraic equations and their relation. Electron. Trans. Numer. Anal. 4: 138-157,

1996.

[31] P. Kunkel and V. Mehrmann. A new class of discretization methods for the solution

of linear differential-algebraic equations. SIAM J. Numer. Anal. 33: 1941-1961,

1996.

[32] P. Kunkel, V. Mehrmann, W. Rath, and J. Weickert. A new software package for

the solution of linear differential algebraic equations. SIAM J. Sci. Comput. 18:

115-138, 1997.

[33] P. Kunkel, V. Mehrmann, and Werner Rath. Analysis and numerical solution of

control problems in descriptor form. Math. Control Signals Systems. 14: 29-61

(2001)

[34] P. Kunkel and V. Mehrmann. Analytical and Numerical Treatment of Initial Value

Problems for Differential-Algerbaic Equations (in manuscript).

[35] P. Lancaster. Lambda-Matrices and Vibrating Systems. Pergamon Press, Oxford,

1966. xiii+196 pp.

[36] P. Lancaster, M. Tismenetsky. The Theory of Matrices with Applications. Second

Edition. Academic Press. 1985.

[37] R. März. The index of linear differential algebraic equations with properly stated

leading terms. Results Math. 42(2002), 308-338.

[38] R. März. Solvability of linear differential algebraic equations with properly stated

leading terms. Humboldt-Universität zu Berlin, Institut für Mathematik, Preprint

02-12.

129



[39] The MathWorks, Inc.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/functionlist.shtml

[40] W. S. Martinson, P. I. Barton. A Differentiation index for partial differential-

algebraic equations. SIAM J. Sci. Comput. 21 (2000), 2295-2315.

[41] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann. Linearization of parlindromic

polynomial eigenvalue problems: good vibrations from good linearizations. (in man-

uscript), 2003.

[42] T. Maly, L. R. Petzold. Numerical methods and software for sensitivity analysis of

differential-algebraic systems. Appl. Numer. Math. 20 (1996), 57-79.

[43] N. H. McClamroch. Singular systems of differential equations as dynamic models

for constrained robot systems. Technical Report RSD-TR-2-86, Univ. of Michigan

Robot Systems Division, 1986.

[44] K. Meerbergen, F. Tisseur. The Quadratic Eigenvalue Problem. SIAM Review,

(43)2:235-286,2001.

[45] C. B. Moler, G. W. Stewart. An algorithm for generalized matrix eigenvalue prob-

lems. SIAM J. Numer. Anal., 10: 241-56, 1973.

[46] V. Mehrmann, D. Watkins. Polynomial eigenvalue problems with Hamiltonian

structure. Electron. Trans. Numer. Anal. Vol. 13. 2002

[47] L. R. Petzold. Differential-algebraic equations are not ODE’s. SIAM J. Sci. &

Statist. Comp. 3(1982), 367-384.

[48] P. J. Rabier, W. C. Rheinboldt. Nonholonomic motion of rigid mechanical systems

from a DAE viewpoint. SIAM, Philadelphia, PA, 2000. viii+140 pp. ISBN: 0-89871-

446-X

[49] P. J. Rabier, W. C. Rheinboldt. Theoretical and numerical analysis of differential-

algebraic equations. Handbook of numerical analysis, Vol. VIII, 183–540, North-

Holland, Amsterdam, 2002.

[50] J. Sand. On implicit Euler for high-order high-index DAEs. Appl. Numer. Math.

42 (2002), pp. 411-424.
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