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Abstract

Nowadays, embedded and reactive real-time systems are often also dis-
tributed and operate in dynamically changing environments. Furthermore,
these systems handle safety-critical tasks and therefore have to satisfy crit-
ical functional and non-functional requirements like, for example, real-time
requirements. During development, such systems are often modeled on dif-
ferent levels of abstraction using different formalisms or languages in order
to facilitate the verification of crucial properties. Timed process-algebraic
formalisms like Timed CSP are well-suited for reasoning about properties of
distributed systems on different levels of abstraction. However, it is still a
challenging task to establish that implementations given in an unstructured
low-level programming language correctly implement the respective process-
algebraic specifications. The main challenge is to find a way of overcoming
the semantic gap introduced by the different levels of abstraction that ensures
that properties established on the higher levels of abstraction are preserved.

In this thesis, we address this problem by developing a mechanized frame-
work that enables the compositional verification of formal relations between
timed process-algebraic specifications given in Timed CSP and their implemen-
tations given in a low-level programming language. On the level of process-
algebraic specifications, we build on an existing mechanization of the opera-
tional semantics of Timed CSP in the theorem prover Isabelle/HOL. On the
level of programming languages, our framework provides a mechanization and
extension of an existing compositional big-step semantics and a Hoare-logic
for a basic low-level language. We extend the semantics and the Hoare-logic
to support non-determinism and real-time properties and provide mechanized
soundness and completeness proofs for the partial and total correctness cases.
For proofs about conformance between abstract specifications in Timed CSP
and their implementations in the extended low-level language, we use the no-
tion of weak timed bisimulation. As a basis for this relation, we formally derive
a labeled transition system from the unlabeled transition system induced by
the operational semantics of the extended low-level language. We show how
our framework supports the transfer of verification results established using
our proof calculus in order to discharge verification conditions resulting from
conformance proofs. Furthermore, we provide a CSP-based approach for the
specification and verification of distributed reactive systems, which adapt their
behavior to changes in their environment. In this modeling approach, the no-
tion of refinement in CSP is exploited to realize a layered specification approach
separating the functional behavior of a system from its internal reconfiguration
processes.

We have formalized the underlying theory of our approach using the Is-
abelle/HOL theorem prover. This enables us to mechanically verify all results
of this thesis and ensures that critical corner cases are not overlooked. At
the same time, we thereby provide a machine-assisted verification environ-
ment that enables the mechanized compositional verification of conformance
relations between low-level code and timed process-algebraic specifications in
dynamically changing environments.






Zusammenfassung

Eingebettete und reaktive Echtzeitsysteme sind heutzutage oft verteilt im-
plementiert und werden in sich dynamisch andernden Umgebungen eingesetzt.
Ihre Nutzung in sicherheitskritischen Umgebungen, erfordert dass diese Sys-
teme neben funktionalen Eigenschaften oft auch nicht-funktionalen Eigen-
schaften, wie z.B. Echtzeiteigenschaften, geniigen miissen. Um besonders
wichtige Eigenschaften formal nachweisen zu kénnen, modellieren Entwick-
lingsprozesse filir derartige Systeme diese auf verschiedenen Abstraktionsebe-
nen mit potentiell unterschiedlichen Formalismen und Sprachen. Zeitbehaftete
Prozesskalkiile beispielsweise ermoglichen den Nachweis kritischer Eigenschaften
auf verschiedenen Abstraktionsebenen. Es stellt sich allerdings noch immer
problematisch dar, fiir Implementierungen in einer unstrukturierten Program-
miersprache formal nachzuweisen, dass diese sich korrekt hinsichtlich einer
abstrakten Spezifikation verhalten und auch deren Eigenschaften bewahren.

In dieser Arbeit prasentieren wir eine mechanisierte Verifikationsumgebung
fiir eingebettete Echtzeitsysteme. Diese ermoglicht die maschinelle und kom-
positionale Verifikation der Konformitét zwischen abstrakten Spezifikationen
im Prozesskalkiil Timed CSP und Implementierungen in einer maschinennahen
und unstrukturierten Sprache. Auf Ebene der prozess-algebraischen Spezifika-
tionen nutzen wir eine bestehende Mechanisierung der operationalen Semantik
von Timed CSP im Theorembeweiser Isabelle/HOL. Auf Implementierungs-
ebene bauen wir auf eine kompositionale Semantik und einen zugehorigen
Hoare-Kalkiil fiir eine minimalistische unstrukturierte Sprache auf. Diese er-
weitern wir um Nichtdeterminismus und Echtzeiteigenschaften und stellen
maschinengestiitzte Beweise fiir Korrektheit und Vollstandigkeit sowohl fiir den
Fall der partiellen Korrektheit, als auch fiir den Fall der totalen Korrektheit
bereit. Wir ermoglichen den maschinengestiitzten Nachweis der Konformitét
einer Implementierung hinsichtlich ihrer abstrakten Spezifikation basierend auf
dem Begriff der schwachen zeitbehafteten Bisimulation. Hierzu leiten wir aus-
gehend von der operationalen Semantik unserer low-level Sprache formal ein
zeitbehaftetes und markiertes Transitionssystem ab. Wir stellen Theoreme
bereit, die es ermdoglichen, Aussagen unserer Programmlogik in Konformitats-
beweisen zu nutzen. Dadurch erhohen wir die Wiederverwendbarkeit von Be-
weisen. Weiterhin prasentieren wir einen Ansatz zur Spezifikation und Veri-
fikation von verteilten und adaptiven Systemen in CSP, welcher es ermdoglicht
funktionale und adaptive Aspekte eines Systems getrennt voneinander zu spez-
ifizieren und zu analysieren. Die mittels dieses Ansatzes etablierten Eigen-
schaften lassen sich dann durch unserere Konformitatsrelation von der ab-
strakten Ebene auf die Implementierungsebene einer unstrukturierten Sprache
transferieren.

Die unserem Ansatz zugrunde liegende Theorie formalisieren wir im The-
orembeweiser Isabelle/HOL. Dadurch wird die Korrektheit unserer Verifika-
tionsumgebung sichergestellt. Weiterhin erhalten wir eine maschinengestiitzte
Verifikationsumgebung fiir die kompositionale und mechanisierte Verifikation
von Konformitatsrelationen zwischen low-level Programmen und ihren prozess-
algebraischen Spezifikationen in sich dynamisch dndernden Umgebungen.
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1 Introduction

When developing safety-critical embedded and reactive real-time software, de-
velopers need to achieve a maximum degree of assurance that critical system
properties are fulfilled by the executed code. Establishing such properties is
a challenging task because the complexity of embedded system software is
steadily increasing and embedded applications are approaching the versatility
of general purpose software. Besides functional properties, embedded code
frequently needs to fulfill non-functional properties like, for example, timing
properties. During the development phase of safety-critical systems, functional
and non-functional properties of a system are often established on different lev-
els of abstraction, i.e., abstract specifications, high-level implementations and
executable code. Often, the properties are closely connected to the limited
resources of the actual embedded hardware the software is deployed on. It is
therefore important to have development approaches in place that integrate
the verification of crucial system properties throughout the different levels of
abstraction typically found in embedded software development processes. Fur-
thermore, it is necessary to establish the desired properties in a mathematical
concise and machine-assisted fashion in order to gain a maximum of trust into
the correctness of the established properties.

1.1 Problem

A variety of specification formalisms and methodologies offer convenient mech-
anisms for reasoning about the behavior of possibly distributed systems at a
high-level of abstraction. These formalisms can be extended to facilitate rea-
soning about classical functional as well as timing properties. When modeling
systems using such formalisms, one usually abstracts from the concrete compu-
tation of values or functions. The abstractions keep the resulting models small
and ease the process of establishing important properties. However, when im-
plementing systems that are specified using such formalisms, the high level of
abstraction introduces a semantic gap between the abstract system models and
their final implementations. In such a setting, correctness of an implementa-
tion with respect to an abstract specification cannot be trivially established.
This is due to the different views on the problem domain taken by the for-
malisms on the one side and imperative programming languages on the other

11



12 Introduction

side. Taking also transformations from high-level code to low-level represen-
tations of a system into consideration, the semantic gap becomes even more
evident. Furthermore, non-functional system properties, like timing behavior
for example, which can be modeled and reasoned about conveniently on the
abstract level, cannot be verified in most general purpose programming lan-
guages. However, in many cases conformance between abstract specifications
and low-level implementations is of crucial importance. Considering for exam-
ple safety critical systems, it needs to be assured that certain critical properties
not only hold on the abstract level but also for transformations to low-level
code. Establishing such problems using formally founded methods is a com-
plex task due to the presence of timing constraints, possible non-determinism
and communications. Therefore such proofs require machine-assistance so that
critical corner cases cannot be overlooked.

1.2 Objectives

This thesis addresses the problem described above by providing a formally
justified verification environment. The environment provides system develop-
ers with formal techniques to establish properties about the functional and
also the timing behavior of embedded real-time systems on multiple levels of
abstraction. We want our framework to fulfill the following criteria :

e Formal specification of system behavior on different levels of
abstraction. We require the specifications of the developed systems to
be precise and unambiguous. The semantics of the employed represen-
tations need to be formally defined.

e Formally justified relation between different levels of abstrac-
tion. To show consistency between different levels of system abstraction,
formally justified relations need to be established.

e Integration of timing behavior on all levels of abstraction. The
proposed approach targets embedded real-time systems. When dealing
with such systems, it is important to ensure that certain timing proper-
ties are satisfied. We argue that these properties need to be considered
on all levels of abstraction, i.e., from the abstract specification down to
the low-level representations.

e Support for adaptivity. Embedded controllers become more and more
versatile and dynamic in the way they control their environment or inter-
act with other systems. Therefore, we require our approach to support
adaptive behavior, i.e., systems that change their behaviour in response
to changes in their environment.

e Integration with existing and practically relevant formalisms
and programming languages. To exploit powerful and established
formalisms, programming languages, and related tools, we want our ap-
proach to support practically relevant languages and formalisms.
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e A high degree of mechanization and automatization. We want
the framework to be mechanized and automated using established proof
tools. Mechanization is important in order to guarantee the overall cor-
rectness of our approach on the one hand and to guide concrete proofs
within our verification framework on the other hand. Mechanization us-
ing established proof tools prevents overlooking of corner cases and also
facilitates the automatization of proof tasks.

e Modularity and extendabililty. We want our verification environ-
ment to be modular and extendable. It should serve as a basis for the
integration of further formalisms and programming languages.

1.3 Proposed Solution

To achieve the objectives given above, we propose an approach based on the
combination of process-algebraic proof mechanisms and interactive program
verification [BG10, BG11]. On the abstract specification level, we use process-
algebraic formalisms that support reasoning about timing properties. We as-
sume that developers provide an implementation of the abstract specification
in a high-level programming language. The high-level code is then transformed
to an intermediate low-level language as used in compiler frameworks. We then
establish conformance between the implementation given in its intermediate
representation and the abstract specification. This has the advantage that
we are able to support a variety of programming languages that can be com-
piled to the chosen intermediate language and avoid formalizing the complex
semantics of general purpose languages like, for example, C++.

As the basis for the mechanized and compositional verification of unstruc-
tured intermediate code, we formalize a compositional big-step semantics and
Hoare-logic for a basic low-level language based on [SU05]. To model exter-
nal communications, we extend the language to support non-determinism and
provide mechanized proofs for the partial and total correctness cases. Further-
more, we extend our simple non-deterministic language to a real-time setting
including basic communication primitives and adjust the Hoare-logic appro-
priately. An adaption of the notion of weak timed bisimulation serves as the
foundation for our relation between the low-level implementation levels and
the abstract specification level. To be able to employ this relation, we for-
mally derive a timed labeled transition system from the transition system that
is defined by the semantics of the aforementioned extended real-time low-level
language. By establishing conformance on the basis of timed labeled transition
system, we obtain a modular verification environment because we can integrate
formalisms and languages that can be interpreted as defining a timed labeled
transition system. The compositional specification and verification of concrete
bisimulations is supported by the compositional Hoare calculus for our real-
time low-level language. We provide abstraction theorems, which enable the
transfer of verification results about the compositional big-step semantics to
the level of the timed labeled transition system. On the abstract level, we
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develop an approach for the specification and verification of adaptive systems.
In this approach, we separate the specification and the analysis of adaptive
behavior from functional behavior. This leads to a layered specification and
verification approach that is especially well suited for process-algebras, which
provide a notion of refinement. In combination with our conformance rela-
tion, we can ensure that properties established on the level of the abstract
specification also hold for low-level implementations. To ensure the overall
correctness of our verification environment on the one side and provide mech-
anized and partly automatized tool support for concrete verification efforts on
the other side, we mechanize our verification environment using the theorem

prover Isabelle/HOL [NPWO02].

To demonstrate the practical relevance of our formal framework, we instan-
tiate our verification environment mentioned above with a concrete process-
algebraic formalism. We choose CSP [Hoa85] and its conservative extension to
real-time, Timed CSP [Sch92], as process-algebraic formalisms und build on
an existing formalization of the operational semantics of Timed CSP [G&t12]
in Isabelle/HOL. Choosing CSP and Timed CSP as formalisms enables us to
employ established proof tools for the analysis of abstract specifications. Be-
sides the well-known refinement model checker FDR2 [GRAO05] for CSP that
also provides limited support for Timed CSP, ProB [LF08] offers the possibil-
ity to check temporal logical formulas on CSP models and to animate Timed
CSP models. For the implementation level, we provide a formalization of a
basic low-level language that can be used as a basis for the formalization of
concrete low-level representations. In our case study, we instantiate our basic
low-level language to a subset of the intermediate representation (IR) of the
Low-Level Virtual Machine (LLVM) framework[LA04]. The LLVM IR is a
widely used compiler intermediate representation that can be used as the tar-
get for the compilation of a variety of high-level programming languages. Our
approach can therefore in principal be used with any high-level language that
can be compiled to this IR. This further motivates the choice of a low-level
representation as the basis for our conformance relation between high-level
specifications and their implementations.

By integrating the well-known process algebra Timed CSP and our basic
low-level language into a formally founded and mechanized verification ap-
proach, we are able to support a broad range of systems on the specification
level and provide a basis for the formalization of a variety of implementation
languages on the implementation level.

1.4 Motivation

Software engineering for embedded real-time systems is an active field of re-
search and the usage of embedded systems is steadily increasing. Although
still being relatively small compared to general purpose software, the com-
plexity of these systems is increasing as well. This is due to the fact that
embedded controllers become more versatile. While originally focused only
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on specialized tasks, nowadays these systems are dynamically adapting their
behavior to changes in the environment. An important factor that diversifies
software engineering for embedded systems from general software engineering
approaches is that embedded software needs to perform these complex tasks
using only limited resources. Another one is given by the potential conse-
quences of malfunctions. While in some areas problems caused by incorrect
behavior of embedded controllers might be tolerable, e.g., multi-media systems,
malfunctions are clearly not tolerable in the area of safety and security criti-
cal systems. When handling critical tasks, unpredicted behavior might cause
high financial losses or even endanger human lives. It is therefore necessary
that systems that operate in and interact with safety critical environments are
designed, developed, and analyzed with greatest care.

Informal design methods and testing in general can only provide limited
confidence regarding the correctness of systems (e.g., testing can only show
the presence of potential failures) during the different stages of embedded
development processes. In contrast to that, formal methods can be used to
achieve guarantees (e.g., also show the absence of potential problems) during
all stages of development. Formal models of a system design can be used to
rigorously analyze a system design on all levels of abstraction and connect the
different levels by well founded formal notions. It is thereby possible to avoid
design flaws that might otherwise be discovered late during the development
cycle. Faults that are, for example, detected in the final implementation by
testing might in turn lead to high costs for restructuring and reimplementing
the whole system.

The trade-off for the high degree of assurance when using formal design
methods is the high amount of manual verification work that might be nec-
essary. The complexity of such proofs, especially in the context of low-level
code, introduces the risk of subtle corner cases being overlooked. This makes
mechanization and automation especially important. Furthermore, a lot of
specialized formal design methods have emerged focusing on different areas of
system development. Regarding their usage in embedded design approaches,
it is necessary to take a holistic view on verification. By holistic, we mean that
connections between specialized methods need to be established. It should be
possible to preserve or reuse properties verified using a specialized verification
method for a certain level of abstraction on another level of abstraction us-
ing possibly another verification method. It is therefore necessary to develop
verification approaches that ensure the preservation of established properties
throughout different levels of abstraction.

1.5 Main Contributions

The contributions of this thesis are of theoretical as well as of practical rele-
vance to the field of software engineering for safety-critical embedded systems.
The main contributions can be summarized as follows:
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e Mechanized compositional semantics and proof calculi for low-level lan-
guages supporting non-determinism and real-time including mechanized
soundness and completeness proofs.

e Transfer of formal conformance relations to process-algebraic specifica-
tions and their low-level implementations in the setting of embedded
real-time systems.

e An approach for the specification and verification of bisimulation rela-
tions based on Hoare specifications.

e A formalization of the semantics of a subset of the LLVM IR and a proof
calculus for reasoning about programs given in LLVM IR.

e An approach for specifying and verifying adaptive systems and models
of their implementation using CSP.

e A mechanized proof environment for establishing conformance between
abstract specifications and their respective low-level representations.

1.6 Context of this Work

The work presented in this thesis was motivated by and carried out within
the project VATES! [GBGK10, BGG10] funded by the DFG. It is the goal
of the project to provide development processes for safety-critical embedded
real-time systems with formally founded methods and tools that support the
entire development process. The project assumes a top-down approach that
starts with an abstract specification, which is further refined and transformed
to an implementation. More precisely, the considered development approach
starts with an abstract specification given in Timed CSP. To this end, a for-
malization of the operational semantics of Timed CSP in the theorem prover
Isabelle/HOL was developed within the project. This formalization [G6t12]
especially enables the mechanical verification of infinite (e.g., parameterized)
real-time systems. Moreover, the automatic analysis of finite process descrip-
tions is supported by translations from Timed CSP to the input languages
of the model checkers UPPAAL [BY04] and FDR2 [GRAO05]. To show that
a given implementation correctly implements an abstract specification given
in Timed CSP, the implementation is assumed to be transformed to the in-
termediate representation of the LLVM compiler framework. An algorithm
was designed [KH09] and implemented [KBGT11] that automatically extracts
a low-level CSP model from LLVM IR code which can then be used to show
that the implementation correctly refines the abstract specification. The re-
lation between the different levels of abstraction considered in the VATES
project are a main motivation for the work presented in this thesis. The re-
sults presented provide the groundwork for the comprehensive verification of
the aforementioned extraction algorithm. Furthermore, the formalized con-
cepts yield a verification environment, which is suitable for the verification of

Verification and Transformation of Embedded Systems



1.7 Outline 17

low-level implementations with respect to abstract specifications, for example
in the context of infinite state systems.

1.7 Outline

This thesis is structured as follows. Chapter 2 introduces formalisms, lan-
guages and tools that are used throughout the subsequent chapters. Then
in Chapter 3, we proceed by discussing work that is related to the approach
presented in this thesis. Afterwards in Chapter 4, we present our verification
approach that integrates different levels of system abstraction in more detail.
The following Chapter 5 explains the mechanization of our extended opera-
tional semantics and related Hoare-style proof calculus for a basic low-level
language. The extension to a real-time setting with basic communication fa-
cilities is discussed afterwards in Chapter 6. Building on these concepts, we
construct a formal relation between low-level languages and abstract specifi-
cations given in the process algebra Timed CSP in Chapter 7. In Chapter 8,
we explain how distributed adaptive systems can be formalized and analyzed
using Timed CSP in order to exploit the concepts from the previous chapters.
Case studies that use the presented methodology are presented in Chapter 9.
In Chapter 10, we give a conclusion and discuss possible extensions to the
concepts presented in this thesis.






2 Background

In this chapter, we give the necessary background information regarding the
formalisms and languages used in this thesis. We start with an introduction
to the basic Hoare calculus for a simple high-level language. Afterwards, in
Section 2.2, we introduce the the Low Level Virtual Machine (LLVM) com-
piler framework and its intermediate representation (IR) are introduced. The
IR serves as an example for a typical low-level language. In Chapter 5, we
present a Hoare logic for such languages. The main goal of our framework is
to provide methods to show the formal conformance between process-algebraic
specifications and their low-level implementations. To realize this relation, we
will interpret the semantics of the respective languages as (timed) labeled tran-
sition systems. These can be analyzed using several notions of bisimulation.
Labeled transition systems and bisimulations are therefore introduced in Sec-
tion 2.3. After that, the semantics of CSP and its timed extension Timed
CSP are presented. While both are capable of specifying and analyzing dis-
tributed processes, the latter additionally provides mechanisms for reasoning
about timing properties of distributed systems. We mainly focus on the oper-
ational semantics here, as the core of our formal framework is based on this
semantics. Our framework is mechanized in Higher Order Logic (HOL) using
the theorem prover Isabelle. We finish this chapter with a short introduction
to HOL and the mechanisms of the interactive prover in Section 2.5 and a brief
summary in Section 2.6.

2.1 Hoare Calculus

In this section, we shortly motivate and introduce the axiomatic approach
to the specification and verification of properties for structured programming
languages. For a detailed introduction we refer to [Rey98] and [AdBOO09]. This
prominent method for specifying and verifying properties of programs using
assertions goes back to Floyd [Flo67b] and Hoare [Hoa69] and is sometimes
called the Floyd-Hoare calculus or for short Hoare calculus. The main idea is
that the meaning of a program is specified by a description of the state, i.e., the
values of some variables, before a program is executed and a description of the
state after the program was executed (assuming the program was started in a
state which fulfills the aforementioned description of the state). This intuition

19



20 Background

of a specification is formalized using the notion of so-called Hoare-triples:

{P} Program {Q}

Here, the precondition P and the postcondition () are assertions, which in
general are functions from the type of program state to the domain of truth
values (the Booleans). The program state describes the values of variables at
a given point within a program. Between the two assertions P and (@), the
Program is given in terms of the formal syntax of the programming language
for which the Hoare-calculus is defined. To obtain a proof system that supports
the analysis of complex specifications about the behavior of a program given
in a certain programming language, the general approach is to first define the
behavior of the programming languages basic instructions in isolation and then
provide rules that can be used to derive more complex specifications from these
basic specifications. The ingredients of such a proof system are called axioms
and inference rules. Inference rules have the following format:

Premasey, ..., Premise,
Conclusion

Condition

Inference rules can be applied in a logical context where all of the premises
Premise; to Premise, given as assertions above the line evaluate to true and
also a possible side condition Condition holds. If this is the case, then one can
conclude that the Conclusion under the separating line holds as well. Axioms
in turn are inference rules that have no preconditions. A proof system and
its axioms and inference rules can be analyzed in terms of its correctness and
completeness. The operational or denotational semantics of the programming
language for which the proof system is defined is used as the basis for such an
analysis. If it can be established that the rules of the proof system can only be
used to derive specifications about programs which are valid with respect to the
operational semantics, then the proof system is called sound. If a proof system
is capable of providing rules to derive every possible specification about a
programming language the system has the property of completeness. Note that
the notion of completeness is often referred to as relative completeness [CooT8].
In this context, relative means that the proof system is complete with respect
to the logic that the assertions are formalized in.

In relation to the concepts of operational and denotational semantics, the
approach to the specification of a meaning of a program taken by Hoare calculi
is sometimes called axiomatic semantics. However, in [Rey98] it is argued that
a more appropriate name for this approach is specifications and proofs because
rather than defining the overall semantics of a program fragment, specifications
in this proof system might in general concentrate on more abstract properties
of a program fragment.
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2.1.1 Axioms and Inference Rules

In the remainder of this section we shortly discuss the main axioms and in-
ference rules for a typical abstract high-level language, often called while lan-
guage.

The first rule is the assignment axiom, which formalizes an instruction
which assigns the value a to a program variable x:

{Qlzr = al}z:=a{Q}

The instruction skip has no effect on the state and therefore any assertion
P that holds before the execution of skip also holds after the instruction was
executed:

{P}skip{P}

The rule for the alternative instruction, which executes either the program
fragment ;e Or S5, depending on the evaluation of a Boolean condition b is
given as follows:

{b A P}Strue{Q} {_'b A P}Sfalse{Q}
{P}if b then sy, else Spse{ @}

Here the Boolean condition b is a predicate that depends on the values of the
program variables.

The rule for the while instruction is considered to be the most demanding
proof rule because it requires the specification of an invariant I. The while
instruction executes a program fragment s, (called the loop body) repeatedly
as long as the predicate b evaluates to true before each execution.

{bAI}syue{l}
{I}while b do syye{—b AT}

The invariant [ is an assertion which needs to evaluate to true before and after
each execution of the loop body but not necessarily during the execution of
Syrue- The intuition is that [ relates program variables before and after each
execution of the loop body. If the loop condition b does not hold anymore, we
therefore know that in the state after the last execution of s;.,. I holds, but b
does not.

The rule for sequential composition enables the construction of programs
that consist of more than one instruction:

{P}so{R} {R}si{Q}
{P}tso;s1{Q}

The inference rule uses an intermediate assertion R to compose two program
fragments. If after the execution of fragment s, that starts in a state fulfilling
the assertion P and ends in a state fulfilling R, the fragment s is executed
from this state and results in a state that fulfills (), it can be concluded that
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the sequential composition of the two fragments executed in a state fulfilling
P ends in a state fulfilling Q.

At the heart of any Hoare-style proof system lies the rule of consequence.
Using the previously presented rules, it is only possible to derive specifications
that exactly reflect the behavior of the operational semantics of the program-
ming language at hand. The following rule allows us to establish more abstract
specifications:

PEP {P}s{Q} Q@ FQ
{P}s{Q}

The rule of consequence expresses that for any given valid specification, the
precondition can be strengthened and the postcondition can be weakened. The
intuition is that the precondition of a valid specification can be replaced by a
more restrictive one and it is still ensured that the original postcondition holds
after execution of the program fragment. Furthermore, the postcondition can
be replaced by a less restrictive assertion.

In Chapter 5, we formalize a Hoare calculus for a low-level language. The
inference rules and axioms of that calculus are quite similar to the ones pre-
sented in this section. However, as we have to account for unstructured control
flow, the assertions will explicitly mention a program counter pointing to the
instruction that is to be executed next. In the next section, we briefly introduce
a concrete example for such a low-level language.

2.2 Low Level Virtual Machine (LLVM)

In this thesis, we present a mechanized framework that can be used for the
verification of conformance relations between low-level programs and their
process-algebraic specifications. To this end, we also provide a Hoare-style
calculus for the verification of low-level code. The intermediate representation
(IR) of the Low Level Virtual Machine (LLVM) compiler framework can be
regarded as a typical low-level language in terms of its unstructured control
flow. Later in this thesis, we formalize a subset of the language’s instructions
using our mechanized framework. Furthermore, the development process con-
sidered within the project VATES targets intermediate representations as the
verification basis for conducting correctness proofs about given implementa-
tions. As a concrete representation, we have chosen the LLVM IR. A main
advantage of this decision is the versatility of the framework for practical pur-
poses. The modular design of the framework (and also the IR) enables us
to cope with a variety of high-level languages and also architectures used in
practice. Moreover, the framework is rather self-contained, .i.e., all necessary
transformation, optimization, and code generation processes can be realized
using the framework. In this section, we give a short overview of the LLVM
framework and its intermediate language.
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2.2.1 Compiler Infrastructure

The LLVM compiler infrastructure [LA04] provides a modular framework that
can easily be extended. There already exist front-ends for various high-level
languages that transform programs given in the syntax of the respective high-
level language to the internal representation of the LLVM framework, its in-
termediate language. On this level, so-called compilation passes are applied
to the representation of the original program. LLVM offers a rich set of pre-
defined analyses and optimizations that can be used to build further analyses
or optimization procedures. For example, the tool LLVM2CSP [KBG*11] de-
veloped in the VATES project for extracting CSP models from LLVM code
is realized as such a compilation pass. For code generation, back-ends for all
commonly used architectures exist.

2.2.2 Intermediate Representation (IR)

The central part of the compiler infrastructure is its platform-independent
intermediate representation (IR). The IR is a RISC-like language, which is
used internally as the basis for transformations and optimizations. The LLVM
IR is a three-address code IR and provides an infinite virtual register set in
static single assignment (SSA) form. Furthermore, the IR provides a rather
simple language-independent type system, which due to its structure supports
the concrete implementations of commonly used high-level features. It can
therefore be used as the target for transformations from various high-level
languages. This includes weakly typed languages like C for example. It is also
possible to define type-safe subsets of LLVM.

Structure of LLVM IR Code In general, the LLVM IR is a typical low-level
language as it consists of branching instructions, which allow the control flow
to be transferred to potentially arbitrary locations within a given program.
However, to impose a basic structure to programs the intermediate language
makes use of the concept of basic blocks. Basic blocks are groups of instruc-
tions that have a named label. Instructions within a basic block are executed
sequentially. The labels of basic blocks are also the targets of branch instruc-
tions, i.e., the control flow is not arbitrarily unstructured because jumps are
not allowed to arbritrary locations in the program. More structure in LLVM
IR programs is possible using function definitions. Within function definitions
local variables can be defined and used.

Syntax of the LLVM IR The syntax and semantics of the LLVM IR is defined
informally in [LAO8]. We summarize the main features about the language here
briefly.

The syntax of LLVM is reminiscent of assembler code with type informa-
tion. For example, the following instruction subtracts the value stored in the
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virtual register %op_2 from the value stored in the virtual register %op_1 and
stores the result in the register %dest_id:

1 %dest_id = sub type %op_1, %op_2.

The virtual registers are named by natural numbers prefixed by a %. Before
such an instruction can be executed, the operands are loaded from the memory:

.l : %op_1 = load type %variable,align 4.

Variables are prefixed by a % as well. Although being a low-level repre-
sentation, crucial high-level information is explicitly present in the code. This
includes information about the data and control flow, as well as type infor-
mation even for pointer arithmetic. The type system consists of integer and
floating-point types as primitives, from which more complex types like arrays
and structures are derived. Rich type systems from high-level languages are
lowered to the types of the IR. The LLVM IR can express weakly-typed lan-
guages like C, as well as defining type-safe subsets of LLVM. In [BG10], we
give an operational semantics for a subset of the LLVM IR that we outline
briefly in Chapter 9.

In this section, we have introduced the IR of the LLVM framework. The
language is a typical example of a low-level language with unstructured control
flow. Using our mechanized verification environment, we enable conformance
proofs between low-level languages and process-algebraic specifications. To
enable such a relation, we interpret the semantics of the low-level language and
of the process-algebra as a labeled transition system. In the next section, we
therefore give a short introduction to labeled transition systems. Furthermore,
we introduce the notion of bisimulations. Bisimulations can be used to relate
labeled transition systems with identical behaviors.

2.3 Labeled Transition Systems and Bisimulations

Transition systems (TS) and labeled transition systems (LTS) are important
concepts in computer science because a variety of languages and formalisms
can be interpreted as defining either a T'S or an LTS. The notion of bisimulation
allows to identify states within an LTS from which equivalent behaviors are
possible. In Chapter 7, we build on these concepts in order to relate process-
algebraic specifications to low-level code. Here, we give a short introduction
to these formal notions.

2.3.1 Labeled Transition Systems

The basic definition of a transition system (TS) defines an abstract machine,
its states, and transitions that are allowed between the states of the abstract
machine:
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Definition 1 (Transition System)
An TS is a tuple (S, T), where S is a set of states and T C (S x S) is a
transition relation.

The basic transition system can be extended by introducing labels. Such la-
bels are attached to transitions between the states of the abstract machine
represented by the extended transition system. Such an extended transition
system is called a labeled transition system (LTS).

Definition 2 (Labeled Transition System)
An LTS is a tuple (S, T, A), where S is a set of states, T C (S x Ax S) isa
labeled transition relation and A is a label set.

Labels are used to reflect information related to transitions between states.
For example, labels might model the input of values, which trigger a state
transition. Labels can also represent conditions which need to be fulfilled in
order to perform a transitions or reflect actions of the system when performing
a transition from one state to another one. In this scenario, a distinguished
event 7 is often used to model internal actions of a system. If s, € S and
o € Aand (s,a,s') € T then we also write s —— s/,

We further extend the definition of a labeled transition system to a timed
labeled transition system by separating the set of labels into a label set and a
time domain. The intuition is that from a state s either a labeled transition
or a timed transition is possible.

Definition 3 (Timed Labeled Transition System)

A timed LTS (TLTS) is given by a tuple (S,T,A, D), where S is a set of
states, T C S x (AU D) x S is the timed transition relation, A is a label set
and D is a time domain (such as N or Rsg) with A and D disjoint. We write

s L s for (s,d,s") € T with d € D. For each TLTS, we require the following
two properties to be fulfilled:

t1+1 t t:
oV t by s ot —> s s A At

t t
eV i (svwsANs~ws)— s =5"

The first requirement ensures that time steps can be arbitrarily split into two
consecutive timed transitions, i.e., there is a state s’ available for any #; and
to. The second requirement demands that the passage of time is deterministic.

2.3.2 Bisimulations

The formal notion of bisimulation [Mil89] is a binary relation defined on the
states of an LTS. It relates two states if equivalent behavior is possible from
the two states. Depending on the actual definition, bisimulation relations can
also introduce abstraction. Furthermore, bisimulations can also be defined on
timed labeled transition systems.



26 Background

The least abstract version of bisimulation identifies two states s and ¢
as being bisimilar if any outgoing labeled transition originating in s can be
simulated by a transition with the same label originating from ¢ and leading
to a state which is again in the bisimulation relation and vice versa. Such a
relation is called strong bisimulation.

Definition 4 (Strong Bisimulation)
A relation R C S x S is called a strong bisimulation on an LTS (S, T, A) if
the following properties hold: For all (s,t) € R and o € A:

1. If s =+ &', then there is a t' with t — t' and (s',1') € R.

2. If t =5 t', then there is a s’ with s — s' and (s',t') € R.

To allow for a certain degree of abstraction when relating processes, the notion
of weak bistmulation allows us to abstract from ’internal behavior’. Internal
behavior is modeled by a distinguished event, which is often realized as 7.
The notion of weak bisimulation then abstracts from these state transitions by
allowing an arbitrary number of these transitions before and after the visible
transition that 'answers’ a given labeled transition.

To define the notion of weak bisimulation we first define an extended step
relation on an LTS (5, T, A), which abstracts from possible internal steps
(denoted as 7) as —»,C S x A x S.Here, —7+" is the reflexive and transitive
closure of 7 steps.

Definition 5 (Visible steps modulo 7)
1. If s = s, then s —>, s

* *
2. If s —» 81, 81 — s and s — ' (a # 7), then s —=,, s’

Using this definition, we can now define the notion of weak bisimulation, which
allows zero or more steps before the labeled transition that is used to simulate
some other labeled transition. From the definition of the extended step relation
(that abstracts from internal steps), it follows that if « in the definition below
is an internal step, this transition can be simulated by zero or more internal
steps.

Definition 6 (Weak Bisimulation)
A relation R C S x S is called a weak bisimulation on an LTS (S, T, A) if the
following property holds: For all (s,t) € R and o € A

1. If s -5 ', then there is a t' with t =, t' and (s',t') € R.

2. If t == ¢, then there is a ' with s —,, s' and (s',t') € R.

The notion of weak bisimulation can be extended to the setting of timed labeled
transition systems as introduced above. The idea is to abstract from internal
steps as in the definition of weak bisimulation. Furthermore, it is abstracted
from individual time steps in the sense that a timed transition is allowed to be
simulated using a number of timed transitions, which together represent the
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same amount of time passing by. Moreover, between these timed transitions,
an arbitrary number of internal transitions is allowed.

Using the definition of —,, we define an extended transition relation
—utC S X (AUD) x S on a timed labeled transition system LTS (S, T', A, D).
The extended transition relation allows to aggregate an arbitrary number of
timed transitions into a single timed transition, which has a duration that
equals the sum of the durations of the individual transitions and furthermore
allows us to abstract from internal transitions.

Definition 7 (Aggregation of Timed Steps modulo 7)
1. Ifs %, s and o € A, then s —,; 5.

2. If for all i € {0,...,n} (for some arbitrary n € N): s L Siy1 with
tie D and Y !  t; =t, then s Lt Snt-

Using the definition of this extended step relation we define the notion of weak
timed bisimulation [dFELN99] as follows:

Definition 8 (Weak Timed Bisimulation)
A relation R C S x S is called a weak timed bisimulation on a timed LTS
(S, T, A, D) if the following property holds: For all (s,t) € R and B € AU D:

1. If s s', then there is a t' with t —5.; t' and (s, 1) € R.

N
2. If t BN t', then there is a s’ with s imt s" and (s',t') € R.

Using the different notions of bisimulation defined in this section, we can iden-
tify states s and ¢ in a labeled or timed labeled transition system from which
similar behavior is possible. Here, the notion of similarity depends on the level
of abstraction that is inherent to the respective notion of bisimulation. The
states s and t are called strongly bisimilar if there exists a relation R that is
a strong bisimulation and if (s, t) € R. If similarity is meant to abstract from
possible internal actions and R is either a weak or weak timed bisimulation,
then for (s,t) € R the states s and ¢ are said to be weak or weakly timed
bisimilar. When considering bisimulations in the context of process-algebras,
for example, the states of an LTS are also called processes. If a transition
labeled with « from such a process P to another process P’ is possible, then
P’ is called an a-derivative of P’.

In this section, we have introduced labeled transition systems and the no-
tion of bisimulation. We use these concepts as the foundation of a mechanized
conformance relation between low-level languages and process-algebraic spec-
ifications. As a process-algebra, we use the formalism of Communicating Se-
quential Processes and its extension with time, Timed CSP which we introduce
in the next section.
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2.4 Communicating Sequential Processes (CSP)

In this section, we introduce the languages of Communicating Sequential Pro-
cesses (CSP) and Timed Communicating Sequential Processes (Timed CSP).
CSP is a language that belongs to the family of process algebras or process
calculi. These formalisms target the high-level description and analysis of the
interaction, communication and synchronization between a set of processes.
For reasoning about specifications, algebraic laws are provided. Timed CSP
can be regarded as a conservative extension of CSP by primitives to specify
the timing behavior of processes. We start by explaining the syntax of CSP
and subsequently discuss its operational semantics. Afterwards, we introduce
the syntactical constructs to handle timing aspects of distributed processes

and discuss how these are handled within the operational semantics of Timed
CSP.

2.4.1 CSP

The language of Communicating Sequential Processes (CSP) [Hoa85] was first
introduced by Tony Hoare in 1978 in a seminal paper [Hoa78|. The key idea
underlying the formalism is to regard distributed systems as consisting of en-
tities or processes, which behave or execute independently from each other
but might choose to synchronize their behavior at some point in time and
then proceed independently again until the next point of synchronization is
reached. This observation already yields the main ingredients of CSP: pro-
cesses, whose behavior is described in terms of instantaneous events that the
respective process is ready to perform at some time of execution. Processes
and the events they perform independently or (in case of a synchronization)
together with other processes can then be observed by the environment of
the processes. In the following, we first summarize the syntax of CSP. To
give processes an unambiguous meaning, we discuss in detail the operational
semantics that characterize the possible behaviors of processes in terms of fir-
ing rules that reflect the next step or steps a process is able to perform. In
contrast to this operational small-step way of describing the possibilities of a
process, denotational semantics for CSP give processes a meaning by mapping
the syntactical description to a mathematical domain and thereby directly de-
scribing all the possible future behaviors of a process. We briefly present the
main concepts of denotational semantics for CSP after our presentation of the
operational semantics.

Syntax of CSP

The syntax of CSP reflects the main idea of the formalism: to focus on the
interaction of sequential processes that may need to synchronize their behavior.
A process can be identified by a name from the set of process variables V.
Processes are capable of performing events or synchronizing on events from
an arbitrary alphabet ¥. However, there are two distinguished events 7 ¢ X
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and v ¢ X that processes are able to communicate but that do not belong to
the alphabet. The first is used to describe internal actions of a process while
the latter is used to model successful termination of a process. The set of
events a process may perform or synchronize on at any time is specified using
the operators shown in the following description of the CSP syntax. We focus
on the operators relevant for this thesis. A detailed description can be found
in [Ros10]

Definition 9 (Syntax of CSP)
Let a be an event from and A be a subset of the event alphabet . The
variable X ranges over the set of process variables V.

P :=STOP | SKIP | CHAOS | div|a — P |z :A— P, |
P, P|PUP|P[IP|P|a|P|P\A|X]| ...

First, there are the predefined processes STOP, SKIP and CHAOS (¢ V),
which all model special types of process behavior. STOP is not capable of
doing anything else than deadlocking, SKIP is not able to do anything but to
terminate successfully. Successful termination is signaled to the environment
by communication of the distinguished element v'. The process CHAOS(A)
may perform any event from the set A C ¥ in any order or may refuse to do
anything. Infinite internal behavior is denoted by the predefined process div.
Using the prefix operator —, it is possible to combine an event a with a process
P, which yields a process that is able to first communicate the event a and
afterwards behave like the process P. A generalization of prefizing is realized
using the menu choice operator =z : A — P,. A process constructed using this
operator is capable of first communicating any event z from a specified set of
events A C ¥ and afterwards behave like the process P,. Using the operator
for sequential composition P; (), it is possible to combine two processes. The
resulting process behaves like the first process and, if this process terminates
successfully, then the resulting process behaves as the second process. The
external choice operator [] offers the environment of a process the choice
between two processes. The intuition is that if the environment chooses to
synchronize on the initial event of the left process, then the combined process
behaves as the left process and if the environment chooses to synchronize on
the initial event of the right process, the combined process behaves like the
right process. The internal choice operator [ | has a similar behavior as the
external choice operator but the decision about which process is chosen is made
internally by the process. Parallel composition of processes (denoted by |4|)
allows two processes to run in parallel such that the processes can individually
synchronize on any event outside of A but need to synchronize when performing
events from A. When the hiding operator P\ A is applied to a process P, all
events from A that the process performs are translated to the internal 7 events.
Process variables X are used to model possibly mutually recursive processes. A
mapping from the set of process variables to the set of possible CSP processes
is used to associate process variables with CSP processes. In the next section,
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we explain the informally introduced behavior of processes in more detail by
discussing the operational semantics of CSP.

Operational Semantics

In this section, we give an overview of the operational semantics of CSP. The
operational semantics describe the behavior of a CSP process in a small-step
manner using inference rules (see Section 2.1). This motivates the interpre-
tation of a CSP process as defining an LT'S. The nodes of the LTS are given
by process descriptions, while the transitions are labelled with events that are
possible between two nodes (or processes). The rules of the operational seman-
tics define which transitions are possible! from a given node. Our presentation
of these rules follows [Sch99].

The process STOP is not able to do anything. Therefore no inference rule
is given for STOP. Successful termination is modeled using the basic process

SKIP:

SKIP -5 STOP

The process signals successful termination to the environment by com-
municating the distinguished event v', which only SKIP can perform. The
operational behavior of the prefiz operator is defined by the next inference
rule.

(a - P) - P

The event a is offered to the environment and after the environment decides
to synchronize on a the prefix process behaves like the process P. Given a set
of events A C ¥, the menu choice operator generalizes the prefix operator by
offering any of the events from A to the environment:

o a€A
(x:A— P,) — P,

Once the environment has decided to synchronize on an event a, the con-
structed process behaves (dependent on the respective event a) like the process
P,.

The external choice formalizes that the environment of a process can decide
between two possible processes:

w
P— P w7 p_Ts p
rOQ -5 P pOQ S pPOQ

lthese rules are also called firing rules
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0=Q Q5
POQ -5 @ POQ S POQ

The rules on the left formalize that internal events do not resolve the ex-
ternal choice operator. If one of the processes can evolve in terms of internal
actions, the environment can still choose between possible visible events after-
wards. The external choice is resolved in favor of one of its subprocesses if the
respective process is able to communicate a visible event.

In contrast to external choice, internal choice is resolved without the cooper-
ation of some environment:

PI1Q--r PMNQ-5a@

The combined process is either resolved in favor of the left or the right
process by firing a 7 transition.

Sequential composition of processes is formalized by two firing rules, which
reflect that the first process involved in the composition can evolve and if
the process terminates successfully, the sequential composition behaves as the
second process.

n
P— P LAY p Y p
P, Q-5 P Q P; Q5 Q

Note that the communication of the v* event (which signals successful ter-
mination to the environment) by the first process P is transformed to an
internal transition.

The first two inference rules concerned with the parallel composition operator
require the two subprocesses involved to synchronize on the communication of
all visible events from the set A C ¥ and further to synchronize on termination.

PSP Q-5 Q
L
Plal Q=P |4 Q

e AY

Events outside of the synchronization set A can be performed independently
(this includes internal events).

N koo
Plal Q — P4l Q Plal Q — P 4] Q

pe v\ A
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(a = (a — STOP b — STOP)

a

v
(e = STOPU) b — STOP)

a/ \
/
STOP STOP

Figure 2.1: Labeled Transition System of a Process

This definition of parallel composition requires processes to terminate to-
gether, by synchronizing on the v event. A different solution is given in [Ros05]
where each process is allowed to terminate individually but the entire construc-
tion terminates when both processes have (this semantics is called 2 seman-
tics).

The firing rules for the hiding operator formalize that all the events from
the hiding set A are translated to the internal event 7, i.e., the process P can
perform these events without synchronizing with the environment.

p -t p né A p % p .
P\A-L5 P\ 4 P\A-5 P\ A

€A

All events the process is able to perform which are not in A are under the
control of the environment (except for the successful termination event v).

Variable assignment which is used to realize possibly mutually recursive
processes is formalized using the following firing rule:

p- XeV .
X — asg(X) with  asg: V = CSP

A process variable is replaced by its associated CSP process. This is re-
flected by an internal transition.

As explained in the beginning of our presentation of the operational se-
mantics of CSP, using the presented inference rules, a CSP process can be
interpreted in terms of a labeled transition system. Figure 2.1 gives a small ex-
ample which shows the LTS as defined by the process a — (a — STOP b —
STOP).

Denotational Semantics

Several denotational semantics for CSP are well investigated and are the basis
for refinement-based specifications. In this section, we briefly introduce the
three most commonly used denotational models for CSP: the traces model,
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the stable failures model and the failure divergence model. A detailed discus-
sion of further semantic models for CSP and the connections between them is
given in [Ros10] Starting with the traces model, each of the models adds more
semantic information to the respective models.

The Traces Model The traces model is the basic denotational model for
CSP. It denotes the semantics of a given process using the possible traces of
externally visible events a process might engage in. A trace is basically a list
of visible events that a process is able to communicate.

The Stable Failures Model An obvious short-come of the traces model is
that it only supports the analysis of safety properties, i.e., that the process
cannot engage in any events it is not supposed to engage in. The stable failures
model overcomes this limitation. It builds on the traces model and records for
every stable point within the evolution of a process the events that the process
can refuse to synchronize on. A stable point is a point within the execution of
a process from which no 7-step is possible.

The Failure Divergence Model The failure divergence model supplements
the stable failures model with information about the possibility of a process
to diverge, i.e., to perform an infinite number of 7-steps from a certain point
of process evolution.

Tools for CSP

Over the years, a variety of industrial strength tools have been developed
for CSP. These tools can be generally categorized as belonging to one of the
following three categories:

e Animators can be used to interactively examine specifications given
in CSP. The user can analyze a given specification by stepping through
it. The tools ensures that the rules of the operational semantics are
respected when stepping through a specification. When there is more
than one event possible at a certain point of simulation, i.e., the ani-
mated process contains external or internal choices, the user might decide
how the choice is resolved. Animation facilities for CSP are available in
ProBE [Ros05] and ProB[LF08|.

e Model checkers, in general, verify that a given model satisfies a formula
given in a temporal logic. A model checking approach for CSP is realized
in ProB [LF08]. Temporal logic formulae can be used to specify whether
a given event is enabled or not at a certain point within the progress of
a process.

e Refinement checkers for CSP are based on the denotational semantics
and its notion of refinement. For CSP a well known refinement checker
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is the Failure Divergence Refinement Checker (FDR2 [GRAO05]). FDR
can establish refinement relations automatically without any interaction
of the user. Its main limitation is that it can only check finite state
models. A refinement checker that is capable of analyzing infinite state
processes is the CSP Prover [IR05]. However, since it is based on the
interactive theorem prover Isabelle/HOL, refinement can in general not
be analyzed automatically. Proving a refinement relation may need a lot
of interaction from the user.

2.4.2 Timed CSP

To facilitate reasoning about the timing behavior of communicating sequential
processes, CSP as introduced in the last section can be extended to a timed for-
malism. The extension we consider here is called Timed CSP [Sch99]. Timed
CSP has a syntax similar to CSP and provides further operators which can be
used to model timing behavior. We introduce the syntax of Timed CSP.

Syntax

Let a be an event from and A be a subset of the event alphabet . The
variable X ranges over the set of process variables V. Let d be a value from
the positive reals.

P:=8TOP|SKIP|a—P|a:A—P,|P; P|POP
d
|POP|P|4|P|P\A|PAP|P>P|PAP|X

The informal meaning of the basic processes and process operators shared
with pure CSP remains unchanged. For these operators, the timing behavior
is defined as explained below in the operational semantics. The intuition of

the newly introduced timeout construct (P 2 Q) is that the timeout is resolved
in favor of process P if the environment decides to synchronize on one of the
initially possible visible events of P within d time units. The idea behind
the timed interrupt operator PA,4Q is that the process P is able to terminate
within d time units. If P does not signal successful termination using the
distinguished event v, P is aborted and the constructed process behaves as
process (). Further processes can be defined based on these operators. For
example, the WAIT process that lets time pass by is defined as WAIT d =

d
STOP > SKIP. In the following section, we explain the meaning of the timing
constructs by presenting the firing rules of the operational semantics for Timed
CSP.

Operational Semantics

Similar to the semantics of CSP, the formal semantics of Timed CSP pro-
cesses can also be defined in terms of an operational semantics using inference
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rules. For Timed CSP these rules can be understood as defining a timed
LTS (TCSP,(— U ~), X U{7,v'},Rs0)). In such a timed LTS two kinds
of transitions are possible: event transitions (denoted —) and timed transi-
tions (denoted ~~). Event transitions are instantaneous in the sense that no
time passes by when such a transition fires while timed transitions model the
passage of time explicitly.

The basic processes STOP, SKIP can let time arbitrarily advance:

t t>0 t t>0
STOP ~% STOP SKIP ~ SKIP

Similarly, the processes built using the operators prefix and menu choice
have the possibility of letting time advance for an arbitrarily long duration
until the environment is ready to engage in the respective events.

: t>0 : t>0
a—P~a—P r:A— P, ~z2:A— P,

The timing behavior of the sequential composition operator is realized so
that in the first process, time can only pass by if the process is not currently
able to terminate successfully:

psp - (P
P; QP Q

This means that if the first process is ready to communicate the event v/, it
has to do so as soon as possible. Otherwise, the timing behavior of the process
P is given by the respective rule that applies to its current process state.

A process built using the external choice operator can let time advance if
both of its subprocesses can let time advance.

P4 P Q- Q
rOQSPOQ

There is no timed rule for Internal Choice. Corresponding to the under-
standing that internal transitions happen as soon as they are available, Internal
Choice is resolved immediately.

Parallely composed processes are allowed to let time pass by if each of them
can:

PP Qs Q)
Plal @~ P'|al @
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A process constructed using the hiding operator lets time pass by, if the
process P that the hiding operator is applied to is not able to currently perform
an event ¢ from the hiding set A:

PP YaecA - (P-%)
P\A~ P\ A

Events from A which are turned into internal events need to be engaged in
immediately.

In a timeout process, it is possible for the first process P to synchronize
on one of its visible initial events within d time units and thereby resolve the
timeout. Internal events of P do not resolve the timeout. If the specified
timeout interval d is elapsed the timeout is resolved in favor of the second
process () by an internal transition.

PP . |
d L K d - d 0 -
P>Q— P P>Q—P>Q Pr>Q—Q
The specified timeout interval d is decreased whenever the first process lets
time pass by.
P P
d t d—t
P>Q~~P > Q

t<d

The behavior of the timed interrupt operator is that if the process P is
able to signal successful termination by communication of the event v* within
the specified interval, then the operator is resolved in favor of P. The process
P can engage in any events within the specified timeout interval d. However,
if the process P is not able to communicate v within d time units, then the
operator is resolved in favour of the second process (). This behavior is defined
by the following rules:

v , M /
PAyQ — P PAyQ — P'ALQ PAgQ — Q

As in the rule for timeout, in the rule for the timed interrupt the specified
interrupt interval d is decreased whenever the first process is able to let time
pass by.

P P

t t<d
PAGQ ~ P'AG_,Q
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a— WAIT(1); b— STOP
|

a

v
WAIT(1); b — STOP

31
WAIT(0); b — STOP

SKIP; b — STOP

b— STOP
b

STOP

Figure 2.2: Timed Labeled Transition System of a Process

As demonstrated in the previous section for CSP processes, the operational
semantics of Timed CSP can be used in a similar fashion to interpret a Timed
CSP process in terms of a timed LTS. Figure 2.2 gives an example of such an
interpretation. It visualizes the simple process a — WAIT(1); b — STOP.
The process can communicate an a and afterwards waits for one time unit
before communicating the event b. Then the process stops. Not depicted
are the possible time loop transitions, i.e., the transitions possible when the
process is able to communicate ¢ and b and after it has stopped. Note that
the second transition denotes a timed transition. Such a timed transition
symbolizes arbitrarily many intermediate processes because a value from the
reals is used here.

Tools for Timed CSP

Tool support for the real-time extension of CSP is also available. The FDR2
model checker can be used for analyzing Timed CSP specifications with discrete
timing values [ALOR12]. The approach to automatic verification is based on
digitization of real-valued Timed CSP processes. Specifications use the special
event tock to model the passage of time. Specifications can then be analyzed
using the notion of refinement.

The tool HORAE [DHSZ06] uses translations from Timed CSP processes
to Constraint Logic Programming problems to enable reasoning about Timed
CSP processes. The tool claims to support automatic proofs of safety proper-
ties, deadlock-freeness and also timewise refinement relationships.

Animation of Timed CSP processes is also available [FAGNR12| as an ex-
tension of the ProB tool. The animator exploits the observation that Timed
CSP is closed under rational time. Rational time valued Timed CSP processes
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are then translated to a representation in Prolog. The firing rules of the op-
erational semantics of Timed CSP are implemented using Prolog and used to
determine the available actions of a process.

In [G6t12] a verification environment for Timed CSP is presented, which is
based on a mechanization of the operational semantics of Timed CSP in the
theorem prover Isabelle/HOL. Processes can be analyzed either using a timed
variant of Hennesy-Millner logic or by showing equivalence to other (possibly
simpler) processes using the notion of bisimulations. While the latter is semi-
automatic, also transformations for small instances of Timed CSP processes to
the model checkers FDR2 and UPAAL are available, which facilitate automatic
analysis.

The verification environment presented in the remainder of this thesis can
be used for conformance proofs between programs given in low-level languages
and specifications given in a process-algebra as presented in this section. To
cope with the complexity of such proofs on the one side, and to ensure the
overall correctness of our verification environment on the other side, we chose to
mechanize our environment using the interactive theorem prover Isabelle/HOL.

2.5 Isabelle/HOL

The theorem prover Isabelle [NPW02] is a general framework for machine-
assisted proofs based on the LCF approach [Gor00]. The system is built around
a trusted kernel of inference rules which is responsible for all manipulations
of a given logical context. Based on the inference rules implemented in this
kernel, further rules can be composed and implemented using ML [Pau96]. By
breaking down complex rules to applications of the basic inference rules within
the logical kernel, soundness of logical contexts is preserved.

The system is generic in the sense that it can be instantiated with different
logics. Isabelle’s meta-logic is an intuitionistic higher-order logic and can be
used to instantiate the system to a variety of concrete object logics, for example
first order logic (FOL), Zermelo-Fraenkel set theory (ZF) or Higher Order Logic
(HOL), which we use in this thesis.

2.5.1 Proofs in Isabelle

Logical reasoning in Isabelle is achieved by applying inference rules on the
level of the meta-logic. The basic operators on the level of the meta-logic are
implication (=), equality (=) and universal quantification (/\). These are not
to be confused with the logical operators of an object logic, for example when
using the instantiation to HOL, the symbol — denotes the classic implication
of HOL, while = is used as implication on the meta-logic in inference rules,
for example. Therefore = cannot appear in HOL formulas. In general, such
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inference rules have the following structure:
[Pr; ...; P]l=Q

Such a rule is understood as an inference rule with the premises P; to P; and
the conclusion (). The premises and the conclusion are given as terms in the
object logic. The brackets are a short hand for nested entailment, i.e., the
inference rule is equivalent to

Pi—= .. (P = (P,= Q)

Inference rules might contain schematic variables. These are variables denoted
with a question mark, i.e., 7y. Once a theorem is proved successfully all free
variables are turned into schematic variables and can be instantiated or unified
when using the theorem as an inference rule. One or more inference rules can
be combined to tactics which are used to manipulate logical contexts, also
called proof states. These have the following structure:

/\xl e Ty [AL o A= C

Here, the variables z; to z,, are fixed meta-variables. The goal represented
by this proof state is to establish that given the assumptions A; to A4,, the
conclusion C' can be established. When applying inference rules to proof goals,
the concept of unification is used to instantiate schematic variables with vari-
ables from the proof state. In cases where this cannot be done automatically,
the instantiation can also be done manually. Reasoning in Isabelle is mainly
done in a backward manner, i.e., the conclusion of a theorem is manipulated
until it can be established from the assumptions. This means that when ap-
plying the inference rule from above to the proof state mentioned above using
the application of the rule rule in apply(rule inferenceRule), the conclusion
() of the inference rule is unified with the conclusion C' of the proof state. The
resulting proof obligations are again of the form of proof states and require
to establish that each of the premises P; to P; of the inference rule can be
established using the assumptions 4; to A, from the proof state shown above.
However, also forward reasoning is supported. When applying the proof rules
drule and frule, the unification system attempts to unify the premises of
the inference rules with some assumptions given in the proof goal and either
replaces these assumptions with the conclusion of the inference rule (in case
of drule) or keeps the assumptions and adds the conclusion of the inference
rule to the assumptions. A combination of forward and backward reasoning
is realized using the proof rule erule. Application of rules can be combined
into tactics which can be implemented using the ML interface of Isabelle. Fur-
thermore, tactics can be combined into tacticals in order to provide even more
automatization. Predefined tactics provided by the Isabelle system include the
simplifier (simp) which uses term rewriting and simplifies the proof state by
the subsequent application of rules from the so-called simp set. The users can
declare such rules, but caution has to be taken because application of rules
might not terminate. The tactic clarify does not have this problem because
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it applies only rules which might not lead to circular application of inference
rules. In-between these tactics is the tactic clarsimp which applies modest
rewriting.

Automatic theorem proving techniques are also available as proof methods.
The auto method implements simplification together with classical reasoning
and the method blast provides a tableaux reasoner. Furthermore, Isabelle
provides an interface for external automatic theorem provers. Entire proof
goals can be delegated to fully automated external provers like E [Sch02],
SPASS [WDF*09] or Z3 [DMBO08]. The goals are translated to the format of
the respective prover and if the prover is able to find a proof, this proof can
be reconstructed within the Isabelle framework. Therefore, proofs done by
external provers do not introduce the risk of inserting logical inconsistencies
into proofs.

In Section 5.4.1 on page 75, we explain a concrete proof using Isabelle/HOL
in detail.

2.5.2 Types, Sets, and Functions in Isabelle/HOL

Currently, the most mature object logic for the Isabelle framework is Higher
Order Logic (HOL). Besides the basic types and definition principles within
the instantiation of Isabelle to HOL, a broad library of theories is provided.
These theories formalize a variety of concepts that are well suited to aid the
formalization of concepts from the area of computer science and can be used as
the basis for further theory developments. In this section, we briefly present the
main ingredients of HOL used within this thesis. For a thorough introduction
we refer to the official tutorial [NPW02], which introduces Isabelle/HOL using
the following equation: HOL = Functional Programming + Logic. The idea
behind this is that in Isabelle/HOL, function definitions are reminiscent of
functional programming in the sense that currying and pattern matching are
used. Properties of functions operating on datatypes can then be specified and
analyzed using the logical capabilities of higher order logic. Higher order logics
allow quantification over predicates and functions of any order, i.e., predicates
over predicates over predicates and so on.

Types

The basic types defined in Isabelle/HOL are truth values and natural numbers.
Function types are defined using the infix notation =-. For example, nat =
int defines a function type. Note that = represents total functions. Type
variables like 'a are defined as known from ML and can be used in conjunction
with function types to define polymorphic types.

Further datatypes can be inductively defined using the command datatype.
An important datatype in computer science is the type of lists. In Isabelle/HOL
lists are defined as follows:
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datatype ’a list = Nil (" 117)
| Cons ”’a” ”’a list” (infixr "#”7)

Here, the definition of a list is parametric in the type variable “a. Therefore,
list elements can be of any fixed type. For such datatype definitions certain
lemmas are automatically generated and proved. This includes induction rules
for performing inductions over the respective datatype as well as lemmas for
case analysis. The Isabelle/HOL theory for lists offers a rich variety of func-
tions and constructors for the definition and manipulation of lists.

HOL provides a constructor (x) for the definition of pairs. Using the pro-
jection functions fst and snd a pair can be projected onto its left or right part.
Tuples are defined based on pairs. For the projection of tuples onto certain
elements Isabelle/HOL supports advanced pattern matching concepts. To fur-
ther facilitate the usage of compound types, the type of records is provided.
A record is defined as in programming languages consisting of possible n fields.
Each record field has its own type. Even though records correspond to tuples
and are internally defined based on pairs, for practical purposes they have cer-
tain advantages. Fields of records have dedicated names which are also used as
selector names for projections onto the respective field. Furthermore, records
can be extended. A record type is defined using the command record in the
following manner:
record state = x int
y :: nat

The record type is often used to formalize the concept of a state as known
from the semantics of programming languages. In our example the record
consists of two fields with the names z and y. Using the definition command
a constant of type state can be defined:

definition sl :: state where
sl = (|x=1, y =2 |)”

A record can also be updated point-wise using the notation :=, so the
expression s1(| z := 0 |) leads to a record that consists of the fields z with
value 0 and y with value 2.

Functions

Non-recursive functions can be defined in Isabelle/HOL using the command
definition. For anonymous functions the A-operator is available. Recur-
sive functions can be defined as common in functional programming languages
using pattern matching. For example, the command primrec supports the def-
inition of primitive recursive functions. The following definition, for example,
defines a function which reverses a list:

primrec rev :: 7’a list => ’a list” where
“rev [ = []7 |
"rev (x # xs) =

(rev xs) @ (x # [])”
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For logical consistency, functions in Isabelle need to terminate. For elemen-
tary function definitions, Isabelle is able to prove termination automatically
by utilizing well-founded relations. Function updates can be defined using the
directive :=. While in the example above we used a record to formalize the
notion of a state, to explain function updates we now use a function from a
type of variables to the natural numbers to formalize the notion of a state:

primrec state :: ”"variables = nat” where
"state x = Suc 07 |
"state y = Suc 07 |
"state z = Suc 07

A pointwise function update for the argument x is then written as (state(z :=
2,z := 2)). The resulting (or updated) function then agrees with the original
function on all parameters (y in this example) except the ones mentioned in
the update (z and z in the example).

Functions which cannot be defined using the command primrec can be
defined using either fun or function. When fun is used, the theorem prover
attempts to prove termination automatically by utilizing lexicographical or-
derings. For function, a well-founded relation needs to be provided and it
further needs to be established that recursive function invocations decrease the
arguments of each recursive invocation.

Inductive and Coinductive Sets

Isabelle/HOL provides sophisticated support for the specification of induc-
tively defined structures. Inductive definitions consist of introduction rules as
illustrated in the following standard example (from [TN13]):

inductive_set even:: ”int set” where
70 € even”
| "n € even = (Suc (Suc n)) € even”

Here, the set of even number is defined using the directive inductive_set.
Once an inductive definition is given, the Isabelle system automatically proves
a variety of theorems about the structure at hand. These can be used for
induction proofs or when, for example, a case analysis is required. As a dual
concept to inductive definitions where introduction rules as given above are
interpreted in terms of their smallest fixpoint, coinduction [JR97] [Gle05] takes
the dual approach by interpreting such rules as defining a greatest fixpoint. If
the directive inductive_set in the definition given above is replaced by the
directive coinductive_set the Isabelle system realizes exactly this approach.
In a similar fashion as for the inductive definition, certain theorems are au-
tomatically established. Of particular importance is the resulting coinduction
scheme which can be used to establish that some element is contained in an
coinductively defined set.
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Local Proof Contexts

When conducting non-trivial formalization projects, it is often the case that the
need for parametrization arises. Locales in Isabelle/HOL [Bal06] are a flexible
mechanism to realize parameterized proof contexts in such formalizations. The
intuition is that function constants and assumptions about them can be defined
and fixed in an abstract manner and referred to using the locales name. Proofs
can then be done within such a named context and refer to the fixed types
and assumptions. It is also possible to introduce a structure on locales by
extending existing locale contexts with additional assumptions. Furthermore,
such contexts can be instantiated with concrete values so that proofs on the
concrete level can inherit facts established on the abstract context.

As an example, we take the definition of a group known from algebra. We
define a locale named group in the following way:

locale group =

fixes product 'a = ’a = ’a (infixl ”x” 50)
and inverse 'a = ’a
and neutral ‘a

assumes associative: (a x b) x ¢ =a x (b x ¢)
and left —inverse : (inverse a) X a = neutral
and left —neutral : neutral X a = a

Here we specify the elementary assumptions about a group. By using the
type variable ’a the definition is parametric in the type of group elements.
On the arbitrary but fixed type a mapping called product is assumed which
maps two elements of the group to another group element and can be referred
to by using the concrete symbol x. The function inverse is of type 'a =’ a.
Furthermore, the neutral element is fixed as being of type 'a. Assumptions
about the fixed constants can then be made in the assumes block of a locale’s
definition. Here, it is described that the product is associative and that the
inverse element, if multiplied from the left, is mapped to the neutral element
which in turn yields the identity function if multiplied with any group member.

Using the directive in within the declaration of a theorem, the respective
theorem is established within the context of the locale. Within the proof it can
then be referred to the fixed constants and assumptions. Finished theorems
are stored within the locale context and can then be built on when proving
further theorems in the context. It is also possible to define a whole context
block using the following construction:

context group
begin

end

A strength of the locale concept is that it becomes possible to fix assump-
tions which are used in one or more theorems as a group and use them in
theorems without always having to mention them explicitly in a theorems as-
sumptions. Another strength is that a hierarchy can be established on locales.
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locale abeliangroup = group +
assumes commutative : a X b =b X a

In this definition, the locale context from above is extended to an abelian
group by adding the requirement that the product is commutative. In such an
extended group all the theorems established in the context that the extended
locale builds on can be referred to.

To make use of the abstract results of a locale on a concrete level, the
directive interpretation is used. For example, a minimal instantiation can
be obtained as follows:
interpretation concrete: abeliangroup
apply (unfold locales)

apply (auto)
done

When instantiating such an abstract definition it is required to show that
the assumptions of the locale actually hold for the specified constants and
functions.

In this section, we have introduced the interactive theorem prover Is-
abelle/HOL, which we use to mechanize the theories discussed in this thesis.
Going this way, we can cope with the complexity inherent to the conformance
proofs in our setting. The interactive prover ensures that corner cases cannot
be overlooked and also provides automatization of proof steps on the level of
the underlying logic HOL.

2.6 Summary

In this chapter, we have introduced the basic concepts used within this the-
sis. We have introduced the proof rules for a Hoare-calculus targeting a basic
sequential high-level language. In this thesis, we construct a Hoare calculus
for a low-level language. A typical example of such a language is the interme-
diate representation of the LLVM framework which we have briefly presented
in Section 2.2. In Section 2.3, we have revisited the definitions of transition
systems and labeled transition systems and given the definitions of bisimula-
tions and timed bisimulations. These can be used to establish that equivalent
behavior is possible from states within a labeled transition system. Based
on the presentation of the operational semantics of CSP, we have presented
a real-time extension of classic CSP, called Timed CSP. It is our goal to for-
mally define concepts that build on these already complex definitions and to
furthermore create relations between them. To cope with the complexity and
enable mechanized proofs, we use the theorem prover Isabelle/HOL which we
have introduced in Section 2.5.

In the next chapter, we discuss related work and then in Chapter 4, we give
an informal motivation and presentation of the envisioned framework presented
in this thesis.
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In this thesis, we present our mechanized verification environment for low-level
implementations of embedded real-time systems. Furthermore, our verification
environment proposes a method for establishing conformance between different
levels of abstraction as typically found in embedded development approaches.
In particular, it is the goal of this verification environment to investigate the
interface between the abstract level of process algebraic specifications and the
concrete level of unstructured programming languages. To realize such a verifi-
cation environment, we especially focus on the formal treatment of the low-level
language. We provide a formal notion of conformance based on bisimulations
to relate the implementation level with the level of the abstract specifications.
There, we build on an existing mechanization of the process algebra Timed
CSP [Go6t12]. For the abstract level, we provide a modeling approach for reac-
tive systems that adapt their behavior to stimuli from the environment. This
makes our entire verification environment applicable to this class of systems.

The following discussion of related work is structured along these core as-
pects. We start with a discussion of formalizations and mechanizations of pro-
gramming languages in theorem provers and focus on low-level and real-time
languages in Section 3.1. Subsequently, in Section 3.2, we examine approaches
that have the goal of formally relating different levels of abstraction. We
mainly focus on approaches which aim at bridging the semantic gap, i.e., ap-
proaches that connect different semantic domains like programming languages
and specification formalisms. We finish the discussion of related work with
a review of approaches concentrating on the specification and verification of
adaptive systems in Section 3.3 and a brief summary in Section 3.4.

3.1 Formalization of Program Languages and Proof
Calculi in Theorem Provers

The history of the Hoare calculus for high-level languages has shown that
the usage of theorem provers for mechanized proofs about the soundness and
completeness of proof systems for high-level languages is beneficial. Subtle cor-
nercases, which might be overlooked in pencil and paper proofs cannot be left
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out in mechanized proofs. Therefore, we mainly concentrate on formalizations
of programming languages in theorem provers in this section.

3.1.1 High-Level Programming Languages

In [Sch97], a Hoare logic for a while language was developed and formalized
using the theorem prover LEGO. There, the necessity of explicitly considering
auxiliary variables in Hoare calculi is highlighted. Auxiliary variables allow
to fix the values of variables in preconditions and define postconditions that
depend on the fixed values. Using the presented proof calculus and the ex-
plicitly modeled auxiliary variables a formal comparison of Hoare logics and
VDM-style proof systems is given. Our extended low-level logic follows this
approach in the treatment of auxiliary variables.

In [Nip02], various Hoare logics for a typical while language are formalized
using the theorem prover Isabelle/HOL. The formalized total correctness logic
can cope with unbounded non-determinism and mutually recursive procedures.
In our formalization of the low-level language extended to non-determinisim
and total correctness, we followed the proposed proof strategy for completeness
of the Hoare logic which utilizes the most general triple approach [Gor75].
The proof logic presented in [Nip02] is further extended to cope with mutually
recursive procedures, which requires a small-step semantics for soundness and
completeness proofs.

A comprehensive and powerful mechanization of a Hoare logic is presented
in [Sch05]. The approach uses a small core language called SIMPL and provides
a proof logic for this language. Even though the language consists of a small
kernel only, it is capable of handling advanced concepts like abrupt termina-
tion, for example. Building on this core logic, a subset of the C programming
language called CO is formalized.

The discussed formalizations of high-level languages have influenced our
formalization for low-level languages mainly concerning the total correctness
logic and auxiliary variables. However, timing behavior and communication are
not considered in these approaches. Apart from [Nip02], small-step semantics
is also not considered.

A high-level language for the specification and implementation of concur-
rent real-time systems is presented in [Hoo94]. There, the assertions of classical
Hoare-logic are extended to a real-time scenario. The approach is formalized
using the theorem prover PVS [ORS92] in [Hoo98b] . The approach supports
synchronous and asynchronous communication. Components of concurrent
programs are assumed to have the property of maximal progress, i.e., every
sequential component of a concurrent composition is assumed to have its own
processing resources. This view is especially manifested in the proof rule for
concurrent composition where the termination time (if the concurrent pro-
gram terminates) is assumed to be the maximum of the execution times of
the subcomponents. Our experimental rule for reasoning about distributed
communicating low-level code mentioned in Section 6.5 adapts the respective
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rules from [Hoo98b| in order to obtain a compositional proof system for dis-
tributed systems. Compared to our environment, the approach focusses on
the high-level implementation of real-time systems. Furthermore, it does not
consider conformance relation between implementations and process-algebraic
specifications.

3.1.2 Low-Level Programming Languages

The first attempts to cope with unstructured code were extensions to the
original Hoare logic for the structured while language [Bru81]. The approach
uses conditional Hoare triples to cope with restricted or unrestricted jumps.
These triples allow to use assumptions about label invariants given for an
entire program. Floyds original proof system for control-flow graphs [Flo67a]
also considers unstructured control flow.

Research in proof systems for low-level language was mainly motivated
by the rise of Java bytecode and the concept of proof carrying code [Nec97]
(PCC) In [SU05] a compositional semantics and proof calculus for low-level
languages is presented. In this work, classical Hoare triples are used for the
specification of program behavior. The underlying idea is that low-level code
can be viewed as having an implicit structure in terms of finite unions of code.
This enables the construction of a compositional big-step semantics and proof
calculus. An invariant covering all of the available code, i.e., covering also
parts of the program that are not subject to evaluation of the given big-step
execution, is not needed in this approach. The authors show that proofs estab-
lished using a Hoare calculus for a classical while language can be compiled to
the low-level proof system. While the authors have given the basic proof rules
for a total correctness calculus, no formal proofs of soundness and correctness
were published. Our formalized low-level language and related proof systems
further extends the approach of [SU05] by unbounded non-determinisim in
the presence of total correctness. Furthermore, we mechanize the proof sys-
tems for partial and total correctness using Isabelle/HOL and thereby obtain a
mechanized proof environment, which also provides partially automated proofs
on the level of the underlying logic. A mechanization of the proof calculus
from [SU05] for the partial correctness case using the theorem prover Coq is
described in [ANY12]. There, the proof system is used to verify security prop-
erties of cryptographic algorithms given in an assembler-like representation.
Besides the conceptual extension of providing a total correctness logic for a
language that allows unbounded non-determinism, our approach to the mech-
anized verification of low-level code also considers timing and communication
behavior as well.

Further low-level semantics and related proof calculi are presented in [Ben05,
AMO1, MGO07, BH06, JBK13]. The work of Appel [AMO01] uses continuations
in assertions. The work of Benton [Ben05] uses a collection of global label in-

!The idea of PPC is that a compiled version of a program (for example in bytecode) is
supplied together with a proof of correctness. The receiver then checks the proof in order
to be sure that the code can be trusted.
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variants, like deBruins approach for goto statements [Bru81| . Behringer and
Hofman [BH06| provide a logic that implicitly relates assertions to the specifi-
cations of surrounding method bodies to 'restrict’ the potential of unrestricted
jumps. Even though proofs and assertions in our logic are potentially more
verbose than in the approaches mentioned above, the compositional nature of
the logic facilitates the transfer of verification results from the logic to the level
of the small-step semantics.

3.2 Formal Relationships Between Different Ab-
straction Levels

The probably most general approach to formal relations between different lev-
els of abstraction is Hoare und He’s initiative of 'Unifying Theories of Pro-
gramming’ [HH98|. The goal is to realize a holistic approach to programming
language theory. The authors propose a semantic framework that provides
general relations that connect different semantic approaches, i.e., denotational,
operational and axiomatic semantics. Compared to our approach, the goal of
the initiative is to bring different semantics together on a meta-level, while we
focus on an approach that supports the verification of implementations given
as low-level code and abstract specifications given in a process-algebra.

The ProCos 2 project [HHMOT96] investigated the integration of formal
methods into the different levels of abstraction that an embedded real-time de-
velopment process may be divided into. On the most abstract levels, informal
requirements are translated to formal specifications in a subset of the Duration
Calculus (DC) [CHO04] called DC implementables. To enable a seamless tran-
sition from these specifications to the implementation layer, an intermediate
specification language SL [Sch94] is introduced. This language is based on the
mixed term approach which allows to mix specification constructs with pro-
gramming language commands. On the implementation layer, the approach
is based on a real-time variant of the programming language Occam (a pro-
gramming language that is closely connected to CSP) called PL [Fv93]. PL
extends Occam by commands that facilitate the specification of upper bounds
for computations. Implementations given in this real-time dialect of Occam are
in turn transformed to machine code, which runs on transputers® [Bar78], or
to a hardware representation (circuit diagrams). Correctness of resulting low-
level code is ensured by the correctness of the compiler. The different layers
of abstraction (called the ProCos-Tower) therefore cover the entire transfor-
mation chain from informal requirements down to hardware implementations.
Mostly related to the work of this thesis are the steps from SL specifications
to PL code and from there to machine code. SL specifications are transformed
in a stepwise manner using predefined transformation rules. The correctness
of these rules is established using the underlying state-trace readiness seman-
tics. Correctness of the transformation from high-level code to low-level code
is ensured by compiler correctness. In our approach, we assume that a Timed

2 transputers are parallel processors using CSP-like communication mechanisms
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CSP specification is refined to a sufficiently detailed specification that can be
implemented using a high-level language of the developers choice. The imple-
mentation is then transformed to the low-level representation and shown to
be correct with respect to the specification using the notion of bisimulations.
The semantics of the specification and the low-level implementation is given
in terms of a labeled transition semantics. While the transition from the spec-
ification to the implementation is not as structured and automatized as in the
ProCos approach, our environment offers the possibility of integrating ad-hoc
optimizations of low-level and high-level code representations. Furthermore,
our approach is independent from a fixed high-level language since we aim to
support a common low-level representation as the basis for verification.

The real-time refinement calculus presented in [Hay02] extends the original
refinement calculus by adapting the standard refinement rules to the real-time
context. In this calculus stepwise refinement is realized by extending Dijkstra’s
weakest precondition calculus with a so-called specification command [Mor88].
The real-time refinement calculus further extends the original calculus with
rules that cope with timing related concepts of the target implementation
language like delays and deadlines. Using the extended calculus, real-time
specifications can then be refined to platform independent programs given in
this axiomatized high-level language. Further refinement steps to low-level
code representations are not considered. The B method [Abr96] and also its
newer version called Event-B provide a method that supports software devel-
opment from abstract specifications to the level of the implementation with
formally funded transformations. However, real-time and also transformations
to low-level languages are not considered.

Other refinement methodologies like CSP-OZ-DC [HO02], TCOZ [MD9g|
and Real Time-Z [Sii99] support the formal specification and refinement of
real-time systems. However, even though these formalisms provide state-based
descriptions of the behavior of a system, the refinement steps do not support
refinement to representations in programming languages.

3.3 Adaptive Systems

In [JST*09], CSP is used to model self-adaptive applications. In the described
scenario, a network of communicating nodes is assumed to learn from the
behavior of other nodes. Behavioral rules of nodes are described by CSP pro-
cesses which are communicated between the nodes and used within nodes to
adapt the individual behavior. In contrast, our work is focussed on model-
ing entire adaptive systems and verifying properties of the modeled systems.
Furthermore, refinement of systems is not mentioned in [JST*09].

Dynamic reconfiguration of systems is supported by the work presented
in [ADG9S8|. Systems are described using the architecture description lan-
guage (ADL) Dynamic Wright which is inspired by CSP. Reconfiguration of
interacting components is modeled separately from steady-state behavior in a
central specification. The models are connected by control events. The formal
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semantics of the ADL is defined by a translation to CSP. Thereby, dynamic
architectural properties can be verified on the level of CSP. Our approach
supports distributed management of reconfiguration and connects the system
model focussing on adaption behavior and the one focussing on functional be-
havior via CSP refinement. As a consequence, our models can be developed
and analyzed in a stepwise manner. Furthermore, our approach supports re-
finement down to an implementation, which faithfully implements adaption
as well as functional properties specified on the abstract level. In [MK96],
the ADL Darwin is presented. The work focusses on architectural aspects
of adaptive system design and does not consider the interaction with general
functional system behavior. The semantics of reconfigurations is defined using
the m-Calculus. While this enables a precise and unlimited way of modeling
dynamic aspects of reconfiguration, it limits the use of automatic proof tools.

The work presented in [ASSV07] presents a development approach for adap-
tive embedded systems starting with model-based designs, which are mapped
to a formally defined intermediate representation. As in our approach, adap-
tion behavior is strictly separated from functional behavior. Adaptive systems
are modeled in terms of interacting services, which communicate via shared
variables. Adaptions are triggered by quality descriptions of data values. High-
level specifications of services can be given a formal meaning by mapping them
to transition systems that are connected by input and output channels in order
to compose the adaptive system to be modeled. Verification can be performed
by model checking and theorem proving. This is realized by embedding the
respective representations of the transition system semantics into the proof
tools. The main goals of the presented work are to provide verification mecha-
nisms for adaptive system developments and to exploit the inherent structure
of specifications of adaptive systems for more efficient proof procedures. Our
approach aims to support development processes for adaptive systems with
the powerful notion of CSP refinement and the mature proof tools developed
for simulation, refinement checking and LTL model checking of CSP specifica-
tions. Furthermore, by using CSP as a formalism, we can use our conformance
relation for the transfer of properties to the level of a possible low-level imple-
mentation.

In [KSKAO09], Kosek et al study the capabilities of JCSP [Wel98] with
respect to the implementation of adaptive systems. This work presumes that
CSP is suitable for the specification, modeling and verification of such systems,
but gives no hints on how to use CSP in this context. Instead, they cite
[WBPO06] where occam-7 (which is based on CSP concepts but is quite different
from CSP) is used to implement complex adaptive systems. In our work, we
focus on CSP as described by Roscoe in [Ros05] and its tools FDR [GRAO5]
and ProB [LF08, PL08]. Thereby our approach is supported by a variety of
semi-automatic tools for the analysis of adaptive systems on the specification
level. Furthermore, using our conformance relation we are able to support the
implementation of adaptive systems using a low-level language that requires
no advanced concepts like the ones used in JCSP, for example.
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3.4 Summary

In this chapter, we have reviewed work related to the concepts used in our
approach to conformance proofs between process-algebraic specifications and
low-level implementations. Following this, we have discussed formal modelling
approaches for the class of adaptive systems.

In our environment, the low-level semantics and the related proof calculus
are carefully chosen to support concrete proofs using bisimulations as the no-
tion of conformance. This close interaction is a main motivation for our exten-
sion of the compositional low-level semantics and proof calculus from [SU05],
which, in contrast to other approaches, enables us to relate arbitrary points
within a program using the proof calculus. Furthermore, the usage of Hoare
triples enables the transfer and reuse of established proof techniques and mech-
anization approaches from high-level languages to low-level languages. Con-
sidering the notion of conformance in our setting, namely weak timed bisim-
ulation, we observe that most related approaches are built around notions of
denotational refinement. While this enables conformance proofs in a more
abstract manner, our operationally inspired notion of conformance facilitates
mechanization in a theorem prover considerably. Regarding the work related
to our approach for the specification and verification of adaptive systems, we
summarize that our approach enables the use of established and efficient proof
tools for CSP. Moreover, using our conformance relation, we can support the
transfer of properties from the abstract level to the level of the low-level im-
plementations.

In the next chapter, we give a detailed semi-formal presentation of our
verification environment. Afterwards, we present the integrated concepts in
full detail in the subsequent chapters.






4 A Mechanized Verification
Environment for Real-Time
Process Algebras and Low-Level
Programming Languages

In this chapter, we introduce our verification environment for low-level code
and conformance proofs between process-algebraic specifications and their low-
level implementations. Our verification environment tackles a verification
problem that typically arises when developing safety-critical embedded real-
time systems: to establish conformance between the different levels of abstrac-
tion a system is described on. In general, a formalism that is well suited for
describing behaviors on a certain level of abstraction takes a different perspec-
tive onto the system under consideration compared to a formalism describing
another level. This difference is manifested in the different semantic domains
of the involved formalisms, i.e., in the meaning of a given system description.
The implication is that proofs of conformance, which establish that behaviors
on different levels of abstraction correspond to each other, are complex. Ide-
ally, such proofs are realized using a thoroughly defined notion of conformance.
For a framework that supports conformance proofs between different levels of
abstraction, this results in mainly two challenges:

e From a theoretical point of view, an approach to unambiguously relate
the different levels of abstraction and thereby the respective representa-
tions of a system needs to be provided. That is, to provide appropriate
semantic descriptions for the different levels of abstraction and unam-
biguous notions that allow to relate them.

e From a practical point of view, to deal with the unraveling of abstrac-
tions. That is, to cope with behaviors that are not described in detail
on the higher level of abstraction, but are specified in more detail on the
implementation level.

The goal of our verification environment is to support embedded develop-
ment approaches. Software for embedded devices often needs to cope with
restricted resources. Furthermore, low-level representations of embedded soft-
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ware are also often subject to manual optimizations. The implication for our
approach is that we choose not to overcome the gap between high-level rep-
resentations and low-level code using a predefined (and verified) compilation
method. Instead, we focus on the treatment of low-level code and methods
to analyze programs on this low level of abstraction and then discuss how
conformance can be verified.

In the next section, we discuss how our verification environment deals with
the challenges mentioned above. The aim is to give an informal but detailed
overview of the building blocks that are discussed more thoroughly in the
subsequent chapters of this thesis. We motivate the conceptional design de-
cisions taken in our framework and explain how it can serve as a verification
environment for concrete conformance proofs.

After the introduction of our mechanized environment for conformance
proofs in Section 4.1, we give a brief introduction to the research project
VATES! [GBGK10] in Section 4.2. The development process considered in
this project is a typical example of a development approach that requires
formally funded conformance proofs between different levels of abstraction.
Moreover, we motivate that the conceptual framework discussed in this thesis
can be regarded as providing a theoretical foundation for the VATES devel-
opment approach and furthermore also supplies mechanized tool support for
conformance proofs in this setting.

4.1 Mechanized Proofs of Conformance in the Con-
text of Low-Level Code and Process Algebras

In this section, we explain our mechanized verification environment for low-
level code and proofs of conformance in more detail. We start by explaining
our choices of formalisms and languages and then explain our strategy for
conformance proofs in more detail.

4.1.1 Basic Design Considerations

A main design criterion for our approach is given by the decision to choose
the level of low-level representations as the basis for the verification of imple-
mentation correctness. In our approach, this level of abstraction is used to
formally connect the implementation level with the level of the abstract spec-
ifications. For the level of the abstract specifications, we choose the process-
algebra Timed CSP to enable the concise specification of communication and
real-time behavior. On this abstract level, the formal concept of bisimulations
can be used to relate semantically equivalent processes. More precisely, the
formal notion of weak timed bisimulation is employed to relate processes that
describe the system to be developed on different levels of detail by abstract-

Verification and Transformation of Embedded Systems
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ing from concrete descriptions of behaviors. The advantage of bismulations
as a conformance relation is that they can be verified on the basis of the op-
erational semantics. This especially facilitates the mechanization in theorem
provers, since the mechanization of operational semantics in theorem provers
is well-understood. To obtain a uniform verification environment and to re-
alize a seamless transition from the level of the abstract specifications to the
level of the low-level implementations, we base the verification of conformance
relations between implementations and their related specifications on the no-
tion of bisimulations as well. Going this way, we obtain a consistent top down
approach, starting with a simple system description focussing on the main
behaviors that can be observed of a system. Then, on a less abstract level
of description more details are added to the design. To establish semantical
equivalence of the detailed description to the more abstract level, the added
details are then considered to be internal to the system and it is shown that
when abstracting from these internal events, the observable behavior of the
two system descriptions can be considered to be semantically equal. Note that
this notion of conformance is in contrast to the notion of refinement. There,
conformance between different levels of abstraction is not only based on the
abstraction from internal behaviors, but also on the concept of resolution of
non-determinism?.

In the context of real-time systems, semantical equivalence between dif-
ferent levels of abstraction means that equivalent values can be received and
communicated at the same points of time, but different ways of computing the
respective values might be used. This resembles the formal concept of weak
timed bisimulation. Since we consider a low-level representation (of the im-
plementation in a high-level programming language) as the basis for verifying
implementation correctness, the internal behaviors that need to be abstracted
from can be considered to provide a main source of complexity for conformance
proofs.

For example, the calculation of a result in response to some value received
from the environment might be specified on the abstract level using some math-
ematical function. On the level of the low-level representation, this behavior
is given by a complex series of transitions that operate on the internal state of
the program and occur between the reception of the input parameter and the
communication of the result. In general, for the verification of low-level code,
this means that we need to be able to relate arbitrary states during execution.
States (or points within the evolution of programs or processes) of different
levels of abstraction are related in terms of the values that are received or
communicated starting from them and in terms of the amount of time that
might pass by from these states. Establishing conformance with respect to
the motivated notion of weak timed bisimulation, i.e., showing that a low-level
implementation behaves semantically equivalent to its respective specification
on the more abstract level therefore consists of three main parts:

2In the classical notion of refinement a representation on the lower level of abstraction is
assumed to exhibit less non-determinisim than a more abstract one, but the two do not
have to be equivalent modulo internal behaviors.
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Figure 4.1: Verification Flow in our Verification Environment

1. The specification of a conformance relation identifying states from the
abstract specification and states from the implementation is required.
From the identified states only equivalent behaviors should be possible.

2. Proofs of correctness that low-level code computes specified results as
required by the specified conformance relation, i.e., that the relation be-
tween values of variables at certain points of execution are as specified in
the conformance relation. Furthermore, it is important that the amount
of time which passes by in between adheres to specified values.

3. The specified conformance relation needs to be verified, i.e., the spec-
ified relation needs to fulfill the requirements of the chosen notion of
conformance. This requires information about the possible behaviors of
both the abstract specification and the low-level implementation. For
the low-level implementation, we want to build on the correctness proofs
mentioned in the previous step.

To apply this three-step-strategy (depicted in Figure 4.1), we first need to make
the notion of weak timed bisimulation applicable in our setting. While the
language and the semantics of Timed CSP already support the specification of
functional and of timing behaviors, typical low-level languages, like the LLVM
IR, in general provide no such capabilities. On the abstract level, we base
conformance proofs on the operational semantics of Timed CSP. This semantics
can be interpreted as a timed labeled transition system (TLTS). Furthermore,
the notion of weak timed bisimulation is defined on timed labeled transition
systems. We therefore provide a small-step semantics for low-level languages,
which in turn can be interpreted as a timed labeled transition system.

Using the formal concept of timed labeled transition systems as an ’inter-
mediate layer’” to apply the notion of weak timed bisimulation yields a modular
structure for our verification environment as depicted in Figure 4.2. We define
bisimulations abstractly on timed labeled transition systems. To show that
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Figure 4.2: Modular Structure of the Verification Environment

a concrete program and process-algebraic specification are bisimilar, we then
need to establish that its semantics can be interpreted as a TLTS. This way
of modular specifications and instantiations is directly supported by the con-
cept of locales in the Isabelle/HOL theorem prover. Furthermore, for low-level
languages, we formalize a basic language that can be used as the basis for
formalizations of more concrete and complicated unstructured languages. By
realizing our verification environment in such a modular way, we can easily
extend the environment to other languages and formalisms that can be inter-
preted as a labeled transition system. For example, we could use our low-level
semantics and proof calculus as the basis for a formalization of an assembler
language or a bytecode representation. Our mechanization in Isabelle/HOL
could then be used as a basis for such a mechanization.

In the next two sections, we first explain the main concepts of our approach
to the specification and verification of conformance relations between process-
algebraic specifications and low-level code. Then, we present the semantic
framework for low-level code, which supports the specification and verification
of these conformance relations.

4.1.2 Specification and Verification of Conformance Rela-
tions

In order to overcome the so-called semantic gap introduced by the semantical
distance between the different levels of abstraction, the most challenging task
is to abstract from the concrete computation steps on the low-level of repre-
sentation of the intermediate language. Computations that are specified as
single (timed) step on the level of the high-level specification might relate to
rather complex behaviors in the unstructured low-level language. Computa-
tions might be performed using, for example, loops and thus might result in
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Figure 4.3: Bisimulation Relation

high numbers of individual (timed) steps. In this thesis, we therefore intro-
duce a technique that facilitates the specification of such behaviors on a more
abstract level using Hoare-triples. In this section, we explain this technique
using a small example.

Informally, the notion of weak timed bisimulation is used to show that
two states in an LTS have the same subsequent behavior modulo internal
transitions (7-steps). This means that for every state reachable from one of the
states, there exists a state reachable from the other state from which the same
behavior is possible, i.e., edges labeled with the same labels can be traversed
in the same order (either time steps or event steps). Every step that is possible
on the one side can be 'answered’ by the other side with an equivalent step
with arbitrarily many internal step before and after the event or time step.

An example is given in Figure 4.3. On the left hand side of the figure,
the LTS representation of a Timed CSP process is given. After receiving a
value N (ranging between 1 and Maz) on channel readSensor, the process
communicates the factorial fac(N) of N on channel adjust. Between these two
events t(N) time units pass by. On the right hand side, the LTS representation
of a possible low-level implementation is given. A bisimulation relation now
identifies states from the right and the left hand side of the LTS and relates
them. In Figure 4.3, the related states are identified by the dashed arrows.
Once such a relation is specified, it needs to be proved that the property of
weak timed bisimulation indeed holds for all of the identified states in the
specified set. This is done by starting from the initial states and stepping
through both of the LTSs, i.e., we start on the left hand side of Figure 4.3 and
show for every possible step that it has a counterpart on the right hand side
(preceded or followed by edges representing internal behavior) and vice versa.
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While in practice this approach is feasible for Timed CSP specifications,
which consist of rather few transitions, we encounter a problem when looking
at the low-level side. The small nodes depicted on the right hand side of Fig-
ure 4.3 represent the state transitions within the loop that is used to calculate
the factorial. Depending on the input parameter, we may find significantly
more nodes compared to the Timed CSP side. Enumerating all of these states
explicitly is rather unfeasible. Characterizing those chains of nodes or config-
urations in an abstract way on the level of the operational semantics would of
course lessen the burden. However, this would lead to a rather ad-hoc proof-
style and thereby complicate proof reuse. To circumvent these problems, we
use a dedicated Hoare-style proof calculus (explained in the next section) for
the specification and verification of weak timed bisimulations.

In Figure 4.3 on the right hand side, an assertion PreS describes all the
low-level states that are related to the states P; of the process algebraic specifi-
cation. The assertion PreS is parameterized over the input parameter received
in the previous transition and stored in a register. The intermediate states (IS)
are states that are traversed while low-level instructions from a set code are
executed. The intermediate states are only abstractly specified using the pre-
and postconditions and are not enumerated explicitly. Execution moves from
a state fulfilling PreS to a state that fulfills the postcondition PostS. To use
such information in a bisimulation proof, it first needs to be shown that the
Hoare-triple {PreS}code{PostS} is indeed valid and that execution from a
state fulfilling the precondition always terminates.

An interesting situation in the example are the steps from P; to P/ on
the left hand side, which are labeled with (1), ¢(2),...,{(Max) and represent
time steps. These time steps correspond to a chain of interleaved time and
internal steps of the low-level implementation. For every chain on the right
hand side, the sum of the individual time steps needs be equal to the timing
label of the related step on the left hand side, i.e., the step labeled with #(1)
is answered by a series of steps with labels ¢, ..., ¢, and t(1) = ¢t + ... + ..
To formally show that every time step can indeed be related to a series of
steps within our low-level implementation, we provide an abstraction theorem.
It enables us to show that every time step can be related to a step within
the intermediate states without explicitly mentioning the intermediate states.
Using this strategy, we can conveniently verify that every Timed CSP step has
a behavioral equivalent series of low-level steps.

As mentioned above, to prove a bisimulation relation, we also need to show
that every step on the low-level side can be answered from the Timed CSP side.
If execution is in a state that fulfills the precondition PreS, we face the problem
that no concrete information about the next state can be extracted from the
Hoare triple, since it is a state from the set of intermediate state IS, which are
only considered abstractly. However, the Hoare triples of our calculus contain
enough information for another abstraction theorem that allows to establish
the desired bisimulation property. The theorem establishes that from every
intermediate state, only silent or time steps are possible and that outgoing
timing edges are labeled with a time label that is a fraction of a related time



60 A Mechanized Environment for Conformance Proofs

Soundness & Completeness

Preservation & Reduction
Theorems

Small-Step Semantics

Semantic stack for low-level languages

Figure 4.4: Stack of Semantics for Low-Level Languages

step on the Timed CSP side. Furthermore, from each of the intermediate
states, the execution must continue to a state that fulfills the postcondition
because we prove termination using our total correctness calculus. This way,
we can prove that the low-level steps can be answered by Timed CSP as if
every chain of state transitions between PreS and PostS was just a one step
transition.

By mechanizing the abstraction theorems using Isabelle/HOL, we ensure
that the correctness of the conformance relation is preserved when applying
the theorems. Furthermore, automated support is provided on the level of
Isabelle/HOL in order to discharge resulting proof obligations.

We observe that this technique for the specification and verification of in-
termediate steps in bisimulation relations between process algebraic represen-
tations and low-level representations is tightly connected to the verification
techniques for low-level code. It is of particular importance that the relation
between program variables specified in pre- and postconditions is correct and
that, furthermore, executions from a state fulfilling the precondition always
terminate in a state fulfilling the postcondition. In the following section, we
explain our verification approach for low-level languages. It enables us to pro-
vide the necessary correctness conditions mentioned above.

4.1.3 Verification of Low-Level Code

The low-level language we consider is a typical one in the sense that due to
conditional and unconditional branch instructions, unstructured control flow
is possible. As motivated above, the specification and verification of confor-
mance proofs is based on the small-step representation of the respective for-
malisms and implementation languages. We therefore provide a timed small-
step semantics for a low-level implementation. To model the timing behavior
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of instructions, our framework builds on the specification of timing functions.
These might for example be given in terms of annotations to the low-level
code. For every instruction, a certain amount of time passes by before and
after the effect of the instruction can be observed. In this semantics, input
and output instructions are modeled in terms of events that can be observed
during execution. The observable behavior can thus be interpreted as an ob-
servable communication of the program with its environment or as an internal
action (for example the update of a register). The resulting small-step se-
mantics can be interpreted in terms of a timed labeled transition system. It
therefore fits into our envisioned modular mechanization framework (see Fig-
ure 4.2) and can thus be used to relate the behavior of low-level code to Timed
CSP specifications using the notion of bisimulations.

The specification of the bisimulation relation as described above is based on
assertions (like PreS in Figure 4.3), which describe states during the execution
of low-level code by focussing on certain aspects, for example the value of a
variable at a certain point of execution. Furthermore, the verification of bisim-
ulation relations is then based on possible executions of low-level code, which
connect states covered by such assertions. This motivates the definition of our
proof logic. It enables us to prove that, given a state described by an assertion
PreS, after executing several low-level instructions, execution terminates in a
state fulfilling PostS.

For our approach to the specification and verification of bisimulation rela-
tions, it is in particular important that such a proof logic is compositional, i.e.,
that the behavior of a combined section of low-level code can be deduced solely
from its subcomponents. For low-level code, this enables us to deconstruct a
program into subprograms. These subprograms can then be considered in
terms of states fulfilling the precondition PreS before a set code of instruc-
tions is executed, intermediate states IS during execution of code, and states
after execution of code that fulfill PostS as required by our approach to the
specification and verification of bisimulations.

To obtain such a compositional proof logic for a low-level language, we fol-
low the approach of [SU05]. There, a big-step semantics that fixes a structure
on low-level code is used as an intermediate layer between the small-step se-
mantics and the proof logic. Based on the big-step semantics, a compositional
Hoare-style proof logic is defined, which closely resembles the specification
style in Hoare logics for high-level languages (see 2.1).

To use this calculus for our purposes, we make two conceptual extensions.
First, we introduce the possibility of non-determinism. Besides being useful
for specification purposes, non-determinism can be used to model communica-
tion. Second, we provide a total correctness calculus for the non-deterministic
setting. When specifying the behavior of code, as in our approach to the spec-
ification and verification of bisimulation relations, it needs to be assured that
executions starting in a state fulfilling PreS indeed terminate in a state that
fulfills PostS and that it does not diverge. Therefore, we prove termination
between specified states using our extended proof logic. Furthermore, our big-



62 A Mechanized Environment for Conformance Proofs

step semantics and proof logic is based on communication traces. For a given
execution, we can therefore deduce the communications that took place.

To be able to use results obtained using our proof logic when verifying
bisimulation relations, we provide preservation and reduction theorems. These
theorems assure that possible behaviors of the small-step semantics are re-
flected by the big-step semantics. The gap between the level of the proof
logics and the big-step semantics is then bridged by the soundness and com-
pleteness results for our extended proof logic. A structural overview of our
semantic framework for low-level code is given in Figure 4.4. The proof logic
for the verification of low-level code is the building block of the second step in
our verification strategy for safety-critical embedded real-time systems (Fig-
ure 4.1). It can be used to verify the correctness of low-level code on its own,
but also enables the usage of verification results established on an abstract
level within conformance proofs.

In this section, we have given a detailed overview of our environment for
conformance proofs between low-level code and timed process-algebraic specifi-
cations. The presented environment and the approach for the specification and
verification of conformance relations also gives the theoretical background for
embedded development approaches such as the one investigated in the VATES
project. We give an overview of the VATES approach in the next section.

4.2 The VATES Development and Verification Ap-
proach

A source of motivation and inspiration for the verification environment pre-
sented in this thesis is the development approach investigated in the research
project VATES [GBGK10]. The project investigates methods for the verifi-
cation of distributed embedded real-time systems. It aims at providing an
integrated development and verification approach that considers the different
levels of abstraction commonly present in high assurance software develop-
ment processes. One of the goals of the envisioned approach is that we want
to enable developers to use established development tools, i.e., specification
formalisms, programming languages and compilers.

A central problem for the design of such an approach is the complexity
of commonly used high-level programming languages like, for example, C++-.
Advanced concepts like inheritance or templating make the definition of a for-
mal semantics for these programming languages a quite complex undertaking.
Even if the complex semantics of advanced concepts has been defined within a
formal semantics, reasoning about concrete programs using such a semantics
is difficult. This observation is a key motivation for the VATES development
and verification approach, which is depicted in Figure 4.5.

Development starts with an abstract specification based on the process al-
gebra CSP. CSP is a small, yet expressive, formalism targeting the specification
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Figure 4.5: The VATES Development Approach

and analysis of concurrent systems. It is well suited for the specification and
verification of properties exhibited by the embedded systems within the scope
of the VATES approach. Furthermore, Timed CSP, as a conservative exten-
sion of CSP, facilitates reasoning about timing properties. [GG10] presents a
mechanized proof environment for this purpose.

Using the abstract specification, a designer manually implements the sys-
tem in a high-level programming language. In principle, any programming
language that can be compiled to the LLVM intermediate language might be
used for this purpose. However, within the VATES project, implementations in
C++ are of particular interest because the main case study within the project,
the small real-time operating system BOSS [MBKO06], is implemented using
C++. The construction of an implementation is supported by prototyping
concepts [Klell]. We assume that a programmer decorates the implementa-
tion with annotations to the source code. These annotations basically specify
which points in the implementation correspond to abstract events from the
CSP specifications. The annotations can be regarded as a bridge between the
abstract specification and its implementation. The decorated high-level pro-
gram code is then transformed to the LLVM intermediate language using the
(unverified) gee-compiler.

To establish that the resulting low-level code correctly implements the given
high level specifications, the VATES approach considers two complementary
approaches. In the first, the resulting low-level code along with annotations is
processed by an automatic tool, called llvm2csp [KBGT11]. The tool extracts
a low-level CSP model from the intermediate code. This low-level model can
then be shown to implement the abstract specification using automatic re-
finement model-checking techniques. The main advantage of these techniques
is that they enable a fully-automatic verification that covers all possible in-
put scenarios. However, in practice the success of automated model-checking
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approaches is often limited by their inability to deal with complex, possibly
infinite state spaces. Consequently, the second approach investigated in the
VATES project (and discussed in this thesis), establishes conformance using
the interactive verification of bisimulation relations between different levels of
abstraction [BG11]. This approach could also be used to prove the correctness
of the extraction tool mentioned above [BG10].

The advantage of the VATES development approach is that it is not needed
to reason about a programs behavior on the basis of the complex and rather
complicated semantics of high-level languages. Instead, the proofs are estab-
lished on the level of the intermediate language. Nevertheless, even though the
semantics of low-level languages are less complex than the ones for high-level
languages from a conceptual point of view, concrete proofs about low-level code
inherit complexity due to the low-level of abstraction and the unstructured na-
ture of such languages. Therefore, it is crucial that the verification task can be
done in an automated and machine-assisted manner. In the VATES project,
we achieve this by formalizing the involved formalisms and notions using the
theorem prover Isabelle/HOL [NPW02| and by integrating automated refine-
ment checkers like FDR2 and ProB into the development approach. By using
the source-language independent LLVM IR as the basis for the verification, it
also becomes possible to transfer the approach to development settings that
use other programming languages than C++-. All that needs to be done to
integrate another programming language into the approach is to adjust the
annotation language and to have a compiler front-end in place that transforms
the respective programming language to the LLVM IR. Furthermore, using
the low-level level of the intermediate language as the basis for verification,
manual code optimizations (as often used in the area of embedded systems)
are supported by the verification strategy. However, the correctness of the
described approach builds on the transfer of properties established using ab-
stract specifications to the implementation level. Therefore, the correctness of
conformance proofs is of particular importance. The mechanized verification
environment that we present in this thesis supports exactly such proofs in a
machine-assisted and partly automated manner.

4.3 Summary

In this chapter, we have given an informal outline of our verification environ-
ment. To establish conformance between high-level specifications and low-level
code, we use a three-step-approach. The first step is given by a concise spec-
ification of a conformance relation. In the second step, the correctness of
the low-level implementation is verified using our dedicated proof calculus for
timed low-level languages. The third step then establishes conformance be-
tween the low-level implementation and the abstract specification. To this
end, we show that the implementation correctly implements the abstract spec-
ification by establishing the correctness of the conformance relation specified
in step one. We support this task by building on the verification results from
the second step. Furthermore, we have motivated how our approach for prov-
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ing conformance fits into a development approach for embedded systems, like
for example, the one investigated in the VATES project.

In the next chapter, we present the formalization and mechanization of
a basic non-deterministic low-level language and develop a proof calculus for
total correctness proofs. In the remainder of this thesis, we then further extend
the proof calculus with communication primitives in a real-time setting and
explain how it can be used for conformance proofs.
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5 A Basic Low-Level Language in
Isabelle/HOL

In the last chapter, we have described our verification environment for process-
algebraic specifications and their low-level implementations. The central part
of this environment is the concise representation and analysis of implemen-
tations given in their low-level representation. For the analysis of low-level
code, we require an unambiguous semantics and a related proof calculus. As
further requirements, we have identified that the language and the dedicated
proof calculus should support proofs about non-deterministic behavior and
termination in a compositional manner. Moreover, we want to be able to
transfer properties established on a more abstract level to the concrete level of
the small-step semantics, i.e., we aim for a semantic framework that supports
the transfer of properties established using a proof logic to the level of the
small-step semantics.

In this chapter, we formalize the syntax and semantics of a basic unstruc-
tured low-level language that meets the aforementioned requirements. To
concentrate on the formal treatment of the desired properties, we keep the
language as small as possible and abstract from timing and communication
behavior at first. In Chapter 6, we then extend the semantic framework pre-
sented in this chapter with communication mechanisms and timing behavior.
A compositional approach to the semantics of low-level languages and a related
Hoare calculus is described in [SU05]. Our semantics and proof logic [BJ14]
builds on this work and extends the approach conceptually in mainly two di-
rections. First, we extend the simplistic low-level language with an abstract
instruction do that can be used to model non-deterministic behavior. Second,
we extend the calculus to support termination proofs, i.e., we construct a proof
calculus for total correctness. The first extension enables our basic language to
model a variety of programming constructs, which go way beyond the expres-
siveness of pure single assignments. Our extension does not impose restrictions
on the kind of non-determinism and might therefore also introduce unbounded
non-determinism. While the extension enables us to conveniently model po-
tentially non-deterministic behaviors, the powerful concept comes at a cost.
For the extended language, we cannot use the weakest precondition approach
for the completeness proof anymore because the weakest precondition function
is not continuous in this setting. As a solution, we adopt a proof strategy for
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completeness used by Nipkow in [Nip02] for a structured while language and
apply the strategy in the setting of unstructured low-level languages.

Our second extension is the formalization of a total correctness calculus for
low-level languages. Total correctness for the original language was mentioned
by the authors in a note [Saa06], but no soundness and correctness proofs were
published. However, the major challenge for our approach is the fact that we
deal with total correctness in the presence of non-determinism. This requires a
precise characterization of the notion of termination for our extended low-level
language. We show that the rules of our extended total correctness calculus,
which rely on the notion of well-founded relations, are sound and complete.
All proofs are formalized and mechanically checked using the theorem prover
Isabelle/HOL [NPWO02]. A practical contribution of the work presented in this
chapter is given by a machine assisted and partly automatized verification tool
for concrete low-level code, which we obtain through our mechanization. Using
two examples, we show how the infrastructure of Isabelle/HOL can be used
for compositional proofs about unstructured low-level code in general, and in
particular how the mechanisms for handling well-founded relations provided by
the theorem prover can be exploited for efficient proofs about the termination
behavior of low-level code.

We start this chapter by defining the syntax of a basic low-level language.
For this basic language, we then define a small-step and a big-step semantics
and show that the two agree. Then, we define the rules of a partial correctness
logic which we further extend to the total correctness case. We finish the
chapter with two small example programs that exemplify how the presented
semantic framework can be used for concrete proofs and conclude the chapter
with a brief summary.

5.1 Syntax and State Definitions

In this section, we present the syntax and semantics of the simplistic low-
level language for which we want to obtain a compositional big-step semantics
and dedicated proof calculus. We start by giving state and syntax definitions.
Then, we explain the rules of the small step semantics for the language. Build-
ing on these rules, we derive a big-step semantics for the language and establish
that the two semantics are equivalent in terms of their executions. This enables
the transfer of properties established on the level of the big-step semantics (ob-
tained either by direct reasoning or using the proof calculus presented later)
to the level of the small-step semantics.

We formalize the notion of state as a record with the name state that is
parameterized over the type ’a:

record (a) state = R ::'a PC :label

In Isabelle/HOL records offer convenient selector functions for components
of the record, i.e., we can refer to the components of a given state record
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s using qualified names, i.e., R s or PC' s. Furthermore, components of a
record can be updated in a similar fashion (as we explain in the next section).
The low-level programming language that we consider operates on a store R
of type ’a. Using the type variable ’a here expresses that we do not fix a
concrete representation of the store. Our further definitions of instructions
and semantics are polymorphic over the type ’a as well. This implies that our
formalization can later be used for concrete verification efforts by instantiating
it with a convenient representation for the store, for example by using a simple
function (as we do in the example later) or using more advanced concepts
like records or locales for example (for a discussion on state representations
see [Sch06]). The program counter PC' points to the instruction that is to be
executed next and is of type label (which here is a type synonym for the HOL
type nat of natural numbers).

The low-level programming language we consider is defined using the type
of instructions (’a)instr. Instructions are parameterized over the type of the
store a as well:

datatype (‘a)instr = do (‘a = 'a set) | brlabel | brt ("a = bool) label label

The instruction do f (of type ‘a = 'a set) applies an arbitrary (HOL) func-
tion f to the state. The function maps to a set of states and might thereby
introduce non-determinism (if the set contains more than one state). The
instructions br and brt are unconditional and conditional branching instruc-
tions and reflect the unstructured control flow of the language (in contrast
to classical while languages). The conditional branch instruction depends on
a predicate of type ‘a = bool that maps a given state to a Boolean value.
Building on these definitions, we define we define a small step semantics for
the basic low-level language in the next section and explain the instructions in
more detail.

5.2 Small-Step Semantics

In this section, we define a small step semantics for our low-level language. We
define the transition rules of the semantics with respect to a fixed set of labeled
instructions lis, which consists of tuples of type (label,instr). The program
counter points to labels and therefore to the instruction that is labeled by the
respective label. We impose wellformedness conditions on this set. They state
that no label refers to more than one instruction and that the set of instructions
is finite. We use the locale concept of Isabelle/HOL to formalize this. A locale
defines a named local context that allows to fix datatypes and assumptions
about them. Within the context a locale, further definitions may then refer
to the fixed datatypes and assumptions. Furthermore, the abstract locale
definition can be instantiated concretely by defining objects and showing that
these fulfill the respective assumptions. We will later use this concept when
using our formal framework for proofs about concrete programs.
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(I, do f) € lis PCs =1 zef(Rs) t:5(|R::x7PC::PCs+ZDDOF
(s, t) € small-step

(I, brm) € lis PCs=1 t = s(PC := m)
(s, t) € small-step

SMBR

(1, brt bexp m n) € lis PCs=1 bexp (R s) t = s(PC := m)
(s, t) € small-step

SMBRTT

(I, brt bexp m n) € lis PCs=1 = bexp (R s) t = s(PC :=n)
(s, t) € small-step

SMBRTF

Figure 5.1: Rules of the Small Step Semantics

The rules of the small-step semantics are given in Figure 5.1. They are
defined within a locale context as mentioned above and refer to the fixed set
of labeled instructions lis (and therefore to the assumptions made about it).
We require labeled instruction sets to contain no two tuples with the same
label. In general, a state transition from a state s to a state t is possible if the
program counter in the state s (PC s) points to the label of an instruction.
Further conditions have to hold for the particular instructions. If these are
fulfilled, the state t is obtained from s by updating the respective components
(R and PC) of the state record.

Instead of a deterministic single assignment instruction as used in [SU05],
we generalize the basic low-level language to a non-deterministic setting. In
the semantics of programming languages, non-determinism can be useful to
provide descriptions of programs in a more abstract way. For example, if the
outcome of an assignment or a section of code is not known at some design stage
and certain values are possible, it might be modeled using non-determinism.
In later stages of the design of a program, the respective assignment instruc-
tion can be replaced by a more concrete statement. Proofs established about
the more abstract program can then be reused. Furthermore, also input in-
structions might be modeled as non-deterministic transitions on the level of
the programming language.

The instruction do f formalizes the effect of an application of some HOL
function f to the state s. We define it similar to the definition given in [Nip02]
for a high-level language. The function do f yields a set of states. Therefore, for
every element of this set (z € f (R s)) there is a possible state ¢ which can be
reached from s. The program counter of this state ¢ is obtained by incrementing
the program counter of s by one. Note that it would have also been possible
to realize an even more abstract language by allowing the do f instruction to
also assign to the program counter. However, we choose to stress that we are
dealing with a low-level language here by only allowing branching instructions
to change the program counter. By allowing the function f to be defined as an
arbitrary HOL function, the instruction do f can be used to model a variety of
instructions like single assignments and binary assignments. Furthermore, skip
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instructions (provided f does not change the state), abortion (if f yields the
empty set) and non-deterministic instructions like non-deterministic choice and
also random assignment can be modeled. The unconditional branch instruction
br m updates the state s by setting the program counter to the value m.
The last two rules are concerned with the conditional branch brt bexp m n .
Depending on the truth value of the predicate bexp, evaluated with respect to
the store R in state s, the instruction either updates the state by setting the
program counter to m or n. Note that f and bexp depend only on the store R
in a given state.

5.3 Big Step Semantics

In this section, we formalize a compositional big step semantics for our low-level
language. To define this semantics, we follow [SU05] by imposing a structure
on sets of instructions. The central idea is that any unstructured set of la-
beled instructions can be viewed as being constructed from subsets of labeled
instructions (which do not share labeled instructions with the same label) and
that, if this implicit structure is made explicit, a compositional semantics can
be obtained. Given some state s, the big-step semantics then evaluates exe-
cutions with respect to this structured set of instructions. We formalize this
structure using the following inductively defined datatype

datatype (a)structuredCode = none |
one nat ('a)instr |
seq ('a)structuredCode ('a)structuredCode

The constructor none (which has the syntax abbreviation )) corresponds to
the empty set, while the constructor one (written as label :: instruction) corre-
sponds to a set consisting of exactly one labeled instruction. The constructor
seq (structuredCode @ structuredCode) formalizes the intuition of structured
set construction given above and is used for sequential composition in the big-
step semantics. In general, a set of labeled instructions can be structured in
many ways. However, the evaluations of the big-step semantics using the rules
presented below are oblivious with respect to the actual fixed structure.

The rules of the big-step semantics are given in Figure 5.2. The rules for
do, br and brt correspond to the ones from the small-step semantics. However,
for the branching instructions it is required that the destination of a jump
does not equal its own label. In the inference rules, the labeled instructions
are now defined with respect to a piece of structured code sc that needs to
be wellformed ( wffs. sc). Well-formedness here means that no constituent
parts of a structured set of instructions share an instruction with the same
label. The central part of the big-step semantics are the rules for sequential
composition (SEQ1 and SEQ2), and the rule TERM that is applicable if the
program counter of a given state s does not point into the structured piece of
code. The intuition behind the rules for sequential composition is the following:
if execution of a piece of structured code sc1 @ sc2 from a given state s starts
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wff s¢ sc se=(1:dof) (I, do f) € lis
PCs =1 zef(Rs) t:s(IR:::c,PC::PCs—i—]DD

(s, sc, t) € big-step

OF

wff se sc sc = (l:brm)
(I, brm) € lis PCs=1 l#m t =s(PC = mDBR

(s, sc, t) € big-step

wff se sc sc = (I :: brt bexp m n) (1, brt bexp m n) € lis
PCs=1 bexp (R s) l#m t = s(PC := m)
(s, sc, t) € big-step

BRTT

wff se sc sc = (PC s :: brt bexp m n) (1, brt bexp m n) € lis
PCs=1 = bexp (R s) l#n t = s(PC := n)
(s, sc, t) € big-step

BRTF

sc = (scl @ sc2) PCs €5 scl
wff s¢ sC (s, scl, s1) € big-step (s, sc1 @ sc2, t) € big-step
SE
(s, sc, t) € big-step

Ql

sc = (scl @ sc2) PCs €5, sc2
wff sc sc (s, sc2, s1) € big-step (s1, sc1 @ sc2, t) € big-step
SE

2
(s, sc, t) € big-step @

- (PC s €. s¢) wff s¢ sc
(s, sc, s) € big-step

TERM

Figure 5.2: Rules of the Bigstep Semantics

in the first part of the structured piece of code (because PC' s points to a label
within sc1), then the code sc! is executed from this state. After this, a state
sl with a program counter outside of sci is obtained. From this state both
parts of the original structured code (sc! @ sc2) are executed. The reason for
considering both parts of the composition is that from sc2 there might be a
jump back into scl1. This way of executing the two pieces of code is done until
a state is reached where the program pointer is outside of scI @ sc2.

The big-step semantics corresponds to the small-step semantics, i.e., for
a given execution in the big-step semantics there exists a corresponding exe-
cution in the small-step semantics and for stuck executions of the small-step
semantics (i.e., if the program pointer does not point to a labeled instruction
anymore) there exists a corresponding big-step execution. These simulation
and reduction theorems enable the transfer of properties established on the
level of the big-step semantics to the small-semantics. Thereby, the big-step
semantics serves as a connection layer between the unstructured layer of the
small-step semantics and the structured and more abstract layer of the proof
calculus, which we present in the upcoming section.
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5.4 Hoare-Logics for Low-Level Languages

In this section, we formalize the rules of our Hoare logic for non-deterministic
low-level languages. As motivated in the introduction, we have extended our
low-level language with non-determinism. The main obstacle in order to make
the proof calculus compatible/working with this extension is the complete-
ness proof. Since the weakest precondition approach does not work for non-
deterministic languages, we employ the notion of the most general triple to
mechanically prove that the rules of our calculus are indeed complete (for
a discussion on relative completeness we refer to [Nip02]). Furthermore, we
extend the calculus to handle auxiliary variables explicitly. In the next subsec-
tion, we start by presenting our calculus for partial correctness and establish
soundness and completeness. In the subsequent section, we extend the rules
of the partial correctness calculus to account for termination and explain how
we establish soundness and completeness in this setting.

As common in formalizations of Hoare calculi in theorem provers, in our
formalization, assertions are formalized using the extensional approach, i.e., we
only fix the type of assertions but do not define an assertion language explicitly.
We model auxiliary variables by formalizing an auxiliary state. Auxiliary
variables are used to freeze the values of variables before and after execution
of some code fragment. Using auxiliary variables, it is thereby possible to refer
to variable values from states fulfilling a precondition in a postcondition. The
type of assertions is formalized as:

type-synonym (‘auz,’a)ass = ‘auz = ('a)state = bool

An assertion is applied to a state and yields a Boolean value that reflects
whether the assertion is fulfilled in the given state or not. The type of assertions
is defined as being polymorphic with respect to the type of auxiliary state ‘aux
and the type of state ‘a . Thereby, the auxiliary state can be instantiated
conveniently when using the calculus. For example, in the completeness proof
we instantiate the auxiliary state with the type of state.

5.4.1 Partial Correctness

The rules of the partial correctness calculus are depicted in Figure 5.3. The first
three rules are similar to the standard Hoare rules of structured languages, i.e.,
the precondition is defined using the assertion ¢ that defines the postcondition.
This assertion ¢ is evaluated in a state that is substituted according to the
effects of the instruction that the rule refers to (see Section 2.1). Furthermore,
the assertion ¢ is evaluated with respect to the auxiliary state aux. This
allows to specify an auxiliary state which can be used to refer to variables from
the precondition in the postcondition. The definition of validity given below
ensures that both the precondition and the postcondition are evaluated with
respect to the same auxiliary state aux. Regarding the assertions there is an
important difference compared to the assertions used in Hoare calculi for high-
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A aur s.PC's = 1N
Vzef (R s). q aux (s(R := z, PC := PCs + 1)) p 1 :: do f{q} DOF
VPCs#I1INqauzs

A aux s.PCs=1AN
(q auz (s(PC :==m|)V m =1 p1: brm{q} BR
VPCs#I1Nqauzs

A aux s.PCs=1A
(b (Rs)A(qaux (s(PC :=m))Vm=1)V
b (R s) A (qauz (s(PC :=n)) VvV n=1)
VPCs#IANqauzs

l:brt b mn{q} BRIF

Fp {Xauz s. (PC's €5c scl) A i aux s} scl {i}
F, {Aauz s. (PC's €5. sc2) A i aux s} sc2 {i}

SE
Fp {i} scl & sc2 {hauxs. = (PC's €5, sc1) AN = (PC's €. s¢2) A i aux s}

Q

Fp {p'} sc {q'}
Vst. Vauz. p’ auz s — q¢' auz t) — (Vauz. p aur s — q auz t)

Fp {p} sc {q}

CONS

Fp {p} 0 {p}NONE

Figure 5.3: Rules of the Partial Correctness Calculus

level languages. We deal with low-level code here that is multi-entry and multi-
exit, which means that program code can potentially be executed starting at
any labeled instruction in it. Our assertions therefore explicitly refer to the
value of the instruction counter. Therefore, specifications are also valid if the
instruction pointer in a particular state does not point to the actual instruction
that the rule refers to, but fulfills the postcondition without executing the code.
The rule for the instruction do f specifies that ¢ needs to hold for every state s
from the set obtained from the application of f to the current store (R s). The
rule for br m evaluates the assertion ¢ in a state where the program counter is
set to m. The disjunct m = [ is used to cope with branching instruction that
jump to their own label. In this case, the precondition evaluates to true and any
postcondition is possible. The rule for conditional branches is defined similar
to the one for unconditional branches but depends on a Boolean condition b.
The postcondition ¢ needs to hold for a state in which the program counter
points to m if the branch condition b evaluates to true and for a state where the
program counter points to n if the branch condition b evaluates to false with
respect to the current store R s. The rule for sequential composition resembles
both the rule for sequential composition and for loops known from standard
calculi for structured languages. An invariant is needed here for the three
states involved in a sequential composition: the state before the first part of



5.4 Hoare-Logics for Low-Level Languages 75

the structured code (sc1), the intermediate state reached after executing sc!
and before executing sc2 and the state after executing sc2. The invariant
needs to be strong enough to cope with possible jumps between the two pieces
of structured code. Note that the invariant only needs to refer to the program
counter values from which the respective pieces of structured code might be
entered or left with respect to the execution of the subpieces. All other labels
that might be visited for example by executing a sequence of straight line
code within one of the pieces of code involved in the sequential composition
need not to be specified in the invariant. The intuition behind the rule is that
if the structured code scl @ sc2 is executed from a state with a program
counter specified in the invariant, execution ends in a state that again fulfills
the invariant but in which the program counter is outside of sc1 @ sc2. The
rule of consequence is quite different from the one in [SU05] because it is also
used to adapt the auxiliary state. The classical rules for strengthening the
precondition and weakening the postcondition can be derived from this one.

A specification of the partial correctness calculus is valid iff from every state
that fulfills the precondition p, execution of the instructions from code ends in
a state that fulfills the postcondition ¢ (if execution of code terminates). This
intuition yields the following definition:

Definition 10 (Validity for partial correctness)
=, {p} code {q}«—Yauz s t. p aur s A (s, code, t) € big-step — q aux t

The rules of Figure 5.3 are sound with respect to the rules of the operational
semantics. This is established by rule induction over the rules of the proof sys-
tem. Here, we show in detail how such a proof is realized in Isabelle/HOL. We
explain the proof commands that are used to discharge the subgoals appearing
within the proof.

Theorem 1 (Soundness for partial correctness)
Fp {p} code {g} — 5 {p} code {q}

As a first step, we expand the definition of validity given above using the
command unfold.

apply (clarsimp , unfold valid_def)

After unfolding the definition of validity the following subgoal is obtained:
Fp {p} code {q} = Yauz st. p aur s A (s, code, t) € big-step — q aux t

We perform induction over the rules of the proof calculus. This is achieved
by using the automatically generated induction principle vspec.induct as an
elemination rule. The name wvspec refers to our inductively defined proof rules.

apply (erule vspec.induct)

After applying the command, we obtain six subgoals. The first one results
from the proof rule for the instruction do f£:
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PCs=1NNzef (Rs). qaux (s(R =z, PC := Suc (PC s))))V
PCs # 1A qaur s =
(s, l::dof,t) € big-step =>q aux t

This subgoal can be automatically discharged using the following command:

apply(clarsimp , erule big_step.cases, clarsimp+)

Here, we first simplify the subgoal and then perform a case distinction of
the rules of the big-step semantics by applying the theorem big_step.cases
(automatically generated by Isabelle for the inductive definition of the relation
big_step) as an elimination rule.

The same proof commands can be used to discharge the subgoal resulting
from the rule for the instruction br:

PCs=1AN(qauz (s(PC:=m))Vvm=1)V PCs#IlAqaur s—=>
(s, 1 brm, t) € big-step — q aux t

The subgoal corresponding to the instruction brt is the following.

PCs=1N(b(Rs)NA (qauz (s(PC :=m|))V m=1[)V
b (Rs)A(qauz (s(PC :=n)))Vn=I1))V

PCs # 1A qaur s—

(s, 1 brt b mn, t) € big-step—=> q auz t

We use the same proof strategy as for the instruction br here. However,
event though simplification using the proof command clarsimp is not sufficient
here, Isabelle/HOL is still able to discharge the subgoal automatically using
the automated reasoning method fast. This leads to the following series of
proof commands:

apply(clarsimp , erule big_step.cases, fast+, clarsimp)

The following subgoal results from the rule for sequential composition:

Fo {Aaux s. (PC's €5, scl) A i aux s} scl {i} =

Vaur st. (PCs €g. scl) N iauxs) A (s, scl, t) € big-step — i aur t =
F, {Aauz s. (PC's €5, sc2) A i aux s} sc2 {i} =

Vauz s t. (PCs €s. sc2) Niaux s) A (s, sc2, t) € big-step — i aux t =
i aur s =>(s, sc1 & sc2, t) € big-step =

“(PCt €5 5c1) N = (PCt €. 5¢2) Niauxt

To prove this subgoal we use an auxiliary lemma. We choose to do so
because we need to perform an induction over the executions of the big-step
semantics. Using the following lemma called seqlnduct, the Isabelle system is
able to perform the unification correctly when performing induction over the
rules of the big-step semantics.

(p, ¢, q) € big-step =

V scl invariant sc2 aux s t. ¢ = (scl1 @ sc2) Ap=sANqg=1tA

F, {Aauz s. (PC s €5, scl) A invariant auz s} scl {invariant} A

(Vauz s t. (PC s €. scl) A invariant auz s) A (s, scl, t) € big-step —
invariant auz )\
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F, {Aaux s. (PC s €5, sc2) A invariant auz s} sc2 {invariant} A

(Vauz s t. (PC s €s. sc2) A invariant auz s) A (s, sc2, t) € big-step —
invariant auz t) A

mvariant aur s

— 2 (PCt €. sc1) N = (PCt €4, sc2) A invariant auz t

The lemma states that given a big-step execution of a sequentially com-
posed piece of code, execution terminates in a state ¢ where the program
pointer does not point into the composed pieces of code anymore. Furthermore,
the invariant holds in ¢ if execution starts in a state fulfilling the nvariant
and the given partial correctness specifications hold for the individual pieces
of code involved in the composition. We use the lemma to prove the origi-
nal subgoal by adding it to the assumptions of the original subgoal using the
command insert and instantiating the universally quantified meta variables.
These result from the fact that the variables p, ¢ and ¢ are not universally
quantified in our lemma and are therefore interpreted as meta variables.
apply(clarify ,insert seqlnduct)

9 o N

(
apply(erule_tac x="s” in meta_allE)
apply(erule_tac x="seq scl sc2” in meta_allE)
apply(erule_tac x="t” in meta_allE)

To use the lemma in our soundness proof, we need to establish that the
assumption about the big-step execution holds in the current proof context.
This is achieved using the following proof command.

apply (drule meta.mp, assumption)

After instantiating the universally quantified variables of our lemma seqln-
duct appropriately, the subgoal is proved by automatic means using the proof
method fast:

apply(erule_tac x="scl” in allE)
apply (erule_tac x="i" in allE)
apply(erule_tac x="sc2” in allE)
apply(rotate_-tac 4, erule_-tac x="aux” in allE)
apply(rotate_tac 6, erule_-tac x="s” in allE)
apply(rotate_tac 6, erule_tac x="t” in allE)

(

apply (fast)

Following the application of the command clarsimp, the following subgoal
remains for the rule of consequence:

Fp {p} sc {¢'} =

Yaur st. p’aux s A (s, sc, t) € big-step — q' aux t =

Vst (Vauz. p’ aur s — ¢’ aur t) — (Y aux. p aux s — q aux t) =
p aur s =>(s, sc, t) € big-step =>q aux t

Since the rule involves no information about concrete executions of the big
step semantics, we can prove the subgoal by using the automatic proof method
fast.

For the empty piece of structured code, we obtain the following subgoal:
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p aux s =>(s, 0, t) € big-step =>p auzx t

Again this subgoal can be proved by using the respective definition within
the big-step semantics using the following proof command:

apply(clarsimp ,erule big_step.cases, clarsimp+)

After proving the last subgoal, the soundness proof is finished using the
command done.

The rules for the partial correctness calculus yield a complete proof system
with respect to well-formed structured code (see above for well-formedness).

Theorem 2 (Completeness for partial correctness)
If wffs. code and U,. code C lis then

=y, {P} code {Q} — F, {P} code {Q}

The proof uses the most general triple approach. In the next section, we explain
the completeness proof for total correctness in more detail. The proof for the
total correctness case subsumes the one for partial correctness. Therefore, we
skip the details here.

In this section, we have presented a partial correctness calculus for our
basic non-deterministic low-level language. As motivated in the introduction
to our proof environment for conformance proofs, we require a total correct-
ness calculus for our approach. In the next section, we therefore extend the
partial correctness calculus to total correctness and enable proofs about the
termination behavior of low-level code.

5.4.2 Total Correctness

In this section, we describe our adapted proof calculus for the total correctness
case. The extension is similar to the way total correctness is realized in proof
calculi for structured programming languages in the sense that the specification
of a variant is required in the rule for sequential composition. Informally, for
high level languages such a variant ensures that after every loop iteration a
value of the state (or a combination of values) is decreased. If a lower bound
is known for the values of the respective variable, the loop must terminate at
some point. More precisely, a well-founded relation defined on the state of the
programming language is required, which formalizes that the state is decreased
with every loop iteration. Recall that the rule of sequential composition in our
proof system for low-level code corresponds to both the rules for sequential
composition and loops in Hoare calculi for high-level programming languages.
For the rule of sequential composition in our proof calculus, we can use the
same approach as for high-level languages. The rules of the total correctness
calculus are given in Figure 5.4.

Compared to the partial correctness rules, the rule for do f now further
requires that the set of states yield by f is not empty. For the branching in-
structions, it is required that they do not branch to their own label. Regarding
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X auz s.PCs=1Nf(Rs)#0DA
Vzef (R s). ¢ aur (s(R :=z, PC := PC s + 1)) ) : do f{q) HDOF
VPCs#IANqauzs

A aur s.PC's =1AN
q auz (s(PC :==m)) Am # 1 )I: brm(g) HBR
VPCs#I1Nqauzs

A aux s.PCs=1AN
(b (Rs) A qauz (s(PC :=m)) Am #1V
b (Rs)A qauz (s(PC :=n)) An#l
VPCs#I1Nqauzs

[ brt b m n (q) HBRTF

wf r
Vs’ (Aaux s. (PCs €s. scl) Niauz s A s =s') scl (Nauz s. i auz s A (s, s’) € )
Vs’ ki (Aaux s. (PC's €s¢ 5c2) Niauz s A s =s') sc2 (Nauz s. i auz s A (s, s’) € )

HSE
Fi (i) scl @ sc2 (haux s. = (PC s €. sc1) A = (PC s €4, s¢2) A i auz s) @
F¢ (p’) sc (q') Vst. Vauz. p’ auz s — q' auz t) — (Vauz. p aur s — q auz t)
Vs. (Jauz. p auz s) — (Jauz. p" aux s)
HCONS

Fi (p) sc (@)

F. (p) O (p)HNONE

Figure 5.4: Rules of the Total Correctness Calculus

sequential composition, a well-founded relation needs to be provided (condi-
tion wf r). A binary relation is well-founded iff it does not allow for infinitely
descending chains. For example, the relation less-than on the natural numbers
is a well-founded relation. Given such a relation, it needs to be established
for both of the sub-specifications that the state is decreased with respect to
this relation. This is formalized by the term s = s’ in the precondition and
the term (s, s’) € r in the postcondition of the assumptions for the rule of se-
quential composition. The rule of consequence is similar to the one for partial
correctness, but adds a conjunct for strengthening the auxiliary state in the
precondition.This is required to achieve adaption completeness [Sch97, Old83].
Informally, adaption completeness expresses that the auxiliary state can always
be adjusted as required in order to express arbitrary valid specifications. This
is of particular importance when extending a proof system in order to han-
dle recursive function calls, for example. The treatment of recursion can be
significantly simplified when using auxiliary variables [Sch97].

Validity of a specification derived using the inference rules of our total
correctness calculus is defined similarly to validity in the context of partial
correctness. Additionally, we require that if a state s fulfills the precondition
p, the execution of the respective piece of structured code code terminates for
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all executions of code starting in s. This is formalized using the termination
predicate | defined by the rules in Figure 5.5 and reflected by the last conjunct
of the term in the following definition:

Definition 11 (Validity for total correctness)

= (p) code (q) «—
Yaur st. p aur s A (s, code, t) € big-step — q aux t A
Yaur s. p aux s —» code | s

A specification is then valid (abbreviated |=; (p) code (q)) iff for all states that
fulfill the precondition p and from which code is executed, the postcondition ¢
holds and the execution of code terminates. The axiomatization of termination
via the predicate | is necessary, since in the presence of non-determinism the
existence of a terminating execution is not sufficient to claim that all executions
from a certain state terminate. The intuition behind the formalized rules is
as follows. As mentioned above, the instruction do f can be used to model an
instruction that blocks execution given that the function f yields the empty
set. Therefore, the termination rule for do f requires the set of states yield
by f to be non-empty. For the branching instructions, it is obvious that they
terminate if they do not jump to their own label. All instructions terminate if
they are evaluated in a state in which the instruction pointer does not point to
the instruction. The empty structured instruction () terminates for any state
since it contains no labeled instructions that the program counter in a given
state might point to. The most interesting case is the sequential composition.
Here, termination behavior is defined inductively. A sequential composition
terminates from a given state s, if execution of the first part of the structured
code of the composition from s terminates in a state ¢, and then the sequential
composition terminates if executed from ¢ or vice versa. If the program pointer
in s does not point into the sequential composition it terminates as well.

Theorem 3 (Soundness for total correctness)
i (p) code (q) — [=¢ (p) code (q)

We prove soundness by invoking induction on the derivation rules of the
Hoare logic. The proof is realized similarly to the proof for the partial correct-
ness case. For the basic instructions it is sufficient to unfold the definitions of
the respective rule from the big-step semantics and the termination predicate
J. The most interesting case is the sequential composition. The proof requires
induction over the big-step semantics. To establish that the termination pred-
icate holds for a sequentially composed piece of code, we invoke well-founded
induction using the provided well-founded relation r-

We prove completeness using the most general triple approach [Gor75,
Nip02] because the weakest precondition approach does not work in the pres-
ence of unbounded non-determinism. Formally, the most general triple is de-
fined as follows:

Definition 12 (Most general triple)
mgt code = (Az s. z = s A code | s, code, Az t. (z, code, t) € big-step)
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J(Rs)£0OV PCs#1 m#1LV PCs #1
DOF BR
(l:dof)ls (I::brm) s

b(Rs) Am#IV-b(Rs)An#1lV PCs#1
BRTF
(I:brtbmmn) s

PC's €5¢ (sc-1 & sc-2)
(PC s €sc sc-1) A sc-1 | s AN (Vi (s, sc-1, t) € big-step —> (sc-1 P sc-2)
(PC s €4c 5¢-2) N sc-2 L s AN (Vt. (s, sc-2,t
(sc-1 & sc-2

1tV
i fsbig—step — (s¢-1 ® s¢-2) | t)) SEQ
= (PC s €s¢ (sc-1 @ sc-2))
(sc-1 @ sc-2) | s

SEQ2

() | sSNONE

Figure 5.5: Definition of the Termination Predicate

The intuition behind the most general triple is that it reflects all possible
executions from a state that fulfills the precondition, by ’freezing’ this state
using the auxiliary state z and then claiming in the postcondition that it holds
for all states ¢ which can be reached via the big-step semantics. Since we deal
with total correctness, it is also claimed that execution from a state that fulfills
the precondition needs to terminate (using the termination predicate |). If it
can be established that the rules of the Hoare calculus are sufficient to prove
the most general triple it follows that the calculus is complete:

Lemma 1 (Most general triple implies completeness)
If wffs. code and &, (fst (mgt code)) code (snd (snd (mgt code))) then

E. (P) code (Q) — F; (P) code (Q)

The most general triple is defined with respect to a piece of structured code
code and consists of three parts. We therefore refer to the first part (via fst)
and the third part (via snd(snd(z))) using Isabelle/HOL’s selector functions
for pairs in the following lemma, which establishes that the rules of our proof
system are sufficient to derive the most general triple.

Lemma 2 (Derivation of the most general triple)
If Us. code C lis and wffs. code then t-; (fst (mgt code)) code (snd (snd
(mgt code)))

The proof is done by induction on the structured form of code (which needs
to be well-formed). We show the case for the instruction do f here. The other
cases (apart from sequential composition) are similar. We need to show that
the following triple holds:
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Fe (Azs.z=sA(ldof)ds)l:dof (Azt. (z,1:dof,t)€ big-step)

Using the rule of consequence we strengthen the precondition to obtain the
following triple:

e (Aauz s. PCs =1 Nf (Rs)#0A
Vezef (R s). (auz, [ :: do f, s(R := z, PC := PC s + 1)) € big-step
VPC s # I A (auz, 1 :: do f, s) € big-step)
[ ::dof
(Azt. (2,1 ::dof,t) € big-step)

Using the proof rule for the instruction do f we want to show that this
triple can be derived in our proof system. To apply the rule, we first need
to apply the rule of consequence. The application of the rule of consequence
requires to show that the following holds:

If ({:dof)]l sand PCs =1V (s,1:dof,s)¢ big-step then
PCs=1INf(Rs)#0DA
Vzef (RSs). (s, L dof, s(R:=z, PC:= PCs + 1) € big-step

The definition of termination in the first assumption ((/ :: do f) | s) im-
plies that the function f should not yield the empty set (f (R s) # (). This
already shows the second conjunction of our proof goal. The second assump-
tion in this proof obligation states that either the program counter points to
instruction do f at label [ or there exists no transition from s to itself through
the instruction do f at label . It is easy to show that the latter can only be
the case if the instruction pointer indeed points to I. We therefore need to show:

Vzef (Rs). (s, PCs:dof, s(R:=uz, PC:= PCs + 1)) € big-step

which follows from the big-step rule for do f since the program counter of s
points to the label of the do f instruction.

Proofs for the other instructions are similar. For sequential composition,
we have the assumption that the following triples hold for the individual parts
of the sequential composition:

Fe (Azs.z =5 A scl | s)scl (A\zt. (z, scl, t) € big-step) (1)
Fe (Azs. 2 =5 A sc2 ] s) sc2 (Azt. (z, sc2, t) € big-step)  (2)

and we have to establish the following triple:
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Fe(Azs. 2z =8 A (scl @ sc2) ] s) (3)
scl @ sc2
(Az t. (z, sc1 @ sc2, t) € big-step)

To apply the appropriate proof rule for sequential composition, we need to
find a suitable invariant and provide a well-founded relation for the composi-
tion. Both are based on the observation that the execution of the sequential
composition might alternate between the two pieces of structured code involved
in the sequential composition. Therefore, we define the invariant based on the
transitive closure of the set of state-pairs (u, v) where state v can be reached
from state u through scl or sc2. The invariant then describes for a tuple of
states (z, t) all the states z visited after and between executing sc! or sc2 in
an alternating way. Note that states visited 'within’ the execution of either
of the pieces of code are not captured. Furthermore, the invariant requires
the alternating executions to terminate. Using the rule of consequence, we
strengthen the precondition of the desired specification triple (3) to the fol-
lowing assertion, which exactly formalizes the invariant described above using
the termination requirement:

Az t. (z,t) € {(u,v) | (PCu €s. sc1) N (u, sc1, v) € big-step V
(PC u €s. 5¢2) A (u, sc2, v) € big-step) }*A
(sc1 & sc2) | z)

We weaken the postcondition in a similar manner. Note that we need to add
that the program counter does not point into the sequentially composed pieces
of code anymore in order to apply the rule of consequence:

Az t. = (PCt€s. scl) N = (PCtEge 5¢2) N
(z,t) € {(u,v) | (PCu €s. scl) N (u, scl, v) € big-stepV
(PC u €. 5¢2) N (u, sc2, v) € big-step) }* A
(sc1 @ sc2) | z).

The destination triple now has the format required by the appropriate rule
for sequential composition defined in our proof system. To apply this rule, we
first have to provide an appropriate well-founded relation. We provide the fol-
lowing relation, which claims that the terminating executions of the sequential
composition (which might ’circulate’ through both parts of the composition)
form a well-founded relation:

wf{(t,s) | (scI ® sc2) | s AN PCs €. (scl & sc2) A
((PCs €sc sc1) — (s, scl, t) € big-step A
(PC s €. sc2) — (s, sc2, t) € big-step )}

To show that this relation is indeed well-founded, we use the following
lemma which establishes that if a sequential composition scl @ sc2 is executed
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starting in a state f(k)! and terminates, then for every possible execution
path there exists an argument ¢ such that the program counter in the state
f(2) does not point into the sequential composition anymore and therefore
the execution terminates. Clearly, this reflects the characterization of a well-
founded relation, i.e., that there is no infinitely going down chain. The resulting
lemma is the following:

If (sc1 & sc2) | fk and
(Vi. PC (fi) €s5c (scl @ sc2) =
(PC (fi) €se sc1) —> (f 1, scl, f (Suc i)) € big-step A
(PC (f1) Gsc sc2) — (f i, sc2, f (Suc i)) € big-step)
then 3i. = (PC (last (f 1)) €s. sc1) A = (PC (last (1)) €5, sc2)

We prove this lemma by induction on the termination predicate. Well-
foundedness of the relation described above is then easily established. Now
that the appropriate well-founded relation is specified, we have to show that
the preconditions of the triples (1) and (2) from the assumptions of our overall
proof goal can be strengthened to yield the specified invariant. Moreover, we
need to show that the postconditions can be weakened to yield the invariant
and that furthermore the state is decreased with respect to the provided well-
founded relation. For (1) we need to show that we can obtain the following
specification using the rule of consequence:

V' (Nauxr s.PC's €g, scl N
(auz,s) € {(u,v).(PCu €4, sc1) A (u, scl, v) € big-stepV
(PCu €5, 5c2) A (u, sc2, v) € big-step}*A
(sc1 @ sc2) | auz N s = s')
scl
(XN auz s.(auz,s) € {(u,v).(PCu €. sc1) A (u, scl, v) € big-stepV
(PC u €s. 5¢2) A (u, sc2, v) € big-step}*A
(scl & sc2) | aur A
((sc1 @& sc2) | s'" N ((PC s’ €g. scl) V (PC s’ €5, sc2)) A
(PC s' €4, scl) —> (s/, scl, s) € big-step A
(PC s' €4, 5c2) —> (s/, sc2, s) € big-step))}

Note that this precondition is a conjunction consisting of a predicate re-
ferring to the program pointer (as required by the respective rule of the proof
system) and the invariant. It also connects the states of the precondition to
the states of the postcondition via the universally quantified variable s’. The
postcondition in turn is a conjunction of the invariant and the requirement
that the states of the postcondition are related to the states of the precon-
dition (via s’) with respect to the well-founded relation that we have given
above. To prove that the specification can be derived from (1) we use the
following auxiliary lemma:

If is a function from the natural numbers into the states and not to be confused with the
function f used in the definition of do f.
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Lemma 3 (Transitivity of termination)

If wffs. (scl @ sc2) and U, (sc1 & sc2) C lis and (scl @ sc2) | s and
s # s'and PCs €. (sc1 & sc2) and

(s, s") € {(u, v) | (PCu €s. sc1) A (u, scl, v) € big-step V (PC u €4, sc2)
A (u, sc2, v) € big-step}* then (sc1 @ sc2) | s’

The lemma states that if execution of a sequential composition scl @ sc2
terminates starting in a state s, and furthermore s and s’ are related via the
relation that describes the intermediate states of executions which alternate
between scl and sc2, then execution of sc1 @ sc2 terminates from s’ as well.
Finally, the application of the rule for sequential composition can be applied
to establish that the desired specification (3) is indeed valid in the calculus.

Once it is shown that the most general triple can be derived in the calculus,
completeness follows directly (given that the code is well-formed and fulfills
the requirements for labeled instruction sets):

Theorem 4 (Completeness for total correctness)
If U,. code C lis and wff,. code then
=i (P) code (Q) — 1 (P) code (Q)

Besides soundness and completeness of a proof system, completeness with
respect to the underlying logical system (called relative completeness) and ex-
pressiveness are two important characteristics of a proof system. Because our
proof calculus and the operational semantics are both specified in HOL, the
completeness theorem ensures that any property provable on the basis of the
operational semantics can also be established using our proof calculus. Expres-
siveness describes the ability of a logical system to express the intermediate
predicates that may be necessary within a proof in our proof calculus. As
pointed out in [Nip02], HOL can be used to formalize the completeness proof
for our proof calculus and is therefore expressive with respect to our proof
calculus. The weakest logical system that is expressive for our partial correct-
ness calculus is first-order arithmetic because the most general triple can be
expressed in it. For the total correctness calculus first-order arithmetic with
least fixpoints is expressive. For a detailed discussion we refer to [Nip02].

In this section, we have shown that our extended calculus is sound and
complete with respect to total correctness in the presence of unbounded non-
determinism. In the next section, we show how the calculus can be used for
concrete verification efforts and how the mechanisms of Isabelle/HOL for the
construction of well-founded relations can be exploited for this purpose.

5.5 Examples

In this section, we explain how our abstract formalization can be used for
concrete total correctness proofs about low-level code. We show that the
mechanisms provided by Isabelle/HOL for the construction of well-founded
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relations are of great help. Furthermore, even the small examples we use here
demonstrate that for reasoning about low-level code, machine assistance is im-
portant. The complexity already inherent to partial correctness proofs about
unstructured code is elevated in the presence of variants that are needed for
total correctness proofs. However, by having machine assistance available we
can be sure that tricky corner cases are not overlooked in the proofs.

We instantiate the abstract type of state with a simple notion of concrete
state given as a mapping regs of type nat = nat. One might think of such a
function as assigning values from the natural numbers to registers identified
by natural numbers.

To give a concrete meaning to our abstract state transformation instruction
do f, we define HOL functions that operate on the previously defined notion
of state. The first one assigns the value 5 to register number 1 and the second
function increases the value in register 1 by one and sets the value in register
two to four:

assdtl regs = {regs(1 := 5)}
incr1t2 regs = {regs(1 := (regs 1) + 1, 2:= 4 )}

We first show how total correctness can be established for a sequential
composition using a small example of straight line code. By straight line,
we mean that the labels of the instructions are adjacent, i.e., there are no
backwards jumps in the given code. We define the instruction set for the first
example consisting of two applications of the do instruction using the state
updates just defined as instructionSetA = {(1, (do ass5t1)), (2, do incrl4t2)}.

As already explained above, to specify the behavior of a union of pieces of
code, a function needs to be specified that assures termination of the sub pieces
of code. For straight-line code such a variant can be easily given by defining a
function that takes as input the program counter of a given state and returns
its inverse with respect to the upper bound of the labels involved in the union
operation. For our small example this function is defined as follows:

IPC s = (if (PCs>1ANPCs< 3)then ((4::nat) — PC s) else 0)

Building on this function we can define a well-founded relation. As noted in
the Isabelle Tutorial NPWO02], proving that a relation is indeed a well-founded
relation is a complicated task in general. However, it is often the case that
potential relations are well-founded by construction. Isabelle provides support
in terms of theorems for such constructions. The function measure (of type (’b
= nat) = ('b x 'b) set) supports the construction of a well-founded relation
given a function from an arbitrary type into the natural numbers. We define
our well-founded relation using this command as: pC' = measure [PC. Once the
relation is defined, it is trivial to establish that pC is a well-founded relation.
All that needs to be done is to unfold the definition of the relation. Theorems
to establish well-foundedness are automatically provided to the simplifier when
using the measure command.

We want to prove the following total correctness specification:
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Fe (Aauz s. PC's = 1)
(1 :: do ass5tl) & (2 :: do incrl{t2)
(Aaur s. PCs =3 ANRs1=6ANRs2=14)

To apply the rule for sequential composition, we first have to apply the rule
of consequence. We use the following invariant inv:

(Aauzr s.PC s =1V
PCs=2ANRsl=5V
PCs=3ANRs1l=6 AN Rs2=4)

Clearly, the precondition of the desired specification implies the invariant
inv and the postcondition of the specification is implied by

= (PC s €gc (1 2 do asshtl)) N = (PC s €. (2 =2 do incrl4t2)) A inv.

We can now use the relation pC to prove the sequential composition. After
application of the rule HSEQ (using the specified relation pC) from Figure 5.4
on page 79, we need to establish that both of the instructions involved in the
sequential composition decrease the state with respect to the variant. This
is also achieved by first using the rule of consequence and then unfolding the
variants definition.

As a second example, we verify the total correctness of a program consisting
of a loop. The low-level code we consider can be obtained by compiling the
following high-level program, for example:

regl = {1,2,3,4};
while (regl < 10)
{regl := regl + 1}.

When proving total correctness of such a (structured high-level) program one
specifies a variant and needs to show that the body of the while loop strictly
decreases the variant. In this case one takes the value of the variable reg!
and takes the inverse of its value with respect to value mentioned in the loop
condition. The low-level representation of the program can be given as:

1 do init1l

2 brt sm10 3 5
3 do incril

4 br 2

We use the following definitions to specify the initial non-deterministic
assignment of a value from the set {1,2,3,4} to register 1 and the addition of
1 to the value residing in register 1 in line 3. Furthermore, the function sm10
defines the branch condition in line 2.
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initl regs = {(regs(1:=1)),(regs(1:=2))
incrl regs = {regs(1 := (regs 1) + 1)}
sml10 regs = (regs 1 < 10)

(regs(1:=3)),(regs(1:=4))}

Based on these definitions, we can now define the set of labeled instructions
for the example. We then use this set to instantiate the abstract locale context
(see Section 5.2) for a concrete setting. The assumptions of the locale context
trivially hold.

We want to derive the following total correctness specification which states
that executed from a state where the program pointer PC points to label 1,
execution ends in a state where the PC points to 5 and register 1 holds the
value 10:

(Aauz s. PC's = 1)
(1 = doinitl) & ((2 = brt sm10 3 5) @ ((3 :: do incrl) & (4 == br 2)))
(Aaur s. PCs =5 NRs1 = 10)

The proof tree is given in Figure 5.6 on page 93 . We start by explaining the
variants we use in the proof and then explain the assertions used in the total
correctness proof. To specify a variant for the piece of code we cannot solely
use the value of the program counter. Due to the presence of the backward
branching instruction at line 4, it is not possible to provide a suitable variant
that only depends on the program counter. The variant needs to consider the
value of the counter variable in register 1 (R s 1), which is incremented within
the loop body. We now construct a suitable variant for the entire code using
the lexicographical product of three variants that describe the behavior of the
sequential compositions that the code is built from. We first define the variants
in isolation. The first variant vIrel is for the sequential composition of the
first instruction with the rest of the code. We specify a mapping videf from
the state to the natural numbers. Then, we use the Isabelle/HOL function
measure, which based on this mapping constructs the well-founded relation
virel.

vldef s = (if (PC's = 1) then 1 else 0)
virel = measure vldef

The following two variants account for the behavior of the code that results
from compilation of the while loop. The variant v2rel is defined as the inverse
of the counter variable in register one with respect to its final value 10. The
relation v2rel reflects the variant of the loop body from the high-level code.
The variant v3rel is defined as the inverse of the program counter in a given
state (with respect to the number of lines of code in our example).

v2defs = (10 — (R s 1))
v2rel = measure v2def
v3def s = (if (PC's > 1 N PCs < 5) then (6 —PC s) else 0)

v3rel = measure v3def
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The following variant v4rel is used only for the sequential composition of the
last two instructions, which involve the instruction br 2 that sets the program
counter to 2.

videf s = (if (PCs =3V PCs=4) then (5 — PC's) else 0)

v4rel = measure v4def

We can now define the desired well-founded relation as the inverse image
of the function cvdef. This function maps a state to a tuple consisting of the
three previously defined measure functions. The well-founded relation cvrel is
the inverse image of the lexicographic product of the previously defined rela-
tions. Isabelle/HOL provides a predefined operator for this. The thus obtained
relation is then well-founded by inheriting the well-foundedness results of the
relations it is defined from.

cvdef s = ((videf s), (v2def s) , (v3def s))
cvrel = (inv-image (less-than <xlexx> less-than <xlexx> less-than) cvdef)

Now that we have defined the variants for the total correctness proof, we
explain the assertions and invariants we use. The proof proceeds backwards
from the total correctness specification mentioned above. The general proof
strategy is to apply the rule of consequence in order to modify the pre- and
postconditions of a given sequential composition so that a suitable invariant
is obtained, which in turn enables the application of the rule for sequential
composition.

We make the following abbreviations for structured code:

$284 = ((2 = brt sm10 8 5) ® ((3 == do incrl) & (4 == br 2)))
s34 = ((3 :: doincrl) & (4 :: br 2))

s2 = (2 : brt sm10 3 5)

s3 = (3 = do incrl)

s4 = (4 = br2)

In the proof depicted in Figure 5.6 the following invariants are used. The
invariants consist of assertions mentioning the program counter and the values
in register 1 in the respective states. The latter reflects an invariant as it would
be used in a high-level proof as well. The proof proceeds backwards from the
desired total correctness specification using the respective invariants to derive
specifications, which allow for the application of the rule of consequence.

Inv125 auz s = (A aux s.((PC s =1)V
(PC s=2AN((R s)
(PC s=5A((R s)

Inv235 aux s = (A auz s.(PC s=2A((Rs) 1) >0A((Rs) 1) <10)V
(PC s=3A((Rs)1)<10)V
(PC s=5A((Rs)1)=10))) auz s
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The last invariant Inv234 mentions the second part of the variant directly
through the variable s’a. This is due to the backward jump as mentioned in
the discussion of the variants.

Inv234 auz s s'a =
(Aauz s.(PC s =3 A ((R $)1)
(PC s=4AN((R s)1

(PC s=2A((R s)

<10A ((R s)1) <10) A v2def s = v2def s'a V
) < 10) A v2def s < v2def s'a Vv
1) < 10) A v2def s < v2def s'a)) aux s

To demonstrate how a proof is carried out using our mechanization, we now
describe some of the proof steps used within the proof summarized in the proof
tree in Figure 5.6. To apply the rule for sequential composition, we first apply
the rule of consequence. We will use the invariant Invi25 for the sequential
composition of 1 :: do initl and the rest of the code.

Note that we are doing a backward proof. So in order to apply the rule for
sequential composition, the precondition (Aaux s. PC' s = 1) needs to imply
the invariant and the postcondition needs to be implied by the invariant in
conjunction with = (PC s €. (1 = do initl)) N = (PC s €. ((2 == brt
sm10 3 5) & ((8 :: do incrl) @& (4 = br 2)))). This is automatically proved
by simplification. Now we can apply the rule for sequential composition by
specifying the invariant and the combined variant cvrel. The proof obligation
that cvrel is well-formed is again discharged by simplification. We obtain two
subgoals. The first is the specification for the first instruction, where the PC
in the precondition points to label 1:

V' (Aauz s. (PCs €4, (1 2 doinitl)) A Invl25 auz shs = s')
1 :: do initl
(Nauz s. Invl125 auz s A (s,s’) € corel)

The second is the specification of the rest of the code where the PC points
into the rest of the code.

Vs . (Aauz s. PC's €5, ((2 :: brt sm10 8 5) & ((8 :: doinerl) @ (4 = br 2)))A
Inv125 auz s N\ s = s')
(2 brt sm10 35) @ ((3 :: doinerl) & (4 =2 br 2))
(Nauz s. Inv125 auz s A (s, s') € curel)

To show validity of the first specification, we use the rule of consequence
and establish that (Aauz s. PC's = 1) is implied by the precondition of the
first specification and that

(Aaur s. PCs =2N0< Rs1ANRsl1<10)

implies the postcondition (which also mentions the relation of the precon-
dition states and postcondition states with respect to the first part of the
combined variant through the globally quantified variable s’). Again, the re-
spective proof obligations are discharged by simplification. Afterwards, the
specification is shown to be valid using the instantiation of the rule for do f.
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The proof continues in this way, i.e., for the second specification we use an
invariant that specifies the states with program counter value 2,3 and 5 and
apply the rule for sequential composition. Note that we defined the variant so
that the first component applies to the first instruction. The pre- and post-
conditions were already strong enough to establish that pre- and poststates
are related as required by the specified variant.

The remaining components of the combined variant can be regarded as
being characteristic for the low-level representation of loops as explained in the
following: The second component (v2rel) mentions the 'high-level’ variant that
depends on register 1 and the third component (v3rel) mentions the program
counter with respect to all five lines of code.

In our small example, the loop body only consists of one instruction but the
same technique also applies for loops that consist of more instructions in the
body. Consider the two branching instructions br¢ (in line 2) and br (in line
4). Before and after the loop body (and also possible instructions within the
loop body that do not alter the loop variant), the first and second components
of the variant are equal for the states before and after these instructions, so the
third component of the lexicographical product is considered. But considering
the br instruction in line 4 this would not work, because it would not decrease
the state in terms of the third component of the variant v3rel. This is exactly
the problem when we arrive at the last sequential composition:

Vs'a.

(Aauz s. (PC s €5, ((3 :: doinerl) @& (4 = br 2))) A Inv235 auz s\s = s'a)
(8 :: doinerl) @ (4 = br 2)

(A auz s. Inv235 aux s A (s,s'a) € corel) (i1)

Here, we cannot apply the rule of consequence using the invariant Inv 123/
defined as

(Aauz s.((PC s=3A((R s)l) <10)V
(PC s=4AN((R s)1) <10)V
(PC s=2A((R s)1) <10)))) (i2)

for the precondition and for the postcondition since these assertion are not
strong enough to discharge the proof obligations resulting from an application
of the rule of consequence. The reason is that in i2 only the assertion about
the conjunct with the program counter pointing to 2 can hold since the other
parts of Inv234 are ruled out by the first conjunct about the program counter
value not pointing to label 3 or 4. So considering il and i2 with respect to the
combined variant covrel, it cannot be established that the state is decreased for
any component of the variant. The solution is to use the following invariant
i3:

(Nauz s.((PC s =3 AN ((R s)1) < 10) A v2defs = v2defs'a V
(PC s =4N((R s)l) <10) A v2defs < v2defs'a V
(PC s =2A((R s)1) <10) A v2defs < v2defs'a))) (i3)
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In this section, we have demonstrated the concrete application of our mech-
anized proof calculus using a small example. We have shown that concrete
proofs benefit from our mechanization because the mechanisms of Isabelle/HOL
for constructing well-founded relations can be exploited. Furthermore, even
these minimalistic examples show that for proofs about low-level code, ma-
chine assistance is of great help in order to cope with the complexity of such
proofs.

5.6 Summary

In this chapter, we have formalized a basic low-level language in Isabelle/HOL.
Although the language is minimalistic, it is highly expressive and capable of
expressing a variety of concepts including instructions that might introduce
non-determinism and unrestricted jumps between labeled instructions. Based
on the ideas from [SU05], we have formalized a compositional big-step seman-
tics and related Hoare logics for the language. To reason about functional
properties and termination behavior, we have defined a total correctness logic
and established soundness and completeness for the language. In the next
chapter, we enrich our basic low-level language with real-time capabilities.
Furthermore, we extend the language with instructions that allow for com-
munication with the environment. Using these extensions, we then develop a
strategy for the specification and verification of conformance relations between
high-level specifications and low-level implementations in a real-time setting.
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6 A Semantic Stack for
Real-Time Low-Level Code

In the last chapter, we have presented mechanized small-step and big-step se-
mantics for our basic low-level language and a dedicated proof logic. It enables
the verification of functional correctness properties about sequential low-level
code. Additionally, the total correctness logic makes proofs about the termina-
tion behavior of low-level code possible. The work presented in the last chapter
focused on the internal behavior of low-level code, i.e., changes to the inter-
nal state. Building on this, in this chapter we integrate externally visible (or
process-specific) behavior into our verification environment. This reflects infor-
mation about communications with the environment as well as timing intervals
between such externally visible communications. Our treatment of communi-
cations resembles the way communication and synchronization is modeled in
CSP-like languages.

Our main contribution presented in this chapter is the extension of our
untimed low-level language from the last chapter to a timed language. For the
instructions presented in the last chapter this implies that execution now takes
a certain amount of time. Furthermore, we add an instruction that lets time
pass by and instructions that enable the low-level code to synchronize with
its environment, i.e., to receive values or to output values through channels.
We start by defining a small-step semantics for the low-level language. During
the execution of low-level code, it is now possible to observe that either com-
munications take place, or that time may pass by. To reflect this behavior in
our semantics, transitions are either labeled with events that reflect internal
behavior, externally visible communications or that model the passage of time.
Consequently, the obtained small-step semantics can be interpreted in terms
of a timed labeled transition system. Based on the small-step semantics, we
define a big-step semantics that makes it possible to model the semantics of
executions in a compositional manner. As in the last chapter, we also define
a proof logic for terminating executions. Here, the possible communication of
events throughout the execution of code is captured in terms of a list of events
that each have a timestamp referring to the point of time during execution at
which they could be observed. In the next chapter, we use the semantics and
proof calculus presented in this chapter to enable conformance proofs about
low-level code with respect to process-algebraic specifications.

95
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6.1 A Timed Communicating Low-Level Language

To extend our basic low-level language with a notion of time and communica-
tion capabilities, we first extend the type of state and the type of instructions
to support the desired extensions. In the next sections, we then extend the
semantics and the proof calculus.

6.1.1 Syntax and State Definitions

The notion of state is again polymorphic with respect to the actual store
that programs operate on. The program counter is a label from the natural
numbers. To keep track of the passage of time within our semantics, we extend
the state with a clock variable tnow. To prepare for a later extension to a
distributed setting (explained briefly in Section 6.5), we extend the state with
a natural number PId that can be interpreted as a unique process ID. The
selectors PC', PId and Ptnow can be used for the respective parts of the state.

record (a) state = R ::'a (-g)
PC  ::label (-pc)
PId :: nat (-p[d)
tnow :: real (-pinow)

We introduce instructions for communication and for explicit handling of
time. Note that in contrast to the last chapter, the instructions are not only
polymorphic in the state ’a but also in the type of events b, which are used
for communication purposes. Thus, for concrete scenarios the structure of
communication events can be defined as needed.

datatype (‘a, 'b)instr = out ('a = 'b) ("a = real) label |
input ('a = b set) ('a = 'b = 'a) ('a =real) label |
br label |
brt ("a = bool) label label |
do ("a = (("a x label) set)) |
wait real |
endInstruction

For communication with the environment, the instruction out can com-
municate a visible event that might depend on the current state. The input
instruction offers the environment a choice between different events in de-
pendence of the current state and changes the internal state of a component
dependent on the event it synchronized on with its environment. The state
change is realized using a function that maps a state and a given event to a new
state. Furthermore, for the instructions out and input, a timeout can be spec-
ified. If the environment is not ready to participate in the communication of
the specified event or set of events, execution proceeds at a specified timeout
label that resembles exception handling in case of communication timeouts.
The branching instructions br and brt are defined as in the last chapter. The
instruction do f is also defined similarly to the same instruction from the last
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chapter but here it is allowed to change the program counter!. It formalizes
that a function f is applied to the current state and might change the store
and the program counter. Again, the function might yield a set of states.
The endInstruction is used to signal to the environment that the execution of
the component has successfully terminated (in contrast to evaluations that get
stuck because the program pointer does not point to an instruction anymore).
The wait instruction lets a specified amount of time pass by.

6.2 Timed Small-Step Semantics

In this section, we define the timed small step semantics for the low-level
language. The main idea is that individual instructions correspond to Timed
CSP processes. Consequently, we model the semantics of the low-level language
like an external observer would witness the behavior of a component over time.
Modeling the semantics in such a Timed CSP-oriented way is motivated by
the goal of relating low-level code to process specifications. By defining an
equivalent semantic basis for both languages, we are able to use this as the
basis for conformance proofs (as presented in Chapter 7). In general, execution
of an instruction in our setting involves the following steps:

e Time passes by when the instruction is prepared to be executed.

e If the instruction is a communication instruction, further time may pass
by while the instruction is waiting for a communication with the envi-
ronment. If a timeout is specified this waiting period is bounded.

e The effect of the instruction takes place. It may either be visible to the
observer through the communication of an event (in case of a commu-
nication instruction) or not visible (in case of an internal instruction).
The effect of instructions that realize internal behavior is observed from
the outside as a 7 event.

e After the effect of the instruction has been observed, time passes in order
to store results of possible variable assignments.

e When the execution of an instruction is finished, the program pointer
might point to a further instruction or, if not, execution stops and only
time can pass by.

To keep our formalization in a reasonable size, we follow the common ab-
straction in CSP that the communication of visible events itself happens in-
stantaneously, i.e., we do not explicitly model the duration of such events using,
for example start and stop events. To model the different phases of executing
an instruction and to assure that no unwanted transitions are possible between
the phases of execution, we use the following type constructors:

!This allows a more compact specification of internal non-determinism in our timed low-
level language.
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datatype ('a)extstate = nstate ('a)state |
tbstate ('a)state x real |
evdelstate ('a)state |
evstate  ('a)state |
tostate ('a)state x real |
tastate ('a)state x real |
tsstate ('a)state

The different types of states are used in the definition of the timed small-
step semantics to ensure that no irregular transitions are possible. The def-
inition of (“a)extstate builds on the notion of state (’a)state, which we have
introduced in the beginning of this chapter in Section 6.1.1. The different types
of states act as wrapper states around the basic state definition and guide the
timing and communication behavior of a low-level program in the definition of
the small-step semantics given below. The type of nstate corresponds to the
basic state, tbstate and tastate are states from which time can pass by before
and after the possibly visible effect of an instruction. Therefore, these states
are defined not merely as a wrapper state around (’a)state but also contain a
countdown variable, which is used to keep track of the passage of time. The
same intuition holds for tostate. This type of state is used to keep track of
the passage of time if a timeout value is specified. The evdelstate is used if
a communication instruction has to wait for the environment so that com-
munication is delayed, while from ewvstate only the communication of events
(including the internal event 7) is possible. If a program has terminated, the
termination state tsstate is used to ensure that no further event transitions are
possible, i.e., that only time can advance.

The small-step semantics is of the following type:
(("a)exatstate x ('b)eventplus x ('a)extstate)set).

Note that this can be interpreted as a labeled transition system. The labels
are defined using the datatype ("b)eventplus (parameterized over the abstract
type of events b used in the definition of the communication instructions).
The datatype ("b)eventplus is defined as follows:

datatype 'b eventplus = time real | ev 'b | v | T

It comprises the time steps (time), visible events (ev), the special event
for successful termination (v') and the internal event (7). The time related
transition rules depicted in Figure 6.1 define the behavior of instructions, while
the rules given in Figure 6.3 model the actual effect an instruction has on the
current state. The time related rules depend on two functions called tibef and
tiaft which are fixed in the locale context llum that the rules are defined in.
The first yields the time that elapses before the effect of an instruction while
the latter yields the amount of time that passes by after the visible (or internal)
effect of the respective instruction. The functions are of type ('a,’ b)instr =
nat = real and it is furthermore required that they yield positive values greater
zero. This is necessary in order to interpret the semantics as a timed labeled
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(spo, ins) € lis sprq tibef ins sprq = ta + tx
0 < ta 0 < tx s = s(tnow = $pinow + ta)

‘ - NSTEP
(nstate s, time ta, thstate (s', tz)) € tsmallstep

0 < ta
0 < tz’ tr = ta + ta’ s = s(tnow = $pinow + ta)

TBSTEP
(thstate (s, tz), time ta, thstate (s', tx’)) € tsmallstep

(Spc, do f) € lissprqg V (Spc, wait ti) € lissprqg V (Spc, br m) € lissprq

V(spc, brt bm n) € lis spra V (spc, endInstruction) € lis sprq
TBEVSTEP

(thstate (s, 0), T, evstate s) € tsmallstep

((spc, input c f fto tol) € lis sprq V (spc, out f' fto tol) € lis sprq) A fto sp = 0

V(spc, endInstruction) € lis sprq
TBDLSTEP

(thstate (s, 0), T, evdelstate s) € tsmallstep

0 < ta 8" = s(tnow = $pinow + ta)
DLDLSTEP

(evdelstate s, time ta, evdelstate s') € tsmallstep

(evstate s, e, tastate (t, tz')) € tsmallstep Vta. e # time ta
EVDELTASTEP

(evdelstate s, e, tastate (t, tz')) € tsmallstep

(spc, input c f fto tol) € lis sprq V (spc, out f' fto tol) € lis sprq)
A0 < fto sg N fto sg = tx

(thstate (s, 0), T, tostate (s, tx)) € tsmallstep

TBTOSTEP

0 < ta
0 < tz’ tr = ta + ta’ s = s(tnow = Spinow + ta)

(tostate (s, tz), time ta, tostate (s’, tz')) € tsmallstep

TOTOSTEP

evstate s, e, tastate (t, tz')) € tsmallstep a. e # time ta
tat tastate (1, t 2 llst Vi time
(tostate (s, tz), e, tastate (t, tz')) € tsmallstep

TOTAESTEP

((spc, input ¢ f fto tol) € lis spra V (spc, out f' fto tol) € lis sprq) N tl = 1)
t =s(PC :=1) 1#0 l# spc
Fins. (spc, ins) € lis sprqg A to = tiaft ins sprq
(tostate (s, 0), T, tastate (t, tx)) € tsmallsteptotatstep

TOTASTEP

0 < ta
0 < tz’ tr = ta + tz' t' = t(tnow = tptnow + ta)

(tastate (t, tx), time ta, tastate (t', tz')) € tsmallstep

TATASTEP

(tastate (t, 0), T, nstate t) € tsmallstepTATNSTEP

(Vins. (tpc, ins) ¢ lis tp[d) Vipe =10

(nstate t, T, tsstate t) € tsmallstep

NSTSTOP

0 < ta tpc =0V (VZTLS (tpc, ins) ¢ lis tp[d)
t' = t(tnow = tpinow + tal

(tsstate t, time ta, tsstate t') € tsmallstep

TSTSSTEP

Figure 6.1: Time Related Transition Rules

transition system. The timing functions yield a timing value dependent on the
instruction (and its arguments)? to be executed and the process ID.

2The behavior of the instruction wait is realized using the timing functions. Given the
argument of the instruction the timing functions ensure that the specified amount of
time passes by.
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tbstate  tbstate evtostate evstate tastate tastate
nstate nstate

@ f S taft .

evstate tastate tastate nstate

Figure 6.2: Labeled transtion system for the out instruction

We explain the intuition behind the rules using the instruction out with a
specified timeout value as an example. In Figure 6.2, the LTS corresponding
to the rules is shown. If the instruction pointer in a state s points to an out
instruction from a 'normal’ state (nstate), first the amount of time given by
the function tibef passes by (rule nstep). Within the rules of the small-step
semantics this is realized using a transition from nstate to tbstate, where the
‘countdown’ variable tz is set to the value given by tibef. The passage of time
is then realized by transitions from tbstate to tbstate where the countdown
variable is decreased by the amount of time ta that passes by (rule tbstep).
These transitions are timed transitions (denoted by the jagged arrows). Once
the countdown variable is decreased to zero, an internal transition to evtostate
happens (rule tbtostep) since a timeout to greater than zero is specified and the
current instruction is a communication instruction as required by the premise
of the inference rule. The value of to is used as a countdown variable to track
the time that elapses while the out instruction waits for communication with
the environment (rule totostep). As long as the timeout has not elapsed, it is
possible to communicate the desired event e by taking a transition directly to
tastate (rule totaestep). As the premise of the inference rule indicates that the
event e and the resulting state ¢ is obtained by the state transition rule sout.
The event is given by the function f dependent on the state s and ¢ is obtained
from s by increasing the program counter by one. If the timeout has elapsed
and the countdown variable has been decreased to zero, an internal transition
is taken and the program counter is set to the specified timeout label to (rule
totastep). In both cases, the respective transition leads to a tastate, which
is used to let time pass by after the out instruction. Similar to the tbstate
a countdown variable is used and the transition is a timed transition. Once
the countdown variable is decreased to zero, an internal transition to the next
normal state ¢ is possible. From a normal state, another instruction can be
executed if the program points to one. If not, an internal transition to the
termination state tsstate happens. In the termination state only time can pass
by. The premises of the inference rules nststop and tstsstep ensure that the
program counter in state ¢ does not point to an instruction or that it points
to the special label 03.

3We use the label 0 to model successful termination, i.e., when a program terminates
successfully by executing the instruction endInstruction, the program counter is set to 0.
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(spo, dof) € lis sprg 0<m (z, m) € fsg
m # Spc tiaft (do f) sprqa = tzx t =s(R:=z, PC :=m)|
(evstate s, T, tastate (t, tx)) € tsmallstep

SDOF

0 < ti (Spc, wait ti) clisspryg
tiaft (wait ti) sprq = tx t =s(PC :=spc + 1)
(evstate s, T, tastate (t, tz)) € tsmallstep

PWAIT

(spc, out fto tol) € lis sprq
tosr =0ANtodl=0V 0 <tosg N0 < tol
fsp=ce tiaft (out f to tol) sprq = tx t =s(PC:=spc + 1)

(evstate s, ev e, tastate (t, tz)) € tsmallstep

SOuUT

(spc, input ef fto tol) € lis sprq e € ef sg
tosg =0 Ntol=0V 0 <tosg N0 < tol r=fspe
tiaft (input ef f to tol) sprq = tx t =s(R:==z, PC:=spc + 1)

(evstate s, ev e, tastate (t, tz)) € tsmallstep

SINPUT

(spc, brm) € lis sprq
spc £ m 0<m tiaft (br m) sprq = tx t = s(PC := m)
(evstate s, T, tastate (t, tx)) € tsmallstep

SMBR

(spo, brt bm n) € lis sprq bsgp spc £ m
0<m tiaft (brt b mn) sprq = tx t = s(PC = m)

(evstate s, T, tastate (¢, tx)) € tsmallstep

SMBRTT

(spc, brt bmmn) € lis spra - bsg spc #n
0<n tiaft (brt bmn) sprq = tx t = s(PC :=n)

SMBRTF
(evstate s, T, tastate (t, tz)) € tsmallstep
(spc, endInstruction) € lis sprq
tiaft endInstruction sprq = tx t =s(PC := 0)
SENDINSTR

(evstate s, +/, tastate (t, tx)) € tsmallstep

Figure 6.3: State Related Transition Rules

In the given example, a timeout value was specified for the out instruc-
tion. If a value of zero is specified for a communication instruction, then the
communication of the respective event can be delayed arbitrarily long by the
environment. This is realized using the rule tbdistep. From the evdelstate the
communication of events can be delayed for any interval ta. At any point of
time, a transition with a communication of the respective event is possible
if it had been possible from an evstate (required by the premise of the rule
evdeltastep). For instructions realizing internal behavior, an immediate inter-
nal transition to the ewvstate is possible after the time before the instruction has
elapsed (rule tbevstep). From the evstate a transition to a tastate is possible,
as allowed by the state transition related rules given in Figure 6.3.

The well-formedness predicate for sets of labeled instructions ensures that no instruction
is labeled with 0.
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6.2.1 Properties of the Sequential Semantics

To interpret the rules of the extended semantics in terms of a labeled transi-
tion system, we need to show that the semantics fulfills the well-formedness
conditions given below.

The first lemma states that if time can advance in our semantics, the time
interval is greater than zero:

Lemma 4 (Time positive for timed small-step)
If (s, time d1, t) € tsmallstep then 0 < d1

The following property states that the passage of time is deterministic, i.e.,
that the passage of time does not introduce any non-determinism.

Lemma 5 (Time determinism for timed small-step)
If (s, time d, t) € tsmallstep and (s, time d, u) € tsmallstep then t = u

The next two lemmas establish important properties that allow us to in-
terpret the semantics as a labeled transition system. First, we can regard any
two consecutive time steps as one big time step.

Lemma 6 (Time additivity for timed small-step)
If (s, time d1, s') € tsmallstep and (s', time d2, t) € tsmallstep then (s,
time (d1 + d2), t) € tsmallstep

Second, for any time step of any duration there exists a state so that the
time step can be split.

Lemma 7 (Time Interpolation for timed small-step)
If (s, time (d1 + d2), t) € tsmallstep and 0 < d1 then s’ (s, time d1,
s') € tsmallstep A (s', time d2, t) € tsmallstep

For the timed labeled small-step semantics presented in this section, we
define a corresponding big-step semantics in the next section. The goal is to
reduce the complexity when analyzing low-level code. Complexity is mainly
introduced by the high amount of transition rules needed to model the timing
behavior in the small-step semantics. In the next section, we therefore model
the timing behavior of low-level code in a more compact way using a big-
step semantics. Furthermore, we also show that information about program
behavior can be transferred to the level of the small-step semantics.

6.3 Big-Step Semantics

In this section, we define a big-step semantics for our low-level real-time lan-
guage. Following the strategy of the last chapter, we impose a structure on
sets of instructions to obtain a compositional semantics.
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6.3.1 State Definitions and Semantics

Since our low-level real-time language provides communication mechanisms
that enable low-level code to communicate with its environment, the semantics
needs to reflect this behavior. In our big-step semantics, communications are
captured using timed traces. Our timed traces are lists that consist of tuples
of type real x (’b eventplus). The first part of the tuple is a timestamp that
captures at which point in time the event occurred. The second part of the
tuple is the event itself. Note that here the point of time given by a timestamp
is not relative to the beginning of the state at which execution of the respective
piece of code starts. Rather the timestamps are total. The big-step semantics
relates pairs of states and traces defined as follows:

type-synonym (’a,’b)stateTrace = ('a)state x ('b)ttrace

The intuition is that the execution of structured code starts in a state where
the execution might already have accumulated a communication trace. Start-
ing from the given state, communication events that occur while executing the
specified section of code are appended to the already given timed trace. If exe-
cution terminates, the semantics yields the respective state and the generated
trace. Thus, the big-step semantics is of type

(("a,’ b)stateTrace x ("a, b)pstructuredCode x ('a,’ b)stateTrace)set.

The type of structured code is defined as in Chapter 5 but is now indexed
by the process id of a process. In Figure 6.4, an excerpt of rules of the big-step
semantics is given. The first rule is the one for the instruction do f. Since the
command is not performing any communication, the communication trace is
not altered in the conclusion of the inference rule. The state is updated for
every pair consisting of a new store and new program pointer given by the
function f applied to the store R in the state s. Furthermore, the value of the
clock in state ¢ is updated according to the timing functions tibef and tiaft as
introduced in Section 6.2. Since do f now changes the program counter, the
rule is only applicable if the target label is not equal to the program counter
of s. Otherwise, the instruction would block. The rules OUT and INPUT are
concerned with input and output instructions. Since the input and output
instructions realize communication with the environment, a transition also
alters the communication trace. In our big-step semantics, a single step cor-
responds to various steps performed on the level of the small-step semantics.
This is reflected by the respective rules for the input and output instructions.
The clock value is updated by adding the amount of time that passes before
and after the visible effect of the instruction and the amount of time ¢z that the
environment delayed the communication. In the communication trace though,
the time stamp for the communicated event is obtained from the original clock
value in state s by adding the waiting time before the instruction and the
delay time that is due to the environment. A tuple consisting of event e and
the appropriate timestamp is then appended to the communication trace trs
of the origin state. The store, i.e., the values of program values, is updated
similar to the small-step semantics. For the instruction endInstruction, it is
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wff sc sc (I, do f) € lis p1 sc = (l..do f)
spc =1 sprq = pl (z, m) € fsgp m #£ m # 0
t = s(R =z, PC := m, thow := Spinow + tibef (do f) pl + tiaft (do f) pl)

DOF
((s, trs), p1sc, t, trs) € big-step

wff s¢ sc (I, out f fto tol) € lis p1 ftosp =0 tol = 0
sc = (l..out f fto tol) spc =1 sprq = pl fsp=ce
0 < tx th = tibef (out f fto tol) p1 ta = tiaft (out f fto tol) pl1
t =s(PC:=spc + 1, thow := Spipow + tb + tx + ta)
trt = trs ® [(spinow + (tb + tz), ev e)]

ouT
((s, trs), p1sc, t, trt) € big-step

wff s¢ sC (1, input ef f fto tol) € lis p1
0 < tx ftosg =0 tol = 0 sc = (I..input ef f fto tol)
e € efsp Tz =/fsgpe spc =1 spra = pl
tb = tibef (input ef f fto tol) p1 ta = tiaft (input ef f fto tol) p1
t =s(PC :=spc+ 1, R:=x, tnow := Spinow + tb + tx + ta)
trt = trs ® [(Spinow + (tb + tz), ev e)]

INPUT
((s, trs), p1sc, t, trt) € big-step

wff s¢ sc (I, endInstruction) € lis p1
sc = (l..endInstruction) spc =1 sprq = pl
0 < tx tb = tibef endInstruction pl ta = tiaft endInstruction pl
t = s(PC := 0, thow := Spinow + th + tx + tal
trt = trs ® [(Spinow + (tb + tz), /)]

((s, trs), p1sc, t, trt) € big-step

END

sc = (sclgsc2) spc Ese scl wff s sc
sprqg = pl slprqg = pl ((s, trs), p1|scl, s1, trsl) € big-step
((s1, trs1), p1|(sclgsc2), t, trt) € big-step

SEQ1
((s, trs), p1sc, t, trt) € big-step @

- (spc Ese 8C) wff se sc sprq = pl

TERM
((s, trs), p1sc, s, trs) € big-step

Figure 6.4: Excerpt from the Rules of the Big-Step Semantics

possible to delay the communication of successful termination for an arbitrary
amount of time. The rule for sequential composition SEQ1 is defined similar
to the rule explained in Section 5.4.2. However, here it is also required to pro-
vide an intermediate communication trace trsl for the sequential composition.
The rule for unsuccessful termination TERM is defined similar to the one in
Section 5.4.2.

6.3.2 Relation to the Timed Small-step Semantics

To be able to transfer verification results from the level of our big-step seman-
tics to the level of our small-step semantics, we show that the two semantics
agree with respect to executions leading from a nstate to another nstate. We
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concentrate on these executions since on the level of the big-step semantics
there are no intermediate states when considering a single step from some
state s to some other state ¢t. Furthermore, in our big-step semantics no time
passes by when the program pointer does not point to an instruction in the
piece of structured code to be evaluated anymore, i.e., there is no tsstate on
the level of the big-step semantics.

We use an intermediate relation texec that reflects the maximal execution
of a number of small-steps with respect to a given set of instructions. For a
given unstructured set of instructions, this relation describes the executions
that end in a state where the program pointer does not point into the set
of instructions anymore. A single step of the big-step semantics corresponds
to a series of transitions in the small-step semantics where communications
can take place during execution. The relation texec bridges the gap between
the small-step semantics and the big-step semantics. For example, considering
the execution of the out instruction in Figure 6.2 for the states nstate s and
nstate t to be in texec, there need to exist the respective transitions on the
level of the small-step semantics. We show the following lemma:

Lemma 8 (Big-step implies texec-steps)

If instrSet = U, strinstr and instrSet C lis sprq and
((s, trs), sprajstrinstr, t, trt) € big-step then

(nstate s, trs, instrSet, nstate t, trt) € texec

It states that given a big-step execution from state s to state ¢ through
the structured code strinstr, there exists an equivalent execution on the level
of the timed small-step semantics that by executing the unstructured set of
instructions instrSet moves from an nstate s to an nstate t. The relation
between structured and unstructured code is described by the function (J,..
It maps a given piece of structured code to the set of labeled instructions
it consists of. The proof of the lemma uses rule induction on the big-step
relation. The base cases require that every big-step transition implies that the
corresponding series of small-step transitions as described by tezec is possible.
The rule for sequential composition requires an induction over the rules of
texec. It shows that a big-step execution from s to ¢ with respect to the
structured code scl @ sc2 is reflected by a terec execution from s through
the unstructured version of scl to an intermediate state s’ and then from s’
through the unstructured version of scl @ sc2 to ¢ (and also the case where
execution first moves through sc2 and then through the union).

For showing that also every terminating small-step execution has a big-
step counterpart, we show a similar lemma. However, here we use an indexed
multistep relation texec_k, This relation is similar to tezec in the sense that it
‘collects’ the intermediate states present on the level of the small-step semantics
and describes terminating executions. More precisely, it is equivalent to texec
in terms of terminating executions, .i.e., for every execution in texec there exists
a k so that a corresponding execution is in texec_k and for every execution in
texec_k there exists a corresponding execution in texec. We use the variable
k as a step counter, which facilitates induction over possible executions. Note
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that there is not an execution in tezec_k for every k (because the program
counter may still point to an instruction in instrSet). The following lemma
establishes that when executing the instruction set Uy, sc from a nstate s and
execution ends in nstate t, this execution on the small-step level is reflected
by an equivalent big-step transition.

Lemma 9 (Timed small-step implies big-step)
If wffs. sc and U, sc C lis sp;q and

(nstate s, trs, U, sc, nstate t, trt, k) € texec-k then
((s, trs), sprajsc, t, trt) € big-step

The proof is realized by induction on the type of structured code. For the
base cases, a case distinction on the rules defining texec_k is required. The
induction step then requires an induction on the unstructured set scl & sc2
regarding possible terec_k executions. This induction is realized using the
variable k£ and is the reason for using the indexed multi-step relation texec_k.
Using the equivalence between terec and terec_k as explained above, we can
establish that there exists a corresponding big-step execution for every texec
execution.

The lemmas shown in this section enable us to transfer properties estab-
lished on the big-step level using compositional techniques to the level of the
small-step semantics. Furthermore, for given executions from a nstate to a
nstate on the small-step level, we ensure that there exists a related big-step
execution.

6.4 Proof Logic for Timed Communicating Low-
Level Code

In this section, we present a proof logic that corresponds to the big-step se-
mantics for the low-level real-time language defined in the previous section.
The inference rules of the proof calculus can be used to establish specifications
about low-level code on an convenient level of abstraction. By establishing
the soundness of the provided proof system, it is ensured that information
about the behavior of a program can be transferred to the level of the big-step
semantics and from there to the level of the timed small-step semantics.

Again, we define assertions following the extensional approach, i.e., we do
not define an assertion language explicitly but only fix the type of assertions.
Compared to the proof calculus presented in Section 5.4 from the last chap-
ter, the main difference is that assertions now additionally depend on timed
communication traces as defined in the last section for the big-step semantics.
This leads to the following type of assertions:
type-synonym (‘auz,’a,’b)ass = ‘aux = (('a)state x ((real x ('b)eventplus) list))
= bool

For terminating executions, the logic therefore relates assertions about
state-trace pairs with assertions about state-trace pairs. Similarly to the big-



6.4 Proof Logic for Timed Communicating Low-Level Code 107

X auz s.spec =1ANspra=pANfsp#0AN Nz (z,1) ¢ fsg) A
(Vzm. (z, m) € fsp A

(¢ auz ((s (R :=z,PC :=m,tnow := tyy(s,p,do f))),ts)))
Vspo # LA qaux (s, ts)

p\(l::do f) {g) HDOF,

A aur s.spec =1ANsprg=pAtodl=0ANTe. fsp=c¢e)A
(Vi > 0.(q auz ((s (R := =z, thow := tyy(s,p, do [) + tz)),
ts ® [(Spinow + (tibef (out f fto tol) p + tx), ev (f sgr))])))

Vspo # 1N qaux (s, ts)
where tyy(s, pid, instr) = (tnow s) + tibef (instr) pid + tiaft(instr)pid

p|(l..out f fto tol) (q) HOUT,

Figure 6.5: Excerpt from the Rules of the Total Correctness Calculus

step semantics, we adopt the rules of the proof logic to cope with timed com-
munication traces. For the rules dealing with instructions considered to be
internal, i.e., non-communication instructions, the extension to the new lan-
guage is straightforward because the respective instructions do not alter the
communication trace.

Figure 6.5 gives the proof rules for the instructions do f and out. The
first is the rule for the instruction do f. The structure of the proof rules
follows along the lines of the rules for the basic language in Chapter 5. For
the instruction do f the precondition needs to ensure that, if the program
counter points to the instruction and the structured code is indexed with the
id of the respective state, the set of states given by f is not empty and that f
does not yield a tuple of store and label where the label points to the current
label [. If furthermore the postcondition ¢ holds for every pair of store and
label given by f, then the postcondition ¢ also holds after execution of the
instruction do f. If the program counter does not point to the instruction and
the postcondition holds, then it also holds. The rule for the instruction out
is different from the previous one because now the communication trace is
updated. If no timeout is specified (because tol = 0), then the communication
of the output event can occur at any time tz after the preparation time of the
instruction (tibef (out f fto tol)). Therefore the event ev (f sg) is appended to
the timed trace ts with a timestamp obtained by adding the preparation time
and the waiting time tz to the time value of the starting state s. The rules for
the other instructions are adjusted in a similar way.

The rules of our proof calculus for real-time low-level code with commu-
nication primitives are sound with respect to the operational semantics. The
termination predicate and the notion of validity are defined as in Chapter 5.

Theorem 5 (Soundness for total correctness of real-time code)
=i (p) code {g) — =1 (p) code (q)
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(s, e, t) € tsmallstep

SSTEP
(node s, e, node t) € ptsmallstep

e € netChs s N netChs s’ s, ev e, t) € ptsmallste s’ eve, t') € ptsmallste
s , p 74 , , p P

- - PSTEP
(cluster s s', ev e, cluster t t) € ptsmallstep

Vta. e # time ta (Fe'.e=cve' Ae' ¢ netChss N netChss') Ve=r
(s, e, t) € ptsmallstep s'=1t'

; 5 PISTEP1
(cluster s s', e, cluster t t') € ptsmallstep
Vta. e # time ta (Fe'.e=eve Ae' ¢ netChss N netChs s') Ve=r
s=1t (s', e, t') € ptsmallstep
5 ; PISTEP2
(cluster s s', e, cluster t t') € ptsmallstep
0<d (s, time d, t) € ptsmallstep (s', time d, t') € ptsmallstepPTSTEP

(cluster s s', time d, cluster t t') € ptsmallstep

Figure 6.6: Transition Rules for Networks of Low-Level Components

The soundness theorem is especially important because it allows for the
transfer of properties established using the proof calculus to the level of the
big-step semantics. Using the theorems from the last section, we can then
further transfer the properties to the level of the small-step semantics. In
Section 7.2 of Chapter 7 we exploit this strategy to aid the specification and
verification of bisimulation relations. We have not yet established completeness
for this proof calculus formally, but we expect the proof strategy from the last
chapter to succeed here as well.

In the following section, we shortly explain how the stack of semantics
presented in this chapter can be extended to a distributed setting.

6.5 Towards Distributed, Communicating, Timed
Low-Level Code

Our main goal of obtaining a small-step semantics for timed communicating
low-level code and providing a matching big-step semantics and proof calculus
for total correctness is realized by the concepts presented in the last sections. In
this section, we explain how the presented semantic framework can serve as the
basis for a compositional semantics and related proof calculus for distributed
low-level languages. We therefore extend the timed small-step semantics of our
timed low-level language to a distributed setting. We argue that the language
can be given a big-step semantics and related proof calculus, which enable
compositional proofs about distributed low-level code.
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6.5.1 Networks of Sequential Processes

Based on the semantics for sequential low-level proceses from the last section,
we now define a semantics for networks of low-level programs. The syntax of
these programs is restricted in the sense that parallelism can only be used on
the outer level. Two programs are connected by unidirectional channels, which
they exclusively share. A distributed state is then the pairwise combination of
the individual component states.

datatype ‘a net = node ('a extstate) | cluster (‘a net) ('a net)

Based on the behavior of individual components, we model the behavior
of networks of components using the compositional rules given in Figure 6.6.
The rules resemble the behavior of the alphabetized parallel operator known
from Timed CSP.

We have established similar lemmas about the timing behavior of the dis-
tributed version of our semantics as we have for the sequential version of the
semantics, i.e., the passage of time is deterministic, only positive time values
are possible and timed transition can be added and interpolated. These lem-
mas allow us to interpret the distributed semantics in terms of a timed labeled
transition system.

To obtain a compositional semantics for the distributed version of our timed
low-level language, we follow an approach from [Zwi89] for high-level languages,
that was later extended to a real-time setting in [Hoo98a]. The basic idea real-
ized there is that the behavior of a network of distributed components, which
share no variables, can be obtained by merging their communication traces.
However, we have not fully developed this semantics, but based on our current
results we are confident that our compositional semantics for sequential timed
low-level code can serve as a basis for such a semantics and a corresponding
proof calculus.

6.6 Summary

In this chapter, we have presented a timed low-level language with communi-
cation primitives. We have first focused on the timed communication behavior
of sequential programs by defining a small-step semantics. Since the communi-
cation and the timing behavior of such programs is reflected in terms of labeled
transitions in the definition of this semantics, it can be interpreted as defining
a timed labeled transition system. This representation serves as the basis for
our relation between low-level code and process-algebraic specifications pre-
sented in the following chapter. The timed labeled small-step semantics of our
language is quite complex. This is due to the states required to realize the
timing and communication behavior, which facilitate the interpretation of the
semantics as defining a labeled transition system. To reduce the complexity
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of analyzing the behavior of programs in our extended low-level language, we
have defined a big-step semantics and related proof logic. By having estab-
lished that the big-step semantics agrees with the small-step semantics and
furthermore that our proof logic is sound, we are able to transfer properties
established on the level of the proof calculus to the level of the timed labeled
small-step semantics.

Using the concepts mentioned above, we have laid the cornerstone for our
main goal: relating sequential low-level programs to their abstract specifica-
tions given in a process-algebraic representation. Furthermore, we have briefly
explained that our semantics can be used as the basis for the analysis of net-
works of low-level programs as well. To this end, we have defined a distributed
small-step semantics for our timed low-level language.

In the next chapter, we build on the concepts from this chapter and ex-
plain how the notion of bisimulation can be used to relate process-algebraic
specifications and low-level code. Furthermore, we explain how the proof logic
for timed sequential low-level code from this chapter can be used to discharge
proof obligations in bisimulation proofs, thereby lifting bisimulation proofs to
a more abstract level.



7 Proofs about Conformance

In the last chapter, we have defined a semantic stack for the analysis of timed
communicating low-level code. Using this stack of semantics, we are able to
analyze low-level code on different levels of abstraction, i.e., on the level of
the small-step semantics or on the level of the big-step semantics using our
proof logic. Furthermore, we have shown that behaviors on the different levels
correspond to each other. This enables the transfer of verification results from
the abstract level down to the most concrete level of the small-step semantics.
This is especially useful because we can use the rules of the proof calculus to
establish properties about low-level code in a structured and property-oriented
way and also transfer these properties to the most concrete semantic level.

In this chapter, we present a formal framework which enables us to formally
relate given instances of low-level code to their process-algebraic specifications.
We present a unified semantics and explain how it can be interpreted as a timed
labeled transition system. Then we use the notion of weak timed bisimulation
to enable mechanized conformance proofs between low-level code and process-
algebraic specifications. To cope with the complexity of such proofs, we show
how our proof calculus from the previous section can be used to support such
conformance proofs. Furthermore, we explain how properties established us-
ing our proof calculus can be used for the specification and verification of
conformance relations.

Using this approach for the specification and verification of conformance
relations between process-algebraic specifications and their low-level imple-
mentations, we are able to ensure that properties established on the basis of
the process-algebraic specifications can be transferred to the low-level imple-
mentation.

7.1 Bisimulations in Isabelle/HOL

In general, the notion of bisimulation is defined based on the concept of labeled
transition systems. The intuition is that two states in a labeled transition sys-
tem can be considered bisimilar, if only equivalent behaviors are possible from
them. While strong bisimulation requires that every transition possible from
one of the bisimilar states is also possible from the other state, weak bisimula-
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(P,Q)e X
(V(P1,Q1) € X.
Ve P2.(Pl,e,P2) e T — (3Q2.(Ql,e,Q2) € T A (P2,Q2) € X U bisimilar)
Ve Q2.(Ql,e,Q2) € T — (3P2.(Pl,e,P2) € T A (P2,Q2) € X U bisimilar))
(P, Q) € bisimilar

Figure 7.1: Proof Principle for Bisimulations

tion abstracts from possible internal transitions. Therefore, weak bisimulation
requires that a possible transition from one of the states is also possible from
the related state, but arbitrarily many internal transitions are allowed before
and after it. Weak timed bisimulation then also considers timed transitions,
i.e., it is defined based on the notion of a timed labeled transition system.
For two states to be weakly timed bisimilar it is then required that possible
timed transitions originating from one of the states can be identified with a
number of timed transitions for which the sum of the durations of the individ-
ual transitions equals the overall duration. The individual timed transitions
are furthermore allowed to be interleaved by an arbitrary amount of internal
transitions.

In Isabelle/HOL, we define the notion of bisimulation as introduced in
Section 2.3.2 following [G6t12]. Bisimulations are defined as a coinductive set
using the directive coinductive_set as follows:

coinductive_set bisimilar::(’s,’a)lts = (’s,’a)lts = (’sx’s)set

for T:: (’s,’a)lts and T :: (’s,’a)lts where
[ VeP2. (Pl,e,P2) € T — (3 Q2.
(Ql,e,Q2) € T A (P2,Q2) € bisimilar A
Ve Q2. (Ql,e,Q2) € T — (3 P2.
(P1,e,P2) € T A (P2,Q2) € bisimilar |

= (P1,Ql) € bisimilar

Being the dual definition to inductively defined sets, this definition is inter-
preted in terms of largest fixpoints, i.e., the rules defined above define that a
given relation is a bisimulation relation if it is closed under the specified rules
and represents the largest fixpoint. From this definition, the Isabelle/HOL
system automatically derives a proof principle for proving concrete relations
to be bisimulations. This is given by the inference rule in Figure 7.1.

We use this principle for concrete bismulation proofs between process-
algebraic specifications and their low-level implementations later in this chap-
ter. To apply it in concrete situations, the set X is instantiated with a bisimula-
tion relation. In our setting, such a relation relates process-algebraic processes
with low-level states. The low-level states are interpreted with respect to a
given low-level program. For a given tuple (P, @), to establish that bisimilar
behaviors are possible, we first need to show that the tuple is in the specified
relation X. Then, it needs to be shown that for every tuple of the relation, if
the process performs a step, this step can be answered by a step of the low-level
program that again yields a tuple that is in the relation X.
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s —<event>— t
T
(both.tcsp s, event, both.tcsp t) € OpSemBoth

CSP

(s, event, t) € tsmallstep
L
ll's, event, Il t) € OpSemBoth
( p

LVM

Figure 7.2: Rules of the Combined Semantics

The definition of bisimulation as given above is defined on a single transi-
tion system 7. To make the definition applicable in our setting, we therefore
unify the operational semantics of our low-level language with the operational
semantics of Timed CSP in order to obtain a semantics, which in turn can be
interpreted as defining such a transition system 7.

7.1.1 A Unified Timed Labeled Transition System

In the last chapter, we have constructed a semantics for a real-time low-level
language that can already be interpreted as defining a timed labeled transition
system. To use the notion of weak-timed bisimulation to relate low-level code
and process-algebraic specifications, we need to relate states of the low-level
semantics, given by a notion of state ((’a)extstate)) to states of the process-
algebra given as process descriptions ((’v,’b)Process)! (where 'v refers to a
set of process names and 'a to an event alphabet). We therefore integrate the
TLTS semantics of the two involved formalisms into a unified transition system
(or semantics). We formalize this by defining a unified state ("v,’a,’b)both.
Using the constructors Il and tcsp, we separate the combined state into low-
level program states and Timed CSP process states:

datatype (v, ‘a, 'b) both = Il ('a) extstate | tcsp ("v, 'b) Process

Based on this combined notion of state, we define the possible transitions
in the new TLTS based on the operational semantics of the timed low-level
language on the one side and the operational semantics of Timed CSP on the
other side: if there is a transition possible in the individual semantics there is a
transition in the unified transition system. The semantics is defined using the
rules given in Figure 7.2. The notation s —<event>— t describes a possible
transition of a Timed CSP process. In the definition of the rules, event refers

to both timed and event transitions?.

As it is our goal to interpret the unified semantics as a timed labeled transi-
tion system, we verify the necessary properties. The interpretation as a timed
labeled transition system will later allow us to use the definitions of bisimula-
tions for concrete conformance proofs.

IThis type of process descriptions ((’v,’b)Process) is defined in the formalization of the
semantics of Timed CSP given in [G&t12].

2The identifier both used here and in further definitions is used by the Isabelle/HOL system
to avoid naming conflicts.
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The first lemma states that if there exists a time step in the unified seman-
tics, it is either a step of the low-level semantics with a positive time value or
it is a Timed CSP step with a positive value.:

Lemma 10 (Time Steps Unified)

If (P, time t, Q) € OpSemBoth then

dp q. P = both.tesp p N Q = both.tcsp g N p —<timet>— q AN 0 <tV
dpq. P=1lp AN Q=1qA (p, timet, q) € tsmallstep N 0 < t

As also established for our timed small-step semantics in Section 6.2, the
unified semantics has the property of being deterministic with respect to the
passage of time:

Lemma 11 (Time Determinsim Unified)
If (P, timet, P1) € OpSemBoth and (P, time t, P2) € OpSemBoth then
P1 = P2

The values of individual time steps can be added up and there exists a
timed step for the resulting value, i.e., there is a transition from P1 to P3 that
takes the time it takes from P1 to P2 and from P2 to P3.

Lemma 12 (Time Additivity Unified)
If (P1, time t1, P2) € OpSemBoth and (P2, time t2, P8) € OpSemDBoth
then (P1, time (t1 + t2), P3) € OpSemBoth

The following lemma can be considered to be the converse of the lemma
for the addition of time steps. It states that in the unified semantics, any
time steps can be split into two individual time steps and that there exists an
intermediate state P2.

Lemma 13 (Time Interpolation Unified)
If (P1, time (t1 + t2), P3) € OpSemBoth and 0 < t1 and 0 < t2 then
I P2. (P1, time t1, P2) € OpSemBoth A (P2, time t2, P3) € OpSemBoth

Now that we have integrated the semantics of Timed CSP processes and
low-level programs into a unified semantics and established the properties
which allow for the interpretation of the unified semantics as a timed labeled
transition system, we can instantiate the abstract definition of a timed labeled
transition system. Technically, this is achieved by establishing that the context
of our newly defined TLTS satisfies the abstract requirements fixed within the
definition of the locale timed 1ts. This locale fixes exactly the assumptions
that correspond to the lemmas proved above.

7.1.2 Example

In this section, we use a small example to explain our verification strategy
for bisimulations between Timed CSP specifications and low-level implemen-
tations on the level of the timed small-step semantics. Even though we only
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use a small program fragment consisting of only one instruction, the following
proof of weak bisimilarity already shows the complexity of proofs on the level
of the small-step semantics. Recall that in the last chapter in Section 6.2, we
modeled the execution of instructions as consisting of three parts: the amount
of time that might pass by before an instruction is executed, the execution
of the instruction in terms of its externally visible behavior combined with
the effect on the internal state and, as the last part, the time that passes by
after the instruction. The behaviors involved on the level of the small-step
semantics when executing an instruction are therefore more complex than just
changing the value of an internal variable. This is a main motivation for the
abstraction theorems presented in the next section, which allow us to transfer
analysis results from the higher level of abstraction of the proof calculus to the
level of the timed-small step semantics. On this higher level of abstraction,
the complex transitions mentioned above are subsumed by only one transition
that updates the state and the local clock.

Specification and Implementation

We start with a program that consists of just one out instruction. The labeled
instruction set lis for the process id 1 is thus defined as {(1,out outstart yield-
Zero 0)}. The function outstart yields the event (thrl, start) for any given
state. Here, thrl is supposed to be an identifier for a thread, for example,
and start is used to signal to the environment that the thread thrl starts its
operations. The function yieldZero, which is evaluated with respect to the
state of the program always yields 0. Therefore, no timeout is given and the
communication of the event can be arbitrarily delayed. As no timeout is given,
the timeout label is set to 0. Recall that the semantics is defined polymorphic
with respect to the type of events. Here, we have fixed the type of events
to consist of tuples where the first part is a thread identifier and the second
is a command. Furthermore, we set the tibef and tiaft values, which specify
the amount of time that passes by before and after the visible event of the
instruction to the value 1. Technically, this is achieved when instantiating the
locale definition for this example.

The specification for the one instruction program directly reflects the la-
beled transition semantics of the respective instruction as described above:

Threadl = WAIT(1); (thrl, start) — WAIT(1); STOP

The specification expresses that one time unit passes by. Afterwards, the
process can synchronize on the event (thrl, start). If the environment is ready
to perform (thrl, start), the process lets one time unit pass by and afterwards
does nothing but letting time pass by.
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Definition of the Bisimulation Relation

We define the bisimulation relation as the union of individual relations. The
individual relations identify the states from which equivalent behavior is pos-
sible. Conceptually, two kinds of relations can be distinguished:

e Control state relations relate states from which either communica-
tions are possible or time may pass by. In the latter case, a time step
leads to a state in the following relation.

e Intermediate state relations relate time states that connect control
states. In these relations, we use a variable to identify the infinitely many
substates that are possible when time passes by between two control
states.

For the process definition mentioned above and the instruction that im-
plements the specification, we define the bisimulation relation as follows. The
first relation is a control state relation and identifies the process specification
(denoted in the definition by P) with the initial state s that the implementa-
tion is started in. The assertion requires that s has the process Id 1 and that
the program counter in s points to the label one.

bisimRell = { (P,Q).3 s .
P = (tesp (WAIT 1;; (thr 1, start) — WAIT(1);; STOP)) A
Q = (ll (nstate s)) N (A\s. PIds =1 NPCs=1 A tnows = 0) s}

The second relation identifies the infinitely many intermediate states that
are reachable from the states identified in bisimRell. These are states that re-
flect the passage of time. Here, we use the variable x to denote that exactly one
unit of time can pass by. From the second tuple, the specified process finishes
the WAIT process by taking an internal transition (due to the combination
of SKIP and sequential composition). In this tuple, the implementation has
reached a state, where the countdown value in the tbstate has reached 0 and
can now take a transition to the evdelstate.

bisimRel2a = { (P,Q).3 sz. (x 2 0 ANz < 1A
P = (tesp (WAIT (z); ; (thr 1,start) — WAIT(1);; STOP)) A
Q = (Il (tbstate(s,z))) N(As. Plds=1ANPCs=1)s)V

P = (tesp (SKIP; ; (thr 1,start) — WAIT(1);; STOP)) A
Q = (Il (tbstate(s,0))) N(As. Plds=1ANPCs=1) s}

In the next relation bisimRel2b, states of the specification and of the im-
plementation are identified from which time can arbitrarily pass by until the
communication takes place. Although time can pass by from the identified
states, we consider these states to be control states. This is because a visible
communication is possible here after an arbitrary amount of time passes by.
However, we do not have to model the passage of time here explicitly.

bisimRel2b = { (P,Q). 3 s.
P = (tesp ((thr 1,start) — WAIT(1);; STOP)) A
Q = (Il ((evdelstate s))) N (As. PIds =1 N PCs=1) s}
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After communication takes place, both the specification and the imple-
mentation have the possibility of letting exactly one time unit pass by. The
specified relation bisimRel2c¢ is similar to bisimRel2a.

bisimRel2c = { (P,Q). 3 sz. (x 2 0 ANz < 1A

P = (tesp (WAIT (x); ; STOP)) A

Q = (Il ((tastate(s,z)))) N (As. PIds =1 N PCs = 2) s)
V

P = (tesp (SKIP; ; STOP)) A

Q = (Il (nstate s))N (A's. PIds =1 N PCs = 2) s}

After one time unit has passed by the execution of the out instruction is
finished and the next control state is reached. In this example, the Timed
CSP specification stops, i.e., no successful termination is signaled. Similarly,
the implementation stops by incrementing the program counter to two, which
is outside of the instruction set lis. Therefore, the implementation takes an
internal transition to the termination state.

bisimRel3 = {(P,Q). 3 s.
P = (tesp STOP) N
Q = (Il (tsstate s)) N (As. PIds =1 N PCs = 2) s}

The final bisimulation relation is then the union of the individual control
state and the intermediate state relations as mentioned above. The advantage
of this style of specification is that we can separate and reuse parts of specified

relations in a modular way. Technically, this is especially useful when dealing
with big relations in Isabelle/HOL.

bisimRel = bisimRell U bisimRel2a U bisimRel2b U bisimRel2¢ U bisimRel3

We now establish that the process Threadl is weakly timed bisimilar to the
program with the process identifier 1 consisting of the out instruction started
in a state s that has the process Id 1 and where the program counter points
to the label 1. The following lemma formalizes this claim. We use the relation
weak-timed-bisimilar, which refers to the definition of weak timed bisimulation
in the locale context cs.

lemmaV s (A\s. Plds=1ANPCs=1ANtnows=20)s—
(tesp (asg Threadl), (Il (nstate s))) € cs.weak-timed-bisimilar

To establish this bisimulation lemma, we need to show that from the speci-
fied states equivalent behaviors are possible. The proof principle derived from
the coinductive definition of weak timed bisimulation can be used exactly for
this purpose.

apply(rule_tac X="bisimRel” in cs.weak_timed.bisimilar_coinduct)

Using this command, we invoke the proof tactic that implements the proof
principle shown in Figure 7.1. We instantiate the set X with the specified
relation bisimRel and then need to show that it satisfies the requirements
of the principle. The proof then proceeds by first establishing that the tuple
(tesp (asg Threadl), (Il (nstate s)) ) mentioned in the lemma is in the specified
relation. Then, it needs to be shown that from both states only transitions
are possible, which can be simulated from the other state and that only pairs
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of states can be reached that are again in the specified relation. For the low-
level program this implies that for every state specified in the relation, the
possible transitions are analyzed using the rules of the small-step semantics.
This includes internal transitions. In the next section, we explain how the
proof calculus from Chapter 6 can be used to lessen the burden of separately
analyzing all the possibilities of the low-level program for internal transitions.

7.2 Abstraction Theorems for Bisimulations

In our concrete setting of applying the notion of weak timed bisimulation, it is
often the case that simple transitions in an abstract representation are reflected
by a complex series of transitions in the concrete representation. This is due to
the way abstraction is realized in the definition of weak timed bisimulation on
the one hand and the fact that we relate behaviors specified in a rather abstract
formalism to behaviors given in a very concrete representation of an imperative
programming language on the other hand. For our verification environment
this implies that we have to cope with high numbers of internal transitions on
the level of the low-level implementation when establishing conformance.

In this section, we show how the proof calculus for total correctness pre-
sented in the last chapter can be used to reduce the efforts required for con-
crete bisimulation proofs. The main idea is based on the observation that
from an outside or process-oriented point of view, instructions of the low-level
language that do not realize input or output behavior only contribute to the
externally visible (or process-oriented) behavior of a program in terms of time
that passes by. Based on this observation, we characterize the program states
visited during the execution of a number of internal instructions abstractly. All
information that is necessary about these states is the amount of time which
has passed by since the last and before the next visible instruction. In Chap-
ter 4, we have given an intuition for our strategy of abstracting from internal
transitions in concrete proofs about bisimulations between process-algebraic
specifications and low-level code. It is based on the idea that a bisimulation
relation can be specified using a Hoare triple. The pre- and the postcondition
need to ensure that no events are communicated and furthermore need to be
strong enough to obtain the value of time that the execution of the code from
a state fulfilling the precondition to a state fulfilling the postcondition takes.
We split the corresponding bisimulation relation into three parts. One that
mentions the states that fulfill the precondition, one that specifies the interme-
diate states, and one that describes the states fulfilling the postcondition. In
this section, we describe the theoretical aspects of this concept more formally.

The theorems presented in this section can be used to transfer properties
obtained from Hoare triples as described above to the level of the small-step
semantics. They especially focus on the intermediate states and the possible
executions from these intermediate states. As explained above, this is espe-
cially useful to abstract from internal steps in concrete bisimulation proofs.
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Recall that proving a bisimulation relation for a given tuple (P, s) consists of
proof obligations that take two directions. For low-level code this means that:

1. It needs to be shown that in state s the low-level code can answer any
step possible for the process-algebraic specification from P.

2. For all possible steps from s it needs to be shown that they can be
answered by the process from P

In the remainder of this chapter, we develop abstract theorems that support
the specification and verification of bisimulation relations in situations where a
series of time and internal steps is possible from P and a corresponding series of
internal instructions (that take both time and communicate no visible events) is
executed from s. By abstract, we mean that we can use Hoare triples to derive
the necessary information for both cases described above. The advantage of
this approach is that on the abstract level of the proof calculus, analyzing low-
level code in our environment is far more convenient than directly on the level
of the small-step semantics. The main reason is that a single internal step
on the abstract level corresponds to four steps on the level of the low-level
semantics.

To formally describe a series of internal and timed transitions on the level
of the small-step semantics for our unified semantics, we use the relation
time-plus®. It is the mechanized version of the relation —,; introduced in
Section 2.3.2. If there exists a series of interleaved internal and time steps start-
ing in s and ending in s’ taking exactly ¢ time units, we have (s, time t,s’) €
time-plus. Figure 7.3 shows such an execution. The green line depicts a se-
ries of interleaved time and internal steps, which are covered by the relation
time-plus. The red line symbolizes the related big-step execution. The respec-
tive executions build on instructions from code (structured in the case of the
big-step execution and unstructured in the case of the small-step execution).

Simulation of Time Steps from the Process-Algebraic Specification

The first abstraction theorem covers the situation where we need to show that
a time step in the abstract specification can be simulated by the low-level
implementation. We assume a Hoare specification ensuring that from a state
s fulfilling an assertion Pre (the precondition), by executing code, a state ¢
that fulfills an assertion Post (the postcondition) is reached and that these
assertions are sufficient to derive that no visible events are communicated. We
can then conclude that there exists an execution to an intermediate state s’ for
every time value ta within the interval begin to end (where begin and end are
the timestamps fixed by the precondition for s and by the postcondition for t).
Moreover, from this state s’ there exists an execution to a state fulfilling the
postcondition Post that takes exactly the remaining amount of time. The first
abstraction theorem (Theorem 6) formalizes this intuition. The forth and fifth

3In the lemmas and theorems presented in this section, the relation appears as timed-
lts.time-plus OpSemBoth T time. This name is due to the system of Isabelle/HOL for
qualified names.
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code

Pre

bégk] end

Figure 7.3: Big-step Semantics and Timeplus Executions

premises of the theorem ensure that we can derive from the Hoare specification
that no visible events were communicated (using the variable x): the trace has
to be the same before and after execution.

Theorem 6 (Abstraction for the Existence of Time Steps)

If Ug. code C lis pl and wffs. code and

¢ (Pre) p1|code (Post) and

Vs str. Pre auzx (s, str) — Spinow = begin A str = z and

V't ttr. Post aux (t, ttr) — tpinow = end A ttr = x and

Pre auzx (s, str) and spo €. code and sprq = pl and

0 < ta and ta < end — begin and 0 < ta’ and ta’ = end — begin — ta
then

3 ¢ aux t tr.

(Il (nstate s), time ta, Ul s') € timed-lts.time-plus OpSemBoth T time A
(Il ', time ta’, Il (nstate t)) € timed-lts.time-plus OpSemBoth T time N
(Il (nstate s), time (end — begin), Il (nstate t)) € timed-lts.time-plus OpSemBoth T time
A Post aux (t, tr) A tr =z

The proof of Theorem 6 relies on the relation between the big-step and
the small-step semantics. We use the two auxiliary lemmas given below in the
proof of the abstraction theorem. First, we establish that there exists a big-step
execution for states that fulfill the precondition. Using the Hoare triple, we
infer the amount of time that the execution of the respective code takes and
furthermore that no communication takes place. Based on this information
about the given big-step execution, we can establish that there exists a related
small-step execution.

The first auxiliary lemma is formalized as follows. Given a state s from
where the program pointer points into the set of code code (for which we know
that executing it from s terminates) it can be established that there must exist
an appropriate transition in our big-step semantics. This is expressed by the
following lemma:
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Lemma 14 (Existence of big-step transitions)
If Ug. code C lis sprq and wff s, code and spc €5, code and sprdjcodel (s, str) then
3t ttr. ((s, str), spra|code, t, ttr) € big-step

The proof of this lemma relies on the definition of the termination predicate
(J). It ensures that for a state s the execution of code terminates, i.e., that
there are no blocking states or that there are no jumps to the own label of an
instruction, for example.

Given the existence of such a big-step execution of code, starting in a state s
that fulfills the precondition Pre, the definition of validity for total correctness
specifications implies that a state t, reached after executing code, must fulfill
the postcondition Post. In our abstraction theorem we require the precondition
to fix the timestamp begin and the postcondition to fix the timestamp end. The
second auxiliary lemma formalizes that given a big-step execution where the
communication trace str does not grow, there exists a time-plus execution that
takes the respective duration (Figure 7.3 gives an intuition for this situation).

Lemma 15 (Big-step and timeplus)

If spc €sc code and U, code C lis sprq and s # t and ((s, str), sprq|code, t, str) €
big-step then

(Il (nstate s), time (tptnow — SPtnow), U (nstate t)) € timed-lts.time-plus OpSemBoth T
time

The lemma is based on the correspondence between the big-step and the
small-step semantics established using Lemma 8 on page 105. The existence
of a big-step execution where the communication trace does not grow implies
the existence of a small-step execution with the same property. Exploiting the
fact that the communication trace does not grow, it can be established that
this implies a related time-plus execution. Using the second auxiliary lemma,
we can conclude that there exists a time-plus execution from s to t that has
the duration end — begin. Given the existence of a time-plus execution that
takes exactly the time end — begin and where no communications take place,
it can further be concluded that there also exists an intermediate state s’ for
every ta < (end — begin). This follows from the property that every time step
can be interpolated in our unified semantics (see Section 7.1.1) and leads to
the desired abstraction theorem (Theorem 6).

The next abstraction theorem (Theorem 7) is used in a bisimulation proof
when it is required to establish that possible steps of the abstract specification
can be answered by the low-level implementation while being in an intermedi-
ate state. The premises indicate that an intermediate state s’ is reached from a
state s fulfilling the precondition after taking a timed step of duration ta — ta’,
and there exists a transition of duration ¢a’ to a control state ¢ (fulfilling the
postcondition). Then it follows that for every point within the interval ta’,
there exists a further intermediate step.

Theorem 7 (Intermediate States to Postcondition States)

If ta’ < ta and 0 < ta and 0 < ta’ and 0 < ta’ and ta' < ta’ and
(Il (nstate s), time (ta — ta’), Il s') € time-plus OpSemBoth T time and
(Il s', time ta’, Il (nstate t)) € time-plus OpSemBoth T time

then
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s (Ul s, time ta”, 1l s"') € timed-lts.time-plus OpSemBoth T time N\
(Il s, time (ta’ — ta”), ll (nstate t)) € timed-lts.time-plus OpSemBoth T time

This abstraction theorem directly follows from the fact that time steps

can be interpolated in the unified semantics (established by Lemma 13 on
Page 114).

Using the two abstraction theorems (Theorem 6 and Theorem 7), we can use
a Hoare triple to derive the information required to establish that a time step of
the abstract specification can be simulated by the low-level implementation.
The assertions of the triple need to ensure that the timing interval is long
enough and that no communication takes place in the given interval. This is
achieved by requiring the communication trace not to grow while executing the
low-level code and captured by the Hoare triple. The existence of a timeplus
execution follows directly from the existence of a big-step execution.

Possible Low-Level Steps

The two abstraction theorems shown in the previous section can be used in
situations where a bisimulation proof requires us to show that a time step
can be simulated by a low-level step or a series of such steps. The following
abstraction theorems are suited for the converse situation: given a tuple of the
bisimulation relation, it needs to be shown that every possible transition of
the low-level implementation leads to a state, which is again covered by the
bisimulation relation and that it can furthermore be answered by the process-
algebraic specification. In this section, we present two abstraction theorems
that can be used to discharge such proof obligations for intermediate state as
specified using our approach.

To provide these theorems, we need to derive from our Hoare specifications
that from a state s fulfilling the precondition, execution can only move to states
s’ either being a control state already fulfilling the postcondition or being an
intermediate state from where execution can only move to states ¢ covered by
the postcondition. The situation is depicted in Figure 7.4. More precisely, the
theorems can be used to deduce possible executions for every state s’ reached
from a state s fulfilling the precondition via a series of time and internal
transitions, where the sum of the durations of the individual steps ta is less
than the duration it takes from s to a state t that fulfills the postcondition.
From such an s’, execution moves to a state ¢ fulfilling the postcondition and
takes the remaining amount of time.

The following abstraction theorem (Theorem 8) formalizes the intuition
given above. It can be used to show that from a state fulfilling the precondition
Pre of a given total correctness specification (which ensures that only internal
steps are possible on the way to a state fulfilling the postcondition) only states
s’ are reachable that are intermediate states, i.e., there exists a sequence leading
from these states to a state fulfilling the postcondition.
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Figure 7.4: Completion of Small-step Executions

Theorem 8 (Possible Steps from Precondition States)

If U, code C lis pl1 and wffs. code and

¢ (Pre) p1|code (Post) and

Vs str. Pre auz (s, str) — Spinow = begin A str = z and

Yt ttr. Post auz (t, ttr) — tpinow = end A tir = z and

Pre auzx (s, str) and spo €. code and sprq = pl and

(Il (nstate s), tta, q) € OpSemBoth

then

3 s’ t ta auzx tr.

(q=1s"Atta = time ta N 0 < ta A ta < end — begin A

(Il (nstate s), time ta, Ul s') € timed-lts.time-plus OpSemBoth T time A
(Il s', time (end — begin — ta), Il (nstate t)) € timed-lts.time-plus OpSemBoth T time N
Post auzx (t, tr) N tr = x

The theorem given above enables us to deduce which transitions are pos-
sible from states fulfilling the precondition. It ensures that only intermediate
states s’ can be reached from which executions to a state fulfilling the post-
condition exist. For these states s’, we can ensure that for any step possible
from s’ we again reach a state that is an intermediate state, i.e., there are
executions leading to a state fulfilling the postcondition. This is formalized by
the following theorem. It states that given an intermediate state /[ s’ reach-
able from a state nstate s fulfilling the precondition Pre, it can be concluded
from the respective total correctness specification that for any possible step to
a state ¢, we can deduce that it is an intermediate state from which a state
nstate t fulfilling the postcondition is reachable.

Theorem 9 (Possible Steps from Intermediate States)

If U code C lis p1 and wffs. code and & (Pre) ,1|code (Post) and
Vs str. Pre auz (s, str) — Spinow = start A\ str = z and

Yt ttr. Post auz (t, ttr) — tpinow = end A tlr = z and

Pre auzx (s, str) and spo €. code and sprq = pl and

0 < taand 0 < ta’ and ta + ta’ = end — start and

(Il (nstate s), time ta, Il s') € time-plus OpSemBoth T time and

(Il s', time ta’, Il (nstate t)) € time-plus OpSemBoth T time and
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(Il ', tta', q) € OpSemBoth

then

3 s ta” auz tr.

((qg=1s" A tta” = time ta’” N 0 < ta” A ta” < ta’ A

(Il ', time (ta’ — ta'), Il ") € timed-lts.time-plus OpSemBoth T time A
(Il 8", time ta', Ul (nstate t)) € timed-lts.time-plus OpSemBoth T time) V
(qg=1s"ANtta" =7 A

(Il s, T, 1l s") € timed-lts.time-plus OpSemBoth T time N\

(Il ", time ta’, ll (nstate t)) € timed-lts.time-plus OpSemBoth T time)) A
Post aux (t, tr) A tr =z

The proof of these two theorems in Isabelle/HOL is quite technical and
requires a lot of auxiliary lemmas about executions with respect to the relations
involved. We describe the main steps of the proof here informally to give an
intuition why the theorem holds. The theorems require the transfer of the
termination property from the level of the big-step semantics to the level of
the small-step semantics. This rules out stuck executions and is particularly
important because in our non-deterministic scenario (due to the instruction
do f), it is not sufficient for an execution to be a subsequence of a terminating
execution in order to conclude that it is always completed to a terminating
execution.

For example, for the execution depicted in Figure 7.4, we can conclude
that there must exist a next state reachable from s’ because we know that the
execution up to the state nstate as is a subsequence of a terminating execu-
tion. We further know that execution from nstate as with respect to the set
of instructions code needs to terminate in a state fulfilling the postcondition.
The intermediate state s’ is reached by a series of small-steps leading through
nstate as. From nstate as, execution cannot get stuck (due to the termination
predicate) and leads to another nstate. Therefore, we can deduce that execu-
tion from the intermediate state s’ also leads to another nstate, from which a
state fulfilling the postcondition can be reached or for which the postcondition
already holds. Besides termination, we also need to assure that the steps from
nstate as can only result from an internal instruction.

The following auxiliary lemma (Lemma 16) formalizes that any time-plus
execution leading to an intermediate state s’ can be approximated in the sense
that there exists an ’approximation state’ nstate as, which is a normal state
and from which a number of local steps lead to the intermediate state s’ (see
Figure 7.4). The lemma is mainly used to bridge the gap between big-step
executions and timed small-step executions. The term local refers to the fact
that on the level of the big-step semantics only normal states exist, i.e., states
that correspond to nstates. Transitions on the big-step level subsume the addi-
tional 'local’ steps on the small-step level. The approximation lemma allows us
to deduce that there exists a small-step execution to a normal state nstate as
from which only local steps are required to reach the intermediate state s'.
For the approximation state, we know that execution needs to terminate from
there, i.e., there exists a next state s”. This also implies that there must be
local small-steps from the intermediate state s’ to such a s”. This leads to the
following lemma:
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Lemma 16 (Complete Local Steps)

If codels (s, trs) amd code C lis sprq and indom spc code and

V't trt k. (nstate s, trs, code, nstate t, trt, k) € texec-k — tpinow = end A trt = trs and
(Il (nstate s), time ta, Il s') € time-plus OpSemBoth T time and

ta < end — Spinow then

s ta’’. (Il s, time ta'”, Il (nstate s'')) € time-plus OpSemBoth T time A ta’’ < end —
SPtnow — la

The premises of the lemma ensure that executions starting in a state s
through the instructions in code terminate (}) and that the terminating exe-
cutions take exactly end — begin time units and no communications take place
(trt = trs). For an execution to an intermediate state s’ we then know that
there exists local steps leading to a normal state.

Based on the result from Lemma 16 that we can reach a normal state
s” from the intermediate state, we can further deduce that there exists an
execution from a normal state s fulfilling the precondition P to the normal
state s”. If §” already fulfills the postcondition, we know that there is an
execution from the intermediate state to a state fulfilling the postcondition. If
the normal state s” does not fulfill the postcondition and the program counter
still points into code, there must be a terminating execution to a state fulfilling
the postcondition.

The proof of Lemma 16 is a main step within the proofs of Theorem 8 and
Theorem 9. The proof is quite complex because it involves reasoning on the
level of the small-step semantics. Especially the amount of work necessary for
the inductions over the relation time-plus and the relations it is defined from
should not be underestimated.

In the next section, we demonstrate the benefits of these abstraction theo-
rems for bisimulation proofs using a small example. It especially demonstrates
that when specifying bisimulation relations using our approach, the respective
proofs about the relations benefit from the abstraction theorems given in this
section by abstracting from concrete small-step executions.

7.2.1 Example

We extend the small example from the previous section. To illustrate how
we integrate the abstraction theorems presented above, we insert a section of
code that performs some internal operations. This illustrates one of our main
motivations mentioned in Chapter 4: to abstract from internal behavior in
implementations.

The abstract specification of our process is given as follows:

Threadl = WAIT(1); ((thrl, start) — WAIT(5); STOP) > STOP

The abstract specification describes a simple process with a timeout com-
munication. After letting 1 time unit pass by, the process waits for a commu-
nication of the event (thr 1, start) for 1 time unit. If the environment agrees
on the event within the specified timeout, the process lets 5 time units pass by



126 Proofs about Conformance

before stopping. If the environment does not synchronize on the event within
1 time unit, the process stops immediately. The implementation is given by
the following set of labeled instructions:

instructionSet = {(1, out outstart yieldOne 5),(2, br 3),(3, br 4)}

The instruction out has a specified timeout of 1 time unit (specified by the
function yieldOne) to communicate the event (thr 1, start) to the environment
(specified by the function outstart). If no communication takes place within
1 time unit, the program counter is set to 5, so that the program terminates
unsuccessfully (because there is no further instruction to be executed and the
PC is not set to 0). If a communication takes place within 1 time unit, execu-
tion proceeds with the branching instruction at label 2 that sets the program
pointer to label 3. The branching instruction at label 3 realizes another jump
to the label 4, where execution stops because no instruction is available to
execute.

Definition of the Bisimulation Relation

The following relation dbisimRel2d describes the part of the bisimulation rela-
tion where an event was communicated within the specified timeout interval.
Here, the program counter points to label 2 and the related Timed CSP process
is capable of letting four time units pass by and then stop.

dbisimRel2d = {(P,Q). 3 s.
(P = (tesp (WAIT 4 ;; STOP)) A
Q = (Il (nstate s)) AN (As. Plds =1 AN PCs=2)s)}

When proving the bisimulation relation, at this point we need to show that
time steps of any length between 0 and 4 of the Timed CSP process can be
simulated by the low-level program. We use our abstraction Theorem 6 for
this purpose. We instantiate the theorem with the following total correctness
specification:

lemma Specification:
Fe (A auz (s,tr). PId s=1 N PC s=2 A tnow s=TNOW auz A tr=TR auz)

(1((2::(br 3))e(3::(br 4))))
(A auzx (s,tr). PId s=1 N PC s=4 A tnow s =TNOW auz+4 A tr=TR auzx)

It specifies that from a state where the program counter points to the label
2, it takes 4 time units to reach the state where the program counter points to
the label 4. Furthermore, the specification ensures that no visible labels are
communicated by fixing the trace in the precondition and ensuring that the
possible trace in a state fulfilling the postcondition is the same. Note that we
use the auxiliary state aux here in order to refer to the values of tnow s and
tr from the precondition in the postcondition. The auxiliary state is defined
as a record that consists of the two fields TNOW and TR. As explained in
the last section, the abstraction theorem ensures that there is an intermediate
state for every point of time between the starting time and the end time.
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However, proving the bisimulation relation also requires to show that pos-
sible steps of the low-level program can be simulated by the Timed CSP spec-
ification. To deduce the possible steps from a low-level state covered by the
relation dbisimRel2d, we use Theorem 8. It states that only internal and time
steps are possible from such a state.

In both of the described situations, it needs to be ensured that the reached
states are again in the bisimulation relation, together with a related Timed
CSP process. This is ensured in both theorems, because only intermediate
states are reachable from which further transitions to states that fulfill the
postcondition of the total correctness specification given above are possible.

These intermediate states are covered by the following relation:

dbisimRel2e = {(P,Q). 3 zss't .

((z>0Nz< 4N

P = (tesp (WAIT (z); ; STOP)) A

Q = (Il s"y N (Il (nstate s), time (4—x),ll s') € es.time-plus N
(Il s', time z, 1l (tsstate t)) € cs.time-plus) A
(As.Plds=1NPCs=Sucl)s A
(As. Plds =1 NPCs=14)t)

V

(P = (tesp (WAIT(0); ; STOP)) A

Q = (Il (nstate t)) N (As. PIds=1ANPCs=4)t)
V

(P = (tesp (SKIP; ; STOP)) A

Q = (Il (tsstate t)) N (As. PIds =1 N PCs=4)t)}

The relation dbisimRel2e describes all the possible states between the state
from which the internal behavior at label 2 starts and the state, where the
program counter points to the label 4 and no instruction can be executed
anymore. The intermediate states are characterized by the fact that they
can be reached through an execution that consists of only internal and timed
transitions and that from these states, it is again possible to reach a state where
the program counter points to the label 4. Note that this characterization only
allows executions, where the amount of time taken to reach the intermediate
state added to the amount of time taken to reach the final state from the
intermediate state equals the specified timing interval (which is 4 time units in
this example). To deduce the possible behaviors from the intermediate states
described by the relation dbisimRel2e, we use Theorem 7 and Theorem 9. The
first one ensures that any arbitrary small time steps from the Timed CSP
specification can be simulated, while the second is used to show that from
intermediate states only internal or time steps are possible that either lead to
a further intermediate state or to a state that fulfills the postcondition of the
total correctness specification.

Using our specified bisimulation relation, we can now verify that the speci-
fication Threadl and the low-level program with process id PId 1 started in a
state where the program pointer points to 1 indeed show the same behaviors.

lemmaV s.(A\s. PIds =1 A PCs = Suc 0 A thows =10)s —
(tesp (asg Threadl), (Il (nstate s)) ) € cs.weak-timed-bisimilar
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In this section, we have explained our approach for the specification and
verification of bisimulation relations using a small example. We have demon-
strated that using our abstraction theorems, we can prove a bisimulation re-
lation correct without considering the actual small-step transitions. As a pre-
requisite, we require a Hoare triple assuring that no visible events occur for the
respective execution and allowing us to infer the amount of time the execution
takes. Given this information, we can treat a complex series of internal steps
as if it was just one transition when proving the bisimulation relation.

7.3 Summary

In this chapter, we have presented the part of our verification environment that
enables the application of the formal notion of bisimulation in our setting. To
reach this goal, we have integrated the semantics of our target formalisms:
the process algebra Timed CSP and our non-deterministic real-time low-level
language. Based on the timed labeled transition system defined by the in-
tegrated semantics, we can make use of the proof principle induced by the
coinductive definition of weak timed bisimulation. Using a small example, we
have shown how we specify and verify such relations. As an important proof
technique, we have explained how we can transfer properties about low-level
code established using the proof logic from the last chapter in order to realize
bisimulation proofs in a more compact and abstract way. More precisely, us-
ing our abstraction theorems, we are able to treat complex series of internal
transitions as if they were just one time step. As a premise for the application
of our abstraction theorems, we need to prove a Hoare triple using our proof
calculus presented in Chapter 6. However, reasoning about the timed behavior
on the level of the proof calculus is far more convenient than on the level of our
timed small-step semantics because a single internal transition on the higher
level of abstraction subsumes a series of transitions on the lower level.

In the next chapter, we take a step away from low-level languages and
focus on the level of abstract specifications in CSP. We propose a specifica-
tion approach for adaptive systems in CSP that facilitates the verification of
important adaption properties in the setting of distributed adaptive systems.



8 Distributed Adaptive Systems
in CSP

In the last chapters, we have focused on low-level code and investigated the
notion of weak timed bisimulation as a conformance relation. Using these
concepts, we are able to transfer properties established on the abstract level
to the low-level implementation.

In this chapter, we focus on the abstract level again and discuss how so-
called adaptive systems can be modeled and analyzed using CSP. We consider
a notion of adaptivity that regards adaptive systems as being a subclass of
reactive systems. Adaptivity here means that the systems operate in config-
urations. In response to signals from the environment, the system might find
the need to switch from its current configuration to another. We present an
approach to specify and analyze adaptive systems with CSP. Together with
our approach for the machine-assisted verification of conformance relations,
we achieve a mechanized proof environment for the correct construction of
adaptive systems from the abstract specification down to the low-level imple-
mentation. In this chapter, we use untimed CSP to focus our study on the
relation between configurations and the events that might trigger switches be-
tween configurations'. We exploit the notion of refinement in CSP to realize
a specification approach that divides the system specification into different
layers, as shown in Figure 8.1. Conceptually, we separate adaption behavior
from functional behavior as proposed by Adler et al in [ASSV07]. Thereby, we
obtain two specifications. One focusing only on the adaption behavior of the
system to be constructed and the other focusing on its functional behavior.
The first is refined by a model that captures the implementation details of the
adaption processes that the system realizes. This specification is then further
refined by a model that adds details about the implementation of functional
behavior and that refines the abstract functional specification.

On the adaptive implementation layer, we model systems in terms of com-
ponents. These components operate in predefined configurations, which are
executed dependent on the internal state. Here, the state only consists of
adaption relevant information. A components is connected to other compo-

In Chapter 9, we use the style of specification presented here for our case study of a
distributed scheduling system and also introduce timing dependencies.

129
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Figure 8.1: Organization of the Specifications

nents by channels over which values can be communicated. These channels are
separated into adaptive and non-adaptive channels. The first provide informa-
tion that might lead to an adaption. The latter are used for communicating
information that is not relevant for the adaption behavior of the components.
Furthermore, components can communicate with the environment using input
and output events. This explicit modeling of adaption actions and informa-
tion and the strict distinction of functional from adaptive behavior enables us
to capture the adaption behavior conveniently in the adaption specification
and also enables further analysis. By connecting the communication channels
of the components, we obtain the adaptive system model, which can then be
analyzed.

8.1 Specification

Classical development approaches using CSP are based on refinement. They
start from an abstract specification expressing the system behavior and ne-
glecting implementation details. This abstract specification is then further
refined by adding more detailed descriptions of the behavior of the system.
In the following, we present a partitioning of specifications that allows us to
develop refined models in a uniform manner.

The functional specification (FS) specifies the behavior of the system in
terms of input and output behavior that the system is allowed to produce. A
functional specification can either be a CSP process, as suggested in Figure
8.1, or an LTL property that is shown to be satisfied by the implementation
model of the adaptive system.
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Definition 13 (Functional Specification)
A Functional Specification FS specifies the functional behavior of an adaptive
system on an abstract level. It abstracts from the adaptive behavior of a system.

In the following, we focus on the specification of adaption behavior. This
kind of specification is concerned with the adaption signals that are to be
exchanged by the system’s components. The functional behavior is concerned
with general system inputs and outputs. These sets of channels are not disjoint
in general.

8.1.1 Adaptive Specification

On the most abstract level (the topmost layer shown in Figure 8.1), we specify
the system’s behavior by focusing on adaption behavior and abstracting from
implementation details. Configurations and other implementation specific de-
tails are not considered on this level. Adaption behavior is modeled in terms
of causal dependencies between system input and propagation of adaption sig-
nals.

Definition 14 (Adaption Specification)
An Adaption Specification AS specifies the adaption behavior of an adaptive
system on an abstract level. It abstracts from functional behavior.

Generally, ASs are systems specified as below, in order to partition the
adaption specifications in a way suitable for creating adaptive system models
and deriving implementations models.

AS = |x|1:{0..n} @« ACS(3) .

Thus, adaptive specifications are formalized as specifications of adaptive com-
ponents (ACSs) synchronizing pairwise on adaption events from the set X. The
ACSs of the system are formalized using internal (non-deterministic) choice:

ACS =11i:{0..n} e P(1) .

In these components, each P specifies the behavior of a particular configuration
of the system. If at least one configuration process P of an adaptive component
specification terminates, the component is considered to be terminating. If it
does not terminate and is deadlock-free, it is resettable and contains a home
state,i.e., a state it can always return to. As the definition above suggests, its
initial state is likely to be a home state in this latter case.

This style of specification (leaving out implementation details by modeling
choices as being non-deterministic) allows us to refine models by adding more
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explicit descriptions of internal state to the components and replacing the non-
deterministic choices by guarded external (deterministic) choices. As we will
see later in this section, this yields component models of the following form

CM(s)=014:{0..n} e g;(s) & P(i).

Here, ¢g is a boolean guard on the internal state of the process. Using
the notion of CSP refinement introduced in Section 2.4, conformance between
the refined models and the specifications for a given initial state s can be
established if at least one of the guards always evaluates to true (because of
the law 'resolution of non-deterministic choice’ P M @ C P):

ACS E}'D CM(S)

FD denotes refinement in the failure-divergence model here. This way, we
obtain adaption models that conform to their specifications by construction.

8.1.2 Adaptive System Model

The adaptive system model specifies the system’s behavior in terms of config-
urations and the behavior of their configuration processes: Each configuration
of a process is described by a separate process. Furthermore, interactions with
other system components that might trigger an adaption to another configu-
ration within the communicating components are considered on this level.

We model the entities of an adaptive system as a process that offers an
external choice over processes that model the behavior of the respective entity
in a certain configuration. These processes are guarded by boolean predicates
that depend on the internal state s of the component. Changes to the internal
state can only be made if the adaptive system engages in an event from the set
of adaptive channels AC. Depending on the internal state s and the value z
communicated through the channel the component computes the new internal
state.

Definition 15 (Adaptive Component)

An Adaptive Component AC; is defined by an internal state s, a set of guards

G; ={gi1, -, gim ), a set of adaptive communication channels ACC; = {ac;y, ..., acy, }
and a set of component configurations CC; = {CCyy, ..., CCy,}. The CCs de-
scribe the behavior of the adaptive process in a configuration guarded by predi-
cates g € G that depend on the components internal state:

AC;i(s) = acy?z — AC!(fia(s,x))
...
Oaciy, 7z — AC!(fin(s,x))
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Figure 8.2: Example of an AC Model

AC(s) = ga(s) & (CCu; AC(s))
O...
Ogim(s) & (CCyn; ACi(s))

The behavior of a component AC; in a certain configuration is described by
the processes CC; = {CCjy, ..., CCy,}. These processes handle the input and
output behavior of the adaptive component and realize communication with
other entities. This means that the control processes signal other processes
that adaption is necessary. Note that the control processes do not change the
internal state of the adaptive system component.

Definition 16 (Component Configuration)

A Component Configuration CCj; consists of functional input and output events
L = i1, ijn} and Oy = {oy1, ..., 0ym} that realize the system’s inter-
action with the environment. Furthermore, the process uses adaption events
ACPy; = {acy, ..., acyn} with ACP; N ACC; = 0, which signal other compo-
nents that adaption is necessary.

An adaptive system specification is composed of different ACs by using the
parallel composition operator of CSP. A pair of ACs is synchronized on the
adaptive and non-adaptive communication channels they share. A further AC
can be connected to the system via synchronization on the respective adaptive
and non-adaptive communication channels it shares with the combination of
the previous two ACs and so on. Using this synchronization strategy, it is
possible to realize complex communication networks between the components
of an adaptive system. Figure 8.2 shows an example of an AC model.

Definition 17 (Adaptive System Model ASM)
An Adaptive System Model ASM consists of a set A = {AC, ..., AC,} of

Adaptive Components, which are synchronized pairwise on the communica-
tion channels (Apm for AC, and AC,,) they share. The set Al consists of
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all events from A,,, that are not mentioned in the adaptive specification AS
(A,nm N = @)2

ASM - (((ACI ‘A12| ACQ) \ AllZ)
|A13UA23| AC3) \ A/13 U Al23)>
|A1nU...UA(n71)n| AC’R \ (A/ITL U U A/(TL—].)TL)

As a consequence of this construction, the only visible events of the com-
posed adaptive system specification are the input and output events of the indi-
vidual system components and the adaption events mentioned in the adaption
specification.

The adaptive system model can of course be successively refined and an-
alyzed. This is an advantage of our approach that follows directly from the
powerful refinement concept in CSP.

8.1.3 Implementation Model

The adaptive system model presented in the previous section focuses on the
adaptive behavior of the system. Therefore, the state of the individual adap-
tive components captures only information that is relevant for the adaption
behavior. The control processes for the different configurations are not allowed
to change the internal state of the adaptive system component they belong to.
The implementation model refines the adaptive system model by refining the
states of the individual adaptive components and allowing the configuration
processes to modify the internal state of the system components. Functional
behavior is specified in an implementation specification. This specification
also needs to be refined by the implementation model as introduced in the
beginning of this section.

The building blocks of the implementation model are the individual com-
ponents that refine the adaptive components and collaboratively achieve the
behavior specified by the functional specification.

Definition 18 (Refined Adaptive Component RAC)

A Refined Adaptive Component RAC; extends the internal state s of an AC;
to a state s; by adding functional variables. The control processes of AC; are
extended by functional behavior and are allowed to modify the extended state

Sf.

Refined Adaptive Components are combined like the adaptive components
from the previous section and model the behavior of the final system.

2% 45 comprises the entire alphabet of AS



8.2 Refinement of Adaptive Systems 135

Definition 19 (Implementation Model IM)
An Implementation Model IM consists of refined adaptive system components
which are synchronized pairwise on the communication channels they share.

By showing that the system specification refines the adaptive system spec-
ification, as explained in the next section, we can prove that the added func-
tionality does not change the adaption behavior.

8.2 Refinement of Adaptive Systems

In the previous section, we have explained our modeling approach for adap-
tive systems in CSP. The approach presented here assumes the existence of
multiple (modular) specifications of a system each focusing on a single aspect.
Although these must of course be consistent (in the sense that there exist sys-
tems satisfying all of them) we do not require that they use the same alpha-
bets. Thus, to establish a refinement relation between the specifications and
the adaptive system and implementation models, hiding and renaming must
be used to abstract or transform the alphabets of the models. Only then, con-
formance between the specifications and the models can be established. This
is a standard CSP technique when doing refinement proofs.

We assume that the refined models only add further events to the event
sets of the abstract models. However, if the refined models use events with
different names, CSP’s renaming operator can be used to identify events that
model equivalent behavior. By hiding all events from the adaptive system
model, which are not present in the adaptive specification, refinement can be
achieved if the specification allows the same behavior modulo silent steps.

Definition 20 (Adaptive System Model Conformance)
An Adaptive System Model ASM conforms to an adaption specification AS,
iff:

AS Erp (ASM \ (Casm \ Cas)),

where Cysy and Cyg are the unions of all input, output and adaptive events

of ASM and AS.

For the implementation model it needs to be shown that it correctly refines
the adaptive system model and that it implements the functional specification.

Definition 21 (Implementation Model Refinement)
An Implementation Model IM is a correct refinement of an adaptive system
model ASM and of a functional specification FS, iff:

ASM Crp (IM \ (Cs \ Casn)),
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FS E]—'D(IM \ (CIM \ CFS))7

where Cysy and Cry are the unions of all input, output and adaptive events

of ASM and IM .

8.3 Verification

As adaptive systems exhibit a high degree of complexity due to the interac-
tion with their environment and the complex dependencies of their modules,
verification of crucial system properties is of superior importance. Besides the
adaption and functional properties that are already captured by the adaptive
and functional specifications, further adaptive and functional properties of a
system can be formally verified in CSP using the automated verification ca-
pabilities of FDR and ProB. The CSP-Prover [IR05] also allows us to verify
infinite state systems. Our CSP based modeling approach offers the advan-
tage of analyzing the composed system as a whole, as well as analyzing system
modules in isolation. In this section, we explain how adaption specific and
functional properties can be analyzed.

8.3.1 Stability

For adaptive systems where adaption is not controlled by a central authority,
it is important to check whether the system’s adaption behavior has the prop-
erty of stability. Cyclic dependencies between system components may lead to
infinite changes of configurations thereby causing the system to perform adap-
tion infinitely often. Adaption behavior is called stable if it is always possible
for a system to find a configuration to remain in after performing adaption,
given that the input values do not change.

Definition 22 (Stability)

An Adaptive System Model ASM with adaptive communication events from
the set Aasy has the property of stability, i.e. is always able to enter a stable
state, if it can be proved that:

ASM \ Aagum is livelock free.

Freedom from livelock means that the system can not engage in an infinite
sequence of silent transitions. Since the adaptive communication events in the
definition above become silent transitions, proving livelock freedom ensures
that such a chain of silent events is not possible and thus no infinite adaption
is possible.
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8.3.2 Other Adaption Properties

Besides stability, adaptive systems can exhibit numerous other properties that
are of interest. Reachability of configurations, for example, is a desirable prop-
erty. Having a functional event performed at the start of a configuration
process enables us to check for these events in refinement assertions or LTL
properties. LTL model checking also enables us to specify fairness properties.
The formula

¢ = G F reachableConf

is satisfied if and only if the configuration performing the reachableConf event
is a home state. This is especially helpful with the alphabet transformer

T(P) = Pl[x < reachableConf | x € ConfEvents]|

which renames any event x contained in the set of configuration events ConfFEvents
into reachableConf .

8.3.3 General Properties

Further properties of the adaption and the system model can be analyzed
using FDR and ProB. For example, checking the composed system for deadlock
freedom using FDR ensures that at least one configuration process in every
system component is active. Using the model checking capabilities of ProB,
crucial system properties of adaptive systems can also be expressed using LTL
formulas that express properties about the availability and order of CSP events.
As shown by Leuschel et al. [LMCO1] and more recently by Lowe [Low08],
LTL captures properties different from those expressible via refinement in the
standard CSP models (i.e., traces, stable failures, and failures-divergences).

8.4 Discussion

The modeling approach presented in the previous sections is suitable for dis-
tributed adaptive systems. A benefit of the proposed way to model adap-
tive systems is that it allows us to keep track of requirements through the
refinement hierarchy (assuming that requirements are not scattered over spec-
ifications). In fact, this observation leads to the proposed models, because it
separates adaptive behavior from other properties of the system. Dynamic
aspects of adaption, for example, the dynamic creation of components and
communication channels, cannot be directly modeled using our approach. In
CSP, it is not possible to create new communication events or processes on
the fly. However, as explained by Roscoe in [Ros10], it is possible to simulate
this concept in CSP. If components and channels can be determined at design
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time it is thereby possible to simulate dynamic changes using the guards of
the adaptive components. For example, the introduction of a new commu-
nication channel in a certain configuration can be modeled using a copy of
the respective component configuration that might use the new channel. The
configuration guards are then used to ensure that the component behaves as
before but with a new communication channel available in the configuration
that is supposed to use the new channel.

A technical drawback of the approach presented here is performance with
FDR. The reason is that FDR is not optimized for dealing with the functional
parts of CSP), that we propose to use heavily on the modeling and implemen-
tation level. Optimizing models for FDR involves creating copies of processes
by renaming their alphabets in preference to parameterization (as explained
in [GRAO05], for example). However, ProB and the CSP;; toolkit presented
by Fontaine in [Fon10] show no difference in performance to models optimized
for use with FDR. Regarding the CSP-Prover [IR05], the models are equally
suited for analysis with the theorem proving tool.

8.5 Example

In this section, we present an example that resembles a case study from [SST06].
We model a system that controls the illumination in a room. The light control
component that is responsible for the illumination of the room is connected to
two sensors. The first one monitors if a room is occupied using a camera or a
motion detector. If the camera image is not available, the sensor switches to
motion detection and signals its new mode of operation to the control compo-
nent. The second sensor is a dimmer. If a certain dimming value is set within
the component, the light is dimmed if the room is empty. If the value is not
set, the light is switched on and off without dimming. Based on the available
signals, the light control component adapts its behavior.

Figure 8.3 shows the adaptive specification of the light control system. Note
that we use non-deterministic (internal) choice on this level to stress that the
resulting process 'SPEC’ is a specification. First, we define two communication
channels, camImage and dimValue that represent the input channels of the
sensor components. As channels are typed in CSP,,, we assign the predefined
type Bool to both channels. The messages communicated over these input
channels model the availability of images recorded by the camera and the
status of the dimmer. Adaption is modeled by messages communicated over
the adaptive communication channels detect for the sensor that monitors room
occupation, and lamp for the sensor that monitors the dimmer. Although both
modes are binary in this example, we use the user-defined datatypes occState
and lampState, which model the communication of the detection mode and
the switching mode of the lamp, respectively. The intent is to highlight that
the adaption messages are clearly causally dependent on an input message, but
may depend on other influences. Hence, replaying the original input message as
adaption message is not suitable in general. The resulting specification process
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channel camlmage, dimValue : Bool
datatype occState = motion | camera
channel detect : occState

datatype lampState = switch | dim
channel lamp : lampState

CamOff = camlmage. false —> detect.motion

—> Cam

CamOn = camlmage.true —> detect.camera
—> Cam

DimOff = dimValue. false —> lamp.switch
—> Dim

DimOn = dimValue.true —> lamp.dim —> Dim

Cam = CamOff |7| CamOn

Dim = DimOff |7| DimOn

SPEC = Cam ||| Dim

Figure 8.3: Adaptive Specification of the Light Control System

'SPEC’ models that both sensors correctly signal environmental changes over
their respective adaptive channels.

The adaptive system model that captures the behavior of the implemented
adaption mechanisms is shown in Figure 8.4. Following our modeling approach
from Section 8.1.2 each component is modeled as an AC process. The AC pro-
cesses OccSrc and LampSrv, modeling the occupation sensor and the dimmer
sensor operate in only one configuration. They receive inputs from the envi-
ronment through the events camlmage?x and dimValue?x. Here, the values
of the input signals are modeled as Boolean. Both ACs OccSrv and LampSrv
accept the input of the service that they model and propagate the respective
adaption messages. For the occupation sensor, these are the values camera
and motion through the adaptive channel detect. For the dimming sensor, the
values are dim and switch through the adaptive channel lamp. In both cases
the propagated adaption signal depends on the value of the input message x.
This behavior corresponds to the understanding that the services operate in
cycles reading an input, blocking new inputs while serving a request and then
starting over again.

Simple services like the occupancy detection service and the lamp control
service can be modeled without an explicit state parameter. Here, the adaption
processes within the AC processes depend only on their respective inputs, but
not on the state of the AC. The behavior of the light control component is
modeled by the AC process LightSrv(s). The internal state of the component
is represented by the variable s that records the current operation mode of
the connected sensors. The processes CC1(s) and CC2(s) are the component
configurations.

To keep the model in reasonable size for presentation purposes, we model
the guards of the configurations as always evaluating to true here. The inter-
nal state of the light system is made observable using the channel state. The
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channel state : occState . lampState

— dntermediate model of stateless
— occupancy detection service
OccSrv = camImage?x — (
x & detect!camera —> OccSrv
[] not x & detect!motion —> OccSrv

)

— dntermediate model of stateless
— lamp control serwvice
LampSrv = dimValue?x — (
x & lamp.dim —> LampSrv
[] not x & lamp.switch —> LampSrv

)

— intermediate model of light control
— serwvice

— s = (cam X dim)

LightS = LightSrv ((camera, dim))

LightSrv(s) =
let
f£(-, y), x) = (x, y)
gl(x, -), y) = (x,¥)
guard(s) true
status ((x,y)) = state.x.y
CCl(s) = guard(s) & status(s)

—> LightSrv (s)
CC2(s) = guard(s) & status(s)
—> LightSrv(s)
within (
detect?x —> CC1(f(s,x)) [] CC2(f(s,x))
0 et > COLs(x) | )

Intermediate = (OccSrv ||| LampSrv)
[| {|detect ,lamp|}|] LightS

Figure 8.4: Intermediate Model of the Light Control System

introduction of observation events is a common method when analyzing CSP
models. It can of course be shown, using hiding and refinement, that these
events do not change the behavior of the original model. The adaption be-
havior of the component depends on the adaption eventsdetect?x and lamp?x.
After performing one of the events from {| detect, lamp |}, the LightSrv pro-
cess evolves to the respective CC' guarded by true. This trivial guard can be
removed, of course, but is included for completeness of the AC model. The
behavior of the CC's is identical: both configurations simply communicate the
current state of the light control service. Before the LightSrv(s) can engage in
further adaptions, the internal state s is updated using the state transforma-
tion functions f and g.
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— stability
assert Intermediate \AdaptionEvents
:[livelock free]

— deadlock freedom
assert Intermediate :[deadlock free]

— Intermediate refines SPEC
assert SPEC [T= Intermediate\{|state|}
assert SPEC [F= Intermediate\{|state]|}

— SPEC does not refine Intermediate
assert not Intermediate\{|state|} [F= SPEC

Figure 8.5: Properties of the Light Control System

The entire system model of the light service and the connected sensors is
modeled by the process Intermediate. The two sensors operate in parallel and
are not synchronized since they share no adaptive communication channels.
The sensors are synchronized with the light service by synchronization on the
adaption events detect and lamp.

Figure 8.5 shows the properties that have been verified for the model us-
ing FDR. The first assertion shows that the adaptive system model is stable.
Deadlock freedom is checked using the second assertion. The third and the
forth assertion express that the adaptive system model Intermediate is both
a trace and a failure-divergence refinement of the adaption specification. The
last assertion formalizes that the specification does not refine the adaption
model.

In Figure 8.6, we extend the previous model of the light control service by
introducing dependencies between the state of the camera and the state of the
dimmer such that the dimmer is only used if the camera is turned off and the
dimmer is available. This behavior is modeled by modifying the behavior of
the component configurations and the guards. The refinement demonstrates
that using our approach, the adaption behavior of a system can be successively
developed and verified.

The following LTL formula captures the property that the dimmer is only used
if the camera is turned off and the dimmer is available:

G not [state.camera.dim]

It can be verified using the LTL model checking capabilities of ProB. The
assertions presented in Figure 8.7 establish that hiding the observation events
({| state, dimUnused | }) again yields a process refining our specification SPEC.
In fact,

RAM \ {|state, dimUnused |} = Intermediate \ {| state|},
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— intermediate model of light control service
— s = (cam X dim)
channel dimUnused

RAM = let
LightSrv(s) =
let
£((-, v), x) = (x, v)
g((x, f), y) = (x, v)
guard((camera dim)) = false
guard ((x )) = true
status(( y)) = state.x.y
CCl(s) = guard(s) & status (s)

—> LightSrv (s)
[] not guard(s) & dimUnused
—> LightSrv(s)
CC2(s) = CC1(s)
within (

detect?x — CC1(f(s,x)) [] CC2(f(s,x))
)[] lamp?x —> CCl(g(s,x)) [] CC2(g(s,x))
within (
OccSrv ||| LampSrv) [|{|detect ,lamp|}|] LightSrv ((camera, dim))

Figure 8.6: Refined Adaption Model of the Light Control System

assert SPEC [F= RAM\{|state ,dimUnused|}
assert RAM\ {|state ,dimUnused]|}
:[deterministic ]
assert Intermediate\{|state|}
:[deterministic ]
assert Intermediate\{|state|}
[FD= RAM\ {|state ,dimUnused |}
assert RAM\ {|state ,dimUnused]|}
[FD= Intermediate\{|state]|}

Figure 8.7: Properties of the Refined Functional Model of the Light Control System

since both processes are free of non-determinism and cannot be refined further.
We proved these statements using FDR.

8.6 Summary

In this chapter, we have presented a modeling approach for distributed adap-
tive systems. It is based on the idea that a distributed adaptive system can be
understood as a reactive system. Based on receiving an event, which signals
that adaption is necessary, the system decides to change its behavior and ex-
ecutes certain adaption processes. We have illustrated the modeling approach
using a small example.
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The modeling approach presented in this section demonstrates that adap-
tive systems can be elegantly modeled and analyzed using CSP. In combination
with our approach for the specification and verification of conformance rela-
tions between high-level specifications in CSP and their low-level implementa-
tions, we can ensure that adaption properties established on the abstract level
also hold for the implementation.

In the next chapter, we will use the presented strategy to model and analyze
a distributed and adaptive scheduling system. For this system, we also derive
a low-level implementation and explain how our conformance relation can be
applied in this setting.






9 Case Studies

In this chapter, we evaluate our verification environment using two case studies.
We demonstrate how our verification environment supports the gapless specifi-
cation and verification of component-based distributed systems from abstract
specifications down to low-level implementations. Moreover, we show that the
mechanical support offered by our verification environment is of great help
even for relatively small systems.

First, we use our verification strategy to verify the implementation cor-
rectness of a distributed adaptive scheduling system. On the abstract level,
we specify the system using Timed CSP specifications. These focus on the
adaption correctness of the system. Furthermore, we have proved functional
correctness properties about the system. We then verify the conformance of
a prototypical low-level implementation for the scheduling component of the
system. The implementation of the scheduler is given in the timed low-level
language defined in Chapter 6.2.

As a second case study, we extend the basic low-level language defined in
Chapter 5 to a subset of the LLVM IR. We formalize a memory model, which
supports reasoning about pointer operations. Using the low-level implemen-
tation of a function computing the factorial of a given input, we demonstrate
that mechanized total correctness proofs are feasible using our verification en-
vironment.

9.1 A Distributed Scheduling System

In this section, we use our verification environment to specify and and analyze
the behavior of a distributed scheduling system. We start by explaining the
specifications of individual system components and establish properties about
the adaption behavior of the composed system. Then, we establish confor-
mance between the specification of the scheduling component and a prototyp-
ical implementation given in the timed low-level language from Chapter 6.2.

145
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+ alert : bool busy : bool +

Emergency Resource
————————————— P - P .
SenSOI’ emergency : bool resource : bool MOﬂItOI’

scheduler : {em,short,long}

env : {exc, alt, restart}

thr 1 : {preempt, yield} thr n : {preempt, yield}

Thread1 Thread n

Figure 9.1: Structural Overview of the Distributed Scheduling System

9.1.1 Specifications of the System

A structural overview of the system is given in Figure 9.1. The main compo-
nents of the system are a controller and a scheduler. The distributed character
of the system is given by the interaction of these two components because it
determines the scheduling strategy and the adaptive behavior of the system.
The controller is connected with two sensors. These monitor the environment
of the system. The Emergency Sensor detects emergency situations and the
Resource Monitor monitors the communication and computation facilities that
are available for the system to operate and for the threads to perform their
computations. Depending on the signals that the two controllers receive from
the connected sensors, the controller decides in which configuration the sched-
uler is supposed to work and communicates the required mode of operation to
the scheduler. This reflects the adaption behavior of the distributed schedul-
ing system. The reaction of the system to changes in the environment can be
categorized into three configurations. These are reflected by the configuration
processes that the scheduler performs. If an emergency situation is detected,
the controller notifies the scheduler that it needs to perform its emergency
process. If the system detects that the available resources have changed, the
controller signals to the scheduler that it needs to change the way of scheduling
the threads it controls: the scheduler either gives the threads a short interval of
14 time units to perform their tasks or a longer interval of 28 time units. The
scheduler component implements a basic round based fixed priority scheduling
mechanism to control the n threads it is connected to.

On the specification level, we follow our strategy for the specification and
verification of adaptive systems presented in the last chapter. We first focus
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on the untimed adaption behavior of the system by giving adaptive specifi-
cations and an adaptive system model for the controller component. For the
scheduling component, we also provide an implementation model focussing on
the real-time behavior. This implementation model is used to derive a proto-
typical low-level implementation. For the model and the implementation we
show conformance between the two representations using our approach for the
verification of conformance relations from Chapter 7.

Adaptive and Non-adaptive Specifications

In this section, we explain the behavior of the scheduling system in more detail.
We start by explaining the adaption behavior of the system, i.e., we focus on
how the system changes its configurations due to changes in the environment
and give a process algebraic specification that expresses this behavior. Then,
we explain the non-adaptive behavior of the system. We focus on the behavior
of the scheduler.

Adaptive Specification Adaptive specifications AS as introduced in Chap-
ter 8 express properties about the expected adaption behavior of a system.
The specification shown in Figure 9.2 is an example of such a property. The
specification expresses that the scheduling mode the scheduler operates in can
be changed only if no emergency situation has occurred (symbolized by the
event emergency.true. If no emergency situation was signaled, the scheduler
can be switched between two operation modes:

e The short scheduling mode where threads have a time slot of 14 time
units to fulfill their task before they get preempted by the scheduler.

e The alternative scheduling mode where threads have a time slot of 28
time units to get their work done before they get preempted.

If the system is required to switch to the first configuration, this is signaled
by communicating the adaption event sched.short, while adaption to the second
configuration is signaled using the event sched.long. If adaption of the system
is necessary due to an emergency situation (emergency.true), the scheduler
can only operate in its emergency mode. The necessity to adapt its behavior
to this mode is signaled using the adaption event sched.em. The first part
(ASpecRes) of the specification expresses that in reaction to changes in the re-
sources of the system, the scheduling component allows its threads more time
to fulfill their task if the resources are busy (indicated by the resource monitor
through the adaption event resource.false). If the resources are in a good state
(indicated by the resource monitor through the adaption event resource.true),
the threads are assumed to be able to fulfill their tasks in a shorter time slot.
These changes of the schedulers configuration according to the state of the
environment discovered by the Resource Sensor can arbitrarily alternate. Fur-
thermore, notifications of the Emergency Sensor signaling that no emergency
situation is given can be communicated in between. However, if the Emer-
gency Sensor detects that an emergency situation has arisen, the emergency
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ASpecRes = (resource.true — sched.short — ASpecRes)
[ 1(resource.false — sched.long — ASpecRes)

[ 1(emergency.false — ASpecRes)

[ 1(emergency.true — sched.em — ASpecEm)

ASpecEm = (ermergency.true — ASpecEm)
[ 1(emergency.false — ASpecRes)

Figure 9.2: Part of the Adaptive Specification of the Scheduling System

routine of the scheduler needs to be performed (indicated by sched.em). Af-
ter this, only emergency events are allowed until the event emergency.false is
communicated (ASpecEm) .

Non-adaptive Specification In Chapter 8, we have distinguished adaptive
from functional specifications. The term functional specification comprises
properties that are not related to the adaption behavior of the system. How-
ever, the term functional might be slightly misleading in the setting of our case
study because timing properties of the scheduler are not related to the adap-
tion behavior, but in general are called non-functional properties. Therefore,
we use the term non-adaptive properties here. For the implementation model
of the scheduler given in Figure 9.4, we have shown that the scheduler respects
the priorities of threads: after a thread with a certain priority is started, a
thread with a higher priority can only be started in the next scheduling round.
The start of a new scheduling round is indicated by the event sched.restart.
Another property we have verified is that the scheduler implements correct
time slices, i.e., that in short mode the earliest time at which preemption of
threads can happen is 24 time units after the respective thread is started (the
14 time units of the specified timeout plus 8 time units for the execution of
instructions leading to the output instruction responsible for the preemption),
while in long mode the time slice is 38 time units long. As a liveness property,
we have shown that the scheduler is able to react to adaption events at least
every 28 time units when operating in short mode. We have verified these
properties for instances of our distributed scheduling system using the model
checking capabilities of FDR3 by taking lists of threads as fixed. Verification
for arbitrary numbers of threads can be done using the verification framework
for parameterized systems presented in [G6t12].

Adaptive System Model

Following our strategy for the specification of adaptive systems, we first focus
on realization of the adaption behavior in terms of configurations by defining
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EmergencySensor = alert?s —
(z& emergencyltrue — EmergencySensor
Ul (not z)&emergency!false — EmergencySensor)
ResourceMonitor = busy?x —
(z&resource.good — ResourceMonitor

Ul (not z)&resource.bad — ResourceMonitor)

CHelp((s1, s2, s3)) = emergency.true — CHelp((s1, s2, d3))
L] emergency.false — Contr((false, s2, false))
Contr(s) = let
status((z, y, 2)) = state.x.y.z
cclguard((true,_,_)) = false

cclguard((false, true, false)) = true
cclguard((false, true, true)) = false
cclguard((false, false,_)) = false
cc2guard((true,_)) = true
cc2guard((false,_)) = false
ce3guard((true, —,_)) = false
ce3guard((false, true, false)) = false
ce3guard((false, false, true)) = true
ce3guard((false, false, true)) = false
ccdguard((false, _, true)) = true
ccdguard((false, _, false)) = false
ccdguard((true,_,_)) = false

fem((s1,s2,53),z) = (z, s2, true) fbl((s1,s2,s3),z) = (s1, z, false)
CC1(s) = cclguard(s)&status(s) — sched.short — Contr(s)
CCO2((s1,52,83)) = cc2guard((sl, s2, s3)))&status((s1, s2, s3))
— sched.em — CHelp((s1, s2, s3)))
CC3(s) = cc3guard(s)&status(s) — sched.long — Contr(s)
CCA4(s) = ccdguard(s)&status(s) — Contr(s)
within
(emergency?z —
(CC1(fem(s,z)) L1 CC2(fem(s,z)) L1 CC3(fem(s,z)) L1 CC4(fem(s,z))))
[

(resource?z —

(cc1(fl(s,z)) LI co2(pi(s,z)) LI CcC3(fi(s,z)) I CC4(fbi(s, z))))

Scheduler(s) =let cclguard(s) = (s == em)
cc2guard(s) = (s == long) cc3guard(s) = (s == short)
CC1(s) = cclguard(s)&env.exeception — Scheduler(s)
CC2(s) = cc2guard(s)&env.busy — Scheduler(s)
CC3(s) = cc3guard(s)&env.nonbusy — Scheduler(s)

within (sched?z — (CC1(s) 1 cC2(s) [ €C3(s)))

Figure 9.3: Adaptive System Model of the Scheduling System

an adaptive system model ASM. This model is focused on the implementation
of the adaption processes within the components of the system. Figure 9.3
shows the processes of the ASM.
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The first two processes EmergencySensor and ResourceMonitor model the
sensors that monitor the environment of the scheduling system. Both work in
one configuration and have one input channel (alert and busy) that is used to
communicate with the environment. Depending on the changes in the environ-
ment, which are reflected by the respective input events, the sensors communi-
cate to the other components that the systems needs to adapt its behavior via
their adaption channels (emergency and resource). The third process specifies
the behavior of the controller component. Based on the adaption messages that
the controller receives from the connected sensors, it decides in which configu-
ration the system works. The controller is implemented using an internal state
s, which is formalized as a tuple consisting of three parts. The first component
reflects the emergency state, while the second reflects the resource usage. The
third one is used to store if the last received event was an emergency event.
Based on the messages the controller receives through its adaptive channels
and its current state, the controller then decides in which mode the scheduler
works. It does so by communicating the respective adaptive events from the
control configurations (CC1, CC2, CC3,CC4) that are available. The adaptive
behavior of the scheduler Sched is specified using three control configurations.
The process specifies that the scheduler changes its configuration based on
the operation mode (em, long, short) it receives through the adaptive channel
sched. The scheduler then communicates to the environment in which mode
it is working through the channel env.

We established that the combined ASM is correct with respect to the prop-
erty ASpecRes defined in Figure 9.2 using the model checker FDR3. More
precisely, it refines the specification in the failures-model. Furthermore, the
combined ASM is deadlock-free. As the next step in our implementation strat-
egy, we add non-adaptive behavior to the description of our system by defining
an implementation model for the scheduler component.

Implementation Model

We focus on the specification of the implementation model for the scheduler.
Figure 9.4 shows the Timed CSP specifications of the scheduler component.
This specification is parameterized over two lists of threads. The list of threads
tlist is used by the scheduler to keep track of the threads that still need to
be considered within the current scheduling round, while list is the initial
list of threads at the start of every round. Furthermore, the model of the
scheduler uses the Boolean flag sFlag to keep track of its current scheduling
mode (short or long). The process can initially either perform its emergency
procedure, or switch to the scheduling mode it is currently not operating in.
If sFlag is set, the process offers the event sched.long to its environment, if
sFlag is not set then the scheduler offers to synchronize on sched.short. If
the scheduler engages in one of these events it signals the change of operation
mode to the environment by communicating env.busy or env.nonbusy and sets
sFlag to the new value. Note that by making this implementation decision,
the scheduler does not initially offer both operation modes anymore, which
might lead to deadlock situations when it is composed with the rest of the
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Sch(tlist, ilist, sFlag) =
WAIT(1);
((sched.em — WAIT (4); env.exception — WAIT(3); Sch(tlist, ilist, sFlag)

(

(if sFlag then (sched.long — WAIT(6); env.busy — WAIT(3);
Sch(tlist, ilist, False)))
else (sched.short — WAIT(6); env.nonbusy — WAIT(3);
Sch(tlist, ilist, True)))

O

(if (tlist = []) then( (sched.restart — WAIT(8);
env.restart — WAIT(3); Sch(ilist, ilist, sFlag)))
else
((thr(hd tlist)).start — WAIT(8);
(((thr (hd tlist)).yield — WAIT(3); Sch(tl tlist, ilist, sFlag))

(if sFlag then 14 else 28)
>

((WAIT(2); (thr (hd tlist)).preempt — WAIT(3);
Sch(insort prio (hd tlist) (t1 tlist), ilist, sFlag)))))))

Figure 9.4: Implementation Model of the Scheduler

system. Therefore, a refined model of the controller is required. In this refined
model, the controller only propagates changes in the operation mode, if the
new mode is different from the last one. However, the refined controller model
is even bigger than the one presented above, so we omit the formal model
here for brevity. The third event that is initially possible for the scheduler
to synchronize on depends on the list of threads tlist that is still considered
in the current scheduling round. If the list is empty, the scheduler signals
that the current round is finished and restarts with the initial list ¢list. If
there are still threads remaining to be scheduled, the scheduler performs its
natural task of governing threads. It picks the first thread in the list of threads
ordered by priority and gives it the opportunity to start. Then, depending on
its current mode of operation, the scheduler grants either 14 or 28 time units
to the running thread to perform its task. If the respective thread has finished
its task for the current round, it can yield the right for execution. If it does so,
the scheduler drops the thread from its list tlist of threads considered for the
current scheduling round. If it does not the thread only has the possibility to
synchronize on the preemption event. Afterwards, the scheduler inserts the id
of the respective thread into its list tlist at the first position after all threads
with the same priority. This is realized by the function insort. Subsequently,
the scheduler offers the initial choices again.

Based on this implementation model, we develop a low-level implementa-
tion for the scheduler. Therefore, the implementation model given here is also
deployed for the conformance proof and thereby ensures that the adaption and
the non-adaption properties established using the implementation model hold
for the low-level implementation.



152 Case Studies

input changeModeOrStartFirstThread setFlags alwaysZero O
brt emergencyFlag 9 3

brt changeModeFlag 11 4

brt restartFlag 13 5

input threadYield dropThread timeoutMode 7

br 1

input threadPreempt insertSorted alwaysZero O
br 1

out emergencyScheduling alwaysZero O

br 1

out signalModeChange alwaysZero O

br 1

out signalRestart alwaysZero O

br 1
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Figure 9.5: Basic Low-Level Implementation of the Scheduler

9.1.2 Low-Level Implementation

In this section, we derive a prototypical low-level implementation of the schedul-
ing system presented in the last section. We provide an implementation using
our basic low-level language. We concentrate on the low-level branching struc-
ture by abstracting from memory related operations, for example we use HOL
lists in the actual scheduler implementation to keep track of the threads in the
system. In a next development step, such an implementation could serve as a
prototypical implementation to derive an implementation in a more concrete
low-level language.

Prototypical Low-Level Implementation

We focus on the basic low-level implementation of the scheduler component.
The goal is to derive a low-level implementation from the abstract specification
as given by the implementation model presented in the last section (process
Sch(—, —,_) in Figure 9.4). As an implementation language, we use our timed
low-level language from Chapter 6. We first define the notion of state. It con-
sists of a function that maps from nat to nat modeling the available registers
and their contents. Furthermore, the state consists of two HOL lists, which
model arrays that hold the current order of active threads. The scheduler
performs its round based scheduling using the list tlist and uses the second
list #list to restore the initially ordered list of threads when it performs a new
scheduling round. We use HOL lists here to keep our example in reasonable
size for presentation purposes. The lists could be exchanged by other memory
related concepts in later development steps.

type-synonym store = (nat = nat) X (nat list) x (nat list) X bool

Figure 9.5 shows the basic low-level implementation of the scheduler com-
ponent. This implementation resembles the implementation model as shown in
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Figure 9.4 in the sense that the control flow of the low-level code reflects the or-
der of possible events in the Timed CSP specification. Here, we use HOL func-
tions to model manipulations of the system store, for example when manipulat-
ing the lists of the low-level programs store. In the first line, the implementa-
tion uses an input instruction to realize its interaction with the rest of the sys-
tem. Based on the current state the function changeModeOrStartFirstThread
is used to decide if the low-level implementation can switch its mode of oper-
ation or if it schedules a thread. Execution of emergency procedures is always
possible. After the input instruction is performed, the function setFlags is
used to store which event was performed. The input instruction as specified
here has a quite abstract behavior, but it can be considered as corresponding
to a system call where the system handles communication with other entities
and the result is stored in some register. As no timeout is given for the instruc-
tion, the timeout value is set to 0 using the function alwaysZero. Based on the
information about the communication store given by the function setFlags, in
line 2 to 4 the low-level implementation of the scheduler branches to the label
where the chosen functionality is realized. Branching is governed by evaluating
the respective Boolean functions. If either a restart or a change of operation
mode or the emergency procedure is requested, the control flow continues at
the respective label and performs an output instruction to signal this to the
environment and afterwards execution starts again at label 1. If the implemen-
tation is requested to do scheduling, execution proceeds at label 5, where an
input instruction is used to offer some thread the chance to yield control for
either 14 or 28 time units. The respective timeout interval is determined using
the function timeoutMode based on the current mode of operation stored in
the registers. The effect of the input instruction on the state, if the specified
timeout does not elapse, is that the thread that currently has the control is
dropped from the list of active threads. If the timeout elapses, execution pro-
ceeds at label 7. The implementation offers preemption and the effect on the
state is that the currently running thread is inserted into the list of threads
still considered in this scheduling round.

We have formally verified that the prototypical implementation correctly
implements the IM given in the previous section. We specify a bisimulation
relation as explained in Chapter 7 and have proven its correctness using our
verification strategy. We have used our specification and verification strategy
for the abstraction from the internal behavior of the low-level implementation
that is realized by the instruction in lines 2 to 4 in the implementation. For
example, we have proven the following total correctness specification using our
proof calculus:

Fo(\ auzx (s,str).PId s=1 N PC s=2 A fst (Rs) 1=1 A fst (R s) 2=0 A
fst (R s) 8=0 A fst (R's) 4=0 A fst (snd (R s))#[]] A
fst (snd (R $))=TLIST aux A fst (snd (snd (R s)))=ILIST auz A
tnow s=TNOW auzx A str=TRX aux)

(1/(((2..brt emergencyFlag 12 4 )q
(3..brt changeModeFlag 11 4))g
(4..brt restartFlag 13 5)))
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(X aux (s,str).PId s=1 N PC s=5 A fst (R s) 1=1 A fst (Rs) 2=0
fst (R s) 8=0 A fst (Rs) 4=0 A fst (snd (R s))#[]] A
fst (snd (R s))=TLIST aux A fst (snd (snd (R s)))=ILIST auz A
tnow s=TNOW auz+6 A str=TRX auz)

A

It covers the situation where a thread was started because the respective
event was chosen from the set of events offered by the input instruction in line 1.
The function setFlags sets the register 1 to 1, so that the control flow branches
to line 5 where the started thread is given the opportunity to yield control.
The total correctness specification ensures that exactly 6 time units pass by
(because all brt instructions are executed) and that no communications take
place. Note that we use the auxiliary state here to ensure that the lists the
scheduler works on and also the communication trace is not changed by the
instructions. Furthermore, we have defined a variable TNOW in the auxiliary
state that we use to ensure that execution of the instructions takes 6 time
units. The variant for the sequential compositions can be defined using the
program counter since there are not backward jumps in this section of code.
Our abstraction theorems then enable us to specify the corresponding situation
during the bisimulation proof. They enable us to treat the behavior of the code
from line 2 to 5 as if 6 time units pass by. This especially reduces the amount
of proof steps necessary in the bisimulation proof. Instead of passing through
2 normal states and all the states between these normal states on the level
of the small-step semantics, the proof can go directly from the normal nstate
where the program pointer points to the label 2 to the nstate where it points
to the label 5.

The following lemma shows implementation conformance of the scheduler
implementation given in Figure 9.5 with respect to its implementation model
as given in Figure 9.4. The lemma states that for any list of threads that is
ordered according to the threads’ priorities, the implementation model and its
low-level implementation are semantically equivalent if started with the same
initial lists:
lemma scheduler-conformance :

k > 0 = let tlist = sort-key prio [[1..k]] in
(Vs ANs.Plds=1ANPCs=1A
fst (snd (R s)) = tlist A fst (snd (snd (R s))) = tlist ) s —
(tesp (asg (Sch(tlist,tlist,False))), (Il (nstate s))) € weak-timed-bisimilar)

The proof of conformance took us about 35 hours and the Isabelle code to
realize it takes about 8000 lines of proof code. This high number demonstrates
that without mechanical support such proofs are hardly possible. The amount
of proof code is mainly due to the fact that the prototypical implementation
of the scheduler contains almost as many communication instructions as inter-
nal instructions. For the internal instructions, our specification and verification
strategy reduces the number of necessary proof steps dependent on the number
of consecutive internal instructions. Once a proven Hoare-triple is available,
it takes just 2 applications of our abstraction theorems for each direction of
the bisimulation proof for any number of internal instructions. When working
directly on the level of the small-step semantics this takes 4 proof steps per
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instruction. Recall that every instruction basically corresponds to 3 Timed
CSP processes and 4 state transitions. They model the passage of time before
the effect of an instruction, the effect of the instruction and the passage of
time after the instruction. Our approach to abstract from sequences of in-
ternal instructions significantly reduces the amount of proof steps for sections
consisting of internal instructions because the required total correctness proofs
are realized using the proof calculus. The calculus ’operates’ on the level of
the big-step semantics, where the 3 processes used on the small-step level are
subsumed by just 1 transition. However, for the parts of the bisimulation rela-
tion relating to communication instructions our environment is currently in a
state of a proof of concept implementation. The reduction of necessary proof
steps using our abstraction theorems motivates further abstraction theorems
targeting communication instructions. We expect to be able to further lessen
the burden of manual proofs and reduce the amount of proof code using such
theorems.

In this section, we have evaluated our entire verification environment using
a distributed scheduling system. Given an implementation in the real-time
low-level language, we have mechanically established conformance between the
low-level implementation and an implementation model given in Timed CSP.
The proof of bisimulation became quite complex due to the low-level semantics
of the real-time low-level language. Using our abstraction theorems, we were
able to significantly reduce the amount of work required to account for internal
transitions in the bisimulation proof.

In the next part of this section on case studies, we want to evaluate our
verification environment in the setting of total correctness proofs for conven-
tional, i.e., untimed low-level code. To provide a realistic implementation
language, we instantiate our basic low-level language and the related proof
calculus with a memory model. We mainly concentrate on the feasibility of
mechanized total correctness proofs for more complex low-level languages in
this case study.

0.2 Instantiation to a Subset of the LLVM IR

In this section, we use the the semantics and the proof calculi presented in
Chapter 5 as the basis for the formalization of a subset of the LLVM IR.
The main goal is to evaluate the practical feasibility of termination proofs for
code given in the intermediate representation. The targeted subset contains
instructions for integer and real arithmetics and the LLVM IR’s instructions
for memory manipulation. We give a brief overview of the memory model and
the semantics for the chosen subset and then prove the total correctness for a
small low-level program given in the chosen subset.
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Addr =1
i32 i32 i32
%array undef [ undef | undef

points to
Addr =1
Offset = 1 * sizeof(i32)
i32 | i32
% »| 5 |undef
points to

Figure 9.6: Allocation of Memory

9.2.1 Memory Model and Instruction Set

To associate variable names in programs with values in memory, we use a
memory model that follows the one used in [BLO05] to formalize the semantics
of an intermediate language for a moderately optimizing C compiler. The ad-
vantage of the model is that reasoning about memory structures partly avoids
the need for assertions ensuring that certain regions within the memory layout
do not overlap because memory is allocated in terms of blocks. However, this
mechanism only separates memory on the granularity level of blocks and is
thus not as powerful as dedicated logics such as separation logic [ORY01].

We use the following record m to model the memory that the considered
LLVM IR subset operate on:

record m =
Addr 2 addr
B  addr = nat
F addr = bool
C  : (addr x nat) = content
T typearg = type

The first part of the record m is the current memory address Addr at which
new memory space can be allocated. If a chunk of memory is allocated, this
variable is increased so that it points to the location after the allocated memory
space where further space can be allocated. The function B yields the block
size for a given memory address at which a chunk of memory was allocated.
If a chunk of memory is allocated at an address, the function F' is used to
indicate this. For a given address, the function C' yields the content. Note
that memory is addressed using an offset from the allocation addresses. The
function T is used to keep track of typing information for pointer variables.
Figure 9.6 depicts the way memory and accesses to it are modeled. There, an
array consisting of three integer variables is allocated at the location Addr = 1.
The register %array of type integer pointer initially points to this address. The
content of the second element of the array can be derived using the content



9.2 Instantiation to a Subset of the LLVM IR 157

function C'. It takes as input the address of the array and the offset that points
to the second element of the array. The offset is calculated by multiplication of
the number of the respective element with the size of the respective datatype
(vielded by the function sizeof).

The program state consists of a function R modeling SSA registers, func-
tions S and H that associate variable names with addresses on the parts of
the memory that model the stack and the heap, the overall memory structure
M as described above and the program counter PC:

record state =

R it req = regual

S = war = (addr x nat)
H  :wvar = (addr x nat)
M =m

PC  :: label

We formalize the following LLVM IR instructions:

datatype instructions = iassign reg intset |
br label |
brt reg label label |
add reg type reg reg |
add-const reg type reg int |
mul reg type reg reg |
icmp-slt reg type reg reg |
alloca ident type |
load reg type ident |
store-const type content type ident |
store type reg type ident |

gep reg type reg gepType

The first instruction iassign is not part of the LLVM IR specification.
However, we use it here to model non-deterministic input behavior, which on
the level of low-level languages is realized by calls to functions provided by
the operating system. Here, it assigns the values from a set of integer values
to a specified register, i.e., it yields a state for every value in the respective
set. The syntax of the two branching instructions is similar to the syntax
of our basic low-level language. The instruction add adds the contents of two
registers that have the same type and stores the result to another register, while
add_const adds a constant to the value in a given register and stores the result
in a further register. The instruction mul is similar to add, but multiplies the
contents of two given registers. The instruction icmp_slt compares the values
of two registers of type type and stores a Boolean result in a further register
(True if the value in the first register is smaller than the value in the second
register and False otherwise). The remaining instructions are concerned with
memory operations. The instruction alloca allocates a block of memory on
the current stack frame, while load copies the value stored in heap or stack
space to a register. The instruction store_const is used to store some value
to a memory location identified by a pointer ident, while the instruction store
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can be used to store a value residing in a register reg to a location in memory
that is indexed by a pointer ident. The last instruction gep is used for pointer
operations. It can be used to reference datatypes within array-like structures
on the stack. Given a pointer to an array structure, the type of the element
and an offset value, it yields the address of the respective element.

Based on the specified subset of instructions, we define small-step and big-
step semantics based on our low-level language from Chapter 5. The main
challenge is to cope with the necessary instantiations of the assignment rule
in order to read and write to the memory. Once the small-step semantics is
defined, the definition of the big-step semantics and the total correctness cal-
culus are straightforward. However, the definition of the termination predicate
needs to be adjusted with care. Using our subset of the LLVM IR, we can now
realize total correctness proofs about programs that operate on a sophisticated
memory layout.

9.2.2 Specification and Verification

As a small example, we verify the total correctness for a small implementation
given in the above defined subset of the LLVM IR. Figure 9.7 shows the imple-
mentation of the factorial function. It represents a program that first allocates
memory space for the local variables n,z and s on the runtime stack. Then,
execution of the program proceeds by non-deterministically reading a variable
from the set IS and storing it into the register 0. From this register, the value
is stored into a variable residing on the stack with the name n. Two further
variables are used to compute the factorial of n, these are z and s. They are
initialized in lines 6 and 7. After this initialization, execution continues by
jumping to the label 17. From there, the variables z and n are loaded into
the registers 6 and 7 in order to check whether the value of x is smaller than
the value of n. The outcome of the comparison is stored in register 8. If z
is smaller, execution proceeds at label 9 where the code corresponding to the
loop body is entered. If z is not smaller, execution stops at label 21.

For the given code, we prove that it calculates the factorial for any value
that is read from some unspecified input source, for example a sensor. This
input from an unspecified source is modeled using the command iassign in
line 4. Furthermore, we want to ensure that execution of the function al-
ways terminates. The total correctness specification we want to prove is the
following;:

Fe (Aauz s. PC (last s) = 1)
code
(Aauz s. PC (last s) = 21 A
(cint2nat (C (M (last $))((S (last s)) ""s"))) =
fac (cint2nat (C (M (last $))((S (last s)) "z"))) )

It states that given a state where the program pointer points to the label 1,
execution of the program from Figure 9.7 ends in a state where the program
counter points to the label 21. The memory location that the variable s points
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1 alloca (idvar ’’n’’) tint

2 alloca (idvar ’’x’’) tint

3 alloca (idvar ’’s’’) tint

4 iassign 0 IS

5 store tint O (tptr tint) (idvar ’’n’’)

6 store_const tint O (tptr tint) (idvar ’’x’’)
7 store_const tint 1 (tptr tint) (idvar ’’s’’)
8 br 17

9 1load 1 (tptr tint) (idvar ’’x’’)

10 add_const 2 tint 1 1

11 store tint 2 (tptr tint) (idvar ’’x’’)

12 load 3 (tptr tint) (idvar ’’s’’)

13 load 4 (tptr tint) (idvar ’’x’’)

14 mul 5 tint 3 4

15 store tint 5 (tptr tint) (idvar ’’s’’)

16 br 17

17 1load 6 (tptr tint) (idvar ’’x’’)

18 1load 7 (tptr tint) (idvar ’’n’’)

19 icmp_slt 8 tint 6 7
20 brt 8 9 21

Figure 9.7: LLVM IR representation of the factorial function

to holds a value that is the factorial of the value in memory that the variable
x points to. The identifier last appears in the assertion because we have based
our semantics on traces of states. For every state transition a state is appended
to the trace. The last state of such a state trace is then the current state. Note
that we use the total correctness calculus here (indicated by the symbol ;).
This requires the specification of a variant. For straight line code, we use the
inverse of the program counter. For the part of the low-level code that realizes
the loop behavior, we use the following variant:

loop-var-fun s =
((cint2nat (C (M (last $))((S (last s)) "n"))) —
(cint2nat (C (M (last $))((S (last s)) "z'))))

The variant reflects the fact that the loop body (in which z is incremented)
is executed until z equals n. The proof of functional correctness corresponds
to the standard proof for high-level implementations of the factorial function.
The help variables z and s are initialized to 0 and 1, so initially the value of
s is the factorial of . Then in every loop iteration, z is incremented and s is
multiplied with . This already yields the invariant: after every loop iteration,
the value of s is the factorial of the value in z and z is smaller than n. When
execution of the loop does not continue because the loop condition is falsified,
we know that s already holds the calculated factorial of n because z cannot
be greater than n and furthermore z and s either hold their initial values or
were manipulated by executions of the loop body, which preserve the relation
between z and s.
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The proof code for the verification of the example function is about 1500
lines long. This includes the specification of the variants and invariants for
the total correctness proofs that are quite verbose. Furthermore, intermediate
specifications arising from the application of the rule of consequence contribute
to the sheer size of the proof code. Regarding the proof obligations that need to
be discharged, we greatly benefit from the automatization features of Isabelle
for its instantiation to HOL. Based on the experiences with our prototypical
verification environment, we are confident that the complexity and amount
of proofs can be massively decreased by the implementation of a verification
condition generator (vcg) as used for a high-level language in [Sch06]. Such
a tactic applies the rules of the proof calculus in an automatized way and
therefore reduces the amount of manual work necessary to apply proof rules
and specify intermediate assertions. Our instantiation of the basic low-level
language to a subset of the LLVM IR is an important starting point for a
mechanized and automatized verification environment that enables concrete
proofs about practically relevant low-level implementations.

9.3 Summary

In this chapter, we have evaluated our verification environment using two case
studies. As the first case study, we have verified the correctness of a distributed
and adaptive real-time scheduling system. The main part of the scheduling
system is a scheduler that is supposed to start and stop threads. The scheduler
component is connected to a controller that is used to keep track of problems
with the communication infrastructure and other emergency situations. Based
on the information about the infrastructure, the distributed system decides
in which configuration it operates. Using our verification strategy for the
specification and verification of adaptive systems, we were able to show that the
adaptive behavior and the real time behavior of the scheduler and its connected
components satisfy the specified requirements. We have not only verified this
on the abstract level, but we have used our conformance relation to show that
the low-level implementation of the scheduling component also satisfies the
high-level requirements. By combining automated model checking methods on
the abstract level with interactive theorem proving techniques for mechanized
conformance proofs, we were able to transform individual components of the
distributed system into their low-level representations in a stepwise fashion.
Due to our mechanized proofs of conformance, we are able to claim that the
partially transformed system preserves the desired properties as specified on
the abstract level.

As the second case study we have verified the total correctness of a program
given in a subset of the LLVM IR. We have presented our formalized subset of
the IR together with its memory model. Then, we have used our proof calculus
for total correctness proofs of low-level code to verify the total correctness of
an implementation that calculates the factorial of a non-deterministic input.
The example shows that, using our formalization for low-level code, we can
realize total correctness proofs about realistically modeled intermediate code
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and support them with the mechanisms provided by Isabelle/HOL for the
construction of well-founded relations.

In the next chapter, we conclude this thesis. We review the concepts pre-
sented in the preceding chapters with respect to the objectives from the intro-
duction and discuss possible directions for future work.






10 Conclusions and Future Work

In this chapter, we conclude this thesis by summarizing and discussing the
obtained results. In Section 10.1, we summarize our developed concepts for
the mechanical verification of conformance between high-level specifications
and low-level code in a real-time setting. Subsequently, we discuss them with
respect to the objectives given in Section 1.2. Our mechanical verification
environment can serve as a basis for a variety of extensions, which constitute
interesting directions for future work. These are discussed in Section 10.3.
Finally, in Section 10.4, we summarize which parts of this thesis have already
been published in international conference proceedings.

10.1 Conclusion

In this thesis, we have presented a verification environment for conformance
proofs in the setting of low-level code and process-algebraic specifications. Our
work is motivated by the observation that even though in many software de-
velopment processes, representations of a system are modeled and analyzed on
different levels of abstraction, support for formally funded conformance rela-
tions is still limited. This is especially true in the setting of embedded real-time
systems.

To address this problem, we have designed an environment that supports
high-level representations given as timed process-algebraic specifications and
implementations given in terms of low-level code. For the analysis of process-
algebraic specifications our framework builds on a formalization of the process-
algebra Timed CSP. For the specification and verification on the level of the
low-level code, we have constructed a compositional semantics and a dedicated
proof calculus that supports total correctness proofs in the presence of possi-
bly unbounded non-determinism. Moreover, we have extended the semantics
and the proof calculus to a real-time setting. This extension includes a small-
step semantics, which can be interpreted as defining a timed labeled transition
system. It is this representation that enables the application of weak timed
bisimulation as a conformance relation in our setting. By using labeled tran-
sition systems as an intermediate layer for the application of our conformance
relation, we obtain a modular verification environment. It can be extended
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with languages and formalisms, which can be interpreted as labeled transition
systems. Using weak timed bisimulation, we can relate Timed CSP specifica-
tions to their low-level implementations. A main source of complexity within
such proofs is to cope with operations considered to be internal to a system.
We have presented a specification strategy for bisimulation relations building
on Hoare triples together with a related proof strategy. Our proof strategy en-
ables the compositional verification of partial and total correctness of low-level
implementations. To further ease the verification process, we provide abstrac-
tion theorems, which can be used to discharge proof obligations resulting from
our abstract specification of bisimulation relations. Furthermore, we presented
an approach for the specification and verification of adaptive systems in CSP.
This demonstrates that using our verification environment, interesting classes
of systems can be tackled. Our environment serves as the basis for the anal-
ysis of such systems on the abstract level and on the level of the low-level
implementations. Moreover, conformance between these levels can be formally
verified. It is well-known that the verification of low-level code is a complex
task on its own. The introduction of timing behavior even raises this level
of complexity and also complicates conformance proofs between low-level rep-
resentations and abstract specifications. Our environment copes with these
sources of complexity by formalizing the presented concepts using the theorem
prover Isabelle/HOL. This not only provides evidence that the presented the-
oretical concepts are indeed correct, but also yields a mechanized verification
environment that can be used for concrete proofs about low-level code on the
one side and its correctness with respect to high-level specifications on the
other side. Such proofs can be partly automatized using the proof tactics and
mechanisms of the theorem prover.

The main advantages of our approach can be summarized as follows:

e We provide a mechanized compositional semantics and dedicated proof
calculus for low-level languages that can cope with time and non-determinism
and enables total correctness proofs.

e We obtain a modular and mechanized environment for conformance proofs
between real-time specifications in Timed CSP and low-level implemen-
tations.

e The specification and verification of conformance relations is supported
by mechanized abstraction theorems.

e Our approach for the specification and verification of adaptive systems
based on configurations can be used to mechanically verify properties
about such systems using partly automatized proofs.

e We provide continuous mechanical support for correctness proofs by for-
malizing our environment using the theorem prover Isabelle/HOL.

In this section, we have summarized the main contributions of our environ-
ment. In the next section, we review them with respect to the objectives given
in the introduction in Chapter 1.
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10.2 Discussion

In this section, we discuss the achievements presented in this thesis with respect
to the objectives given in the introduction.

e Formal specification of system behavior on different levels of
abstraction

Our environment supports the specification of a systems behavior using
the process algebra CSP and its timed extension Timed CSP. These
formal languages are tailored for the specification of systems on different
levels of abstraction which we have demonstrated in our approach for the
specification and verification of adaptive systems and in our case study.
Furthermore, we have presented a stack of semantics for timed low-level
languages. This stack includes formalized small-step and compositional
big-step semantics that enable the concise specification of low-level code
behavior. We have demonstrated that this language can serve as the
basis for a formalization of a subset of the intermediate representation of
the LLVM framework. This intermediate representation can in turn be
used as the the target representation for transformation from a variety of
high-level languages. Therefore, the formalization of the IR can also be
considered as providing a concise representation of the behavior of high-
level languages that can be transformed to the intermediate language.

e Formally justified conformance relation between different levels
of abstraction

Using the notion of weak timed bisimulation, our verification environ-
ment enables us to relate Timed CSP specifications that target differ-
ent levels of abstraction. It especially supports development processes
that start with a high-level representation that abstracts from concrete
realizations of behaviors. These representations are shown to be seman-
tically equivalent to more concrete representations by hiding additional
behaviors in the more concrete representation in order to establish confor-
mance. In our verification environment, this strategy can further be used
to relate abstract specifications to their low-level representations. This
is enabled by our timed small-step semantics, which can be interpreted
as a timed labeled transition system. Concrete proofs are supported by
our abstraction theorems, which are used to infer possible semantic steps
from abstract Hoare calculus proofs.

e Integration of timing behavior on all levels of abstraction

Timing behavior is supported by choosing Timed CSP as a formalism
for the level of the abstract specification. The process-algebra provides
mechanisms to specify timing behavior and therefore supports concise
specifications about the timing behavior of communicating processes.
On the level of the implementation, we have demonstrated how timing
behavior is integrated on all the levels of the semantics stack for our
timed low-level language.
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e Support for adaptivity

Our verification environment supports the notion of adaptivity as defined
in Chapter 8. There, we focus on a notion of adaptive behavior based on
configurations that a system operates in. Configurations are changed in
response to changes in the environment in which the system is deployed.
By supporting the specification of adaptive behavior on the abstract
level and establishing that a given low-level implementation conforms
to the abstract level, it is ensured that proven properties also hold for
the low-level implementation. Therefore, our verification environment
supports adaptivity in the sense that it can be specified and analyzed on
an abstract level. The analysis results can then be transferred from the
abstract level to the level of the low-level implementation, resulting in a
provably correct implementation of an adaptive system.

Integration with existing and practically relevant formalisms
and programming languages

For a concrete instantiation of our verification environment, we have cho-
sen the process-algebras CSP and its timed extension Timed CSP. For
the low-level representation, we have chosen to formalize a basic low-
level representation that can serve as the basis for the formalization of
practically relevant low-level languages. We have demonstrated this by
formalizing a subset of the intermediate language of the LLVM compiler
framework. This concrete low-level language is of great interest both in
industry and academics. Through its modular structure and design, it
serves as the target for compilation from a variety of high-level languages.
By extending the subset, the formalization of the LLVM IR could there-
fore serve as a verification intermediate representation for a variety of
high-level languages.

A high degree of mechanization and automatization

Our case studies and the additional examples have demonstrated that
conformance proofs and also total correctness proofs about relatively
small low-level programs are already a challenging task. To ensure cor-
rectness and avoid overlooking corner cases we provide a completely
mechanized verification environment. Using the proof tactics and mech-
anisms of the theorem prover, concrete proofs about low-level code and
conformance are aided with automated procedures. Furthermore, our
modular proof methodology enables a systematic verification process.

Modularity and Extendability

By defining our conformance relation using timed labeled transition sys-
tem as a basis, our environment can be extended with other timed for-
malisms that support the specification of timing behavior and can be
interpreted as labeled transition systems. Furthermore, our timed low-
level language can serve as the basis for formalizations of further low-
level languages. From a technical perspective, our mechanization sup-
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ports modularity and extendability by using the concept of locales in
Isabelle/HOL for the formalization of the concepts described above.

In this section, we have reviewed the presented verification environment
with respect to the objectives from the introduction. We have shown that
we meet all the criteria that constitute a mechanized verification environment
that is suited for the mechanized verification of embedded real-time systems
on multiple levels of abstraction, thereby bridging the semantic gaps present in
typical design processes. In the following section, we discuss possible extensions
to our verification environment that motivate future work.

10.3 Future Work

In the previous sections, we have summarized the concepts presented in the
preceding chapters of this thesis and discussed them with respect to the objec-
tives given in the introduction. In this section, we discuss various extensions
that are motivated by the results obtained so far.

Proof Calculi for Low-Level Languages Our extended proof calculus for
total correctness proofs of low-level code supports compositional proofs about
the behavior of low-level code. Furthermore, total correctness proofs about
possibly non-deterministic low-level code are possible. In its current state, the
semantics supports the basic instructions of a typical low-level language. As
a next step it would be beneficial to formalize concepts for structuring code,
like mutually recursive procedures for example. Another interesting exten-
sion would be to integrate the proof logic with separation logic, for example.
This would enable the compositional verification of low-level code operating
on complex memory structures using our calculus.

Proof Calculi for Distributed Low-Level Languages In Chapter 6.5, we
have briefly explained how our formalization can serve as a basis for a compo-
sitional proof calculus for a distributed low-level language that communicates
through channels. In order to facilitate proofs about deadlock-freedom using
such a calculus a more fine grained semantics in terms of the treatment of com-
munications is required. The timed traces used in our current formalization
are only sufficient to show safety properties, to obtain a compositional proof
system for low-level systems that enables proofs about liveness properties as
well a more expressive semantics like the failure-divergence semantics [Ros05]
would be required. Another extension into a similar direction would be to
extend the calculus to a concurrent setting where low-level code synchronizes
using shared memory. A compositional approach that could serve as a basis
for such an extension would be the rely guarantee method [Jon83].
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Conformance Relation In this thesis, we have chosen the notion of weak
timed bisimulation as a conformance relation. As shown in the various ex-
amples weak timed bisimulation requires that two processes behave equally
with respect to timing behavior. In many situations, a more relaxed notion
of conformance with respect to timing behavior would add more flexibility
when using our framework. A possible candidate for a less strict conformance
relation would be the so-called amortized faster than relation [LVO06], which
defines a bisimulation relation that allows processes to be identified in a more
flexible way. When using such a relation, it is possible for two processes to
be identified, even if it sometimes takes more time for a process to simulate a
given event of the other process.

For CSP-like languages, denotational semantics have always attracted great
attention, because they directly support the notion of refinement, .i.e., by us-
ing set-theoretic inclusion on the respective semantics representation. Fur-
thermore, these semantics enable the analysis of processes on a more abstract
basis when compared to the relatively low level of abstraction inherited by
representations based on operational semantics. To obtain more expressive
specifications and allow for a more abstract treatment of the semantics of
low-level languages, it would therefore be beneficial to model a denotational
semantics for the low-level language using for example the timed failure se-
mantics [Sch99]. Formalizing such a semantics and a related proof calculus in
a theorem prover would though be a far more complex undertaking compared
to the mechanization of an operational semantics. However, as demonstrated
in [Sch92] for Timed CSP, the denotational semantics can be characterized us-
ing operational representations. It would be interesting to investigate a similar
approach for our timed low-level language. Our given semantics can serve as
a starting point for such a semantics.

Adaptive Systems The notion of adaptivity as we have introduced and used
it in this thesis is based on configurations. An interesting extension, which
enables a more flexible approach to the specification and verification of adap-
tive systems would be the integration of statistical methods. We aim for an
extension of our approach, where reactions to changes in the environment are
not triggered by discrete events, but may rather be triggered by statistical
observations the system makes about its environment. This especially enables
more flexible adaption strategies, i.e., how the system decides what reaction
is appropriate to which changes in the environment. To support such an ex-
tension in our environment, a possible starting point would be to extend the
formalization of CSP in our environment to probabilistic CSP [Sei95].

In this section, we have discussed interesting research questions motivated
by the results presented in this thesis. In the next section, we given an overview
of our publications related to the topics discussed in this thesis.
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10.4 Related Publications

Parts of the results presented in this thesis were published in papers on inter-
national conferences. In this section, we briefly explain how the papers corre-
spond to the chapters of this thesis. In [BG11, Barll] a general overview of
the envisioned environment for the verification of real-time low-level code with
respect to Timed CSP specifications is given. In [BG10], we describe the idea
of using bisimulation as a relation to verify the correctness of process-algebraic
models extracted from low-level code using an extraction approach [KBG*11]
that is not discussed in detail in this thesis. The mechanized verification
of low-level code with respect to total correctness specifications is presented
in [BJ14]. Our approach to the specification and verification of adaptive system
from Chapter 8 is presented in [BK11]. The relation of the work presented in
this thesis to the project VATES is described in [GBGK10, BGG10, KBGGO09].
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