
Models, Methods and Tools for Availability

Assessment of IT-Services and Business

Processes

Dr.-Ing. Nikola Milanovic

Habilitationsschrift an der Fakultät IV –
Elektrotechnik und Informatik

der Technischen Universität Berlin

Lehrgebiet:
Informatik

Eröffnug des Verfahrens: 15. Juli 2009
Verleihung der Lehrbefähigung: 19. Mai 2010

Ausstellung der Urkunde: 19. Mai 2010

Gutachter:
Prof. Dr. Volker Markl (Technische Universität Berlin)

Prof. Dr. Miroslaw Malek (Humboldt Universität zu Berlin)
Prof. Dr. Alexander Reinefeld (Humboldt Universität zu Berlin)

Berlin, 2010

D 83

II

III

Abstract

In the world where on-demand and trustworthy service delivery is one of the
main preconditions for successful business, service and business process avail-
ability is of paramount importance and cannot be compromised. For that reason
service availability is in central focus of the IT operations management research
and practice. This work presents foundations, models, methods and tools that
can be used for comprehensive service and business process availability assess-
ment and management.

As many terms in this emerging field are used colloquially, Chapter 2 pro-
vides detailed background and definitions. The problem of service availabil-
ity assessment and management is interdisciplinary, combining fields of fault-
tolerance, service oriented architecture and business process management. An-
other role of this chapter is to make the text accessible to readers with dif-
ferent backgrounds. After the context of service availability has been intro-
duced, Chapter 3 presents existing models for availability and performability
assessment. The emphasis is on formal availability models, such as combinato-
rial (e.g., reliability block diagrams, fault trees) and state-space (e.g., Markov
chains, Petri net) models, but qualitative models (e.g., maturity models such as
ITIL or CobiT or standards such as ISO 27002 and ISO 12207) are also covered,
albeit with limited scope as they are not the primary focus of this work. In
Chapter 4, more than 60 commercial, public domain and academic tools for
availability assessment are surveyed and compared. Downsides and limitations
of standard availability models, both from methodical and practical perspec-
tive, are identified and a novel approach for quantitative service availability
assessment is presented in Chapter 5. It treats service and process availability
as complex functions of availability properties of underlying ICT infrastructure
elements and enables automatic generation of availability models, based on ser-
vice or process description. Finally, Chapter 6 positions presented work in the
context of a comprehensive vision for model-based IT service management.

IV

V

Acknowledgements

First and foremost I would like to thank my supervisors, Prof. Miroslaw Malek
(Humboldt University Berlin) and Prof. Volker Markl (Berlin University of
Technology), for their continued support throughout my work. I am thankful
to Prof. Andras Pataricza (University of Budapest) and his group for fruitful
cooperation. My thanks also go to numerous friends and colleagues, among
others Reinhard Meyer and Stefan Brüning, who helped with the survey of
tools for availability modeling, and specially to Bratislav Milic who contributed
significantly to research in the area of service mapping and infrastructure de-
scription.

I would like to express my gratitude to Dr. Steve Flanagan (IsoGraph)
and Dr. Uwe Laude (Federal Office for Information Security / Bundesamt für
Sicherheit in der Informationstechnik) for supporting this research and making
IsoGraph and GSTool software packages available to me. Prof. Kishor Trivedi
(Duke University) and Prof. William Sanders (University of Illinois) deserve
additional recognition for providing me with SHARPE and Möbius software.

This work would not be possible without the patience, support and love of
my son Nebojsa and my wife Maja.

Berlin, 03.06.2009

VI

Contents

1 Introduction 1

2 Definitions 5
2.1 Reliability and Availability . 5

2.1.1 Reliability . 8
2.1.2 Availability . 12

2.2 Performability . 15
2.3 Services and Business Processes 18
2.4 Service Availability and Performability 22

3 Availability and Performability Models 31
3.1 Analytical Models . 31

3.1.1 Reliability Block Diagrams 31
3.1.2 Fault Trees . 37
3.1.3 Reliability Graphs and Complex Configurations 40
3.1.4 Markov Models . 45
3.1.5 Stochastic Petri Nets . 57
3.1.6 Stochastic Activity Networks 62
3.1.7 Markov Reward Models 69

3.2 Qualitative Models . 75
3.2.1 CMMI . 76
3.2.2 ITIL . 77
3.2.3 CITIL . 79
3.2.4 ISO/IEC 15504 – SPICE 80
3.2.5 CobiT . 80
3.2.6 MOF . 82
3.2.7 MITO . 83
3.2.8 ISO/IEC 27002 . 84
3.2.9 ISO 12207/IEEE 12207 85
3.2.10 Relationships between Maturity Models in the Availabil-

ity Context . 86

4 Tools for Availability Assessment 89
4.1 Quantitative Tools . 90

4.1.1 Analytical and Simulation Tools 90
4.1.2 Benchmarking Tools . 93

VII

VIII CONTENTS

4.2 Qualitative Tools . 94
4.2.1 Risk Management Tools 94
4.2.2 Process Management Tools 95

4.3 Hybrid Tools . 96
4.4 Interoperability and Usability . 97
4.5 Tool Comparison Summary . 98

5 Service and Process Availability 109
5.1 Mapping BPMN activities . 111
5.2 Infrastructure graph generation 114
5.3 Automatic Generation of Availability Models 119
5.4 E-Mail Service Availability Assessment 121

5.4.1 Service Description and Mapping 121
5.4.2 Availability Assessment 123
5.4.3 Total Service Availability 125
5.4.4 Working with Incomplete Data 126

5.5 Publishing Business Process Availability Assessment 128
5.5.1 Business process description and mapping 128
5.5.2 Business Process Availability Assessment 133

5.6 Generation of State Space Models 134
5.7 Generation of Hierarchical Models 137
5.8 Tool Prototype . 139

6 Summary and Future Work 143

A Möbius Availability Model 159

B Availability Assessment Tools 165
B.1 General Purpose Quantitative Modeling Tools 165

B.1.1 ACARA . 165
B.1.2 ARIES . 167
B.1.3 BQR CARE . 169
B.1.4 CARE III . 171
B.1.5 CARMS . 173
B.1.6 CASRE/SMERFS . 174
B.1.7 CPNTOOLS . 175
B.1.8 DyQNtool+ . 177
B.1.9 Eclipse TPTP (Test and Performance Tool Platform) . . 178
B.1.10 ExhaustiF . 179
B.1.11 FAIL-FCI . 180
B.1.12 FIGARO / KB3 Workbench 181
B.1.13 GRAMP/GRAMS . 183
B.1.14 HARP . 186
B.1.15 IsoGraph FaultTree+ . 188
B.1.16 IsoGraph AvSim+ . 190
B.1.17 IsoGraph Reliability Workbench 192
B.1.18 IsoGraph Network Availability Program (NAP) 194

CONTENTS IX

B.1.19 IsoGraph AttackTree+ . 196
B.1.20 IsoGraph Report Generator 197
B.1.21 MARK . 198
B.1.22 METFAC . 199
B.1.23 METASAN . 201
B.1.24 Möbius . 202
B.1.25 NFTAPE . 204
B.1.26 NUMAS . 205
B.1.27 OpenSESAME . 206
B.1.28 PENELOPE . 207
B.1.29 PENPET . 208
B.1.30 Relex Reliability Studio: PRISM 209
B.1.31 QUAKE . 210
B.1.32 Reliability Center: PROACT, LEAP 212
B.1.33 Reliass . 213
B.1.34 Reliasoft . 215
B.1.35 SAVE . 218
B.1.36 SHARPE . 219
B.1.37 SPNP . 223
B.1.38 SoftRel LLC: FRESTIMATE 224
B.1.39 SURE . 226
B.1.40 SURF-2 . 228
B.1.41 Sydvest CARA Fault Tree 229
B.1.42 Sydvest Sabaton . 230
B.1.43 TANGRAM . 232
B.1.44 Mathworks Stateflow . 233

B.2 Qualitative and Process Management Tools 234
B.2.1 Advanced Technology Institute: OCTAVE Automated Tool234
B.2.2 Alion Science and Technology: CounterMeasures 236
B.2.3 Aprico Consultants: ClearPriority 237
B.2.4 Aexis: RA2 . 238
B.2.5 BMC: Remedy Suite . 239
B.2.6 BSI: GSTOOL . 241
B.2.7 CALLIO: Secura 17799 243
B.2.8 CCN-CERT: PILAR / EAR 245
B.2.9 C&A Systems Security: COBRA 246
B.2.10 DCSSI: EBIOS . 248
B.2.11 Fujitsu Interstage Business Process Manager 250
B.2.12 HP: Mercury BTO Enterprise Solutions 251
B.2.13 IBM High Availability Services 257
B.2.14 IBM Tivoli Availability Process Manager 259
B.2.15 Information Governance: PROTEUS 261
B.2.16 Insight Consulting/Siemens: CRAMM 262
B.2.17 RiskWatch: RiskWatch for Information Systems 264
B.2.18 Self assessment programs by itSMF International 265
B.2.19 Software AG CentraSite 267
B.2.20 Telindus Consultants Enterprises: ISAMM 269

X CONTENTS

List of Figures

1.1 Service QoS measures and attributes 3

2.1 Failure rate as a function of time (the bathtub curve) 7
2.2 Graphical interpretation of reliability 9
2.3 Software failure rate . 10
2.4 Typical availability function . 14
2.5 Historical perspective of the SOA development [118] 18
2.6 The SOA roles and interactions 19
2.7 Services and business processes 22
2.8 Extended architecture of services and business processes 25
2.9 Service failure modes (figure adapted from [11]) 27
2.10 Service performability example 28

3.1 Reliability block diagram of a fault-tolerant computer architecture 35
3.2 Fault tree diagram of a fault-tolerant computer system 39
3.3 Reliability graph and its factorization 41
3.4 Further factoring of reliability graph from Figure 3.3 42
3.5 Reliability graph and its equivalent RBD 42
3.6 Decomposition of RBD from Figure 3.6 43
3.7 Fault tree with repeated events and its decomposition 43
3.8 Reliability graph equivalent to the fault tree from Figure 3.7 . . 44
3.9 DTMC describing a multithreaded web application 48
3.10 CTMC describing a repairable system 50
3.11 2-Component non-repairable system 51
3.12 Reliability of 2-Component parallel non-repairable system 52
3.13 2-Component repairable system 53
3.14 2-Component Markov availability model with non-shared (above)

and shared (below) repair . 53
3.15 Availability of 2-component system with shared repair 54
3.16 Markov model for comparing repair strategies 55
3.17 Transient availability for three repair strategies 56
3.18 Two-component parallel system with imperfect coverage 56
3.19 Reliability function for different coverage values 57
3.20 SPN model of an M/M/1/5 queue 58
3.21 Reachability graph of the SPN model of an M/M/1/5 queue . . . 58
3.22 GSPN availability model of the k-out-of-n Web service system . . 61

XI

XII LIST OF FIGURES

3.23 Transient availability analysis of 2-out-of-3 system 62
3.24 Reachability graph of 2-out-of-3 Petri net model 62
3.25 SPN and SAN models of a priority queue 65
3.26 SAN model of the CPU . 66
3.27 Composed SAN model . 68
3.28 Performance/capacity level of a degradable system in time 70
3.29 Markov reward model, expected and accumulated reward 72
3.30 Markov reward model . 74
3.31 Comparison of transient expected reward and reliability 75
3.32 Expected cumulative reward . 75
3.33 Coverage of reference/maturity models and standards 87
3.34 Dependencies of reference/maturity models and standards 87

4.1 Focus and methods of availability assessment tools 98
4.2 Historical development of availability assessment tools (part 1) . 101
4.3 Historical development of availability assessment tools (part 2) . 101

5.1 Proposed availability assessment steps 109
5.2 Partial OpenNMS database schema 116
5.3 Hierarchical organization of ICT infrastructure elements in GSTool117
5.4 Technical infrastructure description in GSTool 117
5.5 E-mail service description . 121
5.6 Infrastructure graph and transformation to connectivity graph . 122
5.7 Reliability block diagram for the e-mail service 124
5.8 Business process describing acceptance of a new manuscript . . . 129
5.9 Initiating editorial tasks service 130
5.10 Junior-editors task service . 130
5.11 Editorial tasks evaluation service 130
5.12 Infrastructure/communication graph for the publishing business

process . 131
5.13 RBD corresponding to the business process from figure 5.8 133
5.14 Service for writing invoices . 135
5.15 Repair priority definition in GSTool 135
5.16 Infrastructure graph for the invoice service 136
5.17 Markov model for the invoice service 136
5.18 Instantaneous availability for the invoice service 137
5.19 Fault tree for the modified invoice business process 138
5.20 Markov models for the modified invoice process 139
5.21 Model-based architecture for the mapping and availability as-

sessment . 140
5.22 Mapping and availability assessment tool architecture 140

A.1 SAN model of the error-handling unit 159
A.2 SAN model of the I/O port . 160
A.3 SAN model of the memory module 161

Chapter 1

Introduction

Service oriented architecture (SOA) is the paradigm that aspires to play a domi-
nant role in shaping of the Information Technology (IT) landscape. It represents
a logical and evolutionary step initiated by developments in areas of distributed
computing, business process modeling, and increased ubiquity of networking
technologies. The main goal of SOA is to introduce standard methodologies,
architectures, tools, languages and protocols for development and integration of
distributed applications based on loosely coupled, independent and autonomous
software artifacts, thus supporting the large-scale composability, reusability and
agility. As discussed in Chapter 2 in more detail, SOA is usually realized today
by frameworks and technologies such as SOAP1- or REST2-based Web Services.

Dynamic and trustworthy service delivery in SOA is at present one of the
main preconditions for successful and sustainable business operations. Service
and business process availability is, therefore, of paramount importance and
cannot be compromised. Even today, services are simply expected to be deliv-
ered reliably and on demand, and this requirement will be even more impor-
tant in the near future. Unreliable and incorrect services can corrupt business
processes causing an impact ranging from lost opportunity or money to loss
of lives. Common understanding of service and business process availability
properties is rather sketchy, limited and mostly empirical. Regardless of this
fact, services are already widely used as the new paradigm to build software
architectures and enable complex business processes. According to the IEEE
Technical Committee on Services Computing, services now account for more
than 75% of developed economies.

Several methodologies can be used to assess service and business process
availability: quantitative, qualitative and analytical. Quantitative assessment
is based on real-time measurement and monitoring. Whereas it has proven
itself in several areas (e.g., hardware benchmarks and testing), it is difficult
to apply to services because of the lack of adequate metrics and instrumenta-
tion. Qualitative availability assessment is performed informally (e.g., through
questionnaires and interviews) and assigns an availability class to the system
(service). Qualitative results are easy to misinterpret, difficult to compare and

1formerly known as Simple Object Access Protocol
2Representational State Transfer

1

2 CHAPTER 1. INTRODUCTION

depend heavily on a consultant who is performing the analysis. Analytical
methods are used to model services and their behavior and calculate or simu-
late their availability. Up to now, however, classical analytical methods have
been applied to determine service availability with mixed success and relative
low industry penetration due to scalability, complexity and evolution problems.

With the recent advance of cloud computing (e.g., Amazon EC-2) and soft-
ware as a service (e.g., Google Applications) paradigms, importance of the
ability to model and assess service availability has only increased. For example,
in recent years Google Mail and Google Applications services have experienced
increasing number of outages [35], some of them lasting well over 24 hours [162].
Consequently, fears were raised that inability to provide strictly defined service
level agreement in terms of the maximum number of downtime hours per year
may lead to rejection of the software as a service (SaaS) paradigm [163]. Many
Chief Technology Officers (CTO) even speculated that they consider return-
ing to locally hosted solutions, where SaaS products such as Google Mail may
be used as a backup application only. Many CTOs have used the availability
vocabulary in their statements (e.g., specifying the number of maximum down-
time hours they were ready to tolerate) without being explicitly aware of it.
The Amazon EC-2 cloud computing service also experiences periodic long-term
outages. Let us examine one official EC-2 post-mortem report, dated April 8,
2007 [197]:

The network event had two phases described below.

During the first phase, which lasted from approximately 23:45 PDT
yesterday until 01:15 PDT today, network connectivity was signif-
icantly degraded for many of our instances. These initial connec-
tivity issues were caused by a degradation of part of our routing
infrastructure. Normally, this sort of event would have failed over
quickly and automatically, but this particular failure mode did not
trigger the failover mechanism and instead remained in degraded
operation. We are working on fully understanding this failure mode
and updating our network to handle it correctly.

Failover eventually happened at 01:15 PDT, and external network
connectivity was fully restored to most instances. A suboptimal
configuration caused a much smaller number of instances to regain
connectivity more slowly after the failover. We have a fix to this
configuration to avoid this delayed recovery in the future.

This report vividly illustrates inability to model availability of complex ser-
vice oriented systems satisfactorily, reflected in the claim that failover should
have happened, but did not due to unrecognized failure mode. It further in-
dicates that availability of a large-size SaaS system is a complex function of
many parameters, including the underlying network infrastructure (routers),
configuration and the people maintaining it. Finally, it confirms that pure re-
liability/availability models do not describe complex SOA systems completely,
because services may be still functioning after the fault, albeit with reduced

3

quality of service (performance). Therefore, issues of service performability
and degraded performance have also to be addressed.

Service availability is but one of many attributes which can constitute dif-
ferent Quality of Service (QoS) measures. Figure 1.1 shows the ”big picture”,
where services express QoS measures such as performability, dependability or
security. Each QoS measure is composed of attributes. For example, depend-
ability is composed of availability, reliability, safety, integrity and maintainabil-
ity, while security is composed of availability, confidentiality and integrity (these
compositions are not given in Figure 1.1 explicitly). We will not be investigat-
ing any of these QoS measures completely. Instead, focus of this work is the
service reliability/availability attribute and, to some extent, how it influences
service performability. However, we will also not discuss service performance,
which together with reliability/availability constitutes performability. This will
necessary limit our discussions on service performability, as we will assume that
service performance model already exists (e.g., stochastic queuing models).

Figure 1.1: Service QoS measures and attributes

The goal of this work is therefore to investigate applicability of the existing
methodologies and tools to the problem of service availability assessment, and
to propose a novel approach eliminating some of the issues that will be iden-
tified. The manuscript is structured as follows. In Chapter 2 basic definitions
concerning availability, services and business processes are given. It is then con-
jectured that there exists neither satisfactory definition of service availability
nor satisfactory model that enables its effective assessment and management.
Chapter 3 introduces standard models and methods for availability assessment,
followed by Chapter 4 which surveys existing tools supporting (service) avail-
ability modeling. In Chapter 5 inadequacies of surveyed models, methods and
tools for service availability assessment are identified and a novel method is
proposed, which is based on the mapping of service and process activities to
underlying ICT-components, enabling automatic availability model generation.
Finally, Chapter 6 presents a summary and places the work in the context of a
comprehensive model-based IT service management vision.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Definitions

In this chapter our discourse will be described, starting with basic definitions of
reliability and availability, known from the theory of fault-tolerant (computer)
systems. We will then define services and business processes, and finally con-
struct a framework (fault model, to be more precise), in which we will apply
availability definitions to service-oriented systems. Definitions given here will
be used further throughout this work.

2.1 Reliability and Availability

Numerous definitions of reliability and availability exist. We will summarize the
most important ones and then distill them in a definition that is compatible
with the purpose of this manuscript. In order to be able to define reliability
and availability, however, we first need to introduce basic probability theory
definitions.

The events that lead to the system malfunction have intrinsic probabilistic
nature. Therefore, the lifetime or time to failure of a system can usually be
represented by a random variable. A phenomenon is considered random if its
future behavior is not exactly predictable. An example is tossing a pair of dice
or measuring the time between particle emissions by a radioactive sample. A
function that associates a number with every possible outcome of an event is
called a random variable.

Let the random variable X represent the lifetime or time to failure of a
system. The continuous random variable X can be characterized by the cumu-
lative distribution function F (t), the probability density function f(t) and the
hazard rate function h(t), also known as the instantaneous failure rate. The
cumulative distribution function (CDF) represents probability that the system
will fail before a given time t:

F (t) = Pr(X ≤ t)

The probability density function (PDF) describes the rate of change of the
CDF and for continuous random variables is given as:

5

6 CHAPTER 2. DEFINITIONS

f(t) =
dF (t)

dt
= lim

∆t→0

Pr(t < X ≤ t + ∆t)
∆t

It can be seen that f(t)∆t is the limiting probability that a system will fail in
the interval (t, t+∆t). This probability is unconditional. If we, however, observe
a system that was functioning up to some time t, the conditional probability for
this interval will be different from f(t)∆t. Therefore we define instantaneous
failure rate, or the hazard rate function:

h(t) = lim
∆t→0

Pr(t < X ≤ t + ∆t|X > t)
∆t

= lim
∆t→0

Pr(t < X ≤ t + ∆t)
Pr(X > t)∆t

=
f(t)

1− F (t)

The h(t)∆t represents the conditional probability that a system that has
survived until time t will fail in the interval (t, t+∆t]. The following equations
describe relationships between the CDF, PDF and the hazard rate function:

f(t) =
dF (t)

dt
= h(t)e−

R t
0 h(τ)dτ

F (t) =
∫ t

0
f(τ)dτ = 1− e−

R t
0 h(τ)dτ

h(t) =
f(t)∫∞

t f(τ)dτ
=

dF (t)/dt

1− F (t)

Two very important properties used to describe random variable X are the
mean or expected value E[X] and the variance σ2

X . For the continuous random
variable X the mean is given as:

E[X] =
∫ ∞

−∞
xf(x)dx

The variance is defined as:

σ2
X = E[(x−E[x])2]

The square root of the variance, σX is called the standard deviation.
Time to failure or lifetime of a system may follow different distributions,

some of which will be investigated. The exponential distribution is one of the
most commonly encountered and used in reliability models of hardware and
software. PDF , CDF and hazard functions for the exponential distribution
are:

f(t) = λe−λt

F (t) = 1− e−λt

h(t) = λ

The parameter λ is called the failure rate as it describes the rate at which
failures occur in time. It is usually assumed that λ is constant, but in reality

2.1. RELIABILITY AND AVAILABILITY 7

Figure 2.1: Failure rate as a function of time (the bathtub curve)

it follows the bathtub-shaped curve (Fig. 2.1). The mean and the standard
deviation of the exponential distribution are 1/λ.

In the early life of a system, failure rate is high (infant mortality period) and
then decreases while the system is entering the useful life part. The failure rate
is constant in this period. Wearout period describes the end of the specified
system’s lifetime, where failure rate begins to grow again. The bathtub curve is
usually applied directly to hardware, but can be assumed that it also holds for
the software components. The more difficult issue is the problem of software
upgrades and patches, but also of rejuvenation and aging (see the Note on
Software Reliability at the end of Section 2.1.1). Frequently, other distributions
are used to model failure behavior of the software systems, such as normal,
gamma or Bayesian distributions.

Weibull distribution, often used due to its configurability, has two para-
meters: α (the shape parameter) and λ (failure rate or the scale parameter).
PDF , CDF and hazard functions for the Weibull distribution are given as:

f(t) = αλ(λt)α−1e−(λt)α

F (t) = 1− e−(λt)α

h(t) = αλ(λt)α−1

The mean of the Weibull distribution is µ = Γ((α+1/α)/λ and the standard
deviation is σ = [Γ((α+2)/α)−Γ2((α+1)/α)]1/2/α, where the gamma function
Γ(ω) is given as:

∫ ∞

0
ρω−1exp(−ρ)dρ

If the time t takes only discrete units 0,1,2..., then the geometric distribu-
tion corresponds to the continuous time exponential distribution. It is easily
obtained from exponential distribution, replacing exp(−λ) by q, which is the
failure probability rate (0 < q < 1), and t by n. The probability mass function
and CDF of the geometric distribution are given as:

8 CHAPTER 2. DEFINITIONS

f(n) = qn(1− q)

F (n) = 1− qn

The mean and the standard deviation of this distribution are µ = 1/(1− q)
and σ = q1/2/(1− q)

Analogously to the geometric distribution, the discrete Weibull distribu-
tion’s probability mass function, CDF , and hazard function are given as:

f(n) = qnα
(1− q(n+1)α−nα

)

F (n) = 1− qnα

h(n) = 1− q(n+1)α−nα

The mean of this distribution (
∑∞

k=0 qkα
) is very difficult to derive in a

closed form for any given q and α.
Using these preliminaries, we will now introduce reliability and availability

definitions.

2.1.1 Reliability

One of standard reliability definitions is the recommendation E.800 of the In-
ternational Telecommunications Union (ITU-T) which defines reliability as

the ability of an item to perform a required function under given
conditions for a given time interval. [207]

In [186] reliability is defined as

a function of time, R(t), representing the conditional probability
that the system has survived the interval [0, t], given that it was
operational at time t = 0.

In the seminal work in the field of fault-tolerance and dependability [11],
reliability is defined as the attribute of dependability. Dependability is the
ability to deliver the service that can justifiably be trusted. It has the following
attributes: availability, reliability, safety, integrity and maintainability. Hence,
in this context reliability is perceived as

the continuity of correct service.

Finally, in [93], reliability is defined as

the function R(t), which is the probability that the system continues
to function until time t.

and similarly in [173] as

the probability that the system is able to function correctly over a
specified period of time.

We will adopt the following definition of reliability:

2.1. RELIABILITY AND AVAILABILITY 9

Def. 1 For any time interval (z, z + t], reliability function R(t|z) is the condi-
tional probability that the system does not fail in this interval, assuming it was
working at time z. We will observe intervals starting at z = 0, where reliability
R(t) = R(t|0) is the probability that the system continues to function until time
t.

Let the random variable X be the time to system failure. Reliability can
then be expressed as:

R(t) = Pr(X > t) = 1− F (t)

where F(t) is the CDF of the system lifetime X. We will not be considering
systems that are defective to begin with, for which we would require mixture
distributions for F (t). We will also assume that no system can work indefinitely
without faults:

lim
t→∞R(t) = 0

Function R(t) is a nonincreasing, continuous, and monotone with values
ranging between 0 and 1 in the interval [0,∞). For the graphical representation
of reliability, we integrate system lifetime PDF over time:

R(t) =
∫ ∞

t
f(x)dx

Reliability is the area under the curve f(t) from t to infinity, as shown in
Figure 2.2.

Figure 2.2: Graphical interpretation of reliability

Using the reliability definition, we can express the mean time to failure
(MTTF), which represents the expected time that a system will operate before
the first failure occurs. For example, the system will on the average operate for
MTTF hours and then encounter its first failure. MTTF can be calculated as
the mean of the system’s lifetime distribution:

MTTF = E[X] =
∫ ∞

0
tf(t)dt =

∫ ∞

0
R(t)dt

10 CHAPTER 2. DEFINITIONS

For example, for exponentially distributed system’s lifetime, reliability and
MTTF are given as:

R(t) = 1− F (t) = e−λt

MTTF =
∫ ∞

0
e−λtdt =

1
λ

Note on Software Reliability. The bathtub curve from Figure 2.1 is
empirically derived and mainly used for hardware (mechanical and electronic
components). Research into software reliability has, up to date, not been per-
formed up to comparable depth. However, several models attempting to express
peculiarities of software reliability exist. Software reliability is usually defined
as the probability of failure-free software operation for a specified period of
time in a specified environment [132]. Failure rate is then defined for a given
deployment environment and with respect to the cumulative run-time. Con-
trary to the bathtub curve, the software failure rate has testing/debug phase,
useful life and obsolence, as illustrated in Figure 2.3. Industrial practice shows
that failure rate is influenced by software updates (version upgrades, patches),
which inevitably introduce new incorrect behavior, explaining the failure rate
spikes.

Figure 2.3: Software failure rate

Several models exist which describe software reliability and one of the first
proposed was Jelinski-Moranda model [111]. It assumes that a hazard rate for
failures is a piecewise constant function and that failure rate is proportional to
the remaining number of errors:

h(t) = C(N − (i− 1))

where C is the proportionality constant and N is the number of errors initially
in the program. h(t) is applied in the interval between detection of error (i−1)
and i. Hence the reliability function and mean time to failure are defined as:

2.1. RELIABILITY AND AVAILABILITY 11

R(t) = e−C(N−(i−1))t

MTTF =
1

C(N − (i− 1))

Shooman’s model [185] is similar to Jelinski-Moranda, as it assumes that
hazard function is proportional to the number of remaining errors in the soft-
ware. It further assumes that errors are removed as soon as they are discovered.
The reliability function is given by:

R(t) = e
−C

(
ET
IT
−EC

IT

)
t

where ET is the number of errors initially present in the program, IT the number
of statements in the program and EC the number of errors corrected so far.
Mean time to failure is then given as:

MTTF =
IT

C(ET −EC)

Musa’s model [152] introduced the notion that execution (processing) time
should be the base for software reliability theory instead of calendar time. For
him too, hazard function (failure rate) is proportional to the number of remain-
ing errors. Execution time rate of change of the number of faults corrected is
proportional to the hazard rate. Reliability in the Musa’s model is:

R(t) = e(−fK(N−m))t

where t is the execution time, f is the average instruction execution time divided
by the total number of instructions, K is the proportionality constant, N the
number of errors initially present and m the number of errors corrected so far.

Littlewood’s model [130] is the example of Bayesian models which assume
exponential distribution of failures with respect to the program’s operating
time. The error distribution is considered independent and the failure rate pa-
rameter is modeled as a random process. Errors are removed upon occurrence.
The hazard rate function is given as:

h(t) =
(N − i)a
b + t + t1

where a and b are parameters of the Gamma distribution, t is time elapsed so
far and t1 execution time. The model proposes the following reliability function:

R(t) = (1− b + t

b + t0 + t1
b +

b + t0
b + t0 + t1 + t

a)(N − i)

Jelinski-Moranda, Shooman’s and Musa’s model are the examples of path-
based models, where system reliability is computed by taking into account
possible execution paths of the program, either experimentally by testing or
algorithmically. Other examples of path-models are Krishnamurthy and Mahur
model [119] or Yacoub model [220]. On the other side, Littlewood’s model rep-
resents state-based models, which assume that the transfer of control between

12 CHAPTER 2. DEFINITIONS

components has a Markov property. The advantage of state-based models is
that they can be used even when no source code is available. Other examples
of state-based models are Cheung model [58], Laprie model [124], Kubat model
[120], Gokhale model [87] or Ledoux model [125].

Software reliability measures can at present be achieved with pretty good
accuracy if programming team has a substantial track data and lots of reliability
data to support it, which is rarely the case. As no standard or widely accepted
reliability model exists, curve fitting seems to be most popular in practice.

2.1.2 Availability

Availability is closely related to, but also very often confused with reliability.
According to the ITU-T recommendation E.800 [207], availability is defined as

the ability of an item to be in a state to perform a required function
at a given instant of time, or at any instant of time within a given
time interval, assuming that the external resources, if required, are
provided.

In [186], availability is defined as:

a function of time A(t), which represents the probability that the
system is operational at the instant of time t. If the limit of this
function exists as t goes to infinity, it expresses the expected fraction
of time that the system is available to perform useful computations.

Analogously to reliability, [11] treats availability as an attribute of depend-
ability and defines it as:

the readiness for the correct service.

Finally, in [173] availability is defined as:

the probability that system is working at the instant t, regardless
of the number of times it may have failed and been repaired in the
interval (0, t).

The main difference between reliability and availability is that reliability,
as can be seen from its definition, refers to and requires failure-free operation
of the system during any interval. It defines probability that no failures have
occurred during the entire observed interval. Availability, on the other hand,
focuses on the failure-free operation at a given instant of time, allowing that a
system may have broken down in the past and has been repaired. If the system
is not repairable however, definition and meaning of availability and reliability
are equivalent. Let us introduce availability definition that we will be using and
then formalize it.

Def. 2 Instantaneous availability is the probability that the system is opera-
tional (delivers the satisfactory service) at a given time instant.

2.1. RELIABILITY AND AVAILABILITY 13

Def. 3 Steady state availability is a fraction of lifetime that the system is op-
erational.

Def. 4 Interval availability is the probability that the system is operational (de-
livers satisfactory service) during a period of time.

We can restate these definitions using random variables. Let Y (t) = 1 if the
system is functioning at time t, and 0 otherwise. The instantaneous availability
is the probability that Y (t) = 1, that is, it is equivalent to the mean of the
random variable Y :

A(t) = Pr(Y (t) = 1) = E[Y (t)]

If we know A(t) we can define the steady-state availability as:

A = lim
t→∞A(t)

The steady-state availability is the long-term probability that the system
is available. It can be shown that steady-state availability does not depend on
the nature of the failure or repair time distribution, but only on the average
time required to repair system failure and average time to system failure. This
relationship is given as:

A =
MTTF

MTTF + MTTR

The proof of this important formula can be found in [173], and we will also
give another version in the Section 3.1.4 using Markov chains. The parameter
MTTF is ”mean time to failure” and represents the average time until the first
failure occurs, and MTTR is ”mean time to repair” and represents the average
time required for repair, including any time to detect that there is the failure,
to repair the failure, and place the system back into operational state. This
means that, once the failure has occurred, it will take MTTR time units (e.g.,
hours) on the average to restore correct operations. There are two important
assumptions with this formula. First, repairs can always be performed, and
the system is then restored to its best condition. Second, the formula does not
apply to systems with internal redundancy, but only to systems with a single
up and a single down state.

If the system lifetime follows exponential distribution with the failure rate
λ and the time to repair follows exponential distribution with the repair rate
µ, then previous equation can be rewritten as:

A =
µ

λ + µ

Typical availability function is given in Figure 2.4.
This shape applies to repairable systems. At the initial instant availability

is 1, and then decreases converging towards a constant limit which is the steady-
state availability. Of more interest is to know what happens within a given time
interval. Thus we define interval (or average) availability as:

14 CHAPTER 2. DEFINITIONS

Figure 2.4: Typical availability function

AI(t) =
1
t

∫ t

0
A(τ)dτ

The AI(t) is the expected proportion of time the system is operational
during the interval (0, t]. If total amount of the system uptime during this
interval is the random variable U(t), then:

AI(t) =
1
t

∫ t

0
E[Y (τ)]dτ =

1
t
E[U(t)]

The limiting interval (average) availability can also be defined:

AI = lim
t→∞AI(t)

It can be shown that, if this limit exists, it is equal to steady state avail-
ability:

AI = lim
t→∞

1
t

∫ t

0
A(τ)dτ = A

To achieve a better understanding of terms such as MTTF, MTTR, relia-
bility and availability, let us observe a real-world example where availability of
a multi-component Blade server system was analyzed [188]. Table 2.1 captures
the upper and lower bounds for mean time to failure of field replaceable units,
such as fans, power supplies, base blades, etc.

Based on these values (and on the complex availability model not shown
here), different availability aspects can be calculated, such as component con-
tribution to the single blade downtime (Table 2.2) or availability and downtime
of a chassis containing up to 14 blades (Table 2.3).

The example also shows that availability is frequently expressed as the log-
arithmic unit called the ”number of nines”, which is then easily translated into
downtime (another frequent and popular way to express availability) for the
given time interval (usually a year). Similar studies can be found in many other
areas, for example, in the field of hard disk drive reliability and availability we
recommend some recent large-scale studies such as [164] or [181].

2.2. PERFORMABILITY 15

Field replaceable unit Low MTTF High MTTF
Fibre channel switch 320,000 440,000

Power supply 670,000 910,000
Fan 3,100,000 4,200,000

Midplane 310,000 420,000
Ethernet daughter card 6,200,000 8,400,000

Fibre Channel Daughter Card 1,300,000 1,800,000
Hard Disk Drive 200,000 350,000

2GB Memory Bank (2 DIMMs) 480,000 660,000
CPU 2,500,000 3,400,000

Base Blade 220,000 300,000
Ethernet Switch 120,000 160,000

Table 2.1: Typical reliability ranges (in hours) [188]

Component High MTTF Low MTTF
Software 14.99996 14.99957

Chassis Midplane 0.86087 0.63885
Blade CPU 0.41838 0.30763

Blade Memory 2.19000 1.59273
Chassis Power Subsystems 0.04839 0.03563

Chassis Cooling 0.00000 0.00000
Blade Disk Drive 7.88400 2.10240

Blade Base + Network Switches 7.16634 5.25582
Total 33.56794 24.93263

Table 2.2: Component contributions to blade downtime (hours/year) [188]

Number of blades Number of spare blades Availability Downtime
14 0 0.999240794 399.04
13 1 0.999998166 0.96
12 2 0.999998433 0.82

11-7 3-7 0.999998433 0.82
6-1 8-13 0.999998511 0.78

Table 2.3: Availability and downtime (hours) of a 14-blade chassis [188]

2.2 Performability

The implicit assumption in reliability and availability analysis is that relevant
system states are binary: either the system is functional or not. However,
under partial failures the system’s performance degrades, but the functional-
ity remains. This class of systems is called degradable, that is, depending
on the history of the system’s structure, internal state and the environment
during a specified utilization period T , the system will exhibit one of several
worthwhile levels of performance. In this context, pure performance evalua-
tion (of the fault-free system) will generally not suffice since structural changes

16 CHAPTER 2. DEFINITIONS

caused by faults may change (degrade) performance. Similarly, pure reliabil-
ity/availability models no longer suffice since fault models where success can
take only binary form (functioning or failed) cannot express systems that op-
erate with degraded performance (the only correct/success state is the absence
of a failure).

Therefore, performability is introduced as a metric which answers the ques-
tion how ”good” can a fault-tolerant system behave under the presence of faults,
and how faults influence its functionality in terms of performance. In [143], per-
formability is defined as

a metric which relates directly to system effectiveness and is a proper
generalization of both performance and reliability. A critical step
in performability modeling is the introduction of the concept of
a ”capability function” which relates low-level system behavior to
user-oriented levels of performance.

In [203] gracefully degradable systems (and performability) are defined as

having redundant components that are all used at the same time to
increase the system processing power.

In [131] performability is described as a metric which determines and quan-
tifies degradable system’s ability to

detect the failure and reconfigures if a component fails, reaching a
degraded state of operation in which it continues to provide service
but at a reduced capacity. A degradable system can have several re-
duced operational states between being fully operational and having
completely failed. Each state provides some performance level.

We will formalize the notion of both performance and performability. Let us
refer to the fault-tolerant system and its environment as the total system. The
probability space (Ω, ε, P) underlines the total system, where Ω is the sample
space, ε is a set of events (measurable subsets of Ω) and P : ε → [0, 1] is the
probability measure.

Let S denote one such total system, where S comprises a fault-tolerant
system C and its environment E. The behavior of S can be described as a
stochastic process XS = {Xt|t ∈ T}, where T is a set of real numbers (obser-
vation times) called the utilization period, and for all t ∈ T , Xt is a random
variable Xt : Ω → Q defined on the underlying description space and taking
values in the state space Q of the total system. The state space Q is the Carte-
sian product of the states sets of the fault-tolerant system and its environment:
Q = QC ×QE . The stochastic process XS is referred to as the base model of S.
An instance of the base model’s behavior for a fixed ω ∈ Ω is a state trajectory
uω : T → Q where uω(t) = Xt(ω)∀t ∈ T .

In formal terms, the user-oriented view of a total system’s behavior is also
defined in terms of the underlying probability space. We assume that the user
is interested in distinguishing a number of different levels of accomplishment
when judging how well the system has performed throughout the utilization

2.2. PERFORMABILITY 17

period. The user’s description space is defined thus with an accomplishment
set L whose elements are referred to as accomplishment levels or performance
levels. In this context, the system performance can be formally defined as a
random variable:

YS : Ω → L

where YS(ω) is the accomplishment level corresponding to outcome ω in the
underlying description space.

Based on these preliminaries, let us define performability.

Def. 5 Let B be a total system with performance YS taking values in accom-
plishment set L. The performability pS of S is the function where for each
measurable set B of accomplishment levels (B ⊆ L), the following holds:

pS(B) = P ({ω|YS(ω) ∈ B})

In other words, since P is the probability measure of the underlying probability
space, for a designated set B of accomplishment levels, performability pS(B)
is the probability that S performs at a level from B. If the performance YS

is a continuous random variable, probability is uniquely determined by the
probability distribution function of YS , defined for all b ∈ L:

FS(b) = P ({ω|YS(ω) ≤ b})

The performability can now be defined as:

pS(B) =
∫

B
dFS(b)

If YS is a discrete random variable, then pS is uniquely determined by the
probability distribution of YS , that is, by the set of values {pS(a)|a ∈ L}.

Def. 6 If S is a total system with performance YS taking values in accomplish-
ment set L and YS is a discrete random variable, then performability pS of S if
a function defined for each accomplishment level a(a ∈ L) as:

pS(a) = P ({ω|YS(ω) = a})

Finally, we mention the traditional definition of performability (one possible
concretization of the above framework) given in [193]. The accomplishment
levels are modeled as system reward for dependable performance in the time
interval [t, t′], where t′ >> t+τ . The reward rate during this interval is denoted
by rs(g(x)), t ≤ x ≤ t′, which is the performance at time x when the system’s
failure configuration is g(x). Performability YS(t, τ) is defined as:

YS(t, τ) =
1

t′ − t

∫ t′

t
r(g(x))dx

In other words, performability is the integration of reward function. We will
continue discussion about reward functions when we investigate Markov reward
models (Section 3.1.7).

18 CHAPTER 2. DEFINITIONS

In the following chapter we will introduce models that enable us to perform
system availability and performability analysis. We will see how, based on
component parameters (e.g., MTTF, MTTR), it is possible to build a system
model and to evaluate different indicators (e.g., reliability, availability, average
downtime, performability etc.). Before we do that, however, let us investigate
in more details service-oriented systems, which will be our systems-under-study
in the remainder of this work, and how definitions we just introduced apply to
them.

2.3 Services and Business Processes

Services are basic building blocks of service oriented architectures (SOA). SOA
is an architectural attempt to describe and understand distributed systems
which have minimal shared understanding among system components. As
shown in Figure 2.5, roots of SOA can be traced back to distributed computing,
programming languages and business computing.

Figure 2.5: Historical perspective of the SOA development [118]

SOA is characterized with the following properties [94]:

• Logical view: The service is an abstracted, logical view of actual pro-
grams, databases, business processes, etc., defined in terms of what it
does, typically carrying out a business-level operation.

• Message orientation: The service is formally defined in terms of the mes-
sages exchanged between provider agents and requester agents, and not
the properties of the agents themselves. The internal structure of an
agent, including features such as its implementation language, process
structure and even database structure, are deliberately abstracted away
in the SOA: using the SOA discipline one does not and should not need to

2.3. SERVICES AND BUSINESS PROCESSES 19

know how an agent implementing a service is constructed. A key benefit
of this concerns so-called legacy systems. By avoiding any knowledge of
the internal structure of an agent, one can incorporate any software com-
ponent or application that can be ”wrapped” in message handling code
that allows it to adhere to the formal service definition.

• Description orientation: A service is described by machine processable
metadata. The description supports the public nature of the SOA: only
those details that are exposed to the public and important for the use
of the service should be included in the description. The semantics of a
service should be documented by its description.

• Granularity: Services tend to use a small number of operations with rel-
atively large and complex messages.

• Network orientation: Services tend to be oriented toward use over a net-
work, though this is not an absolute requirement.

• Platform neutral: Messages are sent in a platform-neutral, standardized
format delivered through the interfaces. XML is the most obvious format
that meets this constraint.

An important consequence of the above properties is profiling of the main
SOA roles: requester, provider and broker (discovery agency). These roles and
their interactions in SOA are shown in Figure 2.6.

Figure 2.6: The SOA roles and interactions

The term service is heavily overloaded, and generally not exclusively used
in the IT context. Merriam Webster Online [5] defines a service as

a facility supplying some public demand that does not produce a
tangible commodity.

The first part of this definition implies that a service can be performed by
nearly anyone (e.g., a craftsman or an enterprise as well as hardware or software

20 CHAPTER 2. DEFINITIONS

systems), as long as service provider (supplier) and service consumer (public
demand) are defined. The second part of the definition however, restricts certain
activities, namely those that produce physical artifacts, from being considered
a service.

The IT focus is more strict in the following definition, where a service is
described as

a meaningful activity that a computer program performs on request
of another computer program. [118]

Similar is one of the earliest service definitions in the computational context
where a service is

a loosely-coupled computing task communicating over the internet,
that plays the growing part in business-to-business interaction. [39]

The above definition does not specify that service consumers must neces-
sarily be other services. Also, it clearly states that services focus to business-
to-business communication, implicitly disqualifying services used internally, for
example, in an enterprise, application or operating system.

Another technical-oriented definition states that a service is

characterized by three parts: offered functionality, input and output
messages, and interface address or port reference. [214]

Services can also be observed from a business perspective:

A service captures functionality with a business value that is ready
to be used. Services are made available by service providers. A ser-
vices requires a service description that can be accessed and under-
stood by potential service requestors. Software services are services
that are realized by software systems. [217]

Apart from introducing the business aspect of service functionality, this
definition is important because it also requires standardized and interpretable
service description and allows services to be of a nature other than just software.

If we focus on IT-services, the predominant technology that is used today
to implement them is the Web Service Architecture [9]. There are two accepted
definitions of Web Services:

A Web Service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web Service in a manner prescribed
by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-
related standards1.

1http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

2.3. SERVICES AND BUSINESS PROCESSES 21

A Web Service is a software system identified by a URI, whose pub-
lic interfaces and bindings are defined and described using XML.
Its definition can be discovered by other software systems. These
systems may then interact with the Web Service in a manner pre-
scribed by its definition, using XML based messages conveyed by
Internet protocols.2

In [165] the following service types are distinguished: basic, intermediary,
process-centric and enterprise services. Basic services are stateless and can be
data- or logic-centric. The former handle persistent data (storage, retrieval,
locking etc.) for one major business entity and provide strict interfaces to ac-
cess its data. The latter encapsulate atomic implementation of business rules
and processing (calculation). In practice there is a smooth transition between
the two types as data-centric services may also use logic to check, validate or
process data. Intermediate services are used to enforce micro consistency rules,
performing gateway, adapter, façade and similar functions. They are imple-
mented as simple business workflows (so called microflows) and are application-
specific. More complex business tasks are realized using process-centric services
which are often stateful. They call basic and intermediate services and thus
encapsulate the knowledge and functionality of the organization’s processes.
Enterprise services are composed from process-centric services across company
boundaries. Their interfaces have the granularity of business documents and
are consequently very coarse grained. Their behavior is described by the service
level agreements (SLA).

Based on previous considerations, in the remainder of this work we will be
using the following definition of a service.

Def. 7 A service is an abstraction of the infrastructure-, application- or business-
level functionality. It consists of the contract, interface and implementation.
Contract provides a description of constraints, functionality, purpose and usage
of the service. Formal contract description can provide technology-independent
abstraction suitable for verification and validation. Contract also imposes de-
tailed semantics on functionality. Service interface provides means for clients
to connect to the service, possibly but not mandatory via the network. Finally,
business logic and business data are parts of service implementation that fulfills
the service contract. Consequently, a service encapsulates business entity of a
differing granularity and functional meaning.

Contrary to the service definition, business process definition is fairly es-
tablished and understood in the community. We will be using a definition
aggregated from [208] and [217]. The relationship between business processes
and services is given in Figure 2.7.

Def. 8 A business process consists of a set of activities that are performed in
coordination in an organizational and technical environment. These activities
jointly realize a business goal. Each business process is enacted by a single
organization, but it may interact with business processes performed by other

2http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211/

22 CHAPTER 2. DEFINITIONS

organizations. A business process is represented by a business process model.
It consists of a set of activities and execution constraints between them. A set
of activities building a business process is organized in a workflow, therefore a
business process is described using a workflow. Process activities are enacted
by services, which are also elements of workflows. For expressing workflows,
modeling languages such as Business Process Modeling Notation [157] are used.

Figure 2.7: Services and business processes

2.4 Service Availability and Performability

Approaches adressing service availability almost exclusively investigate middle-
ware concepts that can improve execution of the existing services. As such, they
are closer to implementation of fault-tolerant systems (services), then reliablity
and availability analysis, which is a necessary prerequisite for the fault-tolerant
system design. However, in the majority of approaches, services are neither
explicitly modeled nor is their availability and the improvement thereof quan-
tified.

Service Availability Forum (www.saforum.org) is a consortium that develops
high availability and management software interface specifications, specifically
tailored to telecommunications sector. We are working closely with SAF to
promote formal service availability modeling and quantification. In [40], a high
availability middleware is presented which uses similar concepts. Many ap-
proaches introduce support for fault-tolerant execution of single or composite
Web services, using concepts such as transactional message delivery or message
bus to ensure reliability, as in [225, 77, 196, 226]. Other approaches use active
and passive replication to ensure fault-tolerance [227], or semantic substitu-
tion [128], but also assess service availability using simplified experiments only.
Other, non-standard mechanisms for achieving fault-tolerance, such as the use
of generative communication and tuple space middleware, have been proposed
[8]. Neither of these numerous approaches models reliability and availability
explicitly or enables to quantify improvements gained using the proposed mid-
dleware concepts. Very often service availability itself is not even properly

2.4. SERVICE AVAILABILITY AND PERFORMABILITY 23

defined and is perceived in its simplest from as the ratio of ”correct” service
invocations.

The Web Service Reliable Messaging specification (WS-R) [1] is used to
guarantee SOAP message delivery for Web services architecture, but also does
not provide a fault model or availability quantification. [57] extends this concept
to reliable messaging at the business process level. Some works expand on
the WS-ReliableMessaging to include stochastic models for calculating optimal
restart time for improving service performance, again without generality or
quantifiable (model-based) availability assessment [211].

Many QoS-aware frameworks for service composition claim to improve ser-
vice availability such as [222, 223]. However, all QoS properties are usually
informally defined, most frequently using simplified semantics of tuples (prop-
erty,unit,value) and further treatment is reduced to measurements. In our opin-
ion, all similar approaches suffer from the same downside: they attempt to fit
all non-functional properties into one framework, disregarding their meaning,
definition, modeling and potential conflicting requirements. Some approaches
[96] even propose fault-prevention methods (e.g., self-healing) without defining
a proper fault model. Contrary to all QoS-aware composition frameworks we
focus on service reliability/availability only, but hope to treat it to significant
and usable depth and level of details.

There are also experimental approaches to determine Web service availabil-
ity using measurement based approaches, such as described in [169, 56, 183],
including fault-injection based approaches as in [212, 76]. They all assume
very simplistic fault-model and perform almost identical experimets of many
thousand invocations to calculate uptime/downtime ratio for a given service.

A recent trend in the community can be observed, where dependability
concepts from the embedded systems area such as [159] or [134] are being reused
at the service level (e.g., see [89]). However, the work is mostly based on the
analysis of error propagation and testability, and not on the rigorous availability
assessment.

A notable exception from the trend of informal treatment of service avail-
ability is the work presented in [177, 178]. The approach develops a formal
stochastic service availability model (Markov reward models) based on the as-
sumption that failure of service resources causes failure of services and that
there is abstract composite service description. Another approach is presented
in [113] where availability is explicitly modeled for abstract services using com-
binatorial models. Several availability levels are calculated, such as user or
service availability. However, important distinctions between our and these ap-
proaches are: both approaches require manual availability model generation,
do not consider network, supporting infrastructure and people, do not support
redundant resources, workflow descrpition is limited, and service models are
required to have transition probabilities which is not realistic.

In [95] another semi-formal approach to modeling service availability is pre-
sented. It introduces formulas for calculating availability of sequence, parallel,
choice and iteration compositions. Apart from some of the formulas being in-
correct, the work defines service availability as a simple quotient of uptime and
downtime, completely ignoring instantaneous, interval or user-perceived avail-

24 CHAPTER 2. DEFINITIONS

ability. Furthermore, it is not possible to model coverage, limited repair or
priorities, as derived formulas are combinatorial in nature. Similarly, [224] in-
troduces informal criteria for reliability of SOA systems, but they are intended
for test-based validation only.

[219] presents an approach for assessing QoS parameters based on Bayesian
networks. The basic idea is however that the network should observe the SLA
fulfillment and learn if the user’s requirements have been satisfied. To this
end, values of QoS parameters are discretized and assigned levels such as high,
moderate or low. This approach is neither able to accomodate for the stochastic
nature of failures nor to quantify service availability.

Due to complexity, one of the main needs in service availability assessment
is the ability to automatically generate availability model based on service and
process description and the underlying infastructure. In [195] and [194] an
approach for automatic availability model generation is presented which is lim-
ited to server boxes’ configuration. Nevertheless, it is relevant as it enables
abstract modeling of server configuration using predefined components, which
are subsequently parameterized. Based on this information, availability model
is generated. A slightly more general approach is presented in [24], enabling au-
tomatic state reduction of availability models, which however have to be entered
manually at the first place.

The process management tools that we investigated (see Chapter 4 and
Appendix B), such as IBM Tivoli, HP Mercury or Fujitsu Interstage, all offer
different availability indicators, such as transaction throughput, number of con-
current clients, CPU/memory/disk usage. Based on these indicators, thresholds
are defined and empirical availability estimation may be performed. However,
even the most sofisticated tools lack support for direct availability monitor-
ing – it has to be deduced from the aforementioned indicators. The strength
of these tools however is in their capability to monitor the infrastructure and
map services and processess to infrastructure elements. We also observed that
unfortunately this mapping works best if the service ecosystem is based on or
supported by the products (application servers, database servers etc.) of the
same provider/company. Interesting work may be found in [44] which proposes
a two step method for analyzing dependencies between business and IT ser-
vices. In [97] the idea is further expanded to include determining impact and
calculating cost of resource failures with respect to services and SLA. [213] in-
troduces the notion of operator errors as one of the critical aspects, albeit in a
very limited context (DBMS services).

The above examples indicate that, in order to understand service availabil-
ity, an appropriate fault model has to be defined first. We argue that service
availability must be perceived as the function of availability of the underlying
ICT-layer, comprising of:

• hardware (e.g., servers, clients, workstations, clusters, grids)

• software (e.g., operating systems, database services, web services, custom
applications, configuration)

• network (e.g., routers, switches, network cables, topology)

2.4. SERVICE AVAILABILITY AND PERFORMABILITY 25

• supporting infrastructure (e.g., air-conditioning, power supply, physical
security)

• people (e.g., users, administrators, maintenance and security personnel)

A successful approach to assess service and business process availability has to
be able to determine functional dependency between the ICT-layer availability
and the service availability. To define a comprehensive and consistent fault
model, we introduce an additional ICT-layer to the Figure 2.7.

Figure 2.8: Extended architecture of services and business processes

The new layer comprises hardware, software, infrastructure and people com-
ponents (Figure 2.8). They are organized into deployment topologies, which
implement atomic services. Therefore, services are based on ICT-layer compo-
nents. This will be the premise of our further investigation. We will now define
service and business process availability.

The first step in this direction is to distinguish between faults, symptoms,
errors and failures. The fault is incorrect state of a service, not necessarily
leading to observable incorrectness or failure. The symptom is observable out-
of-norm parameter behavior. The error is a manifestation of a fault (e.g., by
observing symptoms) observed by a fault detector. Finally, we define the service
and process failure:

Def. 9 The failure is an event caused by errors which occurs when the service
or business process deviates from the specified service or business process.

The above definition assumes a perfect fault detector. However, if a fault
detector is imperfect (has a coverage below 1) an undetected error may also
cause a failure. In other words, faults which are root causes of undetected

26 CHAPTER 2. DEFINITIONS

errors can in principle cause failures directly. Thus, all failures and errors have
fault root causes, but not all faults and not all errors must cause a failure.

As defined in [11], correct service, in the most general form, is delivered
when the service implements the system function or process. A service failure
is an event that occurs when the delivered service deviates from the correct
service. A service can fail either because it does not comply with its functional
specification, or because the specification did not adequately describe the sys-
tem function required by service users. A service failure is transition from the
correct to the incorrect service. The period of incorrect service is service outage.
The transition from incorrect to correct function is service restoration. Devi-
ation from correct service may assume different forms that are called service
failure modes. In this context, availability can be simplified as the readiness for
correct service.

In order to define a service fault model, we have to investigate four at-
tributes that characterize incorrect services: failure domain, detectability of
failures, consistency of failures and consequences of failures. The failure do-
main comprises content and timing failures. Failure domain is determined by
parameters that modify attributes of QoS measures, as depicted in Figure 1.1.
Other parameters, such as cost, transactions or authorization can be taken into
consideration, however, we restrict discussion in this work to content and tim-
ing failures and do not discuss further QoS modifications such as price or even
semantics. Time and content also subsume other modifications to some extent
through MTTR and MTTF parameters. In the presence of content failures, the
output information delivered by the service deviates from the correct output.
Timing failures are characterized by the incorrect time offset of the service re-
sult delivery. Timing failures can be early and late. When combined, these two
classes produce halting (potentially silent) failures and erratic failures. Failure
detectability is related to the signaling of the service failure to the environ-
ment or to the user, and failures can be classified as signaled or unsignaled.
Problematic issue is the user-perceived correctness, where the service may have
been executed according to its specification and no failure signals will be emit-
ted, however user is not satisfied with the results, as the service description
did not correctly describe required functionality from the user’s perspective.
With respect to the failure consistency, service failures can be either consistent
(incorrect service is perceived identically by all users, assuming there is more
than one user), or inconsistent (where users perceive differently incorrect ser-
vices, and some even receive correct service). Detectability and consistency of
service failures will lead us to define user-perceived service availability later.
Finally, with respect to consequence, service failures can be either minor (the
harmful consequence of a failure is of a similar cost when compared with the
benefit of a correct service) or catastrophic (cost of the harmful consequence
is orders of magnitude higher than the benefit provided by correct delivery).
Service failures, their domains, detectability, consistency and consequences are
summarized in Figure 2.9.

Based on these preliminaries and the layered architecture from Figure 2.8,
we define following service and business process failure modes.

2.4. SERVICE AVAILABILITY AND PERFORMABILITY 27

Figure 2.9: Service failure modes (figure adapted from [11])

Def. 10 Temporal service failure mode describes failures which cause service
to miss a deadline. A service will not respond in time if 1) a subset of ICT-
components in a topology it is based on does not respond in time; 2) all ICT-
components respond on time, but topology synchronization exceeds the deadline;
3) there is a deadlock.

Def. 11 Temporal business process failure mode describes failures which cause
business process to miss a deadline. A business process will not respond in
time if 1) a subset of services in a workflow does not respond in time; 2) all
services respond in time, but workflow synchronization exceeds the deadline; 3)
the workflow has a deadlock.

Def. 12 Value service failure mode describes failures which cause service to
return incorrect value or perform the incorrect function. A service will respond
with incorrect value if 1) a subset of ICT-components in a topology delivers
incorrect values; 2) data and control flow in a topology are incorrect.

Def. 13 Value business process failure mode describes failures which cause busi-
ness process to perform the incorrect business operation. A business process will
perform the incorrect business operation if 1) a subset of services in a workflow
delivers incorrect values; 2) workflow orchestration description is incorrect.

Value failure mode is not restricted to pure functional correctness, but com-
prises non-functional properties expressed as service guarantees (or service level
agreements) in the service contract. Thus a service may operate with reduced
capacity or quality and still be considered correct. For more on non-functional
capabilities and service contracts, see e.g., [146]. Based on the above failure
modes, we define following types of service availability.

Def. 14 Instantaneous service or business process availability is probability that
service or business process is in the correct state and ready to perform its func-
tion at a specified time.

Def. 15 Interval availability is probability that service or business process is
operating correctly during the given time interval. It is the expected proportion

28 CHAPTER 2. DEFINITIONS

of time that service or business process is operational during the given time
interval.

Def. 16 Steady state availability is long-term probability that service or busi-
ness process is available. It can be defined as the expected service or business
process uptime over its lifetime.

Finally, user percieved availability can be defined for an interval of for the
system lifetime as follows:

Def. 17 User-perceived interval availability is the number of correct service or
business process invocations over the total number of invocations for a specified
time interval, calculated (observed) for a particular service or a business process
user.

Def. 18 User-perceived steady-state availability is the number of correct service
or business process invocations over the total number of invocations estimated
for the service or business process lifetime, calculated (observed) for a particular
service or business process user.

As already stated, changes in the environment may frequently cause an
impact to sevices or business processes, causing one or more incorrect states
(faults), without leading directly to failures. In such state, service may continue
to offer some functionality, although it may not comply with its non-functional
contract anymore, as it operates at a degraded performance level. Hence, to
be able to define service and process performability, we first investigate what
consists a service performance level.

Def. 19 Service performance level is a value of QoS attribute, taken from a
continuous or a discrete set, to which appropriate metric is assigned.

Figure 2.10: Service performability example

QoS attributes can be represented as triples, comprising type, unit and
value (Figure 2.10), as suggested in [145]. An example QoS attribute may be
worst case execution time, represented as (WCET, 10,ms), meaning that the
service guarantees an upper execution-time bound of 10 milliseconds. Using
QoS attributes we define service performability.

2.4. SERVICE AVAILABILITY AND PERFORMABILITY 29

Def. 20 Service performability is function P (s) that maps the current service
state s ∈ S to the set of QoS attribute values Q, P : S → Q.

In other words, performability is the quantifiable and predictable ability
of a service or business process to respond to faults by assuming one of the
performance levels without entering the (total) failure state. For example, a
service that provides video streaming may respond to faults in the network
infrastructure by lowering bandwidth and increasing response time. Figure
2.10 shows a service with three states (0, 1 and 2) to which three QoS levels are
associated. Similarly, if a fault in the server infrastructure of a financial service
is encountered, the transaction throughput and number of concurrent users can
be lowered, or the execution and processing time can be extended.

30 CHAPTER 2. DEFINITIONS

Chapter 3

Availability and
Performability Models

3.1 Analytical Models

The overall system availability assessment can usually be made easier by break-
ing up the system into components, which may or may not be statistically inde-
pendent. In the following sections we will investigate the most frequently used
models for partitioning a system into components or states, and for calculat-
ing overall system availability, assuming that availability properties of the unit
components are known (obtained e.g., from historical data, component specifi-
cation sheets, standard catalogs or derived using qualitative methods described
in the section 3.2). We will investigate combinatorial models (reliability block
diagrams, fault trees and reliability graphs), Markov and semi-Markov models,
Petri nets and stochastic activity networks.

3.1.1 Reliability Block Diagrams

Reliability block diagrams (RBD) are used to represent the logical structure of
a system, with respect to how reliability of its components affects overall sys-
tem reliability and availability. Basic configurations in which components of a
diagram may be combined are series, parallel and k-out-of-n configurations. We
further assume that components are independent, that is, failure information
for one component provides no information about (i.e. does not affect) other
components in the system. There are extensions to this basic model, where de-
pendency can be modeled with configurations such as load sharing or standby,
but they are out of the scope of this manuscript.

In the series configuration, a failure of any component results in a failure
of the entire system. In other words, for the whole system to work, all serial
components must also work. For a series configuration, the distribution function
for the failure time of a system with N components is given by:

Fs(t) = 1−
N∏

i=1

(1− Fi(t))

31

32 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Fi is the distribution function for the failure time of the i-th component.
Direct consequence is that the system reliability is equal to the product of
reliabilities of its constituent components:

Rs =
N∏

i=1

Ri

The first equation can be proven using convolution, but the second one
has a more intuitive explanation. Reliability of a series configuration is the
probability that all components are functioning:

Rs = P (X1 ∩X2 ∩ ... ∩Xn−1)

where Xi is the event of component i in a series being operational. Using
conditional probabilities, this equation is equivalent to:

Rs = P (X1)P (X2|X1)P (X3|X1X2)...P (Xn|X1X2...Xn)

In case of independent components, this equation becomes:

Rs =
N∏

i=1

P (Xi)

which shows that reliability of a series configuration of independent ele-
ments with equivalent distributions is the product of components’ reliabilities.
Similarly, it can also be shown that following holds for the system availability:

As =
N∏

i=1

Ai

We assumed here that the failure time and the repair time distributions are
independent. That means that the system has enough resources to repair all
components at the same time, if necessary. Consequently, overall system failure
rate can be calculated as:

λs =
N∑

i=1

λi

Therefore, system MTTF can be calculated as:

MTTFs =
1∑N

i=1
1

MTTFi

In a parallel configuration, at least one of components must succeed for
the system to succeed. In other words, the system will function if any one
(or more) of the components is working. The components in parallel are also
referred to as the redundant units. It can be shown that the following holds
for the distribution function for the failure time of a parallel configuration of
N components:

3.1. ANALYTICAL MODELS 33

Fp(t) =
N∏

i=1

Fi(t)

It follows that the system reliability is:

Rp = 1−
N∏

i=1

(1−Ri)

In order for a redundant system to fail, all redundant units must fail. There-
fore, probability of a system failure is the probability that all components fail:

Qp = P (X1∩X2∩ ...∩Xn) = P (X1)P (X2|X1)P (X3|X1X2)...P (Xn|X1...Xn−1)

where Xi is the event of failure of the component i and Qp is unavailability
of the parallel configuration. If components are independent, this equation
becomes:

Qp =
N∏

i=1

Qi

Finally, system reliability is:

Rp = 1−Qp = 1−
N∏

i=1

(1−Ri)

Similarly, it can be shown that availability of the parallel configuration is
given by:

Ap = 1−
N∏

i=1

(1−Ai)

The system failure rate and MTTF of the parallel configuration are more
difficult to derive in a closed form. In case of a non-repairable system, inte-
gration of the composite reliability function for the parallel configuration yields
following expression:

MTTFp =
n∑

i=1

1
λi
−

n−1∑

i=1

n∑

j=i+1

1
λi + λj

+
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

1
λi + λj + λk

− ...+

+(−1)n+1 1∑n
i=1 λi

The complete integration can be found in [75]. Assuming that all compo-
nents have equal failure rates λ, the expression is simplified into a well-known
formula:

34 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

MTTFp =
1
λ

[
1 +

1
2

+ ... +
1
n

]

In case of a repairable system, problem is more complex as the failed compo-
nent may be repaired, which influences overall system failure rate. The system
failure rate is obviously a function of components’ repair rates. It can be shown
that following holds for the repair rates of a parallel configuration:

MTTRp =
1∑n

i=1
1

MTTRi

Knowing system availability, mean time to failure can now be expressed as
a function of the system availability and mean time to repair:

MTTFp =
Ap

1−Ap
MTTRp

The third basic configuration is k-out-of-n, and it includes both series and
parallel configurations as special cases. This type of configuration requires
that at least k components succeed out of total n parallel components for the
system to succeed. When k = n, we have n-out-of-n which is equivalent to the
series configuration, and when k = 1, we have 1-out-of-n, which is equivalent
to the parallel configuration. The distribution function for the failure time of
identically distributed k-out-of-n configuration is:

Fk|n(t) =
n∑

i=k

(
n

i

)
F (t)i(1− F (t))n−i

Let us assume that components are independent and identical (they all have
the same MTTF and MTTR). The system reliability is:

Rk|n =
n∑

i=k

(
n

i

)
Ri(1−R)n−i

MTTR and MTTF are in this case given by:

MTTRk|n =
MTTR

n− k + 1

MTTFk|n = MTTF
(MTTF

MTTR

)n−k (n− k)!(k − 1)!
n!

Finally, availability of the identical k-out-of-n configuration can be calcu-
lated as:

Ak|n =
MTTFk|n

MTTFk|n + MTTRk|n
The following illustrative example will demonstrate how to use the RBD

methodology to model a fault-tolerant system and to evaluate overall system
parameters (availability, MTTF and MTTR). Let us observe a fault-tolerant
computer system, comprising of single units for the CPU, memory and console,

3.1. ANALYTICAL MODELS 35

redundant (parallel) units for the power supply and 3-out-of-4 redundant disk
units. Reliability block diagram describing such a system is given in Figure 3.1,
with MTTF and MTTR values of all components (exponential distribution is
assumed).

Figure 3.1: Reliability block diagram of a fault-tolerant computer architecture

We will now calculate the MTTF, MTTR and availability of the entire
system. The failure rate of series configuration (CPU, memory and console) is:

λ1 = λCPU + λMEM + λCON

The MTTF of this configuration is:

MTTF1 =
1
λ1

=
1

λCPU + λMEM + λCON
=

1
1

MTTFCPU
+ 1

MTTFMEM
+ 1

MTTFCON

Substituting values for the CPU, memory and console, and assuming that
MTTRs are given in hours, we obtain:

MTTF1 = 693.2 hours

Availability of the serial system is equivalent to the product of component
availabilities:

A1 = ACPU ·AMEM ·ACON =

=
MTTFCPU

MTTFCPU + MTTRCPU
· MTTFMEM

MTTFMEM + MTTRMEM
·

· MTTFCON

MTTFCON + MTTRCON
= 0.99784418

Finally, MTTR1 is easily calculated as:

MTTR1 =
1−A1

A1
MTTF1 = 1.4976 hours

36 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Let us observe the second subsystem, comprising three parallel components:
two redundant uninterruptable power supplies and a control unit. Availability
of this parallel configuration is:

A2 = 1− (1−AUPS)(1−AUPS)(1−ACON) =

= 1−
(
1− MTTFUPS

MTTFUPS + MTTRUPS

)2
(1− MTTFCON

MTTFCON + MTTRCON
)

Substituting values we obtain the availability:

A2 = 0.99999999994

Mean time to repair of this configuration is:

MTTR2 =
1

1
MTTRUPS

+ 1
MTTRUPS

+ 1
MTTRCON

= 0.3947368 hours

Knowing the availability and the mean time to repair, the mean time to
failure of this configuration is:

MTTF2 =
(A2

1−A2

)
MTTR2 = 6, 456, 914, 809 hours

The third subsystem is 3-out-of-4 configuration of identical disk drive com-
ponents, meaning that at most one drive may fail without causing the system
failure. The MTTR of this configuration is:

MTTR3 =
MTTR

n− k + 1
=

MTTR

2
= 2.25 hours

The MTTF is:

MTTF3 = MTTF
(MTTF

MTTR

)n−k (n− k)!(k − 1)!
n!

=
1
12

MTTF 2

MTTR
= 60000 hours

The availability of the configuration is then calculated as:

A3 =
MTTF3

MTTF3 + MTTR3
= 0.9999625

Based on the rules for series configuration, overall availability, system mean
time to failure and mean time to repair are:

As = A1 ·A2 ·A3 = 0.9978033

MTTFs =
1

1
MTTF1

+ 1
MTTF2

+ 1
MTTF3

= 685.25 hours

MTTRs =
1−As

As
MTTFs = 1.51 hours

3.1. ANALYTICAL MODELS 37

Availability MTTF MTTR
CPU, MEM, CON 0.9978441823840 693.1711880262 1.497579165575

Power 0.9999999999389 6456914847 0.3947369468251
Disk 0.9999628107504 60000 2.25

Overall system 0.9978067645694 685.2544702083 1.506227895453

Table 3.1: RBD model evaluation with SHARPE

Solving the model in SHARPE tool (see Section B.1.36 in the next chapter
for detailed SHARPE description), we obtain results given in Table 3.1, which
confirm manual calculations.

After this example, one may tend to think that RBD model can be solved
manually in any general case. We solved the simplest RBD variant, with ex-
ponential distributions for all components which are independent and arranged
using the combination of series, parallel and k-out-of-n configurations. In more
complex cases, where components depend on each other, use different (complex,
non-exponential) distributions or configurations (e.g., load sharing, standby,
multiblocks, inherited blocks, mirrored blocks etc.), or have limited repair ca-
pacity, tool and simulation support becomes necessary, as manual solving be-
comes practically impossible.

3.1.2 Fault Trees

Fault trees, similar to reliability block diagrams, represent all sequences of in-
dividual component failures that may cause the system to stop functioning.
Fault trees apply deductive logic to produce a fault-oriented pictorial diagram
which allows one to analyze system safety and reliability. The main difference
between fault trees and RBDs is that with RBD one is working in the ”suc-
cess space”, that is, looking at the success combinations of system components.
Contrary, a fault tree diagram is generated in the ”failure space”, identifying
all possible system failure combinations. Hence, fault trees are also a design
aid for identifying general fault classes of a fault tolerant system.

The starting point of every fault tree is definition of a single, well-defined
and undesirable event (e.g., a system failure), which represents the root of a
tree. The tree is then built in a top-down manner, combining logic gates (such
as AND and OR), and events. Each gate may have other gates or events as
input. The reduction process stops when we reach basic events which we do
not want to reduce further. Probability of higher level events can be calculated
by combining probabilities of lower level events. We will further assume that
basic events are mutually independent.

Let us consider basic gate types that can be used in a fault tree. In an
OR gate, the output event occurs if at least one of input events occurs. In
system reliability terms, this implies that if any component fails (input) then
the system will also fail (output). When using RBDs, the equivalent is a series
configuration. Failure time, reliability and availability of an OR gate with n
inputs are:

38 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

FOR(t) = 1−
n∏

i=1

(1− Fi(t))

ROR =
n∏

i=1

Ri

AOR =
n∏

i=1

Ai

In an AND gate, the output event occurs if all input events occur. In
system reliability terms, this implies that all components must fail (input) in
order for the system to fail (output). When using RBDs, the equivalent is
a simple parallel configuration. Failure time, reliability and availability of an
AND gate with n inputs are:

FAND(t) =
n∏

i=1

Fi(t)

RAND = 1−
n∏

i=1

(1−Ri)

AAND = 1−
n∏

i=1

(1−Ai)

The last basic fault tree gate is k-voting OR gate. In a k-voting OR gate,
the output event occurs if k or more of input events occur. In system reliability
terms, this implies that if any k or more components fail (input) then the
system will fail (output). The equivalent RBD construct is a k-out-of-n parallel
configuration with a distinct difference. In general case, the k-voting OR gate
with n inputs is not equivalent to the k-out-of-n parallel configuration. The
reason is different space in which two diagram types are constructed. Let us
compare 3-out-of-4 RBD configuration, which has the following meaning: at
most one component may fail, that is, three components are required to keep
the system running. If we replace this component with a 3-voting OR gate
with four inputs, we will not obtain the equivalent configuration. This gate
means that if and only if three out of four elements fail, the gate (system) will
fail, which is not equivalent with the RBD. The equivalent of 3-out-of-4 RBD
is 2-voting OR gate, because it fails if two systems fail, meaning that at most
one system may fail in order for a system to continue to function. Failure time,
reliability and availability of an k-voting OR gate with n identically distributed
inputs are:

FK|N (t) =
n∑

i=k

(
n

i

)
F (t)i(1− F (t))n−i

RK|N =
n∑

i=n−k+1

(
n

i

)
Ri(1−R)n−i

3.1. ANALYTICAL MODELS 39

AK|N =
MTTFK|N

MTTFK|N + MTTRK|N
To illustrate fault tree application, we will model the scenario from previous

section using the fault tree methodology. Resulting diagram is shown in Figure
3.2.

Figure 3.2: Fault tree diagram of a fault-tolerant computer system

Finally, we will verify results from the previous section by solving the fault
tree in IsoGraph FaultTree+ tool (see section B.1.15 in the next chapter for
more information on this software package). Analysis results are given in Table
3.2.

Availability MTTF MTTR
CPU, MEM, CON 0.99784418 692.883 1.49758

Power 0.999999999938866 6453350000 0.394737
Disk 0.9999628108 60575.6 2.25375

Overall system 0,99780707 685.154 1.50619

Table 3.2: Fault tree model evaluation with IsoGraph

Apart from three basic gates, there are additional gates which can be used
to build more complex configurations. The inhibit gate generates a fault if all
input events occur and an additional conditional event occurs. The priority
AND gate generates a fault if all input events occur in a specific sequence. The
dependency AND gate generates a fault if all input events occur, however input
events are dependent, that is, the occurrence of each event affects the probability
of other events’ occurrence. The exclusive OR gate (or XOR) generates a fault
if exactly one input event occurs. For simple configurations, a bijective mapping
between RBDs and fault trees exist. With some specific exceptions, it is also
generally possible to map any fault tree into equivalent RBD. The opposite does

40 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

not hold. Conversion rules between RBDs and fault trees are given in Table
3.3. Note that, apart from three basic gates/configurations, other represent
tool-specific extensions and may not be fully supported by all tools.

RBD configuration Fault tree gate
Simple parallel AND

Series OR
k-out-of-n parallel (n-k+1)-voting

Simple parallel with condition Inhibit
Standby parallel Priority AND

Load sharing parallel Dependency AND
N/A XOR

Table 3.3: Conversion between RBDs and fault trees

Note also that the XOR gate has no equivalent RBD configuration, as it
would imply that two-component configuration would work even if both systems
fail.

3.1.3 Reliability Graphs and Complex Configurations

The reliability graph model consists of a set of nodes and edges, where edges can
represent either components that can fail or structural relationships between
components. The graph also has two special nodes, the source with no incoming
edges and the sink, with no outgoing edges. The semantics of a reliability graph
is that a system thus described will fail if and only if there is no path from the
source to the sink. The main difference between basic reliability block diagrams
and reliability graphs is that failure probabilities, failure rates or unavailability
values or functions are assigned to edges, and not to nodes. Furthermore,
reliability graphs support complex configurations where multiple paths exist
between two nodes.

Reliability graphs are analyzed using a factoring algorithm. An edge is
chosen as the pivot, and two graphs are constructed: up and down. The up
graph represents an equivalent graph where the pivot edge does not fail and the
down graph is an equivalent graph where the pivot edge fails. The equivalent
graph is constructed by removing pivot edge, irrelevant nodes and edges (down
case) and combining edges in series (up case). This procedure is continued for
all generated graphs until only basic series-parallel configurations remain, which
are solved using well known equations for distribution functions:

F (t) =
{

1−∏n
i=1(1− Fi(t)) for a series configuration∏n

i=1 Fi(t) for a parallel configuration

The overall system distribution is then calculated using the total probability
formula. Let us demonstrate factoring of a reliability graph and conversion to
RBDs using several examples. The reliability graph and its first factorization
are given in Figure 3.3.

The edge A has been chosen for factoring. When A is down, nodes 1, 2
and 3 are unreachable, therefore edges B, C and I are also eliminated from the

3.1. ANALYTICAL MODELS 41

Figure 3.3: Reliability graph and its factorization

A − down graph. When A is up, serial connection is established between the
source node and node 2 (edge B), as well as between the source node and node
5 (edge I) in the A − up graph. The A − down graph is simple series-parallel
graph, for which we can calculate the distribution function (assuming that edge
i is described with distribution function Fi):

FA−down = 1−(1−FE)(1−FF)(1−(1−(1−FJ)(1−FD))(1−(1−FG)(1−FH)))

The A − up graph, however, still contains complex paths that cannot be
evaluated. Therefore, the factoring procedure is repeated, using edge D as a
pivot. In the A − up,D − down graph, edges B, C and J are removed as the
consequence of a downed edge D and unreachability of the nodes 2 and 3. In
the A − up,D − up graph, serial connection is added between nodes 2 and d
(edge C) and 5 and d (edge J). The result of this factoring step is shown in
Figure 3.4.

Now both graphs A − up, D − down and A − up,D − up are simple series-
parallel graphs for which distribution functions FA−up,D−down and FA−up,D−up

can be found analogously to previous example of the FA−down. The overall
system distribution function is obtained by applying the total probability for-
mula, which states that if {S1, ..., Sn} is a finite or countably infinite partition
of a probability space and each set Sn is measurable, then for any event X the
following holds:

P (X) =
n∑

i=1

P (Si)P (A|Si)

42 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Figure 3.4: Further factoring of reliability graph from Figure 3.3

Taking into account that R(t) = 1− F (t), this translates into:

F = FAFA−down + (1− FA)FDFA−up,D−down + (1− FA)(1− FD)FA−up,D−up

Let us observe another example of a fault tolerant computer system with
two memory modules, two cache modules and one controller. The system fails
if and only if both memory modules or both cache modules fail. Reliability
graph and the equivalent reliability block diagram of this system are shown in
Figure 3.5.

Figure 3.5: Reliability graph and its equivalent RBD

This particular RBD configuration is called a bridge, and cannot be solved
using rules for series-parallel configurations. There are several methods for
solving such complex configurations, among others decomposition, event space
and path-tracing method. Pivoting procedure for reliability graphs is equivalent
to decomposition procedure for RBDs. Choosing the controller component as
pivot/decomposition component, we obtain factoring/decomposition shown in
Figure 3.6.

The overall system availability is calculated using total probability formula:

AS = ACON · (AS |CON) + (1−ACON) · (AS |CON)

Results of manual RBD calculation are given in Table 3.4, together with
the solution SHARPE gives for the equivalent reliability graph from Figure 3.5.
Exponential distribution and following parameters were assumed for the compo-
nents: memory MTTF=1500, MTTR=2; controller MTTF=1000, MTTR=3;

3.1. ANALYTICAL MODELS 43

Figure 3.6: Decomposition of RBD from Figure 3.6

cache MTTF=3000, MTTR=0.5. Note that SHARPE result confirms the result
obtained by applying decomposition method and total probability formula.

AS |CON 0,9999981991850
AS |CON 0,9999977560711

ACON 0,9970089730808
1−ACON 0,0029910269192
AS manual 0,9999981978597

AS SHARPE 0,99999819785963439682830312

Table 3.4: Results of the reliability graph/RBD analysis

Finally, let us examine another complex model: fault tree with repeated
events. Consider the following example of a computer system with two proces-
sors (P1 and P2) and three memory modules, two of which are private (exclusive
for each processor, M1 and M2), and one is shared (M3). The systems does
not fail as long as one processor is up and can access either its private memory
block or the shared memory. The fault tree model of this system is given in the
left part of the Figure 3.7.

Figure 3.7: Fault tree with repeated events and its decomposition

This fault tree cannot be evaluated using expressions from Section 3.1.2.

44 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Instead, decomposition is performed using the shared event (in this case failure
of the shared memory module M3 as the pivotal element). When M3 fails, then
the failure of M1∧M3 and M2∧M3 depends only on M1 and M2 respectively.
Therefore, decomposition for this case is:

Failure|M3 = (P1 ∨M1) ∧ (P2 ∨M2)

When M3 is up, both and gates become true, therefore, only the following
expression remains:

Failure|M3 = P1 ∧ P2

Both decompositions are shown in the right part of Figure 3.7. Decom-
posed fault trees can now be solved using equations from Section 3.1.2, and
the overall system distribution is calculated using total probability formula, as
already demonstrated. Reliability graph equivalent to the fault tree model with
repeated events is given in Figure 3.8.

Figure 3.8: Reliability graph equivalent to the fault tree from Figure 3.7

Edges P1 and P2 represent processor failures and edges M1, M2 and M3
represent memory failures. In this graph another edge type is introduced: struc-
tural relationship edge (I1 and I2). These edges do not represent physical sys-
tem components, instead they are used to provide shared semantics for edge
M3, enabling each processor to access the shared memory. Therefore, I1 and
I2 cannot fail, and are hence assigned infinite distributions FI1 = FI2 = 0. The
graph can be analyzed using usual factoring procedure.

Note on solution algorithms. Three models described up to now (RDB,
fault trees and reliability graphs) are related. A fault tree without repeated
events is equivalent to RDB, and both are subsets of reliability graphs, which
are in turn subset of fault trees with repeated events. Although all models can
be in principle solved using the methods we described, there are more efficient
ways. Most of the tools rarely use direct solution methods (reduction and
series-parallel equations), but rather rely on generating minimal paths through
the structure graph (e.g., a fault tree). Functioning of these algorithms can
be briefly described in two steps. In the first step, set of minimal paths is
generated. A path is defined as a set of components (e.g., events or edges)
for which the system is up if all components are up. A minimal path is a

3.1. ANALYTICAL MODELS 45

path which has no proper subpaths. The probability of a minimal path is
obtained by multiplication of component probabilities. This is possible due
to the assumption of independent component failures. In step two, system
probability (reliability) is determined. If all minimal path are disjoint, the
resulting reliability is multiplication of minipath reliabilities. However, this
is rarely the case, therefore minipaths have to be combined. Two frequent
algorithms are inclusion-exclusion [148] and sums of disjoint products [168],
whose description is outside of scope of this manuscript.

3.1.4 Markov Models

Combinatorial models, such as reliability block diagrams, fault trees or reliabil-
ity graphs, assume stochastic independence between components: the failure or
repair of a component is not affected by other components. If there is a need to
model more complex interactions, where the failure of a component influences
behavior of other components, other kinds of models must be used. An example
of such scenario is load-balancer with four active instances. If one instance fails,
remaining three will have higher load which will likely impact their reliability.
This requirement cannot be modeled using combinatorial approaches described
so far. One possibility that can be used to cover this class of problems are
Markov models.

Markov models are based on stochastic processes. A stochastic process is a
family of random variables X(t) defined on a sample space. The sample space
is a set of all possible evolutions of the states. Values assumed by X(t) are
states, and the set of all possible states is the state space. When the value of
X(t) changes, process has performed a state transition. The state space can be
either discrete or continuous. If the state space is discrete, the process is called
a chain. We will discuss only stochastic processes with discrete state space,
that is, chains. The time parameter of a stochastic process can also be discrete
or continuous and we will cover both continuous-time chain and discrete-time
chain cases.

Homogeneous Discrete-state Markov Process

Markov chain is a discrete-state stochastic process where the current state de-
pends only on the immediately preceding state. We will define Markov chains
in a formal way now. Let X(t) be a discrete-state stochastic process and
P (X(tn) = j) be the probability that the process is in state j at time tn.
X(t) is a Markov chain if, for any ordered time sequence t0 < t1 < ... < tn, the
conditional probability of the process being in any state j at time tn is given
as:

P [X(tn) = j|X(tn−1) = in−1, X(tn−2) = in−2, ..., X(t0) = i0] =

= P [X(tn) = j|X(tn−1) = in−1]

This equation defines that the state of a Markov chain after a transition
may depend on the state immediately before it, but it cannot depend on any

46 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

other states before that. The entire past history is always summarized by the
current state. If the conditional probability from previous equation is invariant
with respect to the time origin tn, Markov chain is homogeneous:

P [X(t) = j|X(tn) = in] = P [X(t− tn) = j|X(0) = in]

We will be working with homogeneous chains. This will enable us to dis-
regard the time that a system spends in the current state. If we choose tn
such that the process was already in state j for some time, the probability of
finding the system in some other state at time t > tn depends on state j, but
not on how long the system was in it. The system is therefore memoryless as
it disregards all previous states as well as the time spent in the current state.

The Markov chain analysis gives the state probabilities for finite values of
t and for t → ∞. The probability πj(t) of state j is the probability that the
process is in state j at time t:

πj(t) = P (X(t) = j)

The vector of all state probabilities is π(t) = [π0(t), π1(t)...]. The transition
probability Pij(t − u) is the probability that the system is in state j at time t
given that it was in state i at time u:

Pij(t− u) = P [X(t) = j|X(u) = i]

Often, u = 0 is selected. The matrix P(t) is the square matrix of transition
probabilities Pij(t). The Chapman-Kolmogorov equation states that, for a sys-
tem to be in state j at some time t, it must have been in some state i at time
u and must have made zero or more transitions to reach j:

π(t) = π(u) ·P(t− u)

This is the basic equation we will be using to calculate probabilities π(t).
We will now define discrete-time Markov chains (DTMC) and continuous-time
Markov chains (CTMC).

In case of a DTMC, let us define the points where state changes as {0, 1, ...}.
Furthermore, let us define P = P(1) and let pij be the (i, j)-th element of P.
The pij is one-step transition probability then. The matrix P has the following
properties: all elements are in the range [0, 1] and the sum of all elements in
one row must be equal to one. Such a matrix is also called a stochastic matrix.
For a homogeneous DTMC, Chapman-Kolmogorov equation becomes:

π(n + 1) = π(n) ·P
Based on this, state probabilities π(n) can be computed in terms of the

initial probability vector π(0):

π(n) = π(0) ·P
If limn→∞ π(n) exists, then the following system of equations can be used

to calculate the limiting (steady-state) probability vector:

3.1. ANALYTICAL MODELS 47

π = π ·P
π · e = 1

where e = [1, 1..., 1]T .
Let us derive the equivalent system for CTMC. If we substitute u = t−∆t

and subtract π(t−∆t) from both sides of the Chapman-Kolmogorov equation,
we get:

π(t)− π(t−∆t) = π(t−∆t)[P(∆t)− I]

Dividing the equation with ∆t and taking the limit when ∆t → 0, the
following is obtained:

dπ(t)
dt

= π(t) lim
∆t→0

P(∆t)− I
∆t

If we define δij = 1 if i = j and zero otherwise, and define the matrix Q as:

qij = lim
∆t→0

Pij(∆t)− δij

∆t

The previous equation can be rewritten as:

dπ(t)
dt

= π(t)Q

This is Kolmogorov differential equation, and the matrix Q is called the
generator matrix of the CTMC. If limt→∞ π(t) exists, the following system of
linear equations can be used to calculate limiting (steady-state) probabilities:

π ·Q = 0

π · e = 1

The scalar form of these equations is:

πiqi =
∑

j 6=i

πjqji

This formula is known as steady-state balance equation for state i and it
states that the rate of flow into state i equals the rate of flow out of state i in
the steady-state. Furthermore, the following also holds:

∑

i

πi = 1

If the interval ∆t is small, then:

1− Pii(∆t) = −qii∆(t)

Pij(∆t) = qij∆t, i 6= j

Since

48 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

∑

j 6=i

Pij(∆t) + Pii(∆t) = 1

the following holds if ∆t → 0:

∑

j

qij = 0

Furthermore, the diagonal element equals the negative sum of the off-diagonal
elements:

qii = −
∑

j 6=i

qij

These observations will help us in constructing generator matrices. Now we
will discuss the analysis of Markov chains, and then show how to use them to
model reliability and availability.

Analysis of Discrete Time Markov Chains

Let us construct a DTMC which models a modern multithreaded Web ap-
plication running, for example, inside a Google Chrome browser. Instead of
separating tasks into threads, Google Chrome activates separate processes for
all tasks. Let us assume that the Web application has two processes: user login
(authentication/authorization) and search. Furthermore, there is an in-memory
cache on the server side with two memory blocks. Cache access time is con-
stant and synchronized and both caches can be accessed simultaneously. The
processes have queues and will generate new login and search requests as soon
as earlier ones have been completed. Let us further assume (just for the pur-
pose of lowering complexity) that there are no cache misses. A new request for
the first cache module is generated with probability q1 and for the second with
probability q2 = 1 − q1. Let us model system state as the ordered pair (i, j),
where i is the number of requests waiting for the first cache module and j the
number of requests waiting for the second module. The DTMC corresponding
to this scenario is given in Figure 3.9.

Figure 3.9: DTMC describing a multithreaded web application

In state (1,1) there is one request for each cache module and both can be
served simultaneously. After that, both login and search processes generate

3.1. ANALYTICAL MODELS 49

another request. The probability of both generating a request for the second
cache block is q2

2, and the chain transfers to state (0,2). The probability that
both processes generate a request for the first cache block is q2

1 and the chain
transfers to state (2,0). If the processes generate requests for different cache
modules, the chain remains in state (1,1) with probability 2q1q2. In state (0,2)
only one request can be served, therefore only one process can generate a new
request. If this is again request for the second cache module, the chain remains
in (0,2) with probability q2, else it transfers to (1,1) with q1. The analogous
reasoning is applied to state (2,0).

Mapping the states (1,1), (2,0) and (0,2) into indices 0, 1 and 2, the following
one-step transition probability matrix can be defined for this chain:

P =

2q1q2 q2
1 q2

2

q2 q1 0
q1 0 q2

Based on the matrix, we can set up the Chapman-Kolmogorov system of
equations:

π0 = π02q1q2 + π1q2 + π2q1

π1 = π0q
2
1 + π1q1

π2 = π0q
2
2 + π2q2

1 = π0 + π1 + π2

Solving this system we obtain the limiting probability vector:

π0 =
q1q2

q1q2 + q3
1 + q3

2

π1 =
q3
1

q1q2 + q3
1 + q3

2

π2 =
q3
2

q1q2 + q3
1 + q3

2

This example demonstrates how to construct a DTMC and to calculate
state probabilities. However, we still did not assign reliability and availability
semantics to probabilities. We will do this in the following section.

Analysis of Continuous Time Markov Chains

Let us observe a repairable system with the failure rate λ and the repair rate
µ. We can model such system using the 2-state CTMC shown in Figure 3.10.

The state 1 describes a functioning system (up state), while the state 0 is a
failed system (down state). The generator matrix Q is given as:

Q =
[−µ µ

λ −λ

]

The Kolmogorov differential equation system is:

50 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Figure 3.10: CTMC describing a repairable system

π′0(t) = −µπ0(t) + λπ1(t)

π′1(t) = µπ0(t)− λπ1(t)

We also know that π0(t)+π1(t) = 1, therefore the system can be rewritten:

π′1(t) + (µ + λ)π1(t) = µ

π1(t) is of interest, as it represents transient probability function that the
system is operational, that is, instantaneous availability function. The equation
above is linear differential equation of order one which has a standard method
of analysis and solution (see e.g., [79]). After multiplying both sides with the
integrating factor e(µ+λ)t, applying the property of product derivation and using
the initial condition π1(0) = 1 (the component is in the operational state at
time 0), we obtain instantaneous availability function:

π1(t) = A(t) =
µ

µ + λ
+

λ

µ + λ
(e−(µ+λ)t)

Well-known steady state availability formula which we gave without proof
in section 2.1, can be obtained by taking the limit of this function when t →∞:

π1 = As = lim
t→∞A(t) =

µ

µ + λ

If U(t) is the uptime of the system in the interval (0, t), expected uptime
can be now easily calculated:

E[U(t)] =
∫ t

0
π1(x)dx =

µt

µ + λ
+

λ

(µ + λ)2
(1− e−(µ+λ)t)

Finally, instantaneous availability is given as:

AI(t) =
E[U(t)]

t
=

µ

µ + λ
+

λ

t(µ + λ)2
(1− e−(µ+λ)t)

In the following sections we discuss more complex Markov availability mod-
els.

3.1. ANALYTICAL MODELS 51

Markov Analysis of a 2-Component Non-Repairable System

Let us observe a two component non-repairable system. Such a system can be
modeled with Markov chain shown in Figure 3.11. In state 11 both components
are functioning. In states 10 and 01 one component has failed. Finally, in state
00 both components have failed.

Figure 3.11: 2-Component non-repairable system

The generator matrix of this system is:

Q =

−(λ1 + λ2) λ1 λ2 0
0 −λ̂2 0 λ̂2

0 0 −λ̂1 λ̂1

0 0 0 0

States 11, 01, 10 and 00 are represented with indices 1, 2, 3 and 4 respec-
tively. The corresponding Kolmogorov differential equation system is:

π′1(t) = −(λ1 + λ2)π1(t)

π′2(t) = λ1π1(t)− λ̂2π2(t)

π′3(t) = λ2π1(t)− λ̂1π3(t)

π′4(t) = λ̂2π2(t) + λ̂1π3(t)

Solution of the system is:

π1(t) = e−(λ1+λ2)t

π2(t) =
λ1

λ1 + λ2 − λ̂2

(e−λ̂2t − e−(λ1+λ2)t)

π3(t) =
λ2

λ1 + λ2 − λ̂1

(e−λ̂1t − e−(λ1+λ2)t)

π4(t) = 1− (π1(t) + π2(t) + π3(t))

These results can be used to calculate reliability of series configuration,
where reliability is the probability that both systems function, that is, proba-
bility that the system is in state 1 :

52 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

RS(t) = π1(t) = e−(λ1+λ2)t

Reliability of parallel configuration is the probability that both systems work
or that either of systems work, that is, probability that the system is in states
1, 2 or 3 :

RP (t) = e−(λ1+λ2)t +
λ1

λ1 + λ2 − λ̂2

(e−λ̂2t − e−(λ1+λ2)t)+

λ2

λ1 + λ2 − λ̂1

(e−λ̂1t − e−(λ1+λ2)t)

If we assume that λ1 = λ̂1 = 1/3000 and λ2 = λ̂2 = 1/2000, solving the
model for parallel configuration in Sharpe gives reliability graph given in Figure
3.12 with MTTF = 3800.

Figure 3.12: Reliability of 2-Component parallel non-repairable system

Markov Analysis of a Multicomponent System with Shared Repair

Let us observe a 2-Component repairable system where both components have
identical failure rates λ. If one component fails, it can be repaired with repair
rate µ. If, during repair, the second component also fails, the system has failed.
In this case, we will analyse only reliability, that is, we do not consider the
case where both components have failed, but can be repaired. Markov model
representing this scenario is given in Figure 3.13.

The generator matrix of this system is:

Q =

−2λ 2λ 0
µ −(λ + µ) λ
0 0 0

Setting up the corresponding Kolmogorov differential equation system we
get:

3.1. ANALYTICAL MODELS 53

Figure 3.13: 2-Component repairable system

π0(t) = −2λπ0(t) + µπ1(t)

π1(t)′ = 2λπ0(t)− (λ + µ)π1(t)

π2(t) = λπ1(t)

Solving the system enables us to calculate reliability, that is, the probability
that system is not in state 2:

R(t) = 1− π2(t) =
α2

α1 − α2
e−α1t − α1

α1 − α2
e−α2t

where α1 and α2 are the roots of:

s2 + (3λ + µ)s + 2λ2 = (s + α1)(s + α2)

If λ = 0.0001 and µ = 0.001, the mean time to failure is MTTF = 65000.
Let us now consider analogous 2-component availability model. We will as-

sume that even if both systems failed, they can be repaired. We can distinguish
between two repair strategies, shared and non-shared (both are shown in Figure
3.14). With shared repair, there is only one repair facility with repair rate µ
which both systems have to share, and in the non-shared case there are two
repair facilities with repair rate µ.

Figure 3.14: 2-Component Markov availability model with non-shared (above)
and shared (below) repair

54 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

A non-shared case can be modeled with combinatorial methods (e.g., reli-
ability block diagrams or fault trees), but shared case requires application of
Markov chains. We will use steady-state balance equations, as we do not want
to analyse transient availability in this example:

2λπ0 = µπ1

(λ + µ)π1 = 2λπ0 + µπ2

µπ2 = λπ1

Solving this system for π2, taking into account that π0 + π1 + π2 = 1, gives:

π2 =
1

1 + µ
λ + µ2

2λ2

Steady state availability is the probability that a system is not in state 2,
therefore:

AS = 1− π2 = 1− 1

1 + µ
λ + µ2

2λ2

If we take λ = 0.0001 and µ = 0.001, then AS = 0.9836065573770 and
MTTF = 60000. Transient availability graph is given in Figure 3.15.

Figure 3.15: Availability of 2-component system with shared repair

Finally, to conclude investigation of repairable systems, let us construct a
Markov model that enables comparison of different repair strategies. Assume
that we have a 3-component system with identical failure rates λ and one repair
facility with repair rate µ. If we want to improve system availability we could
introduce additional repair facilities so that each system has its own repair
facility with repair rate µ, or alternatively we could speed-up the single repair
facility to 2µ. We want to answer the question which repair strategy is better

3.1. ANALYTICAL MODELS 55

Figure 3.16: Markov model for comparing repair strategies

with respect to availability. To do so, we construct three Markov models shown
in Figure 3.16.

Steady state analysis of these models yields steady state availability, mean
time to failure, mean time to repair and downtime values given in Table 3.5.

AS MTTF MTTR Downtime

Single repair (µ) 0.99561 226667 1000 2309
Non-shared repair (µ) 0.99925 443333 333 395

Single repair (2µ) 0.99936 776667 500 338

Table 3.5: Analysis results for comparing repair strategies

It is clearly visible that both strategies improve availability significantly
(both add another nine to steady state availability). The speedup of the repair
facility achieves slightly higher steady-state availability than introducing non-
shared repaired facilities, but has also longer mean time to repair. Transient
availability graphs for all three strategies are shown in Figure 3.17.

Markov models with imperfect coverage

Let us assume now that not all faults are recoverable. We introduce the coverage
factor c, which represents conditional probability that the system recovers given
that a fault has occurred. Let us observe a two-component parallel system with
imperfect coverage, such as one proposed in [10] used to model an electronic
switching system. Let us try to calculate system’s mean time to failure. Markov
model describing a system is shown in Figure 3.18. States 2, 1 and 0 represent
two components being up, one component being up (failover successful with
probability c), and system failure respectively. Failure and repair time are
exponentially distributed with rates λ and µ respectively. If one component

56 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Figure 3.17: Transient availability for three repair strategies

fails, the system moves to state 1 with rate 2λc instead of 2λ, as would be
the case with perfect coverage (failover). The component that failed can be
repaired and the system goes back to state 2 with probability µ, or the second
component may fail with rate λ and the whole system fails (state 0). Of course,
if the failover itself fails, the system goes from state 2 to state 0 directly with
probability 2λ(1− c).

Figure 3.18: Two-component parallel system with imperfect coverage

The generator matrix of this system is:

Q =

−(2λc + 2λ(1− c)) 2λc 2λ(1− c)

µ −(λ + µ) λ
0 0 0

The resulting Kolmogorov differential equation system is:

π2(t)′ = −2λcπ2(t)− 2λ(1− c)π2(t) + µπ1(t)

3.1. ANALYTICAL MODELS 57

π1(t)′ = 2λcπ2(t)− (λ + µ)π1(t)

π0(t)′ = 2λ(1− c)π2(t) + λπ1(t)

Assuming that the system is initially in state 2 (that is, π2(0) = 1, π1(0) =
π0(0) = 0), the system can be solved and reliability calculated as:

R(t) = π1(t) + π2(t)

Mean time to failure can be obtained now as:

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
π1(t) + π2(t) =

λ(1 + 2c) + µ

2λ(λ + µ(1− c))

Figure 3.19 shows the reliability function for different coverage values c
(λ=1/3000 and µ=1/2).

Figure 3.19: Reliability function for different coverage values

3.1.5 Stochastic Petri Nets

Markov models, presented in previous section, have several inherent limitations.
As we already saw, and as is additionally demonstrated in Section 5.6, the state
space grows much faster than the number of components in the system being
evaluated. Also, Markov model is sometimes far removed in shape and feel from
the physical system it is supposed to represent. One alternative is to use Petri
net models, which offer a more concise formalism, closer to human intuition.
Unfortunately, the solution complexity is thus not reduced.

We will first give an informal (descriptive) definition of Petri nets, followed
by the more formal one, including various model extensions. A Petri net consists

58 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

of places, transitions, arcs and tokens. Tokens reside in places and move between
them along the arcs and through the transitions. A marking is the number of
tokens in each place. In pure Petri nets, transitions are untimed, and the
measure of interest is the sequence of transition firings (releasing of a token).
A very common extension are timed Petri nets, such as stochastic Petri nets
(SPN)[149][140], where transitions are timed, meaning that the token firing is
described as a stochastic process and characterized by appropriate distribution.
If both immediate and timed transitions are allowed within one model, it is
called a generalized stochastic Petri net (GSPN)[141].

Figure 3.20 shows a simple SPN model of an M/M/1/k queue, where up to
k (in this case k = 5) requests can be stored in a single queue. Requests arrive
with constant rate λ and are served by a single server with rate µ (both arrival
and serve times are exponentially distributed).

Figure 3.20: SPN model of an M/M/1/5 queue

The model has two places reqsource and queue modeling source of requests
with five tokens and a queue with no tokens. Furthermore, two timed transi-
tions arrival and server exist. After arrival has been enabled, which happens
after random time sampled from the exponential distribution with parameter
λ, it fires and a token moves from reqsource to queue. Firing time of server is
exponentially distributed with parameter µ and after it fires, the token repre-
senting processed request is moved back to reqsource.

This SPN has six possible markings. If we represent each marking as an
ordered pair (i, j) where i is the number of tokens in reqsource and j is the
number of tokens in queue, the markings are (5,0), (4,1), (3,2), (2,3), (1,4) and
(0,5). The set of all possible markings of a Petri net is called a reachability set.
If we connect two markings by arcs if one can result from the firing of some
transition enabled in the other, we obtain a reachability graph, which is unique
for each initial marking of a Petri net. The reachability graph for the Petri net
from Figure 3.20 is given in Figure 3.21.

Figure 3.21: Reachability graph of the SPN model of an M/M/1/5 queue

3.1. ANALYTICAL MODELS 59

Reachability graph is similar to Markov model. In fact, any SPN can be
transformed into a stochastic process M(t), where M is the net’s marking,
and analyzed using continuous-time Markov chain analysis methods. This is a
common analysis method. It is worthwhile to note that SPN model is much
more compact than the equivalent Markov model. If we want to extend the
number of jobs, we would add new states to the Markov chain, but for the Petri
net we just write new token number. While increasing number of jobs does
not increase the Petri net size, it increases its corresponding reachability graph,
which means that the model solution is thus not simplified. Very small Petri
nets can generate enormous reachability graphs and it does not follow that the
concise graphical modeling notation automatically implies faster model solution.

Let us give a formal Petri net definition now. A Petri net is a 5-tuple
(P, T, I(.), O(.),m0) where P is a set of places, T is a set of transitions, I(.)
is the input function which maps transitions to multisets of places, O(.) is the
output function which maps transitions to multisets of places, and m0 is the
initial marking. A transition t is enabled by a marking m if and only if I(t)
is a submultiset of m. An enabled transition t may fire. Upon firing, I(t) is
subtracted from m and O(t) is added to m, resulting in new marking. If a
marking enables more than one transition, any of them may fire. The firing
may then disable some transitions which were previously enabled.

Originally, Petri nets did not have a time element. If a net is not timed, the
analysis is concerned with enabled markings, investigating firing order and ex-
amining if there are markings with special properties, e.g., absorbing markings
in which no transition is further enabled. It is obvious that for dependability
analysis, it is critical to introduce time to Petri nets. It can be done in either of
two ways: time can be associated with places or with transitions. A SPN is a
timed Petri net where time is associated with transitions. In a SPN, the transi-
tion is enabled as soon as all necessary tokens are assembled in required places.
However, the transition does not fire right away as in non-timed Petri nets, but
after a transition firing time which is specified by a distribution function. This
time is measured from the instant the transition is enabled to the instant when
it actually fires. In an SPN, it is assumed that the firing time is exponentially
distributed. Thus each transition has a firing rate associated with it. The ex-
ecution policy of a timed Petri net determines how the conflicting transitions
are processed. The SPN uses race policy, where transition whose firing time
elapses first is the one that fires first. An alternative is preselection policy.
As already discussed, if both timed and immediate transitions are allowed in
a net, it is a GSPN. When both timed and immediate transitions are enabled
in a GSPN, only the immediate transitions may fire and the timed transitions
behave as if they were not enabled. If more than one immediate transition is
enabled, preselection is used (immediate transitions are assigned relative firing
probabilities).

Petri Net Extensions

The basic Petri net model has been extended with many propositions over the
years, however several extensions are today generally considered to be part of

60 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

the standard definition: arc multiplicity, inhibitor arcs, transition priorities,
guards and marking-dependent arc multiplicity.

Arc multiplicity represents the case when more than one token is to be
moved to or from a place. When an input arc connecting place p with transition
t has multiplicity n, that means that t is enabled if and only if there are at least
n tokens in p. Similarly, if an output arc connecting transition t to the place
p has multiplicity n, then n tokens are moved to p when t fires. Graphical
notation for arc multiplicity is the number placed next to the arc.

Inhibitor arc from place p to transition t disables t in any marking where
p is not empty. Inhibitor arc can have multiplicity n in which case t is disabled
whenever p has at least n tokens. Graphically, inhibitor arcs are represented as
arcs with small circle instead of an arrowhead.

Priorities can be assigned to each transition as integer numbers. If more
than one transition is possible, one with the lowest number, indicating higher
priority, will be enabled. Priorities can be simulated using inhibitor arcs, leading
to more complex models.

Guards can be added as a more general prioritizing mechanism, where each
transition may have an additional enabling criterion. Transition is enabled only
if the guard is satisfied. The guard can take any expression form, e.g., can
impose a condition that the number of tokens in some places (or their sum)
must be positive. Guards are usually written as textual expressions on the side
of transitions. However, if there are many guards, or guards are complex, they
may be maintained in a separate table.

Marking-dependent arc multiplicity enables to express arc multiplicity
in a dynamical way, using expressions similar to guards. Essentially, number of
tokens transferred can be dependent upon the system state. For example, if a
token appears in a certain place, arc multiplicity may be configured based on
that particular marking.

Finally, marking-dependent firing rates can be introduced, which allow
transition firing rate (for GSPN) to depend on the particular Petri net marking.
In the most general form, firing rate of any transition may depend on the number
of tokens in any of the places. A more limited form is sometimes used, where
constraint is allowed only on the number of tokens in one of the places with
an outgoing arc leading to the transition. Usually, firing rate is a multiple
of number of tokens (e.g., if a place contains n tokens representing operating
components, than the transition modeling component failure will have the rate
nλ).

GSPN Availability Model

As an example of GSPN availability modeling let us assume that we have n Web
services working in a replicated configuration, where k < n must be operational
for the system to be considered operational. Furthermore, let us assume that
there is only one repair facility for all services. The GSPN model representing
this replicated service system is shown in Figure 3.22, assuming that service
failure and repair rates are λ and µ respectively.

There are initially n tokens in place up. Transition fault is timed and

3.1. ANALYTICAL MODELS 61

depends on the number of tokens in place up (number of operating services), its
firing rate is therefore denoted with λ#. When a service fails, a token is moved
to down. It can be repaired and moved back to up via transition repair which
has rate µ. If n− k + 1 tokens have accumulated in down, that is, less than k
services are operating, immediate transition crash is activated which takes all
remaining k−1 tokens from up as well as n−k +1 from down and moves them
into place failure.

Figure 3.22: GSPN availability model of the k-out-of-n Web service system

The most commonly used method for analyzing stochastic and generalized
stochastic Petri nets is generation and analysis of the stochastic process as-
sociated with the Petri net. The other approach is to perform discrete event
simulation, which is useful when Petri net generates a large reachability graph.
Let M(t) be the marking of a Petri net at time t. M(t) is a continuous sto-
chastic process called the marking process or stochastic process underlying the
stochastic Petri net. The state space of this process is the reachability set of
the Petri net. If all transitions are timed and exponentially distributed, the
marking process is a continuous time Markov chain, where the transition rate
from marking mj to mk is the sum of rates of all transitions that are enabled
in the former and whose firing generate the later marking. Hence, steady-state
or transient analysis of such Petri net is equivalent to the solution of a CTMC,
given in section 3.1.4.

Analysis of GSPN is more complex, caused by the presence of immediate
transitions. A marking in which at least one immediate transition is enabled is
called a vanishing marking. Otherwise, it is called a tangible marking. When
the reachability graph of a GSPN is constructed, arcs corresponding to timed
transitions are labeled with rates and arcs corresponding to immediate transi-
tions are labeled with probabilities. The resulting graph is called an extended
reachability graph (ERG). It is neither a CTMC nor a DTMC. However, after
eliminating vanishing markings, and including their effects into transition rates
between tangible markings, a CTMC is obtained.

Results of the numerical transient analysis of 2-out-of-3 Web service system
(using SHARPE) are given in Figure 3.23. The equivalent reachability graph
(Markov chain) is given in Figure 3.24. Note that if we choose to analyze 8-out-

62 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

of-10 system, Markov model would grow, whereas Petri net model remains the
same in size. Furthermore, Petri net model enables easy simulation or varying
of parameters, such as k and n in this example.

Figure 3.23: Transient availability analysis of 2-out-of-3 system

Figure 3.24: Reachability graph of 2-out-of-3 Petri net model

3.1.6 Stochastic Activity Networks

Stochastic Activity Networks (SAN) are a variant of stochastic Petri nets, based
on non-probabilistic activity networks, similar to the way that untimed Petri
nets provide foundation for stochastic Petri nets. In this section, we will first in-
troduce activity networks, extend their definition to probabilistic models (SAN)
and give examples of SAN reliability/availability models, solved using Möbius
tool (more information available in Section B.1.24).

Activity Networks

Activity networks are generalized Petri nets with following primitives:

• Activities, which can be timed and instantaneous, and each of which has
a non-zero integral number of cases. The term case is used to denote a
possible action taken upon the completion of an event.

3.1. ANALYTICAL MODELS 63

• Places, equivalent to Petri net places.

• Input gates, each of which has a finite set of inputs and one output. Each
input has associated n-ary predicate and n-ary computable partial func-
tion over the set of natural numbers. They are called enabling predicate
and the input function, respectively. The input function is defined for all
values for which the enabling predicate is true.

• Output gates, each of which has a finite set of outputs and one input.
With each output gate an n-ary computable function on the set of natural
numbers is associated, called the output function.

Let us define some important additional concepts of activity networks. Sup-
pose P is the set of all places in the network. If S is a set of places such that
S ⊆ P , a marking of S is a mapping µ : S → N. An input gate can now be de-
fined as a triple (G, e, f) where G ⊆ P is the set of input places associated with
the gate, e : MG → {0, 1} is the enabling predicate of a gate and f : MG → MG

is the input function of a gate. Similarly, an output gate is a pair (G, f) where
G ⊆ P is the set of output places associated with a gate, and f : MG → MG is
the output function of a gate.

Following these premises, an activity network is formally defined as an eight-
tuple AN = (P, A, I,O, γ, τ, ι, o) where P is a finite set of places, A is a finite
set of activities, I is a finite set of input gates, O is a finite set of output
gates. Further, γ : A → N+ specifies the number of cases for each activity,
and τ : A → {Timed, Instantaneous} specifies activity type. Structure of an
activity network is specified with function ι : I → A, which maps input gates to
activities and o : O → {(a, c)|a ∈ A ∧ c ∈ {1, 2, ..., γ(a)}}, which maps output
gates to cases of activities.

The behavior of an activity network is a characterization of possible com-
pletions of activities, selection of cases and changes in markings. Input gate
g = (G, e, f) holds in a marking µ if e(µG) = 1. Activity a is enabled in mark-
ing µ if g holds for all g ∈ ι−1(a). Finally, marking µ is stable if no instantaneous
activities are enabled in µ. The set of reachable markings of network AN in
marking µ0 is the set of markings R(AN,µ0) where R(AN, µ0) = {µ|µ0

∗→ µ}.
The set of stable reachable markings is the set SR(AN, µ0) ⊆ R(AN,µ0) of
reachable markings that are stable. An activity network is stabilizing in mark-
ing µ0 if for every µ ∈ SR(AN, µ0) the set S(µ) is finite.

Based on these premises we now define stochastic extension of activity net-
works.

Definition of a Stochastic Activity Network

Given an activity network which is stabilizing in a given initial marking, a sto-
chastic activity network (SAN) is formed by introducing additional functions
C, F and G. Function C represents the probability distribution of case selec-
tions, F the probability distribution of activity delay times and G the set of
reactivation markings for each possible marking. Let us first formally define a
SAN and then discuss its definition using an example.

64 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

A stochastic activity network is a five-tuple SAN = (AN,µ0, C, F,G).
AN = (P, A, I, O, γ, τ, ι, o) is an activity network. µ0 is the initial marking
and a stable marking in which AN is stabilizing. C is the case distribution
assignment, which assigns functions to activities such that for any activity a,
Ca : MIP (a)∪OP (a) × {1, ..., γ(a)} → [0, 1]. Furthermore, for any activity a and
marking µ ∈ MIP (a)∪OP (a) in which a is enabled, Ca(µ, ·) is a probability distri-
bution called the case distribution of a in µ. F is the activity time distribution
function assignment. It assigns a continuous function to timed activities such
that for any timed activity a, Fa : MP ×R→ [0, 1]. Furthermore, for any stable
marking µ ∈ MP and timed activity a that is enabled in µ, Fa(µ, ·) is a con-
tinuous probability distribution function called the activity time distribution
function of a in µ. G is the reactivation function assignment. It assigns func-
tions to timed activities such that for any timed activity a, Ga : MP → ℘(MP),
where ℘(MP) denotes the power set of MP . Finally, for any stable marking
µ ∈ MP and timed activity a that is enabled in µ, Ga(µ, ·) is a set of markings
called the reactivation markings of a in µ.

Let µ, a, c be the marking, activity and case of a given SAN respectively.
Execution of a SAN is a sequence of configurations < µ, a, c >, where for each
configuration, the SAN was in marking µ, activity a was completed and case c
was chosen. In any marking µ the activity that completes is selected from the
set of active activities in µ, that is, those activities that have been activated but
not yet completed or aborted. After each activity completion and case selec-
tion, set of activities that are active is altered. If the marking reached is stable,
then the activity that completed, activities that are no longer enabled and those
for which the reached marking is a reactivation marking are removed from the
set of active activities. Activities that are now enabled, but are not in the
set of active activities, are placed in it (including those that are reactivated).
If the marking reached is not stable, then timed activities are not added or
deleted from the set of active activities. Instead, the activity that completed is
removed, instantaneous activities that are no longer enabled are also removed,
and instantaneous activities that became enabled but not in the set are added.
The choice of the activity to complete from the set of active activities is de-
termined by the activity time distribution function, and the relative priority of
timed and instantaneous activities. If more than one instantaneous activities
may complete, one is chosen non-deterministically. If there are none, then the
timed activity with the earliest completion time is selected. The activity time
distribution function defines the time between activation and completion. After
the activity has been selected, a case is chosen based on the case distribution
in the current marking. Note that non-deterministic choice of non-timed ac-
tivities may yield non-probabilistic behavior of the network. Therefore, rules
for well-specified and well-behaved networks are introduced [176]. We will not
formally discuss these rules, but will implicitly further discuss only probabilistic
networks.

Let us briefly compare graphical model elements of stochastic Petri nets
and stochastic activity networks using a simple example. Suppose we want to
model a priority queue, with two job classes, one of which has higher priority.
Figure 3.25 shows both SPN and SAN model of such a system.

3.1. ANALYTICAL MODELS 65

Figure 3.25: SPN and SAN models of a priority queue

In the SPN model, jobs of class i arrive with probability qi and go to place
queuei. If all queues are full, jobs with higher priority (denoted with lower inte-
ger), are served first, as long as there is a token in the place server, because only
immediate transition with highest priority will fire. Similarly, in the SAN model
jobs arrive and are probabilistically assigned a class (two cases of activity arr),
after which they are moved to queuei. Instantaneous activity priorityi is en-
abled if place queuei is marked and the predicate of ciserv is true. For example,
the predicate for c2serv is (atserv->Mark()==0) && (queue1->Mark()==0).
In other words, jobs of lower priority may be served only if the server is available
(no tokens in atserv denoted with atserv->Mark() ==0) and there are no jobs
with higher priority in queue1 denoted with queue1-> Mark()==0. Place Class
hold a value of either 1 or 2, representing the class of a job currently in service.
This enables activity service to have a completion rate dependent of the job
type being served. For example, firing of activity priority2 is described with:
atserv->Mark()++; class->Mark()=2; queue2->Mark()--;. Also note that
SANs use C++ syntax for describing markings.

SAN Availability Model

As an example of the SAN availability model, we will use the adapted version of
a highly redundant fault-tolerant multiprocessor model first described in [126]
and further elaborated in [174]. The model will be solved using Möbius tool,
and all models shown here are directly exported from it.

The system under study consists of computers, each with three memory
modules (one is a spare), three CPU units (one is a spare) two I/O ports
(one spare) and two non-redundant error-handling chips. Each memory module
consists of 41 RAM chips (two spares) and two interface chips. Each CPU and
I/O port consists of six non-redundant chips. The overall system is considered

66 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

operational if at least one computer is operational; furthermore, a computer
is operational if at least two memory modules, two CPU units, one I/O port
and both error-handling chips are operational. The failover is not perfect, with
following coverage probabilities: RAM chip 0.998, memory module 0.95, CPU
unit 0.995, I/O port 0.99 and computer 0.95. The failure rate λ for each chip
in the system is assumed to be 100 failures per billion hours [126].

We first describe the CPU submodel (Figure 3.26). The number of tokens
in places cpus and computer failed represent the number of operational CPUs
and failed computers in the system, respectively. Place cpus is initialized with
three and computer failed with zero tokens. Place ioports represents the num-
ber of operational I/O ports and is therefore initialized to two tokens. Place
errorhandlers, representing the number of functional error-handling chips is
initialized to two.

Figure 3.26: SAN model of the CPU

The CPU failure is modeled with timed activity cpu failure. The activity
completion rate is defined as 6.0 * failure rate * cpus->Mark(), that is,
the activity completion rate is equal to the six times the failure rate of a sin-
gle chip (failure rate) times the number of currently operational processors,
which is the current marking of place cpus (cpus->Mark()). If a spare CPU is
available, three cases are associated with the completion of this activity. The
first case is a successful coverage of the CPU failure. In this case, failed CPU
is replaced by a spare, and the computer continues operation. The second case
represents a CPU failure that is not covered, but the computer failure caused by
it is covered. If this happens and a spare computer is available, failed computer
is replaced by a spare and the system continues to operate. However, if no
computer spare is available, the systems fails. Finally, the third case represents
situation where both CPU and computer failure are not covered and the overall
system fails as a consequence. If no spare CPU is available, then a CPU unit
always causes a computer failure (this situation should not be mixed with three
previous cases, where a spare was always available but with imperfect coverage
factor). In this case, two possible outcomes may happen: if a spare computer

3.1. ANALYTICAL MODELS 67

is available, the fault can be covered. If no spare is available, the system fails.
In table 3.6, which specifies all mentioned situations, these cases are guarded
by the statement if (cpus->Mark()==3).

Case Probability
1 if (cpus->Mark()==3)

return(CPU cov);

else

return (0.0);

2 if (cpus->Mark()==3)

return((1.0-CPU cov)*comp cov));

else

return(comp cov);

3 if (cpus->Mark()==3)

return(1.0-CPU cov)*(1.0-comp cov));

else

return (1.0-comp cov);

Table 3.6: Case probabilities for cpu failure activity

The input gate (Input Gate1) is used to determine if timed activity cpu fa−
ilure is enabled in the current marking and can complete. It can be enabled if
at least two working CPUs are available and no more than two memory modules
have failed, as well as if the overall system has not failed. This enabling predi-
cate is formally represented as cpus->Mark()>1)&&(memory failed->Mark()<2)
&& (computer failed->Mark()< num comp).

Finally, output gates OG1, OG2 and OG3 are used to determine the next
marking based on the current marking and the case chosen when cpu failure
completes. OG1 covers case 1, where CPU failure is successfully covered. In
this case, the number of operating CPU units is decremented. OG2 covers
case 2, where CPU failure is not covered, but the computer failure is covered.
Actions required in this case are to set the number of processors, I/O ports
and error-handling chips to zero, number of failed memory units to two (this
is the definition of a failed computer) and to increment the number of failed
computers. OG3 represents the system failure event, where same actions as in
OG2 are performed, with the exception that the number of failed computers is
set to total number of computers (definition of a total system failure). C++
rules for the output gates are given in Table 3.7.

Output gate Function
OG1 if (cpus->Mark()==3)

cpus->Mark()--;

OG2 cpus->Mark()=0;

ioports->Mark()=0;

errorhandlers->Mark()=0;

memory failed->Mark()=2;

computer failed->Mark()++;

OG3 cpus->Mark()=0;

ioports->Mark()=0;

errorhandlers->Mark()=0;

memory failed->Mark()=2;

computer failed->Mark()=num comp;

Table 3.7: Output gate functions

We give the remaining atomic models (I/O port, error-handler and mem-

68 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

ory module) without further discussion in Appendix A and concentrate on the
model solution here. Previously defined atomic models must, however, first be
composed into a system model. Note that this is not a hierarchical composi-
tion, such as the composition of combinatorial and non-combinatorial models
(Section 5.7 gives an example of the hierarchical composition of fault trees and
Markov chains), but plain composition of models at the same abstraction level
specified using the same formalism. SANs offer two primitives for model compo-
sition: replicate and join. The former creates a given number of atomic models,
while the latter joins state space and structure of more models into a single
representation. The composite model for this scenario is given in Figure 3.27.

Figure 3.27: Composed SAN model

To solve the model, a reward variable has to be defined next. We will
focus on reliability and determine system reliability for the variable mission
time parameter. The system is considered unreliable at time t if all num comp
computers have failed by that time, that is, if there are num comp tokens in
place computer failed. We define reward variable unreliability by specifying
its reward function for all submodels of the system (in this example, for all
computers):

if (cpu_module->computer_failed->Mark()) == num_comp)
{

return 1.0/num_comp;
}

Basically, reward of 1/num comp is accumulated once for each computer, or
a total of num comp times. This gives the total reward of 1. Hence, system
unreliability can be calculated as the mean of this reward variable.

SAN model can be solved analytically or using simulation. Analytical so-
lution can be obtained using any of the following existing methods: direct
steady-state solver which uses a numerically stable version of LU decomposition
[206]; iterative steady-state solver using successive over-relaxation and Jacobi
methods; Takashi steady-state solver [189] which is an instance of general class

3.1. ANALYTICAL MODELS 69

of iterative solvers called IAD (Iterative Aggregation/ Disaggregation) solvers;
deterministic iterative steady-state solver [182] which uses uniformization and
successive over-relaxation; advanced deterministic iterative steady-state solver
[139] which uses two-stage iterative method that takes advantage of the struc-
ture of the probability transition matrix of an embedded Markov chain; tran-
sient solver which calculates the mean and variance of each performability vari-
able for time points defined for the reward variable within the reward model;
accumulated reward solver which gives the expected accumulated reward, as
well as the expected time-averaged accumulated reward over the interval; adap-
tive transient solver which uses the same method as the transient solver, but
is more efficient for stiff models in which there are large (orders of magnitude)
differences in the rates of actions because it uses adaptive uniformization [210].

In this example we give results using the transient solver as well as discreet-
event simulation for experiments containing 1, 2 and 3 computers for estimating
reliability after 10 and 20 years of operation. Results are in Table 3.8.

time number of computers
1 2 3

unreliability
trans sim trans sim trans sim

10 0.1194 0.1263 0.1077 0.1073 0.1097∗ 0.1108
20 0.2079 0.2110 0.1218 0.1189 0.1102∗∗ 0.1161

Table 3.8: Solution of the SAN model using transient solver and simulation

Note that transient analysis for 3 computers (values marked with ∗ and ∗∗

in the table), require up to six hours of overnight (low server load) state space
generation on the Sun Fire server with two dual core Opteron CPUs running
virtualized Linux. This represents a serious issue when using analytical solving
of models which generate large state space.

3.1.7 Markov Reward Models

Complex SOA systems are sometimes gracefully degrading systems, that is,
they are able to survive the failure of one or more components without imme-
diately ceasing to operate. Instead they continue to provide a service, but at
reduced quality level. This may or may not be the consequence of inherent
fault-tolerance: for example, a system may still be working simply because of
the existing (unforseen) redundancy, or because the service in question does not
use the part of infrastructure which has failed. Such systems cannot be com-
pletely modeled using combinatorial and state-space approaches presented so
far. Instead, performability models are used to describe behavior of gracefully
degrading systems. One of the most commonly used models for this purpose is
the Markov reward model (MRM).

Let us motivate the need to discuss performability with a simple and intu-
itive example. Assume that we have a system of n processors placed in parallel
and m buffers connected in series. Obviously, reliability and availability of such
a system will increase as the number m is decreased. This is intuitively clear,

70 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

as adding more serial components increases the probability that one of them
will fail. If the processor failure rate is λ and the buffer failure rate is γ, the
analytical expression of the reliability function R(t) = (1 − (1 − e−λt)n)e−mγt

confirms the intuitive conclusion. If we use only this line of reasoning, we may
conclude that the optimal system configuration is that with minimal number
of buffers (minimal m). However, this will likely impact the throughput of the
system, as the processors will be idle while the buffers are full. In order to
increase the throughput, we would ideally like to incorporate as many buffers
as possible. This will, on the other hand, reduce system availability. Based on
this simple thought experiment it is clear that we need some way to capture
both aspects of system behavior within one model.

If a component of a gracefully degradable system (further: degradable sys-
tem) fails, the system will either reconfigure itself and continue operating in a
degraded state of operation with reduced capacity/performance, or will com-
pletely fail. A degradable system may have several reduced states between fully
operational and failed, and performance/capacity level is associated with each
state. Some degradable systems may allow for failed components to be repaired
on-line, while operating in a degraded state, thus returning the system into fully
functional state once repair is complete. The performance level of a degradable
system can therefore vary with time, both decreasing (failure) and increasing
(repair), as sketched in Figure 3.28.

Figure 3.28: Performance/capacity level of a degradable system in time

The measures of interest, that we may ask from the model describing such a
system, are: expected performance at time t including effects of failure, repair
and resource contention; time-averaged performance of the system in the inter-
val (0, t); probability that n jobs have been serviced by time t. Markov reward
model can answer these questions.

Definition of a Markov Reward Model

It is possible to construct a single Markov model which would incorporate both
structural variations (failure/reconfiguration/repair) as well as performance
level of the system under study (arrival/completion of jobs). However, such a
model would reach a prohibitive size very quickly. Also, due to different orders

3.1. ANALYTICAL MODELS 71

of magnitude between occurrence rates of performance- and reliability-related
events, analytical solutions are problematic (the problem is known as stiffness
of a model). It is therefore recommended to decompose performability model
into two parts: one to capture structural variations, which is the structure state
model, and one to capture performance, which is the reward model. Note that
by dividing a system model into two models, we actually introduce an approxi-
mation, because obviously, the speed with which a job is being serviced (part of
the reward model) will depend on the number of operating components provid-
ing a service (part of the structure state model). In other words, two models are
not really independent. However, because of the mentioned order of magnitude
difference between occurrence rates (e.g., performance rates in milliseconds or
seconds, reliability in hours, days, years), the performance measure will likely
reach a steady-state condition before any failure occurs. Decomposition into
two models is therefore an accepted procedure.

Decomposition is performed hierarchically: structure-state availability model
is constructed first and for each state a reward model is generated, which is
performance model within the stationary structural state. The overall measure
is then obtained by combining performance measures and state probabilities.
Markov reward model enables us to characterize each state of the system with
a reward index or rate, which denotes performance level in that state.

Formally, a Markov reward model comprises a continuous time Markov chain
X = {X(t), t ≥ 0} with a finite state space S and a reward function r where
r : S → <. X is described by its generator matrix Q and initial probability
vector π(0) as defined in Section 3.1.4. For each state i ∈ S, ri represents the
reward obtained per unit time spent by X in state i. We will assume that
the reward associated with a state describes performance level of a system in
that state. The value of reward can be negative, it denotes a loss instead of
gain then. This model is called a rate-based reward model because the system
produces work at a rate ri while in state i. There are also impulse-based reward
models in which there is an impulse reward r(i, j) associated with transition
from i to j. In those models, reward is accumulated instantaneously on state
transition. Both models (rate- and impulse-based) support time-dependent
rewards. Some formalisms and tools allow even to combine both models (e.g.,
stochastic activity networks, described in the previous section).

A Markov reward model can calculate three types of steady-state and tran-
sient measures: expected value of reward rate, expected accumulated reward,
and distribution of accumulated reward. The community still debates which of
those measures is strictly performability per definition, but that discussion is
outside of scope and we will briefly cover all three here.

The expected value of the reward rate is the average of all possible rate
values in all possible states. The steady state measure is defined as follows. Let
π = [π0, ..., πi, ...πn] be the vector of Markov chain state probabilities at steady
state. Let Z(t) = rX(t) be the system reward rate at time t. The expected
steady-state reward rate is then defined as:

E[Z] =
∑

i∈S

riπi

72 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Similarly, let π(t) = [π0(t), ..., πi(t), ..., πn(t)] be the vector of state proba-
bilities at time t. The expected instantaneous reward rate is defined as:

E[Z(t)] =
∑

i∈S

riπi(t)

Note that if we let ri be 1 for all operational states and 0 otherwise, the
equations given above transform into instantaneous and steady-state availabil-
ity, which conforms to the intuitive discussion from previous section.

The accumulated reward in the interval [0, t) is denoted by Y (t) and is
defined as:

Y (t) =
∫ t

0
Z(τ)dτ

If the system has perfect repair, that is, Markov process does not have ab-
sorbing states, limt→∞ Y (t) cannot be defined since Y (t) increases indefinitely.
This is because a system with perfect repair can accomplish any finite task,
given enough time of course. Therefore, another measure is often used, called
averaged cumulative reward W (t) = Y (t)/t.

An example Markov reward model, its corresponding stochastic process
X(t), expected value of the reward rate Z(t) and the expected accumulated
reward Y (t) are given in Figure 3.29.

Figure 3.29: Markov reward model, expected and accumulated reward

Finally, the distribution function of accumulated reward is defined by:

F (t, y) = P{Y (t) ≤ y}
The complementary distribution F c(t, y) = 1 − F (t, y) = P{Y (t) > y}

enables us to calculate probability that the system is able to achieve a given

3.1. ANALYTICAL MODELS 73

amount y of work during the interval [0, t). If t → ∞, distribution of the
accumulated reward can be defined only for a system with imperfect repair using
a well known method from [19]. The method is based on the transformation
of Markov chain into an equivalent one with the same state space, but with
new transition rate obtained by dividing the corresponding one of the original
chain by the reward rate of departing state. It can be shown that the limiting
distribution of Y (t) can be obtained then from the transient state probabilities
of the new chain. Computation of the distribution of accumulated reward over
a finite time is much more difficult, and some solutions can be found in [68],
[204].

The last issue to discuss before we show an example of Markov reward model
is how to assign rewards to states. There is neither straightforward answer
to this question nor universal models. There are some attempts to generate
reward models automatically (such as [60] and [102]), but that discussion is
out of scope. Instead we summarize some possible meanings of rewards in
standard practice and then give a concrete service performability example. As
a consequence however, we will not be able to derive performability models in
Chapter 5 automatically. The simplest case of reward assignment is to make
the reward rate a function of the state index. For example, if we assign a
reward rate 1 to all operational states, and 0 otherwise, then E[Z(t)] gives
instantaneous availability, E[Z] gives steady state availability and E[W (t)] gives
interval availability. This is a pure availability model. Assume further than we
have a 2 processor system with two memory modules and that we built a Markov
chain where states are described with ordered pairs (i, j), i is the number of
requests for the first memory module and j is the number of requests for the
second memory module. In other words in state (1,1) both requests can be
served in parallel, and in states (2,0) and (0,2) only one memory request per
cycle is possible. Let us assume that performance metric is the expected steady
state memory bandwidth, then we define a reward as the number of requests
processed in each state: r11 = 2 and r20 = r02 = 1. In other cases, where mix
of reliability/availability and performance is required, other metrics such as
the number of functioning units, throughput, response-time deadline violation
probability, or buffer loss probability are usually used.

Markov Reward Model Example

Let us assume that we have a Web-based system with two Web services which
receive user requests and three database servers which are then subsequently
queried. Web services work in parallel and the first free service accepts the user
request, and then uses one database server to produce an answer. The system
is considered operational as long as there is at least one Web service and one
database server operational. Web service and database server failure times are
exponentially distributed with parameters λS and λD respectively. This system
can be represented using Markov model given in Figure 3.30.

State (i, j) defines configuration with i functional Web services and j func-
tional database servers. Let us discuss a possible reward model that can be
associated with this Markov chain. The simplest case would be to assign re-

74 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Figure 3.30: Markov reward model

ward one to all functional states (32, 22, 12, 31, 21, 11) and zero otherwise.
However, we already showed that this results in simple reliability evaluation.
A more accurate measure would be to describe some capacity or ability of the
system to perform useful work. Let us assume further that database access is
costlier operation when compared with service computation. In other words,
database access is slower when compared with service invocation (note that we
observe a local system, that is, we do not take a network, such as the Internet,
into account). Even if we add more database servers, system usefulness will
still be limited by the time it takes to execute a query. Contrary, if we add
more Web services, the number of database servers limits the usefulness. The
simplest reward model would be to award each state with min{i, j} reward.
This model is optimistic, as it does not take into account contention between
services for database servers. If we consider that Web services may also com-
pete for database servers, the following classical reward proposed in [22] may
be used to describe the average number of busy servers:

ri,j = m(1− (1− 1
m

)l)

where l = min(i, j) and m = max(i, j). This will result in state (3,2) having
reward 15/9, state (2,2) having reward 3/2 and all other up-states having reward
1. If we solve this model in SHARPE for λS = 1/720 and λD = 1/1440, results
obtained in Figures 3.31 and 3.32 are obtained.

Note significant discrepancy between reliability and expected reward curves
in the interval approximately (0,1000), where the effect of rewards for states
(3,2) and (2,2) is obvious. Even after first database server has failed and the
system makes transition into (2,2), the reward is still bigger than one, compared
to reward of one in case that one service failed and the system is in (3,1). After
this, all rewards are equal to one, and the reward model quickly degenerates
into reliability model, which is also evident in Figure 3.31, because two curves
are afterwards almost fully overlapped. The cumulative expected reward, given
in Figure 3.32, demonstrates that cumulative expected reward grows until the
system fails. The mean time to failure is 1800 and can be calculated from the
reliability model (Markov chain).

3.2. QUALITATIVE MODELS 75

Figure 3.31: Comparison of transient expected reward and reliability

Figure 3.32: Expected cumulative reward

3.2 Qualitative Models

The main problem of analytical methods presented so far is the necessity to
parameterize model elements. In other words, even after an arbitrary com-
plex formal model has been structurally developed (e.g., combination of series
and parallel configurations in an RBD or a set of states and transitions in a
Markov chain), which corresponds to process or service description, it is nec-
essary to assign parameters to models elements. Parameters, such as failure
and repair rates as well as adequate distributions, can be in principle derived
using historical data (past system behavior) or based on measurements. When

76 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

neither is possible, qualitative methods are used. Usage of qualitative methods
to determine service and process availability is not the main focus of this work,
however, for reasons of completeness, we will briefly survey main qualitative
models which may be used to assess service availability.

Qualitative methods are based on reference models, which represent a meta-
concept (not formally defined as a metamodel in the MDA context, but with
similar semantics) that can be instantiated in different contexts and has the two
main attributes: generality and advisory/recommendation character. Because
of the second attribute, reference models are frequently called best-practice
models. If a reference model is intended for process management, it is called a
process model. When used in the assessment or compliance verification context,
they are also frequently referred to as maturity models. Input into process
models is usually structured in form of a questionnaire, which collects data
about enterprise assets and process properties. Based on answers, consultant
who is often backed up by a knowledge- or rule-based tool, makes an assessment
and assigns a property class to the observed process (e.g., availability class). In
most cases, however, availability is not explicitly modeled as a property, but
can be derived as one of the risk or threat attributes/factors. In the following
sections we will investigate most important process models for managing IT-
structures and IT-processes with respect to process and service availability.
More information about practical application of process models can be found
in Chapter 4, Section B.2 ”Qualitative and Process Management Tools”.

3.2.1 CMMI

Capability Maturity Model Integration (CMMI) [198] is a quality management
model intended for system and software development, proposed as an extension
of well known Capability Maturity Model (CMM) [161]. The model is divided
into CMMI for Services and CMMI for Acquisition. Only CMMI for Services
(further CMMI) will be discussed here.

The basic CMMI philosophy is similar to ISO 9000 standard, but the model
is not formally based on it because of relatively strong specialization towards
system and software development. The main purpose of CMMI is to assess
and improve quality of the product development process in organizations. This
is done by analyzing strengths and weaknesses of the production process with
the goal to suggest improvement measures. CMMI integrates in one process
model many assessment aspects that were previously parts of different and
incompatible models. This enables extension as well as integration of different
disciplines (e.g., hardware/software co-design). The primary focus of CMMI
is to suggest countermeasures for discovered weaknesses (e.g., security threat,
single point of failure, documentation), but it can also be used to verify and
certify the level of maturity with respect to some standard.

Process assessment with CMMI can be performed using a stepwise process,
where for each process area a maturity level can be assigned: incomplete, per-
formed, managed, defined, quantitatively managed and optimizing. CMMI sup-
ports 24 process areas: capacity and availability management, causal analysis
and resolution (CAR), configuration management, decision analysis and resolu-

3.2. QUALITATIVE MODELS 77

tion, integrated project management, incident resolution and prevention (IRP),
measurement and analysis, organizational innovation and deployment (OID),
organizational process definition, organizational process focus, organizational
process performance, organizational training, project monitoring and control
(PMC), project planning, process and product quality assurance, quantita-
tive project management (QPM), requirements management, risk management
(RSKM), supplier agreement management, service continuity (SCON), service
delivery, service system development, service system transition and strategic
service management.

Following process areas have been found to be relevant for availability as-
sessment: the CAR policy identifies and systematically addresses root causes of
defects and other problems; the IRP policy establishes an approach to incident
resolution and prevention, to identifying, controlling, and addressing incidents
and for selected incidents, determining workarounds or addressing underlying
causes; the OID policy identifies and deploys process and technology improve-
ments that contribute to meeting quality and process-performance objectives;
the PMC policy monitors performance against the project plan and manages
corrective action to closure when actual performance or results deviate signifi-
cantly from the plan; the QPM policy manages quantitatively the project using
quality and process-performance objectives and statistically manages selected
subprocesses within the projects defined process; the RSKM policy defines a risk
management strategy and identifies, analyzes, and mitigates risks; the SCON
policy establishes a service continuity plan that enables resumption of key ser-
vices following a significant disruption in service delivery, provides training in
the execution of the plan, and verifies and validates the plan.

As can be seen, not a single policy mentions availability explicitly, but
availability can be derived as an attribute of security or risk. Finally, SCON
defines disruption of service delivery, which is comparable to the notion of a
failure.

3.2.2 ITIL

ITIL (IT Infrastructure Library) [3] is a set of concepts and policies for man-
aging information technology (IT) infrastructure, development and operations.
Its development started in the 80s on the request of the British government by
Central Computer & Telecommunication Agency, as an answer to the growing
dependency and complexity of IT frameworks. Since 2000 it is being published
as a set of books, each of which covers specific IT management topic, by the
UK Office of Government Commerce.

ITIL2 comprises the following best-practice sets/policies: service delivery,
service support, ICT infrastructure management, security management, busi-
ness perspective, application management, and software asset management. Af-
ter ITIL2 has been criticized as too complex and confusing, ITIL3 reduced the
number of sets to service strategy, service design, service transition, service
operation and continual service improvement. The following ITIL subsets are
relevant for service availability: incident management, problem management,
service level management, and availability management.

78 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

The goal of incident management is to restore normal service operation
as quickly as possible and minimize the adverse effect on business operations,
thus ensuring that the best possible levels of service quality and availability
are maintained. Normal service operation is defined here as service operation
within Service Level Agreement (SLA) limits. The goal of problem management
is to resolve the root cause of incidents and thus to minimize the adverse impact
of incidents and problems on business that are caused by errors within the IT
infrastructure, and to prevent recurrence of incidents related to these errors. A
problem is an unknown underlying cause of one or more incidents, and a known
error is a problem that is successfully diagnosed and for which either a work-
around or a permanent resolution has been identified. Problem management
is different from incident management. The principal purpose of the problem
management is to find and resolve the root cause of a problem and prevention
of incidents; the purpose of incident management is to return the service to nor-
mal level as soon as possible, with smallest possible business impact. Service
level management provides for continual identification, monitoring and review
of the levels of IT services specified in the service level agreements (SLAs). It is
connected with availability management, capacity management, incident man-
agement and problem management to ensure that required levels and quality of
service are achieved. Finally, availability management allows organizations to
sustain IT service availability in order to support the business at a justifiable
cost. The high-level activities are: realize availability requirements, compile
availability plan, monitor availability, and monitor maintenance obligations.

ITIL departs from the traditional view that business availability can be ad-
equately represented as pure system component availability. The traditional IT
approach to measurement and reporting provides an indicator on IT availabil-
ity and component reliability which is important for the internal IT support
organization. However, to the business and particularly end-user, these mea-
sures fail to reflect availability from their perspective and are rarely understood.
This often fuels mistrust between the business and IT where despite periods of
instability the availability target has been met even though significant business
disruption has occurred and customer complaints have been received. Further-
more, this method of measurement and reporting can often hide the benefits
delivered to the business from IT improvements. Traditional IT availability
measures can simply mask real IT ”added value” to the business operation.
While traditional IT availability measurement and reporting methods can be
considered appropriate for internal IT reporting, disadvantages of this approach
are that they:

• fail to reflect IT availability as experienced by the business and the user

• can conceal service ”hot spots” whereby regular reporting shows the SLA
met, but the business and/or user is becoming increasingly dissatisfied
with the actually provided service

• do not easily support continuous improvement opportunities to drive im-
provements that can benefit the business and the user

3.2. QUALITATIVE MODELS 79

• can mask IT ”value add” where tangible benefits to the business and user
have been delivered but the method of measurement and reporting does
not make this visible

According to ITIL, availability, when measured and reported to reflect the
user experience, should provide a more representative view on overall IT service
quality. The user view of availability is influenced by three factors: frequency
of downtime, duration of downtime and scope of impact. Measurements and re-
porting of user availability should therefore embrace these factors. The method-
ology employed to reflect user availability could consider two approaches:

• Impact by user minutes lost: to base calculations on the duration of down-
time multiplied by the number of users impacted. This can be the basis
to report availability as lost user productivity or to calculate availability
percentage from a user perspective.

• Impact by business transaction: to base calculations on the number of
business transactions that could not be processed during the period of
downtime. This provides a better indication of business impact reflecting
differing transaction processing profiles across the time of day, week etc.
In many instances it may be the case that the user impact correlates to
a vital business function, e.g., if the user takes customer purchase orders
and a vital business function is customer sales. This single measure is the
basis to reflect impact to the business operation and user.

As can be seen, ITIL is much more concrete in availability treatment when
compared with CMMI. Furthermore, it introduces an important availability
aspect, user- or business-perceived availability, as opposed or rather comple-
mented by IT-infrastructure availability. This consideration is included into
our reference architecture model and availability definitions in Chapter 2.

3.2.3 CITIL

CMMI for IT Operations (CITIL = CMMI+ITIL) is the integration of ITIL into
series of CMMI models. CITIL supports organizations that operate IT systems.
The combination of ITIL and CMMI makes it possible to use CMMI’s best prac-
tices also for an IT operations organization. Moreover, this integrated model
covers the complete IT lifecycle with a common language and defined interfaces
between operations and development. To cover the complete lifecycle, CITIL
can be combined either with the CMMI for Development (CMMI-DEV)[59] or
with the CMMI for Acquisition (CMMI-ACQ)[83].

CMMI-ITIL defines typical development steps to improve IT operations and
their maturity levels. Through assessments, which are executed according to
the official CMMI processes, it can be determined how well an organization
executes practices of IT operations. As opposed to CMMI for Services, CMMI-
ITIL is not a new model, instead it is integration of the established ITIL in
CMMI with full conformity with ITIL and CMMI. In addition CMMI-ITIL
deals specifically with IT operations while CMMI for Services covers all types
of services and is therefore naturally much more general.

80 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Similarly to ITIL, following areas can be found to be relevant for availability
assessment: incident management, problem management, service level manage-
ment, and availability management. However, as already explained, ITIL is
constrained to IT-services only, making it more manageable.

3.2.4 ISO/IEC 15504 – SPICE

ISO/IEC 15504 also known as SPICE (Software Process Improvement and
Capability dEtermination)[209] is a framework for process assessment devel-
oped by the joint technical subcommittee between ISO and IEC (International
Electrotechnical Commission). ISO/IEC 15504 was initially derived from the
process lifecycle standard ISO 12207, and the ideas of many maturity models
like CMM.

ISO/IEC 15504 contains a reference model, which defines process dimension
and capability dimension. The process dimension defines processes divided into
the five categories: customer-supplier, engineering, supporting, management
and organization. The most interesting parts, namely IT service process and
enterprise process, are however still under development. For each process, a
capability level on the following scale is defined: optimizing, predictable, es-
tablished, managed, performed and incomplete. Capability of each process
is measured using process attributes: process performance, performance man-
agement, work product management, process definition, process deployment,
process measurement, process control, process innovation, process optimiza-
tion. Each process attribute consists of one or more generic practices, which
are further elaborated into practice indicators to aid assessment performance.

ISO/IEC 15504 is used in two contexts: process improvement or capability
determination. Applied to dependability, the first context is equivalent to fault
prevention, and the second to availability assessment. In the context of avail-
ability assessment, critical SPICE attributes are process performance, process
measurement and process control. Unfortunately, the standard is relatively
broad on these attributes, and no single process dimension accurately reflects
service availability requirements. It is to be expected that part 8 of the stan-
dard (IT Service Management Process Assessment Model), which is currently
in the ballot phase, will provide assessment criteria similar to those offered by
the CMMI for Services.

3.2.5 CobiT

CobiT [105] stands for Control Objectives for Information and related Technol-
ogy and is globally accepted framework for IT governance. It was introduced
by the Information Systems Audit and Control Association (ISACA) and the
IT Governance Institute (ITGI) in 1992. CobiT is constantly being revised and
regularly published. The current (March 2009) version is 4.1.

CobiT assists the management and business process owners in their under-
standing and managing of risks and benefits associated with IT and related tech-
nology. CobiT ensures that IT supports business goals of the company, that IT
investments are optimized, and that appropriate risk- and change-management

3.2. QUALITATIVE MODELS 81

procedures exist. It also helps bridge the gaps among business requirements,
control needs, and technical issues as a control model to meet the needs of IT
governance and ensure the integrity of information and information systems.

In availability context, an important role of CobiT is the provision of metrics
and maturity models to measure achievement of business and IT goals, evalu-
ation of IT performance as well as enabling identification of responsibilities of
business and IT process owners. The CobiT framework is subdivided into 4
domains and 34 processes. The four domains are the following:

• Plan and Organize. This domain refers to the strategy and tactics for IT
contribution and the way that IT meets business objectives.

• Acquire and Implement. This domain deals with the realization of the
IT and more precise with how solutions are being identified, developed,
acquired or implemented, as well as how these solutions are integrated
into business processes and systems are changed and maintained.

• Deliver and Support. This domain covers the actual delivery of required
services, and in particular management of security and continuity, service
support for users, and management of data and operational services.

• Monitor and Evaluate. Performance management, monitoring of internal
control, regulatory compliance and governance are treated in this domain.

The CobiT framework is measurement-driven, which means that it provides
models and metrics that enable evaluation of achievement of certain goals. Each
of 34 processes can be rated from the maturity level of non existent (0) to
optimized (5). Specifically, following criteria are relevant in the context of this
work: confidentiality, availability, integrity, and reliability. Maturity levels are
not meant to be used as a threshold model in the sense that one cannot move to
the next level before having met all conditions of the previous level. Therefore,
it can occur that parts of one process are assigned to different maturity levels
as they fulfill requirements of different maturity levels. The CobiT framework
document provides descriptions of different maturity levels for each process,
naming specific actions and resulting states that characterize a process in the
corresponding maturity level. Even though the descriptions are process-specific,
there are common characteristics in maturity levels across processes.

Based on the exemplary CobiT evaluation performed within a student project
[25], we identified the following concrete CobitT processes as relevant for avail-
ability assessment: PO1 (Define a Strategic IT Plan and direction), PO2 (Define
the Information Architecture), PO3 (Determine Technological Direction), PO4
(Define the IT Processes, Organization and Relationships), PO5 (Manage the
IT Investment), PO6 (Communicate Management Aims and Direction), PO7
(Manage IT Human Resources), PO8 (Manage Quality), PO9 (Assess and Man-
age IT Risks), ME1 (Monitor and Evaluate IT Processes), DS1 (Define and
Manage Service Levels), DS2 (Manage Third-party Services), DS3 (Manage
Performance and Capacity), DS4 (Ensure Continuous Service), DS5 (Ensure
Systems Security), DS6 (Identify and Allocate Costs), DS7 (Educate and Train
Users) and DS12 (Manage the Physical Environment).

82 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

During the assessment we also experienced significant difficulties in obtain-
ing unanimous assignment of maturity levels, as this process is still very sub-
jective and depends on the consultant performing the assessment, as well as on
the willingness and interest of interviewed personnel to answer the questionnaire
correctly and in-depth.

3.2.6 MOF

Microsoft Operations Framework (MOF)[144] consists of integrated best prac-
tices, principles, and activities that provide guidelines for achieving reliability
for IT solutions and services. MOF provides question-based guidance that al-
lows to determine current organization requirements, as well as plan and assess
the future activities.

The guidance in Microsoft Operations Framework encompasses all activities
and processes involved in managing an IT service: its conception, development,
operation, maintenance, and ultimately its retirement. MOF organizes these
activities and processes into service management functions (SMF), which are
grouped together in phases that mirror the IT service lifecycle. Each SMF
is anchored within a lifecycle phase and contains a unique set of goals and
outcomes supporting objectives of that phase. An IT services readiness to
move from one phase to the next is confirmed by management reviews, which
ensure that goals are achieved in appropriate fashion and that IT goals are
aligned with the organization’s goals.

The IT service lifecycle is composed of three ongoing phases and one foun-
dational layer that operates throughout all other phases: plan phase, deliver
phase, operate phase and the manage layer.

Reliability SMF belongs to the plan phase of the MOF IT service lifecycle.
It addresses creating plans for following attributes: confidentiality, integrity,
availability, continuity and capacity. Ensuring reliability involves three high-
level processes:

• Planning: gathering and translating business requirements into IT mea-
sures

• Implementation: building of various plans and ensuring that they can
meet expectations

• Monitoring and improvement: proactively monitoring and managing the
plans and making necessary adjustments

Reliability is naturally connected with the business/IT alignment, therefore
many outputs of reliability SMF, such as availability plan, capacity plan, data
security plan, and monitoring plan, provide input for the activities described
in the business/IT alignment SMF. Basic outcomes of reliability SMF are that
IT capacity is aligned to business needs, services are available to users when
needed, critical business services are available even during significant failures,
and data integrity and confidentiality maintained.

In the planning phase, service reliability requirements are defined. For this
purpose projected SLAs, regulations and laws, internal policies, risk and impact

3.2. QUALITATIVE MODELS 83

analysis, future change plans, projected operating level agreements, service de-
pendencies and reliability parameters of each service are used. Based on this
input, SLA is defined in terms of hours of operation, maintenance windows,
recoverability time frames, continuity requirements, etc., as well as data clas-
sification and corresponding data handling policy, service priority and growth
plans. After taking into consideration service map, historical information, tech-
nical information and operating guides, a comprehensive reliability specification
model and templates are generated as the final output of this phase.

In the implementation phase, reliability management involves following ac-
tivities:

• Developing various plans: availability, capacity, data security, disaster
recovery, monitoring

• Reviewing and adjusting plans for suitability before approving them

Finally, the third process of reliability management is monitoring and im-
proving plans, an ongoing procedure that ensures that the first two processes
have been followed, that metrics are reported on, that exceptions to targets are
tracked, and that improvements are fed back into the plan phase. Proper moni-
toring ensures that either the original objectives are being achieved or steps are
being taken to improve reliability or adjust business expectations. This process
includes following activities:

• Monitor service reliability

• Report and analyze trends in service reliability

• Review reliability

Monitoring activity uses a monitoring plan and data feeds to produce relia-
bility specific metrics and management dashboard. They are used together
with service availability reports, MTTR reports, problem management reports
and original business SLAs to report and analyze reliability trends in form of
reliability reports and recommendations for improvement or technical evalua-
tion, requirement review, improved or reduced service level commitments. The
last phase of reliability management is the business review (how trend data af-
fect SLAs), generation of prioritized and lists of improvement recommendations
and RFCs to implement improvement activities and data storage for subsequent
trend analysis.

3.2.7 MITO

Maturity Model for IT Operations (MITO) [180] has been developed by the
Swiss Association for Quality Promotion (SAQ SG). Its goal it similar to CITIL,
namely, to provide process management and maturity model for IT operations
only, excluding other process types. It is also partially derived from ITIL. MITO
divides IT operations into five process classes: customer services, engineering
services, management services, strategic services and internal services.

84 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

We will discuss only those processes and sub-processes that are directly
related to service availability assessment. In the customer services group, pro-
viding services represent the actual production, that is, running programs or
making backups. Issue management treats incident reports, based on the mon-
itoring service provision which observes and measures service provision in order
to prevent failures or to raise issues for the issue management if a failure could
not have been prevented. Security of provided services has similar role, focused
on security instead on fault-tolerance.

The required infrastructure and services provided on that infrastructure
are developed and managed by engineering services. Problem management
process supports management of reported incidents, together with the incident
processing. The configuration management controls modification of the hard-
ware and/or software configuration as a results of the incident.

The first two groups of processes are rather technical. Management services
control both processes with the focus on the SLA management. The purpose
of process management of service level agreements is to listen to the customers
and monitor service provisioning. It takes care of needs and requirements of
the customers as well as of assignment of services contracted in SLAs to differ-
ent service centers, with the goal to fulfill and guarantee the contracted SLA.
Resources of each service center are managed by the management of operation
level agreements (OLA) process. It provides input for the forecast, capacity
and service planning, whose goal is to ensure the necessary infrastructure and
resources which will meet both SLA and OLA.

Finally, the internal services process provides measurement and evaluation.
All required inputs for the SLA determination are provided by the service level
controlling process which also indicates to the management of SLA eventual
deviations from requirements. Measurements are carried out on the level of
OLA and combined for the SLA.

MITO defines five levels of maturity: stochastic, repeatable, tracked, mea-
sured, optimized. The maturity level is determined by the assessment of all
processes. To every process, one of the following quality stages is assigned: in-
tuitive, planned, applied, analysed and controlled. Then, process quality stages
are mapped to maturity levels.

3.2.8 ISO/IEC 27002

ISO/IEC 27002 standard, renumerated from ISO/IEC 17799 on which CobiT
is based in 2007, is the information security standard published jointly by the
ISO and the International Electrotechnical Commission (IEC). Its full name is
Information technology - Security techniques - Code of practice for information
security management, and it represents an evolution of the British Standard BS-
7799. ISO/IEC 27002 provides best practice recommendations on information
security management for initiating, implementing or maintaining information
security management systems (ISMS). Information security is defined within
the standard as preservation of confidentiality (ensuring that information is ac-
cessible only to those authorized to have access), integrity (safeguarding the
accuracy and completeness of information and processing methods) and avail-

3.2. QUALITATIVE MODELS 85

ability (ensuring that authorized users have access to information and associated
assets when required).

The standard defines following main processes: risk assessment, security pol-
icy, organization of information security, asset management, human resources
security, physical and environmental security, communications and operations
management, access control, information systems acquisition, development and
maintenance, information security incident management, business continuity
management and compliance.

Within each section, information security controls and their objectives are
specified and outlined. The information security controls are generally regarded
as best practice means of achieving those objectives. For each control, imple-
mentation guidance is provided.

3.2.9 ISO 12207/IEEE 12207

ISO 12207 is the standard for software lifecycle processes. It defines all tasks
required for developing and maintaining software. It establishes a software life-
cycle process, including processes and activities applied during the acquisition
and configuration of system services. Each process has a set of outcomes associ-
ated with it. There are 23 processes, 95 activities, 325 tasks and 224 outcomes.

The main objective of the standard is supplying a common structure so
that the buyers, suppliers, developers, maintainers, operators, managers and
technicians involved with software development use a common language. This
common language is established in the form of well defined processes. The
structure of the standard was intended to be conceived in a flexible, modular
way so as to be adaptable to the necessities of whoever uses it. The standard
is based on two basic principles: modularity and responsibility. Modularity
means processes with minimum coupling and maximum cohesion. Responsibil-
ity means to establish responsibility for each process, facilitating application of
the standard in projects where many people can be legally involved.

The set of processes, activities and tasks can be adapted according to the
software project. These processes are classified in three types: basic, support
and organizational. The support and organizational processes must exist inde-
pendently of the organization and the project being executed. Basic processes
are instantiated according to the situation.

The standard itself is part of many frameworks and other standards, such
as Rational Unified Process (RUP) or IEEE 12207. The latter is a standard
that establishes a common framework for software life cycle process. It defines
a set of processes, which are in turn defined in terms of activities. The activities
are broken down into a set of tasks. The processes are defined in three broad
categories primary life cycle processes, supporting life cycle processes and or-
ganizational life cycle processes. This structure closely mirrors ISO 12207. The
primary life cycle processes are acquisition, supply, development, operation and
maintenance. The supporting life cycle processes are audit, configuration man-
agement, joint review, documentation, quality assurance, problem solving, ver-
ification and validation. Finally, the organizational processes are management,
infrastructure, improvement and training. Several sub-processes are relevant for

86 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

availability assessment, namely operation and maintenance (primary life cycle,
ICT infrastructure level), audit, configuration management, quality assurance,
problem solving, verification and validation (supporting life cycle), and finally
the infrastructure process (organizational).

3.2.10 Relationships between Maturity Models in the Avail-
ability Context

It can be summarized that reference models and IT standards cover three broad
aspects of IT organization and corresponding life cycle: IT management, IT
development and IT operations.

Further, each aspect can be focused on:

• Process definition: best-practice recommendation on optimal process iden-
tification and specification.

• Process requirements: systematic assessment procedure, usually described
as asset description and evaluation, which results in the categorization
into ”compliant” or ”non-compliant” group.

• Process improvement: system oriented process, offers suggestions, ac-
tions and countermeasures to improve critical process aspects, parts or
attributes.

The coverage of described reference models is given in Figure 3.33 (this Fig-
ure, as well as Figure 3.34, is adapted from [88]). CobiT provides assessment
for all aspects, but focuses mostly on process requirements. ITIL on the other
hand, plays the role of a framework which integrates other standards (e.g., ISO
12207 and ISO 27002) whose focus are IT-operations and IT-development. It
does not cover IT-management, but it references CobiT for that purpose (see
Figure 3.34). ITIL also references CMMI for the purpose of process require-
ments and improvement. CobiT is explicitly based (references) on ISO 27002,
but also extends its IT-management capabilities. ITIL and MOF are partially
based on ISO 12207. While CobiT is attempting to cover the aspect dimension
as completely as possible, MOF attempts to cover the focus in its entire scope.

Figure 3.34 depicts dependencies between reference/maturity models and
standards. It is obvious that ITIL and CMM influence most of the other mod-
els, as all of them use parts of ITIL and/or CMM. This is partially the conse-
quence of historical development of maturity models. The ordering of shapes in
Figure 3.34 tries to illustrate this, as the time axis (not shown) is approximately
vertical, with time increasing in the downwards direction.

Figure 3.34 also explains why ITIL or CobiT certification is not possible.
Both are not standards, but collections of best practices based on standards such
as ISO 27002 or ISO 12207. Therefore, only certain generic but standardized
reference model aspects can be certified under ITIL or CobiT. This is not true
only for ITIL and CobiT, but for most of the other maturity models (e.g.,
CMMI is based partly on ISO 9001, which is not shown here). Due to deep
interconnections, most of them also provide compatible availability assessment

3.2. QUALITATIVE MODELS 87

mechanisms using key performance indicators (KPI) and key goal indicators
(KGI), such as those described for each model in the previous sections.

Figure 3.33: Coverage of reference/maturity models and standards

Figure 3.34: Dependencies of reference/maturity models and standards

88 CHAPTER 3. AVAILABILITY AND PERFORMABILITY MODELS

Chapter 4

Tools for Availability
Assessment

In this chapter, the most important tools for availability assessment will be
compared. They will be divided in following groups: quantitative tools (ana-
lytic and simulation; benchmarking), qualitative tools (risk assessment; process
management) and hybrid tools that use both qualitative and quantitative meth-
ods for availability assessment. Interoperability and general usability of all tools
will be discussed. The historical perspective of availability assessment tool de-
velopment is given in Figures 4.2 and 4.3. Finally, summary of the survey
results is given in Table 4.1. Detailed information about all surveyed tools can
be found in Appendix B. To enable quick reference, for each tool in Table 4.1, a
page number reference to Appendix B is given, where complete tool description
can be found.

All tools were investigated as well as described in detail in Appendix B
following this structure:

• Source/Reference: available material about the tool, including scientific
papers, documentation, standards, manuals and Web resources.

• Project status: describes the status of the tool development, indicating
whether there is continuous support for the tool.

• License type: lists all known license types, including commercial, acad-
emic, test and evaluation.

• General purpose: short overview of the main functions, supported models
and solution methods and outputs.

• Platform: lists available platforms that are supported by the tool. Addi-
tional infrastructure requirements (e.g., a database in the background for
persistence or an office suite for report generation) are also listed.

• Model:

– Model class: associates the tool with one (or more) classes: quantita-
tive (analytical, simulation, benchmarking) or qualitative. The level

89

90 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

at which the tool operates is also listed (IT-infrastructure, service or
process).

– Model types: lists the model types supported by the tool (e.g.,
Markov chain, Petri net, questionnaire, workflow, etc.).

– Model description: short overview of the model used by the tool and
its properties.

– Systems modeled: describes which system classes can be modeled
using the tool (e.g., repairable systems, computer networks, software,
etc.).

– Model input: lists required model inputs (e.g., graph vertices and
edges, failure modes, etc.).

– Model output: results of the model analysis (e.g., availability met-
rics, MTTF, MTTR, etc.).

– Interfaces: describes technical interfaces of a tool:

∗ Input interfaces: lists available input mechanisms of a tool.
∗ Output interfaces: lists available methods for output and report

generation/export.

• Use cases: lists known use cases where the tool has been applied for
availability analysis.

• Assumptions and restrictions: lists possible factors that influence the tool
exploitation, such as scalability, speed or security.

The content of this chapter represents the continuation of the study reported
in [112] as well as [138].

4.1 Quantitative Tools

The general purpose of quantitative tools is to perform quantifiable availability
assessment of the target system, through rigorous modeling, and to solve the
model using analytical methods or simulation. A separate group are bench-
marking tools, which use on-line empirical methods to determine the quantifi-
able amount of system’s availability through evaluation of predefined availabil-
ity indicators.

4.1.1 Analytical and Simulation Tools

Design and implementation of analytical and simulation tools is relatively stream-
lined in terms of input and output, as most of them are based on the concepts
pioneered by various academic tools developed in the 70s and 80s (e.g., ARIES,
GRAMP/GRAMS, SURF, METASAN, HARP etc.). The common property
linking them is strong support for the static, off-line, formal modeling of fault
tolerant systems. For that purpose, a variety of methods and models are sup-
ported, such as Markov chains, Petri nets, reliability block diagrams, fault trees,
stochastic activity networks, etc. Almost all tools support at least one of these

4.1. QUANTITATIVE TOOLS 91

standard models. The tool output is also more or less similar, covering vari-
ous steady-state and transient availability, reliability and performability metrics
(these are detailed in descriptions of the respective tools).

Among the tools surveyed in this category, the following were found to be
relevant for further consideration in the context of service and business process
availability assessment: Isograph Toolbox (FaultTree+, AvSim+, Reliability
Workbench, NAP, AttackTree+), METFAC, Möbius, OpenSesame, Reliass,
Sharpe 2002, SPNP, Figaro, BQR and Mathworks Stateflow.

IsoGraph and Sharpe 2002 are powerful toolboxes that combine many mod-
els within one framework. However, models cannot be interchanged, that is,
model transformation has to be performed manually. IsoGraph also offers rudi-
mentary failure prediction, which is static and based on predefined failure rate
data and protocols, primarily for the electrical/electronic devices. Furthermore,
it explicitly supports modeling of communication networks and attacks, which
is possible only implicitly with Sharpe 2002. Sharpe 2002 is closely coupled
with SPNP, which is a Petri net-based tools offering various reward models.
Together, they form a coherent platform that can be compared to IsoGraph
in complexity and power. Both offer analytical and simulation (Monte Carlo)
solving methods. It should be further mentioned that IsoGraph is a commercial
tool, while Sharpe 2002 and SPNP are academic efforts. METFAC is another
example of a successful academic project, which is, however, limited to Markov
models only, and as such cannot be considered equal in expressive modeling
power to IsoGraph or Sharpe/SPNP combination.

Möbius is another successful academic tool which combines different models
(e.g., stochastic queues, Petri nets, fault trees etc.). The difference when com-
pared to IsoGraph and Sharpe is that Möbius allows different problem aspects
to be described using different models that can be integrated and combined. It
also solves the models using analytical and simulation techniques. The issue
of model combination is very important reference point for our further study.
In the following chapter, the model integration idea will be examined in more
detail.

OpenSesame tool is based on limited model transformation capabilities,
namely, reliability block diagram is given as input, and it is then internally
transformed into a stochastic Petri net. While this process is admittedly au-
tomatized, it does not allow to model different problem domains using different
models.

Reliass is another example of an integrated product where availability as-
sessment is not the only (or primary) target. This tool consists of the number
of modules, but only some of them enable modeling of fault-tolerant systems
using reliability block diagrams and Markov models. Other modules use this
(limited) availability information to perform other tasks, such as management
and various kinds of vulnerability analysis. This approach is very similar to the
approach that qualitative-based tools have in the area of process management
and optimization. Reliass however, concentrates only on the IT infrastructure
level, and not on the process/service level.

BQR Care tool is part of the larger toolbox, and specializes in Failure Mode,
Effects and Criticality Analysis (FMEA/CA), as well as fault tree and reliability

92 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

block diagram analysis. Criticality analysis is limited to the IT level, actually
only to predefined libraries of electronics and mechatronics (electro-mechanical)
parts.

In this context, Mathworks Stateflow is positioned as a general purpose
simulation environment that can be used for modeling and simulation of fault-
tolerant systems. It does not offer any availability-specific extensions, but
availability-relevant metrics can be simulated using statecharts, finite state ma-
chines or temporal logic. Stateflow simulator is very capable and advanced with
respect to the number of states, complexity, speed, and solution quality, when
compared with simulators offered by other tools.

Finally, the last relevant tool in this group is FIGARO, which offers a novel
modeling approach: the observed system is modeled using abstract object-
oriented FIGARO language, which is then transferred into the model that best
fits the given description (e.g., Petri net, Markov model, reliability block dia-
gram, or fault tree). This process is based on the knowledge/rule base and is
completely transparent to the user. FIGARO is coupled with KB3 Workbench,
which accepts models generated from FIGARO language and then solves them
(analytically or using simulation methods). This approach is very important
as it does not require intimate knowledge of complex modeling languages and
formalisms. Instead, it is enough to understand the FIGARO description lan-
guage.

Analytic and simulation tools offer very powerful mechanisms for modeling
availability properties of fault-tolerant systems. The major issues that were
discovered during this study are:

• Scalability : managing and solving increasing number of states in a sta-
tic modeling procedure is highly problematic. It is not only the issue
of performance and resources (although this can also be a limiting fac-
tor), but of manageability and involvement of the human factor. As the
hardware/software systems grow, it is simply unrealistic to expect that
classical modeling approach, where each system element has to be indi-
vidually modeled and described, can be effectively scaled. Even with the
use of modern graphical user interfaces that most of the tools provide,
it is very difficult to develop and maintain models that are comparable
in scale to the real-world problems. This problem is only exacerbated in
SOA systems, which are characterized by rapid changes and fast-paced
dynamics.

• Steady-state metrics: most of the tools offer only metrics that are based
on ”off-line” modeling methods, which means that model elements are pa-
rameterized using historical/statistical data. As such, models of complex
IT systems tend to be either too simple or too imprecise. The value of
availability assessment data obtained in that way is highly questionable.

• Knowledge required : all tools (except FIGARO) require very detailed
and high-level, professional knowledge of modeling methods (e.g., Markov
chains, Petri nets, finite state machines, etc.). This proves to be a barrier

4.1. QUANTITATIVE TOOLS 93

for widespread utilization and industry penetration (with the exception
of mission critical systems).

• Model integration: available models are very rich, but mostly separated.
It is frequently impossible (with the exception of Möbius) to model each
problem domain using a separate modeling method and to integrate all
models thus obtained. Even Möbius does not allow for hierarchical, but
only flat model composition.

• Abstraction level : all mentioned tools are very technically- and IT-oriented.
None of them explicitly provides capabilities or facilitates availability
modeling and assessment at the business process/service level.

• Purpose: The tools were created primarily for the purpose of system
development: their goal is to give insight into the future behavior of the
system. If they are to be used for availability evaluation of the existing
systems, reverse engineering must be performed to build system models.
None is capable of automatic/semi-automatic model generation from an
existing system description.

4.1.2 Benchmarking Tools

Contrary to off-line, static modeling tools, benchmarking tools perform on-line
analysis of system availability using empirical and test-based process. The goal
of this part of the survey was to discover those tools that explicitly support
quantifiable availability measurements, as opposed to static, off-line modeling
of system availability. The relevant tools identified in this category are: Eclipse
Test and Performance Tools Platform (TPTP), Exaustif, FAIL-FCI, Networked
Fault Tolerance and Performance Evaluator (NFTAPE), and Quake.

Eclipse TPTP is by far the most complex tool in this group. However, it is
not explicitly oriented to availability assessment and measurement. Instead, it
provides a generic framework within which measurement- and test-based tools
can be further developed. Even so, native TPTP services, such as testing, trac-
ing, profiling and monitoring, can be utilized to evaluate availability attributes
of complex software systems. Eclipse TPTP does not support development of
tools for hardware or service-level availability assessment. Another important
feature of Eclipse TPTP in the context of our study is the support for software
instrumentation.

Other tools categorized in this group are based on failure injection and
measurement of its effects. In that way, they directly support empirical avail-
ability assessment. Exaustif is based on software implemented failure injection,
where failures are injected into the system during various development phases
to determine its availability and reliability. Being a black-box approach, this
method is currently available in very controlled conditions only, namely for
RTEMS/ERC32 and RTEMS/Intel (which are special purpose real-time oper-
ating systems for multiprocessor systems). FAIL-FCI is used to inject failures
into grid systems. Failures are described using special FAIL language, which is

94 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

then translated to the C++ code, compiled, deployed and executed on differ-
ent grid nodes. That way, different outages can be simulated and their impact
to the overall grid availability measured. General methodology (e.g., for fine
grained systems) does not exist. NFTAPE is similar in conception, only geared
to communication networks. Finally, Quake injects failures into Web Service
systems and enables on-line measurements of outages, load or integrity.

The following conclusions can be reached about the potential usage of bench-
marking tools for service availability assessment:

• Tools are either very broad and of general purpose (e.g., Eclipse TPTP
platform), or very narrow in scope (e.g., communication networks or real
time operating systems). To our best knowledge, there is no general
purpose availability-measurement/benchmarking on-line tool, which can
be applied to assessing service-level availability.

• The tools we identified are the only on-line methods for availability assess-
ment that have been discovered, and they are all based on failure injection
methods. Failure descriptions have to be prepared in advance and used
as input for the benchmarking system. There is no possibility to select
relevant variables of a black box automatically and infer availability infor-
mation using the parameterized model. No variable (parameter) selection
procedure (method) is offered either. That means that very intimate
system knowledge is required in advance in order to specify meaningful
failure descriptions. This seriously limits tool applicability for dynamic
SOA systems.

4.2 Qualitative Tools

Tools that are based on qualitative methods use descriptive, tabular and dis-
crete evaluation techniques (such as audits, log files, interviews, questionnaires,
implementation templates, etc.) to assess system availability. They can be
coarsely divided into two subgroups: tools for risk management and for process
management.

4.2.1 Risk Management Tools

Tools for risk management evaluate risk at the process level using qualitative
methods. The relevant tools that were discovered are: ClearPriority, Secura
17799, COBRA, CounterMeasures, CRAMM, EBIOS, GSTOOL, ISAMM, OC-
TAVE, PILAR, PROTEUS, RA2 and RiskWatch. Most of them are based on
international standards for risk management, such as ISO-27002 (formerly ISO-
17799), ISO 27001, US-NIST-800-26-Standards, or COBIT-4.0. These tools use
multi-phase process model, where the context is modeled first as a pre-condition
(e.g., process description, available assets), then availability or security threats
are given, followed by additional threat analysis. After this step, the ranking
is usually performed, followed by risk management recommendation. Possible
options in this step are risk reduction through restructuring, or risk transfer.

4.2. QUALITATIVE TOOLS 95

The process is terminated by consolidation of the IT-security concept. For all
tools that were investigated, the following can be summarized:

• Availability is not explicitly mentioned as risk property, part of the risk
or risk consequence.

• All tools are exclusively qualitative, and based on various tabular struc-
tures filled by informal description methods. The running system is never
explicitly modeled and data monitoring/collection systems are not used.

• All proposed recommendations for risk mitigation/availability improve-
ment remain in the area of general and informal design templates and
patterns.

• Interpretation of the analysis results is highly questionable and depends
heavily on the consultant performing the assessment.

4.2.2 Process Management Tools

Process management tools are complex software systems that are used to gov-
ern, maintain and optimize hardware and software infrastructures deployed
within a given context. To do so, they use a mixture of formal and informal
methodologies, such as workflow modeling on one side, and metadata reposito-
ries or threat/incident analysis on the other side. However, when dealing with
availability, majority of methods that are used are pure qualitative methods,
therefore these tools are classified in the qualitative group. Partial exception
is HP Mercury, which allows for explicit runtime availability monitoring, and
can therefore be also classified in the on-line benchmarking group. The ex-
emplary tools in this group are: HP Mercury, Software AG CentraSite, Fujitsu
Interstage Process Manager, IBM Tivoli Availability Process Manager and IBM
High Availability Services.

HP Mercury, Interstage Process Manager and IBM Tivoli Availability Process
Manager are environments with the similar goal: to offer complete management
of the business process level from the governance and optimization perspective.
They cover the entire process lifecycle: process modeling, integration, automa-
tion, deployment, management, maintenance and optimization. All tools offer
standard connection between business process and IT-level, by analysing avail-
ability, risk and security parameters at the business process-level and transfer-
ring results into optimal investments into IT-infrastructure elements. The tools
differ in the way business process is described and annotated. Interstage uses
formal description methods known from the theory of business process modeling
(e.g., Business Process Modeling Notation), whereas IBM Tivoli uses Compo-
nent Failure Impact Analysis (CFIA) and availability (incident) management,
as specified by ITIL. HP Mercury integrates repository model (configuration
management database) with ITIL guidelines and workflow management and
enactment engine. However, as IBM Tivoli is not meant to be used alone,
but rather together with a suite of IBM process management tools (including a
workflow enactment engine such as one included into Websphere), it can be said

96 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

that both tools exhibit similar capabilities and are of comparable complexity.
The same holds for Mercury, which was recently acquired by HP and positioned
within a range of HP process management tools (HP OpenView).

It is obvious that, in order to use any of these tools, very complex supporting
infrastructure has to be in place, usually offered by the same company. This
is not the case with IBM High Availability Services, which is not a product
but a consulting service. It is mentioned here as example of a pure quali-
tative availability evaluation at the following levels of abstraction: business,
data and event. This service analyses threats at the afore mentioned levels us-
ing questionnaire-based qualitative methodology and proposes optimizations to
improve availability or security. More details are given in the tool description.

CentraSite differs from previously mentioned tools and services, as it rep-
resents an open framework for development of SOA governance solutions. No
additional infrastructure is necessary, apart from the CentraSite-compliant di-
rectory. The idea behind this multi-vendor initiative is to eliminate the risk of
a vendor lock-in, by providing an open, Web service-based infrastructure for
process and service description. CentraSite builds on the idea of an open repos-
itory by defining procedures for policies, change control, dependency analysis,
monitoring and reporting at both process- and IT-level. It is based on the qual-
itative analysis that has foundations in semantically enriched service directory.
Several tools are available that are based on the CentraSite architecture, which
optimize process availability (e.g., Interstage Process Manager).

Following are the summarized results of the above analysis:

• Process management tools are complex and require dedicated investments
into management and governance infrastructure (except in case of Centr-
aSite which is free and open, but still requires significant know-how).

• All tools connect the business layer with the IT layer, however, this con-
nection is difficult to reuse and/or export, as it is based on proprietary
tools/protocols and not on open standards (e.g., SOAP/ WSDL). Again,
CentraSite is an exception of this claim.

• Qualitative methodologies and processes used are usually ITIL-compliant,
although this is not always clearly documented or obvious.

• Basic idea of process managers is the definition of key performance indica-
tors (KPI). Availability can be supported as one KPI, but there is seldom
explicit support for it. Usually, performance metrics (such as transaction
throughput) are supported by default.

• Process models are segmented (e.g., Tivoli uses proprietary Tivoli Unified
Process), therefore tools are not mutually interoperable.

4.3 Hybrid Tools

Hybrid tools combine quantitative and qualitative methodologies for the pur-
pose of availability assessment. Relevant examples that offer this kind of analy-

4.4. INTEROPERABILITY AND USABILITY 97

sis are: Relex Reliability Studio, Reliability Center Proact and LEAP, Reliasoft
and PENPET.

Relex Reliability Studio combines Markov models and reliability block di-
agrams (quantitative) with risk and criticality analysis (qualitative) in order
to perform failure impact analysis. However, while it is possible to connect
two quantitative methods (e.g., Markov chain and RBD) and two qualitative
methods (criticality matrix and risk assessment calculation), connection be-
tween qualitative and quantitative methodologies is not possible. For example,
a Markov model cannot be associated with a workflow.

Reliability Center Proact and LEAP tools are two separate tools sold in
one package. Proact performs root-cause-analysis, which is the quantitative
method, while LEAP performs FMEA and opportunity analysis, which is the
qualitative method. This tool actually enables connection between two models
where LEAP can give ranking of unwanted events/results for the process de-
scribed with Proact. This support is, however, limited to given results and is
not general.

Reliasoft also claims to cover both qualitative and quantitative methods,
but in reality the support is very rudimentary. Free-text descriptions coming
from FMEA/FMECA analysis can be transformed (manually) into a flow chart
model, which can be simulated using logical gates and memory.

PENPET is a tool that offers novel, chemistry-inspired modeling approach.
The basic idea is to describe high level models as clusters of low level models.
High-level properties are analysed qualitatively while low level properties are
analysed quantitatively. For high level description, so called structural formulas
are used (macromolecules). Smaller units (molecules or atoms) are described
using generalized stochastic Petri nets. For molecules or atoms, failure rates
or failure coverage are modeled in details, while macromolecules are described
as qualitative combinations of atoms or molecules. Petri nets are transformed
into Markov chains during the analysis.

The following conclusions have been made for the hybrid tools group:

• Although claiming to support both qualitative and quantitative methods,
majority of investigated tools actually just offer two tools in one: there is
no real connection between the modeling and analysis approach. The ex-
ception is PENPET tool which offers true hierarchical model integration.

• Support for qualitative availability assessment is, similar to pure qualita-
tive tools, implicit and based on the risk factor analysis and failure impact
and criticality analysis.

4.4 Interoperability and Usability

The issue of tool interoperability is very important for the availability assess-
ment of complex SOA systems, as it may frequently be the case that one tool
cannot model the entire system. For that reason it is necessary to investigate
the options for model and/or result exchange between various tools.

98 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

As there is no accepted standard for exchange of availability models or
evaluation results, possibilities for interoperability are very limited. At best,
the surveyed tools provide some degree of compatibility with popular office
suites (e.g., Microsoft Office), and even then, only as additional export format
that can be further processed for presentation purposes. Limited number of
tools support import of Microsoft Visio diagrams, while none of them supports
import or export of UML models.

Usability is well addressed by the newer commercial and academic tools.
All of them offer rich, albeit sometimes immature (e.g., Sharpe), user interface
clients, which enable fast modeling and wizard-based editing of model element
properties. Many tools have powerful report generators (e.g., Isograph Report
Generator which is shared by all tools from the same family), enabling textual,
tabular, graph and bitmap result manipulation. This represents a big step for-
ward from the previous generation of availability assessment tools, that usually
offered only textual/tabular (batch) I/O capabilities.

The focus and method of most important tools are given in Figure 4.1.
Two main tool clusters are visible: quantitative hardware/software availability
assessment tools and qualitative service/process management tools. It is evident
from the figure that very few tools address quantitative (analytical) service
availability assessment and vice versa, that (to our knowledge) almost no tool
enables qualitative software/hardware availablity assessment.

Figure 4.1: Focus and methods of availability assessment tools

4.5 Tool Comparison Summary

Based on the considerations and analysis given in previous sections, the follow-
ing conclusions/goals have been formulated:

1. Integration of quantitative and qualitative methods. Several tools claim to
integrate quantitative and qualitative methods. The level of integration,
however, varies, from no real integration (separated models) to complete
integration, albeit in a very narrow application domain (e.g., real-time

4.5. TOOL COMPARISON SUMMARY 99

embedded systems). The problem of integration of qualitative and quanti-
tative methods for availability-assessment remains unsolved in the general
case.

2. Integration of IT- and business process/service-levels. This problem can
be formulated as follows: how can availability assessment (or requirement)
at the business process level be mapped to the underlying IT infrastruc-
ture and vice versa? In other words, how to invest in IT infrastructure
in the optimal way, to improve the fulfillment of business process goals.
Almost all tools from the process management category claim to have
addressed/solved this problem. The truth is, however, that connecting
business process and IT levels requires significant additional investments
in software from the same vendor - leading to partial or total vendor
lock-in. In such a closed domain, it is arguably possible to perform static
mapping between the two levels. On-line (dynamic) mapping is not pos-
sible, as process enactment engines still lack the capabilities to perform
runtime transformations. HP Mercury has to be partially excluded from
this statement, as it allows network monitoring and mapping of results
to the business process. CentraSite aims to provide an open environment
for service (process-level) description as viable alternative. For the time
being, however, the framework is limited to systems that expose their
business operations and services as SOAP-based Web Services.

3. Scalability/complexity. Analytical and most of the process management
tools rely on the static system description. This requires complex user
interfaces and dedicated and intimate human involvement: an operator
must describe all system states and availability properties in minute de-
tails. With the complexity of modern SOA systems growing, this is be-
coming non-feasible, as the process does not scale and is error prone.
Furthermore, SOA systems are far from static, therefore, complex mod-
els must be manually maintained and updated whenever a change at the
IT- or service-level is introduced, which happens very frequently. Not to
underestimate is the problem of model solving and resources required for
it, although this issue is becoming less relevant with hardware resources
becoming increasingly available. Therefore, a new approach needs to be
devised that departs from the standard white box approach, where all
details of all system components are meticulously specified and modeled.
Standard modeling approaches, developed for static and rarely changing
mission critical systems, do not fit well to dynamic SOA systems.

4. Steady state availability. Connected with the previous point, majority of
tools is thus limited to meaningfully assessing steady state service avail-
ability only.

5. On-line and dynamic approaches. Also related is the issue of on-line (dy-
namic) availability assessment, which uses the black box approach. The
basic problem is that a SOA system should be observed as a black box
that can be instrumented. The first step to solve is variable selection:

100 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

which of many instrumented system parameters are relevant for availabil-
ity assessment? After that, appropriate parameterized models have to
be generated that accept selected variables and assess system availability
on-demand, on-line and dynamic. Among the surveyed tools, only bench-
marking group offers rudimentary on-line capabilities, that are restricted
to evaluating test cases on non-production systems. Therefore, a model
that is dynamic and black box oriented, and thus scales to the complexity
of modern IT systems, remains an unsolved problem.

6. Failure prediction. Several tools claim to possess failure prediction capa-
bilities. They all belong to the category of either electrical or mechatronics
(electro-mechanical) parts, where failure prediction is based on the his-
torical and statistical data available in predefined libraries or the aging
process is defined by the user. There are no tools (to our knowledge) that
enable dynamic failure prediction for a running, distributed SOA system.

7. Technical knowledge required. Almost all quantitative tools require spe-
cialized knowledge in the area of fault-tolerant systems and formal mod-
eling methods, such as Petri nets, Markov chains, or fault trees. This
limits the applicability of surveyed tools, as the learning curve is often
too steep to be practical. Consequently, the industry penetration is low.
The notable exception is Figaro tool which offers general purpose, object
oriented description language which is then transparently transformed
into appropriate model-based notation.

8. Monitoring and data gathering. Tools from the benchmarking group, as
well as tools from the process management group, offer instruments for
system monitoring and data gathering. The methods are general and not
availability assessment-specific. A better solution would be to develop an
automated method for variable selection, to achieve parameterized system
analysis.

9. SOA Specifics. General purpose modeling tools are primarily used in the
design phase and follow the standard paradigm of modeling, evaluating,
building (the system) and forgetting the model. In SOA, however, ser-
vices and infrastructures are dynamic, and manually built models do not
scale, as each change of the physical reality requires (manual) customiza-
tion of the model. Taking into account shortage of availability modeling
experts in modern enterprises, this procedure is simply too expensive and
inefficient.

4.5. TOOL COMPARISON SUMMARY 101

Figure 4.2: Historical development of availability assessment tools (part 1)

Figure 4.3: Historical development of availability assessment tools (part 2)

102 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

N
a
m

e
L
ic

e
n
s
e

C
la

s
s

M
o
d
e
l
t
y
p
e

P
la

t
fo

r
m

G
e
n
e
r
a
l
p
u
r
p
o
s
e

U
s
e

c
a
s
e
s

A
C

A
R

A
O

p
e
n
-

C
h
a
n
n
e
l-

F
o
u
n
d
a
ti

o
n

Q
u
a
li
ta

ti
v
e

a
n
d

a
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

S
ta

ti
st

ic
a
l

M
o
n
te

-C
a
rl

o
m

e
th

o
d
s,

W
e
ib

u
ll

a
n
d

e
x
p
o
n
e
n
ti

a
l

d
is

tr
ib

u
-

ti
o
n
,

R
B

D
,

m
o
d
e
ls

fo
r

e
a
rl

y
,

ra
n
-

d
o
m

a
n
d

w
e
a
ri

n
g

fa
il
u
re

s

W
in

d
o
w

s
9
8

o
r

n
e
w

e
r

A
n
a
ly

si
s

o
f

a
v
a
il
a
b
il
it
y
,

li
fe

c
y
c
le

-c
o
st

s
a
n
d

re
so

u
rc

e
p
la

n
in

g
fo

r
th

e
p
e
ri

o
d
ic

re
p
a
ra

b
le

sy
st

e
m

s

N
A

S
A

A
p
ri

c
o

C
le

a
rP

ri
o
ri

ty
C

o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
n
ti

ta
ti

v
e
,

IT
-

le
v
e
l

C
o
rr

e
la

ti
o
n
-R

u
le

s,
D

a
ta

tr
a
n
sf

o
r-

m
a
ti

o
n

N
/
A

T
h
e

to
o
ls

c
o
ll
e
c
ts

lo
g

fi
le

s
fo

r
d
iv

e
rs

e
sy

s-
te

m
s,

c
o
rr

e
la

te
s

th
e

d
a
ta

a
n
d

g
e
n
e
ra

te
s

se
-

c
u
ri

ty
a
la

rm
s

w
h
ic

h
a
re

b
a
se

d
o
n

th
e

p
re

d
e
-

fi
n
e
d

ru
le

s.

N
/
A

A
R

IE
S

N
/
A

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

H
o
m

o
g
e
n
e
o
u
s

M
a
rk

o
v

m
o
d
e
ls

,
so

lv
e
d

u
si

n
g

L
a
g
ra

n
g
e
-S

y
lv

e
st

e
r

in
te

rp
o
la

ti
o
n

A
P
L

a
n
d

C
im

-
p
le

m
e
n
ta

ti
o
n

A
v
a
il
a
b
il
it
y

a
n
d

li
fe

c
y
c
le

a
n
a
ly

si
s

o
f

fa
u
lt

-
to

le
ra

n
t

sy
st

e
m

s
T
e
a
c
h
in

g
su

p
p
o
rt

A
x
is

:
R

A
2

C
o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
li
ta

ti
v
e
,

IT
-

a
n
d

p
ro

c
e
ss

-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

a
n
d

a
ss

e
ss

m
e
n
t

fo
l-

lo
w

in
g

IS
O

/
IE

C
1
7
7
9
9

a
n
d

2
7
0
0
1

W
in

d
o
w

s
R

is
k

a
n
a
ly

si
s

fo
ll
o
w

in
g

IS
O

/
IE

C
1
7
7
9
9

a
n
d

2
7
0
0
1
.

F
o
r

e
a
c
h

st
e
p

o
f
th

e
p
ro

c
e
ss

,
th

e
to

o
l

e
v
a
lu

a
te

s
th

e
ri

sk
a
n
d

g
e
n
e
ra

te
s

re
p
o
rt

.

S
m

a
ll

a
n
d

m
e
d
iu

m
c
o
n
su

lt
in

g
c
o
m

p
a
n
ie

s
in

A
si

a
(S

in
g
a
p
u
r,

J
a
p
a
n
).

N
o

fu
th

e
r

in
fo

rm
a
ti

o
n

a
v
a
il
a
b
le

.
B

Q
R

C
a
re

A
c
a
d
e
m

ic
a
n
d

c
o
m

m
e
r-

c
ia

l
li
c
e
n
se

A
n
a
ly

ti
c
,

si
m

u
la

-
ti

o
n
,
m

e
c
h
a
tr

o
n
ic

F
a
il
u
re

M
o
d
e
,
E
ff
e
c
ts

,
a
n
d

C
ri

ti
c
a
l-

it
y

A
n
a
ly

si
s,

fa
u
lt

tr
e
e
s,

re
li
a
b
il
it
y

b
lo

c
k

d
ia

g
ra

m
s

W
in

d
o
w

s
2
0
0
0
,

X
P

A
v
a
il
a
b
il
it
y

a
n
a
ly

si
s

o
f

te
c
h
n
ic

a
l,

e
le

c
tr

o
n
ic

a
n
d

m
e
c
h
a
n
ic

a
l
(m

e
c
h
a
tr

o
n
ic

)
sy

st
e
m

s
B

Q
R

su
p
p
o
rt

s
c
o
m

p
a
-

n
ie

s
in

th
e

fo
ll
o
w

in
g

se
c
to

rs
:

a
ir

a
n
d

sp
a
c
e

tr
a
v
e
l,

a
u
to

-
m

o
ti

v
e
,

c
h
e
m

ic
a
l,

(c
o
n
su

m
e
r)

e
le

c
tr

o
n
ic

,
d
e
fe

n
se

,
m

il
it

a
ry

,
o
il
,

m
e
d
ic

in
e
,

p
u
b
li
c

tr
a
n
sp

o
rt

a
ti

o
n
.

C
A

L
L
IO

S
e
-

c
u
ra

C
o
m

m
e
rc

ia
l

a
n
d

a
c
a
d
-

e
m

ic
li
c
e
n
se

,
d
e
m

o

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-
a
n
d

IT
-l
e
v
e
l

P
D

C
A

(P
la

n
-D

o
-C

h
e
c
k
-A

c
t)

M
o
d
e
l,

Q
u
e
st

io
n
n
a
ir

e
W

in
d
o
w

s
a
n
d

M
S

A
c
c
e
ss

T
h
e

to
o
l

su
p
p
o
rt

s
in

tr
o
d
u
c
ti

o
n

o
f

B
S

7
7
9
9

a
n
d

IS
O

1
7
7
9
9

st
a
n
d
a
rd

s.
It

a
ls

o
su

p
p
o
rt

s
d
e
v
e
lo

p
m

e
n
t

a
n
d

m
a
n
a
g
e
-

m
e
n
t

o
f

In
fo

rm
a
ti

o
n
-S

e
c
u
ri

ty
-M

a
n
a
g
e
m

e
n
t-

S
y
st

e
m

s
(I

S
M

S
).

C
o
n
c
re

te
u
se

c
a
se

s
n
o
t

a
v
a
il
a
b
le

,
th

e
c
u
st

o
m

e
rs

a
re

fr
o
m

th
e

IT
-c

o
n
su

lt
in

g
a
n
d

e
-B

u
si

n
e
ss

se
c
to

rs
.

C
a
ra

-
F
a
u
lt

T
re

e
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

w
it

h
li
m

it
e
d

fu
n
c
ti

o
n
a
li
ty

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

F
a
u
lt

tr
e
e

a
n
a
ly

si
s

W
in

d
o
w

s
9
x
,
N

T
,

2
0
0
0

T
h
e

to
o
l
sp

e
c
ia

li
z
e
s

in
th

e
fa

u
lt

tr
e
e

a
n
a
ly

si
s

o
n
ly

,
li
m

it
in

g
it

s
g
e
n
e
ra

l
a
p
p
li
c
a
b
il
it
y
.

A
ss

e
t

a
n
d

ri
sk

m
a
n
-

a
g
e
m

e
n
t
in

th
e

se
c
to

rs
o
f

c
h
e
m

ic
a
l,

e
n
e
rg

y
,

tr
a
n
sp

o
rt

a
ti

o
n

a
n
d

o
il

in
d
u
st

ry
.

C
A

R
E

II
I

N
/
A

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

F
a
u
lt

tr
e
e
s,

n
o
n
-h

o
m

o
g
e
n
e
o
u
s

M
a
rk

o
v

c
h
a
in

s
a
n
d

se
m

i-
M

a
rk

o
v

c
h
a
in

s

V
A

X
A

v
a
il
a
b
il
it
y

a
ss

e
ss

m
e
n
t
fo

r
v
e
ry

la
rg

e
,
h
ig

h
ly

fa
u
lt

-t
o
le

ra
n
t

sy
st

e
m

s
A

e
ro

sp
a
c
e

in
d
u
st

ry

C
A

R
M

S
F
re

e
A

n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

M
a
rk

o
v

c
h
a
in

s
W

in
d
o
w

s
3
.1

1
a
n
d

la
te

r
In

te
g
ra

te
d

to
o
l

fo
r

sp
e
c
ifi

c
a
ti

o
n

a
n
d

si
m

u
-

la
ti

o
n

o
f

M
a
rk

o
v

c
h
a
in

s,
sp

e
c
ifi

c
a
ly

ta
il
o
re

d
fo

r
ti

m
e
-d

e
p
e
n
d
e
n
t

a
n
d

p
re

d
ic

ti
o
n
-o

ri
e
n
te

d
p
ro

b
le

m
s.

N
/
A

C
A

S
R

E
/

S
M

E
R

F
S

O
p
e
n

C
h
a
n
-

n
e
l
S
o
ft

w
a
re

Q
u
a
n
ti

ta
ti

v
e
/
a
n
a
ly

ti
c
a
l,

IT
-l
e
v
e
l

J
e
li
n
sk

i-
M

o
ra

n
d
a

M
o
d
e
l,

n
o
n
-

h
o
m

o
g
e
n
e
o
u
s

P
o
is

so
n

p
ro

c
e
ss

m
o
d
e
l

W
in

d
o
w

s,
U

n
ix

M
e
a
su

re
m

e
n
ts

a
n
d

a
ss

e
ss

m
e
n
t
o
f
so

ft
w

a
re

re
-

li
a
b
il
it
y
.

C
A

S
R

E
g
iv

e
s

g
ra

p
h
ic

a
l
re

p
re

se
n
ta

-
ti

o
n

o
f
fa

il
u
re

d
a
ta

,
fi
lt

e
ri

n
g

a
n
d

p
re

d
ic

it
io

n
s

fo
r

a
g
iv

e
n

so
ft

w
a
re

m
o
d
u
le

.

S
o
ft

w
a
re

re
li
a
b
il
it
y

p
re

d
ic

ti
o
n
.

C
O

B
R

A
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

K
n
o
w

le
d
g
e
-b

a
se

d
ri

sk
a
n
a
ly

si
s

N
/
A

R
is

k
a
ss

e
ss

m
e
n
t

in
se

c
u
ri

ty
a
re

a
.

T
h
e

re
la

-
ti

v
e

im
p
o
rt

a
n
c
e

o
f
a
ll

th
re

a
ts

a
n
d

w
e
a
k

sp
o
ts

is
id

e
n
ti

fi
e
d

a
n
d

a
p
p
ro

p
ri

a
te

so
lu

ti
o
n
s

a
n
d

su
g
g
e
st

io
n
s

a
re

g
e
n
e
ra

te
d
.

N
/
A

C
o
u
n
te

r
M

e
a
su

re
s

C
o
m

m
e
rc

ia
l

li
c
e
n
se

(e
n
-

te
rp

ri
se

,
st

a
n
d
a
rd

,
w

e
b

su
rv

e
y
),

e
v
a
lu

a
ti

o
n

li
c
e
n
se

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

Q
u
e
st

io
n
n
a
ir

e
,

c
u
st

o
m

e
r-

sp
e
c
ifi

c
c
h
e
c
k
li
st

s,
in

sp
e
c
to

rs
.

U
se

d
fo

r
p
e
rf

o
rm

in
g

c
o
st

-b
e
n
e
fi
t

a
n
a
ly

si
s

W
in

d
o
w

s
9
8
/

M
E

/
N

T
/

2
0
0
0
/

X
P
,

M
ic

ro
so

ft
O

ffi
c
e

2
0
0
0

o
r

n
e
w

e
r

R
is

k
m

a
n
a
g
e
m

e
n
t

u
si

n
g

U
S
-N

IS
T

-8
0
0

a
n
d

C
ir

c
u
la

r-
A

-1
3
0

re
g
u
la

ti
o
n
s,

p
a
rt

ic
u
la

ry
fo

r
th

e
IT

-s
y
st

e
m

,
b
u
il
d
in

g
a
n
d

o
p
e
ra

ti
o
n

ri
sk

.

P
h
y
si

c
a
l

se
c
u
ri

ty
:

m
o
to

rw
a
y
s,

b
u
il
d
in

g
s,

c
ri

ti
c
a
l

in
fr

a
st

ru
c
tu

re
(o

il
).

4.5. TOOL COMPARISON SUMMARY 103

N
a
m

e
L
ic

e
n
s
e

C
la

s
s

M
o
d
e
l
t
y
p
e

P
la

t
fo

r
m

G
e
n
e
r
a
l
p
u
r
p
o
s
e

U
s
e

c
a
s
e
s

C
P
N

T
O

O
L
S

C
o
m

m
e
rc

ia
l,

m
il
it

a
ry

-
g
o
v
e
rn

m
e
n
t,

a
c
a
d
e
m

ic

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

C
o
lo

re
d

P
e
tr

i
n
e
ts

W
in

d
o
w

s
2
0
0
0
,

X
P
,

L
in

u
x
,

F
e
-

d
o
ra

C
o
re

2

S
p
e
c
ifi

c
a
ti

o
n
,
si

m
u
la

ti
o
n

a
n
d

a
n
a
ly

si
s

o
f
c
o
l-

o
re

d
P
e
tr

i
n
e
ts

.
S
u
p
p
o
rt

fo
r

d
is

tr
ib

u
te

d
p
ro

c
e
ss

e
s

th
a
t

c
o
m

m
u
n
ic

a
te

w
it

h
e
a
c
h

o
th

e
r

a
n
d

n
e
e
d

sy
n
c
h
ro

n
iz

a
ti

o
n
.

N
e
tw

o
rk

p
ro

to
c
o
ls

,
so

ft
w

a
re

,
w

o
rk

-
fl
o
w

s,
a
n
d

b
u
si

n
e
ss

p
ro

c
e
ss

e
s,

re
a
l-
ti

m
e

e
m

b
e
d
d
e
d

c
o
n
tr

o
l

sy
st

e
m

s,
a
ir

tr
a
ffi

c
c
o
n
tr

o
l.

C
R

A
M

M
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
3
0
-d

a
y

e
v
a
lu

-
a
ti

o
n

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

a
n
d

a
ss

e
ss

m
e
n
t

fo
ll
o
w

in
g

C
R

A
M

M
(C

C
T
A

R
is

k
A

ss
e
ss

m
e
n
t

a
n
d

M
a
n
a
g
e
m

e
n
t

M
e
th

o
d
).

W
in

d
o
w

s
U

se
d

fo
r

a
u
to

m
a
ti

z
a
ti

o
n

o
f

th
e

C
R

A
M

M
p
ro

c
e
ss

.
C

R
A

M
M

c
o
m

p
ri

se
s

o
f
se

v
e
ra

l
st

e
p
s

th
a
t

c
a
p
tu

re
te

c
h
n
ic

a
l

(I
T

,
h
a
rd

w
a
re

,
so

ft
-

w
a
re

)
a
n
d

n
o
n
-t

e
c
h
n
ic

a
l
a
sp

e
c
ts

:
id

e
n
ti

fi
c
a
-

ti
o
n

a
n
d

a
ss

e
ss

m
e
n
t

o
f
a
c
ti

v
it

ie
s,

a
n
a
ly

si
s

o
f

th
re

a
ts

a
n
d

d
a
m

a
g
e
s,

c
h
o
ic

e
o
f
re

c
o
m

m
e
n
d
a
-

ti
o
n
s

a
n
d

c
o
u
n
te

rm
e
a
su

re
s.

C
R

A
M

M
is

u
se

d
b
y

B
A

E
S
y
st

e
m

s,
IB

M
,
G

e
n
e
ra

l
M

o
to

rs
,

R
o
y
a
l
A

ir
F
o
rc

e
,
S
w

is
s

B
a
n
k
,
T

-M
o
b
il
e
.

D
y
Q

N
to

o
l+

A
c
a
d
e
m

ic
li
-

c
e
n
se

Q
u
a
n
ti

ta
ti

v
e
/

a
n
-

a
ly

ti
c
a
l,

IT
-l
e
v
e
l

M
a
rk

o
v

re
w

a
rd

m
o
d
e
ls

S
U

N
-4

T
h
e

to
o
l

a
p
p
li
e
s

th
e

c
o
n
c
e
p
t

o
f

d
y
n
a
m

ic
q
u
e
u
in

g
n
e
tw

o
rk

s
to

a
ss

e
ss

re
li
a
b
il
it
y

a
n
d

p
e
rf

o
rm

a
b
il
it
y

u
si

n
g

a
fo

rm
a
l

d
e
sc

ri
p
ti

o
n

la
n
g
u
a
g
e
.

N
/
A

E
B

IO
S

O
p
e
n

so
u
rc

e
Q

u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

E
B

IO
S

(E
x
p
re

ss
io

n
o
f

N
e
e
d
s

a
n
d

Id
e
n
ti

fi
c
a
ti

o
n

o
f

S
e
c
u
ri

ty
O

b
je

c
-

ti
v
e
s)

M
e
th

o
d

W
in

d
o
w

s,
L
in

u
x
,

S
o
la

ri
s

S
u
p
p
o
rt

s
th

e
E
B

IO
S

m
e
th

o
d
,
a
n
d

g
e
n
e
ra

te
s

ri
sk

a
n
a
ly

si
s

a
n
d

m
a
n
a
g
e
m

e
n
t

st
e
p
s

fo
r

th
e

fi
v
e

E
B

IO
S

p
h
a
se

s.

P
u
b
li
c

se
c
to

r,
c
o
n
su

lt
-

in
g

c
o
m

p
a
n
ie

s.

E
c
li
p
se

T
P
T

P
O

p
e
n

so
u
rc

e
Q

u
a
n
ti

ta
ti

v
e
/

a
n
a
ly

ti
c
a
l,

b
e
n
c
h
-

m
a
rk

in
g

a
n
d

te
st

,
IT

-l
e
v
e
l

P
T

P
m

o
n
it

o
ri

n
g

to
o
ls

:
a
n
a
ly

si
s
a
n
d

fi
lt

e
ri

n
g

o
f

lo
g

fi
le

d
a
ta

,
p
a
tt

e
rn

m
a
tc

h
in

g
ru

le
s.

A
ll

m
a
jo

r
p
la

t-
fo

rm
s

a
n
d

o
p
e
ra

t-
in

g
sy

st
e
m

s,
fo

r
w

h
ic

h
J
V

M
e
x
-

is
ts

.

T
P
T

P
is

a
st

a
n
d
a
rd

iz
e
d
,

g
e
n
e
ri

c
a
n
d

e
x
-

p
a
n
d
a
b
le

(m
e
ta

)
to

o
l

p
la

tf
o
rm

,
fo

r
d
e
v
e
l-

o
p
m

e
n
t

o
f

c
u
st

o
m

a
p
p
li
c
a
ti

o
n

in
th

e
a
re

a
o
f

te
st

in
g

a
n
d

b
e
n
c
h
m

a
rk

in
g
.

T
P
T

P
o
ff
e
rs

m
o
d
u
le

s
th

a
t

a
ll
o
w

fo
r

b
a
si

c
p
e
rf

o
rm

a
n
c
e

a
n
d

te
st

ta
sk

g
e
n
e
ra

ti
o
n
.

S
o
ft

w
a
re

,
su

p
p
o
rt

s
te

st
d
e
sc

ri
p
ti

o
n

la
n
-

g
u
a
g
e

T
T

C
N

-3
fo

r
c
o
m

m
u
n
ic

a
ti

o
n
-b

a
se

d
a
p
p
li
c
a
ti

o
n
s.

E
x
h
a
u
st

if
C

o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
n
ti

ta
ti

v
e
,

b
e
n
c
h
m

a
rk

in
g
,

te
st

;
IT

-l
e
v
e
l

S
o
ft

w
a
re

Im
p
le

m
e
n
te

d
F
a
u
lt

In
je

c
-

ti
o
n

(S
W

IF
I)

R
T

E
M

S
/

E
R

C
3
2

a
n
d

R
T

E
M

S
/

In
-

te
l.

P
la

n
n
e
d
:

W
in

d
o
w

s/
In

te
l,

L
in

u
x
/

In
te

l.

E
x
e
c
u
ti

o
n

o
f

b
la

c
k
-b

o
x

a
n
d

g
re

y
-b

o
x

te
st

b
a
se

d
o
n

th
e

S
W

IF
I

m
e
th

o
d
.

T
h
e

to
o
l

is
u
se

d
to

im
p
ro

v
e

re
li
a
b
il
it
y

a
n
d

a
v
a
il
a
b
il
it
y

p
ro

p
e
rt

ie
s

o
f
c
o
m

p
le

x
so

ft
w

a
re

sy
st

e
m

s
d
u
r-

in
g

d
e
si

g
n

ti
m

e
.

B
e
ta

-v
e
rs

io
n

is
a
p
-

p
li
e
d
/

te
st

e
d

b
y

E
A

D
S
-A

st
ri

u
m

.

F
A

IL
-F

C
I

N
/
A

Q
u
a
n
ti

ta
ti

v
e
-

b
e
n
c
h
m

a
rk

in
g

a
n
d

te
st

,
IT

-l
e
v
e
l

S
o
ft

w
a
re

-b
a
se

d
p
ro

c
e
d
u
re

s
fo

r
fa

u
lt

in
je

c
ti

o
n
.

L
in

u
x

R
e
li
a
b
il
it
y

e
st

im
a
ti

o
n

o
f
c
lu

st
e
r
a
n
d

g
ri

d
sy

s-
te

m
s.

F
A

IL
-F

C
I

e
n
a
b
le

s
m

o
d
e
li
n
g

a
n
d

im
-

p
le

m
e
n
ta

ti
o
n

o
f
fa

u
lt

sc
e
n
a
ri

o
s

u
si

n
g

a
n

a
b
-

st
ra

c
t

fa
u
lt

d
e
sc

ri
p
ti

o
n

la
n
g
u
a
g
e
.

X
tr

e
m

W
e
b

(P
2
P
)

F
IG

A
R

O
/

K
B

3
W

o
rk

-
b
e
n
c
h

C
o
m

m
e
ri

c
a
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

A
n
a
ly

ti
c
a
l,

si
m

u
-

la
ti

o
n
,
IT

-l
e
v
e
l

M
a
rk

o
v

c
h
a
in

s,
B

o
o
le

a
n

lo
g
ic

d
ri

v
e
n

M
a
rk

o
v

P
ro

c
e
ss

(B
D

M
P
),

fa
u
lt

tr
e
e
s,

re
li
a
b
il
it
y

b
lo

c
k

d
ia

g
ra

m
s,

P
e
tr

i
n
e
ts

.

U
n
ix

/
X

W
in

d
o
w

,
M

S
W

in
d
o
w

s
C

a
lc

u
la

ti
o
n

o
f

re
li
a
b
il
it
y
,

a
v
a
il
a
b
il
it
y

a
n
d

p
e
rf

o
rm

a
n
c
e

u
si

n
g

d
iff

e
re

n
t

m
o
d
e
ls

.
A

b
-

st
ra

c
t

sy
st

e
m

s
c
a
n

b
e

m
o
d
e
ll
e
d

u
si

n
g

k
n
o
w

l-
e
d
g
e

d
a
ta

b
a
se

.
C

o
m

p
il
e
rs

a
n
d

tr
a
n
sl

a
to

rs
a
u
to

m
a
ti

c
a
ll
y

g
e
n
e
ra

te
a
p
p
ro

p
ri

a
te

fo
rm

a
l

m
o
d
e
ls

.

R
e
li
a
b
il
it
y

a
n
d

se
-

c
u
ri

ty
a
ss

e
ss

m
e
n
t

o
f

c
ri

ti
c
a
l

in
d
u
st

ri
a
l

p
ro

c
e
ss

e
s

(n
u
c
le

a
r

p
o
w

e
rp

la
n
ts

,
c
h
e
m

ic
a
l

a
n
d

o
il

in
d
u
st

ry
).

F
u
ji
ts

u
In

te
r-

st
a
g
e

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

Q
u
a
li
ta

ti
v
e
,

se
rv

ic
e
-l
e
v
e
l

W
o
rk

fl
o
w

(B
P
M

N
,

B
P
E
L
,

X
P
D

L
,

W
f-
X

M
L
)

W
in

d
o
w

s
2
0
0
0
,

2
0
0
3
,

X
P
,

S
o
la

ri
s

9
,
R

e
d

H
a
t
L
in

u
x
,

E
S

4
.0

,
H

P
-U

X
,

IB
M

A
IX

5
.3

T
h
e

to
o
l

c
o
m

p
ri

se
s

a
w

o
rk

fl
o
w

-b
a
se

d
b
u
si

-
n
e
ss

p
ro

c
e
ss

m
a
n
a
g
e
r

th
a
t

c
o
v
e
rs

th
e

fo
ll
o
w

-
in

g
li
fe

c
y
c
le

:
p
ro

c
e
ss

in
te

g
ra

ti
o
n
,

a
u
to

m
a
-

ti
z
a
ti

o
n
,

m
o
d
e
ll
in

g
,

m
a
n
a
g
e
m

e
n
t

a
n
d

o
p
ti

-
m

iz
a
ti

o
n
.

T
h
e

la
st

th
re

e
st

e
p
s

a
ll
o
w

s
fo

r
tr

e
a
tm

e
n
t

a
n
d

a
ss

e
ss

m
e
n
t

o
f

a
v
a
il
a
b
il
it
y

in
-

d
ic

a
to

rs
.

B
a
n
k
s

u
n
d

fi
n
a
n
c
ia

l
in

st
it

u
ti

o
n
s,

e
n
e
rg

y
se

c
to

r,
tr

a
v
e
l

a
n
d

to
u
ri

sm
,

e
n
te

rp
ri

se
so

ft
w

a
re

sy
st

e
m

s.

G
R

A
M

P
/

G
R

A
M

S
N

/
A

S
im

u
la

ti
o
n
,

IT
-

le
v
e
l

C
o
n
ti

n
u
o
u
s-

ti
m

e
M

a
rk

o
v

m
o
d
e
ls

(G
R

A
M

P
),

so
lv

e
d

u
si

n
g

d
is

c
re

te
M

o
n
te

-C
a
rl

o
si

m
u
la

ti
o
n
s

(G
R

A
M

S
)

F
o
tr

a
n

7
7
,

V
A

X
im

p
le

m
e
n
ta

ti
o
n

G
R

A
M

P
:

F
ix

e
d

c
h
a
rg

e
fo

r
re

p
a
ir

,
F
a
il
u
re

c
h
a
rg

e
fo

r
b
re

a
k
d
o
w

n
,

M
is

si
o
n

le
n
g
th

,
A

c
-

q
u
is

it
io

n
c
o
st

(s
y
st

e
m

le
v
e
l

a
n
d

m
o
d
u
le

le
v
e
l)

,
A

v
e
ra

g
e

re
p
a
ir

c
o
st

,
R

e
li
a
b
il
it
y

re
-

q
u
ir

e
m

e
n
t,

O
p
p
o
rt

u
n
is

ti
c

m
a
in

te
n
a
n
c
e

o
p
-

ti
o
n
.

G
R

A
M

S
:
A

ss
e
ss

m
e
n
t

o
f
re

li
a
b
il
it
y

a
n
d

li
fe

c
y
c
le

c
o
st

s.

F
u
ll
-A

u
th

o
ri

ty
F
a
u
lt

-
T
o
le

ra
n
t

E
le

c
tr

o
n
ic

E
n
g
in

e
C

o
n
tr

o
l
(F

A
F
-

T
E
E
C

)
P
ro

g
ra

m

104 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

N
a
m

e
L
ic

e
n
s
e

C
la

s
s

M
o
d
e
l
t
y
p
e

P
la

t
fo

r
m

G
e
n
e
r
a
l
p
u
r
p
o
s
e

U
s
e

c
a
s
e
s

G
S
T

O
O

L
F
re

e
fo

r
g
o
v
-

e
rn

m
e
n
t

u
se

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-
a
n
d

IT
-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

fo
ll
o
w

in
g

B
S
I-

G
ru

n
d
sc

h
u
tz

re
c
o
m

m
e
n
d
a
ti

o
n
/

st
a
n
d
a
rd

.

W
in

d
o
w

s
A

ss
is

ta
n
c
e

in
d
e
si

g
n

a
n
d

im
p
le

m
e
n
ta

ti
o
n

o
f

B
S
I-

S
ta

n
d
a
rd

1
0
0
-3

.
M

a
n
a
g
e
m

e
n
t

o
f

IT
-

in
fr

a
st

ru
c
tu

re
a
n
d

p
ro

c
e
ss

e
s

in
th

e
p
u
b
li
c

(g
o
v
e
rn

m
e
n
t)

se
c
to

r.
H

A
R

P
N

/
A

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

F
a
u
lt

O
c
c
u
re

n
c
e

a
n
d

R
e
p
a
ir

M
o
d
e
l

(F
O

R
M

),
F
a
u
lt

/
E
rr

o
r

H
a
n
d
li
n
g

M
o
d
e
l
(F

E
H

M
),

M
a
rk

o
v

c
h
a
in

s

M
S

D
O

S
,

W
in

-
d
o
w

s,
O

S
/
2
,
D

E
C

V
M

S
a
n
d

U
lt

ri
x
,

B
e
rk

e
le

y
U

n
ix

4
.2

,
A
T

&
T

U
n
ix

6
.2

A
ss

e
ss

m
e
n
t

o
f
re

li
a
b
il
it
y

a
n
d

a
v
a
il
a
b
il
it
y

u
s-

in
g

fa
u
lt

tr
e
e
s

a
s

in
p
u
t.

N
/
A

IB
M

H
ig

h
A

v
a
il
a
b
il
it
y

S
e
rv

ic
e
s

N
/
A

Q
u
a
li
ta

ti
v
e
,

se
rv

ic
e
-l
e
v
e
l

Q
u
e
st

io
n
n
a
ir

e
N

/
A

IB
M

H
ig

h
A

v
a
il
a
b
il
it
y

S
e
rv

ic
e
s

is
a

c
o
n
-

su
lt

in
g

se
rv

ic
e

su
p
p
o
rt

in
g

re
q
u
ir

e
m

e
n
t

p
la

n
-

n
in

g
,

d
e
si

g
n
,

c
o
n
st

ru
c
ti

o
n
,

im
p
le

m
e
n
ta

ti
o
n
,

a
n
d

m
a
n
a
g
e
m

e
n
t

o
f
c
o
m

p
le

x
in

fr
a
st

ru
c
tu

re
s,

w
it

h
th

e
g
o
a
l

o
f

a
v
o
id

in
g

e
x
p
e
n
si

v
e

b
re

a
k
-

d
o
w

n
s.

It
a
ls

o
o
ff
e
rs

se
rv

ic
e

a
v
a
il
a
b
il
it
y

a
s-

se
ss

m
e
n
t,

a
s

p
a
rt

o
f
S
L
A

p
a
ra

m
e
tr

iz
a
ti

o
n
.

N
/
A

IB
M

T
iv

o
li

A
v
a
il
a
b
il
-

it
y

P
ro

c
e
ss

M
a
n
a
g
e
r

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
a
c
a
-

d
e
m

ic
a
n
d

te
st

v
e
rs

io
n
s

Q
u
a
li
ta

ti
v
e
,

IT
-

a
n
d

p
ro

c
e
ss

-l
e
v
e
l

C
o
m

p
o
n
e
n
t

F
a
il
u
re

Im
p
a
c
t

A
n
a
ly

-
si

s
(C

F
IA

)
a
n
d

A
v
a
il
a
b
il
it
y

m
a
n
-

a
g
e
m

e
n
t,

a
s

sp
e
c
ifi

e
d

b
y

IT
IL

.

IB
M

A
IX

5
.2

,
5
.3

,
R

e
d
H

a
t

L
in

u
x
,

M
ic

ro
so

ft
W

in
d
o
w

s

T
iv

o
li

A
v
a
il
a
b
il
it
y

P
ro

c
e
ss

M
a
n
a
g
e
r

e
n
a
b
le

s
a
v
a
il
a
b
il
it
y

a
ss

e
ss

m
e
n
t

a
n
d

in
d
id

e
n
t

p
ri

o
r-

it
y

a
ss

ig
n
m

e
n
t

a
c
c
o
rd

in
g

to
th

e
ir

im
p
a
c
t

n
o
t

o
n
ly

o
n

IT
in

fr
a
st

ru
c
tu

re
,
b
u
t
a
ls

o
o
n

c
ri

ti
c
a
l

b
u
si

n
e
ss

p
ro

c
e
ss

e
s.

In
th

a
t

w
a
y
,
th

e
to

o
l
e
s-

ta
b
li
sh

e
s

a
c
o
n
n
e
c
ti

o
n

b
e
tw

e
e
n

IT
a
n
d

b
u
si

-
n
e
ss

la
y
e
rs

.
It

o
ff
e
rs

a
v
a
il
a
b
il
it
y

m
a
n
a
g
e
m

e
n
t

(i
n
c
id

e
n
t

m
a
n
a
g
e
m

e
n
t)

b
a
se

d
o
n

IT
IL

a
n
d

d
e
te

rm
in

e
s

b
u
si

n
e
ss

im
p
a
c
t

o
f
a

fa
il
u
re

.

A
u
to

m
o
ti

v
e
,
fi
n
a
n
c
ia

l,
IT

-s
e
rv

ic
e
,
e
n
e
rg

y
,
a
d
-

m
in

is
tr

a
ti

o
n
,

h
e
a
lt

a
n
d

m
e
d
ia

se
c
to

rs
.

IS
A

M
M

N
/
A

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

a
n
d

a
ss

e
ss

m
e
n
t

fo
l-

lo
w

in
g

th
e

In
fo

rm
a
ti

o
n

S
e
c
u
ri

ty
a
n
d

M
o
n
it

o
ri

n
g

M
e
th

o
d

(I
S
A

M
M

)

N
/
A

T
h
e

to
o
l

is
u
se

d
fo

r
ri

sk
m

a
n
a
g
e
m

e
n
t,

a
n
d

c
a
lc

u
la

te
s

th
e

o
p
ti

m
a
l

se
c
u
ri

ty
re

p
a
ir

p
la

n
b
a
se

d
o
n

th
e

R
e
tu

rn
o
n

S
e
c
u
ri

ty
In

v
e
st

m
e
n
t

(R
O

S
I)

v
a
lu

e
s.

A
c
a
d
e
m

ic
(s

e
c
u
-

ri
ty

a
n
a
ly

si
s

a
t

th
e

U
n
iv

e
rs

it
y

o
f

K
a
is

e
r-

sl
a
u
te

rn
)

Is
o
G

ra
p
h

A
t-

ta
c
k
T
re

e
+

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

A
n
a
ly

ti
c
a
l,

si
m

-
u
la

ti
o
n
,

se
rv

ic
e
-

le
v
e
l

A
tt

a
c
k

tr
e
e

M
S

W
in

d
o
w

s
A

tt
a
c
k

tr
e
e

e
n
a
b
le

s
p
re

c
is

e
m

o
d
e
ll
in

g
o
f

th
re

a
ts

to
th

e
sy

st
e
m

se
c
u
ri

ty
u
si

n
g

a
g
ra

p
h
-

ic
a
l
la

n
g
u
a
g
e
.

In
te

rn
e
t

a
p
p
li
c
a
ti

o
n
s,

b
a
n
k

a
p
p
li
c
a
ti

o
n
s,

n
e
tw

o
rk

s.
Is

o
G

ra
p
h

A
v
S
im

+
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

S
im

u
la

ti
o
n
,

IT
-

le
v
e
l

F
a
u
lt

tr
e
e
s,

N
e
tw

o
rk

(r
e
li
a
b
il
it
y
-

b
lo

c
k
)

d
ia

g
ra

m
s

M
S

W
in

d
o
w

s
A

v
a
il
a
b
il
it
y

a
n
d

re
li
a
b
il
it
y

si
m

u
la

ti
o
n

o
f

c
o
m

p
le

x
,
d
e
p
e
n
d
e
n
t

sy
st

e
m

s.
A

ir
a
n
d

sp
a
c
e

in
d
u
s-

tr
y
,

a
e
fe

n
se

,
a
u
to

m
o
-

ti
v
e
,

ra
il
w

a
y
,

c
h
e
m

i-
c
a
l,

o
il
,
h
e
a
lt

h
.

Is
o
G

ra
p
h

F
a
u
lt

T
re

e
+

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

F
a
u
lt

a
n
d

e
v
e
n
t
tr

e
e
s,

M
a
rk

o
v

m
o
d
-

e
ls

M
S

W
in

d
o
w

s
A

v
a
il
a
b
il
it
y

a
n
a
ly

si
s

u
si

n
g

fa
u
lt

a
n
d

e
v
e
n
t

tr
e
e
s.

C
u
st

o
m

is
e
d

M
a
rk

o
v

m
o
d
e
ls

m
a
y

b
e

li
n
k
e
d

to
e
v
e
n
t

in
th

e
fa

u
lt

o
r

e
v
e
n
t

tr
e
e

d
i-

a
g
ra

m
.

In
d
e
p
e
n
d
e
n
t

a
n
a
ly

si
s

o
f

fa
u
lt

tr
e
e
s,

e
v
e
n
t

tr
e
e
s

a
n
d

M
a
rk

o
v

m
o
d
e
ls

is
a
ls

o
p
o
ss

i-
b
le

.

A
ir

a
n
d

sp
a
c
e

in
d
u
s-

tr
y
,

a
e
fe

n
se

,
a
u
to

m
o
-

ti
v
e
,

ra
il
w

a
y
,

c
h
e
m

i-
c
a
l,

o
il
,
h
e
a
lt

h

Is
o
G

ra
p
h

N
A

P
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

E
x
te

n
d
e
d

re
li
a
b
il
it
y

b
lo

c
k

d
ia

g
ra

m
M

S
W

In
d
o
w

s
P
re

d
ic

ti
o
n

o
f

a
v
a
il
a
b
il
it
y

a
n
d

re
li
a
b
il
it
y

o
f

c
o
m

m
u
n
ic

a
ti

o
n

n
e
tw

o
rk

s.
C

o
m

m
u
n
ic

a
ti

o
n

n
e
t-

w
o
rk

s.

Is
o
G

ra
p
h

R
e
li
a
b
il
it
y

W
o
rk

b
e
n
c
h

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

A
n
a
ly

ti
c
a
l

a
n
d

si
m

u
la

ti
o
n
,

IT
-

le
v
e
l

V
a
ri

o
u
s

p
re

d
ic

ti
o
n

m
o
d
e
ls

,
h
ie

ra
r-

c
h
ic

a
l
b
lo

c
k

d
ia

g
ra

m
s

M
S

W
in

d
o
w

s
R

e
li
a
b
il
it
y

W
o
rk

b
e
n
c
h

is
a
n

in
te

g
ra

te
d

e
n
-

v
ir

o
n
m

e
n
t

fo
r

p
e
rf

o
rm

in
g

R
e
li
a
b
il
it
y

P
re

-
d
ic

ti
o
n
,

M
a
in

ta
in

a
b
il
it
y

P
re

d
ic

ti
o
n
,

F
a
il
-

u
re

M
o
d
e

E
ff
e
c
t

a
n
d

C
ri

ti
c
a
li
ty

A
n
a
ly

si
s

(F
M

E
C

A
),

R
e
li
a
b
il
it
y

B
lo

c
k

D
ia

g
ra

m
(R

B
D

)
a
n
a
ly

si
s,

R
e
li
a
b
il
it
y

A
ll
o
c
a
ti

o
n
,

F
a
u
lt

T
re

e
A

n
a
ly

si
s,

E
v
e
n
t

T
re

e
A

n
a
ly

si
s

a
n
d

M
a
rk

o
v

A
n
a
ly

si
s.

A
ir

a
n
d

sp
a
c
e

in
d
u
s-

tr
y
,

a
e
fe

n
se

,
a
u
to

m
o
-

ti
v
e
,

ra
il
w

a
y
,

c
h
e
m

i-
c
a
l,

o
il
,
h
e
a
lt

h

It
S
M

F
F
re

e
Q

u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

Q
u
e
st

io
n
n
a
ir

e
O

n
li
n
e
/

M
S

E
x
c
e
l

IT
IL

b
e
st

p
ra

c
ti

c
e

e
v
a
lu

a
ti

o
n
.

IT
-c

o
n
su

lt
a
n
ts

,
g
o
v
-

e
rn

m
e
n
t

4.5. TOOL COMPARISON SUMMARY 105

N
a
m

e
L
ic

e
n
s
e

C
la

s
s

M
o
d
e
l
t
y
p
e

P
la

t
fo

r
m

G
e
n
e
r
a
l
p
u
r
p
o
s
e

U
s
e

c
a
s
e
s

M
A

R
K

1
N

/
A

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

D
is

c
re

te
-s

ta
te

c
o
n
ti

n
u
o
u
s-

ti
m

e
M

a
rk

o
v

m
o
d
e
l

P
L
/
1

E
v
a
lu

a
ti

o
n

o
f

re
li
a
b
il
it
y

o
f

c
o
m

p
le

x
sy

st
e
m

s
w

h
o
se

c
h
a
ra

c
te

ri
st

ic
s

c
a
n

b
e

m
o
d
e
ll
e
d

u
si

n
g

M
a
rk

o
v

c
h
a
in

s.
C

a
lc

u
la

te
s

st
a
te

p
ro

b
a
b
il
i-

ti
e
s

a
s

fu
n
c
ti

o
n
s

o
f
ti

m
e
,
M

T
B

F
a
n
d

a
v
e
ra

g
e

st
a
te

o
c
c
u
p
a
n
c
y

p
ro

b
a
b
il
it
y
.

R
e
li
a
b
il
it
y

p
re

-
d
ic

ti
o
n

fo
r

th
e

fa
u
lt

-t
o
le

ra
n
t

m
u
l-

ti
p
ro

c
e
ss

o
r

(F
T

M
P
)

d
e
v
e
lo

p
e
d

fo
r

N
A

S
A

.
A

ir
p
la

n
e

sy
st

e
m

s
a
n
d

sa
fi
n
g

sy
st

e
m

s
in

n
u
c
le

a
r

re
a
c
to

rs
.

M
a
th

w
o
rk

s
S
ta

te
fl
o
w

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
a
c
a
d
-

e
m

ic
li
c
e
n
se

,
ti

m
e
-l
im

it
e
d

d
e
m

o
v
e
rs

io
n

Q
u
a
n
ti

ta
ti

v
-

si
m

u
la

ti
o
n
,

IT
-l
e
v
e
l

S
ta

te
c
h
a
rt

s,
fi
n
it

e
st

a
te

m
a
c
h
in

e
s,

te
m

p
o
ra

l
lo

g
ic

W
in

d
o
w

s
2
0
0
0
,

X
P
,
V

is
ta

,
L
in

u
x
,

S
o
la

ri
s

8
.x

,
M

a
c
O

S
o
n

In
te

l

S
im

u
la

ti
o
n

to
o
l
fo

r
th

e
e
v
e
n
t

b
a
se

d
sy

st
e
m

s.
It

e
x
te

n
d
s

st
a
te

c
h
a
rt

s
w

it
h

th
e

fo
ll
o
w

in
g

c
o
n
c
e
p
ts

:
c
o
n
tr

o
l
fl
o
w

,
tr

u
th

ta
b
le

s,
te

m
p
o
-

ra
l
o
p
e
ra

to
rs

,
e
v
e
n
t-

b
a
se

d
b
ro

a
d
c
a
st

.

E
n
e
rg

y
a
n
d

p
o
w

e
r
se

c
-

to
r.

M
e
rc

u
ry

B
T

O
E
n
-

te
rp

ri
se

S
o
lu

ti
o
n
s

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

Q
u
a
li
ta

ti
v
e
,

IT
-

a
n
d

p
ro

c
e
ss

-l
e
v
e
l

IT
IL

se
rv

ic
e

m
a
n
a
g
e
m

e
n
t,

C
O

B
IT

q
u
a
li
ty

st
a
n
d
a
rd

s
W

in
d
o
w

s,
L
in

u
x
/

U
n
ix

M
e
rc

u
ry

B
T

O
(B

u
si

n
e
ss

T
e
c
h
n
o
lo

g
y

O
p
ti

-
m

iz
a
ti

o
n
)

E
n
te

rp
ri

se
is

a
su

it
e

o
f

a
p
p
li
c
a
-

ti
o
n
s

(t
o
o
ls

)
th

a
t

su
p
p
o
rt

s
im

p
le

m
e
n
ta

ti
o
n

o
f
IT

IL
se

rv
ic

e
m

a
n
a
g
e
m

e
n
t.

T
h
e
y

a
re

te
c
h
-

n
o
lo

g
ic

a
ll
y

b
o
u
n
d

b
y

d
a
sh

b
o
a
rd

s,
a

C
M

D
B

(C
o
n
fi
g
u
ra

ti
o
n

M
a
n
a
g
e
m

e
n
t

D
a
ta

B
a
se

),
a
n
d

a
w

o
rk

fl
o
w

e
n
g
in

e
th

a
t

a
u
to

m
a
te

s
a
n
d

in
te

-
g
ra

te
s

se
rv

ic
e

m
a
n
a
g
e
m

e
n
t

p
ro

c
e
ss

e
s.

M
e
r-

c
u
ry

P
ro

je
c
t
a
n
d

P
o
rt

fo
li
o

M
a
n
a
g
e
m

e
n
t
C

e
n
-

te
r

p
ro

v
id

e
s

C
o
b
iT

su
p
p
o
rt

(i
t

a
ls

o
p
ro

v
id

e
s

su
p
p
o
rt

fo
r

o
th

e
r

q
u
a
li
ty

p
ro

g
ra

m
s)

.

N
/
A

M
E
T
A

S
A

N
N

/
A

A
n
a
ly

ti
c
a
l

a
n
d

si
m

u
la

ti
o
n
,

IT
-

le
v
e
l

S
to

h
a
st

ic
a
c
ti

v
it
y

n
e
tw

o
rk

s
(S

A
N

)
U

n
ix

E
v
a
lu

a
ti

o
n

o
f
p
e
rf

o
rm

a
n
c
e

a
n
d

re
li
a
b
il
it
y
.

N
/
A

M
E
T

F
A

C
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
a
c
a
d
-

e
m

ic
li
c
e
n
se

,
e
v
a
lu

a
ti

o
n

li
c
e
n
se

A
n
a
ly

ti
c
a
l

a
n
d

si
m

u
la

ti
o
n
,

IT
-

le
v
e
l

F
in

it
e

c
o
n
ti

n
u
o
u
s-

ti
m

e
M

a
rk

o
v

c
h
a
in

m
o
d
e
ls

w
it

h
re

w
a
rd

ra
te

s
a
ss

o
c
ia

te
d

w
it

h
th

e
ir

st
a
te

s.

L
in

u
x

k
e
rn

e
l
2
.4

.4
a
n
d

a
b
o
v
e
;

S
o
-

la
ri

s
2
.x

;
a
n
d
,

o
n

d
e
m

a
n
d
,

a
n
y

o
th

e
r

U
N

IX
v
a
ri

-
a
n
t

w
it

h
C

-
sh

e
ll

a
n
d

a
n

A
N

S
I/

IS
O

(s
ta

n
d
a
rd

8
9
/
9
0
)

C
c
o
m

p
il
e
r

A
n
a
ly

si
s

o
f

p
e
rf

o
rm

a
n
c
e
,

d
e
p
e
n
d
a
b
il
it
y

a
n
d

p
e
rf

o
rm

a
b
il
it
y

o
f

c
o
m

p
le

x
sy

st
e
m

s
th

ro
u
g
h

re
w

a
rd

e
d

c
o
n
ti

n
u
o
u
s-

ti
m

e
M

a
rk

o
v

c
h
a
in

m
o
d
e
ls

.

A
R

e
li
a
b
il
it
y

M
o
d
e
l

o
f

a
5
-l
e
v
e
l

R
A

ID
S
to

ra
g
e

S
u
b
sy

st
e
m

,
R

e
li
a
b
il
it
y

M
o
d
e
l

o
f

a
S
to

ra
g
e

S
y
st

e
m

,
P
e
rf

o
rm

a
b
il
it
y

M
o
d
e
l

o
f

a
M

u
lt

ip
ro

c
e
s-

so
r

S
y
st

e
m

,
G

ri
d

c
lu

st
e
r

c
o
m

p
u
ti

n
g

sy
st

e
m

s,
S
to

ra
g
e

a
re

a
n
e
tw

o
rk

s,
C

o
m

m
u
n
i-

c
a
ti

o
n

n
e
tw

o
rk

s
M

ö
b
iu

s
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
a
c
a
-

d
e
m

ic
a
n
d

te
st

v
e
rs

io
n
s

Q
u
a
n
ti

ta
ti

v
e

(a
n
-

a
ly

ti
c
a
l
a
n
d

si
m

u
-

la
ti

o
n
),

IT
-l
e
v
e
l

S
to

c
h
a
st

ic
a
c
ti

v
it
y

n
e
tw

o
rk

s
(S

A
N

),
Q

u
e
u
in

g
sy

st
e
m

s,
st

o
c
h
a
st

ic
P
e
tr

i
n
e
ts

,
st

o
c
h
a
st

ic
p
ro

c
e
ss

a
lg

e
b
ra

,
fa

u
lt

tr
e
e
s,

c
o
m

b
in

a
to

ri
a
l

b
lo

c
k

d
i-

a
g
ra

m
s.

W
in

d
o
w

s
2
0
0
0
,

X
P
,

F
e
d
o
ra

C
o
re

3
a
n
d

n
e
w

e
r

m
o
d
e
li
n
g

th
e

b
e
h
a
v
io

r
o
f

c
o
m

p
le

x
sy

st
e
m

s.
O

ri
g
in

a
ll
y

d
e
v
e
lo

p
e
d

fo
r

st
u
d
y
in

g
th

e
re

li
a
-

b
il
it
y
,
a
v
a
il
a
b
il
it
y
,
a
n
d

p
e
rf

o
rm

a
n
c
e

o
f

c
o
m

-
p
u
te

r
a
n
d

n
e
tw

o
rk

sy
st

e
m

s,
it

c
a
n

b
e

u
se

d
fo

r
a

b
ro

a
d

ra
n
g
e

o
f

d
is

c
re

te
-e

v
e
n
t

sy
st

e
m

s,
fr

o
m

b
io

c
h
e
m

ic
a
l

re
a
c
ti

o
n
s

w
it

h
in

g
e
n
e
s

to
th

e
e
ff
e
c
ts

o
f

m
a
li
c
io

u
s

a
tt

a
c
k
e
rs

o
n

se
c
u
re

c
o
m

p
u
te

r
sy

st
e
m

s,
in

a
d
d
it

io
n

to
th

e
o
ri

g
i-

n
a
l
a
p
p
li
c
a
ti

o
n
s.

IT
-s

y
st

e
m

s
a
n
d

n
e
tw

o
rk

s,
te

le
c
o
m

m
u
-

n
ic

a
ti

o
n

so
ft

w
a
re

a
n
d

h
a
rd

w
a
re

sy
st

e
m

s,
a
e
ro

sp
a
c
e

a
n
d

a
e
ro

-
n
a
u
ti

c
a
l,

c
o
m

m
e
rc

ia
l

a
n
d

g
o
v
e
rn

m
e
n
t

sy
s-

te
m

s
a
n
d

n
e
tw

o
rk

s,
b
io

lo
g
ic

a
l
sy

st
e
m

s.
N

F
T
A

P
E

A
c
a
d
e
m

ic
li
-

c
e
n
se

Q
u
a
n
ti

ta
ti

v
e

b
e
n
c
h
m

a
rk

in
g

a
n
d

te
st

,
IT

-l
e
v
e
l

S
o
ft

w
a
re

-b
a
se

d
fa

u
lt

in
je

c
ti

o
n

S
o
la

ri
s,

L
in

u
x

N
F
T
A

P
E

is
a

so
ft

w
a
re

-b
a
se

d
e
n
v
ir

o
n
m

e
n
t

fo
r

a
u
to

m
a
ti

c
a
l

a
ss

e
ss

m
e
n
t

o
f

n
e
tw

o
rk

re
li
-

a
b
il
it
y

u
si

n
g

fa
u
lt

in
je

c
ti

o
n

m
e
th

o
d
s.

M
o
to

ro
la

ID
E
N

M
i-

c
ro

L
is

te
(b

a
se

st
a
ti

o
n

c
o
n
tr

o
ll
e
r)

,
D

H
C

P
p
ro

to
c
o
l,

S
S
H

a
n
d

F
T

P
se

rv
ic

e
s.

N
U

M
A

S
N

/
A

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

Q
u
e
u
in

g
n
e
tw

o
rk

s,
M

a
rk

o
v

c
h
a
in

s
S
u
n

P
e
rf

o
rm

a
n
c
e

a
n
a
ly

si
s

to
o
l,

e
n
a
b
li
n
g

e
x
p
a
n
-

si
o
n

o
f

n
o
d
e

p
ro

p
e
rt

ie
s

w
it

h
fa

u
lt

-t
o
le

ra
n
c
e

p
a
ra

m
e
te

rs
.

N
/
A

106 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

N
a
m

e
L
ic

e
n
s
e

C
la

s
s

M
o
d
e
l
t
y
p
e

P
la

t
fo

r
m

G
e
n
e
r
a
l
p
u
r
p
o
s
e

U
s
e

c
a
s
e
s

O
C

T
A
V

E
C

o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
li
ta

ti
v
e
,

IT
-

a
n
d

p
ro

c
e
ss

-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

N
/
A

D
e
v
e
lo

p
e
d

b
y

th
e

A
d
v
a
n
c
e
d

T
e
c
h
n
o
lo

g
y

In
-

st
it

u
te

to
su

p
p
o
rt

th
e

O
p
e
ra

ti
o
n
a
ll
y

C
ri

ti
-

c
a
l
T

h
re

a
ts

,
A

ss
e
ts

a
n
d

V
u
ln

e
ra

b
il
it
y

E
v
a
lu

-
a
ti

o
n

(O
C

T
A
V

E
)

m
e
th

o
d
o
lo

g
y
.

It
a
ss

is
ts

in
th

e
d
a
ta

c
o
ll
e
c
ti

o
n

p
h
a
se

,
d
a
ta

o
rg

a
n
iz

a
ti

o
n

a
n
d

re
p
o
rt

g
e
n
e
ra

ti
o
n
.

H
e
a
lt

h
(O

C
T
A
V

E
-

H
IP

A
A

,
O

C
T
A
V

E
-

J
C

A
H

O
)

O
p
e
n
S
e
sa

m
e

A
c
a
d
e
m

ic
a
l

li
c
e
n
se

,
c
o
m

m
e
rc

ia
l

a
v
a
il
a
b
le

u
p
o
n

re
q
u
e
st

Q
u
a
n
ti

a
ti

v
e
,

a
n
-

a
ly

ti
c
a
l/

si
m

u
la

-
ti

o
n
,
IT

-l
e
v
e
l

R
e
li
a
b
il
it
y

b
lo

c
k

d
ia

g
ra

m
,

F
a
u
lt

tr
e
e
,
S
to

c
h
a
st

ic
P
e
tr

i
n
e
ts

L
in

u
x
/

U
n
ix

C
o
m

b
in

e
s

u
se

r
fr

ie
n
d
ly

te
c
h
n
iq

u
e
s

o
f

c
o
m

-
b
in

a
to

ri
a
l

m
e
th

o
d
s

(R
B

D
/
F
T

)
w

it
h

e
x
p
re

s-
si

o
n

p
o
w

e
r

o
f
st

a
te

-b
a
se

d
m

o
d
e
li
n
g

m
e
th

o
d
s

(P
e
tr

i
n
e
ts

).
C

o
m

p
o
n
e
n
t

d
e
p
e
n
d
e
n
c
e

c
a
n

a
ls

o
b
e

sp
e
c
ifi

e
d
.

(W
e
b
)s

e
rv

e
rs

,
T
e
lc

o
n
e
tw

o
rk

s,
e
n
e
rg

y
se

c
to

r.

P
E
N

E
L
O

P
E

N
/
A

Q
u
a
li
ta

ti
v
e

a
n
d

q
u
a
n
ti

ta
ti

v
e
,

IT
-l
e
v
e
l

E
x
te

n
d
e
d

M
a
rk

o
v

re
w

a
rd

m
o
d
e
ls

,
c
o
n
tr

o
ll
e
d

st
o
c
h
a
st

ic
P
e
tr

i
n
e
ts

S
u
n
-4

P
e
rf

o
rm

a
n
c
e

a
n
a
ly

si
s

a
n
d

o
p
ti

m
is

a
ti

o
n

E
m

e
rg

e
n
c
y

su
p
p
ly

m
o
d
e
l

P
E
N

P
E
T

N
/
A

Q
u
a
n
ti

ta
ti

v
e

-
a
n
-

a
ly

ti
c
a
l,

q
u
a
li
ta

-
ti

v
e
,
IT

-l
e
v
e
l

G
e
n
e
ra

li
z
e
d

st
o
c
h
a
st

ic
P
e
tr

i
n
e
ts

,
M

a
rk

o
v

re
w

a
rd

m
o
d
e
ls

C
im

p
le

m
e
n
ta

-
ti

o
n

fo
r

U
n
ix

A
n
a
ly

si
s

o
f

p
e
rf

o
rm

a
n
c
e

a
n
d

re
li
a
b
il
it
y

o
f

fa
u
lt

-t
o
le

ra
n
t

sy
st

e
m

s.
M

u
lt

ip
ro

c
e
ss

o
r

sy
s-

te
m

s.

P
IL

A
R

/
E
A

R
P
IL

A
R

is
li
c
e
n
se

d
fo

r
S
p
a
in

g
o
v
-

e
rn

m
e
n
t

u
se

o
n
ly

,
E
A

R
is

a
v
a
il
a
b
le

in
c
o
m

m
e
rc

ia
l

a
n
d

te
st

v
e
rs

io
n
s.

Q
u
a
li
ta

ti
v
e

a
n
d

q
u
a
n
ti

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

M
e
th

o
d
o
lo

g
y

fo
r

In
fo

rm
a
ti

o
n

S
y
s-

te
m

s
R

is
k

A
n
a
ly

si
s

a
n
d

M
a
n
a
g
e
-

m
e
n
t

(M
A

G
E
R

IT
),

a
tt

a
c
k

tr
e
e
s,

p
ro

c
e
ss

d
e
sc

ri
p
ti

o
n
s,

a
u
d
it

s;
U

se
s

d
a
ta

fl
o
w

d
ia

g
ra

m
s,

p
ro

c
e
ss

c
h
a
rt

s,
b
o
o
le

a
n

fu
n
c
ti

o
n
s.

W
in

d
o
w

s/
L
in

u
x

P
IL

A
R

im
p
le

m
e
n
ts

a
n
d

e
x
te

n
d
s

th
e

M
A

G
E
R

IT
-p

ro
c
e
ss

d
e
v
e
lo

p
e
d

b
y

th
e

S
p
a
n
-

is
h

D
e
fe

n
se

M
in

is
tr

y
.

It
c
o
m

p
ri

se
s

v
a
ri

o
u
s

q
u
a
li
ta

ti
v
e

a
n
d

q
u
a
n
ti

ta
ti

v
e

ri
sk

a
n
a
ly

si
s

m
e
th

o
d
s,

a
s

w
e
ll

a
s

ri
sk

m
a
n
a
g
e
m

e
n
t,

b
u
si

n
e
ss

-i
m

p
a
c
t-

a
n
a
ly

si
s

a
n
d

c
o
n
ti

n
u
it
y
-o

f-
o
p
e
ra

ti
o
n
s.

P
IL

A
R

:
S
p
a
n
is

h
a
d
-

m
in

st
ra

ti
o
n
.

P
R

O
T

E
U

S
C

o
m

m
e
c
ri

a
l

li
c
e
n
se

,
W

e
b

d
e
m

o
n
st

ra
-

ti
o
n

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-
a
n
d

IT
-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

a
n
d

a
ss

e
ss

m
e
n
t

C
li
e
n
t:

M
S

W
in

-
d
o
w

s
N

T
/

2
0
0
0
/

X
P
;

se
rv

e
r:

M
S

W
in

d
o
w

s
S
e
rv

e
r

2
0
0
3
,
L
in

u
x

W
e
b
se

rv
e
r-

b
a
se

d
su

p
p
o
rt

in
g

in
fo

rm
a
ti

o
n

se
-

c
u
ri

ty
a
n
d

ri
sk

m
a
n
a
g
e
m

e
n
t
st

a
n
d
a
rd

s
(I

S
O

/
IE

C
1
7
7
9
9

a
n
d

B
S

IS
O

/
IE

C
2
7
0
0
1
,

B
S

2
5
9
9
9
,
C

o
b
it

,
P
C

I
D

S
S
..
.)

N
/
A

Q
U

A
K

E
N

/
A

Q
u
a
n
ti

ta
ti

v
e

-
b
e
n
c
h
m

a
rk

in
g

a
n
d

te
st

,
IT

-l
e
v
e
l

F
a
u
lt

in
je

c
ti

o
n
,
ti

m
e

se
ri

e
s
a
n
a
ly

si
s,

b
e
n
c
h
m

a
rk

N
/
A

R
e
li
a
b
il
it
y

a
ss

e
ss

m
e
n
t

o
f
g
ri

d
s

a
n
d

W
e
b

se
r-

v
ic

e
s

G
ri

d
s

a
n
d

W
e
b

se
r-

v
ic

e
s,

n
o

a
d
d
it

io
n
a
l

d
e
ta

il
s.

R
e
le

x
R

e
li
a
-

b
il
it
y

S
tu

d
io

,
P
R

IS
M

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
e
v
a
lu

a
ti

o
n

v
e
rs

io
n

Q
u
a
n
ti

ta
ti

v
e

-
a
n
-

a
ly

ti
c
a
l/

si
m

u
la

-
ti

o
n
,

q
u
a
li
ta

ti
v
e
,

IT
-

a
n
d

p
ro

c
e
ss

-
le

v
e
l

M
a
rk

o
v

m
o
d
e
ls

,
re

li
a
b
il
it
y

b
lo

c
k

d
ia

g
ra

m
s

w
it

h
M

o
n
te

-C
a
rl

o
si

m
u
la

-
ti

o
n
s,

F
M

E
A

/
F
M

E
C

A
,

F
T
A

/
E
T
A

,
F
R

A
C

A
S
,

H
u
m

a
n
-F

a
c
to

r-
R

is
k
-

A
n
a
ly

si
s

M
S

W
in

d
o
w

s
A

ss
e
ss

m
e
n
t

o
f

re
li
a
b
il
it
y
,

p
e
rf

o
rm

a
n
c
e

a
n
d

m
a
in

ta
in

a
b
il
it
y
,

su
p
p
o
rt

in
g

m
e
th

o
d
s

fo
r

d
e
-

te
rm

in
in

g
fa

u
lt

c
ri

ti
c
a
li
ty

a
n
d

a
v
a
il
a
b
il
it
y

m
o
d
e
li
n
g
.

A
ir

a
n
d

sp
a
c
e

in
d
u
s-

tr
y
,

a
u
to

m
o
ti

v
e
,

o
il
,

h
e
a
lt

h
a
n
d

m
e
d
ic

in
e

te
c
h
n
iq

u
e
,

te
le

c
o
m

-
m

u
n
ic

a
ti

o
n
s.

R
e
li
a
b
il
it
y

C
e
n
te

r:
P
ro

a
c
t,

L
E
A

P

C
o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
n
ti

ta
ti

v
e

-
a
n
-

a
ly

ti
c
a
l

a
n
d

si
m

-
u
la

ti
o
n
,

q
u
a
li
ta

-
ti

v
e
,
IT

-l
e
v
e
l

R
o
o
t-

c
a
u
se

-a
n
a
ly

si
s,

F
M

E
A

a
n
d

o
p
p
o
rt

u
n
it
y

a
n
a
ly

si
s

M
S

W
in

d
o
w

s
S
u
p
p
o
rt

s
th

e
P
ro

a
c
t
p
ro

c
e
ss

m
o
d
e
l,

a
v
a
ri

a
n
t

o
f
ro

o
t-

c
a
u
se

a
n
a
ly

si
s

m
e
th

o
d
.

L
E
A

P
im

p
le

-
m

e
n
ts

F
M

E
A

a
n
d

o
p
p
o
rt

u
n
it
y

a
n
a
ly

si
s.

A
ir

a
n
d

sp
a
c
e

(N
A

S
A

),
ra

il
w

a
y

(A
m

tr
a
k
),

fo
o
d

(B
a
c
-

a
rd

i)
,

a
u
to

m
o
ti

v
e

(G
e
n
e
ra

l
M

o
to

rs
),

m
u
lt

i-
c
o
n
c
e
rn

s
(G

e
n
-

e
ra

l
E
le

c
tr

ic
),

p
o
w

e
r

(V
ir

g
in

ia
P
o
w

e
rs

),
o
il

(S
h
e
ll
).

R
e
li
a
so

ft
C

o
m

m
e
rc

ia
l

a
n
d

e
v
a
lu

a
-

ti
o
n

li
c
e
n
se

Q
u
a
n
ti

ta
ti

v
e

-
a
n
-

a
ly

ti
c
a
l,

q
u
a
li
ta

-
ti

v
e
,
IT

-l
e
v
e
l

L
if
e

d
a
ta

a
n
a
ly

si
s,

R
C

M
,

F
M

E
A

/
F
M

E
C

A
,

R
C

M
,

R
B

D
,

F
R

A
C

A
S
,

st
o
c
h
a
st

ic
e
v
e
n
t

si
m

u
la

ti
o
n

M
S

W
in

d
o
w

s
S
o
ft

w
a
re

a
v
a
il
a
b
il
it
y

a
n
a
ly

si
s

S
y
st

e
m

a
n
d

p
ro

d
u
c
t

m
a
n
u
fa

c
tu

ri
n
g
,

e
n
v
i-

ro
n
m

e
n
t

p
la

n
in

g
.

R
E
L
IA

S
S

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
e
v
a
lu

a
ti

o
n

v
e
rs

io
n

Q
u
a
n
ti

ta
ti

v
e

-
a
n
-

a
ly

ti
c
a
l
a
n
d

si
m

u
-

la
ti

o
n
,
IT

-l
e
v
e
l

F
M

E
C

A
,
R

C
M

,
c
o
rr

e
c
ti

v
e

a
n
d

p
re

-
v
e
n
ti

v
e

m
a
in

te
n
a
n
c
e
,

se
n
si

ti
v
it
y

a
n
a
ly

si
s

(A
S
E
N

T
),

R
B

D
,

M
o
n
te

-
C

a
rl

o
si

m
u
la

ti
o
n
s,

M
a
rk

o
v

c
h
a
in

s,
F
a
u
lt

tr
e
e
s,

E
v
e
n
t

a
n
a
ly

si
s,

W
e
ib

u
ll

d
is

tr
ib

u
ti

o
n
,
re

li
a
b
il
it
y

p
re

d
ic

ti
o
n
s,

W
e
a
k
-l
in

k
a
n
a
ly

si
s

a
n
d

p
h
a
se

d
si

m
-

u
la

ti
o
n
.

W
in

d
o
w

s
9
8

a
n
d

n
e
w

e
r

R
e
li
a
b
il
it
y
,

a
v
a
il
a
b
il
it
y
,

p
e
rf

o
rm

a
n
c
e

a
n
d

m
a
in

te
n
a
n
c
e

a
ss

e
ss

m
e
n
t.

L
o
c
k
h
e
e
d

M
a
rt

in
(J

S
F

p
ro

je
c
t)

4.5. TOOL COMPARISON SUMMARY 107

N
a
m

e
L
ic

e
n
s
e

C
la

s
s

M
o
d
e
l
t
y
p
e

P
la

t
fo

r
m

G
e
n
e
r
a
l
p
u
r
p
o
s
e

U
s
e

c
a
s
e
s

R
e
m

e
d
y
S
u
it

e
C

o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
li
ta

ti
v
e
,

p
ro

c
e
ss

-l
e
v
e
l

R
e
m

e
d
y

S
o
ft

w
a
re

fo
r

IT
-S

e
rv

ic
e
-

M
a
n
a
g
e
m

e
n
t

(I
T

S
M

)
m

o
d
e
l

W
in

d
o
w

s,
U

n
ix

/
L
in

u
x

Im
p
ro

v
e
m

e
n
t

o
f
p
ro

je
c
t

m
a
n
a
g
e
m

e
n
t

q
u
a
li
ty

th
ro

u
g
h

a
u
to

m
a
ti

z
a
ti

o
n

o
f
IT

IL
-p

ro
c
e
ss

e
ss

.
T
e
li
a
S
o
n
e
ra

,
In

fi
n
e
o
n
,

V
o
d
a
fo

n
e
,
A

g
fa

,
D

e
ll
.

R
is

k
W

a
tc

h
C

o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
li
ta

ti
v
e
,

IT
-

a
n
d

p
ro

c
e
ss

-l
e
v
e
l

R
is

k
a
n
a
ly

si
s

a
n
d

a
ss

e
ss

m
e
n
t

M
S

W
in

d
o
w

s/
O

ffi
c
e

A
u
to

m
a
ti

c
ri

sk
a
n
a
ly

si
s

b
a
se

d
o
n

th
e

c
u
st

o
m

e
r-

sp
e
c
ifi

c
k
n
o
w

le
d
g
e

b
a
se

.
N

/
A

S
a
b
a
to

n
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

w
it

h
li
m

it
e
d

fu
n
c
ti

o
n
a
li
ty

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

F
M

E
A

/
C

A
M

S
W

in
d
o
w

s
S
u
p
p
o
rt

s
F
M

E
A

(F
a
il
u
re

M
o
d
e

a
n
d

E
ff
e
c
ts

A
n
a
ly

si
s)

a
n
d

F
M

E
C

A
(F

a
il
u
re

M
o
d
e
,

E
f-

fe
c
ts

a
n
d

C
ri

ti
c
a
li
ty

A
n
a
ly

si
s)

,
th

a
t

a
re

u
se

d
to

c
o
v
e
r

p
o
ss

ib
le

fa
il
u
re

s
a
n
d

fa
il
u
re

ty
p
e
s

d
u
ri

n
g

th
e

p
ro

d
u
c
t
a
n
d

sy
st

e
m

d
e
v
e
lo

p
m

e
n
t.

A
ir

a
n
d

sp
a
c
e
,

te
le

c
o
m

m
u
n
ic

a
ti

o
n
s,

tr
a
n
sa

c
ti

o
n

sy
st

e
m

s.

S
A
V

E
N

/
A

A
n
a
ly

ti
c
a
l

a
n
d

si
m

u
la

ti
o
n
,

IT
-

le
v
e
l

H
o
m

o
g
e
n
e
o
u
s

M
a
rk

o
v

c
h
a
in

s
F
o
rt

ra
n

7
7

S
o
lv

in
g

p
ro

b
a
b
il
is

ti
c

m
o
d
e
ls

o
f
sy

st
e
m

a
v
a
il
-

a
b
il
it
y

a
n
d

re
li
a
b
il
it
y

o
f
m

is
si

o
n
-o

ri
e
n
te

d
a
n
d

c
o
n
ti

n
u
o
u
sl

y
o
p
e
ra

ti
n
g

sy
st

e
m

s.

S
p
a
c
e

c
o
m

p
u
te

rs
a
n
d

a
v
io

n
ic

s
(n

o
n
-

re
p
a
ir

a
b
le

sy
st

e
m

s)
a
n
d

te
le

p
h
o
n
e

sw
it

c
h
-

in
g

sy
st

e
m

s,
g
e
n
e
ra

l
p
u
rp

o
se

c
o
m

p
u
te

r
sy

st
e
m

s,
tr

a
n
sa

c
ti

o
n

p
ro

c
e
ss

in
g

sy
st

e
m

s
(r

e
p
a
ir

a
b
le

sy
st

e
m

s)
.

S
H

A
R

P
E

2
0
0
2

A
c
a
d
e
m

ic
li
c
e
n
se

,
c
o
m

m
e
rc

ia
l

li
c
e
n
se

Q
u
a
n
ti

ta
ti

v
e
,

a
n
-

a
ly

ti
c
a
l
a
n
d

si
m

u
-

la
ti

o
n
,
IT

-l
e
v
e
l

M
a
rk

o
v

c
h
a
in

s,
se

m
i-
M

a
rk

o
v

c
h
a
in

s,
re

li
a
b
il
it
y

b
lo

c
k

d
ia

g
ra

m
s,

fa
u
lt

tr
e
e
s,

re
li
a
b
il
it
y

g
ra

p
h
s,

q
u
e
u
-

in
g

n
e
tw

o
rk

s,
g
e
n
e
ra

li
z
e
d

st
o
c
h
a
st

ic
P
e
tr

i
n
e
ts

,
se

ri
a
l-
p
a
ra

ll
e
l
g
ra

p
h
s.

W
in

d
o
w

s,
L
in

u
x
,

S
o
la

ri
s,

J
V

M
T

h
e

to
o
ls

o
ff
e
rs

sp
e
c
ifi

c
a
ti

o
n

la
n
g
u
a
g
e
s

a
n
d

so
lv

e
rs

fo
r

m
o
st

m
o
d
e
l
ty

p
e
s

u
se

d
fo

r
a
v
a
il
-

a
b
il
it
y
,

re
li
a
b
il
it
y

a
n
d

p
e
rf

o
rm

a
n
c
e

m
o
d
e
l-

in
g
.

M
o
re

th
a
n

2
8
0

c
o
m

-
m

e
rc

ia
l

in
st

a
ll
a
ti

o
n
s,

sp
e
c
ifi

c
s

n
o
t

g
iv

e
n
.

S
o
ft

R
e
l
L
L
C

:
F
re

st
im

a
te

S
ta

n
d
a
rd

/
m

a
n
a
g
e
r

e
d
i-

ti
o
n
,

M
e
tr

ic
s

p
a
c
k
a
g
e

A
n
a
ly

ti
c
a
l,

so
ft

-
w

a
re

C
u
st

o
m

iz
e
d

m
o
d
e
ls

b
a
se

d
o
n

c
o
rr

e
-

la
ti

o
n

M
S

W
in

d
o
w

s
S
o
ft

w
a
re

re
li
a
b
il
it
y

a
ss

e
ss

m
e
n
t

w
it

h
re

sp
e
c
t

to
th

e
e
x
p
e
c
te

d
n
u
m

b
e
r

o
f

fa
u
lt

s
p
e
r

1
0
0
0

li
n
e
s

o
f
c
o
d
e
.

D
e
fe

n
se

,
A

ir
a
n
d

sp
a
c
e

in
d
u
st

ry
.

S
o
ft

w
a
re

A
G

C
e
n
tr

a
si

te
C

o
m

m
e
rc

ia
l

li
c
e
n
se

,
te

st
v
e
rs

io
n

Q
u
a
li
ta

ti
v
e
,

se
rv

ic
e
-l
e
v
e
l

M
e
ta

d
a
ta

re
p
o
si

to
ry

su
p
p
o
rt

in
g

p
o
li
c
y
,

c
h
a
n
g
e

c
o
n
tr

o
l,

m
a
in

te
-

n
a
n
c
e
,

a
u
to

m
a
ti

o
n
,

d
e
p
e
n
d
e
n
c
y

a
n
a
ly

si
s

a
n
d

re
p
o
rt

in
g

a
t

th
e

b
u
si

n
e
ss

p
ro

c
e
ss

(s
e
rv

ic
e
)

le
v
e
l.

P
la

tf
o
rm

-
in

d
e
p
e
n
d
e
n
t

C
e
n
tr

a
si

te
is

p
la

tf
o
rm

fo
r

S
e
rv

ic
e

O
ri

e
n
te

d
A

rc
h
it

e
c
tu

re
(S

O
A

)
G

o
v
e
rn

a
n
c
e
.

S
O

A
g
o
v
-

e
rn

a
n
c
e

c
o
v
e
rs

tw
o

a
sp

e
c
ts

:
1
)
se

rv
ic

e
im

p
le

-
m

e
n
ta

ti
o
n

a
n
d

2
)

IT
g
o
v
e
rn

a
n
c
e

a
t

th
e

b
u
si

-
n
e
ss

p
ro

c
e
ss

le
v
e
l.

G
o
v
e
rn

a
n
c
e

p
ri

o
ri

ti
e
s

a
re

p
e
rf

o
rm

a
n
c
e
,
ri

sk
m

a
n
a
g
e
m

e
n
t,

se
rv

ic
e

a
v
a
il
-

a
b
il
it
y

a
n
d

a
li
g
n
in

g
IT

in
fr

a
st

ru
c
tu

re
w

it
h

b
u
si

n
e
ss

g
o
a
ls

.

F
u
ji
ts

u
,

N
o
v
e
ll
,

S
o
ft

-
w

a
re

A
G

,B
e
lg

ia
n

N
a
ti

o
n
a
l

R
a
il
w

a
y

C
o
m

p
a
n
y
,

C
o
m

-
m

e
rz

b
a
n
k
,

D
a
im

-
le

rC
h
ry

sl
e
r,

N
is

sa
n

M
o
to

rs
,

S
c
a
n
d
in

v
ia

n
A

ir
li
n
e
s,

V
o
d
a
fo

n
e
,

V
o
lk

sw
a
g
e
n
,
Z
D

F
S
P
N

P
A

c
a
d
e
m

ic
a
n
d

c
o
m

m
e
r-

c
ia

l
li
c
e
n
se

Q
u
a
n
ti

ta
ti

v
e
,

IT
-

le
v
e
l

S
to

c
h
a
st

ic
re

w
a
rd

n
e
t

(S
R

N
),

fl
u
id

st
o
c
h
a
st

ic
P
e
tr

i
n
e
t

(F
S
P
N

)
M

S
-D

O
S
,

S
o
la

ri
s,

L
in

u
x

P
e
rf

o
rm

a
n
c
e
,
re

li
a
b
il
it
y
,
a
v
a
il
a
b
il
it
y

a
n
a
ly

si
s

o
f
c
o
m

p
le

x
sy

st
e
m

s.
D

a
ta

b
a
se

sy
st

e
m

s,
A
T

M
-n

e
tw

o
rk

s.

S
U

R
E

N
/
A

A
n
a
ly

ti
c
a
l,

IT
-

le
v
e
l

S
e
m

i-
M

a
rk

o
v

c
h
a
in

s
S
o
la

ri
s,

L
in

u
x
,

M
S

W
in

d
o
w

s
9
8

R
e
li
a
b
il
it
y

a
n
a
ly

si
s
o
f
fa

u
lt

-t
o
le

ra
n
t
a
rc

h
it

e
c
-

tu
re

s,
c
a
lc

u
la

te
s

u
p
p
e
r

a
n
d

lo
w

e
r

b
o
u
n
d
s

o
f

fa
il
u
re

p
ro

b
a
b
il
it
y
.

N
/
A

S
U

R
F
-2

C
o
m

m
e
rc

ia
l

li
c
e
n
se

,
a
c
a
d
e
m

ic
li
c
e
n
se

A
n
a
ly

ti
c
a
l

a
n
d

si
m

u
la

ti
o
n
,

IT
-

le
v
e
l

M
a
rk

o
v

c
h
a
in

s,
g
e
n
e
ra

li
z
e
d

st
o
c
h
a
s-

ti
c

P
e
tr

i
n
e
ts

S
U

N
O

S
4
.1

.x
o
r

S
o
la

ri
s

2
.x

H
a
rd

w
a
re

a
n
d

so
ft

w
a
re

re
li
a
b
il
it
y

e
st

im
a
-

ti
o
n
.

N
/
A

T
A

N
G

R
A

M
N

/
A

D
e
p
e
n
d
s

o
n

th
e

a
p
p
li
c
a
ti

o
n

d
o
m

a
in

D
e
p
e
n
d
s

o
n

th
e

a
p
p
li
c
a
ti

o
n

d
o
m

a
in

S
u
n
-3

F
ra

m
e
w

o
rk

w
h
ic

h
e
n
a
b
le

s
p
lu

g
g
in

g
o
f
d
iff

e
r-

e
n
t

m
o
d
e
ls

,
th

e
ir

e
v
a
lu

a
ti

o
n

a
n
d

re
p
o
rt

in
g
.

N
/
A

T
ab

le
4.

1:
O

ve
rv

ie
w

of
th

e
su

rv
ey

ed
av

ai
la

bi
lit

y
as

se
ss

m
en

t
to

ol
s

108 CHAPTER 4. TOOLS FOR AVAILABILITY ASSESSMENT

Chapter 5

Service and Process
Availability

As discussed in Chapter 2, business processes and services are based on the
ICT-layer components, their availability therefore depends directly on the avail-
ability properties of the underlying ICT-components. In the previous chapter
we investigated limitations of existing reliability and availability modeling tools
when applied to complex business processes and service-oriented applications.
To overcome these limitations we introduce a mapping process that describes
dependencies between the ICT-layer, service and business process level. Effec-
tively, process and service availability is determined, analytically or through
simulation, as a function of the ICT-layer components’ availability, where un-
derlying availability models are generated automatically.

Figure 5.1 sketches the proposed service availability assessment process.
Based on the service or process description and the infrastructure data that
is gathered, steps of service or process execution are mapped to infrastructure
elements on which they depend. Based on this mapping, availability model
(reliability block diagram or Markov chain) is automatically derived and pa-
rameterized. The model thus obtained is then solved to provide metrics such
as steady-state, interval, instantaneous or user-perceived availability. All steps
are automated except the initial process/service description.

Figure 5.1: Proposed availability assessment steps

The mapping and availability assessment process sketched above comprises
following steps:

1. Business process is identified and described using a process modeling lan-
guage, such as BPMN (in this chapter) or UML activity diagram. Op-
tionally, the required (target) process availability is defined.

109

110 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

2. For each business process activity, services enacting it are iteratively de-
scribed using the same process modeling formalism, until all activities
are represented as compositions of atomic services. Similarly to step 1,
required availability of each service can be also defined.

3. Infrastructure data is collected by a network management system that
may be integrated in a larger configuration management database (CMDB)
system. In this step, communication and computation topology is ex-
tracted in form of the infrastructure graph. Information about support-
ing infrastructure, such as power supply or air-conditioning devices, are
either taken from specialized tools (e.g., GSTool) or added manually to
the infrastructure graph.

4. Services are iteratively mapped to infrastructure elements contained in
the infrastructure graph, in a process that is inversion of step 2: atomic
services are mapped first, followed by composite services. Each step of
atomic or composite service execution has source S and destination D in
the graph. The task is to find all paths between S and D. The paths are
then transformed into Boolean expressions by applying operator AND be-
tween nodes that belong to the same path. If more than one path between
source and destination exist, operator OR is applied to the expressions
defining single paths. If two nodes are executing concurrently in the ser-
vice description, they are serialized using operator AND, however if only
one or k-out-of-n have to be executed, they are joined with operator OR
or expanded to combination of AND-OR operators (in k-out-of-n case).
The resulting expressions are then minimized. The Boolean equations
thus minimized represent communication paths.

5. Step 4 is repeated for the business process. Effectively, Boolean equations
are derived that express functional dependency between business process,
service and ICT-layer elements, analogously to service-ICT mapping from
step 4.

6. The expressions obtained in steps 4 and 5 are transformed to appro-
priate model for availability assessment. In the following sections it is
demonstrated how to transform Boolean expression into reliability block
diagrams (RBD)/fault trees (FT) and Markov chains.

7. Availability of the business process, composite service or atomic service
is calculated by solving/simulating the model generated in the previous
step, using an existing solver. Provided availability of each service and
business process can be compared with required availability, if one was
defined in steps 1-2.

Steps 4 and 5 require identification of all paths between two nodes in a
graph. In the worst case of a complete connectivity graph, the space/time
complexity of a recursive algorithm reaches prohibitive O(n!). However, real
intranets are mostly tree structures, where loops may be created only by routers

5.1. MAPPING BPMN ACTIVITIES 111

whose number in a network is limited. Networks are designed such that a mod-
erate number of switches are connected to the routers and numerous hosts are
then connected to the switches, creating a tree (see infrastructure graph ex-
amples in the following sections). Such sparse structure limits the algorithm
complexity, and it remains polynomial (for a tree it is linear as there is only one
path for each pair of nodes). First two steps are human-dependant but they are
performed only once per process/service, when it is added to the enterprise or
when its definitions is changed. Furthermore, process and service modeling can
be supported using template-based mechanisms and service description reposi-
tories. Steps three through seven can be automated and they can autonomously
adapt to changes: e.g., a change in the infrastructure triggers the update of a
CMDB which initiates new availability assessment.

We will now cover algorithm steps in more detail, explaining how to perform
infrastructure graph generation (step 3), how to define business process/service
mappings (step 4), how to define communication paths (steps 4 and 5) and
finally how to generate the appropriate availability model (step 6). Results
presented in the following sections are partially based on our previous work
from [147] and [137].

5.1 Mapping BPMN activities

For each deployed (observed) instance of a BPMN model, deployment descrip-
tor is generated, similar in structure and purpose to BPEL deployment descrip-
tors. Each activity in a BPMN model is tagged with <partnerLink> element,
which can either specify a composite service, atomic service or ICT-layer ele-
ment (or several of them) which implement this activity. The only constraint
is that atomic service activities must reference ICT-level elements. In that
way, hierarchical tagging of processes/services is performed. A deployment de-
scriptor reads the activities from an abstract BPMN model (persisted in XMI
format) and generates a set of <provide> and <invoke> elements for each
<partnerLink> element. Every <partnerLink> used with <receive> activity
must be matched with <provide> element, and every <partnerLink> used in
<invoke> activity must be matched with <invoke> element in deployment de-
scriptor. The root element, <deploy>, contains a list of all deployed processes,
that is, single deployment descriptor can be used for more than one process
(BPMN) model:

<deploy>

<process ...>*

{ other elements }

</process>

</deploy>

Each process is identified by its qualified name and specifies bindings for
provided and invoked composite/atomic services or ICT-layer elements:

<process name = QName fileName = String? implName = String? >

(<provide> | <invoke>)*

{ other elements }

</process>

112 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Each process element must provide a name attribute with the qualified name
of the BPMN process. This is parsed from XMI file. Optionally, the fileName
attribute can be used to specify location of the BPMN process definition. The
implName attribute is used to specify an endpoint which implements particu-
lar partnerLink. Each <process> element must further enumerate services or
components provided by the process and bind each service or component to an
endpoint. This is done through <provide> elements which associate partner-
Link with endpoint. Essentially, in this step it is determined which components
implement certain BPMN activity and this information is stored in an endpoint:

<provide partnerLink=NCName>

<service name = QName port = pName?>*

</provide>

However, whereas in the BPEL deployment descriptor a partnerLink can
be implemented only with a WSDL endpoint, we do not impose this restric-
tion. The partnerLink can be implemented by any class from Figure 2.8 derived
from the class ICTLayerComponent. Some of the required information can be
extracted manually and associated with elements of the infrastructure graph,
for example if a software component is deployed in an application server, this
information can be extracted from the component deployment descriptor (usu-
ally web.xml file). In some cases manual deployment descriptor generation is
required (see the Publishing Case Study, where manual activities of editors
must be defined by hand in the mapping process). Let us observe a business
process where client initiates the process with an input which is forwarded to
serviceA, it computes the result which is asynchronously sent in parallel to
serviceB and serviceC, and finally, a selection between two computed values
is performed. The following is XML (exported BPEL) representation of such a
business process:

<process name="test">

<partnerLinks>

<partnerLink name="client"/>

<partnerLink name="serviceA"/>

<partnerLink name="serviceB"/>

<partnerLink name="serviceC"/>

</partnerLinks>

<variables>

<variable name="procesInput"/>

<variable name="AInput"/>

<variable name="AOutput"/>

<variable name="BCInput"/>

<variable name="BOutput"/>

<variable name="COutput"/>

<variable name="processOutput"/>

<variable name="AError"/>

</variables>

<sequence>

<receive name="client" variable="processInput"/>

<assign><copy><from variable="processInput"/>

<to variable="AInput"/></copy></assign>

<scope>

<faultHandlers>

<catch faultName="faultA" faultVariable="AError"/>

</faultHandlers>

<sequence>

5.1. MAPPING BPMN ACTIVITIES 113

<invoke name="invokeA" partnerLink="serviceA"‘

inputVariable="AInput" outputVariable="AOutput"/>

</sequence>

</scope>

<assign><copy><from variable="AOutput"/><to variable="BCInput"/>

</copy></assign>

<flow>

<sequence>

<invoke name="invokeB" partnerLink="serviceB"

inputVariable="BCInput"/>

<receive name="receive_invokeB"partnerLink="serviceB"

variable="BOutput"/>

</sequence>

<sequence>

<invoke name="invokeC" partnerLink="serviceC"

inputVariable="BCInput"/>

<receive name="receive_invokeC" partnerLink="serviceC" variable="COutput"/>

</sequence>

</flow>

<switch><case>

<!-- assign value to processOutput -->

</case></switch>

<invoke name="reply" partnerLink="client" inputVariable="processOutput"/>

</sequence>

</process>

This is a general business process model which can be deployed in numerous
infrastructures. The task of the mapping procedure is to determine elements
in the given infrastructure graph that implement (enable) particular process
steps/activities. One possible deployment descriptor would have the following
form:

<deploy><process name="test">

<provide partnerLink="client">

<service name="clientWebForm" port="foo:8080/client"/>

</provide>

<invoke partnerLink="serviceA">

<service name="SAPService" port="BOR.IDOC.SEGMENT.abc/>

<service name="BackupService" port="jdbc:storedProc"/>

</invoke>

<invoke partnerLink="serviceB">

<service name="WS1" port="foo:serviceB.wsdl"/>

<service name="auth" port="foo:auth.wsdl"/>

</invoke>

<invoke partnerLink="serviceC">

<service name="EJB1" port="jndi:serviceC"/>

<service name="auth" port="foo:auth.wsdl"/>

</invoke>

<invoke partnerLink="client">

<service name="ClientFile" port="ssh user@host/>

<service name="ClientFile" port="ftp user@host/>

</invoke>

</process></deploy>

It can be seen that initial client activity is performed by the manual input
using Web form, serviceA is implemented as the combination of SAP IDOC
(structured file) call and JDBC backup stored procedure, serviceB and serviceC
are implemented as Web service and Enterprise Java Bean respectively, and
delivery of the results to the client is peformed as file transfer using ssh and ftp
protocols. Note how client definitions differ in <provide> and <invoke> roles.
Also, the component auth is used to invoke both ServiceB and ServiceC. This

114 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

shows that, although the process description specifies parallel execution of both
services, internally (when deployed) they both depend on a single component,
which represents a single point of failure. This information is neither obvious
nor possible to include in the process/service description. Finally, note that
deployment descriptor is not limited to WSDL endpoints only.

After service execuction steps have been mapped, all process/service ac-
tivities are associated with the underlying infrastructure graph elements, this
information is persisted in deployment descriptor, and the process of commu-
nication path generation can now take place.

5.2 Infrastructure graph generation

One of the prerequisites for successful availability modeling of services and busi-
ness processes is the accurate information on characteristics of infrastructure
components, their organization and mutual relationships. Services and busi-
ness processes are deployed on the infrastructure layer that comprises technical
infrastructure (hardware, network, supporting infrastructure), software and IT-
personnel categories (Figure 2.8).

In modern enterprises, the number of components in the infrastructure and
their diversity makes manual management of this information difficult, if not
impossible. Network monitoring/configuration management database (CMDB)
systems are used for easier and more accurate information collection (e.g., they
may automatically detect node or network configuration changes). Monitoring
tools are primarily used to track status of services and devices in the network.
They may be configured to raise alarms if a device or service becomes un-
available, thus improving the time to repair. The data on service and device
availability is preserved and can be used for MTTF and MTTR parameter
estimation that is required for availability assessment.

Automatic network discovery is a desirable property of network monitoring
systems, but it is not supported by all of them: for instance, a popular open
source monitoring tool Nagios requires tedious manual configuration process in
which a user defines monitored devices and services. The process is lengthy,
inflexible in presence of changes and it does not provide network’s Layer 2
topology.

CMDB systems are considerably more powerful, enterprise-ready solutions
(e.g., IBM Tivoli, HP OpenView, Fujitsu Interstage). They are capable of au-
tomatic device, application and service discovery. They additionally manage
configurations and their histories, allowing expedite problem resolution. Com-
pared with open source solutions, they have wider set of tools at their disposal,
such as the agent-less scanning of hosts in the network and built-in support for
numerous vendor-dependent protocols and applications. Agent-less configura-
tion and performance management is performed from a centralized server that
locally runs software which accesses nodes in the network and gathers prede-
fined data. For successful agent-less scanning, it is necessary that data collection
server has credentials of managed devices and that a managed device supports
some form of remote access (e.g., SSH). Agent-less collection is performed in

5.2. INFRASTRUCTURE GRAPH GENERATION 115

part through SNMP protocol [7], but in order to gather data about the applica-
tion configuration, specialized software must be deployed at the server. Custom
plug-ins considerably improve the detail level of collected data. For instance,
HP Discovery and Dependency Mapping [121] is capable of gathering applica-
tion specific information, such as the configuration of a WebSphere server or a
tablespace configuration in Oracle.

Agent-based approach, on the other hand, requires installation of specific
software agents on target nodes, but in addition to status monitoring, they fre-
quently provide node and application management. For instance, IBM Tivoli
Monitoring provides custom agents for SAP solutions that monitor the sys-
tem and detect predefined exception conditions (e.g., exceeding a performance
threshold), investigate the exception causes and schedule work/automate some
manual tasks.

Collecting configuration of nodes and services deployed in the network is
important for the later step in the availability assessment process: construction
of communication paths. For example, a large organization hosts a set of mail
servers. Each of the mail clients is associated with one of them. It is not
possible to say which server is responsible for the assessed client and to evaluate
the impact of network availability on their communication, based only on the
general BPMN description of the email service. It is the task of the configuration
collection modules (agent or agent-less) to provide the actual information that is
used to instantiate the abstract BPMN service description with accurate data.
If a configuration collection system does not exist in the organization, it is the
user’s task to specify this data.

As an example of a network monitoring system, we will briefly describe
OpenNMS, which is an open source network monitoring system that we use in
our prototypical implementation (see Section 5.8), capable of automatic node,
topology and service discovery. It employs IP-range scan to discover devices
and then performs port scan of discovered nodes to determine services activated
at them. Discovery rate can be altered, in order to avoid network overloading.
The data is preserved in PostgreSQL database for later use by OpenNMS or
other applications.

Figure 5.2 shows a part of the database structure that is used by OpenNMS.
Table node holds the basic information about nodes, such as their identifica-
tion, operating system and domain name. Each node has one or more network
interfaces (table atinterface) and belongs to a LAN network (table vlan).
Different types of LAN networks are supported, such as Ethernet, token-ring,
FDDI. Services are deployed on nodes (tables ifservices and service). The
service status is periodically polled. Data about node and service outages and
restorations are preserved in form of events.

OpenNMS is also capable of layer 2 topology discovery, although it is not
enabled by default. The topology discovery requires activation and configu-
ration of additional modules. In order to function properly, the topology dis-
covery process requires that network devices (bridges, routers) support SNMP
protocol. It discovers routers (data about their interfaces is saved into table
iprouteinterface) and bridges (table stpnode). Table datalinkinterface
stores data about network structure and inter-node connections.

116 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Figure 5.2: Partial OpenNMS database schema

It is obvious that discovery of data about the technical infrastructure and
people working in an enterprise is not fully automatable. However, there are
other tools which are used for collection and management of this data. If such
tools are employed in the enterprise, their data can be also used to improve
accuracy of the proposed availability assessment process. We will illustrate this
on the example of GSTool [6], which primarily supports users in preparing, ad-
ministrating and updating IT security concepts that meet the IT Baseline Pro-
tection Manual defined by the German Federal Office for Information Security
(BSI). In addition to security-related information, the tool manages informa-
tion about technical infrastructure and personnel that is highly relevant for the
availability assessment.

Figure 5.3 shows how the tool captures information about buildings, rooms,
IT systems and employees. In comparison with network monitoring tools, the
level of details about IT systems is considerably reduced, but on the other side
we can now clearly see that the Linux server is placed in the server room, which
has a specialized administrator associated with it. Server room is located in
Building 1 of the organization. A secretary is working in the ordinary office
space within the same building and uses the client computer with Windows XP
operating system and Outlook mail client.

The tool can collect additional data on technical infrastructure elements.
As we can see in Figure 5.4, server rooms in Building 1, where our sample
Linux server is located, have overvoltage protection, emergency circuit break-
ers, local UPS and redundant air-conditioning system that is connected to the
independent UPS (indicated by the green color). On the other hand, a study
of technical and organizational requirements for server rooms and the support
for remote reporting of system malfunction do not exist (indicated by the red
color). Finally, redundancy of the technical infrastructure is only partially im-
plemented (indicated by the yellow color). Similar data may be defined at the
organization level. Same as in the OpenNMS, data is preserved in a relational
database and can be easily accessed from other applications, such the tool pro-

5.2. INFRASTRUCTURE GRAPH GENERATION 117

totype presented in section 5.8.

Figure 5.3: Hierarchical organization of ICT infrastructure elements in GSTool

Figure 5.4: Technical infrastructure description in GSTool

Before we can proceed with the mapping process, the infrastructure graph
must be created. Data for its creation originate from network and system
management tools. The data must be collected and, if necessary, pre-processed
before they can be used for availability assessment. As a formal model for the
infrastructure layer we use annotated graphs. In addition to the connectivity
that is captured in traditional graphs, annotated graphs enable association of
attributes to nodes and edges in the graph. The attributes are used to classify
nodes and attach additional properties to them. Some attributes are common

118 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

for all nodes and edges in the graph, such as their type and unique identification
number. Nodes and edges may have additional attributes, organized in lists of
(key, value) pairs. Graph nodes are divided in three classes:

• Network node. Represents a physical node such as router or server. For
each active network interface, there exists a link to a node that holds
the second endpoint of the connection. Mandatory attributes are MTTF
and MTTR. Additional properties may be included as well in the list
of annotations (e.g., presence of air-conditioning, UPS, physical security,
etc.).

• Atomic service node. Usually these are software services associated with a
network node. Atomic service node must also have the MTTR and MTTF
attributes. There is additional Boolean attribute that clarifies whether
the service’s MTTR and MTTF properties supersede the properties of
associated network node or they are independent and to be combined in
evaluation (in practice this depends how the values have been estimated
– as a joint characteristics of the network node and service, or indepen-
dently). Unlike the network node, it does not include data on technical
infrastructure.

• User/operator node. Operator is associated with one or more nodes of
other types. Its mandatory parameter is the probability of operator errors
[116] that influence availability of the node/service to which the operator
is associated.

The node-service, operator-node and operator-service edges in the graph
model do not have attrributes, while edges that model node connectivity are
annotated with MTTF and MTTR values. If a network node is associated
with a single service in the evaluation process, their representation may be
joined, avoiding unnecessary complexity (this is the approach we have used in
our case studies). The MTTF and MTTR parameters that are associated with
the network node are used to model the joint behavior of nodes and software
services.

Once the infrastructure graph is prepared, the BPMN description can be
mapped to it. From the deployment descriptor <provide> and <invoke> fields
are extracted. Appropriate service endpoints are located in the infrastructure
graph (source S and destination D of the service invocation). Again, in ideal
case, this step is performed automatically. In simpler scenarios, it is rather easy
to implement it (e.g., agent-less scanning may be used to determine primary and
secondary DNS of a client computer or server in the network) but models that
are encountered in practice are considerably more complex, requiring human
interaction. For instance, it cannot be resolved automatically which user is part
of the business process if a set of users, each with a different skill, is associated
with an atomic service that participates in a business process. Once the source
and destination are known, an algorithm for detection of all paths between
these two endpoints is applied. For each independent path that is discovered,
a boolean expression is derived: all vertices on the path are included as well as

5.3. AUTOMATIC GENERATION OF AVAILABILITY MODELS 119

the annotated edges. Within a single path, terms are connected with the AND
operator. If independent paths exist, they are joined with the OR operator.
First minimization of the Boolean expressions may be executed at this point
(examples how is this performed are found in the case studies).

During the path generation process, vertices that compose the paths are
queried for needed characteristics using the key field. If it is not defined for a
node, the user is prompted to specify the missing parameter. This is done in
order to support partial specification in infrastructure modeling process, and
to avoid unnecessary detail level: if the evaluated service uses only a small
subsection of the complete infrastructure, there is no need that user predefines
parameters in the whole infrastructure.

This step is iterated for all atomic activities in the BPMN diagram, until
the complete set of Boolean expressions is obtained. They are then joined
into a single Boolean expression using the rule that all execution steps (i.e.,
Boolean expressions that describe them) that are sequential in the flow are
joined with AND operator and OR operator is used only for the unconditional
flow branching. Finally, the obtained expression is minimized and forwareded
to the next step – automatic generation of availability models.

5.3 Automatic Generation of Availability Models

Based on the minimized Boolean equations obtained in previous steps of the
algorithm, availability models are generated. We currently support two types
of availability models: combinatorial models (reliability block diagrams and
fault-trees) and state-space models (Markov chains). Combinatorial models are
very easy to generate, however, their expressive power is low and metrics that
can be calculated is limited. State-space models are complicated to generate,
but can cover broader class of systems, capture different behavior and offer
more advanced transient and instantaneous assertion possibilities. Furthermore,
combinatorial models cannot be generated for all types of business processes,
e.g., when priorities or coverage are included (e.g., the Amazon EC-2 example
from introduction). Here we give a very simple procedure to transform Boolean
equations into an RBD (there exists a bijection between RBD and FT):

• Blocks of the RDB are all terms appearing in the minimized Boolean
equation.

• If two terms are connected with operator &, RBD blocks are generated
for both terms and placed into serial configuration.

• If two terms are connected with operator ‖, RBD blocks are generated for
both terms and placed into parallel configuration.

• The process is performed in a single pass, parsing the equation from left
to right, obeying operator priorities and grouping.

Combinatorial models such as reliability block diagrams or fault trees, as-
sume stochastic independence between the components: the failure or repair of

120 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

a component is not affected by other components. If there is a need to model
more complex interactions, where a component failure influences behavior of
other components, other kinds of models must be used. An example of such ce-
nario is a load-balancer Web service with four active instances. If one instance
fails, remaining three will have higher load which will likely impact their reli-
ability. This requirement cannot be modeled using combinatorial approaches
described so far. One possibility that can be used to cover this class of problems
are Markov models. Here we give a procedure to generate Markov availability
models based on the Boolean equations:

• Let n be the cardinality of the set of all distinct terms in the minimal
Boolean equation.

• The list processedConfigurations is empty.

• The Boolean equation is parsed from left to right in order to generate set
of states:

– If two or more terms are connected with operator ‖ and their con-
figuration is not in processedConfigurations, new state variable
is added to the model, and the variable can take the values of
{0, 1, ..., k}, where k is the number of terms in the configuration
and k < n. In other words, parallel elements generate states which
take the value of the number of functioning units. The configuration
is added to processedConfigurations.

– If two terms are connected with operator & and the terms are not
in processedConfigurations, a state variable is generated that can
take values {0, 1}. Therefore, for each term from the sequential con-
figuration, a state variable is generated which denotes if the term is
up or down, and the term is added to processedConfigurations list.

• The set of states is generated by:

– Creating a state vector V (v1, v2, ..., vp), p < n, vi are the state vari-
ables and p is the number of generated state variables in the previous
step.

– Creating all possible states by allowing state variables to take all pos-
sible values from the sets defined in previous steps (parsing Boolean
equation).

• Now state transitions are generated using given transition probabilities
(MTTF, MTTR).

• The transition set is minimized using following rules:

– If the coverage is imperfect (coverage exists), transition probabilities
are multiplied with the coverage factor.

– If repair priority is included in the model, only the higher priority
transition is generated, that is, transitions with lower priority are
eliminated.

5.4. E-MAIL SERVICE AVAILABILITY ASSESSMENT 121

– If limited repair resource is present, only so many transitions are
generated as there are repair facilities available.

In the following sections we will demonstrate the proposed approach. We
first show how to assess availability of an e-mail service and how far can we
go with the assessment if the required data is only partially available (e.g.,
a service description exists, but infrastructure topology is partially known or
unknown). Then, the approach is generalized to a business process from the
publishing and media sector, demonstrating effects of technical infrastructure
and personnel to overall availability. First two examples use combinatorial
methods (RBD). Finally, Markov model generation will be demonstrated for
the composite financial service with repair priorities.

5.4 E-Mail Service Availability Assessment

The proposed approach is demonstrated on the example of steady-state user-
perceived availability assessment of the e-mail service. The example is based on
SMTP protocol defined in RFC 2821 [117]. The e-mail service is chosen because
of its ubiquity and presence in almost every modern enterprise. Availability of
the e-mail service is evaluated for two users in order to show that availability
is not only the function of component availability but also of infrastructure
topology and user location within the topology.

5.4.1 Service Description and Mapping

The first step in availability estimation is to define the service of interest and its
required availability. Let us assume that required availability of the e-mail ser-
vice should be above 0.9985. BPMN service description is given in Figure 5.5.
Service description is then mapped to existing infrastructure elements. CMDB
provides the infrastructure graph (Figure 5.6) and component availability sta-
tistics (Table 5.1).

Figure 5.5: E-mail service description

122 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Figure 5.6: Infrastructure graph and transformation to connectivity graph

Abbreviations have the following meaning: Client i - CLi, Mail Server -
MS, Routers - Ri, Channel - CHi, Out1 and Out2 are connections to Internet
service providers of the enterprise. The channel is an abstraction that includes
switches and/or network adapters/links that are placed between routers and
hosts. They are introduced for simplicity reasons – the goal of this example
is to demonstrate the approach without going into unnecessary details. In the
next section an example is given with much more accurate and detailed network
topology graph. Channels are depicted in Figure 5.6 by dotted lines. Based
on the BPMN description from Figure 5.5 and connectivity graph from Fig-
ure 5.6, we map service execution steps to paths in the connectivity graph.
In order to send an e-mail, client has to resolve address of the mail server. It
is common that hosts in a network use two DNS servers, primary and secondary:

CL1 → DNS :
(CL1&CH1&R1&CH2&DNS1) ‖ (CL1&CH1&R1&CH2&CH3&DNS2) =
CL1&CH1&R1&CH2&(DNS1 ‖ (CH3&DNS2)
and
CL2 → DNS :
(CL2&CH9&R2&CH3&CH4&DNS1) ‖ (CL2&CH9&R2&CH4&DNS2) =
CL2&CH9&R2&CH4&(DNS2 ‖ (CH3&DNS1)

The clients now establish connections with SMTP server:

CL1 → MS :
CL1&CH1&R1&CH2&CH3&CH4&R2&CH5&MS
CL2 → MS :
CL2&CH9&R2&CH5&MS

In case that e-mail recipient is within the enterprise, following steps would
not be performed and the e-mail message would be stored directly to disk sys-
tem by the SMTP server, waiting there for local client to access it. In this
example, we assume that a recipient is outside the enterprise and local SMTP
server has to determine the forward SMTP server. This requires a DNS query:

MS → DNS :

5.4. E-MAIL SERVICE AVAILABILITY ASSESSMENT 123

(MS&CH5&R2&CH4&DNS2) ‖ (MS&CH5&R2&CH4&CH3&DNS1) =
MS&CH5&R2&CH4&(DNS2 ‖ CH3&DNS1)

The last step is to dispatch e-mail to the outside server. Since we can nei-
ther measure nor influence availability of the Internet and outgoing (receiving)
SMTP server, we evaluate availability up to the point where e-mail leaves the
enterprise network:

MS → OUT :
(MS&CH6&R3&CH7&OUT1) ‖ (MS&CH6&R3&CH8&OUT2) =
MS&CH6&R3&(CH7&OUT1 ‖ CH8&OUT2)

For the successful e-mail service execution, all these steps must be performed
in series. The resulting expressions are simplified by applying idempotence, as-
sociativity and distributivity rules of operators & and ‖:

CL1 : (CL → DNS)&(CL → MS)&(MS → DNS)&(MS → OUT) =
CL1&MS&R1&R2&R3&CH1&CH2&CH3&CH4&CH5&CH6&
(DNS1 ‖ DNS2)&(CH7&OUT1 ‖ CH8&OUT2)

CL2 : (CL2 → DNS)&(CL2 → MS)&(MS → DNS)&(MS → OUT) =
CL2&MS&R2&R3&CH9&CH4&CH5&CH6&(CH3&DNS1 ‖ DNS2)&
(CH7&OUT1 ‖ CH8&OUT2)

5.4.2 Availability Assessment

Boolean expressions that were generated can be directly transformed into fault
trees (FT) or reliability block diagrams (RBD). For demonstration purpose, we
have chosen to use RBD (Figure 5.7). The RBD is obtained by transforming
& operator into serial configuration and operator ‖ into parallel configuration.
Evaluation parameters are in Table 5.1. The model was solved in Isograph
Reliability Workbench and it assumes exponential distribution for failure and
repair processes. The failure and repair rates are constant and they are calcu-
lated from MTTF and MTTR. Evaluation results are given in Table 5.2.

Table 5.1: Evaluation Parameters
Router Channel DNS Mail Client Out1 Out2

MTTF 9000 45000 4500 4000 4500 13500 5400
MTTR 1 3 2 2 2 4 6

Table 5.2: Evaluation Results
Client1 Client2 Lower Intermediate Upper

MTTF 1060 1280 662 1240 6.1 e+22
MTTR 1.79 1.83 2.37 1.59 0.293

Unavailability 0.00166 0.00142 0.00322 0.00127 3.5 e-24

124 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Figure 5.7: Reliability block diagram for the e-mail service

Required and user-perceived provided availability can be compared now.
Provided availability of client 1 (calculated as 1 - unavailability) is 0.99834,
and provided availability of client 2 is 0.99858. As our required availability is
0.9985, it is clear that e-mail service does not provide required availability to
client 1.

Since measurement-based methods are already used to evaluate availabil-
ity of individual infrastructure elements, like routers or servers, it could be
tempting to claim that the same, measurement based approach should be used
for service availability. However, as the user-perceived availability is network
topology dependant and differs from one client host to another, it implies a
monitoring application should be installed on every client host in the network
for every monitored service. The overhead introduced through installation and
maintenance of monitors on each client host, for every service the client is using,
would be rather extensive and not very practical. Furthermore, for some IT
services, such as e-mail where responsibility for service execution is delegated
through the network, it is not straightforward to estimate availability by count-
ing the success rates since measurements at individual points (server or client)
ignore unavailability introduced by other infrastructure elements. If e-mail ser-
vice success ratio is measured on the client-side only, the availability monitor
cannot detect events where e-mail cannot leave the server because the Internet
connection is not functional. Similarly, if the monitor is placed on a SMTP

5.4. E-MAIL SERVICE AVAILABILITY ASSESSMENT 125

server only, it is not able to detect events when client cannot connect to the
server due to network failure. Therefore, precise service availability assessment
through measurement requires careful monitoring of progress of individual e-
mails through the whole IT infrastructure (outgoing e-mail is served once it
leaves the enterprise, incoming e-mail once it reaches a client).

Our approach requires less effort for maintenance and provides additional
advantage: in case of planned changes in the IT infrastructure, the impact of
changes on availability can be estimated prior to implementation. For instance,
if DNS1 server is moved to the same sub-network as the mail server, availability
of the first client remains the same but availability of the second client increases
to 0.99865. Pure measurement-based approach is not able to predict the impact
of infrastructure changes on availability, before the actual change takes place.

5.4.3 Total Service Availability

The user-perceived availability of each client is not equivalent to total service
availability. Given that we have already calculated steady state or interval
service availability Ai for each client i, we investigate how to derive total service
availability.

Service availability is the mean value of the user perceived availabilities (for
all clients):

AS =
∑n

i=1 Ai

n
(5.1)

where n is the number of clients (users) and Ai are either steady state or
interval user-perceived availabilities.

Equation 5.1 assumes that all clients use the service equally. It can be made
more precise by weighing it with usage factors:

AS =
n∑

i=1

Ai · ui (5.2)

Usage factor ui, for client i, is the number of service invocations made by
client i over the total number of service invocations. From its definition, it
holds that the sum of usage factors for all users (clients) is equal to one.

For steady-state service availability, Ai is steady state user-perceived avail-
ability. Parameters ui are calculated during the service’s lifetime. In practical
terms, this means that they are determined using statistical methods over a
longer period of time.

If equation 5.2 is used to calculate interval service availability, Ai represents
interval user-perceived availability. For interval availability, ui is recorded for
the observed interval, within which service availability is to be derived.

The impact of parameter selection to total availability is illustrated in table
5.3. As the usage factor of CL1 is increased, service availability decreases since
client 1 has lower steady state user-perceived availability. This demonstrates
how usage factors balance total service availability in case where clients don’t
invoke the service or access underlying resources evenly.

126 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Table 5.3: E-mail service availability for different values of parameter ui.
ACL1 = 0.99834, ACL2 = 0.99858

u1 u2 As

0.5 0.5 0.99846
0.6 0.4 0.998436
0.9 0.1 0,998364
0.1 0.9 0,998556

5.4.4 Working with Incomplete Data

The implicit assumption of the proposed method is that complete network
topology, as well as availability of individual components, are known. Although
many methods for determining service availability make this assumption, in
practice this is frequently not the case. In such situations it is possible to
estimate availability. Several cases of incomplete data can be distinguished.

Incomplete service description or network topology.

If service description (functionality) or the network topology are unknown, but
ICT-components on which the service depends are known as well as their avail-
abilities, the lower availability bound can be determined assuming that all com-
ponents are placed in series:

LOWER : CL&MS&DNS1&DNS2&R1&R2&R3&OUT1&OUT2

This model is unaware of communication channels and it does not include
them. Similarly, the upper availability bound can be estimated assuming that
all elements are placed in parallel:

UPPER : CL ‖ MS ‖ DNS1 ‖ DNS2 ‖ R1 ‖ R2 ‖ R3 ‖ OUT1 ‖ OUT2

Finally, if the service description and component availabilities are known,
but the exact network topology is unknown, availability can be estimated as:

INTERMEDIATE : CL&MS&(DNS1 ‖ DNS2)&R1&R2&R3&(OUT1 ‖
OUT2)

The approximate service availabilities are given in table 5.2. The upper
availability bound is of no practical use since it is very close to one. Lower
bound is considerably lower than the actual availability, as expected. Inter-
mediate model slightly overestimates availability but it is very close to precise
values, considering that it does not utilize network topology information. Still,
this particular intermediate model example should be taken with caution since
the difference may be much larger for other, more complex infrastructure con-
figurations.

The amount of knowledge that we have about the network and the service

5.4. E-MAIL SERVICE AVAILABILITY ASSESSMENT 127

Table 5.4: Fussel-Vesely Metric for different levels of system knowledge
CL MS DNS1 DNS2 OUT1 OUT2 R1 R2 R3 CH

Complete 0.266 0.3 11.7e-4 11.7e-4 15.8e-4 18.3e-4 0.067 0.067 0.067 0.039
Lower 0.133 0.149 0.133 0.133 0.0818 0.271 0.033 0.033 0.033 /
Interm. 0.347 0.39 15.3e-4 15.3e-4 19.3e-4 19.3e-4 0.087 0.087 0.087 /

influences other metrics of importance, apart from availability estimation. The
Fussell-Vesely [82] metric determines the probability that particular compo-
nent has contributed to the system failure, given that the system has failed.
The metric is important since it provides guidelines to network administrators
where to incorporate the potential improvements in order to obtain the largest
availability increase. Table 5.4 shows the differences observed in Fussell-Vesely
metric for different levels of system knowledge:

• If complete information is known, according to FV metric, the adminis-
trator should improve availability of components in the following order:
mail server, client, channels, routers. Other elements have minor impact
on availability.

• If service description is known but network topology is unknown, accord-
ing to FV metric, the administrator should work in the following order:
mail server, client, routers. The fit between this and the precise evaluation
is good and cannot mislead the administrator.

• If neither service nor topology of the network are known, based on the
lower-bound assessment, the administrator should make improvements
in the following order: internet connection 2, mail server, DNS servers,
client, routers, internet connection 1. In this case, the metric is completely
misleading and can distract the administrator from the real root cause of
the problem: precise analysis has shown that DNS and outbound connec-
tions have minor impact on the e-mail service availability, yet the metric
recommends that both of them should be checked with high priority.

Unknown availability of some components in the network

In case that it is not possible to determine availability of one or more com-
ponents in a network that are used by the evaluated service, clearly, the exact
service availability cannot be calculated. Assuming that availability is unknown
for n components, availability can be observed as n-variable function and can
be evaluated in n-dimensional space. It is necessary to assume the compo-
nent availability distribution type or to take a distribution based on previous
experience (e.g., if the availability distribution for one router type is known,
in absence of better data it is to be expected that other routers from same
producer will expose similar behavior), to vary distribution parameters and to
observe availability. This approach is applicable to precise and approximate
models, but it is highly dependent on human experience and actual behavior of
unknown components.

128 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Quantitative system data does not exist

It is sometimes required to make availability assessment even if we are unable to
determine/measure IT component availabilities, services are not described and
network topology is unknown. In such extreme conditions, our and other ana-
lytical or simulation based approaches are not applicable. One possibility is to
use qualitative assessment, based on the best-practice guides like CobiT [105],
ITIL [3], or BITCOM [2]. The best practices cover various aspects of IT man-
agement, therefore it is necessary to extract segments that are of importance for
availability, clearly define questions, interview the personnel in the enterprise
and finally interpret the answers. The interpretation can be quantitative or
qualitative:

• Quantitative: [2] lists the expected downtime per year in data centers as
the function of environmental factors. For example, if a data center has
no redundant power supplies for equipment and air-conditioning, and no
power generator, it can be expected that it may experience more than
72 hours of unplanned downtime per year. Another example is the Co-
biT process DS1 (Deliver and Support) that defines a metric that gives
the percent of users satisfied with service delivery levels. As the CobiT
specification does not define how to measure this percentage, the metric
requires careful interpretation.

• Qualitative: Existence of formally defined RACI (Responsible, Account-
able, Consulted, Informed) charts [105] clearly improves information flow
in an enterprise and increases service availability. However, it is not pos-
sible to quantify availability improvement.

Best practices can be promptly implemented, providing coarse guidelines
where to aim for availability improvement. Still, they are imprecise in compar-
ison with analytical and simulation methodologies.

5.5 Publishing Business Process Availability Assess-
ment

In this section, availability will be exemplary assessed for a business process
from the publishing and media sector, which describes the scenario of accepting,
processing and approving a new manuscript (the business process is shown in
Figure 5.8).

5.5.1 Business process description and mapping

The process is initiated when the editor receives a new manuscript. She then
initiates editorial tasks (art, marketing and finances) and delegates operational
procedures to junior editors, which perform their tasks concurrently. Editor
waits until all tasks are completed, evaluates the results, and makes a decision
whether to approve the manuscript for printing or to return corrections. Once
the editor is satisfied, manuscript goes to print and the business process ends.

5.5. PUBLISHING BUSINESS PROCESS AVAILABILITY ASSESSMENT129

Each activity of the business process is enacted by one or more services.
Figures 5.9, 5.10, and 5.11 describe the following activities (composite services)
of the business process respectively: initiating editorial tasks, junior editors’
tasks and evaluation of the junior editorial-tasks (acceptance/rejection) by the
editor.

Figure 5.8: Business process describing acceptance of a new manuscript

The following atomic services are available to the business process: Gener-
ate Ticket, Access Network Disk, Receive Ticket, Prepress, Create Marketing
Plan, and Create Financial Plan. In order to initiate editorial tasks, the edi-
tor generates tickets (addressed to junior editors) and uses network disk access
service to make the manuscript available to junior editors. Junior editors use
the read ticket service to receive tasks, access network disk service to obtain
the manuscript copy, and then process the manuscript (prepress, marketing and
financial plan services). Parallel to these activities, they repeatedly access the
network disk. Finally, all junior editors generate tickets once they have finished
their tasks. In order to evaluate the results, editor has to receive tickets from
all junior editors, access network disk to inspect the results, and generate the
ticket, either to approve the print or to return relevant corrections. BPMN
activities that are denoted with the UML use case actor symbol imply that
manual activity is performed at that point in the workflow.

The business process is executed on the infrastructure shown in Figure 5.12.
It is assumed that infrastructure data is provided by a CMDB system (step 3 of
the algorithm). Routers R1 to R3 form the core of the network. Subnetworks
are connected to the core via switches S1 to S7. Subnetworks are divided by

130 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Figure 5.9: Initiating editorial tasks service

Figure 5.10: Junior-editors task service

Figure 5.11: Editorial tasks evaluation service

intended usage: there is a subnetwork for editor’s (CLe) and directors’ (finan-
cial CLf , marketing CLm and art CLa) client computers, a subnetwork for
other employees, for DNS and web servers, etc. Other infrastructure compo-
nents important for availability assessment are ticket server TS, file server FS,
financial server SAP , and server running graphical applications (print prepare)
PP . The core routers are placed at considerable distance and cables (C1 to
C3) interconnecting them are included in the availability evaluation as they
are more likely to be damaged and their repair time is non-negligible. Cabling
within local subnetworks is considered highly available (unlikely to be damaged,
rather easy to diagnose and repair) and ignored in this analysis. In case that
local cabling is also considered to be of high relevance for availability, it can
easily be added to the evaluation process.

The first task in step 4 of the algorithm is to describe individual communi-
cation paths that are used by atomic services: e.g., access of a client computer
to DNS server. In order to successfully communicate, initiator (source), execu-
tor (destination) and the infrastructure between them need to be active and
functional. Atomic services can be also described directly, but derivation of
equations for communication paths simplifies that task and encourages reuse
of equations - typically each communication path is used by multiple services.
The key communication paths are:

• Editor’s client computer to DNS:

5.5. PUBLISHING BUSINESS PROCESS AVAILABILITY ASSESSMENT131

Figure 5.12: Infrastructure/communication graph for the publishing business
process

CLe → DNS : CLe&S1&R2&(C2&R3&C3||C1) &R1&S7&(DNS1||DNS2)

• Editor’s client computer to ticket server:
CLe → TS : CLe&S1&R2&(C2||C1&R1&C3) &R3&S5&TS

• Financial director’s client computer to financial server:
CLf → SAP : CLf&S1&R2&(C2||C1&R1&C3) &R3&S4&SAP

• Art director’s client computer to print preparation server:
CLa → PP : CLa&S1&R2&(C2||C1&R1&C3) &R3&S6&PP

• Ticket server to DNS:
TS → DNS : TS&S5&R3&(C2&R2&C1||C3) &R1&S7&(DNS1||DNS2)

• Ticket server to editor’s client:
TS → CLe : TS&S5&R3&(C2||C1&C3&R1) &R2&S1&CLe

• Print preparation server to file server:
PP → FS : PP&S6&R3&S5&FS

• Financial server to file server:
SAP → FS : SAP&S4&R3&S5&FS

For brevity, we do not write down all communication paths. Omitted paths
can be easily generated: for instance, access of art director’s client computer to
DNS servers is essentially the same as for the editor’s client as they belong to
the same subnetwork. Of course, for evaluation of the service/business process
availability, all activities have been included. Equations describing atomic and
composite services are derived iteratively from the description of communication
paths, repeating step 4 of the mapping algorithm. If a service has more than one
user (e.g., generate ticket service), the service user is marked in superscript (e.g.,
editor’s generate ticket service is marked as GT e

s while art director’s generate
ticket service is marked as GT a

s). The atomic services are:

132 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

• Generate Ticket service:
GT e

s : (CLe → DNS)&(CLe → TS)

• Access Network Disks service:
ANDs : (CLe → DNS)&(CLe → FS)

• Ticket Reception service is initiated by the ticket server: TRs : (TS →
DNS)&(TS → CLe)

• Print Preparation service, after initiation by the arts director is executed
on PreparePrint servers:
PPs : (PP → DNS)&(PP → FS).

• Financial Calculation service
FCs : (CLf → DNS)&(CLf → SAP)&(SAP → DNS)&(SAP → FS).

• Marketing Plan service
MPs : (CLm → DNS)&(CLm → SAP).

In addition to ICT-components, persons (editor ED, art director AD, fi-
nancial director FD and marketing director MD, all marked with UML actor
symbol) are involved in the composite services execution:

• Initiate Editorial Tasks composite service (Figure 5.9)

IETs : ED&ANDe
s> e

s (5.3)

• Junior-editor Tasks composite service (Figure 5.10)

JETs : (TRa
s&AD&ANDa

s&PPs> a
s)&

&TRf
s &FD&ANDf

s &FCs> f
s)&(TRm

s &MD&MPs) (5.4)

• Evaluation of the Editorial Tasks composite service (Figure 5.11)

EETs : TRe
s&ED&ANDe

s> e
s (5.5)

Finally, composite services are used to describe availability of the business
process (step 5 of the mapping algorithm):

Print : IETs&JETs&EETs. (5.6)

Expressions 5.3, 5.4 and 5.5 are substituted in 5.6 and then further expanded
with atomic service and communication path descriptions. At the end, mapping
of the business process on the ICT-component layer is obtained as follows:

ED&CLe&AD&MD&FD&CLa&CLf&CLm&FS

&TS&SAP&PP&(DNS1||DNS2)&S6&S4&S1&S7

&S5&R1&R2&R3&((C1&(C2||C3))||(C2&C3))&INF (5.7)

5.5. PUBLISHING BUSINESS PROCESS AVAILABILITY ASSESSMENT133

5.5.2 Business Process Availability Assessment

In the step 6 of the algorithm formal availability model is created from equation
5.7. We transform it to reliability block diagram (RBD) using the rule that &
symbol is transformed to serial while ‖ is transformed to parallel connection of
components. Figure 5.13 shows the RBD corresponding to equation 5.7.

Figure 5.13: RBD corresponding to the business process from figure 5.8

RBD from Figure 5.13 is solved using an external tool in the step 7. We
have used Isograph Reliability Workbench. Table 5.5 shows availability para-
meters of individual infrastructure components. The parameters are taken from
industrial studies performed by Yankee group [4] and Schweitzer Engineering
Laboratories [179]. We assume that DNS and file servers operate on RedHat
Linux, SAP on AIX, personal client computers are running Microsoft Windows
(due to unavailability of data for Windows desktop systems, we are using data
for Microsoft Server 2003), print prepare runs on Solaris. For cabling we had to
use our own estimation based on the various sources, interviews with technical
staff and personal experience. For routers and switches we use data from [179]
assuming that enterprise uses standard routers. In solver, failure and repair
rates are modeled as exponentially distributed.

Table 5.5: Evaluation Parameters (in hours)
Routers Switches Cables DNS, FS, TS SAP Clients PP

MTTF 83220 100740 62000 8760 8760 8760 8760 0
MTTR 48 48 3 1.73 0.6 8.9 1.44

Human errors are not described by the exponential failure distribution, like
it is common for the IT components. Instead, they have fixed failure rate. The
data for errors introduced by human operators is taken from [116] for trained
personnel. The impact of human errors to availability is set to 0.1

Observing hardware, software and network availability ignores the impact

134 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

IETs/EETs JETs BP

IT only 0.0027 0.0049 0.0059
IT + Infrastructure 0.0052 0.0074 0.0084

IT + People 0.0037 0.0079 0.0099
IT + People + Inf. 0.0062 0.0104 0.0124

Table 5.6: Evaluation results – unavailability

of supporting infrastructure that, according to numerous industry experiences,
has significant impact on system availability. Uptime Institute has defined
four classes (tiers) of infrastructure that define additional downtime that sup-
porting infrastructure adds to IT systems [205]. In our example we assume
that publishing company running the business process has implemented tier
2 infrastructure: the redundancy of power supply, UPS and air conditioning
is limited, while maintenance of critical parts of the infrastructure requires
processing shutdown. According to [205], tier 2 infrastructure INF increases
system downtime by 22h annually.

Table 5.6 shows evaluation results of steady-state availability analysis for
composite services and the business process. Four cases are investigated, differ-
entiating whether the impact of people and support infrastructure is included
in the evaluation.

If it is assumed that people and support infrastructure are ideal (’IT only’
entry in the table), availability of the business process is 0.9941. More pre-
cise models that include human (IT + people) or supporting infrastructure
(IT+infrastructure) failures show decrease in availability to 0.9901 and 0.9916
respectively. Failures that are introduced jointly by humans and support in-
frastructure double unavailability, reducing availability of the business process
to 0.9876.

5.6 Generation of State Space Models

Some scenarios cannot be modeled using combinatorial method such as RBD
or FT. In such cases it is necessary to generate an adequate state space model,
based on the proces/service description and the infrastructure graph. Let us
observe a service for writing invoices shown in Figure 5.14.

An invoice is created and sent to financial assistance services, which calculate
appropriate taxes, based on the invoice type and concent. There are two such
services working in redundant configuration. They read invoices, calculate tax
and then the first answer is accepted (completed invoice) and written in the
data store. Furthermore, it is allowed for one financial assistance service to
fail, and the system is still considered operational. The overall service fails
if write invoice operation fails or both tax calculation services fail. Repair
priority is also defined, such that the repair of invoice writing operation always
has higher priority over tax calculation repair. This information may originate
from GSTool as shown in Figure 5.15 or it may be manually provided by the

5.6. GENERATION OF STATE SPACE MODELS 135

user. Due to prioritized repair process, this process cannot be modeled using
combinatorial methods. Instead, we will demonstrate how to generate Markov
availability model.

Figure 5.14: Service for writing invoices

Figure 5.15: Repair priority definition in GSTool

The infrastructure graph for the execution of this service is given in Figure
5.16. In this scenario, Financial Service C, as well as redundant data storage
are not used (we will be needing them for the next section where we discuss
hierarchical models).

Following the mapping procedure, we identify critical service communication
paths:

• CreateInvoice: User&CIC

• SendInvoice: CIC&C1&S1&R1&S2&(C2 ‖ C3)&(FSA ‖ FSB)

• CalculateTax: FSA ‖ FSB

• WriteInvoice: (FSA&C2) ‖ (FSB&C3)&S2&R1&R2&S3&C4&DS

The overal expression for the invoice service is CreateInvoice & SendInvoice
& CalculateTax & WriteInvoice. Contrary to RDB/FT generation, the process
of Markov model generation is much more complex. In order to simplify the
example, let us assume without loss of generality, that all network systems are
perfect and that the client computer (CIC) is also ideal (fault-free). Thus,
availability expression for the service becomes: (FSA ‖ FSB)&DS. In other
words, the system will fail if and only if both financial services fail, or a datas-
tore fails. In this case vector S will have two variables (v1, v2) where v1 may take
the values from {2, 1, 0}, describing the number of operating financial services,
while v2 takes the values from {1, 0} describing if the datastore is functional or
not. Markov model is now generated by creating all transitions between states

136 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Figure 5.16: Infrastructure graph for the invoice service

described by all possible combinations of (v1, v2), taking into account repair
priorities, that is, it is not allowed to repair financial service while datastore
is down. Assuming that the failure and repair rates for both financial services
are equal to λFS and µFS , and that the failure and repair rate of the datastore
are λDS and µDS , the resulting Markov model is given in Figure 5.17. Note
that, if we didn’t assume that client and network are ideal, the corresponding
Markov model would have 384 states, which is clearly not possible (or at least
very difficult to) model manually and correctly at the same time. This is one
of the major advantages of this approach – such complex models are generated
automatically, based on the process description, regardless of the number of in-
frastructure elements. The assumption we made was for presentation purposes
only, as it is not possible to visualize 384-state model in a meaningful way.

Figure 5.17: Markov model for the invoice service

The generator matrix of this system is:

5.7. GENERATION OF HIERARCHICAL MODELS 137

Q =

−λDS − 2λF S λDS 2λF S 0 0 0
µDS −µDS − 2λF S) 0 2λF S 0 0
µF S 0 −µF S − λDS − λF S λDS λF S 0

0 0 µDS −µDS − λF S 0 λF S
0 0 µF S 0 −µF S − λDS λDS
0 0 0 0 µDS −µDS

Steady-state and instantaneous service availability is calculated as:

AS = π21 + π11

A(t) = π21(t) + π11(t)

The steady-state availability, mean time to failure, downtime and mean
time to system restoration are given in table 5.7 and the transient analysis in
Figure 5.18, with MTTFFS = 1

λFS
=3000, MTTRFS = 1

µFS
=5, MTTFDS =

1
λDS

=5000 and MTTRDS = 1
µDS

=2 (calculated with Sharpe).

Figure 5.18: Instantaneous availability for the invoice service

AS MTTF MTTR Downtime

0.9990001 4988.91 4.99337 52.55431

Table 5.7: Analysis results for the invoice service

Two distinct differences between combinatorial and state-space models can
be summarized in this example: the possibility to model a system where services
have repair priorities and the assessment of interval (transient) availability, both
of which are not possible with combinatorial models.

5.7 Generation of Hierarchical Models

As noted in the previous section, if the business process is extended, or the
entire infrastructure (e.g., all network elements) is taken into account when
performing availability analysis, the number of states in Markov models grows.
Furthermore, state-space models are not easy to design (generate) and analyse.
On the other side, there are problem aspects that can be solved only with state

138 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

space models. One possibility is to use hierarchical modeling, where certain
problem aspects are described with combinatorial models, and other with state-
space models.

Assume that the business process from the previous example is changed
in such a way that another financial service is present (Financial Service C),
and redundant data store is used (Data Store Backup). The process is further
modfied, so that all three financial services are executed in parellel, and voting
is performed on the outcome. In order for the voting to be successful, at least
two services must succesfully complete. One datastore may also fail. Finally,
this time we take into account one part of the network infrastructure, router
R1, which is not perfect and may also fail. The expression characterizing this
process is:

InvoiceModified : (FSA ‖ FSB ‖ FSC)2/3&R1&(DS ‖ DSB)

Up to this point, we could model this business process with combinatorial
models, such as fault tree given in Figure 5.19.

Figure 5.19: Fault tree for the modified invoice business process

This model, however, assumes independent repair facilities for each com-
ponent. If we restrict this and allow for one repair facility per system type,
that is, single repair facility for data store servers, single repair facility for fi-
nancial servers and single repair facility for routers, this scenario cannot be
modelled with any kind of combinatorial model. A solution is either to remodel
the scenario using some state-space model, or to use hierarchical modeling, and
to represent certain parts of the combinatorial model with state space models.
This is the approach we adopt here and show how to perform nesting of Markov
models inside a fault tree model.

For each subsystem whose behavior cannot be expressed using a combinato-
rial model, we derive a Markov model, as shown in Figure 5.20. Markov models
simply express that there is one repair facility for data store, one for financial
services, and one for routers. Based on the Markov models, availability, MTTF
and MTTR of those subsystems can be calculated.

5.8. TOOL PROTOTYPE 139

Figure 5.20: Markov models for the modified invoice process

Assuming that the mean time to failure of data store service is one month, of
financial service two months and of router three months, and that all mean time
to repair values are equal to 2.5 hours, after calculating subsystem availability
using Markov models from Figure 5.20 and substituting it into the fault tree
from Figure 5.19, the overall system availability is evaluated to 0.9961. If
we used only combinatorial models, ignoring the limited repair capacities, the
availability is 0.9995, which is a significant difference, as it represents more than
one additional day of downtime per year. This rather simple example justifies
the use of state-space models and the need for their application is even greater
if complex services, that are deployed in enterprise-sized infrastructures, are to
be studied.

5.8 Tool Prototype

In order to support business process and service mapping, a tool is currently be-
ing developed which enables the mapping of ICT-layer components to services
and business processes, as well as calculation of service and process availability
with automatic model generation. For that purpose, a model-based approach
based on Meta Object Facility (MOF)[156] is used. The concepts of failure
modes, availability and necessary transformations are described at the meta-
model (MOF M2) level, while the instances are described at the model (MOF
M1) level. MOF levels are shown in Figure 5.21.

The tool architecture is shown in Figure 5.22. The tool accepts service or
business process description in high-level process language (currently BPMN
and UML activity diagrams) and infrastructure data collected from a CMDB
(currently OpenNMS) as input. This requires graphical BPMN/UML editor

140 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Figure 5.21: Model-based architecture for the mapping and availability assess-
ment

and OpenNMS installation. The main tool is realized as Eclipse Rich Client
Platform (RCP) application [74] using Eclipse Modeling Framework (EMF)[71]
and Graphical Modeling Framework (GMF)[72]. It generates infrastructure
graph, and enables (graphical) mapping of business process and service descrip-
tion elements to ICT infrastructure elements, which results in a connectivity
graph. Based on the transformation rules specified in Atlas transformation
language (ATL)[129], transformation is performed on the connectivity graph
using Eclipse M2M project [73], transforming it into formal model descrip-
tion required for the external solver. Currently, transformations to reliability
block diagrams, fault trees and Markov chains are supported. The resulting
model is then used as input to an existing solver (currently Isograph Reliability
Workbench and Sharpe), which computes provided business process and service
availability. Required and provided service availability are then matched, and
if discrepancies are found, adequate action can be taken.

Figure 5.22: Mapping and availability assessment tool architecture

5.8. TOOL PROTOTYPE 141

It is also planned to develop a repository supporting the tool which will
store service and process templates, as well as information required for model
parameterization (e.g., MTTR and MTTF or frequently used system compo-
nents). The basic idea is to provide a comprehensive collection of availability
data for the known components at the ICT-layer, similarly to the way that
standard availability assessment modeling tools manage part catalogues such
as MIL-HDBK-217 or Telcordia SR-332. For this purpose, however, a deeper
understanding of the nature of the fault characteristics of component types other
then hardware, primarily software, supporting infrastructure and particularly
people (human faults), is required.

142 CHAPTER 5. SERVICE AND PROCESS AVAILABILITY

Chapter 6

Summary and Future Work

Service and process availability assessment and management are rapidly coming
into focus of the IT operations research, due to difficult process requirements
and interdisciplinary approach required for the successful solution. In this work
we provided theoretical background, investigated tool applicability and reported
our experience in the field of service availability assessment.

As both terms service and availability are often used rather colloquially
and with different meanings in various areas and contexts, we introduced a
framework in which we presented the problem of service availability assessment.
In Chapter 2 we formally defined reliability and availability, and also discussed
different perceptions of services. After introducing the reference architecture
comprising the business process, service and ICT-component layers, we provided
extensive definitions of different types of service and business process availability
that we subsequently treat.

We then investigated existing analytical and qualitative availability mod-
els in Chapter 3 with the intention to examine their applicability to service
availability assessment. Analytical models we covered include reliability block
diagrams, fault trees, reliability graphs, Markov models, stochastic Petri nets,
and stochastic activity networks. Furthermore, as we argued that services are
often characterized by reduced operation capabilities or performance levels in
the presence of faults, we presented Markov reward model which may be used
to model service performability. Often, analytical models are difficult to apply
due to scalability and parameterization problems. For that purpose, we inves-
tigated qualitative models (so-called reference or maturity models) that may
be used for qualitative service availability assessment. We identified CMMI,
ITIL, CITIL, CobiT, MOF, MITO as well as may standards (such as ISO/IEC
27002 or ISO/IEEE 12207) as potential sources of qualitative data on service
availability.

Chapter 4 and Appendix B presented a detailed survey of more than 60
existing tools for availability assessment. Using one evaluation schema we com-
pared features of tools from the following categories: analytical and simulation
tools, benchmarking tools, risk management tools, process management tools
and hybrid tools. We also discussed issues of tool interoperability and usability.
Based on this part of the study, the following conclusion was drawn: existing

143

144 CHAPTER 6. SUMMARY AND FUTURE WORK

methods and tools are powerful, but difficult to apply directly for modeling
service availability. Historical development of availability models and tools has
associated them with mission-critical systems that rarely change during their
lifetime, such as real-time systems, avionics, or telecommunication circuits. The
availability assessment procedures they offer are unable to adapt to fast-paced
changes in modern SOA systems. Each time the IT infrastructure or business
process changes, it is required to manually intervene and update, verify and
evaluate availability model. This is the consequence of outdated philosophy
behind standard availability models – they were primarily introduced to facil-
itate static fault-tolerant system design, which comprises the following steps:
model a system, design a system, evaluate a system and then forget the model.
Standard models are also very complex and manually built. Therefore, only
isolated and relatively small portions of complex SOA infrastructure can be
feasibly and realistically modeled using state-of-the-art general purpose avail-
ability assessment models and tools. Furthermore, specialized and often highly
mathematical knowledge and expertise is required to operate the tools, which
is another reason for their low penetration in the service industry.

For these reasons, we propose automatic generation of service availability
models as a potential solution to above mentioned problems. In Chapter 5 such
a procedure is detailed. It is based on the premise that availability of services
and business processes is influenced by the behavior of the underlying ICT-
components which are used for their realization. Thus, a mapping procedure
was defined which enables to determine how availability properties of complex
business processes and services relate to availability properties of the underlying
infrastructure (e.g., hardware, software, supporting infrastructure, network and
personnel). After this mapping has been established, service availability model
(such as reliability block diagram or Markov chain) can be automatically gen-
erated. We also presented several examples of service and process availability
assessment performed using this method, and identified the benefits achieved
such as independence from the particular availability model, reducing the level
of expertise, the ability to automatically react to changes in the infrastructure
and reevaluate the availability model as well as to simulate planned changes
and perform return on investment calculation.

We see the proposed method as a first step to establish comprehensive
model-based service management infrastructure, with the goal to complement
existing measurement and empirical-based process management frameworks
(e.g., IBM Tivoli or HP Mercury) and maturity models (e.g., ITIL or CobiT)
with precise fault models and analytical capabilities. The elements of such
service management roadmap are:

• Automatic generation of new reliability/availability models. To determine
other properties of interest and to model more complex systems, addi-
tional models may be required, such as Petri nets or stochastic activity
networks. Such additional models (and the corresponding solvers) should
be dynamically integrated in the proposed infrastructure.

• Model parameterization. It is still not clear how to parameterize all el-
ements of the ICT-infrastructure. Frequently it is not possible either to

145

measure or to obtain availability parameters of a system. Qualitative
methods have to be investigated further which may help in estimating
the missing parameters. It is not only the parameterization problem, but
also more fundamental problem of choosing the adequate distribution to
describe a physical occurrence such as operating system, custom appli-
cation, network cable or human operator failure. In this work we used
only exponential distributions and introduced fixed rate failures for hu-
man operators and infrastructure. We are currently experimenting with
other distributions (such as Weibull, Erlang, normal, Gamma, Bayesian
etc.) and applying them to different ICT-layer elements.

• Monitoring tools. Essential part of the solution for service management
are elaborate runtime monitoring capability, such as those built into exist-
ing process management tools. Interoperability of such tools is, however,
very limited. As the fundamental property of any SOA system is high dy-
namic and absence of central controlling entities, this drawback has to be
overcome as the monitoring data from heterogeneous systems will have
to be pulled together and aggregated in order to perform high-quality
availability prediction.

• Performability models. Services do not necessarily fail right after an in-
frastructure failure has occurred, but may continue working in the de-
graded performance mode (e.g., reduced bandwidth, lower transaction
throughput). This phenomenon and its consequences are captured by
performability models, such as Markov reward models, which can be gen-
erated as additional output of the proposed framework.

• Availability of Business to business (B2B) interactions. The case studies
we demonstrated in this work involved in-house business processes, de-
scribed using orchestration. The issue of tool interoperability becomes
even more important when choreographed business processes have to be
evaluated, as frequently not enough data and/or control is available to per-
form qualified availability assessment. Upper and lower bound estimation
methods, such as demonstrated for the E-mail service with incomplete
topology knowledge, have to be developed to enable treatment of such
scenarios. Furthermore, parameterization and modeling of best-effort en-
vironments, such as the Internet, also play important role in understand-
ing availability properties of cross-enterprise processes.

• Mapping of availability metrics to concrete business tasks and objectives.
It is important to understand properties such as SLA parameterization
or calculation of costs that are imposed on an enterprise by service and
business process unavailability. Coarse grain approaches such as [160],
where costs of downtime are calculated under assumption that either all
processes in an enterprise operate within their specifications or neither
of them, can be considerably refined. For example, return on investment
(ROI) analysis may be performed by simulating additional investments
in the infrastructure and observing how changes in user-perceived service

146 CHAPTER 6. SUMMARY AND FUTURE WORK

availability impact the profit. Additionally, weak spot identification as
well as business root cause analysis should be enabled, where technical
measures (availability) are mapped into business measures, which can be
further automatically included into decision making process.

• Service Level Agreement (SLA) estimation. One of the crucial issues for
the providers of software as a service or cloud computing solutions is
the ability to be able to determine the SLA level offered to the clients.
The presented results enable analytical estimation of service availability,
but may include other properties, such as security or timeliness. Such a
framework which would, on the provider side, enable strict SLA parame-
terization, and on the client side, enable SLA measurement, monitoring
and automatic adaptation, would prove beneficial for the acceptance of
the incoming novel paradigms.

• Finally, education in modeling, fault-tolerance and service-oriented archi-
tecture areas has to be popularized in order to understand the acuteness
of the problem facing still small community trying to address depend-
ability aspects of modern service-oriented systems. Efforts such as con-
ferences (e.g., International Service Availability Symposium) and organi-
zations/consortiums (e.g., Service Availability Forum) are first steps in
this direction. Furthermore, the proposed approach addresses availability
assessment at different layers, providing availability awareness at differ-
ent levels of enterprise management and giving a clear message which
ICT components or services are of critical value for the overall business
prosperity.

Bibliography

[1] Web Service Reliable Messaging Protocol. http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-rm/ws-reliablemessaging200502.pdf, 2005.

[2] Betriebssichere rechnenzentren. BITKOM Consortium, 2006.

[3] IT Infrastructure Library. http://www.itil-officialsite.com, 2007.

[4] Global Server Operating System Reliability Survey 2007-2008. Yankee Group, 2008.

[5] Merriam Webster Online. http://www.merriam-webster.com/dictionary/service, 2008.

[6] GSTool Homepage. http://www.bsi.de/gstool/index.htm, 2009.

[7] RFC 3411. An Architecture for Describing Simple Network Management Protocol
(SNMP) Management Frameworks. http://www.ietf.org/rfc/rfc3411.txt, 2002.

[8] E.A.P. Alchieri, A.N. Bessani, and J. da Silva Fraga. A dependable infrastructure for
cooperative web services coordination. In Proc. IEEE International Conference on Web
Services, pages 21–28, 2008.

[9] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec-
tures and Applications. Springer-Verlag, 2004.

[10] T.F. Arnold. The Concept of Coverage and Its Effect on the Reliability Model of a
Repairable System. IEEE Transactions on Computers, C-22, 1973.

[11] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Sec. Comput, 2004.

[12] P. S. Babcock, F. bong, and E. Gai. On the Next Generation of Reliability Analysis
Tools. Technical report, 1987.

[13] K. Bachman. Surf-2 user guide. http://www.laas.fr/surf/binary/surf2-doc.ps.Z, 1996.

[14] M. Balakfushnan and C.S. Raghavendra. On Reliability Modeling of Closed Fault-
Tolerant Computer Systems. IEEE Transactions on Computers, 39(4), 1990.

[15] S. J. Bavuso. Advanced reliability modeling of fault-tolerant computer-based systems.
NASA, TM-84501, 1982.

[16] S.J. Bavuso. A User’s View of CARE III. In Reliability and Maintainability Symposium,
pages 382–389, 1984.

[17] S.J. Bavuso, J.B. Dugan, K.S. Trivedi, E.M. Rothmann, and W.E. Smith. Analysis
of typical fault-tolerant architectures using HARP. IEEE Transaction on Reliability,
36:176–185, 1987.

[18] S.J. Bavuso, E. Rothmann, J.B. Dougan, K.S. Trivedi, N. Mittal, M.A. Boyd, R. M.
Geist, and M.D. Smotherman Mark. HiRel: Hybrid Automated Reliability Predictor
(HARP) Integrated Reliability Tool System. Technical report, 2003.

[19] M.D. Beaudry. Performance related reliability for computer systems. IEEE Transactions
on Computers, 27(6), 1978.

[20] H. Beilner, J. Mäter, and N. Weissenberg. Towards a Performance Modelling Envi-
ronment: News on Hit. In Modelling Techniques and Tools for Computer Performance
Evaluation, 1989.

147

148 BIBLIOGRAPHY

[21] S. Berson, E. de Souza, and R. Muntz. An object oriented methodology for the specifi-
cation of markov models. UCLA Technical Report CSD- 870030, 1987.

[22] D. Bhandarkar. Analysis of memory interference in multiprocessors. IEEE Transactions
on Computers, C-24:897–908, 1975.

[23] J. Bisson and R. Saint-German. The bs 7799 / iso 17799 standard for a better approach
to information security. Callio White Paper, 2007.

[24] Hichem Boudali, Pepijn Crouzen, Boudewijn R. Haverkort, Matthias Kuntz, and
Mariëlle Stoelinga. Arcade - a formal, extensible, model-based dependability evaluation
framework. In Proc. IEEE Int. Conf. on Engineering of Complex Computer Systems,
pages 243–248, 2008.

[25] D. Boudinova, F. Brecht, I. Mimikos, and A. Nowobilska. CobiT at the Institue of
Computer Science in Adlershof. Final Project Report, Humboldt University Berlin,
2008.

[26] M. Bouissou. Boolean Logic Driven Markov Processes: A Powerful New Formalism
for Specifying and Solving Very Large Markov Models. In Proceedings of the PSAM6,
Puerto Rico, 2002.

[27] M. Bouissou. Automated Dependability Analysis of Complex Systems with the KB3
Workbench: the Experience of EDF R&D. In Proceedings of the International Confer-
ence on ENERGY and ENVIRONMENT, CIEM 2005, Bucharest, (Romania), 2005.

[28] M. Bouissou and J.L. Bon. A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic Driven Markov Processes. Reliability Engineering
and System Safety, 82(2):149–163, 2003.

[29] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte. Knowledge modelling and
reliability processing: presentation of the FIGARO language and associated tools. In
Proceedings of the Safecomp’91, Trondheim (Norway), 1991.

[30] M. Bouissou, Y Dituit, and S. Maillard. Reliability Analysis of a Dynamic Phased
Mission System: Comparison of Two Approaches. Modern Statistical and Mathematical
Methods in Reliability, pages 87–104, 2005.

[31] M. Bouissou and J.C. Houdebine. Inconsistency Detection in KB3 Models. In Proceed-
ings of the ESREL 2002, Lyon, France, 2002.

[32] M. Bouissou, S. Humbert, S. Muffat, and N. Villatte. KB3 Tool: Feedback on Knowledge
Bases. In Proceedings of the ESREL 2002, Lyon, France, 2002.

[33] M. Bouissou and Y. Lefebvre. A Path-Based Algorithm to Evaluate Asymptotic Un-
availability for Large Markov Models. In Proceedings of the RAMS 2002, Seattle, USA,
2002.

[34] M. Bouissou and S. Muffat. High level representations for Markov analysis of complex
dynamic systems. In Proceedings of the IASTED Modeling and Simulation, Marina del
Rey, USA, 2004.

[35] C. Boulton. Google Gmail, Google Apps Outage in the Cloud. http://www.eweek.com/
c/a/Messaging-and-Collaboration/Google-Gmail-Google-Apps-Suffer-Outage-in-The-
Cloud/, 2008.

[36] E. Breton, M. Bouissou, and J. Aupied. A new tool for reliability studies of electrical
networks with stand-by redundancies: OPALE. In Proceedings of the PMAPS 2006,
2006.

[37] J.J. Tifflerand L.A. Bryant and L. Guccione. CARE III final report phase I volume I
and II. NASA, Contractor Rep. 159122 and 159123, 1979.

[38] BSI. Bsi-standard 100-3. http://www.bsi.bund.de/literat/bsi standard/standard 1003.pdf,
2008.

[39] S. Burbeck. The Tao of e-business Services. Emerging Technologies, IBM Software
Group, 2000.

BIBLIOGRAPHY 149

[40] Rick Buskens and Oscar Gonzalez. Model-Centric Development of Highly Available
Software Systems, chapter Model-Centric Development of Highly Available Software
Systems, pages 163–187. Springer Verlag, 2007.

[41] R.W. Butler. An abstract language for specifying markov reliability models. IEEE
Transactions on Reliability, 35, 1986.

[42] R.W. Butler. The sure reliability analysis program. NASA TM 87593, 1986.

[43] R.W. Butler and S.C. Johnson. Techniques for modeling the reliability of fault-tolerant
systems with the markov state-space approach. NASA Reference Publication 1348, 1995.

[44] Hong Cai. A two steps method for analyzing dependency of business services on it
services within a service life cycle. In Proc. IEEE Int. Conf. on Web Services, pages
877–884, 2006.

[45] P. Carer, J. Bellvis, M. Bouissou, J. Domergue, and J. Pestourie. A new method
for Reliability assessment of electrical power supply with standby redundancies. In
Proceedings of the PMAPS, 2003.

[46] J.A. Carrasco. Computationally efficient and numerically stable reliability bounds for
repairable fault-tolerant systems. IEEE Transactions on Computers, 51(3), 2002.

[47] J.A. Carrasco. Computation of bounds for transient measures of large rewarded Markov
models using regenerative randomization. Computers and Operations Research, 30(6),
2003.

[48] J.A. Carrasco. Solving dependability/performability irreducible Markov models using
regenerative randomization. IEEE Transactions on Reliability, 52(3), 2003.

[49] J.A. Carrasco. Transient analysis of rewarded continuous time Markov models by regen-
erative randomization with Laplace transform inversion. The Computer Journal, 46(1),
2003.

[50] J.A. Carrasco. Solving large interval availability models using a model transformation
approach. Computers and Operations Research, 31(5), 2004.

[51] J.A. Carrasco. Transient analysis of some rewarded Markov models using randomization
with quasistationarity detection. IEEE Transactions of Computers, 53(9), 2004.

[52] J.A. Carrasco. Transient analysis of large Markov models with absorbing states using
regenerative randomization. Communications in StatisticsSimulation and Computation,
34(4), 2005.

[53] J.A. Carrasco. Two methods to compute bounds for the distribution of cumulative
reward for large Markov models. Performance Evaluation, 63(12), 2006.

[54] J.A. Carrasco and J. Figueras. METFAC: Design and Implementation of a Software
Tool for Modeling and Evaluation of Complex Fault-Tolerant Computing Systems. In
Proceedings of the 16th FTCS, 1993.

[55] J.A. Carrasco and V. Sune. METFAC User’s Guide. http://dit.upc.es/qine/tools/
metfac/guide.pdf, 2007.

[56] P.W. Chan, M.R. Lyu, and M. Malek. Reliable web services: Methodology, experiment
and modeling. In Proceedings International Conference on Web Services, 2007.

[57] A. Charfi, B. Schmeling, and M. Mezini. Reliable messaging for bpel processes. In Int.
Conf. on Web Services, pages 293–302, 2006.

[58] R.C. Cheung. A user-oriented software reliability model. IEEE Transactions on Software
Engineering, 6, 1980.

[59] M. B. Chrissis, M. Konrad, and S. Shrum. CMMI(R): Guidelines for Process Integration
and Product Improvement. Addison-Wesley Professional, 2006.

[60] G. Ciardo, A. Blakemore, P.F. Chimento, J.K. Muppala, and K.S. Trivedi. Automated
generation and analysis of markov reward models using stochastic reward nets. Linear
Algebra, Markov Chains and Queuing Models, 1992.

150 BIBLIOGRAPHY

[61] G. Ciardo, J. K. Muppala, and K. S. Trivedi. Spnp: Stochastic petri net package.
In Proceedings of 3rd International Workshop on Petri Nets and Performance Models,
pages 142–150, 1989.

[62] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J.M. Doyle, W.H. Sanders,
and R. Webster. The Möbius Modeling Tool. In Proceedings of the 9th International
Workshop on Petri Nets and Performance Models, 2001.

[63] A.E. Conway and A. Goyal. Monte carlo simulation of computer system availabil-
ity/reliability models. In IBM Research Rep. RC 12459, 1986.

[64] L.S. Crane, S. West, and A. Andrews. Analysis of octave support for hipaa secu-
rity/privacy standards. ATI IPT Technical Report 03-, 2003.

[65] A da Silva, J. F. Martnez, L. Lopez, and L. Redondo. Exhaustif: A
fault injection tool for distributed heterogeneous embedded systems. In
http://www.exhaustif.es/docs/exhaustif article.pdf, 2007.

[66] H. de Meer and H. Sevcikova. Xpenelope user guide, version 3.1. In Technical Report,
University Hamburg, 1996.

[67] H. de Meer and H. Sevcikova. Penelope: dependability evaluation and the optimization
of performability. In In 9th Int. Conf. on Computer Performance Evaluation - Modelling
Techniques and Tools. Springer, 1997.

[68] E. de Souza e Silva, H.R. Gail, and R.V. Campos. Calculating transient distributions of
cumulative reward. In Proceedings of the ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pages 231–240, 1995.

[69] L.J. Dolny, R.E Fleming, and R.L. De Hoff. Fault-tolerant computer system design using
GRAMP. In Proceedings of the 1983 Annual Reliability and Maintainability Symposium,
pages 417–422, 1983.

[70] J.B. Dugan, K.S. Trivedi, R. Geist, and V. Nicola. Extended stochastic Petri nets: Ap-
plications and analysis. In Proceedings of the Models of Computer System Performance,
1985.

[71] Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/, 2008.

[72] Eclipse. Graphical Modeling Framework. http://www.eclipse.org/modeling/gmf/, 2008.

[73] Eclipse. M2M Project. http://www.eclipse.org/m2m/, 2008.

[74] Eclipse. Rich Client Platform. http://www.eclipse.org/home/categories/rcp.php, 2008.

[75] E. Elsayed. Reliability Engineering. Addison Wesley Longman, 1996.

[76] V. Ermagan, I. Kruger, and M. Menarini. A fault tolerance approach for enterprise
applications. In IEEE International Conference on Services Computing, 2008.

[77] Abdelkarim Erradi and Piyush Maheshwari. A broker-based approach for improving
web services reliability. In Proceedings of the IEEE International Conference on Web
Services, pages 355–362, 2005.

[78] C. Béounes et al. Surf-2: A program for dependability evaluation of complex hardware
and software systems. In 23rd Int. Symp. on Fault-Tolerant Computing, pages 668–673,
1993.

[79] S.J. Farlow. An Introduction to Differential Equations and Their Applications. Dover
Pubn Inc, 2006.

[80] R. E. Fleming. Coherent system repair models. Ph.D. dissertation, T.R. 195, Dept. of
Operations Research and Dept. of Statistics, Stanford Univ., Stanford, Calif., 1980.

[81] R.E Fleming and L.J. Dolny. Fault-tolerant design-to-specs with GRAMP & GRAMS.
In Proceedings of the 1984 Annual Reliability and Maintainability Symposium, pages
403–408, 1984.

[82] J. Fussell. How to calculate system reliability and safety characteristics. IEEE Transact.
Reliab., 24(3):169–174, 1975.

[83] B. P. Gallagher, M. Phillips, K. J. Richter, and S. Shrum. CMMI-ACQ: Guidelines for
Improving the Acquisition of Products and Services. Addison-Wesley Professional, 2009.

BIBLIOGRAPHY 151

[84] M. Gallois and M. Pillire. Benefits Expected from Automatic Studies with KB2 in PSAs
at EDF. In Proceedings of the PSA99, Washington, USA, 1999.

[85] R. Geist and K. S. K.S. Trivedi. Ultrahigh reliability prediction for fault-tolerant com-
puter systems. IEEE Transactions on Computers, 12, 1983.

[86] R. Geist and K. S. Trivedi. Ultrahigh reliability prediction for fault-tolerant computer
systems . IEEE Transactions on Computers, 12, 1983.

[87] S. Gokhale, W.E. Wong, K. Trivedi, and J.R. Horgan. An analytical approach to
architecture based software reliability prediction. In Proceedings of the 3rd International
Computer Performance and Dependability Symposuim, 1998.

[88] T. Goldschmidt. Entwicklung eines Modells für die Verfügbarkeitsbewertung auf Basis
generischer Referenzmodelle (Eng.: Development of an availability assessment model
based on generic reference models). Master Thesis, University of Magdeburg, 2009.

[89] L. Gönczy, S. Chiaradonna, F. Di Giandomenico, A. Pataricza, A. Bondavalli, and
T. Bartha. Dependability evaluation of web service-based processes. In M. Telek, editor,
in Proceedings of European Performance Engineering Workshop (EPEW 2006), Lecture
Notes on Computer Science, pages 166–180, Budapest, HUNGARY, 2006. Springer.

[90] A. Goyal, W.C. Carter, E.S. de Souza, S.S. Lavenberg, and K.S. Trivedi. The sys-
tem availability estimator. In Proc. IEEE 16th Annual Symposium on Fault-Tolerant
Computing, pages 84–89, 1986.

[91] A. Goyal, S.S. Lavenberg, and K.S. Trivedi. Probabilistic modeling of computer system
availability. In IBM Research Rep. RC 11076, 1985.

[92] A. Goyal, S.S.Lavenberg, and K.S.Trivedi. Probabilistic modeling of computer system
availability. Annals of Operations Research, 8, 1987.

[93] M. Grottke, H. Sun, R.M. Fricks, and K.S. Trivedi. Ten Fallacies of Availability and Re-
liability Analysis. In Proceedings of the 5th International Service Availability Symposium
(ISAS), Tokyo, Japan, pages 187–206. Springer Verlag, 2008.

[94] W3C Working Group. Web Services Architecture. http://www.w3.org/TR/ws-arch/,
2004.

[95] Huipeng Guo, Jinpeng Huai, Huan Li, Ting Deng, Yang Li, and Zongxia Du. Angel:
Optimal configuration for high available service composition. In IEEE International
Conference on Web Services, pages 280–287, 2007.

[96] Riadh Ben Halima, Khalil Drira, and Mohamed Jmaiel. A qos-oriented reconfigurable
middleware for self-healing web services. In Proc. 2008 IEEE International Conference
on Web Services, pages 104–111, 2008.

[97] Andreas Hanemann, David Schmitz, and Martin Sailer. A framework for failure impact
analysis and recovery with respect to service level agreements. In Proceedings of the
2005 IEEE International Conference on Services Computing, pages 49–58, 2005.

[98] B. R. Haverkort and I. G. Niemegeers. Performability modeling tools and techniques.
In University of Twente, TeleInformatics and Open Systems, 1996.

[99] B. R. Haverkort and I. G. Niemegeers. Performability Modelling Tools and Techniques.
University of Twente, 1996.

[100] B. R. Haverkort, I. G. Niemegeers, and P. Veldhuyzen van Zanten. DyQNtool A Per-
formability Modeling Tool Based on the Dynamic Queuing Network Concept. Computer
Performance Evaluation: Modeling Techniques and Tools, 1992.

[101] B.R. Haverkort and I.G. Niemegeers. Performability modeling tools and techniques.
University of Twente, Tele-Informatics and Open Systems, 1996.

[102] B.R. Haverkort and K.S. Trivedi. Specification and generation of markov reward models.
Discrete-Event Dynamic Systems: Theory and Applications, 3:219–247, 1993.

[103] C. Hirel, R. Sahner, X. Zang, and K. Trivedi. Reliability and performability modeling
using sharpe 2000. In Technical Report Center for Advanced Computing and Communi-
cation Department of Electrical and Computer Engineering Duke University, Durham,
2000.

152 BIBLIOGRAPHY

[104] W. Hoarau, S. Tixeuil, , and F. Vauchelles. Easy Fault Injection and Stress Testing with
FAIL-FCI. LRI-CNRS 8623 et INRIA Grand Large, 2005.

[105] IT Governance Institute. CobiT 4.1. http://www.isaca.org/Content/NavigationMenu/
Members and Leaders/COBIT6/Obtain COBIT/Obtain COBIT.htm, 2009.

[106] IsoGraph. Attack Tree Technical Specification. http://www.isograph-software.com/
techspecs/attacktree+V1TS.pdf, 2008.

[107] IsoGraph. AvSim+ Technical Specification. http://www.isographsoftware.com/ techspecs/
avsim32techspec.pdf, 2008.

[108] IsoGraph. FaultTree+ Technical Specification. http://www.isographsoftware.com/
techspecs/psa32techspec.pdf, 2008.

[109] IsoGraph. Network Availability Program Technical Specification. http://www.isograph-
software.com/ techspecs/nap32techspec.pdf, 2008.

[110] IsoGraph. Reliability Workbench Technical Specification. http://www.isograph-
software.com/ techspecs/wk32techspec.pdf, 2008.

[111] Z. Jelinski and P.B. Moranda. Software Reliability Research. Statistical Computer
Performance Evaluation, 1972.

[112] A. M. Johnson and Malek M. Survey of software tools for evaluating reliability, avail-
ability, serviceability. ACM Computing Surveys, pages 227–269, 1988.

[113] Mohamed Kaâniche, Karama Kanoun, and Magnos Martinello. A user-perceived avail-
ability evaluation of a web based travel agency. In Proceedings of 2003 International
Conference on Dependable Systems and Networks, pages 709–716, 2003.

[114] K. Kanoun and M. Borrel. Dependability of fault-tolerant systems explicit modeling
of the interactions between hardware and software components. In IEEE International
Computer Performance and Dependability Symposium, 1996.

[115] K. Kanoun, M. Borrel, T. Moreteveille, and A. Peytavin. Modeling the dependability of
cautra, a subset of the french air traffic control system. In 26th Int. Symp. Fault-Tolerant
Computing, pages 495–515, 1996.

[116] Barry Kirwan. A Guide to Practical Human Reliability Assessment. Taylor and Francis
Ltd., London, 1994.

[117] J. Klensin. Simple mail transfer protocol. RFC 2821, 2001.

[118] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture
Best Practices (The Coad Series). Prentice Hall PTR, 2004.

[119] S. Krishnamurthy and A.P. Mathur. On the estimation of reliability of a software system
using reliabilities of its components. In Proceedings of the 8th International Symposium
on Software Reliability, 1997.

[120] P. Kubat. Assessing reliability of modular software. Operation Research Letters, 8, 1989.

[121] K. Kukreja and D. Jasso. An insider’s view to the HP Universal CMDB. HP Technical
White Paper, 2008.

[122] J.H. Lala. Interactive reductions in the number of states in Markov reliability analysis.
In Proceedings of the AZAA Guidance and Controls Conference, 1983.

[123] J.H. Lala. Mark1 Markov modeling package. The Charles Stark Draper Laboratory,
Cambridge, Mass., 1983.

[124] J.C. Laprie. Dependability evaluation of software systems in operation. IEEE Transac-
tions on Software Engineering, 10, 1984.

[125] J. Ledoux. Availability modeling of modular software. IEEE Transactions on Reliability,
48, 1999.

[126] D. Lee, J. Abraham, D. Rennels, and G. Gilley. A numerical technique for the evaluation
of large, closed fault-tolerant systems. Dependable Computing for Critical Applications,
1992.

BIBLIOGRAPHY 153

[127] R. Lepold. PENPET: A Performability Modeling Evaluation Tool Based on Stochastic
Petri Nets. 1991.

[128] Qianhui Althea Liang, Herman Lam, Lalita Narupiyakul, and Patrick C. K. Hung. A
rule-based approach for availability of web service. In Proc. 2008 IEEE International
Conference on Web Services, pages 153–160, 2008.

[129] LINA & INRIA Atlas Group. ATL: Atlas Transformation Language User Manual.
ttp://www.eclipse.org/m2m/atl/doc/ATL User Manual[v0.7].pdf., 2006.

[130] B. Littlewood. Theories of software reliability: how good are they and how can they be
improved? IEEE Transactions on Software Engineering, 6, 1980.

[131] J. Losq. Effects of Failures on Gracefully Degradable Systems. In Proceedings of the
International Symposiym on Fault-Tolerant Computing, 1977.

[132] M.R. Lyu. Handbook of Software Reliability Engineering. McGraw-Hill, 1995.

[133] M.R. Lyu and J. Schoenwaelder. A Web-Based Tool for Software Reliability Measure-
ment. In Proceedings of International Symposium on Software Reliability Engineering,
pages 382–389, Padeborn, Germany, 1998.

[134] I. Majzik, P. Domokos, and M. Magyar. Tool-supported dependability evaluation of re-
dundant architectures in computer based control systems. In E. Schnieder and G. Tar-
nai, editors, Proc. FORMS/FORMAT 2007, the 6th Symposium on Formal Methods
for Automation and Safety in Railway and Automotive Systems, 25-26 January 2007,
Braunschweig, Germany, pages 342–352. GZVB, Braunschweig, Germany, 2007.

[135] S.V. Makam and A. Avizienis. ARIES 81: A reliability and life-cycle evaluation tool
for fault-tolerant systems. Digest of the 12th Annual Symposium on Fault-Tolerant
Computing, pages 267–274, 1981.

[136] S.V. Makam, A. Avizienis, and G. Grusas. UCLA ARIES 82 users guide. Tech. Rep.
CSD- 82030, Computer Science Dept., Univ. of California, Los Angeles., 1982.

[137] M. Malek, B. Milic, and N. Milanovic. Analytical availability assessment of it services. In
Service Availability: 5th International Service Availability Symposium, ISAS 2008 Pro-
ceedings, volume 5017 of Lecture Notes in Computer Science, pages 207–224. Springer,
2008.

[138] Miroslaw Malek, Guenther Hoffmann, Nikola Milanovic, Stefan Bruening, Reinhard
Meyer, and Bratislav Milic. Methoden und Werkzeuge zur Verfgbarkeitsermittlung.
Technical Report 219, Humboldt University Berlin, 2007.

[139] L. Malhis and W. H. Sanders. An efficient two-stage iterative method for the steady-state
analysis of markov regenerative stochastic petri net models. Performance Evaluation,
27&28, 1996.

[140] A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modeling with
Generalized Stochastic Petri Nets. Wiley, 1995.

[141] A. Marsan, M. Balbo, and G. Conte. A Class of Generalized Stochastic Petri Nets for
the Performance Analysis of Multiprocessor Systems. ACM Transactions on Computer
Systems, 2(1), 1984.

[142] H. Mauser. Implementierung eines optimierungsverfahrens für rekonfigurierbare sys-
teme. In Diploma Thesis, University Erlangen-Nürnberg, 1990.

[143] J.F. Meyer. On Evaluating the Performability of Degradable Computing Systems. IEEE
Transactions of Computers, 28(8), 1980.

[144] Microsoft. Microsoft Operations Framework 4.0. http://technet.microsoft.com/en-
gb/library/cc506049.aspx, 2008.

[145] N. Milanovic. Contract-based Web Service Composition Framework with Correctness
Guarantees. In Proceedings of the 2nd International Service Availability Forum (ISAS),
pages 46–59, Berlin, Germany, 2005.

[146] N. Milanovic. Contract-based Web Service Composition. PhD Dissertation, Humboldt
University Berlin, 2006.

154 BIBLIOGRAPHY

[147] N. Milanovic, B. Milic, and M. Malek. Modeling business process availability. In SER-
VICES ’08: Proceedings of the 2008 IEEE Congress on Services - Part I, pages 315–321,
Washington, DC, USA, 2008. IEEE Computer Society.

[148] K.B. Misra. New Trends in System Reliability Evaluation. Elsevier, 1993.

[149] M.K. Molloy. On The Integration of Delay and Throughput Measures in Distributed
Processing Models. PhD Dissertation, UCLA, 1981.

[150] A. Movaghar and J.F. Meyer. Performability modeling with stochastic activiy networks.
In Proceedings of the Real-Time Systems Symposium, 1984.

[151] B. Mueller. NUMAS: A Tool for the Numerical Modelling of Computer Systems. In Proc.
International Conference on Modelling Techniques and Tools for Performance Analysis,
1984.

[152] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability - Measurement, Predic-
tion, Application. McGraw-Hill, 1987.

[153] A.M. Neufelder. How to measure the impact of specific development practices on fielded
defect density. In Proceedings. 11th International Symposium on Software Reliability
Engineering (ISSRE), 2000.

[154] A.M. Neufelder. How to predict software defect density during proposal phase. In
Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON),
2000.

[155] Y.W. Ng and A. Avizienis. ARIES-an automated reliability estimation system. In
Proceedings of the 1977 Annual Reliability and Maintainability Symposium, pages 108–
113, 1977.

[156] OMG. Meta Object Facility (MOF) 2.0 Core Specification. http://www.omg.org/ cgi-
bin/apps/doc?ptc/03-10-04.pdf., 2004.

[157] Object Management Group (OMG). Business Process Modeling Notation Specification.
http://www.bpmn.org/Documents/OMG Final Adopted BPMN 1-0 Spec 06-02-01.pdf,
2006.

[158] T.W. Page, S.E. Berson, W.C. Cheng, and R.R. Muntz. An object oriented modeling
environment. In Proceedings of Conference on Object-oriented programming systems,
languages and applications, 1989.

[159] A. Pataricza, I. Majzik, G. Huszerl, and Gy. Várnai. UML-based design and for-
mal analysis of a safety-critical railway control software module. In G. Tarnai and
E. Schnieder, editors, Formal Methods for Railway Operation and Control Systems (Pro-
ceedings of Symposium FORMS-2003, Budapest, Hungary, May 15-16), pages 125–132.
L’ Harmattan, Budapest, 2003.

[160] D. Patterson. A simple way to estimate the cost of downtime. In Proceedings of the
16th System Administrator Conference - LISA’02, 2002.

[161] M.C. Paulk. The Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley Longman, 1994.

[162] J.C. Perez. Extended Gmail outage hits Apps admins. http://www.computerworld.com/
action/article.do?command=viewArticleBasic&articleId=9117322, 2008.

[163] J.C. Perez. Google Apps Customers Miffed Over Downtime. http://www.pcworld.com/
businesscenter/article/130234/google apps customers miffe, 2008.

[164] E. Pinheiro, W.-D. Weber, and Luiz André Barroso. Failure Trends in a Large Disk
Drive Population. In Proceedings of the 5th USENIX Conference on File and Storage
Technologies, page 1728, 2008.

[165] A. Polze, N. Milanovic, and M. Schoebel. Fundamentals of Service-oriented Engineering.
HPI, University of Potsdam, 2006.

[166] J. Pukite and P. Pukite. Modeling for Reliability Analysis: Markov Modeling for Relia-
bility, Maintainability, Safety, and Supportability Analyses of Complex Systems. IEEE
Press, 1998.

BIBLIOGRAPHY 155

[167] A. Puliafito, O. Tomarchio, and L. Vita. Porting sharpe on the web: Design and
implementation of a network computing platform using java. Computer Performance
Evaluation, 1997.

[168] S. Rai, Veeraraghavan M., and K. Trivedi. A Survey of Efficient Reliability Computation
Using Disjoint Products Approach. Networks, 25, 1995.

[169] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping perfor-
mance and dependability attributes of web services. In Proc. IEEE International Con-
ference on Web Services, pages 205–212, 2006.

[170] R. Sahner, K.S. Trivedi, and A. Puliafito. Sharpe 2000 tool manual. In
http://www.ee.duke.edu/˜chirel/MANUAL/manualSharpe.pdf, 2000.

[171] R. A. Sahner and K.S. Trivedi. A hierarchical, combinatorial-markov method of solving
complex reliability models. In Proceedings of the 1986 Full Joint Computer Conference,
pages 817–825, 1986.

[172] R. A. Sahner and K.S. Trivedi. Reliability modeling using sharpe. IEEE Trans. Relia-
bility, 36(2), 1987.

[173] R.A. Sahner, K.S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of
Computer Systems. Kluwer Academic Publishers, 2002.

[174] W.H. Sanders. Möbius Manual. http://www.perform.csl.uiuc.edu/mobius/manual/ Mo-
biusManual.pdf, 2006.

[175] W.H. Sanders and J.F. Meyer. METASAN: a performability evaluation tool based on
stochastic activity networks. In Proceedings of 1986 ACM Fall joint computer conference,
1986.

[176] W.H. Sanders and J.F. Meyer. Stochastic activity networks: formal definitions and con-
cepts. Lectures on formal methods and performance analysis: first EEF/Euro summer
school on trends in computer science, pages 315–343, 2002.

[177] N. Sato and K. S. Trivedi. Stochastic modeling of composite web services for closed-
form analysis of their performance and reliability bottlenecks. In Proceedings of the 5th
international conference on Service-Oriented Computing, pages 107–118, 2007.

[178] N. Sato and K.S. Trivedi. Accurate and efficient stochastic reliability analysis of compos-
ite services using their compact markov reward model representations. In Proceedings
of the IEEE International Conference on Services Computing, SCC 2007, 2007.

[179] Gary W. Scheer and David J. Dolezilek. Comparing the Reliability of Ethernet Network
Topologies in Substation control and Monitoring Networks. Schweitzer Engineering
Laboratories Technical Report 6103, 2004.

[180] A.Q. Scheuing, K. Frühauf, and W. Schwarz. Maturity Model for IT Operations
(MITO). In 2nd World Congress on Software Quality, 2000.

[181] B. Schroeder and G. A. Gibson. Disk failures in the real world: What does an MTTF
of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX Conference on File
and Storage Technologies, pages 1–16, 2008.

[182] B. P. Shah. Analytic solution of stochastic activity networks with exponential and de-
terministic activities. 1993.

[183] Lingshuang Shao, Lu Zhang, Tao Xie, Junfeng Zhao, Bing Xie, and Hong Mei. Dynamic
availability estimation for service selection based on status identification. In Proceedings
of the 2008 IEEE International Conference on Web Services, pages 645–652, 2008.

[184] T.C. Sharma and I. Bazovsky. Reliability Analysis of Large System By Markov Tech-
niques. In Proceedings of the IEEE Annual Reliability and Maintainability Symposium,
1993.

[185] M.L. Shooman. Computer Software Reliability: Many-State Markov Modeling Tech-
niques. RADC-TR-75-169, Rome Air Development Center, 1975.

[186] D. Siewiorek and R. Swarz. The Theory and Practice of Reliable System Design. Digital
Press, 1982.

156 BIBLIOGRAPHY

[187] T.B. Smith and J.H. Lala. Developmentand evaluation of a fault-tolerant multiprocessor
(FTMP) computer. NASA-CR-172286, 1986.

[188] W. E. Smith, K. S. Trivedi, L. Tomek, and J. Ackeret. Availability analysis of multi-
component blade server systems. IBM Systems Journal, 2008.

[189] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. 1994.

[190] D. Stott, P.H. Jones, M. Hamman, Z. Kalbarczyk, and R.K. Iyer. NFTAPE: Networked
Fault Tolerance and Performance Evaluator. In Proceedings of the International Con-
ference on Dependable Systems and Networks, 2002.

[191] D.T. Stott. Automated Fault Injection Based Dependability Analysis of Distributed Com-
puter Systems. PhD Thesis, University of Illinois, 2000.

[192] D.T. Stott, B. Floering, Z. Kalbarczyk, and R.K. Iyer. Dependability Assessment in
Distributed Systems with Lightweight Fault Injectors in NFTAPE. In Proceedings of the
4th International Computer Performance and Dependability Symposuim, pages 91–100,
2000.

[193] A.T. Tai, J.F. Meyer, and A. Avizienis. Software Performability: From Concepts to
Applications. International Series in Engineering and Computer Science, 347, 1996.

[194] Dong Tang, Dileep Kumar, Sreeram Duvur, and Oystein Torbjornsen. Availability
measurement and modeling for an application server. In Proceedings of the 2004 Inter-
national Conference on Dependable Systems and Networks, page 669, 2004.

[195] Dong Tang, Ji Zhu, and Roy Andrada. Automatic generation of availability models in
rascad. In Proceedings of the 2002 International Conference on Dependable Systems and
Networks, pages 488–494, 2002.

[196] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Coordinated forward error
recovery for composite web services. In Proceeding of the 22nd International Symposium
on Reliable Dependable Systems, SRDS 2003, pages 167–176, Florence, Italy, 2003.

[197] Amazon EC-2 Support Team. Amazon EC-2 Outage Report. http://developer. ama-
zonwebservices.com/connect/message.jspa?messageID=56849 # 56849, 2008.

[198] CMMI Product Team. Cmmi for systems engineering and software engineering. Software
Engineering Institute, Carnegie Mellon, http://www.sei.cmu.edu/cmmi/, 2009.

[199] S. Tixeuil, W. Hoarau, and L. Silva. An Overview of Existing Tools for Fault-Injection
and Dependability Benchmarking in Grids. CoreGRID Technical Report, 2006.

[200] S. Tixeuil, W. Hoarau, and L. Silva. An overview of existing tools for fault-injection
and dependability benchmarking in grids. In CoreGRID Technical Report, 2006.

[201] K.S. Trivedi. SHARPE 2000 GUI Manual. In http://www.ee.duke.edu/˜chirel/ MAN-
UAL/gui.pdf, 2000.

[202] K.S. Trivedi. Harpe 2002: Symbolic hierarchical automated reliability and performance
evaluator. In Proceedings International Conference on Dependable Systems and Net-
works (DSN), 2002.

[203] K.S. Trivedi, G. Ciardo, M. Malhotra, and R.A. Sahner. Dependability and performa-
bility analysis. Technical Report ICASE 93-85, NASA Langley Research Center, 1993.

[204] K.S. Trivedi, J.K. Muppala, S.P. Woolet, and B.R. Haverkort. Composite performance
and dependability analysis. Performance Evaluation, 14(3&4), 1992.

[205] W. Pitt Turner, J. Seader, and K. Brill. Industry Standard Tier Classification Define
Site Infrastructure Performance. White paper, The Uptime Institute, 2005.

[206] J. Tvedt. Solution of large-sparse stochastic process representations of stochastic activity
networks. 1990.

[207] International Telecommunications Union. Final draft of revised Recommendation E.800.
http://www.itu.int/md/T05-SG02-080506-TD-WP2-0121/en, 2008.

[208] W. van der Aalst, A. Hofstede, and M. Weske. Business Process Management: A Survey.
In International Conference on Business Process Management (BPM 2003), pages 1–12.
Springer Verlag, 2003.

BIBLIOGRAPHY 157

[209] H. van Loon. Process Assessment and ISO/IEC 15504: A Reference Book. Springer,
2004.

[210] A. P. A. van Moorsel and W. H. Sanders. Adaptive uniformization. ORSA Communi-
cations in Statistics: Stochastic Models, 10(3), 1994.

[211] A. P. A. van Moorsel and K. Wolter. Analysis of restart mechanisms in software systems.
IEEE Transactions on Software Engineering, 32(8), 2006.

[212] M. Vieira and N. Laranjeiro. Comparing web services performance and recovery in the
presence of faults. In IEEE International Conference on Web Services, pages 623–630,
2007.

[213] Marco Vieira and Henrique Madeira. Recovery and performance balance of a cots dbms
in the presence of operator faults. In Proc. Int. Conf. on Dependable Systems and
Networks, pages 615–626, 2002.

[214] W. Vogels. Web Services are not Distributed Objects: Common Misconceptions about
the Fundamentals of Web Service Technology. IEEE Internet Computing, 7(6):59–66,
2003.

[215] M. Walter, M. Siegle, and A. Bode. OpenSESAME - The simple but extensive, struc-
tured availability modeling environment. In Reliability Engineering and System Safety,
2007.

[216] L. Wells. Performance analysis using CPN tools. In Proceedings of the 1st International
Conference on Performance Evaluation Methodologies and Tools, 2006.

[217] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag, 2007.

[218] S. West and A. Andrews. Octave-best practices comparative analysis. ATI IPT Tech-
nical Report 03-4, 2003.

[219] Guoquan Wu, Jun Wei, Xiaoqiang Qiao, and Lei Li. A bayesian network based qos
assessment model for web services. In IEEE International Conference on Services Com-
puting, pages 498–505, 2007.

[220] S. Yacoub, B. Cukic, and H. Ammar. Scenario-based reliability analysis of component-
based software. In Proceedings of the 10th International Symposium on Software Relia-
bility, 1999.

[221] M. Zaddach. Wege der transienten optimierung ein zeitdiskreter ansatz fr penelope. In
Diploma Thesis, University Hamburg, 1998.

[222] L. Zeng, B. Benatallah, M. Dumas, and J. Kalagnanam. Quality Driven Web Services
Composition. In Proceedings of the 12th International Conference World Wide Web,
pages 411 – 421, Budapest, Hungary, 2003.

[223] L. Zeng, B. Benatallah, A.H.H Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-
Aware Middleware for Web Services Composition. IEEE Transactions of Software En-
gineering, 30(5):311–327, 2004.

[224] Jia Zhang and Liang-Jie Zhang. Criteria analysis and validation of the reliability of web
services-oriented systems. In Proceedings of the IEEE International Conference on Web
Services, pages 621–628, 2005.

[225] Wenbing Zhao. Byzantine fault tolerant coordination for web services atomic transac-
tions. In Proceedings of the 5th international conference on Service-Oriented Computing,
pages 307–318, 2007.

[226] Wenbing Zhao and Honglei Zhang. Byzantine fault tolerant coordination for web ser-
vices business activities. In Proceedings of the 2008 IEEE International Conference on
Services Computing, pages 407–414, 2008.

[227] Zibin Zheng and M.R. Lyu. A distributed replication strategy evaluation and selection
framework for fault tolerant web services. In IEEE International Conference on Web
Services, pages 145–152, 2008.

158 BIBLIOGRAPHY

Appendix A

Möbius Availability Model

The model of error-handling module with associated case probabilities and gate
functions is given in Figure A.1 and Tables A.1 and A.2 respectively. The model
of the I/O module with associated case probabilities and gate functions is given
in Figure A.2 and Tables A.3 and A.4 respectively. Finally, the model of the
memory with associated case probabilities and gate functions is given in Figure
A.3 and Tables A.5, A.6 and A.7 respectively.

Figure A.1: SAN model of the error-handling unit

Case Probability
1 return(comp cov);
2 return(1.0-comp cov);

Table A.1: Case probabilities for Ac chip failure activity from the Figure A.1

159

160 APPENDIX A. MÖBIUS AVAILABILITY MODEL

Gate Function
Og OG1 cpus->Mark()=0;

ioports->Mark()=0;
memory failed->Mark()=2;
computer failed->Mark()++;

Og OG2 cpus->Mark()=0;
ioports->Mark()=0;
errorhandlers->Mark()=0;
memory failed->Mark()=2;
computer failed->Mark()=num comp;

IG IG1 errorhandlers->Mark()==2) &&
(memory failed->Mark()<2) &&
computer failed->Mark() < num comp)

Table A.2: Gate functions for the error-handling module from Figure A.1

Figure A.2: SAN model of the I/O port

Case Probability
1 if(ioports->Mark() == 2)

return(IO cov);
else
return(0.0);

2 if(ioports->Mark() == 2)
return(1.0-IO cov)*comp cov);
else
return(comp cov);

3 if(ioports->Mark() == 2)
return((1.0-IO cov)*(1.0-comp cov));
else
return(1.0-comp cov);

Table A.3: Case probabilities for io port failure activity from the Figure A.2

161

Gate Function
OG1 if(ioports->Mark()==2)

ioports->Mark()--;
OG2 cpus->Mark()=0;

ioports->Mark()=0;
errorhandlers->Mark()=0;
memory failed->Mark()=2;
computer failed->Mark()++;

OG3 cpus->Mark()=0;
ioports->Mark()=0;
errorhandlers->Mark()=0;
memory failed->Mark()=2;
computer failed->Mark()=num comp;

IG1 (ioports->Mark()>0) &&
(memory failed->Mark()<2) &&
computer failed->Mark()<num comp)

Table A.4: Gate functions for the I/O module from Figure A.2

Figure A.3: SAN model of the memory module

162 APPENDIX A. MÖBIUS AVAILABILITY MODEL

Case Probability
1 if(memory chips->Mark() == 39)

return(0.0);
else
return(RAM cov);

2 if(memory chips->Mark() == 39)
return(mem cov);
else
return((1.0-RAM cov)*mem cov);

3 if(memory chips->Mark() == 39)
return((1.0-mem cov)*comp cov);
else
return((1.0-RAM cov)*(1.0-mem cov)*comp cov);

4 if(memory chips->Mark() == 39)
return((1.0-mem cov)*(1.0-comp cov));
else
return((1.0-RAM cov)*(1.0-mem cov)*(1.0-comp cov));

Table A.5: Case probabilities for memory chip failure activity from the Figure
A.3

Case Probability
1 return(mem cov);
2 return ((1.0-mem cov)*comp cov);
3 return ((1.0-mem cov)*(1.0-comp cov));

Table A.6: Case probabilities for interface chip failure activity from the Fig-
ure A.3

163

Gate Function
OG1 if(memory chips->Mark()>39)

memory chips->Mark()--;
OG2 memory chips->Mark()=0;

interface chips->Mark()=0;
memory failed->Mark()++;
if(memory failed->Mark()>1)
computer failed->Mark()++;

OG3 memory chips->Mark()=0;
interface chips->Mark()=0;
if((memory failed->Mark()==1) && (computer failed->Mark()<=num comp-2))
computer failed->Mark()=num comp;
else
computer failed->Mark()++;
memory failed->Mark()=2;

OG4 memory chips->Mark()=0;
interface chips->Mark()=0;
memory failed->Mark()=2;
computer failed->Mark()=num comp;

OG5 interface chips->Mark()=0;
memory failed->Mark()++;
if(memory failed->Mark()>1)
computer failed->Mark()++;

OG6 interface chips->Mark()=0;
if((memory failed->Mark()==1) && (computer failed->Mark()<=num comp-2))
computer failed->Mark()=num comp;
else
computer failed->Mark()++;
memory failed->Mark()=2;

OG7 interface chips->Mark()=0;
memory failed->Mark()=2;
computer failed->Mark()=num comp;

IG1 (memory chips->Mark()>38) && (computer failed->Mark()<num comp) &&
(memory failed->Mark()<2)

IG2 (interface chips->Mark()>1) && (memory failed->Mark()<2) &&
(computer failed->Mark()<num comp)

Table A.7: Gate functions for the memory module from Figure A.3

164 APPENDIX A. MÖBIUS AVAILABILITY MODEL

Appendix B

Availability Assessment Tools

B.1 General Purpose Quantitative Modeling Tools

B.1.1 ACARA

1. Source/Reference: N/A.

Web: http://www.openchannelfoundation.org/projects/ACARA II

2. Project status

Acara is under development by the NASA Glen Research Center in Cleve-
land. It exists in the current version under the name ACARA-2.

3. License type: Open-Channel-Foundation, California Institute of Technol-
ogy.

4. General purpose

ACARA (Availability Cost and Resource Allocation) is used for the re-
liability, lifecycle costs and resource planing analysis of the periodical
repairable systems. It combines the usage of exponential and Weibull
distributions to simulate the usage duration of each system component.
The replacement of each failed component is simulated to optimize sys-
tem performance and to discover the constraints of the available resources
and developed components. The constraints are user defined. ACARA
evaluates the system availability using block diagrams.

5. Platform: Windows.

6. Model

(a) Model class: quantitative, simulation; IT-level.

(b) Model type: Monte-Carlo methods, Weibull and exponential distri-
butions, block diagrams, models for early and random failures.

(c) Model description
ACARA models the following events:

165

166 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Time to failure: For each block in a diagram the time to failure
is calculated using exponential and Weibull distributions and
failure models described below. The models are parameterized
with user-specific data, which approximate failure properties of
each block.

• Down time: ACARA estimates the down time of each failed
block, until it is replaced. In case where replacement block is lo-
cally available, it is immediately applied and downtime depends
only on MTTR. If the replacement block is not locally available,
ACARA plans the replacement procedure using production and
delivery capacities of the replacement part. The tool also checks
the conditions under which a failed block may be replaced.

• Time to repair: When all conditions that are required for a
block replacement are fulfilled, ACARA estimates the time to
replace the failed block. Time to repair depends on the MTTR
of the observed block. Three additional factors are also taken
into account: repair team, equipment and automatization.

(d) Systems modeled: repairable systems.
(e) Model input

MTTR of each block is given in a tabular form (Repair Time and
Personnel Quantities Input Table). Further inputs are user-defined
values for simulation parameters (simulation and replacement dura-
tion, fault periods) and cost parameters (salaries, transport, equip-
ment, robots).

(f) Model output
The tool generates four types of output values:
• Performability: time-capacity diagram, state availability, overall

system availability, equivalent availability, cumulative availabil-
ity, reliability, continuous state behavior.

• Failure and repair: failure density function, cumulative density
function, failure occurrence, early and random failures, repair
cumulative density function, repair ability, criticality.

• Lifecycle costs: hardware, transport, personnel, equipment, ro-
bots, total costs.

• Resource allocation: storage status, delivered hardware, resource
usage.

(g) Interfaces
• Input: manual terminal input.
• Output: graphical or textual files.

7. Use cases

The tool is developed and used by NASA.

8. Assumptions and restrictions

All repair tasks are performed simultaneously.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 167

B.1.2 ARIES

1. Source/Reference: [135], [136], [155], [14]

2. Project status

Aries was developed in 1977 [135], followed by versions ARIES 81 [136]
and ARIES 82 [155]. Extensions have been proposed in 1990 in [14], it is
unknown whether they have been implemented.

3. License type: Last known implementation is from 1982. Current license
type is unknown.

4. General purpose

Reliability and life-cycle analysis for fault-tolerant systems.

5. Platform: APL and C implementation.

6. Model

(a) Model class: analytical, IT level.

(b) Model type: Homogeneous Markov model, solved by Lagrange-Sylvester
interpolation.

(c) Model description
The system can be specified using a state transition matrix or as a
series of independent subsystems each containing identical modules
that are either active or serve as spares. It uses a matrix transfor-
mation solution technique that assumes distinct eigenvalues for the
state transition matrix.

(d) Systems modeled: (closed) nonrepairable, repairable, with transient
fault recovery, periodically renewed nonrepairable systems.

(e) Model input
Structural input parameters: initial number of active and spare mod-
ules, number of degradations allowed in the active set, number of
good modules in the first safe shutdown state.
Physical input parameters: failure rate for each active module, fail-
ure rate for each spare module, failure rate for each good module in
the safe shutdown state, transient fault arrival rate for each active
module, and the mean duration of a transient fault.
Logistical input parameters: (a) number of repair facilities, repair
rate for each module when the system is operating in less than full
configuration state or is in a safe shutdown state, and restart rate to
attain the full-configuration state from the crash-fail state. (b) Re-
newal process: service interval length, replacement or repair rate per
module, restart rate from the crash-fail state, mean system checkout
duration, and the total time interval between the initiation of the
i-th renewal phase and the resumption of system operation with full

168 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

configuration. The total time interval is a random variable estimated
using the other parameters.
Detection and recovery for permanent faults input parameters: prob-
ability of recovery (coverage) from a spare module failure, coverage
for active modules, coverage for active set when spares remain, and
coverage for successful final degradation to safe shutdown state.
Detection and recovery for transient faults: the number of recov-
ery phases, recoverability (the conditional probability that the fault
is non catastrophic, given that a fault occurs), the failure rate of
all the hardware engaged in the execution of the transient recovery
processes, the recovery duration vector, and the recovery effective-
ness vector.

(f) Model output
Mission-time measures for the system: reliability, mean time to first
failure, failure rate, the balance of the unreliability contribution of
each subsystem, reliability improvement factor resulting from the re-
dundancy, mission time improvement factor between two competing
designs.
Aggregate state probabilities: probability that the system is operat-
ing without apparent degradation either in performance or in fault
tolerance, probability that the system is operating in any of the
degraded states, probability that the system is operating in one of
the unsafe states or in states with some failed spares that are unre-
coverable, probability that the system is in a safe shutdown state,
probability of a catastrophic failure.
Steady-state probabilities for expressing the limiting behavior of re-
pairable and renewable systems; Instantaneous availability; Safety-
the probability that the system is in an operational state or in a
safe shutdown state; Availability of specified potential level of per-
formance (capacity); Average expected potential performance level
(capacity); Frequency of failures; Mean lost computation time due to
crashes; Mean lost computation time due to safe shutdowns; Mean
down time; Average number of module failures.

(g) Interfaces

• Input: C implementation
• Output: C implementation

7. Use cases

Teaching aid.

8. Assumptions and restrictions

Constant transition rates (failure rates).

Assumption of distinct eigenvalues for the matrix of transition rates that
results in a solution of O(n5) as compared to the classical solution that is
O(n4) (applies only to models of repairable systems).

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 169

For nonrepairable (closed) systems with repeated eigenvalues the solu-
tion can be found only if it can be guaranteed that the rate matrix is
diagonalizable.

B.1.3 BQR CARE

1. Source/Reference: N/A.

Web: www.bqr.com

2. Project status

The tool is commercial product of the BQR Reliability Engineering. CARE
is a part of a larger software product that should enhance the reliabil-
ity and reduce costs in development of electro-mechanical devices. The
company exists since 1989. The project is active and consists of several
modules that are described together.

3. License type

Commercial license conditions are not listed on the website. The CARE
tool is split in modules, it is possible to obtain selected parts only. It
is possible to obtain a cheaper academic license although its price is not
disclosed. However, the academic version has limitations in number of
elements/components that can be used.

4. General purpose

The tool is developed for reliability analysis of electronic, computational
and mechanical systems (mechatronics). Although it is applicable to soft-
ware reliability (some mainstream modeling techniques are present in the
tool) the main strength and focus is to provide extended support for re-
liability assessment in mechatronics. For instance, the tool has modules
that model and estimate the changes in reliability caused by aging, power,
voltage, current and temperature variations. Also, the tool is shipped to-
gether with MTBF libraries for electronic components based on widely
used reliability standards: HRD5, MIL-HDBK-217, and Bellcore.

5. Platform: Windows.

6. Model

(a) Model class: analytical and simulation, IT-level (hardware, mecha-
tronics)

(b) Model type
Failure Mode, Effects and Criticality Analysis (FMEA/CA), Fault
Tree Analysis, Reliability Block Diagrams.
For electronic components, different reliability standards/models are
used: MIL-HDBK-217F Notice 2, 217Plus, British-Telecom HRD5,
Siemens SN-29500, IEC62380 - RDF2000 / UTEC80810, NSWC98
mechanical, Bellcore Issue 6, CNET 2000, GJB299. Component

170 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

stress (de-rating) analysis is done based on NAVSEA TE000-AB-
GTP-010 Revision 2. Testability (analysis of the coverage level of
the built in tests of a system, checking the isolation level of those
tests) is done by BIT and ATE.

(c) Model description
The tool handles hardware/software failure trees with no limit on
function levels, number of assemblies, or number of failure modes.
It is possible to convert the FMECA tree into a fault tree (assuming
that the Fault Tree Module is purchased by the user).
RBD basic models are: serial, parallel, K-out-of-N and stand-by with
or without repair. Advanced models are network and Markov. The
Markov extension allows to simulate complex state of a system, in-
cluding the transition drivers, repair times, and different states of the
sub-blocks. The Network extension allows users to simulate complex
networks. Multipoint entries and exits to and from the system are
possible. Within a network configuration a sub-block (or connec-
tion) can be composed from any of the basic and Markov models.
Basic blocks in RBD can choose between following failure distribu-
tions: exponential, log-normal, Weibull, uniform, Pareto, Rayleigh
and bath-tube.
Repair trees allow calculation of MTTR for each composite block
(subtree or node). MTTR is calculated as average (by failure rates)
of sub blocks maintenance time (replacement or/and repair time de-
pending on sub block repair type). It is also possible to calculate
the maximal confident repair time of a block, supposing lognormal
repair time density.

(d) Systems modeled: Repairable and unrepairable systems

(e) Model input: Standard possibilities for FMEA/CA, fault tree and
reliability block diagram structures.

(f) Model output

• FMEA/CA: failure mode probabilities
• fault trees: minimal cut sets (with probabilities), probabilities

and rates for all events in the tree
• reliability block diagrams: reliability, availability, down-time,

MTBCF, MTTR and failure rates, hazard rate, total downtime
during mission

• repair trees (based on the FTA methodology): MTTR for each
composite node in the tree

(g) Interfaces

• Input: GUI, direct import from CAD/CAE interfaces for MTBF
analysis (Mentor Graphics, Cadence, Or-Cad, Excel CSV, ERP
SAP, ERP MFG-Pro), data exchange with other BQR products.

• Output: GUI, some modules can exchange data with other BQR
products.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 171

7. Use cases

The company supports projects from the following industry sectors: avi-
ation, automotive, chemical, electronics, consumer electronics, defense,
military, energy plants, gas and oil, medical, public transportation and
semiconductors. Their major customers are: IBM, Siemens, Lockheed
Martin, BAE, Fokker, Rafael, Elisra, Israel Aircraft Industries, Israel
Electric Company, Tadiran, Elta. However, since the BQR offers both
tools and consulting services, it is unclear which of these companies use
BQR tools autonomously.

8. Assumptions and restrictions: N/A.

B.1.4 CARE III

1. Source/Reference: [16], [85], [15], [37]

2. Project status

The tool was originally developed by NASA together with the Raytheon
Company as the successor of CARE, to improve its inadequacies. The last
known activity is from the 1984. The project continued to be developed
under the name HARP (also described in this work). We survey the tool
because of its historical significance.

3. License type: N/A

4. General purpose

Computer-Aided Reliability Estimation Program (CARE III) is the gen-
eral purpose modeling tool for reliability assessment of complex, highly
available systems.

5. Platform: VAX-11.

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: supported models include fault trees, non-homogeneous
Markov chains and semi-Markov chains.

(c) Model description
Failure behavior is specified using a fault tree and modeled as non-
homogeneous Markov chain. Failure treatment and repair are mod-
eled using semi-Markov chains. Simple and double failures are sup-
ported.

(d) Systems modeled: highly reliable non-repairable systems.

(e) Model input

• Stage name (identifier for a subsystem made up of modules with
the same Weibull time-to-failure distribution)

172 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Number of initially functioning modules in stage Minimum num-
ber of modules for stage operation

• Fault-handling models
• Fault type (either permanent, transient, or intermittent)
• Transition rate from active to benign fault state (benign state:

fault manifestation has vanished)
• Transition from benign to active fault state
• Rate at which fault is detected by self-test
• Rate at which a fault generates errors
• Rate at which errors are detected
• Single point failure distributions and parameters for previously

defined fault tree description
• User describes relationships between system stages using a fault

tree language
• Description language supports AND, OR, M out of N, invert

input gates, and up to 2000 total events and 70 date input events
• Hardware and functional redundancy are described

(f) Model output

• Probability that a given module in a stage X has not experienced
a specified category fault by time t

• Reliability of a module
• Rate of occurrence of a specified category fault in a given oper-

ational module
• Rate of occurrence of faults in the remaining fault-free modules

at time t given a specified number of faulty modules summed
over all stages

• Probability that a given module has a specified category latent
fault at time t given that it has experienced some fault by time
t

• Probability that a given module has a latent fault at time t given
that it has experienced some fault by time t

• For a given stage, the probability that a subsystem contains
a specified number of latent faults given a specified number of
faulty modules

• Probability that a system having a specified accumulated num-
ber of faults has a specified accumulated number of latent faults

• Probability that a system containing a specified number of faults
would be in a supercritical state if a given category fault occurred
at time t

• Probability that a system containing a specified number of faults
would enter a specified critical state if a given fault occurred at
time t

• Probability, given that a system enters a specified critical state
at time t, that this event eventually causes a system failure

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 173

• Probability that a system having a specified number of faults is
in a critical state at time t

• Rate at which systems having a specified number of faults fail
at time t due to critical fault conditions

• Probability that the system recovers from a fault

(g) Interfaces

• Input: Interactive interface for model input.
• Output: Textual/tabular results.

7. Use cases: NASA, modeling of avionics systems and computer systems
operating in space.

8. Assumptions and restrictions

The tool is restricted to non-repairable systems. The complexity of models
is limited with difficult solving of semi-Markov models. No support for
”cold spares” is provided.

B.1.5 CARMS

1. Source/Reference: [166]

Web: http://www.tc.umn.edu/~puk/carms.htm

2. Project status

The last project update was made in 2001, the tool is still available for
download.

3. License type: free download (no license).

4. General purpose

Computer-Aided Rate Modeling and Simulation (CARMS) is an inte-
grated Markov modeling and simulation tool designed to solve a wide
range of time-dependent, prediction-oriented problems. The features in-
clude a state diagram-based CAD environment for model setup, a spread-
sheet interface for data entry, an expert system link for automatic model
construction, and an interactive graphics interface for displaying simu-
lation results. Primary applications are reliability analysis, operations
research, fault-tolerant systems, engineering design, and scientific or sta-
tistical modeling using Markov analysis.

5. Platform: Windows.

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: Markov-chains.

174 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(c) Model description
CARMS uses standard Markov chains. State diagram can be en-
tered graphically. Solution options are then chosen, and results are
plotted/displayed. Different numerical methods for Markov chain
solving are available. Symbolic tool for expression simplification is
also available.

(d) Systems modeled: time-dependant, prediction-oriented system.

(e) Model input
Markov chain specification: states and transition probabilities.

(f) Model output

• Reliability prediction
• Markov analysis
• Maintainability and availability predictions
• Inventory system analysis
• Probability evaluation

(g) Interfaces

• Input: graphical editor for state modeling, tables for transition
probabilities.

• Output: plotting, graphical result representation.

7. Use cases: availability analysis, operations research, fault-tolerant sys-
tem design, state diagram construction, inventory system analysis. No
concrete tool users are known.

8. Assumptions and restrictions: N/A.

B.1.6 CASRE/SMERFS

1. Source/Reference: [133]

Web: http://www.openchannelfoundation.org/projects/CASRE 3.0

http://www.slingcode.com/smerfs/

2. Project status

The last known version if from 2002, the current project status is un-
known. There project was, however, further developed under the name
Web-CASRE. The modeling part comes from the public domain SMERFS
(Statistical Modeling and Estimation of Reliability Functions for Soft-
ware) package.

3. License type: Open Channel Software License.

4. General purpose

CASRE (Computer-Aided Software Reliability Estimation) is a tool for
automatic measurement and assessment of software reliability. It contains
graphical representation of failure data, their processing (e.g., filtering)
as well as failure predictions for observed software module.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 175

5. Platform: Windows, Web-CASRE is Web-based application with a Unix
back-end (client).

6. Model

(a) Model class: quantitative/analytical-simulation, IT-level.

(b) Model type: Jelinski-Moranda model, non-homogeneous Poisson process
model.

(c) Model description
Jelinski-Moranda model is used to predict time between two failures
(MTBF). It is a history-based method using the statistical sampling
of previous failures. Non-homogeneous Poisson processes are used to
model the number of failures.

(d) Systems modeled: reparable (software) systems.

(e) Model input: failure data set (e.g., time between successive failures).

(f) Model output: number of failures, duration of test interval, failure
density, MTBF, cumulative number of failures, reliability.

(g) Interfaces

• Input: text (tabular/file) or graphical representation.
• Output: file or high-resolution plot.

7. Use cases: software testing (unit-testing and acceptance testing).

8. Assumptions and restrictions

Usability is limited as the input failure data files can be up to 64KBytes
(accounts to 3000 data-sets/file or 2000 test intervals). The number of
models which can be started simultaneously depends only on the memory
size (CASRE simulates all data in the main memory).

B.1.7 CPNTOOLS

1. Source/Reference: [216]

Web: http://wiki.daimi.au.dk/cpntools/cpntools.wiki

2. Project status

CPN Tools is continuously developed and maintained by the University
of Arhus (Denmark). The latest version is from 2006.

3. License type: commercial, military/government, non-commercial/academic.

4. General purpose

CPN Tools is used for the graphical development, simulation and analysis
of colored Petri-nets. Hence, various distributed processes can be modeled
which need to communicate and synchronize with each other.

5. Platform: Windows, Linux – Fedora Core 2 (must support OpenGL hard-
ware acceleration to enable graphical editing).

176 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

6. Model

(a) Model class: analytical/simulation, IT-level.

(b) Model type: Colored Petri nets.

(c) Model description
Colored Petri Net is a graphical oriented language for design, spec-
ification, simulation and verification of systems, and represents an
extension of the Petri Net model. It is in particular well-suited for
systems that consist of a number of processes which communicate
and synchronize. Typical examples of application areas are commu-
nication protocols, distributed systems, automated production sys-
tems, workflow analysis and VLSI chips.

(d) Systems modeled: distributed synchronized systems.

(e) Model input
Colored Petri net to be analyzed.

(f) Model output
CP-nets can be analysed in four different ways. The first analysis
method is interactive simulation. It is very similar to debugging and
prototyping. This means that a CP-net model can be executed, to
make a detailed investigation of the behavior of the modeled system.
It is possible to set breakpoints and to visualize the simulation re-
sults by means of different kinds of graphics, e.g. Message Sequence
Charts (also know as event traces).
The second analysis method is automatic simulation which is similar
to the program execution. It allows a fast execution of thousands or
millions of transitions. The purpose is to investigate the functional
correctness of the system or to investigate the performance of the
system, e.g., to identify bottlenecks, to predict the use of buffer
space or the mean/maximal service time.
The third analysis method are occurrence graphs (also called state
space or reachability graphs). The basic idea behind occurrence
graphs is to construct a directed graph which has a node for each
reachable system state and an arc for each possible state change.
Obviously, such a graph may become very large, even for small CP-
nets. However, it can be constructed and analysed automatically,
and there exist techniques which make it possible to work with con-
densed occurrence graphs without losing analytic power. These tech-
niques build upon equivalence classes.
The fourth analysis method is place invariants. This method is very
similar to the use of invariants in ordinary program verification. The
user constructs a set of equations which is proved to be satisfied for all
reachable system states. The equations are used to prove properties
of the modeled system, e.g., absence of deadlock.

(g) Interfaces

• Input: rich GUI for Petri net design.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 177

• Output: rich GUI for analysis/simulation/monitoring represen-
tation, additional file export.

7. Use cases: verification and assessment of availability and performance for
network protocols, software components, workflows and business processes,
flight control systems.

8. Assumptions and restrictions: N/A.

B.1.8 DyQNtool+

1. Source/Reference: [100], [99]

2. Project status

The tool was developed at the University Twente during the 1990s. The
current project status is not known, however, there are indications that
the project is probably not under active development.

3. License type: academic (free) license.

4. General purpose

DyQNtool+ applies the concept of dynamic queuing networks. It enables
formal specification of reliability and performability properties, as well as
their mutual dependencies.

5. Platform: Unix.

6. Model

(a) Model class: quantitative, analytical/simulation, IT-level.

(b) Model type: Markov reward models.

(c) Model description
DyQNtool+ is based on the Markov reward models, specified us-
ing dynamic queuing networks. The tools uses SHARPE and SPNP
modules (see description of respective tools for more information).
SPNP is used for model generation and SHARPE for assessment.
This combination allows for assessment of stationary, transient and
cumulative performability and reliability indicators. DyQNtool+
generates the required Markov chains and SHARPE performance
model. The model is solved in SHARPE and combined with state
probabilities, derived from SPNP.

(d) Systems modeled: N/A.

(e) Model input
The possible inputs to the tool are:

• CSPL description of the reliability model (directly importable
to SPNP)

• Description of the parameterized queuing network in form of the
C implementation

178 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Mapping of the SPNP marks to the parameters of the queuing
network (C implementation)

• Performance as reward in form of C functions

(f) Model output: reliability and performability in tabular form.

(g) Interfaces

• Input: C implementation.
• Output: C implementation.

7. Use cases: N/A.

8. Assumptions and restrictions: limited to queuing networks.

B.1.9 Eclipse TPTP (Test and Performance Tool Platform)

1. Source/Reference: N/A

Web: http://www.eclipse.org/TPTP

2. Project status

The project is active. It belongs to the top-level projects of the Eclipse
Foundation. It represents the further development and extension of the
Eclipse Hyades project.

3. License type: Eclipse Open-source license.

4. General purpose

TPTP offers a standardized, generic and extensible tool platform for de-
velopment of software solutions for performance and reliability assess-
ment, as well as testing tasks. The TPTP project is divided into following
domains:

• Platform: offers a common infrastructure for the user interface, data
model, data collection and communication. The given functionalities
can be expanded using Extension Points.

• Testing Tools: offers the basic extensions for performing software
testing tasks and development of test environments.

• Tracing and Profiling Tools: extends the Platform with support for
data collection of Java programs that use the Common Trace Model.
Additionally, graphical representation and data analysis are offered.

• Monitoring Tools: offers analysis of the log files using statistical
models. Numerous formats are supported, which can be used for
performability or reliability analysis.

5. Platform: all platforms with JVM.

6. Model

(a) Model class: benchmarking, monitoring and test; IT-level.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 179

(b) Model type: TPTP Monitoring Tools, analysis and (pre)processing
of logfiles.

(c) Model description
Events are analyzed from logfiles using pattern matching rules and
XPath log analyzer.

(d) Systems modeled: Java-based software systems.

(e) Model input: logfiles or database query results.

(f) Model output: vector containing Java objects with solutions (e.g.,
reliability).

(g) Interfaces
Using the concept of Eclipse plugins, numerous interfaces in form of
Extension Points are available for input/output.

7. Use cases: testing, performability and reliability analysis of communica-
tion based Java applications (client-server applications).

8. Assumptions and restrictions

TPTP is limited to analysis of Java applications. The extensions for other
languages/platform (e.g., C++) have been announced.

B.1.10 ExhaustiF

1. Source/Reference: [65]

Web: http://www.exhaustif.es/

2. Project status

The project is active. The tool is being developed at the Madrid Univer-
sity of Technology, in cooperation with two software SMEs. The tool is
available in additional versions as IBM Rational Rose and Eclipse plugins.

3. License type: commercial license

4. General purpose

Exhaustif is a tool designed for black-box and gray-box testing using
the SWIFI method (Software Implemented Fault Injection). Design and
programming errors can be identified using the tool. The main purpose
is to improve reliability and availability properties of software intensive
systems during the development process (including integration and system
tests).

5. Platform: RTEMS/ERC32 and RTEMS/Intel (Real-Time Operating Sys-
tem for Multiprocessor Systems). It has been announced that versions for
Windows/Intel and Linux/Intel are planned.

6. Model

(a) Model class: quantitative - benchmarking and test, IT-level.

180 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(b) Model type: SWIFI (Software Implemented Fault Injection).

(c) Model description
The tool injects faults at the program level (procedures, variables)
and at the hardware level (CPU, memory, I/O). The test object is
executed automatically in the host-target environment.

(d) Systems modeled: embedded software in distributed heterogeneous
systems.

(e) Model input: program source code and parameters for fault injec-
tions at the hardware level.

(f) Model output: performability and reliability of the test object, based
on the post injection data analysis.

(g) Interfaces

• Input: Java GUI to define the faults injection campaign.
• Output: SQL database to save the test results obtained from

system under test.

7. Use cases: Fault Injector Kernel (FIK) for an EADS-Astrium SPARC
ERC32-based MCM processor.

8. Assumptions and restrictions: currently no support for general purpose
hardware/software platforms.

B.1.11 FAIL-FCI

1. Source/Reference: [199], [104]

2. Project status

The project is active, the last known activity is from the 2006. The tool
is developed by INRIA.

3. License type: N/A.

4. General purpose

FAIL-FCI (Fault Injection Language - FAIL Cluster Implementation) is
the tool for reliability assessment in the cluster and gird environments.
It enables modeling and implementation of failure scenarios using an ab-
stract failure description language and a fault injector. The tool can also
be used to test the effectiveness of the existing fault-tolerance mecha-
nisms in the cluster systems. FAIL-FCI also supports stress tests which
can be used to quantify non-functional aspects such as robustness and
performability.

5. Platform: Linux.

6. Model

(a) Model class: quantitative, benchmarking and test, IT-level.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 181

(b) Model type: software-based fault injection.

(c) Model description
FAIL is the language which enables description of failure scenarios.
The FAIL programs are translated by FCI compiler into the C++
source code and linked with FCI libraries. Thus archived source code
is then deployed on the grid nodes. On the host node, the program
is finally compiled and executed as FCI-Daemon. The distributed
application (system under test) is then executed by the FCI-Daemon
which instruments the failure scenario.

(d) Systems modeled: distributes systems, grids, clusters.

(e) Model input
Formatted failure scenario description using the FAIL language (in
the text form).

(f) Model output
C++ source code with annotations pointing to the faulty behavior of
the test object (software-based fault injection, such as probabilistic
process termination).

(g) Interfaces

• Input: N/A.
• Output: N/A.

7. Use cases: fault injection into distributed systems, stress testing.

8. Assumptions and restrictions: N/A.

B.1.12 FIGARO / KB3 Workbench

1. Source/Reference: [29], [84], [33], [32], [31], [26], [28], [45], [34], [30], [27],
[36]

Web: http://www.edf.fr/72493m/txt/Home-fr/Research–Development/The-
scientific-community/Downloads/KB3.html

2. Project status

FIGARO/KB3 is developed and used by EDF (Electricite de France). It
consists of a model description language (FIGARO), user interface and
model solvers (KB3 Workbench) that are external and can be exchanged.
All parts are separately available. The project is under active develop-
ment.

3. License type

Evaluation license with no time limit, the only limitation is the size of
studies that can be created, loaded, etc.: they may not contain more than
80 objects.

Commercial license is distributed via Apsys (http://www.apsys.eads.net).

182 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

4. General purpose

Evaluation of system reliability, availability, performance using various
number of models. The peculiarity of the solution is that knowledge
bases are used to enable abstract system modeling. Different compilers
and translators then automatically infer the data which are necessary for
the classical reliability model (e.g., for a Markov chain or a Petri net).

5. Platform: Unix/Xwindow, Windows.

6. Model

(a) Model class: analytical and simulation, IT level.

(b) Model type: Markov chains, Boolean logic Driven Markov Process
(BDMP), fault trees, reliability block diagrams, Petri nets.

(c) Model description
A system is modeled using the abstract FIGARO modeling language
which supports object-oriented model. Using predefined knowledge
base, the system then transfers this description into the appropriate
availability model, such as Petri net or reliability block diagram. The
model can be further solved using the following techniques: Markov
chain generation and quantification (analytic), Monte Carlo simu-
lation or sequence generation and quantification. Different model
analysis tools can be plugged in to perform these tasks.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
For each class, its attributes are defined, together with the failure
model and its parameters, occurrence of failure and repair and in-
teractions. After such a model is built, classes are instantiated as
objects that represent the system. Graphical user interface is pro-
vided for this purpose. System then automatically transfers an input
model into the working model, using the appropriate knowledge base.
KB3 Also features AR2FIG0 converter, which can accept defini-
tions in AltaRica Dataflow language and convert them to FIGARO.
Thanks to AR2FIG0, it is possible to take advantage of the comput-
ing power of the tools FIGSEQ, YAMS and FIGMAT-SF, and use
the already existing models in KB3.

(f) Model output

• Reliability and transient reliability (Markov chains)
• Reliability, availability, average performance, number of events,

time spent in state classes (simulations)
• Reliability of repairable and non-repairable systems (sequence

generation and quantification)

(g) Interfaces

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 183

• Input
FIGARO offers object-oriented language for defining model in-
put. Graphical user interface is also provided for creating model
descriptions which generates ASCII files as output (they are used
as inputs for analysis tools). User interface can also perform
model checking.

• Output
KB3 offers different outputs: raw data in text files or automatic
shaping (graphs, images).

7. Use cases

Known use cases include availability studies performed to optimize the
design or the exploitation of industrial systems: production installations,
public networks (electricity, transport, telephony), reliability assessment
of high technology systems (on-board systems, medical devices...), and
the control of the safety of risky industrial processes, e.g. in nuclear,
chemical, petrochemical industries.

8. Assumptions and restrictions

The number of states grows exponentially when the size of the system
increases (Markov chains). The generation of confidence intervals on the
probabilities of rare events that are not Markov modeled is time con-
suming. Finally, generation of sequences by inferences can yield only
reliability.

B.1.13 GRAMP/GRAMS

1. Source/Reference: [69], [80], [81]

2. Project status

GRAMS development started as a PhD thesis [80] and was further ex-
tended based on ARIES, SURF and CARE III tools. The tool is not
being maintained anymore.

3. License type: the last known implementation is from 1984. Current status
is unknown. License type is unknown. We survey it for historical reasons.

4. General purpose

GRAMP tool is used for modeling the following aspects of a fault-tolerant
system: coverage, preventive maintenance, acquisition cost, operations
cost, support cost, and provides sensitivity analysis. GRAMS tools is
used for reliability, maintainability, and life-cycle cost prediction of the
system modeled by GRAMP.

5. Platform: FORTRAN 77 implementation for VMS.

6. Model

(a) Model class: simulation, IT level.

184 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(b) Model type: Continuous-time Markov Model (GRAMP) solved by
Monte Carlo discrete event simulator (GRAMS).

(c) Model description
GRAMP and GRAMS offer methodology for verifying reliability,
maintainability and cost specifications for fault-tolerant systems dur-
ing the concept and design stages. This method systematically and
quantitatively factors the design, maintainability and support into
the analysis while accounting for uncertainties through front-end sen-
sitivity analyses. System is modeled using continuous-time Markov
model, and solved using simulation. Time varying failure rates are
handled as piecewise constant failure rates.

(d) Systems modeled: non-repairable and repairable systems.

(e) Model input
GRAMP supports modeling of systems, subsystems and modules.
At the system level, the inputs are: Fixed charge for repair; Failure
charge for breakdown; Run options; Print options; Mission length;
Acquisition cost (system level and module level); Average repair
cost. At the subsystem level the inputs are: Number of modules in
subsystem; Reliability requirement; Opportunistic maintenance op-
tion. (When one module is repaired, this parameter allows the user
to specify whether the maintenance strategy involves searching for
other failed modules and repairing those too.); Subsystem structure
(critical sets). At the module level, the inputs are: Preventive main-
tenance level; Redundancy level; Replacement level; Sensitivities to
compute; Failure rates; Coverage-active and spare units.
GRAMS supports the following input parameters at the system level:
Costs associated with various maintenance actions; Cost of required
maintenance on a backup system when it fails its permission inspec-
tion; Cost incurred when the switching mechanism for the backup
system fails after the primary system has failed; Cost of opportunis-
tic maintenance done on one or more components that were repaired
while the host was in shop for reaching its maximum operating times
(MOT) or for on-schedule maintenance; Cost incurred whenever
scheduled line replaceable units (LRU) maintenance is done; Cost
incurred whenever unscheduled LRU maintenance is done; Costs as-
sociated with host removal, shipment to shop, and repair for sched-
uled maintenance and for unscheduled maintenance. For the system
level input the following event probabilities have to be given: Prob-
ability of mission type A; Probability of doing end of mission even
when not required; Probability of not doing end of mission main-
tenance even when required; Probability of discrete events (such as
maximum temperature and lightning events); Probability of each
level of severity (n of them) for the discrete events (such as maxi-
mum temperature and lightning events); Probability of host failure
on a mission; Probability of backup inspection failures; Probability

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 185

of backup switching failures. Furthermore, Number of host operat-
ing hours per life and per year; Lengths of mission A and B in hours;
Number of severity levels (n) for discrete events; Number of hosts to
be simulated; Number of hosts in the fleet; Array of times for failure
rate data; Host population and the minimum and maximum number
of hosts, can also be specified at this level.

(f) Model output
GRAMP supports the following output options: Cost evaluator model
(CEM): Failure/maintenance events per million hours, Mean time
between events, Relative operations and support (0 & S) cost, Acqui-
sition cost, Weight, Sensitivities. Reliability feasibility model (mod-
ule or subsystem basis): Reliability, Mean times to failure, Reliability
time history plot. System bookkeeping: Reliability, MTTF, 0 & S
and acquisition costs, Total cost of ownership, Weight, CEM events
per million hours (abort rate), Mean time between failures (MTBF)
and mean time between repair (MTBR).
GRAMS supports the following outputs options: Namelist; Parame-
ter definitions; Subsystem definitions; Module definitions; System re-
sults; Subsystem reliability; Subsystem MTBF; Module MTBF due
to component failure/module MTBF due to coverage failure; System
MTBR by maintenance type; MTBR driven by subsystem mainte-
nance (average over host life); MTBR driven by subsystem main-
tenance (yearly); Events driven by subsystem maintenance (yearly
average over host life); Events driven by subsystem maintenance
(yearly); 0 & S cost breakdown; Component replacements by mainte-
nance type (yearly average over life cycle); Component replacements
by maintenance type (yearly); Component replacements attributed
to maintenance plan (yearly and aggregate); Backup failures; Print
option definitions (determines which outputs are selected for print-
ing).

(g) Interfaces

• Input: FORTRAN 77 implementation
• Output: FORTRAN 77 implementation

7. Use cases

GRAMP and GRAMS have been applied to several phases of design
projects for fault-tolerant electronic controllers. They were used to de-
termine if the improvements in reliability, safety and function (such as
decrease in fuel consumption) were worth the overall cost of producing an
electronic controller. In addition, a sensitivity analysis was performed to
determine the effects of uncertainties in coverage, dissimilar redundancy,
hardware redundancy and maintenance on reliability and cost. During
the final design selection phase, CRAMP and GRAMS were implemented
as analysis tools tor designing controller configurations to meet required
reliability and safety specifications. Reliability and maintainability goals
were also evaluated based on engineering design constraints.

186 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

The objective of the FAFTEEC program was to develop a design ap-
proach for full-authority digital electronic control systems with reliability
the primary consideration factor. The approach used in attacking this
objective was to identify a baseline full-authority digital electronic con-
trol system for and advanced fighter aircraft and then improve on this
baseline control with respect to specific goals using redundancy, recovery
strategies, and maintenance philosophies. Candidate control designs were
evaluated with respect to cost and weight in addition to their ability to
satisfy the design goals. The baseline control system was modularized
to yield identifiable components (pumps, thermocouples, actuators, etc.).
For these components, reliability and cost information was accumulated.
Many of these configurations were screened with GRAMP. GRAMS tested
promising configurations from GRAMP, using a time-varying analysis ap-
proach based on Monte Carlo techniques. The results of the GRAMP and
GRAMS analysis showed necessary cost and weight increases associated
with achieving an order of magnitude improvement in mission reliability
by using a fault-tolerant structure as opposed to the baseline system.

8. Assumptions and restrictions

The tool can handle a maximum of 1500 Markov states. Emphasis appears
to be on military systems rather than commercial systems. The system
has following additional assumptions: Randomly deteriorating (stochas-
tic failure process); Independent component failures; (Piecewise) constant
failure rates; State transition immediately following component failure;
Components are either working or failed. Furthermore, the following
maintenance assumptions exist: Stationary maintenance policies; Repair
brings component back to new condition; Maintenance actions at instant
of component failure; Instantaneous repair; unlimited service capacity;
When a subsystem fails, fix everything; Maintenance policy restrictions
from Coherent System Repair Models. Finally, the time clock assumption
supports only continuous-time, single failure per state transition.

B.1.14 HARP

1. Source/Reference: [70], [86], [17], [18]

2. Project status

HARP (Hybrid Automated Reliability Predictor) has been continuously
developed at the Duke University from 1986-1994 until version 7.0. Since
then there have been no new versions.

3. License type: N/A.

4. General purpose

HARP is a tool for reliability and availability assessment using Markov
chains. It uses fault trees (or user-specific graphical representation) as
the input mechanism.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 187

5. Platform: MS/PC-DOS, Microsoft Windows NT, OS/2, DEC VMS and
Ultrix, Berkeley UNIX 4.3 and AT&T UNIX 6.2.

6. Model

(a) Model class: analytical and simulation, IT-level.

(b) Model type
The tool supports three model types. FORM (Fault Occurrence
and Repair Model) contains the information about the hardware
structure, fault-occurrence processes and manual (off-line) repair.
These can be specified either as Markov chains or fault trees. FEHM
(Fault/Error Handling Model) describes permanent, sporadic and
transient faults, as well as description of automatic (on-line) repairs.
Markov chains are used to specify these.

(c) Model description
HARP uses a hybrid model (FORM and FEHM) to express state-
ments about reliability and availability. Based on these information,
Markov chain is automatically generated and solved.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
The following input parameters are supported: fault tree represen-
tation in a graphic form, Markov model representation in a graphic
form, failure rates with variation band, repair rates, initial condi-
tions, near-coincident faults by location, near-coincident faults by
component, and description of the recovery processes form in terms
of a Petri net.

(f) Model output
The tools calculates reliability (unreliability) and instantaneous avail-
ability (unavailability) with respect to time. Additionally, sensitiv-
ity of the reliability or availability prediction to parameter variations
and initial state uncertainty can be assessed. This information pro-
vides a measure of the system’s sensitivity to design faults. Finally,
failure probabilities attributed to exhaustion of redundant element,
single-point of failure, and near-coincident faults can be determined.

(g) Interfaces

• Input: textual (file) or graphical user interface. There are inter-
faces for CARE III and ARIES, enabling HARP to read their
models, too.

• Output: tabular in textual (file) form.

7. Use cases: N/A.

8. Assumptions and restrictions

HARP does not enable modeling of repair strategies. Furthermore it is
not possible to generate models with time dependence or ”cold spares”.

188 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

B.1.15 IsoGraph FaultTree+

1. Source/Reference: [108]

Web: http://www.isograph-software.com/ftpover.htm

2. Project status

Commercial tool in active development. Latest full version is V11 from
2005, since then version 11.1 (2007) is also available.

3. License type: commercial license, price is not openly disclosed. Evaluation
version is available.

4. General purpose

The tool offers reliability analysis that allows fault and event tree analysis
to be performed. Customized Markov models may be linked to an event
in the fault or event tree diagram. Independent analysis of fault trees,
event trees and Markov models is also possible.

5. Platform: Windows.

6. Model

(a) Model class: analytical and simulation, IT-level.

(b) Model type: fault trees, event trees, Markov models.

(c) Model description
The fault tree method involves the creation of a fault tree diagram
composed of gates and basic events that represents the logical de-
scription of a system failure, known as the TOP event, in terms of
the failure of the components that comprise the system. After creat-
ing the diagram the user assigns failure characteristics of the system
components. On completion of the model the system analysis is per-
formed. To do this the FaultTree+ software first determines the min-
imum combinations of component failures that will cause a system
failure, these are known as the minimal cut sets. Finally FaultTree+
calculates the quantitative parameters such as system unavailability
and failure frequency. FaultTree+ includes an event tree analysis
option. The event tree model may be created independently of the
fault tree model or may use fault tree analysis gate results as the
source of event tree probabilities. FaultTree+ also allows the user to
construct Markov models for use as the source of basic event data.
The Markov models may be analysed independently of the fault tree
analysis.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
The fault tree model supports the following input parameters:

• gates and events

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 189

• gate parameters: type (OR, AND, VOTE, NOT, XOR, IN-
HIBIT, PRIORITY, TRANSFER or NULL), name and descrip-
tion, retain results (minimal cut sets and quantitative results
retained for the gate during analysis), gate and event inputs,
notes, hyperlinks to external documents

• event parameters: failure model (RATE, FIXED, MTTF, DOR-
MANT, SEQUENTIAL, ET INITIATOR, STANDBY, TIME
AT RISK, BINOMIAL, POISSON, RATE/MTTR, WEIBULL,
FIXED-PHASED, RATE-PHASED), name, description, CCF
(common cause failure) model, logic mode, order of failures,
generic failure model, notes, hyperlinks

The event tree model may be created independently of the fault tree
model or may use fault tree analysis gate results as the source of
event tree probabilities.
The input for Markov models are discrete system states and tran-
sitions (also time dependent). The models created in the Markov
analysis module may be linked to basic events in the fault tree and
event tree analysis modules.

(f) Model output
The fault tree module generates the following output: CCF analysis,
importance analysis (Fussel-Vesley, Birnbaum, Barlow- Proschan, se-
quential importance measures), uncertainty (confidence levels can be
determined from event failure and repair data uncertainties) and sen-
sitivity analysis (allowing automatic variation of failure and repair
data between specified limits), time dependent analysis (providing
intermediate values for time dependent systems parameters), fault
tree house event analysis, full minimal cut set analysis, upper bound
calculations, risk analysis.
The event tree module generates the following output: risk calcula-
tion, full minimal cut set analysis, risk importance analysis (identi-
fying major risk factors), sensitivity analysis (automatic variation of
event failure and repair data between specified limits).
Finally, the Markov module generates the following output: unavail-
ability, availability, unreliability, reliability, failure frequency (un-
conditional failure intensity), repair frequency (unconditional repair
intensity), conditional failure intensity, conditional repair intensity,
number of expected failures, number of expected repairs, mean un-
availability over lifetime, mean availability over lifetime, expected
total downtime over lifetime, expected total uptime over lifetime.

(g) Interfaces

• Input: all three modeling modes (fault tree, event tree, Markov
model) use rich Windows-based GUI that enables model con-
struction, edit and management.

• Output: all Isograph tools use integrated Report Generator as
output interface. The Report Generator is separately described.

190 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

7. Use cases: aerospace, defense, automotive, nuclear, rail, chemical process
plant, oil, gas and medical industries.

8. Assumptions and restrictions: N/A.

B.1.16 IsoGraph AvSim+

1. Source/Reference: [107]

Web: http://www.isograph-software.com/avsover.htm

2. Project status: last version is V10 from 2006, the tool is under active
development.

3. License type: commercial license, price is not openly disclosed. Evaluation
version is available.

4. General purpose: availability and reliability simulation of complex and
dependent systems.

5. Platform: Windows.

6. Model

(a) Model class: simulation, IT-level.

(b) Model type: fault tree, network (reliability block) diagram.

(c) Model description
The logical interaction of failures (and how they affect the system
performance) is modeled using fault trees or network (reliability
block) diagrams. They are used to model failure and success or lev-
els of throughput in the system. Consequences are assigned to any
level of the logical diagrams to indicate the effects of failures (finan-
cial, operational, safety or environmental). Labor, spares and failure
data can be imported with any operational phase information and
task group assignments. The tool analyses the system using Monte
Carlo simulation to provide availability and reliability parameters,
life cycle costs, importance rankings. Spare holdings and mainte-
nance intervals can also be optimized.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
The models support following input parameters: network elements,
fault tree elements, failure modes, maintenance models, data sets
(time to failure), consequences, spare parts, labor categories, equip-
ment, task groups, phases.

(f) Model output
The tool supports several output options:

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 191

• Historical data analysis: the tool offers Weibull analysis of his-
torical failure and repair data by assigning probability distri-
butions which represent the failure or repair characteristics of
a given failure mode. The failure distribution assigned to a
given set of times-to-failure (data set) may be assigned to fail-
ure models which are attached to blocks in a network diagram
or fault tree. The Weibull module then analyses time-to-failure
and time-to-repair using various distributions (e.g., exponential,
1-, 2- and 3-parameter Weibull, Bi- und Tri- Weibull, lognor-
mal, normal, Weibayes, phased Bi- und Tri- Weibull). The
Weibull module automatically fits the selected distribution to
the data provided and displays the results graphically in the
form of cumulative probability plots, unconditional probability
density plots and conditional probability density plots.

• Spares optimization: AvSim+ can be used to simulate the ef-
fects of different spares holding levels on lifetime costs. The
program performs simulation runs for each combination of spare
part holdings for each selected spare part. Once all the simula-
tion runs have been completed AvSim+ will display the optimum
spare holdings from a cost viewpoint at site and depot.

• Maintenance optimization: AvSim+ can be used to determine
whether it is worthwhile performing planned maintenance or in-
spections on components, and if so, what the optimum main-
tenance interval should be. AvSim+ locates the optimum in-
terval for planned maintenance and inspection tasks by varying
the maintenance interval and repeatedly simulating the lifetime
costs.

• Simulation watch: the simulation watch facility is designed to
allow the user to check the logic of the system availability model.
During a ’simulation watch’ the program proceeds with the sim-
ulation on a ’step by step’ basis and lets the user view the status
of the system at each step. The simulation process moves for-
ward in time but halts when there is a change of event.

• Lifetime costs and production capacity: cost and production ca-
pacity can be modeled, apart from availability and reliability.
Labor, spares and other costs are taken into account. Conse-
quences can be assigned to system failures allowing the cost of
failures to be included in the calculation.

• Safety, environmental and operational impact: by allocating
safety, environmental, and operational consequences to selected
system failures, frequency and duration of each type of conse-
quence can be determined. Severity values may also be assigned,
so that safety, environmental and operational criticality can be
determined over the system lifetime.

(g) Interfaces
• Input: AvSim+ allows construction of fault tree or network dia-

192 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

grams (reliability block diagrams) using drag and drop facilities.
If fault trees are used, AvSim+ will automatically organize the
diagram based on the logical connections. For reliability block
diagrams, the blocks are placed on the screen, logical connec-
tions are made, and the program will automatically deduce the
failure logic of the system. Element properties are defined using
wizard/Windows-based GUI.

• Output: all Isograph tools use integrated Report Generator as
output interface. The Report Generator is separately described.

7. Use cases: aerospace, defense, automotive, nuclear, rail, chemical process
plant, oil & gas and medical industries.

8. Assumptions and restrictions: N/A.

B.1.17 IsoGraph Reliability Workbench

1. Source/Reference: [110]

Web: http://www.isograph-software.com/rwbover.htm

2. Project status: last version is V10.1 from 2007, the tool is under active
development.

3. License type: commercial license, price is not openly disclosed. Evaluation
version is available.

4. General purpose

Reliability Workbench is an integrated environment for performing re-
liability prediction, maintainability prediction, Failure Mode Effect and
Criticality Analysis (FMECA), reliability block diagram (RBD) analysis,
reliability allocation, fault tree analysis, event tree analysis and Markov
analysis. As reliability block diagrams, fault trees and Markov analysis
have already been discussed (Reliability Workbench offers an unified GUI
for the tools), we will concentrate here on reliability prediction, maintain-
ability prediction and FMECA.

5. Platform: Windows.

6. Model

(a) Model class: various prediction models, hierarchical block diagram.

(b) Model type: analytical and simulation, IT-level.

(c) Model description
Failure prediction methods define the systems and conditions in
which they operate (e.g., temperature), the prediction algorithm
then carries out the failure rate calculation as defined by the stan-
dard and gives the result. The tool supports the following failure
prediction models (standards): MIL-HDBK-217, Telcordia SR-332,

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 193

NSWC-98, IEC TR 62380, GJB/Z 299B. Additional models can be
added.
A Failure Mode, Effects and Criticality Analysis (FMECA) is a pro-
cedure for identifying potential failure modes in a system and clas-
sifying them according to their severity values. FMECA is usually
carried out progressively in two parts. The first part identifies fail-
ure modes and their effects (Failure Mode and Effects Analysis).
The second part ranks failure modes according to the combination
of severity and the probability of that failure mode occurring (Crit-
icality Analysis).

(d) Systems modeled: repairable and non-repairable systems.
(e) Model input

Model inputs can be classified into three distinct groups: reliability
allocation, failure prediction and FMECA.
During the design phase of a product, it is often required to eval-
uate the reliability of the system. The question of how to meet a
reliability goal for the system arises. Reliability allocation can be
used to set reliability goals for individual subsystems so that this
goal is met. The simplest method is to distribute the reliability goal
equally among all subsystems. However, this rarely gives the best
distribution of reliability objectives for all subsystems. It is better
to allocate reliability values between the subsystems based on com-
plexity, criticality, achievable reliability, or any other factors that
are deemed appropriate. The Allocation module within Reliabil-
ity Workbench offers six methods for assigning subsystem reliability
values: non-restricted equal allocation, non-restricted graded allo-
cation, non-restricted proportional allocation, non-restricted redun-
dancy proportional allocation, non-restricted reliability re-allocation,
and restricted direct research allocation. Inside the module, a sys-
tem hierarchy can be constructed where sub-systems may be broken
down further to component level, allowing a complete system allo-
cation model.
For the purpose of failure prediction, the components that make up
a system can be defined in a tree structure. The tree is composed
entirely of components or is subdivided into blocks each of which
holds other blocks or components. In this way the system and its
sub-systems are easily represented. The failure rate model for each
component is made up of a base failure rate for that particular type
of component and multiplying factors known as pi-factors. These
factors depend on the operating conditions experienced by the com-
ponent.
A large proportion of data entered when performing a FMECA is
descriptive text. The FMECA Module provides a master phrase
library which contains commonly used descriptions of component
parts, failure modes and effects. These phrases may be inserted into
descriptive fields by selecting the required phrase from the library

194 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

saving considerable time and ensuring consistency. Users may build
up their own phrase libraries or add to the master library. The follow-
ing inputs are supported: definition of the system to be analysed,
construction a hierarchical block diagram, identification of failure
modes at all levels of indenture, effects of the failure modes, severity
categories of the effects, other failure mode data such as failure de-
tection methods or failure rates, and failure mode ranking in terms
of severity and criticality.

(f) Model output
Failure prediction module offers the following output: failure rate
prediction, maintainability prediction, mean time to repair predic-
tion, effects of temperature, stress and environment changes on sys-
tem, sub-system, or unit failure rate prediction.
FMECA module offers the following output: failure effects, severity
values and failure causes through the system hierarchy.

(g) Interfaces

• Input: failure prediction module uses graphical user interface
that enables selection of failure prediction model and dynamic
input of relevant parameters. FMECA module uses GUI for hi-
erarchical block diagram construction. Possibilities for structur-
ing, property, inheritance and encapsulation modeling are pro-
vided.

• Output: all Isograph tools use integrated Report Generator as
output interface. The Report Generator is separately described.

7. Use cases: aerospace, defense, automotive, nuclear, rail, chemical process
plant, oil & gas and medical industries.

8. Assumptions and restrictions: N/A.

B.1.18 IsoGraph Network Availability Program (NAP)

1. Source/Reference: [109]

Web: http://www.isograph-software.com/napover.htm

2. Project status: version 1.0 from 2005, since then, no new versions avail-
able.

3. License type: commercial license, price is not openly disclosed. Evaluation
version is available.

4. General purpose

The Network Availability Program (NAP) enables the prediction of the
availability and reliability of communication networks.

5. Platform: Windows.

6. Model

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 195

(a) Model class: analytical and simulation, IT-level.
(b) Model type: extended reliability block diagram.
(c) Model description

The NAP network availability model utilizes an extended reliability
block diagram methodology that addresses the specific characteris-
tics of the network elements and their connections. In addition to
predicting network availability, NAP also provides criticality rank-
ings that identify weak spots in the network.

(d) Systems modeled: communication networks and their elements.
(e) Model input

NAP recognizes the failure logic of a network from the network di-
agram entered by the user. The diagram represents how individual
network element failures interact with other network element fail-
ures to prevent data flow between source and target nodes in the
network. A network diagram entered into NAP specifies the possible
communication paths between different network elements. The paths
between network elements, which are defined with connections, may
be directional or nondirectional. A directional connection indicates
that data may flow in one direction only. The network diagram con-
tains block symbols normally representing the network elements and
the cables connecting the elements together.
Parameters for each network element are type, failure data format,
failure rate, default MTTR, path logic.

(f) Model output
The NAP tool can calculate the following network parameters: net-
work unavailability, availability, failure frequency, MTTF, MTTR,
MTBF, unreliability, reliability, total down time.

(g) Interfaces
• Input

GUI is used for creating extended reliability block diagram. The
NAP library allows the construction of a custom library of parts
and alternative parts lists using a hierarchical structure. The
parts may be dragged and dropped into a network element or
network block diagram. Projects may also be attached to a
central part library allowing automatic updates to part data as
an option. Alternative part lists may also be added to the library
allowing selection of the appropriate part type within a network
element.

• Output: all Isograph tools use integrated Report Generator as
output interface. The Report Generator is separately described.

7. Use cases: communication networks.

8. Assumptions and restrictions: the network structure cannot be discov-
ered automatically, on-line, but has to be imported (modeled) manually
instead.

196 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

B.1.19 IsoGraph AttackTree+

1. Source/Reference: [106]

Web: http://www.isograph-software.com/atpover.htm

2. Project status: version 1.0, undated. The current tool status is unknown.

3. License type: commercial license, price is not openly disclosed. Evaluation
version is available.

4. General purpose

Attack trees allow the modeling of threats against the system security. For
example, the effectiveness of internet security, network security, banking
system security, installation and personnel security may be modeled using
attack trees.

5. Platform: Windows.

6. Model

(a) Model class: analytical/Simulation, service level.

(b) Model type: attack tree (a variant of fault trees).

(c) Model description
AttackTree+, through the use of attack tree models, allows the mod-
eling of the probability that different attacks will succeed. Attack-
Tree+ also allows definition of the indicators that quantify the cost of
an attack, the operational difficulty in mounting the attack and any
other relevant quantifiable measure that may be of interest. Different
categories and levels of consequence may also be assigned to nodes in
an attack tree. A successful attack may have financial, political, op-
erational and safety consequences. A partially successful attack may
have a different level of consequence to a totally successful attack.

(d) Systems modeled: attack-prone, mission critical IT systems and ser-
vices.

(e) Model input
The process involved in constructing the attack tree of the target
system begins with the identification of the goals of possible attacks.
Due to the fact that different attacks may contain similar methods,
this may result in inter-linked attack trees. The next stage is to
identify all possible attack methods that may result in the goals
being achieved. These first two stages will produce the top level of
the system model.
Each attack may consist of a large number of conditions that need
to be met to allow the attack to be successful, or it may simply
consist of a single quantifiable event. Therefore, the next step in the
construction of the attack tree is to break down each attack into the
basic conditions. This will result in a full attack tree structure with
every ’branch’ ending in a single quantifiable event.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 197

Once the structure is complete, it is necessary to specify the likely
frequency for each attack. Next, each event probability must be
specified, that is, how probable each aspect of the attack is to suc-
ceed.
In addition to analyzing how likely an attack is to succeed, attack
trees can also employ indicators to describe the cost, whether any
special equipment is needed, etc. A value for each indicator type is
assigned to each event. Finally, AttackTree+ allows the definition
of consequences which can be attached to any gate within the tree.
In this way, it is possible to model the consequences of successful
attacks on the target system.

(f) Model output
The tool evaluates the following output parameters: minimal cut sets
for each gate, probability of each cut set, indicator values for each cut
set, probability of each gate, indicator values for each gate, minimal
cut sets for each consequence, probability for each consequence, and
risk values for each consequence category.
It is also possible to view all combinations of events that will lead
to a successful attack, ranked in the probability of success. This list
may be filtered according to indicator values (e.g., cut sets where the
cost to an attacker is low). It is possible to ’prune’ the attack tree
to easily identify the route by which attack would succeed. Also,
importance rankings may be viewed to identify how security may be
improved most efficiently.

(g) Interfaces

• Input: GUI is available that enables attack trees construction
and description. Once the gates and events have been described,
indicators, consequences and probabilities can be added.

• Output: all Isograph tools use integrated Report Generator as
output interface. The Report Generator is separately described.

7. Use cases: Internet applications, banking, networks.

8. Assumptions and restrictions: N/A.

B.1.20 IsoGraph Report Generator

Isograph Report Generator is used as the output interface for all Isograph tools.
It supports the following output forms: text, graphs and diagrams. Text report
is specified by selecting parts of the project database that should be included in
the report (using SQL statements). Graph reports can contain plots with axes,
labels, legends and titles that are configured using simple dialogs. Graphs can
be 2D or 3D, and their position can be defined. Using diagram reporting, it
is possible to include diagrams such as reliability networks or fault trees in the
output report. Reports can be generated in various data formats, such as RTF
(for reports using graphs and diagrams) or as comma separated values (CSV)

198 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

files (for reports containing only text). The last option enables flexible further
parsing and processing.

B.1.21 MARK

1. Source/Reference: [123], [122], [12], [184], [187]

2. Project status

The first tool version was proposed in 1983, the last known application is
described in 1993. The project is not active.

3. License type: N/A.

4. General purpose

Evaluation of reliability of complex systems whose characteristics can be
modeled using Markov chains. The tool calculates state probabilities as
functions of time, MTBF and average state occupancy probability.

5. Platform: PL/1.

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: discrete-state continuous-time Markov models.

(c) Model description
The model covers Markov processes where state space is discrete
and the time parameter is continuous, that is, state transition can
happen in a continuous time-space.

(d) Systems modeled: any non-repairable systems whose characteristics
can be modeled using a Markov chain.

(e) Model input
The model is specified using the following parameters: number of
states in the model, description of each state, occupancy probabilities
at same initial time for each state and transition rates between the
states (defines the interconnection between states). The time span
for which Markov chain should be solved can also be defined. Finally,
commands to merge the results of the models to obtain the system
state probabilities can be given.

(f) Model output
The primary model outputs are plots of various state probabilities as
a function of time (e.g., plot of probability of being in a given state
or the probability of not being in a given state for a specified model),
plots of MTBF and plots of average state occupancy probability.

(g) Interfaces

• Input: N/A.
• Output: N/A.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 199

7. Use cases

The known use cases are reliability prediction for the fault-tolerant mul-
tiprocessor (FTMP) developed for NASA, airplane systems and safing
systems in nuclear reactors.

8. Assumptions and restrictions

The following restrictions apply: the tool considers exponential distrib-
utions only, the coverage cannot be specified, there is no support for re-
pairable systems, and transient and intermittent faults are not addressed.

B.1.22 METFAC

1. Source/Reference: [54], [46], [47], [48], [49], [50], [51], [52], [53], [55]

Web: http://dit.upc.es/qine/tools/metfac/

2. Project status

METFAC has been first developed in 1986 as part of a Ph.D. Dissertation
[54]. It has been actively and continuously improved ever since. The latest
version is from January 2007.

3. License type

The METFAC tool is copyrighted software, but is offered free to indi-
viduals and academic/basic research institutions for educational use or
academic non-profit basic research. Four types of licenses are offered:

• A free license of a version of the tool with limited functionality
(continuous-time Markov models with no more than 500 states can
be generated/solved)

• A free license of a 30-day evaluation fully functional version of the
tool

• A free license of a fully functional version of the tool for individuals
or academic and basic research institutions for educational purposes
and academic non-profit basic research

• A regular license for a fee of 5,000 euros of a fully functional version
of the tool for individuals and academic/basic research institutions
for uses other than educational or academic non-profit basic research
or for non-academic/non-basic research institutions

In all cases, the license is granted for specific operating system/hardware
platform combinations and to be used on a single hardware platform as
identified by the MAC number, which has to be provided by the licensee.

4. General purpose: analysis of performance, dependability and performabil-
ity of complex systems through rewarded continuous-time Markov chain
models.

200 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

5. Platform: Linux kernel 2.4.4 and above; Solaris 2.x; and, on demand, any
other UNIX variant with C-shell and an ANSI/ISO (standard 89/90) C
compiler.

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: finite continuous-time Markov chain models with reward
rates associated with their states.

(c) Model description
METFAC is a software tool for the analysis of performance, de-
pendability and performability of complex systems through rewarded
continuous-time Markov chain models. It allows the specification of
arbitrary finite continuous-time Markov chain models with reward
rates associated with their states and offers several numerical meth-
ods for the computation of seven measures on the resulting stochastic
reward process.

(d) Systems modeled: repairable systems.

(e) Model input
METFAC offers a model description language which is based on the
derivation rules. The language has the following expressive capabil-
ities and keywords:

• Structure: action, new state, parameters, state variables, re-
sponse.

• Properties: production rules, response, reward rate, start rate,
with prob, with rate, initial probability.

• Program flow: end, if, external, no, yes.
• Types: int, double.

The language further supports arithmetic expressions as well as re-
lational, binary arithmetical, logical, incremental, decremental and
cast operators.

(f) Model output
The tool offers the following model outputs:

• Expected transient reward rate
• Expected steady-state reward rate
• Expected averaged reward rate
• Cumulative reward complementary distribution
• Interval availability complementary distribution
• Expected cumulative reward till exit of a subset of states
• Cumulative reward distribution till exit of a subset of states

(g) Interfaces
In the current version, the tool has no graphical user interface.
However, it has been announced that the next version will offer a
Windows-based GUI.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 201

• Input
Textual files are used for model input: files that specify the
model (.spec) and optional C file (.c). The .spec file describes
the model using the language and keywords given above. The .c
file consists of definitions for all external model-specific functions
which can be used within the .spec file.

• Output
The output is generated in the two-phase model compilation
process. In the first pass the .spec file is translated into the .c
file. In the second pass, the .c file is compiled and executed.
Interactive execution is also possible.

7. Use cases

The known use cases include a reliability model of a 5-level RAID storage
subsystem, a reliability model of a storage system, a performability model
of a multiprocessor system, grid cluster computing systems, storage area
networks and communication networks.

8. Assumptions and restrictions: N/A.

B.1.23 METASAN

1. Source/Reference: [175], [150]

2. Project status

METASAN (Michigan Evaluation Tool for the Analysis of Stochastic Ac-
tivity Networks) is the predecessor of the UltraSAN and Möbius tools.
The tools is not in the active development, as the project was assimilated
by the Möbius. We survey it for the historical reasons.

3. License type: N/A.

4. General purpose

Evaluation of the performance and availability using stochastic activity
networks with analytical and simulation methods.

5. Platform: Unix.

6. Model

(a) Model class: analytical and simulation, IT-level.

(b) Model type: stochastic activity networks (SAN).

(c) Model description
Stochastic activity networks are extensions of Petri nets. For more
information, see Section 3.1.6 in the Chapter 3: Availability and
Performability Models, as well as descriptions of the UltraSAN and
Möbius tools in this chapter.

(d) Systems modeled: repairable and non-repairable systems.

202 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(e) Model input
A stochastic activity network is specified using the SANSCRIPT
description language. It allows for modeling of the initial marking,
coverage, distribution, trigger times, failure distribution and halting
conditions.

(f) Model output: availability, performance and performability of the
system under study.

(g) Interfaces
• Input: the input is specified in two files, one containing the

model description in SANSCRIPT, the other containing para-
meters (data) required for the analytical model evaluation.

• Output: calculated results (availability, performance or per-
formability) are stored in a file.

7. Use cases: N/A.

8. Assumptions and restrictions: computation complexity rises fast with the
model size.

B.1.24 Möbius

1. Source/Reference: [62], [174]

Web: http://www.mobius.uiuc.edu/

2. Project status

The Möbius project is one of the major research projects of the Per-
formability Engineering Research Group (PERFORM) in the Center for
Reliable and High-Performance Computing at the University of Illinois
at Urbana-Champaign. Research on Möbius has been supported by Mo-
torola, by the National Science Foundation, and by DARPA grant. The
Möbius project is based on previous work on the MetaSAN and Ultra-
SAN tools, which were originally developed to model and solve stochastic
activity networks (SANs). The project is still active and its development
continues.

3. License type: academic and commercial licenses are available, as well as
30-day evaluation license for non-academic organizations.

4. General purpose

Möbius is a software tool for modeling the behavior of complex systems.
Although it was originally developed for studying the reliability, avail-
ability, and performance of computer and network systems, it is now used
for a broader range of discrete-event systems, from biochemical reactions
within genes to the effects of malicious attackers on secure computer sys-
tems, in addition to the original applications.

5. Platform: Windows, Linux Fedora Core 3 and newer. Java runtime envi-
ronment and C++ compiler are required.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 203

6. Model

(a) Model class: quantitative, analytical and simulation; IT-level.

(b) Model type
Möbius supports many different atomic model types, which can be
mutually combined. Originally, it supported only stochastic activity
networks (SAN), however in the meantime it supports standard mod-
eling paradigms such as Petri nets or queues, stochastic process alge-
bra, stochastic automata networks, fault trees and reliability block
diagrams.

(c) Model description
The above model types can be combined and hierarchically related,
as Möbius starts with the assumption that no single modeling lan-
guage can be optimal for all problem domains. Therefore, an open
platform is offered which integrates different modeling formalisms.
Furthermore, models can be solved using state-based analytical / nu-
merical methods or using discrete events simulation. Note that we
provide a comprehensive coverage of the stochastic activity networks
as well as modeling example using Möbius in the Section 3.1.6 and
in the Appendix A.

(d) Systems modeled: fault-tolerant systems, discrete-event systems such
as biochemical reactions or computer networks.

(e) Model input: model-dependent. For state-space models, list of states
and transitions probabilities are given; for combinatorial model, pa-
rameterized elements and their topology.

(f) Model output: reliability, availability, performability and security.

(g) Interfaces
Möbius offers a graphical user interface (model editor) for specify-
ing and connecting different models. External atomic formalisms
necessary for the specification/analysis can be added.

7. Use cases

Möbius supports the validation of systems in multiple application do-
mains, including:

• Information technology systems and networks

• Wired and wireless telecommunication software and hardware sys-
tems

• Aerospace and aeronautical systems

• Commercial and government secure information systems and net-
works

• Biological systems

8. Assumptions and restrictions: only exponential and instantaneous tran-
sitions are allowed in state-space models.

204 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

B.1.25 NFTAPE

1. Source/Reference: [192], [191], [190]

2. Project status

The project is being developed at the University-of-Illinois-at-Urbana-
Champaign. The last activity is from year 2002. NFTAPE is the successor
of the FTAPE project.

3. License type: academic license is available.

4. General purpose

NFTAPE (Networked Fault Tolerance and Performance Evaluator) is a
software environment for automated reliability assessment of a network
using the fault injection method. With NFTAPE it is possible to define
a fault injection plan, execute experiments based on the plan and finally
to analyse the obtained experimental results. Fault injection process is
described and activated in runtime using a script language. NFTAPE
offers the following metrics: reliability, availability and coverage. It also
supports evaluation of distributed systems.

5. Platform: Solaris, Linux

6. Model

(a) Model class: quantitative – benchmarking and test; IT-level.

(b) Model type: software-based fault injection.

(c) Model description
NFTAPE is based on a component architecture comprising of the
following modules: Lightweight Fault Injector (LWI), Lightweight
Fault Trigger (LFT) and a control environment. Using a debugger
or device drivers faults can be injected into memory (main memory,
registers, etc.), operating system, I/O devices and network adapters
and controllers of the target (evaluated) platform. A process man-
ager runs on the target platform, and receives and implements fault
scenarios from the control environment.

(d) Systems modeled: distributed (network) systems.

(e) Model input: fault-injection scenarios.

(f) Model output: reliability, availability, coverage and repair.

(g) Interfaces

• Input: language for fault injection scenario, implemented using
Python scripts (Jython).

• Output: graphical interface.

7. Use cases

The known use cases of NFTAPE include:

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 205

• Motorola IDEN MicroLite: testing of a base station controller

• DHCP (Dynamic Host Configuration Protocol): assessment of a con-
trol flow of DHCP applications

• SIFT-Environment (Software Implemented Fault Tolerance) for the
Remote Exploration and Experimentation project (REE)

• Server-based internet applications: evaluation of SSH- and FTP-
services using fault injection

8. Assumptions and restrictions

The tool does not offer an abstract fault-injection planing language (Python
is used instead). No source code modification or scaling is possible.

B.1.26 NUMAS

1. Source/Reference: [151], [20]

2. Project status: the last known developments are dated 1989. The project
is not active.

3. License type: N/A.

4. General purpose

NUMAS is a performance analysis tool. It is possible to extend each
queueing station with fault-tolerance characteristic, hence fault-tolerant
assessment is also possible using the queuing models.

5. Platform: Solaris.

6. Model

(a) Model class: analytical, IT level.

(b) Model type: queueing networks, Markov chains.

(c) Model description
A system being modeled is represented as a queuing network. It
is then translated into Markov chain which is numerically solved
by computing steady state distribution using Gaussian elimination,
Gauss-Siedel iteration and iterative aggregation.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input: multi-server queues and the load dependent failure
rates for servers; distribution of customers over the queuing stations;
degradation mode of each queuing station.

(f) Model output: steady-state performability and steady-state avail-
ability.

(g) Interfaces

206 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Input: the NUMAS functionality can be accessed via two user
interfaces: interactive NUMAS interface and HI-SLANG model-
ing language (HIT System Language). Both enable the user to
input high-level degradable queuing network models. When us-
ing HI-SLANG, hierarchical modeling is also available (Markov
chains within queuing networks).

• Output: steady state performability in tabular form, sorted ac-
cording to input elements.

7. Use cases: N/A.

8. Assumptions and restrictions

It is not possible to model dependencies in the failure or repair process
of the different queuing stations. Only steady state measurement can be
computed.

B.1.27 OpenSESAME

1. Source/Reference: [215]

Web: http://www.lrr.in.tum.de/˜walterm/opensesame/

2. Project status: the project is active, the last known activity is from 2007.

3. License type: academical license for research and teaching, commercial
license is also available per request.

4. General purpose

OpenSESAME offers a user-friendly modeling language which combines
the simplicity of combinatorial availability models such as reliability block
diagrams with the expressive power of the state-space based modeling
techniques such as Markov chains. That means that mutual dependency
between components can be specified.

5. Platform: Linux/Unix.

6. Model

(a) Model class: quantitative, analytical; IT-level.

(b) Model type: reliability block diagrams, failure dependency diagrams,
stochastic Petri nets.

(c) Model description
A user inputs the model of a fault-tolerant system using RBD no-
tation. The model is then internally transformed into a Petri net
and analyzed using the DSPN-express-NG solver, which is built into
OpenSESAME.

(d) Systems modeled: redundant, fault-tolerant systems.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 207

(e) Model input
The reliability block diagram of the system that should be analyzed
is given as input. The elements are parameterized with MTTF and
MTTR. Contrary to classic RBD notation, dependencies between
RBD elements can be defined. Furthermore, it is possible to specify
redundancy schemes, repair strategies and fault dependencies.

(f) Model output
Failures with common cause, fault prediction (destruction or mal-
function/blocking of components), fault diagnosis, non-zero failover
times for redundant systems in standby mode, limited repair capac-
ities.

(g) Interfaces

• Input: graphical, tabular.
• Output: graphical, file.

7. Use cases

Known use-cases are modeling of Web servers, telecommunication sys-
tems, networks, power grids.

8. Assumptions and restrictions

The classical combinatorial assessment methods for RBD/FT cannot be
applied.

B.1.28 PENELOPE

1. Source/Reference: [67], [66], [142], [221]

2. Project status: the last user-guide is from 1996, and the last publication
from 1997. The current project status is unknown.

3. License type: academic license.

4. General purpose

PENELOPE is a software tool for performance analysis and optimiza-
tion. It is based on the extended Markov reward model (EMRM), which
extends Markov models with stationary optimization algorithms and dif-
ferent performance analysis strategies.

5. Platform: Sun OS 4/5.

6. Model

(a) Model class: quantitative, analytical/simulation; IT-level.

(b) Model type: extended Markov reward model (EMRM), controlled
stochastic Petri nets (COSTPN), optimization and simulation.

208 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(c) Model description
EMRM is an extension of Markov reward models, supporting recon-
figuration arcs and branching states. COSTPN is an extension of
the GSPN model, supporting additional transitions (e.g., reconfigu-
ration). For numerical evaluation, COSTPN models are translated
into EMRM.

(d) Systems modeled: dynamically reconfigurable systems.

(e) Model input: for EMRM, Markov models with extended arcs and
states; for COSTPN, places, transitions, tokens and additional tran-
sitions.

(f) Model output: transient performance optimization, stationary per-
formance optimization, performance simulation, transient performance
analysis, stationary performance analysis.

(g) Interfaces

• Input: C-implementation, graphical user interface.
• Output: C-implementation, file and graphical.

7. Use cases: optimal strategy of an emergency supply.

8. Assumptions and restrictions: mission times have to be finite.

B.1.29 PENPET

1. Source/Reference: [127], [98]

2. Project status: the tool was developed by Siemens AG in cooperation
with the University Mulhouse. Last publication is from 1996, the current
project status is unknown.

3. License type: N/A.

4. General purpose: analysis of performability and reliability of fault-tolerant
systems.

5. Platform: C-implementation for Unix (X-Window with MOTIF).

6. Model

(a) Model class: quantitative-analytical, qualitative; IT-level.

(b) Model type: generalized stochastic Petri nets (GSPN), Markov re-
ward models.

(c) Model description
PENPET allows for high-level models to be described as clusters of
lower-level models. Model reliability is described with a structural
formula at the top level. Models called macro-molecules are defined,
which comprise of sub-models called molecule-clusters or components
called atoms. The textual description using structural formulas is

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 209

similar to the chemical description of molecules (hence the names).
For each sub-component (molecule-cluster or atom), the quantity
and the relationship with the upper level is specified. Failure rate
and coverage are also specified. This completes the structural for-
mula. The sub-models and components from the structural formula
are then described using generalized stochastic Petri nets (GSPN),
which are available in the library. After that, an automatic transfor-
mation translates the entire structural formula into a GSPN. Using
this system GSPN, system states and underlying Markov chains are
derived. Performance part is modeled using a reward model. Failure
rates from the structural model are also included.

(d) Systems modeled: repairable and non-repairable fault-tolerant sys-
tems.

(e) Model input: structural formula (model) of a system; GSPN models
for the components and sub-models (specified manually if no appro-
priate model can be found in the system library).

(f) Model output: instantaneous and steady-state performability and
reliability.

(g) Interfaces

• Input: textual.
• Output: tabular or graphical.

7. Use cases: PENPET has been used for performability analysis of fault-
tolerant multiprocessor systems.

8. Assumptions and restrictions: N/A.

B.1.30 Relex Reliability Studio: PRISM

1. Source/Reference: N/A.

Web: http://www.relex.com

2. Project status: active.

3. License type: commercial license.

4. General purpose

Reliability Studio is a software toolkit produced by the Relex company,
which offers reliability, performance and maintenance assessment of com-
puter systems. It supports methods and processes for failure criticality
evaluation as well as models for reliability and availability analysis. Us-
ing simulation and optimization different statistical assertions about these
criteria can be derived. PRISM is a standard for reliability analysis and
MTBF prediction, developed by Reliability Assessment Center (RAC).
PRISM-tool is integrated into Reliability Studio, supporting other mod-
ules such as RBD, FT, FMEA etc.

210 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

5. Platform: Windows.

6. Model

(a) Model class: quantitative – analytical/simulation, qualitative; IT-
and process-level.

(b) Model type: Markov models, reliability block diagrams with Monte
Carlo simulation, FMEA/FMECA, fault trees, Human-Factor-Risk
analysis.

(c) Model description
Reliability Studio uses combinatorial (RBD, FT) or state space-
based models for system specification. Apart from them, it supports
risk analysis (FMEA, FMECA, HF-PFMEA, fault-trees) and process
control (FRACAS, reliability prediction).

(d) Systems modeled: repairable, non-repairable systems and redundant
systems.

(e) Model input

• Markov models: functional dependencies using state transition
diagrams

• Risk analysis: process description
• FMEA-FMECA: workflow

(f) Model output
The tool output is model-dependent, includes reliability, availabil-
ity, unavailability, MTBF, MTTF, failure rates, expected number of
failures, downtime, failure probability, hazard rate. More precisely
the following outputs are supported by particular models:

• Markov models: transient and steady-state availability, capacity,
failure probability, cost and number of visits for every state in
the Markov chain

• RBD: steady-state and transient availability, confidence intervals
• FMEA-FMECA: criticality matrix and order, risk level, risk pri-

ority
• Risk analysis: risk assessment calculation

(g) Interfaces: Web-based, graphical and tabular (Excel, Access, text);
reporting available in Excel, PDF and HTML formats.

7. Use cases are known in the following industrial sectors: aerospace, auto-
motive, oil, medical devices, railway, telecommunications.

8. Assumptions and restrictions: N/A.

B.1.31 QUAKE

1. Source/Reference: [200]

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 211

2. Project status

The tool was developed at the University Coimbra, Portugal together with
INRIA, France and is still in active development.

3. License type: N/A.

4. General purpose

QUAKE is a tool for availability assessment of grids and Web services.

5. Platform: N/A.

6. Model

(a) Model class: quantitative – benchmarking and test; IT- and service-
level.

(b) Model type: fault-injection, time series analysis, benchmark.

(c) Model description
QUAKE consists of the Benchmark Management System (BMS) and
the SOAP Webserver called System Under Test (SUT). BSM com-
prises modules for automatic benchmark execution (definition, exe-
cution and result persistence).
The Webserver is operated under defined workload and faultload.
Different SOAP-XML client requests are simulated, and all grid
nodes are synchronized via the Network Time Protocol (NTP). Be-
sides SOAP, other middleware protocols are supported.
The benchmarking supports different modes: in the learning mode,
basic performance data are collected. In the workload mode the
server is tested under the increasing workload (stress-testing). Ad-
ditionally, server behavior can be influenced using fault injection into
the system resources (this is the workload/faultload mode).
The workload can be generated using following distributions: con-
tinuous maximal workload, stationary distribution, maximal time-
limited workload, and surge load (constant request number with oc-
casional peaks).
The faultload in induced using an external program. The follow-
ing system resources can be tested: main memory usage, increased
number of threads, extensive use of file descriptors, usage of database
connections.

(d) Systems modeled: distributed, Web-based systems (Web Services,
grid nodes).

(e) Model input
The rule-based language exists which enables description and con-
figuration of procedures for workload and faultload scenarios. More
details can be found in [200].

(f) Model output

212 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Failures, their characterization (e.g., hung-up, crash, zombie-
server), client-perceived failures (log files)

• Basic performance metrics: average number of requests per sec-
ond, average response time for a request, conforming requests,
service functionality, turn-around time

• Performance under varying workload distributions and addition-
ally, with fault injection at the server side

• Reliability metrics:
– Integrity: number of Web service faults under increased

workload and faultload
– Availability
– Autonomy: number of cases where manual intervention is

required (hang-up), as opposed to crash where the server
can reboot itself automatically

– Self-healing effectiveness

(g) Interfaces: textual form (input), numerical and tabular form (out-
put). More details are not disclosed.

7. Use cases: performance and stress testing of grids and their services.

8. Assumptions and restrictions: N/A.

B.1.32 Reliability Center: PROACT, LEAP

1. Source/Reference: N/A.

Web: http://www.reliability.com

2. Project status: the project is active.

3. License type: commercial license.

4. General purpose

PROACT (Preserving Event Data, Ordering the Analysis Team, Analyz-
ing Event Data, Communicating Findings & Recommendations Tracking
For the Bottom-Line Results) is the name of the software product for the
Proact process model, which is a variation of the Root Cause Analysis
method (RCA). PROACT enables to establish this process in a company
according to the given rules. LEAP implements the FMEA method (Fail-
ure Modes and Effects Analysis).

5. Platform: Windows.

6. Model

(a) Model class: quantitative - analytical, qualitative; IT-level.

(b) Model type: PROACT uses process model following the Root-Cause-
Analysis method. LEAP uses FMEA and opportunity analysis mod-
els.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 213

(c) Model description
The RCA method belongs to the analytical methods. Using the logic
tree diagram, the causes and their effects are modeled and investi-
gated. The RCA logic tree supports process, technical infrastruc-
ture and personnel availability. The FMEA method is a qualitative
method for analysis of potential failure modes within a system for
classification by severity or determination of the effect of failures on
the system.

(d) Systems modeled: technical systems (PROACT) and organization
structures (LEAP).

(e) Model input

• PROACT: description of process causes (physical and personnel
related), as well as their effects.

• LEAP: probabilities and historical data.

(f) Model output

• PROACT: data about the process effectivity, recommendations.
• LEAP: ranking of undesirable events.

(g) Interfaces: textual form (input); graphical, online, tabular (output).

7. Use cases

The known use cases are in the sectors of air and space travel (NASA), rail-
way (AMTRAK), whole food production, electrical engineering (General
Electric), automotive (General Motors), power industry (Virginia Pow-
ers), oil and gas (Shell).

8. Assumptions and restrictions: N/A.

B.1.33 Reliass

1. Source/Reference: N/A.

Web: http://www.reliability-safety-software.com

2. Project status: the project is active.

3. License type: commercial license, demonstration version is also available.

4. General purpose

Reliass is used for reliability and security analysis. It offers the following
modules:

• ASENT Toolkit: reliability and maintainability analysis

• AIMSS: management of technical information about the complex
systems

• Logan Fault Tree: fault tree and event tree analysis

• Raptor: reliability analysis using reliability block diagrams

214 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• RAMP: simulation of process-based systems

• RAM Commander: toolkit for reliability analysis

• D-LCC: calculation of lifecycle costs

• MEADEP: data-based reliability analysis

• FavoWeb: tool that uses FRACAS method

• FMEA-Pro6: implementation of the FMEA method

• PHA-Pro6: tool that implements hazard analysis

• PRISM: toolbox of procedures for reliability prediction

5. Platform: Windows.

6. Model

(a) Model class: quantitative – analytical and simulation, qualitative;
IT-level.

(b) Model type
The following models and methods are supported:

• FMECA, RCM and testability analysis (ASENT, RAM Com-
mander)

• fault preventing maintenance, thermal analysis, sensitivity analy-
sis (ASENT)

• RBD (ASENT, Raptor) with Monte-Carlo simulation (RAM
Commander), hierarchical RBD/Markov models (MEADEP)

• fault tree and event tree models (Logan Fault Tree, RAM Com-
mander)

• Weibull failure distribution (RAMP)
• Reliability prediction (RAM Commander)
• Weak-link-analysis and phased simulation models (Raptor)

(c) Model description
Apart from basic reliability models (RBD, FT, Markov), the RAM
Commander offers RBD together with Monte-Carlo simulation mod-
ule. This is RBD extension for cases where analytical solution is not
possible to calculate, such as stand-by, active redundancy, mutu-
ally dependent elements or limited repair capabilities configurations.
Furthermore, MEADEP offers a framework for the historical analy-
sis of reliability data. It consists of the following modules: data
preparation, data editor and analysis, model generator and model
solver. The results are derived either directly from the underlying
data, or from the reliability models. In the former case, the data
must be preprocessed, imported and then modeled using e.g., RBD
or Markov models.

(d) Systems modeled: repairable, redundant and complex systems (mixed
serial/parallel and complex configurations).

(e) Model input: system model, reliability model, system parameters.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 215

(f) Model output: numerical reliability metrics including MTBCF, MTTR,
Man-hours, reliability, availability.

(g) Interfaces

• Input: graphical user interface is provided for data and model
input. Furthermore, MEADEP supports data import from flat
ASCII files and databases.

• Output: graphical and tabular output is supported, as well as
file export. Results can be exported graphically as bitmaps, or
as alphanumerics into databases and popular Office products
(e.g., Excel, Word).

7. Use cases: air and space industry, powerplants, energy sector, integrated
circuits design.

8. Assumptions and restrictions: N/A.

B.1.34 Reliasoft

1. Source/Reference: N/A.

Web: http://www.reliasoft.com

2. Project status: the project is active.

3. License type: commercial and free evaluation licenses are available. Fur-
thermore, there are several commercial license types: single user, standard
and concurrent network, unlimited and lease license.

4. General purpose

The tool performs reliability analysis and offers the following packages:

• Weibull++: Life data analysis (Weibull analysis)

• Accelerated Life Testing Data Analysis (ALTA): analysis of data
obtained during stress tests

• Reliability Growth and Repairable Systems Data Analysis (RGA):
reliability growth analysis software with fielded (repairable) system
analysis capabilities for determining the optimum overhaul time

• BlockSim: system reliability and maintainability analysis utilizing
a reliability block diagram (RBD) or fault tree analysis (FTA) ap-
proach to obtain system results based on component data

• Xfmea: Failure Modes, Effects and Criticality Analysis (FMEA/
FMECA) component

• RCM++: analysis, data management and reporting for Reliability
Centered Maintenance (RCM) analysis, integrated with FMEA/FMECA
capabilities

• Lambda predict: supports standards for reliability prediction analy-
sis, including MIL-217, Bellcore, NSWC-98, China 299B and RDF
2000

216 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Reno: visual simulation software for risk and decision analysis

• XFRACAS: incident (failure) reporting, analysis and corrective ac-
tion software system based on the FRACAS method

5. Platform: Windows.

6. Model

(a) Model class: qualitative and quantitative, analytical and simulation;
IT-level.

(b) Model type: life data and lifetime distributions (Weibull++), life-
stress relationships (ALTA), reliability growth analysis models (such
as Crow-AMSAA, Duane, Standard Gompertz, Lloyd-Lipow, Mod-
ified Gompertz and Logistic in RGA), reliability block diagrams
and fault trees (BlockSim), flowcharts and stochastic models (Reno),
FMEA / FMECA standards (such as AIAG FMEA-3, J1739, ARP5580,
MIL-STD-1629A in Xfmea), RCM models (such as MSG-3 and SAE
JA1012 in RCM++), FRACAS models (in XFRACAS).

(c) Model description
Weibull analysis performs life data analysis utilizing multiple life-
time distributions, such as 1-, 2- and 3-parameter Weibull, mixed
Weibull, 1- and 2-parameter exponential, lognormal, normal, gener-
alized Gamma, Gamma, logistic, loglogistic, Gumbel and Weibull-
Bayesian lifetime distributions. Life data can be also used for quanti-
tative accelerated life testing data analysis. Reliability growth mod-
els are used to analyze time-to-failure (continuous), success/failure
(discrete) and reliability data from various types of developmental
(reliability growth) tests. Different types of developmental (reliabil-
ity growth) testing strategies can be employed: test-fix-test, test-
find-test or test-fix-find-test. This methodology enables reliability
growth projections and provides a method to evaluate the reliabil-
ity growth management strategy. RBD and FT are used for the
standard reliability analysis. Flowcharts can express ordering of sto-
chastic processing, which can be subsequently simulated. Reliabil-
ity prediction models are used when actual product reliability data
is not available. In such cases, standards based reliability predic-
tion (MIL-217, Bellcore, NSWC, RDF 2000 and China 299B) may
be used to evaluate design feasibility, compare design alternatives,
identify potential failure areas, trade-off system design factors and
track reliability improvement. A failure modes and effects analy-
sis (FMEA) is a procedure for analysis of potential failure modes
within a system for classification by severity or determination of the
effect of failures on the system. Failure causes are any errors or
defects in process, design, or item, especially those that affect the
customer, and can be potential or actual. Effects analysis refers to
studying the consequences of those failures. RCM models are based

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 217

on the equipment selection, failure effect categorization and mainte-
nance task selection. They allow to compare possible maintenance
strategies based on cost and/or availability estimates obtained by
simulating the equipment’s operation. Finally, XFRACAS models
are designed for the acquisition, management and analysis of prod-
uct reliability, quality and safety data from multiple sources, along
with the management of problem resolution activities.

(d) Systems modeled: physical (technical), economic and organizational
systems.

(e) Model input:

• life data
• stress test results
• RGA model configuration
• parameterized reliability block diagram or fault tree
• stochastic processes connected in a flowchart description
• system configuration, component characteristics and operating

conditions
• FMEA worksheet, hierarchical tree or filtered list
• Failure Effect Categorization (FEC) and Maintenance Task Se-

lection logic charts
• incident management process configuration

(f) Model output:

• warranty projections, degradation analysis, confidence bounds
• accelerated life testing time-to-failure, use-level cumulative dis-

tribution function, reliability, probability of failure, warranty
time, mean life

• MTBF, reliability or failure intensity given time (cumulative or
instantaneous), expected number of failures given time, time/stage
to achieve a given MTBF or failure intensity, demonstrated
MTBF or failure intensity, projected MTBF or failure intensity,
maximum growth potential, unseen failure modes

• reliability, maintainability, availability, throughput, life cycle
cost, failure rate, MTTF, warranty time, reliability importance
plot, cost-effective component reliability allocation strategy, main-
tenance duration and restoration factors, maintenance policies

• risk and safety analysis, decision plan, maintenance plan
• failure rates, MTBF, Pi-Factors
• FMEA criteria and classifications, projections, item properties,

sorted failures, effects, causes and controls by description, rec-
ommended actions

• optimum maintenance interval, operational costs of various main-
tenance strategies, risk priority numbers

(g) Interfaces

218 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Input: all tools provide graphical editors.
• Output: extensive reporting facilities are provided (graphical,

file-export, databases, Office).

7. Use cases: aerospace, automotive, chemical and process, oil and gas, de-
fense, energy, electronics, medical/health care, telecommunications, semi-
conductor, transportation, IT hardware.

8. Assumptions and restrictions: N/A.

B.1.35 SAVE

1. Source/Reference: [63], [90], [91], [92]

2. Project status

SAVE is based on ARIES, CARE III and HARP tools. Project is currently
inactive, but Monte Carlo techniques it employs are used in a number of
commercially available tools (see Figures 4.2 and 4.3).

3. License type: N/A.

4. General purpose: solving probabilistic models of system availability and
reliability of mission-oriented and continuously operating systems.

5. Platform: FORTRAN 77.

6. Model

(a) Model class: analytical and simulation, IT level.

(b) Model type: homogeneous Markov chain.

(c) Model description
Steady-state availability is computed by solving the homogeneous
set of simultaneous linear equations derived from the Markov chain.
Sensitivity with respect to the transition rate parameters (failure
and repair rate) is calculated by differentiating the linear equations
that satisfy the Markov chain. Mean time to failure is obtained from
the transient behavior of the system. Models can be solved also by
simulation using direct and analog Monte Carlo methods.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
The models supports following input parameters:

• Method to be used for solving: numerical, Markov, combinato-
rial

• Components specified by type (e.g., processor, database, spare)
• For each component, a spare is defined along with the spare’s

failure rate
• Operational dependencies for components

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 219

• Failure rates for components (in dormant and operational state)
• Repair rates for components
• Repair dependencies
• Failure modes for the system
• Failure mode probabilities for each component
• For each failure mode, affected components are specified
• The conditions under which the system is considered operational

are specified
• Repair strategy (order in which the components are repaired)

(f) Model output
The following outputs can be calculated/simulated by the solver:

• Steady-state availability
• Sensitivity analysis
• Mean time to failure

(g) Interfaces

• Input: batch language is used for specifying model inputs.
• Output: results are written into a file, therefore, a file system

interface (handler) is enough to communicate with the tool

7. Use cases: space computers and avionics (non-repairable systems) and
telephone switching systems, general purpose computer systems, transac-
tion processing systems (repairable systems).

8. Assumptions and restrictions

The tool works with exponential distributions only. Furthermore, it does
not address transient and intermittent faults and is not able to compute
transient (instantaneous) availability.

B.1.36 SHARPE

1. Source/Reference: [171], [172], [103], [167], [202], [170], [201], [173]

Web: http://people.ee.duke.edu/˜kst/software packages.html

2. Project status

First version of the SHARPE tool was based on the SPADE, DEEP
and HARP tools. The tool has evolved and currently exists under the
SHARPE 2000 and SHARPE 2002 names, also featuring Web extensions.
The project is active and under continuous development.

3. License type

SHARPE 2000/2002 is free for academic use (see http://shannon.ee.duke.edu/
tools/agreement sharpe.htm). A commercial license for SHARPE 2000/2002
exists, but its conditions (e.g., price, duration, number of users) are not
disclosed.

220 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

4. General purpose

SHARPE 2000/2002 is a toolkit that provides a specification language
and solution methods for most of the commonly used model types for
performance, reliability and performability modeling.

5. Platform: Windows, Linux, Solaris; The tool is Java-based and requires/can
be executed in any available JVM.

6. Model

(a) Model class: analytical and simulation, IT level.

(b) Model type: Markov chains (irreducible, acyclic, phase-type), semi
Markov chains, reliability block diagrams, fault trees, reliability graphs,
single-chain product-form queueing networks, multiple-chain product-
form queueing networks, generalized stochastic Petri nets, series-
parallel graphs.

(c) Model description
The tool enables specifying and analyzing performance, reliability
and performability models. Model types include combinatorial, such
as fault-trees and queuing networks, and state-space, such as Markov
and semi-Markov reward models as well stochastic Petri nets. Steady-
state, transient and interval measures can be computed. Output
measures of a model can be used as parameters of other models.
This facilitates the hierarchical combination of different model types.
Overview of models and capabilities is given in table B.1.

reliability performance performability
fault tree X

multistate fault tree X
reliability block diagram X

reliability graph X
Markov chain X X X

semi-Markov chain X X X
markov regenerative process X X X

generalized stochastic Petri net X X X
Stochastic reward net X X X

product-form queuing network X
multi-chain queuing network X

task graph X
phased-mission systems X

Table B.1: Sharpe model description

(d) Systems modeled: non-repairable and repairable systems.

(e) Model input
Model input varies depending on the used modeling language:

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 221

• Markov chains with absorbing states (acyclic or PH-type): tran-
sitions and transition rates; rewards; initial state probabilities.
Irreducible Markov chains: transitions and transition rates; re-
wards; initial state probabilities (for transient analysis only).

• Acyclic semi-Markov chains: transitions and transition distrib-
utions; rewards; initial state probabilities.

• Irreducible semi-Markov chain: transitions and transition distri-
butions; rewards.

• Reliability block diagram input syntax is: block name {(param
list)} <blockline> end. A blockline can further specify: com-
ponent (name and exponential polynomial); parallel combina-
tion of components; serial combination of components; k-out-of-
n system having identical components; k-out-of-n system having
different components.

• Similar to RBD, fault trees input syntax is: ftree name {(param
list)} <ftreeline> end. A ftreeline can further specify: dis-
tinct event type with assigned exponential polynomial; repeating
event; transferred events; and gate; or gate; k-out-of-n gate with
identical inputs; k-out-of-n gate with different inputs.

• Reliability graphs: unidirectional edges (names and exponen-
tial polynomial cumulative distribution function for the time-
to-failure of the path); bidirectional edges (names and exponen-
tial polynomial cumulative distribution function for the time-to-
failure of both paths).

• Single-chain product-form queuing networks: station-to-station
probabilities; station types and parameters; numbers of cus-
tomers per chain.

• Multiple-chain product-form queueing networks: station-to-station
probabilities for each chain; station types and parameters; num-
ber of customers per chain.

• Generalized stochastic Petri nets: places and initial numbers
of tokens; timed transition names, types and rates; immediate
transition names and weights; place-to-transition arcs and mul-
tiplicity; inhibitor arcs and multiplicity.

• Series-parallel graphs: edges; exponential polynomial for each
graph node; exit types for given node (parallel subgraphs are
probabilistic; all of the parallel subgraphs must complete; one
of the parallel subgraphs must complete; k-out-of-n parallel sub-
graphs must complete); probabilities for edges; multipath infor-
mation.

(f) Model output
In general, the following outputs are given, at various model levels:
reliability of selected components, system reliability over an interval,
system steady-state availability, transient availability. The detailed
output is given below:

222 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Cumulative distribution function
• Series-parallel acyclic directed graph: graph execution time; if

multipath information is requested, cumulative distribution func-
tion is given for each path.

• Reliability block diagram, fault tree, reliability graph: if the
function assigned to each component is the cumulative distrib-
ution function of its failure time, then output is system failure
time cumulative distribution function. If the function assigned
to each component is the instantaneous or steady-state availabil-
ity, output is system instantaneous or steady-state availability.

• Acyclic semi-Markov chain, acyclic and phase-type Markov chain:
if no state name is given, cumulative distribution function is
given for the time until some absorbing state is reached. If state
is given, output is distribution function for the time until the
state is reached and the probability of the state being reached.
If the transient state is reached, output is transient probability
function of being in that state.

• Irreducible Markov chain: transient probability function of being
in a given state.

• Non-irreducible generalized stochastic Petri nets: time until reach-
ing an absorbing marking.

• Conditional probability that the state has been left by given
time, mean and variance of the cumulative distribution function,
probability of visiting a state.

• Markov and semi-Markov models with rewarding states: Prob-
ability that the accumulated reward at the time of absorption is
less or equal to the given value

• Generalized stochastic Petri nets: the average number of tokens
in the specified place, probability that the place is empty, uti-
lization and throughput of a transition (steady states, at given
time symbolic and numeric, time-averaged).

• Product-form queuing networks: throughput, average response
time, average queue length, utilization (single- and multi-chain
networks).

(g) Interfaces

• Input
SHARPE 2000/2002 accepts inputs using SHARPE batch lan-
guage or Java-based graphical user interface (GUI). Batch lan-
guage has defined syntax and semantics and allows for creation,
modification, and analysis of hierarchical models. GUI supports
the same options. Programmable external input connections
with SHARPE are therefore best established using batch lan-
guage, although it can be speculated that elements of Swing
user interface can also be accessed from external programs. A
Web-based shell for SHARPE is also available.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 223

• Output
SHARPE 2000/2002 presents simulation results within Java-
based GUI. Non-graphical results can be obtained using batch
language, wherein results can be received as text files. Export
of models and analysis results is supported within the GUI shell
(e.g., to Excel, JPEG or EPS files). Aggregation of graphical re-
sults from multiple experiments is possible. A Web-based shell
for SHARPE is also available.

7. Use cases: the project Website claims that package has been installed at
280 locations, however no published use cases were found up to this time.

8. Assumptions and restrictions: N/A.

B.1.37 SPNP

1. Source/Reference: [61]

Web: http://people.ee.duke.edu/˜kst/software packages.html

2. Project status

The software tool was developed at the Duke University, but last modi-
fications are from the period 1989-2001. The project seems to have been
partially incorporated into SHARPE, although the tool is still offered as
a separate download.

3. License type: academic and commercial license.

4. General purpose: SPNP (Stochastic Petri Net Package) is a modeling
tool for performance, reliability and performability analysis of complex
fault-tolerant systems.

5. Platform: version 6 was compiled for MS-DOS, Solaris and Linux.

6. Model

(a) Model class: quantitative-analytical, IT-level.

(b) Model type: stochastic reward net (SRN), fluid stochastic Petri net
(FSPN).

(c) Model description
The model type used for input is a stochastic reward net (SRN).
An SRN incorporates several structural extensions to GSPN such as
marking dependencies (marking dependent arc cardinalities, guards,
etc.) and allows reward rates to be associated with each marking.
The reward function can be marking dependent as well. SRN is spec-
ified using CSPL (C based SRN Language) which is an extension of
the C programming language with additional constructs for describ-
ing the SRN models. SRN specifications are automatically converted
into a Markov reward model which is then solved to compute a vari-
ety of transient, steady-state, cumulative, and sensitivity measures.

224 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

For SRN with absorbing markings, mean time to absorption and ex-
pected accumulated reward until absorption can be computed. In the
latest version, fluid stochastic Petri net and non-Markov SPN can
be also specified. They are solved using discrete-event simulation.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
SRN specification is used as input. Additionally to usual SPN in-
put elements (places, transitions, rates), SRN allows for marking-
dependent arc cardinalities, guards and reward rates for markings,
which can be also marking-dependent.

(f) Model output
The tool can calculate transient and steady-state reliability/ avail-
ability, as well as cumulative and sensitivity measures (average num-
ber of tokens, steady-state number of tokens, transition throughput).
For SRN with absorbing markings, mean time to absorption and ex-
pected accumulated reward until absorption can also be computed.

(g) Interfaces

• Input: models are specified using CSPL (C based SRN Lan-
guage) which is an extension of the C programming language
with additional constructs for describing the SRN models. SRN
specifications are automatically converted into a Markov reward
model which is then solved.

• Output: output is written into a text file.

7. Use cases: software performance analysis, database availability, ATM net-
work under overload, channel recovery scheme in a cellular network, per-
formance analysis of MPLS network, reactor temperature control system,
etc.

8. Assumptions and restrictions: N/A.

B.1.38 SoftRel LLC: FRESTIMATE

1. Source/Reference: [153], [154]

Web: http://www.softrel.com

2. Project status: the project is active.

3. License type:

The tool exists in three commercial versions: Frestimate Standard Edi-
tion, Frestimate Manager’s Edition and Frestimate Metrics Package. Fur-
thermore, there is an academic version called Frestimate evaluation / stu-
dent edition, which is not free.

4. General purpose

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 225

Frestimate has been developed to help in the assessment of software re-
liability by computing the expected number of failures per 1000 lines of
code. It is based on the monitoring of the project management and can
be executed in a stepwise process by isolating critical production phases
(e.g., lack of adequate testing). Furthermore, the cost-benefit analysis of
each possible step can be performed, in order to quantify obtained bene-
fits. It enables selection of those improvement steps of software reliability
which offer the least complexity.

5. Platform: Windows.

6. Model

(a) Model class: analytical/qualitative; IT-level, software.

(b) Model type: correlation of software development practices. The re-
sult is a model to predict software reliability before the software is
developed or tested. This model can also be used to determine the
potential software process improvement areas to improve software
reliability with the most balanced approach.

(c) Model description
The model is generated by the assessment of economic and organi-
zational processes within the software development process. A cor-
relation factor is then derived between the results thus obtained and
the existing knowledge base. After that, based on the correlation
factor, project (and software) reliability is computed. The following
metrics can be extracted from the knowledge base: faults per 1000
lines of code, MTTF, reliability, availability, failure rate.

(d) Systems modeled: software systems.

(e) Model input
A questionnaire is answered and the answers are used as the model
input. Depending on the tool version, the questionnaire can have
between 15 and 80 questions.

(f) Model output
The tool computes the following metrics for a software project:

• An initial software reliability assessment
• Predicted defects and defect density at start and end of testing

as well as any time during useful life
• Predicted failure rate, critical failure rate, MTTCF, MTTF,

availability and reliability
• Predicted staff required to fix residual defects each month after

delivery
• Predicted staff required to test the software to reach a desired

level of defect density at delivery
• Determining how software failure rates and components will be

merged into the overall system reliability block diagram

226 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

All of the above predictions are completed for 4 milestones

• Start of test
• End of test (deployment)
• Average useful life
• End of useful life (point at which software version is replaced

with next major software version)

(g) Interfaces

• Input: input is performed using a graphical user interface, where
user is guided through a predefined set of questions.

• Output: graphical user interface, export to a file is supported, as
well as interface with the database containing the tool knowledge
base.

7. Use cases: software projects in the sector of semi-conductor design, de-
fense, air and space construction.

8. Assumptions and restrictions

It is assumed that the process in the assessed project is correlated/ com-
patible with the projects already contained in the knowledge base. How-
ever, the number of use-cases in the knowledge base is currently relatively
small, and the precision of the method may therefore be questionable.
This may especially be the case when no template is provided in the
knowledge base (e.g., as is the case for the finance/banking software).

B.1.39 SURE

1. Source/Reference: [41], [42], [43]

Web: http://shemesh.larc.nasa.gov/people/rwb/sure.html

2. Project status: the last change is from 2001, the project may be further
developed internally within NASA.

3. License type: public domain, using special NASA public domain license.

4. General purpose

SURE (Semi-markov Unreliability Range Evaluator) is a reliability analy-
sis program used for calculating upper and lower bounds on the opera-
tional and death state probabilities for a large class of semi-Markov mod-
els.

5. Platform: Sun SPARC stations (SunOS), Linux, Windows

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: semi-Markov models.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 227

(c) Model description
Semi-markov Models are used to determine the bounds on opera-
tional and failure states. The calculated bounds are close enough
(usually within 5 percent of each other) for use in reliability studies
of ultra-reliable computer systems. The SURE bounding theorems
have algebraic solutions and are consequently computationally effi-
cient even for large and complex systems. The tool can optionally
regard a specified parameter as a variable over a range of values,
enabling an automatic sensitivity analysis.

(d) Systems modeled: fault-tolerant reconfigurable systems.

(e) Model input
Instead of using fault trees or a PMS description for input, an ab-
stract language was created for defining the set of rules used to create
the state transition matrix. All states in the system are first assigned
a number, and then semi-Markov model is specified by enumerating
all transitions. The SURE input language includes two statement
types: model-definition statements and commands. Model specifi-
cation is performed by enumerating transitions. It is allowed to use
constants, variables, expressions (mathematical operations, standard
functions), transition rates (fast or slow). SURE commands control
the behavior of the SURE program, e.g., EXIT, INPUT, ECHO,
PLOT or RUN. The language also supports loops and conditions.
The model definition part consists of five types of statements: the
constant-definition statement, the SPACE statement, the START
statement, the DEATHIF statement and the TRANTO statement.
A constant-definition statement equates an identifier consisting of
alphanumerics to a number. The SPACE statement specifies the
state space on which the Markov model is defined as an n-dimensional
vector, where each component of the vector defines an attribute of
the system being modeled. The START statement indicates which
state is the start state of the model that represents the initial state
of the system. The DEATHIF statement specifies which states are
death states (i.e., trapping states in the model). The TRANTO
statement is used to generate all of the transitions required for a
model recursively.

(f) Model output
Model solver offers the following outputs:

• Upper and lower bounds on the probability of total system fail-
ure

• Probability bounds for each death state in the model
• List of every path in the model and its probability of traversal

(g) Interfaces

• Input: models can be specified in a text (file) form, or using a
GUI (WinSURE).

228 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Output: textual (file), GUI (export into image file), GNUPLOT
(graph export).

7. Use cases: space industry (NASA).

8. Assumptions and restrictions

Only reliability analysis is supported, repairable systems cannot be mod-
eled. It is assumed that the nonexponential transitions must be faster
when compared with the mission time. This is, however, a desirable at-
tribute of all fault-tolerant systems.

B.1.40 SURF-2

1. Source/Reference: [78], [13], [114], [115]

Web: http://www.laas.fr/surf/what-uk.html

2. Project status: the last publication as well as the project Website update
is from 1996 and 1997 respectively. It can be assumed that the project
has been discontinued.

3. License type: commercial license, as well as academic/education.

4. General purpose

The SURF-2 is a dependability evaluation tool for hardware and software
systems, based on construction, validation and numerical resolution of
Markov models. System behavior is modeled by either a Markov chain or
a generalized stochastic Petri net.

5. Platform: SUN-4, Sparcstation-4, Sparcstation-5, UltraSparc; SUN OS
4.1.x or SOLARIS 2.x; X-Window (X11R5).

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: Markov chain, generalized stochastic Petri nets.

(c) Model description
System behavior is modeled by either a Markov chain or a general-
ized stochastic Petri net (GSPN). Reward structures can be added
to the behavioral model and permit to get combined measures of de-
pendability, performance or cost. Quantitative evaluation of system
dependability can be divided in two steps:

• Construction of the model describing the behavior of the studied
system based on elementary stochastic processes corresponding
to the behavior of the system components and of their interac-
tions.

• Mathematical processing of the model to get analytics expres-
sions or numerical values of the system dependability measures.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 229

Dependability measures are obtained from the processing of the
Markov chain. The transformation of the GSPN into a Markov chain
in continuous time is based on the markings which sensibilize timed
transitions.

(d) Systems modeled: repairable and non-repairable systems.

(e) Model input
A GSPN or a Markov chain is specified using the following form:

• graph
• initial probability vector of the Markov chain or of the underly-

ing Markov chain in case of GSPN
• one or several partitions, which define the characteristics of a

system necessary to compute the dependability measures. It is
made of:
– a class of failure states named ”IMPROPER”,
– a class of dangerous states named ”CATASTROPHIC”.

These two state classes allow the definition of most of the de-
pendability measures, ”CATASTROPHIC” class being used for
safety measures. For the same model, it is possible to define
several partitions in order to analyze various failure cases.

Model parameters can be numerical or symbolic expressions. A sym-
bolic parameter is a local variable which is visible only in the model
in which it has been defined. The combined use of symbolic parame-
ters and the definition of several partitions for a same model permits
to build generic models which can be stored in the SURF-2 database
in order to be reused.

(f) Model output: standard reliability and availability measures, as well
as combined measures of dependability, safety, maintainability, per-
formance or cost.

(g) Interfaces

• Input: SURF-2 offers two graphical model editors: Markov chain
editor and Petri net editor.

• Output: results are displayed graphically and can be exported
into the file in a tabular form.

7. Use cases: hardware/software co-design, air traffic control systems.

8. Assumptions and restrictions: N/A.

B.1.41 Sydvest CARA Fault Tree

1. Source/Reference: N/A.

Web: http://www.sydvest.com/Products/Cara/prod info.htm

2. Project status: commercial product, active.

230 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

3. License type: commercial license, with available evaluation/demonstration
version offering limited functionality.

4. General purpose: the tool is specialized in the reliability and component
importance analysis using fault trees.

5. Platform: Windows.

6. Model

(a) Model class: analytical, IT-level.

(b) Model type: fault tree analysis.

(c) Model description
The tool uses standard FTA method for analysing fault-tolerant be-
havior in the ”fault” space.

(d) Systems modeled: non-repairable systems.

(e) Model input: the tool accepts a standard fault tree model.

(f) Model output: minimal cut-sets, average availability, survival prob-
ability, MTTF, frequency of TOP event, failure frequency distri-
bution, six measures of component importance (Birnbaum’s relia-
bility, Birnbaum’s structural, Fussell-Vesely, criticality importance,
improvement potential, order of smallest cut-set)

(g) Interfaces

• Input: text files formatted in accordance with producer’s guide-
lines or a GUI. To improve the readability of large trees, the
fault tree is structured into pages.

• Output: GUI, it is further possible to export the reports as Rich
Text Files (RTF) or to copy it on Windows clipboard.

7. Use cases

The tool is used in Jardine Technology. It is a consulting company that
helps its clients to resolve asset and risk management problems in the oil
& gas, chemical, power, and transportation industries. However it is not
clear to what extent has the tool been used or in which projects.

8. Assumptions and restrictions: the tool is applicable for fault tree based
models and supports non-repairable systems only.

B.1.42 Sydvest Sabaton

1. Source/Reference: N/A.

Web: http://www.sydvest.com/Products/Sabaton/

2. Project status: commercial product, active.

3. License type: commercial license, with available evaluation/demonstration
version with limited functionality.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 231

4. General purpose

Sabaton supports FMEA (Failure Mode and Effects Analysis) and FMECA
(Failure Mode, Effects and Criticality Analysis) which are typically used
in product and system development to reveal possible failures and failure
modes, and the effects of these failures. The analysis results typically in
proposals for design improvement aimed at eliminating system failure or
mitigating the effects of component failures.

5. Platform: Windows.

6. Model

(a) Model class: analytical, IT- and service-level.

(b) Model type: FMEA/CA

(c) Model description
A failure modes and effects analysis (FMEA) is a procedure for analy-
sis of potential failure modes within a system for classification by
severity or determination of the effect of failures on the system. It
is widely used in manufacturing industries in various phases of the
product life cycle and is now increasingly finding use in the service
industry. Failure causes are any errors or defects in process, design,
or item, especially those that affect the customer, and can be poten-
tial or actual. Effects analysis refers to studying the consequences of
those failures.
Failure Mode, Effects, and Criticality Analysis (FMECA) is an ex-
tension of Failure Mode and Effects Analysis (FMEA). In addition
to the basic FMEA, it includes a criticality analysis, which is used
to chart the probability of failure modes against the severity of their
consequences. The result highlights failure modes with relatively
high probability and severity of consequences, allowing remedial ef-
fort to be directed where it will produce the greatest value.

(d) Systems modeled: N/A.

(e) Model input
Standard FMEA/ FMECA: failure mode, effects, severity rating,
causes, occurrence rating, current controls, detection rating, criti-
cal characteristic, risk priority number (FMECA), recommended ac-
tions.

(f) Model output
Calculation of risk priority number (RPN) as well as other measures
defined by the user. The RPN helps to assign priorities to potential
failures and is used to rank potential design deficiencies and/or lia-
bility issues. Criticality analysis by use of criticality or risk matrix.

(g) Interfaces

• Input: text files formatted in accordance with producer’s guide-
lines or through a GUI.

232 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Output: GUI that enables flexible reporting capabilities. It is
possible to specify user definable analysis report templates. Re-
ports can be saved in PDF format for electronic distribution.

7. Use cases: defense, health.

8. Assumptions and restrictions: N/A.

B.1.43 TANGRAM

1. Source/Reference: [21], [158], [101]

2. Project status: N/A.

3. License type: N/A.

4. General purpose

TANGRAM is a general-purpose object oriented development environ-
ment, which can be customized to reliability and availability modeling,
under assumption that adequate evaluation methods are available.

5. Platform: Unix, C implementation.

6. Model

(a) Model class: depends on the application field.

(b) Model type: depends on the application field.

(c) Model description
TANGRAM is a general purpose modeling environment, which can
be customized for performability and reliability analysis, as well as
for solving Markov reward models. Models are defined as collections
of objects that are parameterized instances of object types (classes).
Each object type has an internal state, which can be changed after
internal events. Internal events can also cause sending of messages
to other objects. Overall model state is computed as a composite
state of internal object states. A reward can be associated with each
object state. Because object types support inheritance, complex
models may be constructed in a stepwise and hierarchical manner.
It is possible, for example, to define high-level objects which can be
reused and extended in multiple specialized models. This is the main
advantage of TANGRAM.

(d) Systems modeled: depends on the application field.

(e) Model input: depends on the application field. In case of reliabil-
ity/performability models, object states can represent functioning
components and internal events may represent failures.

(f) Model output depends on the application field. In case of relia-
bility/performability models, evaluation of cumulative distribution
functions describing events (such as failure) can be computed for an
object or a model.

B.1. GENERAL PURPOSE QUANTITATIVE MODELING TOOLS 233

(g) Interfaces
The model input is performed using a text-based interface, compat-
ible with the SAVE tool. Results can be queried using a custom
query language.

7. Use cases: N/A.

8. Assumptions and restrictions: N/A.

B.1.44 Mathworks Stateflow

1. Source/Reference: N/A.

Web: http://www.mathworks.com

2. Project status: commercial product in active development. The tool is
frequently used together with other two Mathworks products, Simulink
and Matlab.

3. License type: commercial license, academic license (reduced price), free
15-day evaluation and demonstration license.

4. General purpose

Stateflow is a simulation tool for the event-based systems. Stateflow-
charts enable graphical representation of the hierarchical and parallel
states, as well as event-based deterministic transition between them. The
tool extends statecharts with the following concepts: control flow, truth
tables, temporal operations and event-based broadcasting. Stateflow is
closely coupled with Matlab and Simulink which offer additional graphi-
cal modeling capabilities.

5. Platform: Windows, Linux, Solaris 8 or higher, MacOS.

6. Model

(a) Model class: simulation, IT-level.

(b) Model type: state charts, combined with finite state machines and
temporal logic.

(c) Model description
A stateflow chart is a graphical representation of the finite state
machine, which is defined in terms of states and transitions. Addi-
tionally, junctors and functional description (truth table, temporal
logic) may be added. Three types of finite state machines are sup-
ported: Mealy, Moor and a hybrid Mealy-Moore machine type. The
machines are constructed graphically. The charts support hierarchi-
cal modularization through a sub-chart concept. After specification,
a statechart is evaluated through simulation.

(d) Systems modeled: event-based fault-tolerant systems.

234 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(e) Model input: functional and behavioral description of a system using
an extended finite state machine model (connector for specifying
control flow and truth tables or temporal logic expressions).

(f) Model output: system state before or after a specified event.

(g) Interfaces
The Matlab offers the following possibilities:

• definition of input/output events within the Stateflow models
• connecting of input/output ports with Simulink blocks
• definition of simulation parameters in Simulink

It is also possible to define an interface between the Stateflow block
and external code. During the simulation it is possible to observe
system states and their parameters.

7. Use cases: power and energy, avionics, automotive, telecommunications,
space, defense.

8. Assumptions and restrictions: N/A.

B.2 Qualitative and Process Management Tools

B.2.1 Advanced Technology Institute: OCTAVE Automated
Tool

1. Source/Reference: [64], [218]

Web: http://www.aticorp.org/

2. Project status: N/A.

3. License type: commercial license, demonstration as well as a trial version
is available for evaluation.

4. General purpose

Octave Automated Tool has been implemented by Advanced Technology
Institute (ATI) to help users with the implementation of the Octave and
Octave-S approach. The tool assists the user during the data collection
phase, organizes collected information and finally produces the study re-
ports.

5. Platform: N/A.

6. Model

(a) Model class: qualitative, IT- and process-level.

(b) Model type: risk analysis.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 235

(c) Model description
OCTAVE is a security risk evaluation tool. The core concept of OC-
TAVE is defined as a situation where people from an organization
manage and direct an information security risk evaluation for their
organization. They direct risk evaluation activities and are respon-
sible for making decisions about the efforts to improve information
security. In OCTAVE, an interdisciplinary team, called the analysis
team, leads the evaluation.
In OCTAVE, risk has three aspects: organizational, technological,
and analysis aspects. Therefore, OCTAVE is organized around these
basic aspects and divided into following phases:

• Build asset-based threat profiles: this is an organizational evalu-
ation. Staff members from the organization contribute their per-
spectives on what is important to the organization (information-
related assets) and what is currently being done to protect those
assets. The analysis team consolidates the information and se-
lects the assets that are most important to the organization (crit-
ical assets). The team then describes security requirements for
the critical assets and identifies threats to the critical assets,
creating threat profiles.

• Identify infrastructure vulnerabilities: this is an evaluation of
the information infrastructure. The analysis team identifies key
information technology systems and components that are related
to each critical asset. The team then examines the key compo-
nents for weaknesses (technology vulnerabilities) that can lead
to unauthorized action against critical assets.

• Develop security strategy and plans: during this part of the eval-
uation, the analysis team identifies risks to the critical assets and
decides what to do about them. The team creates a protection
strategy and mitigation plans to address the risks to the critical
assets.

(d) Systems modeled: IT-organizations and processes.

(e) Model input
The input are process descriptions with the following attributes:
analysis team, analysis team skills, catalog of practices, generic threat
profile, catalog of vulnerabilities, defined evaluation activities, doc-
umented evaluation results, evaluation scope, next steps, focus on
risk, focused activities, organizational and technological issues, busi-
ness and information technology participation, senior management
participation, collaborative approach.

(f) Model output
Each phase of the method produces a set of outputs:

• Phase 1 outputs: critical assets, security requirements for crit-
ical assets, threats to critical assets, current security practices,
current organizational vulnerabilities

236 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Phase 2 outputs: key components, technology vulnerabilities
• Phase 3 outputs: risks to critical assets, risk measures, protec-

tion strategy, risk mitigation plans
(g) Interfaces

• Input: MS Access with Forms.
• Output: reporting into MS Word and Excel, as well as into

Oracle database is supported.

7. Use cases: government, health, IT-organizations.

8. Assumptions and restrictions: N/A.

B.2.2 Alion Science and Technology: CounterMeasures

1. Source/Reference: N/A.

Web: http://www.alionscience.com/index.cfm

2. Project status

Alion is providing consulting service in the area of risk assessment for the
US government, defense and commercial customers. The first version of
CounterMeasures was made public in the 80s, the last commercial tool
version is from 2007. The tool is in active development.

3. License type: commercial license with three licensing models (Enterprise,
Standard and Web Survey), free evaluation license is also available.

4. General purpose

CounterMeasures performs risk management based on the US-NIST 800
series and OMB Circular A-130 USA standards. The user standardizes
the evaluation criteria and using a tailor-made assessment checklist, the
software provides objective evaluation criteria for determining security
posture and/or compliance.

5. Platform: Windows.

6. Model

(a) Model class: qualitative, process-level.
(b) Model type: risk analysis, separated into the identification, analysis

and evaluation phases.
(c) Model description

The models enables semi-automated collection of risk relevant data,
to improve efficiency but also to enable standardization and compar-
ison. The repeatable process is used to analyze collected data which
prioritizes risks, threats, and recommendations. The reports are
generated afterwards that address vulnerability, threats, risk, and
compliance. Finally, return on investment for certain recommen-
dations (countermeasures) can be calculated. The tool also offers
management of security/safety data in a repository (database).

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 237

(d) Systems modeled: physical systems, organizations, processes.

(e) Model input: process description, with the associated data collected
using survey and data collection modules.

(f) Model output: risk report (description of risks associated with sur-
veyed operations), remediation plan (plan of actions for facility se-
curity improvement), residual risk, risk treatment, risk acceptance
and risk communication.

(g) Interfaces

• Input: MS Office/Forms-based questionnaire.
• Output: MS Excel, relational database export.

7. Use cases: government agencies, large scale companies in the sectors such
as banks, gas/oil, insurance, ports, universities, states/municipalities, se-
curity.

8. Assumptions and restrictions: N/A.

B.2.3 Aprico Consultants: ClearPriority

1. Source/Reference: N/A.

Web: http://www.aprico-consult.com/

2. Project status

3. License type: commercial license, can be scaled according to the project
size.

4. General purpose

The ClearPriority platform supports real-time data extraction, transfor-
mation and correlation capabilities, in order to enable enterprise risk as-
sessment, tracking and reporting. The main part of the tool is security
audit trail analyzer, which collects log file data across multiple systems,
correlates these data and produces security alerts based on user defined
rules. The user is able to define new sources of data as well as to specify
the alert output.

5. Platform: platform-independent, any platform with Java Virtual Ma-
chine.

6. Model

(a) Model class: qualitative, IT-level.

(b) Model type: risk assessment through correlation rules and data
transformation.

(c) Model description
The model allows for design and implementation of key performance,
risk and compliance indicators across domains. After indicators have

238 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

been defined, data extraction and correlation rules, as well as sta-
tistical models used for reporting can be specified and implemented.
Special support is given for the treatment (parsing and interpreta-
tion) of complex log (event and error) files. Rule-based detection of
known threats processes risk events and enables real-time reporting
and key performance indicators monitoring, as well as statistical and
historical reporting.

(d) Systems modeled: complex software systems and their log files.

(e) Model input: key performance and risk indicators definition, raw
log-file data.

(f) Model output: real-time indicator value, results of the rule-based
risk assessment (risk analysis).

(g) Interfaces

• Input: Java- and XML-based interfaces, Risk ETL tool which
collects raw audit trail information from any source (applica-
tions, operating systems, security devices and access control
equipment producing audit logs, etc).

• Output: relational database interface (Oracle, SQL Server, Mysql)
which can be queried using SQL.

7. Use cases: government, finance, education.

8. Assumptions and restrictions: N/A.

B.2.4 Aexis: RA2

1. Source/Reference: N/A.

Web: http://www.aexis.de/RA2ToolPage.htm

2. Project status: the tool is actively developed, the first version was created
in 2000, and the last major release was in 2005. In the period afterwards,
the tool has been renamed into RA2 Art of Risk, and the last version is
from 2008.

3. License type: commercial and evaluation licenses.

4. General purpose

RA2 is a stand-alone tool for risk management based on the ISO 17799 and
ISO 27001 standards. For each of the steps defined in these standards, the
tool contains a dedicated step with report generation. RA2 Information
Collection Device, a component that is distributed along with the tool,
can be installed anywhere in the organization to collect and feed back in-
formation into the risk assessment process. The functions include leading
through the information security management system (ISMS) processes,
calculation of risks, automatic carrying forward and updating of results,
a detailed help function and context sensitive help, and further support.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 239

5. Platform: Windows.

6. Model

(a) Model class: qualitative, IT- and process-level.

(b) Model type: risk analysis and assessment based on ISO/IEC 17799
and 27001 standards.

(c) Model description
The tool provides software support to design and implement an in-
formation security management system (ISMS) in accordance with
the requirements of ISO/IEC 27001 and 17799. This includes:

• Defining the scope and business requirements, policy and objec-
tives for the ISMS

• Developing an ISMS asset inventory
• Carrying out an ISMS risk assessment
• Facilitating the risk decision process by consideration of the ap-

propriate risk treatment option
• Process for selecting a system of controls
• Documentation facility for producing, for example, a Statement

of Applicability and other ISMS documents

(d) Systems modeled: IT-organizations and infrastructure.

(e) Model input: asset inventory (an ISMS asset inventory, which can
be selected from the example list or added as new), definition of the
scope and business requirements policy and objectives for the ISMS,
collected information from different sources within the organization.

(f) Model output: risk assessment, suggested risk controls from ISO
17799, risk communication (report generator), compliance analysis
results.

(g) Interfaces

• Input: Information Collection Device application, which collects
information from different sources and provide to the tool.

• Output: import/export (application specific): Information Col-
lection Device, export to CSV, spreadsheet applications (e.g.,
Excel).

7. Use cases: security and risk consulting companies, large scale organiza-
tions and SMEs, government.

8. Assumptions and restrictions: N/A.

B.2.5 BMC: Remedy Suite

1. Source/Reference: N/A.

Web: http://www.bmc.com/remedy/

2. Project status: commercial product, active.

240 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

3. License type: commercial.

4. General purpose

The tool manages and automates ITIL processes in enterprise-level or-
ganizations thus improving project management quality throughout its
lifetime.

5. Platform

The suite supports Windows family, Unix and Linux operating systems.
The Remedy IT Service Management (ITSM) can be integrated with net-
work and systems management software, such as BMC PATROL, HP
OpenView, Tivoli Enterprise Manager. In addition, it can be also inte-
grated with business-critical systems, including enterprise resource plan-
ning (ERP) tools.

6. Model

(a) Model class: qualitative, process-level.

(b) Model type: subset of ITIL processes and COBIT control goals.

(c) Model description
Remedy IT Service Management (ITSM) software suite is certified
as ITIL-compatible and provides support for various ITIL processes:

• Incident Management
• Configuration Management
• Problem Management
• Service Level Management
• Change Management
• Availability Management

The producer claims that all BMC solutions apply to 27 of the 34
COBIT control objectives. CobiT coverage by IT domains is:

• Plan and Organize: 6 of 10 control objectives
• Acquire and Implement: 5 of 7 control objectives
• Deliver and Support: 12 of 13 control objectives
• Monitor and Evaluate: 4 of 4 control objectives

A consistent definition of availability is not given, it is sometimes
business oriented (making a customer support center ”available” for
extra hours and estimating its costs/benefits), on other occasions
it is defined as whether a process in the system is running (which
does not account for service availability one-to-one, a process might
be still alive but not delivering the required service) or sometimes
service availability is explicitly accounted but requires tight coupling
and integration in the existing system (e.g., transactions in the SAP
Enterprise Portal are used as an availability indicator).

(d) Systems modeled: IT-organizations.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 241

(e) Model input and output
Of particular importance for availability management and assess-
ment is the Remedy Service Level Agreements tool which enables
users to:

• Plan and manage availability of individual and grouped config-
uration items

• Monitor availability and performance to ensure that service level
commitments are met internally (within organization) and ex-
ternally. The monitoring can be cumulative time-based, event-
based, and threshold-based.

• Use proactive alerts to identify issues and trigger actions prior to
service level violations. For instance, Process Monitoring enables
user to monitor process availability and resource consumption,
and provides the ability to restart failed processes and terminate
processes that consume a specified percentage of CPU time.

• Relate IT services performance to the service level agreements.

(f) Interfaces
Remedy ITSM suite architecture consists of a common database,
workflow engine, reporting capabilities, and integrated development
environment. The individual applications within the suite share a
common workflow foundation and unified data model, thus support-
ing the integrated process approach outlined in the ITIL framework.
The suite is large, consisting of 17 different tools, some of them heav-
ily depending on other BMC products.
Remedy ITSM tools can be deployed as stand alone applications, in
stages, and as the integrated application suite. Individual tools can
be used out-of-the box or they can be adapted to fit the procedures
and workflows used within a IT organization.

7. Use cases: telecommunications (TeliaSonera, Vodafone), semiconductors
and electronics (Infineon), graphic and health (Agfa), hardware (Dell),
etc.

8. Assumptions and restrictions: N/A.

B.2.6 BSI: GSTOOL

1. Source/Reference: N/A.

Web: http://www.bsi.bund.de/gstool

2. Project status

GSTOOL is developed by the German Federal Office for Information Se-
curity (BSI) with the purpose to support users in performing analysis and
management of IT-risks according to standard BSI safeguards. The last
version 4.0 is from 2007, the project is active.

242 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

3. License type: free license for the German government at all levels (federal,
state and local). Commercial license is also available, as well as 30-day
evaluation version with full functionality.

4. General purpose

The tool is designed as a support for creation, management and update of
IT security concepts which conform to the BSI IT-safeguards. These safe-
guards have been standardized in Germany (http://www.bsi.bund.de/gshb),
and are obligatory for all government bodies. After the relevant informa-
tion have been collected with the help of the tool, it offers the evaluation
of IT-security risks for the given (described) infrastructure.

5. Platform: Windows.

6. Model

(a) Model class: qualitative, process- and IT-level.

(b) Model type: risk analysis following BSI IT-safeguards (BSI standard
100-3 [38]).

(c) Model description
The risk assessment process as prescribed by BSI IT-safeguards com-
prises the following steps:

• Preparation: initiation of a systematic IT-security process, IT-
structural analysis, specification of safeguard requirements (with
respect to security attributes such as trust, integrity and avail-
ability), modeling based on IT-safeguard catalog, basic security
check and potential security analysis.

• Compilation of a threat overview: a tabular overview of threats
that are relevant for the IT objects specified in the previous step
is generated. All objects for which no threat is identified are
deleted. All threats are sorted by the objects they may affect.
After that, safeguard requirements of each object are derived.
This threat overview will be used as a basis for discovery of
further threats.

• Discovering additional threats: for each IT object, it is possible
to specify threats which were not categorized beforehand, or
which are not included into the BSI IT-safeguard model. In this
step additional custom threat analysis may be performed.

• Threat rating/evaluation: for all threats identified in the previ-
ous two steps, it is checked whether and which existing security
measures from the BSI IT-safeguard catalog are applicable. The
result of this investigation is recorded for each threat. In this
step it is identified which objects can be protected using BSI IT-
safeguard measures, and for which objects there are remaining
risks even after protection measure application. Those will be
handled in the following step.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 243

• Risk treatment: in practice, there will almost always be such
threats that cannot be addressed using protection measures from
the BSI IT-safeguard catalog. Those threats cause further risk
for the IT process that is being assessed. For each unaddressed
threat from the previous step, the following alternatives are of-
fered: risk reduction through further protection measures, risk
reduction through restructuring, or risk transfer.

• Consolidation of the IT security concept: in case that additional
protection measures have been introduced to address specific
threats, the security concept must be consolidated. All pro-
tection measures for each IT object are therefore additionally
checked according to following criteria: collaboration, usability
and user friendliness, suitability.

(d) Systems modeled: IT systems in administrative sector (primarily
different levels of government) and corporate sector.

(e) Model input: description of an IT system according to [38] (steps
Preparation and Compilation of a threat overview above) in textual
or tabular form.

(f) Model output: tabular risk rating/evaluation for each IT object with
respect to trust, integrity and availability; recommended protection
measures.

(g) Interfaces: Microsoft Data Access, SQL-Server, text files.

7. Use cases: federal, state and local government in Germany, as the stan-
dard risk assessment method.

8. Assumptions and restrictions: N/A.

B.2.7 CALLIO: Secura 17799

1. Source/Reference: [23]

Web: http://www.callio.com/secura.php

2. Project status: Callio Secura is a commercial tool, which is being actively
developed.

3. License type: commercial and evaluation/demonstration license.

4. General purpose

Callio Secura 17799 is a product from Callio technologies. It is a web
based tool with database support that lets the user implement and cer-
tify an information security management system (ISMS). It supports the
ISO17799 and ISO 27001 (BS 7799-2) standards and can produce docu-
ments that are needed for certification. Moreover it provides document
management functionality as well as customization of the tool’s database.
Audits for other standards such as COBIT, HIPAA and Sarbanes & Oxley
can be carried out by importing custom questionnaires.

244 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

5. Platform: Web client; requires a relational database (MySQL, MS SQL
Server), Web server (IIS, Apache), application server (BlueDragon JX
Server).

6. Model

(a) Model class: qualitative, process- and IT-level.

(b) Model type: risk assessment based on the ISO17799 and ISO 27001
(BS 7799-2) standards.

(c) Model description
The tool supports following phases of the risk assessment, mitigation
and management, according to the ISO17799 and ISO 27001 (BS
7799-2):

• Risk identification: risk assessment module enables to identify
vulnerabilities/threats, associate them with assets, and manage
suggested list of threats.

• ISO 17799 preliminary diagnostic: questionnaire, initial judg-
ment regarding the state of security.

• Risk evaluation: risk evaluation and risk calculation are sup-
ported.

• Policy management/audit preparation: security policy can be
created using proposed policies and directives.

• Asset inventory & evaluation: range of examples grouped in
categories.

• Risk treatment: selection of ISO 17799 controls with flexible list
of suggested controls. Different scenarios can be created and
evaluated.

• ISMS diagnostic: verification if the ISMS meets the requirements
for BS 7799-2 certification.

• Risk communication: document management and awareness cen-
ter portal enable reporting and risk communication.

(d) Systems modeled: global corporate structure (employees, processes,
IT).

(e) Model input: ISMS goal and scope, ISO 17799 compliance report
and inventory and evaluation of the assets to be protected.

(f) Model output: risk analysis (identification and evaluation of threats,
vulnerabilities and requirements, risk calculation), risk treatment
(risk treatment plan outline), statement of applicability (controls
and ISMS), customized security policies (personalized policies and
templates).

(g) Interfaces

• Input: multi user Web application.
• Output: relational database (MySQL, MS SQL Server), report

generator.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 245

7. Use cases: government agencies, large scale companies, SMEs.

8. Assumptions and restrictions: N/A.

B.2.8 CCN-CERT: PILAR / EAR

1. Source/Reference: N/A.

Web: http://www.ar-tools.com/en/index.html, http://www.ccn-cert.cni.es

2. Project status

PILAR is being developed by the Spanish National Security Agency (CCN)
since 2004. It is used for the management of government agencies. EAR is
a free version of PILAR, and both versions are under active development
(last version released in January 2009).

3. License type

PILAR is used by the Spanish government. EAR offers a public domain
license for the read-only mode, and a commercial license for the fully
functional write mode. There is also an evaluation license.

4. General purpose

EAR/PILAR implements and expands Magerit RA/RM Methodology. It
is designed to support the risk management process along long periods,
providing incremental analysis as the safeguards improve. Its functional-
ities include:

• Quantitative and qualitative risk analysis and management

• Quantitative and qualitative business impact analysis & continuity
of operations

5. Platform: Windows/Linux/Unix.

6. Model

(a) Model class: quantitative-analytical, qualitative; process-level.

(b) Model type: MAGERIT method (Methodology for Information Sys-
tems Risk Analysis and Management), combined with attack trees,
audits, data flow diagrams, process charts and boolean functions.

(c) Model description
The process supported by the tool comprises following phases:

• Phase 1 - Assets: assets are the resources in the information
system or related to it that are necessary for the organization
to operate correctly and achieve the objectives proposed by its
management. The essential asset is the information handled by
the system, that is the data. Other relevant assets can be ser-
vices, applications, equipment (hardware), information media,
auxiliary equipment, communication networks, installations and
persons. Assets may further depend on each other.

246 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Phase 2 - Threats: the next step is to determine the threats that
may affect each asset identified in the previous phase. There is a
predefined elements catalog, from which threats can be selected.

• Phase 3 - Determination of the impact: impact is measurement
of the damage to an asset arising from the appearance of a
threat. By knowing the asset value (in various dimensions) and
degradation caused by the threats, their impact to the system
can be derived directly. The only consideration required relates
to dependencies between assets.

• Phase 4 - Determination of the risk: risk is the measurement
of the probable damage to the system. Knowing the impact of
threats to the assets, risk can be derived directly simply by tak-
ing into account the frequency of occurrence. The risk increases
with the impact and with the frequency.

• Phase 5 - Safeguards: safeguards or counter-measures are proce-
dures or technological mechanisms that reduce the risk. There
are threats that can be removed simply by suitable organization;
others require technical devices (programs or equipment), while
others need physical security. Finally, there is the personnel pol-
icy. The elements catalog gives a list of suitable safeguards for
each asset type.

(d) Systems modeled: enterprise structure and organization, government
organizations.

(e) Model input: asset identification, relationships, and value for the
organization.

(f) Model output: availability, integrity, confidentiality, authenticity,
risk.

(g) Interfaces

• Input: graphical user interface, XML and CSV formats for im-
port.

• Output: graphical user interface, XML and CSV formats for
export.

7. Use cases: government agencies, large scale companies, ICT-sector.

8. Assumptions and restrictions: N/A.

B.2.9 C&A Systems Security: COBRA

1. Source/Reference: N/A.

Web: http://www.riskworld.net/

2. Project status: the tool was developed in the 90s, but is currently (March
2009) under major re-development/enhancement and not presently avail-
able for purchase.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 247

3. License type: commercial and evaluation licenses are available.

4. General purpose

The tool enables security risk assessment to be undertaken by organi-
zations themselves. It evaluates the relative importance of all threats
and vulnerabilities, and generates appropriate solutions and recommen-
dations. It automatically links the risks identified with the potential impli-
cations for the business unit. Alternatively, a particular area or issue can
be examined, without any impact association. COBRA comes equipped
with four discrete knowledge bases that can be further customized using
the module manager.

5. Platform: N/A.

6. Model

(a) Model class: qualitative, process-level.

(b) Model type: knowledge-based risk analysis

(c) Model description
COBRA comes equipped with four discrete knowledge bases: the IT
Security (or default) knowledge base, the operational risk knowledge
base, the ’Quick Risk’ or ’high level risk’ knowledge base and the e-
Security knowledge base. These all serve different functions: the first
two provide for comprehensive and detailed risk assessment in their
respective domains. The third enables a rapid high level assessment
of a whole business system. The last knowledge base was specifically
constructed to cover modern network based systems.
The Risk Consultant knowledge bases cover security threats compre-
hensively. Each area of potential risk is addressed, often by specific
question/knowledge modules. A sample of those included in the IT
Security knowledge base for example are:

• logical access; development
• system audit; hardware; hazards; system design
• operations; networks; personnel; physical access
• change control; system access; contingency
• security management; security awareness; security administra-

tion
• systems programming; functional control

(d) Systems modeled: IT-processes and organizations.

(e) Model input: process description, list of threats and weak points.

(f) Model output: identification of system threats, vulnerabilities and
exposures; measuring the degree of actual risk for each area or aspect
of a system, and directly linking this to the potential business impact;
solutions and recommendations to reduce the risks; business and
technical reports; certification of the ISO-17799 conformance.

248 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(g) Interfaces

• Input: N/A.
• Output: N/A.

7. Use cases: N/A.

8. Assumptions and restrictions: N/A.

B.2.10 DCSSI: EBIOS

1. Source/Reference: N/A.

Web: http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html

2. Project status: the tool is developed by the Central Information Systems
Security Division of the French government. The last available version
was released in 2005.

3. License type: open source.

4. General purpose

EBIOS is a software tool developed by Central Information Systems Secu-
rity Division (France) in order to support the Ebios method (Expression
of Needs and Identification of Security Objectives). The tool helps the
user to produce all risk analysis and management steps according to the
five EBIOS phases and allows the study results to be recorded and the
required summary documents to be produced.

5. Platform: Windows and Linux, PowerPC under Linux, SPARC Architec-
ture under Solaris.

6. Model

(a) Model class: qualitative, process-level.

(b) Model type: EBIOS method (Expression of Needs and Identification
of Security Objectives).

(c) Model description
The EBIOS method comprises following steps:

• Context study: the purpose of this step is to identify the target
system in global terms and position it in its environment so that
the target of the security study can be accurately determined.
The step consists of sub-steps: study of the organization, study
of the target system, and determination of the security study
target.

• Expression of security needs: this step contributes to risk es-
timation and definition of risk criteria. It also allows system
users to express their security needs for the functions and in-
formation they handle. The expression of security needs results
from the operational requirements of the system, independently

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 249

of any technical solution. The step is divided into two activities:
production of needs sheets and summary of security needs.

• Threat study: this step contributes to risk assessment. Its pur-
pose is to determine threats affecting the system. These threats
are formalized by identifying their components: the attack meth-
ods to which the organization is exposed, threat agents that may
use them, vulnerabilities exploitable on the system entities and
their level. The threats highlighted through this step are spe-
cific to the system. Their characterization is independent of the
security needs, information processed and functions supported
by the system. The threat study includes three activities: study
of threat sources, study of vulnerabilities and formalization of
threats.

• Identification of security objectives: the purpose of this step is
to evaluate and treat the risks affecting the system. The com-
parison of threats with security needs highlights the risks to be
covered by the security objectives. These security objectives
constitute the security specifications for the target system and
its environment. They must be consistent with all the assump-
tions, constraints, regulatory references and security rules iden-
tified during the study. The level of security objectives and the
assurance level must also be determined during this step. The
step includes three activities: comparison of the threats with the
needs, formalization of security objectives and determination of
security levels.

• Determination of security requirements: the purpose of this step
is to determine how to achieve the security objectives, i.e. how
to treat the risks affecting the system. This requires determining
the security functional requirements describing required security
behavior and designed to satisfy the security objectives as for-
mulated in the previous step; and the security assurance require-
ments forming the grounds for confidence that the product or
system satisfies its security objectives. These requirements are
established on the basis of functional and assurance components
proposed by ISO 15408.

(d) Systems modeled: government bodies and enterprise structure.

(e) Model input: Data concerning the organization and its information
system (strategic documents, documents concerning the missions,
powers and duties, documents concerning the information system,
summaries of interviews with the organization’s managers); Data
concerning the target system; Presentation of the organization; List
of general constraints affecting the organization; List of general reg-
ulatory references applicable to the organization; Conceptual archi-
tecture of the information system; List of essential elements; Func-
tional description of the target system; List of entities; List of threat
sources; Entity/element tables; Security needs summary sheet; List

250 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

of retained threats; List of assumptions; List of security rules; List
of constraints; List of regulatory references; Choice of the security
operating mode; Prioritized list of risks; List of security objectives
with the strength level.

(f) Model output: a master plan for information systems security, a
security policy, an action plan for information systems security, a
rational expression of security objectives statement, adapted and
justified specifications for prime contracting, a protection profile or
security target.

(g) Interfaces

• Input: Java-based, graphical user interface, questionnaire.
• Output: graphical and textual export.

7. Use cases: public and government sector, security consulting.

8. Assumptions and restrictions: N/A.

B.2.11 Fujitsu Interstage Business Process Manager

1. Source/Reference: N/A.

Web: http://www.fujitsu.com/global/services/software/interstage/bpm/
index.html

2. Project status: active and continuous development, as part of the Software
AG CentraSite initiative.

3. License type: commercial license with undisclosed price. Evaluation ver-
sion is also available for download.

4. General purpose

The tool offers a workflow-based business process manager that encom-
passes the entire process lifecycle: process modeling, integration, automa-
tion, management and optimization. In the context of the availability
study, relevant steps are modeling, management and optimization, as they
offer a certain degree of availability modeling/assessment capabilities.

5. Platform: Windows, Solaris 9, Red Hat Linux, ES 4.0, HP-UX 11i, IBM
AIX 5.3; Directory services: LDAP, Windows Native Directory, Microsoft
Active Directory; Databases: Oracle 9i, 10.2, MS SQL Server, Sybase
12.5.3, DB2 8.1

6. Model

(a) Model class: qualitative, service-level

(b) Model type: Workflow (BPMN, BPEL, XPDL, Wf-XML)

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 251

(c) Model description
The Business Process Manager model tool provides an environment
for modeling, testing and refining business process and business rules
that govern the processes before the processes (services) are de-
ployed. The model used is a workflow model, which can be specified
using any of the following modeling languages: Business Process
Modeling Notation (BPMN), Business Process Execution Language
(BPEL), XML Process Definition Language (XPDL) or Wf-XML.
Defining, refining and maintaining business rules can be collabora-
tive achieved with decision tables.
Processes can be monitored using Business Activity Monitoring (BAM)
dashboards. Key performance indicators (KPI) can be defined, as
well as rules how to respond when thresholds are met or crossed.
Among others, availability metrics can be defined in decision tables,
and set up as a KPI. Business Process Manager Analytics can per-
form process analysis and reporting using predefined metrics. Search,
sort and filter capabilities are also included.
The tool offers what-if analysis, that can be used to determine and
eliminate process, performance or availability bottlenecks at run-
time. For this purpose, audit trails, real-time activity monitoring,
and advanced process analysis are provided.

(d) Systems modeled: enterprise and cross-enterprise workflows.

(e) Model input: workflow description.

(f) Model output: business indicators, performance indicators, thresh-
olds and alarms, real-time monitoring.

(g) Interfaces

• Input: Web-based GUI.
• Output: Web-based GUI.

7. Use cases: banking and finance, power industry, travel industry, enterprise
software, traffic management.

8. Assumptions and restrictions

Availability is not directly supported, neither in the modeling nor in the
analysis part of the tool. Workflow model can be annotated with avail-
ability extensions, and metrics can be customly defined in decision tables,
providing runtime availability analysis (through KPI mechanism).

B.2.12 HP: Mercury BTO Enterprise Solutions

1. Source/Reference: N/A.

Web: http://www.mercury.com/us/products/

2. Project status: the tool suite is a commercial product of the Hewlett-
Packard corporation. It is under active development.

252 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

3. License type: commercial license (details unknown) and trial versions
(limited to 14 days of usage) are available.

4. General purpose

Mercury BTO (Business Technology Optimization) Enterprise is a suite
of applications (tools) that supports implementation of ITIL service man-
agement. The tools are technologically bound by dashboards, a CMDB
(Configuration Management DataBase), and a workflow engine that au-
tomates and integrates service management processes.

ITIL defines a wide scope of actions and some of them are unrelated with
the availability. Therefore, we present the overall capabilities of Mer-
cury BTO in brief and provide more details on the availability assessment
tools. Mercury Project and Portfolio Management Center provides CobiT
support (it also provides support for other quality programs).

BTO consists of four optimization centers and two lifecycle solutions for
managing application change and performance:

• Application Change Lifecycle

• Application Performance Lifecycle

• Project and Portfolio Management Center

• Quality Center

• Performance Center

• Business Availability Center

Such organization is created by the company for easier product positioning
on the market of IT governance tools, and there are overlaps between
individual sub-suites (for instance, Mercury Universal CMDB is a required
part of almost all sub-suites).

5. Platform

The tool suite operates on Windows family, Linux, zLinux, and UNIX
operating systems. Its functionality depends on partial integration with
various other software products (such as J2EE application servers, portal
solutions, SOA platforms, enterprise databases) and the tool suite sup-
ports all major vendors and products in these categories.

6. Model

(a) Model class: qualitative, monitoring; service- and process-level.

(b) Model type: ITIL, CobIT, CMDB.

(c) Model description
As the goal of the suite is to support implementation of the ITIL
service management, it can be said that the wrapping model of the
whole suite is ITIL. However, the suite does not follow ITIL specifi-
cation clearly nor does it provide clear boundaries between various
ITIL parts.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 253

Within individual tools, the main goal is usually improvement of
manageability of large software products. The model is often just a
simple statistical calculation (e.g., mean values over time) or a thin
layer used for storing, retrieving and visualizing data.

(d) Systems modeled: IT-processes.

7. Detailed description

The BTO suite covers a wide set of actions required in enterprise project
management (including service-desk tasks or financial impact of changes
in a project). Here we give more details about the availability-relevant
tools only.

Mercury Application Change Lifecycle is used to enforce the application
change process within the organization as it was defined by the man-
agement. Without dedicated tools, there are notable differences between
what should be done and what was actually done regarding the change
process. This results in long change cycle times, a broken process, and
failure to identify change impacts and collisions before deployment into
the production environment. This commonly leads to outages and ex-
tended problem resolution times. The tool is used to manage changes
and to mitigate business risks throughout the change lifecycle. It aims
at automation of the IT Service Management process, reduction of oper-
ational costs and minimization of the risk of application downtime. The
tool supports:

• Test management: to ensure that each change fulfills quality require-
ments.

• Change, configuration, and release management helps in assessment
of the business impact of every change prior to release to production.

• Change deployment automates the application release management
process to ensure that changes are rolled out successfully.

• Change monitoring ensures that all deployed changes are monitored
to ensure that business services are not adversely impacted.

Mercury Application Performance Lifecycle manages performance across
the application lifecycle. It is closely related with Mercury Performance
Center which is an enterprise-wide application performance testing plat-
form. Performance Center provides performance validation and diagnos-
tics. The Application Performance Lifecycle additionally supports:

• Integration between Performance Center, Business Availability Cen-
ter and testing scripts’ creation tools.

• Performance monitors (Real User Monitor and Business Process Mon-
itor) provide information on user’s experiences, capturing actual er-
ror messages and generating scripts for load testing and business
process monitoring. They reduce time of problem resolution and ac-
celerate test script creation time. Performance issues can be located
and resolved by diagnostics and profiler tools.

254 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

Mercury Project and Portfolio Management Center provides information
about demands being made by IT departments, IT projects’ portfolio, and
the deployment of application changes at the enterprise (organization)
level. It includes integrated applications to manage demands, portfolios,
programs, projects, resources, financial and application changes. It is
oriented towards improvement of business value delivered by the IT. It
supports quality programs and process control frameworks such as Six-
Sigma, PRINCE2, CMMI, and COBIT. Some of its possibilities are:

• IT activities alignment with business goals

• Rapid adaptation to business changes

• Improved personnel management and task allocation

• Financial visibility and governance throughout the IT lifecycle

• Integration with other Mercury products.

Mercury Quality Center is a Web-based system for automated software
quality testing and management across different application environments
(e.g., J2EE, .NET, Oracle and SAP). Its purpose is to validate both func-
tionality and automated business processes and identify bottlenecks in
production.

Mercury Business Availability Center is a top-down approach to integrat-
ing business, end-user, and system perspectives, thus providing a picture
of the complex infrastructure that underlies key applications. It consists
of several sub-applications.

Mercury End User Management proactively monitors Web site and appli-
cation availability in real time. It proactively emulates end-user business
processes and supports various protocols in Web and non-Web environ-
ments, and packaged applications (e.g., Oracle, Siebel, SAP, Citrix). This
enables easier identification and resolution of performance and availability
issues.

Mercury Diagnostics is a solution for composite and traditional appli-
cations management in production and pre-production environments. It
makes the resolution of various problems that can impact business avail-
ability easier, based on the information extracted from real users or scripted
transactions. Examples of these problems include: online portal failures,
applications running out of memory or node failures in data/ computa-
tion clusters. It also provides performance diagnostics, so it belongs to
the Mercury Performance Center as well. The tool supports a variety
of platforms and solutions, such as: J2EE application servers (Weblogic,
Websphere, Oracle, Fujitsu Interstage, TMaxSoft, ATG, and Sun One),
portal solutions (Weblogic Portal, Websphere Portal, and SAP Enterprise
Portal), SOA platforms, packaged application technologies (SAP, Oracle),
mainframe back ends (MQ Series, CICS), enterprise databases (Oracle,
SQL Server, DB2), Microsoft .NET Common Language Runtime, Java
Virtual Machines (from Sun, IBM, BEA, and HP), open source platforms

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 255

and frameworks (JBoss, Tomcat, Struts, and Hibernate). Mercury Diag-
nostics uses agents that collect performance, availability, and diagnostics
data from applications without the need for application’s source code
modification or recompilation. It uses byte code instrumentation and in-
dustry standards for collecting system metrics. The diagnostics data can
be exported to XML format.

Mercury Problem Isolation is used for identifying, diagnosing, and re-
solving problems. It can isolate the problems by identifying relationships
and dependencies among the systems and infrastructure that supports
them. It can complement the ITIL service delivery process in organiza-
tions utilizing the ITIL framework. It acts as a single point of access for
problem information and resolution and uses Mercury CMDB (Configura-
tion Management Database) for identifying and presenting configuration
items and changes that might be causing the problem. It correlates key
performance indicators with configuration items and associated changes
in order to estimate the possible problem causes. If integrated with other
Business Availability Center applications (e.g., Business Process Monitor,
SiteScope, Universal CMDB), it provides detailed data about components
related to a problem.

Mercury System Availability Management provides an organization-level
infrastructure monitoring solution. System Availability Management can
connect to the existing Enterprise Management System (EMS) products
or work together with the Mercury SiteScope to collect and monitor sys-
tem availability and performance data in the organization. System Avail-
ability Management is based on an agentless architecture and it enables
centralized management and configuration of the infrastructure. The col-
lected data is organized into groups in order to improve readability. Sys-
tem Availability Management can group information per application (such
as CPUs, disk space, database indexes, API values, etc.). Data is collected
and stored in the Mercury Business Availability Center repository so that
information from multiple monitoring sources can be combined.

Mercury Service Level Management proactively manages service levels
from the business perspective and provides service level agreement (SLA)-
compliance reporting for complex business applications in distributed en-
vironments. It provides the mapping between business service level re-
quirements and operational requirements and can create alerts in case of
SLA breaches. It provides a bridge between IT-centric SLA metrics (e.g.,
CPU uptime, database availability) and business availability metrics by
comparing actual application performance with business goals. Because
of its business-level orientation, the Service Level Management tool is fre-
quently used together with the Project and Portfolio Management Center.
Service Level Management enables the user to define his own availability
and performance objectives that reflect individual business goals; measure
performance and availability as experienced by end users; and isolate and
resolve performance problems before service-level objectives are breached.

256 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

Mercury Universal CMDB is a configuration management database which
is used to capture, document, and store service dependencies and associ-
ated infrastructure that support business services. It is capable of auto-
discovery of configurations and configuration item dependencies, visual-
ization and mapping of business services, and tracking of configuration
changes. It is built on an open architecture (SOAP Web services) and
it can link data to and from other repositories. The Universal CMDB
provides other capabilities such as impact analysis, access controls, and
management services needed to create and maintain the CMDB. It is one
of the core components of Mercury Business Availability Center and Mer-
cury Change Control Management, providing support for the ITIL-based
Change, Configuration, and Release Management initiatives. The CMDB
handles the physical configuration items such as servers, networking and
storage devices, software, but also the logical items such as business ap-
plications, virtual private networks, end users, and service level agree-
ments. Automated discovery spans network, servers, mainframes, storage,
and application software. Via this discovery process, Mercury Universal
CMDB stores cross-tier, peer-level, and other complex relationships. Be-
cause of preserved history of configuration item changes, it is possible to
discover change-induced outages, audit the change management process,
or ensure compliance and consistency with enterprise standards. The
tool also provides several template correlation rules (they can be also
customized) to perform impact analysis specific to their environment.

Mercury Application Mapping provides insight into the dynamic relation-
ships between applications and the underlying infrastructure. It con-
tinuously updates and maintains this topology map within a common
relationship model, enabling managers to assess the impact of IT issues
on business. The tool performs continuous and non-intrusive exploration
of every infrastructure asset in the production environment. Discovery
patterns direct the exploration of generic element types, such as network
equipment and servers, or specific application elements, such as BEA
WebLogic, Oracle, or SQL. It determines inter-relationships between en-
terprise applications and their underlying infrastructure. Mercury Ap-
plication Mapping can use different mechanisms to automatically explore
the infrastructure for only those elements, relationships, and dependen-
cies needed to perform correlation and impact analysis. This capability
is enabled by over 130 discovery methods, which cover level 2 to 7 of the
standard OSI Model.

Mercury SiteScope is an agent-less monitoring system designed to ensure
the availability and performance of distributed IT infrastructures e.g.,
servers, operating systems, network devices, network services, applica-
tions, and application components. A user connects to SiteScope using a
Web browser to view status information and make configuration changes.
The architecture consists of a set of objects that perform various func-
tions:

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 257

• WebPage Objects display the current status information, present
forms for editing and updating of the configuration. These objects
also enforce access controls, such as user name and password, that
restrict who is allowed to access the SiteScope Web pages.

• Scheduler Objects coordinate when monitors are run, alerts are cre-
ated, and reports are generated.

• Monitor Objects collect information about the system being moni-
tored. There are objects for monitoring application logs, CPU us-
age, disk space, processes, Web server throughput, DNS servers, mail
servers, access to Web pages, and network response. The Monitor
API allows custom monitor objects to be added to handle application
specific monitoring needs.

• Alert Objects send alerts (e.g., email, SNMP trap messages) about
exceptional events.

• Report Objects generate reports summarizing monitoring activity.
They read history information from the log files, summarize, filter,
and generate HTML reports in graph and table format.

Although it is claimed that the tool is ”agentless” (it is not required to
install agents or software on production systems) such qualification is par-
tially misleading since it implies the low level of intrusion on the observed
system. However, by ”agentless” is meant that there is no need to in-
stall additional software for communication of collected information and
that remote monitoring is performed by logging into systems as an user
and then accessing the Monitor API. Actual monitors consume system
resources as well as data transfer of measurements to the SiteScope data
repository.

8. Use cases: marketing, insurance, air and space, production and logistics,
travel.

9. Assumptions and restrictions: N/A.

B.2.13 IBM High Availability Services

1. Source/Reference: N/A.

Web: http://www-935.ibm.com/services/us/index.wss/offerfamily/bcrs/
a1026936

2. Project status: this is a consulting service offered by IBM.

3. License type: N/A, a consultation with IBM has to be requested

4. General purpose

IBM high availability services help in avoiding downtime and recovery by
assessing, planing, designing, building, implementing and managing an
infrastructure that supports the ongoing business availability and service

258 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

level objectives. IBM high availability services are designed to help enable
consistent management of the critical business processes, IT systems and
operating environments, and networks. These services are aimed to reduce
downtime, decrease infrastructure complexity and enhance the usage of
IT resources. The following service (consulting) options are offered:

• High availability assessment

– Analysis of IT availability plans, processes, procedures, roles,
responsibilities, reporting, controls and service level attainment

– Analysis of any outages that might occur through post incident
review, cost of outage or component failure impact analysis tech-
niques

• High availability planning and design

– Planning for high availability, including plans, program manage-
ment, reporting and service level management

– Process and procedure designs for high availability, including
roles and responsibilities

– High availability technology architecture designs for IBM System
z, IBM System i, IBM System p, IBM System x and multivendor
servers, as well as storage and networks

• High availability implementation

– Planning, design and implementation for the IBM Server Opti-
mization and Integration Services

• Capacity services for high availability

– Scheduled capacity services for System z, System i, System p and
multivendor servers; IBM and non-IBM storage; and networks

– Data center and workplace continuity hosting

5. Platform: N/A.

6. Model

(a) Model class: qualitative, service-level.

(b) Model type: questionnaire.

(c) Model description
Availability assessment within this tool works using qualitative ques-
tionnaire method that identifies the following types of threats: busi-
ness driven threats, data driven threats and event driven threats.
The following are some questionnaire examples from all three cate-
gories.
Business driven threats: business continuity management and regu-
latory compliance fall into the category of business driven threats.
The usual question asked are: Do you have a plan that considers how
you will manage addressing government and industry regulations lo-
cally and across the globe? How prepared you are to mitigate risks

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 259

to non-compliance? Whether your business is prepared for success?
Can your infrastructure handle spikes in demand?
Data driven threats: these threats involve the corruption, theft and
loss of data. Some questions to ask regarding data include: Is your
back-up data stored in a place that could be compromised? Have
you tested your restoration process to ensure it works? Do you have
a back-up plan if your backups are destroyed? Can you produce
data on demand in an audit situation? Can your data be accessed
by authorized users within a specified time frame?
Event driven threats: these events cannot be predicted but actions
can be taken to help prepare for them. These threats range from
natural disasters to terrorist actions to pandemics. Critical questions
to ask include: How will you deal with employees who cannot, or will
not, come to work? Do you have a plan in the event that normal
communications are not available? Do you have a plan in the event
that there is limited air transportation, fuel or rental cars?

7. Use cases: N/A.

8. Assumptions and restrictions: N/A.

B.2.14 IBM Tivoli Availability Process Manager

1. Source/Reference: N/A.

Web: http://www-306.ibm.com/software/tivoli/products/availability-process-
mgr/

2. Project status: under active development.

3. License type: commercial license, demo available for download; academic
license is also available.

4. General purpose

Tivoli Availability Process Manager enables availability assessment and
incident priority assignment according to their impact not only on IT
infrastructure, but also on critical business processes. In that way, the
tool establishes a connection between the IT and the business layer. It
offers availability management (incident management) based on ITIL and
determines business impact of a failure.

5. Platform: IBM AIX 5.2, 5.3, RedHat Linux, Windows.

6. Model

(a) Model class: qualitative, IT- and Service-level

(b) Model type: Component Failure Impact Analysis (CFIA) and Avail-
ability (Incident) Management, as specified by ITIL.

260 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

(c) Model description
The model offers two basic capabilities: availability management
and determining business impact of resources and incidents on the
business process.
Availability Management : Information Technology Infrastructure Li-
brary (ITIL) defines the goal of availability management as opti-
mizing the capability of the IT infrastructure and supporting or-
ganization to deliver a cost-effective and sustained level of service
availability that enables the business to satisfy its objectives. The
ITIL definition of availability management covers only service level
availability and leaves the infrastructure level availability to a set
of best practices covered under service operations. Tivoli Availabil-
ity Process Manager extends this process by including various ITIL
processes that span across ITIL service delivery and ITIL service
support. These processes include the following:

• Event management
• Incident management
• Problem management
• Service level management
• Availability management

Tivoli Availability Process Manager provides tasks that help to de-
termine and understand the business impact of incidents or service
disruptions. It also provides critical information that helps to clas-
sify, prioritize and handle incidents or service disruptions.
The goal of the ITIL incident management is to minimize disruption
to the business by restoring service operation to agreed-upon levels
as quickly as possible. The ITIL incident management process is
divided into seven key parts:

• Incident detection
• Incident classification
• Initial support
• Investigation and diagnosis
• Resolution and recovery
• Incident closure
• Incident monitoring and communication

The focus of Tivoli Availability Process Manager is on the detec-
tion, classification, initial support, investigation and diagnosis of in-
cidents.
Determining business impact : Tivoli Availability Process Manager
includes a determine business impact (DBI) task that helps to assess
and prioritize the impact that one or more resources have on the
business. The DBI task helps in prioritizing an incident based on
the resource that is reported to have a problem. In this case, the
current status of that resource, potential failing components, affected

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 261

business systems and other groupings, and the impacted service level
agreements (SLA) are important to making that determination. The
DBI task also assesses the impact of a change to a resource. In
this case, the current status might not be as important, but the
relationships to business systems and other groupings, as well as the
SLAs that apply to the resource that is scheduled to be changed, are
important. Tivoli Availability Process Manager receives information
about IT relationships from the CMDB system. Following steps are
included in the DBI task: search, assess failing components, assess
services impacted, assess SLA/OLA impact, summary.

7. Use cases: automotive, banking, computer services, energy, government,
health, media.

8. Assumptions and restrictions: can be used (efficiently and reasonably)
only within Tivoli Unified Process (TUP), which leads partially to vendor
lock-in with IBM.

B.2.15 Information Governance: PROTEUS

1. Source/Reference: N/A.

Web: http://www.infogov.co.uk/

2. Project status: PROTEUS was developed in 1995 and is recommended
as the tool for automation of the BS-7799 norm of the British Standards
Institution. The last release is from 2008.

3. License type: commercial and demonstration licenses are available.

4. General purpose

Proteus Enterprise is a compliance, information security risk management,
and corporate governance tool. It also allows organizations to implement
the controls of any standard or regulation, e.g. BS ISO/IEC 17799 and
BS ISO/IEC 27001, BS 25999, SOX, CobiT, PCI DSS etc.

5. Platform: Windows and Linux (server); Windows (client).

6. Model

(a) Model class: qualitative, IT- and process-level.

(b) Model type: risk analysis and assessment based on the BS-7799 rec-
ommendation.

(c) Model description
The tool supports the following risk analysis and assessment phases:

• Asset inventory & evaluation: supported by location but cross-
referenced across an entire, multi-national or distributed, orga-
nization

262 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Risk identification: qualitative and quantitative risk assessment
techniques supported, integrated with asset management, threats,
countermeasures, risk treatment plans and incident management

• Risk analysis: relative and absolute risk scales can be used to
adapt to corporate risk thresholds

• Risk assessment: 5 stage generic process, which can be mapped
to BS ISO 27001, IRAM or other methodologies

• Risk evaluation: 5 types are supported (physical, information,
service, application and group), threats can be automatically
inherited via asset relationships, location and asset profile

• Risk treatment: action plans are integrated with compliance,
risk assessment, business impact analysis, business continuity
and incident management

• Risk acceptance: audit trail of system changes
• Risk communication: every aspect of the system can be reported

or viewed by secure PDFs, customizable business objects report-
ing, and via the optional Proteus RiskView management infor-
mation graphical dashboard

(d) Systems modeled: IT companies and processes.

(e) Model input: process description with asset inventory.

(f) Model output: business impact measures, risk analysis, action plans.

(g) Interfaces

• Input: Web browser.
• Output: Web browser.

7. Use cases: finance, telecommunications, pharmaceutical, retail, govern-
ment.

8. Assumptions and restrictions: N/A.

B.2.16 Insight Consulting/Siemens: CRAMM

1. Source/Reference: N/A.

Web: http://www.cramm.com/

2. Project status: the first version of CRAMM (CCTA Risk Assessment and
Management Method) was developed in 1985, on request of the British
government. After the initial success, the commercial and publicly avail-
able version was released. In the meantime, Insight has been bought by
Siemens, which is developing the tool further. The last known release is
5.2 from 2009.

3. License type: commercial as well as 30-day evaluation license.

4. General purpose

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 263

CRAMM offers a range of risk assessment tools that are compliant with
ISO 27001 and address tasks such as asset dependency modeling, business
impact assessment, identifying and assessing threats and vulnerabilities,
assessing levels of risk and identifying required and justified controls on
the basis of the risk assessment.

5. Platform: Windows.

6. Model

(a) Model class: qualitative, process-level.
(b) Model type: risk analysis and assessment following the CRAMM,

compliant with ISO 27001 and BS-7799 standards.
(c) Model description

CRAMM risk assessment tool can be used to answer single questions,
to look at organizations, processes, applications and systems or to
investigate complete infrastructures or organizations. Users have the
option of a rapid risk assessment or a full, more rigorous, analysis.
The following risk aspects can be answered:
• Determining if there is a requirement for specific controls, e.g.,

strong authentication, encryption, power protection or hardware
redundancy

• Identifying the security functionality required for a new appli-
cation

• Developing the security requirements for an outsourcing or man-
aged service agreement

• Reviewing the requirements for physical and environmental se-
curity at a new site

• Examining the implications of allowing users to connect to the
Internet

• Demonstrating compliance with legislation such as the Data Pro-
tection Act

• Developing a security policy for a new system
• Auditing the suitability and status of security controls on an

existing system
• ISO 27001 compliancy

(d) Systems modeled: IT-processes and infrastructures.
(e) Model input: process description with asset lists.
(f) Model output: risk assessment, countermeasures and suggestions.
(g) Interfaces

• Input: tables and questionnaires.
• Output: Microsoft Office (Word, Excel), graph, text.

7. Use cases: government (UK), defense (NATO), aerospace (BAE Systems,
Royal Air Force), IT (IBM), automotive (General Motors), banking and
finance (Swiss Bank), telecommunications(T-Mobile).

264 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

8. Assumptions and restrictions: N/A.

B.2.17 RiskWatch: RiskWatch for Information Systems

1. Source/Reference: N/A.

Web: http://www.riskwatch.com

2. Project status: the tool is under active development, as part of the
RiskWatch tool suite. Last version of the RiskWatch for Information
Systems is from 2007.

3. License type: commercial license, on-line demonstration.

4. General purpose

This tool conducts automated risk analysis and vulnerability assessments
of information systems. The knowledge databases that are provided are
customizable, including the ability to create new asset categories, threat
categories, vulnerability categories, safeguards, question categories, and
question sets. The tool includes controls from the ISO 17799 and US-
NIST 800-26 standards as well as support for ISO 27001, COBIT 4.0 and
Sarbanes Oxley (SOX).

5. Platform: Windows.

6. Model

(a) Model class: qualitative, IT- and process-level.

(b) Model type: risk analysis and assessment based on the ISO 17799,
ISO 27001, COBIT 4.0 and Sarbanes Oxley (SOX).

(c) Model description
The RiskWatch analysis engine analyzes the relationship between
the asset values, potential loss impacts, threats and vulnerability
categories to illustrate the current organizational security situation
and to automatically recommend mitigating, cost-effective solutions.
RiskWatch further automatically develops asset profiles and provides
financial values for organizations using an asset configuration wizard
based on capital expenditures allocation tables
RiskWatch analyzes all data, and creates management reports detail-
ing compliance vs. non-compliance, backed up with a set of working
papers. Return on investment is calculated for each safeguard and
a case summary report is generated to show compliance vs. non-
compliance, protection levels, annual loss expectancy data by asset
category, threat or loss impact category.

(d) Systems modeled: IT-systems.

(e) Model input: process description, asset description (automated with
asset configuration tool).

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 265

(f) Model output: risk assessment, safeguard list, return on investment
analysis, annual loss expectancy, threat impact.

(g) Interfaces

• Input: RiskWatch for Information Systems includes a web-based
application that allows employees to answer questions over the
Web. Questions are created from ISO 17799, ISO 27001, COBIT
4.0 and SOX standards and are separated by job category and
by vulnerability category. Analysts can add, delete or modify
questions.

• Output: graphic, export to Office, database.

7. Use cases: government (US Department of Justice, National Security
Agency), academia, IT (IBM), telecommunications (AT &T, Verizon,
Vodafone).

8. Assumptions and restrictions: N/A.

B.2.18 Self assessment programs by itSMF International

1. Source/Reference: N/A.

Web: http://www.itsmfi.org/

2. Project status: active.

3. License type: free, the tool is available online or as a set of Excel spread-
sheets.

4. General purpose

The aim of the questionnaire is to give the organization (and its manage-
ment) an idea how well it is performing compared to ITIL best practice.
The questionnaire cannot be used for the purpose of ITIL conformance
testing, but it should create the awareness of what may be addressed in
order to improve the overall process capability.

5. Platform: online/Microsoft Office.

6. Model

(a) Model class: qualitative, process-level.

(b) Model type: ITIL.

(c) Model description
The self-assessment scheme is composed of a simple questionnaire
which enables the user to ascertain which areas should be addressed
in order to improve the overall process availability. The questions
are YES/NO, with weight associated with each YES answer and zero
value for NO, and based on the answers is determined whether an
organization implements the guidance in a particular category. In
order to pass the test within a level in a category, all mandatory

266 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

questions must be answered with YES and additionally at least one
of non-mandatory questions.
Results of the self-evaluation can be submitted to the itSMF for
statistical analysis. The analysis is anonymous and it is possible to
view the results averaged over all organizations that have already
participated in the assessment. This is particularly useful as it can
be used for comparison of obtained results with results made by other
organizations and companies.
For each of categories (service level management, financial man-
agement, capacity management, continuity management, availabil-
ity management, service desk, incident management, problem man-
agement, configuration management, change management, release
management), questions are grouped in following levels:

• Level 1: Prerequisites, ascertains whether the minimum level of
prerequisite items are available to support the process activities.

• Level 1.5: Management intent, establishes whether there are
organizational policy statements, business objectives (or similar
evidence of intent) providing both purpose and guidance in the
transformation or use of the prerequisite items.

• Level 2: Process capability, examines the activities being carried
out. The questions are aimed at identifying whether a minimum
set of activities are being performed.

• Level 2.5: Internal integration ascertains whether the activities
are integrated sufficiently in order to fulfill the process intent.

• Level 3: Products, examines the actual output of the process to
enquire whether all the relevant products are being produced.

• Level 3.5: Quality control is concerned with the review and veri-
fication of the process output to ensure that it is in keeping with
the quality intent.

• Level 4: Management information is concerned with the process
governance and ensuring that there is adequate and timely infor-
mation produced from the process in order to support necessary
management decisions.

• Level 4.5: External integration examines whether all the ex-
ternal interfaces and relationships between discrete process and
other processes have been established within the organization.
At this level use of the full ITIL terminology may be expected
for IT service management.

• Level 5: Customer Interface, is primarily concerned with the on-
going external review and validation of the process to ensure that
it remains optimized towards meeting the needs of the customer.

(d) Systems modeled:

(e) Model input: ITIL-questionnaire.

(f) Model output: level of ITIL compliance.

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 267

(g) Interfaces

• Input: Web browser.
• Output: Web browser.

7. Use cases

The analysis results available at the site are anonymous, so it is not pos-
sible to obtain participant names. However, most of them come from the
IT consulting sector (24.2%), followed by the government organizations
(18%). Not every organization participated in each questionnaire, so the
numbers vary. For availability management assessment, 677 organizations
have used the tool, and for service level management impressive 7415.

8. Assumptions and restrictions: N/A.

B.2.19 Software AG CentraSite

1. Source/Reference: N/A.

Web: http://www.softwareag.com/Corporate/products/centrasite/default.asp

2. Project status: commercial tool under continuous development.

3. License type: commercial license with undisclosed price, demo version
available for download.

4. General purpose

Centrasite is platform for Service Oriented Architecture (SOA) gover-
nance. SOA governance covers two aspects: 1) service implementation
and 2) IT governance at the business process level. Governance priorities
are performance, risk management, service availability and aligning IT
infrastructure with business goals (processes). Centrasite supports gov-
ernance in an iterative process that includes tracking compliance with
service policies, monitoring and managing service levels and availability,
and optimization of processes created from services (and vice versa).

5. Platform: platform-independent (Java + browser-based GUI).

6. Model

(a) Model class: qualitative, service-level.

(b) Model type: metadata repository supporting policy, change control,
maintenance, automation, dependency analysis and reporting at the
business process (service) level.

(c) Model description
The SOA governance model ensures that IT activities, priorities and
decisions align with business goals, and that IT is delivering the value
to the business. Governance model encompasses applying policies
for mitigating risk, implementing consistent processes and institut-
ing common metrics for tracking performance, quality of service and

268 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

dependability. In the context of our study, the last property is of ex-
treme importance. For example, successful governance model must
ensure that services will not jeopardize the performance or avail-
ability of internal back end system effectively connecting business
process (service) and IT layer. SOA governance model involves man-
aging services across the entire service lifecycle, from design to run
time.
Design time governance specifies ground rules for service creation, ar-
chitectural standards and service contracts. Run time governance in-
volves verifying compliance with contract and policies, performance,
SLAs, QoS (e.g., availability, dependability, security). Governance
model also includes a change phase, which requires enforcement of
metapolicies and conducting impact analysis of service changes on
IT operations, system/data interfaces, contract compliance.
CentraSite is based on the repository governance model, where repos-
itory stores metadata about the services, providing the abstraction
layer between services and implementations. Concretely, repository
stores models, mappings, shared keys, transformations, process mod-
els, business rules, test plans, runtime performance histories etc.
Centrasite includes several tools, some of which are relevant to the
objectives of this study. Those tools will be described in more detail,
others will be only mentioned for the reason of completeness.
Crossvision Information Integrator is a tool for organizing, manag-
ing, aggregating, transforming and filtering business data. Crossvi-
sion Service Orchestrator is a tool for Web Services and XML-based
message routing, schema validation and transformation and sequence
workflows.
Ilog manages business decisions through rules-based decision ser-
vices. In our context, it is interesting that rules can be based on
QoS metrics (such as availability). Mega tool provides reporting and
analytic information in the process of associating services and busi-
ness goals. It is possible to measure the alignment of selected services
to the organization’s business processes, or gauge the level of avail-
ability and dependencies between services and business processes.
Parasoft tool provides test assets, such as reusable tests, regres-
sion test, emulated services, functional, performance and availability
tests. AmberPoint tool ensures compliance at runtime with speci-
fications made at design time. It can flag the following exceptions:
dependencies, rogue services, dynamic changes to the service net-
work, service levels, security, auditing, logging, debugging and fail-
ures. Policies serve to control runtime behavior to ensure high avail-
ability, performance and security. These policies are enforced auto-
matically.

7. Use cases: all community members are also applying Centrasite, among
others Fujitsu, Novell and Software AG. Completed projects using Centr-
asite can be found at http://www.softwareag.com/Corporate/Solutions/

B.2. QUALITATIVE AND PROCESS MANAGEMENT TOOLS 269

Customers/References/default.asp, among others Belgian National Rail-
way Company, Commerzbank, DaimlerChrysler, Nissan Motors, Scand-
invian Airlines, Vodafone, Volkswagen, ZDF, etc.

8. Assumptions and restrictions

CentraSite is based exclusively on Web Services (SOAP, WSDL, UDDI).
Furthermore, it offers proprietary metadata model and availability policies
and metrics, which could be difficult to integrate.

B.2.20 Telindus Consultants Enterprises: ISAMM

1. Source/Reference: N/A.

Web: http://www.telindus.com/

2. Project status: commercial product under active development, last ver-
sion is from 2008.

3. License type: commercial license as well as trial/evaluation version.

4. General purpose

ISAMM or Information Security Assessment and Monitoring Method tool
follows the set of controls of best practices in information security from
the ISO/IEC 27002. ISAMM risk assessment contains three main parts:
scoping, assessment and reporting.

5. Platform: N/A.

6. Model

(a) Model class: qualitative, process-level.

(b) Model type: risk analysis and assessment following the ISAMM
method.

(c) Model description
The method comprises three phases:

• Scoping: as required by ISO/IEC 27001, the first step of a risk
assessment is to select the relevant pre-defined asset types and
to define the most important assets of each of these types. The
selected assets must be valuated for replacement, confidential-
ity, integrity and availability cost. Second step is to select the
relevant threats amongst 15 pre-defined generic threats. Based
on these selections, ISAMM will consider the relevant mappings
between the chosen asset types and threats in order to generate a
number of appropriate threat scenarios. ISAMM will then list all
ISO/IEC 27002 controls that could have an effect on these risk
scenarios. Optionally, the respondent can indicate a mandatory
status for a control. One should therefore assess the existence
of mandatory company policies and/or legal and regulatory re-
quirements (e.g. FDA, Sarbanes-Oxley, local laws).

270 APPENDIX B. AVAILABILITY ASSESSMENT TOOLS

• Assessment: in this phase, the respondent has to complete the
actual compliance level for each relevant ISO/IEC 27002 con-
trol. As an option, the respondent has a number of detailed
compliance questions for each of the controls providing addi-
tional insights and details about the actual vulnerability level.
When not completely compliant, the respondent has to provide
an estimation of the additional yearly cost to become fully com-
pliant. Further questions are prompted in order to define the
threat motivation and the number of exposure points for the
threats. Based on this information ISAMM is able to calculate
the default threat probability and impact for each of the threat
scenarios and to determine the actual risk level for each threat.

• Reporting: using the risk reducing characteristics of each con-
trol on each of the threat scenarios, ISAMM is also able to sim-
ulate the risk reducing effect of each control improvement and
select the most appropriate ones, step by step. In this way an
optimal risk treatment plan with resulting residual risk can be
derived. After completion of the input and calculations, ISAMM
will generate a variety of graphs and tables listing all relevant
information.

(d) Systems modeled: IT organizations and processes.

(e) Model input: list of evaluated assets, according to the various cost
models; list of relevant threats.

(f) Model output: threat probability, impact, risk level, risk treatment
plan.

(g) Interfaces

• Input: N/A.
• Output: graphical, export to MS Office.

7. Use cases: N/A.

8. Assumptions and restrictions: N/A.

	Introduction
	Definitions
	Reliability and Availability
	Reliability
	Availability

	Performability
	Services and Business Processes
	Service Availability and Performability

	Availability and Performability Models
	Analytical Models
	Reliability Block Diagrams
	Fault Trees
	Reliability Graphs and Complex Configurations
	Markov Models
	Stochastic Petri Nets
	Stochastic Activity Networks
	Markov Reward Models

	Qualitative Models
	CMMI
	ITIL
	CITIL
	ISO/IEC 15504 -- SPICE
	CobiT
	MOF
	MITO
	ISO/IEC 27002
	ISO 12207/IEEE 12207
	Relationships between Maturity Models in the Availability Context

	Tools for Availability Assessment
	Quantitative Tools
	Analytical and Simulation Tools
	Benchmarking Tools

	Qualitative Tools
	Risk Management Tools
	Process Management Tools

	Hybrid Tools
	Interoperability and Usability
	Tool Comparison Summary

	Service and Process Availability
	Mapping BPMN activities
	Infrastructure graph generation
	Automatic Generation of Availability Models
	E-Mail Service Availability Assessment
	Service Description and Mapping
	Availability Assessment
	Total Service Availability
	Working with Incomplete Data

	Publishing Business Process Availability Assessment
	Business process description and mapping
	Business Process Availability Assessment

	Generation of State Space Models
	Generation of Hierarchical Models
	Tool Prototype

	Summary and Future Work
	Möbius Availability Model
	Availability Assessment Tools
	General Purpose Quantitative Modeling Tools
	ACARA
	ARIES
	BQR CARE
	CARE III
	CARMS
	CASRE/SMERFS
	CPNTOOLS
	DyQNtool+
	Eclipse TPTP (Test and Performance Tool Platform)
	ExhaustiF
	FAIL-FCI
	FIGARO / KB3 Workbench
	GRAMP/GRAMS
	HARP
	IsoGraph FaultTree+
	IsoGraph AvSim+
	IsoGraph Reliability Workbench
	IsoGraph Network Availability Program (NAP)
	IsoGraph AttackTree+
	IsoGraph Report Generator
	MARK
	METFAC
	METASAN
	Möbius
	NFTAPE
	NUMAS
	OpenSESAME
	PENELOPE
	PENPET
	Relex Reliability Studio: PRISM
	QUAKE
	Reliability Center: PROACT, LEAP
	Reliass
	Reliasoft
	SAVE
	SHARPE
	SPNP
	SoftRel LLC: FRESTIMATE
	SURE
	SURF-2
	Sydvest CARA Fault Tree
	Sydvest Sabaton
	TANGRAM
	Mathworks Stateflow

	Qualitative and Process Management Tools
	Advanced Technology Institute: OCTAVE Automated Tool
	Alion Science and Technology: CounterMeasures
	Aprico Consultants: ClearPriority
	Aexis: RA2
	BMC: Remedy Suite
	BSI: GSTOOL
	CALLIO: Secura 17799
	CCN-CERT: PILAR / EAR
	C&A Systems Security: COBRA
	DCSSI: EBIOS
	Fujitsu Interstage Business Process Manager
	HP: Mercury BTO Enterprise Solutions
	IBM High Availability Services
	IBM Tivoli Availability Process Manager
	Information Governance: PROTEUS
	Insight Consulting/Siemens: CRAMM
	RiskWatch: RiskWatch for Information Systems
	Self assessment programs by itSMF International
	Software AG CentraSite
	Telindus Consultants Enterprises: ISAMM

