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Abstract
Microbial colonies are experimentalmodel systems for studying the colonization of new territory by
biological species through range expansion.We study a generalization of the two-species Edenmodel,
which incorporates local frequency-dependent selection, in order to analyze how social interactions
between two species influence surface roughness of growingmicrobial colonies. Themodel includes
several classical scenarios fromgame theory.We then concentrate on an expanding public goods
game, where either cooperators or defectors take over the front depending on the systemparameters.
We analyze in detail the critical behavior of the nonequilibriumphase transition between global
cooperation and defection and thereby identify a newuniversality class of phase transitions dealing
with absorbing states. At the transition, the number of boundaries separating sectors decays with a
novel power law in time and their superdiffusivemotion crosses over fromEden scaling to a nearly
ballistic regime. In parallel, thewidth of the front initially obeys Eden roughening and, at later times,
passes over to selective roughening.

1. Introduction

Living species are usually confined to their territory, a spatial region defined by geographical borders, climate, or
other environmental constraints. Uninhabited regions are colonized through range expansion, where
individuals reproduce and disperse at the front of their territory [1]. This process is seen in biological invasions
[2], as a result of shifting climate zones [3–5], during colonizations in our own species’history [6–8], tumor
growth [1, 9, 10], and biofilm growth [11–13]. Evidently, expansions occur on very different spatial
(micrometers to 107 m) and temporal (hours tomillennia) scales.

In this article we aim to characterize range expansion under the influence of short-range ‘social interactions’
of individuals at the front. Such interactions are present if success in reproduction depends on the presence of
nearby individuals of the own and/or other species. Here, we set up amodel for the expanding front based on
evolutionary game theory [14–16] and investigate its roughening dynamics for two interacting species. Besides
exploring an interesting non-equilibrium growth process, we hope to contribute to interpreting experiments on
range expansion inmulti-species colonies of simple organisms.

In experiments,microbial growth is excellently suited to study range expansion and other processes in
population dynamics and evolution such as spatial spread of infections and adaptation to an environment (see
for example [17]).Microbes reproduce fast, their environment and genotype can be controlled, and
experimental conditions are easily reproducible. Grown in a Petri dish, the spatial patterns of single-species
microbial colonies have long been a rich field of study [18–23]. The observed patterns crucially depend on
motility, availability of nutrients, growthmedium, and adhesion between cells, to name but a few.However,
even under conditions of negligiblemotility and abundant nutrients a colony’s front is rough and has interesting
statistical properties [24–26].

Multi-species colonies are composed ofmore than one species and show additional intriguing features, even
if the species are identical except for amarker [27]. During reproduction they keep theirmarker but compete
with other species for space at the front. Thereby, sectors of single species form,which are separated by boundaries.
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Their statistical and dynamic properties are determined by the evolving roughness of the expanding
front [28, 29].

Usually, when two ormore species ofmicrobes live in a common environment, they influence each other
during reproduction. In particular, reproductive success of any species, also called itsfitness, depends on the
population sizes of all the species. This constitutes ‘social interactions’ between the species commonly referred to
as frequency-dependent selection. Research in the field has initiated awealth of fascinating experiments [10, 30–
36] either inwell-mixed liquid culturewithout any spatial order [32, 37] or in the Petri dish, where the
populations are spatially structured [38, 39].Many of the experimental observations can be discussedwithin the
framework of evolutionary game theory [14–16]. For example, light has been shed on a long-standing theoretical
question in evolution [14, 15, 40–42]:Why do individuals cooperate if non-cooperators can exploit them?
Literature emphasizes the importance of a population to be structured in groups [15, 43–47], for example, by
spatial distance.While within a single group cooperators are always inferior to non-cooperating defectors, if the
latter interact only with their neighborhood, distant large groups of cooperators will ultimately outcompete
defectors. Somemodels also stress the central role of demographic fluctuations and of populations growing in
size [48, 49]. Both, experiments and theory, explain the advantage of cooperators during colony growth by their
ability to locally advance faster [39, 50, 51], vividly termed ‘survival of the fastest’ [39].

Cooperation between between nearby cells is oftenmediated by some biochemical compound (a public good)
which themicrobes release into the extracellular environment. This compound then promotes reproduction of
neighboring cells. In general, a released substancemay act beneficial or detrimental to other individuals, also
depending on their species, and implies some cost to the producer. Examples include secretion of digestive
invertase to break down sucrose [37, 52–54], siderophores to scavenge iron from the environment [32, 55, 56],
polymers which support biofilms [43, 57, 58], release of toxins [59, 60] (sometimes through lysis [61, 62]),
surfactants which facilitate swarming [63], and the exchange of amino acids [38].

This plethora of biochemical compounds, released by cells and affecting nearby cells, implies awealth of
specific features, which certainly are not covered by a singlemodel. However, since the released biomolecules
usuallymediate short-range interactions between individuals, properties on large scales should be independent
ofmicroscopic details. Hence, we formulate a simplemodel which captures the essence of an interactionwhile
ignoring complicated details. The classical Edenmodel [64, 65], a simple growth process on a lattice, has been
used successfully tomimic growing cell colonies. It generates a cluster (the colony), the surface of which exhibits
scaling properties also found for expanding fronts ofmicrobial colonies [66, 67]. Extended to two identically
growing but still distinguishable species, it generates sectors occupied by a single species only [29, 68]. Indeed,
this behavior is found for two-speciesmicrobial colonies [27].Moreover, boundaries between sectorsmove
superdiffusively as in the experiments.

In this article we explore a generalization of the two-species Edenmodel, which incorporates local
frequency-dependent selection.We thereby aim to analyze how social interactions influence surface roughness
of growingmicrobial colonies.We set up an expanding public goods game, where either cooperators or
defectors take over the front depending on the systemparameters [14–16]. Right at the transition the front
displays critical behavior, whichwe analyze in detail. In particular, we establish that ourmodel belongs to a new
universality class of phase transitions dealingwith absorbing states. At the transition, the number of boundaries
separating sectors decays with a novel power law in time and their superdiffusivemotion crosses over fromEden
scaling to a nearly ballistic regime. In parallel, thewidth of the front initially obeys Eden roughening and, at later
times, passes over towhat we call selective roughening.

The remainder of this article is organized as follows. To analyzemulti-speciesmicrobial colony growth, we
introduce the Edenmodel with frequency-dependent selection in section 2 and analyze its phenomenology in
section 3.We then concentrate on the expanding public goods gamewith its social dilemma in section 4 and
analyze the critical behavior at the transition between long-term cooperation and long-termdefection by
applying statistical analysis. Finally, we discuss and summarize ourfindings in section 5.

2. Edenmodel with frequency-dependent selection

In this workwe employ a latticemodel (see figure 1) to analyze range expansion at rough fronts under the
influence of frequency-dependent selection.We set up a cellular automaton on a two-dimensional hexagonal1

lattice of transverse extension L and an infinite longitudinal extension. Periodic boundary conditions are applied
in the transverse direction. The state s{ }of the system at time t is specified by the state variables si j, of lattice sites
i j, .( ) Consider a systemwith two species (extension tomore species is straightforward). For any time t, any site

1
On a square lattice it is impossible to enclose a clusterAwithin a clusterB, which only contains nearest neighbor sites of clusterA. On a

hexagonal lattice this is possible.
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(i, j) is either empty (s 0i j, = ) or occupied by an individual of either species 1 (s 1i j, = ) or 2 (s 2i j, = ). All
individuals which have at least one free nearest neighbor site can reproduce. To perform a reproduction step, we
choose one of these fecund individuals with a probability proportional to its reproduction rate (see below) and a
new individual of the same species is placedwith equal probability on one of the free neighboring sites.

In contrast to the Edenmodel [64] and some of its two-species generalizations [29, 69], reproduction rates in
ourmodel depend on the states of the nearest-neighbor sites. Let n1 and n2 denote the number of nearest
neighbors of species 1 and 2, respectively, then the reproduction rate of an individual at lattice site (i, j) is

b

s

b n n s
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Here, b1
0 and b2

0 are the respective contributions to the reproduction rates of species 1 and 2, which are
independent of the states of their nearest neighbors. Frequency-dependent selection is introduced through the
parameters , , , and .

With the reproduction rates bi j, we implement a random sequential update of the systemusing a simplified
version of theGillespie algorithm [70]. The overall reproduction rate of the population is b b

i j i jtot , ,≔ å and an

individual at site i j,( ) is selected to reproducewith probability b b .i j, tot We then choose one of the empty
nearest-neighbor sites of the reproducing individual at randomand place there a new individual of the same
species. This implies that there are nomutations. Since themean time until the next reproduction event is b ,tot

1-

weupdate time by t t btot
1 + - after each reproduction event.We assume that individuals do not die and that

they are immobile. Therefore, any site with s 0i j, ¹ remains in its specific state indefinitely. As initial condition
we occupy all sites of an initial line randomly, but in equal parts, with species 1 and 2, if not stated otherwise.

The formulatedmodel generalizes versionC of the Edenmodel, introduced by Jullien andBotet [71], to a
two-species system.We already applied a similarmodel to range expansionwithout frequency-dependent
selection but included the possibility ofmutations [69]. If , , , and  are zero, ourmodel reduces to that of
Saito andMüller-Krumbhaar [29], however they used a square lattice. Since diffusion is not included in the
model, configurations and patterns behind the front are frozen. This corresponds to observations inmicrobial
experiments on range expansion [27, 62]. Ourmodel does not include adhesion between cells, which
contributes to surface tension and can thus smooth the surface of a bacterial colony [23]. It also ignores the
vertical extension of bacterial colonies since the horizontal extension is usually larger by several orders of
magnitude.

In game theory the parameters , , , and  from equation (1) define the payoffmatrix of a two-strategy
game [14–16]. Different scenarios, somewell known in game theory, are implemented if we set these parameters
accordingly.

Figure 1.Two-species Edenmodel with frequency-dependent selection on a hexagonal lattice. The bacterial colony grows from the
bottom line (lattice sites with narrow black edge) of length L, where individuals of species 1 (blue) and species 2 (red) occupy the lattice
sites. The colony expands into the empty, infinitely-extended half-space. Individuals capable of reproduction (indicated by bold
edges), have at least one empty lattice site as a nearest neighbor. In a reproduction event, one of these empty neighboring sites (i, j) is
chosenwith equal probability and the reproducing individual changes the corresponding state si j, to its own state 1 or 2. Each
individual has its own reproduction rate bi j, given in equation (1). For example, the reproduction rate of the individual at site 3, 3( )
(bold black edge) is b b 3 2 .3,3 2

0  = + + Along the transverse direction periodic boundary conditions apply.
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3. Phenomenology

Wenowdescribe some generic examples of ourmodel for growingmicrobial colonies (see figure 2), which
emerge for typical parameter settings, and discuss their characteristic features.We then concentrate on so-called
social dilemmas, where one species (defectors) exploits the other one (cooperators). Due to the spatial extent of
our system, cooperators are able to outcompete defectors in a defined parameter region. This is in contrast to a
single group, where allmembers interact with each other and, therefore, cooperators are always inferior to
defectors.

In the simplest case selection is frequency-independent, 0,   = = = = and both species reproduce
with the same rate, b b0

1
0
2= (see figure 2(a)). For this ‘neutral’ settingwe observe roughening of the front typical

for the Edenmodel [64, 65]. Simultaneously, sectors composed of a single speciesmerge and thereby coarsen
[29, 68]. This inherent process happens according to the following scenario. If the tips of two advancing
boundary linesmeet, they annihilate and the enclosed sector loses contact to the front. Consequently, the
number of boundaries and sectors can only decrease. Sectors repeatedly coarsen as theymerge in these events.
When all boundaries have vanished, the front ‘hasfixed’ to a single species, which keeps on expanding. Infinite
systems, L ,< ¥ fixation to a single species always occurs since in our stochasticmodel there is always afinite
rate at which boundaries annihilate. Hence, two absorbing states exist. Eventually, the expanding frontwill fix
either to species 1 or species 2.

Infigure 2(b), species 2 has a larger reproduction rate, b b ,0
2

0
1> and therefore a constant selective advantage.

As the front expands faster at locationswhere it is composed of species 2, the roughness of the front increases.
Indentations of the front usually are caused by sectors of species 1, whereas species 2 creates bulges.
Furthermore, boundaries are biased such that sectors of species 2widenwhile sectors of species 1 shrink
laterally. Hence, sectors of species 2merge and coarsen quickly. Eventually, the expanding front willfix to
species 2, which has almost happened infigure 2(b).

Figure 2.Growth patterns of ourmodel for different parameters, which correspond to typical settings. Time is always t= 15 and
lattice size is L= 200. Cooperators are depicted in blue and defectors in red. If not stated otherwise b b 1,2

0
2
0= =

0,   = = = = and the initial ratio of both species is 1:1. (a)Neutral growth, (b) selective advantage for species 2 (b 1.52
0 = ),

which occupies 10%of initial sites, (c) coordination game ( 1 = = ), (d) snowdrift game ( 1 = = ), and (e) public goods
game ( 0.1, 1.1 = = ).
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If the reproduction rates depend on the state of nearest neighbors (frequency-dependent selection), new
patterns arise. In this article we aremainly interested in frequency-dependent selection and therefore set
b b 11

0
2
0= = fromhere on.Wenowdiscuss some interesting cases, see figures 2(c) and (d), which correspond to

well-known settings in game theory [14–16].
In coordination games ( and   > > ), seefigure 2(c), the front expands slower near boundaries than

in the centers of sectors. Therefore, indentations in the front are typically foundwhere boundaries currently are
or recently have been. After sectors have coarsened for some time,most individuals are located inside sectors.
Therefore,most of themonly have neighbors of their own kind, which raises the average reproduction rate and
the overall front advances faster.

In snowdrift games ( and   < < ), see figure 2(d), the front expands faster near boundaries. They
annihilate less frequently as compared tofigure 2(c) since narrow sectors grow faster. Boundaries are also
strongly twisted and associatedwith bulges of the front.

In this article we aremostly interested in social dilemmaswhere one species (called cooperators) raises the
reproduction rate of all neighbors regardless of their species. The increased reproduction rate is called a public
good in game theory, since it is of benefit to all nearby individuals, but it also costs resources. In contrast, the
other species (called defectors) takes advantage of the public good for its own reproduction, but does not
contribute to the reproduction of its neighbors in the sameway.Defectors save resources for their own
reproduction and therefore have an advantage. In this scenario defectors do not at all contribute to reproduction
of their neighbors and, therefore, we set 0 = = and just vary and . According to equation (1), these two
parameters increase the respective reproduction rates of cooperators and defectors if they have cooperating
neighbors. Infigure 2(e)we present a setting, where species 2 (defectors) rapidly takes over large parts of the
front. Defectors benefit from the initially large number of boundaries, where they take advantage of nearby
cooperators, and conquermost of the front. Only cooperators, living in sufficiently large sectors, can keep up
with the front during this early period andmay then take over the front, depending on the parameter values.

In a situation like this, it is not a priori clear if the front eventually fixes either to cooperators or to defectors.
Depending on the values of and , cooperators can either outrun defectors and, from their advanced position
at the front, overgrow their competitors laterally, see figure 3(a). Or, defectors cover cooperators with a thin layer
and thereby take over the front, see figure 3(b). Close to the transition between both scenarios, the front displays
increasing roughness since both species are able to take overwhile their fronts growwith different speeds. To
characterize this transition quantitatively, we performed extensive simulations and appliedmethods from
surface roughening [65, 72–74] and the theory of phase transitions dealingwith absorbing states [74, 75].

4. Expanding public goods game: critical behavior

In this sectionwe quantitatively analyze the transition between long-term cooperation and long-termdefection
for an expanding public goods game. As the transition is approached, several observables show critical scaling
[74, 75]. Following our earlier work [69], we perform finite-size scaling to localize the transition. Furthermore,
we determine critical exponents and thereby establish a newuniversality class for the transition between the two
adsorbing states. In the vicinity of the transitionwe also study the dynamics of the sector boundaries including
the decline of theirmean number during coarsening and their superdiffusivemotion as well as the roughening of
the expanding front.

Figure 3. Schematics of possible scenarios in an expanding public goods game.Depending on the parameters , , , and  of
equation (1), cooperators (C, blue) and defectors (D, red) advancewith different speeds, as indicated by arrows. (a)Cooperators
outrun the trailing defectors. From an advanced position along the front cooperators can then expand laterally and take over the front.
(b)A thin layer of defectors keeps upwith the cooperators’ sector and, eventually, completely covers the cooperators.
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4.1. Finite-size scaling and phase diagram
As boundariesmerge, sectors coarsen and the systemprogresses towards one of the two absorbing states. At
finite system sizes L this is a stochastic process and both adsorbing states are reachedwith a certain probability.
However, in the thermodynamic limit, L , ¥ themagnitude offluctuations relative to themean value goes to
zero and one of the absorbing states is reachedwith certainty.We nowuse themethod offinite-size scaling to
determine the transition point between both states [75].

Infigure 4we present the probability Pfix that the front fixes to cooperators and plot it versus  for several
lattice sizes L at 0.1. = Wedistinguish two regimes: onewhere cooperators dominate (P L,fix

1

2
( ) > ) and

onewhere defectors take over.We locate the transition point at L1 2( ) by P L L, .fix 1 2
1

2
( ( ) ) = P L,fix ( ) is a

monotonically decreasing function in  of sigmoidal shape.We use a Fermi function tofit it and extract the
transition point, see figure 4.Other sigmoid functions (e.g. Hill equation, hyperbolic tangent) gave qualitatively
identical results, but with reduced fit quality and hence lower accuracy. As L , ¥ Pfix converges to a step
function, since in infinite systems the absorbing states are reachedwith certainty. The step is positioned at

Llim .c L 1 2≔ ( ) ¥ From the theory of critical scaling applied to absorbing states, we expect that close to the
critical point c the states of the lattice sites are correlated on the transverse distance .x̂ Approaching ,c x̂
diverges as ,∣ ∣D n- ^ where c≔  D - is the distance to the critical point and n̂ is a critical exponent. Forfinite
systems, an absorbing state is reached if

L . 2∣ ∣ ( )x» ~ D n
^

- ^

The transition occurs at L1 2( ) and rearranging equation (2), we obtain

L A L . 3c1 2
1( ) ( ) ( ) » - n̂

The characteristic lengthA is related to themicroscopic length scale, which here is the lattice constant, and
details of ourmodel. It is not important to the following analysis. The inset offigure 4 shows the bestfit of our
data to equation (3), which yields the critical exponent 4.2n »^ and the critical point 1.58c » at 0.1. =
Note that the parameter c 1- of our Fermifit function gives thewidth of the transition region in . Within this
region transverse fluctuations in the boundaries are typically larger than or comparable to L, fromwhich
c L1~ n̂ follows. This is indeed observed and corroborates our scaling analysis (data not shown).

The above procedure can be repeated for different values of tomap out the phase diagram (seefigure 5).
One realizes that the benefit of cooperators from their own species, , has amuchmore pronounced influence
on thefinal state than the defectors’ benefit from cooperating neighbors, . Thismakes sense, since at large
times t 1 the front contains large single-species sectors. Hence, the number of sector boundariesNb, where
defectors can benefit from cooperators, is small: N L.b  Therefore, almost all cooperators have cooperating
neighbors, while only a few defectors have this advantage. This is an example of ‘preferential assortment’, where
the benefit of cooperation is almost entirely available to other cooperators [15, 32, 33, 45–47, 76, 77]. So, for a
wide range of parameter combinations cooperators can indeed outcompete defectors. However, for large

Figure 4.Probability Pfix of the front to fix to cooperators plotted versus  for several system sizes L at 0.1. = Error bars give the
standard error of themean for each data point. Lines are fits of the data points to the Fermi function, c1 exp 1 ,1 2[ ( ( )) ] - +
where 1 2 and c arefit parameters. Inset: The transition point L1 2( ) relative to thefitted critical value 1.58c » (black crosses)
follows a power law in L : ¥ L A Lc 1 2

1 4.2( ) ( ) - = (black line).
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enough  the dynamics at the boundaries still determines the final state of the front and defectors outcompete
cooperators.

4.2. Critical exponents of the phase transition
In the previous section 4.1we already encountered the critical exponent .n̂ Wenow continue to determine
further critical exponents of the phase transition. They are universal, whichmeans independent ofmicroscopic
details. The exponents only depend on the dimension of the system, the number of components of the order
parameter, and symmetries of themodel [74, 75]. Our systemhas properties similar to ‘compact directed
percolation’ (CDP) [78]. This is a stochastic process with a flat front, which also has two distinct absorbing states.
Using this similarity, we proceed by determining critical exponents, which are known for CDP [75], and
compare bothmodels.

At the critical transition, ,c = none of the two species has an advantage. Heterogeneous fronts,
composed ofmore than one sector, exist for long times before the frontfixes to one of the absorbing single-
species states. This can be quantified by themean time tofixation, tfix, presented infigure 6. The data show that
thefixation time has amaximum, the position and value of which growwith system size.

Along the longitudinal direction, in which the front propagates, states are correlated on the longitudinal
distance .x As before, we expect it to scale like ∣ ∣D n-  close to the transition. Since the front propagates with a

mean velocity, x is proportional to a correlation time. Close to c this time becomes very long, which is known

as critical slowing down. Substituting equation (2) into ,∣ ∣x ~ D n-


 we find the scaling relation

L . 4( )x ~ n n̂




Weexpect themean fixation time to be proportional to the correlation time .x~  Therefore, in the inset of

figure 6we plot tfix rescaled by Ln n̂ versusΔ rescaled by L .1 n- ^ All curves of themain plot collapse on a single
master curve for 1.59 0.03,c =  and critical exponents 4.2 0.1n = ^ and 3.5 0.1.n =  The values of

c and n̂ are in good agreementwith ourfit to equation (3). So,fixation of the front is determined by the
characteristic time

L . 5fix
0.83 0.05 ( )t x~ ~ 



Twomore critical exponents right at the transition are related to the survival probability of one species or
state, which initially occupies a single site while all the other sites are occupied by the other state.We choose a
single cooperator site in a line of defectors and determine the probability PC(t) that after time t there are still
cooperators at the front and also calculate the average number of cooperator sites at the front, N t .C ( ) Infigure 7
we plot both quantities versus time for different defector benefit . At the transition situated between 1.55 =
and 1.6, we find that bothPC andNC (see inset) decaywith power laws in time: P t tC ( ) ~ b n- ¢  and
N t t .C ( ) ~ -Q The respective best fits yield 2.2 0.1b n¢ =  and 1.3 0.1.Q =  Using our result for ,n we
find 7.7 0.6.b¢ = 

Figure 5.Phase diagramof the two-species public goods gamewith range expansion. Parameter regimes, where the expanding front
fixes either to cooperators or defectors in large systemswith L , ¥ are indicated by blue and red shade, respectively. Red crosses are
from simulationswith system size L= 1000, where defectors always outcompeted cooperators (P 0fix = )while blue dots identify
events where cooperators survived (P 0fix > ). The black diamonds indicate critical points c for L  ¥ determined fromfinite-size
scaling (see equation (3) andfigure 4). Note that infinite systems defectors have an advantage in a larger parameter region.
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In general, in phase transitions to absorbing states the critical exponentβ governs the stationary density of
‘active sites’, when approaching the transition [75]. In our case, the ‘active’ sites can either be cooperators or
defectors. Since the stationary state is either an all cooperator or an all defector front, the density c∣ ∣ ~ - b

jumps from0 to 1 and henceβ is 0. Our results for all the critical exponents are summarized in table 1 together
with the exponents of some related universality classes.We also give the critical exponents for the neutral
transition point 0, = = whichwere obtained by similarmeans (data not shown). For this case the scaling
of the time tofixation ,fixt and therefore the ratio 3 2,n n =^ can be determined from the annihilation
dynamics of the boundaries (see section 4.3).

The neutral system 0 = = is symmetric in the behavior of cooperators and defectors and therefore
closely related toCDP,where active and inactive sites are interchangeable. Itmay therefore be called a ‘rough
CDP’. The roughness of the front evolves through kinetic roughening and is identical to the one-species Eden
model.When the transition occurs at non-zero and , the symmetry between the two species ismissing.
Indeed, cooperator and defector sectors expand differently, whichwe regard as the reason for the different

Figure 6.Mean time to fixation tfix as a function of defector benefit  for various system sizes L at 0.1. = The inset depicts the
rescaled fixation time, where .c D = - All data collapse on a singlemaster curve for critical exponents 3.5 0.1n =  and

4.2 0.1n = ^ and critical point 1.59 0.03.c =  Accordingly, tfix growswith L and the position of itsmaximumapproaches c
for L . ¥

Figure 7. Survival probability PC of cooperators starting from a single site plotted versus time for several values of . Other parameters
are L= 1000 and 0.1. = For T ,c> PC decreases exponentially, while for T c< the frontfixes to cooperators with a non-zero
probability. At the transition point ,c the survival probability decays in timewith a power lawwith exponent 2.2 0.1.b n¢ = 
Inset: The number of cooperator sites at the front,NC, decays exponentially in time for T c> and is non-monotonic for T .c< At
the transitionNC decreases with a power lawwith critical exponent 1.3 0.1.Q = 
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critical exponents.We study surface roughening of the expanding fronts inmore detail in section 4.4.When
approaching the neutral point 0 = = along the phase transition line, we expect tofind crossover behavior.
Following [79]we determined the crossover exponentf bymapping out the phase transition line close to the
neutral point and by fittingwith c c ~ f (data not shown).We obtained 1.6 0.1.f = 

The set of critical exponents determines the universality class of a phase transition. To our knowledge no
other non-equilibrium transition has been found, which shares the same set of exponents. Hence, the transition
between long-term cooperation and long-termdefection in our expanding public goods gamewith frequency
dependent selection constitutes a newuniversality class.

4.3.Dynamics of boundaries
In this sectionwe investigate the dynamics of the boundaries which separates sectors of cooperators and
defectors from each other. In rough fronts the local front orientation is tilted against themain growth direction.
When the front grows further, this tilt directs themovement of boundaries [27, 29]. Ultimately, when two of
themmeet, they annihilate. Infigure 8we plot theirmean numberNb versus time for several values of the
defector benefit . Right at the transition (dashed black line),Nb shows a power law decay.We nowdiscuss the
different regimes infigure 8.

For neutral systems, where frequency-dependent selection is absent ( 0 = = ), any inclination of the
front is created by stochastic surface or Eden roughening [65, 72–74]. The surface undulations obeyKPZ-scaling
[80] and thereby drive the decay ofNb [27, 29]. Boundariesmove superdiffusively along the front with amean-
square displacement proportional to t 4 3 [28]. On average, they annihilate after having traveled themean
distance L/Nb between the boundaries, for which they need the time L N .b

3 2( )~ Hence, boundaries annihilate
with a rate proportional to N ,b

3 2 which implies

N N N . 6b b b
3 2˙ ( )~ -

Table 1.Critical exponents for the phase transition to the absorbing states (either long-term global defection or long-term global coopera-
tion) for the expanding public goods gamewith frequency dependent selection. The neutral case 0, = = which has different scaling, is
also included. For comparisonwe also give the exponents for CDP [75, 78] and for an earlier work on rough range expansion [69].

n̂ n β b¢ Θ

, 0  > 4.2± 0.1 3.5± 0.1 0 7.7± 0.6 1.3± 0.1

0 = = 0.75± 0.05 1.1± 0.1 0 0.9± 0.2 0.02± 0.01

1dCDP 1 2 0 1 0

[69] 1.6± 0.1 1.6± 0.1 0.50± 0.02 0.51± 0.07 0.32± 0.02

Figure 8.Mean number of sector boundariesNb plotted as a function of time for several values of . Other parameters are L= 1000
and 0.1. = Solid black line: N t t ,b

2 3( ) ~ - as predicted in [29] for neutral growth ( 0 = = ). At large times the simulated
curve deviates from the power law due to finite system size. Dashed black line: Close to the critical point 1.6,c = » wefind a
power-law decay N t t .b

2.5( ) ~ -
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So, the number of boundaries decreases as

N t t , 7b
2 3( ) ( )~ -

as already observed by Saito andMüller-Krumbhaar [29]. This power law is excellently reproduced by our
simulations in the case of neutral growth, 0, = = as illustrated by the solid black line infigure 8.
Equation (7) implies that for 0 = = the time tofixation scales like L3 2 since this is the time after which all
initially present boundaries withmean number N t L0b ( )= ~ have annihilated.

For 0 ¹ and 0, ¹ species reproducewith different rates.Hence, the fronts of twoneighboring sectors
(occupied by different species) advancewith different speeds. This influences the tilt of the front orientation, in
addition to stochastic roughening in neutral systems, and thereby themovement of the separating boundary.
Thus, we do not expect equation (6) to be valid.

Indeed, figure 8 reveals different regimes for themean number of boundariesNb. For ,c > Nbdecays
exponentially in time in linewith the exponential decay of the survival probability PC infigure 7 and similar to
the case of selective advantage in [29]. For c < boundaries annihilate less frequently. Narrow defector sectors
persist in the front dominated by cooperators since almost all individuals in the defector sectors have
cooperating neighbors. This results in the upward curvature of the curves infigure 8.However, the defector
sectors cannot expand laterally and ultimately loose contact to the front due to random fluctuations, andNb

declines exponentially. At c the number of boundaries decreases with a power law N t ,b ~ c- where a new
exponent 2.50 0.05c »  appears. This power law implies that the number of boundaries declines from the
initial value N t L0b ( )= ~ to the order of 1 in the coarsening time

L L . 8coarse
1 0.40 0.01 ( )t ~ »c 

Comparingwith equation (5) reveals 1 .c n n< ^ This suggests that for large systems fixing the front to one
species takesmuch longer than coarsening to a few sectors. Hence, the few remaining boundariesmove
differently compared to early times since they have to annihilate tofix the front to a single species.

To check if this is the case, we employ the initial condition, where the front is composed of only two sectors
of size L 2 each, separated by two boundaries.We quantify the boundaries’ randommotion bymonitoring the
temporal evolution of the standard deviation for the transverse distance ,ℓ̂

t t t . 9
2

ℓ ℓ( ) ≔ ( ) ( ) ( )⎡⎣ ⎤⎦s -^ ^

We subtract themean distance tℓ ( )á ñ^ to take care of any transient drift, when the front relaxes from its initially
flat to the rough shape, and an expected small drift if  is not exactly .c

From figure 9we see that, for early times,σ grows like a power law, t ,s ~ h with 0.71 0.05.h =  This is
consistent withmeandering boundaries induced by Eden roughening, t 2 3s ~ [27–29].We expect such a
behavior since the roughness of the front has not fully developed yet. For large systems and later timeswe find a
crossover to ts ~ h¢with 0.9 0.1.h¢ =  This confirms our earlier statement that at late times the few
boundaries remaining after coarseningmove differently. Indeed, they show an even stronger superdiffusive

Figure 9.Time evolution of two boundaries with initial distance L 2 in a system close to criticality ( 1.6 = ) and at 0.1. =
Standard deviationσ of the transverse distance plotted versus time t for several system sizes L. The boundariesmove superdiffusively.

Initially, ts ~ h with 0.71 0.05,h =  and consistent with Eden scaling (t ,2 3 bold black line). At later times a crossover to ts ~ h¢

with 0.9 0.1h¢ =  occurs (dashed black line).
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motion than Eden scaling, which is associatedwith the long-lived and pronounced surface undulations in
systemswith frequency-dependent selection. To illustrate thesefindings, a system close to criticality is given in
figure 10.

4.4. Surface roughening of the expanding front
Wenowdiscuss the surface roughness or undulations of the expanding front and compare our results to the
classical Edenmodel.Wemeasure the roughness of a front by calculating its widthw for system size L and at
time t:

w L t
L

h i t h t,
1

, . 10
i

L

1

2
1 2

( ) ≔ ( ) ¯ ( ) ( )
⎛
⎝⎜

⎡⎣ ⎤⎦
⎞
⎠⎟å -

=

Here, h i t,( ) is the longitudinal position of the front at its transverse site i and h t¯ ( ) is themean position

h t
L

h i t
1

, . 11
i

L

1

¯ ( ) ≔ ( ) ( )å
=

In the followingwewill only consider systemswhere the front has not yetfixed to one species, for parameters
close to the phase transition. From equation (5)we know that the time tofixation diverges with system size L. So,
in order to extrapolate to L , ¥ we only sample from realizationswhere the front has not yet fixed to a single
species. Figure 11 plots thewidth w L t,( ) close to the critical point at 1.6.c = » Initially, the roughness of
the front grows like in the original Edenmodel [64]: w t ,~ g where the growth exponent 1 3g = belongs to the

KPZ-universality class [65]. At intermediate times a new regime sets in, where w t~ g¢ increases with enhanced
growth exponent 1.3 0.1.g¢ »  Thismarks the transition fromEden roughening to ‘selective roughening’.
Here, the typical shape of the front is determined by advancing cooperator sectors and trailing defector sectors
(see figure 10). On length scales smaller than the typical extension of a sector one still observes Eden-like
roughening. On larger length scales undulations of the front are clearly due to sectors occupied by different
species. The resulting large undulations ultimately drive the accelerated increase of the front’s widthw. The
crossover to this regime happens at time ,t́ which increases with system size L asfigure 11 shows. Thismakes
sense sincewe expect selective roughening to dominate over Eden rougheningwhen the lateral extension of
sectors is comparable to L, i.e., L .coarse

1t t~ ~ c
´ Due to Eden roughening thewidth at the crossover is

w L L .0.13t~ ~ »g g c
´ ´ Indeed, rescalingwidth and timewith ẃ and ,t́ respectively, collapses all data in

figure 11 onto a singlemaster curve, as the inset demonstrates. Note that forfinite L the fronts of all systems
eventuallyfix to one species. The fronts then show classical Eden rougheningwithout any selective roughening.
Any contribution of selective roughening to the overall widthw decays and thewidth saturates according to the
classical law, w tsat

1 2~ [65].
To conclude, surface roughening close to criticality occurs in two regimes. Until crossover time ,t́ one

observes Eden roughening, whereas for times larger than t́ selective roughening occurs until the frontfixes to
one species. The dynamics of thewidth of the front is summarized by

Figure 10.Realization of a system close to criticality ( 0.1, = 1.55 = ) before the frontfixes to one species.Most cooperator
sectors (blue) are rapidly outcompeted by their defecting neighbors (red), but a single cooperator sector survives. Boundaries grow
persistently in one direction for long times, superimposed byfluctuations on smaller length scales. This is indicative for the dynamics
of sector boundaries close to ballistic scaling, which is expected at late times. Thewidth of the front is dominated by selective
roughening: the cooperator sector advances and the defector sector trails behind.
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5. Summary and conclusion

In this workwe studied a generalized Edenmodel, where two species compete with each other at the rough
expanding front. Individuals of the two species influence each other by frequency-dependent selection, which
acts between nearest neighbors.We analyzed the evolutionary dynamics at the expanding front, where single-
species sectors form and coarsen. Ultimately, the frontfixes to one species, whichwe identify with an absorbing
state of ourmodel.

In its general form themodel can implement several scenarios including selective advantage, and alsowell-
known game theoretical settings like the snowdrift game or the coordination game. Each of them creates distinct
patterns, which should be analyzed in detail in futurework. For the prominent example of a public goods game,
wefind that cooperators prevail in awide parameter regime, as expected for a spatial version of a social dilemma
[15, 45–47]. For other parameter values defectors take over the front, as usual.

We identify the transition between long-term cooperation and long-termdefection as a nonequilibrium
critical phase transition between two absorbing states. The set of critical exponents (see table 1), whichwe
determined by analyzing critical and finite size scaling, shows that the phase transition belongs to a new
universality class.We attribute this result to the fact that the front in ourmodel is rough and notflat as in usual
absorbing states. Close to the critical transition the front’s roughness exhibits a crossover in time from slowEden
roughening to fast selective roughening. Strong roughening has also been observed at phase transitions in a
relatedmodel by Lavrentovich andNelson [81].

Our present work does not include creation of boundaries bymutations or othermeans. Therefore, sectors
are compact, a property sharedwith regular CDPwith aflat front [78]. Note however, that we found exponents
different from that of the flat CDPuniversality class, see table 1. This is not astonishing, since not only dowe treat
rough fronts, but there also exists no symmetry whenwe exchange defectors and cooperators (besides at

0 = = ), whereas there is an exact symmetry upon exchange of active and inactive sites inCDP.
For continuous phase transitions the critical exponents and the transverse dimension d of the system are

usually related to each other by hyperscaling relations [74, 75], at least below an upper critical dimension dc. For
systemswith several absorbing states a so-called generalized hyperscaling relation exists [82]

d . 13( )n n b b= Q + + ¢^ 

This relation ‘holds for almost all universality classes of absorbing phase transitions below their upper critical
dimension’ asHenkel et al state in [75], however, without giving any counterexample. The critical exponents

Figure 11.Thewidthw of the front plotted versus time for several system sizes L close to the critical point at 1.6.c = » Inset: after
rescaling time t by L1t ~ c

´ andwidthw by w L ,~ g c
´ the curves collapse onto a singlemaster curve. The solid black line indicates

Eden rougheningwith w t ,1 3~ whereas the dashed black line shows selective rougheningwith w t1.3~ for t .t́ Note that the
saturation ofw at large times is due to thefinite system size and the fact that we only sample from realizationswhere the front has not
yet fixed to a single species (seemain text for details).
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determined in our present work (see table 1) violate the above equation for d= 1. Itmight therefore be that our
model has a critical dimension dc smaller than 1. An alternative explanationmay be that the enhanced roughness
of the front leads to an effective dimension larger than one similar tomodels of surface growth, which create
fronts with fractal properties [65]. Interestingly, in an earlier work [69]we also found enhanced roughness in the
expanding front at the phase transition. There, the generalized hyperscaling relationwas fulfilledwithin the
margin of error of the critical exponents.

The roughness of the front correlates with superdiffusivemotion of the boundaries separating sectors. Two
factors contribute to themovement of the boundaries on long length scales. On the one hand, the direct
competition between the species on either side of the boundaries pushes them towards the sector composed of
themore slowly reproducing species. On the other hand, boundaries follow the local tilt of the front. In the
public goods game cooperator sectors are advanced, while defector sectors lag behind.Near the critical
transition, defectors outcompete their direct cooperating neighbors but the front is tilted towards sectorsfilled
by defectors, so the two factorsmove the boundaries in opposite directions. At the phase transition both effects
cancel and the front fixes with equal probability to either species. The strong roughening correlates with
superdiffusivemotion of the boundaries with nearly ballistic scaling.

Accordingly, whether a species takes over the expanding front is determined by two contributions: its
reproduction rate relative to its competitor and its position relative to the average front position. The influence
of different reproduction rates of neighboring species can directly be compared and is summarized in the phrase
‘survival of the fittest’. The position at the front determines the available space for progeny, which then have the
opportunity to expand sidewards. This is illustrated by the phrase ‘survival of the fastest’ [39].

In ourmodel the number of sectors only decreases. It does not include experiments withmutually beneficial
interactions between different species, which do not generate sectors [38, 83, 84]. In future extensions of our
model thismay be remedied by includingmotility of individuals [85, 86], by allowing reproduction tomore
distant lattice sites [81], or by increasing themaximal number of individuals per lattice site fromone.Moreover,
it is worthwhile to consider interactions ranging beyond nearest neighbors, since biomolecules, released by
individualmicroorganisms,may diffuse in the extracellularmedium [87–89]. In the public goods game scenario
this would stabilize narrow sectors of defectors so that they do not lose contact to the front.

In general, range expansion ofmultiple species will develop enhanced roughness at the growing front. Aswe
demonstrated here, the correspondingmodels have new and interesting statistical properties. From a biological
point of view, roughness is important. It affects the territories that different species occupy and thereby their
evolutionary success through the strong randommotion of sector boundaries. Thismay also be relevant for
range expansion in a real environment and not just in a test tube. To better understand the properties and
consequences of rough expanding fronts, further theoretical work is needed. At the same time further
experiments should look for thefingerprint of roughness inmicrobial colony growth.
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