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Abstract

Spurred by the needs to provide innovative tools for the management and query
of large image databases, techniques for content-based image retrieval have been
developed within the last years. As in other research fields, further progress depends
on the ability to carefully evaluate both image retrieval and image understanding
functions — a field that has not been given much attention yet. The difficulty in
validating an image retrieval system is due to the lack of standardized evaluation
criteria and the arbitrary selection of datasets.

In this dissertation, we present a concept for the enhancement and evaluation
of a knowledge-driven content-based image information mining system. The main
application of the system is to provide users with a tool by which the content of
remote sensing image archives can be explored without actually browsing them.
Therefore, the system models the image data in a hierarchical Bayesian way, where
the content information is arranged at multiple levels of different semantic abstrac-
tion. The hierarchy consists of two major parts: a computational-intensive off-line
data processing, which aims at the extraction and description of the image content
in a completely unsupervised and application-free way (level 0 to 3) and a fast, user-
specific semantic labeling of cover-types (level 4). Since each semantic label is linked
to the image content by using stochastic parametric signal models, the archive can
be queried in a probabilistic way.

Although the concept of application-free image content modeling and application-
specific labeling has shown its usefulness in various practical applications, it is, how-
ever, of limited use for the definition of complex cover-types. Hence, a new level of
image content abstraction is introduced: semantic grouping. This method is based
on the aggregation of existing labels to high-level semantic concepts (level 5) ac-
cording to the user’s feedback samples. Additionally, this method of image content
definition at semantic level can be extended to query remote sensing image archives
across sensors and data collections.

This thesis mainly contributes to content-based image retrieval system evaluation
and verification. Unlike other methods that express the overall performance of a
retrieval system in terms of relevant and irrelevant images in the query results,
our approach first decomposes the overall system into its basic components, then
evaluates each one using information-theoretic quantities and finally combines the
individual measurements to indicate the overall system performance. The advantage
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of this strategy is its full adaptability to the hierarchical scheme underlying the
mining system. Moreover, the stochastic nature of the system is fully incorporated
in information theory. Additionally, analyzing individual system modules and fusing
the measurements is easier than analyzing the overall system complexity in one step.

Information theory provides a number of powerful measurements to analyze the
technical objective quality of system components, to identify user-related subjective
concepts and to verify the information flow during system operation. We outline
methods to validate the information content of primitive image features, unsuper-
vised clusters and semantic labels, to analyze the effectiveness of the interactive
learning and probabilistic search system modules and to demonstrate how seman-
tic cover-types are preserved for increasing volumes of data and subspace clusters.
Subjective evaluation mainly involves the analysis of human-machine interactions,
that is, performed actions, timing of actions, communication and information rep-
resentation aspects and the prediction of the users’ interests. In order to verify
the information transmission between different levels in the hierarchical scheme, we
analyze the mining system from an imperfect communication channel point of view.

Validating the image information mining system requires a particular organiza-
tion and the development of appropriate tools. Therefore, we trace all performed
actions between the users and the system and implemented functions for the statis-
tical analysis of user-tracing parameters. With these tools we get a set of evaluation
measurements that reflect the objective quality of the system and compare them
with subjective user satisfaction. In order to verify the performance of the obtained
measurements, we organized a large-scale system evaluation test with participants
from different working fields. The results obtained show both the performance of
the system and the relevance of implemented functions for system validation.

In order to verify the overall performance of the system, we selected various
datasets with different properties according to certain application scenarios. We
analyzed the computational requirements for off-line feature extraction, clustering
and catalogue entry generation, the quality of the system to manage large volumes
of data, the complexity of the applied datasets, the performance of the graphical
man-machine interface and the quality of the defined semantic image content.



Zusammenfassung

Die Notwendigkeit eines effizienten Zugriffs auf grofie Bildbestdnde in Datenbanken
fithrte zur Entwicklung von Verfahren der inhaltsbasierten Bildsuche (Image Data
Mining). Die Weiterentwicklung dieser Verfahren héngt — so wie in anderen For-
schungsgebieten auch — davon ab, ob sich die Methoden der Bildabfrage als auch
des Bildverstehens quantitativ bewerten lassen. Bislang wurde der Thematik der
Evaluierung von Systemen zur inhaltsorientierten Bildsuche nur sehr wenig Aufmerk-
samkeit geschenkt. Die Schwierigkeit dieser Systemevaluierung liegt am Mangel
standardisierter Kriterien und willkiirlicher Bildauswahl.

In dieser Dissertation wird ein Konzept zur Weiterentwicklung und Evaluierung
eines wissens- und inhaltsbasierten Bildarchivierungssystems vorgestellt. Die Haupt-
anwendung des Systems liegt darin, Nutzern ohne die Visualisierung alle Bilder
den Zugriff auf den Bildinhalt in Fernerkundungsdatenbanken zu ermoglichen. Um
diesen Zugriff effektiv zu gestalten, werden die Bilddaten in einer sog. Bayes’schen
Hierarchie modelliert. Der Informationsinhalt wird dann auf mehreren Ebenen mit
verschiedener semantischer Abstraktion angeordnet. Die Hierarchie gliedert sich in
zwei Hauptteile. Der erste Teil besteht aus einer rechenintensiven off-line Verarbei-
tung der Bilddaten mit dem Ziel, Bildmerkmale zu extrahieren und den Bildinhalt
in einer vollstdndig uniiberwachten (unsupervised) und anwendungsfreien Art ab-
strakt auf Signalebene zu beschreiben. Der zweite Teil besteht aus der Definition
von Bodenbedeckungstypen und der semantischen Namenszuweisung. Da jede Bo-
denbedeckungsart iiber stochastische Signalmodelle dem Bildinhalt zugeordnet ist,
kann das Bildarchiv “stochastisch” abgefragt werden.

Obwohl das Konzept der anwendungsfreien Modellierung und der anwendungs-
spezifischen semantischen Beschreibung in vielen praktischen Beispielen zum Erfolg
fiihrte, war es nur von begrenztem Nutzen fiir die Definition von komplexen Bild-
inhalten. Deshalb wurde eine neue Abstraktionsebene eingefiihrt: die semantische
Gruppierung. Diese Methode basiert auf der Zusammenfassung von vorhandenen
Bodenbedeckungstypen in hoherrangige semantische Konzepte unter Einbeziehung
der Nutzer. Dariiberhinaus kann diese Methode, unabhéngig von Aufnahmesensor
und Datensétzen, fiir die Beschreibung von Bildinhalten auf semantischem Niveau
fiir die Abfrage von Fernerkundungsdatenbanken verwendet werden.

Der Hauptteil dieser Arbeit beschaftigt sich mit der Evaluierung eines Systems
zur inhaltsbasierten Bildsuche. Im Gegensatz zu anderen Verfahren, welche die
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Gesamtleistung eines Systems hinsichtlich relevanter und irrelevanter Bilder in den
Abfrageergebnissen beschreiben, zerlegt der vorgestellte Ansatz zuerst das Gesamt-
system in seine Einzelkomponenten. Bevor die einzelnen Messwerte zusammenge-
fasst werden, um die Gesamtleistung des Systems zu ermitteln, wird jedes Modul
basierend auf informationstheoretischen Messgrossen evaluiert. Der Vorteil dieses
Ansatzes liegt darin, dass er vollstdndig in das hierarchische Konzept des Bildarchi-
vierungssystems implementiert werden kann. Hinzu kommt, dass die stochastische
Natur des Systems vollstandig in die Informationstheorie eingebunden wird. Denn
es ist einfacher, einzelne Systemmodule zu analysieren und die Messgrossen zu kom-
binieren als die Gesamtkomplexitat des Systems in einem Schritt zu beschreiben.

Die Informationstheorie stellt eine Reihe leistungsstarker Messgrossen zur Ver-
fiigung, um die technische Qualitat von Komponenten des Systems zu iiberpriifen,
nutzerrelevante Aspekte zu verifizieren und den Informationsfluss wahrend des Sys-
tembetriebs zu untersuchen. Es werden Verfahren zur Evaluierung von primitiven
Bildmerkmalen, uniiberwachten Clustern und iiberwachten Bodenbedeckungstypen
mit semantischer Bedeutung vorgestellt. Desweiteren wird die Leistungsfahigkeit
der Systemmodule “Interactive Learning” und “Probabilistic Search” beschrieben
und gezeigt, inwieweit Bodenbedeckungstypen fiir zunehmende Datenmengen und
Cluster von Unterraumen beibehalten werden. Die subjektive Evaluierung beinhal-
tet hauptsachlich die Mensch-Maschine Kommunikation, das heifit die ausgefiihrten
Aktionen von Nutzern, den Zeitaufwand fiir Aktionen, die Aspekte der Kommunika-
tion und Informationsdarstellung und die Vorhersage von Nutzerinteressen. Um die
Informationsiibertragung zwischen verschiedenen Systemniveaus zu evaluieren, wird
das Bildarchivierungssystem aus Sicht eines unvollkommenen Nachrichtentiibertra-
gungskanals untersucht.

Die Uberpriifung des verwendeten Mining Systems erfordert eine besondere Archi-
tektur und die Entwicklung von geeigneten Verfahren. Um dies zu bewerkstel-
ligen, werden alle getatigten Aktionen zwischen Nutzer und System festgehalten
und statistische Verfahren zur Untersuchung dieser Parameter entwickelt. Diese
Methoden liefern eine Reihe von Messwerten, welche die objektive Qualitat des Sys-
tems wiederspiegeln. Im Anschluff daran werden sie mit der subjektiven Bewertung
der Nutzer verglichen. Zur Uberpriifung der Signifikanz der erhaltenen Messwerte
wurde ein grossangelegter Systemtest mit Teilnehmern aus verschiedenen Arbeitsge-
bieten durchgefiihrt. Die Ergebnisse geben Auskunft iiber die Leistung des Systems
und die Bedeutung der implementierten Module fiir die Systemevaluierung.

Um die Gesamtleistung des Mining Systems zu evaluieren, wurden, je nach An-
wendung, mehrere Datensatze mit verschiedenen Eigenschaften ausgewihlt. Fol-
gende Systemanforderungen wurden untersucht: die Extraktion und Kompression
von Bildmerkmalen, die Erzeugung der Daten, welche in das System integriert wer-
den, die Qualitat des Systems zur Verwaltung groffer Datenmengen, die Komplexitét
der verwendeten Daten, die Merkmale der graphischen Benutzerschnittstelle und die
Qualitat von definierten Bodenbedeckungstypen.
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Introduction

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

T. S. Eliot [The Rock, 1934]

How to measure the performance of a remote sensing image information mining
system? How to organize an overall retrieval system evaluation procedure and what
has to be included to obtain reliable and meaningful results? In recent years, many
new developments and tools have entered the field of accessing digital images in large
databases by their visual content. Most of the content-based image retrieval systems
have been equipped with functions to extract relevant visual information from the
data, to generate a content-index and to realize the search process in an interactive
way based on a graphical human-computer interface. As in any other field, however,
further progress depends on the ability to evaluate the image mining and image
understanding functions and methods. If someone wants to compare individual
functions or the overall performance of a system with others, problems will occur
since most image retrieval systems are either not or only very sparsely validated.
Evaluation is one of the most neglected fields in content-based image retrieval: there
is no common test-bed for testing and verifying and most attempts are restricted
to precision/recall graphs and related quantities. Precision/recall graphs, which
have originally been developed in textual document retrieval, are less suited for
content-based image retrieval since they do not allow us to assess the performance
of individual system modules. They only validate the retrieval capability according
to relevant and irrelevant images that the search results contain.

In addition to the performance validation of a content-based retrieval system,
we further face rather complex remote sensing image data that are characterized by
a high diversity of structures and objects. There exist several intelligent systems
that provide novel methods to access the contents of this special kind of data. An
approach that proved to be useful in several applications models the image data in a
hierarchical Bayesian way. First, primitive features and meta-features are extracted
from the image data and then clustered in an unsupervised and application-free
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way (DATCU et al. 1999). From the clustering we obtain a vocabulary of charac-
teristic signal classes that is valid across all images in the archive. User-related and
application-specific semantic cover-type labels can be defined based on this vocabu-
lary. The scheme and the implemented system provide the basis for the evaluation
performed. The elements at a certain level in the Bayesian hierarchy are obtained
from the elements of the level(s) below in a probabilistic way. That’s why this
arrangement, enables us to determine both the information content of individual
levels and the information flow between different levels using information-theoretic
measurements.

After this short introduction into content-based image retrieval and evaluation,
we will give an overview about techniques to access digital data by their content in
Sec. 1.1. Although this short review does not comprehensively reflect the situation
in content-based retrieval and evaluation, it gives the reader a first impression of the
complexity of this field. In Sec. 1.2, we deal with existing problems and the reason
why we verify our retrieval system. In Sec. 1.3, we briefly sketch out the basic
evaluation concept that will be explained and applied throughout this dissertation.
We conclude this chapter with an overview of the organization of this thesis in
Sec. 1.4.

1.1 Content-based Retrieval of Digital Data

A characteristic element of today’s ‘information society’ is the ability to interactively
communicate with a variety of new digital media. The performance of a communi-
cation system is equivalent to the computational performance that has resulted in
fast processors and large data repositories to convert and store the massive volumes
of textual, audio and visual information (NEUMAN 1991). With the introduction of
the Internet the digital data are not only characterized by local networking, compu-
tation and storage capacity but also by the loss of geographical restrictions. While
it is fascinating to immerge in unlimited sources of data, it can at the same time
lead to considerable resignation and frustration. Therefore, one challenge is not only
to improve the fast access and storage of large data quantities, but also to measure
the value of the data by extracting meaningful and relevant information from it.
The state-of-the-art database management systems can only process structured
data in alphanumeric form. These data are characterized by the fact that the in-
formation is in the database tables, that is the data samples themselves. With the
newly established discipline of data mining a number of methods are available for
information extraction and manipulation: filtering, sorting, classification, retrieving
and summarizing of data content. The information extraction approach changes for
unstructured data types such as text, images, video and other multimedia. A com-
mon method to describe the content is to annotate metadata or textual descriptions
provided by humans. But data like sound or images can have multiple interpre-
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tations and since the annotated keywords usually reflect more the preferences and
intentions of the person that produced them., text annotation is not a suitable tech-
nique for handling large datasets. A more reliable approach is to directly describe
the data with regard to content-based attributes.

Text document retrieval

In the time of Internet most users regularly apply search engines like Google or Yahoo
as a convenient way to look for specific text documents. To efficiently search and
retrieve relevant documents from large databases, most engines use a pre-generated
content-index that has automatically been computed (SCHAUBLE 1997). In the
case of text retrieval the meaning of the document is given by the content itself.
Semantic ambiguities of the index, however, require exact queries to obtain the
desired results. Despite exact queries, search engines usually return quite a high
number of results, where only one half of the atop 20 top-ranked ones is relevant
for the user (CASASOLA 1998). In order to increase the efficiency of search engines,
intensive research efforts have been made to incorporate the user’s behaviour in the
retrieval process. Hereby, the analysis of human-computer interactions has been at
the center of interest.

Image database retrieval

Experience has shown that classical image file text annotation does not meet the
requirements that visual content representation and retrieval from large image repos-
itories demand. To avoid text annotation, systems for content-based image retrieval
(CBIR) have been implemented. This way users can directly formulate their queries
with regard to visual content parameters. A standard procedure for CBIR is ac-
complished in an interactive way: the user selects image examples, the retrieval
system proposes the best matches from the database and the user provides another
set of examples. The advantage of an interactive CBIR system is that the user gets
involved and can guide the retrieval process by making decisions based on visual
similarity. However, a system does not always retrieve images the user is searching
for since there is a gap between visual and semantic similarity. As a consequence,
key issues of content-based image retrieval are to find visual attributes that per-
form well for image matching and to learn from the user’s interactions in order to
optimally incorporate the user’s feedback in the retrieval process.

The development of CBIR systems started about 20 years ago. Some represen-
tatives of early operational systems are IBM’s Query By Image Content (QBIC)
(FLICKNER et al. 1995), Excalibur’s RetrievalWare (DowEg 1993), MIT’s Photo-
book (PENTLAND et al. 1996) and FourEyes (MINKA and PICARD 1997). The
number of experimental and operational systems implemented in computer vision
and multimedia groups shows that content-based image retrieval is still quite an
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intensive research area. An overview of existing systems and current research direc-
tions can be obtained via Internet by the Viper project page (COMPUTER VISION
GROUP 2003), by one of the comprehensive reviewing articles (SMEULDERS et al.
2000) or books (VELTKAMP et al. 2001). With contributions by pattern analysis
and machine learning many advances have been made including the extraction of
visual image features, the indexing of multidimensional feature vectors and system
design (Rut et al. 1999).

While the size and the information content of images has continuously increased,
CBIR with its global feature representation has not been satisfactory anymore. As
a consequence, region-based image retrieval (RBIR) has been developed. The ap-
proach aims at the segmentation of each image into individual regions that are in-
dexed by local characteristic attributes to make possible a more detailed description
and interpretation of the content. Systems that offer region-based query functions
with an automatically performed segmentation are ‘Blobworld’ (CARSON et al. 1997)
and ‘Netra’ (MA and MANJUNATH 1999).

Both CBIR and RBIR are computer-centered approaches and the concepts only
partly adapt to the user’s needs. Image retrieval systems have been equipped with
relevance feedback functions to incorporate the user’s feedback during interactive
learning and to search images similar to the user’s conjecture. MIT’s FourEyes
successfully implemented user feedback in the retrieval process using a selection and
combination of feature grouping. The method refines the user’s interaction and
enhances the quality of the queries.

1.2 Problem Definition and Motivation

The most frequently applied measurements for system effectiveness evaluation are
precision/recall (PR) graphs or quantities like false alarms or visual inspection of the
queried top-ranked images. In this frame, a typical practice for retrieval effectiveness
verification is just to query the system. The query delivers a set of highest-ranked
images that are either relevant or irrelevant. If a retrieved image is relevant according
to the query, it is answered by relevance judgements (or ground-truth information),
which is by far the weakest point in this validation method. The lack of ground-truth
can be overcome in the same way as it is solved in text document retrieval (HARMAN
1992): visual inspection and keyword annotation. This approach works well for small
or medium datasets, but is intractable for large volumes of data with several millions
of images that remote sensing archives contain today.

In remote sensing, retrieval effectiveness measurements should not be focused on
counting relevant and non-relevant images in the search results. Instead, a more
significant assessment is to analyze the precision of the coverage in each individual
image. Similar to PR graphs, this approach requires ground-truth cover maps that
are hardly available and, if so, only for small and connected test areas. Therefore,
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Figure 1.1: Architecture of DLR’s image information mining system for interactive
learning and probabilistic retrieval of remote sensing image content. The system is
composed of a computer and a data intensive off-line part for visual feature extrac-
tion and indexing, and a fast on-line interface where the user learns the system based
on the generated content-index. Considering the system architecture with different
modules and interrelations, an overall evaluation is a complex task and the subject
of this thesis.

realizing this retrieval performance test depends on whether ground-truth can be
provided or not.

From the technical point of view, the evaluation of a content-based image re-
trieval system should not remain at the level of precision/recall graphs and related
quantities. These measurements only yield information about the system query func-
tion and do not include properties that are characteristic of a modern image mining
and retrieval system such as: the time to extract visual attributes like color, texture
and shape, the capability of these features to represent structures and patterns in
the image, the quality of the generated content-index, etc. Since modern retrieval
systems are based on a server-client architecture where the human interacts with
the computer by a graphical user interface (GUI), communication and information
representation methods are a matter of evaluation, too. Meaningful measurements
could be the time-span of learning the system and its functions, the time required
to achieve goals on benchmark tasks, the error rates and time-retention during the
use of the interface (BAEZA-YATES and RIBEIRO-NETO 1999).

However, the probably strongest performance evaluation is the user’s judgment of
the retrieval system. But such a performance test is not an easy task since many ex-
pert users from different application fields have to be included in the experiments to
obtain reliable and statistically correct results. Furthermore, tests involving humans
are usually hard to carry out, subjects must be carefully selected and experiments
must be well-designed in order not to influence the outcomes and to shift them in
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the desired direction. Large-scale tests involving many participants also put high
requirements on the organization: a high number of tests has to be performed in a
comparatively short time, results have to be recorded and the retrieval system must
be kept stable during the experiments.

Altogether, an overall system evaluation concerning objective and subjective is-
sues is a rather complex task. This dissertation aims at the development of methods
and algorithms for system validation and system upgrade to achieve an optimal per-
formance. Additionally, we measure the relevance of the proposed methods from
the user’s point of view in various applications. The complete system evaluation
procedure is based on the Image Information Mining (I?M) system of the German
Aerospace Center (DLR) as depicted in (Fig. 1.1). Owing to the complexity of the
system, the overall system performance cannot be represented by just one single
measurement. The evaluation concept includes specific methods to determine both
the technical quality and complexity of the system, e.g. information content of prim-
itive image features and semantic cover-types, and (subjective) user-conjecture. We
will not only verify individual system modules but also the man-machine interactions
and the information flow during system operation.

1.3 Basic Evaluation Concept and its Positioning

From the application point of view, image information mining is quite close to
content-based image retrieval, and thus, the concept of this dissertation for system
performance evaluation belongs to this domain. However, in contrast to standard
multimedia retrieval systems we deal with remote sensing data that need particular
treatment. Whereas in standard multimedia applications the aim is to derive high-
level semantic concepts from the image content, e.g. ‘playing kids in a park’, the
content of remote sensing data is characterized by its high diversity of objects and
structures at different scales and thus requires a complete description of the scene.

To achieve this goal, a concept for modeling the content of remote sensing images
in a signal-oriented way has been developed, implemented and successfully tested. In
a first step, an unsupervised content-index is generated from pre-extracted primitive
image attributes. Later, this index is linked to the user’s interests and allows him to
query for relevant images in the archive without actually browsing them. According
to this concept for representing the image content at multiple levels of different
semantic abstraction, we organize the evaluation procedure in the same hierarchical
way; we start the evaluation with an analysis of the quality of the image data
and determine the information content of primitive image features and content-
index. This analysis is based on techniques from statistics and statistical pattern
recognition.

However, for the performance evaluation of the image information mining system,
other scientific fields are important. With confusion or error matrices as a standard
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Figure 1.2: Positioning of the thesis’ concept for system evaluation and the par-
ticipation of several scientific fields. Whereas the most important input comes from
information theory, the most significant part of the work is content-based image
retrieval.

technique in remote sensing, we obtain the accuracy and separability of user-specific
semantic cover-types. The quality of the stochastic link between (subjective) seman-
tic labels and (objective) signal classes from the content-index is verified by using
information-theoretic quantities. Since a semantic label is trained in several inter-
actions between the operator and the mining system, psychophysical aspects are a
matter of evaluation, too. Comprising, various scientific disciplines are involved in
the overall system evaluation as summarized in (Fig. 1.2).

The main concern of this thesis is to obtain the quality of the mining system using
measurements from estimation and information theory. In the Bayesian hierarchical
representation of the image content (see Chap. 4 for details), the observed elements
— image data, features and meta-features, signal classes, semantic cover-types and
aggregated semantic labels — are regarded as random variables at each level and
the process of information extraction is realized by estimating the parameters of
the random process. In order to draw conclusions from data (observations at a
certain level) to unknown parameters (elements of another level) that have to be
determined, we apply stochastic signal models that are given in the mathematical
form p(X|#). These models express the probability of the data X conditioned on a
particular parameter 6. In this model definition, different structures in the data are
reflected by different values of the parameter. With Bayes’ formula, the probability
(likelihood) of the data p(X|€) can be converted to the posterior probability p(6|X)
by using some prior information p(@). It thus allows us to determine the parameter
0 from the data X a posteriori.

Based on this stochastic modeling, the determination of the information content
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Figure 1.3: Basic principle of extracting and measuring information. From obser-
vations X, information in form of a stochastic parameter 6 is extracted applying
a parametric signal model p(X|0). The amount of information or uncertainty con-
tained in single random variables X and 6 is measured by entropy, information
between two different random variables over the same space by Kullback-Leibler
divergence and the accuracy of an estimated parameter vector is reflected by the
Cramér-Rao bound.

of observations X, estimated parameter # and — if we consider X and 6 as two dis-
crete random variables indicating the input and output of a communication channel
— the association between X and 6 is evident as depicted in (Fig. 1.3). Since we
assume all quantities to be random variables, we can apply measurements like the
entropy H(p;) to determine the amount of information (or uncertainty) contained
in a single probability distribution p;, e.g. over the data X, Kullback-Leibler di-
vergence D(p;; q;) as the ‘distance’ between two probability distributions p; and ¢;,
e.g. prior p; = p(A) and a posteriori ¢; = p(0|X), and the Cramér-Rao bound o3 to
indicate the accuracy of the estimate of parameter 6. Of course, information theory
does not always provide the most suitable measures for system effectiveness assess-
ment. To evaluate the system in terms of usability, questionnaires are the adequate
method. On the other hand, most observations can be expressed as probabilities
and information theory provides a number of powerful measurements that reflect
the amount of information.

Now in this dissertation, we first explain the outlined principles of measuring
information in detail, Chap. 3, and then apply them in the following parts: de-
termining the technical system quality in terms of information content of extracted
primitive image features (Sec. 7.1), content-index (Sec. 7.2) and semantic cover-type
labels (Sec. 7.3 and 7.4), subjective evaluation aspects according to system opera-
tion (Sec. 7.6) and man-machine interaction (Sec. 7.7), and the association between
elements of different system levels (Sec. 7.8). Chap. 8 describes the applied concept
in a performed overall system validation procedure and Chap. 9 shows the executive
summary of the main evaluation results.
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1.4 Outline of the Dissertation

In chapter 1, we have given a brief introduction to content-based retrieval of digital
data. The complex situation in image retrieval system performance validation and
its necessity to have further progress has been described. Then, the applied evalua-
tion concept of measuring the information content of stochastic quantities has been
pointed out.

In chapter 2, we show characteristic techniques and concepts applied in content-
based image retrieval and understanding. We discuss basic visual image attributes
like color, texture and shape and how these features can be efficiently indexed.
We sketch out methods for the fusion of different sources of data to improve the
retrieval results and outline how high-level semantic concepts can be derived from
low-level features. Since the visual content in terms of objective attributes does
not always correspond to the user-related subjective image interpretation, the user’s
relevance feedback is incorporated in the retrieval process. Unfortunately, the system
verification and validation, which is subject of this dissertation, is often a neglected
topic in multimedia and remote sensing image retrieval.

The information-theoretic background of measuring the amount of information
contained in probabilistic quantities, which is the core of the evaluation principle
in this thesis, is outlined in chapter 3. We discuss probability, inference, basic
measures of information, their main properties and relationships, and how they are
applied to evaluate system components as well as the overall system performance.

In chapter 4, we explain the hierarchical scheme of modeling the image content
using multiple levels of different semantic abstraction. This chapter summarizes the
basic theoretical concepts of Bayesian image content representation as it is imple-
mented in the information mining system. In this thesis, we arrange both evaluation
methodology and procedure in the same hierarchical organization: image data, fea-
tures and meta features, content-index, user-specific cover-types and aggregated
semantic labels.

In chapter 5, we present a realization of the hierarchical modeling of image
content: image information mining in remote sensing image archives. We outline
methods to describe the content of both optical and radar image data and the gener-
ation of a vocabulary of characteristic signal classes that is valid across all images in
the archive. Then, we assign user-specific semantic cover-type labels to this objective
and application-free description of the image content by using simple Bayesian net-
works whose parameters are learned in several human-computer interactions. This
learning paradigm is implemented as an on-line graphical interface that supports
the user and continuously gives him relevance feedback about the learning progress.
If a cover-type is trained, its stochastic definition can be used to query for images in
the archive with a content similar to the label in a probabilistic way. We conclude
this chapter with system configuration issues and practical applications.

The following four chapters present the main outcomes of this thesis:
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e In chapter 6, we expand the demonstrated concept of modeling the image
content at multiple levels of different semantic abstraction. Since the signal-
based learning of image content does not allow the discrimination of complex
image structures, we aggregate user-related labels in order to obtain higher-
level semantic concepts. We discuss the algorithm for interactive learning this
new kind of image content abstraction and show how it can be extended to
index and query heterogenous collections of images. Finally, we outline the
importance of domain ontology for the representation of semantic categories
using individual user-specific cover-types.

e Then, in chapter 7, we present a methodology for the performance evaluation
of specific components of the image information mining system and their in-
terrelations. The methods aim at determining the technical objective quality,
the complexity of the system and the subjective user conjecture. We mea-
sure the information content of primitive spectral and textural image features,
feature space clusters, unsupervised content-index and semantic cover-type la-
bels. Additionally, we evaluate human-machine interactions, the information
flow between user and database during system operation and communica-
tion/knowledge representation aspects.

e In chapter 8, we demonstrate a procedure that combines individual evalua-
tion measures defined in Chap. 7 to indicate the overall system performance.
We describe the organization of a large-scale system validation, analyze the
relevance and the correlation of the proposed measurements using a Karhunen-
Loéve transform and compare the outcome with the user’s degree of satisfac-
tion.

e Experiments and results of an extended one-week system verification test are
summarized in chapter 9. We show properties of the applied datasets, the
efficiency of the off-line data ingestion chain, the scalability of the system to
add large amounts of data, the complexity of image archives, the performance
of the on-line graphical user interface and the quality of the defined semantic
image content.

We conclude this dissertation in chapter 10 with a summary of the main results
and an outlook. Thereby, we outline relevance and limitations of the proposed
approach and show further methods for system optimization and evaluation.

In appendix A we point out details of the Karhunen-Loéve transform and in
appendix B we summarize variables and abbreviations used in this dissertation.

Experimental setup

Throughout this thesis, we show many examples and visualizations that reflect the
performance of the implemented image information mining system. It can be ac-
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cessed by everyone via Internet !. The methods and algorithms we apply in the
evaluation procedure are not visible in the on-line version of the system, they are
linked to the system via a tracing module that stores all performed human-machine
interactions in the DBMS. Based on this information, a set of parameters is com-
puted for each inserted user-specific semantic cover-type that constitutes the objec-
tive part of the evaluation protocol. In order to analyze the significance of these
measurements and their correlations, we compute the Karhunen-Loéve transform
and compare the outcomes with the subjective part of the evaluation protocol. The
results are subject of a new mining function that after each system operation indi-
cates to the user the learning progress. In the experimental version of the mining
system coded in C++ and IDL 2, the new relevance feedback function is currently
under investigation.

Publications

Some major parts of this dissertation have already been published in several con-
ference proceedings and in two reviewed articles. The basic concept of the image
information mining system has first been published in (SCHRODER et al. 2000) as in-
teractive learning and probabilistic retrieval in remote sensing image archives. Then
followed the first part of the knowledge-driven image information mining system ar-
ticle (DATCU et al. 2003), this time with emphasis on information representation,
transmission, multi-mission data mining and system operation aspects. The system
evaluation methodology, the procedure and the experimental results have mainly
been presented in the second part of the knowledge-driven image information min-
ing system article (DASCHIEL et al. 2003). Minor parts of this article were pre-
viously published in (DASCHIEL and DATcU 2002b) and a detailed description of
the dyadic k-means clustering algorithm as briefly presented in (DATCU et al. 2003)
is given in (DASCHIEL and DATcU 2002a). The evaluation of the information flow
and communication channel view of the system was published in (DASCHIEL and
Datcu 2003¢). An extension of the evaluation of the mining system in terms of man-
machine interaction, graphical user interface and information representation and
communication aspects will perhaps be published in (DASCHIEL and DATCU 2003b).
An article dealing with the enhancement of the mining system, namely the aggre-
gation of user-specific cover-types labels, indexing of heterogenous collections of im-
ages and learning semantic categories, is currently under review as (DASCHIEL and
DaTcu 2003a).

thttp://www.acsys.it:8080/kim
2Interactive data language
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Review in Content-based Retrieval
of Image Data

The situation in content-based retrieval of image data is characterized by many
systems and algorithms but only little attention has been paid to system verification
and evaluation so far. No common benchmark test environment has been developed
and established. Therefore, research groups use their own image collections, and
performance effectiveness measurements can arbitrarily be selected to obtain good
results. As a consequence, it is hard to compare image retrieval methods, select those
image features that best represent the content, automatically evaluate the generated
content-index and verify the user relevance (SMITH 1998). Despite this lack of
standardization, we will provide a detailed review of previous work in content-based
retrieval of digital images. Here, the focus is on describing the applied techniques,
positioning them in terms of performance evaluation, finally to arrive at a generic
concept for content-based image retrieval systems.

In Sec. 2.1, we give an overview of methods used to describe the image con-
tent by primitive features like color, texture and shape. Additionally, we show the
performance of features for content-based retrieval applications. How the produced
large volumes of primitive image features can be reduced and indexed to improve
the speed performance of a system is explained in Sec. 2.2. Since no individual
feature can capture all structures and objects of a scene, a common way to increase
the retrieval performance is to combine features as outlined in Sec. 2.3. An aim of
content-based image retrieval — the derivation of high-level semantic concepts from
low-level features — and the incorporation of the user’s feedback in the query pro-
cess in order to return images similar to the user conjecture is dealt with in Sec. 2.4
and Sec. 2.5, respectively. After Sec. 2.6, a section dealing with different aspects
of image retrieval system evaluation and its functions, we describe the situation in
remote sensing image retrieval from archives in Sec. 2.7. In Sec. 2.8, we will present
a generic concept for content-based image retrieval systems and its importance for
evaluation before we conclude this chapter in Sec. 2.9.

15
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‘ system ‘ features ‘ evaluation method ‘ reference

QBIC C,T,S target images (NIBLACK et al. 1993)

Photobook | C, T, S (PENTLAND et al. 1996)
MARS C,T,S retrieval efficiency (ORTEGA et al. 1997)

I. | PicHunter C target testing (Cox et al. 2000)

FourEyes T learning time (MINKA and PICARD 1997)

Netra C, T, S | retrieval performance | (MA and MANJUNATH 1999)
IT. | Blobworld | C, T, S | precision-recall graphs | (CARSON et al. 1999)

Table 2.1: Color (C), texture (T) and shape (S) image parameters applied in
content-based image retrieval systems. The first category (I.) supports the search
using global image attributes while the second category (II.) provides query mecha-
nisms based on local features that have been computed for individual segments. The
retrieval performance of features have been validated using different approaches.

2.1 Image Content Descriptors

How to characterize the content of digital images? Which descriptors best represent
structures and objects in an image? To answer these questions, characteristics of the
image data and the application to be designed have to be considered. In content-
based image retrieval a large number of different descriptors have been applied.
Simple color histograms were used in the early years and more complicated texture
and shape representations in recent years. Now we give a general survey of applied
techniques in image retrieval to describe the visual image content by color, texture
and shape (Fig. 2.1).

Color

One of the first approaches to describing the scene content by color was the use of
color histograms (SWAIN and BALLARD 1991) and of color moments (STRICKER and
ORENGO 1995). Color moments are a more robust version of color histograms since
they combine the entire histogram information by low-order moments like mean and
variance. The advantage of color histograms is that they can be efficiently computed.
However, they lack spatial relationships with the effect that images with very dif-
ferent appearances may have the same histogram. An image with many distributed
green pixels may have the same histogram as an image with just one green object,
for instance. To overcome this obstacle, color coherence vectors (PAsS et al. 1996)
have been developed that aim at the distinction whether image pixels belong to large
areas with uniform color or not. Based on this knowledge, each histogram bin is
divided into two: one for coherent and one for incoherent pixels. With the incorpo-
rated spatial information, color coherence vectors demonstrated better query results
than color histograms. A refinement of spatial color correlations from the previous
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approach is shown in (HUANG et al. 1997). The authors computed color correlo-
grams from an image where they analyzed the spatial correlations between pairs of
colors with a changing distance. In image retrieval experiments, it was shown that
this method yields better retrieval results than color histograms and color coherence
vectors (MA and ZHANG 1998). Recently, color invariant features (GEVERS and
SMEULDERS 2000) for image indexing and retrieval have been proposed. With the
applied color models very high retrieval accuracies could be obtained since the mod-
els are independent of the illumination and the geometry of objects.

Texture

A feature that has proved to be rather important to characterize the image con-
tent is texture. This can be seen by the large number of papers and books dealing
with it (TUCERYAN and JAIN 1998) (REED 1993). Texture is used because it is
not limited to single pixel values or certain color correlations, but considers spatial
relationships in an extended neighbourhood, too. Therefore, spatial descriptors are
important to describe complicated and extended image structures. Next, we summa-
rize basic approaches for content description by texture that have been successfully
implemented and tested in image retrieval.

In image analysis, simple statistical measurements can be directly derived from
the histogram, such as mean, variance or higher order moments. These features can
be fast computed but they fail to discriminate individual image structures. Fea-
tures calculated from second-order statistics (grey-level co-occurrence matrix) were
first proposed by (HARALICK et al. 1973) and were useful in various experiments.
From the complete set of 14 different features, a texture performance evaluation (Du
BUF et al. 1990) showed that contrast is the most significant feature and should be
preferred. To search images by their contents from databases, the variance fea-
ture from the co-occurrence matrix was applied and the retrieval performance was
compared with the performance of other features (AksOy and HARALICK 1998b).
The suitability of second-order statistics to separate texture in remote sensing im-
ages was tested by (SCHRODER and DiMAI 1998). The outcomes proved that these
features are weaker than Gabor filters or Gibbs-Markov random fields. Although
co-occurrence matrices perform insufficiently, they have often been applied in im-
age retrieval since they can quickly be computed and therefore offer a convenient
benchmark.

Another method of deriving features for browsing and querying large image data-
bases is to apply signal processing and filtering approaches. In (MANJUNATH and
Ma 1996), 2D Gabor filters have been suggested to extract spatial information by
using the mean and standard deviation of the filter response. To obtain structures at
multiple resolutions, 4 scales and 6 different orientations within each scale were used.
An experimental validation was performed based on the Brodatz texture database
where the quality of extracted Gabor features was compared with the effectiveness of
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pyramid-structured wavelet transform (DAUBECHIES 1990), tree-structured wavelet
transform (CHANG and Kuo 1993) and the multiresolution simultaneous autore-
gressive model (MAO and JAIN 1992). Experiments indicate that Gabor features
yield the best retrieval performance by means of the percentage of querying correct
patterns. Based on the results of Manjunath et al., Dimai (D1iMAT 1999b) proposed
a rotation invariant texture descriptor using scale and orientation of tunable Gabor
filters. The retrieval effectiveness of this feature was compared with Manjunath
et al.’s non-rotation invariant descriptor and a rotation invariant texture descrip-
tor based on Fourier coefficients (TAN 1998). The efficiency of this approach for
content-based retrieval was experimentally tested with two different collections, one
consisting of 1,000 and the other of 5,000 heterogenous images. Search precision
indicates that the invariant feature provides better results than the other ones.

Motivated by a study of Rao and Lohse (RAO and LonSE 1993) that found out
that the three most important dimensions of human perception are periodicity, di-
rectionality and complexity, Wold decomposition features (PICARD and Lu1i 1994)
were developed and implemented in MIT’s Texture Photobook. The relevance of
the proposed texture model is due to its robustness to image transformations and
local inhomogenities that can occur in natural textures. In image retrieval exper-
iments, the quality of the Wold decomposition in modeling Brodatz textures has
been evaluated (Liu and PICARD 1996) by comparing the performance effective-
ness with shift-invariant principal component analysis (P1ICARD and KABIR 1993),
tree-structured wavelet transform, multiresolution simultaneous autoregressive and
Tamura’s (TAMURA et al. 1978) modeling. In the experiments, the Wold model
performed slightly more accurate than Mao et al.’s simultaneous autoregressive
model as far as the average recognition rate is concerned. The approach in CAN-
DID (KeLLY and CANNON 1994) uses Laws’ convolution kernels to extract textural
features for each pixel from 152 pulmonary CT medical imagery and then models
the features by weighted Gaussian distributions.

Texture models that have rarely been used in content-based image retrieval are
Markov random fields (MRFs). In (GIMEL'FARB and JAIN 1996), MRFs demon-
strated to be important for content-based retrieval where the models have been ap-
plied to query images from the Brodatz texture database. The structure of multiple
pairwise pixel interactions of MRFs is compared with grey-level difference histograms
to match the query image to the database content. The validation experiment, how-
ever, was performed on the assumption that there are only homogeneous textured
images in the database. Under these constraints, a retrieval accuracy of about 90%
could be obtained. A model close to MRFs is the multiresolution simultaneous au-
toregressive model that has previously been mentioned. That this model is to be
prefered is due to its capability to characterize texture by transformation invariant
features within a varying neighbourhood size.

In this section, we presented a number of major approaches to characterizing
texture that have been applied in image analysis and content-based retrieval. The
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ones that have not been considered are fractals (MANDELBROT 1982), 3D texture
(LEUNG and MALIK 1999), syntactic tree representation (Fu 1982) and Voronoi
tesselation (TUCERYAN and JAIN 1990). Fractals use self-similarity across scales
to model natural surfaces and texture. To solve the problems that may arise with
3D effects, e.g. shadow and specularity, particular methods have been developed.
In (LEUNG and MALIK 1999), the authors model the texture by a vocabulary of pro-
totype tiny surface patches with associated local geometric and photometric proper-
ties. With the constructed vocabulary of 3D textons, 3D texture can be recognized
from multiple viewpoints as shown in a classification assessment example. Gram-
matical and tesselation techniques try to represent geometric structures in images,
e.g. line segments or closed boundaries.

Shape

A feature that has attracted much attention in the content-based image retrieval
community is shape. However, characterizing image content by shape has proved to
be rather difficult in image analysis (MUMFORD 1987) and acceptable results could
only be obtained under certain constraints. Unfortunately, these problems remain
in content-based image retrieval applications. An overview of shape analysis and
matching techniques is given in (VELTKAMP and HAGEDOORN 1999).

As one of the first retrieval systems, QBIC (NIBLACK et al. 1993) integrated
shape to query images by their content. The shape features combine the heuristic
shape features area, circularity, eccentricity, major axis orientation and a set of
algebraic moment invariants. In order to express each shape as a binary image, all
shapes must be non-occluded planar. The partitioning of images into significant
regions plays an important role in content-based image retrieval. Owing to the
high diversity of images in databases, segmentation algorithms should be robust,
unsupervised, independent of human interactions and applicable to a wide range
of applications. Starting with these requirements, Dimai presented a method to
extract salient regions involving local and area based information (DiMAI 1999c).
The region growing segmentation algorithm makes use of a single edge evidence map
that has been obtained from edge evidences for several features and scales.

Motivated that a comparison of shape similarities between two objects can be
understood as analyzing the objects’ deformations, MIT implemented the ‘Shape
Photobook’. Therefore, instead of using image correlations, Pentland et al. mo-
deled the physical ‘interconnectedness’ of shape which resulted in the calculation
of a so-called stiffness matrix. This matrix represents the relation of each object
point to every other point. Similar to MIT’s ‘Appearance Photobook’, the deforma-
tion relative to some base or average shape is given by the calculated eigenvectors
of the stiffness matrix. If the eigenvector shape description has been determined,
shapes can easily be compared just by analysing the amplitudes of the eigenvectors.
In (SCLAROFF 1997), an advanced approach of ‘Shape Photobook’ is presented
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to query images in databases using strain energy from prototypes to characterize
shape categories. Based on the objects’ deformations and their decomposition by
a Karhunen-Loéve transform (KLT'), the shapes in the database can be ordered by
means of inelastic deformations. Thus, instead of comparing a selected shape with
all ingested shapes in the database, the search is reduced to a small number of
representative prototypes. Another benefit of the proposed method is that through
the performed decomposition, it is invariant to rotation, translation and scaling.
Another approach that makes use of eigenshape decomposition for image retrieval
is proposed by (GUNSEL and TEKALP 1998). The authors’ implementation first
models objects by selected boundary and/or contour points as a shape description
with different levels of details and then ranks the objects/images in the database
using shape-similarity in the eigenshape space. Again, the method is translation,
rotation and scale invariant.

The image/object retrieval concept in (LATECKI and LAKAMPFER 2000) as-
sumes that contours of objects are influenced by noise and segmentation errors. In
order to avoid distortions and to preserve the appearance of the original contours at
the same time, the shapes are approximated by a curve evolution. Processing the
curve evolution does not depend on control parameters, and retrieval performance
relevance is shown by experimental results.

Del Bimbo and Pala developed an elastic deformation of user sketches to solve
the problem of retrieving images by shape similarity (DEL BiMBO and PALA 1997).
Their approach of shape similarity matching — obtained by optimizing the elastic
sketch — is said to be close to human perception similarity and proves to be robust
to distorted shapes. In their approach, the sketch is warped during the optimiza-
tion process in order to adjust itself to the objects’ shapes in the images and this
information, together with the deformation energies, is used to query images in the
database.

In the image retrieval and analysis system MARS, a modified Fourier descrip-
tor (Rut et al. 1998b) was applied to support user queries based on shape. Rui et al.
demonstrated the invariance of their method both in terms of geometric transforma-
tions and noise. They also compared its robustness and computational complexity
with two other Fourier descriptors.

Since image segmentation is still a weak point of many shape extraction algo-
rithms, (NASTAR 1997) proposed a technique for content description and retrieval
using just the image shape spectrum. His approach is invariant to geometric trans-
formations and shows robustness to noise and occlusion. Instead of deriving shape
features from segmentation results, the author considers the image shape as the local
shape of the intensity surface of the image. After defining an image shape index as
the quantitative measure of image shape, the image shape spectrum is constructed
as the histogram of the index over the whole image. Nastar achieved promising re-
sults and demonstrated the retrieval performance of his method by applying various
databases with human faces, vasaline bottles and medicine packs.
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2.2 Content Indexing

In the last section, we presented methods of describing image content by color,
texture and shape. This process of visual feature extraction usually produces large
amounts of data that cannot be managed in practise, particularly, if local features
are used instead of global or aggregated ones to provide subimage query capabilities.
In both global and local approaches, features are vectors that represent interesting
points at image or region level. If a user performs a query to the system, the system
compares the query with all images/regions in the database by directly applying the
pre-computed feature vectors. In order to find images/regions in the database that
correspond to the query, each feature vector from the query has to be compared
with all stored feature vectors in the database. This method of querying images in
terms of their visual content is rather expensive, especially if the number of images
is large and the feature vectors’ dimension high. In literature, this phenomenon is
called “curse of dimensionality”.

Reducing the computational demands and making content-based image retrieval
scalable to large data quantities, efficient multidimensional indexing techniques have
been developed. One promising approach is to first reduce the dimensionality and
then apply an efficient method for multidimensional indexing to avoid the time-
consuming calculation of Euclidean similarity measures. In retrieval applications,
the dimension of extracted feature vectors is normally quite high, however, the
number of individual dimensions with discrimination performance (embedded di-
mension) is much lower. A common method of reducing the dimensionality of
the feature space is to apply the Karhunen-Loéve transform (DupA et al. 2001).
In (FALouTsos and LN 1995), the authors proposed a fast algorithm for approx-
imating the KLLT and showed in experiments that the dimension of feature vectors
can be substantially reduced without considerably affecting retrieval performance.
One challenge in content-based image retrieval is to have a system that dynami-
cally updates the transformed visual attributes when new images are ingested in the
database. This function is supplied by the low-rank singular value decomposition
incremental update method (CHANDRASEKARAN et al. 1997) that performed a fast
and stable computation of the Karhunen-Loéve transform. Having computed the
KLT, it is advisable to control the obtained results in order to avoid losing informa-
tion by a reduction below the embedded dimension. Motivated by the failure of the
KLT to explore nonlinear structures in high-dimensional datasets under certain con-
ditions, a locality preserving projection (LPP) method has been proposed (HE 2002).
He applied the algorithm to original datasets of 435 dimensions and compared the
outcomes of KLT and LPP in terms of retrieval accuracy. In all experiments, LPP
delivered better results than KLT.

After reducing the feature vectors to the embedded dimension, a further de-
crease of the computational complexity can be achieved by indexing the reduced
but still high-dimensional feature vectors. At this point we want to point out that
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indexing can be performed both at level of raw and reduced (embedded dimension)
feature vectors. Multidimensional indexing started in the seventies with quad-tree
and k-d tree methods originally developed for traditional database systems. Recent
developments have yielded the tree adaptation method (TAGARE 1997), for instance.
One of the first systems that applied multidimensional indexing to enhance the
speed of the query process was QBIC. Both color and texture features were indexed
using R-trees and the 18-dimensional shape feature vector was indexed by R-trees
after performing a Karhunen-Loéve transform. The best method for image retrieval
applications to select from a set of tree indexing techniques was proposed by (NG and
SEDIGHIAN 1998). The authors begin with a dimensionality reduction followed
by a validation test of different indexing methods and finally customize the most
successful indexing technique. Despite some advances, most of the tree indexing
approaches failed to fulfill the requirements and characteristics of visual content
indexing for content-based image retrieval (RuT et al. 1999).

A more promising category of content-indexing techniques is to cluster the whole
set of feature vectors into similar groups to obtain another set of characteristic fea-
tures. Clustering, which is similar to a vector quantization process (MCLEAN 1993),
projects the raw or reduced feature vectors into another space of quantized feature
vectors. After clustering, each feature vector is substituted by its assignment to
one of the clusters. An overview of existing clustering methods applicable to image
retrieval is given in (JAIN and DUBES 1988) and (ARABIE et al. 1996). The ad-
vantage of generating a “visual vocabulary” of characteristic groups by clustering
is due to its lower computational costs for calculating visual similarity. In compari-
son to tree-based indexing approaches, clustering is not limited to Euclidean metric
similarity measures. However, there are disadvantages, too. First, the question of
how to select the number of clusters appropriately arises since this influences the re-
trieval performance. Although there exist some methods to deal with the detection
of the optimal number of clusters, e.g. the Bayesian classification algorithm Auto-
Class (CHEESEMAN and StuTz 1995), they all require tremendous computational
costs. Thus, they are only applicable for data mining purposes under certain condi-
tions . Other disadvantages of clustering are that the process of partitioning points
in the feature space into similar groups is rather expensive and has to be dynamically
updated every time new images enter the database. A solution to the latter problem
was proposed by (CHARIKAR et al. 1997). Charikar et al. implemented and tested
an algorithm that incorporates the incremental and dynamic update of the clusters
and manages high-dimensional datasets. This approach was further developed in
terms of query acceleration and refinement (RuI et al. 1997a). Content-based image
retrieval systems that make use of clustering for content-index generation are MIT’s
FourEyes and DLR’s I?’M. The former applies a hierarchical clustering algorithm to
quantize visual attributes and I?M uses a dyadic k-means algorithm. A variation of
constructing a vocabulary of characteristic content-index by clustering is gridding.
Although this approach is slightly less accurate than clustering, it proved to be fast
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and robust for heterogenous image datasets (LORENZ 1996).

Next to clustering, image content-indexing using self-organizing feature maps
(KOHONEN 1989) ! turned out to be effective for image retrieval. Self-organizing
feature maps (SOMs) aim at the representation of all points in the high-dimensional
feature space by points in a 2-dimensional grid or target space. This way distance
and proximity relationships are preserved as much as possible. The goal of preserving
the neighbourhood can be realized if each sample (node) in the input (feature) layer
is related to each target (node) in the map grid with assigned weights. All weights
associated to a particular node in the 2-dimensional map define the reference vector
of this node. Then, image similarity measures are computed by comparing all the
reference vectors with one input feature vector (query) and determining the node
that matches best. To accelerate the search, Zhang and Zhong applied hierarchical
self-organization maps to construct an index tree (ZHANG and ZHONG 1995). With
this tree image similarities supplied by a nearest neighbor search can be computed.
The authors” experimental results using the Brodatz texture database showed that
self-organizing maps can increase retrieval performance. Another reason for the
popularity of SOMs is the capability to efficiently combine different features, e.g.
color and texture, and to improve retrieval performance as demonstrated in the
following section.

2.3 Combination of Features

The last decade in content-based image retrieval with its numerous applications and
systems has shown that no single visual descriptor contains sufficient discriminatory
information to achieve acceptable search results. Thus, various attempts have been
made to increase the accuracy of image queries by integrating the retrieval results
based on individual features. This combination of multiple measures (also known as
data fusion) can be performed either at raw feature vector level or at content-index
level.

The aggregation of different feature vectors in a global vector has often resulted in
high dimensional feature representations (AKsOy and HARALICK 1998a). However,
a pure concatenation can both decrease and improve the performance.

An approach that goes one step further was to combine individual features by
weighting. In (BACH et al. 1996), a system is proposed that enables the user to
select the weights assigned with color, color layout, texture and shape according to
his interests. Another retrieval scheme that integrates color and shape by weighting
was shown by Jain and Vailaya (JAIN and VAILAYA 1996). The accuracy, stability
and speed of that system was evaluated. The authors found out that a combination
of color and shape yielded a retrieval effectiveness of 99% in terms of images being

!Sometimes, self-organizing feature maps are called topologically ordered maps or Kohonen
self-organizing feature maps.
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queried within the top-ranked. Both algorithms mentioned lead to an enhancement
in retrieval accuracy. However, the results depend on the weight factors which have
to be set to values fixed a priori. A possibility to avoid this shortcoming is to de-
termine the weights regarding the performance of individual feature-based retrievals
as exemplified in (L1u and P1CARD 1996). The authors fused the ranks of differ-
ent texture models using weights derived from measures of the texture periodicity.
Berman and Shapiro argue that retrieval systems like QBIC and Virage just offer
the ability to query with a weighted combination of features and do not provide
queries like “match on colors, unless the texture and shape are both very close”. To
give the user an extended and more flexible vocabulary of similarity distance combi-
nations, the authors suggest a set of operations, including addition, weighting, min
and max (BERMAN and SHAPIRO 1999).

Feature combination for content-based image retrieval can be seen as a specific
high-level classification problem to partition images in the database into semantic
categories using primitive image attributes. Based on this classification, the features’
discriminatory performance can be measured based on intra-class and inter-class
distances. In (VAILAYA et al. 1998), the authors applied a nearest neighbor classifier
to first separate the entire dataset into city-landscape using 5 different features.
As the edge direction coherence vector was identified as the strongest feature, it
was used to successively divide ‘city’ and ‘landscape’ into 11 subclasses such as
‘beach’, ‘mountain’ and ‘towers’. Finally, multiple 2-class classifiers were combined
into a single hierarchical classifier to improve the performance. Vailaya et al. also
combined binary Bayesian classifiers into a single hierarchical classifier as shown
in (VAILAYA et al. 2001). The major disadvantage of their approach is that each
image is assumed to belong to exactly one of the semantic classes. Therefore, an
extension to heterogenous image databases is of limited use.

In recent years, the pattern recognition and content-based image retrieval com-
munity has dealt with neural networks for feature selection and combination. The
aim is to reduce processing time by choosing a subset from a collection of image
descriptors while still preserving the entire discriminatory performance of the fea-
ture set. In (HAERING and DA VITORIA LOBO 1999), a back-propagation neural
network is applied to classify deciduous trees in images with a subset of features.
Hearing et al. analyzed the relevance of 51 image parameters obtained from seven
different feature extraction methods: co-occurrence matrix, Gabor filters, fractal di-
mension, steerable filters, Fourier transform, entropy and colors. The best selection
of the 13 image descriptors was found to combine features from each model and is
almost as powerful as the complete set. Worth mentioning is the 75% time-reduction
for the feature extraction process. In order to achieve a thorough evaluation, they
compared their methods with linear, quadratic and eigenanalysis methods both for
feature subset definition and classification. Neural networks have also been used for
handwriting recognition. Oh et al. proposed two algorithms to first validate the
class-separation of features and then to combine various attributes to obtain a new
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vector with an improved discrimination (OH et al. 1999) for each class.

Efficient methods in combining heterogenous features are Bayesian networks. An
important fact is that they describe the data in a natural way, that means, they
are based on conditional probabilities that are estimated from imperfect data. Fur-
thermore, expert knowledge can be included through a priori probabilities. Bayesian
networks are applied in many working fields, e.g. filtering junk e-mails, pattern clas-
sification and speech recognition. Inside the Bayesian framework, naive Bayesian
networks (or naive Bayes classifier) have attracted much attention due to their low
computational complexity. In (SCHRODER et al. 2000), naive Bayesian networks are
used to link the user’s interests, that is, the interpretation of remote sensing cover-
types, to the image content. The conditional probabilities in the network started
with uniform priors that were iteratively updated based on the user’s feedback. Af-
ter computing the posterior probabilities in the classifier, a complete image archive
was searched for relevant images. Another application of Bayesian networks was
presented in (KUMAR and DEsA1 1996). Kumar and Desai segmented an aerial
image and extracted features from it. Then they approximated the conditional
probabilities for identifiable objects in the image using the histograms of features.

2.4 Semantics

Querying images by their visual content involves comparing the query image (or
region/object) with all other images (or regions/objects) contained in the database.
In contrast to text-based retrieval systems with relational databases where images
are found by exact matches using SQL language, content-based query systems utilize
similarity measures. Images are ordered according to the similarity distance to the
target image and the highest-ranked are displayed as search results. Similarity mea-
sures normally include geometric or probabilistic calculations and can be performed
at different levels of abstraction. At the first level, the image (raw data) level, one can
use the correlation coefficient or Euclidean distance (CASTELLI et al. 1998). How-
ever, since both approaches require an approximated location at pixel level and the
computation is rather expensive, they are only of limited benefit for image retrieval.
Even advanced matching techniques, which use multiresolution image representa-
tions (L1 and CHEN 1996) or which are computed in the Fourier domain (STONE and
L1 1997), still require a considerable amount of computation. The next higher ab-
straction level is characterized by extracted features that represent the appearance
of the image content, like color, texture and shape, for example. Similarity calcula-
tion at this level demands the comparison of multidimensional feature vectors with
the query feature vector. To avoid determining geometric distances in a multidimen-
sional space, probabilities instead of geometric distances are often used. A method
of facilitating similarity computing is to first reduce the dimension of feature vectors
using clustering algorithms or neural networks (see Sec. 2.2) and then apply simi-
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larities to the reduced data. Here, problems arise. If a user searches an archive for
images that contain certain structures or objects, the database search relies on visual
descriptors extracted from data. Due to discrepancies between visual and seman-
tic similarity, problems can occur. This phenomenon is called “semantic gap” and
can result in situations where the set of returned images only partly responds to the
user’s query, or even worse, has nothing to do with it at all (SMEULDERS et al. 2000).
Because of these shortcomings, research tries to link higher-level semantics to data-
driven features in different ways.

To semantically describe regions or objects in an image, one requires visual con-
tent descriptors in combination with a methodology. In the remote sensing domain,
for instance, a common technique to associate ground cover-types with semantic la-
bels is to provide training samples and then perform a supervised classification. To
access images in art galleries, they are annotated by keywords or captions. Although
these approaches reduce content-based access to text-based retrieval, they are both
time- and cost-intensive. The expenses reduce the flexibility of image databases
and automatically result in authorized systems. Additionally, semantic labeling by
keywords seldom includes details, is subjective (annotator and user normally are
different persons) and finally does not solve the problem of image information re-
trieval (COLOMBO et al. 1999).

However, there are systems that provide semantic-based retrieval functions even
in a restricted context. The “SceneryAnalyzer” by Song and Chang focuses on
the extraction of semantics from scenery images (SONG and ZHANG 2003). The
authors extracted low-level features from images and modeled them to get high-
level features. After classifying and clustering them, each cluster is associated with
certain semantics. According to this approach, all images can be automatically an-
notated with category keywords, e.g. background, wave, sky, etc. For this type
of images with its low content complexity and well-separated objects, Song and
Zhang achieved good results. However, their approach is hardly applicable to other
datasets. In (CASTELLI et al. 1998), a progressive framework has been developed
that enables the user to specify the content of remote sensing imagery at three
different levels of abstraction: image, feature and semantic. A typical query starts
with a reduction of the search space by specifying metadata restrictions. Then, after
defining and searching objects at image or feature level, semantic objects are pro-
duced by an automatic classification. To test the accuracy of the system, Castelli et
al. defined several benchmark queries, each given by different metadata constraints.
Then, the authors let each search run against all of the images in the database
that satisfy the constraints. Another example system that enables users to search
for semantics in images is presented in (SCHRODER et al. 2000). First, users can
interactively train semantic cover-types based on an unsupervised hierarchical rep-
resentation of the image content. Later all pre-defined labels can be used to search
the archive for relevant data. This scheme was successfully tested for remote sensing
images and is currently under development.
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2.5 Relevance Feedback

So far, we have considered content-based image retrieval as a computer-centered
approach close to computer vision and pattern recognition. In the early years of
image retrieval, systems were characterized by the performance of fully automated
queries and the attempt to select a single best visual attribute. Computer centric
systems assumed that expressing high-level concepts (semantic image interpretation)
by low-level features is easy for users. This mapping may work for certain cases
but proved to fail in practice. Another reason for this failure is the subjectivity
of human perception (PICARD 1996) that occurs at different levels. Persons may
select color or/and texture to describe the image content. While one of them may
associate ‘cities’ with large buildings and crowded roads, the other person thinks
about beautiful parks and green vegetation around the blocks. As opposed to the
automated approach and motivated by its restrictions, modern image information
retrieval systems work interactively and include the user in the retrieval loop. This
technique uses the synergy of computer and human and has been labelled ‘relevance
feedback’. Tt aims at accelerating and specifying the search performance to optimally
adapt to the user’s requirements.

Relevance feedback has been originally developed as a re-formulation method for
text document retrieval. The main idea is to present a number of queried documents
to the user, let him evaluate them and mark the relevant ones (PA0 and LEE 1989).
Through this verification, important keywords or expressions (terms) that are an-
notated to the identified documents are selected. Their importance is enhanced and
used in a next query iteration to come closer to relevant documents. Techniques for
relevance feedback are the addition of new terms from selected documents (term se-
lection) and the modification of term weights according to the user’s feedback (term
re-weighting) (BAEZA-YATES and RIBEIRO-NETO 1999). In comparison to post-
processing strategies, relevance feedback has the advantages that the entire search
process is partitioned into several smaller steps, the user can concentrate on marking
documents as relevant or irrelevant and all the interactions are under control of the
system.

Although relevance feedback methods resulted in an increasing performance for
text-based retrieval systems, they cannot be applied without any changes to image
retrieval. As stated in previous sections, manual keyword annotation is impossible
for large image archives and failed to cover the entire image content. Furthermore,
content-based image retrieval requires the interplay between user and system to a
much higher degree than in traditional text-document search to guide the query in
the desired direction (SMEULDERS et al. 2000). However, early relevance feedback
methods attempted to link the image retrieval model to the term re-weighting model
from text-based retrieval.

In MARS (Rur et al. 1997h), image feature vectors are converted to weighted-
term vectors in order to utilize well established text retrieval methods. For this
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conversion, Rui et al. proposed two approaches. The first one includes component
analysis and inverse collection importance analysis to obtain both the relative im-
portance of components within a feature vector and the importance of components
across feature vectors over the whole image database. The weights are implicitly con-
tained in the vector. The other method appends the weights outside the vector by a
Gaussian normalization of each component and then updates the weight after each
interaction. In experimental results the authors measured the retrieval precision
during several iterations and demonstrated the efficiency of both approaches. An-
other retrieval system that incorporates the vector space relevance feedback model
is PicToSeek (GEVERS and SMEULDERS 1999). It retrieves images according to the
user’s given feature weights by finding those database images closest to the query
image in terms of weighting. But PicToSeek goes one step further than MARS.
With the help of positive and negative image samples it also learns from the user’s
feedback which features are the most important ones. The drawbacks of MARS
and PicToSeek are that both require the specification of appropriate weights for the
relevance feedback query formulation. Unfortunately, the original image query is
preserved during all iterations, too.

Having a single specific feature and a fixed similarity measure, retrieval systems
usually deliver poor search results since they do not adapt to the user’s subjectivity
and needs. Due to this limitation, relevance feedback is used to choose between
various features and /or similarities to obtain the best retrieval performance. Systems
like MetaSeek (BENITEZ et al. 1998) compare the rankings of database images based
on different features or similarities with the user-related ranking of relevant images.

To address the difficulties faced by computer-centered approaches, a popular
method for relevance feedback is to assign weights to image attributes and update
them according to the user’s positive and negative feedback. In (AKSOY et al. 2000),
Aksoy et al. proposed a weighted distance approach where the weight factors are
derived as the quotient between the standard deviations of feature values, once for
the entire image collection and once for images marked as relevant by the user. Us-
ing this feedback model, the weights are independently and incrementally updated
and applied to change the features’ influence from iteration to iteration. The au-
thors tested the approach on a collection of about 10,000 images and successfully
improved the retrieval performance at 19% after the first iteration. Rui et al. ad-
dressed the problem of subjectivity in content-based image retrieval by a multimedia
object model where each image was represented at different levels and updated by
weights (RuT et al. 1998a). Each image was modeled at image raw data level, feature
level and representation level for a specific feature. The overall similarity between
the query image (object) and other database images (objects) is the result of linear
combinations of their lower-level similarities with associated weights. After return-
ing a set of highest ranked images, the user marks each one as ‘highly-relevant’,
‘relevant’, ‘no-opinion’, ‘non-relevant’ or ‘highly non-relevant’. According to the
user’s feedback, the system independently updates the weights at each level so that
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the query image corresponds better to the user’s search category. The proposed
relevance feedback algorithm was tested on two different image collections both in
terms of search efficiency and effectiveness and delivered better results than the
vector space model.

Visual features are context-dependent, often noisy and, consequently, no single
model is able to satisfactorily link the user’s interests to the image content. Thus,
Minka and Picard (MINKA and PICARD 1997) suggested interactive learning us-
ing a “society of models” for accessing image databases. Instead of selecting and
combining features in high-dimensional spaces, they applied data grouping with self
organizing maps guided by an interactive learning process with positive and negative
examples from the user. They found out that in contrast to conventional learning
algorithms their approach with feedback samples is more helpful to the user and the
performed training can be usefully integrated for continuous learning.

In (Cox et al. 2000), a Bayesian relevance feedback algorithm is presented to
accelerate the search in large image collections. The learning paradigm models
the user’s behaviour in a probabilistic framework using several man—machine in-
teractions. Having a model how a user would react to a certain target image, the
PicHunter system infers the probability of the target image that the user wants on
the basis of the entire history of performed actions. The probability for each image
being the target was computed and updated after each iteration. In experimental
results Cox et al. demonstrated that PicHunter increases the search speed 10 times
in comparison to randomly selected images (CoxX et al. 1996). Search efficiency is
measured by the average number of iterations to locate the target image.

Another Bayesian relevance feedback learning algorithm that incorporates the
user’s positive and negative feed-back samples was presented in (VASCONCELOS and
LippMAN 2000). In order to explicitly choose regions or pixels that are relevant for
the search, Schroder et al. demonstrated a Bayesian learning algorithm based on the
user’s positive and negative feedback (SCHRODER et al. 2000). From their examples,
probabilities are updated and with a simple Bayesian classifier a map is depicted that
gives the users an intuitive feedback and helps to understand the training results.
A recent application of Bayesian relevance feedback treats positive and negative
feedback samples differently, extracts a feature subspace and progressively updates
it using a principal component analysis (SuU et al. 2003). The outlined approach
provides fast query capabilities, requires only limited memory and increases the
system query performance significantly.

So far we have described approaches that take relevance feedback at feature level
into account but have not considered the semantics of images yet. As stated in the
previous section, representing the image content by low-level features is often less
important than the actual semantic content as compared to annotated keywords in
text-based retrieval. Therefore, efforts have been made to include high-level seman-
tics in relevance feedback for content-based image retrieval. In (Lu et al. 2000),
both features and semantics are incorporated into a relevance feedback algorithm.
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The links between database images and keywords are realized in a semantic network
where the associated weights are updated after each user interaction. If no semantic
information is available, content-based image retrieval is reduced to conventional
low-level feature retrieval. Lu et al. showed an increasing retrieval performance
with the integrated semantic knowledge on a large collection of images. However,
the performance depends on the selected keywords and the initialized weights. An-
other method combines low-level features and semantics for relevance feedback using
a semantic correlation matrix (LEE et al. 1999). Altogether, including semantics in
relevance feedback is only possible under certain conditions and further research is
necessary to provide robust solutions.

2.6 Evaluation of Image Retrieval Systems

In this chapter we gave an overview of content-based image retrieval, explained
basic functions, recent advances and remaining problems. As in other research
areas, further progress and the successful and useful application of image retrieval
and understanding depends on the ability to evaluate retrieval methods and results.

Objective evaluation aspects

The beginnings of image database query evaluation came from text document re-
trieval and focused on precision-recall and derived measurements. Suppose a system
returns A images for a given query, B images are relevant in the answer set and S
is the total number of relevant images in the repository. Then, recall is defined
as the fraction of relevant images which has been returned, R = B/S, and pre-
cision is given as the fraction of retrieved images which are relevant, P = B/A.
Although precision-recall (PR) are the standard evaluation measurements in text
document retrieval (HARMAN 1992), they are only of limited use for image col-
lections (MULLER et al. 2001). First, PR assumes ground-truth information to
partition the complete archive into relevant and non-relevant images according
to the user’s query. This requires the semantic interpretation of images which is
much more difficult to determine than in text-based retrieval. Another shortcom-
ing of PR is that the order of the ranking of returned data is completely disre-
garded. To overcome this negligence, alternative measures are proposed, e.g. har-
monic mean of recall and precision (BAEZA-YATES and RIBEIRO-NETO 1999), nor-
malized rank sum (STRICKER and DiMAI1 1997) and rank-difference trend analy-
sis (D1MAI 1999a). However, despite the limitations of PR measures, they are often
used in research literature, especially for small and well-known collections of im-
ages (MA and ZHANG 1998).

With the growing complexity of content-based image retrieval — systems are
composed of modules for feature extraction, content-indexing, data storage, user
interaction and knowledge acquisition/representation it is necessary to evaluate
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system parts individually as well as their mutual dependencies (SMEULDERS et al.
2000). To achieve this goal, one first has to define particular methodologies (criteria)
and appropriate measurements. Evaluation criteria may include user relevance,
system stability, visualization of results, scalability to huge amounts of data, time for
searching the archive, usability, etc. The second category measures the assessment
of certain criteria, e.g. the required time to search the archive and to depict results.
Most of the methods cannot be objectively assessed, by time for example, since
the system operator is an inevitable part in the evaluation process. User-related
assessment ranges from labeling relevant and irrelevant images in the data repository
to make possible PR measures to questionnaires. However, subjective concepts are
time-consuming, demand a strict organization to perform many experiments with
many users and are hardly reproducible. Thus, evaluation is an unattended research
area in content-based image retrieval.

Despite these limitations, a few approaches exist that go beyond PR and related
measures in image retrieval evaluation. In (JERMYN et al. 2002), Jermyn et al.
addressed the discussion of high-level evaluation methodologies, showed where they
are suitable and where they are not, and analyzed image segmentation algorithms
based on them (SHAFFREY et al. 2002). The approach started with a database
consisting of different levels of abstraction: image space, index space and semantic
(query) space. Exchanging information can be interpreted as a mapping between the
spaces themselves or as a mapping using probability measure spaces for those spaces.
Then, so-called ‘knowledge-scenarios’ are built for system evaluation purposes that
try to algorithmically express either spaces or mappings between them.

Subjective evaluation aspects

In order to get the degree of users’ satisfaction in the Epic image retrieval system, a
user-centered, task-oriented and comparative validation was undertaken (JOSE et al.
1998). Jose et al. recruited 8 people as system operators with no a priori knowledge
and confronted them with two version of Epic: one allows only spatial queries and the
other textual queries. From a series of questionnaires using semantic differentials
between search sessions, values indicating acceptability or user satisfaction could
be derived. Final results demonstrate that the spatial-querying system performs
significantly better than the other.

To explore and evaluate the PicHunter image retrieval system, Papathomas et
al. made various psychophysical performance tests (PAPATHOMAS et al. 1998). In a
first experiment they studied the importance of semantic information for the query,
earlier user input and similarity measurements. Fach experiment was organized in
a way that the user had to search for a target image in the database. Experimental
results demonstrate that the best performance could be reached with semantics in
the queries. A second series of tests compared the time to find a target image with
PicHunter and by random selection using a generated baseline for the dataset. The
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outputs did not meet the expectations.

2.7 Retrieval of Remotely Sensed Images

In this section, we show existing techniques to retrieve remotely sensed images from
archives and how the influence of content-based image retrieval has led to major
advances.

Over the last decades imaging satellite sensors have acquired huge volumes of
data. Optical, SAR and other sensors have delivered several millions of scenes that
have been systematically collected, processed and stored. For instance, the DLR
ground station at Oberpfaffenhofen, Germany, receives about 100 GBytes/day of
imagery that results in an accumulation of 10* GBytes in the repository. The state-
of-the-art systems for accessing remote sensing data and images in particular, make
use of meta information, e.g. the DLR EOWERB satellite information service or the
image retrieval system of Spot Image (Tab. 2.2). The applied meta information
depends on the acquired data and contains coordinates of the satellite during the
image acquisition and the covered ground. Additionally, radiometric and spectral
properties of the sensor and the date of image take are stored. With this kind of
information it is possible to perform a query such as: “show me all images that
cover Oberpfaffenhofen and have been acquired by the Landsat TM sensor in year
2002”. This information allows only constrained queries and, consequently, only
little of the image content is actually used (DATCU et al. 2002). In the future,
the access to image archives will even become more difficult due to the enormous
data quantities acquired by a new generation of high-resolution satellite sensors.
As a consequence, new technologies are needed to easily and selectively access the
information content of image archives and to increase the actual exploitation of
satellite observations (DATCU and SEIDEL 1999).

For content-based browsing and retrieval of remote sensing images, special prop-
erties of the data have to be considered: characteristic image size from 6,000 x
6,000 up to 24,000 x 24,000 pixels, resolution of less than 1m up to 1000m and a
content with a high diversity of natural elements and man-made structures. Due to
this complexity, image descriptors have to be carefully selected. In remote sensing,
one of the well-established features is spectral. This descriptor demonstrated its
benefit in many applications such as land use classification, for example, but cannot
separate complicated image structures. Hence, spectral information was often used
in combination with texture and yielded good results. The upcoming generation of
high to very high resolution satellite sensors will produce image data that needs dif-
ferent content modeling, not just by spectral and texture. Geometrical (structural)
features are better suited to describe completed objects in images.

Having a certain application in mind, a common method in remote sensing to
query images by their content is to segment each image in a number of a priori known
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‘ URL ‘ system/organization
http://www.spotimage.fr Spot Image
http://eoweb.dlr.de:8080 DLR/DFD
http://www.nrsa.gov.in NRSA India

I. | http://edcsnsl7.cr.usgs.gov/EarthExplorer | USGS geo data Explorer
http://www.ssc.nasa.gov/~sirs NASA/SSC
II. | http://earth.esa.int/services ESA
http://www.alexandria.ucsb.edu/adl Alexandria Digital Library
http://wuw.vision.ee.ethz.ch/~rsia/ ETHZ/DLR
III. | http://www.acsys.it:8080/kim DLR

Table 2.2: Remote sensing image retrieval systems. The first group (I.) makes
possible database queries with meta information such as sensor type and date of
acquisition while the second group (II.) supports queries based on special content
information obtained from case studies. The third group (I1I.) offers content-based
image retrieval and thus makes the actual image content accessible for the user. The
evaluation we address throughout this thesis is based on DLR’s image information
mining system (I*M).

cover-types. Then, thematic maps are computed where the map indices correspond
to the segmented classes of cover-types and the following queries are related to
this pre-extracted information. Systems based on this concept have performed well
because the content representation is only focused on a segmentation with exactly
the given cover-types (BERTOIA and RAMSAY 1998). Otherwise, problems may arise
whether the system is extended to different cover-types or to datasets from another
Sensor.

Apart from the traditional and application-specific methods of retrieving re-
motely sensed images, a few research groups and companies apply content-based
query functions in their systems. In (BRETSCHNEIDER et al. 2002), the authors
present a system that offers image retrieval by metadata as well as content-based
query functions. For the latter, an unsupervised classification was computed using a
modified k-means clustering algorithm to extract the entire multispectral informa-
tion. With just multispectral information, the authors obtained retrieval accuracies
of about 80% for urban, farm land and forest cover-types. However, the results were
obtained for selected queries and datasets. Barros et al. (BARROS et al. 1995) first
clustered a Landsat TM image based only on the spectral image values and then
tried to query images using the spectral information of each region. For content-
based search and clustering of remotely sensed imagery, Marchisio et al. applied
multiple features in their GeoBrowse system (MARCHISIO and CORNELISON 1999).
The system offers the composition of image processing and mining functions with the
statistical analysis software S-PLUS. Methods for image content representation by
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features comprise segmentation, multispectral analysis, non-parametric regression
and texture analysis. Spatial image content is described using statistical methods
(grey-level co-occurrence matrix) and wavelets. In (MA and MANJUNATH 1998),
Ma and Manjunath demonstrated Netra, a system for browsing, searching and re-
trieving of remotely sensed images. The authors started partitioning database im-
ages into equally-sized blocks and then extracted Gabor texture features for each
block. In experimental results, a retrieval performance of about 90% was achieved in
terms of average percentage of retrieving similar patterns. Netra has been developed
within the Alexandria Digital Library (ADL) project. Together with its continua-
tion Alexandria Digital Earth Prototype (ADEPT), it aims at the use of the digital
earth metaphor for organizing, using and presenting information at all levels of spa-
tial and temporal resolution. Perhaps the most enhanced system for content-based
image retrieval is DLR’s Image Information mining system (DATCU et al. 1999)
and its update KIM (DATcU et al. 2003). Starting with an unsupervised content-
index generated from pre-extracted spectral and textural features, a user can train
semantic cover-types of his interest by data fusion and search archives for relevant
images. Currently, this concept is under further development and tested with vari-
ous datasets. The evaluation methods that are presented in this thesis are based on
the concept of this system.

2.8 Generic Concept

In this chapter, we presented methods that are implemented in experimental and
commercial content-based image retrieval systems. Systems like QBIC, FourEyes
and I?M, for instance, are equipped with different functions to extract properties
of image structures and objects, features are reduced, compressed and indexed to
obtain computationally manageable data quantities, different sources of informa-
tion are fused and relevance feedback functions are applied to return images similar
to the user conjecture. Although content-based image retrieval systems are rather
heterogenous according to the applied techniques, they can be grouped in a more
general diagram as depicted in (Fig. 2.1). In order to assess the overall effectiveness
of content-based image retrieval systems and to be independent of the system speci-
ficity, a certain evaluation methodology that is adaptable to the generic concept is
required.

The standard method for image retrieval system evaluation using precision /recall
measures allows only to analyze the query results in terms of relevant and irrelevant
images. Although this approach allows to assess the retrieval performance of a sys-
tem, it fails to reflect the quality of individual features, the effectiveness of indexing
techniques and does not include subjective human factors at all. Consequently, this
approach is not suited to performimg a detailed system evaluation procedure.

Since the information content of the image data at different levels of semantic
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Figure 2.1: Generic concept for content-based image retrieval systems. Primitive
visual features are extracted from images in the database and indexed. Based on the
indexed features, the database can be queried for relevant images and the top-ranked
ones are displayed as query results. Although this description presents a one-way
data flow from the archive to the user, some systems are equipped with relevance
feedback to include higher-level user concepts in the retrieval process.

abstraction in the generic scheme is implicitly contained in the applied models for
feature extraction, content indexing and relevance feedback, it is necessary to pro-
vide an evaluation methodology that takes this fact into account. Information and
estimation theory provides a number of powerful measures that can be applied for
the verification of probabilistic retrieval systems: with mutual information we can
determine the amount of information a random variable contains about another one,
Kullback-Leibler divergence measures the ‘distance’ between two different probabil-
ity distributions of the same random variable and entropy quantizes the amount
of uncertainty of a single random variable. If the applied stochastic models are in
parametric form with unknown quantities that have to be estimated from a limited
number of observations, determining the accuracy of the estimates is a matter of
evaluation, too.

With entropy, Kullback-Leibler divergence, mutual information and the accu-
racy of estimated parameters we have at hand all relevant quantities we need to
analyze content-based image retrieval systems in a detailed way. Before we apply
the proposed information-theoretic measures on the I*M system in Chap. 7 and 8,
we will first define them and their properties in the following chapter.

2.9 Conclusions

In this chapter, we have discussed the following items:

e Content-based image retrieval deals with the query of large image databases
using visual attributes like color, texture and shape. To accelerate the speed
performance of systems and to retrieve images similar to the users’ concepts,
various techniques for feature indexing, information fusion and relevance feed-
back have been implemented.

e An important topic in image retrieval that has not been given much attention
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so far is system verification and validation. The applied approaches mainly
stay on the level of precision/recall measures and thus are not suited for vali-
dating interactive retrieval systems in which the user is an inherent part.

Methods for content-based image retrieval that have originally been developed
to manage and explore the growing amounts of multimedia datasets have also
been successfully applied in remote sensing. Whereas the standard technique
for retrieving remote sensing data is limited in that it just allows the query
based on metadata, content-based approaches are more helpful for users as
they provide access to the actual information content of the image archive.

Owing to the diversity of algorithms implemented in image retrieval systems
and to provide an evaluation methodology that does not depend on the sys-
tem specificity, a generic concept for content-based image retrieval was demon-
strated. Based on this concept and the fact that information is in the applied
signal models, the evaluation is equivalent to quantize the information content
of the parameters and observations in each individual model. In the following,
suitable measurements are described for validation and applied in subsequent,
chapters.



Probability, Bayesian Inference
and Information Theory

In the preceding chapter, we gave a detailed overview of the state-of-the-art con-
cepts and techniques in content-based image retrieval for low-level feature extraction,
content-indexing, data fusion and learning higher-level semantics. Different criteria
exist to classify the applied methods. One can group them according to efficiency
(how much data can be managed), level of detail (global vs. local image interpreta-
tion) or model. For all steps of information representation one can apply different
models that can be divided into two major categories: deterministic and stochastic.
The first group of models is to be favoured if the data in question consist only of
a systematic and noise-free component. In case that the data are the result of two
components, a systematic and a random process, probabilistic models are usually
preferred to avoid unpredictable results.

The image information mining system on which our evaluation procedure is
focused fully incorporates the probabilistic approach where the image content is
modeled in a hierarchical Bayesian way using several levels of different semantic
abstraction. In the system, elements at each level — image data, features, content-
index, individual and aggregated semantic cover-type labels — are considered as
random samples. They are obtained in a step of Bayesian inference from one or
more levels below using different stochastic models. In order to perform a validation
that is adapted to the probabilistic nature of the system, a particular methodology
and measurements are needed. A domain that provides suitable measures based on
probabilistic quantities is information theory. With entropy we can determine the
amount, of information contained in the distribution of a single random variable,
mutual information describes the amount of information that one random variable
gives about another and Kullback-Leibler divergence reflects the discrimination be-
tween two different probability distributions. In addition to entropy and its related
quantities, Fisher information represents the accuracy of a parameter estimated from
a limited number of observations. Before we explain these measurements in more
detail in Sec. 3.3, we will first give a short introduction to probability in Sec. 3.1
and to basic principles of Bayesian inference in Sec. 3.2. In Sec. 3.4, we conclude
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this chapter with a summary of the main results and contributions.

3.1 Probability

As far as the notation of ‘probability’ is concerned, scientists do not share the same
view. We refer the interested reader to (Cox 1946), (BERNOULLI 1713) and (BAYES
1763) for a deeper insight into probability and its definitions. The most well-known
view is certainly the ‘frequentist’ one. It defines the probability Pr(X|H) as the
relative frequency or occurrence of the event X conditioned on some assumptions or
causes H. Laplace and Bernoulli considered probability from another point of view.
They defined the probability Pr(X|H) as the quotient of the range measurement of
X and H and the range measure of H solely. Opposed to these definitions is the
approach of Bayes who considered Pr(X|H) as the measure (or degree) of certainty
(or belief) that X follows the cause H. The Bayesian view is sometimes also called
‘Subjective’ since it depends on the selection of prior knowledge about the degree
of belief in the cause H.

In the following, we do not intend to stimulate a long discussion about objective
and subjective aspects of probability, instead, we consider probability as an objective
measure of certainty that is sometimes combined with some prior information and
therefore may seem subjective.

Consistency postulates

To ensure logical consistency for calculations that include probabilistic measures,
the following four postulates have to be fulfilled (PAPOULIS 1984):

1. Positivity
Pr(X|H)>0 (3.1)

2. Certain event
Pr(X|X) =1 (3.2)
3. Sum rule
Pr(X|H)+ Pr(-X|H) =1 (3.3)
4. Product rule
Pr(X,Y|H)= Pr(X|Y,H) Pr(Y|H) (3.4)
Here, X and Y indicate two different events as results or outcomes of random exper-
iments, =X means not event X and some conditions or hypotheses are denoted by

H. With the four postulates we have the basic algebra of probabilistic mathematics
at hand from which all the following equations can be derived.
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Bayes’ formula

From the product rule, Eq. 3.4, we can directly infer the important Bayesian formula

Pr(X|H) Pr(H)
Pr(X) ’

that shows that the probability Pr(X|H) of the observed data X, e.g. the pixels
of an image, given some hypothesis H, can be inverted to Pr(H|X) including some
prior information. In Eq. 3.5, Pr(X|H) is called the likelihood of H with respect to
X, which indicates that the hypothesis H for which Pr(X|H) is large is more ‘likely’
to be the true hypothesis. The quantity on the right hand side of the likelihood term,
Pr(H), is called the prior probability and reflects the prior belief in the hypothesis
H. In order to determine the posterior probability Pr(H|X), the most important
factors are the likelihood and the prior probability; the predictive probability or
evidence, Pr(X), only acts as a normalization constant and guarantees that the
posterior probability adds up to one. The evidence is given by the likelihoods and
priors of all hypothesis H; as

Pr(X) = Z Pr(X, H;) = Z Pr(X|H,) Pr(H;) (3.6)

Pr(H|X) = (3.5)

and indicates that small variations in the hypothesis of only one likelihood or prior
may lead to significant changes in the posterior. After explaining the different terms
in Bayes’ rule, we can summarize the rule in an informal expression by saying that

likelihood X prior

(3.7)

posterior = -
evidence

The importance of Bayes’ theorem for image processing and content-based retrieval,
respectively, is due to strong stochastic signal models that can either be used to ex-
tract information from the data or to incorporate knowledge as prior information. In
this dissertation, we will use stochastic models at various levels of image information
representation and in different contexts. We will apply stochastic texture models
on optical image data to capture primitive image features from the data and to
reconstruct the content of speckled radar images by incorporating prior information
in form of a texture model. At a higher level, stochastic signal models connect the
semantic image interpretation to image feature models, e.g. ‘mountain’ is connected
to spectral and texture content-index. Elements at the highest level of semantic
abstraction, e.g. ‘a river in a hilly terrain next to a city’ are again associated with
stochastic models to individual semantics, such as ‘river’, ‘hilly terrain’ and ‘city’ in
this example.

Probability and probability density function

Assuming that a random variable X has an arbitrarily large number of N possible
outcomes with N — oo, Pr(X|H) is no longer a discrete probability but rather a
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continuous probability density function (pdf)

. Pr(z< X <z+ Ax)
PX|H) = Algllo Az '

(3.8)

If the random variable X is inside the interval x and z+Ax, we obtain the probability
for X as

T+Ax
Pr(X|H) = / p(X|H)dX . (3.9)

Since we use the probability distribution over discrete states of a random variable
in later chapters and in order to guarantee consistency between the discrete and the
continuous state, we denote hereafter everything related to probabilities by p(-).

Elimination of nuisance parameters

A reason for the popularity of Bayesian formalism is the possibility to eliminate
parameters that are of no interest for the data analysis. This has been labelled the
“removal of nuisance parameters”. Consider Eq. 3.4 with parameters X and Y and
some hypothesis H. If we want to remove an unwanted parameter, e.g. Y, we can
just do this by the integration

p(X|H) = / p(X.Y|H)dY (3.10)

over the complete space of Y. However, this marginalization results in a loss of
information since all knowledge contained in the parameter Y is lost.

3.2 Bayesian Inference

In the previous section we pointed out how to infer the posterior probability with
Bayes’ formula from the likelihood and some additional prior information. The
difficulty in modeling complex data, particularly to describe the content of images,
is to find a suitable model for the observed data X. Usually these models are
expressed in their parametric form p(X|60, M) and are uniquely determined by the
values of the parameter vector @ assigned to a certain model M. If it is obvious which
model is concerned, the symbol M is often neglected. For instance, we can model
data to be Gaussian, p(X1|0) ~ N (u,0?), with the parameter vector @ = (u, 0?).
The probability p(X|0) of the data X conditioned on the model parameter vector
0 is sometimes called the likelihood of 6.

3.2.1 Parameter Estimation

Information extraction by model parameter estimation, also called first level of
Bayesian inference, deals with inferring the values of the parameter vector @ from
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the observations X that are considered as random variables, e.g. pixels of an im-
age. There are two categories of estimation problems. The first category is when the
quantity to be estimated — our parameter vector @ — is deterministic but unknown.
The second category is when the quantity to be estimated is a random variable. In
the following, we describe both estimation techniques before we briefly demonstrate
Bayesian model selection in the next section.

Maximum likelihood estimation

Suppose that a dataset X consists of N samples z;, s, ... 2y and let @ = (61,0, .. .)
denote a parameter vector with [ components. To find values for the elements of the
parameter vector O that make the given samples of the dataset X the most likely
ones, we have to maximize the likelihood p(X0) as (DUDA et al. 2001)

Oy, = argmgxp(X\H) . (3.11)

If we consider an infinite large number of possible states instead of discrete values
for a random variable, we go from discrete probabilities to a continuous probability
density function.

Maximum a-posteriori estimation

In contrast to the ML estimator, the maximum a-posteriori (MAP) estimator aims
at the maximization of the posterior probability p(8]|X) o« p(X|0) p(8) and yields

Oyar = argmaxp(0]X)
o (3.12)

= argmaxp(X|0)p(6) ,

where p(0) denotes the prior probability of different parameter values. Comparing

both estimators from Eq. 3.12 and 3.11, we see that the ML estimator is a MAP

estimator with a uniform prior.

Comparison of ML and MAP estimation

In the case of infinite training samples, N — oo, and a selected prior distribution
that does not affect the outcome, maximum likelihood and maximum a-posteriori
estimates deliver identical results. However, since the number of data samples is
restricted in practical situations, one has to ask in which cases the two estimators
yield different solutions and which technique is preferable. For this decision, a num-
ber of criteria exist. First, from the computational point of view, ML techniques are
often preferable since they are based on first and second order derivatives whereas
MAP approaches can result in a time-consuming multidimensional integration. For



42 Chapter 3. Probability, Bayesian Inference and Information Theory

interpretability reasons, maximum likelihood estimates are calculated from one sin-
gle model. Thus, they are easier to understand than maximum a-posteriori results
as the weighted average of two models that can also have different functional forms.

The difficulty in maximum a-posteriori estimation is the choice of a suitable prior
distribution which is often criticized. If the prior and its parameters are not correct,
the estimation convergence may be rather slow or the results may even be shifted.
On the other hand, if the prior is carefully chosen, it can significantly improve the
convergence. To achieve this goal, a common way is not to take a fixed prior but
rather to derive it from the underlying data.

3.2.2 Model Selection

In the previous section, we outlined how information is extracted from data in the
Bayesian way. We estimated the parameters of stochastic models incorporating
some prior knowledge. As noted, Bayesian formalism can also be applied to select
appropriate models from a set of candidate models, known as second level of Bayesian
inference. Let’s consider a set of models My, Ms, ..., My that represent the data X.
Then, we can compare the different models by calculating the posterior probability
for each model M given the data X and obtain with Bayes’ rule, Eq 3.5,

p(X|M) p(M)
p(X)
The term p(M) indicates the prior of the model M, p(X|M) the likelihood of the
data X given the model and p(X) the prior predictive. If all models are assumed to

p(M|X) = (3.13)

be equally likely, that means no one is preferred, the prior is given by the uniform
distribution p(M) = % Analogous to Eq. 3.12, where we neglected p(X), we can
express the posterior probability of the model through the likelihood times prior of
the model as

p(M|X) oc p(X|M) p(M) . (3.14)

Notice, that the term p(X|M) has already occurred in Bayes’ formula as the prior
predictive or evidence and was not taken into account at that point since it only
acted as a normalization constant. However, at this point the determination of the
evidence is the core in comparing models and has to be obtained via the integration

pCXIAD) = [ p(X16. 1) (613 do (3.15

over the complete parameter space of 8. The calculation of the evidence, the integra-
tion of the product likelihood times prior, is non-trivial and can hardly be performed
in practical applications. Particularly in the context of multidimensional datasets
and rather complicated probability distributions, the integration in Eq. 3.15 over
all the parameters in the model is not manageable. Therefore, one solution is to
approximate the evidence as the maximum of p(X160, M) p(8|M) multiplied by its
width (MAcKAY 1991).
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3.3 Measures of Information

In this section we outline the basic concept of information and give some basic
properties that are essential to guarantee consistency. The best known measures of
information are Shannon’s entropy, relative entropy, mutual information and Fisher’s
definition of information (BLAHUT 1987). Some of the concepts which are involved
in the notation of information and which we present later are statistical entropy,
uncertainty, coding, questionnaires, statistical independence, probabilistic distance
and discrimination ability.

3.3.1 Entropy

Shannon suggested the concept of entropy (SHANNON 1948) as the measure of the
average amount of information (or uncertainty) of a single random variable. Let X
be a discrete random variable with states x1, o, ..., z, and probability distribution
p(z). Then, the entropy of X is given as

H(X)= - p(x)logp(z) (3.16)

where the logarithm may be either to base 2 or base e. When the logarithm is to
base 2, the average information is measured in bits and if the logarithm is to base
e, H(X) is measured in nats. In the limit that one probability p(z;) vanishes, the
contribution to entropy H(X) is defined as limy,,,)—o p(z;) log p(z;) = 0.

Properties of entropy

As when working with probabilities, entropy has to fulfill the following basic prop-
erties to guarantee consistency during all calculations (BLAHUT 1987):

1. Continuity:
Small changes in the probability distribution p(z) do not produce large changes
in the average information H(X).

2. Positivity:
H(X) > 0and H(X) = 0 if and only if all the p(x;) except one are equal to
zero.

3. Extremal property:
For a given J, H(X) <logJ and H(X) = log J if and only if all occurrences of
X are equal to 1/J. This property shows that the entropy reaches is maximum
if all states of X are equally likely.

4. Entropy is a concave function of X.
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Joint and conditional entropy

Suppose we have another random variable Y. Then, similar to Eq. 3.16, we can
define the average information in the joint space (X,Y) as

H(X.Y) ==Y p(x.y)logp(z.y) . (3.17)

We can further define the conditional entropy that is the entropy of a random
variable given another one as

H(X|Y) = => p(z.y)logp(z|y) . (3.18)

The definition of joint and conditional entropy is completed by the condition that
the entropy of a pair of random variables can be expressed as the entropy of one in
addition to the conditional entropy of the other one:

H(X,Y)=H(X)+H(Y|X) . (3.19)

3.3.2 Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence (or relative entropy or Kullback-Leibler distance)
is a generalization of Shannon’s measure of information. The divergence is a function
of two probability distributions p(z) and ¢g(z) that potentially characterize the same
random variable X:

x
D(p;q) =Y p(x) log plr) (3.20)
- q(z)
In this definition, the convention is used that Ologﬁ = 0 and p(x) log’% —

o0o. The KL-divergence is nothing else but Shannon’s measure of uncertainty for a
random variable X if ¢(z) is a uniform probability distribution. Thus, Shannon’s
entropy can be interpreted as the amount of information in a model ¢(z) of X
compared to the maximum incertitude model — the uniform distribution. The
uniform distribution is the one with maximum entropy.

3.3.3 Mutual Information

Mutual information is the third measure of information next to entropy and
Kullback-Leibler divergence. In the same way as we wrote the conditional entropy,
we can express the mutual information

I(X,Y) = H(X)— H(X|Y)
= Y plz,y) log ?(fay) (3.21)

- p(z) p(y)
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as the reduction in uncertainty of X due to the knowledge of another random variable
Y. For instance, if X is observed under rather noisy conditions, then X and Y will
be statistically independent and /(X,Y’) = 0.

Data processing inequality

So far we have considered the correlation between two random variables X and Y
modeled by the causality

X >V, (3.22)

The causality between X and Y is also said to form a Markov chain in the order
X — Y if the conditional distribution of Y only depends on X. If we consider the
random variables U, X, Y and V with the more general causality

U—-X—-Y =V, (3.23)
described by the joint probability distribution

p(U, XY, V) = p(U) p(X|U) p(Y|X) p(V]Y) (3.24)
we obtain the following inequality (data processing inequality):

(U, V) <I(X;Y) . (3.25)

This equation states that data processing never increases information, or in other
words, no clever manipulation of the data can improve the inferences that can be
made from the data.

To make Eq. 3.24 more evident, we can interprete the model as the causality
between different levels of semantic abstraction in the hierarchical image content
representation implemented in our system: image data (U), extracted primitive
image attributes (X), content-index (Y) and finally the semantic interpretation of
the image content by the user (V).

3.3.4 Fisher Information and Cramér-Rao Inequality

In Sec. 3.2, we dealt with the estimation of a parameter vector @ from a limited set
of observations X. For convenience, we consider a scalar parameter 6 instead of a
parameter vector @ in the following. Since the elements of X are assigned with some
uncertainties — they are random samples — also the estimate 0 as a function of X
is affected by an error we aim to determine.
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Quality of an estimator

For many applications, it is often necessary to measure the accuracy of the estimation
result to evaluate the belief in 0. If a poor estimation is the outcome, one can increase
the number of observations to attempt to obtain better results, for instance. To
describe the accuracy of estimated parameters, estimation theory provides several
criteria that define good estimates (VAN TREES 1968). The quality of an estimator
0 is judged if

1. it yields on the average the true values of the unknown parameters. Mathe-

matically, if

E{} =0 (3.26)
the estimator is called unbiased

2. and the conditional variance 093 satisfies

. 32
2
aé::EI{G——E{G}} . (3.27)

Intuitively, one hopes to select an estimator 0 so that it is unbiased, F {é} =0,
and the conditional variance 09? is as small as possible. If both criteria are fulfilled
for an estimator, we call it the minimum-variance unbiased estimator and can write

0=0+0; . (3.28)

The minimum-variance unbiased estimator is sometimes substituted if it does not
exist or others are preferred. Variance is not the only quality measurement, however,
variance contains most information about the estimator and is therefore of utmost
importance for the accuracy assessment.

Cramér-Rao bound

Placing a lower bound on the variance of an unbiased estimator has demonstrated
to be useful in practice. In the best case, the estimator is the minimum-variance
unbiased estimator. Thereby, the estimator reaches the bound for all values of
the estimated parameters. At worst, the bound allows to make a decision for or
against an estimator from a set of estimators. The core in measuring the accuracy
of an estimator is thus to find a method to determine the bound. Although there
exist several of these bounds (MCAULAY and HOFSTETTER 1971) (Z1v and ZAKAI
1969), the Cramér-Rao bound (CRB) is the most convenient one. For any unbiased
estimator, the CR bound is the lower bound on the conditional variance and can be
expressed as (KAy 1993)

% = . { (5’log;9éX9)) }2 ’

(3.29)
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where p(X|0) is the probability (or pdf in the continuous case) of a data set X given
a scalar parameter #. The CR bound can also be expressed in equivalent form in
terms of the second order derivative and yields

3 B {82 logp<X|0>} | (3:30)

If an estimator is unbiased and attains the Cramér-Rao bound, it is said to be
efficient in that it efficiently makes use of the data. The denominator of Eq. 3.30 is
referred to as the Fisher information /() for the data X (FISHER 1925).

In practice one is sometimes confronted with the estimation of a parameter that is
a function of a more fundamental parameter. If we denote a transformed parameter
with ¢ = f(0), then the Cramér-Rao bound is given as (KAy 1993)

2 (91 /06)°
o2 > AT (3.31)
{5

However, if f is a non-linear transformation, the efficiency of an estimator is de-
stroyed; it is only maintained for linear transformations.

The lower bound on an estimate as presented in Fq. 3.29 and 3.30 makes only
use of the likelihood p(X|6). Thus, the Cramér-Rao bound is related to the de-
termination of an unknown and deterministic parameter as outlined in Sec. 3.2 for
maximum-likelihood parameter estimation. If the parameter is stochastic and the
prior information about the parameter is contained in the probability p(f), then the
bound on the maximum a-posteriori estimate can be found to be (VAN TREES 1968)

1

(3.32)

Fisher information matrix

Sometimes one does not want to determine the value of a single parameter, but
rather to estimate a vector parameter 8 = (6,0,,...). If we assume an unbiased
estimator é, E{é} = 0, we can use the Cramér-Rao bound to place a bound on
the variance of each element of 8. Then, the covariance matrix of any unbiased
estimator satisfies

oy >17(0) (3.33)

where I(0) denotes the Fisher information matrix. This matrix is defined by

1(0)), = —E {%} . (3.34)
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with 6; and 0; as two different elements of the parameter vector 8. The Fisher infor-
mation matrix for the MAP estimate of a parameter vector is defined analogously
to Eq. 3.32.

Analogy of Fisher information and entropy

We outlined that Fisher’s measure of information is a measure of the quality of
estimating a parameter of a distribution. Entropy defined the amount of information
contained in the distribution of a single random variable. Now, we briefly focus on
the relationships between these two fundamental measures of information.

If X is a continuous random variable with finite variance and corresponding
probability density function p(z) and Z is an independent Gaussian random variable
with Z ~ N(0,1), the differential entropy H(Y) ! of the mixture Y = X + /1 Z is
given as (COVER and THOMAS 1991)

%](X +Vt2) = %H(X +Vt2) (3.35)

and in the limit t — 0

lJ(X) = %H(X +VEZ) im0 - (3.36)
This means that Fisher’s information I(-) can be expressed in terms of entropy H (-)
and vice versa (de Bruijn’s identity). Including Eq. 3.35, we arrive at a level where we
can express all demonstrated information-theoretic measures by entropy: Kullback-
Leibler divergence can be seen as Shannon’s entropy of a certain model compared
to the uniform distribution, mutual information as the difference between entropy
and conditional entropy and finally Fisher’s measure of information as differential
entropy. Consequently, entropy can be seen as the basic measure of information
which other measures can be ascribed to.

3.3.5 Combination of Information-theoretic Measures

How to assess the quality and performance of a complex system like the image
information mining system? In previous sections, we outlined basic measurement
categories to determine both the accuracy and the information content of a single
quantity and the association between two or more quantities. With the proposed

In contrast to the definition of entropy for a discrete random variable, differential entropy is
defined as

H(Y) = —[w p(y) logp(y) dy

where p(y) denotes the probability density function of Y.
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measurements we have a set of tools at hand to specify the performance of individ-
ual system parts and their interactions. However, no single measurement is suitable
to represent the overall system performance in one condensed representation. Each
quantity is just assigned to one particular module of the system or to the intercon-
nection between two or more of them. On the other hand, information-theoretic
measures indicate the complexity of individual system parts. Thus, a particular
methodology is required to make use of the described information-theoretic mea-
surements and to combine them to arrive at a quantity that reflects the overall
system performance.

The approach we apply to derive a quantity that reflects the overall system
performance is as follows. First, we apply entropy, Kullback-Leibler divergence,
mutual information and Fisher’s information to obtain a measure for the quality
of individual system modules, e.g. the complexity of human-computer operations
using entropy or the quality of the link between user-defined semantic labels and
content-index using Kullback-Leibler divergence. Then, we analyze the set of ac-
quired measures using a Karhunen-Loéve transform. This transform allows us to
verify both the relevance of our measurements and the correlation between them.
After this analysis, we arrive at an ordered sequence of principal components where
just the first principal component enables us to reflect the overall system perfor-
mance. The verification of this approach to fuse various sources of information
measurements is performed by a comparison with the user’s degree of satisfaction
as described in Chap. 8.

3.3.6 Other Measures of Information

The best established measures of information are the demonstrated information-
theoretic quantities. However, there are several others that are applied to quantize
information we briefly describe in this section.

In addition to Shannon’s measure of information there exist several other defini-
tions of entropy: Renyi entropy, entropy of a certain degree, quadratic entropy, R-
norm entropy and effective entropy (JUMARIE 1990). By definition, these entropies
look rather similar to Shannon’s entropy and make use of a probability distribution,
too. However, they have other properties. Since Shannon’s measure of uncertainty
is the most simple one of all possible entropies, we confine ourselves to it in this
thesis.

A standard technique to measure information in remote sensing is to compute
the classification error in form of a confusion or error matrix. This matrix gives the
quality of the applied classifier to correctly assign image pixels to certain classes
by a comparison of the computed classification map and ground-truth data. After
normalizing the error matrix, one arrives at a probabilistic representation of the
classification accuracy. Again, a final measure of information is reflected by entropy.

Questionnaires (LEHTONEN and PAHKINEN 2003) are a very popular and inex-
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pensive way to gather information about data or the performance of a system. Often
they are even the only feasible way to reach a large number of reviewers that is large
enough to infer statistically significant results. Although questionnaires are rather
adaptable in what to measure ranging from the overall performance of a system to
individual components, they are not suitable to measure all kinds of data. What has
to be included in the analysis is the environment in which the questionnaire takes
place, such as qualitative or quantitative questions. For the system evaluation we
use the second category of questionnaire. System operators learn semantic cover-
types of their interests, search the archive for these labels and evaluate the overall
performance by marking the degree of satisfaction. In a final step of evaluation, we
compare the users’ degree of satisfaction with the derived objective measurements
during system operation.

3.4 Conclusions

In this chapter, we have discussed the following items:

e The different terms of ‘probability’ and the Bayesian way of data interpretation
were shown. We demonstrated how information in form of model parameters
can be extracted from data by incorporating prior knowledge. However, the
right choice of such a prior is crucial and often a matter of criticism. In order
to verify which model has to be preferred, we shortly pointed out Bayesian
model selection.

e Based on random variables and parametric signal models, a number of mea-
sures to quantize information exist. With Shannon’s entropy, Kullback-Leibler
divergence and Fisher’s measure of information we described well-established
information-theoretic quantities that are appropriate for system validation.
Since the main focus of this thesis is not the verification of individual sys-
tem components but rather the entire system evaluation, we combine several
measures of information in order to obtain the overall system performance.
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Hierarchical Bayesian Image
Information Representation

Before we focus on the image information mining system and its evaluation in the
following chapters, we will primarily demonstrate the basic theoretical principles of
hierarchical Bayesian image content representation on which the system is based.
This scheme was first applied in the domain of content-based retrieval (SCHRO-
DER et al. 2000) to arrange the content of remote sensing images at different levels
of semantic abstraction and extended by (DASCHIEL and DATCU 2003a) for defining
higher-level semantic concepts. From the computational point of view, the hierar-
chy can be partitioned into two major parts: a computational intensive off-line part
which aims at the extraction and description of the image content in a completely
unsupervised, application-free way (levels 0 to 3), and the fast, user-specific def-
inition and aggregation of semantic cover-types (levels 4 and 5). The process of
information extraction in the hierarchical scheme is organized similarly to MIT’s
FourEyes (MINKA and PICARD 1997) that consists of unsupervised grouping and
supervised learning. However, this time it is organized in a way that information
at a certain level is determined from one or more levels below in a step of Bayesian
inference.

In the following section, Sec. 4.1, we show the hierarchical modeling of image
content starting with image data at the lowest level and finish at higher-level se-
mantic concepts. In this context we outline the flow of information between system
levels using various steps of stochastic inference. In Sec. 4.2, we point out how the
elements at each level are affected and result in a decrease of information flow. We
demonstrate methods to evaluate these influences and refer to later parts of the
thesis dealing with it. Comprising, this chapter gives an introduction to basic the-
oretical concepts underlying the mining system. It also shows both the complexity
of the mining system and the difficulty to perform an overall system effectiveness
evaluation.

23
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4.1 Hierarchical Bayesian Image Content Model-
ing

The concept of information representation on different hierarchical levels of semantic

abstraction is based on a 6 level Bayesian learning model as illustrated in (Fig. 4.1).

We will now proceed to describe how the image information at a certain level is
determined from level(s) below in a step of Bayesian inference.

From level 0 to level 1: Primitive feature extraction using parametric
signal models

In a first step, we extract spatial, spectral and geometrical features @ (level 1) from
the image data D (level 0) using different stochastic signal models M. These models
are expressed in their parametric form p(D|@, M) and assign the probability to a
realization of the data D for a particular parameter vector 6. At the core of the
information extraction process is the estimation of the parameter vector 8 given
the data D. In our concept of Bayesian modeling, this process is realized as the
maximum a-posteriori estimate of the parameter vector as

~

0 = argmgxp(0|D, M) . (4.1)

The results of this information extraction procedure indicate the elements on level 1
in our hierarchical scheme. Of course, which structures and objects can be captured
and the accuracy of the estimation process depend both on applied model and
image data. In Sec. 5.1, we show several models to extract primitive features such
as spectral, textural and geometrical attributes from optical as well as radar image
data.

From level 1 to level 2: Meta features

In the same way as the Bayesian technique was applied to estimate image parameters
from the data, it can be used to find the most evident model. This approach is
opposed to finding the most complex model that always describes the data best.
The evidence of the model, e.g. the probability of the model given the data, can be
obtained as

p(D|M) p(M)
M|D) = ——"—=, 4.2
p(M|D) = P (42)
where the probability of the data D can be obtained via the integration
p(DIM) = [ p(DI6. 21)p(6]21)d6 (43

over the complete parameter space of 8. In Eq. 4.3, the penalty factor (Occam’s ra-
zor) is implicitly contained as the width in @ between the likelihood p(D|6, M) and
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the prior distribution p(@|M). While the estimated image parameters are related
to the image content, the evidence keeps information about the model and its pa-
rameters to describe the image content. These features of features are called ‘meta
features’” and indicate the next level (level 2) in our hierarchical representation.

From level 1/2 to level 3: Unsupervised image classification

Feature extraction from level 1 and 2 produces large volumes of data that cannot
be managed in practice. Thus, we have to reduce and compress the estimated
parameters to obtain manageable data quantities. Clustering, which is similar to a
quantization process, reduces the accuracy of the system, but justifies its practical
use due to a large data reduction. In order to reject existing structures in the
different feature spaces of the data and to avoid the time-consuming calculation of
similarity functions, the unsupervised clustering is performed across all images as
illustrated in (Fig. 4.1).

From the clustered data we obtain a vocabulary of signal classes (level 3) that re-
flect characteristic structures in the different feature spaces, e.g. significant spectral
structures of multispectral images. We perform the global unsupervised cluster-
ing using a dyadic k-means algorithm (DASCHIEL and DATCU 2002a) with a pre-
defined number of clusters. Our clustering method is a modified and accelerated
version of the well-known k-means algorithm implemented to manage and process
large amounts of data. Even if it is less accurate than other clustering methods, e.g.
clustering by melting (WoNG 1993) or Bayesian classification (CHEESEMAN and
STuTZ 1995), it justifies its practical use due to a significantly reduced processing
time.

Common to all clustering algorithms is that they take a model for the clusters
w; into account. In our approach, we can express the cluster model in its parametric
form as

p(0j|0]'€w’iavv7T) ) (44)

where the jth data point of estimated parameter vector 6; is associated by proba-
bilities to the ¢th cluster w; in the feature space. V indicates the parameters for each
cluster, mean and variance, and 7" the mathematical model (inclusive the number
of clusters).

After grouping all points in the feature space, each individual point 6; from the
estimated parameters is clearly associated to one of the clusters w;. Mathematically
expressed, clustering yields the posterior probability

p(wil6;) (4.5)

of signal classes w; given the estimated parameter vectors 6;. In a step of Bayesian
inference we can make the connection between data D and signal classes w; as

Pl D) = / p(]6) p(6]D) d6 . (4.6)
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Since solving this integral is rather expensive — for a detailed explanation
see (SCHRODER-BRZOSNIOWSKY 2000) — we make the approximation

p(wi|D) = p(w;|0) . (4.7)

In order to decrease the computational demands and to make the approach appli-
cable to large data quantities, this approximation is assumed in all the following
steps.

From level 3 to level 4: Semantic labeling

The first three levels in our hierarchical representation describe the data D in a
completely unsupervised and application-free way. Since no single signal model may
capture the whole information contained in image data, several models are normally
applied on level 1. Based on the objective characterization of the image data on
level 3, p(w;|D), we can link the subjective user interests in form of semantic cover-
types L, (level 4) to signal classes w; by probabilities p(w;|L,) as

p(L,|D) = Zp Ly |w;) p(w;| D) . (4.8)

In the current system, the probabilistic link p(w;|L, ) is derived from the user’s posi-
tive and negative fed-back samples using a vector of hyper-parameters oy, (Fig. 4.1).
Each time the user interacts with the system and provides new training samples,
the vector of hyper-parameters and, as a consequence, the probabilistic link are up-
dated. In Sec. 5.4, we show the detailed learning procedure of how probabilities are
derived from the user’s training examples.

From level 4 to level 5: Aggregation of semantic labels

The elements on level 4 constitute the users’ interests in form of semantic interpreta-
tions of the image content based on the characteristic vocabulary of signal classes on
level 3. With the demonstrated learning paradigm users can define specific semantic
cover-type labels, e.g. ‘lake’, ‘city’ or ‘mountains’. However, it does not allow the
definition of complex semantics such as ‘a house next to a river’ or ‘trees around a
lake in a park’. Therefore, we formulate an additional step of Bayesian inference in
our hierarchical image content modeling and aggregate user-specific semantic labels
L, to higher-level semantic concepts A, (level 5).

In the same way as we made the inference from semantic cover-type labels [,
to image data D in the last step, we can now link higher-level semantics to image
data as

p(A,|D) = Zp A, |L,) p(L,|D) . (4.9)
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Before we can learn the probabilities p(L,|A;) from the user’s feedback, we have to
link semantic cover-types L, to image data D

p(Lo| D) =Y _p(Ly|ws) plwilD) - (4.10)

Note that this link is calculated according to Eq. 4.6 between level 0 and level 3,
however, this time between image data D and all semantic labels L, in the database
inventory. Since the computation of p(L,|D) in Eq. 4.10 over all labels in the DBMS
requires some efforts, which runs counter to our aim to achieve a fast on-line system
operation, we derive the link between image data D and semantic labels L, via
a supervised maximum a-posteriori (Bayesian) classification. The user’s positive
training samples for L, serve as input training data for the classification algorithm
(Sec. 6.2).

The probabilities p(L,|A,) are the core in Eq. 4.9 that are derived from the user’s
positive and negative learning feedback. Again, we use a vector of hyper-parameters
o to describe the stochastic link.

4.2 Validation Issues of the Hierarchical Scheme

The previous section demonstrated a scheme for hierarchical modeling of image
content based on several levels of different semantic abstraction. In this section,
we use these levels again and point out how their elements can be affected and
lead to a verification of the information flow. In detail, we aim at determining
the information content of the elements at each level in order to derive accuracy
measurements indicating the information flow from image raw data up to higher-
level semantic concepts.

The process of information extraction starts at level 0 where primitive image
parameters @ are estimated from data D using different stochastic signal models M
(Fig. 4.1). Since the quality of the acquired image data influences the estimation
process, we start with analyzing the data quality in a first step. The method we
apply to measure the radiometric image ‘quality’ is to determine the degree of noise
in the data signal. With this analysis, we can avoid obtaining unpredictable results
in the further image content representation: clustering and semantic labeling.

Having estimated the model parameter vector @ that indicates the elements on
level 1, we determine the accuracy of the elements of 8 using information-theoretic
measures. Of central importance in this context is the Fisher information matrix,
which reflects the bounded variance of the elements of the parameter vector.

On level 3, the ‘clouds’ of estimated feature parameter vectors 6; in a multi-
dimensional feature space are substituted by clusters w; as their condensed repre-
sentations. The performance of the clustering process and the information content
of clusters, respectively, depends on the ability to capture characteristic groups in
the feature spaces of the different signal models. Since the question as to identifying
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level ‘ variable ‘ model ‘ evaluation measure reference
5 A; p(Ly|A;) | retrieval accuracy Sec. 6.2, 6.3
4 L, p(w;|Ly) | supervised classification and retrieval | Sec. 7.3, 7.4
accuracy, man-machine interaction 7.5, 7.6, 7.7
3 w; p(0|w;) scatter matrices, Bayes’ probability of | Sec. 7.2

error, density estimation, divergence,
unsupervised classification accuracy
1 0 p(D|@, M) | Fisher information matrix Sec. 7.1

D noise variance estimation Sec. 7.1

Table 4.1: Validation measures for the hierarchical scheme of image content model-
ing and representation. The references point to sections which deal with the analysis
of the elements at specific levels. The elements at levels 0 to 3 are verified in a com-
plete objective way whereas cover-types (level 4) and aggregated labels (level 5) are
influence by human-factors, too.

‘characteristic’ groups cannot be answered without time-consuming feature space
analysis, a common approach is to first cluster the feature space and then measure
separability and isolation of the obtained clusters to evaluate the results. Methods
that are often used in this context are scatter matrices, Bayes’ probability of error,
non-parametric feature space density estimation and divergence. They all try to
identify the optimal partition of points in the feature space by a restricted number
of clusters. We want to point out that a high-performance clustering is the assump-
tion to access information details at image level and to successfully link the user’s
interests (specific and aggregated semantics) to image data.

The evaluation of the elements at the next hierarchical level, level 4, is mostly re-
lated to classification selectivity, cover-type separation and strength of the stochastic
link between signal classes w; and cover-type labels L,. Classification, separation
and stochastic link involve the user and its interaction with the system and thus do
not make a purely objective evaluation possible.

Verifying aggregated semantic labels is even more complicated than validating
individual labels on level 4 since the cover-types are already subjective. The difficulty
is that elements on level 4 may be insufficiently defined or the semantic does not
reflect the actual meaning, e.g. a cover-type ‘forest’ is ingested as ‘grassland’. Thus,
we confine the evaluation of elements at level 5 to the identification of target and
misclassified images in the probabilistic search results. In (Tab. 4.1), we summarize
validation measurements for individual system levels and refer to later parts dealing
with them.

Before we describe the evaluation concept and measurements in more detail in
Chap. 7, we will first outline the image information mining system and its enhance-
ment in Chap. 5 and 6, respectively.
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4.3 Conclusions

In this chapter, we have discussed the following items:

e We demonstrated how to arrange the information content of image data at
multiple levels of different semantic abstraction. Therefore, we applied a hier-
archical scheme where the elements at a certain level are obtained from levels
below in a step of Bayesian inference. The main application of this scheme
is to first describe the image content in an unsupervised and application-free
way and then to link user-specific interest to this content-index.

e The basic hierarchial concept is extended to a new level of image content
abstraction: semantic aggregation. At this level, existing user-specific labels
are grouped to higher-level semantic concepts that can be used for database
retrieval.

e Based on the hierarchical modeling of image content from image data up to
higher-level semantics, we proposed an evaluation methodology that is adapted
to this scheme. Since the information is contained in the applied stochastic
signal models and the parameters to be determined, evaluating the image
information mining system means quantizing the information content of ob-
servations and model parameters.



Information Mining in Remote
Sensing Image Archives

The last decade has been marked by important research efforts to develop content-
based image retrieval concepts and systems. Images in an archive are searched by
their visual similarities with respect to color, texture and shape. However, CBIR
concepts have been computer-centered approaches — the concepts hardly allowing
any adaptivity to users’ needs. Thus, image retrieval systems have been equipped
with relevance feedback functions (Cox et al. 1996). The systems are designed to
search images similar to the users’ conjecture. Another interesting approach is based
on a learning algorithm to select and combine feature grouping and to allow users to
give positive and negative examples (MINKA and PICARD 1997). Both concepts are
first approaches to include the user in the search loop, they are information mining
concepts (ZHANG et al. 2001). They are also methods in the trend of designing
human-centric systems.

In addition to the operational state-of-the-art archive and database systems,
we have implemented a concept for image information mining that supports the
man-machine interaction via the Internet and adaptively incorporates application-
specific interests. The system concept for exploring the information content of re-
mote sensing images and understanding the observed scenes was first implemented
and successfully tested in the Multi-Mission Demonstrator (MMDEMO) (SCHRO-
DER et al. 2000). A further upgrade was made by (DATCU et al. 2003) that resulted
in a prototype of a Knowledge-driven Information Mining (KIM) system. Before we
focus on the system enhancement and evaluation of the image understanding and
mining functions in the following chapters, we will explain the concepts underlying
image information mining. We follow the order of hierarchical image information
modeling as presented in the previous chapter.

We begin this chapter with the extraction of primitive image parameters in
Sec. 5.1. We mainly focus on Gibbs random field texture models to capture struc-
tures, objects and scattering properties in optical as well as in radar scenes. In the
next section, Sec. 5.2, we show how a vocabulary of characteristic signal classes that
is valid across all images in the archive is computed from the estimated features.

61
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1

Figure 5.1: Graphical definition of a Gibbs-Markov random field up to order 5.
Neighbouring pixels z;; and z;;" are in interaction with a central pixel z.

Sec. 5.3 and 5.4, respectively, deal with semantic labeling of user-specific cover-type
labels by interactive learning based on the generated unsupervised content-index.
Then, in Sec. 5.5, we point out how the entire archive can be searched in a proba-
bilistic way for images that contain structures similar to a defined cover-type. After
Sec. 5.6, a section dedicated to system description, configuration and information
transmission aspects, we conclude this chapter with an illustration of the system
with several practical applications.

5.1 Primitive Image Parameter Extraction

Automatic interpretation of remote sensing images and the growing interest for im-
age information mining and query by image content from large remote sensing image
archives rely on the ability and robustness of information extraction from the ob-
served data. We focus on the modern Bayesian way of thinking and introduce a
pragmatic approach to extract structural information from remote sensing images
by selecting those prior models which best explain the structures within an image.
On the lowest level, the image data D, we apply stochastic models to capture spa-
tial, spectral and geometric structures in the image. These models are given as
parametric data models p(D|6, M) and assign the probability to a given realization
of the data D for a particular value of the parameter vector 6.

5.1.1 Optical Images

To apply parametric stochastic models (DATCU et al. 1998) in order to extract
primitive image features, the data is understood as a realization of a stochastic
process. The Gibbs-Markov random field (GRF) family of stochastic models assumes
that the statistics of the grey level of a pixel in the image depends only on the
grey levels of the pixels belonging to a neighbourhood with a restricted dimension
(Fig. 5.1). The probability of the grey level of the pixel x; is given by

p(as|0zs,0) = Zi oxp (— H(z:0z.,0)) | (5.1)

s
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where Z, acts as a normalization factor given by the sum over all the possible states
for the pixel z,. Assumptions have to be made for the functional form of the energy
function H. In this approach we use an auto-binomial model with its energy function

H(z4|0zs,0) = —log ( f ) — 57 (5.2)
and
Ty + X
n:a+29ij7]G ! (53)

ij
as the joint influence of all neighbours weighted by the elements of the parameter
vector 8. Each element 6;; of the parameter vector describes the interaction between
the pixel =y and the pair ;;, x;;/, while the parameter a represents a sort of auto-
interaction. GG indicates the maximum grey value, e.g. 255 for a 8 bit image.
A fitting of the model on the image is performed in order to obtain the best fitting

parameters. For the estimation a conditional least-squares estimator (LELE and
ORD 1986) is obtained by

c 2
Ocrs = arg meinz (a:s — Z xs p(xs|0s, 0)) : (5.4)

zs=0

The evidence of the model, e.g. the probability of the model given the data, can
be calculated by

p(D|M) p(M)
p(M|D) = ——F— . 5.5
(MID) = P (55)
where the probability of the data D can be obtained via the integration
p(DIM) = [ p(DI6. M) p(6IM) db (56)

From the estimated parameters, we derive several features to describe the image
content: the norm of the estimated parameters |é| as the strength of the texture,
the estimate of the variance 63, as the difference between signal and model en-
ergy (RUANAIDH and FITZGERALD 1996), the evidence of the model M, Eq. 5.5,
and the local mean of the estimation kernel (Fig. 5.2).

To describe the image content by using the spectral properties, we do not have
to explicitly estimate the parameter vector 6. Instead, we can directly assign the
individual spectral channels (after a normalization) to elements of the vector 6,
e.g. the 6 spectral channels in the visible spectrum of Landsat TM result in a

six-dimensional vector @ = {60;,0s,...,05}.
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Figure 5.2: Extracted textural features from a Landsat TM image. Images from
left to right. 4th band of Landsat TM as data D, norm |@] of the estimated texture
parameters, variance ¢3,, evidence p(M|D) and local mean of the estimation kernel.

5.1.2 SAR Images

In the system, there exist co-registered optical and SAR images. To include radar
information in the retrieval process for an entire exploitation of the image archive
and to enable the mining of multi-sensor data for sensor qualification, we have to
extract content-based image parameters from SAR data, too.

The information extraction is achieved as a model-based Bayesian ap-
proach (DATCU et al. 1998) (WALEsSA and DATcu 2000). The system models and
reconstructs an estimated backscatter image that is free of speckle noise, while still
completely preserving its most important structural information. Furthermore, the
system evaluates the parameters @ that describe the scene structures, e.g. textures,
edges and strong targets. The information extraction is a space variant process
describing precisely the scene non-stationarity.

Since the system takes both the statistics of the noisy and the noise-free data
in a Bayesian framework into account, the choice of an appropriate model for the
estimated backscatter image plays an important role, and affects the obtained results
directly. In order to filter out speckle, the Bayesian formula

p(ylz) p(x|6)
p(zly, 6) (010) (5.7)
is used, where we try to estimate the noise-free image which best explains the noisy
observation assuming some prior information. By z we describe a noise-free pixel
of the image, y indicates a pixel of the noisy observation, e.g. the ERS1 image, and
by @ we characterize the parameters of the applied model.
The Bayes’ equation, Eq. 5.7, allows the formulation of the information extrac-
tion problem as a maximum a posteriori (MAP) estimation:

Eyap = argmax p(zly, 0) (5.8)
and

Oriap = Arg max p(8ly) . (5.9)
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Figure 5.3: Information extraction from radar images. Images from left to right.
Original ERS1 intensity image covering Mozambique with a high diversity of struc-
tures, such as mountains, rivers and flat terrain, the model-based despeckled image
and norm || of the estimated texture parameter vector.

Analytically computed maximum a posteriori estimates of the cross-section are
generated from the filter. Subsequently, they are employed to produce parameters
for p(z|y, @) by iterative maximization of the evidence (WALESsSA and DATcu 2000).
Expectation maximization is used to estimate the non-stationary texture parameters
that provide the highest evidence value. The estimated model parameters express
the characteristics of the texture and the strength of geometrical structures in the
data.

The model used as a prior is the Gauss-Markov random field (GMRF) texture
model (DATCU et al. 1998) (WALESSA and DATCU 2000)

(s = Y O + 234"))?
ij

exp | — 553 (5.10)

1
V2mo?

p(a:s|8xs,02,0) =

specified by 6% and the parameter vector @ = (611, 012,041, ...). The latter is defined
on a neighborhood of cliques centered on the generic pixel z; so that the scalar
parameters are symmetric around the central element. The main strength of the
Gauss-Markov model lies in its ability to model structures in a wide set of images
while still allowing analytical tractability. The likelihood used in the Bayes equation,
Eq. 5.7, is the gamma distribution

p(y|z) =2 (%)2“ xFL(LL) exp (—L (%)2) (5.11)

with L the number of looks of the data and I'(-) the gamma function. From the
estimated parameters, we take the model-based filtered intensity image and the

norm of the model parameter |@| as exemplified in (Fig. 5.3).
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Figure 5.4: Spatial information extraction from Landsat TM at three different
scales. Images from left to right. Band 4 of a Landsat TM image from which
texture features in form of evidence, Eq. 5.5, are extracted at 30m, 60m and 120m,
respectively. Captured large-scale textures show a more compact representation at
a scale of 120m while small local variations are quite well extracted from data at
original resolution.

5.1.3 Information Extraction at Multiple Scales

We showed that parametric data models are suitable to characterize spatial infor-
mation in images by its parameter vector 6. Capturing high complex textures that
have features at different scales, particularly large-scale structures such as mountains
or rivers, requires high order models. With an increasing neighbourhood size, the
number of parameters grows and leads to an averaging effect of different parameters.
This results in a limited discrimination power of the extracted texture features and
impairs the interpretation.

The approach we follow for a quasi-complete description of all texture structures
is to generate a multiresolution image pyramid where the original image is located
at the lowest layer and the reduced resolution representations of the image at higher
layers (SCHRODER et al. 1998). If the same Gibbs random field texture model
is applied with a limited neighbourhood size at different layers, information for
different structures is extracted. Thus, we can characterize large-extended spatial
information by a restricted model order (MAO and JAIN 1992). Another, very
remarkable reason for extracting texture information at different scales is the speed
increase of the extraction process. The amount of data is decreased by a factor of
1/4 from one scale to the next scale in our dyadic pyramid. In (DATCU et al. 2003),
it was demonstrated that the loss of information due to scaling at final semantic
labeling is minimal.

An example for the multi-scale approach on Landsat TM image data is shown.
These images are characterized by a high diversity of structures at very different
scales, e.g. cities, cultivated land and geological structures. The appearing difficulty
is to robust extract long-range textures with a periodicity much larger than the
Gibbs kernel. A solution is to produce scaled versions of the image to bring the
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Figure 5.5: Spatial information extraction from an ERS1 image at two different
scales. Images from left to right. Enhanced model-based despeckled (EMBD) image
at resolution of 60m and the norm || of the estimated model parameter vector.
EMBD filtered image at 120m resolution and the norm |@]. With a decreasing
resolution, the separability of strong targets increases due to the increased signal-
to-noise ratio.

correlation length of large-extended textures to the Gibbs kernel. We perform the
scaling at different levels of the Landsat image, 30m, 60m and 120m, by low-pass
filtering the image data and downsampling (Fig. 5.4). In connection with SAR
images (Fig 5.5) the multi-resolution is a multilook as well. Thus, at lower resolution,
the accuracy of the estimated information is more precise due to the better signal-
to-noise ratio (GOODMAN 1975).

5.2 Unsupervised Clustering and Catalogue En-
try Generation

In the previous section, we pointed out how the content of optical and radar images
can be described by parametric data models. Since the feature extraction produces
large volumes of data that cannot be managed in practice, estimated image parame-
ters must be compressed and reduced. Clustering, which is similar to a quantization
process, reduces the accuracy of the system, but justifies its practical use due to a
large data reduction. In order to reflect existing structures in the different feature
spaces of the data and to avoid the time-consuming calculation of similarity func-
tions (JACOBS et al. 1998), unsupervised clustering is performed across all images
in the archive (see Fig. 4.1).

In this section, we present the dyadic k-means algorithm, a modified and en-
hanced version of the traditional k-means clustering tool. Furthermore, we discuss
the reasons for and against the dyadic application of k-means for the unsupervised
clustering of large remote sensing image datasets. Before we point out advantages
and constraints of unsupervised across image classification, we briefly show how the



68 Chapter 5. Information Mining in Remote Sensing Image Archives

content-index — a characteristic “vocabulary” of signal classes — is derived from
the clustering results.

5.2.1 Cluster Modeling

Assuming the jth data point from the complete set of estimated parameter vectors
(elements at levels 1 and 2) is denoted by 6;, we can associate 8; to the ith cluster
w; in the feature space by the probability density

p(8;]0;ew;, V. T) | (5.12)

where T indicates a particular classification model and V' the parameters inside this
model. In our dyadic k-means clustering approach, the classification model T is
given by the dyadic method itself and V' involves the number of pre-defined clusters.
Each cluster is modeled as a Gaussian representation with mean p; and variance 3;
that lead to the following parametric class model

P66 V.T) = L exp (=36, - B0, - ) (513
(2m)2 |%i[2 2
with d as the dimension of the feature space.

Having a model for the feature points belonging to one of the clusters, we are
interested in the maximum a-posteriori model for clustering. With the help of
Bayesian inference we can express the probability of a cluster w; given a data point
Oj by

p(8;|wi) p(w;)
Zl;l p(0;|w;) p(w;) 7

where p(w;) indicates the prior probability of the ith cluster and 7 the total number

p(wil6;) = (5.14)

of clusters. Note, that the normalization in the denominator is performed over the
whole cluster space.

5.2.2 Dyadic k-means Clustering Algorithm

The global unsupervised clustering using a dyadic kA-means algorithm
(DAscHIEL and Datrcu 2002a) substitutes the “clouds” of primitive features
by parametric data models p(w;|6,) as stated in the previous section. From Eq. 5.13
and 5.14 it is obvious that the probability p(w;|@;) is large when the Mahalanobis
distance (0; — p,)'S71(0; — ;) is small.

If we compute the squared Euclidean distance [|0; — p;||* instead of the Maha-
lanobis distance, we find the mean vector u,, closest to sample point 8; and can
approximate p(w;|@;) as (DUDA et al. 2001)

1 ifi=m

0 otherwise. (5.15)

plaloy) =~ {
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Input: number of r = 27 clusters (q = 1, 2, ... ), dataset consisting of
n points (samples)
Output: 24 clusters which minimize the cost function F
Method: 1) initialize: select 2 clusters w; and wo
2) re-compute cluster centers p; and py
3) fori=1,...,q—1
4) split each cluster wy,...,wqy: into 2 new ones with centers
i,y Roitl
5) classify the samples of clusters wy,...,wy separately to one

of the two new (split) ones
6) until no significant change in E or in py,..., 1 and
number of clusters < 249

Figure 5.6: Pseudo-code of the dyadic k-means clustering algorithm.

Then, the cluster centers y,; (i = 1,...,7) can be found by the iterative application
of

o Shap(eil6)0,
' Z;‘L:I p(wil€;)
where n denotes the whole number of data samples in the feature space.

In (Fig. 5.6), we show the pseudo-code of the clustering algorithm. Dyadic k-
means starts with the initialization of the complete dataset — associating all points

(5.16)

0; to one of the two clusters w; and w, with centers p;, and p,. To achieve an
optimization of the squared-error cost function E = ||@; — p,]|?, the initial state
is updated like in k-means (DUDA et al. 2001). If convergence is reached, each of
the clusters w; and wy is separately divided into two new ones (step 4 in Fig 5.6).
E is optimized for the new configuration in a way that points from one cluster
can only fall into one of the split clusters. This process is repeated until £ or
the cluster membership does not change significantly anymore. Both splitting each
cluster center into two new ones and optimizing this configuration is one level in
dyadic k-means. This procedure is repeated until the defined number of r clusters
is reached.

The reason for modifying k-means is to obtain an enhanced and accelerated tool
for clustering huge datasets. The most time-consuming computation in k-means is
the distance calculation in the d-dimensional feature space because for each point it
must be done to all cluster centers. The time required for 1/0 is less important in
comparison to the distance computation but is linearly increasing with the amount
of data. Whereas the computational complexity for k-means is O(rn) with r clusters
and n data samples, it is O(nlogr) for the dyadic algorithm. Especially for a large
number of clusters our algorithm has proved to be very efficient.

From the processing point of view it is consequent to speed up the algo-
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rithm as much as possible, particularly for a data-intensive task like data min-
ing (ALSABTI et al. 1998). Since the power of a single processor is limited to a few
GHz, it is challenging to run a clustering algorithm on a multi-processor machine.
In the past, k-means was mapped to a hybrid processor (GOKHALE et al. 2001)
but the results of this experiment did not meet the expectations. With the used
configuration only a speed-up of 15% could be reached. With a special hardware
configuration, however, an acceleration of factor 10 is said to be possible. For the
dyadic k-means, the iterative application of k-means makes the direct efficient uti-
lization of a single instruction multiple data (SIMD) architecture possible. The
parallelization of the algorithm is essential and useful for the processing of large
datasets, in particular.

Despite the potential and the quality of the dyadic k-means clustering tool, some
problems remain. First of all, the I/O costs can affect the processing time, especially
for image mining related applications with huge amounts of data. Only a few algo-
rithms can overcome the problem of I/0, e.g. (ZHANG et al. 1996), but are always
associated with a decrease of accuracy or other restrictions. Since our algorithm
is only slightly more inaccurate than k-means, the disadvantage is balanced by the
decrease of computation speed. Whereas our clustering algorithm works well in al-
most uniformly distributed data samples, problems occur if too many outliers are
in the database. The algorithm places too many cluster centers to outliers because
of the binary splitting of the clusters.

5.2.3 Coding Classes and Catalogue Entry Generation

From the results of unsupervised feature classification, we derive a set of signal
classes that describe characteristic groups of points in the parametric spaces of dif-
ferent models. This “vocabulary” of signal classes is valid across all images, ensured
by the global across image classification. The elements w; of this “vocabulary” are
given by the cluster-membership of all image points to one of the clusters. For each
image, this results in as many classification maps as the number of models that
are used. From these maps, we calculate the probabilities p(w;|/¢) of the ith class
given a certain image /.. These probabilities are separately computed for each signal
model. We obtain the probabilities by calculating the histogram of the occurrence
of signal classes w; in an image I.. The elements of the normalized histograms,
the probabilities p(w;|I;), are stored in a relational database system together with
the classification maps. The latter are stored as binary large objects (BLOBSs).
Additionally, Quick-Looks (QL) and their thumbnails as BLOBs in JPEG-format,
meta-information, such as sensor type, time of acquisition, geographical information,
etc., are inserted.
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5.2.4 Advantages and Constraints of Unsupervised Across
Image Clustering

The applied concept of global image feature clustering has several advantages and
limitations we will briefly point out.

First and foremost, the unsupervised clustering of image features achieves a
large data reduction and represents the multidimensional signal samples in a more
compact way. With the derived vocabulary of characteristic signal classes w; that is
valid across all images, like a codebook in coding theory, for example, the applied
method can be seen as a vector quantization of image features. In comparison to per
image classification, across image classification does not require the time-intensive
calculation of similarity functions (JACOBS et al. 1998).

Apart from the large data compression factor of unsupervised clustering, there
are several drawbacks and limitations we should not forget to mention. In terms
of clustering massive datasets, the most apparent questions are (1) how much in-
formation details can be represented by the global image feature clusters, (2) how
many clusters are necessary and (3) how to proceed if the archive is expanded with
new data. The question about information details becomes critical if the amount
of data is high and the number of points of relevant classes is small. If the archive
consists of 1000 images covering rural land and one image covers a city, for instance,
it can happen that feature samples representing structures in the single image are
not separated in the global feature space. However, this problem can be easily coped
with an increase of the clusters. But one question still remains: how to choose the
initial number of clusters? This limitation appears frequently in unsupervised clus-
tering applications and requires a special optimization procedure as implemented
in the AutoClass algorithm (CHEESEMAN and STuTZ 1995), for example. For the
efficient partitioning of massive datasets, however, algorithms like AutoClass are not
appropriate due to their high computational complexity. An easy but very heuristic
solution is to fix the number of clusters to a “reasonably” high quantity depending
on the size of the image archive. In dyadic k-means clustering, we usually chose
128 clusters as a compromise between detail representation and computation time.
An awkward effect across image feature clustering is that the entire computation
has to be repeated if new data enter the archive. To overcome this limitation, an
incremental clustering algorithm is required that just has to cluster the new data.

Even if across image classification is faced with the mentioned difficulties, it
proved to be an efficient method to manage large amounts of data. KEspecially
the separation between off-line unsupervised image feature clustering and on-line
supervised learning (as it will be described in the following sections) makes across
image classification an efficient method and justifies its practical use.
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5.3 User-specific Semantic Labeling

The first 3 levels of our hierarchical modeling describe the image data D at level 0
in a completely unsupervised and application-free way (Fig. 4.1). Based on this
objective representation, we can now link subjective user interests L, (level 4) to
the signal classes w; by probabilities p(w;|L,). For a robust characterization of user-
specific semantics L, several signal models (level 3) have to be applied.

Then, we link the elements of the joint space of signal classes to the user’s
interests. The stochastic link can be achieved with different models for p(w|L,),
but only if we suppose a full statistic independence written as

p(wjk..|Ly) = p(w;|Ly) - p(wi|Ly) - ..., (5.17)

a fast computation is possible. In the following, we will restrict ourselves to a
statistic independence for p(w;i. |L) with two models j and k.

With the results of unsupervised classification (level 3), we obtain the posterior
probabilities p(w;x| D) for the signal classes w;y, given the data D. With these results
and the assumption that the signal characteristics of the semantic label L, are fully
represented by w;;, we can calculate the posterior probability as

p(L,|D) = Zp (L |wi) plw;i| D) . (5.18)

With Bayes’ formula, Eq. 5.18 can further be expressed as

p(wik| L) plwir| D
p(L,|D) = Z il wk”), (5.19)
J

where p(L,) indicates the prior probability of semantic labels L, and p(wjz) =
>, p(wjk|Ly) p(L,) the prior of signal classes w;;. Since the posterior probability
can be calculated for each image pixel, we can visualize p(L,|D). The spatial visu-
alization of p(L,|D) is named in the following as “posterior map”. This map gives
the system operator a feedback of how strong and accurate the cover-type label has
been already defined.

5.4 Interactive Learning

In order to make the inference from the image data D (level 0) to the cover-type
labels L, (level 4), the system first has to learn the probabilistic link p(w;|L,) based
on user-supplied training samples. As mentioned in the last section, Eq. 5.17, we
assume conditional independence for the signal classes wj; as a combination of 2
features. In the following we denote the classes by w;. We perform the probabilistic
learning with a simple Bayesian network (HECKERMANN et al. 1994). Assume we
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have a set of user-supplied training data T expressed by { Ny, ..., N,.} with N; being
the occurrence of w; in 7. Then, the vector of N; has a multinomial distribution
since w; is a variable with r states (BERNARDO and SMITH 2001), if we consider the
parameter vector ¢ = {1, ..., ¢} as a model for the set of probabilities

p(wilL, @) = i . (5.20)

Now, we change our discussion from determining the probabilities of the signal
classes w; to the parameter vector ¢. For a newly defined label we start with a
constant initial prior distribution

p(@) =T(r)=(r-1", (5.21)

where r indicates the number of signal classes w; and I'(+) the gamma function. With
our observed training set 7" and its instances NV;, we obtain the posterior probability

p(d)|T) = H F"“ ;L+NN HQSNl
= Dlr(¢|1+N1,...,1+Nr)
= Dir(¢|a)

with the total sum of training samples N = ). N;, the Dirichlet function Dir(¢|cx)
and the hyper-parameters

(5.22)

o= 14N, . (523

If we observe another training set 7" that is considered to be independent on T', we
obtain by

p(T"[¢.T) p(¢|T)

) = T (5.24)
= Dir(¢p|a; + Ny,...,a, + N/)) ,

p(oIT", T

an additional update of the hyper-parameters by adding the number of times w|
occurs in the training dataset T":

a,=a; + N! . (5.25)
The initial state of the hyper-parameters is given by

and a new set of training samples updates the hyper-parameters as given in Eq. 5.25.
Having a definition of the hyper-parameters a by some training sets T, we can

finally calculate the probabilities as expectation over all possible values of ¢ as

Q

> .

plei|L.T) = (5.27)
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The fast computation of the probabilistic link p(w;|L,), Eq. 5.27, and the up-
dating after observing new training data, Eq. 5.25, make the hyper-parameters o
a very advantageous tool to describe the stochastic link between objective signal
classes and subjective user semantics.

In order to allow high precision training specified on full resolution images, an
on-line training interface has been developed (Fig. 5.7).

A human trainer can define an arbitrary number of (pairwise disjunct) cover-
types L, and =L, (e.g. ‘lake’ and ‘not lake’) on a set of images in full resolution.
After selecting a combination of signal classes of feature models, the trainer can
ask for the posterior map of a particular cover-type label or an assessment of the
selected features classes. Since the image content has already been extracted up to
level 3, only the probabilistic link has to be re-calculated and the response is pretty
fast. This allows an iterative refinement of the training regions and “simultaneous”
observation of the consequences for the posterior probabilities.

5.5 Probabilistic Search

After training a semantic cover-type, we want to search the entire data repository for
relevant images. We can calculate the posterior probability of L, given a particular
image I as

p(Lu|le) = Zp (Ly|wi) p(wil L) (5.28)

in an analogous manner as we calculated the posterior probability of L, given a
particular data D, Eq. 5.19. The posterior probability is a measure of how probable
an image “is of” a particular cover-type.

To provide a more practical measure for image retrieval, we compute the “cov-
erage”

C= Zp(willc) - Heaviside(p(L,|w;) — pin) (5.29)

which specifies the approximate percentage of the image that definitely contains the
desired cover-type. The degree of “definitely” is determined via the threshold py,.

Since the distribution of p(w;|L,) — resulting from limited training data —
is known in detail, we can specify both the probability of a label in a particular
image and the expected degree of variation. We do this by calculating the expected
variance of the posterior

p(L,|I;) 252 (Ly|wi)p(wi| I¢) (5.30)
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Figure 5.7: Graphical user interface (GUI) in I*M for interactively learning the con-
tents (water) of remote sensing images. The system operator can specify his interests
by giving positive and negative training samples, either directly into the original im-
age (left top), the zoom window (left bellow) or the posterior map (right top). After
each mouse click, the hyper-parameters a,, and the probabilities p(w;|L,) of the
stochastic link are updated and the posterior map on the right side is re-computed
and re-displayed. As a further quality measurement, we display the divergence,
Eq. 7.20, between positive and negative training samples for individual signal mo-
dels (right bellow). If the user is satisfied with the posterior map, he can search the
entire archive for relevant images by clicking on the 'SEARCH’ button.
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Figure 5.8: Client-server architecture of the image information mining system.

with the §%-symbol denoting the variance. As a measure of how well L, is separated
from =L, in a particular image I we use the separability

0*p(Lu 1)
(Lol L)X = p(Ly L))

which is the variance in units of the maximal possible variance. The smaller S(-),
the “better” we call the separability. The separability measurement is very useful for

S(Lulle) = - (5.31)

further learning, since retrieved images with low separability are related to performed
positive training samples and images with high separability are connected to negative
training. The user can either decide to enforce the positive training because of bad
query results for low separability or enforce negative training due to bad search
results for high separability.

5.6 System Description and Configuration

In this section we describe the mining system from the technical point of view
with its main components as illustrated in (Fig. 5.8). To access the system, a
user has to register first by choosing a user id and a password. After successful
login, a personal welcome page is displayed. The user can decide to perform some
administration to start the interactive learning process. The latter requires the
selection of a combination of up to 4 signal models. In the mining system, the
information extracted from one single sensor as well as the information from multiple
sensors can be used for interactive training and probabilistic search. Having selected
a certain model combination, the user has to pick out a starting image from a gallery
of randomly chosen images. If the gallery does not contain an image of the user’s
favour, he can choose another set of random images.

Once clicked on an image, the interactive learning process begins as depicted in
(Fig. 5.9). In a first step, the following objects are downloaded by the interactive
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Figure 5.9: Data flow during interactive learning and probabilistic search. After
identifying the user and choosing a combination of signal models the learning applet
is downloaded from the server to the client browser. The system operator can
continuously train a specific label of his interest by giving positive and negative
training samples. After each training (mouse click), the hyper-parameters «, are
updated and the re-displayed posterior map indicates the current state of the label.
If the user is satisfied with the trained label, he can query the entire image archive
for the defined cover-type. The system delivers the top-ranked images according
to coverage (C), posterior probability (P) and separability (S). For further label
definition, the user can select another image from the search results.

learning applet: the QL image in JPEG-format and the corresponding classification
maps (image content catalogue) for the selected signal models in raw binary for-
mat. When the downloading is finished (after a few seconds), the user can start the
definition of a semantic cover-type of his interest by giving positive and negative
samples using the left /right mouse button. After each click, the hyper-parameters
o, the likelihoods p(w;|L,) and the posterior map are updated. The latter perma-
nently gives the user an intuitive feedback about the quality of the learning process
by marking regions corresponding to the cover-type with red colour. If the cur-
rent label definition is satisfactory, the system operator can query the entire archive
for images containing similar structures or objects. For the computation of the
probabilistic search measurements on the server’s site only the hyper-parameters
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with the derived posterior probabilities p(L,|w;) and the probabilities p(w;|I;) of
the generated and inserted catalogue entries are necessary. At this time, the label is
persistently stored in the data base. The definition of the label is given by its name,
the used image from training, the selected signal models, the hyper-parameters and
the resulting (queried) images.

The user can continue the learning process until he is satisfied with the query
result. In order to improve the definition of the semantic label, the system operator
clicks on another image in the resulting image set and continues to feed in positive
and negative examples. Everytime the user selects an image from the query gallery,
the QL and the assigned signal model classification maps are transmitted via the
world wide web. We want to point out that the cover-type learning using several
images is important to obtain a well-defined semantic label. We call this “iterative
incremental learning”. FEach time the user queries the image archive, the semantic
label definition in the database is updated.

A tool worth to be mentioned in I?M is the tracking module that stores each
human-machine interaction in the database. Based on the stored information, the
system computes a number of statistical and information theoretical measures that
indicate the goodness of the learning process. These measures give the user a further
feedback about the learning progress (lower-left part in Fig. 5.7). The traced and
stored human-computer interactions are the central element for the overall system
evaluation. In Chap 7, we will demonstrate methods to measure the complexity
of human-system operations, to identify target structures, to determine the conver-
gence of the learning process and to predict in which semantic cover-type(s) the user
might be interested in. After defining these methods, we will analyze in Chap. 8
their relevance in a large-scale system performance evaluation by comparing objec-
tive measures with subjective user satisfaction.

5.7 Practical Applications

The applied concept of unsupervised indexing of image content and the user-specific
semantic labeling of cover-types have been extensively tested based on various re-
mote sensing datasets (Tab. 5.1). In the performed experiments, the image data
range from monochromatic high-resolution (Ikonos) to hyperspectral (Daedalus ATM)
data and from medium-resolution SAR (ERS1) to high-resolution polarimetric (E-
SAR) image data. The fusion of different signal models from one sensor as well as the
fusion of multi-sensor image data is applied for interactive learning and probabilistic
retrieval. With it, we want to demonstrate the power of I?M for data-independent
image mining applications.

In the following, we show examples of labeling user-defined semantics and query
results from the image archive. We start with the analysis of a cover-type ‘mountain’
that was trained with different combinations of signal models as shown in (Fig. 5.10).
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Sensor Landsat TM ERS1 Tkonos Landsat TM
Coverage Mozambique | Mozambique | Mozambique Nepal
No. of scenes 14 32 9 1
No. of images 438 438 207 144
Channels, size 6, 20007 1, 20002 1,20002 8,500
Resolution 25m, geo./co. | 25m, geo./co. 1m, geo. 25m, geo.
Signal models spectral, EMBD/ spectral, spectral,
GRF at GMREF at GRF at GRF at
3 scales 2 scales 3 scales 2 scales
Sensor Landsat TM Tkonos Tkonos Daedalus E-SAR
Coverage Switzerland Germany Germany Kosovo Kosovo
No. of scenes 4 1 1 1 1
No. of images 184 43 43 12 12
Channels, size 7,10242 1,500 4,500 12,10002 4,10002
Resolution 25m, geo. 1m, geo./co. | 4m, geo./co. | 1m, geo./co. | 1m, geo./co.
Signal models spectral, spectral, spectral spectral, EMBD/
GRF at GRF at GRF at GMREF at
5 scales 3 scales 3 scales 2 scales

GRF = Gibbs random field (auto-binomial model)
GMRF = Gauss-Markov random field model
EMBD = Enhanced model-based despeckling

geo. = geocoded

geo./co. = geocoded and co-registered

pol. = polarimetric

Table 5.1: Ingested datasets in M and the applied signal models.

The selected combination of signal models influences both the level of compactness
and detail of the semantic label. The retrieved images for the defined cover-type
‘mountain’ are given in (Fig. 5.11). By default, only the highest 6 top-ranked images
are delivered for probability, coverage and separability, but the user can ask for more
results.

User-specific interactive learning with information from multiple sensors can be
used for sensor qualification and further exploration of the image dataset. For this,
the interactive training with high-resolution image data is exemplified in (Fig. 5.12).
In a final application we show the classification and retrieval of the label ‘water’ from
co-registered high-resolution hyperspectral and polarimetric radar data (Fig. 5.13).
The applied signal models are spectral from the hyperspectral data and from E-SAR
the despeckled SAR backscatter (L-band, scale 2m), the despeckled SAR backscatter
(L-band, scale 2m) and the norm of the SAR texture vector (L-band, scale 4m).
With an increasing number of signal models the number of structural details grows.
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Figure 5.10: Interactive training of mountainous areas with different combinations
of signal models. Regions belonging to the semantic label are marked with red
colour. Images from left to right: 1st row: QL from Landsat TM and ERS1 image
data. 2nd row: Trained semantic label with spectral and texture information from
Landsat TM, the obtained results with only texture features from ERS1 at different
scales and the defined cover-type with across sensor model combination of spectral
(Landsat) and texture (ERS1).

5.8 Conclusions

In this chapter, we have discussed the following items:

e We addressed the concept underlying the M system of unsupervised im-
age content modeling and supervised semantic labeling, and demonstrated its
performance in several practical applications. The system started with the
extraction of primitive features from different kinds of remote sensing image
data by using stochastic parametric signal models. Particularly Gibbs-Markov
random fields showed to be useful to describe spatial characteristics in images.

e Having extracted visual parameters, the system clusters them in an unsuper-
vised way, derives a characteristic vocabulary for the different feature models,
and generates the catalogue entries for the DBMS. With the described dyadic
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Figure 5.11: Results of probabilistic search for the trained semantic label 'moun-
tain’ in Fig. 5.10, 2nd row, left. The queried images are ranked according to coverage
(Ist row), Eq. 5.29, posterior probability (2nd row), Eq. 5.28 and separability (3rd
row), Eq. 5.31. The user can continue training the cover-type by selecting one of
the retrieved images.

Figure 5.12: Interactive training of semantic labels in an Tkonos image with spectral
and texture information. Images from left to right. Quick look of a panchromatic
Ikonos image with a resolution of 1m and trained semantic labels ‘industrial area’,
‘grassland’ and ‘coastline’. Consider that the defined semantic labels were obtained
with just a few training samples.
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Figure 5.13: Interactive learning and probabilistic search of semantic label ‘water’
from hyperspectral and polarimetric data using 4 different signal models. Images
from left to right: quick look and posterior map (1st row), top-ranked retrieved
images according to coverage (2nd row), posterior probability (3rd row) and sepa-
rability (4th row).
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k-means clustering algorithm we presented an efficient mining tool to reduce
the large amounts of primitive features. Particularly the tree structure of the
algorithm and the potential for parallelization may lead to a further speed-up.

e In a final step, the user’s interests in form of semantic image content inter-
pretation were linked to the content-index by using simple Bayesian networks.
By fusing information of the different feature models, the system generates a
supervised classification of the whole archive and retrieves the most relevant
images.

e The applied concept of unsupervised image content description and super-
vised cover-type training is very advantageous since it enables the separation
between the time-consuming content-index generation and the fast interactive
learning. Even if the algorithms for feature extraction and clustering make
great demands on the computational performance, they do not impact the sys-
tem since the images are processed at the time of data ingestion and processes
can be distributed accordingly. On the other side, the computational com-
plexity of the Bayesian learning algorithm — updating the hyper-parameters
and their normalization — at the client’s site is rather low.

e In order to open new applications for the mining system and to make it an
operational tool for discovering and understanding highly complex data, an
extended verification and evaluation procedure is necessary.






Semantic Grouping and Category
Learning

With the learning paradigm from the preceding chapter we can link user-specific
semantic cover-type labels L, to signal classes w; of the unsupervised content-index
by probabilities p(w;|L,) that are derived from the user’s feedback. However, the
success of this scheme for data fusion and interactive learning depends on the fact
that a semantic cover-type is fully described by the content-index. In order to be
independent of the applied datasets, we therefore introduce another level, level 5,
of information representation: semantic grouping of individual cover-type labels
(Fig. 4.1). The elements at this level are composed of different semantic cover-type
labels of level 4 and are denoted as A, hereafter.

Before we deal with the modeling of semantic classes A, in Sec. 6.2, we will
first point out the prerequisites of the new method for image content modeling in
Sec. 6.1. Then, in Sec. 6.3, we expand the scheme of supervised semantic grouping
at the indexing of heterogenous collections of images and in Sec. 6.4 we deal with
the learning of ontological categories.

6.1 Prerequisites and Motivation

While the fusion of image information computed from data of a specific sensor is
not crucial, the combination of image attributes extracted from co-registered image
data is only valid under certain conditions. In the case of a low image co-registration
quality and very different resolutions between the image datasets, the approach to
fusing information using simple Bayesian networks produces poor results. Further-
more, the approach from the previous section does not allow the application to
non-registered images. The limitation of accessing image data across sensors and
data collections can be circumvented with the new level of image content abstraction
as depicted in (Fig. 6.1).

Another limitation is that only the training of specific semantic cover-types such
as ‘river’ or ‘forest’, is supported, but not complex structures or objects of higher-
level semantic concepts, e.g. ‘a city on a river’. The fusion of such contradictory

85
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Figure 6.1: Semantic grouping of cover-type labels defined on two different
datasets. Note, cover-type labels L, at each dataset are linked via a specific content-
index w; to images I, while the aggregated semantics are valid across the whole
archive.

image data in the Bayesian classifier results in poor and non-acceptable classifica-
tions. To demonstrate this difficulty, we show the semantic labeling of cover-types
‘river’, ‘sea’ and the training of both in (Fig. 6.2). While the individual semantic
labels can be well-separated from the other content, the joined training of ‘sea’ and
‘river’ reduces the classification accuracy and also marks non-relevant structures. As
we can see in the example, the learning of aggregated semantics at signal class level
causes problems, but the learning of individual labels and a fusion afterwards yields
better results. Thus, we define a new level of semantic abstraction, where we con-
nect user-specific semantic cover-type labels to complex and higher-level semantic
concepts.

Another reason for aggregating individually trained cover-types at semantic level
is time. In order to obtain a well-defined semantic label, the user needs various
iterations based on several images (iterative incremental learning). With the new
method the time for querying the archive can be considerably reduced as the user
only has to weight already existing labels in the semantic inventory.

6.2 Modeling Semantic Classes

In this section, we carry out a scheme for the aggregation of cover-type labels to
complex and higher-level semantics.
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Figure 6.2: Interactive learning of different semantic labels. Images from left to
right: original quick look, trained cover-type ‘river’, label ‘sea’ and the common
classification of ‘sea’ and ‘river’. While the separate classification of ‘sea’ and ‘river’
yields good results, the training of the two labels together is difficult and results in
many irrelevant structures.

Inference from data (level 0) to grouped semantics (level 5)

Based on Eq. 5.18, where we associated semantic labels I, to the image data, we
can now link higher-level semantic concepts A, to the image data D by

p(A,|D) = Zp A, |L,) p(L,|D) . (6.1)

In accordance with Sec. 5.3, we can apply Bayes’ formula to express the posterior
probability of Eq. 6.1 as

p(A;|D) = Zp (L, |A L ) (6.2)

with p(A;) as the prior probability of aggregated label A, and the prior of semantic
cover-types p(Ly) = 3 p(LuA)p(A,).

Before we can link aggregated semantics to individual cover-type labels by pro-
babilities p(L,|A;), we make the connection between cover-types L, and image data
D as follows:

p(L,|D) = Zp (Ly|wi) plw;|D) (6.3)

This calculation is a computationally intensive task since it demands the summa-
tion over the joint class space w;. Especially for a large number of signal classes
and cover-type labels this computation is not tractable and therefore requires an
approximation. We do this by computing the maximum a-posteriori classification
of the image data and obtain

P(L|D) = p(LyJur) - (6.4)

where the training samples of given cover-type labels L, serve as input training data
for the Bayesian classification algorithm. To find out to which cover-type a data
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Input: semantic cover-types given by p(w;|L,),
set of N data points with signal classes w;,i =1,...,r
Output: set of N classified data points

Method: 1) compute the discrimination functions
gv(w;) = p(L,|w;) for all ¢ individual labels L,
fork=1,...,N
assign each point to semantic label L, if
go(wi) > gu(wi) and g,(w;) >3 Vv #p
end

w

(@3

(@) H~
— — — ~—

Figure 6.3: Pseudo-code of the supervised Bayesian classifier.

sample belongs, we have to define discriminant functions g, (w;),v = 1,...,¢, one
for each semantic label L,. In the case of Bayesian classification, where p(L,|w;)
serve as posterior probabilities, we can define the following simple discrimination
functions (DUDA et al. 2001)

gv(wi) = p(Ly|w;) (6.5)

where p(L,|w;) are computed for each cover-type label using the user’s positive and
negative training samples. Then, the classifier assigns image data with a particular
signal class w; to a cover-type label L, if

gu(wi) > gu(wi) Vv #p . (6.6)

This procedure results in supervised classification maps with as many semantic
classes as labels. In (Fig. 6.3), we show the pseudo-code for the supervised Bayesian
classification algorithm and in (Fig. 6.4) the obtained classification map for a single
quick look. In order to avoid poor classification, we introduce another criterion for
label membership as p(L,|w;) > 0.5.

Posterior maps of aggregated semantic cover-types

We can visualize the posterior probabilities p(A;|D) in the same way as for p(L,|D)
and call it “semantic posterior map”. Based on this visualization, the user gets an
intuitive feedback about the relevance of his/her semantic grouping. The stochastic
link p(L,|A,) is derived from the user’s training samples using a vector of hyper-
parameters « as outlined in the following.

Interactive learning of the probabilistic link p(L,|A;)

As previously stated, before we can aggregate defined semantic labels, we have to
learn the probabilities p(L,|A;) from the user’s feedback samples. Therefore we
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Figure 6.4: Generation of semantic cover-type maps. Images from left to right.
original quick look image (level 0), unsupervised classification maps (level 3) of
spectral feature model, unsupervised classification map of textural feature model
and the supervised classification map based on a couple of user-specific semantic
labels (level 4) ingested in the database. Note that semantic labels are trained
with different combinations of signal feature models, e.g. spectral, spectral and
texture or texture at different scales. In order to avoid poor supervised classification
maps, image regions (pixels) that are only weakly touched by semantic labels remain
unclassified.

use a modified version of the Bayesian learning algorithm as applied to derive the
stochastic link p(w;|L,) between signal classes and cover-type label. We start again
with the assumption of having a set of ¢ probabilities p(L,|A;) derived from the
user’s feed-back T given by {Ni,..., N.}, where N, indicates the weight factor
assigned to label L, in T'. In order to provide an efficient and robust approach for
semantic aggregation, we assign a certain state to each N, and define the following
probabilistic model

p(Lu|Ar ) =0y (6.7)

with the parameter vector ¥ = {11, ..., ¢.}. If an aggregated semantic A, is newly
defined, we obtain for the prior

p(¢p) =I'(c) = (¢ = 1)! (6.8)

a constant distribution with ¢ as the number of semantic cover-types and the gamma
function I'(+). After the user’s first feedback, the posterior probability of 1) is given
as

pIT) = R T

Dit(eb|1 + Ny, ..., 14 N,) (6:9)

= Dir(¢|a)
with Dirichlet function Dir(-) and the hyper-parameters
a,=1+N, . (6.10)
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If the user performs another learning iteration, the probabilities are updated accord-
ing to

p(Y|T,T") = Dir(¢|as + Ny, ..., a.+ N.) , (6.11)

where 7" denotes the new set of training samples. The new (updated) hyper-
parameter can be expressed as

a, =1+ N/ . (6.12)
Starting with the initial state of the hyper-parameter
o ={1,...,1} , (6.13)

we can describe the link between cover-types and aggregated semantic labels by

a,
Zl/ Qy ’

where the a, are updated as given in Eq. 6.12. With this definition, the computation
of probabilities p(L,|A;) is rather simple and allows their on-line application. From
the perspective of data transfer, semantic aggregation is less time-consuming than
interactive learning of user-specific semantic labels. With the new method only

p(Ly|A;) =

(6.14)

one supervised classification map has to be transferred whereas ‘standard’ learning
requires an unsupervised classification map for each signal model.

In (Fig. 6.5), we illustrate the graphical interface applied. The user defines
an aggregated label by associating weights for and against labels L,. After each
assigned weight the semantic posterior map is updated and gives the user an intuitive
feedback about the quality of the performed training iteration. In (Fig. 6.6), we show
an example sequence of several iterations performed by a user to group ‘river’ and
‘riverbed’ labels to higher semantic concepts. After just a few interactions, one
obtains good results that can be further used to search the archive for relevant
images.

Probabilistic search

Searching for relevant images in the archive is not only confined to user-specific se-
mantic cover-types, but can be extended to aggregated semantics, too. In principle,
we can apply all three similarity measurements  posterior probability, coverage and
separability — in practical experiments, however, we found out that only posterior
probability delivers satisfying search results. We obtain the posterior probability of
A; given a particular image I as

p(A-1e) = p(Ar|Ly) p(Lu| L) (6.15)
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Gelect Random Inage| Select Image By Mames | Land03_cutd QUIT| RESET| LEARN

QUICK LOOK| AP Cover-type Label L Sensor

18 ME_forest_0l.definition LS, Nep.

20 hd_cloud2.definition LS. Mep.

21 new_label 12324 definition LS, Moz,

22 new_label 12325, definition LS, Moz,
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24 hd_cloudt, definition LS, Moz,
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Figure 6.5: Experimental off-line graphical interface for semantic grouping of user-
specific cover-type labels. The example image is a Landsat TM scene covering
Mozambique, where the user aggregates the semantic classes ‘river’ and ‘riverbed’.
Grouping is performed by giving weights for and against semantic labels (table,
right). The user can switch between quick look and semantic posterior map rep-
resentation to get a feedback about the relevance of the performed training step.
The posterior map is computed according to Eq. 6.2. In (Fig. 6.7), we illustrate
top-ranked Landsat TM and Ikonos images together with their posterior maps.

where p(L,|I;) denotes the frequency of cover-type label L, in a certain image.
Note, the complexity of searching the archive at semantic level, Eq. 6.15, is much
less than searching at signal class level, Eq. 5.28, since the summation only has to
be performed for few cover-types in comparison to the joint space of signal classes.
Thus, semantic grouping is an efficient method for querying large image archives.

Remaining problems

We demonstrated an advanced concept of applying user-specific cover-type labels
and grouping them into higher-level semantic concepts. The method aimed at over-
coming some of the limitations that impair interactive learning of semantic labels
based on signal classes. Examples show that this approach delivers promising re-
sults. However, we should not forget to mention the prerequisites and shortcomings
of the method outlined. First, the performance of semantic grouping depends on the
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Figure 6.6: User example sequence for interactive grouping of semantic labels. The
upper image shows the original Landsat TM quick look and the next two rows depict
the development of the semantic posterior map after the user’s feedback. After three
positive iterations, the user followed with two negative ones to exclude irrelevant
structures. After finishing the aggregation, the user can search the entire archive
for relevant images containing the defined content. Note that the semantic labels
used for aggregation are defined by various users and different combinations of signal
models.
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quality of the given semantic labels. If the labels are well-defined for the datasets,
semantic grouping yields good results. Problems occur if the labels are of poor qual-
ity or if they are associated with the wrong semantic meaning, e.g. a user trained
a cover-type ‘coastline’ and stored it as ‘water’. To overcome these problems and
to make the method more robust for large-scale practical applications, the database
index must be modeled as a multidimensional dynamic process. A function that
prevents poor labels from contribution must be implemented, too.

A minor limitation is that supervised classification maps have to be computed
from existing cover-type labels for all images in the archive. However, the time
requirements are not a limiting factor and computing semantic cover-type maps can
be repeated regularly.

6.3 Semantic Grouping of Heterogenous Image
Collections

A limiting factor of interactive learning of user-specific semantic cover-types is that
labels are only valid for a certain collection of images which is defined via the global
content-index. Only images in this collection can be linked to the semantic label and
queried, but not images from other collections. Sometimes, however, it is helpful to
query the overall archive for images that are covered by certain labels, regardless of
which image collection they belong to, e.g. to group the semantic labels ‘river’ and
‘lake’ from Landsat TM with ‘water tank’ from Tkonos. The demonstrated method
of semantic grouping of individual cover-type labels provides an efficient way to
query the entire archive for relevant data.
Assuming we have two different sets of cover-type labels

Lo ={LY L3, ..., Ly} (6.16)
and
L% = {2 152, ... L5}, (6.17)

where the m labels from set L5 refer to sensor S; and the n labels from L2 to Sy as
depicted in (Fig. 6.1), we apply the described concept of semantic grouping to index
images from both collections. We follow the same formalism as in the previous
section and express the user’'s feedback T by {MVi,..., Nyin} with N, being the
occurrence of label IV, in T'. Again, we model the probabilities p(L,|A, 1) in terms
of a parameter vector 1 as outlined in Eq. 6.7. We model a new aggregated semantic
label with the prior distribution

p(p)=TI'(m+n)=(m+n—1)! (6.18)
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Landsat TM, Mozambique, resolution: 25m

h

Figure 6.7: Semantic grouping of heterogenous collections of images using semantic
labels ‘water’ of Landsat TM and ‘river’ of Tkonos. The first and second row show
the most covered Landsat TM images of the Mozambique dataset together with the
semantic posterior maps. Row 3 and 4 depict the most relevant Ikonos quick looks
covering ‘river’, again with posterior maps.
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with Gamma function I'(-) and m + n semantic labels. After obtaining a training
set T" with its instances NV, we can express the posterior probability as

p(T) = Fﬁazﬁvfj) T
— Dir(p|1+ Ny, ..., 1+ Nypn) (6.19)

= Dir(¢la) ,

again with Dirichlet function Dir(-), total number of training samples N = > N,
and hyper-parameters

a,=1+N, . (6.20)
Finally, we can express the probabilities p(L,|A;, T) just by normalizing the hyper-
parameters as
Qy

Zua’/ ‘

We see, indexing heterogenous collections of images is nothing but an extension
of the traditional model for new datasets. In (Fig. 6.7), we illustrate the indexing
using Landsat TM and Ikonos data from Mozambique. Each dataset was separately

p(Lu|A'rv T) =

(6.21)

clustered and indexed and cover-type labels were aggregated at semantic level.

6.4 Learning Ontological Categories

The user group of an information retrieval system usually consists of people with
various degrees of expertise and the structure of the group depends on the specificity
of the people’s interests. Apart from this structure, the group can taxonomically
be partitioned into areas of interest. Within each area of interest, the members
can be further grouped according to the level of expertise or degree of knowledge
in that specific area. However, there is no clear definition for the separation into
areas of interest since interests usually overlap to a certain extent. Consequently,
the concepts of an expert in his area of interest are more associated to users whose
interests are similar to the expert’s ones.

Before we outline how users of the image information mining system utilize and
share domain categories to learn and represent semantic categories, we will first
point out the prerequisites of understanding certain contexts and context sharing
from other domains.

6.4.1 Prerequisites

The user group of the mining system consists of people from very heterogenous
working fields, such as agriculture, urbanism, sensor design and image analysis, for
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instance. They all have different background knowledge and intentions. What they
have in common, however, is the interest in earth observation domains, products
and sensor data. When a user enters the system, he first has to register and select a
certain sensor and combination of feature models for further data exploratory pur-
poses. Sensors may include both optical, e.g. panchromatic, multi- or hyperspectral
and radar with different polarizations. The user’s decision for a certain signal model
also involves resolution aspects since the representation of various image structures
is scale-dependent. After choosing a sensor (or several sensors for multi-mission
image exploration) and corresponding signal models, the user can select a certain
image, train semantic labels of his interest and search the entire archive for relevant
images. The classes of scenes or objects selected by the user depend on the domain
ontology ! he belongs to. Since each user belongs to a certain ontology domain,
misunderstandings in the semantic space can occur. For instance, a climatologic
expert could have a different association of water in comparison to an oceanography
expert or an urban architect may have a different vision of city than an ecologist. In
order to have an effective communication between different users without running
the risk of having misinterpretations, the users have to share a common ontology.
With this ontology-based approach, it is possible to achieve a more effective search
and data exploration.

Similar ontological approaches are applied in e-commerce as amazon.com and
grouplens. Amazon.com aims at analyzing the customer’s behaviour and comparing
it with other customers in order to recommend the most evident products. Group-
lens (RESNICK et al. 1994) helps readers of netnews to find suitable articles by
making choices based on the recommendations of other users.

6.4.2 Learning and Representation of Semantic Categories

In the image information mining system we implemented techniques from statistical
analysis and machine learning to provide users with innovative tools to “explore
and explain” the image data in the archive: a user can select several feature models
that are most suitable for him, train a specific cover-type of his interest by giving
positive and negative samples and insert the cover-type semantic in the DBMS in a
free-form text manner. With standard computer vision like methods the resulting
associated semantic content is difficult to be obtained.

Thus, the idea is to build intelligent visual interfaces which explain image data
and high-level user concepts in order to achieve a compromise for a common under-
standing. This results in the difficulty of knowledge sharing, involving the related
problems of ontology, i.e. the specification of a conceptualisation. In this context,

IThe term ‘ontology’ has a long history in philosophy and meets with increasing interest in
the field of artificial intelligence. According to T. Gruber, ontology is defined as a specification
of a conceptualization (GRUBER 1993). Gruber further specifies ontology as a description of the
existing concepts and relationships for or against a community agent.
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Figure 6.8: Domains (and sub-domains) are linked to individual and aggregated
semantic labels and further to image features and image data. The two domains

share the semantic label ‘sea’; however, they consider it from different views (do-
mains). As a result, conceptual and terminological confusion at the semantic level
may OCcur.

we understand an ontology as a description of the categories and associations that
could be established between the components of the set of hierarchical represen-
tation of information and for a given user conjecture, as presented in (Fig. 6.8).
Semantic conflicts can arise between information communities, when methodology
or ontology is not shared. Resolving the semantic antagonisms is equivalent to har-
monizing different scientific models, and involves the establishment of equivalencies
between feature types and between feature instances and equating model types and
instances. Therefore, the notion of context must be enhanced.

6.5 Conclusions
In this chapter, we have discussed the following items:

e We outlined the limitations of the basic hierarchical scheme of image content
abstraction and the motivation to add a new level. With the same stochas-
tic model with which we linked user-specific cover-types to the unsupervised
content-index, we can define higher-level semantic concepts by grouping exist-
ing labels. Whereas the signal-oriented supervised semantic labeling of image
content only provides the query for images that are assigned to the content-
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index, the new level of information representation allows to query archives
across datasets and sensors.

Users of the mining system have different domain-specific background know-
ledge and therefore can taxonomically be distributed into several ontology
domains. At the level of defining semantic categories, problems may arise if
users do not share a certain methodology or ontology. Avoiding these semantic
conflicts requires the incorporation of semiotic aspects.
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System Evaluation Methods

In Chap. 5, we presented basic concepts and functions implemented in the infor-
mation mining system and in Chap. 6 we described an enhanced framework for
content-based image retrieval at semantic level. Why did we give such a detailed
system description? From the author’s point of view, it is essential for the further
understanding and assessment of this work to get a survey of implemented modules
and mining functions. We included not only individual tools in the presentation
but also their interactions and the information flow during system operation. Al-
together, we aimed at demonstrating the system complexity and the imperative for
an overall evaluation.

For the assessment of the effectiveness of a content-based image retrieval system,
there are several criteria and measurements. Since there is almost no standardization
in this domain, evaluation measures can be arbitrarily selected. A current method is
to analyze the queried image set in terms of relevant and non-relevant images. Then,
the retrieval performance is reflected by the number of relevant images in the search
results (precision) and the number of returned relevant images from all relevant
images in the archive (recall). However, precision/recall only indicates the retrieval
capability of a system but is not sufficient to present the overall performance.

In addition to the problem of the selection of suitable evaluation measurements,
we are further faced with rather complex remote sensing data with a much higher di-
versity of structures and objects than in multimedia applications. A mining system
dealing with this kind of images requires specific functions to exploit the information
content and needs specially-designed and application-dependent tools for its evalua-
tion. To perform an overall verification of our system, we developed an algorithmic
protocol that will be presented in this chapter. The protocol consists of methods for
the objective technological evaluation of each system module, takes into account the
subjective evaluation component as well, and measures the information flow from
the archive to the user.

We begin this chapter with an analysis of the information content of extracted
spectral and textural image parameters in Sec. 7.1. Sec. 7.2 deals with the repre-
sentation of significant image structures in the individual feature spaces by clusters.
To identify the information content of clusters, we determine their discrimination
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performance and the ability to represent details. After analyzing the off-line data
processing chain, the extraction of primitive image features and their unsupervised
grouping, we focus on the interactive learning module in Sec. 7.3. The quality of
interactive learning — the supervised classification of the entire image archive —
is represented by the stochastic link between subjective semantic cover-types and
objective signal classes, the classification accuracy/selectivity and the separation of
semantic labels against each other. Based on the stochastic link between seman-
tic label and content-index, the whole archive can be searched in a probabilistic
way for relevant images. In Sec. 7.4, we measure the quality of the probabilistic
search function by applying standard measurements like target/misclassified images
and precision/recall. The system operation complexity is analyzed in Sec. 7.6 and
human-machine interactions in Sec. 7.7. After having evaluated the technical qual-
ity of individual system modules and the communication with the user, we measure
the information flow from the archive to the user by applying different levels of in-
formation abstraction as outlined in Sec. 7.8. We conclude this chapter in Sec. 7.9
with a summary of other evaluation criteria that have not been explicitly pointed
out but are worth mentioning.

7.1 Information Content of Primitive Image Fea-
tures

A comprehensive evaluation requires the analysis of all system modules and their
connections. According to the described scheme of hierarchical Bayesian image
content modeling we begin the system verification with an analysis of the informa-
tion content of image data and extracted primitive features (DASCHIEL and DATCU
2002b). To describe the content of remote sensing images in the archive, we use
spectral and textural attributes. The textural parameters are calculated at different
scales since the appearance of several structures is scale-dependent. In the following
verification, spectral and textural attributes are considered.

7.1.1 Spectral Features

If we are interested in the information content of spectral image parameters, we
have to measure the degradation of the data D by noise. We will only analyze
optical images which are considered to be distorted by zero-mean white Gaussian
noise with unknown variance 072,. Multiplicative noise will not be taken into account.
The estimated noise variance indicates the reliability in the given data.

To determine af,, we apply several of the methods for noise variance estimation
proposed by Olsen (OLSEN 1993b). From the described algorithms we use the
‘Average’ and the ‘Median’ ones because they delivered the best results in Olsen’s
experiments (OLSEN 1993a). In both methods, a filtered image is subtracted from
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Figure 7.1: Standard deviation o, and SNR for Landsat TM spectral bands in the
visible spectrum. Differences between ‘Average’ and ‘Median’ are due to a restriction
to homogeneous regions in the ‘Average’ method; ‘Average, 20%’ means that 20% of
the image data contribute to o, and SNR. The other filters include all data samples.

the given non-filtered one to derive a measure of noise at each image element. We
apply a 3 x 3 filter kernel for both methods as recommended by Olsen. Whereas
in the ‘Median’ method all data points are considered, they can be specified in the
‘Average’ method. With a selection of homogeneous regions using the gradient,
edges and even small-scale image structures can be excluded from contributing to
the noise measure. Olsen demonstrated that the ‘Average’ method achieved the
best estimates for various datasets. Since all samples contribute in the ‘Median’
approach, the obtained variance is overestimated in comparison to the other method.
In addition to Olsen’s methods, we apply an adaptive Wiener filter for denoising that
is sensitive to local image variances. If the estimated noise variance is large for data
samples, the smoothing is low and vice versa. Again, the image noise variance is
determined by subtracting the filtered image from the original one. In (Fig. 7.1), we
depict the yielded noise standard deviation o, and the corresponding signal-to-noise
ratio (SNR) for the spectral bands of a Landsat TM image.

7.1.2 Textural Features

The content of images in the archive is not only described by spectral attributes,
but also by estimated parameters based on Gibbs-Markov random field texture mod-
els (DATCU et al. 1998). In general, such models are given as parametric data models
via the likelihood p(D|@, M) as outlined in Chap. 5. Thereby, different structures
in the data are characterized by different values of the elements of 8. We realize
the extraction of spatial information by calculating the maximum a posteriori es-
timate of the model parameter vector. To ensure a fast and robust estimation of
the parameters, we apply the conditional least-squares (CLS) estimator (LELE and
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Figure 7.2: Assessing the estimation performance of Gibbs random field texture
model parameters by using the Cramér-Rao bound. Images from left to right. Land-
sat TM with its 4th band from where texture parameters 0 are estimated, the norm
6] of the estimated parameters and the Cramér-Rao bound 0|29|'
we used a logarithmic scaling for norm and CRB. For smooth regions with almost
no texture, e.g. water, the CRB indicates large values, whereas with regard to areas

with significant structures and patterns the CRB is small.

For visualization,

ORD 1986) for the auto-binomial model from the Gibbs family. Then, the parameter
estimation is reduced to robust linear regression (SCHRODER et al. 1998).

After having estimated the model parameter vector @, we focus on the quality of
the estimation process. A common way of determining the accuracy of an estimated
parameter is to calculate its variance and a possibly occurring bias. Although there
exist, several bounds to limit the variance of an estimated parameter, we confine
ourselves to the Cramér-Rao bound (VAN TREES 1968). For a scalar parameter,
the CRB delivers the lower bound on the mean-square error in the estimate. Since
the extracted spatial information of the image is implicitly contained in vector 6, a
bound on the variance of each element of 8 must be placed to get a measurement for
the accuracy of the estimated parameter vector. If we consider an unbiased estimate

of 0,
05> > 1(0)7! (7.1)

is the bounded variance of the estimated parameter vector 8. The square matrix
I(0) denotes the Fisher information matrix which is given by

9 logp(D|6, M)
20: 00,

16)), - —E{ (7.2)

E{-} denotes the expectation and 6; is the ith component of 8. Eq. 7.1 and 7.2 show
that the CRB only depends on the likelihood p(D|@, M). Since the total probability
cannot be determined for Gibbs random fields, the theoretical lower limit usually
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Figure 7.3: Estimation performance of Gibbs-Markov random fields model para-
meters at different scales by using the Cramér-Rao bound. Images from left to right.
Cramér-Rao bound of norm |é| at 30m, 60m and 120m. Images are logarithmically
scaled for a higher visualization quality.

cannot be computed. Only for the auto-binomial model in combination with the
conditional least-squares estimator, the Cramér-Rao bound can be calculated. This
bound results in the variance of the estimated parameter vector given the data D.
To obtain a scalar measurement for the CRB (PAPOULIS 1984), we use the norm
|| as the strength of the texture instead of the parameter vector 8 as exemplified
in (Fig. 7.2).

7.1.3 Features at Multiple Scales

In order to obtain a quasi-complete description of the scene, we perform a multiscale
approach as outlined in Sec. 5.1. Therefore, we scale the image in a dyadic way and
apply a Gibbs estimation kernel of a limited size to the data at each scale. For
the scale-dependent analysis of the accuracy of the estimation process, we compute
the Cramér-Rao bound for the obtained parameters at each scale. The Cramér-
Rao bound of the norm |@| reflects the capability of a certain scale to describe
homogeneous texture with respect to the applied model order. To exemplify the
CRB of estimated parameters at different scales, we analyze the image from (Fig. 7.2)
and show the obtained results in (Fig. 7.3). In addition to the 2D visualization of the
scale-dependent Cramér-Rao bound in (Fig. 7.3), we also computed the normalized
histogram (pdf) for norm and CRB as depicted in (Fig. 7.4).

7.2 Unsupervised Clustering

The first steps in the 2M data ingestion chain are the extraction of primitive image
features and their reduction ensured by an unsupervised classification. Primitive
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Figure 7.4: Normalized histogram of norm (left) and CRB (right). The image
content at scale of 30m shows the most significant texture reflected by the highest
values for the norm §. However, the difference between first and second scale (30m
and 60m) is rather small. As far as accuracy of the estimated model parameters is
concerned, texture at scale of 120m depicts the best results.

visual parameters must be compressed and reduced since the feature extraction
produces large volumes of data that cannot be managed in practice. Clustering,
which is similar to vector quantization (MCLEAN 1993), reduces the accuracy of the
system, but justifies its practical use due to a large data reduction.

Each image element is located in a multidimensional-dimensional space at a cer-
tain position specified by the values of the contributing, pre-extracted primitive
features. In this space, the ‘pixels’ tend to group themselves into specific regions.
Then, the clustering process substitutes the ‘clouds’ of primitive features by para-
metric models p(6,;|0; € w;) of their groups and therefore makes a more compact
description of feature space points possible. In our system, primitive features are
compressed by the use of a dyadic k-means algorithm.

In order to determine the information content of signal classes (clusters) w;, we
have to identify the results of unsupervised clustering in a multidimensional space.
An often applied criterion for cluster analysis is the separability of clusters with
methods like scatter matrices, for instance. In order to circumvent the ‘curse of
dimensionality’” for cluster analysis, we project multidimensional feature clusters
in a 2D image space. Thus, cluster analysis is reduced to studying unsupervised
classification maps.

7.2.1 Cluster Analysis

Popular techniques for cluster discrimination are scatter matrices, divergence, Bayes’
probability of error and non-parametric feature space density estimation that we will
now proceed to describe.
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Scatter matrices

With scatter matrices, we can analyze the compactness of clusters as well as the
isolation between them. Therefore, scatter information is an important measurement
of separability. Assuming that a d-dimensional feature space R? consists of n data
points 01,0, ....,0, and all points are assigned to one of r clusters wy,ws,...,w,, a
scatter matrix S; for the ith cluster w; is given by

Si = Z (0 — 1,)(0; — ;)" (7.3)

0 cw;

where p, denotes the mean vector for the ith cluster. If we further define the
within-cluster scatter matrix

S, = Z S, | (7.4)
i=1
the between-scatter matrix

Sp=> nilp— p)(p— ;) (7.5)

1=1

and the total scatter matrix
St =8Sw+Sg (7.6)

with n; number of samples in cluster w; and p the total mean vector, we can derive
scalar measurements from scatter matrices as (DUDA et al. 2001)

|Swl
= 7.7
&= T5 (7.7)
and (AKsoy and HARALICK 2001)
& = log|Sy/ (Sw + Sp)| (7.8)

with | - | denoting the determinant of a matrix. These quantities deliver the quality
of the applied clustering method as well as the information content of clusters.

Divergence

Another measurement for the discrimination effectiveness of clusters w; is diver-
gence (KATLATH 1967). To introduce divergence for cluster analysis, we start with
the problem of how to classify a single point 8, in a multidimensional feature space
to one of two groups wy or w;. Then, the divergence between clusters (classes) wg
and wy is given as

N 6o (6 )] 1o 28211
Du= 3 0sha) = p(0ska)] s TS (79)
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Feature | Scale | Dim. | Normal. method | &1 (-1079) | & | (D) gin | (D)giv | (D)Bhat
Spectral | 30m 6 Gaussian 4.84 9.94 1596 1.913 0.951
Spectral | 30m 6 Linear 0.88 11.64 942 1.932 0.961
GRF 30m 4 Gaussian 21.3 8.45 531 1.910 0.947
GRF 60m 4 Gaussian 13.80 8.89 119 1.917 0.953
GRF 120m 4 Gaussian 13.72 8.89 162 1.930 0.961
EMBD 60m 1 Gaussian 2.23 6.10 13858 1.967 1.192
EMBD 120m 1 Gaussian 2.45 6.01 14988 1.967 1.209
GMRF 60m 1 Gaussian 2.11 6.16 | 83931 1.960 1.448
GMRF 120m 1 Gaussian 0.94 6.97 | 24481 1.956 1.063

Table 7.1: Clustering performance for the Mozambique multi-mission datasets and
features (Tab. 5.1).

and finally the average discrimination between the feature clusters

(D) = Z Z p(wx) p(wr) Dy (7.10)

k=1 I=1

with (-) indicating the average, r the total number of clusters and p(w;) the prior
probability of cluster w;.

In general, the divergence (D) of Eq. 7.10 cannot be easily calculated, however, in
the case of clusters with a Gaussian distribution p(8|w;) ~ N (w;, 3;), the divergence
Dy, between two clusters wy and w; can be expressed as (THERRIEN 1989)

Dy = $trace {E.'S,+ %, 'S, — 21} +

D — ) (50 + 307 (g — ) (7.11)

The computation of divergence in Eq. 7.11 caused difficulties since small varia-
tions in the mean vector difference resulted in large divergence changes. Thus, the
transformed divergence was proposed (SWAIN and DAvis 1978)

Dy =2(1—ePuf) (7.12)
Through the exponential nature, the transformed divergence Dj; has a more satu-
rating behaviour for growing class discrimination.

Bhattacharyya distance

In the same way as we defined the divergence between a pair of probability distribu-
tions p(0;|wy) and p(@;|w;), we obtain the Jeffries-Matusita distance as (DUDA et al.
2001)

Ja=Y <\/p(9j|wk) - \/p(9j|wl))2 . (7.13)
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In the case of Gaussian distributed clusters p(6;|w;), Eq. 7.13 can be expressed as
Ju=2(1—-e") (7.14)

with the Bhattacharyya distance

B:%(Hk —Nl)t (Zk;2l> (o — ) + élog <| (Ek+zl>/2|>

VIZ] 3]

(7.15)

In the same way as the average divergence of pairwise clusters is defined, we can
write

(D)= " plwi) plwr) Ju (7.16)

k=1 I=1

for the average Bhattacharyya distance (Tab.7.1).

Bayes’ probability of error

Another measure to express the quality of the obtained clusters to represent the
image content is given by the so-called probability of error (DUDA et al. 2001). The
basic idea behind this quantity is to estimate the probability of each single point 6;
in the feature space and to analyze if it is really assigned to a certain cluster. After
the grouping process, all points belong to one of the r clusters wy,ws,...,w, and
we obtain the conditional densities p(6;|w;) for each point given a certain class w;.
Using Bayes’ formula

1.y = POilwip(ws)
plelfs) p(0;) (7.17)

we can infer the posterior probability p(w;|@) for a class w; given a data point 6
by combining the prior probabilities p(w;) with the likelihood p(6;|w;) of w; with
respect to 6. The term p(6;) is called the evidence and serves as a normalization
constant for the posterior probability. After calculating the posterior probability for
each point, we can determine Bayes’ probability of error as (THERRIEN 1989)

p(error|@;) = 1 — max{p(w;|6;)} . (7.18)

This way, we derive the influence of all clusters on each point, and consequently,
the relationship of a point to its true cluster. In (Fig. 7.5), we illustrate Bayes’
probability of error for a classified image using spectral image parameters.
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Figure 7.5: Visualization of Bayes’ probability of error for the unsupervised clas-
sification of spectral features. Images from left to right: quick look of a Landsat
TM image, its unsupervised classification and the computed probability of error
p(error|@;). The latter is encoded from white (high error) to black (low error).
Image points that belong to strong and well-separated clusters, e.g. sea, indicate a
low probability of error.

Non-parametric density estimation

How much information do clusters contain? Are they located in the feature space
by accident and are their forms correlated with the distribution of the dataset? To
answer these questions, we have to analyze the points’ distribution in the multi-
dimensional feature space. This analysis is equivalent to non-parametric density
estimation. From the two main approaches for this task, the Parzen-window density
estimation (PARZEN 1962) and the k,-nearest-neighbour estimation (PATRICK and
F1scHER 1970), we apply the first one due to its lower computational complexity.
Using one of Parzen’s window functions ¢(+), the density estimate can be expressed
as

n

> Viso (9 ;fj) | (7.19)

=1 "

pn(e) =

S|

where n denotes the number of samples and V},, a multidimensional hypercube with
edge length h,, centered at 6. Achieving a good density estimate means finding
a good extension of the hypercube for the applied window function. In the most
simple case, we can use a unit hypercube centered at the origin. This corresponds
to a gridding of the feature space in regular cells. In (Fig. 7.6), we show the result
of the estimated density for textural and spectral feature spaces.
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Figure 7.6: Projection of a 4-dimensional texture feature space (left) and a 6-
dimensional spectral feature space (right). Each feature space consists of about 100
Mio. data points. The plots show the estimated feature space density, marginal
distributions, cluster centers and their shapes. For clearness reasons, feature space
density and contour lines are logarithmically scaled.

7.2.2 Accuracy of Unsupervised Content-index

We pointed out methods to measure the performance of unsupervised clusters for
different feature models. As opposed to analyzing the clusters in a multidimensional
space, we project the feature clusters in the 2D image space. Thus, discovering the
clustered groups is reduced to an analysis of the classification maps. We follow the
approach to determine classification accuracy with confusion or error matrices, which
compare the outcome of a supervised or unsupervised classification with ‘ground-
truth’ information. As it is rather difficult to have access to such data, we compare
the produced unsupervised classification maps with reference classification maps. In
the next section, we outline error matrices in more detail. Then, we use them to
determine the accuracy of interactively trained cover-type labels.

In order to obtain reference classification maps computed for spectral features,
we assumed to have noise-free image data. Noise was removed by filtering the data
as applied in Sec. 7.1. To analyze the influence of different levels of noise distortion,
we added successive zero-mean white Gaussian noise to the noiseless data. Then,
the unsupervised classification result of the noisy data was compared with the refer-
ence classification. We calculated the overall and the average accuracy to obtain the
reliability in yielded classes. Furthermore, the x-coefficient as a combination of the
overall and average classification accuracy was computed. Finally, we compared the
obtained results with Olsen’s noise variance estimates to derive an approximated
measurement for the loss of information due to existing noise. The results of this
experiment are illustrated in (Fig. 7.7). Comparing the obtained classification ac-
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Figure 7.7: Accuracy of classification results generated by spectral (left) and tex-
tural (right) features using measurements from confusion matrices. Spectral signal
classes are analyzed according to the degree of noise in the Landsat spectral bands
and signal classes derived from texture model parameters according to the applied
model complexity (order).

curacies with the estimated noise variance 03,, we find a loss of information due to
noise of about 5% to 10%.

We repeated the experiment and classified textural parameters. To test the in-
fluence of estimated parameters on the unsupervised clustering, we compared the
classifications of textural features based on different orders (complexity) of the auto-
binomial texture model. The outcome for model order 5 is considered as the refer-
ence classification and results based on lower model orders are compared with the
reference data. In (Fig. 7.7), we depict the experimental results.

7.3 Interactive Learning

In our evaluation procedure, the verification of the interactive training is focused
on the quality assessment of user-defined cover-type labels L,. Fach semantic label
is the outcome of probabilistic calculations based on signal classes w;. Therefore,
the accuracy of a label indicates the objective quality of the system to detect the
cover-type in the whole database.

Since each semantic label L, can be seen as a supervised classification of the
entire image archive in label L, and ‘non’- label —L,, we make use of accuracy as-
sessment strategies to analyze (1) the quality of a stochastic link between a subjective
cover-type label L, and objective signal classes w;, (2) the classification accuracy of
a single label L, and (3) the separation between all labels {L,} *.

Hf we speak of ‘all’ labels {L,} in this context, we mean all defined labels for a special combi-
nation of signal classes, e.g. spectral and texture at a certain scale.
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7.3.1 Quality of Stochastic Link

The question of the quality of the stochastic link between subjective semantic labels
and objective signal classes can be directly answered by using information-theoretic
quantities. In (KuLLBACK 1997), the divergence between two complete sets of
probabilities £, = {p(w1|L.), ..., p(w-|L,)} and =L, = {p(w1|-L,), ..., p(w,|~L,)}
is defined as

r

DLy —L,) = 3 [plwi| L) — pler|~L,)] log

=1

pleidly) (7.20)
p(wil=Ly)

which can be seen as the distance between the two probability distributions £, and
—=L,. The divergence D(L,,—L,) can be calculated either for a combination of signal
models or separately for each model. Additionally it supports the system operator
during the interactive training and continuously gives him relevance feedback about
the performed training (Fig. 5.7). The usefulness of the divergence is shown in the
selection of strong signal models, the removal of low ones and in finding similarities
between semantic cover-types defined by different users.

7.3.2 Classification Accuracy and Selectivity

As mentioned in the beginning of this section, each single label can be considered
as a partition of the dataset in labels L, and —L,. To determine the classification
accuracy and quality of a user-defined cover-type, we use a standard method in
remote sensing: error or confusion matrix (RICHARDS and J1a 1999). The basic
principle of such a matrix is to compare an obtained classification with ground-
truth data or a reference classification.

Since ground-truth information is usually not available or can only be gained to
a limited extent, we will not use it. Another problem in a ground-truth based clas-
sification assessment is the fact that ground-truth classification maps are normally
generated by different datasets or are acquired at different times. Different data
acquisitions, in particular, make it difficult to derive objective measurements from
the confusion matrix, e.g. a semantic label ‘mountain’ defined in a Landsat image
can change completely if mountains are snow-covered, for example. Finally, these
reference datasets are normally available for a fixed number of classes and are quite
inflexible, especially for small classes.

To avoid a long-term generation of ground-truth maps, we compute a maximum-
likelihood (ML) reference classification for a selected test dataset. The ML classi-
fication can be considered as a classification of superior accuracy since it is based
on large training regions in comparison to the trained cover-type labels L, that are
defined with just a few samples. One of the advantages of this reference classifica-
tion is that both maps are based on the same dataset. Besides, the data volume can
be partitioned into as many classes as semantic labels and the computation can be
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Figure 7.8: Comparison of a reference classification with a defined semantic label.
Images from left to right: Landsat TM image from the Nepal dataset, its ML refer-
ence classification of ‘Dense-mixed forest’ with classes B, (white) and =B, (black),
and the supervised Bayesian classification with cover-type label L, (white) and =L,
(black). Only small differences are obvious between B, and L, although the latter
is defined with only a few training samples.

repeated due to a short processing time. Weakly defined classes can be evaded by
using a threshold in the ML classification algorithm.

For semantic labels we determine the classification accuracy by using the ref-
erence ML classification as previously described. We compare a label L, with the
corresponding class B, in the reference classification and =L, with =B, that is,
a combination of all other classes except B, (Fig. 7.8). Thus, for each semantic
cover-type we obtain a 2 x 2 confusion matrix with elements z,,. From z,,, we
calculate the overall proportion of area correctly classified

_ 2w

o 7.21
Q, = 2 (721)
with the total number of N observations and the average
U, + P,
C, = % (7.22)

of the user’s accuracy U, and the producer’s accuracy P, (CONGALTON 1991). In
(Tab. 7.2), we summarize the calculated classification accuracy measurements for
several labels. In this experiment, we only used the information from spectral signals
for label training to achieve an objective comparison between the spectral-based
reference classification and semantic labels.

We should not forget to mention the limitations and drawbacks of the proposed
method. First, in the supervised reference classification only the main classes can be
well separated. It is almost impossible to reach a classification of small structures



7.3. Interactive Learning 115

Label name Overall Acc. P, | Avg. Acc. C,
river 97.8 54.5
riverbank 98.4 65.8
clouds 94.1 50.4
sisau forest 93.4 53.5
dense-mixed forest 99.0 76.4
soil 59.8 52.5
grassland 82.5 39.4
Average: 89.3 56.1

Table 7.2: Classification accuracy of spectral-based cover-type labels in %. All
semantic labels L, were defined in the system evaluation test week, this time, to
analyze the classification performance of the system.

with only spectral information. For an entire evaluation of the classification potential
of the I?’M system, further experiments have to be done. Another drawback is that
the results of (Tab. 7.2) do not only represent the classification quality of the labels,
but also the inaccuracies of the performed ML classification. In order to avoid
the generation of a reference classification, we present a method that is completely
independent of reference data.

In order to avoid the disadvantages of ground-truth based classification accuracy
techniques, we perform an alternative classification evaluation method. Instead of
using other reference classification maps, we stay on the user’s training samples.
Fach time a user gives a new positive or negative training example to the system,
the probabilities p(w;|L,) of the stochastic link are updated, and, consequently, so
are the posterior probabilities p(L,|w;) (see Sec. 5.4). If the posterior probability of
a training sample is beyond a certain threshold, this sample is classified with label
L,, or otherwise, with label =L,. Next, we analyze all positive and negative training
samples and determine the ones associated with cover-type [, and —L,. Finally,
a measurement for the average classification accuracy is given as the frequency of
correctly classified positive and negative samples to all training samples (Fig. 7.9).
High classification accuracy means that most of the positive training samples belong
to label L, and most of the negative examples to label —L,,.

7.3.3 Separation Between Semantic Labels

An entire evaluation of user-defined semantic labels does not only include the ac-
curacy assessment of each individual cover-type, but also the analysis of how far
labels can be separated against each other. If the defined semantic labels I, can
be represented by the unsupervised content index w;, we compute the stochastic
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Figure 7.9: Schematic representation of a classification accuracy assessment based
on training samples. Each positive or negative training is given by a set of 3 x 3
points. Black pixels are associated with label L, and white ones with label =L, .
For each new click in the system, the number of training samples associated with
L, and =L, changes. In this example, after the 5th training iteration we obtain a
classification accuracy of about 91%.

confusion matrix M,,, with elements
P(Ly| L) =Y p(Ly|wi)p(wil L) - (7.23)

For a perfect representation of labels by the signal content w;, the matrix M, is
diagonal, mathematically expressed: p(L,|L,) = d,,. This means that a trained
label L, would generate a label L, with probability 1 and 0 for all other labels.
We compute the stochastic confusion matrix for a set of labels as demonstrated in

(Tab. 7.3).

We want to mention that an entire evaluation procedure of the interactive train-
ing should also contain subjective issues. From a subjective point of view, a semantic
label is the result of a series of positive and negative examples given by the user
during the interactive training. Therefore, the quality of a cover-type depends on
actions performed by the user and his capability to ‘learn’ the label, e.g. when a
system operator defines a label ‘water’ and gives positive examples on ‘clouds’ or
when a user is satisfied with a badly trained label. ‘Good’ training samples produce
a well-defined label. A more detailed (subjective) evaluation involving the complex-
ity of system operations and man-machine interactions is presented in Sec. 7.6 and
7.7.
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L p(Ly|L,) in %

: Ly Ly L3 Ly Ls Lg Lr
L, = ‘River’ 75 4 5 4 4 4 4
Ly = ‘Riverbank’ 5 63 7 6 5 7 7
L3 = ‘Cloud’ 4 5 72 5 4 5 5
L4 = ‘Sisau forest’ 2 2 3 8 3 2 3
L5 = ‘Dense-mixed forest’ | 3 5 6 6 70 5 5
Lg = ‘Soil’ 3 4 5 4 4 75 5
L7 = ‘Grassland’ 3 3 4 3 3 4 80

Table 7.3: Stochastic confusion matrix with elements p(L,|L,) computed for the
labels presented in (Tab. 7.2). Considering that the set of labels {L,} is trained
only with spectral signals, they show a quite high separability.

7.4 Probabilistic Search

In addition to the quality of the stochastic link and the interactive training, also the
“quality of user examples” and the “user’s judgment of a completely defined label”
have to be taken into account. Whether retrieved images are relevant for the system
operator’s training is difficult to answer because of a high diversity in the content
of remote sensing images. Therefore, an evaluation of the retrieved results is quite
a complex task.

In this dissertation, we verify the quality of the query results by collecting target
and mis-detected images and measuring precision/recall. Moreover, we deal with the
probability to forget an image and to over-retrieve images. We analyze the potential
of the mining system to ‘explore’ the archive, that means, to provide user access to
many stored images and not to limit the results to a small number of images.

Target and misclassified images

To obtain a measurement for the quality of the probabilistic search, we first analyze
the queried images according to ‘relevant’ or ‘irrelevant’. Relevant images are tar-
gets. We assume that each retrieved image is either a target or a misclassified one,
independent of how strong they are covered by the semantic label. The relation
of target/misclassified images in the query results can be verified both by visual
inspection and by using ground-truth information.

In the first method the operator controls the queried images by visual inspection
after finishing the cover-type training. To ensure a fast evaluation, the operator has
only a look at the displayed top-ranked images of all relevant images. A queried
image is a target if it contains the trained label from the operator’s point of view.
In (Tab. 7.4), we show the results of target and misclassified images for several
semantic labels. Target and misdetected images in the query results can not only



118 Chapter 7. System Evaluation Methods

label name ‘Vis. inspection’, % ‘ground—t.ruth’, % P, P
targ. misclass. targ. misclass.

river 88 12 87 13 0.13 0.16
riverbank 100 0 75 25 0.25 0.64
clouds 61 39 64 36 0.36 0
sisau forest 94 6 80 20 0.20 0
dense-mixed forest | 100 0 52 48 0.48 0
soil 100 O 97 3 0.30 0
grassland 100 0O 98 2 0.20 O
Average 92 8 79 21 0.21 0.12

Table 7.4: Evaluation of the probabilistic search system function using semantic
cover-types from (Tab. 7.2). Results are obtained by the user’s visual inspection,
ground-truth information and the probability to over-retrieve P, and to forget an
image Py. Differences in the results are due to the different nature of evaluation
methods.

be determined by visual inspection, but also by ground-truth information. An ad-
vantage of this method is that it can be performed in post-processing and it is not
limited to the top-ranked images in the gallery. For our test dataset, we calculated
an index for each image from the results of ML classification (Sec. 7.3). We derived
target and misclassified images by comparing the query results with the generated
index as presented (Tab. 7.4).

Precision and recall

In this section, we extend the retrieval performance evaluation from the last section
by considering not only target and misdetected images in the query results, but also
the potential of the probabilistic search for the whole image archive. In content-
based image retrieval, ‘recall’ and ‘precision” measurements are most often used to
visualize how many relevant (target) and irrelevant (misdetected) images are in the
highest ranked images(KORFHAGE 1997). Precision is the fraction of the retrieved
images that are relevant to the query and recall is the fraction of the total number
of relevant images (contained in the archive) that are retrieved. If we denote T the
set of returned images and R the set of images relevant to the query (Fig. 7.10),

IRNT]
T

precision =

(7.24)

and

IRNT]

recall =
|R|

(7.25)
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Relevant images in retrieved image set
Entire image archi\

Retrieved image set,

Relevant image set
R

Figure 7.10: Recall and precision for an example probabilistic search and its answer
set.

with |- | as the cardinality of a set. Usually, results of recall and precision are pre-
sented in form of precision-recall graphs. These graphs indicate retrieval effectiveness
quite well since they include information about images that were not retrieved in
the top-ranked images either. For instance, a low precision at high recall shows that
the system has problems in capturing the diversity of the content of the images for
a semantic label. In (Fig. 7.11), we present the PR graph for a selected label of
(Tab. 7.2).

False alarms and non-detected images

Measurements that are closely related to both precision and recall are the probability
to over-retrieve images F, and the probability to forget an image Py in the archive.
Whereas precision and recall deliver the retrieval performance using the queried
results from the database, P, and P; give a measurement of lost and confused
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0.8 B 0.8 1
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Recall No. of retrieved images No. of retrieved images

Figure 7.11: Precision-recall graph (left), precision and recall (middle) and false
alarm (F/A) rate (right) indicating the quality of probabilistic search for the seman-
tic label ‘forest’ computed for the Nepal dataset. For the label ’forest’, the mining
system returned in the 50 top-ranked images only relevant ones.
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images in the database. Using R and T from the last section, we obtain

|T \ R|
P, = 7.26
T (7.26)
and
IR\ T
Py = 7.27

In contrast to the last section, we do not analyze F, vs. Py graphs. Instead, we
compute the probabilities for a number of semantic labels as outlined in (Tab.7.4).

Exploratory image archives

In the last sections, we determined the retrieval performance of our M system by
verifying queried images for individual labels L,. What we have not evaluated yet
is the amount of information, that means images from the archive that were used
by system operators for training and searching. Our aim is to measure the potential
of the system in order to explore large remote sensing image archives, e.g. to gain
a large number of ingested images or to have connection to only a small amount of
data. Since the connection to images is realized via defined semantic cover-types I,
discovering the archive is equivalent to the analysis of all defined labels and their
relations to images. In detail, for each cover-type L, we consider the most similar
and top-ranked images from the query and consequently obtain the overall amount
of retrieved images (Fig. 7.12).

40F T T T T T ] 60
C All ] B All
Post. Prob ] L Post. Prob

Coverage — - Coverage
Separability —-— Separability

40 - T

Archive coverage in %
Archive coverage in %

0 f‘) 1 ‘O 1 ‘5 2‘0 2‘5 30 0 f‘) 1 ‘O 1 ‘5 2‘0 2‘5 30
Labels Labels
Figure 7.12: Exploration image archive for 26 defined semantic labels. The plots
show the archive coverage using the first 6 (left) and 12 (right) top-ranked images
in the search results. With all 26 labels, about 35% respectively, 60% of the entire
archive is assigned to the semantic content.
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7.5 Semantic Preservation and Generalization of
Subspace Clusters

In Sec. 7.3 we outlined methods to analyze the classification accuracy of the inter-
active learning system module and in Sec. 7.4 we identified the system performance
to query for images in the archive with structures similar to a defined cover-type.
All approaches have in common the evaluation of individual system modules, but
did not explicitly reflect the dependence on system performance and database size.
According to the influence of the archive size on the semantic content, questions
that arise are if the semantic image content is preserved for increasing volumes of
data, how the number of primitive feature clusters influences the quality of semantic
labels, and if clusters — generated for a subset of the archive — can represent the
image content of the entire database. Answering these questions is rather impor-
tant for system evaluation and enhancement since they involve the capability of the
image information mining system to explore large volumes of data and how much
information details are lost.

Semantic content vs. database size

In a first experiment, we analyze the interdependence of semantic image content
and database size. Therefore, the whole database is partitioned into a sequence
of subsets with increasing size. Each individual dataset is composed of the next
smaller one and a fixed number of new images. Then, an unsupervised content-
index is generated for the different feature spaces and volumes of data using the
same clustering parameters. Various semantic cover-type labels are trained based
on images from the smallest (initial) dataset. In order to apply the ‘same’ semantic
labels on images of the different datasets, we fix the cover-type tracing parameters:
location and type of training samples. With this information, we compute the
stochastic link between content-index of a certain dataset and semantic labels. The
quality /accuracy of cover-types to represent the semantic content for each dataset
is measured by the sum of Kullback-Leibler divergence, Eq. 7.20, of the different
feature models. Additionally, we analyzed the semantic image content by retrieval
accuracy as the frequency of relevant images in the retrieval set. (Fig. 7.13).

Semantic content vs. number of clusters

As stated in Chap. 5, for learning a cover-type label from data using the naive
Bayesian classifier, it is essential that structures of a label are fully described by
at least one signal class model. In general, the more complicated the structures or
patterns of a cover-type label, the higher the number of required clusters. However,
the number of clusters influences the complexity of the Bayesian classifier and there-
fore has to be carefully selected. If we group the spectral and the textural feature
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Figure 7.13: Evaluating the preservation of semantic image content and the gen-
eralization of subspace clusters. 1st. row: sum of Kullback-Leibler divergence D(-)
(left) and retrieval accuracy (right) determined for several cover-type labels and vol-
umes of data (right). 2nd. row: sum of Kullback-Leibler divergence D(-) (left) and
retrieval accuracy (right) determined for several cover-type labels and number of fea-
ture clusters (classes) w; (right). 3rd. row: performance identification of subspace
clusters generalization.
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space into 50 clusters, we obtain 2 - (50 4+ 50) = 200 variables for pairwise disjunct
labels L, and —L, in comparison to 2 - (150 + 150) = 600 variables for 150 spectral
and textural clusters, for instance. Thus, both from the algorithmic complexity and
diversity of structures of the image content point of view, verifying the influence of
different numbers of clusters on the semantic image content is important. For this
experiment we use one of the generated datasets as previously described. This time,
we applied different numbers of clusters and computed Kullback-Leibler divergence
and retrieval accuracy for several semantic cover-types as outlined in (Fig. 7.13).

Generalization of subspace clusters

The last experiment deals with the evaluation of the consistency of subspace clusters
to represent the semantic content for the whole image archive. Since semantic
labels L, are linked to the content-index (and finally images in the database) by
the stochastic link p(w;|L,), it is of interest to explore how far a certain vocabulary
of signal classes w; — generated from a small subset of data — is sufficient to retrieve
relevant images from the entire dataset. This verification can also be considered a
first test in the direction of incremental clustering: producing a number of significant
groups and classifying all samples according to the generated clusters.

We started this experiment by selecting 10 images from the whole archive (438
images) by random. Then, we clustered these data in an unsupervised way and
derived a characteristic vocabulary of signal classes. According to signal classes w;,
we assign each sample to a particular cluster using the minimum distance criterion.
In order to test if the generated content-index is appropriate to query relevant images
from the entire archive, we verify the retrieval results in terms of relevant (target)
and irrelevant (misdetected) images. In (Fig. 7.13), we outline the results of this
short case study.

7.6 System Operation

To analyze and evaluate the system operation and all user actions in the man-
machine communication dialogue in M, we trace all user actions during system
interactions. In the graphical user interface as presented in (Fig. 5.7), we provide
selected actions the user can apply for training labels, querying the database and
analysing the images (Tab. 7.5). From human-machine interactions, we determine
several measurements (JERMYN et al. 2002) (GEE and CIpOLLA 1999) to analyze
and evaluate both the complexity of the system and the user’s capability to use the
possibilities the system offers.
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action A’ | action name | explanation
Al click_center | user clicks with central mouse button, no action
A? click_right user gives negative training sample
A3 click_left user gives positive training sample
At image user chooses new image for training
AS image_type | user changes image type between Landsat TM and ERS1
AS learn user clicks on learn button
AT lut user checks the lut checkbox
A8 model user chooses a certain model
A order user selects an image from a certain search criteria
A0 pan user clicks on pan radio button
All reset user clicks on reset button (restart learning)
A2 search user queries the database
Al tab_change | user changes the current tab
Al undo user cancels the last training sample
AL 70om user inserts a new zoom factor

Table 7.5: List of different types of user actions A’. FEach user action belongs to
one of the listed types of actions.

Complexity C;: individual user actions

Assume we have a series of user-performed actions A;* with consecutive action num-
ber j in a session and action type i, e.g. ‘positive training’ where each type of user ac-

tion A’ is treated as a certain event F; in the event space {F;} = {E1, Es, ..., Ex, }.
For the events, the corresponding discrete probabilities p; are given by
N .
Z =1 A]Z
pi= . (7.28)

N N ;
Zj:l Zi:AI Ajl

as the frequencies of the occurrence of actions A;° of type 7 in relation to the total
number of performed actions. In Eq. 7.28, N indicates the total number of actions
in a session and N = |A’| the number of actions of type i.

In (Fig. 7.14), we point out the communication principle between user and sys-
tem. From the obtained probabilities p; we can calculate the amount of information
or complexity C; contained in the man-machine communication by using Shannon’s
entropy (COVER and THOMAS 1991)

Ny
H(p1,p2; .- ,PNy) = —Zpi logp; . (7.29)
i=1

High entropy or complexity can be interpreted as the user’s capability to apply
many of the functions the system provides. By contrast, low entropy or complexity
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Figure 7.14: A user translates his interests to the system by a series of N interac-
tions A;°. During the session the system learns from the user’s actions and specifies
his interests. From the user’s actions, we obtain a measurement of the complexity
of the man-machine dialogue.

indicates that the interacting person does not use the whole potential of the mining
system.

Complexity Cy: timing of actions

Now, we extend the complexity C; from the previous section to the time domain. In
this section, not only performed individual actions will be taken into account but
also the time it takes to make an action.

The time ¢;’ for performing a certain action acts as a kind of weighting factor for
At e.g. if a user takes some time to determine a high quality training, the training
action is higher weighted than a fast and imprecise training. From ¢;* we derive the
probability p; for an event E; as

N i
Zj:l tj

— (7.30)

pi =
with 7' = Zjvzl S M4 1,7 as the total time for the complete session. Once again, we
use Shannon’s entropy to determine the complexity G, of the man-machine dialogue.
In order to consider only user actions for Cy, we exclude the time for data transfer

via Internet from our calculations. 2

Complexity C3: probabilistic search

Having measured the operator-system complexity based on a set of individual actions
or the corresponding times, we will now analyze the probabilistic search. Our aim

2During our experiments we observed great time variations for the data transfer from the server
to the clients. The differences are due to overloaded networks, different browser, server problems
and low level machines at the client site, for instance.
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is to obtain a measurement of how far a client really uses information given in the
probabilistic search results. High complexity means that the user takes all kinds of
provided methods into account to specify and improve his search results: posterior
probability, separability and coverage. By contrast, low complexity shows that the
user is only partially using the information contained in the probabilistic search.

We define three independent classes A;*™ with running action number j, action
type ¢ and class membership m € {prob, sep, cov} for posterior probability, sepa-
rability and coverage. Each class is assumed to consist of the same action types
A" and, consequently, the same event space {E;}. After separately calculating the
probabilities p;"" for each of the m classes, we obtain the complexity of the system
according to the probabilistic search as

Nm Na

Cs=—Ny4 Z Zpim log p;™ (7.31)

m=1 =1

with N4 and N,, as the total number of events and classes.

Complexity C,: classes of actions

In this section, we describe how we define an overall complexity measurement based
on classes of actions. Therefore, we partition action types A’ into three main classes
m € {training, search,image}, namely training, probabilistic search and analyzing
images. Additionally, we divide the probabilistic search into posterior probability,
separability and coverage. From the users’ actions we compute the probabilities p;™
and consequently the complexity C; as given in (Eq. 7.31).

Complexity Cs: image type

As the final system operation (complexity) measurement, we analyze the user be-
haviour for applying different types of images, e.g. Landsat TM or ERS1. We aim
at measuring the user’s preference for a certain image type as well as his/her capa-
bility to incorporate different sources of information during the interactive learning
process. In a similar way as outlined for Cs, we define two identical event spaces,
one for each image type. Again, low complexity indicates that the user is mainly
focused on a certain category of image whereas high complexity reflects that the
user is able to exploit the possibilities the mining system offers in terms of image
type.

Assuming we have co-registered Landsat TM and ERS1 image datasets, we can
define the classes A;*™ with m € {LS, ERS}, consecutive action number j and ac-
tion type i. With calculated probabilities p/* for each image type class, we acquire
the system operation complexity Cs according to Eq. 7.31. Of course, this measure-
ment makes only sense if the user can choose between two or more categories of
image types.
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7.7 Human-machine Interaction

The development of intelligent human-machine interfaces for information mining
applications is a difficult task since no well established guidelines and models of the
functions that such systems should have are available (GUIDA and TAsSA 1994).
Despite this difficulty, we designed and implemented a graphical, intuitive and pow-
erful visual interface that aims at controlling an underlying mining system, directly
interacting with the users and enabling them to retrieve relevant images without the
support of a human intermediary.

In this section, we survey both the functionalities of the interface and the infor-
mation representation and communication aspects in the human machine interac-
tions. Finally, a tracing module enables us to follow user—performed actions to fully
analyze the potential of the interface.

7.7.1 Functions of the Graphical User Interface

In the image information mining system, users express their interests with the help
of a graphical user interface. The learning human-machine interface consists of an
applet that is mainly developed to provide user interactions. Several servlets give
all necessary data to the applet, apply the defined semantic label to all images
in the archive and present the results to the system operator in form of a gallery
of image thumbnails. The visual interface consists of four panels as outlined in
(Fig. 5.7). In the image panel (top left of the GUI), an image selected by the user
for training a semantic cover—type of his interest is displayed. The system operator
can switch between different sensor data visualizations by clicking on one of the
mutually exclusive buttons in the upper part of the panel. To perform a very precise
training sample, the user can magnify an image portion at a location of his interest
in the zooming panel (lower left of the GUI). Additionally, the visual interface assists
the user in choosing the magnification ratio to optimally adapt to the user’s needs.
The posterior map (top right of the GUI), continuously gives the system operator
a feedback about the current state of the trained semantic cover—type. Posterior
probabilities p(L,|D), Eq. 5.18, are visualized and encoded from black (probability
0) to white (probability 1). If for individual image pixels the probability p(L|D)
is above a certain threshold, they are depicted in red color. After each positive or
negative training sample (mouse click), the user is informed about the quality of
the training. The divergence bars — one for each selected feature model according
to Eq. 7.20 — in the histogram panel (lower right of the GUI) are updated after
each interaction and indicate the quality of the link between the subjective semantic
label and objective signal classes. The higher these bars, the stronger is the link.
An overall quality of the link is given by the sum of the divergence bars.

The user can either click with the left mouse button to give an example point of
the desired semantic cover type or with the right mouse button to give an example
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Figure 7.15: HMI state—diagram I: training a semantic label. A positive or negative
training sample brings a newly computed posterior map in the learning applet and
shows it to the user. Each ‘learning’ action — where, the kind of training and the
panel on which the action was performed — is stored in a user—log. Not only the
posterior map but also the divergence bars (histograms) are updated.

of what is not the desired cover—type. When the user moves the mouse pointer over
one of the three panels, a linked cursor is shown on the other two panels in order to
precisely indicate the chosen region. The graphical interface is used to track the user
interactions, too. Each click on the panels, on the buttons or on another control is
written in a user-log. Having presented the basic properties of the I*M interface, we
consider the implemented communication and information representation methods
between user and system in the next section.

7.7.2 Human-machine Interactions

To enter the learning graphical interface, the user first has to register and to select
up to four image feature models. The information flow is from the user to the
system: the user knows about the relevance of certain feature models for learning a
cover-type and the system makes use of this information and incorporates it in all
further calculations and visualizations. Then, a gallery of randomly chosen images
is presented to the user from where he has to select one. Again, the information flow
is from the human to the mining system. The image servlet gives the image data to
the learning applet and the label definition servlet gives the classification maps —
according to the selected feature models — to the learning applet, too. When the
data transfer is finished, the interface (Fig. 5.7) shows the information to the user
and is ready for interactions.

The user can either define a new label or update an existing one by progressively
giving positive and negative training samples using the left and right mouse button.
The examples can be placed in the image, the zoomed image or the posterior map.
After each click, the posterior map is updated with different colors indicating the
probability of each point. Additionally, the divergence bars in the histogram panel
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Figure 7.16: HMI state—diagram II: probabilistic search. After clicking on the
search button, label information is sent from the learning applet to the servlet and
probabilistic calculations are performed. The top-ranked images are shown to the
system operator. He can select an image for further training or ingest the label in
the inventory.

change accordingly to the user performed actions. Both posterior map and diver-
gence bars give the system operator a feedback about the quality of the performed
training and the state of the semantic label. The interactions between user and
system during the learning process are depicted in (Fig. 7.15).

Being satisfied with the trained cover—type, the user can click on the search
button and the data containing the user interactions log is passed to the user man-
agement servlets. The divergence bars of the models are sent back to the label
definition servlet that performs the computation of coverage, Eq. 5.29, posterior
probability, Eq. 5.28, and separability, Eq. 5.31, on all the images in the archive.
The results are presented to the user as a gallery of top-ranked images. With one of
these images, the user can continue to learn the cover-type label or store the label in
the database (Fig. 7.16). We call the continuous refinement of a semantic cover-type
by interactive training and probabilistic retrieval ‘iterative incremental learning’.

A tool worth mentioning in the image information mining system is user tracing.
All user actions are traced and buffered from the learning applet. Each time the user
presses the search button, the information is sent back to the user tracing servlet.
This servlet inserts the performed actions and the user information in the database.

7.7.3 Communication and Information Representation As-
pects in the HMI Dialogue

The characteristic of I?M is that it fully incorporates the user in the information re-
trieval process: the system operator trains a semantic cover-type of his interest, the
system queries the image archive for relevant data, delivers and displays the most rel-
evant images to the user, who selects one image from a certain category of returned
images, interprets the image, trains again, etc. This dialogue is repeated until the
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Communication methods ‘ Information representation

dialogue
user — system
user «—— system
training samples
positive sign
negative sign
visualization
multiscale signals
multi-sensor signals
knowledge
selected signal models | symbols
prob. search signals
divergence bars symbols

Table 7.6: Communication methods and information representation in I2M. The
mining system is based on a man-machine dialogue: the user learns the system and
the basic properties of image data in the archive whereas the system learns the
user’s conjecture. The user trains a semantic cover-type of his interest with a series
of positive and negative samples. For training, the user can choose multiscale and
multi-sensor image data as visualizations of 2D signals. In the information mining
system, the acquired knowledge is presented at the user’s site as well as at the site of
the system: the user selects two or more signal models and the system delivers the
search results ordered according to posterior probability, coverage and separability.
The communication between system and user is completed by divergence bars, one
for each model.

user is satisfied with the trained label and the retrieved images. To help the user
during the interactions and to find out whether a label is well-defined, several com-
munication and information representation methods are applied as summarized in
(Tab. 7.6). Before starting the interactive learning, the user has to express his prior
knowledge about suitable image feature models that capture the desired cover-type
characteristics. The semantic cover-type ‘water’ can be well described by spectral
features whereas texture captures relevant structures for ‘mountain’, for instance.
The system ingests this information in the DBMS and all further calculations are
based on it. To perform precise training samples, the user is supported by different
visualizations in the image panel. Especially the zooming panel has shown to be
a quite useful tool for both training and image interpretation. Each training iter-
ation — positive or negative sample — is related to a certain structure or object
(sign) with location in the image space. All visualizations incorporate multiscale
and multi-sensor two-dimensional signals. Moreover, the user is supported by diver-
gence bars (symbols) in the histogram panel. They indicate how strong the selected
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Figure 7.17: Iterative incremental learning of a cover-type label and knowledge
transfer between mining system and user. The user provides the system with training
samples, searches the entire archive for relevant images and continues learning with
retrieved images. In this HMI dialogue, the user obtains information about the data
and the system learns the user’s conjecture.

models are for the desired cover-type and enable the user to remove weak feature
models or substitute them by other (stronger) ones.

Based on all this information, the system queries the entire archive for images
containing the trained semantic cover-type. The query results (returned top-ranked
images) can be regarded as the knowledge of the system in terms of delivering the
most relevant images according to user training. For further training, the user has
to select one image from all retrieved images. The operator implicitly decides for
a particular probabilistic search measurement and passes the knowledge of retrieval
effectiveness and relevance back to the system (Fig. 7.17). On the other hand, the
system incorporates this transmitted knowledge and presents the selected image to
the user for further learning.

7.7.4 Analysis of Human-machine Interactions

Up to now we have presented the graphical human-machine interface, the interac-
tions between user and system and the communication and information representa-
tion aspects in the HMI dialogue. The experiments reported in this section focus
on the evaluation of the performance of the HMI.

First, we classify and identify the user’s target structure by tracing the man-
machine interactions. Then, the convergence of the learning process is analyzed
using information-theoretic measurements and finally we apply the training feedback
to predict which cover-types the user might be interested in. For the evaluation task,
we trace the training actions of a professional image analyst that we obtained during
a one-week system evaluation.
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Iteration ‘ Training (+/—) ‘ User’s comment

1 ‘ + ‘ Starting sample, ‘road’ in flat terrain
Search archive, selected image from coverage retrieval set

2 + ‘road’ in another image

3 — negative training sample for smooth terrain

4 — negative training sample, exclude flat terrain

5 — negative training sample close to a ‘road’

6 + include ‘road’

7 — exclude rough terrain
Search archive, selected image from separability retrieval set

8 + include highway ‘road’ on a new image

9 — specify ‘road’ by clicking next to ‘road’
Search archive, selected image from coverage retrieval set

10 + include strong ‘road’

11 — exclude ‘city’

12 + include ‘road’ crossing
Search archive, selected image from separability retrieval set

13 + include ‘road’ on another image

14 + include ‘road’

15 — exclude ‘road’

Table 7.7: Information about the training samples shown in (Fig. 7.18). The
user’s aim was to include many similar structures in his positive training whereas
the negative training shows a high range of contrary patterns.

Target structure classification and identification

In order to follow the user’s training iterations, we use the information stored in the
user-log. With this information, the following details about target structures from
the traced human-computer interactions are extracted: the location of positive and
negative training samples and the reasons why the examples are placed at a certain
location. We superimpose the training samples on the images with indication of
training iteration and the kind of training (positive or negative). We show the man-
machine interactions for training using five Landsat images in (Fig. 7.18). The user
both performed 15 samples on these five images to learn the semantic cover-type
‘road’” and commented on each iteration. With the positive examples, the operator
tried to include many label-relevant (linear) structures. Negative ones are supposed
to cover a high diversity of irrelevant objects and structures reflected by different
feature models (Tab. 7.7).
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Figure 7.18: Definition of a semantic label ‘road’ based on spectral and textural
feature models (Landsat TM) with 15 training iterations. Altogether, the user
performed the training samples (8 positive and 7 negative) with 5 different images.
The reasons for individual training samples are summarized in (Tab. 7.7).
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Convergence of learning process

How efficient is the I?M system in learning convergence? To answer this question, we
analyze the human-computer interactions and measure the learning progress using
Kullback-Leibler divergence. As previously mentioned, each positive and negative
training iteration (mouse click) implicitly causes the update of the probabilistic link
between content-index and semantic cover-type label. The amount of information
in each learning iteration is reflected by the increase or decrease of the divergence
bars. The questions that arise are (1) how the divergence for the different feature
models behaves and (2) whether there is convergence.

In Fig. 7.19, we analyze the Kullback-Leibler divergence for the traced inter-
actions as displayed in (Fig. 7.18). After the first two positive training samples,
the divergence for both feature models almost equally increases. The third and all
following interactions show that the defined semantic label is well represented by
texture, the spectral model is of minor importance. Although the last three positive
training iterations lead to a linear increase of the divergence for texture, the sum of
both models just like the average quality of the training shows convergence. This ex-
ample shows the real behaviour of the interaction between human and system: with
only a few training samples an operator can define a cover-type label and query the
database for relevant images. Of course, the number of iterations necessary to train
a label depends on the selected feature models and the complexity of the label.

Quantities that influence the convergence of the learning process are the average
number of training samples per image needed to classify the cover-type and the time
for loading the interactive learning applet from the server. In Sec. 9.4, we depict
these measures and show other evaluation results — acquired by a one-week system
verification — indicating the performance of the graphical user interface, e.g. the

Tracing of Divergences D(L; —L)
\ \ \

2.0[

. .
0 5 10 15 20
Training iteration

Figure 7.19: Kullback-Leibler divergence for interactive incremental learning across
several images as depicted in the example in (Fig. 7.18). The two graphs, each one
for a certain feature model, represent the divergence bars in the graphical interface
after each interaction.
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Figure 7.20: Results of matching a trained cover-type label ‘cloud’ using spectral
(left) and textural (right) feature model.

overall time for defining semantic labels and the time for searching the database.

Matching user-specific semantic labels

The example in (Fig. 7.19) demonstrates that a user is able to define a particular
semantic cover-type with just a few training iterations. Now, we want to predict
the user’s intentions. By monitoring the interactions with the database system it
might be possible to somehow predict which semantic label or category of labels the
user is interested in. This kind of forecast is called ‘matching of user interests’ in
research literature and tries to identify the user’s target by analyzing his actions
(Kon and Mut 2001). In a similar way as we computed the Kullback-Leibler diver-
gence D(L,,—L,) between the two probability distributions £, (positive training)
and =L, (negative training) in Eq. 7.20, we can extend this formula and determine
the ‘similarity’ between a certain label and other labels in the inventory. Denoting
L, the label a user is training, we can assess the similarity to any other label L, as

p(wi|L,)
D(L,, L,) Z p(w;| L) log TR (7.32)
Labels that are ‘close’ 3 to L, are characterized by a very low divergence D(-) and
labels dissimilar to L, show a high divergence. In (Fig. 7.20), we depict the similarity
of a particular label to others during the interactive learning process. After just a few
feedback samples, one semantic label close to ‘cloud’ is visible for both the spectral
and texture feature model. Of course, the performance of this method depends on
the applied signal models for interactive learning and the capability of the user to

learn the system.

3¢Close’ in the semantic sense.
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7.8 System Information Flow

In this chapter, we have focused on the evaluation of individual system modules
and the interaction between operator and system so far. What we have not ana-
lyzed yet is the communication between system levels and the flow of information
during system operation. Thus, we explore the mining system from the commu-
nication channel view by determining information transmission between different
system levels using information-theoretic quantities. However, before we measure
the information between the basic levels of image content abstraction — image, class
(cluster) and semantic — we will point out the characteristics of the mining sys-
tem from the communication channel view. In addition to the information-theoretic
treatment, we show how user-specific cover-types are linked to primitive clusters in
the spaces of different feature models.

7.8.1 Communication Channel View

From the communication channel point of view, the image data at the lowest level
in the hierarchical abstraction of image content is regarded as a message transmit-
ted by an imperfect communication channel as two-dimensional signals to the user.
The difficulty in understanding the received image information in form of symbols
and semantics in a certain semiotic context, and inferring about the original image
causes the problem of unsupervised image content modeling. Through the hierar-
chical image content characterization, the image retrieval system can be viewed as
a composed communication channel. The imperfect nature of the system in combi-
nation with the well-known statement of information theory, which says that data
processing cannot increase information, entails that each level in the hierarchical
scheme is associated with a certain loss of information. The purpose of this section
is to measure the information (association) between different system levels using
information-theoretic quantities.

7.8.2 Information-theoretic Measures Between System Le-
vels

In Sec. 3.3, we summarized basic quantities used in information theory and statistics
to measure information. Now, we apply them to determine the information flow in
the mining system. Therefore, we define three basic levels of different semantic
abstraction as depicted in (Fig. 4.1): image space I, content-index space or class
space w and semantic label space L.

Image space — class space

First, we evaluate the correlation between image space I and class space w. For this
verification, we use the multi-mission datasets consisting of 438 geocoded and co-
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Figure 7.21: Association between the elements of different levels of the hierarchical
image content characterization: image space I, class space w and semantic label
space L. Note, images /. are linked to cover-types L, via the joint space of signal
classes wy; and wy; of model k and [, e.g. spectral and texture at a certain scale.

registered Landsat TM and ERST images (see Sec. 9.1 for more details). From optical
Landsat TM images we use spectral and textural properties at different scales. From
ERS1 radar data we use enhanced model-based despeckled intensity information and
spatial characteristics based on the Gauss-Markov random field texture model. From
the generated content-index we can compute the mutual information between image
space I and class space w as

1(I50) = 3 plenlle) pl1e) log 21 (7.33)

i p(wi) 7

where p(w;|I¢) indicates the posterior probabilities of signal classes w; given a certain
image I, from the archive. Prior probabilities for signal classes and images are given
by p(w;) and p(I;), respectively.

In (Tab. 7.8) we summarize the calculations between image and class space.
The measures indicate the information transmitted from image data through feature
extraction and unsupervised content-index generation (clustering) to the class space.
Note that for radar data the computed mutual information /(I;w) is much lower
than for Landsat TM. For Landsat TM images, mutual information is minimal for
texture at lowest scale.

Image database complexity

The association between image space and class space can further be used to measure
the complexity of images in the archive. Since the query performance of content-
based image retrieval systems depends on the complexity of the data, analyzing the
image database that is used for testing is rather important for evaluation. Similar
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H Sensor ‘ Signal models ‘ Scale ‘ I(I; w)
A || Landsat TM spectral 30m | 1,41
B || Landsat TM GRF 30m | 0,92
C || Landsat TM GRF 60m | 1,23
D || Landsat TM GRF 120m | 1.39
E || ERS1 MBD 60m | 0,53
F || ERS1 MBD 120m | 0,59
G || ERS1 GMRF 60m | 0,43
H || ERS1 GMRF 120m | 0,56

Table 7.8: Mutual information I(I;w) between image space and class (content-
index) space. The class space w was separately generated for 438 co-registered
Landsat TM and ERS1 images based on different signal models.

to the method of (RAO et al. 2002) that applies image database statistics and
information theory to determine the complexity of image databases, we measure the
information between image space and class based on Kullback-Leibler divergence.

In comparison to mutual information, Kullback-Leibler divergence can be applied
to determine the complexity of a single image in the entire archive. Thus, we define
the prior probability p; as the probability p(w;) of a particular class w; in the global
(across image) class space and the posterior probability ¢; as the probability p(w;|/¢)
of a class w; given a particular image I.. For these two quantities, Kullback-Leibler
divergence is given according to Eq. 3.20 as

pwille)

(@) (7.34)

D(pi;q;) =Y plwillc) log

i

and can be interpreted as the complexity of a certain image in relation to the entire
archive. A high complexity is associated with a low divergence and vice versa. Of
course, the image complexity expressed by Eq. 7.34 highly depends on the ability of
the applied signal models to describe the image content and to capture characteristic
image structures. We show the image complexity of five images as depicted in
(Fig. 7.22). These images belong to the Landsat TM dataset that is composed of
438 images. For each of the depicted images we calculated the relative entropy
D(-) for the applied signal models and compared the results (Fig. 7.23). Although
there are differences between the signal models, a correlation between signal models
is visible. An interesting fact is that the GRF texture model at a scale of 30m
(original resolution) delivers the smallest entropies. It is the model that captures
most of the image structures in the archive.
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Figure 7.22: Example multi-mission dataset containing five co-registered Landsat
TM (left) and ERS1 (right) images. For each image we computed the complexity in
the archive using different signal models as outlined in (Fig. 7.23).
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Figure 7.23: Information-theoretic complexity of Landsat TM (left) and ERS1
(right) images as depicted in (Fig. 7.22). To describe the content of both
datasets, the models from (Tab. 7.8) are applied. The complexity measures show
that ‘lan096_cutl9’ is a very simple image in the Landsat TM archive whereas
‘Jan107_cutl’ and ‘lan101_cut81’ are quite complex. For ERS1 data, ‘ers104_cut6’
shows to be rather simple and ‘ers101_cut81’ is the image with the highest complex-

ity.

Class space — space of semantic labels

In the same way as we calculated the mutual information between image space and
class space, we can compute the mutual information between the next basic levels
in our hierarchical representation: class space w and semantic label space L. As
mentioned in Sec. 4.1, the first three levels in the hierarchy are determined in a
complete unsupervised and application-free way. Consequently, the information be-
tween image and class space can be seen as a complete objective measure. Subjective
user-related concepts neither have an influence on /(I;w), Eq. 7.33, nor on D(-),
Eq. 7.34.

Since a user-defined semantic cover-type label L, is the result of several human-
machine interactions, the information between w and L can be seen as subjective
and objective. More precisely, the stochastic link p(w;|L,) derived from the user’s
feedback connects objective signal classes w; to the user-specific interpretation of
the image content in the form of semantic cover-types L,. Therefore, the set of
probabilities p(w;|L,) is the central element of our analysis. With p(w;|L,) as the
posterior probabilities and the priors p(w;) and p(L,), we can compute the mutual
information between signal class space and semantic label space as

Hw: L) =Y plwilL) p(Ly) log% |

@,V

(7.35)

Note that I(w; L) is separately computed for each signal model that the user selected
to learn a cover-type of his interest. We can interprete this measure as the quality
of semantic cover-types L, to capture the entire diversity of structures and patterns
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represented by the content-index. In (Fig. 7.24) we show the behaviour of mutual
information for a sequence of semantic labels defined by various users. If semantic
labels are inserted that differ from the existing ones in terms of association to signal
classes w; of the different feature models, mutual information increases. By contrast,
mutual information decreases if cover-type labels are similar to the existing ones in
the DBMS.

The mutual information between class space and semantic space can further be
applied to analyze how far the whole diversity of image structures in the archive is
captured by semantic cover-types. It can result in a new function to dynamically
control the semantic image content, that is, to filter out overlapping cover-types or
to support users in the training process.

The information-theoretic quantity /(w; L) represents the connection between a
set of semantic labels L, and the characteristic vocabulary of signal classes w; in just
one number. Neither does it yield information about the relevance of certain clusters
for the definition of semantic labels nor about the location of training samples in
the global feature spaces. Before we show how feature space clusters are ‘filled’ by
training samples of inserted semantic labels in the last part of this section, we will
first point out how the mutual information between image and semantic label space
is derived.

Image space — space of semantic labels

After computing the mutual information between image—class space and class—
semantic space, we can directly make the connection between cover-type labels L,
and images I.. Therefore, we start with Bayes’ formula

p(wilL,) p(Ly)
S~ plerl) p(L)

v

P(Ly|wi) = (7.36)

to obtain the posterior probabilities p(L,|w;) from the likelihoods p(w;|L,) and the
priors p(L,). Note, in comparison to Eq. 5.19, where we calculated the probabilistic
link between w; and L, for a pair of disjunct cover-types L, and —L,, the integra-
tion in the denominator of Eq. 7.36 has to be performed over the whole semantic
label space. Having defined the posterior probabilities p(L,|w;), we can infer the
probability of a semantic label L, given a certain image I as

p(Lu|le) = Z p(Ly|wi) p(will¢) - (7.37)

These probabilities indicate how strong certain cover-type labels L, are linked to
images in the database.
In a similar way as we calculated the mutual information in the previous sections,
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Figure 7.24: Mutual information I(w; L) (left) and I(I; L) (right) for a sequence
of defined semantic cover-type labels. Note, the mutual information [(w;L) was
separately computed for each signal model whereas [(I; L) is given via the joint
space of signal classes (Fig. 7.21). The increase of mutual information depends on
the diversity of defined labels.

we obtain this information by

IT.L) = p(LT) (1) 1og% (7.38)
¢ v

with posterior probabilities p(L,|l;) from Eq. 7.37 and priors p(/;) and p(L,). In
(Fig. 7.24) we display the computational results based on the same semantic cover-
types that are used to analyze the association between class and semantic space.
Whereas [(w; L) indicates how much information the clusters contain about se-
mantic label, I(I; L) directly shows the semantic coverage of the image archive.
Consequently, we can — at least qualitatively — infer the amount of images in the
archive that are connected to cover-types. And if a new semantic label is inserted
in the DBMS, we can assess its novelty in relation to the existing ones. Notice the
similarity between (Fig. 7.12) and (Fig. 7.24). While the first figure shows the cov-
erage of the database according to retrieved top-ranked images, the second shows
the information-theoretic association between image and semantic label space.

7.8.3 Cluster Occupation by Semantics

As previously outlined, representing the association between signal classes w; and
semantic cover-type labels L, by mutual information is rather abstract and a con-
clusion about the actual coverage of the primitive feature spaces by the semantic
image content cannot be drawn. In order to verify the information flow from users
to image data, we have to analyze how user-specific semantic labels are connected
to primitive clusters in the multi-dimensional spaces of the different feature mod-
els. In this context, the questions arise (1) if there are few significant clusters to
represent all semantic labels, (2) where the occupied clusters are located and (3)
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Figure 7.25: Information flow from semantic (user concept) to spectral and textural
feature clusters (unsupervised image content). Row 1 to 3: Ist., 2nd. and 3rd.
positive training iteration. Row 4: final (inserted) semantic cover-type label. Image
content that belongs to the semantic cover-type is displayed in red.
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how the different model feature spaces vary. Before we present the association of all
semantic labels — inserted in the DBMS after an evaluation test week — to feature
space clusters in Sec. 9.5, we describe the methodology by means of an example
(Fig. 7.25). A user trains a cover-type label ‘cloud’ based on spectral and textu-
ral image parameters. After each positive or negative training iteration (left/right
mouse click), we computed the ‘filling” of the clusters in the different feature spaces
by performed training samples. While the number of occupied clusters by training
samples increases from iteration to iteration in the spectral feature space, there are
two predominant clusters in the textural feature space. Consequently, the image
structure complexity for cover-type ‘cloud’ can be well described by a few compact
clusters in the textural feature space while it is distributed to several clusters in the
spectral feature space.

7.9 Further Evaluation Issues

Evaluating an image information mining system is a challenging and complex task
since both functions and their interrelations have to be taken into account to indi-
cate the overall system performance. Particularly the interaction between system
and user via an interface requires tools to analyze both the objective technical sys-
tem quality and the user-related subjective concepts. With the algorithmic protocol
presented in this chapter, we meet the requirements for the detailed validation of
an interactive image retrieval system. However, there are other important evalu-
ation aspects that have not explicitly been outlined yet but are worthy of equal
consideration.

From the man-machine interface design point of view, the adaptivity to the users’
abilities, preferences and predilections demonstrates the flexibility of a system. Im-
portant for an efficient image content access are personal differences (EGAN 1988) in
background knowledge (sensor characterization, physics of scattering, etc.) and ap-
plication domain, for instance. In order to suit these requirements, the I’M system
makes the distinction between registered novice and expert users. Whereas users
from the first category can only select certain pre-defined combinations of feature
models, expert users can choose models from the whole range of ingested data. Not
only the adaptivity to personality differences, but also the suitability for various
applications reflects the flexibility of a system. Since the content-based retrieval
of remotely sensed imagery deals with very heterogenous datasets in terms of type
and resolution, a system should be adapted to the characteristics of the image with-
out major modifications in system design and implementation. The mining system
fulfilled these requirements and was successfully applied for retrieving optical and
radar images, remote sensing change detection and medical help diagnosis.

Another parameter that should be tested in an image retrieval system is user
guidance. The difficulty in evaluating a system in terms of user guidance is its overall
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relation to operators. User guidance should give inexperienced users necessary help
so they do not get frustrated. But at the same time expert users should not be
limited in communicating with the system. What makes a system robust is the use
of self-explaining communication objects like buttons with a certain text field. PM
uses these tools and only in the interactive learning GUI the user can ask for help
(Fig. 5.7).

What is not very much validated in image retrieval is the long-term stability
or the error resilience of a system. Rather often only the outcomes of single user
sessions are analyzed. In order to evaluate the long-term stability of the 2M system,
we therefore counted the errors during a one-week extensive system verification test
as outlined in Chap. 9.

7.10 Conclusions

In this chapter, we have discussed the following items:

e A detailed evaluation methodology adapted to the architecture of the mining
system has been carried out. We described methods to validate the objective
technological quality of individual system components, included subjective
human factors and verified the transmission of information from the user’s
site to the archive during system operation.

e We showed how the information content of primitive spectral and textural
image parameters can be determined. Based on this information, we can
analyze which image structures and objects (at a certain scale) can be well
described by the applied signal models and where problems may arise.

e In order to reduce the large amounts of extracted features, a global unsuper-
vised clustering for the different feature spaces is performed. We demonstrated
several measurements like divergence or Bayes’ probability of error to analyze
the quality of the obtained clusters and, additionally, how inaccuracies of the
features impair the unsupervised content-index.

e Next to primitive features and clusters we verified the performance of the
interactive learning and the probabilistic search system modules. We outlined
how the quality of a training sample given by the user can be measured in an
information-theoretic way, how the classification accuracy of semantic cover-
types across the entire archive can be determined, how far the system retrieves
images according to the user’s conjecture and how far the system preserves the
semantic image content for different volumes of data. Whereas the information
content of features and clusters was determined in a completely objective way,
analyzing interactive learning and probabilistic search includes both objective
and subjective factors.
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e The third category of evaluation methods focuses on purely subjective con-
cepts. We described methods to quantize the complexity of interactions be-
tween user and system, the capability of a user to ‘learn’ the system with a
limited number of training iterations and the matching of semantic labels.

e We applied information-theoretic quantities to determine the association be-
tween the elements at the different levels of image content abstraction. Particu-
larly the application of Kullback-Leibler divergence to analyze the complexity
of images in the entire archive demonstrated its relevance.



Evaluation Procedure

In the previous chapter we pointed out various methods to assess the objective tech-
nical performance of the mining system and included subjective evaluation concepts
by analyzing the interactions between users and system. With these methods we
have a number of powerful tools to analyze both individual system components and
their interrelations during system operation. What we have not identified yet is
the degree of how far users find the image information mining system helpful and
whether they are satisfied with its functions. However, such a performance test is
not an easy task since many real and expertized users from different application
fields have to be included in the experiments to obtain reliable and statistically cor-
rect results. Furthermore, tests with humans are usually hard to perform, subjects
must be carefully selected and experiments well-designed in order not to influence
the outcomes and shift them in the desired direction. Large-scale tests with many
participants also put strong requirements on the organization since a high number
of tests have to be carried out in a comparatively short time, results have to be
recorded and the retrieval system must be kept stable during the experiments.
Because of the difficulties mentioned, an overall system evaluation with objective
and subjective issues is a rather difficult task. In order to verify the overall effec-
tiveness of I?M under real world conditions, a particular organization, certain tools
and an efficient procedure are needed. They are outlined in the following sections.

8.1 Organization

The evaluation of a complex image retrieval system like I2M requires a special organi-
zation and development of appropriate tools as shown in (Fig. 8.1). For the analysis
and quantification of an objective performance of the system, a tool is implemented
to both trace the users’ interactions and to statistically analyze the results of the
traced parameters. The objective evaluation is based on measures of

e classification error to assess the quality of the interactive training (see Sec. 7.3),

e information transfer to evaluate the quality of learning semantic labels (see
Sec. 7.3) and
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Figure 8.1: I2M system architecture for the evaluation purpose.

e complexity for the man-machine communication dialogue (see Sec. 7.6).

During the operation of the mining system, the report of objective evaluation mea-
sures is generated by off-line processing based on the user tracing information as
shown in (Tab. 8.1).

At the subjective level, the user (evaluator) was asked to qualitatively rank the
degree of satisfaction after the operation of the system. The evaluation was for-
malized as a questionnaire, where labels could be marked as ‘very good’, ‘good’,
‘acceptable’ and ‘unsatisfying’. The overall system evaluation was realized as a one-
week performance test with various participants: image analysts from the European
Union Satellite Center (EU-SC), scientists from Nansen Environmental and Re-
mote Sensing Center (NERSC) and technical stuff from the European Space Agency
(ESA) at ESRIN. The evaluation results were analyzed by merging the two reports
— objective (technical quality) and subjective (user satisfaction). The overall aim of
this system verification was to test how well objective and subjective measurements
meet, an attributed semantic label of ‘very good’ and the objective measurements
for this cover-type should agree, for instance. Examples are shown in (Tab. 8.2).

8.2 Experimental Results

After defining the basic conditions of the evaluation procedure in the last section,
we are interested in the relevance of the measured objective quantities to reflect
the user’s satisfaction. The approach we follow is similar to the work of Healey
and Picard (HEALEY and P1CARD 1997). Whereas both authors analyzed phys-
iological signals like skin conductivity, blood volume pressure, respiration and an
electromyogram on the masseter muscle, we deal with measurements directly de-
rived from human-computer interactions. Healey and Picard described a method
to collect training data, extract features from the recorded signals and determine
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time | action type parameters

10:05:20 | MODEL 1013 1032, 2, Nepal spectral
10:05:20 | MODEL 1013, 1038, 2, Nepal texture band4
10:05:20 | IMAGE 1013, 5, TM 991106r 4 14, New label
10:05:25 | TAB_CHANGE 1013, Learn

10:05:33 | APPLET 1.OADED | 1013

10:05:44 | PAN 1013

10:05:58 | LEARN 1013, [x=127,y=179]

10:06:01 | CLICK LEFT 1013, Zoom Panel, [x=252,y=207]
10:06:11 | PAN 1013

10:06:22 | LEARN 1013, [x=262,y=12]

10:06:25 | CLICK_LEFT 1013, Zoom Panel, [x=407,y=68]
10:06:30 | PAN 1013

10:06:54 | LEARN 1013, [x=0,y=265]

10:06:58 | SEARCH 1013

10:07:39 | IMAGE 1013, 6, TM 991106r 14 7, mb river 01
10:07:39 | ORDER 1013, PERCENTAGE DESC, HIGHEST
10:07:50 | TAB_CHANGE 1013, Learn

Table 8.1: Example DBMS entry of user tracing information. After selecting a
certain combination of feature models and an image from the initial gallery, the
user started to analyze the image data and to give (positive) training samples. Note
that each performed action is assigned to action types as summarized in (Tab. 7.5).
The time information is used to compute the complexity measurement C, and the
quantity C; is derived from individual actions.

the relevance of their measurements using the Fisher linear discriminant and the
leave-one-out test method. The quantities (features) we use to evaluate the quality
of user-defined semantic cover-types are given in (Tab. 8.2). Additional features are
the sum of the Kullback-Leibler divergence for both models and the maximal diver-
gence of the two models. The first one reflects the overall quality of the stochastic
link between image content and semantic cover-type and the second one the ability
of at least one model to capture the label. With these two additional measurements,
we obtain a set of nine different quantities for each semantic label. However, some of
the measures are correlated or may have only limited discrimination power to distin-
guish weak and strong cover-types. Finally, analyzing the relevance of the observed
data results in a Karhunen-Loéve transform expressed as (DUDA et al. 2001)

y=Gz . (8.1)

In this equation, & denotes an observed d-dimensional vector for a trained semantic
label, G a linear transformation matrix and y the representation of the observations
in the transformed space (see App. A for details about computing the KLT). In
our case, the yielded eigenvalues )\; are of major interest since they indicate the



Chapter 8. Evaluation Procedure

150

N
Surdystpesun pue (y) oqeidoooe (5)) poos ‘(HA) poos Aloa soLI099ed UOIRISIJes pozijuenb oy) Jo oU0 YIm [oge] UESEMBW
0RO POJRPIRA Tosnl of) ‘A[[eUoIIppy ‘siojourered Jumel) Iosn o) wolj ») sjuowoinseowl A)xo[duwon [elosss pue sojdures
sururer) W0 pese( AdRINooR UOIJRDYISSR[D 9T[) ‘[opou [RUSIS [oes 10J A[pjeredas (17— ) 9oue)sip-T3] o) pajndurod om [oqef
Poulop [O®d 10, "SIUSUWIDINSLOUL OALOD[(NS puR 9A1100[(O POIRIDOSSE PUR S[O(B] dIJURWOS [[ILM [000j01d uoryenyesr] :z'g a[qe],

X £6°6c | LS80t | S¥T| LT £e 120 120 w9 ‘AgNd | w09 ‘aginNdg ¢ oaLrde
X 9621 | S9T | 80 | €5°¢ 79 1£°¢ 70 w(g ‘X0) | w9 ‘NG | T Mopeyspnopoe
X 76'7¢ | ©0'ST | 60°C | SV'C 6 £9°0 11 w9 ‘qgiNd 13oads ¢ 1oyem—de
X 76'9% | €068 | 920 | S¢ 86 1e7 ey 1300ds 1)0ads I YURQIOALL PY
X z v IT | 2871 | €LT 00T 88'T 66'T wQg ‘AHD 130ads [eas pul
X 7' | €82 | 690 | £LC 08 80 €80 wg YD 130ads ["pnop pu
X 1Sy | §9¢ | LvT | 99 %6 6L°€ STy uog ‘AUD 1300ds 9 PO PY
X 605 | T8¢ | 6C'T | €8¢ QL8 ST’y o7’y wog YD 130ads g Ioyem py
X 6%¢ | 99¢ | €LT| 99¢ 1L 89'T G1°¢ wQg ‘AYD 1)00ads I PPQIRALI N D J
X i 9%y | 8T | L9T L¥6 L1 81°¢ wog gYD 130ads T PRQIOATI ]
X 6FF | 8¢ | 8T | 66C 268 ¢q'1 €T wg ‘YD 132ads g pues 1|
X Gy 6V | 8LC| 6 7.8 jia! i wog U0 1p0ds T"pues iy
X L08 | SLT | 19T €61 €36 9%'1 18°0 wog gD 1)00ds g prOIYY
X L6 | L9z | LLT | L6 9°LL LT 78’1 wog AHD 1300ds 1~ Ierem 1y
NERARIERIN 2 ) D) () . ¢ [Ppouw | T Ppowt
uoTETeS 18)) Supoes; 18] 20' 'sse|n) (=G ¢ [opou T [epowt aureu [9qe[




8.2. Experimental Results 151

6 ]

4= o 7

o [ + ]

O 2 = X _

-+ | Q .

9 L + |

= L J

<&
.% o o o % 1
o

i < * + Very Good i

© L J
c £ ¥ Good

o~ -2 & Acceptable B

i X O Unsatisfying ]

—4 = <& |

—6L ! ! L ! ! 1

—15 —-10 -5 0 5 10 15

1st eigenvector

Figure 8.2: Defined and classified labels that were trained with spectral and tex-
tural image parameters. The labels can be separated in terms of user satisfaction
using only the first two components of the Karhunen-Loéve transform. These two
components contain about 80% of the total variance of the original measurements.

correlation of the full dataset and the amount of information in the first k& principal
components. Usually, there are only few large eigenvalues with the consequence
that k is the inherent dimensionality of the subspace governing the ‘measurements’
(signal) while the remaining d — k dimensions generally include noise. Thus, the
Karhunen-Loéve transform can be interpreted as a projection of the data into a
k-dimensional subspace. As depicted in (Fig. 8.2), we computed the KLT for a
set of 17 semantic cover-types and plotted the first 2 principal components. Fach
label was marked as ‘very good’, ‘good’, ‘acceptable’ or ‘unsatisfying’ according to
the user’s degree of satisfaction. In this two-dimensional space, semantic cover-types
group themselves by means of training quality (user satisfaction). Consequently, our
measurements can be used to guide the user during the learning process to indicate
relevance feedback.

During the evaluation period 31 labels for Landsat TM data, 7 labels for for
ERS1 data and 10 labels multi-mission (ERS-1 and Landsat TM) were defined.
The analysis of the objective and subjective criteria according to the described
procedure resulted in the label validation of 10% as ‘very good’, 60% as ‘good’, 20%
as ‘acceptable’ and 10% as ‘unsatisfying’.
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Remaining problems

The outlined evaluation procedure delivered good results for almost all defined se-
mantic cover-type labels in the DBMS. However, there are situations in which dis-
crepancies between the different measurements occurred, e.g. a user gives a high
number of arbitrary training samples or he tries to discriminate image structures
that are not reflected by primitive features. Although the system operation complex-
ity increases, there is no learning progress and the stochastic link between semantic
labels and content-index is weak. A solution to such a ‘random’ training could
be both the separate analysis of Kullback-Leibler divergence and system operation
measurements to exclude weak-defined labels from the semantic inventory. Alto-
gether, the applied evaluation procedure performed well for the majority of labels
and demonstrated its usefulness due to a low computational complexity.

8.3 Conclusions

In this chapter, we have discussed the following items:

e We demonstrated the organization of a system evaluation architecture and the
tools designed therefore. The link of the user-tracing information to the tools
for statistical analysis and the computation of a set of evaluation measurements
based on human-computer interactions for each inserted semantic label are the
core of the overall system evaluation. Since the computational complexity of
the proposed measures is rather low, they can be computed on-the-fly.

e In order to obtain the relevance of the evaluation tools we performed an overall
system effectiveness test and included several persons from different applica-
tion fields. After computing for a number of semantic cover-types objective
evaluation measures and comparing them with the subjective degree of user
satisfaction, we performed a Karhunen-Loéve transform to analyze the out-
comes. The obtained results reflect the performance of the implemented eval-
uation functions.



Executive Summary of Evaluation
Results

In the preceding chapters we described a methodology to determine the objective
technical quality of the image information mining system, we identified subjective
user-related concepts and compared both components in the evaluation protocol.
Unlike most commonly used techniques for assessing the performance of a content-
based image retrieval system, our approach aims at analyzing individual system
modules and their interrelations. Since the system operator is an inherent part of
the retrieval loop, we included psychophysical aspects in the evaluation, too. With
the proposed system evaluation architecture we arrived at a set of objective and
subjective measurements for each defined semantic cover-type. Based on the ob-
tained measurements, we aimed at analyzing their relevance to represent the overall
system performance and finding out how strong they are correlated.

In this chapter, we outline the results of an extensive one-week system test.
The preparation and organization of this evaluation was not an easy task as it had
to be based on the following requirements: the careful selection and processing of
appropriate datasets, the association of tasks with different degrees of difficulty to
the evaluators, and the fast reporting of the outcomes to give users a feedback
about performed actions. On the other hand, the clear partitioning of off-line data
processing and on-line system operation enabled us to evaluate the off-line data
ingestion chain and image archive complexity a priori. Thus, we could focus on the
interactions between users and system during the evaluation week.

In Sec. 9.1, we give an overview of the ingested datasets in the mining system,
describe their characteristics and their relevance for the evaluation procedure, and
the type of implemented mining function. Then, in Sec. 9.2, we point out the time
requirements for off-line data ingestion — feature extraction, clustering and index
generation. After having outlined the requirements for off-line data ingestion, we fo-
cus on the image archive complexity in Sec. 9.3 and on how this quantity is influenced
due to a certain subsampling factor. Whereas Sec. 9.2 and 9.3 describe the objec-
tive performance of the system, the last two sections involve objective and subjective
evaluation concepts. In Sec. 9.4, the efficiency of the graphical human-machine in-
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Figure 9.1: Coverage of the Mozambique test site by multi-mission data. The
covered surface is larger than 400km x 800km. ERS1 scenes are displayed by small
red quadrangles and Landsat TM scenes by larger filled quadrangles.

terface is analyzed in terms of interactive learning and probabilistic search, and in
Sec. 9.5 an overall evaluation of the semantic image content is performed.

9.1 Overview of Inserted Datasets

For system verification, we inserted several datasets in the mining system as sum-
marized in (Tab. 5.1). The main set consists of multi-mission — optical and SAR
— data of two sites of Mozambique as depicted in (Fig. 9.1).

The complexity of Landsat TM images (resolution 30m, georeferenced, IR chan-
nel not used) covering Mozambique is rather high, both from the point of view of
image content and subjective understanding by users. The images indicate a huge
diversity of spectral signatures and a very broad variety of structural information at
different scales. Most of the image structures are natural and have intricated shapes
and textures. For many users, the visual understanding of the scenes is not easy
because of different geological, climatic, cultural and technological environments.
Owing to these reasons, the selection of these data was a challenge and a typical
task for information mining.

As opposed to optical image data, the information content of ERS1 SAR images
(resolution 30m, georeferenced, GTC processing level) of Mozambique is quite small.
The low diversity of several of the image contents is due to various factors, among
them are: the look angle of ~23°, the C-band response for humid land cover vege-
tation and the type of materials used for man-made structures. Due to the SAR
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sensitivity to the surface geometry, however, large scale structures like rivers and
geomorphology are well visible in the images.

Besides Landsat TM and ERS1 scenes, we also used nine Ikonos scenes (resolu-
tion 1m, georeferenced, radiometrically corrected) covering urban terrain of Mozam-
bique. The Tkonos images indicate a broad diversity of both natural and man-made
structures. This dataset is challenging since it allows us to verify our algorithms in
terms of primitive feature extraction at high resolution.

Additionally to the Mozambique data, we inserted Landsat TM images covering
Switzerland at a surface larger than 400kmx400km. The images indicate a quite
high information content that is characteristic of alpine areas.

Particularly for the evaluation of the classification performance of the mining
system, one Landsat ETM+ scene of Nepal covering an area of about 100km x 100km
was used. Next to the multispectral information we included the panchromatic data,
too.

These datasets were completed by Ikonos scenes covering Germany and Daedalus
ATM and E-SAR images covering the Kosovo.

Type of implemented mining function

In order to build a system that is free of application-specificity and manages large
amounts of remote sensing image data, several requirements, such as the automatic
extraction of relevant features, feature reduction and compression, transfer via In-
ternet and usability have to be fulfilled. With the new generation of high resolution
optical and radar sensors, an efficient data management is of the utmost importance.
To eliminate these limitations, an information retrieval system has to be scalable to
different levels of detail (SEIDEL and DATCU 1999):

¢ Content-based image retrieval: In this mode, the compression factor is
very high (~ 100) and therefore allows the search of very large quantities
of data. However, the search accuracy is restricted and proportional to the
amount of information for on-line search. Content-based image retrieval sys-
tems mostly work with global image features.

e Information mining: A moderate compression factor is used and, conse-
quently, a more detailed search of information for on-line mining is possible.
However, the requirements for storage devices increase.

e Scene understanding: In this mode, the entire image content is used. Thus,
it allows an accurate exploration and interpretation of physical image proper-
ties at pixel level.

In (Tab. 9.1), where we outline the implemented mining functions, we achieved
compression factors for ingested datasets.
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Site | Sensor | No. of scenes | Archive | Mining | Compr. | Function
Switzerland | Landsat TM 5 4,4 GB 52 MB 88 CBIR
Landsat TM 14 10,5 GB | 616 MB 17 Information
Mozambique ERS-1 30 3.5 GB | 808 MB 4.3 mining
. IlgonosT - 2 560 l\l\;l[g 124 MB 4.5 Scene
andsat 1 216 .
Nepal Landsat TM 1 120 MB 254 MB 1 understanding
Total all 53 20 GB 1,8 GB 12

Table 9.1: Datasets inserted in the I*M system: archive size, size of condensed
information for ‘mining’, achieved overall compression factors and the implemented
scalability functions CBIR, information mining and scene understanding.

9.2 Efficiency of Data Ingestion Chain

A further operational application of the image information mining system, like a
pipeline in a ground segment system or the synchronization with periodic update
(refresh) of data in large robotic archives, requires knowledge about the compu-
tational demands for off-line data processing. The extraction of primitive image
features and both their reduction and compression by an unsupervised clustering is
by far the most time-consuming part in the I?M data processing chain. That’s why
we will first focus on these system modules.

Primitive feature extraction

As outlined in Sec. 5.1, we extract spectral and spatial parameters from optical
images. The latter are extracted at multiple scales based on Gibbs random field
(GRF) texture models to achieve a quasi-complete description of the image content.
For radar data we apply an enhanced model-based despeckle filter (EMBD) to obtain
a cleaned intensity image and textural information related to the Gauss-Markov
random field (GMRF) model.

In (Tab. 9.2), we summarize the computation-time for primitive feature extrac-
tion for different sizes of the estimation window, model order (neighbourhood size),
number of estimation points, overall computation-time and the time needed per es-
timation point. The calculation of spatial features from optical images (GRF) with
a typical number of 466 x 466 = 217.156 estimation points with model order 3 and
an estimation window of size 35 x 35 requires about 52 min. on a 500MHz SUN
workstation, for instance. It is obvious that the computational demands per estima-
tion point depend on the selected model order and estimation window (processing
complexity). Although we applied a fast Linux PC for extracting the radar features,
the processing was a computationally intensive task. For the chosen processing pa-
rameters (GRF: 35, 3 and GMRF+EMBD: 17, 5) with different estimation steps, the
extraction of radar image attributes takes about twice as much time as the extrac-
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Time

Feature Est. win. | Model order | Time (sec.) | Est. points et boit (msec.)
. point
GRF 35 x 35 3 3173 466 x 466 14.6
GRF 20 x 20 3 839 481 %481 3.6
GRF 50 x 50 3 6597 451 x451 32.4
GRF 35 x 35 1 1266 466 x466 5.8
GRF 35 x 35 5 6440 466 x466 29.7
GRF 17 x 17 5 141 162x162 5.4
GMRF + EMBD | 11 x 11 3 2783 166 x166 101
GMRF + EMBD 11 x 11 5 4174 166 x 166 151
GMRF + EMBD 11 x 11 7 6538 166x166 237
GMRF + EMBD 17 x 11 5 8125 166x166 295
GMRF + EMBD 5% 5 5 1347 166x166 48.9

Table 9.2: Summary of computation time for primitive feature extraction. For
the determination of textural parameters (GRF) from optical imagery we applied
a 500MHz Sun workstation and for radar features (EMBD and GMRF) a 800MHz
Linux PC.

tion of texture features from optical data. The computation of Landsat TM image
texture attributes (at a certain scale) for the Mozambique site (438 tiles) required
about 48h using a 6 CPU SUN cluster and for the same amount of ERS1 image tiles
about 42h using a 8 CPU Linux machine, for example. Notice that spectral features
were not included in this validation since they can be directly obtained from raw
image data (after a normalization).

Unsupervised clustering

Having extracted primitive image attributes, the samples in a multi-dimensional
feature space are first normalized according to feature space dimensions and then
clustered in a certain number of characteristic groups. As we see in (Tab. 9.3),
the normalization of each feature dimension to form a uniform space is not a lim-
iting factor of the data ingestion chain. As the measurements indicate, the more
complicated task is the clustering process. Like for all clustering algorithms, the
processing time depends on several parameters, such as the number of clusters and
iterations, for example. We performed the global grouping across all images with
typical parameters as 128 clusters and 30 iterations. As we can further see from the
measurements, the computation time depends on the selected normalization method
and the dimension of the feature space. The latter is evident since the algorithmic
complexity of dyadic k-means is proportional to the number of dimensions.
Feature extraction and clustering is generally a complicated and time-intensive
task. But because of the latest technologies, which make clusters of hundreds of
CPU — each of which with more than 2GHz speed — available at low price, fea-
ture extraction is not a difficult task anymore. Additionally, the processing can be
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Feature ‘ scale ‘ dim. ‘ Norm. method ‘ Norm. (s) | ‘0’ clust. ‘ Clust. (h) % (min.)

Spectral | 30m 6 Gaussian 178.1 0 27.1 3.7
Spectral | 30m 6 linear 65.9 16 26.4 3.6
GRF 30m 4 Gaussian 141.9 3 12.0 1.6
GRF 60m 4 Gaussian 121.9 7 12.0 1.7
GRF 120m 4 Gaussian 131.2 1 12.0 1.6
EMBD 60m 1 Gaussian 32.6 15 3.1 0.4
EMBD 120m 1 Gaussian 36.6 15 2.9 0.4
GMRF 60m 1 Gaussian 35.7 15 2.4 0.3
GMRF 120m 1 Gaussian 34.7 15 2.0 0.3

Table 9.3: Time requirements for feature normalization and clustering. All mea-
surements are related to the processing of global feature spaces, each consisting of
about 100 Mio. data samples from 438 Landsat TM and ERSI tiles. ‘0’ clust.
indicates the number of clusters to which no data samples are assigned.

optimally adapted to an application due to a selected subsampling factor. The algo-
rithms for feature extraction and clustering do not require parallelization; datasets
are distributed in single instruction multiple data (SIMD) strategy.

Catalogue entry generation

After analyzing the time requirements for feature extraction and unsupervised clus-
tering, we complete the verification of the off-line data ingestion chain by catalogue
entry generation. As stated in Sec. 5.2, from the clustering results we compute

for each image tile as many classification maps as different features models
were applied. From these maps we derive the posterior probabilities p(w;|I¢) as the
frequency of signal classes w; given a certain image I.. These probabilities can be
easily derived from the normalized histogram of each classification map. In addition
to classification maps and probabilities, the catalogue entry that is ingested in the
DBMS includes quick looks and thumbnails, both in JPEG format. Most of the time
in the off-line processing chain is required for feature extraction and unsupervised
clustering. The other parts are less computationally intensive; only the generation
of quick looks and thumbnails is time-demanding because of a performed Gaussian
color histogram modification. All in all, even if the data ingestion chain seems
to be quite time-intensive, it can be adapted and scaled to an existing hardware
configuration without losing many information details as will be shown in Sec. 9.3.

Condensing information for ‘mining’

Having identified the computational demands of the algorithms for primitive fea-
ture extraction, clustering and catalogue entry generation, we will now analyze the
compression performance of the system. Unlike (Tab. 9.1), where we demonstrated
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Archive size I2M size
# tiles | Size of tiles Visual tiles | Thumbnails | Size of ‘classfiles’ | # models
438 | 2000x2000 1864 x 1864 125x125
L. 6 bands, byte 3 bands, ¢=23 | 3 bands, ¢c=15 4665466, byte 4
Archive size: 10.5 GB | 232 MB (36.9%) | 3.5 MB (0.6%) 392 MB (62.5%)
438 | 2000x 2000 1864 x 1864 125%x125
11. 1 band, integer 1 band, ¢=9 1 bands, ¢=6 466466, byte 4
Archive size: 3.5 GB | 413 MB (51.1%) | 2.8 MB (0.4%) 392 MB (48.5%)

Table 9.4: 1M data compression performance for the Mozambique Landsat TM
(I.) and ERS1 (II.) datasets. The share of visual tiles, thumbnails and classfiles in
the entire ‘mining’ size are outlined in brackets; ¢ denotes the compression factor.

the implemented scalability functions for various datasets, we will now point out the
compression factors for quick looks, thumbnails and classification maps (Tab. 9.4).
For Landsat TM visual tiles (RGB color quick looks) a rather high compression
factor could be achieved, ¢=23, whereas this value is much lower for ERS1, ¢=9.
Differences in the compression rates resulted in storage requirements of 232 MB for
the Landsat TM and of 413 MB for the ERS1 archive. Recent experiments proved
that the overall ‘mining’ size can be further reduced by compressing the unsupervised
classification maps. With publicly available tools, these maps can be compressed by
factor 3 to 4.

9.3 Image Archive Complexity

In the algorithmic protocol of Chap. 7, we demonstrated a method that allows us to
determine the complexity of an image in the entire archive. The approach is based
on the Kullback-Leibler divergence D(p;; q;) between two probability distributions
pi = p(w;) and ¢; = p(w;|I¢) indicating the prior probability of a certain class w; in
the global class space and the posterior probability of w; conditioned on a particular
image I.. Divergence can be used to determine the diversity of image structures in
a single image in relation to the whole database.

In (Fig. 9.2), we depict the KL divergence for optical and radar feature models
computed for the multi-mission dataset. As we see, for optical Landsat TM data
the highest complexity values are given for the texture model at a scale of 30m and
decrease with increasing scale. The spectral feature model shows minimum com-
plexity for this dataset. For signal classes computed from radar data, the maximum
divergence appears for texture at a scale of 60m and the minimum divergence for
the filtered intensity at a scale of 120m. Unlike optical data, the difference between
the complexity of radar feature models is rather low.

In addition to Kullback-Leibler divergence, we regarded image and index space as
the input and the output of a communication channel view and computed the mutual
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Figure 9.2: Agglomerated histogram of the complexity of images in the database.
Kullback-Leibler divergences are computed for feature models of optical (left) and
radar (right) images of the Mozambique multi-mission dataset.

information /(I;w) between them. This quantity reflects how much information the
characteristic set of global signal classes contain about images in the database. The
mutual information computed for optical and radar feature models is illustrated in
(Tab. 9.5). The obtained quantities correspond to the KL divergences as depicted in
(Fig. 9.2). Whereas Kullback-Leibler divergences indicate the complexity of certain
images in the archive, mutual information relates to the association between all
images and signal classes.

Subsampling factor

A quantity that is of interest in terms of image archive complexity is the loss of
information due to a certain subsampling factor S. In the current version of the
system, this factor can be selected in the data ingestion chain to achieve a certain

Sensor ‘ Signal models ‘ scale ‘ I(I; w)
Landsat TM spectral 30m | 1,41
Landsat TM GRF 30m | 0,92
Landsat TM GRF 60m | 1,23
Landsat TM GRF 120m | 1.39
ERS1 MBD 60m | 0,53
ERS1 MBD 120m | 0,59
ERS1 GMRF 60m | 0,43
ERS1 GMRF 120m | 0,56

Table 9.5: Mutual information /(I;w) between image space and class (content-
index) space. The class space w was separately generated for 438 co-registered
Landsat TM and ERS1 images based on different signal models.
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Subsampling factor S
22 1 8% ] 167 | 322 | 647 | 128% | 2567
Spectr. | 30m | 1.409 | 1.409 | 1411 | 1.419 | 1.444 | 1.539 | 1.788
GRF | 30m |0.921 | 0.921 | 0.923 | 0.931 | 0.961 | 1.088 | 1.434

Sensor Model | Scale

Landsat TM | 0o | Gom | 1233 | 1233 | 1.236 | 1.241 | 1.262 | 1.369 | 1.669
GRF | 120m | 1.389 | 1.389 | 1.391 | 1.394 | 1.412 | 1.503 | 1.797
EMBD | 60m | 0.527 | 0.527 | 0.531 | 0.543 | 0.591 | 0.787 | 1.328
ERS1 EMBD | 120m | 0.594 | 0.594 | 0.598 | 0.609 | 0.656 | 0.844 | 1.365

GMRF | 60m | 0.430 | 0.430 | 0.433 | 0.444 | 0.486 | 0.645 | 1.093
GMRF | 120m | 0.563 | 0.563 | 0.564 | 0.574 | 0.613 | 0.771 | 1.204

Table 9.6: Mutual Information I(I;w) for the Mozambique dataset and different
subsampling rates. For a subsampling rate of up to 162, only small changes for all
feature models are visible.

data compression and to optimally adapt to the users’ application. However, with
the choice of factor S a loss of information has to be considered. With the help
of information theory, we can measure this quantity as outlined in (Tab. 9.6). We
computed the mutual information between image and signal class space for various
feature models of the Mozambique dataset, this time in dependence on S. For
an increasing data reduction, mutual information increases. However, the loss of
information details is negligible to a certain extent. For the Mozambique dataset
we could apply a subsampling rate of S = l—ég without risking to ‘lose’ image details
in the archive.

9.4 Human-Machine Interface

The I2M system is based on human-centered concepts in order to fully exploit the
synergy of human and computer: the user guides the interactive learning process and
the system continuously gives the operator relevance feedback about the performed
training actions and searches the archive for relevant images. The implemented
mining functions — training, image content interpretation and probabilistic search
— require interactive operation in “real time” relative to the reaction of the user.
Thus, we compare the following aspects for the evaluation: the average number of
training actions per image, the interactive learning applet loading time, the duration
of an interactive learning session and, additionally, the time requirements for the
probabilistic search and presentation of the queried top-ranked images (Fig. 9.3).
The average number of training samples per image is about 4 in relation to the
complete number of 7 to 8 training samples for cover-type labels. These two quan-
tities reflect the capability of I?M to define semantic labels with just a few training
samples on a small number of images. The loading average time of the applet is



162 Chapter 9. Executive Summary of Evaluation Results

No. of training samples per image Times for applet loading (in sec.)
T T T T T T T T T T

80 80

60

40

Frequency in %
Frequency in %

20

0
0.0 0-3 4-7 8-11 12-15 >15 0-3 4-5 6-10 11-1516-3031-6061—-120>120

ec.) Time for probabilistic search (in sec.)
40T T T T T T T T T

30F 4

me for lobel troining (in s
20 £ ]
s [ ]
2 20F E
I I | |
ol I 1 I -l oL 3
0-10 11-15 16-30 31-60 61-120121-18018

Ton =20 0-3 4-5 6-10 11-1516-3031-6061-120>120

Frequency in %

Figure 9.3: Evaluation of the image information mining system on-line graphi-
cal user interface. Plots from left to right: 1st row: number of training samples
per image for training a semantic cover-type and the time required for loading the
interactive learning applet. 2nd row: time required for training user-specific seman-
tic labels and time for performing the probabilistic search and thumbnail gallery
presentation.

about 8 seconds, relative to the average duration of the interactive learning session
of about 70 seconds. The results are satisfactory and the ratio is maintained also in
the over-the-net operation for normal network speed. The requirements for perform-
ing the probabilistic search depend on the number of selected signal models and the
database size reflected by a large variance. Considering the fact that both proba-
bilistic search and data transfer via Internet can be accelerated from an algorithmic
and technical point of view, the obtained average time of 7 to 8 seconds is rather
promising.

During the one-week evaluation test phase we counted 3 errors caused by the
I?M database management system and by local network problems. Although the
number of operational faults is not equal to zero (as one expects from an operational
retrieval system), the obtained results are rather promising due to the fact that the
system was tested at the same time by up to four users between six to eight hours
a day.



9.4. Human-Machine Interface 163

1000 . Spectral : GRF, 30m
[ .
b Spectr. N
_ 800k GRF, 30m | - . . -
i Lty GRF, 80m . : - a2
= —.—.—.—- GRF, 120m . . 126 ¥
5 i g3
° 00| 1 . .
8 :
o 3 .o PR 75
£ 400 ] - T
> r - .
. .72
200 q -
[ )
A
0 oo ol es e
150 0 1 0 1
GRF, 60m GRF, 120m
1 o 1
as
1
It 5 : }
o 85
91
:SJ B
2
® =«
s
s @
i
] 1 0 1
1207 EMED, &0m EMBD, 120r
[ 1 1
L EMBD, 60m ]
_ WOO,‘, EMBD, 120m | |
| S S I GMRF, 60m | |
=z 807‘”‘ —-—-—-—- GMRF, 120m i
z Fit B
o [
o L e
g sofl! ]
Sl
3 4o{\ b v -
a r ?‘f/ 20,7
S [ ; # e
) -
2000 4, M ] -
IR AN . i | -
T q‘,y\u A L nf Vol eV, Nt 5 .
ol R g v‘,w’\.vn;,m, Rk o . ok
¢} 50 100 150 o] 1 a 1
w_i
GMRF, 60m GMRF, 120m
1 1
- ":V
-
d £
v ’
3 o
1'5‘/
1348 K
3.
2 &
o 0
] 1 0 1

Figure 9.4: Occupation of different feature spaces of the Mozambique Landsat TM
(Ist. and 2nd. row) and ERS1 (3rd. and 4th. row) dataset by semantic cover-type

labels. The most occupied clusters w; are attributed by the corresponding cluster
number .
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Occurrence

Figure 9.5: Most frequently queried images (top row) and images that never ap-
peared in the resulting gallery (lower row).

9.5 Semantic Image Content

After having outlined the effectiveness of the off-line data processing chain and
on-line system operation, we will focus on the semantic image content evaluation
in this section. During the evaluation period, 31 labels for Landsat TM data, 7
labels for ERS1 data and 10 labels for the multi-mission dataset were defined. First,
we identify the performance of the generated content-index to represent semantic
cover-type labels. Unlike in previous chapters, where we outlined the quality of
semantic labels in terms of stochastic link, classification accuracy and probabilistic
search results, we now analyze the occupation of clusters by semantic cover-types as
depicted in (Fig. 9.4). Note that the dimension of the different feature spaces varies
from 1 for radar (EMBD and GMRF) to 4 (GRF) and 6 (spectral), respectively.

The 31 labels defined for the site of Mozambique are assigned to ~75% of the
images in the archive. Images that were most often queried and displayed in the
resulting gallery are depicted in (Fig. 9.5) together with images that had never
appeared in the top-ranked images. The analysis of objective and subjective criteria
resulted in the evaluation of the defined labels as follows: 10% very good, 60%
good, 20% acceptable and 10% not satisfying. However, for the overall evaluation
one should consider the very high complexity of the Mozambique and Nepal images
as described in Sec. 9.1.

9.6 Conclusions
In this chapter, we have discussed the following items:

e An overview of datasets ingested in the image information mining system
was presented. In addition to the properties of the different volumes of data
we showed the implemented mining functions and the achieved compression
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factors. These characteristics are relevant for the level of detail the data can
be searched for.

The efficiency of the off-line data ingestion chain was analyzed. Although the
extraction of primitive image features and their compression by clustering are
time-consuming operations, they can be managed in an adequate period with
existing computer technology.

The complexity of the different datasets and how this quantity is affected by
an increasing subsampling factor were presented. The main outcomes are that
complexity measures depend on the applied signal models and a moderate
subsampling rate does not significantly impair the complexity.

During the evaluation test week we analyzed the performance of the graphical
man-machine interface. The provided mining functions for interactive learning
and probabilistic retrieval allow interaction in real time relative to the reac-
tion of the user. Since the data transfer via Internet can be accelerated, the
evaluation results are quite promising.

In order to verify the semantic image content, we analyzed objective and sub-
jective evaluation measures and the filling of the different feature space clusters
by cover-type labels in the database inventory.
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Conclusions

This dissertation concentrates on the enhancement and evaluation of a content-based
remote sensing image information mining system. Content-based image retrieval has
originally been developed to query for pictures with a particular content from large
multimedia databases. Typical queries are “show me all images similar to this one”
or “show me all images that contain cars”, for example. The implemented methods
and retrieval algorithms perform well for this kind of data, but turned out to be of
limited use for remote sensing applications. The state-of-the-art systems for access-
ing remote sensing images allow only query by meta-information such as geographical
coordinates, time of acquisition and sensor type. However, this information is often
less relevant for the user than the actual content of the scene, e.g. structures, objects
or scattering properties. In addition to the operational archives and database sys-
tems, we have implemented and evaluated a knowledge-driven information mining
system. The system supports the human-machine interaction via Internet and adap-
tively incorporates application-specific interests by linking the user-defined semantic
image content interpretation with Bayesian networks to a completely unsupervised
content-index. Based on the stochastic link, the user can query the archive for re-
levant images and obtains a probabilistic classification of the entire archive as an
intuitive information representation.

10.1 Summary of the Dissertation

The implemented mining system aims at providing both novice and experienced
users with direct access to the content of remotely sensed images and therefore be-
longs to content-based image retrieval. Consequently, we started this thesis with a
review of basic methods and algorithms applied in content-based image retrieval to
search images in large archives according to their visual properties. We discussed
how the visual content of images can be described by attributes like color, texture
and shape and how these features can be reduced and indexed to obtain compu-
tationally manageable data quantities. Since the information content of a single
image feature is not sufficient to distinguish the structures and objects of all im-
ages in the database, systems were equipped with methods to fuse various sources
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of information at the level of features, content-index and semantic image content
interpretation. Not only the fusion of information, but also the implementation of
relevance feedback techniques resulted in functions that return images similar to
the user’s conjecture. As in other scientific fields, the further development and en-
hancement of content-based image retrieval depends on the capability to evaluate
and compare the image understanding and mining functions — a subject which has
not been dealt with much so far yet.

The information mining system that is in focus throughout this thesis models the
image content from raw data pixel values up to user-related semantic interpretation
in a stochastic Bayesian way using a hierarchy of levels with different semantic
abstractions. Thus, we outlined the definition of probability, how information about
unknown parameters can be inferred from observations in the Bayesian way and how
the information content and accuracy of estimated parameters can be measured.
Probability, Bayesian inference and information theory constitute the basic tools
that are applied throughout this thesis.

Based on the above findings, we illustrated the implemented scheme of hierar-
chical Bayesian image content modeling in the next part of the thesis. We explained
how the image characteristics at a certain level in the hierarchical representation
are obtained from the elements of level(s) below in a step of Bayesian inference:
primitive image features and meta-features are estimated from image data in a
Bayesian way by applying parametric signal models, clouds of primitive features in
the different feature spaces are replaced by a more compact representation using
parametric models of the unsupervised clusters, user-specific interpretation of im-
age content in form of semantic cover-types is linked to the unsupervised clusters
with simple Bayesian networks, and the same Bayesian learning model is applied
to aggregate cover-type labels to complex semantics. Then, we implemented the
theoretical concept of hierarchically modeling the image content at multiple levels
on remote sensing data. We described how primitive image features are extracted
from optical and radar scenes, how an unsupervised content-index is generated using
a dyadic k-means clustering algorithm, how user-specific semantic cover-types are
linked to the index and how their definition can be used to search the archive in a
probabilistic way.

Both for optical, radar and multi-mission data the signal-oriented way of image
content modeling and retrieval was limited because complex semantic labels cannot
be discriminated on the basis of the generated content-index. Consequently, a new
level of image content abstraction was introduced: semantic grouping. Just like a
cover-type label is defined through various man-machine interactions and linked to
characteristic signal classes of the content-index, a user can group labels to higher-
level semantics by weighting individual labels. A limitation of the traditional scheme
of unsupervised image content description and supervised semantic labeling is that
only images that are assigned to clusters in the global feature spaces of the different
feature models can be queried. Images from other (non multi-mission) collections
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cannot be included in the retrieval loop by using the standard way of image content,
modeling. We showed that the new level of aggregated semantics can be extended to
search for images across sensors and image collections. However, as cover-types are
defined by users with different background knowledge about sensor, feature models
and scene classes and objects, the users have to share a certain ontology to avoid
semantic ambiguities in the DBMS inventory.

After having described the basic theoretic concepts and the application of the
image information mining system, we further dealt with its evaluation and verifica-
tion. Since no single quantity is able to represent the overall system performance,
we outlined an algorithmic protocol with functions specially designed for the eval-
uation of each system module. This protocol is organized in the same hierarchical
way as previously shown for image content modeling. We started the evaluation
presenting techniques to determine the information content of extracted primitive
image parameters. Therefore, we did not determine the features’ performance in
terms of retrieval quality. Instead, we directly measured the information content
of the features. For spectral features we obtained the distortion by noise and for
spatial features at multiple scales we calculated the accuracy of the estimates using
the Cramér-Rao lower bound. The information content of the unsupervised feature
clusters is mainly reflected by measurements like isolation and compactness. For
their determination we computed scatter matrices, divergence, Bayes’ probability
of error and compared the location and shape of clusters with the feature space
density. In addition to analyzing clusters in multi-dimensional feature spaces, we
determined the accuracy of two-dimensional unsupervised classification maps by
using error matrices. To analyze the classification accuracy and selectivity of the
system according to a trained user-specific semantic label, we measured the quality
of the stochastic link between unsupervised content-index and semantic cover-type,
and the separation between semantic labels for a given combination of feature mod-
els. Then, we evaluated the system retrieval function using standard measurements
like precision/recall and the coverage of the entire archive by the defined semantic
image content. While the validation of primitive features and unsupervised clus-
ters focused on objective criteria and measurements, the validation of interactive
learning and probabilistic search included objective and subjective concepts. This
combination of objective and subjective evaluation aspects was even more relevant
for the verification of system operation and human-computer interaction. We an-
alyzed the complexity of actions between user and system, the timing of actions
and the combination of various action types to form certain action classes in an
information-theoretic way. Additionally, we evaluated the graphical man-machine
interface, the capability of users to “learn” the system and communication and in-
formation representation aspects. The outlined algorithmic protocol did not only
concentrate on the verification of individual system modules but also on the associ-
ation of system modules and their interactions. We illuminated the mining system
from the communication channel view and measured the information flow between
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the basic levels of different semantic abstraction.

The overall validation of the mining system required a special organization and
the development of appropriate tools. For the evaluation of the objective perfor-
mance of the system, we used a tool to trace the interactions between operator and
system and developed functions for the statistical analysis of user-tracing parame-
ters. With these methods we had a number of evaluation measurements at hand
that allowed us to compare the relevance of objective measurements with the subjec-
tive level of the protocol. The latter was expressed as a questionnaire and included
the user’s degree of satisfaction. In order to obtain reliable and statistically correct
results, various persons from different working fields and with different background
knowledge participated in the system evaluation procedure.

In the final chapter dealing with system evaluation we summarized the main
evaluation results, gave an overview of processed and inserted datasets, showed
the capability of the system to add and scale large data quantities, measured the
information-theoretic complexity of different datasets, illustrated the efficiency of the
on-line human-machine interface and showed the evaluation of the overall semantic
image content.

10.2 Outlook

The enhancement and evaluation of the image information mining system that we
addressed in this thesis resulted in the identification of topics that should be the
subject of further development and optimization.

System upgrade

First, the applied set of primitive image features has to be extended to include
geometrical attributes. While spectral and textural parameters demonstrated their
capability to describe the content of remote sensing images at medium resolution,
they are of limited importance for data with increasing geometrical resolution, e.g.
provided by the Ikonos and the TerraSAR sensor. For a geometrical characterization
of the scene content, shape descriptors and elements of topology derived from the
outcomes of an unsupervised segmentation are the key issues to be solved. In the
current mining system, we ingested and tested geometrical features for both Landsat
TM and Tkonos scenes. However, the results did not meet the expectations.

As stated in Sec. 5.2, the reduction and compression of extracted primitive fea-
tures by an unsupervised clustering assumes that the features obtained from all
images in the archive build a global space for different feature models. What is
needed to efficiently manage and process large volumes of data (as it is the case in
a satellite ground segment system) is an incremental clustering method that allows
the unsupervised grouping of extracted features “on-the-fly”. A short experiment in
that direction demonstrated that the classification of images added to the database



10.2. Outlook 171

according to the existing vocabulary performed well and did not significantly affect
the retrieval performance.

In terms of information fusion for interactive learning and probabilistic search,
the current version of the system allows the combination of up to two different
signal models. In order to discover and understand high complex scenes, particularly
multi-mission datasets, the combination of more than two models is required. In the
off-line version of the mining system, we successfully implemented and tested the
semantic labeling of cover-type labels with up to eight feature models. What hinders
the fast implementation of the probabilistic search is the computational complexity
of the search algorithm. A simplification by applying a dyadic scheme on the full
set, of models showed good results but needs more testing and validation.

Other factors that should be considered to achieve a further system upgrade are
visualization techniques for multi-mission and temporal remote sensing datasets,
and the interoperability with GIS systems.

System evaluation

In this thesis, we mainly addressed the evaluation of an existing image information
mining system. Although we described an extensive algorithmic protocol consisting
of methods and tools to perform an overall validation with objective and subjective
components, further tests should be performed.

First and foremost, the mining system should be verified in a large-scale test
by including huge datasets as they are relevant for satellite ground segments or
robotic archiving systems. A question that arises about mining huge volumes of
data is how much value can be added to the system, how an adequate compression
factor can be selected and how much information details are lost due to a selected
compression factor. We demonstrated that — although it takes some time and is
computationally intensive — the data ingestion chain using a cluster of 100s of CPUs
can manage the extraction and clustering of primitive image features as needed for a
pipeline with a SAR processor, for instance. The required data storage, for a scenario
using a moderate compression factor of up to 400 that guarantees a good image
content preservation according to information-theoretic complexity, enables the on-
line exploration of more than 10 Terra Bytes of data. In order to access very large
volumes of data, the system can be operated in two steps. First, a classical query
using meta-information like geographical coordinates in combination with semantic
data grouping restricts the search to a subspace of the large query archive. Second,
a ‘cluster archive’ from the large archive is produced and the interactive learning
and probabilistic search is performed for this dataset. Interesting quantities that are
relevant for the mining of such large data quantities are the completeness of search
results, the time for executing the query and the technical limitations due to disk
storage and computing power.

The presented evaluation procedure was characterized by a limited number of
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participants and the fact that all of them were familiar with remote sensing data. In
order to test the usability of the system and its adaptivity and suitability for various
kinds of applications, the system has to be tested by a larger number of evaluators
from heterogenous working fields. What should be verified along with testing the
mining system by many users is the stability of the DBMS for several thousands of
parallel Internet accesses.



Karhunen-Loéve Transform

A method to cope with the “curse of dimensionality” in statistical data analysis
is to reduce the dimensionality by applying a Karhunen-Loéve transform ®. This
transform projects high-dimensional data (observations) onto a lower dimensional
subspace that is optimal in the sum-squared error sense (FUKUNAGA 1990). The ef-
ficiency of the Karhunen-Loéve transform is due to its low computational complexity
and analytical tractability.

If we assume a set of data samples in a d-dimensional space with each sample

described by its appropriate vector @, we can compute the mean vector

n=E{x) (A1)
and covariance matrix
S = E{(@—p)@—p'} (A2)

for the full dataset. For the Karhunen-Loéve transform it is fundamental to find a
linear transformation G of the original coordinate system in the multi-dimensional
space, so that

y=Gz (A.3)

represents the samples in the y-space and the covariance matrix for y is diagonal.
The covariance matrix for data samples in the transformed space can be expressed
as

2, = GX, G (A.4)

with 3, denoting the covariance matrix in the original space. As X, is assumed
to be a diagonal matrix, G can be considered as the transposed matrix of normal-
ized eigenvectors of 3,. The eigenvectors g, of the transformation matrix G are
composed of result from

(Bz—Nil)g; =0 (A.5)

!The Karhunen-Loéve transform is also called principal component analysis (PCA) or Hotelling

transform.
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and the corresponding eigenvalues \; (elements of the diagonal matrix 3,) have to
fulfill

S, — M| =0 (A.6)

with identity matrix I. Since 3, is defined as a diagonal covariance matrix, its
elements indicate the variances of the samples in the transformed space. The ad-
vantage of the Karhunen-Loéve transform is to reduce the original data space to a
certain subspace by analyzing the variances.



Notation

B.1 Variables

The following table lists all important variables used in this thesis. Owing to the
diversity of covered topics, some symbols may have several meanings. However, the
correct denotation can be gathered from the context.

Aj- user action with consecutive number j and type @

a auto-interaction in the scalar term n

o vector of hyper-parameter to describe p(w;|L,) and p(L,|A,)
B Bhattacharyya distance

Parzen window function

5

Q; hyper-parameter

C coverage for a certain label

[0} parameter vector to model p(w;|L,)

i element of ¢

P parameter vector to model p(L,|A;)

P element of

N; occurrence of w; in T’

N, occurrence of L, in T

D data/observations, main element of level 0

D(-) Kullback-Leibler divergence

Dy, Kullback-Leibler divergence between cluster w, and and w;
Ji Jeffries-Matusita distance between cluster w;, and and w;
(D)  average divergence

E cost function

E{-} expectation value

G maximum grey value

H(-) Shannon’s entropy measure
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chap. 3: hypothesis
chap. 5: energy function
I(X,Y) mutual information between X and Y

I(0) Fisher information matrix

I a certain image in the database

L equivalent number of looks

L, user-specific semantic cover-type, main element of level 4
A, aggregated semantic label, main element of level 5

M stochastic parametric model

N.,n Number of observations, data samples or actions

N (p,0%)  Gaussian noise process with mean p and variance o
Pr(-) probability

120 probability, probability distribution or pdf

P, probability to over-retrieve images

P probability to forget relevant images

Wi signal class (cluster), main element of level 3
Q, overall classification accuracy

C, average classification accuracy of cover-type L,
0 scalar model parameter

0 estimated scalar model parameter
0 model parameter vector, main element of level 1
0| norm of estimated model parameter vector

0, parameter vector of a certain point
] estimated model parameter vector
X random variable
x state of random variable X

chap. 5: noise-free pixel
0x neighbourhood of z,
Ty image pixel at a certain site s
& measurement for clustering performance
Tij neighbouring image pixels around x4
Y random variable
Y state of random variable Y

chap. 5: pixel of a noisy observation
conditional variance of an estimated scalar parameter

Q
TN

n
~
s
=

separability of cover-type L, in image I,
conditional variance of an estimated parameter vector
variance of model M to describe data

qus Q)qto
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N <

B.2

scalar parameter

transformed scalar parameter

mean vector of cluster w;

co-variance matrix of cluster w;

dimension of feature space

total number of clusters

relevant images in retrieval set

Gamma function

scalar quantity denoting the joint influence by neighbouring pixels
scatter matrix of cluster w;

training samples provided by the user

Sec. 5.2: mathematical cluster model

Sec. 7.4: set of queried images

Sec. 7.6: time for a complete learning session
classification and including parameters
Normalization constant of Gibbs distribution

Acronyms

Throughout this thesis, the following acronyms have been used:

ACS
CBIR
CLS
CRB
DBMS
DFD

DLR

ENL
ERS
ESA
ETHZ

GIS
GMRF
GRF
’M

Advanced Computer Systems

content-based image retrieval

conditional least-squares

Cramér-Rao bound

database management system

Deutsches Fernerkundungsdatenzentrum (at DLR)
(German Remote Sensing Data Center)

Deutsches Zentrum fiir Luft- und Raumfahrt
German Aerospace Center

equivalent number of looks

European Remote-Sensing Satellite

European Space Agency

Eidgenossische Technische Hochschule in Ziirich
(Swiss Federal Institute of Technology in Zurich)
geographical information system

Gauss-Markov random field

Gibbs-Markov random field (auto-binomial model)
image information mining
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Appendix B. Notation

IMF

JPEG
KES
KIM
KL
KLT
MAP
MIT
ML
NASA
PCA
pdf
SAR
SIMD
™

Institut fiir Methodik der Fernerkundung
(Remote Sensing Technology Institute)
Joint Photographic Expert Group
Knowledge Enabled Services
Knowledge-driven Information Mining
Kullback-Leibler

Karhunen-Loéve transform

maximum a posteriori

Massachusetts Institute of Technology
maximum likelihood

National Aeronautics and Space Agency
principal component analysis
probability density function

synthetic aperture radar

single instruction multiple data
Thematic Mapper
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