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This paper studies the synchronization of a network with linear diffusive coupling, which blinks
between the variables periodically. The synchronization of the blinking network in the case of
sufficiently fast blinking is analyzed by showing that the stability of the synchronous solution depends
only on the averaged coupling and not on the instantaneous coupling. To illustrate the effect of
the blinking period on the network synchronization, the Hindmarsh-Rose model is used as the
dynamics of nodes. The synchronization is investigated by considering constant single-variable
coupling, averaged coupling, and blinking coupling through a linear stability analysis. It is observed
that by decreasing the blinking period, the required coupling strength for synchrony is reduced. It
equals that of the averaged coupling model times the number of variables. However, in the averaged
coupling, all variables participate in the coupling, while in the blinking model only one variable
is coupled at any time. Therefore, the blinking coupling leads to an enhanced synchronization in
comparison with the single-variable coupling. Numerical simulations of the average synchronization
error of the network confirm the results obtained from the linear stability analysis.

PACS numbers: 05.45.Xt

I. INTRODUCTION

Complex dynamical networks have attracted much at-
tention in recent years [1]. A universal phenomenon in
these networks is the synchronized behavior of the com-
ponents [2–4]. It has been shown that the structure of
the network plays a key role in synchronization [5]. For
this reason, many studies were focused on the influence
of the network topology on synchronization. Wang et al.
[6] proposed that the synchronizability of a homogeneous
network can be enhanced by considering weighted and
asymmetric couplings, similar to a scale-free network.
Nishikawa et al. [7] reported that networks with a ho-
mogeneous distribution of connectivity, although having
larger average path lengths, are more likely to synchro-
nize than those with heterogeneous connectivity.

Enhancing synchronization is of great importance in
many applications, including diverse brain functions
[8, 9]. For example, synchronization is essential in many
memory processes such as working memory and long-
term memory by enhancing neural plasticity [10]. In the
attention-related process, the neurons receiving the at-
tended stimuli exhibit enhanced synchrony in the gamma
band [11]. In contrast to these desirable functions, some
of the pathological brain states are caused by increased
synchrony in special regions. For instance, in patients
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with Parkinson’s disease, abnormal synchronization is
observed in the cortico-basal ganglia circuits [12]. In the
past years, many efforts have been devoted to enhanc-
ing synchrony in dynamic networks. Lin and Chen [13]
demonstrated that two chaotic oscillators could become
synchronous by applying white-noise-based coupling. It
has been shown that assigning the direction to the links
of a network, for example, by the residual degree gradi-
ent (RDG) method or the residual edge-betweenness gra-
dient method [14, 15] can improve the synchronization.
Ramirez et al. [16] proposed a dynamic coupling for a
master-slave network and showed the enhanced synchro-
nization, which could not be obtained with static cou-
pling. Banerjee et al. [17] found that applying a param-
eter mismatch to well-defined oscillators of the network,
such that the identical oscillators interact indirectly, can
help achieve synchronization. Sevilla-Escoboza et al. [18]
investigated the stability of synchronization by consid-
ering multivariable couplings and extracted the optimal
scheme that resulted in maximum stability. Panahi et al.
[19] revealed that the optimal synchronization in circu-
lant oscillators is obtained by multivariable coupling with
equal coupling coefficients. Time delay is another factor
impacting synchronization [20, 21]. Kyrychko et al. [22]
examined the stability of different types of synchroniza-
tion in different topologies considering distributed time
delays in coupling. They considered uniform and gamma
delay distributions and found that the stability of the
synchronization is improved with increasing the width
of a uniform distribution or decreasing the mean of the
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gamma distribution. Gjurchinovski et al. [23] studied
a network of coupled limit-cycle oscillators with time-
varying delays in the coupling and self-feedbacks. They
analyzed the stability of synchronization and found that
the time-varying delay leads to the formation of ampli-
tude death. Liu et al. [24] considered a network with
time-varying delay and investigated local and global ex-
ponential synchronization. By using the average dwell
time method, delay-dependent sufficient conditions were
derived.

In realistic networks, the interactions between compo-
nents are dynamic and evolve in time [25]. The varying
communications between individuals in society or the in-
teractions between neurons in the brain are some exam-
ples. In this context, many researchers have focused on
synchronization in time-varying networks in the last two
decades. Belykh et al. [26] proposed a small-world net-
work with fixed nonlocal connections and time-varying
links between any pairs of oscillators with the chaotic
attractor. The blinking connections were switched on
and off with pre-defined probability. It was found that
the addition of random links reduces the effective path
length and also enhances synchronization with a lower
cost. Hasler et al. [27] considered blinking random con-
nections in non-neighboring nodes in a multi-stable net-
work. They showed that for sufficiently small blinking pe-
riods, i.e., fast switching, the behavior of the blinking net-
work and the time-averaged network is almost the same.
A comparison of the fast switching network and its aver-
aged network has also been performed for finite time and
infinite time intervals considering different cases accord-
ing to the invariance or non-invariance of the numbers
of attractors of the averaged system [28, 29]. Porfiri [30]
established a method for finding necessary and sufficient
conditions for the stochastic synchronization of a network
of chaotic maps with blinking links. Lu et al. [31] ana-
lyzed the synchronization of discrete-time networks with
time-varying topologies by using the Hajnal diameter,
which is equivalent to transverse Lyapunov exponents.
Besides blinking small-world networks, synchronization
of time-varying random networks has also been consid-
ered. Jeter and Belykh [32] studied the global stability of
the synchronization in networks with time-varying ran-
dom topology and intrinsic parameters. In another study,
they found an optimal window of frequency in which the
synchronization is stable [33]. Barabash and Belykh [34]
studied a random network with time-varying connections
and showed its equivalence with the averaged network for
fast blinking. They found that synchronization is main-
tained even when increasing the blinking period consid-
erably. Furthermore, with increasing number of oscilla-
tors in the network, the synchronization threshold be-
comes independent from the blinking period. The effect
of memory in the blinking links has also been studied. Liu
et al. [35] proposed a novel approach for deriving suffi-
cient conditions for the synchronization of networks with
time-varying coupling structure and weight. They con-
sidered two cases for stochastic switching processes where

in the first case, the sequences had an independent and
identical random distribution and in the second case, the
sequences created a Markov chain. Porfiri and Belykh
[36] investigated two one-dimensional coupled nonlinear
maps under Markovian switching with respect to memory
effects. Lanza et al. [37] analyzed synchronization in cou-
pled memristor-based oscillatory circuits since memris-
tors have represented a crucial function in the emergence
of synchronization in special cases [38]. They showed
the effects of blinking links on the invariant manifolds of
oscillators.

In the studies mentioned above, the topologies of the
networks were considered to be time-varying with fixed
coupling functions. However, there exists another con-
figuration where the network connections between the
nodes are fixed, but the coupling function is a time-
varying function. The coupling function determines
which dynamic variables of different nodes are connected
with each other, i.e., it determines how the interactions
among two (or more) dynamical systems evolve [39].
There are many applications in which the coupling func-
tion is time-varying such as the cardiorespiratory sys-
tem, transport grids and supply networks, and neural
cross-frequency coupling functions [40, 41]. In general,
a coupling function is defined by its strength and its
form. Some previous studies have focused on networks
with time-varying coupling strength [42–44], while some
have investigated the effects of time-varying coupling
forms [39, 45–47]. For example, Hagos et al. [45] reported
synchronization transitions induced by time-varying cou-
pling functions in phase oscillators. They indicated that
the collective behavior of the oscillators depends on the
shape of the coupling function, and the net coupling
strength has a negligible effect. As an application in
machine learning, Stelzer et al. [47] discussed deep neu-
ral networks with step-like switching functions between
multiple time-delayed feedbacks to achieve a better, more
efficient performance. These virtual networks consist of
a single node with multiple time-delayed feedback loops.

In this paper, we consider a network with fixed con-
nections and a special time-varying coupling function.
The variable through which the oscillators are coupled
is assumed to alternate between the system’s variables
periodically. Thus, the coupling function turns out to
be blinking. The synchronization of the network is ana-
lyzed under fast blinking. The Hindmarsh-Rose neuron
model is considered as the dynamics of each node of the
network. The synchronization stability is investigated by
computing the largest Lyapunov exponent of the varia-
tional equation for different blinking periods. It is found
that by decreasing the blinking period, synchronization is
achieved for lower coupling strengths. Numerical simula-
tions are also performed, and the average synchronization
error is calculated.
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II. THE BLINKING NETWORK MODEL

A time-varying dynamical network composed of N
identical oscillators with linear diffusive coupling is con-
sidered. It is assumed that the links are constant, but
the variable used in the coupling is switched periodically
in time. Thus, the network can be described by

Ẋi = F (Xi) + σ
∑N

j=1 GijH(t)Xj , i = 1, ..., N, (1)

where Xi = (xi1, xi2, ..., xid) is the d-dimensional state
variable of the oscillators, F (Xi) : Rd → Rd is the sys-
tem’s dynamics, and σ is the coupling strength. The
network topology is determined by the adjacency ma-
trix GN×N with zero row sum (i.e., the negative of
the Laplacian matrix), where Gij = 1 if the ith and
jth oscillators are connected and Gij = 0 else, and

Gii = −
∑N

j=1,j ̸=i Gij . The time-varying matrix H(t) :

Rd → Rd is the internal-coupling matrix and determines
which variables are considered in the coupling at each
time t. Here, the matrix H(t) is assumed to blink be-
tween variables with equal time intervals with period
τ . Therefore, the matrix H(t) and its elements Hmn(t)
(m,n = 1, ..., d) can be described as follows

Hmm(t) =

{
1 if (m−1)τ

d < t < mτ
d

0 otherwise
,

Hmn(t) = 0,
H(t+ τ) = H(t).

(2)

This time-varying network can have a synchronous so-
lution s(t) = Xi(t), i = 1, ..., N . The stability of the
synchronous manifold is equivalent to the stability of the
error vector ηi(t) = Xi(t) − s(t) with respect to pertur-
bations around zero. Substituting ηi(t) into the network
equation (Eq. 1), one obtains the linearized variational
equation

η̇i(t) = DFs(t)ηi(t) + σ
∑N

j=1 GijDHs(t)ηi(t) (3)

where DFs : Rd → Rd and DHs : Rd → Rd are the
Jacobian matrices of F and H at s(t). Note that since
the coupling is considered to be linear diffusion, we have
DHs(t) = H(t). Thus, the system of linearized coupled
oscillators is given in terms of the Nd-dimensional vector
η(t) = (η1, η2, ..., ηN ) by

η̇(t) = (IN ⊗DFs(t) + σ(G⊗H(t)))η(t) (4)

where ⊗ is the Kronecker product. The matrix G can be
diagonalized using Schur decomposition. Therefore, an
upper triangular matrix is formed with eigenvalues of G
appearing on its main diagonal. Finally, diagonalizing G,
and since the first term of (Eq. 4) is block diagonal, the
set of variational equations (Eq. 4) can be transformed
to the decoupled system

η̇(t) = [DFs(t) + σλkH(t)]η(t), k = 1, ..., N (5)

FIG. 1: a) Time series of the membrane potential x1 of
the single Hindmarsh-Rose neuron model (Eq. 11) that
exhibits chaotic bursting. The parameters are set to
Iext = 3.2, r = 0.006, s = 4. (b) Synchronous time

series of two neurons coupled through x1 variables and
coupling strength σ = 1. The blue and red colors

represent the time series of the membrane potential of
the first and second neurons x11 and x21, respectively.

The parameters are as in part (a).

where λk are the eigenvalues of the adjacency matrix (G)
and η(t) is a d-dimensional vector. For a network with a
connected graph, the first eigenvalue is always zero, and
thus, the system (Eq. 5) for k = 1 evolves along the
synchronous manifold. Consequently, the stability of the
system (Eq. 5) needs to be checked for k = 2, ..., N ,
which corresponds to the directions transverse to the
synchronous manifold. This method is called the mas-
ter stability approach and has been proposed by Pecora
and Carroll [5]. The master stability function (MSF)
is defined as the largest Lyapunov exponent (Λ) of the
variational equation (5) as a function of the complex pa-
rameter µ = λk. If Λ(µ) < 0 for all eigenvalues µ = λk,
k = 2, ..., N , the synchronized solution is stable. Huang
et al. [48] systematically studied the typical behavior of
the MSF with different coupling schemes for some well-
known chaotic systems and categorized the MSF behav-
ior into four classes.
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III. SYNCHRONIZATION UNDER FAST
BLINKING

The stability of synchronization of the time-varying
network with a sufficiently fast blinking coupling function
can be estimated by the synchronization of the averaged
network. Stilwell et al. [49] proved this theory for the
network with time-varying topology. Here, we use the
same approach for the time-varying coupling function.
In this regard, the following theorem is given.

Theorem 1. It is supposed that the system of oscilla-
tors with linear diffusive coupling and the static internal
coupling function (H̄) as,

Ẋi = F (Xi) + σ
∑N

j=1 GijH̄Xj , i = 1, ..., N (6)

has a stable synchronization manifold. Then, there exists
a small ε∗, such that the set of oscillators with time-
varying internal coupling function as

Ẋi = F (Xi) + σ
∑N

j=1 GijH(t/ε)Xj , i = 1, ..., N (7)

reaches a stable synchronization manifold for 0 < ε < ε∗,
if

1

τ

∫ t+τ

t

H(α)dα = H̄. (8)

The above theorem can be easily proved according to
the following lemma, which is given for the fast switching
systems.

Lemma 1. Supposing ẋ(t) = (A(t) + Ē)x(t) has a uni-
formly exponentially stable solution, where E is a ma-

trix function satisfying Ē = 1
τ

∫ t+τ

t
E(α)dα for all t.

Then, there exists small ε∗ such that for 0 < ε < ε∗,
ż(t) = (A(t) +E(t/ε))z(t) has a uniformly exponentially
stable solution.

The proof of the lemma is presented in the appendix
[49].

Proof of Theorem 1. In the previous section, it was de-
scribed that the stability of synchronization of the net-
work (Eq. 6) is equivalent to the stability of the linearized
variational equation,

η̇ = [DFs + σλkH̄]η, k = 2, ..., N. (9)

Supposing that the network (6) achieves synchroniza-
tion, then the system (9) is exponentially stable. Ac-
cording to the internal coupling matrix defined in the
previous section and Eq. (2), there exists an average ma-

trix H̄ = 1
τ

∫ t+τ

t
H(α)dα =


1/d 0 . . . 0

0 1/d
. . . 0

...
. . .

. . . 0
0 . . . 0 1/d

 for all

t. Thus, according to the lemma, there is ε∗ such that
the following system is exponentially stable,

η̇ = [DFs + σλkH(t/ε)]η, k = 2, ..., N. (10)

The system (10) can be considered as the linearized vari-
ational equation of the network (7). Therefore, the time-
varying network (Eq. 7) can achieve stable synchroniza-
tion.

From this theory, it can be concluded that when the
blinking of the internal coupling function is sufficiently
fast, i.e., the period of blinking is considerably smaller
than the period of the oscillators, the stability of syn-
chronization of the blinking network is determined by the
synchronization stability of the averaged network. There-
fore, the synchronization stability is not dependent on the
coupling function H(t) at time t but on the average of
H(t).

IV. BLINKING NEURONAL NETWORK

It has been shown that the interactions in the brain
are not static and evolve in time [50–54]. The synap-
tic connections and also the strength of the connections
change temporally to optimize the functionality of the
neurons [55]. Since the focus of our studies is the blink-
ing coupling function and not the network topology, we
use a very simple network consisting of two nodes in order
to gain insight into the mechanism of blinking coupling.
Therefore, as an illustration of blinking coupling, we
choose a well-known dynamic model from neuroscience,
and investigate synchronization in a simple network of
two coupled Hindmarsh-Rose neurons where the dynam-
ics of each node (F (X)) is described by

ẋ1 = x2 + 3x2
1 − x3

1 − x3 + Iext
ẋ2 = 1− 5x2

1 − x2

ẋ3 = r(s(x1 + 1.6)− x3)
(11)

where x1, x2 and x3 denote the membrane potential, the
fast and slow recovery variables. The parameters are set
to Iext = 3.2, r = 0.006, s = 4, where each node exhibits
chaotic bursting. The time series of the Hindmarsh-Rose
model with these parameters is shown in Fig. 1a. In our
simplest example, the network is assumed to be com-

posed of two nodes via G =

[
−1 1
1 −1

]
with eigenvalues

λ1 = 0 and λ2 = −2. The synchronizability of the net-
work is obtained by linear stability analysis and numer-
ical simulations considering different cases for the inter-
nal coupling function as a) constant coupling function on
each state variable, b) averaged coupling function (H̄),
c) blinking coupling function as Eq. 2. It is notable that
the synchronous manifold in all cases is also chaotic. An
example of the time series of the synchronous neurons is
illustrated in Fig. 1b.
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FIG. 2: The largest Lyapunov exponent Λ of the variational equation (5) for µ = −2 with constant coupling
function (H) in dependence on the coupling strength σ. (a) Coupling in x1 variables, (b) Coupling in x2 variables,

(c) Coupling in x3 variables, (d) Averaged network. Parameters as in Fig. 1.

A. Linear stability analysis

At first, the coupling function is considered to be con-
stant, with the coupling in one variable only. In this
case, the stability of synchronization can be obtained by
finding the stability of the variational equation (Eq. 5)
with constant H with respect to the zero solution. If
the master stability function, defined as the largest Lya-
punov exponent (Λ) of the variational equation (5) as a
function of the complex parameter µ, satisfies Λ(µ) < 0
for all eigenvalues µ = λk of the adjacency matrix, the
synchronized solution is stable. For the considered cou-

pling matrix G =

[
−1 1
1 −1

]
with eigenvalues λ1 = 0 and

λ2 = −2, we have to compute the largest Lyapunov ex-
ponent (Λ) of the variational equation for µ = λ2 = −2.

Figure 2 shows the largest Lyapunov exponent Λ(µ =
−2) for constantH as a function of the coupling strength.
In Fig. 2a, the coupling of the oscillators is through the

x1 variables, i.e., H =

1 0 0
0 0 0
0 0 0

. With this coupling,

synchronization can be attained for σ > 0.465. Figure
2b represents Λ(µ = −2) for coupling in the x2 variables,

i.e., H =

0 0 0
0 1 0
0 0 0

. It is observed that for this coupling,

the network becomes synchronous for σ > 0.056. Finally,
the coupling is through the x3 variables (Fig. 2c), i.e.,

FIG. 3: The largest Lyapunov exponent (Λ(µ = −2))
of Eq. 3 vs the coupling strength (σ) for different

blinking periods τ . Blue: τ = T = 30, Red:
τ = T/5 = 6, Orange: τ = T/10 = 3, Purple:

τ = T/100 = 0.3, Green: τ = T/1000 = 0.03. For faster
blinking, the largest Lyapunov exponent is the same as

the green line with threshold σ = 0.021. Other
parameters as in Fig. 1.

H =

0 0 0
0 0 0
0 0 1

. In this case, the synchronization is un-

stable for any value of σ. Next, H =

1/3 0 0
0 1/3 0
0 0 1/3

 is
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considered, which is the average of the blinking network.
The largest Lyapunov exponent, which is illustrated in
Fig. 2d, shows that the synchronization of the averaged
network is achieved for σ > 0.021. It can be clearly seen
that the largest Lyapunov exponent is a decreasing lin-
ear function of the coupling strength σ, which follows
from the diagonal coupling in all three variables [56, 57],
in contrast to the coupling in only one variable in Fig.
2a-c. The stability of the synchronized solution η = 0 is
governed by the linearized equation η̇ = [DFs+λ2σI/3]η
with λ2 = −2 for perturbations of η = 0, where I is the
unity matrix. In fact, for a constant matrix A0 = DFs

the eigenvalues γ0 of A0 are related to the eigenvalues
γ of A = [DFs + λ2σI/3] by γ = γ0 + λ2σ/3 which fol-
lows from comparing the two eigenvalue equations. Since
the Lyapunov exponents correspond to the real part of
the eigenvalues averaged along the attractor’s orbits, the
eigenvalue equation γ = γ0 + λ2σ/3 can be converted to
the equation Λ = Λ0 +λ2σ/3, where Λ0 is the maximum
Lyapunov exponent of DFs. Therefore, the maximum
Lyapunov exponent Λ as a function of σ is given by a
straight line Λ = Λ0−2σ/3. Consequently, the threshold
for synchronization Λ = 0 can be calculated as σ = 3Λ0/2
which gives σ = 0.0207 for Λ0 = 0.0138.
Next, we investigate the stability of the synchronous

solution of the blinking network. The largest Lyapunov
exponent of Eq. 5 is calculated for the time-varying cou-
pling function, i.e.,

H(t) =



1 0 0

0 0 0

0 0 0

 if 0 < t < τ/3

0 0 0

0 1 0

0 0 0

 if τ/3 < t < 2τ/3

0 0 0

0 0 0

0 0 1

 if 2τ/3 < t < τ

,

H(t+ τ) = H(t)

(12)

Figure 3 shows Λ(µ = −2) for different blinking periods
τ as a function of the coupling strength σ. Although
the coupling function is discontinuous in time, the linear
stability analysis is straight-forward since the coupling is
linear. The master stability function has been extended
to nonsmooth (discontinuous) nonlinear coupling in [58].
The time-scale of the spikes in the chaotic bursting os-
cillations of the single Hindmarsh-Rose model is approx-
imately equal to T = 30. We have chosen the periods of
blinking as τ = T, T/5, T/10, T/100, T/1000, T/10000 =
30, 6, 3, 0.3, 0.03, 0.003. The time step for solving the
equations is set at dt = 0.0002. It can be seen that
as the blinking occurs faster (with decreasing the period
of blinking τ), the threshold of the coupling strength at
which the synchronization is achieved is decreased. Fur-

FIG. 4: The synchronization error vs the coupling
strength σ with a constant coupling in (a) x1-variables,
(b) x2-variables, (c) x3-variables. Parameters as in Fig.

1.

thermore, when the blinking period decreases sufficiently,
i.e., for τ < 0.03, synchronization can be obtained for
σ > 0.021. For fast blinking the stability is the same as
for the averaged coupling, and hence the maximum Lya-
punov exponent decreases linearly with coupling strength
as in Fig. 2d. One can see that the function becomes
more and more like a straight line with decreasing blink-
ing period τ . For the smallest value of τ (green line)
the graph becomes identical to Fig. 2d, with the same
critical coupling strength.

B. Numerical results

We have also solved the network dynamics of two cou-
pled Hindmarsh-Rose neurons numerically. To evaluate
the synchronization between two neurons, the temporally
averaged synchronization error [59] is computed as

Error = ⟨∥X1(t)−X2(t)∥⟩t (13)
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FIG. 5: The synchronization error vs coupling strength σ with blinking coupling for different blinking periods τ .
(a) τ = T = 30, (b) τ = T/5 = 6, (c) τ = T/10 = 3, (d) τ = T/100 = 0.3, (e) τ = T/1000 = 0.03, (f)

τ = T/10000 = 0.003. Other parameters as in Fig. 1.

where ⟨.⟩t denotes the time average. At first, the coupling
is assumed to be constant through one of the variables.
The synchronization error for the x1-variable coupling is
shown in Fig. 4a. It can be seen that the neurons are
synchronized for σ > 0.48. When the coupling is only
in the x2-variables, the neurons become synchronous for
σ > 0.05. The synchronization error for this coupling is
shown in Fig. 4b. Finally, when the neurons are coupled
through the x3-variables, synchronization is not achieved
at all by increasing the coupling strength (Fig. 4c). Com-
paring Fig. 2 and Fig. 4 shows that the critical coupling
strengths found by the numerical solution are almost the
same as those obtained from the linear stability analysis.

Now it is assumed that the coupling blinks between the
three variables. Therefore, in the interval 0 < τ < τ/3,
the coupling is in the x1-variables, in τ/3 < t < 2τ/3,
the coupling is in the x2-variables, and in 2τ/3 < t < τ ,
the coupling is in the x3-variables. The synchronization
errors for various blinking periods as in Fig. 3 are shown
in Fig. 5. It is observed that when the period of blink-
ing is long, the synchronization threshold is large. With
decreasing blinking period τ , synchronization is achieved

for smaller coupling strengths, such that for τ = 0.03
the synchronization is stable approximately for σ > 0.02.
The numerically found thresholds for stable synchroniza-
tion are consistent with the results derived from the linear
stability analysis.

To obtain an overview of the effect of the blinking
period on the synchronization threshold, the parameter
plane is presented in Fig. 6. The blinking period is con-
sidered to vary in the range τ ∈ [0.01, 30] in a logarithmic
scale to represent the short periods better. The values of
the largest Lyapunov exponent of the linearized system
(Eq. 5) for µ = −2 are shown in Fig. 6a. The black
curve in this figure marks Λ = 0 and separates the re-
gions of asynchronous and synchronous behavior. Figure
6b represents the numerically obtained synchronization
error (Eq. 13) of the network. Note the nonmonotonic
behavior of the synchronization threshold as a function
of τ which is visible both in Fig. 6a and 6b.
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FIG. 6: The region of stable synchronization in the parameter plane of coupling strength σ and blinking period τ .
(a) The largest Lyapunov exponent of the linearized system (Eq. 5) for µ = −2; the asynchronous and synchronous

states regions are separated by the black curve (Λ = 0). (b) Numerically calculated synchronization error.
Parameters as in Fig. 1.

V. CONCLUSIONS

In this paper, the synchronization of a time-varying
network with blinking coupling variables was investi-
gated. It was assumed that the links of the network
are fixed and time-independent, but the variable that
participates in the coupling switches between the sys-
tem’s variables with a well-defined periodicity. For the
case of fast blinking, a theorem was presented which
shows that the synchronization of the network under fast
blinking is equivalent to the synchronization of the av-
eraged network. Therefore, the instantaneous coupling
configuration does not affect the synchrony of the net-
work. Thus, in general, the blinking coupling function
can enhance synchronization of systems in which the
coupling strength needed for synchronization in single-
variable coupling is higher than that for averaged diag-
onal coupling. This is a significant result and can be
applied for enhancing the synchronization of any phys-
ical systems such as chaotic electronic circuits in which
the coupling in all variables can be readily implemented
[18], if those systems satisfy the above condition.

As an illustration, the Hindmarsh-Rose model was
used to describe the dynamics of the nodes. At first, the
synchronization of the network with constant coupling
was studied by calculating the master stability function.
It was observed that the best case for synchronization
is the coupling through the x2-variables, which provides
synchrony for σ > 0.056, but synchronization is never
achieved for coupling in the x3-variables. Then, the nec-
essary conditions for the stability of the synchronization
of the blinking network were obtained for different blink-
ing periods. It was found that a smaller period of switch-
ing leads the network towards synchronization at smaller
coupling strengths. For sufficiently fast blinking, the
blinking network with coupling strength σ is dynamically
equivalent to fixed all-variable diagonal coupling with
coupling strength σ/3, and the coupling strength needed
for synchrony is considerably smaller than that needed in

constant single-variable coupling, namely σ > 0.021. It
is intriguing that the blinking coupling provides a better
synchronization for the systems, although being periodi-
cally coupled in the x3 variable, which as a stand-alone
coupling cannot lead to synchronization. The network
was also studied numerically, and the time-averaged syn-
chronization error was computed. The numerical results
agreed well with the conditions found from the linear sta-
bility approach.
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Appendix: Proof of Lemma 1

Here, the proof of Lemma 1 is presented [49].
In this lemma, it is supposed that the system ẋ(t) =

(A(t) + Ē)x(t) is uniformly exponentially stable. There-
fore, there exists a Lyapunov function v(x(t), t) =
xT (t)Q(t)x(t) with symmetric matrix Q(t) such that

η∥x(t)∥2 ≤ v(x(t), t) ≤ ρ∥x(t)∥2 (A.1)

and

d

dt
v(x(t), t) ≤ −µ∥x(t)∥2 (A.2)

where η > 0, ρ > 0, and µ > 0.
To prove the exponential stability of ż(t) = (A(t) +

E(t/ε))z(t), it is shown that v(z(t), t) is its Lyapunov
function and the following equation is negative definite.

∆v(z(t+ εT ), t) ≡ v(z(t+ εT, t+ εT )− v(z(t), t) (A.3)
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Eq. A.3 can be expanded to

∆v(z(t+ εT ), t) = zT (t+ εT )Q(t+ εT )z(t+ εT )
−zT (t)Q(t)z(t) = zT (t)(ΦT

E(t+ εT, t)Q(t+ εT )
ΦE(t+ εT, t)−Q(t))z(t)

(A.4)
where ΦE(t, τ) denotes the transition matrix of A(t) +
E(t/ε). Then, H(t+εT, t) = ΦE(t+εT, t)−ΦĒ(t+εT, t)
is defined, where ΦĒ(t+εT, t) denotes the transition ma-
trix of A(t) + Ē,

H(t+ εT, t) = Φ(t+ εT, t)− ΦĒ(t+ εT, t) =

I +
∫ t+εT

t
A(σ1) + E(σε )dσ+∑∞

i=2

∫ t+εT

t
A(σ1) + E(σ1

ε )
∫ σ1

t
...
∫ σi−1

t
A(σi) + E(σi

ε )dσi...dσ1

−I −
∫ t+εT

t
A(σ1) + Ē dσ−∑∞

i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
...
∫ σi−1

t
A(σi) + Ē dσi...dσ1

(A.5)
With considering

∫ t+εT

t

E(
σ

ε
)dσ = εT Ē (A.6)

Eq. A.5 turns into Eq. A.7

H(t+ εT, t) =
∑∞

i=2

∫ t+εT

t
A(σ1) + E(σ1

ε )∫ σ1

t
...
∫ σi−1

t
A(σi) + E(σi

ε ) dσi...dσ1

−
∑∞

i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
...
∫ σi−1

t
A(σi) + Ē dσi...dσ1

(A.7)
Therefore, a bound for H(t+εT, t) can be determined as

∥H(t+ εT )∥ ≤ 2(eεTα − 1− εTα) (A.8)

where

α ≡ sup
t≥0

(max(∥A(t) + Ē∥, ∥A(t) + E(t/ε)∥)) (A.9)

Substituting ΦE = ΦĒ +H in Eq. A.4 yields

∆v(z(t+ εT ), t) = zT (t)(ΦT
Ē
(t+ εT, t)Q(t+ εT )

ΦĒ(t+ εT, t)−Q(t))z(t) + zT (t)(ΦT
Ē
(t+ εT, t)Q(t+ εT )

H(t+ εT, t) +HT (t+ εT, t)Q(t+ εT )ΦT
Ē
(t+ εT, t)+

HT (t+ εT, t)Q(t+ εT )H(t+ εT, t))z(t)
(A.10)

To obtain an upper bound for ∆v(z(t + εT ), t), we
should use some relationships which are derived from
Eqs. A.1 and A.2, as

∥Q(t)∥ ≤ ρ (A.11)

∥ΦT
E(t, t0)∥ ≤

√
ρ

η
e−

µ
2ρ (t−t0) (A.12)

v(x(t), t) ≤ e−
µ
2ρ (t−t0)v(x(t0), t0), t ≥ t0 (A.13)

The first term of Eq. A.10, with considering x(t) = z(t)
as the initial condition, can be written as

zT (t)(ΦT
Ē
(t+ εT, t)Q(t+ εT )ΦĒ(t+ εT, t)

−Q(t))z(t) = v(x(t+ εT ), t+ εT )− v(x(t), t)
(A.14)

and, using Eqs. A.13 and A.1 yields

v(x(t+ εT ), t+ εT )− v(x(t), t) ≤ (e−
µεT
ρ − 1)v(x(t), t)

≤ ρ(e−
µεT
ρ − 1)∥x(t)∥2

(A.15)
Therefore,

zT (t)(ΦT
Ē
(t+ εT, t)Q(t+ εT )ΦĒ(t+ εT, t)

−Q(t))z(t) ≤ ρ(e−
µεT
ρ − 1)∥z(t)∥2

(A.16)

With combining Eqs. A.8, A.11, A.12, and A.16, the
upper bound can be obtained as

∆v(z(t+ εT ), t) ≤
(ρ(e−

µεT
ρ − 1) + 4ρ(

√
ρηe−

µεT
2ρ )(eεTα − 1− εTα)

+4ρ(eεTα − 1− εTα)2)∥z(t)∥2
(A.17)

By describing the right-hand side of A.17 by a continu-
ously differentiable function g(ε, x), we have g(0, z) = 0,
and ∂

∂εg(0, z) = −µT∥z∥2 ≤ 0. Then, since for ε → ∞,
g(ε, z) → ∞, there is an ε∗ such that for 0 < ε < ε∗

and z ̸= 0, g(ε∗, z) = 0, and g(ε, z) < 0. Therefore,
∆v(z(t+ εT ), t) is negative definite.
Now it is shown that the negative definiteness of ∆v

results in the stability of ż(t) = (A(t) + E(t/ε))z(t).
With finding ε and γ > 0 to satisfy

∆v(z(t0 + εT ), t0) =
v(z(t0 + εT ), t0 + εT )− v(z(t0), t0) ≤ −γ∥z(t0)∥2

(A.18)
and rewriting A.1 as v(z(t0), t0) ≤ ρ∥z(t0)∥2, we obtain

v(z(t0 + εT ), t0 + εT )− v(z(t0), t0) ≤ −(γ/ρ)v(z(t0), t0)
(A.19)

or v(z(t0 + εT ), t0 + εT ) ≤ (1 − γ/ρ)v(z(t0), t0) which
yields v(z(t0 + kεT ), t0 + kεT ) ≤ (1 − γ/ρ)kv(z(t0), t0)
for positive integer k.

Therefore, for k → ∞, v(z(t0+kεT ), t0+kεT ) → 0 and
then z(t0 + kεT ) → 0. Thus, the exponential stability of
ż(t) = (A(t) + E(t/ε))z(t) is proved.
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